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Abstract

We study the dynamics of modons in the Charney-Hasegawa-Mima equation
using a point vortex model introduced by Zabusky and McWilliams. This model
reduces the equation to a system of ordinary differential equations which facilitate
systematic studies of several problems involving modons. These problems are rel-
evant to the study of large-scale motions in the Earth’s atmosphere as well as the
study of microturbulence in tokamak plasmas. We study the possible motions of
an isolated modon using the model and show by direct numerical simulation that
these motions compare very well with those of actual modons. As a by-product,
we discover that the path of a left-moving (westward) modon is actually unstable
to small perturbations in its position or orientation. This points out that a modon
may be unstable in the path sense even if it is stable in the Lyapunov sense, as was
shown for left-moving modons by Laedke and Spatschek. We use the flow field gen-
erated by the model to study the flow of fluid around an isolated modon. We show
that the separatrices enclosing a modon in uniform motion break and tangle in the
fashion described by Poincare when the motion is nonuniform. This is established
analytically by computation of a Melnikov integral and numerically by plotting in-

variant manifolds of stagnation points in the flow. In contrast to past assumption,
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we find that significant mixing occurs between the modon and the external flow
when the modon is not in uniform motion. So, at least on long timescales, modons
do not serve as complete atmospheric blocks. Finally, we apply the model to the
study of coaxial collisions between two modons. This results in a problem for the
motion of four point vortices similar to that considered by Love for point vortices
in the Euler equations. The relative behavior of the two modons is described com-
pletely by a planar Hamiltonian system which we study in detail. We find a wide
variety of possible interactions between the two modons and note several behaviors
not previously observed in numerical simulations. An effort is made to relate these
results to the fluid inside a tokamak which may contain many such modons with

frequent collisions.
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CHAPTER 1

INTRODUCTION

In this thesis we study the dynamics of a certain coherent structure, known
as a ‘modon’ or Rossby soliton, found in the Charney-Hasegawa-Mima (or CHM)

equation (Charney [1948], Hasegawa and Mima [1977], [1978]) for ¢ (z,y,1):

(V2 —v24), + [, V2] + Bipe = 0.

The subscripts denote differentiation and the bracket is the Jacobian [A,B] =
AyBy, — AyB;. The parameters v and j are positive constants. This equation
arises in the study of large-scale motions in the Earth’s atmosphere when the 3-
plane approximation is used (see Pedlosky [1979]). The domain is a plane tangent
to the Earth’s surface where x and y represent east and north respectively and
is the streamfunction for the atmosphere. It also applies to low frequency magne-
tized plasmas, which are found in tokamak plasma confinement devices (see Liewer
[1985] or Hasegawa, Maclennan, and Kodama [1979]). In this case, the domain is
the plane perpendicular to the magnetic field, which points along the axis of the
toroidal device, and 1 is the electric potential of the plasma inside.

The coherent structure is realized in special cases as an exact traveling wave
solution, generally referred to as the modon solution to the CHM equation. A

detailed derivation may be found in Larichev and Reznik [1976]. This solution is of



~-9 -

the form ¥ (z,y,t) = ¥(z — Ut,y). The function ¥ can be expressed as

2 2

p’\r p Jl(qr/a)) :

¥U=—-aUl(l+—~=) ——————=]sinb r<a

(( ¢?’a ¢ Ji(q)
and
Ky(pr/a) .
Y = —aqlU sin @ r>a

Ky(p)

where r and 6 are polar coordinates, J; and K; are Bessel functions and a is an
arbitrary parameter refered to as the modon radius. The parameter p is given by

p? = a*(y% + B/U) and the parameter ¢ must satisfy the eigenvalue problem

1 Ki(p) _}_J{(Q)_,_l__*__l_
pKi(p) qNile) P2 ¢

This eigenvalue problem has a countable infinity of positive solutions ¢ for each
given positive p. In all cases we choose the ‘ground state modon’ by taking the
smallest positive ¢. The speed U must lie outside the interval (—3/42,0) so that p
is real, but is arbitrary otherwise. The solution so constructed makes ¥, Vi, and
V2% continuous but has a jump discontinuity in the third radial derivative of 1 at
r = a. The modon is strongly isolated in space owing to the exponential decay of
K (z) for large z.

Although no exact solutions exist for modons in nonuniform motion, numerical
simulations show that such strongly isolated coherent dipolar structures can exist
in a variety of circumstances. An initial distribution given by ¥(z,y,0) = ¥(z,y)
above for some U and a will evolve under the CHM equation as a coherent struc-

ture traveling horizontally at constant speed (McWilliams et «l. [1981]). An initial
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distribution corresponding to the modon solution tilted at a small angle evolves as
a wobbling coherent dipole (Makino, Kamimura, and Taniuti [1981]). The modon
oscillates vertically about its initial horizontal position while wobbling and prop-
agating horizontally. Two modons can also collide with one another, returning
roughly to their original shapes and speeds after the interaction (McWilliams and
Zabusky [1982]). These collisions are, however, neither conservative nor coherent

in general (Larichev and Reznik [1983]).

A great deal of work has concentrated on the stability of modons. Laedke and
Spatschek [1985] established that modons moving to the left at constant speed (west-
ward modons) are neutrally stable to infinitesimal perturbations in the Lyapunov
sense. Sakuma and Ghil [1990] proved a similar result for the original stationary
modon solution due to Stern [1975]. Similar proofs of stability for right-moving
modons were shown to be in error (Carnevale et al. [1988b]). Several numerical
studies have shown that modons are stable to sufficiently small topographic per-
turbations, but will break up for large perturbations (McWilliams et al. [1981] and
Carnevale et al. [1988a]). Even in the absence of complete analytical proof, modons
are generally believed to be neutrally stable and to move coherently, retaining their

dipolar structure and strong spatial isolation.

The presence of such a stable, isolated structure in the CHM equation has
relevance to both the atmospheric and plasma applications. It is believed that

modons may provide a mechanism for atmospheric blocking (Verkley [1989]). This
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occurs when westerly flows in the north Atlantic are split into two streams and
diverted around a large stable disturbance of different character than the main flow.
Such disturbances have been observed repeatedly, occuppying roughly 45 degrees
of latitude with durations ranging from two days to two weeks. The shape of such
disturbances, as well as the length and time scales involved, are consistent with
the assumptions made in deriving the CHM equation for atmospheric disturbances.
Thus, modons are natural candidates for atmospheric blocks. It is then interesting
to study the dynamics of an isolated modon and its ability to divert or block an

external flow.

The presence of modons has several important implications for tokamak plas-
mas. Since modons are coherent structures, they can slow or stop the inverse cas-
cade of energy to long wavelengths observed in such plasmas (Fischer and Kramer
[1989]). If modons form in the plasma, energy will be trapped at wavelengths
roughly equal to the typical radius of the modons present. The formation of sta-
ble dipolar structures has been observed in similar plasmas (Pecseli et al. [1984]).
These highly nonlinear disturbances could also greatly alter the transport prop-
erties of the plasma, perhaps accounting for the anomalous transport observed in

tokamaks (Yu and Lisak [1986] and Jovanovic [1988]).

Although the CHM equation itself does not address transport in the plasma
(Liewer [1985]), it does serve as a simple canonical equation for more general equa-

tions which do address transport. Equations similar to the CHM which take into
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account variation along the magnetic field (Shukla, Spatschek, and Balescu [1985]),
plasma rotation (Shukla and Yu [1986] and Horton et al. [1986]), magnetic shear,
and other phenomena (see for example Mikhailovskii et al. [1984]) have been shown
to possess a dipole-vortex solution similar to the modon. Yu and Lisak [1986]
showed that such solutions are generic to inhomogeneous magnetized plasmas, as
are found in tokamaks. So, an understanding of the consequences of the presence
of modons in the CHM equation could help to understand how such structures af-
fect transport. In this respect, it is interesting to study the dynamics of individual

modons and their behavior in collisions with other modons.

Owing to the complicated nature of the CHM equation and the nonlinear struc-
ture of the modon, we have chosen in this thesis to study problems relating to the
applications using a point vortex model. In brief, we replace a modon by two point
vortices of equal and opposite strength. We then follow the evolution of such dipoles
by deriving equations for the point vortices consistent with the CHM equation. Thus
the study of modon dynamics is reduced to the study of a set of ordinary differen-
tial equations. This has allowed us to perform systematic studies of three problems
concerning modons. First we study the dynamics of a single, isolated modon using
the model. This results in a simple planar system from which the possible motions
of the modon can be determined. We compare these motions with those obtained
from direct numerical simulations of the CHM equation to establish the utility of

the model. We then study the flow of fluid around the modon to show that the
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fluid inside the modon mixes with the external flow in general, showing that the
modon is not a complete atmospheric block. Finally, we study coaxial collisions be-
tween two modons using the model. The resulting system reduces to a complicated
planar system which we analyze in detail. We find many possible interactions and
note ones that were not expected from looking at previous numerical simulations of

modon collisions.
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CHAPTER 2

Point Vortex Dipole Model of an Isolated Modon

2.1 Introduction

In this chapter we develop and study a point vortex dipole model of an isolated
modon. Our intentions are to find all the possible behaviors of a single modon and
to develop a model which can be used to study more complicated problems involving
modons. This has direct application to the problem of atmospheric blocking, where
the knowledge of the behavior of a single modon depending upon its orientation may
be relevant. Also, a successful model would be useful in simulating the dynamics of

a fluid with many modons, as a tokamak plasma is believed to be.

We first give the point vortex formulation of the CHM equation due to Zabusky
and McWilliams [1982]. We use this formulation to model the modon with a dipole
consisting of two point vortices of equal and opposite strength. The motion of this
dipole can be described by a planar Hamiltonian system of ordinary differential
equations. We study the phase plane of this system for various parameter values to

reveal the qualitative behaviors exhibited by the dipole.

We find uniform motion in which the dipole propagates horizontally or is sta-
tionary. Small and moderate amplitude nonuniform motions about some of these

uniform states are families of ‘wobbling’ motions in which the inclination of the
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dipole oscillates while propagating horizontally. Larger amplitude motions include
families of ‘tumbling’ motions in which the dipole rolls while propagating along a

path resembling a cycloid.

We show that the parameters in the model can be chosen to match the speed
and far-field behavior of a given modon in uniform motion, provided the modon
is sufficiently small and fast. We then choose the parameters specifying a dipole
to model a given modon in order to compare the behavior of the two when placed
in nonuniform motion. We find that the period and average speed of the dipole
and modon in the periodic wobbling motion are in excellent qualitative agreement,

while the quantitative agreement is somewhat rough.

A study of the uniform motions reveals that a left-moving dipole is unstable in
the sense that its path can be pushed into a finite amplitude orbit by an arbitrarily
small perturbation of its height or inclination. We confirm this surprising prediction
for the modon by direct numerical simulation. This result sheds new light on the
stability proofs for left-moving and stationary modons due to Laedke and Spatschek
[1985] and Sakuma and Ghil [1990] respectively.. A right-moving dipole is stable in

the path sense, being pushed into small-amplitude wobbling by small perturbations.

2.2 Point Vortex Model

In this section we present the point vortex model of Zabusky and McWilliams

[1982]. This model is similar to the well-known point vortex formulation of the



~9-
two-dimensional Euler equations (Aref and Pomphrey [1982]). We will use this
model throughout this thesis to reduce the study of modon motions to the study of
relatively simple sets of ordinary differential equations.

The heart of the model is its interpretation of the CHM equation

as an equation for the rate of change of k = V23 — 423 along streamlines. The

quantity x is assumed to be concentrated at discrete points in the plane,

K= Z ki(t)o6(x — x4(1))

3

where k;(t) is the strength and x;(t) = (z;(t),yi(t)) is the position of the i** point
vortex. Dynamical equations for the strength and position of each vortex are then
given.

