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ABSTRACT

We discuss some problems related to quantum critical phenomena in
superfluids and superconductors.
In Ch. 1, we apply generalizations of hyperuniversality to quantum phase tran-
sitions at zero temperature. We find new universal amplitude combinations
involving the superfluid density in Bose systems, as well as confirm and ex-
tend previous proposals for universal transport coefficients in two-dimensional
superconducting films and magnetic-field-induced metal-insulator transitions.
In Ch. 2, we apply the double-dimensionality expansion of Dorogovstev to derive
renormalization-group recursion relations for a Bose fluid in a random external
potential. We find a nontrivial fixed point. The onset of mean-field behavior
for dimensions d > d. = 4 is unconventional, yielding discontinuous exponents.
Including positive temperatures, we give a clear picture of various crossover
regimes.
In Ch. 3, We give a detailed derivation of the critical thermodynamics of
O(n) spin models, correct to O(e = 4 — d), using a generalization of the
renormalization-group trajectory integral and noncritical matching technique
introduced by Rudnick and Nelson. We especially emphasize the coexistence-
curve behavior for spins with a continuous symmetry (n > 2), deriving detailed
expressions for the renormalized spin-wave stiffness and longitudinal suscepti-

bility.
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1. HYPERUNIVERSALITY IN QUANTUM CRITICAL PHENOMENA

1.1 Introduction

In recent years there has been great interest in the interplay between su-
perconductivity, disorder, and dissipation. In the experiments that drew much
attention to this problem, the sheet resistance of the granular films, prepared
by depositing soft metals such as Sn, Pb, Ga, Al, and In on insulating sub-
strates is measured as a function of the temperature and film thickness [1,2].
Remarkably, it has been observed that the normal state sheet resistancef of
the film at the boundary between superconducting behavior and nonsupercon-
ducting behavior at low temperatures is close to Rg = h/4e? ~ 6.45kQ and
apparently independent of the material and the microscopic structure of the
film (see Fig. 1). Global superconductivity is established as T — 0 only for
BN < Rq, whereas for Ry > Rq, metallic or insulating behavior is found as
T — 0. In some films with Ry slightly bigger than Rg, an intriguing reentrance
behavior in the resistance curve is observed: There is a significant drop in R(T')

at T ~ T?, but R(T) rises again to approach some finite value at T < T?.

There have been a large number of theoretical attempts to explain these

t The normal state resistance Ry is defined operationally as the resistance at
some specified temperature well above the material’s bulk critical temperature

T?.

[
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observations, most of which are based on modeling the granular film as a regular
array of small dissipative Josephson junctions [3,4]. However, none of them seem
to be successful in explaining the apparent universality of the critical normal

state sheet resistance.

A more recent experiment on an amorphous bismuth film with uniform
microscopic disorder and no granular structure shows somewhat different be-
havior [5] (see Fig. 2). In this case neither flat tail nor re-entrance behav-
ior in the resistance has been observed, and the transition seems to be a di-
rect superconductor-insulator transition rather than a superconductor-normal
metal-insulator transition. The R(T) curve at the boundary between the two
phases is approximately temperature-independent and again its value is close

to RQ.

Stimulated by this experiment, a new apporoach to apply the scaling theory
of the superfluid-Bose insulator transition [6] to the superconductor-insulator
transition has been proposed [7]. In this chapter we develop this approach
further, and argue that the possible universality of the sheet resistance in the
T — 0 limit is a straightforward consequence of the generalized hyperuniver-
sality (or “two-scale-factor universality”) [8-11] in quantum critical phenom-
ena. Later, in Chapters 2 and 3, we take a microscopic approach to critical
phenomena and apply the renormalization-group € expansion to various phase

transitions.
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In Sec. 1.2 we review the concept of hyperuniversality in classical critical
phenomena. We show that the Nelson-Kosterlitz universal jump [12] for the
superfluid density in the 2D XY model follows directly from this. In Sec. 1.3
we generalize hyperuniversality to quantum critical phenomena and derive the
scaling form of the superfluid density. In Sec. 1.4 we apply quantum hyper-
universality to superconducting transitions, superfluid transitions, and metal-
insulator transitions, deriving many experimentally measurable universal quan-
tities including the universal critical conductivity. Finally, in Sec. 1.6 we discuss
some of the more recent experiments from the scaling theory point of view and

propose directions for future work.

1.2 Hyperuniversality in classical critical phenomena

It has long been recognized [8-10] that along with any critical-point scaling
relation between exponents, there should be a corresponding universal relation
between critical amplitudes. For example, from the equalities « = o' and
v = 4" for the specific-heat and susceptibility exponents, above and below the
critical temperature T,, follows the universality of the corresponding ratio of
amplitudes Ay /A_ and 'y /T'_ [10]. Two-scale-factor universality, or hyper-
universality, is the name given to the generalization of these ideas to include
the classical hyperscaling relation dv = 2 — a, where d is the dimensionality

and v the correlation length exponent: ¢ ~ ¢E|t|™" for t = (T — T.)/T. z 0.
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When hyperscaling is valid the singular parts of the free-energy density inte-
grated over a correlation volume (measured in units of 371 = kpT), B¢¢ fsing,
are dimensionless constants when ¢ — 0%. Hyperuniversality is the statement
that these constants are universal [8,9]. Equivalently, the amplitude combina-
tions Rét = A4(¢E)?, where Cying/kp =~ (A+/a)|t]™®, are universal. For a
renormalization-group proof, see Ref. 9. See also the recent review by Privman
et al. [11] It follows also that in systems with a continuous symmetry (order-
parameter dimensionality n > 2), for which {; = co =", one can extract an
alternative diverging length &y = (T/kpT)/?~D ~ £J [t|=* below T, (d > 2),
with the corresponding universal ratio £ /éF. These are the famous spin-wave
divergences. See, e.g., Ref. 13 for a detailed discussion. See also Ch. 3 for
explicit calculations within the € expansion formalism. Here T & Yy|t|" is the
helicity modulus, related to the superfluid density via ps = (m/h)?Y, where m
is the particle mass (or Cooper pair mass in superconductors), while the corre-

sponding exponent relation is the Josephson hyperscaling relation v = (d —2)v.

Hyperuniversality may also be applied to finite-size systems [14]. If, for
simplicity, one considers a classical cubically shaped system of volume L¢, finite-
size hyperuniversality states that at the bulk critical temperature, T = T,
limp— oo BeL? fsing is a universal constant, depending in general only on the
sample shape (here assumed cubic) and boundary conditions. In particular,

for applications to the superfluid density, if one chooses periodic boundary
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conditions in the first (d — 1) dimensions, and imposes an order-parameter

phase-angle twist of 6 across the final dimension [13], one should find

Bim BeL% fuing(6) = F(6) (1)

where F(8) is a universal function. Since we may assume that all boundary-
condition dependence of the free energy is contained in its singular part [14],

the helicity modulus at 7, is then given by

ﬂCT(TC) = 50'927 Lh_{%o L2 {fsiny(e) - fsing(o)]

> @
2L 1 (6) - F(0)] .

= lim
L—oo

I
Clearly, for d > 2, this correctly predicts Y, = Y(T,) = 0, while in d = 2 one
finds F(6) = F(0) + F»8* for || < 7, and 8. Y. = 2F} is a universal number.
This yields automatically the Nelson-Kosterlitz universal jump for the super-
fluid density in two-dimensions: Since one knows from detailed calculations in
this case that 3. T, = 2/n, we predict that F, = 1/7. A caution is necessary
here: The number F, is associated with a given fixed point, while in two di-
mensions one tends to have lines, or even higher-dimensional surfaces of fixed
points with (perhaps several) associated marginal variables. The value of Fy,
and in general, of any other universal quantity, will vary along these fixed sur-
faces and will be specified uniquely only if all marginal variables are specified.
For the Kosterlitz-Thouless transition the unique fixed point describing T' = T,
is specified by the marginality of the vortex degrees of freedom at 3.Y. = 2/~,

or exponent n = 1/4 [15].
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In dimensions d > 2 the function F(6) is no longer quadratic in 6. If
one assumes, as is very likely, that 6-boundary conditions in a finite system of
size L are essentially equivalent to a uniform order-parameter twist with wave
vector kg = 6/L in an infinite system, appropriate scaling of ko with £ (see, e.g.,
Eq. (5) below) predicts that feing(ko) — feing(0) o< k¢ at T. with a universal

coefficient. This yields F(8) = F(0) + F4|6]%, |6] < =.

1.3 Hyperuniversality in quantum critical phenomena

We now generalize hyperuniversality to the case of quantum critical phe-
nomena at zero temperature. The generalization itself is very straightforward,
but the applications and consequences are very deep. We will recover the uni-
versal transport coefficients of Ref. 7 in a concise and unified way. We make
new predictions for universal ratios involving ps in two- and three-dimensional
Bose systems. Applying the same ideas to metal-insulator transitions yields new
predictions for universal transport coeflicients that are consistent with those of

previous work.

Consider then a continuous phase transition at temperature T' = 0, as a
function of a parameter such as the magnetic field H, the particle mass density
p, or the chemical potential u, which we denote generically by the dimensionless
quantity 6. We assume that § = 0 defines the critical point, while § > 0

denotes the disordered phase and § < 0 denotes the ordered phase. Quantum
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fluctuations must dominate the critical instability because of the absence of
the thermal fluctuation modes at T' = 0. Unlike the classical case, statics and
dynamics are no longer separable, since even the equilibrium properties depend
on the details of the quantum dynamics {16]. At T = 0 and small |§|, one
defines two correlation lengths, for definiteness, via the rate of the exponential
decay of the Matsubara Green function: (a) The usual spatial correlation length
£ ~ £X16|7¥ and (b) the temporal correlation length &, ~ 51:-%0 |6]7%~. We take &,
to have the same units as 3, i.e., inverse energy. The combination A€, then has
units of time. When n > 2, we have {; = co = {_;, and T is again required:
see below. The dynamical exponent z is defined as the ratio z = v, /v. At
positive temperatures the imaginary temporal extent, 0 < 7 < 3, of the system
is finite. Thus &, can never diverge and the quantum dynamics cannot affect the
static critical behavior: This is the usual statement of irrelevancy of quantum
mechanics at finite temperatures. Only at T = 0 may &, diverge. When it
does, the usual classical hyperscaling argument must be modified. Since the
free-energy density is f = —(8V)~1In(Z), Z being the partition function and
V the volume, where now both 8 and V' diverge in the thermodynamic limit, the
natural hyperscaling ansatz is that feing ~ 6791 ~ |6|2~®. This yields the
generalized hyperscaling relation 2—a = (d+z)v. The corresponding amplitude

relation is that £%¢- fing should be universal when |§] — 0. Equivalently

RY = €5,(6)" Ax (3)
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are universal amplitude combinations. Equation (3) is the basic result, which
may be derived more formally within the renormalization-group framework by
a straightforward generalization of the Appendix of Ref. 9 (see Appendix).
The Josephson hyperscaling relation is generalized similarly: One finds [6] v =

(d — 2 + z)v. The related ordered-phase diverging length is now
Ex(8) = (& (=)L~ ~ 5 |6]77,6 — 07 (4)

(note that £, replaces 8 in the finite temperature result), and Ry = £J /£7 is
universal. In two dimensions Eq. (4) is problematical, and a better approach
is to use T to define a divergent temporal scale: ¢X(8) = £(—6)2¢4Y(6)7! ~
53:0|6|_z”, 0 - 07,and R} = 520/5:—,0 is universal. This definition does not run
into any problems in two dimensions. If the ordered phase has a propagating
mode, such as second-, or higher-order, sound in *He, spatial and temporal
scales may be related to one another through the speed of sound, and often the
exponent z may be determined explicitly [6]. We do not address this issue here,

however.

All of the results to follow can be based on various universal scaling forms
for the superfluid density, and quantities derived from them. We begin with
the scaling of the singular part of the free-energy density in the presence of an

imposed order-parameter twist with wave vector kg [6,13]:

faing  Al8|*7* @1 (Bkol8|") (5)



from which one derives

2 £ .
Y(8) = klim 0" foing

_ 2 2—a—2v z I
im, o5 = AP 0(0) ©)

Here ®" denotes a second derivative with respect to the argument. A con-
venient normalization is to choose ®_(0) = ®”(0) = 1, making ®4(z) uni-
versal. Clearly ®"(0) = 0, and, with the standard definition [8-10] Ay =
—Aa(l—a)(2—a)P+(0), one has A, JA_ = &,(0)/®_(0). Note that at T =0
we define a and Ay via —0? fyin,/06% ~ (A1/a)|6|7®. Universality requires
that B|6|™” be universally related to ¢, in the present case finite only for § > 0.
Thus Rp = B/&; is universal. Hyperuniversality implies that R, = A(EF)ed,
is universal. One then has Ry = [R,R%®" (0)]'/(~% and R} = R4™2, which

are indeed universal.

