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ABSTRACT

For aerosol Brownian coaglila.tio:n in the transition regime of Knudsen num-
ber in the presence of an interparticle potential, the Fokker-Planck equation is
solved by using the Grad’s 13-moment method. The mass and energy accommo-
dation coefficients that are used to describe the results of collisional processes are
appropriately defined and interfaced with the Fokker-Planck moment equations.
Analytical and numerical solutions of the number and energy flux profiles for the
potential-free, power-law potential, van der Waals potential, and Coulombic poten-
tial situations are obtained. The results are in good agreement with those predicted
by the flux-matching method of Fuchs. The present fundamental approach, there-
fore, provides theoretical support of the coagulation coefficient expression obtained

by the empirical flux-matching method.

For coagulation between ultrafine particles, we solved the BGK equation for
large but finite Knudsen number situations by taking into account the van der
Waals potential and/or the Coulombic/image potential. We present closed form
best-fit equations for data calculated from the theory. The conditions where either

Coulombic, image, or van der Waals forces predominate are determined.

A new expll'ession'of the image potential between a charged particle and an
uncharged particle is obtained. We calculate the coagulation rate between the
particles and are able to determine the enhancement of coagulation rate due to the

interparticle potential in all size regimes.

An aerosol coagulation process is applied to the formation of aerosol particles
in the semiconductor thin film preparation. In the CVD reactor, we consider si-
multaneous aerosol coagulation, diffusion, and generation of aerosol monomers by
chemical reaction. The mass and number concentration of monomers and particles
are computed as functions of temperature, pressure, input vapor concentration,
and position in the reactor. The thin film growth rate can be subsequently evalu-

ated. It is found that under certain circumstances, aerosol particle generation may



significantly suppress the film growth due to monomers.

The formulation of the homogeneous nucleation free energy change of aerosol

clusters is reexamined. It is shown that the inclusion of the cluster translational

and rotational motion in the cluster formation free energy change is appropriate.

The classical and statistical thermodynamics are shown to be consistent.

The cell model of liquids of statistical mechanics is employed to reevaluate
the free energy change of cluster formation in aerosol nucleation. We provide
a new molecular level theory that is applicable in the larger cluster size range
where liquid-like properties begin to emerge and a cluster surface is present. The
microcluster surface tension can be appropriately defined. The cluster rotational
contribution to the free energy change, though it must be accounted for, is shown

to be insignificant for liquid-like clusters.



—vi-

TABLE OF CONTENTS

Acknowledgements . . . . . . . . . . . . . .. o000 oo

Abstract . . . . . . . . e e e e e e e e e e e e e e e e e e

" Chapter 1. Introduction

Chapter 2. On Mass, Momentum, and Energy Accommodation

Coeflicients .

Chapter 3. Fokker-Planck Equation Solution of
Aerosol Brownian Coagulation with

an Interparticle Potential .

Chapter 4. BGK Equation Solution of Coagulation for
Large Knudsen Number Aerosols with a

Singular Attractive Contact Potential

Chapter 5. Image Potential Between a Charged Particle

and an Uncharged Particle in Aerosol

. 24

. 91



— Vil —
Coagulation — Enhancement in all Size Regimes and

Interplay with van der Waals Forces . . . . . . . 143

_ Chapter 6. Aecrosol Formation by Rapid Nucleation in
the Preparation of SiO; Thin Film from

SiCly; and O; Gases Using the CVD Process . . . . 165

Chapter 7. Reexamination of Homogeneous Nucleation

Free Energy Change . . . . . . . . . . . . . . 218

Chapter 8. Prediction of Homogeneous Nucleation Free

Energy Change from the Cell Model of Liquids . . 239
. Chapter 9. Summary and Concluding Remarks . . . . . . . 3812

Appendix On the Relation Between Binary Diffusivity

and Mean FreePath . . . . . . . . . . . . . . 815



CHAPTER 1

INTRODUCTION



—92_
Brownian coagulation and homogeneous nucleation are two of the major re-

search topics in aerosol science. The issues involved in these two topics are now

briefly described.

Browm’aﬁ Coagulation — Aerosol particles of a few micrometers or less un-
dergo Brownian motion and coagulate. The actual coagulation rate between the
aerosol particles is governed by Brownian motion, a stochastic behavior, and is
described by an equation for the particle velocity distribution function, the Boltz-
mann equation. There are two approximate equations, the Fokker-Planck equation
(FPE) and the Batnager-Gross-Krook equation (BGK), which greatly simplify the
collision term in the Boltzmann equation and can be used to determine the rate
of coagulation. These equations must be solved, for the coagulation problems,
with boundary conditions that are associated with mass, momentum, and energy
accommodation at the two particles’ contact point. Also in the presence of an
interparticle potential, the particle concentration, as well as the particle trajectory
close to the two-particle contact, will be different from those at large separations.
Therefore, different forms of interparticle potential may produce different coagula-
tion rates. For highly nonlinear interparticle potentials such as the van der Waals
potential and the electric image potential, numerical solutions for the FPE or BGK

equations are necessary.

Chapters 26 are devoted to the subject of aerosol coagulation. Chapter 2
discusses the surface boundary conditions for solving either the FPE or the BGK
equation, that is, to appropriately and microscopically define the mass, momen-
tum, and energy accommodation coefficients and to show how these coefficients
can interface with the governing equations. In Chapter 3, we solve the FPE for
Brownian coagulation of both large and small particles in the presence of an inter-

particle potential; the potentials considered are the power-law potential, the van
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der Waals potential, and the Coulombic potential. In Chapter 4, we solve the BGK
equation in a range of very lérge but finite Knudsen numbers, that is, for particles
or clusters close to the free molecule range. The interparticle potentials considered
aré the Van-d‘er Waals potential and the electric Coulombic and/or image potential.
Chapter 4 provides information on the coagulation process in aerosol nucleation,
since the latter involves clusters of free molecule sizes. In Chapter 5, we obtain a
new expression for the electric image potential between two finite-sized particles.
The coagulation rate under such a potential over the entire range of Knudsen num-
ber will be calculated. We will also consider a situation of simultaneous van der
Waals and interparticle image potentials. The size range over which each of the
potential components predominates is determined. In Chapter 6, we use an overall
coagulation and growth model to describe the SiO; particles’ behavior in the gas
phase of a chemical vapor deposition reactor. This model shows that SiO3 particles
generated from the subcluster coagulation process may substantially influence the
final Si04 thin film growth rate. The relation between the gas-phase particle mean
free path and the aerosol particle binary diffusivity is important in determining

the coagulation rate between particles. This relation is necessary in Chapters 2-6

and is discussed in theoretical terms in the Appendix of this thesis.

Nucleation — Nucleation is the first stage of a phase transition. In aerosol
nucleation, molecular-sized clusters coagulate and dissociate in the gas phase to
form larger particles. The rate of coagulation of monomers and clusters must be
obtained from the Brownian coagulation analysis. On the other hand, the disso-
ciation of clusters is related to the free energy change of cluster formation. The
classical approach to obtain the cluster formation free energy change is to use
macroscopic classical thermodynamics, and a relation between cluster surface ten-

sion and the free energy change of cluster formation can be obtained. The surface
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tension, however, is ill-defined for microscopic molecular clusters. Therefore, a
molecular level theory for the cluster formation free energy change is necessary,

and the theory should address the issue of microcluster surface tension.

Thé last two chapters of the thesis are devoted to the free energy change of
cluster formation in nucleation. In Chapter 7, we reexamine the inclusion of trans-
lational and rotational motion in the free energy change, a controversial issue in
the field of homogeneous nucleation theory. Then, in Chapter 8, we employ a sta-
tistical mechanical model, the cell model of liquids, to rederive the cluster partition
function which can be further related to the free energy change of cluster formation
in a nucleation process. This approach provides a new theory for the evaluation of
the free energy change, and the microcluster surface tension can be appropriately

defined and calculated.



CHAPTER 2

ON MASS, MOMENTUM, AND ENERGY
ACCOMMODATION COEFFICIENTS

Appeared in Journal of Colloid and Interface Science
Vol. 130, No. 1, pp. 275-280, June 1989
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INTRODUCTION

Ambiguity frequently arises in defining sticking probability (copdensation coef-
ficients) and accommodation coefficients of mass, momentum, and energy. In this
" note, we draw a clear distinction among these various parameters that are used to

describe the results of collisional processes between molecules and surfaces.

- REFLECTION PROBABILITY DENSITY, R(v/,v)

Close to a boundary S, one can define R(v',v)dv as the probability that an
incident molecule with velocity in the range (v', v+ dv') leaves the surface with ve-
locity in the range (v, v+dv). The function R(v’',v) obeys the so-called thermostat

condition (1):

|v-i| f(v)dv = dv/ _

v

. RV, v)f(¥V)|v'-i|av"  (om §), 1]

where f(v) is the molecular distribution function; i is the normal unit vector
directed from the surface, and v-i > 0, v'-i < 0. The physical meaning of Eq. [1]
is that the emerging flux of molecules with velocity v is just equal to the impinging
flux of molecules with velocity v/ multiplied by the probability R(v',v)dv and

integrated over all possible v'.

If one integrates R(v',v) over all possible emerging velocities v, the result
represents the probability that an incident molecule with velocity in the range

(v!,v' + dv') will eventually leave the surface. Thus we write

-/;-i>0 R(V,v)dv = 1-,(¥v'), 2]

where (5(v') stands for the probability of sticking of an incident molecule with

velocity in the range (v', v/ +dv'). This factor is a function of v' since, for example,



.
a faster striking molecule has less chance of sticking than a slower molecule. Also
a normally-incident molecule is expected to stick more easily than those that graze

the surface.

Denoting the incoming and emerging number fluxes in the normal direction as

J; andJ{*',

=, Wi

3]
= f)veilev
v-i>0 .

the sticking probability, o, is defined such that

JF = J7(1— o) f
It follows from Egs. [1] through [4] that
o ferco B V1] 5
: forico FOV) V! ilav! 7

The physical significance of Eq. [5] is that the sticking probability, s, is an overall
parameter that accounts for a distribution of all possible incident v/, hence it is
equal to the average over (5(v'). The sticking probability may also be termed
the condensation coefficient or mass accommodation coeffictent. Values of oy are
difficult to calculate theoretically since a full understanding of the surface and the
intermolecular potential is necessary. Therefore, as values are generally obtained

by experiment.

For those impinging molecules that ultimately leave the surface, there should
exist a certain correlation between the incoming and outgoing molecular velocities.

In this regard, Maxwell (2) proposed a phenomenological relation that is often
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employed. It states that a nonsticking incoming molecule is presumed either to be
trapped oﬁ the surface moménta.rily and then emitted in all directions according
to an isotropic Maxwellian velocity distribution, or to bounce off immediately as
a Billia.rd b:dll_. The former situation is known as diffusive reflection and the latter
as specular reflection. We call the probability that an emitted molecule is reflected
diffusively the Mazwellian coefficient, am(v'). an is also a function of v/ since one
expects, for example, that it is more difficult for faster molecules to reside on the

surface temporarily. Maxwell’s relation corresponds to choosing

R(v',v)

AW~ om(V)F(v) + [1 — am(¥)]6 (v — v + 2(v - )i) , (6]

where § is the Kronecker delta defined in the velocity space. Following the definition
of R(v',v) and B;(v'), the left-hand side of Eq. [6] represents the probability
density that a reemitted molecule has a velocity in the range (v, v + dv) provided
its incident velocity is in the range (v',v' + dv'). The situations of diffusive and
specular reflection are represented by the first and second terms on the right-hand
side of Eq. [6], respectively. One sees that the second term would be nonzero
merely when v —2(v ',i)i = v’ (i.e., with a change only in the normal component of
the velocity). The function ¥(v) in the first term is independent of v/, that is, in a
sense the molecule forgets its incident velocity. 7(v) can be determined by using
Egs. [1] and [6] at the surface equilibr‘ium condition (i.e., f = fo and B5(v') = 0)
to yield (1)

o (v — 2(v - 1)i) [v - | fos(v)

) = o o v 1] Fou(¥) &

[ 1
’ i7A

where fos(V) is the equilibrium molecular distribution function at surface condi-

tions,



2

m )3/2 ( muv

fos(v) = "(2mrcTs _2kTs) SR 8]

 in which n is the gas phase density, and T, is the surface temperature. Finally,

combining Egs. [6] and [7], one obtains

o (v — 2(v - i) o (V') [V - 1] fou(v)
Lo1co on(v") [V 1] fo,o(v"') dv" 9]

+ [1 — aM(v')]é(v' —v+2(v- i)i)}

CR(v',v)=(1- ﬂs(v')){

in which v-1>0,v'-i<0,and v'' -1 <0.

THE ACCOMMODATION COEFFICIENTS

In order to seek appropriate definitions of accommodation coefficients of mo-

mentum and energy, it is convenient to define the half-range distribution functions

ff(v)=f(v)H(v-i>0)
fF(v)=f(v)H(v-i<0) ,

[10]

where H is the heaviside function which is unity if its argument is true and zero
otherwise. Upon substituting Eq. [9] into Eq. [1], the half-range distribution

functions at the surface obey

o (v = 2w - 1)1) fos (¥) frsco[L = Bo(v o)/~ () V"] dv
Jorsco aM(V") v - i| fo s(v") dv'

+ [1 - ﬂs(v —2(v- 1)1)] [1 — aM(v —2(v - i)i )]f (v - 2(v - i)i) (on S).

[11]

) ==

The accommodation coefficient of a quantity ¢(v) is defined as (3)
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forico d(VY V' -1 FT (V) dv — i 8(V) [V - 1) f (V) dv.
forico (V) VA1 £ (V) @' = [oi50 @(V) 1V -1 £ (V) dv

o(9) = (on ), 12

where fJ(v) is fT(v) evaluated at apg = 1; from Egs. [5], [8], and [11],

27— 2
fF) = (1- o) %e@(— ;':;,s) : [13]

On the right-hand side of Eq. [12], the first term of the numerator (and the denom-
inator) is the incoming ¢ flux; the second term in the numerator is the emerging ¢
flux; and the second term in the denominator is the emerging ¢ flux provided that
all the nonsticking incident molecules are equilibrated with the surface and thus
reflected diffusively. By setting ¢(v) equal to |v -i|, v x i, and v?/2, one obtains
a(@) as the normal momentum, tangential momentum, and energy (or thermal)
accommodation coefficients. We denote these quantities as ap ., Gt.m., and o, re-
spectively. The mass accommodation coefficient, o;, can also be defined from Eq.
[12] by setting ¢ = 1 and neglecting the second term in the denominator. That
is, the mass of molecules that accommodates with the surface will not be reflected

diffusively. This definition of mass accommodation coefficient is in agreement with

Eq. [4].

The half-range incoming ¢ fluxes are denoted by the symbols listed in Table I.
The eﬁﬁilibrium emerging fluxes (i.e., the second term in the denominator in Eq.
[12]) can be evaluated by integrating Eq. [13] over v -1 > 0. These expressions
are also listed in Table I in terms of the half-range incoming fluxes. On the other
hand, the emerging fluxes (i.e., the second term in the numerator in Eq. [12]) can

be expressed, by using Eq. [11], as
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' e dvaco[L = B (V)] em (V) (V) [V - 1] 0V
/\:~i>0 ¢(v) }V 1| f (V) dv = fv"-i<0 aM(V") |vll N i' fO,s(V") dV"

/v oo PV IV Tlom (v —2(v - D) fou(v) dv [14]
+ -/v'.i<o $(v) v -4 [1 ~ P (v')] [1 - C'M(V’)] () av' .

From this equation, we realize that once the functional forms of 35(v') and aps(Vv')
are knowh, the emerging fluxes given by Eq. [14] can be further related to the
half-range incoming fluxes. Because the surface condition is generally unknown,
information on f;(v') must be obtained from measurements of the sticking prob-
ability, o, (recall Eq. [5]). To a first approximation, we can assume henceforth
that all incident molecules have the same probability of sticking regardless of their

velocities, t.e.,

Bs(V]) = Bs(vh) = ... = g [15]

Under this assumption, we present models of ay(v') in the following two sections

by Maxwell (2) and Epstein (4) and their ensuing results, respectively.

MAXWELL’S PRESCRIPTION OF aym

In Maxwell’s original work, ap(v') was taken to be a constant. Values of
ap can be arbitrarily chosen and/or determined by data fitting from experiment.

Equation {11] becomes, in this case,

2 2

+ 1 aNpMm ~ _mv

+(1— o) (v —2(v i)i)} (on §) .
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Consequently, the emerging ¢ fluxes and their corresponding accommodation co-
efficients are evaluated in terms of the incoming ¢ fluxes as shown in Table II. For

the situations where o5 = 0, we find

Opm, = Otm, = Qe = OM (as = 0) . [17]

Thus a constant Maxwellian coefficient is equal to constant accommodation coef-
ficients of both momentum and energy when the surface is a perfect reflector. For
the cases where o = 1, all the accommodation coefficients have the value of unity,
since no molecule can leave the surface. The tangential momentum accommoda-
tion coefficient, in particular, does not depend on the incoming ¢ fluxes and is a
constant. This is because its equilibrium emerging flux is zero (recall Table I) due
to symmetry and the incoming fluxes cancel identically in both the numerator and

denominator in Eq. [12].

EPSTEIN’S PRESCRIPTION OF oy

Taking into account the velocity dependence of aps(v'), Epstein (4) proposed

the model

2 2
(¥) = exp (- ) + B1 — exp (-2 )] 18

where Ty < T3; T1, T3, and B are parameters determined from curve fitting with
experimental data under the conditions that the gas phase is in equilibrium with
| the surface. The first term in Eq. [18] predicts the speed dependence of ay at low
temperatures. That is, the larger the kinetic energy of the incident molecules, the
smaller the value of apg. The second term in Eq. [18], on the contrary, dominates

the behavior of ay at higher temperatures. At high temperature conditions, there
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is always a nonnegligible fraction, the parameter B, of incident molecules that will
be scattered diffusively. Maxwell’s constant oy is therefore realized as a limiting

case of Epstein’s model at high temperature and has the value B.

: Substitut;mg Egs. [18] and [15] into Eq. [14], one can express the emerging
¢ fluxes as functions of the incoming ¢ fluxes. These relations are given in Table
ITla. Table IIIb shows the momentum and energy accommodation coefficients as
functionsv of Ty, T2, B, and the incoming fluxes (i.e., J;, iane? Pimo Pimyayg %

and % g defined in Table ITTa). All the accommodation coefficients, again, become

unity when the surface becomes a perfect absorber (o, = 1).

BOUNDARY CONDITIONS

The main purpose of finding expressions of accommodation coefficients is to
relate them to boundary conditions of mass, momentum, and energy. The latter
are necessary in solving governing equations of interest for transport of molecules
to surfaces (e.g., the Boltzmann, Fokker-Plank, or BGK equations). We give an

example of finding boundary conditions of a heat and mass transfer problem.

The mass boundary condition follows directly from the definition of the mass
accommodation coefficient, Eq. [4]. The full-range number flux on the surface is

accordingly found to be

Ji=Jr—J7 = —ad] (on S) . (19!

1 1

Likewise, the thermal boundary condition is found from the definition of the energy

accommodation coefficient (Eq. [12] by setting ¢ = v2/2),
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%= 0 —2(1— an)J; kTo/m (on S) [20]
It follows that
_ okTs _
q; = q:“ —-q; = 2(1 - as) em sJi — Qeq; (on S) ’ [21]

where g; is the full-range energy flux and . is a function of J;, ¢, , Ji,_aw and
% 0y (recall Tables II and III). These incoming fluxes can be further related to the
full-range fluxes once a functional form of the distribution function f is available.

We illustrate this by using the form of f proposed by Grad (5, 6),

h C? h
f :(75—;;)3 exp(—T) {n +5 ZI: Jicy(7 - ¢?)
2
+ 5 (pim — 756m) (C1Cm — im) 22]
I m
2
+h3;qlcl(%—1)} ’ lbm =1, 5, k,

in which h = \/m/kT; C; = h(v -i); and §;,, is the Kronecker delta in the normal
sense. J; denotes the full-range number flux in the /th direction; and p;, and ¢
are the full-range (Imth direction) momentum flux and the (/th direction) energy

flux per unit mass, respectively. The results of half-range integration over v/-i < 0

are
n J; h n

J =2t ——(ps— — 23
' hv2m 2 + 2v/2m (p h2) (23]

R 2n qi 1 6n
%= paan 2+2h\/57F(p +pi5 + Pk~ 73) 124]

n J: h2 R
J- = A@) _ 7 40/2) _54(7/2)] _ LT 41/2) _ 4(5/2)

WM he/27 4 [ ] 2 [ ] 25]

n

- + ﬁ—z—%{(l)ﬁ? hz)A(S) + (Pu‘ + pjj + Prk — %721) (A(a) - A(Z))}
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and

- _ _2n 3 35 J; 7/2 9/2 q 9/2 7
oy = h3mA()—§E§[A( 12) — A8/ )] _Z[7A( /2) _ 5 Al /2)]_

| | 26]
+ 2h\1)27r {3(p “ }%) AW+ (pii + pjj + Prk — %’;) (3A(4) - 2A(3)) },
where
n T n T: n
A" = (757) ~Blg57) +B- [27]

For the mass boundary condition, we can substitute Eq. [23] into Eq. [19] and

recognize T = T, at the surface to obtain

Qg

(g — Z)hs\/Z_vr

J; = (n + h? p.i,-) (on S) , (28]

where hy = \/m/kT,. Similarly, one can substitute Eqs. [23]-[26] into the ex-
pressions of a. in either Table II or Table IIIb to evaluate the thermal boundary

condition. Maxwell’s constant opg model (from Table II) yields a simpler result,

G =13 T

1
2+ e)hgx/z'%{('y "2

+ hgf[(4 + % - %)pa T o+ Pkk]}

(on 8), [29]

where € = amas — an — 055 7 = 2(1 — og)an; and = yoe /(s — 2). The
thermal boundary condition found by using Epstein’s model is considerably more

complicated and thus is not presented in this note.

DISCUSSION

A major assumption in this work is the validity of Eq. [15], where the probabil-

ity of the sticking of an incident molecule with velocity in the range (v/,v' + dv’),
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Bs(v') was approximated as equal to the overall sticking probability, as. This

situation can be realized for the following two reasons:

(4)

(B)

The calculation of the accommodation coefficients where §s(v') is involved (Eq.
[141) conté.ins integrations over all possible incident velocities weighted by the
incident ¢(v') flux. The distribution function f is customarily expressed as
the sum of its equilibrium value, fo, and higher-order perturbation terms (e.g.,
Eq. [22]) If the system is not highly departed from the equilibrium condition,
the leading term f; dominates the higher-order terms. Because fo behaves as
a Maxwellian-type exponential decay in the high velocity range, Bs(v') can be

approximated as a constant by substituting the nominal value of v'.

The molecules in a transport process tend to follow the direction of the mean
velocity. If this direction, for example, is perpendicular to the boundary sur-
face, one expects that the number of grazing molecules should be much less
than the number of normally incident molecules. Furthermore, because values
of fo do not depend on the velocity direction, the influence of velocity direc-
tion oﬁ the integrations of 3s(v') enters only into the perturbation terms of f.
Therefore, it is reasonable to assume that 3s(v') is independent of the velocity

direction and is a constant.

We would also like to remark that many articles (for example, see Ivchenko

(7)) define the mass accommodation coefficient, ag, from Eq. [12] by setting ¢ =1

without neglecting the second term in the denominator in Eq. [12]. This is not

appropriate because by saying mass accommodation we mean that the trapped

molecules on the surface will not be scattered by any mechanism. The theoretical

calculation by Narsimhan and Ruckenstein (8) of aerosol coagulation is a special

result that corresponds to choosing as = 0 and apy = 1 (e was named the
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“momentum accommodation coefficient”). These authors proposed that the co-
agulation may occur even when a3 = 0 because of the capture of particles in the
interaction potential well which is located some distance from the collision surface.
Inv conseqm;n_ce, the calculated “sticking probability” is in fact the probability that
the two associating particles form a doublet. Mork et dl. (9) and Sitarski and
Seinfeld (10) used the thermal boundary condition in which ay = 0, though it was

not mentioned explicitly.
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CONCLUSION

Here we present definitions of the sticking probability (Egs. [4] and [5]) and

the accommodation coefficients (Eq. [12]). The sticking probability is defined as
the fraction of the total incident molecules that will not leave the surface. The
accommodation coefficient of a quantity ¢ is defined as the ratio of the net ¢
flux to the ¢ flux when all the molecules accommodate with the surface before
they lea.vé. We show that when a; = 0, the momentum and energy accommoda-
tion coefficients are equal to the constant phenomenological Maxwellian coefficient,
o. For cases where o = 1, all the accommodation coefficients have the value of
unity. The tangential momentum, due to its symmetry, has the accommodation
coefficient independent of the fluxes for Maxwell’s constant ap; model. We also
show the rﬁa.ss and energy boundary conditions that are calculated from the corre-
sponding accommodation coefficients. In general, accommodation coefficients are
functions of the full-range mass, momentum and energy fluxes. In consequence, the
boundary conditions will be altered if the transport process is changing. Finally,
accommodation coefficients of momentum and energy will always be greater than
the sticking probability, since at least an a, portion of the total incident molecules

is fully accommodated with the surface.
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Table I
Equilibrium Emerging Fluxes as Functions

of the Incoming Fluxes in Eq. [12]

#(v) Incoming Equilibrium
Flux® Emerging Flux
1 J- (1—a)d”
vl 5 (1 - @)} /7T f2m
v xi p,k—p.] 0
v? /2 q; 2(1 - o,)J kT, /m

Jorico V' -HlF (V1) @V

=3 Jorico VIV -l (V) dv'; and

= fv'.i<0 IV' ) il |V' ’ m!f— (vl) dv', where m= 1, j, or k.
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Table IT
“Accomodation Coefficients and Emerging Fluxes as Functions

~ of the Incoming Fluxes by Maxwell’s Prescription of ay

o(v) Emerging Accomodation
Flux Coefficient, a(¢)
1 (1—a,)J a, °

. _ (l_aM)as p_
v-i oy (1—a)J Ak, [2m  ay + =
vl u(l = )J7VARL2m oyt e

+(1 - ) (1 — an)p;
vXxi (1— )1 — am)x oy + 0 — g
(p;; k — 2, J)

(1—om)o g
g, —2(1—o)J kT, /m

v? /2 2(1 — o)y J kT, /m oy +

(1~ a){1 - au)q;

a. Definition of o,
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Table IIla
Emerging Fluxes as Functions of the Incoming Fluxes

by Epstein’s Prescription of ay

é(v) Emerging
Flux * & ¢
1 (1—a)Jd”

v - i 1 - ), APD kT, [v2m AP

+(1 - ea)p; — (1 —a)p;; .,

v xi (1-a)(p; — P, )k

—(1-a)(p;, — Pir oy )

v? /2 2(1 - o) J, KT, A /maAl?