The point vortex model assumes that each vortex moves with the velocity
induced by all the other vortices. A vortex does not induce a velocity on itself.
The streamfunction due to each point vortex must be consistent with the singular
distribution of « in the vortex. Thus the stream function %; for the Jt vortex must
satisfy V2¢; — v%p; = k;6(x — x;j(t)). The stream function is then proportional to
the Green function for the operator V2 — ~2, so

S Ka(lx - x;) (2.2)

¥ = 27

where K is the modified Bessel function of the second kind. The velocity field

induced by the j** vortex is given by v; = (uj,v;) = (=9,%;, 8:%;). The velocity of
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the it? vortex is the sum of the velocities contributed by each of the other vortices
at the point (z;,y;). So, taking the partial derivatives of the expression for the

stream function above, we see that the i*" vortex moves according to

2 s
.. Y Ky (v[xi — x41)
i¥i) = 5= ‘ | — Yi, Ti — Zj). 2.
C %;@ Oy W —vomi— ) (23)

This expression specifies the motion of each vortex in terms of the positions of
the other vortices and their strengths. The time dependence of the strengths «; is

obtained by rewriting (2.1) as
ki + 2x V- V& = —py,. (2.4)

The term on the left side of (2.4) is just the rate of change of k along streamlines
since £ X V1) is the velocity of the fluid. The term on the right side of (2.4) is —f
times the y component of the velocity. In terms of the point vortex distribution,
this is interpreted as meaning that the time rate of change of the strength of a point

vortex is equal to —f times the y component of its velocity, i.e.
ki = —PYi.
This can be integrated to give
Ki =¢i — By (2.5)

where ¢; = 0 + y?. Recall that the quantity ¢ = x + By is the potential vorticity
and is constant along streamlines according to (2.1).
Equations (2.3) and (2.5) give a complete prescription for evolving a set of point

vortices in a fashion consistent with the CHM equation. We have been unable to
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show that these equations form a Hamiltonian system, as is the case for the Euler
equation point vortices (Aref and Pomphrey [1982]). Nevertheless, we will show
that it is a good model for modon motions in a certain parameter range and we
will go on to use it to study various aspects related to modon motions. In each
special case studied we have been able to find a Hamiltonian for the system, so the
lack of a Hamiltonian for the general system has not hampered us. We stress that
this is intended only as a model for the coherent motion of vortices in the CHM
equation. This is not a weak solution for the CHM equation, unlike the point vortex

formulation of the two-dimensional Euler equations.

2.3 Dipole Model of Modon

In this section we apply the point vortex model of the previous section to
model the motion of a single modon. We replace the modon’s dipolar distribution
of vorticity by a dipole of finite size consisting of a pair of point vortices of equal
and opposite strength. The motion of this dipole is meant to model the motion
of the modon. The two point vortices are set apart a finite distance so that their
separation is roughly equal to that between the centers of the monopolar vortices in
the modon. This results in a set of ordinary differential equations for the paths of
these point vortices which are relatively easy to analyze. We reduce these equations
to a planar system which can be solved in closed form. We analyze all the solutions

of this system and infer all the possible motions exhibited by this dipole model.
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2.3.1 Equations of motion for two point vortices

The general problem we consider is illustrated in Figure 2.1. We follow the
evolution of the cartesian coordinates for the positions of two point vortices. The
coordinates of the point vortices are (z1,y1) and (z2,y2) respectively. The vortices
have strengths «; and k2 respectively. We center the coordinate system so that the
vortices are initially reflections of one another through the origin. The constants

&
zo and yo are the initial z and y distances of the vortices from the origin of the

coordinate system. In order to model a dipole we make the strengths initially equal

and opposite, so that k3 = —k;. As a consequence of the evolution equations

]
| p yO
|
‘ X
X
0
p
K2

Figure 2.1 Geometry of the two point vortex problem.
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for the strengths, this equality holds for all time. So, we take k1 = —k2 = Ko, where
Ko 18 constant.

The evolution equations from (2.3) for the positions of the point vortices are

doy _ BEEV) (5 4 )y — )

dt 2r 2p
dy, _ '7’!5' K1(27P)

= o, (0 +y2)(z1 —22) (2.6)
dzy _ 2B Kl(%o)

o T g, 0= y)y—v2)

dy» _ 7[3K1(~w)
dt ~ 2m 2 5, v

—_ 3;2)
with initial conditions z1(0) = —zq, y1(0) = yo, 22(0) = ¢, and y2(0) = —yo. In
the above K is a modified Bessel function of the second kind and the quantities §

and p are defined as follows :

K

1
p=5((@1 —a2) + (11 —2))*.

The quantity p is the half-distance between the vortices and ¢ is a measure of
the overall strength of the vortices. The constants zo and yo may take on any
values between —p and p, representing arbitrary initial configurations of the two
point vortices. Without loss of generality, we take p and ko to be positive. Since

Yo > —p, the parameter 6 must satisfy 6 > —p.
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2.3.2 Reduction of the equations of motion to a planar system

We can reduce the system (2.6) to a form which is simpler to analyze by making

a series of observations and transformations. We start by using the scaled time

;= _Y_[_;_ Ky (Z’Yp)t.
s 2p

We follow Zabusky and McWilliams [1982] in defining centered coordinates

= %(ml + x9) €= %(581 —z3)
y= %(yl +y2) n= é—(yl - Y2)-
The resulting equations are
L= s %
D = (5t ]

In these variables p? = £2 + n2.

We note that p is conserved since pp = £€ + nij = 0. The polar coordinate

representation

£ =pcosd n=psiné

takes advantage of this conserved quantity explicitly. The resulting system of equa-

tions is given by
dy OH .
o = pp = Peos 6(6 — psiné) (2.7a)
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de 0H _
dz : .
o = psin 6(6 — psiné) (2.8)

where p is constant at its initial value p = /22 + y2. The variables § and 6 form a

planar Hamiltonian system with Hamiltonian

H=>3%—pbsinf + %pzsinzé? - i—pz. (2.9)

Do

The equation for # decouples from this system and can be solved by quadrature

using the formula

(1) =&(m0) + pfr (6§ — psinf(s))sin6(s)ds. (2.10)

To
So the problem of determining the evolution of the positions of the two point
vortices reduces to solving the planar system (2.7) with Hamiltonian (2.8) and pa-
rameters p and §. We study the qualitative behavior of (2.7) in the next subsection.
The system can be integrated completely in terms of elliptic functions which we

demonstrate in the appendix.
2.3.3 Phase plane analysis of the planar system

The qualitative behavior of the system (2.7) can be studied by constructing
the phase portraits of the system for various values of the parameters. Below we
discuss the fixed points of the system and their stability. We use this information
and the value of the Hamiltonian at each fixed point to determine the qualitative

structure of the phase portraits.
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A few general observations about the system (2.7) are useful. First, the system

is 2r—periodic in # and we have chosen [—n/2,37/2) as a sample interval for con-
venience. Second, the qualitative behavior depends only on the ratio §/p, not on é
and p separately. Since § > —p this ratio must satisfy §/p > —1. Finally, all fixed
points must have § = 0. So, we can simplify various expressions to their values at

g = 0. The equation for the value of # at a fixed point becomes
. )
cosf(sinf — —) = 0.
p
The Hamiltonian H evaluated at § = 0 is
H= pQ(%sinzg - -f)— sinf — i)
The Jacobian J = HegHyy — H;a evaluated at § =0 is
2,0 . . 2
J = p*(—sinf + 1 — 2sin”6).
P

The sign of J at a fixed point determines the stability of the fixed point. If J > 0 the
fixed point is a center and if J < 0 it is a saddle. The value of H at the fixed points
will determine how the separatrices of the saddles lie in relation to one another.
One set of fixed points satisfies cos§ = 0. The two values of 6 in the interval
[-7/2,37/2) satisfying this are § = —7/2 and § = 7/2. At § = —7/2, H =
p*(86/p+1/4) and J = —p?(1+6/p). This fixed point is always a saddle since J < 0
for all 6/p > —1. At 6 = n/2, H = p*(1/4 - §/p) and J = p?(§/p — 1). This fixed

point is a saddle for §/p < 1, since J < 0 there, and a center for §/p > 1.
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For §/p < 1 there are saddles at § = +7/2, each giving rise to separatrices
in the phase portrait. The value of the Hamiltonian at each saddle determines
the relationship between these separatrices. For §/p < 0, H(n/2) > H(—=/2) so
the separatrix emanating from 8 = 7 /2 lies outside, or encloses, the separatrix
emanating from § = —x /2. For §/p > 0, H(—n/2) > H(w/2) so the separatrix

from 8 = —x /2 lies outside the one from 6 = =« /2.

y y
/=N L, NN\ .
NV > NN N\ /i
(a) -1<8/p<0 (b) d/p=0
y y
1 | | a
:\<O E——0 ://N 6
|
(c) 0<d/p<1 (d) &/p 1

Figure 2.2 Qualitative structure of the phase portraits.

A second pair of fixed points satisfying sinf = §/p exists for —1 < §/p < 1.

The two solutions for 6 lying in [—n/2,37/2) are § = sin™'(§/p) € (—n/2,7/2)
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and § = 7 —sin~'(§/p) € (r/2,37/2). The Hamiltonians and Jacobians are the
same for both fixed points, specifically H = —-pz(-%-%-;- + 1) and J = p?(1 - 62/p%).
Thus, since —1 < §/p < 1, both of these fixed points are centers whenever they
exist. These two centers merge at 6 = 7/2 when 6/p = 1. The saddle at 8 = 7/2
discussed above changes stability at this value of §/p. So, at §/p = 1 a pitchfork

bifurcation occurs with two centers collapsing onto a saddle, leaving only a center

at 0 =n/2for 6/p > 1.

We illustrate the four qualitatively different phase portraits in Figure 2.2. A
bifurcation involving separatrices occurs at §/p = 0 as described above. A pitchfork
bifurcation occurs at §/p = 1. Since the topological structure of the orbits for
8/p =1 is the same as that of the orbits for §/p > 1, we show only one picture for

the range 6/p > 1
2.3.4 Physical interpretation of the orbits in the phase plane

In this subsection we give a physical interpretation of the results of the phase
plane analysis in terms of the original dipole system shown in Figure 2.1. We
illustrate the behavior of the dipole with schematic diagrams showing the physical

motion of the dipole.

It is helpful to make a few observations about the relationship between various
quantities in the planar system (2.7) and the original physical system. The distance

between the two point vortices in the dipole is 2p and is constant in time. The
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point vortices stay a fixed distance apart and thus form a coherent dipole. Recall
that ¢ is the elevation of the center of the dipole above the horizontal axis and
is the distance the center of the dipole has moved along the horizontal axis from
its initial position. The angle 6 is the angle between the horizontal axis and the
line drawn through the two point vortices. Since the dipole travels perpendicular
to this line, a dipole oriented vertically (i.e., § = 7 /2) will propagate horizontally.
In what follows, we discuss each separate qualitative motion by noting the general
behavior of § and 8 from the phase plane analysis and indicating the behavior of z

from (2.8) or (2.10).

The motions corresponding to the fixed points are the most important. These
are uniform motions in which the elevation and inclination of the dipole are con-
stant while the dipole propagates horizontally. The stability of the fixed points
determines the stability of these uniform motions. The centers correspond to sta-
ble uniform motions while the saddles correspond to unstable ones. The unstable
motions can be pushed into large-amplitude nonuniform motions by an arbitrarily
small perturbation whereas the stable motions can only be induced to wobble a
small amount by small perturbations. We will see below that dipoles in uniform
motion to the left are unstable while those in uniform motion to the right are sta-
ble. Thus the model predicts that left moving modons will be unstable in the sense
that their paths can be perturbed to finite-amplitude nonuniform paths by small

perturbations. This surprising prediction is confirmed by simulations of modons in
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the next section.

We discuss the fixed points with cosf = 0 first. At 6§ = —n/2 the dipole is
vertical with the point vortex with negative strength situated directly above the one
with positive strength. The speed according to (2.8) is —p(p + é) which is always
negative. This fixed point is always a saddle, so this uniform motion to the left is
always unstable. At 8 = w/2 the dipole is vertical with the positive point vortex
situated above the negative one. The speed is p(é — p). When é < p the speed is
negative and the fixed point is a saddle. When 6 > p the speed is positive and the
fixed point is a center. So this uniform motion is left-moving and unstable for § < p

and is right-moving and stable for 6 > p.

The fixed points with sinf = §/p are slightly different. Both fixed points are
centers and both are stationary according to (2.8). So these fixed points correspond
to stable stationary dipoles. The angle 6 is not equal to +7/2, so these dipoles will
be inclined skew to the vertical axis. Physically, the velocity induced by the point
vortices on each other balances the velocity induced by the inclination of the dipole,

so the dipole does not move.

The simplest nonuniform motions are those corresponding to orbits near the
center at 8 = w/2 in Figure 2.2(d). These motions are small-amplitude periodic
oscillations of § and 6. The dipole moves up and down while turning side to side
slightly and propagating horizontally. The average speed is roughly that of the

uniform motion corresponding to the fixed point at § = w/2. We refer to this
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motion as wobbling, illustrated schematically in Figure 2.3(a).

(b) Tumbling

Figure 2.3 Nonuniform motions exhibited by the dipole.

Figure 2.2(d) also contains periodic motions which are unbounded in 6. Ex-
amples of these orbits are those outside the eye-like separatrix. In these motions
y oscillates about a finite value and 6 increases or decreases monotonically without

bound depending on the initial elevation and inclination. So, the dipole moves up
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and down while rolling in one direction. In general, the dipole will also propagate
horizontally to the left since these orbits spend most of their time near the fixed
point at § = —n/2. We refer to this motion as tumbling, shown schematically in
Figure 2.3(b).