Equation (6) can be extended in various ways. Of interest here are the
extensions to small, but finite, temperature and frequency. We define the
frequency-dependent superfluid density in terms of the temporal Fourier trans-
form of the usual momentum-momentum (or current-current) correlation func-

tion [7]. The general scaling form we expect is
Ysing(6, T,w) = AB2|6|2_"_2”Yi(072w|6]_z”,Dﬁ“1]6|_2”) , (7)

where we also allow for a regular contribution to T, which, however, must vanish
at w = 0 (see below). Universality requires that R¢c = C/f,‘to and Rp = D/¢f,

be universal, and clearly Y1(0,0) = ©',(0).
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1.4 Applications
1.4.1 Superconducting transitions

As a first application of Eq. (7), we consider the bosonic models of amor-
phous and granular superconductors [3,4,7] in which Cooper pairs are treated
as conserved particles obeying Bose statistics, and unpaired electrons are ei-
ther ignored or included as an effective harmonic oscillator heat bath [17]. See
Ref. 7 for some discussion of the validity of these simplified models near the
critical point. The frequency-dependent conductivity of these models is simply
given by (8, T,w) = (4€*/h)Y (6, T, —iw)/(—ihw), where 2¢ is the Cooper pair
charge. Consider now approaching the critical point at § = 0, w =0, T = 0
along some path in the (6, w, T) space in such a way that z = Chw|6|™*", and
y = DB7'|6|7*¥ approach some fixed values zo, yo (2o = 0 or oo and yo = oo
are probably the most useful experimentally). In order to get a reliable value
of the critical conductance, it is essential to analyze experimental data using

these scaling variables. One finds then
(1/4e2)E(18])~20sing = Ro(z0,40) = By Ry RoYa(—izo, y0)/(—izo)  (8)

so that in particular, in d = 2 the limiting value of (h/462)032’n9 is itself univer-
sal. A tacit assumption here is that no logarithmic factors appear: These are
expected at the critical dimensions for the transition. For most applications of
(8), the lower critical dimension is d« = 1, while the upper critical dimension

is at least d> = 4. Hence no problems are expected in d = 2.
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When the 6 > 0 phase is an insulator, as when the model does not include
a heat bath (i.e., is purely bosonic), any analytic nonuniversal background
conductivity must vanish when w = 0, independent of §. In this case one may
drop the subscript on o4ing in (8). When the model includes a heat bath, which
probably corresponds more closely to experimental reality at least in the case
of granular films, the § > 0 phase may be a metal, and may possess an analytic
background conductivity o¢(6,T,w) = 09,0 +00,16+ 002w+ - -, in which a¢ ;(T)
are nonuniversal. In d = 2 one will find (h/4€*)c — R, (z0,y0) + (h/4€%)og 0,
in place of (8). Often gy is found to be very small, and hence, since R,(z¢,yo)
is expected to be of order unity [7], one may simply ignore its existence. In
general, one must take the difference between limits for two different values of

ro = x1,22 and yo = y1,y2 to obtain the universal result Ry(z1,y1)—Ro(z2,92).

1.4.2 Superfluid transitions

As a second application of (7), we consider the recent scaling theory of the
superfluid to Bose glass transition in disordered boson systems [6]. The results
are equally applicable to the previous nondissipative models of amorphous and
granular superconductors, though T is much harder to measure experimentally
in these cases. We consider (7) with w = 0 but T > 0. We now assume, as
is often the case, that there is a line of finite temperature transitions, T,(9),

ending at the special point 7' = 0, § = 0. The scaling form (7) then requires
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that

kpTe(6) = (yo/ D)™, (9)

where y. is the universal value of the scaling function argument at which

Y1 (0,y) displays the finite temperature singularity. Thus
Y(T = 0,6)/kpTe(6) ~ [RRERpY+(0,0)/y]&(T = 0,8])*7¢,  (10)

so that in d = 2, 8.(6)Y(0,8) is a universal number in the limit § — 0~ and
T.(6) — 0. Tt follows also that Y(0,6) o T.(8){4*+#=2)/# with a nonuniversal
coeflicient of proportionality when d # 2. The exponent was predicted in Ref. 6,

but the possibility of universal ratios was not examined.

It has again been assumed that d = 2 is not a critical dimension for the
T = 0 transition. For a clean interacting Bose gas, d = 2 is the upper critical
dimension [6], and for the continuum problem the transition takes place at zero
density, p. For this case, in the limit where Inln(m/pa?) > 1 (probably an

experimentally inaccessible limit), one finds [18]
1
Y(T = 0,p)/kpTe(p) ~ 5-Inln(m/pa’) , (11)

where a is the atomic hard core diameter. Thus in order to obtain a universal

ratio (in this case 1/2x), the double logarithm should be divided out as well.

As a final point, it is also possible to construct more complicated univer-

sal amplitude combinations in three-dimensional Bose systems, an example of
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which is

Tim RC,(T = 0,6)[X(T = 0,8/ [kpT.(6) , (12)

where C, is the fourth sound speed [6]. All of the input parameters are in

principle experimentally measurable.
1.4.3 Metal-insulator transitions

As our final application we speculate briefly about applying hyperscaling
theory to the metal-insulator transition. Since there is no superfluid density
in this case, we study the behavior of the current-current correlation function
directly. We assume, without justification, that hyperscaling is indeed valid,
and hence that the current-current correlation function scales in the same way
the superfluid density would. Thus (7,8) are still valid, with the appropriate
generalizations of the notions of correlation length and time. Thusin d = 2
one again expects a universal limiting conductance at the critical point. Since
o is finite on both sides of the transition, presumably zero on the localized side,
this may be rephrased as a prediction for a universal jump, [0(6 = 07) — (6 =
0%)], of the static conductivity. We again emphasize that d = 2 should not
be critical, so the results do not apply to the standard Anderson transition.
Models with strong spin-orbit scattering, however, may show the predicted
behavior. The metallic conductivity here is believed to be infinite so rather than
a universal jump, one should observe a universal critical conductivity, as in the

superconducting case [19]. Similar arguments apply to the diagonal and Hall
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conductivities at the transition between plateaus in the quantum Hall effects
[7,20]. On the insulating side of the transition, one may look at the dielectric
constant e(w) = 1+ 4nio(w)/w, which, when combined with the correlation
lengths, yields the hyperuniversal combination lims_,g+(1/€2)é472¢ Y eging(w =

0). Thus eginy diverges as |§]™* with A = (24 2z — d)v.

In many cases the magnetic fleld H is a thermodynamically relevant pertur-
bation at the H = 0 metal-insulator transition, since it breaks the symmetry
between positive and negative winding numbers in the coherent backscatter-
ing picture of localization. The relevant length scale is set by \/WI—-I— , where
®g = hc/e is the flux quantum. This quantity should then appear scaled by £
as a third argument, z = G|§|77y/H/®,, in (7), with Rg = G/¢F universal.
Various further universal ratios may now be defined. A simple example is to

consider
0(6=0,T =0,H) = (e /h)R R RoRE *Yoo(H/®)4=2/2 | (13)

where Yoo = lim, .0 2279Y4(0, 0, 2) which gives o oc H(@=2)/2 with a universal
coefficient. Finally, the transition at small H must take place at a universal
value, z, of the argument of Y4(0,0, z). This yields 6.(H) oc H'/2”. The con-
stant of proportionality is nonuniversal, but this relation gives an experimental
means of extracting the exponent v. These results have been derived within a
much less general framework in Ref. 21. We note that the result |6,(H)| o H1/2¥

should be useful for superconductor-insulator transitions, too. Some data on
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magnetic-field dependence in the thin-film experiments are available [1].

1.5 Discussion

In this section we briefly review the results of some of the more recent
experiments on the superconductor-insulator transition and compare them with
the predictions of the hyperscaling theory. We also suggest directions for future

work.

As for the transition tuned by the film thickness, there have been
measurements on amorphous films of materials other than bismuth, and some-
what surprisingly, the measured critical resistance is not the same as Rg and no
universality is observed [5,22]. A possible explanation for the apparent nonuni-
versality is that in these experiments, sufficiently low temperatures to reach
the quantum critical regime have not yet been achieved. This explanation is
supported by the mean-field-like behavior of the resistance data on the super-
conducting side. Data [Fig. 2] show that the mean-field transition temperature
T? drops rapidly as the critical point is approached from the superconducting
side. Since the non-mean-field quantum scaling behavior is expected only when

T < T?, the critical regime shrinks rapidly (|8 ~ T%/** < (Tf)l/z”).

More reliable measurements have been made on the superconductor-
insulator transition across the upper critical field at T = 0 in amorphous in-

dium oxide films by Hebard and Paalanen [23]. They find the universality of
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R,(0,00) [Eq. (8)] by a full scaling analysis of the dc conductivity. In fact, their
data, combined with a measurement of ff’o, can be used to derive the universal
function R,(0,y). However, the critical Hall conductivity is observed to depend
on the strength of the disorder in the film and is therefore nonuniversal [24].
This observation is clearly inconsistent with the scaling theory prediction and

needs to be understood.

A superconductor-insulator transition has also been studied in artificially
built Josephson junction arrays by tuning the ratio of the Josephson coupling
energy to the electrostatic charging energy [25]. This transition is of consider-
able interest, because for these systems, it is possible to calculate the universal
quantities using the e expansion or 1/N expansion and compare them with
experimental data. Furthermore, the arrays may show many new universality

classes that can also be studied by the renormalization-group method [26,27].

More careful experiments on the apparent superconductor-metal transi-
tion in granular films may be interesting, too. The quantum critical regime
is expected to be wider in granular films than in amorphous films, since the
mean-field transition temperature of the granular film at the onset of supercon-
ductivity is observed to be finite and relatively large. In this case, one may have
to take the strong smearing effects of the transition into account to deduce the
critical conductance, which we predict to be nonuniversal, from experimental

data.
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Finally, it may be possible to test the predictions in Sec. 1.4.2 in some

ongoing experiments on the superfluid-Bose insulator transition [28].
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Appendix Proof of quantum hyperuniversality

We consider a renormalization-group transformation for the free energy of
(d + 1)-dimensional classical systems with anisotropic correlations*, where the
length scales of d “spatial” dimensions are changed by a factor b and the length
scale of the remaining “temporal” dimension is changed by a factor b*. With
each renormalization-group iteration, a constant contribution to the free energy
is generated. The total free energy density f can be calculated by summing

these contributions over many iterations:

F=Y " ImGm) (A1)
m=0
where G(m) is the constant term generated at the m’th iteration. For con-

venience, we consider a sequence of infinitesimal transformations with b = e?,

0 <6« 1,and I = mé. Then we get

f= / " dle= Gy (1) (42)
0

where

Go(l) = G/l - (43)

Go(l) depends on the scaling fields g;(1) = e*i'g;, among which, we assume, gs(1)
is the only relevant scaling field and As = 1/v. We note that the correlation
length in the spatial direction ¢ and the correlation length in the temporal

direction &, satisfy

(D) =elel=0)=¢c% (A4)

* These include d-dimensional quantum systems as special cases.
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and
(1) = B_ZIfT(l =0) = e e, (45)

For § slightly bigger than zero, we now define [ such that [¢(])]4¢,.(]) = 1; i.e.,
g, = I (46)

We also choose [ to be a value of [ sufficiently large, so that for [ > I, all
irrelevant variables have died away and are negligible. We further assume that

§ is sufficiently small so that 7 > [. Since one has
g5(1) = ga(De =0/, (A7)

for I I, Go(l) is actually a function of (I — 1), and furthermore, apart from
an additive nonuniversal constant (which does not contribute to the singular
part of the free energy density f,), Go(I) = #(I — 1) is a universal function
characteristic of the renormalization-group flow along the relevant trajectory.

Expanding Go(1) in powers of e=(=D/¥ e get

Go) =g(l—D) = > ppe "0/7 (A8)
n={0

where ¢,’s are universal. We now divide the integral into three parts,

=Ll

The first integral is nonuniversal, but analytic in §. The second integral is

6—(d+z—n/u)ie—nl_/u _ e——(d-i—z)l_

I )
dle= 4G (1) = " . A9
[ e tey) > — (49)
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The terms proportional to e=™/? are regular, since e~ ™/¥ = (£, )~n/(d+2)

6™. The last integral is of the form
/ B dle= (NG (1) = ge~ @+
!

where
a= / dl'e™ (I g (1)
0

1s universal. Therefore
—(d ] —d p—1
fo=ape (I =g g=de—1

where

is universal. Thus (fs£%¢;)s_o+ is universal.

(A10)

(A11)

(A12)

(A13)
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Fig. 1 Evolution of the temperature dependence of the sheet resistance
R(T) with thickness for a Ga film [1].



22

g:llllrﬁli1117—[||11l11T|]x1T

4
| = i -3
© F . BISMUTH 3

v

. 436 R

R (kQ /o)

S,
]_
o |
»
nN)
~J
>
|

0% E
E Jlill.‘l_l‘ll-lll]jlllljIlJllll!j
o 5 10 15
T (K)

Fig. 2 Evolution of the temperature dependence of the sheet resistance
R(T) with thickness for a Bi film deposited onto Ge [5].
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2. DIMENSIONALITY EXPANSION FOR THE DIRTY-BOSON PROBLEM

2.1 Introduction

Over the past decade, enormous effort has been invested in trying to under-
stand random-electron systems at zero temperature. In contrast, until recently,
the corresponding boson problem has remained essentially unaddressed. This
is in spite of the many experimental realizations of such systems, for example,
*He adsorbed in various porous random media [1,2]. Of particular interest is
the nature of the insulator to superfluid onset transition as the boson density n
is increased through some critical density n. at T = 0, and also how this onset

transition affects the finite temperature A transitions at fixed densities n > n..

The system that has received the most attention is *He adsorbed in porous
Vycor glass [1,3,4], ironically, for the reason that it primarily displays the be-
havior characteristic of a pure nonrandom Bose fluid [3]. In fact, for very low
coverages, n — n. < a~3, where a is the range of interactions, a crossover to

ideal Bose-gas critical behavior is observed.

The reasons for the apparent invisibility of disorder in Vycor were explained
qualitatively in Ref. 4 on the basis of scaling arguments, and the process of
spinodal decomposition by which Vycor is made. However, a true quantitative
understanding of the nature of the onset transition was still lacking. In this

chapter we fill this gap by analyzing a model of bosons in a random exter-
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nal potential using the double-dimensionality expansion of Dorogovstev [5,6],
deriving lowest-order renormalization-group recursion relations. The resulting
fixed-point structure clearly elucidates the relation between onset at T = 0
and scaling near Tx. In particular, for very weak disorder, there is a range of
coverages over which the pure crossover to ideal gas behavior should be ob-
served. Only at very low coverages is the T = 0 disorder-dominated onset
regime encountered, and should deviations from pure behavior become visible.

The Vycor experiments [1] have probably not yet entered this regime.

Once inside the random onset region, various predictions can be made
[7,8,9]. For example, the temperature can be treated within a finite-size scaling
formalism, and this allows the prediction of various exponents, such as that
which gives T as a function of n — n.. The scaling forms also predict univer-
sal shapes for constant density profiles when properly normalized and plotted
versus T/Tx. The lack of universal shape in the Vycor data is further evidence

that random onset has not yet been observed.

The work of Refs. 7 and 8 has come a long way toward understanding
the nature of the zero-temperature onset transition. What is still lacking is a
quantitative understanding of the transition in higher dimensions. In particular,
one would like to have a dimensionality expansion, analogous to the € expansion
for classical spin systems, about the upper critical dimension d, above which

the mean-field theory is valid. In the rest of this chapter we will describe our
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attempt to find a proper dimensionality expansion.