+(1—as)g; — (1 — a)g

S ¥ ¢

a. J7,q ,and p, (m =1, j, k) are defined in Table L

t

b. iaw = Jvrico O (V)|v' -1 f (V') av';
ooy = % vii<o OM (v’)v'2|v' -i|f~(v') dv'; and
Prman = Jorico @ (V)Y -m|[v' - i|f7 (V') dV',

where m=1i, j or k.
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Table ITIb
Accomodation Coefficients as Functions of the Incoming

Fluxes by Epstein’s Prescription of oy,

é(v) Accomodation Coefficient, a(¢)

1 o

ap; /(L= ) + ;.. — I A /AkT, [V2Zm AP

v- i
vl p/(1— o) — J; \/xkT. 2m

v X i [(asp:g +pi—j,aM - aspij,au)k - (aspi_k +p€_k,aM

—0uPih 0 )i] /(P K — 9 0)

gy [(1— o) + 47, — 20, KT A /mAl”
g /(1 —a)— 2J;” kT, [m

v? /2
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ABSTRACT

For the Brownian coagulation of aerosol particles in the transition regime of
Knudsen n;nnber,in the presence of an interparticle potential, the Fokker-Planck
equa.tion is solved by using Grad’s 13-moment method. Mass and energy accom-
modation coefficients are interfaced with the Fokker-Planck moment equations
through the use of half-range fluxes. Analytical solutions of the potential-free
situation are obtained for arbitrary values of the accommodation coefficients. Nu-
merical solutions of the number and energy flux profiles for a repulsive or an attrac-
tive interparticle potential of power-law form are obtained by a two-dimensional
shooting scheme. This numerical algorithm is further applied to calculate the co-
agulation coefficient between two transition regime particles under either a van der
Waals potential or a Cdulombic potential. The results are in good agreement with
those predicted by the flux-matching method of Fuchs. The present fundamen-
tal approach, therefore, provides theoretical support of the coagulation coefficient

expression obtained by the empirical flux-matching method in the presence of an

interparticle potential.
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INTRODUCTION

Predicting the rate of Brownian coagulation between particlés has long been
of major interest. While the limiting cases of free-molecule and continuum regime
coagulation are well established, coagulation in the transition regime of Knudsen
number (Kn~ O(1)) has remained an elusive problem. There are generally two ap-
proaches to obtain expressions for coagulation coefficients in the transition regime:
the flux-matching method and solution of the Fokker-Planck equation (FPE). Ta-
ble I summarizes available solutions for transition regime coagulation classified by

approach and by the absence or presence of interparticle potentials.

For coagulation in the absence of interparticle potentials, Fuchs (1) proposed
the so-called limiting sphere flux-matching method that interpolates between the
solutions for Kn<< 1 and Kn>> 1. Dahneke (2) used the same method by an
analogy to the condensation problem. Sitarskiand Seinfeld (3) were apparently the
first to use the FPE and the Grad’s 13-moment method (4, 5) to derive expressions
for the particle coagulation rate. That approach was further pursued by Mork et
al. (6). Harris (7) used the Lees two-stream distribution function method to
solve thé three-dimensional FPE. Sahni (8, 9) solved the FPE by expanding the
distribution function in terms of Legendre polynomials and Burnett functions. In a
similar approach Kumar and Menon (10) carried the Burnett expansion up to the
seventh order. Loyalka (11) applied a variational method of solving the Bhatnager-
Gross-Krook (BGK) equation for condensation (12) to the problem of potential-free

coagulation.

In actual practice, particle coagulation rarely occurs in the absence of interpar-
ticle forces. For example, there is a Coulombic interparticle potential between two

charged colliding particles, and there may exist instantaneous van der Waals forces
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between two uncharged particles. Therefore, to obtain an expression for the coag-
ulation rate in the presence'of an interparticle potential in the transition regime
of Knudsen number is a natural extension of the earlier work in the potential-free
case. Ther;a are several papers that use various flux-matching methods to obtain
the coagulation rate in the presence of an interparticle potential. In the Appendix,
we present the most popular method of Fuchs (13) and show how it reduces to
the Fuchs potential-free situation (1). Narsimhan and Ruckenstein (14) considered
the influence of interparticle forces acting within a short distance of the collision
surface and matched the heat and mass fluxes with the solution of Mork et al. (6).
They found the lower bound (for two small particles) and the upper bound (for
two large particles) of the particle collision rate. However, their final expression
does not give the well-known correction factor in the presence of a potential in
the continuum regime, because it was assumed that the potential-free solution of
Mork et al. is valid over the far field. Alam (15) used the interparticle potential
free-molecule collision rate expression obtained by Marlow (16) and matched it
with the solution of continuum theory by the limiting sphere method. The expres-
sion of Marlow itself, however, is only valid for situations of monotonic attractive

potentials.

It is useful at this point to make some remarks on the flux-matching method.
First, the transition regime rate obtained by the flux-matching method depends, of
course, on the coagulation rates in both the continuum and free-molecule regimes.
The proper coagulation rate expression in the free-molecule regime in the presence
of an interparticle potential is, however, still controversial. For example, the ex-
pressions of Fuchs and Sutugin (17) and Graham and Homer (18) were criticized
by Marlow (16) for employing the assumption that all the particles possess equal

kinetic energy. Marlow’s expression was obtained first by an integration over the
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incident trajectories, then by an average over the Maxwellian Velocity distribution.
Brock and Hidy (19), who solved the linearized Boltzmann equation, also obtained
an approximate formula for free-molecule coagulation with an interparticle force.
In a recent paper of the authors (20), Marlow’s approach (16) has been pursued
in SOlving the BGK equation to evaluate the coagulation rate at large but finite
Knudsen numbers in the presence of either a monotonic or nonmonotonic singular
attractive contact potential. Because of the empirical interpolation of the two lim-
iting regimes, information on the moment profiles (i.e., mass and energy fluxes as
well as concentration as functions of radial distance) supplied by the flux-matching
method in the transition regime is less accurate than the more fundamental solu-

tions obtained by solving the FPE.

In the FPE approach to interparticle potential situations, Sceats and co-workers
‘ (21-23) projected the three-dimensional FPE into one dimension; the elimination
of coordinates is equivalent to assuming that the particles are rapidly thermalized.
The rate expression was then obtained by adopting a one-dimensional Kramers
reaction model (24). That is, two free-molecule particles coagulate as if there is
a one-dimensional diffusion of the quantity n(r)r? along the two-particle reaction
path. Bﬁrschkd and Titulaer (25-27) considered the situations of a uniform (con-

stant) potential by solving the one-dimensional FPE.

The reduction of the 3-D FPE to the 1-D FPE, i.e., the average of the Boltz-
mann factors of the centrifugal potential (or the tangential kinetic energy), is less
a.pprdpria.te in the free-molecule regime because the relaxation time scale is rel-
atively large ih comparison to that of the transition regime. The advantage of
the 1-D approach, on the other hand, is that it is simple to describe coagula-
tion between high dénsity particles in which particles are rapidly thermalized. A

drawback of the FPE approach, in general, is that the solutions do not approach
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the correct limiting coagulation rate in the free-molecule regime. For example,
in the potential-free situatioh there is a factor of 2/3 offset by using Grad’s 13-
moment method (6, 9) and a factor of 0.881 offset by using the Lees two-stream
method (10) These deviations are inherent in the reduction of Eq. [1] (FPE of
12-dimensions in the phase space) to Eq. [9] (FPE of 6-dimensions in the phase
space) of this paper; an exact reduction must give a nonlocal FPE corresponding
to an equation of motion of a non-Markovian system. The free-molecule solution
deviations may also arise from the truncation of the infinite number of moment
equations. A strength of the FPE method, on the other hand, is that the solutions
of the transition regime coagulation rate do not depend on the a prior: knowledge
of the free-molecule regime; all the information on the continuum-transition regime
can be obtained through a first principle analysis of the particle Brownian motion,

rather than on empirical interpolation.

As indicated in Table I, the goal of the present paper is to consider Brownian co-
agulation in the presence of an interparticle potential through a three-dimensional
FPE approach. We start by using Grad’s 13-moment method (4, 5) to expand
the distribution function and then evaluate the Fokker-Planck moment equations.
By the spherical symmetry assumption, we obtain three equations governing the
concentration, number and energy fluxes. The boundary conditions of these dif-
ferential equations are further interfaced with mass and energy accommodation
coefficients (28). In the potential-free situation, analytical solutions of the govern-
ing equations are available. The coagulation coefficient (Eq. [55]) reduces to the
| previous4potehtia.1-free result of Mork et al. (6). Comparisons of the potential-
free expressions by various theories are tabulated in Table II. For situations in
the presence of a potential, owing to the correlations of the boundary conditions

and the highly nonlinear expressions of most interparticle potentials, one needs to



seek numerical solutions. In this regard, we construct a two-dimensional shooting
scheme for solving the govefning equations. Influences of both repulsive and at-
tractive potentials on the moment profiles are illustrated by assuming a power-law
pofenti,al fc;rx_n. Finally, we give a comparison between the predicted coagulation
coefficients of the present work with that of the Fuchs flux-matching method for
situations of equal-sized particle coagulation in the presence of either a Coulombic

or a van der Waals interparticle potential.

THE FOKKER-PLANCK EQUATION (FPE)

In describing the motion of two colliding aerosol particles that undergo Brown-
jan motion, we denote f(2) (ry,c1; T2, ce)dride;drade; as the probability of finding
the ﬁrst particle in Volﬁme element dr; with velocities in de; and the second par-
ticle in volume element drs with velocities in dcg. This two-particle distribution

function satisfies the Fokker-Planck equation (29),

af@
dat

te1 Ve S0 +e5- Ve f(2)+-— v f(2)+— Ve /O
ma

=g1vcl-[(cl—u(rl))f<>+’°—1‘ Ve, f®)]

+ §2Vc2 ' [(02 - 11(1'2)) (2) + V f(z)]

where m; is the mass of the sth particle (1=1 or 2); X; is the total force acting
upon the tth pa.rticle; u(r;) is the local mean velocity of the fluid at the position
r;; and ¢; = 6mug R;/m;C, ; is the friction coefficient of the ith particle, in which
g is the ‘ba,th gas viscosity, R; is the ¢th particle radius, and C_; is the sth particle
slip correction factor. The quantity c¢; — u(r;) is known as the peculiar velocity
of particle + and will be denoted as C;. The fluid velocity is defined as the mass

average velocity of all background gas molecules and particle ¢ at the position r,
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(30),

u(r.) _ NgMg Ej Cg,j + NiMiCy

: | 2
where ng and n; are the number densities of the bath gas molecules and the sth
particle,l respectively. mg is the mass of a gas molecule. cg ; is the jth gas molecule
velocity. In general, the background gas has a much higher concentration than that
of aerosol particles, so ng >> n;. If we assume the gas molecules do not stick to the
surface of particles, there is no sink in the space for the gas molécules. Therefore,
Yj€g,j = 0 since there is no directional preference of the gas molecule velocities.
Equation [2] leads to u(r;) =~ ¢;n;m;/ngmg ~ 0, and thus the ¢th particle velocity

c; can be regarded as the same as its peculiar velocity C;.

The relaxation time scale for the aerosol Brownian motion (1/¢; or 1/¢) is
typically about 107! s, This scale is much shorter than the monomer-monomer
coagulation time scale, which is commonly around 1078 s at STP. Thus, the FPE

can be written in its steady-state form,

Vrl'f(Z) +Cy - r2f(Z) + Vclf( ) 4 22, chf(z)

3]
=¢Ve, - [le(2) + —Vclf( )] +¢Ve, - [sz(z) + —V02f ]
mi »

In the absence of external forces, the only force acting upon both particles is the
interparticle force along the line joining the centers of the particles, X; = —X,.

Introducing the center-of-mass coordinates of distance R and velocity C

__ MmyT; + maely C = miu; + MUy 4]
mi ’+ me ’ m1 + mo ’

and the relative coordinates r and C
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r=r; —ry; C=0C;-0C,y, (5]

 one can transform Eq. [3] in terms of R, C, r, and C (8). If the two colliding par-
ticles are exactly equal in size, the resulting equation permits a separable solution

that allows the relative motion to be decoupled from the center-of-mass coordinates

(8), t.e.,

f®(ry,Cyire, Cz) = fe(R,C)f(r,C) [6]
which yields
kT
C-Vrfe= Ve [Cfet 5=V 7
m
and
X kT
C:Vef + 5 - Vof =5Ve- [cr+ m—/Zch] : 8]
where ¢ = ¢4 = ¢, m = m; = mg, and X = X; = —Xj3. The simultaneous

movement of the two colliding particles is described by Eq. {7]. For coagulation,
the appropriate equation is Eq. [8] since it governs the relative motion between
the particles. The distribution function f (?) is not separable for two particles
of different sizes because the friction coefficients as well as the particle masses
are different. However, for two particles of slightly different sizes, such as in a
monodisperse aerosol, and in nucleation processes where all the clusters have about
the same size, one can still approximate a separable solution of Eq. [3] and obtain

an equation similar to Eq. [8] that governs the relative motion of the colliding

particles,

C-Vuf +% Ve = ¢Ve- [CF + Vo]



- 33 —

where p = mima/(m1 + mz) is the reduced mass, and § = ¢1¢2(m1 + ma)/(mig +
ms¢z) is the effective friction coefficient (8). The latter expression is in agreement
with the additivity of the two particle Brownian diffusivities (D = Dy + D;) with
~ the Einstei;l relation (D; = kT /¢m;).

A typical example of the “collision” of two particles with quite different sizes
is molecular condensation onto a droplet. In such a case, one can simply assume
that the larger particle (#1) is fixed relative to the smaller one (#2). Hence in
that case we need only to solve the FPE governing the singlet distribution function
f(1). This, again, reduces to Eq. [9] if m1 >> mag, and |Ci] << |C3|. For the
situations that the two particles are of different sizes but not extremely unequal,
Eq. [9] is still approximately valid since it is the limiting form for the two situations
discussed above. Therefore, Eq. [9] will be used as a starting point even when the

two particles are of different sizes.

THE MOMENT EQUATIONS

Equation [9] can be written in the form (3)

R’F -V,g+v-V.g = héV, - [wV,(g/w)] , [10]
in which the following change of variables has been employed,

v=hC ; h=+/u/kT
g(r,v) = f(r,C)/h® ; F=X/u=-V® 1

w(r,v) = egp(-v“‘ /2 — ®(r)h?)/(2m)* .

F and @ are the interparticle force and potential per unit reduced mass, respec-
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tively. - Grad (4, 5) expressed the distribution function as an expansion of the

Hermite polynomials and truncated it at the third order,

] g(r’v) = w(r,v)ne ,[a(O) (r)H(O) (v) + Z agl) (r)H(I)(V)

1 12]
4= ZZ (2) H(Z) ) 10 Zaga) (r)Hfa) (V)] s
where
HO —1 ;a9 = n(r)exp(®h?) /ne
Y =y i aM) = hji(r)exp(@h?)/nco 13
13
HY =vw;—8; 5 ay = hipis(r)exp(®h?) /neo
H,(?’) = v;(v? —5) ; ags) = [2h%¢i(r) — 5hji(r)]exp(®h®) /nco
and
nir) = [ 1dC = [ gav
1
]1(1') = /;}fc.,' dC = E vgvi dv
5,]‘17.(1‘) 1 [14]

The summation terms in Eq. [12] are performed over the Cartesian coordinates,
1, ] =z, y, or z. The relative motion of the two particles can be viewed as that
of a fictitious particle of mass 4 moving toward a massless target particle whose
radius is the sum of the two particle radii. Consequently, the physical meaning of
the parameters in Eq. [14] can be related to the fictitious particle as follows: n(r) is
the number density; j;(r) is the sth direction number flux; ¢;(r) is the sth direction
energy flux pef unit mass; and the first term in the p;; expression, [ fC;C;dC, is
the ¢j-th direction momentum flux per unit mass. The function ne in Eq. [13] is
the number density at a distance far from the collision surface, ne, = n(r — 00).

Grad’s expansion (Eq. [12]) is sometimes referred to as the 13-moment method
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because 13 distinct moments of the distribution function f are involved (s.e., one
moment in the n scalar, three in the 7 vector, six in the p tensor, and three in the

q vector).
The Hermite polynomials obey the following recursive formulas (4),

v HO = HY

ka-(l) = H(z) + 5¢kH(o)

[15]
vk H(Z) _ H(3) +5 H(l)
Hz(g3l) — H( )l +51.kH( )+6]kH( ) +6lkH( )
in which
H( ,Z = vV — (vibjk + V6 + vEbij)
Hz(jIZI = VU V4V — (v.ivj6k1 + v;u 65 + viv6jk [16]

+ vjvEby + viuibig + vrvibif) + 836k + 6k b1 + bk

are the third- and fourth-order Hermite polynomials. The function H; @) in Eq.

[13] is a truncated third-order Hermite polynomial; I-Ii(?’) =3; Hff J) = v;(v? — 5).

Because the Hermite polynomials are the eigenfunctions of the so-called Fokker-

Planck operator, V, - [(WwVy(.)],

V- [wV HM| = —mwH™ [17)
one can use Egs. [12], [15], and [17] to transform Eq. [10] into

h Z Fy [ MO 4 Z dDHW % (E HY —200)

i1 za ) (58 +5kH(°))]+—Z—k(Xk) 18

(Za(l) H +Zz (2) H(2) + - 5_3) H£(3)) ,
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in which

Xk(r v) = a(O)H'(l + Z (1)( 1'(:) + 6ikH(0))
AETOE )

137

+ = Zaﬁ‘” [ (B + 8aH + 26, HY)]
J

The orthogonality of the Hermite polynomials can be expressed as (4)

/ex (—f)H(”)H("‘)d = bmnbi;(2m)%/% m! 20
L EXPUT o) T V = Smnbi;(2m)°/ " m! 20]

where 6; is unity if i = (44, 43,..., ¢) is a permutation of j = (j1, J2,..., Jm) and
zero otherwise. The moment equations can be deduced by multiplying both sides
of Eq. [18] by wH (m) where m= 0, 1, 2, or 3, and integrating over v. Using the

orthogonality, one finds

Ok
— =0 21
Ek: ar, (21
( 5~ F) +h }k: o = i [22]
1/. . dq Aqm Oim gy,
— — | —— ———me —_— _— = = 3
5 (JlFm. + Fl]m) 5 (3 + ar, ) + 5 Ek: ary Epim [2 ]

) a
22 Pk _ gp? Zk:mka + 5;(; Pkk) —h*Fy Zk:Pkk

= —3¢(2h%q — 53)

[24]
Egs. [21]-[24] compose a set of 13 equations that can be solved for the 13 unknown

‘moments subject to appropriate boundary conditions.

Instead of solving for the 13 moments simultaneously, one notes that the pres-

sure terms in Eqgs. [22] and [24] can be eliminated by substituting Eq. [23]. The
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resulting equations, together with Eq. [21], can be used to solve for the seven

moments 7, j, and q independently. These equations in vector form are

V.j=0 v=v,), [25]
Vn — h2nF + ;’—Z[j(v-F) +F-Vj+j-VF|
[26]
- 'g‘g{svzq +2[V x (V x q)|} = —¢n’j,
and
h2 [ZF(j F) - %F(V .q) +j(F-F) - %%;F,-vq,- - ;(F - Vq)]
~[VG-F)+i(V-F)+F-Vi+j- VF| [27]

+ %qu—i- g[v x (V x q)] = 36(2h2q - 5j) )

in which the ith components of vectors j, q, and F are j;, q;, F, respectively. In
the next section, these equations are nondimensionalized and are further simplified

by assuming spherical symmetry.

SPHERICAL SYMMETRY AND NONDIMENSIONALIZATION

For aerosol collision processes, we can assume that the fictitious massless par-
ticle is spherical and the interparticle potential as well as the moments (t.e., n, j,

and q) are functions only of the radial distance between the particle centers, r. Let

us denote

i=j- ; a=q- ; F=F- . 28]
r r r

If collision is considered to occur once the distance between the two particle
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centers is less than a certain range R (i.e., the collision surface), the dimensionless

group k& = (R£R)™! has the significance of an effective Knudsen number,

v 1\ /1 ’
) (——) (—) (therma.l) (rela.xation time in) (pa.rticle—-ba.ckground gas
= 1 _ h __\ speed background gas - mean free path
k= h - - collision surface particle
R R
distance radius

The characteristic length scale for the Brownian motion Fokker-Planck moment
equations [25]-[27] (or [21]-[24]) is xR. The physical significance of the latter is
the effective mean free path of the fictitious incident particle. The time scale is the
Brownian motion relaxation time, 1/£. The determination of the location of the
collision surface R is addressed in a later section. We can nondimensionalize the
moment equations according to the above characteristic scales. The dimensionless

moments, force, and potential are, therefore,

A=nR%* ;  j=jRMP/¢
§=q/8 i &= (h¢R)T
A . [29)
#=r/Rk ; F = F/Rk€? = —do/d?
@ = ®h’
and the moment equations [25] to [27] become
& 25
4+ _9 30
# 1 130
di d® .d2® 3,d% 2d§ 24§ .
— A — e — = -3 31]
FhG g sGatig A= 31
d?q  2dj 2q 1dd, ~dd _d§ &
= 153 145
P ST R TIPE ( rr T ) 32

5d<I>dJ ~d2d 15, .
=( 3 )ZH(24—5J)

g di T

Equation [30] has the solution 3 = A/ #2, where A is a constant. At the collision
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surface r = R, # = 1/k and ] = Js = Ax2. If the concentration at infinity (o) is

known, the coagulation coefficient is then determined from

4m R? 4 A A
~ il = —4wRDk , [33]

K=-— PR —
g 7 =73 €2 Aoy froo

where D = kT /¢éu = 1/¢h? is the Einstein relation for the Brownian diffusivity.
The value of A is correlated with other surface quantities (i.e., surface concentra-
tion fis, and surface heat flux §;) through the accommodation conditions at the
collision surface. Therefore, in the next section we discuss the mass and energy
accommodation conditions and show how they interface with the governing equa-
tions [30]-[32]. In the subsequent section, we present a numerical scheme that can
determine the value of A by solving Eqs. [31] and [32] simultaneously with the use

of the accommodation coefficients.

MASS AND ENERGY ACCOMMODATION

In a coagulation process, the incoming number or energy flux is different from
the corresponding outgoing flux depending on the surface conditions. Therefore,
to discuss the mass and energy accommodation at the collision surface, we need to
introduce the concept of “half-range fluxes” (28), in which only half of the velocity
space (i.e., all particles with velocities that have the same sign in one specific direc-
tion) is considered. In our present work the corresponding half-range distribution
functions are, therefore, defined as f£(C) = f(C)H(C, = +); where C, = C -,
and H is the Heaviside function. If one focuses on the collision surface, f~ and
f* represent the distribution functions of the incoming and outgoing particles,
respectively. Consequently, the half-range number and energy fluxes are defined

as the first and third moments of the half-range distribution functions (recall Eq.



(14]); i.e.,

%= [ C.r*(©)dc | [34]

1 2 v gt
zfcc C,fE(C)dC , [35]

)
Il

where in both equations the integrations are carried out over the entire speed range,
—00 < |C] < co. Upon using the Grad expansion of the distribution function, these

half-range fluxes can be evaluated analytically in terms of the full-range moments,

+ n 7 h
=——tTt—— 36
J hor 2 2vemlT 36}

2n 1 q

+

= + 3Py + + = . 37
= 5 a2 £ 137)

Equations [36] and [37] give j = j* — j~ and ¢ = ¢+ — ¢~, which are in agreement

with the definition of half-range fluxes.

For mass accommodation, there is a fraction of the incident particles that will
permanently stick onto the collision surface. Energy accommodation occurs when a
portion of the outgoing energy flux has fully equilibriated with the collision surface.
We can illustrate these phenomena by considering the “stickiness” and “stiffness” of
the collision surface. For example, a stickier surface can withhold more impinging
particles and thus has a higher mass accommodation. A stiffer surface is expected
to have less ability in equilibrating with the incoming fluxes and should have a
lower .energy accommodation. Since microscopic surface properties are generally
unknown, phéhomenological models are often employed to represent the energy
and mass accommodation. For example, we can assume that all incoming particles
have the same probability of sticking regardless of their incident velocity directions

(28). This assumption permits using only one single-valued mass accommodation
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coefficient (iﬁe.,‘the sficking probability), ag, to specify the degrée of “stickiness.”
The most commonly used model for particle reflection (s.e., the degree of “stiff-
ness”) at the collision surface is one proposed by Maxwell (31), who assumed that
a nonsticki;lg incoming particle is either trapped on the surface momentarily and
then emitted in all directions (i.e., diffusive reflection), or bounces off immediately
like a billiard ball (i.e., specular reflection). The probability of diffusive reflection
is called thfa Mazwellian coefficient and is denoted as apg. Assuming that oy does

not depend on the incoming particle velocity, one obtains the following relation

between the half-range distribution functions (f* and f~) at the surface (28),

m

frv) = (1 - as) { ar;'l‘* i~exp (_02_2) +(1—am)f (v - Zv,r)} ., [38]

where we have used v = hC (Eq. [11]). The two terms on the right-hand side
represent contributions from diffusive and specular reflection, respectively. The
assumption that the collision surface temperature, T, is equal to that of the back-

ground gas, T, is implicit in Eq. [38].

Physically, the accommodation coefficient is the ratio of the net flux of a quan-
tity to that of the equilibrium (fully accommodated) situation. Therefore, the mass

and thermal accommodation coefficients, ag and o, are defined as

. . — +
J -1 q9 —4q
ag="—"— ; QQ=-— -+ onS) , 39a,b
J =L (@) 592,
in which ¢° = 2(1 — ag)j~/h? is the equilibrium emergent energy flux from the
surface; it is found by setting ays = 1 in Eq. [38], multiplying v2/2, and integrating

over v. Note that when all the particles stick to the surface, there is no equilibrium

emergent number flux. Therefore, the denominator of the ag definition in Eq.
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[39a], which represents the equilibrium net number flux, is just j~. Figures 1 and

2 schematically interpret both accommodation coefficients.

" Due to the difficulty in measuring the thermal accommodation coefficient, Eq.
[39b] provides a relation between a, and the Maxwellian coefficient, am. For
arbitrary ayg, we can again take the second moment on both sides of Eq. [38] and

obtain ¢* = 2(1 — ag)am i~ /h% + (1 — as)(1 — ap)g™. This leads to

(1 — am)asg™
¢~ —2(1 - ag)j~/h?

0. = ayM + [40]

The number and energy surface boundary conditions are the corresponding full-

range fluxes evaluated at the collision surface (r = R),

Js =i — 35 = —asj; [41]
_ Qedy _
¢ = a7 — g5 =2(1 - as) =5~ — @ed; [42]

in which the subscript “s” denotes the surface quantities. The half-range fluxes on
the right-hand sides of Egs. [41] and [42] can be replaced with the full-range fluxes
from Eqgs. [36] and [37]. However, the pressure terms in the latter two equations

need to be further related to j and ¢. From Eq. [23],

DPrr = E —‘5‘8;‘"'5;‘ [43]
_ 1y dg 2q [
;Pkk = E(JF iy ) 44]

Upon combining Egs. [36], [37], and [40]-[44], and nondimensionalizing according

to Eq. [29], the surface boundary conditions become
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~

" R d -
Byifig + Bpags + and_;\l' s = Brp4Js = A’Can‘l ‘ [45]
l\‘ A dA ~
Beifis + Be2qs + BeSd_Z s Besjs = A’CzBe‘l s [46]
where
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Bps = —3Bn1/10 ; Byy = —v27 + EBnlgls
and
Bel =as/7r
1 1 1 1 K
Bes =\/_2=7r(1 - Eas — EaM + EasaM) — 5(30% + 405 — SaSaM)
[48]
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The coefficients in Egs. [45] and [46] with subscripts “n” and “e” denote the

number and energy accommodation conditions, respectively.

TWO-DIMENSIONAL SHOOTING SCHEME

In this section, we first summarize the governing equations and boundary con-
ditions. Then a two-dimensional shooting algorithm is presented for obtaining the
numerical solutions of number and energy fluxes in the presence of an interparticle

potential. Finally, we will discuss the appropriate definitions of the collision surface

for different situations.