The various motions corresponding to the other orbits in Figure 2.2 are quali-
tatively similar to those described above. The examples we have described in detail

serve to indicate the qualitative behaviors exhibited by the dipole.

2.4 Comparing Dipole Motions with Modon Motions

In this section we compare the results of the dipole model with those of actual
modons in order to assess the success or failure of the model. We compare various
properties of dipoles and modons in uniform motion in order to determine the
parameter ranges in which the static properties of dipoles and modons agree. This
leads to a specific choice of the parameters in the model for which the dipole will
match the static properties of a given modon. We then go on to compare some
nonuniform motions of a given modon with those of the appropriate dipole in order
to assess the model’s usefulness in predicting the complicated dynamical behavior

of modons.

2.4.1 Properties of modons in uniform motion

In this subsection we discuss various properties of modons in uniform motion
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for the purpose of comparison with properties of the dipole model of the modon.
We restrict our attention to the analytical solutions for modons given in Chapter
1, although other exact traveling wave solutions to the CHM equation may exist.
We will discuss the qualitative nature of the modon’s behavior, its dependence
on parameters, and some quantitative attributes of the modon in terms of the
parameters.

The modons described by the solution in Chapter 1 are all vertically oriented
and propagate horizontally at constant speed, preserving their shape in a frame
moving with the modon. A given modon is specified completely by its speed U and
its radius a. Both U and a may be specified arbitrarily except that U must not lie
in the interval (—8/+%,0).

The main quantitative attribute of a modon is the behavior of the associated
streamfunction v far from the center of the modon. For U > 0 or U < —f/+?, the

streamfunction for r > a is given by

K (pr/a) sin @

"l)modon = "UQW

(2.11)

where p? = a%(y% 4+ 8/U). For the stationary modon, U = 0 and ¢ = 0 for r > a.
For the slowest left-moving modon, U = —83/+4? and ¢ = (Ba/v?*)siné for r > a.
The vertical gradient of 3 at the center of the modon is useful for measuring

the near—field behavior. This is given by

PN T
Gmodon - E(r - 0’9 - ) - ~U<1 + 92 (1 h ZJI(Q)))

VR
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where q is the eigenvalue from the modon solution in Chapter 1. Other quantities,
such as the total circulation or vorticity in each monopolar vortex of the modon,

involve integrals of the streamfunction and are not useful for analytical comparisons.

2.4.2 Properties of dipoles in uniform motion

Here we present some properties of the dipole model presented in section 2.3 to
compare with the properties of modons listed above. We first review the qualitative
features of dipoles in uniform motion. We then list the quantitative properties of

the dipole analogous to the properties for modons given in the previous subsection.

We saw in section 2.3 that the point vortex model yielded dipoles which could be
specified by two arbitrary positive parameters, the strength xo and the half-distance
between point vortices p. The separation between the point vortices stayed constant
in time so the vortices moved as a coherent dipolar structure. The uniform motions
of these dipoles corresponded to fixed points of (2.7) and were motions in which
dipoles of fixed size propagated horizontally at constant speed or were stationary.
The dipoles corresponding to fixed points at § = +m/2 were oriented vertically.
Those corresponding to fixed points with sinf = é/p were oriented skew to the
vertical and were stationary. Below we list the quantitative properties of the dipoles
for 8§ = +m/2. We neglect the other dipoles since they are not vertically oriented

whereas all the exact modon solutions are.

The motions corresponding to fixed points of (2.7) at § = 7/2 moved at the
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constant speed p(é — p) in the scaled time 7. The initial conditions for this fixed
point require yo = p, so the parameter § must be given by é = ko/3 + p. To obtain
the actual speed of the dipole in the physical variables of (2.6) we must scale the
speed by the factor (y8/7m)K1(2vp)/2p. We then find the actual speed of this dipole

to be

s K
Udipote(5) = G Ki(27p) (2.12)

which is always positive. The streamfunction due to the two point vortices in the
dipole can be computed using information in section 2.2. For this dipole, which has
point vortices at (0, p) and (0, —p), the streamfunction far from the center of the
dipole is

TPKo

7r .
¢dipoze(§*) ~ —-“;-Kl (vr)siné, > p. (2.13)

Similarly, the vertical gradient of 1 at the center of the dipole is

Gdipole(’;i) = - kit Kl (”fp)

ES
Similar expressions hold for the dipoles corresponding to fixed points of (2.7)

at @ = —m /2. The physical speed is given by

s K
Udipole(‘”g) = “%}91{1 (2710)

which is always negative. The far-field behavior of the streamfunction is

1P Ky (yr)siné, r>>p.
e

T
"!"dz’pole("‘g) ~
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The vertical gradient of ¢ at the center of the dipole is

vig K
Gdipole("g) = Z‘T‘;gKl(”YP)

2.4.3 Matching the dipole model to a given modon

In this subsection we compare the properties of modons in uniform motion to
those of dipoles from the point vortex model. We first discuss the general qualitative
comparisons between modons and dipoles. We then find the appropriate choices for
the parameters kp and p in order to match the speed and far-field behavior of a
given modon. We give conditions on the speed and size of the given modon under
which the parameters so chosen will yield a dipole which accurately models certain
static properties of the modon.

Both modons and dipoles propagate as coherent dipolar structures. We have
seen that modons can be found in uniform horizontal motion only oriented verti-
cally. They can have arbitrary speed and radius, except that the speed must lie
outside the interval (—3/4%,0). We found that dipoles could be found in uniform
horizontal motion with some dipoles oriented vertically and others not. They can
have arbitrary speed and size without any restriction. So, in general, we should ex-
pect that some dipole motions will qualitatively model modon motions while other
motions exhibited by dipoles will not be found in modons.

In the previous subsection we saw that the dipole motions corresponding to

fixed points of (2.7) at § = 7/2 always moved with positive speed, while those for



— 927~

6 = —n/2 always moved with negative speed. We will compare the dipoles for
6 = m/2 to right-moving modons and compare those for § = —m/2 to left-moving
modons.

Referring to (2.12), we see that we can match the speed of the right—moving
dipoles to the speed U of a given right-moving modon by choosing the parameter

Ko to be

o= 2nU
0T YK (2vp)

Using this value for k¢ in the expression (2.13) for the far—field behavior of the

(2.14)

dipole streamfunction, we find

T )
?/)dz‘pole(“é‘) ~ —2pU sin 6, r > p.

This will agree with the expression (2.11) for the modon streamfunction if we choose

the parameter p to be

(2.15)

ol e

p=
and provided that the parameter p in (2.11) is equal to ay. Recall that p satisfies
p* = a*(v* + B/U), so p =~ ay provided U > B/~2.

The matching between left-moving dipoles and modons proceeds in much the
same way. We find the same choices for k¢ and p in terms of U and a. In this case,
the far-fields agree provided U < —8/+2. So the dipole can be tuned to match the
speed and far-field behavior of a given modon provided | U |>> B/4%. We note here
that the quantity 3/? is the phase velocity for waves of infinite wavelength of the

linearized CHM equation.
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It is also instructive to compare the near—field behavior of the dipole with that
of the modon. We do this by comparing the gradient of the streamfunction at the

center, G, for each. Recall that for the modon this is given by

el P L
modon = =U{14+=(1- .
‘ ( qz( 2J1(4))>

For the dipole, with parameters chosen to match the modon as above, this is

2K, (va/2)

Gdipole = —U I{l (’)/Cl,) .

In general, these are of the same sign and magnitude. For small a, it can be shown
that Gmodon — —U and Gyipote — —4U. Note, however, that for large a with fixed

U we have

2
Y 1 2
G modon —U=—{1- — ja,
on T TV ( 211(9))

while

Gdipole — _2\/5Ue*ra/2 ’

where ¢ &~ 5.1356 is the asymptotic value of the eigenvalue ¢ as a — oo (see Chapter
1). Thus the gradients are comparable for moderate values of a but are of different
orders of magnitude when a is large.

To summarize, we have found that some of the uniform motions found in the
dipole model compare well with uniform modon motions. The parameters in the
model can be chosen so that the speed and far-field behavior of the dipole match

those of a given modon, provided the speed of the modon is large compared with
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the phase speed for waves of infinite wavelength for the linearized CHM equation.
We have also seen that the near-field properties of the dipole are in qualitative
agreement with those of the modon provided the radius of the modon is not large.
The near-field properties are never in good quantitative agreement, however. Thus,
we expect qualitative agreement between the nonuniform motions of a given modon
and those of the appropriately chosen dipole provided that the modon is relatively

small and fast.

2.4.4 Comparison of nonuniform motions of dipoles and modons

In this subsection we compare various nonuniform motions of modons with
those of the appropriately chosen dipoles. The results quoted for modons are from
direct numerical simulations of the CHM equation with initial conditions corre-
sponding to various initial states of the modon. The results for the model dipoles
are either analytical or are known very accurately from the solution of the system

of ordinary differential equations in (2.6) or (2.7).

The numerical method used to simulate the CHM equation closely follows those
found elsewhere (e.g., Makino, Kamimura, and Sato [1981] and Makino, Kamimura,
and Taniuti [1981]). In brief, each hyperbolic step in updating the quantity x =
V24 — 4% is performed according to a standard optimized alternating direction
method (Gourlay and Morris [1970]). The solution of the elliptic problem V23 —

v2 = k(z,y) once k is known is obtained using a standard Fast Fourier Transform
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package. To retain spatial accuracy and consistency, the finite difference derivatives
in the hyperbolic step are evaluated to fourth order in space with periodic boundary
conditions. We use a square spatial grid of length 10 on each side with 256 grid
points in each direction with time steps ranging from At = 0.001 to At = 0.0004.

In all cases, we have taken v = § = 1 in the CHM equation. Since the exact
modon solution is known only for modons in uniform horizontal motion, we simulate
the nonuniform motions by using the exact modon solution tilted at some angle «
initially. Figure 2.4 shows this configuration schematically. This is analogous to
taking initial data with § = 0 and 6 = 7/2 + a in the model equations (2.6) or
(2.7). We demonstrate that the resulting motions of the tilted modon are nearly

periodic and agree qualitatively with those of the model dipole.

(XA

Figure 2.4 Geometry of the wobbling modon.

A complete study of the motion of a modon tilted initially at a = 0.3 illustrates

the wobbling behavior of the modon. Figure 2.5 shows physically the position and



Figure 2.5 Physical behavior of a tilted modon, a = 0.3.
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Figure 2.6 Height of the centroid of modon and dipole vs. time.

shape of the modon at various times in the course of one period of motion. We have
used a right-moving modon with speed U = 10 and radius a = 1. The modon rises
and drops vertically while twisting back and forth. The shape and distribution
of vorticity remain nearly constant during the motion, justifying the assumption
that the motion is coherent. The juxtaposition of the modon initially and at the
end of the period in the bottom two frames shows that it returns to very nearly
its original shape and distribution. Figure 2.6 shows plots of the height of the
centroid, ¢, versus time for the modon and for the dipole with parameters chosen
to match. The period and amplitude of the wobbling is greater for the dipole than
for the modon, but the two are qualitatively the same. Here and elsewhere we have
taken the parameters in the dipole model to correspond to the speed and far-field

behavior of the modon according to equations (2.14) and (2.15). The appropriate
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half-separation between the point vortices is p = 0.5 while the appropriate vortex
strength is ko = 104.388.

The wobbling behavior of the modon can be studied as a function of the initial
angle . We have plotted the period of motion for the modon and the dipole versus
a in Figure 2.7 (a). Similarly, the average horizontal speed over the period of motion
for each is plotted in Figure 2.7 (b). The period and average speed of the modon are
obtained by observing the position of the centroid over time. The dipole period and
average speed are given in equations (2.18) and (2.19) in the appendix to Chapter 2.
As expected, the qualitative agreeement between the dipole and the modon is quite
good in both plots. The speed of the model dipole agrees very well quantitatively
with that of the modon, deviating only for large-amplitude motions.

The stable wobbling behavior of a right-moving modon about its uniform state
is contrasted by the unstable behavior of a slightly perturbed left-moving modon.
This was predicted by the model and can be shown directly by simulating a per-
turbed left-moving modon numerically. We have performed two simulations of a
modon with speed U = —10 and radius a = 1 strated with the centroid at height
y = 5.0. The first modon was tilted initially at an angle a = 0.01, while the sec-
ond was tilted initially at @ = 0.1. These correspond to two slightly perturbed
left-moving modons. Figure 2.8 is a plot of the height of the centroid for each case
versus time. Obviously the deviation of the centroid from its equilibrium height is

of much larger order than the perturbation parameter . In both cases, the centroid
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initially diverges from its equilibrium § = 5.0 exponentially in time. For a = 0.1,
we see the modon exhibits a highly nonuniform motion. We conclude that the path
of a left-moving modon in uniform motion is unstable and is perturbed to a finite-
amplitude state regardless of the size of a. Previous numerical studies with which

we are familiar have not simulated perturbed left-moving modons.
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Figure 2.8 Height of the centroid of a perturbed left-moving modon vs. time.