2.2 Model and recursion relations

We start from the functional integral representation of the grand canonical

partition function for the interacting Bose gas in a random potential [10]:

Za o /D¢D¢* -5, (1)

The Euclidean action S is

s= dd/ 1260 22557 L 10, 2 + i, P o

+wE)p(x, ) +olp(x, 7],

where 2v is the on-site soft-core repulsion, —r = p is the chemical potential,
w(x) is the random external single-particle potential, and 8 = (kpT)~!. T is
introduced to control the strength of the quantum fluctuations and is initially
equal to 1. Units have been chosen so that & = 2m = 1, and an underlying
spatial lattice with spacing ag & a is assumed. Equivalently, a momentum space
cutoff kp ~ m/ao is imposed. The classical complex field ¥(x,7) replaces the
usual Bose-field operator, and the quantum-mechanical nature of the system is
embodied in the extra imaginary time variable, 7. The linear time derivative
Y* 0 /0T is characteristic of the Bose fluid.* For ease of later comparison to

O(n) spin models, it is convenient to generalize 1) to an m-component complex

* A second derivative term arises in the spin—% Ising model in a transverse

field [12], and in granular superconductor models with particle-hole symmetry
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vector t;, with ¢ = 1, --,m and helium corresponding to m = 1. One expects

the correspondence n = 2m.

When dealing with quenched disorder it is convenient to use the well-known
replica trick [11] to derive an effective action in which the random external

potential has been integrated out. The final form with which we work is

T A 1 0 ai\ X, T
Sur=Y. 3 [ate [ arthpsnn o)

=1 a=1

+ |V¢ai(x, T)|2 + r|¢ai(xa 7_)[2]

m p 8
+ 300 [t [ drolyatx, P s, ®

i,7=1 a=1

m P B B
=33 [dts [Far [ ar gl arse P

t,7=1 a,a’=1

The randomness has been taken as Gaussian, §-function correlated, with am-
plitude 2g:

(w(x)) =0 (4a)
(wx)w(x")) = 2¢6(x - x') (40)

where ((- - -)) denotes an average over the quenched-disorder probability distri-
bution. The indices a, a' label the p identical replicas, with the formal limit

p — 0 to be taken at the end.

[8]. In these two cases time and space are symmetric and the d-dimensional
quantum critical behavior is just that of the corresponding (d 4 1)-dimensional

classical system. In general, however, the simple “add-a-dimension” rule fails

[13].
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What makes Se ff more difficult to analyze than the more standard classical
spin models [11] is the fact that the interreplica coupling, proportional to ¢ in
Eq. (3), although local in space, is infinitely ranged in time. Boyanovsky and
Cardy [6], extending earlier work of Dorogovstev [5], have solved this problem
for the spin-3 Ising version of Eq. (3) [12]. They used field-theoretic techniques
to generate a double expansion in the variables €4, the number of “temporal”
dimensions along which the interreplica coupling has infinite range, and ¢ =
4 — D, where D = d + ¢ is the total dimensionality. The actual physical
situation corresponds to €4 = 1. In this section we will carry out the analogous
calculation to first order in € and €, for the Bose gas using standard momentum-

shell renormalization-group techniques.

Before discussing the double ¢, €; expansion, however, we present the de-
tails of the momentum-shell renormalization-group calculation when ¢; = 1 to
motivate the double expansion and to point out the difficulty we encounter in
carrying it out. We also show that our recursion relations reduce to those of

the 2m-component classical random-bond spin model in the classical limit.
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For convenience, we work in the Fourier-transformed space:
Sers = 3230 3BT K el
LT Y Y bailkw)bn )

a 4,7 kk'\ k' ww w!

X ¢aj(k"7w,,)¢2j(k _ kl + k",(.d _ wl + L(J")

LYY Y Y bailkw)inw)

a0 1,5 kk' k' w,w

X Gari (K", W% (k — K + K" W'
’ : 5)
5

where
-y |
¢ailk,w) = —— e ikx=—wr)y, X,7) . 6
()= 55 2% (x,7) ©
The bare propagator is

1
B(FL+k2+7)

(Baci (I )2 (K 10")) = B S B (7)

The first step in the momentum-shell renormalization-group analysis in-
volves integrating out the components of the fields 4; with wave numbers k in
a shell k5 /b < k < kp, and all frequencies order by order in the perturbation
expansion in terms of v and g represented by the vertices in Fig. 1. b=e! > 11is
the rescaling parameter, eventually to be taken infinitesimally close to 1. After
the calculation, we will let the number of replicas go to zero. Therefore dia-
grams with an internal free-replica index will vanish and can be removed from
the start. To one-loop order, there are only two such diagrams (see Fig. 2).

Diagrams contributing to the renormalization of the propagator, v, and ¢ to
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one-loop order are shown in Figs. 3, 4, and 5, and their corresponding algebraic

expressions are listed in Tables 1, 2, and 3.

The propagator renormalization is tricky and needs careful consideration.
To show the difficulty, we write down the explicit result of the propagator

renormalization to first order in v and g:

;Z >0 Y il w)PBIE + K 4

i k<kpe-! w (8)

1 —29k3K, L 1,

2 1)wké K - -
+2(m + vy Ko EER

AT+ _ 1
where Kg = 2/(47)%/2T(£) is (27)~¢ times the area of the unit sphere in d
dimensions and 0 < I < 1. Since we are summing over all the boson Mat-
subara frequencies, it seems that we cannot expand (—iw/I" + k2 +7r)"! in
terms of w, and we need to solve the full nonlinear functional renormalization-
group equation for the propagator. Here we introduce a frequency cutoff w) (or
temporal lattice spacing 79 ~ 7/ws) and make an assumption that it is equiv-
alent to solving the functional renormalization-group equation exactly. This
assumption seems difficult to justify, discrete time being a somewhat unnatural
concept, but we have found no way of obtaining a sensible solution without
it. The underlying problem seems to be in properly accounting for the ana-
lyticity properties of the boson Green’s functions: Answers depend on whether
frequency contour integrals are closed in the upper or lower half plane. In the
more standard cases in which Se¢y is even in w, the upper and lower half planes

are identical, and these problems do not arise. We can only speculate that a



33
more careful higher-order calculation may provide some mechanism for an ef-
fective frequency cutoff, thereby eliminating the need for putting it in by hand.

Having the cutoff wa, we can now use the Taylor expansion:

1 1 + W
e+ k2 +r k2 4+r TR +r)?C

(9)

Higher-order terms are ignored since they are irrelevant in the renormalization-

group sense.

The second step of the renormalization process is the rescaling of frequency,

momentum, field, and temperature:
k—kfel, w—w/e?,

(10)
¢ — ¢l g Bet)

where z is the dynamical exponent. Combining the results obtained so far, we

get the recursion relations for 3, I, r, v, and g, to one-loop order:

d
7= (10
dr 29kd Ky
— = —(d+2()[ — —2-A—d
ar = 4+ - g (110)
O (2420 +2(m + 10kIK T
T z T m v
dl A explBT (k2 +1)] — 1
29k$ K,

- k2 +r (11¢)
dv (m +3)pr*
— = (d 4¢) —
dl ( +z+ C)U {2811'1112[%,811(]6% n 7")]

r 1 2 21.d 1209k K,

+ ki +r COth[2IBF(kA + r)]}v kAI{d + W (11d)
dg . 892]61‘(]{(1
dl -(d+2z+4C)g+ W

_ (m 4+ 1)vgkj K67 (110)

sinhz[%ﬂ]f‘(k/z\ + )] '
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In the initial stage of renormalization, exponents ¢ and z are adjusted
so that the coefficients of k? and —iw terms remain constant. From the first

condition we get

2A+d~2—2. (12)

The flow equation for § shows that it flows toward 8 = 0 unless 8 = oo or z = 0.
When g reaches 1 we keep it fixed and allow I' to vary instead, yielding the
plausible classical result z = 0. This coefficient then goes to zero as | — oo and
suppresses all but the w = 0 Matsubara frequency. The recursion relations, in
this limit, reduce precisely to the usual ez-independent classical random-bond

spin recursion relations, with the identification n = 2m [11]:

di/dl = 2F + 2(m + 1)5/(1 + 7) — 2§/(1 +7) (13a)
di/dl = (4 — d)o — 2(m + 4)5° /(1 + #)? + 1255 /(1 + 7)? (13b)
dj/dl = (4 — d)j + 85%/(1 + 7)* — 4(m + 1)5§/(1 + 7)? , (13¢)

where 7 = r/k3, % = Kyv, and § = K4g. For m < 2 they possess an O(€ =4—-d)
random fixed point R at * = &€/4(2m—1) and §* = (2—m)é/8(2m—1). In fact,
for d = 3 (¢ = 1) and n = 2, the best estimates yield a negative specific-heat
exponent a < 0, and hence, by the Harris criterion [11] randomness should be
irrelevant for m ~ 1. The O(&) results therefore give a misleading picture of the
flows for m = 1. Qualitatively correct flows can be obtained by taking m i 2
in the O(€) recursion relations, which yield only a pure fixed point [at §* =0

and " = &/2(m + 4)] which is stable against disorder. Of course, quantitative
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estimates (for exponents, etc.) can be obtained only by going to higher order

~

in €.

We now consider the extreme quantum limit, 8 = co. In this case, we keep

[' =1 and therefore, from Eq. (11b),

29kd K,
Substituting this into Eqs. (11d) and (11e), we get
dv
E = (2 - d)v + O(v27g2avg)
(15)

dg

5 = (4= dg+0(v*, g%, vg) .
We find that within the perturbation theory, v and ¢ cannot be handled at the
same time. This motivates the introduction of another small parameter, €4, the

number of temporal dimensions. In this case, Egs. (11) and (12) become

dlfdl = —(d+ €qz — 2 +20) + -+ (16a)
dr/dl = (d+ eqz +2()r + - - - (16b)
dv/dl = (d+ egz +4()v + - - - (16¢)
dg/dl = (d + 2e4z +4()g + - - - (164d)

20+d~2—¢€42. (17)

One can show that both v and g are slow variables using (16a) and (17):

2=24- (18a)
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dr/dl =2r +--- (18b)
dv/dl = (e — eg)v +--- (18¢)
dg/dl=(e+e)g+--- . (18d)

We also mention that in the presence of the cutoff wy, the most natural way
to do the renormalization-group transformation is to integrate out the high

momentum-frequency shell with ky /e! < k < kp or wprfe! < w < wy.

The question arises at this point of how to continue analytically the fre-
quency sums away from € = 1. We do this simply by replacing the term
Y*OY /0T by E;‘;l Y*0y [0, but with the further restriction that ¢ contains
only those frequency components for which w, > 0 for all i or wy <0 forall p.*
To first order in g4, it is sufficient to evaluate all frequency sums at e; = 0 so

that only w = 0 contributes. Hence, the lowest-order recursion relations require

* This insures that sums of the form S[f] = E{w”} f(32, wu), where w, =
2mn, /B, converge properly if f decreases sufficiently rapidly at o0, and yields
the correct result when ¢; = 0 or 1. Analytic continuation is achieved by

Laplace-transforming the sum to yield

st = [ " AF4 () + F- (/11 — exp(=2mt/ )] — F(0).

where
flw) = /000 dtfi(t) exp(Fwt)

for +w > 0.
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the existence of an analytic continuation, but are completely insensitive to its
form. This, presumably, is why numerical values for the exponents obtained to

O(eq) converge so poorly at e = 1.
The final recursion relations, to lowest nontrivial order in € and €4, are

difdl = 27 +2(m 4+ 1)3/(1 + ) — 2§/(1 + 7) + O(%%,§%,5§)  (19a)

do/dl = (e — €q)t — 2(m + 4)5” + 126§ + O(%°, - - +) (19b)
dg/dl = (e + €q)§ + 85 — 4(m + 1)3§ + O(%°, - - ) (19¢)
z=2+25+ 0(%%,--+) . (194)

The fixed points and their eigenvalues are calculated and summarized in Table
4. As in Ref. 5, the eigenvalues associated with small deviations of ¥ and g
from their random-fixed-point values are complex, with a negative real part,
and hence, can give rise to oscillatory corrections to scaling. The correlation-

length exponent of the stable random fixed point is calculated easily:
vl =2~ 2(m + 1)5* +25*

3me+ 7(m + 4)eq (20)
T 4(2m-1)

2.3 Discussion

In this section we discuss some implications of the recursion relations we
have obtained. In Fig. 6 we plot the flows in the critical hyperspace, defined

by (19b) and (19¢). For d < 4 (e + €z > 0), the Gaussian fixed-point G, at
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v = g = 0, is unstable to the random fixed point, and the flows are plotted in
Fig. 6(a). Ford 2 4 (e+eq < 0), both fixed points are stable, and a separatrix
S divides the basins of attraction. This is shown in Fig. 6(b). Which of the
two governs the critical behavior depends on the strength of the randomness.
As d increases further, the separatrix moves upward, and for sufficiently large d
it intersects the random fixed point, which then becomes unstable. In all cases

(except € = €4 = 0) there are two distinct fixed points with different eigenvalues.

We see then that the transition to the mean-field theory as d increases
through d. = 4 is quite unconventional. The exponents change discontinuously
to their mean-field values, whereas the conventional mechanism, involving the
coalescence of the two fixed points, yields continuous exponents. In fact, it can
be seen on very general grounds that precisely this kind of behavior must occur.
A recent theorem of Chayes et al. [14] states that in any d-dimensional system
with spatially uncorrelated disorder, one has the bound v > 2/d. The mean-
field value is vprr = 1/2, which immediately implies that d, > 4. However, one
also has the generalized Josephson hyperscaling relation [7,8] ¢ = (d+z-2)v
for the superfluid density exponent ¢, valid for d < d,. The mean-field value
is (Mr = 1. However, if d. > 4 and z > 0 (in fact, scaling arguments yield
z = d [7,8]), this relation implies ( > 1 for d approaching d, from below; i.e.,
a discontinuous change in ¢ must occur as d passes through d.. For the metal-

insulator transition in noninteracting Fermi systems, this problem is apparently
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avoided by having d. = oo [15]. For classical systems, one has z = 0, so that

one can have v =1/2 and ¢ = 1 in d, = 4 without contradiction.

The present method gives the dynamical exponent z as a nontrivial expan-
sion in € and €4. As mentioned, various scaling arguments predict the exact
equality z = d for ¢ = 1 [7,8]. It is not at all clear how such a precise re-
summation of the series might come about. A better understanding would be
obtained if the scaling arguments could be carried out for general e4; however,
they seem rather special to ¢4 = 1, and we have found no way to generalize

them.