Governing equations and boundary conditions. Our governing moment equa-
tions are Eqs. [30]-[32]. The solution of Eq. [30] is j = A/#? with an undeter-
mined constant A. The boundary condition of the first-order ODE (31] is that

fi(f — 00) = fie. The boundary conditions of the second-order ODE [32] are that
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at # =1/ K, G = §s, and that § is finite when 7 approaches infinity. The solutions
of Egs. [31] and [32] need also to satisfy the surface accommodation conditions,
Eqgs. [45] and [46]. In general, since only the concentration at infinity (fie) and
~ the & Value are given, one needs to guess the initial conditions for Egs. [31] and

[32] and iterate to shoot for correct solutions.

Two-dimensional shooting scheme. In order to calculate the coagulation coef-
ficient (réca.ll Eq. [33]), the A value must be determined by simultaneously solving
the governing equations [31] and [32]. For a given < and an initial guess of the fi,
and A values, Eqgs. [45] and [46] give the values of §, and d§/d?|;. The latter are
used to solve Eq. [32] by checking whether § is finite at large #, in order to obtain
an appropriate value of A at a given guess of #;. This is the first shooting (t.e.,
find A at a fixed fis). To shoot the next guess of the 7, value, we take advantage

of Eq. [31] which gives the relation

o 2 F 2 ~ ~
. ey | A(d°® 3,d*q  2d§ 2§ .
fia = exp ‘I’s){“‘” fyae [“z(:rz D+:(5a+55 )| 4 - (49
With a newly calculated #,, surface boundary conditions [45] and [46] yield new
values of §; and dg/ d?"'ls, and the entire procedure can be iterated until both 7,
and A converge. Therefore, for a known potential ® and a given effective Knudsen
number &, a two-dimensional shooting method is necessary to solve the moment

equations [31] and [32].

D;:ﬁm'tion of the collision surface. The choice of an appropriate collision sur-
face should take into account the effect of the interparticle potential. In the free-
molecule regime, an appropriate definition of the collision surface is where the
maximum of an effective potential occurs; the effective potential is a combination

of the interparticle potential with the centrifugal potential (16, 20). When colli-
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sions between particles become more frequent, particles may relax in the angular
direction, and the thermal évera.ge of the centrifugal potential can also define a
unique barrier that serves to determine the flux (21-23). In this paper, however,
we asSume-that radial symmetry is valid three-dimensionally in order to obtain
moment equations [30]-[32]; that is, the particle collision frequency is assumed to
be sufficiently high that the centrifugal potential contribution to the energy bar-
rier can be neglected. As a result, the collision surface location can be uniquely

determined from only the interparticle potential.

For situations of monotonic attractive potential or monotonic finite repulsive
potential, the closest distance that the two colliding particles can approach occurs
at the sum of the two particle radii, Rj2 = R; + Rz. The location of the collision
surfé,ce, therefore, is Wﬁere r = R;3. On the other hand, for situations involving a
nonmonotonic potential that has an attractive part and a repulsive part, the loca-
tion of collision surface can be characterized as where d®/dr = 0. For example, the
Coulombic potential between two particles carrying unipolar charges is repulsive in
the long range. However, when the distance between the two particle radii becomes
shorter, the electrical image force between the two particles is attractive and it may
overwhelm the repulsive Coulombic force. Therefore, in this situation, the collision
surface should be determined by setting d®/dr = 0 in order to evaluate the effect
of long-range repulsive potential to the Brownian coagulation. Another example of
nonmeonotonic potential is the van der Waals potential that is attractive in the long
range but repulsive in the very short range. To evaluate the enhancement of the
| }Browniarvz. coagulation rate by the long-range van der Waals attractive potential,
again, the collision surface should be set at where d®/dr = 0. Doing so, the effect
of short-range repuisive van der Waals potential to the Brownian coagulation rate

is not considered; instead, the phenomenological sticking probability, ag, takes into
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account any possible reflection by the short-range repulsive potential.

POTENTIAL-FREE SOLUTIONS

In the absence of interparticle forces, the number and energy fluxes as well

as the coagulation coefficient can be obtained analytically from Egs.

[31] and

[32]. The collision surface R is just the sum of the two hard sphere particle radii.

We use the notation Rjs and kj3(= 1/h&R;2) instead of R and &, in the present

case, in order to distinguish from interparticle potential situations where R # Ry,.

Equation [32], in this case, reduces to the modified spherical Bessel equation (32).

The solutions, subject to Eqs. [45] and [46], are

fi 1 3 1 s
=1-—|P+°2 ~- =
floo K12 [ + 5QK;12 eXP(XIclz X)]
i___P_
oo K172
§ 5P X 1 ¢
ﬁoo - 2'9127'2 + Q ( )exp(XK.]_z X) ’
where ,
po abezCbn 5 GaleTCln o 11
a:nbe - aebn bnae - bean 30

an = —Bn; — gl‘ilanz + 533 Bn3 + K12 Bna

ae = —Be — ngmBez + 5K%33Bes + K12 Bes

by = —gl‘élanl + K13X Bnz + k2 X% Byg — K12Bus
— 2Xk3,Bns — 2X2k3, B3

be = —§R123e1 + K19 X Beg + k33 X% Beg — K12 Bes
— 2X K33 Bes — 2X %635 Bes

cn = —Bp1 3 ce = —Be;

[54]
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and the Bs are given in Eqgs. [47] and [48] with k¥ = «;3 and & = 0. From Eq. [33],

the coagulation coefficient is

K = 47R;3DP (@=0) . [55]

For situations of ayy = 0 and arbitrary ag, Eq. [55] reduces to

—7TR120{ ( )+X( 2);) 12+X?2K'%2}/
19 X X X
(G + oyt ayrt oy + 5)m 156
2 2 .
+(—1—1+%+2‘”?+)§)12+35§n§2} (@ =0) ,

where X = 1/11/30 (same as in Eq. [53]) and ¥ = 2a,/ [(2 - as)\/27r]. This result

further reduces to the solutions of Mork et al. (6) in the case of ag = 1.

Figure 3 shows the dimensionless concentration, #/fic, as a function of the
dimensionless radial distance, #k12(= r/R13), from Eq. [50]. The collision surface
is at #x12 = 1. We note that the higher the sticking probability (ag) the lower the
concentration ;dt a giVen radial distance. Also because particles that have larger
mean free paths have more uniformity in radial concentration profiles, we note in

Figure 3 that the higher the effective Knudsen number, the closer the ratio /e

is to unity.

F{gures 4-6 show the dimensionless surface moments (i, ;’s, and §,) as func-
tions of the effective Knudsen number, x;5. Equations [50]-[54] were used in the
calculation and the surface moments are obtained by setting # = 1/k12. As ex-
pected, for a given vé.lue of k13, the higher the sticking probability ag, the lower the

surface concentration and the higher the surface number and energy fluxes. The
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stiffness parameter ap (recall that aps = 1 and O represent the perfect diffusive
reflection a.ﬁd perfect speculﬁr reflection, respectively), however, does not signifi-
cantly influence the surface concentration and fluxes because apg only determines
~how the no—nst;icking‘ particles are reflected from the surface. The surface number
flux, Js, can be related to the coagulation coefficient by equating Eqs. [51] and

[55]; one has

6l _ _K
floo 4w Ry9D 12 -

[57]

As K13 increases, the Brownian diffusivity D may also increase substantially because
the friction force on particles becomes smaller; as a result, from Eq. [57] the surface
number flux is smaller. On the other hand, Eq. [57] predicts that the surface
number concentration is small at low 2 values. This explains the decrease of the
surface number flux at both high and low Knudsen numbers as shown in Figure 5.
For the same reason, Figure 6 shows that the surface energy flux also decreases at

both ends of the Knudsen number.

Figure 7 shows the coagulation coefficient calculated from Eq. [55] as a func-
tion of the effective Knudsen number ;2 with the sticking probability ag as a
parameter. The Maxwellian coefficient, oy, was set to be unity. We note that a
smaller sticking probability will result in a smaller value of the coagulation coef-
ficient. Also larger particles are less sensitive to the value of sticking probability
than smaller particles. For example, one can compare the values of coagulation
coefficient of a larger particle with k12 = 0.1 and a smaller particle with k3 = 1;
a decrease in ag from 1.0 to 0.5 may result in a 17.9% decrease in the coagulation
coefficient for the larger particle (K/4mRy2D is reduced from 0.871 t0 0.715) and a
44.1% decrease for the smaller particle (K/4m R12D is reduced from 0.313 to 0.175).

The reason for this behavior is that the scavenging of incoming particles by the
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larger surface area of a larger particle somewhat compensates for the decrease in

sticking probability.

Figure 8 shows the influence of the Maxwellian coefficient, an, on the value
of the coaguiatioﬁ coefficient over the entire range of ag. For a given sticking
probability as and a Knudsen number ki3, a change in the mechanism of reflection
(from apg = O to 1, specular to diffusive reflection) may only result in a coagulation
coeﬂicienf change within 0.4%. At ag = 0, all the incoming particles are reflected
and thus K(apm = 1) = K(om = 0) = 0. On the other hand, at ag = 1, all the
incoming particles are captured at the surface; the value of ayy has no meaning
in this situation, and therefore K(op = 1) = K(ony = 0). For any intermediate
ag value, K(ap = 1) is always higher than K(ay = 0). This phenomenon can
be intuitively e){plained as follows: A higher value of a)ps indicates that a larger
portion of the incoming particles can é.ccommoda.te with the collision surface. In
other words, the surface is less stiff (or softer) and is able to trap more particles in

the coagulation process.

SOLUTIONS OF POWER-LAW POTENTIAL

To see the qualitative influence on the moments profiles (7, 3', and §), we

consider a potential of the form

(58]

(=
I
>

With this power-law potential, we solve Egs. [31] and [32] simultaneously subject
to the surface boundary conditions Eqgs. [45] and [46]. In Eq. [58], values of v and

A determine the shape and magnitude of the power-law potential, respectively. For
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A > 0, the potential is repulsive; for A < 0, the potential is attractive. In either

case, the potential is monotonic and the location of collision surface is r = R3.

 Figure 9 shows the predicted dimensionless concentration profile (/fio) for
five values of ag. The collision surface is at #« = 1. In the calculation, we chose
A=-1 (attractive potential), » = 6, K = 1, and ap = 0. For the same reason
as that in Figure 3, we note that the higher the value of sticking probability the
lower thé concentration profile. For situations that ag = 0.3, 0.5, and 0.7, the
concentrations near the collision surface are enhanced because of the simultaneous
short-range reflection by the collision surface and the thermalization of particles in
the attractive potential well. As the sticking probability ag increases, the surface
sink effect overwhelms the potential thermalization and thus greatly reduces the

surface concentration, as shown by the ag = 0.9 and 1.0 curves.

Figure 10 shows the concentration profiles of three different values of A. We
used ag = 1, v = 6, and k = 1. The value of apg does not influence the calculation
results when ag = 1, since the latter represents that all the incoming particles
are captured. The solid line shows the potential-free solution (A = 0), where the
concentration monotonically decreases to a minimum at the collision surface. For
A = 1, the potential is repulsive; the concentration profile is higher than that of
the potential-free situation (A = 0) in the range #x > 1.2, because particles are
barricaded by the potential in the far field. The concentration decreases fast near
the collision surface for A = 1 because of the higher potential and the surface
sink. In ’the case of an attractive potential (A = —1), particles are trapped and
thermalized in a short range near the collision surface; however, the enhancement of
concentration due to the potential trapping is compensated by the surface sink and,
in this example, the concentration profile does not exceed that of the potential-free

case near the surface.



— 51 -

In some attractive potential situations, enhancement of particle concentration
near the collision surface by botentia.l trapping is not influenced by the surface sink,
and as a result, the concentration profiles in a short range may exi:eed that of the
. pofenﬁial—fr;ee_situa.tion. We demonstrate this point by varying the power-law shape
from v = 6 to v = 2. For a constant negative A, the higher the v value the stronger
the attractive potential. Figure 11 shows the concentration profiles for different
values of v at ag = 1 (perfect sink), A = —1, and & = 1. At v = 2, for example,
the potential is stronger than that of higher values of v; the incoming particles

can be easily trapped and exhibit a higher concentration than in the potential-free

situation (i.e., solid line in Figure 9) irrespective of the perfect surface sink.

Figure 12 shows the normalized surface number flux, |Js|/fic, as a function
of the power-law potential order, v, for ag = 1 and x = 1. When A > 0, l3a| ~
constant, because a potential barrier always exists at the collision surface. For
A =0, 1, and 2, the corresponding constant values of |_;'s| /fiee are 0.313, 0.120,
and 0.042, respectively. On the other hand, for A < 0, the smaller the v value the

stronger the potential, and therefore, the stronger the surface number flux.

Figure 13 shows the isopleths of the ratio of coagulation coefficient to that
of the potential-free situation, K/K(® = 0), as functions of both the Knudsen
number k£ and the power-law coefficient A. In the calculation, the potential power
v = 6, and the sticking probability ag = 1. The isopleths values are chosen as
0.377 (retardation by repulsive potential) and 1.530 (enhancement by attractive
poteni‘.ial) such that both isopleths curves pass the point (k = 1, |A| = 1). It is
 seen thaf for a constant retardation or enhancement in the coagulation rate, an
increase in Knudsen number from 1 to 9 requires a decrease in || from 1 to 107°.

In other words, if the interparticle potential is of the power-law form as given by

Eq. [58], a small magnitude of the potential may greatly enhance or decrease the
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coagulation rate between particles of sizes near the free-molecule regime.

" Finally; we discuss a measure of the nonequilibrium phenomenon. For a true
equilibi'iu.m situation (i.e., the distribution function is Boltzmann), from Eq. [12],
the Hermite polynomial coefficients agl), agz), and a.gs) should be zero. Since the
0,53) term in Eq. [12] represents the highest order perturbation of the distribution
function from equilibrium in the Grad’s 13-moment method, therefore, to examine
whether a£.3) is zero or not is equivalent to examining whether the distribution
function is close to equilibrium such that the third—order Hermite polynomial per-
turbation term in Eq. [12] can be ignored. To justify this point, Eq. [13] requires
53' = 2¢ when aga) = 0. The physical meaning of 53' = 2§ is that the constant
pressure heat capacity has the value 5/2, which corresponds to the ideal gas (equi-
librium) situation. In consequence, the deviation of the quantity 57 /2§ from unity
can be regarded as a measure of the deviation of the distribution function from
equilibrium. Figure 14 shows the calculated 57 /2§ as a function of #& for the con-
ditions K = 1, aqy = 0, and v = 6. For # > 5, 5}'/2& =~ 1 in all the situations.
For the range 1 < # < 5, the potential-free (A = 0) curve slightly increases close
to the collision surface due to the fact that the 3 flux is enhanced by the surface
sink. This nonequilibrium phenomenon is more emphasized for the A = —1 cases
since, in these cases, not only the surface sink but also the attractive potential
itself increases the _; value. In the short range from the collision surface, however,
the A = —1 curves sharply decrease because the surface sink may attract particles
and tims reduce the nonequilibrium phenomenon caused by the over-populated
particles. For ag = 0.1, the nonequilibrium situation is more serious than that of
ag = 1 because the collision surface reflects more particles in the potential well

and, hence, increases nonequilibrium. The contrary result is found for the repul-

sive potential curves (A = 1 and 2). Values of 57/2§ are less than unity because
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3’ is decreased by the repulsive potential. These curves achieve minima owing to
the fact that 3 is again enhanced by the surface sink. Because an increase in A
represents a stronger repulsive force and a lower particle concentrétio_n, the curve

of A = 2 shows a larger deviation of 53' /2§ from unity than that of the A = 1 curve

in Figure 14.

" SOLUTIONS OF THE COULOMBIC POTENTIAL

Situations involving an interparticle Coulombic potential are considered in this
section. We will focus on the calculation of coagulation coefficient between par-
ticles by the method of FPE with the shooting scheme. The calculated results
are compared with that predicted by the limiting sphere flux-matching method of
Fuchs (1, 13).

If zp; denotes the elementary charge on the ¢th particle, the Coulombic potential

between two charged particles is

2
V _ ZP]. sze

(59]
4T €qirT

in which e = 1.602 x 1071°C; €,;; ~ 8.854 X 10712Cm 1V~ is the air permittivity.
In Eq. [59], for simplicity the image force effect is omitted. The collision surface
in this situation, therefore, is the sum of the two colliding particle radii. The

dimensionless potential ® is related to V by & = V/kT and can be further written

in the form

2
2 Zp12p2e°h€ r
¢ = : Z =" > 60
4dme i kT L

‘ﬂ>|N

Equation [60] is just of the power-law potential form, Eq. [58], with A = Z and
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For equal-sized particle coagulation, the coagulation coefficient computed by
| the FPE method with a potential given by Eq. [60] is shown by the sdlid lines in
Figure 15. Reéults predicted by the Fuchs limiting sphere flux-matching method (1)
(see Appendix) are shown by the dashed lines. In the flux-matching calculation, the
original Fuchs free-molecule coagulation coefficient in the presence of a potential
was used '(13) (recall also Table I). The conditions used in the calculation are
as =1, pp = 1000 kg m™3, 1;, = 6.86 X 1078 m, i,y = 1.83 x 107° kg m~!s™!, and
T = 298 K. One notes that these two different approaches agree Well with each

other over a broad range of particle sizes.

Figure 16 shows the ratio of the coagulation coefficient to that of the potential-
- free situation as a function of the absolute value of charge product, |2, 2p3|. Because
the particles cannot carry fractional charges, the portion of 0.1 < |2p12p2| < 1 in
Figure 16 can be realized as the probability that the particles carry integer charges.
For example, 2,252 = 0.5 may represent a group of coagulating particles, 50% of
which carry positive one charge. The coagulation coefficient K is normalized with
respect to the potential-free solution of the Fuchs flux-matching method. The
dashed lines are the result using the Fuchs method, and the solid lines are that
of the FPE method. Again, the two theories are in good agreement for particles
of sizes greater than 0.03 um. Differences between the results of the two theories
become significant for particles of sizes smaller than 0.01 gm. This may be due
to the empirical nature of the flux-matching theory, the uncertainty of the Fuchs
| expression of coagulation coefficient in the presence of a potential, or the failure
of prediction of free-molecule regime coagulation by the FPE method. The Fuchs
method, for example, may give the results that in case of 2,123 > 0 (repulsion),

K can be negative for sufficiently small particle size and sufficiently large charge
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product; e.g., for particles of size 0.01 um in diameter, K predicted by the Fuchs
theory is negative for any zp;2p2 > 1. One expects, however, that there should
always be at least an extremely small amount of coagulation due to an occasionally

. high kinetic energy in the Brownian motion.

SOLUTIONS OF THE VAN DER WAALS POTENTIAL

We now consider the presence of an interparticle van der Waals potential in
coagulation. Again, we will focus on the calculation of coagulation coefficient and
the comparison with the results predicted by the limiting sphere flux-matching

method.

The van der Waals potential between an i-mer (that contains ¢ molecules)
and a j-mer (that contains j molecules) can be deduced from the intermolecular

Lennard-Jones 6-12 potential,

o) =4(2)"- () - e

where ¢ and o are the Lennard-Jones parameters; r is the distance between two
molecules. Upon assuming a pairwise additivity of all the individual intermolecular
interactions, the interparticle potential can be evaluated from the double integra-

tion over the volumes of both particles. One obtains
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In Egs. [62] and [63], vy, is the volume of a molecule; r* is the distance corre-
sponding to the maximum depth of the interparticle potential in Eq. [61].

is the dimensionless Hamaker constant (i.e., Hamaker constant divided by kT).
Equation [62] reduces to the expression by Narsimhan and Ruckenstein (14) for

the situation of equal-sized particle coagulation.

Equation [62] can be differentiated with respect to the radial distance and set to
zero to find the location of the collision surface. The collision surface corresponds

to the distance where the van der Waals potential is at its minimum.

Figure 17 shows the ratio of the coagulation coefficient to that of the potential-
free situation (i.e., the coagulation enhancement) as a function of the dimensionless
Hamaker constant; the coagulation enhancement is due to the long-range attractive
part of the van der Waals potential. The conditions of this calculation are the same
as those in the Couiombic potential case. The results from using the present FPE

method are compared with those predicted by the Fuchs flux-matching method (1)
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at three different particle sizes. This time, the more elaborate expression for free-
molecule regime coa.gula.tion' in the presence of an interparticle potential of Marlow
(16) was used in the flux-matching calculation (see Appendix and re;all Table I).
The ma.tchin_g is henceforth referred to as the “generalized Fuchs flux-matching.”
In Figure 17, the solid and dashed lines are obtained by the FPE method and the
generalized Fuchs flux-matching, respectively. It is seen that the results are in good
agreement; small differences occur for H < 1 and at reduced particle size. The
predictions made by the FPE method are in general higher than those predicted

by the generalized Fuchs flux-matching.
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CONCLUDING REMARKS

In‘this paper, the Browﬁian coagulation of aerosol particles With an interpar-
~ ticle potential is analyzed through the use of the Fokker-Planck equation. The
particle velocity distribution function is expanded in terms of the Hermite poly-
nomials. Grad’s 13-moment method is used to truncate the distribution function
at the third-order Hermite polynomial and to obtain the moment equations. The
moment equations are interfaced with appropriate collision surface conditions in
terms of the sticking probability, ag, and the Maxwellian coefficient, oag. A two-
dimensional shooting method is used to solve the simultaneous moment equations
to obtain profiles of number concentration, number, and energy fluxes for situations

with and without an interparticle potential.

The influences of the sticking probability, potential magnitude, and potential
shape on the concentration profile were elucidated by using a power-law potential.
The incoming particles may possess a high concentration in a short range near
the target particle due to the attractive potential thermalization and/or the short-
range reﬂection by a low sticking probability collision surface. The enhancement
of particle conéentration by the thermalization effect may be compensated for by
the collision surface sink for a higher sticking probability. For repulsive potential
situations, particles may be reflected into the far field due to the higher potential

energy near the collision surface.

C<-)agula,tion coefficients calculated from the FPE method by using a Coulom-
bic potential or a van der Waals potential are in good agreement with those pre-
dicted by the Fuchs flux-matching method over a broad range of particle sizes in
the transition regime. Because the matching method solution depends upon the

free-molecule regime coagulation rate expression, we used both the Fuchs and the
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Marlow correction factors for coagulation in the free-molecule regime with an in-
terparticle potential. In eithef case, differences with the results of FPE method are
small. The free-molecule expression by Fuchs may result in a negative coagulation
raté for sufiici_ently small particles in a repulsive potential situation. Solutions of
the transition regime particle coagulation rate in the presence of an interparticle

potential by the FPE approach should be, therefore, regarded as more accurate

than the empirical matching predictions.
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APPENDIX

The Fuchs Flux-Matching Method

- with an Interparticle Potential

Fuchs (1, 13) assumed that around the fictitious target particle, there is an inner
region of length 6 in which kinetic theory situations prevail and an outer region in
which continuum transport theory dominates. The actual coagulation rate can be
deduced from the matching of the number fluxes obtained from the two theories.

This method shall, in general, be referred to as the Fuchs flux-matching method.

Table III lists the matching conditions used by different authors with or without
an interparticle potential in the Fuchs flux-matching method. Dahneke (2) and
Alarﬁ (15) chose r = R as the matching surface; Fuchs (1, 13) and Marlow (16),
on the other hand, chose r = § as the matching surface. The right- and left-hand
sides 6f the equations in Table III represent the particle incoming rates obtained by
continuum transport theory and by gas kinetic theory, respectively. In the presence
of an interparticle potential, Ef™ and E¢ in Table III stand for the correction
factor of the coagulation rate in the free-molecule regime and continuum regime,
respectively. The matching conditions of ® # 0 of Marlow (16) and Alam (15)
are analogous to that of Fuchs (1) and Dahneke (2) of the potential-free situation;
the factors E™ and E° are introduced to account for the interparticle potential.
However, this analogy is not appropriate because the continuum regime particle
infusion rate in the presence of a potential is different from the potential-free
solution multiplied by the factor E°. The correct expression obtained by solving the
Fick’s first law in the presence of a potential was given by Fuchs (13) as shown in
the last row in Tablé ITL. In this appendix, we shall briefly derive this result and its

subsequent coagulation coefficient expression. We will then discuss the expressions



- 61 -

of the correction factor E™ by Fuchs (13) and Marlow (16), respectively.

At the outer region, the Fick’s first law and equation of continuity are

dn n dV .

(Gt iTar) = A1)
4G 2
g% =0, [42]

in which V is the interparticle potential; D is the Brownian diffusivity (D = D1+Ds).
Egs. [A1] and [A2] give the solution

—jr? /°-° exp (‘i(r))

neo — n(r) exp(&(r)) = dr  (6<r<o), [A3]

D r
where ®(r) = V/kT is the dimensionless potential. The incoming particle rate

(number of particles per unit time) at the inner-outer boundary is thus

o0

_ exp(®(r) -1 .
4762 |5p=s = [5! _—(rz ) dr] 47rD6{noo —ng exp((I),;)} . [A4]
The bracket term in Eq. [A4] is the well-known correction factor of the continuum
regime coagulation rate (33), E°. The left-hand side of Eq. [A4] is to be matched

with the result obtained from gas kinetic theory.

In the inner region the incoming particle flux at r = 6, from kinetic theory,
is ngé./4;v where ¢ = {/8kT /mu is the mean velocity. With ag as the sticking
probability, thé net coagulation rate at the collision surface r = R is E™agn R%n;c,
in which E™ is the free-molecule regime correction factor for the interparticle
potential situations. The net particle incoming rate at r = R is equal to that

at r = §. The matching condition by Fuchs (13) in Table III was obtained by
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equating this free-molecule rate with the one given by Eq. [A4]. Doing so, one

further obtains

. -1
ng | A Eim asté
neo [exp (%) + 5 405 [45]
The coagulation coefficient is given by Efmagr R2nse /Moo
Emec R2 =
K= T [46]
c 2 fm XgL7C
Eexp(®;5) + E 105

In the remainder of this appendix, we will show two different expressions of Ef™
by Fuchs (13) and Marlow (16). Fuchs (13) analyzed the conservation of energy and
momentum of the two colliding particles and obtained an equation that relates the
. impact parameter, b, with the closest approach, gy, and the inner-outer boundary
distance, 6 (see Figure 18). With an assumption by Fuchs that all the incoming

particles possess equal kinetic energy, 3kT /2, the equation is

2 5 s
b = pl,[1+ 5% - &,,)] - [A7]

Figure 18 shows a physica.l interpretation of particle deflections in an attractive
force field. With a decrease in the impact parameter b from 6 to by, , the incoming
particles are deflected without collision with the target particle. For the impact
parameter b of values smaller than b,,, the incoming particles are captured by the
target particle. Therefore, in this situation, the collision surface area is enhanced.
- On the other hand, for a repulsive potential the collision surface area is decreased.

In either case, one can define the correction factor as

Em = (b—m)z (Fuchs) . [A8]
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For some functional forms of attractive potential, b,, should be obtained from
the differentiation of Eq. [A7], db/dp,, = 0. However, Fuchs (13) did not mention
that for the repulsive potential and some forms of attractive potehtia.l, b can be
found by directly substituting p,, = R in Eq. [A7]. We illustrate this by using the
Coulombic potential given by Eq. [59] as an example. Eq. [A7] in this situation

becomes

2
2 2 Zp12p2€ l _ 1
b= tm {1 + 6me kT (5 pm)] [49]

If one sets db/dpy,, = 0, there is no positive real value of b available. This means
that the b, value always occurs at p,, = R for both zp12p2 < 0 and z,2p > 0

situations. Consequently, from Eq. [A9], we have

bm 9 _ zplnge2 1 1
( R yi=1+ 6meqi kT (6 R) ) |410]

One notes for (by,/R)% > 1 (i.e., enhancement of capture cross-sectional area) for
2p12p2 < O (attractive force); (bm/R)? < 1 (i.e., decrease of capture cross-sectional

area) for zy12p2 > 0 (repulsive force).