We note that this result alters the previous understanding of modon stability.
Based on previous analysis and numerical simulations, modons appear to be stable
in the sense that they retain their strongly isolated dipolar structure even when
strongly perturbed. Based on the present analytical model and numerical simula-
tion, however, their paths can depend very sensitively on their initial orientation.
This note should be appended to the work of Laedke and Spatschek [1985] and
Sakuma and Ghil [1990] who showed respectively that the vorticity distributions of

the left-moving and stationary modons are stable in the Lyapunov sense.
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2.5 Conclusions

In this chapter we have applied a point vortex model to study the motions of
a single isolated modon. We found all the possible motions exhibited by a model
dipole. Some of these motions are well-known, such as the uniform horizontal and
wobbling motions, while others have not been observed before, such as the tilted
stationary states and large-amplitude tumbling motions. We also found that the
model predicted that right-moving modons would be stable and left-moving modons
would be unstable in the sense of their paths being perturbed by small perturbations
in their initial positions and inclinations.

We showed that the model could be used to match the speed and far-field
behavior of a given modon in uniform motion by an appropriate choice of model
parameters provided that the modon was sufficiently small and fast. Using specific
parameter values, we compared the behavior of a model dipole with the behavior of a
modon placed in nonuniform motion by direct numerical simulation of the modon.
We found the period and average speed of wobbling motions of the dipole to be
in good agreement with those of the modon for small and moderate amplitude
wobbling. We also confirmed the model prediction that the left-moving modon
in uniform motion can be perturbed into a large-amplitude nonuniform motion by
arbitrarily small perturbation in its initial inclination. We noted that it is important
to consider this path stability in addition to the stability of the vorticity distribution

considered by others.



- 37 -

Appendix: Solution of Planar System in Terms of Elliptic Functions

In this appendix we show how the planar system (2.7) can be solved in terms
of elliptic functions. We reduce the system to a first-order equation and give a
general expression for its solution. We evaluate this expression explicitly for the
case §/p > 1 to illustrate the solution technique and to obtain an expression for the
period of oscillation and average speed for the wobbling dipole.

Recall the planar system (2.7) is given by

g—g = —pcosf(6 — psinb)
e _
ar ~ ¥

The system is 27—periodic in §. It is symmetric about § = n/2 and § = 0. So, it
is sufficient to study the region of the phase plane given by —7/2 < 6 < 7/2 and
y < 0. This corresponds to the lower left quarter of the phase plane diagrams in
Figure 2.2.

This choice of bounds on 8 and § makes the following obvious reductions con-

venient. Define the new variables

' =pr u(r') = sin6(r)

and define the parameter

o o
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The (7, u) system can then be reduced to a single second-order equation for u. This

equation can be integrated once to get the following equation for u:
LAY (4-(u- ,u)2)(1 —u?) (2.16)
dr'

where A is a constant of integration. The bounds on 6 and y§ ensure that the
transformation between u and 8 is one-to—one and that the derivative of u will
always be the positive root of (2.16). The parameter y must satisfy p > —1.

The equation for u is of the form

(%)2 = (a —u)(b—u)(c—u)(d—u)

where the roots a, b, ¢, and d are constant and satisfy a > b > ¢ > d. This equation
can be solved very simply in the case that the roots are distinct. The solution for

¢ < u < b parametrized so that u(0) = c is

¢ —dDsn?(r'/g,k)
1 — Dsn?(7'/g,k)

u(r') =

(2.17)

where

kz_(b——c)(a—wti) 2 m(b—c)

Tla—ot-a T Jazov-a b= (b—d)

and sn(z, k) is a Jacobian elliptic function (Byrd and Friedman [1954]). In the cases

where the roots are not distinct, the solution can be obtained either as a limit of
the generic solution above or by solving (2.16) directly.
We now evaluate the solution (2.17) explicitly for > 1 to obtain an expression

for the orbits corresponding to the wobbling motion of the dipole about a stable
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uniform motion. The initial conditions u(0) = wg, u'(0) = 0 correspond to the
leftmost extreme of one of the orbits in Figure 2.3.2 (d) surrounding the center at
§ = 7/2. Then A = A? where A = i — up. The value A = p — 1 corresponds to
the center itself and values for which g —1 < A < p + 1 correspond to the orbits
surrounding the center. The roots are a = p+ A, b=1,c¢=p— A, d= —1. The

solution is
p— A+ 31+ A - psn? (VAT k)
1- 114+ A= psn2(VAT, k)

where k% = ((1+ A)? — u?)/4A.

u(r') =

It is easy to show that the period of these wobbling motions is just the period
of sn(vV/AT',k). The period in 7' is then 4K (k)/VA where K (k) is the complete
elliptic integral of the first kind. To find the physical period of the wobbling recall
that the physical time ¢ is related to the scaled time 7 by 7 = (y8/7)(K1(2vp)/2p)t

and 7' = pr. The physical period T is then

20 4K(k)

.
Y8 K1(2vp) p/A

(2.18)

The average speed ¢’ of the dipole in the scaled variables of (2.7) can be obtained
from (2.10). After multiplying this by the factor (y8/m)K;(2vp)/2p to obtain the

average speed c in the physical variables of (2.6), we find

- 2 K (k)
c= zf— legi’)'p) I&fzk) /0 (1 — u(s))u(s)ds. (2.19)

For the motion of the right-moving dipole tilted initially off axis at an angle «, the

quantity A can be expressed in terms of o as A = p — cos a.
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CHAPTER 3

Fluid Flow and Mixing in the Dipole Model

3.1 Introduction

In this chapter we use the point vortex dipole model developed in Chapter 2
to study the flow of fluid around an isolated modon. This has relevance in the
study of modons as atmospheric blocks. It has been assumed that a modon in
the atmosphere completely shields its interior from the external flow. We establish
that this is not the case for modons in nonuniform motion, where significant mixing
may occur even for small amplitude nonuniform motions. This may also provide
a mechanism for enhanced energy transport in tokamak plasmas even when the

particle transport is not great.

We first give the equations for the particle paths around a model dipole. We
note that when the dipole wobbles the resulting system of ordinary differential
equations for the particle paths can be reduced to a planar map by use of the
Poincare map. We discuss a mechanism for chaotic mixing in such maps and show
that the system for particle paths around a wobbling dipole exhibits such mixing.
We plot invariant manifolds for the dipole, roughly equivalent to the distribution of
a carefully placed blob of tracer dye after evolving for some time in the flow. This

illustrates the amount of mixing as a function of the wobbling amplitude.
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3.2 Equations for Particle Paths

In this section we give the equations governing the motion of fluid particles
in the flow field due to a dipole. We first give the general equations in physical
variables for the motion of fluid particles due to an arbitrary distribution of point
vortices. We then specialize the equations to the dipole case.

Fluid particles move with the velocity induced by the streamfunction. For a
distribution of n point vortices the streamfunction is the sum of the streamfunctions
¥n for the individual point vortices, given by equation (2.2) in Chapter 2. The fluid

velocity v = (&,9), using expressions (2.3) and (2.5), is then

= g5 (Zn) = -5 S T+ 48 )y =)

(Ix = xxl)

dt == (Z %) Z Iu(“/{x xn[)(fc?%/ﬁ +4° —ya)(@ = zn)

where X, = (2,(t), ya(t)) is the position of the n'" point vortex at time ¢.
We can simplify this expression in the case that the point vortex distribution
is that of the dipole described in Chapter 2. In that case the initial strengths and

positions of the vortices are

0 . 0 __ 0 __ 0 N 0
Ry = —Kg = Ko Ty = —Ty = —Tp Yy

Il

-yg =Yo

We again define the parameters 6 and p by

K
6=+ PP =+ b
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and rescale time as follows:

;= /?.Z Al(QVP)t.
27 P

The equations for fluid motion around the dipole in a frame moving with the average

speed of the dipole are

dz —p__ (EKi(om) Ki(yr2) ) :
@ _ 5— ) = =) e — _
&=k (2%0)( vy — ) e CRg DUCES D)
(3.1)
dy  p Ki(vyr1) Ki(vr2)
¥ = o (B e - o) - I g gy o ) ).
where r; = |x — x;| and ¢’ is the average speed using the scaled time 7. For a

dipole in uniform motion with zo = 0 and yo = p, the particles paths follow the
streamlines in a frame moving with the dipole, shown in Figure 3.1. Note that the
stagnation points are located at (£v/3p, 0) and the top of the streamline separating
the external flow from the flow inside the dipole is at a height proportional to p.
So the region of fluid trapped in the dipole has roughly the same area and shape as
that of the modon, which traps a circular region of fluid with radius a = 2p.

The point vortex positions (z1(t),y1(t)) and (z2(t),y2(t)) are expressible in
terms of the elliptic function solution given in the appendix to Chapter 2. This
solution is useful in that it gives the average speed of the vortices and the period of
their oscillation. For simulating the particle paths numerically it is more efficient to
solve the primitive equations for the vortex paths in parallel with the particle path

equations. These equations, given in (2.6) in Chapter 2, coupled with equations
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(3.1) above constitute a complete set of equations for simulating the particle paths

around a dipole.

(=
\—/

Figure 3.1 Streamlines past a dipole in uniform motion.

3.3 General Structure of Poincare Maps

In this section we study the general structure of Poincare maps of periodic
flows. This is motivated by the fact that the flow of particles given by (3.1) is
in general periodic in time. The reduction of the equations to a map will greatly
simplify the study of transport and mixing in the fluid. Before we can apply the
Poincare map we must study the nature of the type of map we expect and relate
various structures to their analogs in the original flow.

The Poincare map is the map of points in the plane to their positions one period
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later, after moving with velocity given by (3.1). To be precise, let the period be 7.
The image of the point (z¢,yo) under the Poincare map starting at time ¢, is the
solution (z(to +T),y(to +T')) of (3.1) with initial condition (z(%o), y(to)) = (20, ¥o)-

Formally this can be written

Pto . (.’L’(to)) R (fL‘(to + T))
y(to). y(to +T)
where P, is the Poincare map. Thus a time-periodic flow can be reduced to a

planar map simply by taking snapshots of the flow at discrete times differing by one

period of the flow.

U S

Figure 3.2 Local structure of manifolds.

It 1s useful to relate some of the structures in the map to their counterparts
in the original flow. Fixed points of the map will correspond to periodic orbits in
the flow with the same period as the flow field itself. Locally, fixed points of planar
maps are similar to those of planar ordinary differential equations. Hyperbolic
fixed points of planar maps will have stable and unstable manifolds as shown in

Figure 3.2. The stable manifold of a hyperbolic fixed point is the set of points
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whose forward images under the map asymptote to the fixed point. The unstable
manifold is the set of points whose backward iterates asymptote to the fixed point.
These sets form smooth connected curves in the plane. Although individual points
on the manifolds are mapped to other points when the map is applied, the curves
themselves do not change. Thus they are called invariant manifolds.

These manifolds are equivalent to streaklines in the original flow. A blob of
tracer dye placed in the flow enclosing the fixed point will contract towards the
fixed point along the stable manifold and stretch away from the fixed point along
the unstable manifold. In time the ink will stretch further and further, tracing out
the shape of the unstable manifold. So the unstable manifold actually attracts fluid

locally, even though the name might suggest otherwise.

U S

U S
(a) U (b) S

Figure 3.3 Global structure of manifolds.

The global structure of these manifolds may be quite different from manifolds
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of fixed points in planar ordinary differential equations. The stable and unstable
manifolds of a fixed point of the map may intersect transversely, as shown in Figure
3.3 (a). The point of intersection lies on both the stable and unstable manifolds,
denoted by S and U for convenience. Note that all forward and backward images
of any point in S are also in S, and likewise for U. Thus all forward and backward
images of the intersection must lie in both S and U, and thus must also be inter-
section points. So S and U must intersect at an infinite number of points which

asymptote forward or backward to the fixed point, as indicated in Figure 3.3 (b).

For incompressible flows, such as the flow around the dipole, a simple closed
curve will evolve in such a way that the enclosed region contains the same fluid
particles and has constant area. This property is inherited by the Poincare map of
such a flow. A given region will be mapped to a second region so that the boundary
of the first region is mapped to the boundary of the second region and the area of
the first is equal to the area of the second. This simple observation can be used to

explain the mechanism of transport in the map.