In Fig. 7 we show a schematic plot of the flows in the three-dimensional
critical hyperspace defined by the variables ¥, §, and T. The picture is only
schematic because of the different renormalization procedures used in different
regions of parameter space. On this diagram various possible behaviors are
shown, depending on the relative sizes of the starting parameters g, o, and T.
Since the pictured flows lie in the critical hyperspace, T} is in fact the physical
transition temperature, while 9y and §o are fixed by the atomic properties of

“He and by the random medium, respectively.

Suppose that o = 0: Then one is in the pure limit, a case that has been
treated in great detail elsewhere [3]. When T id_z)/ %50 < 1, one explores the

crossover to ideal gas behavior. This is described by flows which, because of
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the smallness of T, closely approach the T' = 0 Gaussian fixed point G before
collapsing down into the neighborhood of the classical Gaussian fixed point G,
from which they cross over to the critical fixed point C [3,17]. Now suppose that
there exists a range of T for which T)(‘d—z)/zz")o 1K T)(‘4_d)/2/§0 [4]. Within
this range of T, the onset fixed point Ry will essentially play no role. The
flows will be dominated by pure crossover, being pulled down into the classical
plane where randomness is irrelevant before Ry has a chance to act. This range
of T corresponds to the range of coverages, alluded to in the Introduction,
over which pure weakly interacting Bose-gas behavior is seen [3]. Only for
T)(\4_d)/ 2 /do < 1 do the flows spend enough time near the T' = 0 plane to be
attracted towards Ry. For T>(‘4—d) & /do < 1, the flows are dominated completely
by a direct crossover from Ry to C. The scaling form that results from this
crossover (essentially finite-size scaling in 1/T') predicts, as mentioned earlier,
constant density profiles with a universal shape [7,8]. This shape is determined
by the asymptotic trajectory that connects Ry to C, and could, in principle, be
calculated within the ¢, ¢4 formalism. Although the Vycor data [1] do not enter
this true region of random onset, this regime should be much more accessible

in materials that are more strongly random.
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Fig. 3 Propagator renormalization
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Fig. 6 (a), (b) (See the next page.) Renormalization-group flows in the
T = 0 critical hyperplane for (a) d < 4 (¢/eg = —0.5) and (b) d > 4 (¢/eg = —2).
The onset of the mean-field theory occurs by way of a separatrix S, which
separates the basins of attraction for the zero-temperature Gaussian Gy, and
random Ry fixed points.
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AT

QUANTUM
PLANE (T =0)
IDEAL

PLANE

(g =0)

y

CLASSICAL
PLANE

Fig. 7 Schematic plot of renormalization-group flows for d < 4, including
finite temperatures. Nonrandom flows remain in the § = 0 plane, and crossover
to ideal gas behavior involves flows that pass close to Gy, G, and finally C.
The random onset regime involves flows that pass close to Ry before collapsing
into the classical plane. Depending on the sign of the specific-heat exponent,
@, a classical random fixed point exists (a > 0, dashed line) or does not exist
(a < 0, solid lines). The latter case probably holds for helium.
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Table 1 Propagator renormalization

(1) 2mJv (2)2Jv (3) —2Hyg

1 ! 1
J=—= _
ﬁvzk: Ew: TEAR 4
TkiK,
exp[AT(k} +r)] -1

1 1
H=%) —worm o
Vzk: R
kK,
N

where

Y- %

kae—'<k<kp

Ky = 2/(477)‘1/21"(%d)

I<ixkl1
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Table 2 v renormalization

(1) —2mAv? (2) —2Bv? (3) —24v?
(4) —4Av?*  (5) 2Cvg (6) 2Cwvg

(7) 4Cvg  (8) 4Cwyg

Table 3 g renormalization

(1) 2Cg* (2) 2C¢* (3) 4Cy°

(4) —4mAvg (5) —4Avg

1 ! 1
AL L E Ty

B k4 K,8T?
4sinh®[1 AT (k3 + )]

1 ' 1
B=—§j§: : :
BV A~ — (FL+ B2 +r)(¥ +k2+7)

_ k3 KT coth[2AT(k3 + r)]l

2(k% + 1)
1 ! 1
¢= ng: (k2 +r)?
kK,

NCGEDE
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Table 4 Fixed points and eigenvalues

Fixed point v* g Eigenvalues
Gaussian 0 0 Ay =€—¢€3, Ag=€+teg
unphysical 0 —she Ay = —Lge"l, Ag = —(e+€q)
pure 2(%?45 0 Ao = —(e—€a), Ag= omletdnttles :3.4m+2 =
random 4(52'52?1) (2“7”8)(5;35_";;”2)” A2 = Rmrlz_—lj (—A+VA? - B)
A=3me+ (8= m)eg
B = 8(2m — 1)(e + 5¢4)[(2 — m)e + 3(m + 2)eq)
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3. SPIN-WAVE SINGULARITIES: FREE ENERGY

AND EQUATION OF STATE IN O(n) SPIN MODELS NEAR T,

3.1 Introduction

The low-temperature, ordered, phase of ferromagnets with a continuous
symmetry (spin dimensionality n > 1) exhibits coexistence-curve singularities in
various thermodynamic functions. For example, the longitudinal susceptibility,
XL = OM/0h, where M is the magnetization and h the external magnetic field,

diverges as h — 0:
xe~h™% ho0, T<T,, (1.1)

where € = 4 — d, and d, which we henceforth take to be in the range 2 < d < 4,
is the spatial dimensionality. This divergence is a direct consequence of the
slow, power-law decay of correlations in the ordered phase. In particular, the

longitudinal pair correlation function decays as (see, e.g., Ref. 9)
Gr(r) = (s(r)- M s(0) - 1\7[) ~ 724D p =0, |r| — oo, (1.2)

where s(r) is the spin at site r. The fact that xz(h = 0) = oo for d < 4 follows

directly from the spatial integral of (1.2).

The coexistence-curve divergence [Eq. (1.1)] should be contrasted with that
occurring at T = T¢:

XL ~ p1/6-1 , (1.3)
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where 6 > 1 is the critical exponent which describes the vanishing of M ~
h1/8 at T.. Accompanying (1.3) is the analogous power-law decay of critical

correlations
Gr(x) ~1/[e|2 2™ h=0, T=T., |r|— oo, (1.4)

which defines the critical exponent 7.

In this chapter we reexamine the connection between coexistence-curve sin-
gularities, such as (1.1) and (1.2), and their critical-point counterparts, such as
(1.3) and (1.4). Using straightforward renormalization-group recursion-relation
techniques, we rederive various thermodynamic functions, valid throughout the
critical regime, both above and below T, with and without an applied field.
These functions properly exhibit each set of singularities in the appropriate
limit. We also exhibit the full free-energy function, which, to our knowledge,

has not been fully analyzed previously.

We will use the original trajectory integral and noncritical matching tech-
nique of Rudnick and Nelson [1], circumventing — by means of simple spin-wave
theory — the difficulties these authors encountered near the coexistence curve.
Some of the results presented here have been derived to various levels of com-
pleteness by other authors. In our eyes, however, their derivations, which often
involve very sophisticated field-theoretic techniques, seem enormously compli-
cated [2,3]. The most complete discussion has been given by Nicoll and Chang

[3]. They used a more involved version of the trajectory integral technique;
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many of their intermediate expressions bear a strong (presumably noncoinci-
dental) resemblance to our own, but we have not attempted a detailed compar-
ison.* We find precisely their result for the equation of state, but our result for

the free energy (which we believe to be correct) differs in some details.

We view our work as a final demonstration of the simplicity and utility
of the Rudnick and Nelson [1] technique. Our main claim to originality is in
supplying the one ingredient missing from the original discussion, namely, the

present understanding of spin waves in the ordered phase of vector ferromagnets.

The outline of the rest of this chapter is as follows: In Sec. 3.2 we recapitu-
late the model, its recursion relations, and their solutions. In Sec. 3.3 we derive
the equation of state by combining the results of spin-wave theory with those of
Sec. 3.2. Asymptotic scaling equations are derived and the corresponding para-
metric forms are exhibited for general n — these contain spin-wave singularities
in the angular variable 6. In Sec. 3.4 we calculate the free energy and demon-
strate consistency by deriving from it the correct equation of state. Finally,

in Sec. 3.5 we give a short rederivation of the helicity modulus (or superfluid

* D. R. Nelson [4] has attempted to account for the coexistence-curve singu-
larities using a graphical resummation technique. Though his answers correct
previous problems with negative susceptibilities [5], they disagree with those of
Ref. 3 and the present chapter. We have made no effort at comparison here,

either. See, however, Ref. 3 for some comments.
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density), as well as explore various quantities derived from the free energy such
as the entropy (or density, depending on how the variable r is interpreted) and
specific heat. Appendix A contains some details of the recursion relation solu-
tions; Appendix B gives some insight into the linear spin-wave approximation;

in Appendix C some spin-wave integrals are evaluated.
3.2 Model and recursion relations

We work with the Landau-Ginzburg-Wilson continuous-spin Hamiltonian
a, R 2, 1 2 4
Higw= | d .’IZ[—2—|VSI + 51‘|S| +uls|*—h-s], (2.1)

where —o0 < $* < 00, and 1 < a < n, where n is the spin dimensionality. An
underlying lattice, with lattice spacing a or, equivalently, a momentum space

cutoff ko ~ 7/a, must be assumed in order for the partition function

ZLGW = /DSC—HLGW, (22)

defined as a functional integral over all spin configurations, to be well defined.

The model (2.1) undergoes a ferromagnetic phase transition as the temper-
aturelike variable r decreases through a critical value r.(u) in zero external field
h = 0. In the mean-field theory, defined here as the limit in which the coefficient
R} of |Vs|? tends to infinity (so that fluctuations are effectively suppressed),

one has r.(u) = 0. The spontaneous magnetization

1

=y d?z s(x) = (s(x)) (2.3)
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becomes nonzero below r., increasing with a characteristic exponent 3:
M= M|~ [t|f (2.4)
for small ¢t = r —r, < 0. In the mean-field theory we have

1
Myr = (-r/4)'? = Byr=

5 - (2.5)

When M > 0 (i.e., when r < r, or b > 0), it is convenient to expand the

fluctuations in the spin variable around the uniform magnetization M. If we

define . .
o(x)=(s(x)-M)- M, M=M/M
(2.6)
st (x) = s(x) — o(x)M,
then (2.1) can be rewritten in the form
Hiew = Ho + Hy + Hy + Hy + H, (2.7)
where 1
Ho = [5rM® +uM* — hM|V
H, = —/ddwiza
1
= / d'e[R3| Vs + RVl + rrist? + ryo?] (2.8)
H; = /ddw [wlalsllz + wza?’}
Hy = /ddw [u104 + 2uy|st)?o? + U3|S’Ll4] ,
in which we have defined
h = h—rM — 4ubl®,
rp =r+ 12uM?, rr =r +4ubM?, (2.9)

wy; = wg = 4uM, Uy = Uy = U3 =1U .
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The first term Hy should be recognized as the Landau mean-field free energy,

which yields (2.5) when h = 0.

Rudnick and Nelson [1] have derived differential recursion relations to one-
loop order for the Hamiltonian (2.7), with Ry = 1 and ky, = 1. We reproduce

them here in more detail and with minor misprints corrected:

dh 1.5
EI— =(3 - §e)h - w1K4(n - 1)/(1 + TT) - 3w2K4/(1 + T‘L)
+ O(uw, w?) (2.10)
drr, .
_CF =2TL + 12]&41&1/(1 + TL) + 4(7’1, — 1)'&2.[{4/(1 + TT)
— 18K4wji /(1 +rp)? — 2(n — 1) Kywl/(1 + r7)?
+ O(u?, uw? w*) (2.11)
drr .
i =2rr +4(n 4+ Dus Ky /(1 + r7) + 4Kquz /(1 +rL)
— 4K4wi/(1 4 rp)(1 +r7) + O(u?, vw?, w) (2.12)
dwq 1 2
T =(1+ ie)wl —4(n+ Dwius Ky /(1 + rr)
= 16w1ue Ky /(1 + r2)(1 + r7) — 12waus Ky /(1 + r1)?
+ 120 we K4 /(1 +rp)? (1 + rr) + 4wl K, /(1 + rr)2(1+rr)
+ O(wu?, wu, w®) (2.13)
d’wz 1 - 2 2
i =(1+ §e)w2 —4(n — Dwiua Ky /(1 + r7)? — 36wou1 Ky /(1 417

4
+ 36K w3 /(1 +rp)® + é-wa(n — /(1 +r7)?

+ O(wu?, wu, w®) (2.14)
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%—1— =euy — 36ulKy/(1+7rL)2 —4(n — DudKy/(1 +rr)?

+ 216 Kquyw3 /(1 4 rL)* + 8Kguawi(n — 1)/(1 + rr)?

— 5Awg K, /(14 r)* — 2(n — DwiKi/(1+ rr)’

+ O(u?, v?w?, uw?, w®) (2.15)
(_lglﬁ =eug — 16K4ul/(1+ rp)(1 +ry) — 12ujus Ky /(1 + 1)

—4(n+ Duguz K4 /(1 + rT)2 + 4K4U3wf(n +1)/(1+ rT)3

+ 36 K4uow2 /(1 +r1)® + 12u1w? Ky /(1 4+ r1)%(1 + r7)

+ 4K uwi /(L4 rr)?(1 4 r) + 48Ksuswiwsz /(L + rp)?(1 + rr)

+ 16 K4uow? /(1 +r7)(1 + 71)? — 4wl Ke /(1 + r7)3(1 + 1)

— 36K wiwd /(1 +r7) (14 r1)? — 12wwo Ky /(1 + 71)2(1 + rr)?