The coagulation coefficient (Eq. [A6]), in the presence of a Coulombic potential,

becomes

K =47RD X {a42})25 - EXI;(Zplzpzez/MreairkT&)
] [((5 o E)2p12p2e2/67reairkT) + 1] [All}

-1
4me,i kT R zplngez
e lexp (2222 ) 1 .
+ 2p12p2€? [EXP(47reairkT5) ]

The expression of E™™ by Marlow (16), on the other hand, accounts for the

distribution of the incoming particle kinetic energy. The result is



— 64 —

. 5 A~ . A~
Em = _ %/ rzdi(r‘i—@) exp(—@ —:—i—@) dr
252 R . r d‘i’ Zdér (Marlow) .  [A12]
A~ r )
—am )y rg)ew-e- gy

Equations [A12] and [A6] were used in the calculation of the coagulation coefficient

in situations involving a van der Waals interparticle potential (Figure 17).

Finally, we would like to point out that Eq. [A6] reduces to the Fuchs potential-

free solution (1) given in Table II by setting both E¢ and E™ to unity and @ =0.
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ABSTRACT

Aerosol coagulation rate expressions in the presence of singular attractive con-
tact potent'ia,ls such as the van der Waals potential and the electrical image poten-
tial are obtained by integrating the characteristics of the BGK equation. The rate
expression consists two parts: (A) the free-molecule regime (Kn— oo) enhance-
ment, and (B) the first-order correction for a finite but large Knudsen number.
For situations involving either the van der Waals or image potential, we present
closed form best-fit equations for data calculated from the theory. The experi-
mental data of ionic charging of Pui et al. (9) and the data on ultrafine particle
coagulation rate of Okuyama et al. (10, 11) are compared with the predictions from
the present theory and the empirical Fuchs matching method. We have considered
the situations of a combined van der Waals, Coulombic, and image potential. The
conditions where either Coulombic, image, or van der Waals forces predominate

are determined.
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INTRODUCTION

The coagulation rate between two free-fnolecule particles may be enhanced or
retarded by the presence of an interparticle potential. For a monotonic repulsive
potential, the coagulation rate is retarded by the factor “exp[—®(R)/kT],” which
is obtained by solving the collisionless (i.e., free-molecule) diffusion equation with
a radial symmetry assumption. ®(R) is the interparticle potential at the point of
contact of the two particles. For an attractive potential, computation of the en-
hancement or retardation of the coagulation rate is difficult because the potential
can be singular, i.e., |®(R)| >> kT and exp[—®(R)/kT)] is ill-defined, or finite at
the point of particle contact, and because the potential itself can be monotonic or
nonmonotonic. Each of the attractive potential situations may lead to different
values of the coagulation rate. An example of a nonmonotonic attractive pdten-
tial is the long-range repulsive Coulombic force between two like-charged particles
in the presence of a short-range attractive image potential; the coagulation rate
between the two particles can be retarded even in presence of an attractive image

potential if the Coulombic repulsion is sufficiently strong.

In many situations of aerosol coagulation, singular attractive contact potentials,
either monotonic or nonmonotonic, occur; the condition that |®(R)| >> kT can
be easily satisfied between ultrafine particles at room temperature in the presence
of either a van der Waals force and/or an image potential, for example. The goal
of thi; paper is to perform detailed and accurate calculations for coagulation in the
presence of a singular attractive contact potential and to generalize the calculation

results into a useful form.

To evaluate the enhancement or retardation of coagulation in the free-molecule

regime, one can classify the situations into those of the “perfect” free-molecule case
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where the Knudsen number Kn— oo and those of a finite but large Knudsen number
correction to the Kn— oo case. The latter is important because free-molecule sized

particles always possess a finite Knudsen number.

- Evaluation of the coagulation rate in the presence of a singular attractive con-
tact potential for the perfect free-molecule situation (Kn— o0) has been a contro-
versial issue. For example, Fuchs (1) used the impact parameter concept to obtain
an expréssion for the enhancement factor based on an assumption that all parti-
cles possess equal kinetic energy. Sceats (2) adopted a one-dimensional Kramers
reaction model (3) to obtain an effective collision surface. In both approaches, the
collision rate is computed by first averaging over the incident particle initial veloc-
ities and then summing over the possible trajectories. The first rigorous derivation
of the perfect free-molecule coagulation rate expression in the presence of a singular
attractive contact potential was given by Marlow (4). The free-molecule coagula-
tion rate is evaluated first by an integration over the incident trajectories, then by
taking an average over the Maxwellian velocity distribution. The final expression

(Eq. [21] of (4)) is, however, only good for monotonic potential situations.

The first-order finite Knudsen number correction to the free-molecule coagu-
lation rate is not available for an interparticle singular attractive potential of ar-
bitrary form. The only work thus far is limited to ion-particle charging situations
(5, 6). In the work of Gentry (5) only a Coulombic force was considered, and in
the work of Marlow and Brock (6) only Coulombic and image potentials are taken
into a.'ccount. In both studies, different approximations were made concerning the

concentration profile for simplicity in calculation.

In this work, we shall derive a generalized rate expression for coagulation be-

tween two particles of finite large Knudsen numbers and an arbitrary size ratio in
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the presence of an arbitrary interparticle potential that is singularly attractive at
the two—pafticle contact. We’ use the same theoretical basis as in the work of Mar-
low (4) for coagulation at Kn— oo and, as in the work of Marlow and Brock (6),
calculé,ted i‘.he first-order correction for a finite large Kn. For Kn— oé, we extend
the result of Marlow (4) to include both monotonic and nonmonotonic potentials.
For the calculation of the first-order correction at a finite large Kn, the major
technique used is the so-called Knudsen iteration (7) in solving the linearized BGK
equation (8). Unlike Marlow and Brock’s work, the nonequilibrium-perturbed con-

centrations in the regions close and far from the collision surface are distinguished.

The coagulation rate in the presence of an interparticle potential can be nondi-
mensionalized by either the free-molecule potential-free coagulation rate at Kn—
oo, 7R%¢ (where ¢ is the mean thermal speed), or the potential-free coagulation
rate as a function of Kn. We will refer to the two respective dimensionless coagu-
lation rates as the free-molecule enhancement, Ef™, and the overall enhancement,
E. The terminology “enhancement” is used for both enhancement or retarda-
tion in the coagulation rate in keeping with the conventional usage. Because the
potential-free coagulation rate over the entire range of Knudsen numbers requires
other a.pproximations such as the flux-matching method, we shall generally focus
on Ef™ and evaluate its individual contributions from the Kn— oo case (Ej) and

the first-order large Knudsen number correction (E).

Examples of singular attractive potentials that play important roles in aerosol
dynamics are the van der Waals attractive potential and the electrical image po-
tential. The coagulation rate in the following situations will be first calculated:
(A) van der Waals force for arbitrary particle size ratio; (B) image force with or
without the presence of either positive or negative Coulombic potential between

an ion and a particle. The coagulation enhancement is a function of certain di-
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mensionless groups for each of the above situations, e.g., dimensionless Hamaker
constant and size ratio for sifuation (A). The free-molecule and first-order correc-
tion, Fo and F1, can be therefore represented in terms of the related dimensionless
gr(‘Jupys,. The predictions of Eq and E; for situations (A) and (B) will be presented

both by figures and closed form best-fit equations for practical usage.

The predicted overall enhancement, E, for situations (A) and (B) will be com-
pared with the ultrafine particle charging data of Pui et al. (9) and the coagulation
data of Okuyama et al. (10, 11). Predictions from the Fuchs matching theory (1) in
the presence of an interparticle potential using Marlow’s enhancement expression
(4) in the free-molecule regime are also compared with the data. It will be seen
that without an a priori knowledge of the continuum solution, the transition regime
coagulation rate predicted by the present method provides theoretical support for

the empirical flux-matching theory in the large Knudsen number regime.

Finally, we present a calculation of a combined situation that involves simul-
taneous van der Waals, Coulombic and image forces for two coagulating particles
of an arbitrary size ratio. Though the image force is not singular for a finite par-
ticle size ratio providing the charge is embodied in the particle, the combination
with the van der Waals force always makes the overall potential singular at the
particle contact. The conditions where each of the individual forces dominates are

determined.
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THE BGK EQUATION

In a coagulation process, the movement of the two particles can be represented
as a Qne—p-:a,rticle problem (12) in which a fictitious point incoming particle of
reduced mass approaches a massless target particle with a radius equal to the sum
of the two particle radii. The linearized BGK equation that can be used to describe

the two-particle motion can be written as (13)

C-Vrf+F-ch=feT—f [1]

where f and f, are the fictitious incoming particle velocity distribution functien and
its local Maxwellian distribution, respectively, 7 is the relaxation time (assumed a
constant) of f relaxing toward f, C and r are the incoming velocity and position
of the fictitious particle, respectively, and F is the force acting upon the fictitious

incoming particle per unit of reduced mass.

By accounting for the angular velocity of the incoming particle that would

contribute a centrifugal force between the two particles, the BGK equation becomes

6f+(J2 d@) of fe—f

C'E B dr/dc,

r3  dr 2]

where J = Cyr is the product of the incoming particle tangential velocity and
the distance from the target particle center, or, the angular momentum of the
incom_ing particle. J is treated as a constant in the formulation of Eq. [2] because
the angular momeﬁtum is conserved in each coagulation process. ® in Eq. [2] is

‘the interparticle potential per unit reduced mass, t.e., F = —d®(r)/dr.

We can nondimensionalize Eq. [2] according to the length scale, the sum of the

two-particle radii (R), and the velocity scale, the mean thermal speed of the two
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colliding particles (1/hk). That is,

hCr:ér; h=\/u,/kT

Jh/RZj ; t = mimgy/(mq + mq)
W =9 ; R=Ri+Ry 3]
T/hR=7 ; Neo = n(r — oo) |
f/neh®=7f ;

Eq. [2], after the nondimensionalization, retains exactly the same form as its
dimensional counterpart. Therefore, we shall henceforth consider Eq. [2] as the

dimensionless equation noting that the carat (*) is omitted.

KNUDSEN ITERATION

The right-hand side of Eq. [2] is proportional to the inverse of the Knudsen
number; we will subsequently determine a relation between the dimensionless 7

(i.e., 7) and the Knudsen number.

1/7 represents the collision frequency between the incoming particle and the
background gas molecules. From the Einstein relation, the diffusivity of a particle
of reduced mass u is related to the dimensional collision time 7 with the background

gas molecules by

p="—=_ 4]
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In the large Knudsen number regime, particles are either molecules, molecular
clusters, orv of ultrafine sizes.' For situations involving molecules or clusters, the
evaluation of the diffusivity should take into account the interaction‘with individual
backgroun(i gas molecules. Upon assuming the interaction between a background
gas molecule and the incoming particle is hard-sphere, the second-order Chapman-

Enskog solution of the Boltzmann equation predicts (14)

3

D=1+

64

308% + 168 + 13> \ 8kT

1562 + 83 + 6 T &

where § = u/mp is the ratio of the two-particle reduced mass to the mass of
a background gas molecule, and A is the particle mean-free path. The effective

Knudsen number 7 is related to the particle Knudsen number Kn = A/R by

. 3 /7 3032 + 1646 + 13
T= {E\/%(I”Lm( 1562 1 86 + 6 )}Kn 7

Ultrafine-size particles, on the other hand, are sufficiently massive that individ-

ual background gas molecule interactions are not significant, and evaluation of the
diffusivity from Brownian motion theory is more appropriate. We can focus on
the Brownian motion of one of the particles while treating the other as station-
ary; because the motion of the two particles are assumed to be independent, the
Brownian diffusivity of the two-particle relative motion is simply the sum of the
two independent particle Brownian diffusivities (15). The Stokes-Einstein formula

(15) with the slip correction factor expression (16) together gives

2 5+ 4Kn,; + 6Kn;% + 18Kn;®\ & .
D= Z 6 2 = Z Di “8.
= 7rr/R 5 — Kn; + (8 + m)Kn; ;

where Kn; = Ag/R; is the ith particle Knudsen number, D; is the ith particle

Brownian diffusivity, Ap is the background gas mean-free path, and 75 is the vis-
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cosity of the background gas. In Eq. [8], the interaction between the background

gas molecules and the particles enters via the viscosity 7.

“In the large Knudsen number regime, Eq. [7] or the combination of Eqgs. [5]
and [8] predfcts that 7 is linearly proportional to Kn (or Kn;). Therefore, 7 is
termed as the “effective Knudsen number.” We now return to the dimensionless

Eq. [2] where 7 being dimensionless (¢.e., ) is implicit.

In order to obtain the velocity distribution function in the large Knudsen num-
ber regime (Kn >> 1), we use a perturbation expansion of the velocity distribution

function f in a series of powers of 1/7 (7),

1 1
f= +_;f[1] + O(ﬁ) [9]

where the numbers in the bracket superscripts are the same as the powers of 1/7 in
the corresponding terms. fl% is the distribution function for an infinite Knudsen
number, i.e., “pure” free-molecule situation, and f [ is the first-order correction
to f ] at a finite large Knudsen number. The higher order term, the third term
on the right-hand side of Eq. [9], is known to involve more complicated functions
of 1/7 than simple powers (17). In this work, however, no higher order corrections

than the first were calculated.

Similarly, for the local Maxwellian f., we have

1 1
fe=f+=+0(3) [10

Substituting Egs. [9] and [10] into Eq. [2]| and equating like powers of 1/7, the

first two resulting equations are
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arlol g2 4@, o5l
97 ( ) _

“ o TUm T &)ec T 1]
. il J2  d®\ orflll :
o+ (5 =) 56, =1 1° v

acC, ¢

Eq. [11] is the collisionless Boltzmann equation, which has the solution, by the

method of separation of variables,

2 2
1= el (G + 5z +900)) 13]

710l given by Eq. [8] is commonly termed the “free-molecule solution” of the distri-
bution function f, because f = fI° when the effective Knudsen number is infinity

(recall Eq. [9]).

SOLUTION FOR [

To obtain a solution for f (] from Eq. [12], an expression for the zeroth-order
local Maxwellian fe[O] is necessary. The latter can be obtained by the high-collision-

freéuency particle-background gas Boltzmann equation (12)

0=J(f, f5) [14]

where J(...) is the Boltzmann collision operator and fp is a Maxwellian velocity
distribution for the background gas. By using Boltzmann’s H-theorem, one has a

solution of fiol of the form similar to Eq. [13],

1 cz |
1o = x(r) TEEE exp{——(7 +53)} 15
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in which X(r) is the dimensionless local particle number concentration. X(r) is

obtained by integrating (% over the velocity space of possible values,

&

oxe=x [ [ 19 dc, d(%5)

J2/r2=0 =—00
1 g i C: —J? /22 J? [16]
= o )12‘//r2 [1 +erf(\/—§)]€ T2 d(,-_z)

where the normal two-fold integration over the angular and azimuthal velocities
has been transformed into a single integration over the tangential velocity (J/r).
The integration over the radial velocity (C,), on the other hand, is truncated at an
upper limit, C} > 0, since the outgoing flux is due only to those incoming particles
with an incident radial speed |Cy| < C7 which can escape from the attractive

interparticle potential well.

The radial potential is an effective potential for the incident particle as if it has
no tangential velocity. That is, the incident particle motion can be projected into
a two-dimensional space where a particle with a radial velocity C, experiences a
radial (or centrifugal) energy barrier. The radial (or effective) potential is the sum

of the interparticle potential and the incident particle tangential kinetic energy,

Bes(r) = g + B(r) 17]

The maximum value of ®.¢ occurs at a distance r = o (i.e., the collision surface).
From Eq. [17], we have the relation between o and the angular (or tangential)

momentum J,

._Ti d®(o)
o? do

18]

With the concept of the effective potential, we now can determine the value of
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C;. In the far field of range r > o, C;} can be obtained from the conservation of

energy and the fact that at r = o the radial kinetic energy is zero,

1/2
Ch= /

T

J: J?
iz =

+2(®(0) — 8(r))] (r > o) [19]

For the computation of concentration, Marlow and Brock (6) assumed that for
a range within the capture distance (r < o) the truncation velocity C} in Eq.
[16] can also be obtained by Eq. [19]. However, one would rather expect that
a thermalization of radial velocity in both the incoming and outgoing directions
may occur in this case. Therefore, we choose C} = oo for the range r < o, which
represents the particle being captured and fully thermalized in the potential well.
For situations that C} is imaginary, i.e., the argument in the bracket of Eq. [19] is
less than zero, we also assume that C} = oo is valid because no potential bdrrier
is present in this case and a velocity thermalization is expected. Upon combining

all the situations considered, Eq. [16] can be written as

[e¢]

X(r)= ie_@(') / {1 + [0(7‘ > 0)erf(0(m > 0)y/m + 8(m < 0)00)
v C J2/r2=0 [20]
+0(r <o) }exp(~35) d(%5)
where
m="(%~ 5)+%0) - () 21]

and 4 is the Heaviside function, being unity if its argument is true and zero other-

wise. Eq. [20] can be further simplified if one writes

Y (r) = X(r) exp |8(r)] 22]
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Y(r)—1= —= | exp(—8)8(r > o)erfc [H(m > 0)y/m+0(m < 0)00] ds [23]
 where § = J 2/2¢% and m is given by Eq. [21]. Eq. [12] can therefore be written as

aftl J*  deyafil
o . ( L

o T F G ae = Oy (r) - 1) [24]

r3 dr

The characteristics of Eq. [24] are the total Hamiltonian of the two-particle system,

1.e., the conservation of energy, or

1 J?
50,2 toat ®(r) = constant [25]

Upon integrating along the characteristics, Eq. [24] has the solution

ct J?
f[ll B exp —(_é_ + 3/—22 -+ Q(T))} r [Y(r') — 1] d7"
2 2
(27) Wl i\j o2+ 2y - % +2(a(r) — @())

[26]

where the positive sign is for C, > 0 and the negative sign for C, < 0, and we have

used the boundary condition that flll =0 at r — oo.

The zeroth-order and first-order solutions of the distribution function, f1° and

f [1], will now be used in evaluating the coagulation rate.

EVALUATION OF INCOMING RATE

The dimensionless coagulation rate is found by integrating the particle distri-

bution function f over the velocity space weighted by the radial velocity C, and
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the collision surface area 4mo?,

o0 —c0 J2 )
. _ ) 72
| 0< F = {ﬂ' «[12/r2=0/,=0 f (4mo*)C, dC',.d(r2 )}r=a [27]
or, from Eq. [9],
1
with
_ a2 [T /_°° ]| ,2 J?
Fy = 4xn 72/02=0 Jeuo=o f '00 C, ,dCr ad(02) [29]
and
a2 [7 Tyl L2 J?
F, = —4rx 1070 /Cr[a=0f ‘aa C, ,9Cr a'd(o-Z) (30]

where Fy and F; are the dimensionless free-molecule regime (1 — oo0) coagulation
rate and its first-order correction for the finite large Knudsen number situations,

respectively.

Upon substituting Eq. [13] into Eq. [29] and using Eq. [18] to change the

integration variable, the free-molecule incoming rate has the form:

Fo=var [ (02 exp{ (2929 4 p(o))}ae

o(J=0) da do 2 do

where the lower integration limit, o(J = 0), is determined by setting

d®(r) | _
dr lo(I=0)

[32]

~ For instance, for a monotonic singular attractive contact potential such as the van
der Waals potential and/or the electric image potential, Eq. [32] gives o(J =
0) = oco. Eg. [31], in this special case, was first obtained by Marlow (4). For the

situation in which the singular attractive contact potential is not monotonic, an
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example of which is a positive Coulombic potential in the presence of a negative
image potential, a short-range potential maximum occurs and the lower integration

hmlt in Eq [31] must be determined from the criterion Eq. [32] (also see Amadon

and Marlow (18)).

The first-order correction, Fy, similarly, is found to have the following form:

o=1 d , do(o - 0% do(o
R [ i) L Yol (5 o)

o 0'2
2“;( L(1-2) + 8(0) - 8(r)) /"] drdo

X erfc [0>0(

in which 0-¢ is the Heaviside function which is unity if its following multiplier,
(-~ )1/ 2 is greater than zero, and zero otherwise. In deriving Eq. [33], the negative
sign in Eq. [26] is used because we focus on the incoming particles for which C,
must be negative. Also a change of integration order between r' in Eq. [26] and

Crls in Eq. [30] is made. Finally we have renamed ¢ as r in Eq. [33].

In Eq. [33],1 — Y (r) from Eq. [23], can be expressed as

1-Y(r) = L/pzl 0(r > p) exp( p 42(p ))i(paw)

4r? Jp(J=0) 2r2 dp /dp dp 34
X erfc{0> (12’ d(fl( ) (1 - P——) + ®(p) — O(r ))1/2 +(1- 0>0)oo} dp

where p has the same meaning as o, i.e., the collision surface distance; we write
p instead of o because it is not to be confused with the integration over ¢ in Eq.

[33].
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TRANSFORMATION AND ENHANCEMENT FACTORS

Because under many circumstances the integration limits in Eqgs. [31] and
‘ [33] may have the value infinity, one seeks a transformation to facilitate numerical

integration. We start by defining

zE% : yE% : zE% 135]
Egs. [31] and [33] become
= var [* 5L 2 o 20E) o)) 4 36
e L) [ vl el ]
 extetso (292 (V] _1) + 0(2) - 0(4) "] ay

and in which

= [ o < oo 4 .

X erfc{0>o(:d3( 2) (¥ (z2 ) + &(2) — <I>(y))1/2 +(1- 0>o)oo} dz

In Egs. [36]-[38], the integration limit z, is determined by setting d®(z)/dz = 0.

For cases of monotonic attractive singular contact potential, zo = 0.

The enhancement factor with respect to the pure free-molecule regime potential-
free coagulation rate, m R%,/8kT /7y, can be found by examining the nondimension-
alization quantities from Eq. [3] and the definition of the dimensionless incoming

particle rate, Eq. [27]. One obtains

1 1 .
Eim=E,— “E = (Fo - ~Fy) 391
T T
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Eq. [39] shows that E/™ can be broken into two parts, the enhancement at an

infinite Knudsen number, Ejy, and the first-order correction of enhancement for a

finite large Knudsen number, Fj.

_ The overdll enhancement factor, E, on the other hand, is defined as the coag-
ulation rate divided by the potential-free coagulation rate over the entire range of
Kn. In a later section, the overall enhancement factor £ with respect to the Fuchs
ﬂux—matéhing potential-free situation is calculated in order to compare experimen-

tal data with the present predictions.

THE VAN DER WAALS POTENTIAL

In this section, we shall calculate the free—moleculé enhancement factor Ey and
its first-order correction E; of the coagulation rate between two particles with a
nonretarded van der Waals potential (in the sum over pair interaction approxima-
tion). The retardation effect of the van der Waals interaction (see, for example,
(19)) is neglected in the present calculation because it is only important in the
continuum-transition regime (s.e., particles of diameter greater than 20 nm at 1
atm) (19, 20). Because the van der Waals interactions occur frequently in aerosol
coagulation and also because of the time-consuming computations in evaluating
the integrals in Eqgs. [36] and [37], we shall present least-squares best-fit equations

for data calculated from the theory.

The dimensionless nonretarded van der Waals potential (with respect to kT)

between two particles of radii R; and R3 has the form (21)

H 2R1Ry, 2R\ Ry r? — (R1+ Ry)?® ]
o) = 2 40|
(f) 6 {7'2 "Bt R P (R1 — Ry)? i (B1 — Rq)? 0
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where r, By and R; are either all dimensional or all dimensionless. H in Eq. [40]
is the dimensionless Hamaker constant (¢.e., the Hamaker constant divided by kT)

and is dependent on the particle material.

» Thé coagﬁla.tion enhancement factors Ey and E; ‘a.re functions only of the
particle size ratio, R;/Rjy, and the dimensionless Hamaker constant, H. Figures
1 and 2 show Ey and E; (Eq. [39]) as predicted by the present theory. For
convenience, Ey and E; can be represented by the following best-fit equations

obtained by the least-squares method,

E; =RKHT, i=0 or 1 [41]

where
R (1, [ —od]'),, o
H= (1, nH, W’H, Wb’H, 'H) [43]

Ko =

—~1.847E+0, —T.080E—1, —1550E—1, —3.247E—2, —1.534E —3
[44]

(+1.568E +0, +2210E—1, +3.867TE—2 +6.172E—3, +6.122FE — 4)
2Xx5

and

K, =

(+4.020E -1, +6.959E —2, +8.266E—-3 +3.396E —3, +7.271E — 4)
2x5

—6.654E — 1, —2.286E—1, —-2.768E—2, —-1.775E—2, —-3.375E—3
) : (451
L j

The above least-squares fits are correct to 0.1% error in the range 0.01 < H < 1000
and 0.1 < Rl/(Rl + Rz) <0.9.

Figures 1 and 2 indicate that the larger the value of the Hamaker constant the
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greater the enhancement of coagulation when van der Waals forces are included.
Also for a given Hamaker cohstant value, equal-sized particles exhibit a stronger
van der Waals potential than unequal-sized particles as predicted by Eq. [40], and

thus greatest enhancement in coagulation rate occurs for equal-sized particles.

THE COULOMBIC AND IMAGE POTENTIAL

When two charged particles with finite dielectric constants collide, contribu-
tions to the interparticle potential exist from the Coulombic interaction between
charges and the electric image potential between particles. The image potential
is always attractive; for two colliding particles of comparable sizes, however, the
image potential is not singular at the two particle contact (see, for example, Eq.
[A12] of Appendix). A singular contact image potential only occurs when one par-
ticle has a size much greater than the other. An example of the latter situation is
the charging of a particle by collision with ions. Therefore, in this section, we shall
focus on the calculation of ion-particle charging. Particle-particle coagulation with
the Coulombic-image potential, on the other hand, shall be considered in a later

section together with the van der Waals force.

In the ion-particle charging problem, the particle radius R, (R3) is much greater

than the ion radius Rj,; (R;). The Coulombic-image potential is (22, 23)

Ccz _y*
®(y) = By — —8= 46
) e 46
- zionz:pe2 _k- 1 e? [47]
areokTR, ’ k + 18meokT R,

where & is the particle dielectric constant, e = 1.602 x 1071° C, r is the dimensional

radial distance between the two particle centers, y = (R; + R3)/r = Rp/r (where
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r is dimensional) is the same as y given in Eq. [35] (where r is dimensionless),
and 2jop and 2, are the nu.mbér and sign of charges carried by the ion and particle,
respectively. In the present calculation, we assume the ions are sing]y-charged, i.€.,

Zion =’:i:1, and Eq. [46] becomes the classical ion-particle interaction potential (1).

Figures 3 and 4 show the values of Ey and F1, respectively, as a function of B
with C as a parameter. In both figures, we consider the ranges of 0.1 < C < 10 and
—2 < B < 2. Situations of B < 0 are characterized as bipolar charging, because
the ion and particle carry charges of different signs. For B > 0, the ion and particle

carry charges of the same sign, and the process is one of untpolar charging.

The Coulombic potential, the first term on the right-hand side of Eq. [46],
which is inversely propqrtiona.l to the radial distance r, in some cases may over-
"~ whelm the image potential contribution to the enhancement. For example, in the
regionywhere B < 0 in Figure 3, the free-molecule enhancement F; is almost inde-
pendent of the image strength C' because the attractive Coulombic force exceeds
the attractive image force. Similarly, in the B > 0 region, an increase of the repul-
sive Coulombic force may exponentially decrease the enhancement for a constant
C. A stfong image attractive potential (e.g., C = 10}, however, may compensate
for the repulsive Coulombic force, and the decay of Ey with increasing B is not
as substantial as at a smaller value of C (e.g., C = 0.1). Figure 4 shows a similar
result for the first-order enhancement correction E;. Unlike the case of Ey, E; in

the region B < 0 is still a function of the image strength C.