Figure 3.4 illustrates the transport mechanism in maps in which the stable and
unstable manifolds of a fixed point intersect. We call regions O;, O, etc... outer
lobes because they lie outside the main body of the a—shaped structure. Regions
I, I, etc... are called inner lobes because they lie inside. The fluid in region O is
mapped in a 1-1 fashion to Oq, and region O3 is mapped to region Oz. Region O3

then passes into the main body as it is mapped to I;. Region I is then mapped
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to Is and then to I and so on. Thus, fluid from the outer lobes is mapped to the
inside lobes. This fluid may be trapped forever or may escape to the outside again.
This is the case for the fluid in the portion of region Is which intersects with region
Q4. This fluid will pass to Os, then Qg and so on. Similarly, fluid initially inside
the main body can escape to the outside. This provides a simple mechanism for

mixing between the fluid inside the main body and the external flow.

Figure 3.4 Transport mechanism in maps with tangling manifolds.

This mixing is actually chaotic in the sense that the position of a fluid particle
after NV iterates of the map is a very sensitive function of its initial position. The
tangling near the fixed point is responsible for this chaos. Two particles near the

fixed point and close together initially can be split apart and carried off by different
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parts of the flow so that their separation after only a few iterations is quite large.
This chaos can be established rigorously by showing that some iterate of the map
acts as a horseshoe map on some region of the flow. A more detailed treatment of

a similar problem appears in Rom-Kedar, Leonard, and Wiggins [1990].

3.4 Structure of the Poincare Map for Particle Flow

In this section we study the structure of the Poincare map for the particle flow
around a dipole. We apply the ideas developed in the previous section to establish
that the manifold in the map tangle with each other when the dipole wobbles. We
demonstrate this numerically by plotting short segments of the manifolds to show
that they intersect. We note the technique for establishing this analytically and
relegate the details to an appendix.

We consider the flow of particles around dipoles in periodic motion. For simplic-
ity, consider the wobbling motions corresponding to the periodic orbits surrounding
the stable fixed point in Figure 2.2 (d). The equations (3.1) for the particle paths
are then time-periodic and can be reduced to a planar map by using the Poincare
map. We choose the initial time # for the map so that the dipole is oriented ver-
tically with its center on or above the horizontal axis. For uniform motion the
center lies on the axis while for wobbling the center will start above the axis, with
larger amplitude wobbling for the center farther above the axis initially. We take
the period T of the map to be the period of motion of the point vortices, given

by the expression (2.18) in the appendix to Chapter 2. We also use a reference
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frame traveling horizontally with the average speed of the point vortices, given by

equation (2.19) in the same appendix.

The structure of the Poincare map for the dipole in uniform motion is identical
to the graph of the streamlines for the dipole in Figure 3.1. This is so because
streamlines and streaklines are the same in autonomous flows. This flow has no
natural period, since it is autonomous, so we take the limit of the period for the
wobbling motion as the amplitude of wobbling approaches zero. The map has two
fixed points, corresponding to the two stagnation points of the dipole flow. The
unstable manifold of the right fixed point coincides with the stable manifold of the
left fixed point. Likewise, one branch of the stable manifold of the right fixed point
coincides with one branch of the unstable manifold of the left fixed point. This
corresponds to the fact that the leading and trailing stagnation points of the dipole
flow are connected by separatrices which are streamlines. Note that in this case the
external flow is barred from the inside of the dipole by the streamlines connecting

the stagnation points.

The local structure of the Poincare map persists when the dipole wobbles. The
fixed points of the map remain and retain their stability type for sufficiently small
amplitude wobbling. These correspond to two small amplitude periodic orbits in
the dipole flow close to the original two stagnation points, with the same period as
the wobbling motion. These fixed points retain their stable and unstable manifolds

with the same orientation locally. These manifolds correspond to one-parameter
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families of orbits in the dipole flow which asymptote to one of the periodic orbits

in either forward or backward time.

The global structure is quite different, however, as shown in Figure 3.5. The
separatrices in the uniform flow are broken in the nonuniform flow. The upper and
lower branches of the unstable manifold of the right fixed point no longer coincide
with their counterparts of the stable manifold of the left fixed point. Instead, these
manifolds tangle with one another in the fashion described in section 3.3. Likewise,
one branch of the stable manifold of the right fixed point tangles with one branch

of the unstable manifold of the left fixed point.

Figure 3.5 Structure of manifolds for a perturbed dipole.
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The plots of manifolds in Figure 3.5 establish numerically that the tangling
described in Section 3.3 occurs in the particle flow around the wobbling dipole. As
we saw in Section 3.3, this is simply a consequence of the fact that the manifolds
cross transversely at some point. We can also establish this fact analytically for
small amplitude wobbling by computing the so-called Melnikov function for each
pair of manifolds which intersect with each other. This function is an estimate of
the perpendicular distance between two manifolds close to one another as a function
of a parameter which parametrizes the parallel distance along the manifolds. We
give the details of this calculation in Appendix 1 at the end of this chapter and show
that it implies that the manifolds for the wobbling dipole tangle with one another

in the limit of small wobbling.

Having established that the manifolds of the Poincare map of the dipole flow
tangle, we can infer that the particle paths around the wobbling dipole are in general
chaotic functions of their initial positions. Thus a passive marker particle placed in
the flow of a wobbling dipole will move chaotically. We would expect that if a third
point vortex were placed in the flow its motion would be still more sensitive to its
initial position, owing to its unpredictable effect on the two point vortices making
up the dipole. Hence, we would expect that the motion of three point vortices
in this model will be chaotic in general. This contrasts the point vortices for the
Euler equations which exhibit chaotic motion only for groups of four or more point

vortices (Aref and Pomphrey [1982]).



- 52 -

3.5 Mixing Between the Dipole and the External Flow

In this section we study the mixing between the fluid inside the dipole and
the fluid in the external flow. For the dipole in uniform motion, no mixing occurs
because the two flows are separated by the streamlines connecting the stagnation
points of the dipole flow, as shown in Figure 3.1. When the dipole wobbles, however,
mixing occurs due to the tangling of the manifolds of the Poincare map for the
dipole flow. We study this phenomenon in more detail below and show plots of the
manifolds to see how the amount of mixing depends on the wobbling amplitude.

We showed in the previous section that the manifolds of the Poincare map for
the dipole flow tangle. As described in Section 3.3, this leads to mixing between the
fluid inside the dipole and the external flow. Although this mixing is chaotic, we
can estimate the amount of fluid involved in the mixing by getting estimates of the
area enclosed between tangling manifolds. This is very difficult to do analytically,
but by plotting the manifolds in various cases we can get an idea of how the mixing
zone behaves as a function of the wobbling amplitude.

Figure 3.6 contains plots of the stable and unstable manifolds generated nu-
merically for four different wobbling amplitudes. A brief description of the method
used to compute these manifolds appears in Appendix 2 at the end of this chapter.
Each plot represents the qualitative structure of the flow for a specific wobbling

amplitude.
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Figure 3.6 Manifolds of the wobbling dipole for various a.
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As noted in Section 3.3, these manifolds are streaklines in the flow, viewed once
per period of wobbling. These manifold plots resemble the flow after blobs of ink
placed around the two fixed points have evolved over many periods. The region of
the flow in which mixing occurs is indicated by this ink. Thus these plots give a

pictoral idea of the size of the mixing zone for each wobbling amplitude.

Figure 3.6 (a) is a plot of the streamlines around the dipole in uniform motion.
No mixing between the dipole and the external flow occurs in this case. Figure 3.6
(b) is a plot of the tangling manifolds for a wobbling amplitude of a = 0.1. This
amplitude « is defined as the maximum angle of inclination to the horizontal axis of
the dipole as it wobbles. The manifolds tangle in a thin layer near the separatrices
found in the uniform flow. There is a core region inside each half of the dipole
which is not affected by the tangling. Thus fluid neither escapes from nor enters
these core regions. Similarly, the external flow is only affected by the tangling near
the outside of the dipole and the sparse lobes along the horizontal axis. Thus the

mixing zone, the region affected by the tangling, is rather small in this case.

Figures 3.6 (¢) and (d) show how the mixing zone grows as the amplitude
increases. For a = 0.3, the mixing zone has increased dramatically in size from that
for a = 0.1, occupying roughly half the area inside the dipole. For a = 0.5, the
mixing zone occupies almost the entire area of the dipole. For slightly larger « the
core regions will disappear completely and all the fluid inside the dipole will mix

with the external flow.
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The mixing of fluid between the dipole and the external flow is an obvious
mechanism of transport for passive quantities. Active quantities, such as heat, can
be passed diffusively across interfaces between two fluids. An initially smooth region
of fluid in the shape of the unperturbed dipole will in general deform so that its
surface looks more and more like the unstable manifolds. The interface between
the fluid inside the dipole initially and the external flow will stretch dramatically in
time. Several theories exist which predict that this length stretching is exponential
in time, and we have confirmed this numerically using accurate plots of the unstable
manifolds. Thus, the potential for greatly enhanced diffusion between the fluid
inside the dipole and the external flow exists due to the exponential stretching of

the interface between the two fluids.

So, in general nonuniform motions, we would expect that significant mixing
occurs between the dipole and the external flow. For uniform horizontal motion no
mixing occurs. But, even for small amplitude wobbling motions the fluid inside the
dipole which does not mix is only a fraction of the total fluid in the dipole. For
large amplitude wobbling and for the tumbling motions described in Chapter 2, we

would expect that almost all the fluid in the dipole mixes with the external flow.

The implications for modons are rather obvious, based on the assumption that
the flow around modons in nonuniform motion is qualitatively the same as the flow
around dipoles. A significant amount of the fluid inside the modon can mix with

the external flow. This undermines the assumption that modons transport all the
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fluid initially inside them and divert the external flow completely around them.
Thus modons may not serve as complete atmospheric blocks in general. This fluid
mixing should also be significant for modons in tokamak plasmas, where collisions
and highly nonuniform motion would presumably prevail in a fluid containing many
modons. Also, the surface stretching would provide a mechanism for energy trans-
port in such plasmas. It has been assumed that the modons trap energy in the
fluid. But thermal energy may be transported rapidly even if the energy in the

fluid motions is not.
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3.6 Conclusions

In this chapter we have shown that mixing between the fluid inside a model
dipole and the external flow occurs whenever the dipole is not in uniform horizontal
motion. We described the general mechanism of chaotic mixing or Lagrangian
turbulence in related flows and showed that the wobbling dipole exhibited such
mixing by studying stable and unstable manifolds (streaklines) in a Poincare map
of the flow. We showed that the manifolds intersect and tangle analytically, by
computing a Melnikov function, and numerically, by plotting the manifolds. We
used plots of very long manifolds to graphically estimate the amount of mixing
which occurs as a function of the wobbling amplitude.

The physical implications of this mixing are based on the assumption that the
particle paths around a dipole are qualitative the same as those around a modon.
Given that, it is clear that relatively small deviations from straight horizontal mo-
tion can cause significant mixing between the modon and the external flow. In
atmospheric flows, the rate of this mixing is likely to be slow compared with the
lifetime of the modon. So, modons should serve as good, though not complete, at-
mospheric blocks. In tokamak plasmas, it is impossible to know how important this
mixing is since there have been no observations of modons in tokamaks. We can
only say that this mixing may provide a mechanism for enhanced energy diffusion

through the plasma without enhanced particle diffusion.
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Appendix 1: The Melnikov Function

In this appendix we give a brief outline of the Melnikov function based on the
derivation in the book by Guckenheimer and Holmes [1983]. The Melnikov function
is a measure of the transverse distance between stable and unstable manifolds of
Poincare maps and is useful in establishing analytically that the manifolds tangle
in the limit of small-amplitude perturbation.

Consider a planar system of ordinary differential equations in the form

x = f(x) + eg(x,t)

where g is periodic in time with period T. Suppose that for ¢ = 0 the system
has phase portraits as in Figure 3.7 (a). We denote the separatrix by x°(¢), with
x%(+o0) = p°. Note that one branch of each the stable and unstable manifolds of
the fixed point p° coincide to form this separatrix.

For the perturbed problem, with € # 0, we study the Poincare map for the
system which maps each point in the plane to its position after evolving under the
flow for one period. If, for example, g(x,t) = sinw(t +1t¢) and we take the Poincare
sections at times ¢t = 0, T', 2T, 3T, ... then ¢, is the phase of the forcing g relative to
the Poincare sections. For e sufficiently small, this map has a fixed point p¢ which
is e-close to p°. This fixed point has stable and unstable manifolds $ and U which
are e-close to the unperturbed separatrix along the portions which are close to the

fixed point p¢, as shown in Figure 3.7 (b).