+ O(u?, u?w?, uw*, w®) (2.16)
—C%? =euz —4(n + Nui Ke /(1 + rr)? — 4us Ky /(1 + )2

+ 24K quzw? /(1 + r7)?(1 + rp) + 8Kquz2w? /(1 + r1)? (1 + rp)

—4wi Ky /(L4 70)2(1 4+ r7)? + O(u®, v w?, uw?*, w®) . (2.17)

All terms in these recursion relations are evaluated at rescaling parameter I,
with [ = 0 corresponding to the unrenormalized parameters. Rudnick and Nel-
son did not distinguish between u;,u; and uj, and ignored a number of the
terms on the right-hand sides of (2.13)-(2.17). In addition, the recursion rela-
tions for Ry, which we do not display, turn out to contain terms of O(w?) which

could violate the assumption that Ry = 1 to O(e) when M > 0. It happens that
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these differences do not affect the solutions to the recursion relations to O(e).
The reason for this is quite simple: Initially, at I = 0, we have M < O(1) and
r,u < O(e), implying that w < O(u) < O(e). Hence, initially, terms of order w?
in (2.13) and (2.14) and terms of order w?u and w* in (2.15)-(2.17) are much
smaller — by relative factors of u or u? - than the other terms in (2.13)-(2.17).
However, the recursion relations will be integrated out to a value [ = [*, de-
fined in such a way that rz(I*) = O(1). It will be shown below that at [ = [*
we will still have u < O(e), but that M = O(1/4/u) > O(1//¢), and hence
w = O(y/u) < O(y/€). Thus, near I = I*, one will have u ~ w?. The terms with
higher powers of w will therefore be of the same order as the others, and thus
nominally should be kept. In fact, when ! < I* it is readily apparent that only
the first terms on the right-hand sides of (2.11), (2.14), and (2.15) need to be
kept; the rest are smaller by relative order u. Initially, it would seem that the
first term always dominates. However, since we are dealing with ezponential
growth, this turns out not to be the case. To complete the argument one must
show that the neglected terms give small contributions on a logarithmic scale.
It will turn out that in the regime in which w = O(u), the next-to-leading terms
are important, while the rest can indeed be neglected: In the regime w >> u, as

stated above, only the leading term is important.

To see this, the interval [0, [*] is divided into two parts: one, [0, l¢], in which

r. < O(e®) and the other, [ly,*], in which r; > O(e?), where 0 < 6 < 1 is
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an arbitrary exponent (we require only that e > ¢). Let us estimate I* — ly:
Assuming that in the range ! > Iy only the leading terms need to be kept, we

find

ri(l) ~ rL(lg)ez(l_l")
1> (2.18)
1 =1,2

w,(l) ~ wi(la)e(l_%e)(l_l"), ) —
which implies [using w;(I*) = O(y/u(l*))]

e(l*..lg) — 0(6-9/2)
(2.19)
w;i(lg) = O(1/u(l*)e?), i =1,2.

Substituting these estimates back into the higher-order terms in the recursion
relations, we find, self-consistently, that the relative corrections to (2.18) are
O(u(*)/€, u(1*)/e! =?) for ri,, and O(u(I*), u(1*)e®) for w;. Since u(l*) < O(e),
these corrections are indeed much smaller than unity as long as € < 1. Finally,

we note that

u(l) — u(ls) = O(eu(l*), u(I*Y?)(1 — lg) , (2.20)

so that

u(l*) = u(lg)[1 + O(eln(e),u(*)1In(e))] , (2.21)

implying that u(l) is essentially constant in the interval [lg, [*].

The above considerations imply that to leading nontrivial order in ¢, and

for r, < O(1), we need only work with the following reduced recursion relations:

i _
dl
dry,

i =2r; + 12K4u/(1 +rp) + 4(n — 1)Ksu/(1 + r7)

(3 %e)ﬁ —wEKy(n— D/(L+r0) —3wKy/(1+r)  (2.22)
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—18K4w?/(1 4+ r)? — 2(n — 1)K4qw?/(1 + rr)? (2.23)
f%T— =2rp +4(n+ DuK,/(1 +r7) + 4Ksu/(1 +7L)

—4Kyw? /(1 4+ r)(1 + 1) (2.24)
dw 1
il =(1+ Ee)w —4(n + 8)wukKy (2.25)
2—7 =eu — 4(n + 8)u’K, , (2.26)

where, to this order, we have Ry = 1, w1 = wy = w, and u; = ug = u3z = u.
A further simplification is achieved when we note that the solution to (2.25),
recalling (2.9), is w(l) = 4M (0)elt=29y(1). Since the renormalization-group
transformation used here is quasi-linear, the renormalization of the magnetiza-
tion is given precisely by the spin-rescaling factor, exp 3 fol (n(I")Y+d—2)dl'. To

the present order we have n = 0, so that
M(1) = M(0)e2@=! = }1(0)e =397 | (2.27)

which then yields
w(l) = 4u()M() . (2.28)
The solution to (2.26) is straightforward and yields

u(l) = u(0)e /Q(l), where Q) =1— i + Ge

and @ = u(0)/u* =4(n+ 8)Ksu(0)/e¢, (2.29)

where u* = ¢/4(n + 8)Ky is the nontrivial fixed-point solution for u. The

solutions for ;L, rr, and rr are more complicated. We will illustrate the general



63
methodology in Appendix A, but quote only the answers here. (Rudnick and
Nelson [1] have done most of their explicit calculations only when M = h = 0.
We feel it worthwhile to outline the M > 0 calculation in more detail, as some

subtleties do appear.) One finds, to lowest nontrivial order in e,

rr(l) =TL(l) — 2(n + 2)Kyu(l) + 6 K4u()TL(1) In(1 + TL())

+2(n - 1)K4yu(D)Tr()In(1 + Tr(l))

Tr(1) ]
1+ TL(l)

Tr(l)
1+Tr(l)

rr(l) =Tr(l) — 2(n + 2)Kyu(l) + 6 Kqu()Tr(1) In(1 + T1(1))

+ 144 K,u()? M(1)?[In(1 + Tr.(D) +
+ 16(n — 1) K4u(1)*M(1)*[In(1 + Tr (1)) + ] (2.30)
+2(n — DEKqu()Tr(1) In(1 + Tr(1)) (2.31)
h(D) =h(l) — (M) — 4u(D)M (1)}
+2(n + 2)Kau()M (1) - 2(n — V) Kqu()M(D)Tr(1) In(1 + Tr(1))
— 6Kqu()M ()T (1) In(1 + TL(1)) , (2.32)
where
T (1) = (1) + 12u(D)M(1)?
Tr(l) = t(1) + 2u(D)M(1)?
(1) = 1(0)e* Q) 3 (2.33)
t(0) = r(0) + 2(n + 2)K4u(0) + O(eu,u?)

h(l) = h(0)eBFz

The variable #(0) is precisely r — r.(u).
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3.3 Spin waves and the equation of state

From Eq. (2.27), the magnetization is given by
M(0) = M(1*)e~ (=39 (3.1)

The calculation of the renormalized magnetization M(I*) will be done within
the linear spin-wave approximation, which, as we shall demonstrate, is valid

precisely in the limit u(I*) < 1, rz(I*) = 0(1).

The linear spin-wave approximation is simply the quadratic fluctuation
correction to the Landau mean-field solution. The only inputs are therefore the
two orthogonal curvatures of the Landau free-energy surface at the mean-field
minimum. Note that when the external field vanishes, the transverse curvature
must vanish because of the continuous global spherical symmetry of the spins.
This requirement will provide a consistency check on the renormalization-group
calculation. From (2.8) (with Ry = 1, uy = uy = ug = u, and w; = wy = w), it
is easy to see that the minimum occurs for s+ = 0 and ¢ = M(I) — M(l), where

M satisfies
(h+rM — 8uM?®) = (rp, — 12uM?)M + 4uM® . (3.2)

It should be emphasized that M(I) # M(I), although when [ = I* they differ
only by terms of order w; but even then their ezternal field dependence (which

* . oy . . . .
comes from wave numbers k < e™!") is very different. This difference is crucial
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to the derivation of the correct equation of state (see below). When expanded
around this minimum, the Hamiltonian takes the form
H(l) =/ddm{—;-|Vs‘L|2 + %IV&P + % |7 - 4u(da?® — 51%)] |2
n -;-[rl, — 12u(M? — MQ)] 52 + 4ubl(6® + 5|st|?)
+u(5? + |sl|2)2} + el [%r(O)M(O)z + w(0)M(0)* — h(O)M(O)J 1%

+ [5ro (8T — MY? 1 4ud (3 = M) + u(T — M) — (3T m|v,
(3.3)

where 6 = o + (M — M). The square of transverse and longitudinal curvatures
are, respectively, x7(1)? = rr—4u(M? —M?), and k1 (1)? = rp—12u(M? —M?).

Using (2.30)-(2.33) and (3.2), we find

KT = J\Z((lz)) [Ml(l) - Ml(l)] [0 + ro (M) — Su()M (1)) (3.4)
= 5105+ (38— 1 [0 7o) - sutyay?]

The second term in both cases is O(u(I)?), and hence is beyond the resolution

of the present calculation. Therefore, to the order we are working, we may take

k(1) = h(1)/M(1) (3.5)

which indeed vanishes in the ordered phase when 2(0) = 0. It should be noted
that because of the spherical symmetry, the transverse susceptibility y7 is al-
ways given ezactly by M(I)/h(l), although (3.5), which is essentially the mean-
field inverse susceptibility, is only approximate since fluctuations with k < e='

have not yet been accounted for. The longitudinal curvature is given by

k3 =rp + 3% —rp) (3.6)
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which is always nonzero, and yields essentially the mean-field inverse longitudi-
nal susceptibility x7'. The true inverse longitudinal susceptibility vanishes at
h = 0 because of spin-wave effects (see below), though not as rapidly as x}l.

Again, this is strictly an effect of wave numbers with &k < e™".

We now proceed to calculate the equation of state. Since the field o(x)

was defined to have zero mean, < o(x) >= 0, we will have
< &(x) >= M(l) — M(l) . (3.7

But the left-hand side, to lowest order in the fluctuations around the mean-field

minimuin, is just

<5(0) >= = <5(x) [ dly wHE) +5 ()M >o
where <>( indicates an average with respect to the quadratic Hamiltonian
Hy = %/ddm [[Vsle +|V&|? + kL|st|? + KJ2L0'2] . (3.8)
In Appendix B we give more insight into this form of perturbation theory.
Combining (3.7) and (3.8), we find

M(1) — M (1) = —4u(1)M(]) / dly < 5(x)5(y) >0

x[3<()? >0 +(n -1 <Ist¥)* >o] (3.9)

_ —4u(HM(D) 3 n—1
0 /q[qZ’ TR0 T n?‘}(l)] ’
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where [ = J (—;%’q. The integrals in (3.9) are straightforward and are evaluated

in Appendix C. The result is

M- 1= ——Ag—{GKuz[l — &2 In(1+ k2) + £2 In(k2)]
+2(n = DEaull = i n(1 4 ) = 2RH( T ()~ 1)}
(3.10)

Now it is straightforward to show that to first order in Q-ll\_,I—M—), (3.2) can be

written in the form

ri(M — M)~ &% (M — M) . (3.11)

ot

To the same order, M and M are interchangeable on the right-hand side of
(3.10); one must, however, be careful to use (3.5) for «2 in the last, singular
term of (3.10). Using (2.32) for A, (3.10) becomes, after a large number of

cancellations,

—2 hy h
= Tr + 6K,uT; In(T1) + 2(n — DEsu(—) 37 [(__

)7~ 1] ., (3.12)

h
M
where all quantities are evaluated at [ = [*. Note that we have, correctly to the
order we are working, used (T, Tr) and (rr,r7) interchangeably in the O(u)

terms on the right-hand side. We may substitute the solutions from Sec. 3.2

into (3.12) to get the complete equation of state:

(n— 1) ho 1 e/2 _ el
(n+8)" M [( ) ] (3.13)
+6Kquoel ™DV Ty In(T1)/Q

ho /My [tOQT +4uoMZ)/Q —
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where the subscript zero denotes the unrenormalized initial values of the pa-
rameters and @ and @ were defined in (2.29) and (2.33). In order to compare

with results of Ref. 3 we define

n—1

P=144
+un+8

[(%409-)6/2 ~1] + ;-3—8@ - 1), (3.14)

and define the matching parameter I* by Ty(I*) = 1 [not Tr(I*) = 0(1), as

assumed in Ref. 1]; i.e.,
1/S = [te@Q5/("*+® 1 1200 M2]/Q , (3.15)
where S = 2", which implies that
Q=1+4(8Y2-1). (3.16)

The equation of state then reads

h
ﬁ(; = (toQ7¥% + 4uoM2)/P . (3.17)

Equations (3.14)-(3.17) constitute the full equation of state, valid throughout
the critical region. These expressions agree precisely with those derived by
Nicoll and Chang [3] (see their Sec. III, with the correspondences I'; = ho,
Y=PLYa=Q ", Ty=5" M=¢ A =2, and uy = 12K,u). See also

Ref. 6, Sec. VI for some applications of these equations.

As an application of (3.17), let us derive the low-field magnetization for

to <0 (T < T¢) and identify the spin-wave singularity in the susceptibility. If
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My remains positive when kg — 0, we see from (3.14) that P is dominated by

-1 Mo
n+8

)f/2 ho =0, t <0, (3.18)

P"rb‘u

so that the equation of state reads

1, ho

n+8( 1) T R QT+ duoMy (3.19)

The zero-field magnetization is therefore given by
My(ho = 0) = (—to/4us) Q"% ¢, <0, (3.20)
while (3.15) and (3.16) yield
nt2

Q=1—a+a(-2t)"2Q%E"%5, hg =0, to <0 . (3.21)

Writing for small hy, My = Moy(ho = 0) + 6My, and denoting the solution to

(3.21) by Q—(d,t0), we find

€n4l11

My ==L ( o )1_% sl (3.22)
0 — n+88UOM0(0) Mo(O) — n+8(]‘_ 1 u,) .

so that the small-field susceptibility x = 86M,/0h¢ diverges as

~ 1 € C(Q_) ho -
XEUT 8(1 B §)su0M0(0)2 (M (0))

, ho— 0, 89 <0, (3.23)

where C(Q-) is the expression in braces in (3.22). This expression gives the
precise O(¢e) amplitude of the spin-wave singularity right up to 7,. In Ref. 6

it is shown how to cast such expressions into scaling form in order to best
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illustrate the various crossovers involved. A simple example will suffice here.
For simplicity we take & = 1 (i.e., u = u*; see Ref. 6 for the method treating
the general case — which involves the introduction of a second scaling variable

~ uo/ tO% ). Define the scaling combinations

r =to/(duoM2)1/2, § = %(1 _ %e)/(l - -;—e(n +2)/(n +8))

(3.24)
Q =(4uoMZ)*0Q, wq = ¢/(2— &) = (4— d)/(d~2) .
One then finds that () satisfies
)T =34+707, =1 (3.25)

This represents the Griffiths scaling form for Q, valid for all 7 > 7;,¢,, negative
and positive, where T.pe; = —20¢/(r+8)(2=€) represents the coexistence curve.