Because the Coulombic-image potential situations occur in an ionic charging
environment, the best-fit equations for the ranges of variables in both figures are
again obtained by the least-squares method in the range of 0.1 < C < 50 for

positive and negative B, respectively. For positive B, we find
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E; = exp(BL;CT) =0 or 1, (0<B<2) [48]
where
— 2
B=(1, B, B*) . [49]
C=(1, nC, In’c, n®C, In*C) [50]
1x5
L=
+1.353E +0, +4.146E—1, +1.955E—2, —1.876E—3, +6.239E —5
—1.809E +0, +2.278E —1, +4.280E—2, —1.378E-—2, +1.049E —3
—8.482E — 1, +1.025E +0, —5.815E—1, +1.544E—-1, —1476E—-2/, .
[51]
and
L; =

+2.943E —1, +5.518E -1, +2.922E -2, —-3.913E -4, -1.928E —4
—~3.715E 4+ 0, +6.814E -1, —2.517E—-3, -1.260E-—2, +1.151E -3

—~1.734E + 0, +2.015E+0, —1.148E+0, +3.058E—1, —2.929E-2/, .
- [52]

For negative B, on the other hand, we have the following best-fit expressions

Ey = 4.088 + 1.575 InC -+ 0.5124 In%C + 0.1013 In3C + 0.007554 In*C

— 1057.4 B + 2.038 B — 0.04446 B® + 0.003134 B* (-2< B<0)
(53]
and
E; = exp(BMST) (-2< B <0) [54]
where
_ 2 '
$=(1, mc, m’c) . [55]
+4.326E — 1, +4.854E —1, +3.406E —2
M= | —1.284E +0, +2.034E—1, —5355E—3 (56

—2.972E — 1, +5.490E—2, —1.516E—3/,.,
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and B is given by Eq. [49].

In the remaining part of this section, we would like to comment on a comparison
of the Eo and E; predictions of the present work and that of Marlow and Brock
() for' imagé forces only. The comparison is shown in Figure 5. The expression
for Ey, Eqs. [36] and [39], reduces exactly to the first term of Eq. [13] of (6) when
using the Coulombic and image potentials. | However, in the latter work, this exact
expressio'n was mistakenly reduced to v/7C for the situation of pure image force
only. The comparison of the correct Ey (solid line in Figure 5) and the erroneous
E, of value v/7C (dashed line in Figure 5) shdws that the correct free-molecule
enhancement is almost twice the previously understood value. On the other hand,
a much smaller difference is found between the F predictions in both works. When
substituting Eq. [46], Eqs. [37]-[39] reduce to a similar form of the second term
of Eq. [13] in the work of Marlow and Brock. The difference between the present
work and the derivation in (6) lies in the reduction of Eq. [16] to Eq. [20]. The
particle concentrations in the range ¢ < r and r < o were treated identically in
the calculation in (6); in the present work, the Heaviside function is introduced to
distinguish these two ranges. The present revised calculation as shown in Figure 5

indicates a small overshoot of the prior E; prediction.

COMPARISON WITH EXPERIMENTAL DATA

In this section we compare the vpresent theory with the experimental data of
Okuyama et al. (10, 11) for ultrafine particle coagulation in the presence of a van
‘der Waals potential and of Pui et al. (9) for ion-particle charging under an image

force.

In Figures 6 and 7, we show the overall enhancement factor E (see the dis-
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cussion below Eq. [39]) as a function of the particle size. The effective Knudsen
number 7 and the Knudsen number Kn are also indicated. F is calculated with

respect to the Fuchs potential-free expression. The latter can be written as (15)

enR?
FlFuchs = . ZR? [57]
4D(R + g)
where ‘
g=(?+¢)V* ; R=R +R,
e _L . )3 2 213/2 .
%= 5L [(2R: +1:)° — (4B? +12)%) — 2B 58]

8D; - 8kT
=—— 3 &=
ey Tmy

I; ;= (68 +e3)/?

and D; and D are given in Eq. [8].

In both Figures 6 and 7, solid lines are obtained by taking the ratio of the
dimensional coagulation rate from the present theory to that given in Eq. [57];
the dé,shed lines, on the other hand, are obtained by taking the ratio of Fuchs’s
potential formula to that given in Eq. [57]. The Fuchs’s potential formula is
obtained by a similar idea of flux-matching as in the Fuchs potential-free situation

and can be generally written as (1)

EQECR27I‘E

F |puchs(®50) = [59]

. =
EC exp[@(r =g+ R)] + EOW_E—R)

where € and g are given by Eq. [58], Ey is the enhancement at an infinite Knudsen

number (recall Eq. [39]) and EC is the continuum regime enhancement given by

(15)

E° = [(g +R) /g ioR ———-———eXp[§(r)] dr] N 60
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In Fuchs’s original paper in deriving Eq. [59] (1), the calculation of E was based
on averaging over all possible. impact parameters and using the assumption that all
the incident fictitious particles possess equal kinetic energy. Fuchs set a parameter
o - E,R? /(R + g)?%, better known as the Fuchs alpha and presented a table of «
for situations of ion-particle charging; efforts of recalculating Fuchs’s « under the
same situations can be found elsewhere (24, 25). In our calculation in using Fuchs’s
potential matching formula, Eq. [59], however, E is given by Fp/ 2v/2 (Eqgs. [36]
and [39]) to account for the correct averaging of particle trajectories and thermal
energy; this revised matching method was earlier used by Marlow (4) and Okuyama
et al. (10, 11). Eq. [59] shall be henceforth referred to as the “generalized Fuchs
matching equation.” It should be pointed out that the term “exp [<I> (r=g+ R)]”
in Eq. [59] is often omitted for simplicity (4, 10).

In Figure 6, the coagulation of eqﬁal—sized ultrafine particles in the presence
of an interparticle van der Waals force is considered. The Hamaker constants for
NaCl and ZnCl; were both taken as 8.93x1071% erg (which gives H = 21.7 at
25°C). The Hamaker constant for Ag is 4.0x1071% erg (which gives H = 97.2
at 25°C). However, as suggested by Okuyama et al. (11), a factor of 10 higher
than thev bulk value is necessary to explain the experimental results of Ag. The
value of the Hamaker constant for Ag was therefore taken as 4.0x10~!! erg in the
calculation. Both the solid lines (present work) and the dashed lines (generalized
Fuchs matching) show good agreement with each other and with the experimental
data for the effective Knudsen number larger than unity (the particle diameter is
less t}'1an 20 nm). Both of the solid lines fall off rapidly in the range of particle
diameters larger than about 20 nm; the present theory is not applicable in this

range due to the fact that the effective Knudsen number becomes less than unity.

We now consider the ion-particle charging experiments and predictions. The
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data were obtained by Pui et al. (9) and were analyzed assuming the flow in the
charger is either turbulent er laminar. Data shown in both Figures 7a and 7b
are represented by open squares for the laminar flow assumption a.nd by closed
cifclee,for -the turbulent flow assumption. The values of dielectric constant for
NaCl and Ag are 6.12 and oo, respectively. The ionic mass and mobility were
taken as mjo, = 109 amu and Zjop, = 1.4 cm?/V-s (26). The Coulombic potential
is neglected since the particles in general carry zero charges. In order to evaluate
the value of 7 through the use of Eq. [5], the ion-particle diffusivity is considered

as the sum of the ionic diffusivity and the particle Brownian diffusivity,

KT Zin , KTC

b= € 6rn R,

[61]

where C; is the slip correction factor, R, is the particle radius, and the ionic

diffusivity is determined by the ionic mobility through the Einstein relation.

The generalized Fuchs matching predictions for both NaCl and Ag are also shown
in Figures 7a and 7b. However, a new matching distance (i.e., ¢ in Eq. [59])
was chosen that is commonly used for the charging calculation (1, 9). This new

matching distance is given by

o= E R+ 2o e 2y 2 ) -

ion

and Ajoy is calculated through the binary diffusivity theory (recall Eq. [6]),

)*ion =

64 kTZion 1 ( 1542 + 8y + 6 ) TMion 63]

3 e 1+~'\309%+16v+13 8kT

where v = m;o/ mp is the mass ratio of an ion and a background gas molecule.

From Figures 7a and 7b, we find that the agreement between the predictions from
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the present work and the generalized Fuchs matching theory is very good for par-
ticles of dié.meters less tha.n.100 nm. The laminar flow profile assumption in the
charger leads to a better fit between theories and data than those calculated using
thé tuijbule.ntl profile assumption. For particles of diameters larger than about 40
nm, in the cases of Figures 7a and 7b, the present theory is not applicable because
7 becomes less than unity. Owing to the possible change of bulk properties such as
particle dielectric constant, differences between the data and the theories in both
figures become significant for particles smaller than 10 nm. In this range, a de-
crease in kK seems to be necessary in matching the theoretical predictions with the
data. Finally, we would like to point out that the “match” between the data and
the Marlow-Brock theory in the near free-molecule regime mentioned in the work
of Pui et al. (9) was indeed a “mismatch” because the Ey was originally mistaken

as v7C in (6).

SIMULTANEOUS VAN DER WAALS, COULOMBIC,
AND IMAGE POTENTIAL

In this section, we consider an interparticle potential that is composed of simul-
taneous fran der Waals, Coulombic, and image forces. Because the van der Waals
potential has a form that is divergent (i.e., singularly attractive) at the particle
contact, the image potential itself does not have to be singular; as a result, the com-
bination of the three potentials will always be singular at the particle contact. In
this regard, we will not restrict ourselves only to situations of ion-particle charging;

we can, in general, consider particle-particle coagulation with an arbitrary particle

size ratio.

The image force between an initially-charged particle and an initially-uncharged

particle can be obtained, in general, by summing the interactions between the
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charge in the initially-charged particle and its infinite reflection image charges in
the initially-uncharged particle (22, 23). To obtain the image force between two
charged particles, one needs to sum over two initially charged-uncharged sets of
iniagé ,intelja(;tions (23). Image potential, subsequently, can be obtained by inte-
grating the image force with respect to the radial distance. The exact form of an
interparticle Coulombic-image potential, unlike the ion-particle situation, is not
available due to its complexity. For particles that are slightly dielectric, however,
a closed form of the Coulombic-image potential expression can be obtained and

is given in the Appendix. The simultaneous potential together with the van der

Waals potential (Eq. [40]) is

_ H{2¢(1—q)y® , 2¢(1-q)y? 1—y?
Q(y)~ 6{ 1—y? 1—(2¢—1)y? +1n1——(2q—1)y2
_aaf(zm/a)dy | (1 gy
+ By Czl{ 1= &2 T (1 — q)2y2

[64]

where ¢ = R;/(R; + R3), y = (R1 + R3)/r, and B and C are given by Eq. [A13].
Ey and Ep, from Eq. [66], are functions of the dimensionless Hamaker constant
H, particle size ratio ¢, particle charge ratio 23/2z;, the product of charge and
image strength C22, and the particle dielectric constant « (the dimensionless charge
product‘ B is linearly dependent on C22, z3/z1, and k). The image potential
expression, the third term on the right-hand side of Eq. [64], is strictly valid for
the coagulation of slightly dielectric material (k¢ — 1); to a first approximation,
however, we shall use k = 6.12 (1.e., the value for NaCl and ZnCl;) as an example

to illustrate the Ey and F; calculation in Figures 10 and 11.

Figures 8 and 9, first of all, show the predictions of Fy and E; under B = 0
(or z3 = 0), i.e., no Coulombic force. Under such circumstances, Eo and E; are
only functions of ¢, H, and Cz? (i.e., k can be of arbitrary value in this case). In

Figure 8, we again find that the higher the Hamaker constant or the higher the
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image force, the larger the value of Ep; also the closer to equal-sized coagulation,
the higher the coagulation r’ate in the low C2? regime (where only the van der
Waals force is important), and the lower the coagulation rate in the high Cz?
, regimé v(wh_ere the image force‘ predominates). The reason for this reverse effect of
size ratio arises from the functional forms of the van der Waals force and image
potential. For R;/R; = 1, all the curves of different values of H merge at about
Cz¥ = 100. For Ry/R; = 1 /9, curves merge at about Cz? = 4. For extremely
unequal-sized coagulation such as the ion-particle charging situation, from Figure
8, we can conclude that the van der Waals force is not important when the image
force is present. For equal-sized particle collision, on the other hand, the van der
Waals potential may play an important role for Cz# < 30. Predictions of E; in
Figure 9 are similar to that in Figure 8; the larger the coagulation enhancement
in the infinite Kn situation, the stronger the first-order correction for a finite large

Kn value. E; is about half the value of Ey.

Figures 10a and 10b show the F; predictions for the equal-sized particle coag-
ulation (g = 0.5) with a dielectric constant x = 6.12 when H = 20 and H = 100,
respectively. The purpose is to demonstrate influence of B for both the repulsive
Coulombic force (z; and z; of opposite signs) and the attractive Coulombic force
(21 and 23 of same sign) situations. The parameter used in the figures is the particle

charge ratio, z3/2;. In both figures, since

B=2(c)(2)(

21

I€+1) ,

' [65]

we find the higher the value of positive 25/ 2;, the stronger the Coulombic repulsion
and the lower the Ey; for negative 23/21, the smaller the value of 22/21, the stronger
the Coulombic attraction and the higher the Ey. By comparing Figures 10a and

10b, we find that the higher the H value, the stronger the van der Waals force and
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the higher the Eo.

Figures 11a and 11b are similar to Figures 10a and 10b. The former two show
the predictions of the first-order finite large Knudsen number correction E;. One
notices that E'1 is less sensitive to the increase of C’z% for small negative 23/2;

values than Ejy in Figures 10a and 10b.

In this section, we calculate the enhancement factors in a situation of com-
bined Coulombic, image and van der Waals forces. The calculated Ey and E; are
functions of H, C22, &, z3/2 and the size ratio. For situations of arbitrary combi-
nation of these parameters, interpolation of Figures 8-11 is possible. Because the
functional dependences are very complicated, we do not present best-fit equations

for this simultaneous potential situation.
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- SUMMARY AND CONCLUSION

In this work we have derived expressions for the ultrafine particle coagulation
_ rate in the presence of a singular contact potential that is either monotonic or

nonmonotonic attractive of arbitrary form.

We have, for the first time, calculated the free-molecule enhancement and its first-
order correction for a large but finite Knudsen number for situations of a combined
van der Waals, Coulombic, and image potential. Conditions where each compo-
nent potential predominates over others are determined. The present theoretical
predictions are in good agreement with experimental data of ultrafine particle co-
agulation and ion-particle charging. We have also shown theoretical support for the
coagulation rate predicted by the empirical flux-matching method. Least-squares
best-fit equations are presented for some common situations involving coagulation
with van der Waals or electric Coulombic-image forces. Future application of the
present results should be very useful in ion-particle, particle-particle coagulation,

diffusion charging, and ion-induced nucleation.
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APPENDIX

Image Potential Between Two Slightly Dielectric Charged Particles

Let q1, R1, g2, and R3 be the initial charge and radius of particles 1 and 2,
respectively; also denote x as the particle dielectric constant and r as the distance
between the two particle centers. The first image charge of g3 in particle 1 which

is at a distance R} /r from the center of particle 1 is (22, 23)

k—1q R
k+1 r

1= [A1]

The first image charge of ¢; in particle 2 which is at a distance RZ/r from the

center of particle 2 is

k- 1qR,
k+1 r

qQ24 =

[A2]

The second images in both particles involve terms of order O[((Ic -1)/(k+ 1))2],
which, for slightly dielectric particles (¢ — 1), can be neglected. The final total

charge in each of the particles can therefore be approximated as

I€—1R1Q2
21€=Q1+Q1,z‘='I1—E+1 " [A3]
IC—].qul
Ze=qy +qgi = q2 — erl 1 [A4]

where z; and 22 are the number and sign of the total charge carried by particles 1
and 2, respectively. Solving Eqgs. [A3] and [A4] and expressing ¢; and ¢z in terms

of z; and 23, one has
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. k—1\ Ry
zl”’m( +1)T k—1\ Ry
@ = k— 1,2 R, Ry ~Z16+Z2e(m+1)7& |A5]
(n+1) 2
k—1\ Ry
_"’”Hrzle(;wl)“r"~ Kk — 1\ Ry
q = % —1\2R.R, ~21€+22€(E+1)— [A8]
1_(K,+1) r2

The electrical static forces are contributed by the Coulombic interactions between

¢ and g2 (F1), q1 and g3;; (F2), g2 and q1; (F3), and ¢;; and g5; (Fy). Upon
2

neglecting the O] ((fc - 1)/(k + 1)) ] terms, we find

2
9192 € Ry o k—1\Ry
dmegr?  4meor? [21 =T 22( + 1) A (fe + 1) r [A47]
k—1q R
(41)(—,6—_,{_1 " ) ( )sz s
T 4meo(r? — R2)Z/r2 T 4weo(r? — R2)? 48]
k—1qRy 2.9
B (QZ)(‘—m r ) € 22( )RIT 1o
T dmeg(r: — R2)%/r2 T 47eo(r2 — R2)? [49]
K —1\2
<n+1) 0192 R1 Ry /7*
4meo(r? — R? — R2)%/r2 0 410
The total force is thus
e nze (IC_ 1) e? R3z2(2r — R}  R3:2E(2r® — RY) (ALl
T dmegr?  \k + 1/ 4megr3|  (r? — R?)? (r2 — R2)?

The dimensionless Coulombic-image potential is obtained by integrating F over r

and dividing by kT




- 124 -

where

: ‘ 2. 2
Z129€ k—1 €
B

, C = A
47rEokT(R1 + Rz) k+1 87['60]6T(R1 + Rg) [ 13]

- Though Eq. [A13] is obta-ined by the approximation of a small dielectric con-
stant, its limiting case for the ion-particle charging sitﬁation, Eq. [46], is an exact
form of the Coulombic-image potential of an arbitrary dielectric constant because
only one image of the ion charge exists in the particle. Also note that the B and

C given in Eq. [47] are limiting cases of Eq. [A13] for the ion-particle situation.
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ABSTRACT

Coagulation between a charged particle and an uncharged particle arises in

ionic aerosol clustering and in ion-induced nucleation. In this paper, we obtain an
analytical expfession for the image potential for situations of charged-uncharged
particle coagulation. The interparticle coagulation rate enhancement in the pres-
ence of the newly-derived image potential over the entire range of Knudsen numbers
is ca,lcula.fed. A simultaneous potential composed of the image potential and a van
der Waals potential is subsequently considered. Conditions in which each of the

component potentials predominates are determined.
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INTRODUCTION

v Interac:cions between charged particles occur from Coulombic aﬁd electric image
forces. If both forces exist simultaneously (i.e., both particles are charged), the
Couloﬁlbic force always plays a much more important role than the image force in
the enhancement or retardation of the coagulation rate (1). This occurs because
the Coulombic potential is linearly inversely proportional to the first power of the
radial distance between two charges; the electric image potential in this case can be
neglected. When only one of the colliding particles is charged, on the other hand,
the Coulombic force does not exist and the electric image potential becomes a
dominating factor in coagulation. Therefore, an accurate expression for the image
potential in this situation is necessary; such an expression, however, has not been

available in the literature.

The purpose of this paper is threefold. First, we obtain an exact expression for
the electric image potential between a charged particle and an uncharged particle.
Second, the interparticle coagulation rate enhancement in the presence of the elec-
tric image potential over the entire range of Knudsen numbers is calculated. The
third goal is to consider simultaneous electrical image and van der Waals inter-
actions; the latter is caused by attraction between momentary induced dipoles in
both particles. We will calculate the coagulation rate enhancement in the simul-
taneous potential situation and determine the conditions under which each of the

composite potentials predominates.

THE CHARGED-UNCHARGED IMAGE POTENTIAL

In order to obtain the electric image potential between a charged particle and
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an uncharged particle, let us first generalize the situation such that both particles
may carry charges, then latér we shall consider the case of the image potential
between a pair of charged-uncharged particles. Let q1, E1, ¢2, and R; be the initial
chérgé,and' radius of particlesv 1 and 2, respectively; also denote k as the particle
dielectric constant and r as the distance between the two particle centers. The
image charge of g2 in particle 1 which is at a distance R?/r from the center of

particle 1 is (2, 3)

£ —1gR,
k+1 r [1}

q1i =

The image charge of ¢; in particle 2 which is at a distance R%/r from the center of

particle 2 is

kK—1q Ry
k+1 r

Qi = 2]
We assume that the higher order images (images of the image charges) are negligible
in comparison to the first images, Egs. [1] and [2]. The final total charges in each

of the pazticleé are therefore

k—1q Ry
ZICZQI+QI,1§:‘]1_'€+1 " 3]
k—1q Ry
Be=Qtai=e- 7 [4]

where z; and z2 are the number and sign of the total charge carried by particles 1
and 2, respectively, and e = 1.602x 10~*° C. Solving Egs. [3] and [4] and expressing

q1 and g¢2 in terms of z; and 23, one has
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zle—i—zze(z_:i)%

“= k—1\2R1 Ry : 15

1- (fc+1) 2

22””16(2;1)%

= kK —1\2Ri Ry ]
- (fc-l—l)

2

The electrical static forces are contributed by the Coulombic interactions between

q1 and g3 (F1), ¢1 and g5 ; (F2), g2 and ¢1; (F3), and ¢, ; and ¢z ; (Fy). We have

k—1gqR
= 4:_1;1272 3 7 (qz)(—fc—l—l r )
0 3=
4 2 _RZ 2 /2
@) (SR PN
1 Kk~ 2
Fy £l T (fc—l-l) a2 R Ry 7

= 2 _ p2\2 /.2 3 =
471'60(7' R2) /T 4= 47!'60(72 — R% — R%)Z/r2

where ¢; is the permittivity of the background gas. We can nondimensionalize the

force according to

where

and % can be written as

F = kykyz? [10]
—pk#(1 — 5)z8

Rl TR TR 1]
_ —p/c%s:z:?'
Fs = [1— s%z?)? 12
2 )
?; _ D klkzs(l S):B [13}

[1—s%z2 — (1 — s)%22]2
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where

q2‘ R1+R2 R1 k—1
kE—; ko = = : = -3 = - = 4
1 e 2 8’ z r y S R1+R2’ pA [1]

The pararﬁeters in Eq. [14] stand for the number and sign of the initial charges
in particles 1 and 2, the inverse of radial distance, the size ratio, and the rescaled
dielectric constant, respectively. k; and k7 in Egs. [10]-[13], from Egs. [5] and [6],

can be expressed as follows:

ey — 21 + pzasz

171 p2s(1 — )22 15]
o = 22 + pz1(1 — s)z

2 —

1 — p?s(1 — s)z?

The dimensionless image potential & (i.€., the dimensional potential divided by

kT) is obtained by integrating the forces over the radial distance,

4

T
é()=—M/Zfd( =3 & [16]
=0 1=1 i=1
We now consider the situation that one of the particles (say, particle 2) is un-
charged. Setting 22 = 0 in Egs. [10]-[15] and integrating % according to Eq. [16],

the components of the dimensionless image potential are

2 aMz? X
() B -
62 2 c2z? abeM 1—cz? ]

b—c l—b:c:2 1—cz2] (b—c)? (l—bzz)’ (if & # <) ‘

&;(c) = M (18]
—6——1 1—bx2)]’ (1fb=c)

b2z2 bx2as ab? + abas 1 — asz? .
{ b—a3 1—bz2+1—d312] (Z(b—a3)3) ( 1—bz? ) ! (lfb¢a?)9,
119
3b.1: .
126 bz2 — 1)3 1] , (b= as)
b2 2 bz2ay ab? + abay 1— a4z )
]_ (Z(b—a4)3) (l—bzz) , (i b7 ay)

{ b—oz4)2 1—bz2+1—a4z2 ,
: 20

3bz? .
12b (b2 — 1)3]’ (if b= aq)
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where
a=p22(1—s) ; az = s?
b=p’s(1—s) | ; as=s+(1—-s)2=az+ec [21]
ce=(1- 3)2

and M is given by Eq. [9]. The total dimensionless potential is the sum of the
right hand sides of Egs. [17]-]20].

For an ionic charging situation (¢.e., one of the particles is an ion with much
smaller size than the other), one can set Ry = Rjonp = 0, Ry = Rp, 2 = 0, and
21 = 2Zjop = 1. In this case, b in Eq. [21] is zero because s (Eq. [14]) is zero, and

the sum of the right-hand sides of Eqs. [17]-[20] becomes

i)(z)—— acMzt . _K:—l e? [ R? ] 122]
 2(1—ex?) k+18meokT L(r2 — RI)r?

which is the classical ion-particle image potential (3, 4).

Figure 1 shows the total dimensionless potential (sum of the right-hand sides
of Egs. [17]-]20]) divided by M as a function of the dimensionless radial distance,
1/z, when 22 = 1 (i.e., the ionic aerosol (particle 1) is assumed to carry a unit
charge). Three values of the particle dielectric constant are used in the figure. We
note that the higher the dielectric constant, the larger the image charge and the
stronger the image potential. For a situation that R; is much larger than R, we
expect that the image potential is weaker because the charge z; in particle 1 will
have a negligible image in particle 2. On the other hand, if R; is much smaller
than Ry, the image potential is stronger. This fact is shown by the comparison

of dashed lines and solid lines in Figure 1; the dashed lines, which correspond to
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s =0.1, i.e., R1/Ry = 1/9, represent stronger potentials than the solid lines, which
correspond to s = 0.3, or R;/R; = 3/7.

- For a finite value of s (colliding particles are of comparable sizes), from either
of the 'right-hand sides of Eqgs. [17]-[19] or from Figu.ré 1, one finds the following
image potential prbperties: @(l)zﬁnite, dd /dz < 0, and d&)/ d*z > 0. In other
words, the predicted image potential is monotonically attractive but finite at the

two-particle contact.

IMAGE POTENTIAL ENHANCEMENT

The attractive image potential can enhance the interparticle coagulation rate.
In this section, we will evaluate the enhancement over the entire range of Knudsen
numbers. The coagulation enhancement in both the infinity and zero Knudsen

number situations will be first discussed.

In the free-molecule regime (Kn— oo), Marlow (5) proposed an enhancement
expression for singular monotonic attractive potential. Marlow’s method was pur-
sued by Huang et al. (1) for situations involving nonmonotonic potential. Amadon
and Marlow (6), on the other hand, considered monotonic nonsingular attractive
potential situations (that is, the potential is finite at the particle contact, an exam-
ple of which is the charged-uncharged image potential of the present paper). The
expression of Amadon and Marlow (6) for the free-molecule regime enhancement

can be written as

01 d z zd® N
2/ o d:c )) x| d( 2 - 8] do 23]
+exp[; dq;( )‘zzl - @(1)]
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In the continuum regime (Kn— 0) the enhancement expression can be obtained
from continuum transport theory (see, for example, (7)). If one assumes that the
continuum transport is valid up to a distance A, which is of order of one particle

mean free path from the two-particle contact, the continuum regime enhancement

factor can be written as

E¢ = [(1 + g) /01/(1+g) exp [@(z)] d:z:] B [24]

where g=A/(R1 + R3). The Fuchs flux-matching expression that predicts the coag-

ulation rate over the entire size regime in the presence of an interparticle potential

is (4)

K E™E°

7R E°exp [&, (%H)] + Efmgg(—l—ﬂl—-j)

[25]

where K is the coagulation rate coefficient (cm3s~!), R = Ry + R;, and ¢ =
0.5

[SkT(ml + my)/ wmlmg] is the two-particle mean thermal speed.