- 59 —

(a) (b)

Figure 3.7 Structure of the unperturbed and perturbed systems.
The Melnikov function is a measure of the distance between S and U which
requires knowledge only of the unperturbed separatrix, x%(t). Figure 3.8 shows the
geometry for the calculation. The separation between S and U measured along a

line perpendicular to x(¢) at a point x°(0) along the unperturbed separatrix is

jM(to)
£(x°(0))]

where the Melnikov function, in a form useful for calculations, is given by

d(to) =

+ O(€)

M@Q:/mf&%mxg@%Qt+mﬂt

-0

Since f(x°(0)) # 0, M (to) serves as a good measure of the distance between the man-

ifolds perpendicular to the unperturbed separatrix. It can be shown, for sufficiently
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small €, that if M(¢o) has a simple zero then S and U must cross transversely. This
single crossing would imply an infinite number of crossings, as discussed in Section

3.3, and hence the tangling of S and U. If M(%o) has no zeroes, then the manifolds

do not cross. d (tO )

X°(0)

Figure 3.8 Geometry for the calculation of the Melnikov Function.
The equations for fluid motion around a slightly wobbling dipole admit an
analogous Melnikov function measuring the distance between perturbed manifolds.
The position of fluid particles, in a reference frame moving with the average speed

of the dipole, evolves according to the Hamiltonian

1

H = m ((5 -+ yg)I{g(vrg) - (6 - yl)KO(')'TI)) + Cly
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where ry and r; are the distances from the point vortices in the dipole, located at
x; and X respectively, and ¢’ is the average speed of the dipole using the scaled
time 7. To repeat the Melnikov analysis for this system, it is necessary to expand H
in €, a small parameter representing the amplitude of wobbling of the dipole. Thus
we write H = Hy + eH; + O(€?) where Hy is the time-independent Hamiltonian of

the unperturbed system and

OH
Hl(x,t) = (*5:) .
-/ e=0

In this Hamiltonian formulation the Melnikov integral is found to take the form

[Guckenheimer and Holmes]

M(to) = / {Hos H} (21),y (1), 1410) B

where {U,V} = U,V, — V,U, is evaluated in its spatial entries on the unperturbed
separatrix, given by (z(t),y(t)), and in its temporal entry at the shifted time ¢ +¢,.

We can evaluate the Melnikov function in this case using the limiting forms of
the elliptic function solutions found in the appendix to Chapter 2. Making use of

some symmetries in the resulting integrals, we find

M(ty) = I cos(pto/pu — 1)

where I; is independent of tg. The value of I; depends only on the parameters in
the problem and the particular unperturbed separatrix on which it it evaluated.

As shown in Figure 3.1, the unperturbed dipole has three separatrices, each of
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which may break and tangle under the wobbling perturbation. Thus the Melnikov
function has simple zeroes on each separatrix provided that I; is nonzero along each
separatrix.

The expression for I; is given by

L= 2A/:o ({D, A} sin(pty/p— 1)+ {D, B} cos(pt+/p — 1))dt

where the functions A(z,y), B(z,y), and D(z,y) are evaluated along each of the
the unperturbed separatrices separately and {D, A} = D, A, — A, D,. The constant
A is given by

A= VAT (22EL)

Y1 (279p)

and the functions A, B, and D are given by

4= \/——-—~( (1{0(7?«2)_,_]&0(7”))-%7 ((y-f—p) 1("/72) —(y— )K1("/T1))>

RAN!

B 72<K1(’77‘2) N 1{1(7"‘1))33

2 D!

D = Ko(yr2) — Ko(yr1) + 7K1 (279p)y

where ry = \/z? 4+ (y — p)? and r, = /22 + (y + p)?. We have found numerically

that I; is different from 0 on each of the three separatrices for all values of the
parameters tested, except for the case 6 = p. In this case the system for the paths
of the point vortices themselves is singular, so it is not surprising that this analysis
breaks down there. Physically this is the case where the two point vortices have

zero initial strength, the so-called ‘ghost’ vortices [Zabusky and McWilliams]. Thus
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we have shown that for sufficiently small wobbling amplitude all three separatrices

of the dipole break and tangle in the fashion described in Section 3.3.
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Appendix 2: Computation of Invariant Manifolds

In this appendix we outline our method for generating the stable and unstable
manifolds for Poincare maps. The method we describe is applicable to all planar
maps that have such manifolds. We give the general mathematical principle on
which the computations are based and describe some of the details of the numerical
implementation.

The general problem is to compute stable and unstable manifolds which em-
anate from a hyperbolic fixed point of a planar map. The location of the fixed
point and the local structure of these manifolds is assumed to be known from anal-
ysis or highly accurate numerics. It is convenient to work with segments of the
manifolds which are smooth curves with one endpoint being the image under the
map of the other endpoint. Suppose that such a segment on the unstable manifold
close to the fixed point is known. The next segment along the unstable manifold
is then the image of this initial segment. This image segment by construction will
join smoothly with the initial segment, its first point being the last point of the
initial segment. This process can be repeated recursively to produce an arbitrary
number of segments joined end to end along the unstable manifold. This is shown
schematically in Figure 3.9. An initial segment denoted by 1 is mapped to segment
2, which is mapped to segment 3 and so on. The same process can be repeated for

the inverse of the map to generate the stable manifolds.
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individual
segments

Figure 3.9 Successive segments compose a portion of the manifold.

Of course, it is not possible to map all the points in a given segment forward
to obtain the next segment. It is practical, however, to use a finite approximation
to the segment to generate a finite approximation to the next segment. Our finite
approximation to a segment consists of a set of points {(z;, yi,si)}ﬁzé\f which spec-
ifies cartesian coordinates ¢ and y and arclength s at points along the segment.
These points are chosen so that the segment is resolved uniformly throughout its
length with a minimum number of points. Using this data, we can interpolate a
point (Z,y) on the segment corresponding to a given arclength 5. This is shown in
Figure 3.10. To generate the next segment, we start with § = sy and increase 5
incrementally until § > sy. Along the way, we interpolate the point (Z, %) for each
5 and map it forward to find an image point in the next segment. The problem is
to determine the appropriate increments in § so that the image points will resolve

the next segment without using too many points.
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XN- 1 YN-1) Xy Vi)

endpoint

endpoint ~

Figure 3.10 Interpolation of a pre-image between known points.

We determine the increments in § by monitoring each newly generated image
point. We require that the angle formed between three successive image points
be smaller than a given tolerance (typically between 0.1 and 0.5). This method is
illustrated in Figure 3.11. We suppose that we have some image points on the new
segment already and have a starting value for the increment in 3, namely ds. We
find the point on the known segment corresponding to the arclength 3+ ds and map
it forward to find a trial image point. We calculate the angle between this point and
the two previous points in the new segment. If this angle is too large we decrease ds
and start again. This process is repeated until the angle is sufficiently small or until
ds drops below some minimum stepsize. In the latter case the image point is saved

and we proceed to the next point, noting that a violation of the resolution criterion
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occurred. If the angle is sufficiently small the image point is saved and we proceed,

leaving ds unchanged. If the angle is smaller than a minimum angle, we save the

image and increase ds. The first few points on the new segment needed to get

this method started are obtained either by generating images using the minimum

stepsize or by monitoring the angle between the image points and points at the end

of the initial segment.

\ /-
endpoints of — known — "\
initial segment images 5 ~
~
/ \ N
trial \ ~
image \
angle
\

Figure 3.11 Angle formed by three successive image points.

Monitoring the angle between points has roughly the same effect as monitoring

the spacing between points relative to the local radius of curvature. Formulas for
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curvature can give poor results when the points are far apart or spaced nonuniformly.
The angle, however, is a well-behaved quantity so we have chosen to monitor it
instead. The resulting manifolds are smoothly resolved throughout their length
with a minimum number of points, i.e., a minimum number of calls to the map
itself. This is especially important for Poincare maps of continuous systems, where

evaluating the map involves integrating a differential equation for one period.
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CHAPTER 4

Coaxial Collisions of Dipoles

4.1 Introduction

Collisions between modons will occur in any fluid which contains many modons,
such as might be the case for a tokamak plasma (Jovanovic [1988]). It is thus
important to understand collisions between two modons. Numerical simulations of
modon collisions reveal some of the possible behavior, as shown in Figure 4.1. A

systematic study of collisions by direct simulation is impractical, however. In this
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Figure 4.1 A schematic example of a collision between two modons.
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chapter we study the coaxial collision of two modons using the point vortex dipole
model of Chapter 2 in order to perform a systematic study analytically. We hope
that a complete understanding of these simple collisions will indicate the behaviors

expected in general collisions.

We first describe the coaxial collision problem and show that the equations of
motion reduce to a planar Hamiltonian system of ordinary differential equations.
We discuss the qualitative structure of the phase plane of this system and study
the various bifurcations which occur. We give a complete bifurcation diagram and
thus classify the behavior of the system in each region of the parameter space. We
interpret these results in terms of the original physical system and show the possible
types of collisions which occur. We discuss the implications for the overall effects of
the collisions, noting the parameter regions where the finite size of the dipole can

be neglected and the collisions can be viewed as classical particle collisions.

4.2 Coaxial Dipole System

In this section we apply the point vortex model of Chapter 2 to the case of two
coaxial modons. We replace each modon with a pair of point vortices. The physical
picture is illustrated in Figure 4.2. We refer to each vortex pair as a dipole. So we
will really be looking at the interaction of two coaxial dipoles, each made up of two
point vortices of equal and opposite strength. It is important that the dipoles have

finite size since we are interested in the motion of the individual vortices during
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the collisions. We will refer to the strength of the dipoles in what follows, but by
this we just mean the absolute value of the intrinsic circulation & of each of the
point vortices making up the dipoles. We give the complete equations from Section
2.2 for the motion of each point vortex and show that these equations reduce to a

planar Hamiltonian system after a series of transformations.

Figure 4.2 Geometry for the coaxial dipole system.

The dipoles have strengths 9 and x3 and the half-distances between vortices
in each pair are p; and p, initially. The potential vorticity of each vortex is a useful
quantity since it is constant. Using the initial values of k¥ and y in Figure 4.2, we
have ¢; = k9 + Bp; and g2 = £ + Bps. The distances p; and p, must be positive.
Due to the symmetry present in the problem we can always choose & to be positive
while &9 can take on either sign. The dipoles are vertical initially and their centers

lie on a common horizontal axis, chosen to be the z-axis here. We call such dipoles
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coaxial and note that the equations from the point vortex model imply that they
will remain coaxial for all time. So the position of the lower vortex in each dipole
is just the reflection across the z-axis of the position of the upper vortex. Hence we
need only determine the motion of the upper two vortices, ¢.e. vortices 1 and 2 in
Figure 4.2. The equations of motion for these vortices using the equations in (2.6)

from Section 2.3 are

2
& = g; <2ff1y1C31 — Ko(Y1 — y2)Ca1 + Ka(yr + yz)@.z)

2

Ty = %’; (2@3/2@2 + &1(y1 — y2)Co1 + K1(yr + y2)C32) (4.1)
A
Y1 = '2“;&2(331 — 22)(C21 — (32)
2

Z;/Z = %fﬁ]{($1 - 332)((21 - C32)

where (ni = K1(y7ni)/yrni and rp = |x, — X;|. In what follows we will use the
relation k; = ¢; — By;, where ¢; is constant, so that we can work with &; instead of
Yi-

To determine the qualitative nature of the motion of the upper two vortices we
do not need to know the complete motion of both vortices, we just need to know
the motion of one of the vortices relative to the other. So we should expect that
the qualitative nature of the motion will be described by two equations. We make
several observations below which allow us to reduce the system of four equations in
(4.1) to a planar system plus two equations which decouple from this system and

can be solved trivially.
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We first observe, using (2.5) and the expressions for y; and g, in (4.1), that
we have K1k + koky = —B(K1Y1 + Kao¥2) = 0, so k2 + &3 is conserved. We can use
this conserved quantity to reduce the equations for y; and y; to a single non-trivial
equation. We use k1 and kp and make the following transformation to the polar
variables x and 6 :
Ky = —x cosf

J5]

Ko = —Ysinf
v

Then x = vy/k? + £2%/f is conserved, with the positive square root understood. So
only the equation for § will be non-trivial. Secondly, we note that #; and z, appear
only in the form z; —22. So, we can further reduce the system by introducing scaled

sum and difference variables  and ¢ similar to those in Chapter 2:
z = y(z1 + 22)

§=7(z1 —2)

The equation for  will then decouple from the rest of the system because none of the
equations depend on Z. For convenience we define the parameters §; = ¢ /8 and
83 = vq2/f. Finally, rescaling the time 7 = (y3/27)t and the strengths &; = v«;/8,

the system (4.1) becomes

d . . 5 oo B 5 oo .
Eé = 28191 (31 — 28292Ca2 — (R1 + R2) (1 — U2)C21 — (R — B2 )(§1 + U2) a2

g“?j = (C21 — (32)¢ (4.2)
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dz o . . o . . Ny~ -
o= 2%191Ca1 + 2R202Ca2 + (R1 — R2)(§1 — U2)C21 + (R + R2)(1 + ¥2)( 32
dx _
dr
where

Ry = xcost

Ko = xsinéd
g1 =61 — Ky = &1 — x cost (4.3)
g = b — Ky = by — xsinf

and Cni = Ki(fni)/Fni With 731 = 2§31, Fa = 202 , 73 = € +(§1 = §2)%, 75, =
£ 4+ (1 + 92)°

Since y is constant in time it can be viewed as a parameter in the remaining
equations. The variable # can be obtained from ¢ and 6 by quadrature. So the

system reduces to the planar system

d . . OH
gjf‘ =f(§?9,51’527,¥):~“—5é” (4.4a)
dé i OH
-d’,; = g(éagpélavaX) = "“"’a':{ (446)

dependent upon the three parameters 8y, 62, and x. The system has a Hamiltonian

H given by

H = K(VET 1 =320 - Ko(VE T 7 320) +F(O)  (45)
where

6
F(8) = / (R1 I (291) — R2 K1(292))d8’
b0
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The function Ky is a modified Bessel function of the second kind. The functions
f and ¢ are just those in (4.2) and &; and §; are replaced by their expressions in
terms of  and the parameters according to (4.3). Thus both functions f and g are

2n-periodic in 6.