Proceeding now to the equation of state, we define the scaling variable for hg:
¢? = duohd/(4uoM2)?, 6 =(6—€)/(2 - €) . (3.26)

The relation between ¢ and 7 then becomes

n—1
n 4+ 8

C= (1707 (5@ + i), (3.21)

which represents the equation of state in Griffiths scaled form. This should be

solved to yield ( = Z(7), or
ho = DM{ Z(cto/My),  uo =u*, (3.28)

where D = (4u*)7%/(6~9) and ¢ = (4u*)~1/28. When t, = r = 0, this yields

ho = DZyM¢, the usual definition of the exponent ¢. The constant Z, = Z(0)
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satisfies Zo(ﬁ—SSE/(Z"f) + %%Zo_e/z) = 1. In the opposite limit 7 — Tcpeq, a
careful analysis of (3.27) yields precisely (3.22) and (3.23) with % = 1. Thus
(3.27) and (3.28) are a succinct way of representing the crossover between the
spin-wave “fixed point” at 7 = T¢,e, and the critical fixed point at tg = kg =0
[the value of T is not specified in this limit, depending along which particular

path in the (o, ho) plane one approaches the critical point].

Equations (3.24)-(3.27) may also be cast in so-called parametric form [7].
Here one uses a polar-coordinate-type representation in the (¢, ho) plane to

simplify expressions. One writes
ho = RP°1h(6) , to = Rt(6) , My = RPm(9) , (3.29)

where R > 0 is the radial variable and —1 < 6 < 1 is the angular variable.
Since the system is symmetric under hg — —Ahg, a convenient normalization
is obtained by taking the positive ¢y axis as § = 0, the coexistence curve as
§ = £1 (where hy — +0, respectively), and the positive and negative hq axes
as § = +0y, respectively, where 0 < 6y < 1 is chosen for convenience. The
utility of this representation is apparent when one realizes that in the Ising case

n =1, Egs. (3.14)-(3.17) (with & = 1) correspond ezactly to the choices
3
h(8) = 6(1 — 6*)/V8u* , +(8) = (1 — 50°), m(6) = 8/V8u* (3.30)
with 63 = 2/3 and the exponents 3,§ displayed in (3.24) and (3.26) and eval-

uated at n = 1. One also finds the correspondence Q = RP(3~9 . This is the

so-called linear model.
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For n > 1, life cannot be so simple. A spin-wave singularity, roughly of
the form (1 — 62)2¢, must appear in either h(6) or m(0) when 6 — £1. In
fact, this is apparent in Ref. 5, where this term appears as an unexponentiated
logarithm in their Eq. (25). The authors, however, were unable to interpret
this term unambiguously. To see how (3.30) must be modified when n > 1, it
is simplest to leave the functions ¢(§) and m(6) untouched [in fact, one may
always choose m(#) linear [7]]. This yields (3.15) and (3.16) (when @ = 1) for
general n, with the same relation between @ and R. We now modify h(6) to

obtain the equation of state (3.14) and (3.17) for general n. If we write
h(8) = 6(1 — 6%)/v/8u* h(8) , (3.31)
we find that consistency yields the equation
h(8) = va(1 — 6%)"/2R(6)/ + (1 — vy) , (3.32)

where v, = (n — 1)/(n + 8) vanishes when n = 1. For 6?2 — 1 one finds

h(8) m vi T (1 - 67) T4 4 0(1) ; (3.33)
hence
=1 1
hO) ~ 2 3P (1— 02)T=er, 92 51, (3.34)

It is apparent that the linear model misses all of the essential physics of the
coexistence-curve behavior when n > 1. If the spin-wave singularities are ex-

panded naively in powers of ¢, as in Ref. 5, one encounters a term proportional
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to €(1 — 62)1In(1— 6%), which drives ho unphysically negative as § — 1, yielding,

for example, a negative-going susceptibility.

3.4 Free energy

In this section, we compute the free energy. From Ref. 1 we have, to

one-loop order,
l ’
F(ro, uo, ho) = / e~ Go(I)dl' + e~ “F(r(1), u(l), h(1)) ,  (4.1)
[t}

where

Go(l) = -;—Kd[ln(l + (D) + (n = DIn( + rp(l)) — %n] L (42

and we have dropped a trivial constant proportional to In(27) from the total free
energy. The trajectory integral is a tedious, but straightforward, application of
the techniques used in Appendix A. Most of the answer has already been given
in Ref. 1. We begin by writing In(14r) = [In(1+7)—r+ 3r?]4+r—1r?, the idea
being, once again, to isolate the small r from the large r behavior. The first
(bracketed) term contains the large r = O(1) dependence, the second contains
the small r dependence, while the last is slowly varying and must be integrated

exactly. One finds, then,

/ I e~ W Go(INdl' = (1) + L() — L(1=0), (4.3)

where

{
L) =~ Kq /0 e [rp (1) + (n = Dyrp(U)2)dl (4.4)
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5(1) = 33 (n— Ve (217 - 1)1 + rr()

— er(l)2 —

rT(l) +2/d] (4.5)

F5 by (1 1)1 + 7o) — 2ra(1) — 2 osru(D) +2/d]
The expression (4.5) for Iy(!) differs in some details from that given in Ref.
1 — the major difference being the ——%rz terms which are needed for later
cancellation. All other differences disappear when one takes, correct to order e,
d = 4 in the various coefficients on the right-hand side of (4.5). The remaining
integral Iy (!) is evaluated by using rp ~ Ty, and rr & Tr, substituting (2.27)

and (2.33), then performing the integral exactly. (This is possible since the

entire integrand is then slowly varying, a function only of e¢’.) The result is

L) =

tg n 8 2 "n+s —
QM) — 1)+ St MFIQU)™HE — 1) wo

+uM Q)™ - 1]
To complete the calculation, we require F(I). This is given by the first fuctu-
ation correction using the Hamiltonian (3.3). We find e~ F(l) = Fy + Fy (1) +

Fy(1), where

= %roMg + uo My — hoMy (4.7)
Fi(D) = e 5o () ~ M()? + 4uOMOUT(D) - MDY

+u(D(M (1) = M(1)* ~ h(1)(M (1) - M(1))] (4.8)

F() = %e‘d’/q[ln(gii—’i%) +(n — 1)1n(;]2—j—%>] : (4.9)

Note that by (3.2), M(I) minimizes Fi(I); i.e., 0F;(I)/@M(l) = 0. The integral



(5]

F5(1) can be evaluated to give Fy(I) = F3(I) + Fsw(l), where (see Appendix C)

—ar(n—1Ka 2 5,2

) 1
Ful) == B0 e~ 1)l 4 W) - peb = 2okt ]
4.10
— eI 1) In(1 4 K3) - Tad - — k2 4 2] .
og WKL LIm "L g 9" Y
. Kq -2\ 4 —64__.£/2_ —dl
Fsw(l) =(n 1) ( )H k7 ds1n(7re/2) e (4.11)

Ky el 4
+ 57 2d [ln( L) —]

We have displayed the exact K,T

—€

singularity in (4.11) for completeness. This
is the spin-wave contribution to F'. Note the similarity between I3(I) and Fy(!).
We take advantage of this similarity by expanding I, + Fj in the small differ-
ences, k3 —rp = 12u(M? — M?) and &% — rp = 4u(M? — M?):
L+F~ ——%e_dl(MZ — M*){—2(n + 2)K4u + 6 K4uTy, In(1 + Tr)
+2(n — 1)K4uTrIn(1 + Tr)} (4.12)
~—M(M - M)e*{rp —Tr}
where we have used (rr,Tr,x%) and (rr,Tr, %) interchangeably inside the
terms of order u, and set d = 4 in the various coefficients on the right-hand
side. The last line follows from (2.31) and (2.33). We now combine (4.12) and

(4.8), and use (3.11) to evaluate M — M (correct to the order we are working):

L+FRB+F~ e—‘“%—[lﬁ? — h? — RM(rp — Tp))]
L2 (4.13)

= —e~"(M? )2TL)[(h/M — Tr)? — (rr — Tr)?]
where we have used h = h — rrM [see (2.31) and (2.32)]. The expressions for
Fy, I (1), and I,(I = 0) combine to yield
—L{I=0)+ L) =Areg + (t /16u0)

(Q“+8 - 1)
(4.14)
— hoM, + (é-toMgQG/("“) +ueMH/Q ,
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where

2

1 2
Areg = (nKy4/2d)[(1 ~r3)In(1 + 7o) + 570+ 7—5T0 — =] (4.15)

d—2

is the regular part of the free energy.

It is tempting to replace x% by h/M in (4.11), according to (3.4) and (3.5).
Unfortunately, this leads to incorrect results: we will ultimately be interested in
deriving the correct equation of state from our free energy, and although k3 ~
h/M, the equality breaks down under differentiation. The correct replacement
is actually h/M (see below) or, preferably, preserve the exact value rp—4u(M?*—

M?) until after differentiation. One may then safely interchange M and M. Let

us define My = e~ =8I, and [cf. (3.14)]

P_1+——(Q

DS (he/ )~ (416)

The total free energy then reads

t2 n n 1
16ugn —4 [QHH_Z] 16ug ( )(Q P)

A=F+ hOMO Areg + —

+ R?/16uoQ + (K4 /8)e™ ki [In(xk2) — “]

— (SMg /2Tr)[(ho /Mo — R/Q)* — (r7/S — R/Q)*]
(4.17)

where S = e*! [see (3.16)], and we have defined, for convenience,
R =1t,Q%(™*® 4 4002 . (4.18)

Equation (4.17) deserves some comment: Strictly speaking, F should depend

only on hg, while A should depend only on My. Thus one should actually write

F = F(To,uO,ho,Mo(h())), A = A(To,uO, ho(Mg),Mg) . (419)
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The function My (ho), or equivalently, ho(My), is determined by minimization:

OF 0A

mlMo(ho) =0 or 0_h0|ho(Mo) =0, (4.20)

where the partials denote derivatives with respect to the fourth and third ar-
guments of F' and of A, respectively, in (4.19). Alternatively, the usual ther-

modynamic relations imply

dFF _ OF OF dM,

= + = —Mo(h
dho ~ Ohy ' OM, dh ofo) (4.21)
dA_6A+3Adh0_h(M) )
dMy ~ 0My ' BhodM, O °
However, by (4.18), the second terms vanish, yielding simply
OF 0A
6—]’1,—(; = —Mo(ho) or —a—m = h()(M()) . (422)

Note that since A = F' + hoMj, the second half of (4.20) is equivalent to the
first half of (4.22), and vice versa. This still leaves two entirely distinct ways
of calculating the equation of state. The main test of the free energy (4.17)
is that it should yield the same result [Eqs. (3.14)-(3.17)] by either route. We
begin by verifying the ko derivative. This is quite simple since the only explicit

ho dependence is in £% and &7 through M. From (3.2) we find (for fixed [)

oM 1

B n‘% y (4.23)

and hence

Ok%  8uM 0Ok%2  24uM
= ) = . (4.24)
Oh k2 Oh K2
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It is now straightforward to derive

04 _ SMy ho
0= (Q P) — (SMo/T)(ho /Mo — R/Q)
+ (Kq/4)s% In(x3 )(24uMy /k2) .
Setting Ty, = 1 = &3 [which yields (3.15)], the last term vanishes and (4.25)

can be manipulated into the form
ho/My = R/P , (4.26)

which, using (4.18), corresponds precisely to (3.17), the correct equation of

state.

The derivative with respect to M is somewhat more tedious. Let us define
V = 4321{4712[11’1(1 + TL) + TL/(l + TL)]
+48(n — 1)Kqu?[In(1 + Tr) + Tr/(1 + Tr))
+ 3456u’ M2 K4[1/(1 + T1) + 1/(1 + T1)?]
(4.27)
+128(n — 1)K4u’ M?[1/(1 + Tr) + 1/(1 + Tr)?]

W = 144K4u*[In(1 4+ Tp) + T1 /(1 + TL))]

+16(n — 1)K4u®[In(1 4+ Tr) + Tr/(1 + T7)] .
Note that 52-(WM?) = VM2, and that both V and W are O(u?). 1t is then

straightforward to show that

oM
a7 =M(M = )V}

S}}j =(24u + V)M; g“ML = VML + 24uld (M — M) /2] (4.28)
ZMT =(8u + W)M; g;; [W + V8uM(M — M)/xk%] .
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Thus M /OM = O(u?); i.e., M essentially does not depend on M. This can be
seen more directly from (3.2): To the extent that r; — 12uM? and rp — 4uM?
are approximately M-independent, the coefficients in (3.2) are M-independent.
Similarly, k2 and 2. are weakly M-dependent, while r; and rr are dominated

by the M dependence of Tt and Tr. To lowest order, then, we have

0A
6M0 = SUOQ

8UOM(‘)?
Q

S R

Using Ty, = S(R + 8uoM{)/Q, essentially everything cancels, and we are left

with
O0A
oM,

~ h , (4.30)

which is the correct answer. It is apparent then that the equation of state,
(4.26), can emerge from &A/OM; only in higher order. However, keeping the
higher-order terms in (4.28) is not sufficient — many other terms of the same
order will arise from higher Feynman graphs and from better approximate so-
lutions to the recursion relations. This problem seems to be a general feature
of loop expansions: Different paths leading to the same physical quantity may

require different orders in perturbation theory to achieve equivalent results.