The overall enhancement factor expression can be found by dividing the rate ex-

pression of Eq. [25] by its potential-free limit,

poverall _ K . [4,39(1 +g)+ 1] E™mE° 26
= = = o
K(®=0) pm 48g(1 + g) exp [<1>(1—+g)]Ec
where
D D
B = Reg  oh [27]

We will calculate the overall coagulation enhancement due to the image attraction

according to Eq. [26]. To a first approximation, we assume that the matching
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distance in the Fuchs method, X, is the same as the particle mean free path, Ap, OT

g ~Kn ‘ (28]

where Kn= Ap/(R; + Rz) is the two-particle Knudsen number. Huang and Seinfeld
(8) showed the second-order Chapman-Enskog solution of the Boltzmann equation
that gives a complicated relation between the diffusivity and the particle mean free
path from which the value of 8 in Eq. [27] can be evaluated. On the other hand,
the so-called zeroth-order kinetic theory of gases (9) gives a much simpler result

which we will use in the present calculation for illustration,

1
A=3 [29]
The parameter M given by Eq. [9] is a function of the Knudsen number,

e?

M =~Kn ; = ——
TRL T dmeokT Ay

[30]

For situations that the particle mean free path A, = 0.065um, v = 0.862 when
T = 25°C and 0.941 when T = 0°C.

Figure 2 shows the calculated overall enhancement, Eq. [26], as a function of the
Knudsen number, Kn. The conditions are M = 0.862Kn, and z; = +1. We notice
that the smaller the value of particle size ratio s, the stronger the potential (see
Figure 1), and the higher the enhancement of coagulation. For a constant value of s,
one finds that the higher the value of p, the stronger the particle dielectric constant,
| »the higher the image enhancement. Free-molecule regime particle coagulation, from
Figure 2, always exhibits higher image enhancement than that in the continuum
regime because the‘ image strength M is linearly proportional to the Knudsen

number (Eq. [30]).
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Figure 3 shows the overall coagulation enhancement due to either the particle
charge z; 6r the temperaturé variation for equal-sized particle coagulation (s =
0.5). pin Eq. [14] is taken as 0.7, which corresponds to x = 5.67, a typical dielectric
coﬁstant fo.r salt particles. Because the coagulation rate at a lower temperature is
smaller than that at a higher temperature, the lower temperature coagulation rate
is expected to be more easily enhanced in the presence of an image potential than
at higher .temvperatures. One finds in Figure 3 that the lower temperature dashed
lines exhibit higher enhancement values than the corresponding higher temperature
solid lines. For a constant temperature, we notice that the higher the particle
charge |2/, the stronger the attractive force (see Eq. [21], a is proportional to 22

regardless of the sign of the charge), and the higher the overall enhancement.

INTERPLAY WITH VAN DER WAALS POTENTIAL

In this section, we consider a simultaneous interparticle image and van der
Waals potential. The nonretarded Hamaker formula for the van der Waals poten-
tial obtained by the pairwise interaction approximation (10) will be used in the
calculation. Particles that fall in the continuum-transition regime (e.g., particles
of diameters greater than 20 nm at 1 atm) may experience viscous force or van der
Waals retardation which may reduce the van der Waals attraction strength (11,
12). We do not consider these effects for simplicity. One purpose of the present
calculation is to find a critical Knudsen number larger than that at which the van

“der Wa.als potential is insignificant; in this regard, one wants to use the nonre-
tarded van der Waals expression to ensure that van der Waals force can be safely
omitted for particles of sizes smaller than that of the calculated critical Knudsen

number.
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The nonretarded Hamaker formula for van der Waals potential can be written as

(1, 10)

H{2s(1 — 5)z? N 25(1 — s)z?

Afyvdw _ A
G B T R iy ygu pe

1—z?

+in(— (2s — 1):1:2)} 131)

where H is the dimensionless Hamaker constant, the ratio of the dimensional
Hamaker constant to kT. A simultaneous potential considered is the sum of the
right-hand sides of Eq. [31] and of Egs. [17]-[20]. To calculate the overall en-
hancement, one again needs to evaluate E¢ and E™ first and then use the Fuchs
flux-matching formula, Eq. [25]. The second term in Eq. [23], the Amadon-Marlow
free-molecule enhancement expression, is zero for the present situation of a simul-
taneous potential because the van der Waals potential, Eq. [31], is always singular

at the two-particle contact.

Figures 4a and 4b show the overall enhancement as a function of the Knudsen
numbér Kn, size ratio s, and the dimensionless Hamaker constant H for situations
that v = 0.862 (Eq. [30]) and z; = *1 for p = 0.7 and p = 1, respectively. Both
figures show that for small Kn the van der Waals potential is always important
because the image potential diminishes. van der Waals interaction enhancement
becomes insignificant for Kn> 10 of the s = 0.1 situation; for s = 0.5, on the
other hand, the van der Waals force is important over the entire range of Knudsen
numbers. The reason is that s = 0.1 represents a stronger image potential than
the s = 0.5 case, and in consequence, image enhancement in the s = 0.1 situation
can dominate the van der Waals enhancement at large Kn. One notices that the
higher the Hamaker constant H , the stronger the van der Waals attraction, and
the higher the enhancement. By comparing Figures 4a and 4b, we find that a
larger p value (Which represents a larger dielectric constant case) causes higher

enhancement in large Kn regimes because the image attraction is stronger; the
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variation of enhancement due to an increase in p is less significant in the small
Knudsen number regime where van der Waals force predominates over the image

attraction.

In ,Figure's 4a and 4b, for a given size ratio s, the enhancement curves for three
different values of Hamaker constants tend to merge at a given Knudsen number,
which we shall refer to as the “critical Knudsen number,” Kn®. For Knudsen num-
bers larger than Kn®, one can conclude that the van der Waals potential effect
is not important and the image potential predominates. On the other hand, for
Kn<Kn® the van der Waals force gradually takes over the importance in coagula-
tion enhancement. The critical Knudsen number for a given set of conditions is
determined as the point where the value of the overall coagulation rate enhance-
ment with a van der Waals Hamaker constant H = 100 differs from the overall
enha;ncement value of a.l pure image potential situation by 1%. In other words, the
presence of a strong van der Waals potential with H = 100 at Kn® has a negligi-
ble effect in enhancing the coagulation rate, r.e., 1%, in comparison to its image

potential counterpart.

Figure 5 shows the critical Knudsen number as a function of particle size ratio s at
M = 0.862Kn.‘ One notices that the higher the |z;| value, the stronger the image
potential and the larger size regime that the image force can predominate. For
the same reason, the dashed lines (p = 1) representing a stronger image potential
are below the corresponding solid lines (p = 0.5). In Figure 5, if the condition
falls into the upper-left region (i.e., smaller s and Kn>Kn®) the van der Waals
~ potential can be neglected. The éorrectness of the region so found is ensured
because, as mentioned earlier in this section, the van der Waals retardation and
the hydrodynamic viscous effects that may reduce the van der Waals strength are

not considered.



- 156 —

- SUMMARY AND CONCLUSION

In this paper, we have derived an analytical expression for the image poten-
tial betweén a charged particle and an uncharged particle. The coagulation en-
hancement dﬁe to the charged-uncharged potential is subsequently determined for
various given sets of conditions over the entire range of Knudsen numbers. We
find that in the free-molecule regime, the coagulation enhancement can be expo-
nentially .increa.sed by the image attraction as both particle sizes decrease. The
particle size ratio, dielectric constant, charges, and temperature are all influential

factors in the determination of coagulation enhancement.

The nonretarded van der Waals potential is also considered together with the
charged-uncharged image potential in order to determine conditions where each
of the component potentials predominates. We found that the image potential
overwhelms the van der Waals potential for situations when the charged particle is
much smaller than the uncharged particle and both particles should be significantly
small (a critical Knudsen number is therefore determined). An example of the latter
situation is the charging of a neutral particle by a molecular ion. In ion-induced
nucleation, on .the other hand, the charged particle is an ionic molecular cluster
and the uncharged particle is a molecule; both particles are of similar free-molecule
sizes. In this situation, the van der Waals force can be as important as the image

force.
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LIST OF FIGURES

Figure 1. Rescaled charged-uncharged image potential, é(z) /M, as a function of
the dimensionless radial distance, 1/z, the particle dielectric constant,

and the particle size ratio.

Figure 2. Coagulation rate enhancement as a function of the Knudsen number, Kn,

the particle dielectric constant, and the particle size ratio.

Figure 3. Coagulation rate enhancement as a function of the Knudsen number, Kn,

the particle charges, and the temperature.

Figure 4. Coagulation rate enhancement as a function of the Knudsen number, Kn,
the dimensionless Hamaker constant, and the particle size ratio in the
presence of a combined charged-uncharged image and van der Waals po-

tential. (a) p=0.7; (b) p=1.

Figure 5. Critical Knudsen Number, Kn®, as a function of the particle size ratio,

particle charges, and the particle dielectric constant.
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ABSTRACT

The formation of aerosol particles and molecular clusters by rapid nucleation in
the semico;ld_uctor thin film pvreparation process by Atmospheric Pressure Chem-
ical Vapor Deposition (APCVD) or Low Pressure Chemical Vapor Deposition
(LPCVD) is evaluated by a vapor coagulation and diffusion model. Such a model
is applicable for situations of a very high saturation ratio in which the evapora-
tion of monomers from clusters is insignificant when compared with growth by
coagulation. The physical processes accounted for include simultaneous generation
of vapor monomer by chemical reaction, aerosol coagulation, and convective dif-
fusion of various species to the thin film surface. SiOg thin film preparation by
thermal decomposition of SiCly vapor in Oy ga.s in a horizontal-type CVD reactor
is simulated as an illustration of the model. The mass and number concentra-
tions of various species are computed as functions of temperature, pressure, input
SiCly concentration, and position in the reactor; and the individual contributions
of monomers, clusters, and particles to the thin film growth rate are evaluated.
Based on two dimensionless parameters representing the relative importance of
the diffusive deposition of monomers to their generation and coagulation, the most
suitable conditions where the thin film growth is dominated by monomer diffusive

deposition are clarified.
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INTRODUCTION

Preparation of thin semiconductive films is accomplished by the Chemical Va-
pof De.posi-tion (CVD) technique. In the CVD process, a feed source gas is first
thermally decomposed by heat or plasma, and then the decomposed product dif-
fuses onto the substrate to form a thin film. Accordingly, the growth rate and
the uniformity of the thin film depend greatly on the source gas concentration,
temperature and velocity profiles, operating pressure, shape of the reactor, and
the carrier gas. In addition, the thin film surface morphology is quite sensitive
to the operating conditions; for example, the film smoothness tends to degrade
with an increase of substrate temperature or input source gas concentration. The
formation of rough surfaces is often assumed to be caused by a two-dimensional
surface nucleation on the thin film. An alternative cause of the surface roughness,
as we will point out throughout this work, is a result of the formation of aerosol

clusters and particles in the gas phase.

Vapor molecules, or monomers, which are formed by the thermal decomposi-
tion of the feed source gas, may nucleate homogeneously into clusters, which may
subsequéntly grow to form aerosol particles. Diffusive deposition of the aerosol
particles not only influences the growth rate and thickness of the film but also
increases the surface roughness owing to the particles’ extraordinarily large size
in comparison to that of the monomers. Moreover, generated particles can be
captured continuously at the reactor wall surface to form dendrites, which can be

reentrained by a small vibration or the gas flow to contaminate the thin film.

Studying the effect of particle generation by gas-phase nucleation on the thin
film growth is the subject of the present work. Previous simulations of CVD thin

film growth have not considered gas-phase nucleation. It is generally assumed
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that the decomposed vapor concentration is sufficiently low such that gas-phase
nuclea.tion’ and the subsequént particle formation are unimportant. As we will
show later in this paper, the omission of the consideration of particle formation

mé,y cause serious errors in the evaluation of the thin film growth rate.

Okuyama et al. (1) evaluated the formation of Gallium Arsenide particles in
the gas phase in the preparation of GaAs thin film by the Metal Organic Chemical
Vapor Deposition (MOCVD) method to demonstrate the particle generation effect
on the thin film growth. In that work a model was used that includes simulta-
neous generation of monomers by thermal decomposition of feed source gas, ho-
mogeneous nucleation (monomer-monomer and monomer-cluster coagulation and
dissociation), monomer-to-particle condensation, particle-particle coagulation, and
diffusive deposition to the thin film surface. Classical nucleation theory based on
the liquid droplet model was used because the nucleated Ga clusters and particles
are liquids and because the saturation ratio is relatively low and the number of

monomers in the critical drop is relatively high.

Classical homogeneous nucleation theory is not applicable when the system
saturation ratio is extraordinarily high and the number of monomers in the critical
cluster is small. Clusters coagulate with monomers to form larger clusters much
faster than these clusters can dissociate, so that the evaporation or dissociation
processes in the classical homogeneous nucleation theory can be ignored. Such a
homogeneous nucleation is called “rapid nucleation” (2). Thin films such as Si
and Si0Oy produced by CVD are examples where the rapid nucleation concept is
applicable. The vapor pressures of Si and SiO; are extremely low and their clusters
are in the solid state. The evaporation of Si or SiO; monomers from clusters is

negligible and monomer-cluster collisions are the dominant process in nucleation.
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Particle formation in CVD reactors has been observed experimentally by Ever-
steijin (3), Ban and Gilbert (4), and Van der Brekel and Bollen (5) in the prepara-
tion of silicon film from SiH4 gas or SiCly gas. The appearance of large clusters or
pafticles in the gas phase, which is called “snow formation,” is detrimental to CVD
processes where smooth solid films are desired. In the above work, a theoretical

analysis was not undertaken to explain the snow formation phenomenon.

Weling (6) theoretically evaluated the growth rate of SiO; film from SiCly and
O; gases in Plasma-activated Chemical Vapor Deposition (PCVD) by analytically
solving the convective diffusion equation without considering cluster and particle
generation in the gas phase. Weling’s predictions were in good agreement with
experimental observations for a pressure of 6 Torr. The amount of silica, which
deposits on the reactor wall, was evaluated only by the monomer diffusive flux,
" not by the cluster diffusive flux. Jensen and Graves (7), Joshi (8) and Wilke et
al. (9) studied the growth rate of Si or SiO; films from SiH4 or SiCly gas in the
Low Pressure CVD (LPCVD) process. These authors also did not consider the
effect of gas-phase nucleation because of the low concentration of feed gas and
low pressure inside the reactor. For the Atmospheric Pressure CVD (APCVD)
situa.tions, Kim and Pratsinis (10) analyzed the growth rate of silica film by solving
the convective diffusion equation in the presence of aerosol particle generation. This
study indicated the importance of particle formation in the thin film preparation
process. The aerosol size distribution above the monomer was assumed to be log-

normal, and molecular cluster dynamics were not considered.

The contribution of particle formation by gas-phase rapid nucleation in the
preparation of SiO; film from SiCly and O gases by APCVD and LPCVD meth-
ods is analyzed in the present paper. We use a vapor coagulation and diffusion

model, in which the size spectrum is composed of both clusters and particles.
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The clusters are considered to be of sizes from monomer to k-mer (k monomers).
Clusters that are larger tha.h the k-mers are considered to be particles. The fol-
lowing physical processes are considered: monomer-monomer, monomer-cluster,
mdnomer-p;aljticle, cluster—chister, cluster-particle, and particle-particle coagula-
tions. We shall investigate those operating conditions under which only the SiO,

monomer diffusive deposition is important in preparing SiO2 thin film.

PREPARATION OF THIN FILM BY CVD PROCESS

Although various types of reactors are used in the formation of thin film by
CVD, representative reactors are classified into horizontal, vertical and barrel types
{11). We consider the simplest horizontal-type reactor, as shown in Figure 1a, in
the present simulation. In the reactor, there exist two typical types of temperature
profiles: a uniform temperature achieved by heating both reactor walls, and a
linear temperature profile achieved by heating one reactor wall. When both top
and bottom walls are heated, the temperature becomes uniform inside the reactor,
and thin films can be formed on both walls as shown in Figure 1b. The situation
treated in the present study is also attained in the plasma CVD process. If either
top or bottom wall ;1s heated, vapor is thermally decomposed within the linear
temperature profile and the thin film is mainly produced on the heated substrate.

This situation is also attained in the laser-assisted CVD process.

For our analysis of thin film production by CVD, we consider the preparation
of SiOg thin film by the thermal decomposition of SiCly gas in O9 based on the

reaction

SiCly + 02 — 8Si03 +2Cly '
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Kinetics of the SiCly oxidation were studied by Powers (12). If N,, N1, and No,
are the number concentratiéns of the SiCly vapor, SiO3 monomer, and O, gas,
respectively, the local rate of consumption of SiCly and the genera,f:ion‘rate of Si0q

vapor’was presented by Powers (12) as

dN, dN
dt - d—t1 = k19 Ny + kzvaNOz/NAV 2]

where kl;, and kg, were reported by Powers (12) to have the forms (T in K):

k1o = 1.7 x 10' exp(—48400/T) [s7!] 3]

kgy = 3.1 X 10'® exp(—48400/T) [cm®mol?s71] . 4]
In the present work we will assume the kinetics are described by Eq. [2].

Figure 2 schematically indicates the physical situation of simultaneous gener-
ation of monomer SiOg, rapid nucleation, monomer clustering, and the diffusion
of all the species toward the thin film surface. We will focus on the simulation of

these physical processes in the next section.

SIMULATION OF AEROSOL EVOLUTION IN CVD REACTOR

In the chemical reaction of the SiCly and Og gases, the SiO2 vapor produced
can easily become highly saturated in the CVD reactor because of its extremely
low saturation vapor pressure. Homogeneous nucleation of SiO; vapor may there-
fore occﬁr and form SiOg clusters and particles. The melting point of bulk SiO,
is 1678 K, so SiO3 clusters and particles are solid-like. The monomer-monomer
and monomer-clustér coagulation processes will overwhelm the reverse evapora-

tion processes.
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The kinetic behavior of monomers, clusters, and particles is often described by
the General Dynamic Equat.ion (GDE) (13, 14). Of various models based on the
GDE reported in previous studies, the so-called “discrete-sectional” GDE (15) is
thé most ai>propria.te a.pproach- to evaluate aerosol formation and growth under a
high monomer generation rate condition (16). In the discrete-sectional GDE, the
particle size spectrum is separated into two parts: (I) the smaller clusters repre-
sented by discrete sizes (i.e., monomer, dimer, etc.) and (II) the larger particles
represented in a continuous size regime. Whereas this discrete-sectional model
provides a detailed representation for the evolution of the size spectrum, the com-

putational demands may become severe in the cases of nonuniform temperature,

concentration and gas velocity in the CVD reactor.

A model that considerably simplifies the discrete-sectional GDE was termed
the Simplified Reaction and Coagulation model (SRC) (16), in which clusters in the
discrete size spectrum are lumped into a single mode and particles in the continu-
ous size spectrum are lumped into another single mode. The evolution of the total
cluster or particle concentration can be evaluated by considering the inter-mode
and intra-mode coagulations. As expected, this two-mode SRC model oversim-
plifies the evolution of clusters. Here the SiOs monomer is of a high saturation
ratio, and small clusters (e.g., dimer, trimer, etc.) that result from the monomer
(;lustering become significant. It is necessary, therefore, to extend the concept of
the SRC model to include more discrete cluster sizes. The current size spectrum
representation, shown by Figure 3, is similar to that of the discrete-sectional GDE,
except that we only use one section to describe the particles (i.e., particles are ap-
proximated as monodisperse). As we will show later, in the cases studied, particle
sizes could only be as large as 10 nm in diameter, therefore, the simplification of a

monodisperse particle size is reasonable in the thin film growth rate evaluation.



- 173 -

The size representation of Figure 3 is composed of three modes (monomer
mode, cluster mode, and pa.rficle mode). All modes are described by the evolution
of their number concentrations (Ni, N;, and N,). The monomers‘a.re_continually
reihforc_ed i)y the chemical reaction (i.e., Eq. [1]), so an equation that governs the
feed source SiCly vapor concentration (N,) must be solved simultaneously with
those governing Ni, Nj, and N,. The particle mass concentration (M,) evolution
is also monitored, since (M, /N,)'/® represents the particle average diameter (see
Eq. [15]). Our current model which includes simultaneous monomer generation,

rapid nucleation, coagulation, and diffusive deposition shall be referred to as the

Vapor Nucleation and Diffusion (VND) model.

Basic conservation equations based on the VND model

In order to accurately evaluate the thin film growth rate by the deposition of
monomer, cluster, and particles in cases of nonuniform temperature and flow field,
one has to simultaneously solve the energy, momentum, and mass conservation
equations. In previous studies, such a simulation has not been carried out. We

will invoke the following assumptions:

I. At the entry of the reactor, the velocity profile of gas U is a fully developed
laminar flow having the average flow velocity of U,y, and the temperature of

gas is uniform at 7j.
II. Natural convection flow can be ignored.
III. Particles produced are spherical and electrically neutral.

IV. When monomers and particles collide with the substrate surface, they are cap-

tured irreversibly.

V. Brownian diffusion of Si0; monomers and particles in the axial direction can

be neglected relative to convection.
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The temperature profile inside the CVD reactor is governed by the energy
equation,

O Ty _ 8 (3, T

pgcpg(Ua—x+Vaz =5, Mg, (5]

where p; is the density, ¢y, the specific heat, and Ar; the thermal conductivity of

the gas.

The velocity distribution of the gas is governed by the Navier-Stokes and con-

tinuity equations:

aU _dU\ @8, 8T\ Opr
peen (U, +V5,) = 55 (kig,) — 50 o
1opr _, 7]
py 0z
a(PgU) 3(P9V)__
oz + dz =0 8]

where p, is the gas viscosity, pr is the total gas pressure, and

_ prM,

Pg = RT 9]

The basic equations of convective diffusion for the various species are formu-
lated as follows. The number concentration of the SiOs monomer, Ny, is governed

by

O(UMN) | o(VNy) _ —B—(D 3N1) _ 0(VVi)
dzx dz 9z\"1 9z 0z
k [10]
- N Z ﬂl,ij - ﬂl,leNp + k19 Ny + k20N0N02/NAV
Jj=1

in which D, is the kSiOg monomer diffusivity. B;; and f;, are the coagulation

coefficients of monomer-j-mer and the monomer-particle, respectively. U and V
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are the flow velocity in the CVD reactor at any length z and height 2. V3 is the
thermophofetic velocity. Thé terms on the RHS of Eq. [10] represent, in order, the
monomer diffusion, monomer migration by thermophoresis, monomer consumption
due to,coa.éulation with clusters, monomer consumption due to coagulation with

particles, and monomer generation due to the chemical reaction.

The change in the number concentration of SiOs clusters which contain !

monomers (2 <! < k), in general, is governed by

A(UN;) n o(UN;) _ i( BNI) o(VinNy)
oz oz oz dz dz
ll 1
+ 5 22 B NN — leﬂuN BipNiNp ; (2<1<k)
J =1 Jj=1
[11]

whefe D, is the diffusivify of the l-mer cluster. §;; and §;, are the coagulation co-
efficients of the /-mer-j-mer collision and the /-mer-particle collision, respectively.
The térms on the RHS of Eq. [11] represent the diffusive deposition of the l-mer,
[-mer migration by thermophoretic force, generation of the /-mers from the sub-
cluster range, loss of the [-mers by coagulation with all the clusters, and loss of the
l-mers by coagulation with particles. Similarly, the change in number concentration

of SiO; particles (above (k + 1)-mer) is governed by

B(UN,) , 3V N,) _ 8 (

oz Bz T 9z
[12]

+ 3 9 < Z Zﬂk+1’ Jr]Nk+'l"J 'BPWNZ

=1 j7=1
 where Dj is the diffusivity of SiO; particles. f,, is the coagulation coefficient
between two particles both with an average diameter dy. The physical significance

of the fourth term on the RHS is the depletion of particle number concentration

by self-coagulation between particles.
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The mass concentration of 8i0y particles, Mp, is governed by

6(UM,,) 4 a(V M) _ _B_(D BMP) _ (Vi Mp)
- dz dz o0z

P 5z oz
g kK k [13]
+ Emk+'i Z Z Br+i—j,j Nk+i—j Nj + Np Z m;BjpN;
: i=1j=1 i=1

where the third and fourth terms on the RHS account for the mass accumulation

due to cluster-cluster coagulation and cluster-particle coagulation, respectively.

Finally, the convective diffusion equation for the number concentration of SiCly

gas molecules, N,, is

d(UN,) @8(VN,) 0 dN, onT
oz + dz dz [D”( 0z +kr N oz )]

- klva - k2quN02/NAV

[14]

in Which D, is the SiCly gas molecule diffusivity. The average diameters of the

monomer, j-mer cluster, and particle are given by

6mq )1/3 ’; dj _ (6jm1 )1/3’ (] < k) : dp _ ( 6Mp )1/3 [15]

di =
(7r PSiO, T PSiO4 TPsio, Np

where pgio, is the density of SiO3, and m; is the mass of a SiO; monomer.

A general exprression for the coagulation coefficients in Egs. [10]-[13] is the
- Fuchs interpolation formula (14). The Fuchs formula matches the solution by
kinetic theory of gases in the free-molecule regime and the solution by continuum
transport theory 1n the continuum regime. For a collision between two spheres

(denoted as A and B) of diameters d4 and dp, the coagulation coefficient is



- 177 -

‘ ‘ ' da B S(DA+DB) -1
Bap=2n(Ds+ Dp)d [ 2 -
4B (Da 5)daz dap+294,B €A,BdAB

dap=da+dp ; gap=(gh+9B)"° ; tap=(h+7ch)
1 g+ 1a)® — (@ +12)%2| —
3dala

KnA:2Ag/dA ; la=8Dy/mEy ; EAZ(SkBT/WmA)O's

0.5
| [16]
gA =

in which Ag is the carrier gas mean free path. Dy, my, ¢4, and Kny are the
diffusivity (discussed below), mass, mean thermal speed and Knudsen number of
sphere A, respectively. The diameters d4 and dp in Eq. [16] can be obtained by

Eq. [15| depending on whether the sphere is a monomer, cluster, or particle.

The binary diffusivities of SiO3 monomers and clusters and the SiCly vapor

molecules can be obtained from the second-order Chapman-Enskog binary diffusion

solution (17)

37 30z% + 1624 + 13
Dp==—(1 A AT
4= gl +ZA)( 15zg+8zA+6) Aca

\ 4kpT [17]
A= 3
7(1+ zA)l/ngas(dA + dgas)?
(A=1<j3<k, or A=)

in which z4 = m 4/mg,s is the ratio of the mass of species A to that of a carrier gas
molecule, A4 is the mean free path of sphere A in the carrier gas, and dg,s is the
diameter of a carrier gas molecule. In Eq. [17], we have assumed that the carrier
gas is in sufficient quantity that the total pressure is essentially as the carrier gas

partia:l pressure. The diffusivity of a particle, D,, is given by the Stokes-Einstein

relation (14)

kgT

= ———Cc (18]

Dy
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in which pgas is the viscosity of the carrier gas. Cc, is the slip correction factor

given by (18)

| A
Cep =1+ Knp{1.252 +0.399 exp(~1.1/Kn,)} ; Kn, = e [19]
P

and Kn, is the particle Knudsen number.

Vin in Egs. [10]-[12] is the thermophoretic velocity which results from the

temperature nonuniformity (13)

dlnT
Vi = —05582 2L
pg Oz

[20]

This equation is valid for particles whose diameters are smaller mean free path,

Kny(=2A;/dp) >> 1.