The composite parameters of (4.4) can be related to the original physical pa-
rameters. The parameter x is a measure of the combined strength of the two dipoles.
The parameters 6; and §; are sums of the strength and size of the individual dipoles.
For weak dipoles, these are a good measure of the size of each dipole, while for strong
dipoles they are a better measure of the strength of each. The ranges of the pa-
rameters are restricted by the assumption that some of the original parameters are
positive. Note the §; must be positive since p; and x} were assumed to be positive
while &5 can have either sign. Also, we can write y? = (8; — yp1)? + (83 — vp2)?
using initial values and the definition of ¢; and ¢,. Since py is positive, we must

have x > —0, if 0, < 0. So y must satisfy v >max(0, —d2).

The qualitative features of the coaxial dipole system may be inferred directly
from a knowledge of the behavior of (4.4) in the £-6 plane as a function of the
parameters 81, 02, and xy. We proceed by studying the nature of the phase space
in the £-0 plane and several types of singularities which can occur. We then study
the various bifurcations that can occur in parameter space. By determining exactly
where all the bifurcations occur we can divide the parameter space into different

sections. Each section then corresponds to a different qualitative state of the £-0
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system. In this way we can catalogue the various states of the system in the different

regions of parameter space.

4.3 Structure of the Phase Plane

In this subsection we discuss the general structure of phase plane diagrams for
the system (4.4) and some limitations on the ranges of validity of (4.4) in the -6
plane. The system is 27-periodic in 6, so any horizontal strip of height 27 in the £-60
plane will suffice to study the system in general. The remainder of the -6 phase
plane then consists of copies of this strip. Since the structure of the phase plane
changes as parameters change, we will find it convenient to choose an appropriate
2m-strip for each choice of parameters. This is just so that the edges of the strip do
not cut through identifiable structures in the phase plane.

The physical constraints that y; > 0 and y, > 0 can restrict the values of 8
within each strip which are physically valid. So, for some values of the parameters we
will see that the appropriate 27-strip in the -6 plane will be sliced horizontally into
smaller strips, corresponding to regions of physically valid or invalid §. These gaps
in allowable 6 are simply artifacts of the transformations we have used and do not
indicate any unphysical behavior. We know from (4.3) that ¢, = yy; = 81 — x cos 8
and § = yy2 = &; — y sinf. Hence any physically valid 8 must satisfy

)

6 .
cosf < — and sinf < -2
X X

Since 6; > 0 and &3 > —x there will always be some region of valid 6 around
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0 = —n/2. If & > x and 62 > x then all values of 8 are valid. In the case that
x < m, X > 61, X > 62, and 85 > 0 there are two disjoint horizontal strips of
valid 6 contained within the appropriate 27-strip. In the remainder of the parameter

space there is a single strip of valid 6 within the 27-strip.

Op* 4T — -, = =
80+ 275-—- -
0 — - pu—— — - = = =
Al . One region Two regions
6 valid of valid © of valid o

Figure 4.3 Three different types of phase planes possible. The shaded
areas are the allowable regions of the £-6 plane.

The three cases are illustrated in Figure 4.3 with example phase portraits.
Singular horizontal walls form the boundaries of the valid ranges of 8 in the latter
two cases. All the possible states of the {-6 system will have phase portraits with
domains similar to one of the three shown in Figure 4.3. The flow between the walls
may be different, however. The walls correspond physically to one of the dipoles

having zero size and shooting off horizontally with infinite speed. Some of the
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bifurcations in the system consist of structures such as fixed points or separatrices
appearing or disappearing through these singular walls.

In addition to these wall singularities, point singularities corresponding phys-
ically to the upper two point vortices having the same position can occur. This

happens when £ = 0 and y; = y3. So 6 must satisfy 6; — x cos8 = b3 — xsinf or

61 — O
V2x

For |v| < 1 there are two values of 6 in each 27-strip corresponding to point sin-

cos(6 + -g—) = =v (4.6)

gularities at £ = 0. For |v| > 1 there are no point singularities. So two point

singularities merge and disappear as |v| increases through 1.

4.4 Analysis of Bifurcations

In this section we study the various bifurcations which occur in the system
(4.4) as parameters are changed. One class of bifurcations are those involving wall
or point singularities. These can be studied analytically. A second class are those
involving just fixed points. We will see that the only such bifurcation in (4.4) is
the saddle-node bifurcation of two fixed points. We find the curves in parameter
space on which this bifurcation occurs numerically using the bifurcation software
package AUTO (Doedel and Kernevez [1986]). The last class of bifurcations involve
separatrices, not just fixed points or singularities. These are known loosely as
homoclinic bifurcations and can be found numerically with the AUTO software by

making use of the Hamiltonian for the system.
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The bifurcations only involving wall singularities can be determined from the
discussion in Section 4.3. Since walls form the boundaries of regions of valid 6 in
the £-0 phase plane, two walls must merge when the number of valid regions of 6
changes. Thus two walls merge when x = /82 + 62 and 6, > 0, since the number of
valid regions of § changes there. For the same reason, two walls must merge when

x = 61 with é2 > 0 and when x = 6, with 82 > 0.

0 ——
T A .\_‘/—O\f* _______'__"'
g S —ctlf—e
(a)

(b) (c) (d)

Singularities merging Singularity hits wall

Figure 4.4 Bifurcations involving singularities.
The surface in parameter space corresponding to the merging of two point
singularities in the phase space can be found using (4.6). Since the merging takes

place when |v| = 1 and since x must be positive, this surface is given by

X = Xm(61,62) = J§_1_\/:§__52.|, (4.7)

A point singularity can pass through a wall singularity as a parameter changes.

This occurs when £ = 0 and y; =y, = 0. So §; = xcosf and 6 = ysinf. Hence

a necessary condition for a point singularity to pass through a wall singularity in
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phase space is that the parameters lie on the surface defined by

X = Xw(01,82) = /6] + 63 (4.8)

Typical phase space portraits of these two bifurcation are shown in Figure 4.4.

The merging of two point singularities, which occurs from frame (a) to frame
(b) in Figure 4.4, appears very similar to a pitchfork bifurcation. The merging
centers in this case are point singularities, not fixed points, and we have used a
“*’ to represent each. The disappearance of a point singularity through a singular
wall is shown in frames (c) and (d). Note that the point singularity in frame (c) is
enclosed by an eye-like structure. This structure disappears through the wall along
with the point singularity.

A fixed point can also pass through a wall singularity as a parameter changes.
The details of the analysis for this bifurcation are straightforward and tedious, so we
present only the results. With the assumption that 6; is positive, this bifurcation
occurs only when 62 = 0 with singular walls at § = 0 and § = 7 corresponding
to yo = 0. For x < ¢é;, we define the positive constant (o = 2x(2K1(6, — x) —
K1(2(61 — x))). For 0 < (o < 1, a center appears through the wall at § = 0 and a
saddle appears through the wall at § = —7 as 6, increases through 0. For {, > 1, a
saddle disappears through the wall at § = 0 and a saddle appears through the wall
at @ = —m as 0, increases through 0. For y > 6; there is no fixed point near § = 0,

but the saddle still appears through § = —7 as ¢y increases through 0.
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<
f

(a) (b) (c) (d)

Figure 4.5 Bifurcations in which fixed points pass through singular walls.

Figure 4.5 shows pictures of the phase plane before and after fixed points pass
through walls. Frames (a) and (b) show the center at § = 0 and the saddle at § = —7
appearing as 6, increases through 0. We note that the center which appears in frame
(b) is the heart of an infinitely long eye-like structure, mentioned earlier. The outer
edges of this eye are the limits of periodic orbits inside the eye and separate the
bounded inner flow from the unbounded outer flow. These separatrices approach
one another as { — +oo. This structure seems to be the only possible one which
is consistent with the appearance of a center through a singular wall. It resembles
a localized vortical disturbance on the stagnation line of a horizontal shear flow.
Frames (c) and (d) show the saddle at § = 0 disappearing and the saddle at § = —

appearing as 6, increases through 0.

A second type of bifurcation that can occur only involves fixed points. The

only such bifurcation that we have found in (4.4) is the saddle-node bifurcation
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between two fixed points. For conservative systems such as (4.4), a saddle-node
bifurcation occurs when two fixed points, one of saddle type and the other of center
type, merge and disappear as a parameter passes through a critical value. At the
critical value of the parameter, there is a single degenerate fixed point. In terms
of the functions f and ¢ in (4.4), we must have f = ¢ = 0 and fegg — gefo = 0 at
such a point. This only occurs when ¢ = 0 and 6 is such that f(0,6,61,62,x) =0
and f4(0,6,61,62,x) = 0. Of course this will only be possible in general if the
parameters lie on a particular two-dimensional surface in the three-dimensional
parameter space. We have found particular values 6°, 67, 65, x¢ at which a saddle-
node bifurcation occurs by looking at the fixed points of (4.4) as functions of the
parameters. We fixed §; and followed a curve 8°(6;), x(62) on which f = fy =0
using the arclength continuation software package AUTO. This allowed us to trace
out curves in parameter space on the saddle-node bifurcation surface. So we can
picture this surface by drawing various slices of it. We show one such slice in the

next section.

g

Figure 4.6 An example of a homoclinic bifurcation.
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A final class of bifurcations is that of the homoclinic bifurcations. These are
bifurcations involving the coalescence of separatrices. One example is shown in
Figure 4.6. As a parameter is varied, the saddle separatrix moves upward to join
with the eye separatrix. The separatrices partially annihilate one another leaving
only a saddle-node loop separatrix. We can follow these bifurcations numerically
in much the same way as we followed the saddle-node bifurcation by making use of
the Hamiltonian H, given in (4.5). We know that H is constant along orbits, so we
can find the value of H on a separatrix by finding the value at a specific point on
the separatrix. In the case shown in Figure 4.6, the value of the Hamiltonian on
the separatrix emanating from the saddle is just its value at the saddle. This value
is H(0,01, 6y, 62, x) where 6, is the value of 8 at the saddle. Similarly, the value of
the Hamiltonian on the eye separatrix is just its value at the extreme right or left
edges of the eye. This value is H(&o0, 8y, 81, 62, x) where 8, is the value of 8 on the
eye at £ = +oo. When the two separatrices coalesce, the Hamiltonian must have

the same value on both. Thus the equations specifying this bifurcation are
f(ovgl':gl?é?v;\ﬁ) =0

f(ﬂ:@@,@g,élﬁ(gz’x) - O
H(O)glaél,(S?,X) = H(i@o,eg,él’ég’x)

Again we found one such set of values 67,605,067, 065, x¢ and then followed a curve

of such points as a function of §y for a fixed value of 6; using AUTO. This curve
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will be shown in the next section. Similar curves corresponding to other homoclinic

bifurcations which occur are also presented there.

S ) = O ) o
) 8, = 9% 1< %2

Figure 4.7 Homoclinic bifurcation forced by vertical symmetry.

One curve in parameter space along which homoclinic bifurcations can take
place can be found very simply by noting a symmetry of the system. We note that
when §; = 6, the system (4.4) is symmetric with respect to § about § = —x /4. This
symmetry forces otherwise nonsymmetric configurations in the phase plane to merge
in order to form symmetric configurations. An example is shown in Figure 4.7. The
configurations of separatrices for §; < §; and d > 6; cannot be deformed in any
way to form a vertically symmetric configuration except through the coalescence
of two of the separatrices at §; = ;. Thus the surface §; = §, will correspond
to homoclinic bifurcations whenever the symmetry requirements cannot be met

otherwise.