Having demonstrated satisfactory consistency of our free energy, we com-
pare it to that derived by Nicoll and Chang [3]. Their result can be written in

the form (see Ref. 6, Sec. VI)

2 4
16ugn — 4

ANG — Apeg = Qs — g) + R2/16u,P | (4.31)
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with (3.14), (3.15), (3.16), and (4.18) defining P, Q, R, and S, respectively.
They state that the equation of state should be derived by differentiating only
the explicit My dependence in (4.31), i.e., that which appears in R. This indeed
yields (4.26). However, one should demonstrate that derivatives, with respect
to the implicit M, dependence, do not contribute further terms. The simplest

way to compare (4.31) to (4.17) is to use the equation of state to substitute for

ho /Mo in (4.17), and to use My and M, interchangeably. This yields

2
A =Areg + fy 4 [Qi_:-% — ﬁ] — &S—@-%e)
16ugn — 4 4 16 (432)
R Q P 1 1 0 2 1 :

T6u P? PP T Q T (T Rjseody) 77 BT Q)
where we have dropped the term proportional to (rr/S — R/ Q)?, since it is

apparently of higher order in » and in any case is approximately independent

of both My and ho. The last term in (4.32) can be rewritten:

R? 4 PR/P* 1
16w, P R+ 8uoME Q

P—_P
(

(P-Q7 = (=%)1. (4.33)

To the extent that P ~ P [compare (3.14) and (4.16)] and R < 1, (4.33)
reproduces the last term in the Nicoll-Chang result [Eq. (4.31)]. It is easy to
confirm that (P — P)/P is always O(e), while P — @ is roughly O(e), unless
(ho/Mp)*/? is small — however, in this case the prefactor R/P = ho/M, is
small, so the whole term is always small. A better approximation is to take
P in place of P in (4.31). This is so because, for complete consistency, the
equation of state should be derived not only from the My dependence in R, but

also from that in P. One finds [recall that ho/M; in (4.16) has been replaced
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by R/P]

P 4 8P  —16uMy (P—P)P
oMy doMy R P-LlgpP-p)’

(4.34)

so that neglecting the M, dependence of P in (4.31) entails errors of relative

order £ £ = O(e) in the equation of state. Alternatively, if one takes R2/P

in (4.31), the extra factor of 4/d cancels the error term linear in P—I';E, leaving

errors only of O([(P — P)/P}?).

Finally, recall the 7 [In(x}) — 1] term. This term is constructed so as to
vanish when differentiated at fixed [ and then evaluated at k2 = 1. However, if
k% =1 is imposed before differentiation, this term, which then takes the value
15 K4S ~(2-39) serves to maintain the identity 0A/0I* = 0 — cancelling con-
tributions from the now Mpy- and ho- dependent functions Q and S appearing
elsewhere in the free energy. This term is also crucial for correct evaluation of
other derivatives, such as the entropy (or density, depending on how thermody-
namic variable r is identified) —(0A/8%y)nr,. Therefore, the lack of this term
in the Nicoll-Chang free energy represents a definite discrepancy with our own
expression. For the reasons given above, we believe our expression to be the

correct one.

In summary, then, the correct form for the free energy, closest in spirit to

that of Nicoll and Chang, reads

2
4 [Q+Fs —
16ugn — 4

" .1
ANG = Areg = ]+ R?/16uP — Ezcds-@—%f) , (4.35)

n
4
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with the equation of state to be derived by differentiation with respect to the
explicit My dependence in R [according to (4.18)] and in P [according to (4.34))].
By construction [explicitly verified for the free energy (4.17)], all other implicit
My, dependence — embodied in the choice of the matching scale [ = [* i.e.,
Eq. (3.15)] — will cancel out under differentiation. In Sec. 3.5 we explore the
effects of the extra S~(2~%) term on quantities derived from the free energy.
In particular, we reexamine the derivation of the helicity modulus T at con-
stant density in Ref. 6. We also give an enormously simplified rederivation of
the helicity modulus which agrees precisely with the expression calculated by
Rudnick and Jasnow [8]. Our approach relies on the identification of Y with
the small k behavior of the Green’s function [9], rather than on the method of

comparing free energies for periodic and antiperiodic boundary conditions [8].

3.5 Helicity modulus, density and specific heat
3.5.1 Helicity modulus

In the ordered phase (in zero external field), the Green’s function
G(k) = (Iskl?) = (Isic- M) + (|t |*) (5.1)
has the small-k behavior
G(k) = [Mo|*8(k) + bz /|k|” + b/ |K|* + O(1) , (5.2)
where by, is related to the amplitude of the divergence of the longitudinal sus-

ceptibility [Eq. (1.1)] and by is the amplitude of the transverse spin-wave sin-
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gularity. One has the exact correspondence
br = (n — 1)|Mo|?kBT/T , (5.3)
where T is the helicity modulus, which is related to the superfluid density via
ps = (m/h)’T , (5.4)

m being the mass of a *He atom.* One may also define T in terms of an integral
over a current-current correlation [8,9] function (which involves an average over
a four-spin operator, rather than a two-spin operator). The latter is more
closely related to the definition of T in terms of the free-energy increment due
to “twist” boundary conditions [8,11]. We concentrate on the former definition,

which may be restated as

1
2 _ .
T/kTMo[" = l%l—q% k2G (k) ’

(5.5)
where G| (k) = =15 (|si-|?) is the transverse part of the Green’s function. Since
the renormalization-group transformation used to generate the recursion rela-

tions in Sec. 3.2 is quasi-linear, the small-k part of the Green’s function trans-

forms exactly as

dGy/dl = —[2 - ()]G . (5.6)

To O(e) one has n(l) = 0, which yields

Gi(k,l=0) =" G (ke", 1) (5.7)

* See Ref. 9 for a nice discussion. The result has, of course, been known in

the helium literature for several dacades [10].
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and hence
T/kBTMg = I%irr%) l/szl(k, ") = 'I'(l*)/lc]_r;TM(l*)2 , (5.8)

so that

T = @01y . (5.9)

Thus we need only calculate YT(1*), which to O(e€) involves only the lowest-order

spin-wave corrections to Y. From the Hamiltonian (3.3) we find, to O(u(*)),
GL(k)™ =k% + k% + 4(n + Du(l*)Ir + 4u(1*)I;
— —;-w(l*)z [4(n — 1)Ir + 611]/x2 (5.10)
— 4w(l*)’ Ir(k) + O(u(l*)?) ,

1 1
=[5+, Ir=[—"@
L /qq2+n% T /qq2+n2T

1 1
Inr(k) = .
(k) /q(k+q)2+n% ¢ + %

On the coexistence curve the right-hand side of (5.10) must vanish at & = 0.

where

(5.11)

This determines k2. Setting k = 0, we find

(KT )eoex =[=4(n + L)u(l*) + 2(n — Dw(l* ) Ir
(5.12)
+ [—4u(I*) + 3w(I*)? /311 + 4w(I*) ILr(k =0) .

Hence the only contribution to T(I*) comes from the k-dependence of I rr(k):
1
Y(I*)/ kg TM(I*)? =1 — }zin}) 4w(l*)27€—5[ILT(k) — Itr(0)] . (5.13)

At this point one encounters problems with the sharp cutoff we have been using:

The domain of integration for Irr(k) in (5.11) is defined as the region of |q| < 1
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such that |k + q| < 1 as well, i.e., the intersection between two hyperspheres
whose centers are separated by k. This yields a contribution to Irr(k) « |k,
and hence the limit in (5.13) yields a divergent result. This problem is solved in
the original physical model by imposing proper periodicity at the boundaries of
the Brillouin zone (i.e., Umklapp processes in the Fourier space representation
of the us* interaction). The spherical Brillouin zone we use here complicates
matters since it cannot be repeated periodically via translation by reciprocal
lattice vectors. We instead solve the problem by fiat: Since Irr(k) — I 7(0)
is well defined if the cutoff is allowed to diverge to infinity, we define Y(I*)
from the leading k? dependence of this cutoff-less expression. The result we
will then derive agrees with that of Rudnick and Jasnow [8] (who encountered
precisely this problem, and solved it in this same way) and with a field-theoretic

derivation of universal amplitude ratios involving T (see below) [12].

To the requisite order, (5.13) may be evaluated with k% = 0 on the right-

hand side. We find

- _ [ 1(e/d)a? — 3
lim = [Irr(k) — Ier(0)] = /q 2 (@+r)E (5.14)
To O(e) we may also take d = 4 in this integral so that
1
Y(1*)/kpT = M(1*)? + ZK4 + O(u(1*)) (5.15)

where we have used the matching conditions £7(I*) & 1 and Su(I*)M(I*) ~ 1

in the second term on the right-hand side. The final result is then

Y/kpT = MZ + e—(@=D" ?}IQ +0(&), (5.16)
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which corresponds precisely to the result of Rudnick and Jasnow [8].

A very similar calculation for the helicity modulus was carried out in Ap-
pendix B of Ref. 12 in the context of verifying two-scale-factor universality.
There it was shown that the ratio £y (—0)/€(to) tends to a universal constant
as tg — 07. Here £ is the usual correlation length defined by the exponential de-
cay of the spin-spin correlation function above T, while £y = (Y/kpT)~1/(4-2)
is the natural hydrodynamic length which diverges as T, is approached from be-
low. Universality of this ratio is a consequence of hyperscaling, and is therefore

valid for 2 < d < 4.
3.5.2 Density

We define the density po via

po = (0A/0re)m, = (OF/0ro)n, - (5.17)

We call this a density since in the problem of superfluidity in a dilute Bose gas
ro o< —p is related to the chemical potential, and py is related via a multiplica-
tive temperature-dependent factor to the boson density p [6]. We carry out the
above derivative on the free-energy expression (4.17) [or (4.35)] at fixed [, then
set | = I*. For simplicity, we will take ho = 0. At fixed I, Q is ro-independent.
For tp < 0 we also have R = 0 (coexistence curve). As mentioned earlier,
the last term in (4.17) is designed to vanish under differentiation. The only #,

(hence rg) dependence that contributes to pg in the end comes from the first
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two terms in (4.17). Hence

t() 4 4—-n n
= re -_— n - — , h =0 , t 0 s 5.1
Po = pores ¥ g n—4[Q-+S 4] 0 0 < (5.18)
where @) _ satisfies (3.21) and
po,reg = (K4 /4)[1 —roln(l+ro)] . (5.19)

This should be compared to Eq. (6.35) in Ref. 6 which is far more complicated.
The extra complexity is a direct result of the missing S~(2~7¢ term in (4.31)
which would otherwise serve to cancel the extra terms. The numerical difference,
however, is probably very small. Correcting the subsequent equations in Ref. 6
is very simple. In particular, the coefficient of Q% in Eq. (6.48) and of Z(=)/°

in Eq. (6.65) should simply be set to unity.

For t; > 0 one needs an expression for the limit k% ~ h/M when h — 0;
i.e., x(1)7! the inverse susceptibility. From the equation of state, or by direct
diagramatic evaluation, one finds

X 7M1= 0) = X () = 1@ FE[L - 2(n + 2)Kyu(D) In(t(D))],

(5.20)
ho =0, t, >0.
With the matching condition ¢(I*) = 1, one determines Q = Q4 via
e egnt2
Q+=1—-d+aty 2Qi"** (5.21)

[cf. (3.21)], and only the first term in (5.20) survives. From these equations

one finds that P = Q4+ when hy = 0 and ¢y > 0. Hence only the fourth term in
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(4.17) contributes any further ¢, dependence, and one finds

to
Bugn —4

Po = Po,reg + 5— [Q"*" — 1] ho =0, 1 > 0. (5.22)

The compressibility (more commonly interpreted as the specific heat) is then

given by
Ko = —6p0/6to
— ore 1 [ %—Tg[l“im(l (1—1:&)62_:1)]_2}’
’ 2(4 — n)uo — 21 _(1-a)Q7Y)| 4

ho =0, tg <0 (5.23)

[ 2 n+8(1 (1 - "DQ;I)} 1}
n+s(1 —(1- “)Q;l) ’

= K0,reg T W {Q+
ho =0, to >0

where

Ko,reg = (NK4¢/4)In(1 4+ r¢) + ro/(1 +19)] - (5.24)

It is worth commenting that (5.23) yields the universal specific heat amplitude

ratio [12] correct only to zeroth order in e. This is because the exponent o =

£ i/ (1 - £ %}%) is O(e). One needs the specific heat correct to O(€?) to

obtain the universal ratio correctly to O(e).
3.5.3 Specific heat
The specific heat at fixed X is given by

(), -1(&(E),), oo

where X represents some thermodynamic constraint, for example, fixed density

p. Evaluation of (5.25) requires knowledge of the implicit T-dependence of
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to, ug, etc., which depends on the particular path taken to arrive at the effective
s* model, as well as on the precise nature of the constraint X. We shall exhibit
the calculation for the case of the dilute Bose gas, where the constraint is that

of fixed density (Sec. 3.5.2) and the temperature dependence enters via
ro = —RaPu, ug = UgBvg /A%, kn = Tyq/Ar (5.26)

(see Eqgs. (5.25), (5.27), and (6.4) in Ref. 6). Here Ry = 47 /T'%, Uy = 87%/T'¢,
and ['y = 2/7(5(d - 2)F(-g—)((%))di_2 are dimensionless constants, 8 = 1/kpT,
A7 = h/(2rmkpT)'/? is the thermal de Broglie wavelength, and m, vy are *He

atomic parameters. Finally, the number density is
p=(8n/nT)kipo (5.27)

where pg = (0A/0rg) was calculated in Sec. 3.5.2. The free energy A = Apyse
which appears in (5.25) differs also by a temperature-dependent factor and an
additive term from A = A,pin calculated in Sec. 3.4 due to spin and space

rescaling: One finds

1
ABose - _ki [Aspin -

B

nk,

57 In(R4)] . (5.28)

For completeness we also exhibit the relation between the Bose and spin order
parameters and conjugate fields — determined by the spin and volume rescaling

factors Eq. (6.2) in Ref. 6:

ﬁHBose :kX/zR;l—l/zhO
(5.29)
Mpose =k3*RY* M, .
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Setting ho = 0, we calculate the specific heat C4 for TzTc. As mentioned
earlier, only the first two terms in (4.17) contribute for T' < T,, while only the

first, second, and fourth contribute for T' > T,. One finds

2)t
Sy =kikp {po(to —d(n + 2)Kauo) + ﬁ____l_o(po P0.reg)
(d—2)t5 42 ) d+2 nAd
b - As in
Snrang 9F (1-0@x) - 54y
(5.30)
The constraint may be put in the form [6]
_n t — _ 7 — df2 _
2(d - 2) Kynt = po — po,reg, t = (Te/T) L, (5.31)

where Te(p) = T2 (p) is the transition temperature at given density p, and T2(p)
is the ideal gas transition temperature defined by p./\%c =( (—;—d) It is easy to
see that for ¢¢ — 0, (5.31) yields ¢o ~ t-ﬁ, so long as & > 0 (to order e,
this requires n < 4, which we hen;:eforth assume). One sees therefore that the
most singular parts of the entropy at constant density are the terms linear in

dr?
S:f:,sing —7‘;.6 dkBPtO + O(tg a/uo,to/uo,tot )
(5.32)
Kyd+2
Sreg =5 AT Zkdkp | 2 L 1n(Ra) + O(uo)
2d d
One finds then Cy = Creg + Cx sing, with
2n2 o
— G kpuop[l + O(F, i)
C:i:,sing =
d n(d? —4)T 2 _
Creg "'2Sreg = —(—Er-—ik' P +1n(Rd) -+ O(uo,t ):,



and

Di(Q+) =

4—n T4

n [Q;t:;; —5_[1—(1—U)Q+] n]
toroentln (1-@)Qy'] 4

(5.34)

_ 4 [ Laa1- 558501 - (1-D)QT]
D-(Q—)—4—n[Q'+1-—5213[1—(1—“)‘9 T

Note the resemblence to the inverse of the unconstrained specific heat (5.23).
The functions Q4+ (f ) are determined via the constraint equation (5.3) [6]. It
is easy to see that (5.33) yields the usual Fisher-renormalized [13] specific-heat

exponent &' = —a/(1— «). Similarly the universal amplitude ratio r, = C4/C_

—-1
T-a

is renormalized via r, = r,
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Appendix A. Details of recursion relation solutions

We outline here in somewhat more detail the solutions to the recursion
relations (2.22)-(2.26). The solution for u(!) is elementary and is given by
(2.29). The solution for w(l) follows immediately via (2.27) and (2.28). The
solutions for rr(I) and r;(I) are more complicated. Following Rudnick and

Nelson [1] we begin by analyzing the simplified recursion relations, valid for

r,u < O(e):
fldilﬁ = (2 - 12K4u)ry, — 4(n — 1) Kyurr + 4(n + 2) K4u (A1)
d
% = (2 — 4(n + D) Kqu)rr — 4Ksurp, + 4(n + 2)Kyu . (A2)

Diagonalization of the first two terms in each equation yields two eigencombi-

nations ry = (rz + (n — 1)rr) and ry = L(rp — rr) with solutions

ri(l) = r1(0)e? /Q(1) 5 (43)
ra(l) = r2(0)e?' /Q(1) 7¥s . (A4)

These are now used to generate the full solutions. The first step involves con-
verting the recursion relations to integral equations. One finds in a straightfor-

ward way
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ri(1) =r1(0)e2 /QU)HE + (e2/Q(1) ) / e QU
x{4(n + 2)Ku(l') + (4(n + 2) Ky /n)u()rp () /(1 + ri(l"))
+ (4(n = 1)(n + 2)Ka/n)u()rr(')? /(1 + ro(1')
— (18K /n)w(l' /(1 + (1)) = (2(n = D K4/m)w(')? /(1 + rr(l'))’

— (4(n = 1)Ko /n)w(I')* /(1 + ro ()1 + rr(I))}
(45)

l
ro(1) =r2(0)e™ /Q() T + (2/Q() ) / dl'e=?" Q(I') e
(8K /m)u()rr(IY /(1 + ro(l')) — (8K fr)u()r (/1 + 1))
(4K Jnyw(I2 (1 + rp () + rp(1) + (18K fr)uw(I)? /(1 + ro(l'))?

+(2(n ~ DKy /r)w(l')? /(1 +rr(I)*} .
(46)

The basic technique used to evaluate the remaining integrals is to divide each
term into a slowly varying piece, a function only of e, and a rapidly varying
piece. An integration by parts is then performed, putting the derivative on the
slowly varying piece, which then becomes smaller by a factor of e. The remaining
integral can then be dropped. One must also take into consideration which
region of integration contributes most to the integral. For example, rz({) and
rp(l) are small, of order €, for most of the interval 0 <! < [*, becoming large, of
order unity, over only the last part of the interval, during which slowly varying
functions, such as u(l), change only by O(€?). It was precisely arguments such

as these that led to the reduced set of recursion relations (2.22)-(2.26), and
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must be used here again to further simplify the analysis. Finally, if the entire
integrand is slowly varying, the integral is performed exactly: usually such

terms involve only rational functions of e€.

To illustrate, the combinations e~2!r1 (1), e~ 2'rp(l'), and e~ 2" w2(I') are

slowly varying, as are Q(I') and u(!"). Thus, for example,

ri.(1") N
1 -I—?‘L(l') =

II
TL(l”) "
/ 1+ TL(l")dl

where the integral remaining after the integration by parts, with the deriva-

!
/ dr [e—z"u(l')Q(z')H%rL(l')
’ (A7)

l
2 u(INQU) L (1)
0

tive on the slowly varying part, has been dropped. The integral of the func-
tion rz /(1 + rz) is performed by realizing that the important contribution

comes from the region r > e. In this region we may approximate rz (") ~

rr(1Ne 2= 1" < I'. This yields

ll

/ —Iﬂ—)——dl" ~ 1 In(1+r,(I")+e¢ (A8)
1+ ’I'L(l") 2 L ’

where c is an arbitrary constant of integration, which we take to be zero. The

result of (A7) is then
e_zlu(l)Q(l)%%rL(l) In(1+r(1)) + O(u?, eu) . (A9)

Similarly we have

l
[t [ Pumaw)Fea@) ZH05 < e

X rr(D)In(1 + rp(1)) + O(u?, eu) .
(A10)
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The w? integrals are evaluated by first ignoring the 1/(1 + r)? denominators,
yielding a slowly varying integrand, which can then be treated exactly. The
remainder is then evaluated via integration by parts: once again the major

contribution comes from the region r; > €, and the same approximations are

made that led to (A8). The result is
l

[ a2t

= -?)i,-e—ZIQ(l)ﬁ% [u(l)M(l)2 — ez:Q(l)—z—;';—:uOMg] (A11)

- SR QUHE (14 rp) + ] 4+ O, )

Analysis of all other terms is essentially the same. We quote only the final

results for r1(1) and ry(0):

ri(l) = e2'Q(1) ™ " [r, (0) +

4 2
—(?%——)‘UOMS — 2(n + 2)](4’&0 —l— 0(6’[1,, ’LLZ)]

_ i(ﬁniglu(l) M(1)? — 2(n + 2)K4u(l)

2 2)K
+ —(—n:%j—iu(l)rl, In(1+rp)

2(n — 1)(n +2)K,

u(Dyrr 1In(1 + rr)

+ 2P a1+ 72) + ]
+ S_;:l&w(z)Q[1n(1 +rr)+ o ]
+(__1_)I}1 (1)2[ 'L —In(l4r1)+ — 1n(1+rT)] , (A12)

ro(l) = 621Q(l)"m[r2(0) + ;qug + O(u?, eu)]
4K,

~ SuM)? +
2IX4

u(l)[rT In(1+rp)—rpIn(l +rp)]

(1)2[ 'L ln(l + L)+ - ln(l +r7)]
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-2y

, (n=DE;
n

+7'L]

(n(l +rr) + ]. (A13)

rr
1+ ry
These expressions are now used to calculate r; and rr via rp =71 + (n — 1)ro

and rp7 = r; — rq. After a number of cancellations, we find

ri(l) = [ro + 2(n + 2)Kyuo + O(euo,ug)]ew/Q(l)ﬁ'i%
+ (n — 1)O(eug, ul)e?! /Q(1)*/ (" +8)
+12u(OM(1)* ~ 2(n + 2)Kqu(l)

+ 6K4u(DrpIn(1 +rp) + 2(n — D) Kau(D)rr In(1 + rr)

+ 9K w(1)? [111(1 +rL) + + - }

+ (n = DEaw(l)? [In(1 + rr) + (A14)

)
rr(l) =[ro + 2(n + 2)Kquo + O(euo, u)]e? /Q(I) 745 + O(euo, u2)e?! /Q(1) =
+ 4u(D)M(1)? = 2(n + 2)Kyu(l)r

+ 2Kqu(l)rp In(1 +rz) + 2(n + 1)Kyu()rr In(1 + rr)

+ 2K w(l)? [ (L) + (1 )] (A15)

Defining t(l) = [ro + 2(n + 2)Kyuo + O(euo,ug)]eﬂ/Q(l)ﬂ%, Tl = (1) +
12u())M (1), and Tr(1) = t(I) +4u()M(1)?, then substituting T, and T for rr,
and r7 in the terms of O(u,w?) on the right-hand sides of (A14), (A15) yields

the final results (2.30), (2.31) [note that w?/(Ty — T'r) = 2u].

The solution for iz(l) is now straightforward. The integral equation corre-
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sponding to (2.22) is

14+ rp 1+4+7rp
(A16)

l
(1) = hoe®—391 _ (G-l / dll e~ (=397 [(” = DEuw(l) | 3Kaw(l)
0

By writing lir =1—-r+ —E:—r, we again can isolate the various asymptotic
regions. The term linear in r is slowly varying, and can be integrated exactly

once T is substituted for r. The r? /(1 +r) term is handled in the same way as

(A8) was. The final results [Eq. (2.32)] then follow in a straightforward way.

Appendix B. Validity of the linear spin-wave approximation

Since there is some confusion in the early literature [1,4] as to how to handle
the vanishing transverse “mass” k7 on the ordered-phase coexistence curve, we
feel it worthwhile to indicate here the region of validity of the linear spin-wave

theory.

Consider first a model with fixed-length spins |s;| = 1 at temperature 7"
o 2
L= Y lsim sl (B1)
<ty>
At low temperatures, J/T > 1, it is appropriate to expand s; around the
uniform state, s; = M for all i, where M is a unit vector. One writes S; =
1-— lsf‘PM + s, where s;- - M = 0. Keeping terms to quadratic order, one

finds

_ J
Hlm—fZ[s;L——s;LQ. (B2)
<t3>
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For small T'/J we may treat s;- as extended (n — 1)-dimensional spins, so that

(B2) is just a Gaussian model. The change in magnetization is then

AM=1_<r——l_,sflz>z%<,sfz>z@_—_l>z [ 5

2J q?
0<]ql<1
which yields AM ~ [(n—1)K4/2(d—2)](T/J). Self-consistency requires AM <

1, which is satisfied so long as d > 2 and T/J < 1.

The above calculation demonstrates that fluctuations are small, even
though k1 = 0, in the simplest case when k7 = co. The only requirement is

that the coefficient J/T of the gradient-squared term be large.

Let us now include longitudinal fluctuations via a spin weighting term W:

_ J 1

Bw=—5 3 lsi—sil = =S W(si* ~1). (B4)
<ij> 13

We assume W'(0) = 0 and W"(0) = 1. We will be interested mainly in the

case W(z) = 2%, Apparently we recover the case of fixed spins when § — 0. It

seems clear then that we may treat longitudinal fluctuations in the quadratic

approximation around the minimum at |s;| = 1 so long as 6T < 1.

Consider then the us* model:

_ R? 1
Hy = "‘a_20 Z |si — Sj|2 o Z[§Tlsi|2 + uISi|4J . (B5)

§ = (du/lr]) s, (B6)
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which serves only to add a constant to the free energy, we find (for r < 0)

7o R l7'| Z | S'|2—~iZ(|S,’|2—1)2 ) (B7)
 a? 4u 7T 16u &
<tj> 7
Comparing with (B4) we see that w(z) = 2%, §T = 16u/r? and T/J = ]-—
By the above arguments the linear spin-wave theory will be correct so long as
4a’u/RE|r| < 1 and 16u/r? < 1. In particular, if r = O(1) and a/Rq = O(1),
we require u < 1 which is obviously satisfied in our calculation, so long as

€ < 1. Alternatively, if we assume u = O(e), then we require r, r2 > O(e); i.e.,

r > O(/?).

Appendix C. Spin-wave integrals

In this appendix we consider the integral

/ ! —lz{kdﬂ/lwﬂ;_zdw—szd*%( C1
(P 20T f Twge T T «=) (c1)

where ¢ = r/q2. Of particular interest is the nature of the singularity when

z — 0. We assume, as usual, 2 < d < 4. We write

=2 -4 *® dw a4
Ii(z) Id(O)—-:I: / 1+w +ac/1 P

2 d—2 4—d, a2 2 o [ dw  a-e
__d_2—B( 53 JE +4-dx—x[ Wz

(C2)

r+w

The last term now has a well-defined Taylor expansion around z = 0 for all
d < 6. B(z,y) = I'(z)I'(y)/T(z + y) is the B function. This exhibits the exact

z — 0 nonanalyticity:

e = [ -1 ©3)
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which is valid for 2 < d < 6, and yields the correct zln(z) behavior in d = 4.
For small ¢ we may evaluate the remaining terms in d = 4 and approximate

(em/2)/ sin(em/2) ~ 1:
2 —€/2
Ii(z) = 1— Za:[;v —1]—zln(l1+2), el. (C4)
Furthermore when z = O(1) the singular term may be simplified to yield

Ii(z) ~1+zln(z) —zln(l +2) , ex1l, z=0(Q). (C5)

Free energy integrals involve the function
K 1 -
/ln(q2 +7r) = dej{ In(k3) + §de1‘{Id(x) , (C6)
q
where
1
Ii(z) =/ w T In(w + 2)dw . (C7)
0

Obviously, I'(z) = Iy(z). Using I;(0) = —4/d?, we may therefore simply
integrate (C2) with respect to z to find Iy(z). However, a simpler method is to

integrate (C7) by parts to obtain

~ 2 2
Iu(z) = = In(l +2) - ZLar2(2) (C8)
which yields
= 2 4 4 2 * dw d—6 o
I ==1 —_— —— 3 g3 =5 sing
a(z) 5 n(l + z) d2+d(d—2)x i /1 x+ww +1I;7(z) (C9)
where
~si 4 en/2
Foimey = _ % 2 €F/2 _ej2
(@) ed” [sin(ar/2)x 1} ' (€10)
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The formulas analogous to (C4) and (C5) are

i 1 1 1 2 .
Id(SE) N-z-(l ——;1;2)1n(1 +:I:) — Z + §$_ -;:1:2 [17_'5 _ 1],

ek 1

%%(1—$2)1n(1+x)_l+lx+$2 111(33)7 €<<17113=0(1) .

4 2

(C11)
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