On the RHS of Eq. [14], kr indicates the thermal diffusion ratio of SiCly gas
which is represented by thermal diffusion factor a7 and mole fractions z,, z; in

the binary system as discussed by Holstein (19)

kr = arzyzg . [21]
Provided that the mole fraction of carrier gas component, zg4, is nearly 1 and

N is the total number concentration of molecules, the thermal diffusion term is

represented as follows

krN = arzyzyN = arNyzy = ar N, . (22

Now ar can be evaluated by
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5v2
OLTZT(

%g)? 6t — sl 3Mg>

Q) " 2M, 23]

g

where o and €/k are Lennard-Jones parameters, and {1 is the collision integral. 1
is a function of kT /e, oyg = (04 + 0v)/2, and Qyy is a function of kT /eyy with

€vg = (€ 59)1/2.

For a nonuniform temperature profile, the initial and boundary conditions gov-
erning Eqgs. [5]-[14] are given as follows:

Inttial conditions:

z=0, 0<z<H; Nj=0, forl=1~k%

[24]
szo ) MPZO, Nu——_NvO
Boundary conditions:
>0, z=0; Nj=0, forl=1~k%
[25]
Npy=0, M,=0, 3N,/8z=0
x>0, z=H ; Nj=0, forl=1~%k
[26]

As seen from Egs. [25] and [26], the surface reaction of SiCly at the substrate
is assumed to be ignored. Kim and Pratsinis (10) showed that optical waveguide
fabrication the surface reaction can be ignored. This assumption will also be made

here.

Eqgs. [5]-[14] are approximated by finite difference formulas and integrated
by the Crank-Nicolson method. In order to ensure the accuracy of the numerical
results, comparisons were made between numerical solutions with different step
sizes; most of the calculations were made with 50 lateral points and 5000 axial
points. As an additional check of the accuracy of the numerical solutions, the

total volume of the SiOs vapor, plus that deposited onto the substrate in form of
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monomers, clusters, and particles, were found to be within 3% of the total volume

of the SiO; produced by thermal decomposition.

 The thin film growth rates due to monomers, clusters, and pa,rticvles, are eval-

uated by their corresponding mass fluxes at the substrate surface (z = 0),

Gy = Dyn, (%) L G = Dlvl(%%) . (l=2~k) -
Gp = D,,u,,(a(;zf’) 0
z=

in which vy, v;, and vy are the volumes of a SiO; monomer, I-mer, and particle,

respectively.

In the simulation, the average gas velocity, Usy, is taken to be 6.1 cm s™1, and
the reactor height H is 1.8 cm. These are typical values for CVD reactors (20-22).
The temperature of the gas at the inlet of the reaction, T, is assumed to be 300

K.

Determsnation of the appropriate value of k

To determine an appropriate value of the cluster number k, numerical results
obtained for different k are compared. We first examine the situation where there
is no diffusive deposition and flow, namely, in Eqgs. [5|]-[14], we drop the diffusion
and migration terms on the RHS and substitute the convective flow terms on the
LHS with the corresponding time derivatives of concentration, N /dt. Figure 4
shows the calculated concentration evolution of SiOz monomer (! = 1), trimer
(I = 3), and pentamer (I = 5) at four different values of k¥ (k = 1, 5, 10, and 20).
In this calculation, the total pressure pr was 1 atm, initial SiCly vapor number

concentration was 4.0 X 1071% molecm™3, and T, = 1500 K. It is seen that k should
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be at least 5 to reasonably approximate the more exact result.

Our second comparison to determine the most appropriate minimum value
of k was made by solving Egs. [5]-[14] without abbreviation. To simplify the
comparison, it is assumed that the temperature profile inside the reactor is uniform
and the gas velocity is in plug flow. The operating conditions are: pr = 1 atm;
T, = 1400 K; and c,o = 4.0 x 107 %molecm™3. Figure 5 shows the sum of SiO,
thin film growth rates due to clusters and particles (zzk"z G + Gp) as a function of
axial position z. Four different values of & (k=1, 4,_5, and 7) were used in the
comparison. The thin film growth rate due to SiO; monomers (G1) is not included
because the predicted G; values at different k& are more or less the same. In Figure
5, growth rates evaluated from values k > 5 are found to be the same. Therefore,

we shall use £k = 5 in our subsequent simulation.

Temperature and velocity profiles in the reactor

Figure 6 shows the calculated temperature and velocity profiles in the reactor
at pr = 1.0 atm and pr = 0.01 atm. In this calculation, the temperature of the
substrate, Ts, is 1700 K, and the temperature of inlet gas, Tp, is 300 K. z/H =0
indicateé the substrate surface and z/H = 0.5 the center of the reactor. The
broken lines indicate the values at the inlet of the reactor. Under atmospheric
conditions, temperature gradually approaches a uniform distribution, which will
affect the change in the velocity distribution due to the thermal expansion of gas.
For the conditions chosen the uniform temperature is attained in about 20 cm.

On the other hand, under the low pressure conditions, the temperature becomes

uniform almost at the entrance of the reactor.
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Number and mass concentrations profiles in the reactor

Figures 7a and 7b show the number and dimensionless mass concentration
prbﬁles at pr = 1.0 atm and pr = 0.01 atm, respectively. The mass coﬁcentra.tions
are normalized by the mass concentration of the SiOy vapor, Mé’ioz, that would
result from a total thermal decomposition of the input SiCly vapor. The input
partial concentration of SiCly and the reactor temperature are 5 x 1071%molcm ™3
and 1500 K, respectively. At atmospheric pressure conditions, the number and
mass concentrations near the reactor wall are found to be higher than those in the
center due to the temperature profile as shown in Figure 6. It is also seen that the
concentration profiles in Figure 7b are closer to parabolic than those in Figure 7a
because a decrease in total pressure may increase the mean free paths of all species,
and as a result, increase the diffusivities (recall Eqs. [17] and [18]). In either the
atmospheric or low pressure conditions, a considerable number of SiO4 cluster and
particles are predicted to be formed in the reactor. Comparing Figures 7a and
7b, we find that particle number concentrations decrease when pressure decreases.
The reason for this behavior is that at low pressure conditions, particle formation
is suppressed by the enhancement of monomer and cluster deposition due to the

diffusivity increase.

Particle formation is more pronounced as evidenced by the dimensionless mass
concentration profiles shown in Figure 7a because the particles are much heavier
than the monomers and clusters, and particle mass concentrations at both =z = 4
and 10 cm overwhélm the monomer and cluster mass concentrations. This indicates
that most of ﬁhe newly decomposed SiOs monomers aggregate to form particles

before they can reach the film surface.

The average number concentrations across the reactor are determined from
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H
V—W/ 2)N; dz/Q_%I-/O Ni(z)dz , (1<j<K)
1 (H ‘
(Np av~W/ diz/Q—ﬁ/(; Np(z)dz _ [28]
Q= W/ 2)dz =W H U,y

where W is the width of the reactor, and @ is the volumetric flow rate in the
reactor. Figures 8a and 8b show the average number concentrations of different
species (rﬁonomer, cluster, and particle) as a functions of the axial position z at
three different temperatures at (a) pr = 1 atm and py = 0.01 atm, respectively.
Under atmospheric conditions, concentrations of all species tend first to increase in
the axial direction due to the progress of the thermal decomposition, then they start
to decrease as a result of deposition. Under low pressure conditions, concentrations
of all spec;les decrease down the length z, a,gain,’ due to diffusive deposition. In both
~ conditions, with an increase in temperature, it is seen that the monomer and cluster
concentrations decrease and the particle concentration significantly increases. In
the case of T; = 1700 K and pr = 1 atm, most of species at the exit of the reactor
are particles. This phenomenon is due to the fact that the temperature increase
enhances the thermal speed of monomers and clusters, and as a result, increases

the coagulation process.

Figures 9a and 9b show the dimensionless average mass concentration profiles
under the same operating conditions as in Figure 8. The average mass concentra-

tions are defined by
H
(M;)ay = Jmlvv/ U(2)Ny(z dz/Q =1 [Ny de , (i=1~K)

(Mp)ay = m,,W/0 U(z dz/Q = m,, N,,(z) dz
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where m, is the molecular mass of SiCly.

In Figure 9, the average mass concentrations of SiO; monomer, cluster, and
particle are normalized with respect to Mg,o, (from a total dissociation of SiCly
vapor), wheréa.s the mass concentration of SiCly gas is normalized with respect
to the input SiCly mass concentration, Mg;q;,. As shown in Figure 8¢, SiCly gas
is consumed more quickly at T = 1700 K along the length z than at the lower
tempera.tﬁres, because the thermal decomposition rate increases as temperature
increases. Also, the mass concentration of SiOy particles overwhelms the concen-

trations of other species as the axial position increases.

Particles that are formed through the subcluster coagulation process may dif-
fer in size at different temperatures and axial positions. Figure 10 shows the
predicted average diameter of the SiO, particles as a function of axial position z
at four temperatures for the same operating conditions as in Figures 8 and 9. The
size of the largest cluster (k = 5) is shown by the dashed line. Because a tempera-
ture increase may result in the increase of monomer-particle, cluster-particle, and
particle-particle coagulation, the average particle size shown in Figure 10 increases
with tempera.tUre. As discussed in Figure 7, particle formation is significantly sup-
pressed at low pressure conditions. However, at pr = 0.01 atm and T, = 1800 K,
Figure 10 indicates that large particles of diameter 3 nm (i.e., 107% cm) can be

easily formed in the reactor.

G'rowt.h‘ rate of S10y film

Figures 11a and 11b show the dependence of SiOy thin film growth rate on
temperature and axial position z at (a) pr = 1 atm and (b) pp = 0.01 atm, respec-

tively. The growth rates due to monomer (! = 1), cluster (I =2 ~ 5), and particle
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diffusive deposition at z = 0 are calculated by Eq. [18] and expressed in um/min.
As seen frdm Figure 11a, at ‘a,tmospheric pressure and T, = 1500 K, the thin film
growth rate is predicted to be equally dominated by the deposition of monomers
; and pa,rticl—es.‘ At higher temperatures, however, deposition of particles that are
produced by rapid nucleation becomes important in the thin film growth. At the
low pressure condition as in Figure 11b, the contribution of monomers and clus-
ters to the thin film growth rate is enhanced in comparison with the atmospheric
pressure situation due to the increase of the diffusivities. The particle contribu-
tion to the thin film growth rate at the low pressure condition, on the other hand,
is reducéd at T, = 1600 K owing to the enhancement of monomer and cluster
deposition; the particle contribution increases at T, = 1700 K because of the in-
crease of thermal coagulation. At higher Ty, it is seen that there exist significant

distributions in the formed thin film with the axial length.

Figures 12a and 12b show the effect of the reactor temperature on the growth
rate of film at axial distances z = 4, 10, and 18 c¢m for an input SiCly vapor
concentration of 5 x 1071°molcm™3. When the reactor temperature is lower than
about 1600 K at both pr = 1 atm and pr = 0.01 atm, the growth rate due
to monomers and clusters possess maxima in the range of T; = 1500 to 1600
K. Monomer and cluster contributions decrease at higher temperature because
of the occurrence of particle formation by rapid nucleation. In Figure 12b, we
note that low pressure conditions can lead to an increase in the monomer and
cluster contributiqns to the thin film growth rate for temperatures lower than 1600

K. In'Figure 12a, the growth rate due to particles (shown by dashed lines) has
| a maximum because the larger particles that are formed at higher temperatures

have lower diffusivities.

The effect of the input SiCly gas concentration, ¢y, on the thin film growth
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at 1500 K is shown in Figure 13. As expected, the thin film growth rate increases
with inpuf SiCly gas conceﬁtration. When ¢, is lower than about 10 °molcm™3
under the low pressure condition (Figure 13b), the generation of SiO2 particles
cén byev negiegted. Particle contribution to the growth rate is also enhanced for an

increase in cyg.

Figure 14 shows the effect of the total pressure (pr) on the SiOy film growth
rate. With a decrease in pp, the monomer, cluster, and particle diffusivities in-
crease, and therefore, the thin film growth rate increases. At very low pressures
(pr < 0.02 atm}, monomer deposition overwhelms the generation of clusters and
particles and, in consequence, suppresses the cluster and particle contribution to
the film growth rate. We conclude, from this simulation, that if thin film prepa-
ration is not operated at pr less than about 0.02 atm at 1500 K, particle diffusive

deposition cannot be ignored.

GROWTH FRACTION BY MONOMERS, Ry

Because thin films that are made purely from monomer deposition are consid-
ered to be of the highest quality, we begin by considering the relative importances
of monomer diffusive deposition, monomer generation by thermal decomposition,
and monomer-monomer coagulation that would form clusters and particles. The

following dimensionless quantities are defined in this regard:

Dy Diffusion Rate
B11H?|N;| Coagulation Rate
DG = Dy | M| _Diffusion Rate 31)

(k1vNwo + k20 NooNo,o/Nav)H? ~ Generation Rate

In Egs. [30] and [31], the monomer concentration at the exit of the reactor
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z = L, |N1|, can be related to the input SiCls gas concentration, Nyo. This |N;|
was calculated by solving the basic equation, Eq. [14]. The ratio of the thin

film growth rate by monomer deposition to the total thin film grdwth_ rate can be

written as

L
fGl dz
0

Ry = [32}

L k
0 Jj=1

Figure 15, which shows Rjs as a function of both DC and DG, was obtained
under the conditions of different temperatures in an APCVD or LPCVD reactor of
the present study as shown in Table I. Filled points are for atmospheric conditions.
Because a larger DC value means that either the monomer deposition is dominant
or the monomer-monomer coagulation is weak, it is seen that the value of Ry,
(¢.€., monomer contribution to the film growth rate) differs between the APCVD
and LPCVD reactors. In LPCVD reactor, Rys would increase if DC increases
at a constant DG value. In the range 107® < DC < 1074, however, sizes of
the generated particles are small, and the decrease of particle diffusivity relatively
increases as DC decreases. On the other hand, for situations of constant generation
rate and DC ifalue, the stronger the monomer deposition the higher the value
of RBys. In the case of APCVD, the values of Rjs become independent of the
dimensionless value of DG because the Si0; monomer generation is sufficiently

large compared with the deposition rate of the 8i0; monomer.

To produce good quality thin films, operating conditions such as tempera-
" ture, feed vapor concentration, reactor dimension and pressure, should be chosen
such that Rps can be as close to unity as possible. This monomer deposition
predominant regime can be reached if one chooses, for example, DC > 0.01 and

DG > 0,002 in APCVD and DC > 0.01 and DG > 1.5 in LPCVD.
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CONCLUSION

In this work we have evaluated the importance of particle formation by rapid
nucleation and coagulation in the preparation of thin film in a CVD reactor. The
thin film growth rate by monomers, clusters, and particles is found to depend

greatly upon the reactor temperature, velocity, initial gas concentration, reactor

total pressure, and the axial distance from the reactor entrance.

For low pressure situations, the diffusivities of monomers, clusters, and par-
ticles are enhanced due to the increase of the species mean free paths, and, in
consequence, the total film growth rate can be enhanced. The thin film growth
rate by monomers and clusters may, however, decrease at high temperatures due

to the formation of particles.

The best operating conditions for producing high quality thin films (those made
mostly by monomer deposition) are clearly defined by the values of two dimension-
less parameters, DC and DG, which govern the relative importance of monomer
deposition to coagulation and monomer deposition to monomer generation, re-
spectively. Because the thin film growth rate atiainable under the predicted best
operating conditions, however, is not as large as when temperatures and inlet vapor
concentrations are higher, the optimum operating conditions should be carefully

determined.
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LIST OF SYMBOLS

mean thermal speed (cm s™1)

particle slip correction factor ()

specific heat of carrier gas (erg g_lK“l)

input mol concentration of SiCly vapor (mol cm™3)

diameter (cm)

Brownian or binary diffusivity (cm? s™1)

ratio of monomer deposition to monomer-monomer coagulation (-)
ratio of monomer deposition to monomer generation (-)

thin film growth rate by monomers, clusters, or particles (cm s™1)
reactor height (cm)

number of cluster cutoff in discrete size spectrum (-)

Boltzmann constant, 1.3806x10~23 (J K1)

SiCly vapor thermal decomposition rate constant (s™!)

SiCly vapor thermal decomposition rate constant (cm3 s=1)

Knudsen number (-)

thermal diffusion ratio (-)

reactor width (cm)
mass of a monomer, cluster, or particle (g)
gas-phase mass concentration (g cm™3)

monomer mass concentration at a total dissociation of SiCly vapor (g

“em™d)

Mg,

M,

input mass concentration of SiCly vapor (g cm™3)
O carrier gas molecular weight (g mol™!)

SiCly vapor molecular weight (g mol™1)

gas-phase number concentration (cm™3)
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Nyo input SiCly vapor concentration (cm_3)
| V1| tbtal monomer conéentration at exit (cm™3)
pic1, input partial pressure of SiCly vapor (Pa)
| pT tc;tal pressure in CVD reactor (dyn cm™?)
@ volumetric gas flow rate (cm® s71)
Rys fraction of film growth rate by monomer contribution ()
T temperature (K)
Ts temperature of reactor wall or heated substrate (K)
U, V reactor flow velocity (cm s™1)
v volume of a SiOy monomer, cluster or particle (cm3)
vg, thermal velocity (cm s71)
W reactor width (cm)
z downstream distance from reactor entrance (cm)

z vertical height from thin film surface (cm)

z4 mass ratio of sphere A to a carrier gas molecule (-)

Greek Letters

o thermal diffusion factor (-)
B coagulation coefficient between two spheres (cm® s™)
¢/k Lennard-Jones parameter (K)
A mean free path (cm)
Ar, thermal conductivity (erg cm~1s7!K)
Hgas carrier gas viscosity (g cm™! s71)
Pg carrier gas mass density (g cm™3)
psio, mass density of SiO; (g cm™3)
o Lennard-Jones parameter (cm)

1 collision integral (-)
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Subscripts

av average value
" A, B arbitrary sphere 4 or‘B
'g Oq carrier gas
t, 7,1 SiOq monbmer or cluster that contains ¢, 5, or | monomers
p Si0jy particle

v SiCly vapor
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Table I. Simulated Conditions and Values of DG, DC, and Ry,

Ts pr Cvo DG DC Ru Key in
(K] | [atm] | [mol-cm™'] (-] (-] (-1 Fig.15
1500 { 0.01 1.0x107'" | 3.22x10" 3.53x10"%* | 9.99x10°!' O
: 1.0x107'° | 3.22x10° 3.53x10°* | 9.91x10""
5.0<107'° | 3.23x10° T7.07<10°* | 9.57x10!
3.0x107® 3.23x10" 1.18x10°* |} 8.05x10""
1.0x10°* 3.23x10" 3.53x10"%* | 5.97x10°"
5.0%10"* 3.33x10! 7.07<10°¢ | 6.19x10""
3.0x10°7 3.34x10° 1.19x10°¢ | 6.61x10""

1600} 0.01 1.0x107'' | 7.13 2.50x10"* | 9.96x107' A
1.0x107'° | 7.13 2.50x10"* | 9.63x10"'
5.0<107'° | T.13 5.00<107* | 8.53x10°"
3.0x10°® 7.13 8.33x107% | 5.84x10°"'
3.0x10"* 7.17 8.33x107* | 5.96x10"'

1700t 0.01 1.0x107'* | 1.32 2.66x10°"' | 9.98x10°"' d
3.0x107'' | 1.32 8.85x10"* | 9.55x10°!
1.0x107'° | 1.32 2.66x107° | 8.74x10°!
5.0<107'° | 1.32 5.31x10°* | 6.57x10""'
3.0x10°* 1.32 8.85x107° | 4.96x10°!
1.0x10"* 1.32 2.66x107% | 5.23x]0°!

1500 1.0 1.0<10°"* | 2.65x10°* | 5.40x10"*| 9.52x10"' ]
5.0<107'* | 2.65x107* | 1.10x10"*{ 8.72<10"'
3.0<107'' | 2.64x10°* | 1.81x10"*¢| 7.90x107'
1.0x107'° | 2.64x10°* | 5.50x10"% | T.49x10"'
5.0<10°'° | 2.64x10°* | 1.10x10°° | T7.05x10""
3.0x10°* 2.64x10°* | 1.84x10°* | 6.50<10°'

1600] 1.0 1.0<107'3 | 8.78<107* | 2.60x10"*| 9.85x107!' A
1.0x10°'* | 8.78x10* | 2.60x10"%* | 9.12x10"'
1.0x10°'' | 8.78x10°* | 2.60<10-*| 8.18x107'
5.0<10°'' | 8.7m<10"°| 5.19x10°% | 7.T7<10"'
5.0<10°'° | 8.77x1073| 5.19x10"* | T7.13x10°'

1700 | 1.0 1.0<107'* | 1.69x10"*| 2.66x107%* | 9.84x107' |
1.0x107'* | 1.69x10°* | 2.66x10"*{ 9.11x107'
5.0<10°'' | 1.69x<10°* | 5.31x10°° | 7.97x10™'
5.0<107'° | 1.69x10°*| 5.31x107* | T7.13x107'
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SiOz film growth rate as a function of reactor temperature for the input
SiCl4 vapor of 5 X 10~©mol cm™3. (a) pr = 1 atm; (b) pr = 0.01 atm.
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pr = 0.01 atm.
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T, = 1500 K and ¢2;, = 5 x 1071%molcm™3.

Fraction of SiOg thin film growth rate by monomers as a function of

- parameters DC and DQG.
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CHAPTER 7

REEXAMINATION OF HOMOGENEOUS NUCLEATION
FREE ENERGY CHANGE
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ABSTRACT

~The free energy change of cluster formation in homogeneous ﬁuclea.tion is re-
- examined by statistical mechanics. We show that the law of mass action can be
obtained regardless the choice of ensemble used. The Maxwell Demon assumption
in the classical nucleation formulation is discussed. The inclusion of the cluster
translational and rotational motion in the cluster formation free energy change is
shown to be appropriate. The cluster free energy change expressions from classical
and statistical thermodynamics are shown to be consistent. Earlier work of Blander

and Katz and of Fukuta is commented upon.

Key Words:

Nucleation, cluster, free energy change, partition function, supersaturation, nonequi-

librium, law of mass action, Maxwell Demon.
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INTRODUCTION

_ The first completeitheory of homogeneous nucleation, now cailed-the classical
theory, was developed by Volmer and Weber (1), Farkas (2), Becker and Doering
(3), and Zeldovich (4). It is apparent in the classical theory that a dominant factor
in predicting the rate of homogeneous nucleation of a vapor is the free energy
change of the formation of a cluster. The classical theory uses bulk properties of
liquids, such as the bulk surface tension and bulk liquid density, to predict the
cluster formation free energy change. The latter is thus the sum of the free energy

of the same number of monomers in the bulk liquid and the cluster surface free

energy.

Frenkel (5), Kuhrt v(6), Lothe and Pound (7-9), Dunning (10), and Reiss and
coworkers (11-14) have argued that the free energy of a cluster should include
translational, rotational, and vibrational contributions. The theory of Lothe and
Pound (7-9) indicates that for a common vapor at room temperature, the predicted
nucleation rate is higher than the classical theory prediction by a factor of about
10'7. Reiss et al. (13, 14) disagreed with the Lothe-Pound viewpoint and raised
the “translational-rotational paradox;” they argued that the cluster center of mass
may only fluctuate with high probability over a volume comparable to that of the
cluster, not in the entire gas-cluster system. The final nucleation rate predicted
by Reiss et al. (14) remains a value within a factor between 10* and 10° of that
predicted by the classical theory. However, Lothe and Pound (9,15) and Abraham
and Pound (16) pointed out that the internal distortions associated with the center-
of-mass movements considered by Reiss and Katz (13) must also be regarded as
phases of the internal oscillations of droplets in the vapor and are present with the

same probability either in the cluster or in the bulk phase.
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The Lothe-Pound theory is still controversial; Blander and Katz (17) argued
that the basis for the Lothe-Pound theory is inconsistent with classical thermo-
dynamics, however, Nishioka and Russell (18) suggested that Blé,nder and Katz
misintérpreted the Gibbs’ deﬁn‘ition of surface energy. Nishioka and Russell as-
serted that disproof or confirmation of the Lothe-Pound treatment must be based
on a statistical mechanical model. Blander and Katz (19) later pointed out that
Nishioka and Russell’s work is in error because the latter authors incorrectly han-
dled the standard states. More recently, Fukuta (20) argued that Lothe-Pound
theory is erroneous because the traditional canonical ensemble formulation in the
Lothe-Pound theory should be replaced by one based on the grand canonical en-

semble.

Despite the above interpretations, the Lothe-Pound considerations for cluster
translational, rotational, and vibrational motions, indeed have led to a mixing
of classical thermodynamics and statistical mechanics; that is, the surface and
volume contributions to the cluster formation free energy change are obtained
from a macroscopic viewpoint, and the translational and rotational contributions
are obtained in a microscopic sense. Because the problem of finding free energy
change eipressions in the limit of very small clusters must be faced, there naturally
arises another theory that is more securely grounded at the molecular level, now
known as the atomistic theory (21-26) since it was first used for situations involving
monatomic species. This theory is based purely on statistical mechanics which
provides formulas for the cluster translational, rotational, and vibrational partition
functions. One can then relate the total partition function of the cluster and the
absolute cluster free energy through thermodynamics, and the free energy change

of the gas-cluster system can be subsequently evaluated.

Questions naturally arise: Would different statistical ensemble formulations
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lead to different results as suggested by Fukuta (20)? In the atomistic theory, the
cluster traﬁslational and rofational motions are accounted for, so would any dis-
proof of the Lothe-Pound inclusion of cluster translational and rotational motions
bev coxitradictlory to the atomistic theory? Since classical thermodynamics must be
consistent with the statistical mechanical results, can a formulation of free energy
change based on statistical mechanics reach the same conclusion as in Blander and
Katz’s paper (17)? If not, then where is the discrepancy? We intend to address

these questions in this paper.

In the next section, we will use statisticalAmechanics based on a canonical
ensemble to determine the most probable cluster concentration distribution and to
obtain a relation between cluster concentrations and the monomer concentration,
the law of mass action. The purpose is to demonstrate that the law of mass action
can be obtained equally from a canonical ensemble formulation as well as from a
grand canonical ensemble formulation (27). It will be shown that a crucial factor
in the determination of the free energy change is the cluster canonical ensemble
partition function. We will discuss how the free energy change interfaces with the
evaluation of the nucleation rate. The Maxwell Demon assumption in traditional

nucleation kinetics will also be commented upon.