- 85 —

4.5 Bifurcation Diagram for the Planar System

In this section we present the results of a complete study of the bifurcations
that occur in (4.4) for various values of the parameters ¢y, 62, and x. We have chosen
to present a single slice of the parameter space with ¢; fixed. This yields a planar
bifurcation diagram in the parameters 6 and y. The curves on which bifurcations
occur break this diagram into distinct regions corresponding to different qualitative
behaviors in the phase plane. Along with this bifurcation diagram we give phase
portraits corresponding to each of the regions in the diagram. Thus we classify the
qualitative behavior of (4.4) in each region of the 6,-y plane for a fixed value of ¢;.
We then note that this slice is representative of the entire parameter space, differing
from other such slices in a very minor way.

The complete bifurcation diagram is given in Figure 4.8. We have chosen the
slice with é; = 10. The curves on which bifurcations of (4.4) take place are plotted
in the §2-x plane. As noted in Section 4.2, the parameter ¢, is unrestricted while
x must satisfy x > max(0,—8;). So the shaded region in the lower left corner
of Figure 4.8 with x < —§y is not physically valid. Superimposed on the shaded
region i1s a magnification of the dense region around 6, = 0 outlined by the dotted
line. Each curve in Figure 4.8 is labeled according to the type of bifurcation which
occurs on it. Two of the lines, y = 6; and y = 4,2, are each broken into a solid
and a dashed segment. These segments correspond to different bifurcations so we

changed the line type for clarity.
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The curves involving point singularities and fixed points are labeled simply. The
curve on which a saddle-node bifurcation occurs is labeled SN. The curve on which
two point singularities merge is labeled M. This curve is just a plot of ¥ = xm in
(4.7) for 6; = 10. The curve SW is where a point singularity hits a wall singularity.

This curve is given by x = x in (4.8).

The curves where wall singularities merge are labeled to reveal more informa-
tion about what happens on each segment. The curve labeled EA corresponds to
the appearance of two walls in the middle of a valid region of 8 in the £-6 phase plane
as x is decreased. The eye structure around a point singularity lies between these
two walls. Thus at this point an eye structure appears. The two segments labeled
WM correspond to two walls merging and disappearing as x is decreased. Here the
two separate regions of valid @ join to form one region of valid §. The two segments
labeled WD correspond to the two walls disappearing altogether. Actually, the two
walls here merge with their counterparts in the 27-slices above and below them in
the £-6 plane. This leaves all values of 6 valid after y decreases through either of

these segments.

The curves along which homoclinic bifurcations oceur are all labeled H;, each
one being distinguished by its index ¢. Although some of the curves appear to be
continuous and smooth when they cross other lines, some of the segments may be
labeled differently because they actually correspond to different homoclinic bifur-

cations. On Hy, H,, Hj, and Hj a saddle loop separatrix coalesces with an eye
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separatrix. On H; and H7 a saddle loop separatrix makes a transition from being
bounded in 6 to being unbounded in 8. On H, a saddle loop separatrix coalesces
with a saddle separatrix. On Hg and Hy a saddle separatrix coalesces with an eye
separatrix.

The bifurcation diagram in Figure 4.8 is representative of the entire parameter
space. That diagram is plotted for ¢; = 10, but the same diagram plotted for other
values of ¢§; which are positive would appear almost identical in structure. All the
curves shown in Figure 4.8 exist for all 6y > 0. They cross each other in exactly the
same way topologically for all §; except for the saddle-node bifurcation curve SN.
This curve crosses the x-axis in two places in Figure 4.8. The higher of these two
crossings occurs below the curve labeled M when §; < 10.78 and above that curve
when 6; > 10.78. So, for §; < 10.78 the curves SN and M in Figure 4.8 do not
cross. For 6; > 10.78 these two curves do cross. Thus all slices of the parameter
space with fixed §; will be very similar to the slice shown in Figure 4.8. A few other
regions will be introduced when the curves SN and M cross, but no new qualitative
behaviors will be added.

We now discuss what happens in the £-6 phase plane corresponding to each
region of parameter space. Each region which lies between bifurcation curves corre-
sponds to a particular qualitative behavior of the system (4.4). The various regions
have been labeled Ay, Ay, A3, ..., Fy, Fy, Fs for reference. Figure 4.9 shows the

phase portraits corresponding to the various regions. Each bifurcation which occurs
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can be seen by comparing the appropriate phase portraits in Figure 4.9 for the
regions on either side of the curve for that bifurcation. Neighboring phase portraits
are drawn on comparable horizontal strips in the é-6 plane in general. The plots
in Ds, Dg, and D7 are in different strips so that the structures shown are not cut
by the boundary lines of the 27-strips. We have indicated these shifts with slanted

dashed lines in Figure 4.9.

We have chosen to show only fixed points, singularities, and separatrices in
the phase portraits. The qualitative nature of all the other orbits follows from a
knowledge of these special orbits. The arrows indicate the direction of flow. The
dots in Figure 4.9 correspond to fixed points of center type. Saddle fixed points
are not highlighted except that they exist wherever orbits intersect. Each point
singularity is represented by a ‘4’ while each wall singularity is represented by a
dark horizontal line. The normal solid lines in Figure 4.9 are separatrices. The
horizontal dashed lines at the top and bottom of some portraits are the imaginary

boundaries of the 27-strip chosen for those portraits.

4.6 Physical Interpretation of Results

In this section we interpret the results of the previous section on the planar
system in terms of the original coaxial dipole system. We discuss the different types
of interactions that occur. We also discuss the implications for the coaxial modon

system and the general problem of collisions between modons.
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Each phase portrait in Figure 4.9 contains a variety of orbits. Each of these
orbits of the planar system (4.4) corresponds to a particular type of behavior in
the original physical system (4.1). The correspondences are rather straightforward
except for determining the behavior of the quantity Z in (4.2). Recall that z =
v(z1 + z2) is just vy times twice the horizontal centroid of the coaxial dipole system.
So we can determine the relative motion of the dipoles without a knowledge of z.
Thus the qualitative behavior of the system (4.1) will be the relevant qualitative
behavior corresponding to that found in (4.4) plus an overall translation of the
whole system horizontally. Although the rate of this overall translation may vary
in time, it is not important in understanding the qualitative behavior of the coaxial

dipole system.

The simplest motion may be seen in the portrait for region A; in Figure 4.9.
All orbits there pass from left to right without significant deflection vertically. Thus
the angle 6 is roughly constant along such orbits. The variable £, which is the signed
horizontal distance between the dipoles, increases monotonically from —oo to +o0.
Such an interaction is a clean collision between the dipoles in which one dipole
simply passes between the two vortices in the other dipole. Figure 4.10 shows a
schematic of this motion in frame (a). This figure shows only the motion of the
two upper vortices in each pair. The lower vortices are just the mirror reflections
of these upper vortices through the horizontal axis shown in each frame of Figure

4.10. Note that the symmetry of (4.4) with respect to £ guarantees that the dipoles
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will return to exactly the same size and strength after the collision as before the
collision. All coaxial collisions in which the dipoles pass by one another so that ¢

goes from +o00 to —oo are conservative.
Y
t % (a) (b) (c)

Q) <.
9 -

(d) (e) ()

0

Q

Figure 4.10 Physical motions exhibited by upper two vortices in the coaxial
dipole system.

A slight variation of this type of behavior can be seen in region A,. The orbits
which pass just below the saddle loop will travel horizontally to the right until they
approach the bounded portion of the loop. They will then dip down around the
loop and eventually appear on the right side outside the loop traveling to the right

again. Thus the upper point vortices approach one another at first and then change
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their heights quite a bit during the close interaction. They finally emerge traveling
away from one another with their sizes and strength conserved. This motion is
diagrammed in frame (b) of Figure 4.10. This corresponds to the type of modon

collision show in Figure 4.1.

The portrait in region A, also contains two fixed points. These correspond to
equilibrium configurations of the system (4.4). In terms of the original coaxial two
dipole system (4.1), this corresponds to the two dipoles having constant size and
strength and being lined up vertically on the y-axis. This is shown in frame (c) of
Figure 4.10. This entire configuration may move horizontally with constant speed,
but it is at rest in the appropriate frame of reference. The question naturally
arises as to the stability of the equilibria. One of the fixed points is a saddle,
and is thus unstable, i.e., any perturbation of the point vortices away from their
equilibrium position will grow exponentially in time. The other fixed point is a

center, corresponding to a stable equilibrium configuration of the point vortices.

The periodic motions around the center fixed point lie inside the saddle loop
in the portrait for region A,. The orbits inside the loop are periodic and symmetric
about £ = 0. This corresponds to the two upper point vortices oscillating periodi-
cally about their equilibrium position corresponding to the center fixed point. This
motion is shown in frame (d) of Figure 4.10. The two lower point vortices, which
are the reflections of the upper vortices across the z-axis in Figure 4.2, also oscil-

late periodically. While the individual vortices oscillate, the center of the system
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translates horizontally.

The phase portrait in region Az introduces another type of behavior. The
portrait in Aj is the same as that of A, except that the center fixed point has
undergone the pitchfork-like bifurcation discussed in Section 4.4. The center has
split into a saddle sandwiched between two singular centers. The singular centers,
each denoted by a ‘x’ in the phase portraits, are the point singularities discussed
in Sections 4.3 and 4.4. The orbits around the point singularities are qualitatively
similar to those around a normal center. The speed at which these orbits are
traced out approaches infinity close to the singular center, however. Physically, this
corresponds to the two upper point vortices starting very close to one another and
orbiting each other very quickly. The periodic orbits around these point singularities
correspond to the upper two vortices orbiting one another in a ‘leap frog’ fashion
as the center of the dipole system translates horizontally. This motion is shown in
frame (e) of Figure 4.10 and was observed by Love [1894] in his study of interactions

between coaxial pairs of point vortices for the Euler equations.

A consideration of the phase portrait for region C; uncovers two more types
of behaviors. The eye at the top of ('} encloses a band of periodic orbits. These
orbits become stretched horizontally and pinched at the left and right edges as they
approach the eye separatrix. These correspond to highly noncircular oscillations of
the point vortices about their equilibrium positions, which correspond to the center

fixed point in the middle of €. Another behavior is that of the semi-bounded
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orbits in the left or right regions defined by the saddle separatrices. These orbits
start from € = Zoo at a finite value of 8, approach the saddle and then turn
around to return to £ = +oo and a different value of 6. These correspond to the
two dipoles approaching one another and then bouncing off and traveling away from
one another. Their heights change appreciably during their close interaction causing

their horizontal velocities to change sign. This is shown in frame (f) of Figure 4.10.

For the specific problem of dipoles initially far apart colliding, only the motions
in which £ is unbounded are of interest. The collisions shown in Figure 4.10 (a), (b),
and (f) are the only such collisions. The collisions in (a) and (b) are conservative
since £ passes from +oco to —oo and the system (4.4) is symmetric with respect to
€. The dipoles pass by one another and return to their original sizes, strengths, and
speeds after such collisions. The collision in (f) is not conservative since € starts
at 400 and eventually returns there after the collision. The dipoles bounce off one
another in such a collision and the sizes and strengths are in general different from

their original values afterward.

The conservative collisions correspond to orbits in the phase portraits in Figure
4.9 which pass from one side of a portrait to the opposite side. Such orbits occur for
all initial conditions at the extreme left or right of each diagram which contains no
solitary saddle separatrix. In the cases where a solitary saddle separatrix exists, the
initial conditions contained inside either the right or left semi-infinite quadrants of

the separatrix will result in the nonconservative rebounding collisions. The system
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(4.4) exhibits a solitary saddle separatrix in many of the portraits in Figure 4.9.
These separatrices occur in regions of parameter space corresponding to overtaking
collisions of strong dipoles, in which the dipoles initially travel in the same direction.
Head-on collisions, in which the dipoles travel in opposite directions initially, appear
to be conservative for all initial conditions. Owing to the presence of the saddle
separatrices, overtaking collisions are nonconservative for some initial conditions,

but conservative for all others.
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4.7 Conclusions

In this chapter we studied the problem of the coaxial collision of two modons
using the point vortex model. We modeled the two modons by two pairs of point
vortices and showed that the resulting equations were a planar Hamiltonian sys-
tem which could be studied in detail. We found the various possible interactions
between the two pairs of point vortices and interpreted them physically. We found
several collision-type interactions as well as well as bound periodic motions. The
implications for the classical particle collision problem of two particles initially very
far apart were considered. We found that in general the collisions would appear
to be clean in the sense that one dipole would pass through the other and the two
dipoles would resume their original sizes, strengths, and speeds afterwards. In some
cases, associated with overtaking collisions in which the dipoles travel in the same
direction initially, the dipoles could bounce off one another and return in the direc-
tion from which they originated. In these cases, the collisions are nonconservative

in the sense that the dipoles do not return to their original sizes or speeds.
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