In the remainder sections of the paper, we start from the law of mass action
and cluster partition function to confirm the necessity of the inclusion of cluster
translational and rotational motion in the free energy change. The omission of
intramolecular motion in the formulation is also discussed. A general discussion of

the papers by Blander and Katz (17) and Fukuta (20) will be given.
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STATISTICAL MECHANICS OF THE GAS-CLUSTER SYSTEM

Assuming the gas contains a mixture of noninteracting clusters, clusters of each
» size are individually an ideal gas, and the canonical ensemble partition function of

the entire system, over the distribution of particle sizes, can be written as

g

l
Q(N,V,T) = ZH‘::
{n;}i=1""

[1]

where ¢; is the 7-mer partition function, /-mer is the largest cluster size considered,
n; is the number of ¢-mers, and Y (,,} denotes summing over all possible sets of
the distribution of n;. V is the free volume of the entire gas-cluster system. For a
particular set of {n;}, the sum of all monomers in clusters must equal N, the total

number of molecules in the system,

l
Z—:lzn.L:N . [2]

In evaluating Q(N,V,T), the sum of all possible sets of {n;} in Eq. [1] can be
approximated by a largest term in which the set of the distribution n; is the most
probable distribution, {n;} = {n;}*. To determine n; ( = 1,...,!) in the most
probable set {n;}*, one uses the method of undetermined Lagrange multipliers
subject to the constraint of Eq. [2] with an understanding that @ is a constant for

a small variation of n;,

[an — aZzn,] = 3

=1

where o is the undetermined Lagrange multiplier. Using Stirling’s formula for

approximating lnn!, Eq. [1] gives



~ 224 -

l

InQ(N,V,T) =3 ni[ln (m)] 4]
1=1
Therefore, Eq. [3] yields \
T = eq.,% [5]

Applying £ =1 and 7 = ¢ in Eq. [5], one gets the “law of mass action,”

_ i
Ui

[6]
Equation [5] can be alternatively derived from the formulation involving the grand
canonical ensemble partition function (27). Equation [6] gives the number of i-
mers (¢ = 1,...1) in the most probable set {n;}*. Now with n; so determined, a

relation between the chemical potential of an i-mer and that of a monomer can be

subsequently found by

aan )
an, T;V:nk#i

ui = —kpT = —kpT (&) = ikpT () = iy [7]

ng s

where kp is the Boltzmann constant. In other words, for arbitrary reaction at

equilibrium,

Aj + Ai—j = A;, [8]

the Gibbs free energy change is zero (u; — p;—; — u; = 0). True equilibrium only
~ occurs when the system is at saturation or under saturation. The saturation ratio

is defined by



— 225 -
where p; is the monomer partial pressure, and p{sat} is the saturation pressure.
Because the monomers are in a much higher concentration than the clusters, p; is

related to the total free volume V by the ideal gas law,

n1 kBT ni kBT
p1 p{sat}S

V= [10]

For supersaturation conditions (S > 1), an artificial equilibrium may be im-
posed if one invokes the concept of a “Maxwell Demon” that can disintegrate the
l-mers (t.e., the largest clusters in the system) back into monomers. There has
been discussion about whether invoking the Maxwell Demon is necessary in formu-
lating nucleation kinetics (28). It is useful to digress briefly to consider this issue.
If one writes the i-mer concentration from the law of mass action, Eq. [6], for both

S =1 (no Maxwell Dez.on) and S > 1 (with Maxwell Demon), one obtains

nt{sat} = nfsat} exp[ oT (F Fi+(1- z)kBTlnn{sat})] [11a]
n; = ng exp[ ( —iF +(1- z)chTlnnl)] [11b)]
in which
F; = —kpT Ing [12]
{sat}

is the absolute Helmholtz energy for an i-mer; n;

: and n; are the numbers of

t-mers in the system at § = 1 and S > 1, respectively. Our purpose in determining
the i-mer concentration from either Eq. [11a] or Eq. [11b] is to express the rate
~ of loss of monomers from a cluster, the evaporation coefficient, in terms of the
rate of collision of monomers with clusters through a detailed balance in either
a saturation equilibrium condition or a supersaturation constrained equilibrium

condition,
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s B e v)
1 (nz{sat}/v)

s>1y _ Brisa(m/V)(nio1/V)
o (ni/V)

[13a]

[135]

such that the net rate passing from the (¢ — 1)-mers to the i-mers (or the so-called
“forward flux”) in a nonequilibrium supersaturated system can be evaluated. In
Egs. [13a] and [13b], f1,i—1 is the coagulation coefficient between a monomer and
an (¢ — 1)-mer; the expression for the coagulation coefficient can be obtained from
the gas kinetics. By denoting the nonequilibrium ¢-mer concentration as f;, this

forward flux can be written as

nl(t)

Jit) = Bri =, fia (8) — eifilt) - [14]

The relevant question is which expression, Eq. [13a] or Eq. [13b], should be
used for the realistic supersaturated nonequilibrium evaporation coefficient, ¢;, to
evaluate the forward flux. There is no rigorous way to exactly evaluate e; because
nucleation is indeed a nonequilibrium process. If Eq. [13a] is used, no Maxwell

Demon is invoked; one first has to approximate that the evaporation coefficient

ez{LS=1} {§=1}

can be used in a supersaturated state (S > 1), and then assume that e¢;” ,
though obtained from an equilibrium condition, can be used in a nonequilibrium
situa.tion. If, on the other hand, Eq. [13b] is used, a Maxwell Demon is invoked,
and one only has to approximate the supersaturated nonequilibrium evaporation
coeflicient, e;, as the supersaturated constrasned equilibrium evaporation coefficient,
et{SN}. VIt is our opinion that, of the two possible approximations, the second
one seems more defensible because conditions at the actual S are being used.

While some authors have criticized the Maxwell Demon assumption because a

constrained equilibrium does not occur realistically, we would like to point out
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that in'a nucléation process, one deals with realistic concentrations f;(¢) under a
supersaturated state, not nz{sat} /V under a saturation state. This issue is relevant
to the present work because we will use Eq. [11b] rather than Eq. [11a] to interpret

- the energy change of formation of an :-mer in the next section.

THE CLUSTER FREE ENERGY CHANGE

Upon assuming that for a cluster the Hamiltonian of translational energy is
separable from that of the vibrational, rotational and binding energies, and elec-
tronic and quantum effects are not considered, the canonical ensemble partition

function of an i-mer can be written as

G = Qi trans & (15]

where ¢} represents the partition function of an i-mer due to rotation, vibration and
cluster binding. To a first approximation, one can assume ideal gas for evaluation

of qi,tran>

27rm12'kBT)3/2 B Vi3/2

qi,trans (Ta V) =V ( 12 A3

[16]

where m; is the mass of a monomer, A = h/+/2mm1kpT is the de Broglie wave-

length, and h is Planck’s constant.

The absolute Helmholtz energy of an 7-mer is related to the i-mer partition

function and can be written as

F;= —kgTlng = —kBTln( qitrans q:) . [17}
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The monomer Helmholtz energy is given by

_ 4 n1kpT
Fy = —kpTIn(55) = —kBTln(Xgp{sa—t}S) [18]
If we write Eq. [11b] in the form
n; =ny exp(—AFiT/chT) [19]
where AFE, upon using Egs. [17] and [18], is given by
73/2 . 1V
AF] = —kpT[In (7~ ) + Ing;] — ikpTn(y5.-) - [20]

The RHS of Eq. [20] is the difference of the absolute Helmholtz energies of an ¢-mer
and that of a system composed of ¢ gaseous monomers at the same temperature
T in a gaseous molecular volume V/n;. We will refer to AF,-T as the “free energy
cha,nge;’ in the remainder of the text. Equation [20] can be further rewritten in

the form

3/ kgT
{sat}S

kpT

-
AF = —]CBTIII( W) . {21]

—2—)—ikpTInS — kpTlng + ikpT In(

The first two terms on the RHS of Eq. [21] are the contributions due to the ¢-mer
translational motion and volume creation. In particular, the first term indicates
that the s-mer translational energy is due to the ¢-mer translation in a molecular
volume in the gaseous state at p; and T, kpT/p1, not the entire free volume
V = n1kgT/p;. This is in agreement with the Lothe-Pound free energy expression
" (7). The cluster rotational motion is implicitly accounted for in the third term on
the RHS of Eq. [21]. The work needed to create the i-mer surface, the so-called
surface contribution, should be also evaluated from the third and the fourth terms

on the RHS of Eq. [21].
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The puzzle regarding the inclusion of the cluster translational motion, the first
term on the RHS of Eq. [21]; in the formulation of cluster free energy change can
be revealed if we find an expression for the saturation vapor pressure pleatl . We
~do .this,by equating the chemical potential of a molecule at its saturated gaseous

and liquid states. The chemical potential of a gaseous monomer at saturation is

given by
kT
t} B
uit = —kpT ln(m) [22]
The chemical potential of a liquid molecule at saturation is
{sat} OFi|i .o _ d(ln ‘Ii)
i =g |, BT T a0 i 23]
Equating, one finds
{sat}
{sat} _ kgT Hiiq . kgT _ a(hlq,')
p = S e () = e (- g ) 24
Therefore, AFiT becomes
AF} = —kpTln(%E222) _ i kpTIn§ — kpTln *+i[M . (28]
1 B n]_ B B q; 62 {00 .

The bracketed part of the last term on the RHS of Eq. [25] is not a function of ¢
because the saturation vapor pressure in Eq. {24] is evaluated through a chemical
potential balance over a bulk liquid surface (¢ — co0). The translational term, the
 first term on the RHS of Eq. [25], is associated with In 13/2 (see Eq. [16]), and
it cannot be cancelled by any means with the fourth term. A similar conclusion
can be made for thé cluster rotational contribution, because the :-mer rotational

motion is implicitly accounted for in the third term on the RHS of Eq. [25],
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—kpTIng], and it cannot be cancelled with the fourth term. We thus conclude
that the inclusion of the cluster translational and rotational motion is appropriate

in the cluster free energy change in nucleation.

Before eﬁding this section, we digress to comment upon the above partition
function formulation. In Eq. [18], we ignored the intramolecular vibrational and
rotational motion; the latter should indeed be taken into account since a monomer
is in genéral a polyatomic molecule. However, the intramolecular motion can be
assumed to remain the same in a cluster though the molecule is a part of it. In
other words, if one adds an additional term —kpT Ing, jy4ra to the RHS side of
Eq. [18] to include intramolecular motion, the RHS of Eq. [15] must also be
multiplied by a factor of q{’intm for the same purpose. As a net result, in Eq.
[21] the intramolecular contributions cancel exactly. The assumption that the
intramolecular motions are the same in an isolated molecule and in a molecule
of a large cluster is reasonable especially for larger clusters because molecules in
a large cluster presumably can vibrate and rotate more freely than molecules in
a smaller cluster. The same assumption, however, if introduced in the atomistic

theory (21-26), may cause some errors in the estimation of free energy change.

COMMENTS ON PRIOR PAPERS

The free energy change, AFiT, obtained by statistical thermodynamics must be
in agreement with those obtained by classical thermodynamics. In the previous
section, we have seen that statistical thermodynamics does support the inclusion of
' the clustér translational and rotational motion in the free energy change. This must
be reconciled with the disproof of the Lothe-Pound theory by Blander and Katz
(17) via a classical kthermodynamic route. We will point out the discrepancies in

Blander and Katz’s paper. Another disproof of the Lothe-Pound theory by Fukuta
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(20) will al‘so‘be commented on.

Blander and Katz (17) were the first to attempt to use only classical ther-
modynamics to disprove the Lothe-Pound inclusion of cluster translational and
rotational motion in the cluster free energy change. They started by equating the

equilibrium constants at constrained supersaturation and saturation conditions,

pi/t° _ o p°
D1 /pO p{sat}/pO

K, = [26]

and obtained

AF} = —(i — DkpTIn S + [uf — p — (1 — )] . [27]

In Eq. [26], p; is the partial pressure of the i-mers at a constrained supersaturation,

is an arbitrary standard state, pi™")

1

0

P is the partial pressure of the ¢-mers at a

saturation condition (S = 1). In Eq. [27], p and uﬁzat} are the chemical potentials
of a gaseous 7-mer at the chosen standard state and of a molecule in the liquid phase
at S = 1, respectively. Blander and Katz then argued that, from Eq. [27], the
coefficient of In S is (¢ — 1), not ¢, and the second bracketed term on the RHS
of Eq. [27], u — u — ..., simply states that to form a gaseous i-mer the overall
translational contribution can only enter as the difference between the translational
contributions of an ¢-mer and a monomer, not the translational contribution of
an ¢-mer only as in the statistical expression (see the first term on the RHS of
Eq. [25]). Nishioka and Russell (18) disagreed with Blander and Katz’s paper by
commenting that the interpretation of the second term on the RHS of Eq. [27] is
erroneous Whilke they agreed with Blander and Katz’s thermodynamic formulation.
Blander and Katz (19) responded to Nishioka and Russell’s comments by pointing
out that the latter authors chose a standard state p° = p; to reach an incorrect

criticism.
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As we will now demonstrate, Blander and Katz’s starting equation, Eq. [26]
(i.e., Eq. [2] in Ref. (18)),‘may lead to some thermodynamic discrepancies and
influence the following discussions by Nishioka and Russell (18) and by Blander and
Katz (19). Equation [26] presents a paradox; it simply states that “thé equilibrium
constants for an arbitrary reaction at a constrained equilibrium (S > 1) and a
saturation condition (S = 1) are equal.” We will now show this to be equivalent

to saying that we do not need a Maxwell Demon problem.

Considering a monomer-addition reaction, A;—; + A1 = A;, the equilibrium

constant can be written as

ni/V _ P,

= e o)~ &

[28]

If the equilibrium constant at S = 1 and S > 1 are equal, Ki{SM} = Ki{S=1}’ from

Eq. (28] one must have

,Bl,i—l/e;gs>1} = ﬁl,i—-l/e,{S:l} . 29]

In other words, a consequence of equating the equilibrium constant at S = 1 and

$ > 1is that evaporation coefficients of an i-mer at these conditions are equal.

The overall equilibrium constant K of the reaction ¢ A; = A;, can be written

i—1 i—1
K{S>l} — H ﬂl,]/eiiil} — H :Bl,j/e_:;{’ii-l} — K{S=1} {30}
i=1 j=1

which is just Eq. [26] (here we used the equilibrium constant K based on con-

centrations). Therefore we see that an implication of Eq. [26] is assuming that

ez{s=1}‘ = e§5>1} ; that is, one need not invoke the Maxwell Demon assumption to



— 233 -
obtain the final value of the evaporation coefficient. On the other hand, if one

takes the ratio of Eq. [13a] and [13b], one has, for sufficiently large 1,

S= t
e*{ g = n’{ial} 1 ~ 1 [31]
C§S>1} ni_q n;:{sat} S S

{8>1}

That is, from only detailed balance formulations, =1} and €

; are found to

differ by about a factor of S. Thus the assumption that ei{s=1} = 8;~[S>1}, as well
as Eq. [26], contradict the results from thermodynamic detailed balancing. An
explanation of the incorrectness of Eq. [26] is that at a constrained equilibrium
situation (S > 1), additional work must be added to the system to decompose a

large cluster into monomers, and thus the equilibrium constant would be different

from that at a saturation condition (S = 1).

We now show what one can do from classical thermodynamics. The chemical

potential of an ¢-mer at a constrained equilibrium condition § > 1 is

pi = pd + kBTlnl% . 32]

For the reaction 1A; = A;, from Eq. [7], the chemical potential difference of this

equilibrium reaction is zero,

0=pi— tpr=ud — ipd +kpT1 /P 33]
= K T U1 = My Ty B n(pl/pO)., . ]
Equation [33] can be written in the form
L (0 _ -0 g p1 -
;= — ;o — {1 —1}kgT1 . 34
pi = py exp| T (4 — i) — {i—1}kp npo)] 134

Equation [34] represents the full extent that classical thermodynamics can reach

in the evaluation of the i-mer concentration. Using Egs. [32], [7], and [12], and



- 234 -
the ideal gas law, p;V = n;kpT, one can transform Eq. [34] into Eq. [11b], the
result obtained by statistica.i mechanics. Therefore, as expected, classical and sta-
tistical thermodynamics do agree. However, unlike the statistical results, classical
thérmodynamics does not provide an explanation of the free energy change term,
the parenthesized term in Eq. [34]. Therefore, one must postulate its physical sig-
nificance if only classical thermodynamics is used. The classical nucleation theory
corresponds to postulating that since the ¢-mers are in thermal equilibrium, the
probability that they have a certain energy AFi]L is just the probability for their
existence, if we interpret AF;r as the energy of formation of an ¢-mer. The question
then becomes: what is the appropriate energy of formation of an :-mer; should it
include the cluster translational and rotational motion? This is the often debated
classical issue. The statistical mechanical expression for AFl-T, Eq. [21], does not
have this problem; each of the terms is clearly defined and the cluster translational

and rotational motions were shown earlier to be accounted for.

In the paper by Blander and Katz (17), classical thermodynamics is applied

differently than in the above formulation; they wrote the chemical potential of an

{sat}

t-merat S =1, u; ,as

(sat} {sa.t}
iulgzat} — uj:sat} = l,l,? = + kgT lnp“?— . [35]

The standard chemical potentials of an --merat S >1and S =1, u? and uo{sat}

1 ?

must be equal, because the standard states in Egs. [32] and [35] must be the same,

t
ud = ud 136]

so combining Egs. [32] and [35], one obtains

‘ : {sat}
1 L
b = p1 €Xp [—Ef(ﬂi - ijzat} + I‘?BTlnptp1 )] . 37]
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Blander and Katz used Eq. [26] to express the ¢-mer partial pressure at S = 1,

pgsat}, in terms of the saturation ratio S. However, classical thermodynamics itself
does not provide any explanation of pz{sat} (or n;), and therefore Eq. [37] is again
~ a dead end. |

In the remainder of this section, we comment on Fukuta’s criticism (20) of
the inclusion of cluster translational and rotational motion. Fukuta argued that
the ensemble used in the formulation of statistical mechanics should be the grand
canonical ensemble instead of the canonical ensemble because we are dealing with
an open system, and as a consequence, the translational and rotational motions are
“screened” on purpose and should not be taken into account. Fukuta’s viewpoint
is nevertheless erroneous, because the thermodynamic results are independent of
the ensembles chosen; as pointed out by Hill (29) “... one can choose an ensemble
from which to calculate thermodynamic functions on the basis of convenience, and
irrespective of the actual environment of a system (heat bath, constant pressure,
etc.).” A direct support of Hill’s statement is that we have shown earlier that the
mass action law, Eq. [6], is obtainable by a canonical ensemble formulation, and

the same result can be obtained from a grand canonical ensemble formulation (27).

Fukuta (20) wrote, “... the grand canonical ensemble thus describes the status
or the probability of a system whose internal energy level and the number of
molecules are simultaneously but independently U (an energy state) and N (total

number of clusters).”

and “... the U term drops out from the probability of our
interest, and it may be considered as screened.” The energy state U in the grand
~ canonical ensemble is indeed a function of N (29) and therefore U cannot be

“screened on purpose.”
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SUMMARY AND CONCLUDING REMARKS

In this paper, we have reexamined the homogeneous nucleation free energy
change. We spmma_rize our findings as follows. First, from a statistica,i mechanical
point of view, the inclusion of cluster translational and rotational motion in the
nucleation free energy change is shown to be appropriate. As an aside, it is our
opinion that the Maxwell Demon assumption in the evaluation of the evaporation
coefficient is more defensible than if it is not invoked. The omission of intramolecu-
lar motion in the nucleation thermodynamic formulation is a reasonable assumption
especially for large clusters. We have shown the extent of classical thermodynam-
ics in the evaluation of cluster free energy change, and we have demonstrated the
agreements between classical and statistical thermodynamic formulations in the

cluster free energy change.
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ABSTRACT

The free energy change of cluster formation in gas-phase homogeneous nucle-
ation and the cluster partition functions are studied based on the céll model of
liquids. We provide a new molecular level theory that is applicable in the larger
cluster size range where liquid-like properties begin to emerge and a cluster surface
is present. The microcluster surface tension can be appropriately defined. A mi-
croscopicvexpression for the surface tension variation with cluster size is obtained
and the calculated result is compared with that predicted from the Tolman ap-
proach. The cluster rotational contribution to the free energy change is shown to
become insignificant for liquid-like clusters. The energy change of cluster formation
from the classical capillary approximation, Lothe-Pound theory and the atomistic

theory are compared with that of the present theory.
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INTRODUCTION

The foundation of the prediction of the rate of nucleation of a vapor is the
détermination of the free energy change from the vapor to a moleoular cluster.
Classical homogeneous nucleation theory (1-4) employs bulk surface tension and
bulk liquid density in evaluating the cluster formation free energy change. The
Lothe-Pound theory (5-7) accounts for, in addition to the classical free energy
terms, tﬁe contributions from cluster translational and rotational motion. Neither
the classical nor Lothe-Pound theories provides a microscopic e){planation of the
nature of the cluster surface as the surface tension is ill-defined in the microcluster
size range by classical thermodynamics. Unlike these two theories, the atomistic
theory of nucleation (8-19) is grounded purely on a molecular level. Kulmala and
coworkers (18, 19) were the first to attempt to obtain a closed form expression for
the free energy change as a function of cluster size by the atomistic theory. One
expects that the atomistic theory is most applicable for small clusters; for large
clusters detailed information on cluster vibrational frequencies will be lacking as
liquid-like properties begin to emerge. The atomistic theory, although based on a
molecular level description, also does not reveal the nature of a surface, that is,
there a,fe no terms in the free energy change expression that are proportional to

the number of cluster surface molecules.

In sum, a molecular level theory that provides a closed form expression for the
free energy change associated with relatively large cluster formation is lacking. A
natural result of such a theory should be a definition of the microcluster surface
tension. The'goal of this work is to employ a fundamental approach based on
statistical mechanics, the cell model of liquids (20-23), to predict the free energy
change in homogeneous nucleation. By this approach we will be able to appro-

priately define the microcluster surface tension; a closed form expression for the
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surface contribution to the free energy change will be obtained with the surface

energy contribution proportional to the number of cluster surface molecules.

PARTITION FUNCTIONS AND FREE ENERGY CHANGE

The “law of mass action,” obtained from either a grand canonical ensemble
approach (24) or a canonical ensemble formulation (25), provides a relation between

the number of i-mers and monomers through their partition functions,

n; = nj=; 1]

where n; and n; are the number of nomomers and s-mers in the system, respec-
tively. g1 and g¢; are the monomer and ¢-mer canonical ensemble partition functions.

Equation [1] can be rewritten in the form

1 . .
n; = ny exp[— kB—T(F’ —iF + (1 —12)kpTIn nl)] 2]
in which
F, = —kpTlng 3]

is the absolute Helmholtz energy for an ¢-mer. The free energy change of cluster
formation in nucleation can be obtained if one compares Eq. [2] with the classical

expression

n; = nq exp(—AﬂT/kBT) , 4]

one has

AF}/kpT = (F; - iF;)/kpT + (1 — 1) Inn, . 5,
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We see that, from Egs. [3] and [5], the crucial factor in determining the free energy
change of cluster formation ié the cluster partition function. Upon assuming that
for a cluster, the Hamiltonian of translational energy is separable from that of the
viBrational, rotational and bihding energies, and electronic and quantum effects

are not considered, the partition function of an :-mer can be written as

q; = Qi trans q: ’ [6]

where g; represents the partition function of an i-mer due to rotation, vibration and

cluster binding. To a first approximation, one can assume ideal gas for evaluation

of qi,trans>

27rm1ikBT)3/2 Rk

h2 - ’ [7]

qi,trans (Ta V) =V ( A3

where m; is the mass of a monomer, A = h/y/27m;1kpT is the de Broglie wave-
lengthr, h is Planck’s constant, and V is the total free-volume of the monomer-
cluster system. Because the monomers are in a much higher concentration than
the clusters, V can be related to the monomer partial pressure by the ideal gas

law,

_ nlkBT . nlkBT

VST T plews ®
where S = p;/ p{sat} is the saturation ratio, and p{sat} is the saturation pressure.
The monomer Helmholtz energy is given by
F = —~kBTln(%) - —kBTln(A—ZIfot%) . 9

Upon substituting Eqs. 3], and [6]-[9] into Eq. [5], the free energy change AF/

becomes
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AF! = —kgT ln(

2

3/2 kpT ksT

1 B . * - B
Fp{Tat}Ts_*) — ikpTInS — kpTlng} + ikpT MW). [10]
~ One can furtlier find an expression for the saturation vapor pressure pt®*t} through
equating the chemical potential of a molecule at its saturated gaseous and liquid

states. The chemical potential of a gaseous monomer at saturation is given by

kT
1)
uéz‘:} = —kgT ln(p{sT}AS) [11]
The chemical potential of a liquid molecule at saturation is
{sat} __ OF;|i 0o _ a(ln )
Mg ~ = T g; Ty kBT =5 | yimoo * [12]
Equating, one finds
{sat}
{sat} __ kBT u]jq _ kBT _ B(Inq,-)
4 T A8 exp( kgT ) T A8 exp( ) i—»oo) : [13]
Therefore, AFQL becomes
AF} = —kpTln(%) _ kTS — kpTlng! + z[M . g
1 B B q?, 1"’00 ©

n dv

The first two terms on the RHS of Eq. [14] are the contributions due to the i-mer
translational motion and volume creation. The i-mer rotational, vibrational, and
binding energies are implicitly accounted for in the last two terms on the RHS of
Eq. [14]. In the next few sections, we shall provide models for the i-mer partition

function ¢; such that AFiT can be evaluated.
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CLUSTER PARTITION FUNCTION BY ATOMISTIC THEORY

In this section, we will briefly review the only theoretical evaluation of the
clﬁste; partition function that exists so far, the so-called “a.tomistié theory” of
nucleation (8—19), and we will point out its limitations in the prediction of free
energy change associated with relatively large cluster formation. In the following
section, we will present a new method to evaluate the cluster partition function in
the largér cluster size range in which the shortcomings of the atomistic approach

are overcome.

In the atomistic theory, the Hamiltonians of translational, vibrational, rota-
tional, and binding energies of a cluster are assumed to be separable from each

other, the 7-mer partition function can be written as

*_

% = Qitrans®; 4 = @irot%i,vib%, bind [15]

where ¢; rot , @i vib, a0d ¢; bing are contributions to the ¢-mer partition function due to
rotation, vibration and cluster binding, respectively. The following approximations
are cust,omarily used in the atomistic theory: ideal gas for evaluation of g; trans
(i.e., Eq. [7]), rigid 'body rotator for evaluation of g; o, harmonic oscillator for

evaluation of ¢; yip, and pairwise potential additivity for evaluation of ¢;inq. The

latter three are formulated as follows:

T (872kpT\3/2 :
Girot(T) = —\;_ (—th- ) (LiadipLis)'? (¢ >3) [16a]
1
872 LkpT .
Gipot(T) = = 27— (i=2) [165)

where 7; is the rotational symmetry number of an :-mer; for a dimer, 73 = 2 in

Eq. [16b]. I;; is the j-th principal moment of inertia of an i-mer;
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%5 exp(—hv; ;/2kpT)

Qi,vib(T) = jl;ll 1— eXp(—hl/.,:,j/kBT) ’ (Z > 3) [170‘]
¢ vin(T) = exp(~hva)2kpT) (i =2) [170]

1 - exp(—hva/kpT) ’

where v; ; is the j-th normal vibrational frequency of an ¢-mer. v; is the vibrational

frequency of an dimer;

gi,bind (T') = exp (— ‘—,:91;(%)) 18]

where Vp(7), the binding energy of an i-mer, is calculated by summing over all

intermolecular potentials that exist between any two molecules in a cluster.

We make the following four general comments concerning the atomistic the-
ory: (A) The rotational symmetry factor, n;, is difficult to determine as a function
of ¢ once the cluster becomes large. For any icosahedral clusters (26), n; = 60;
also for small clusters, Reed (8) shows that n3 = 6 (equilateral triangle), 4 = 12
(tetrahedron), 75 = 6 (trigonal bipyramid), n¢ = 24 (octahedron), and ng = 12
(double tetrahedron). Many authors (19, 27-29) simply take n; = 1 by assum-
ing that there exist no identical positions in the rotation of a spherical-shaped
cluster. However, we expect that a crystalline cluster may exhibit a symmetrical
configuration, and the rotational symmetry number can be quite large and, from
Eq. [16a], reduces the value of the rotational partition function. (B) For small
clusters (e.g., ¢ < 10), the position of each of the molecules is fixed in the physical
" space with respect to one another except for small vibrations of normal modes in
the intermolecular potential wells around the molecules. For larger microclusters,
however, one expecvt‘s that liquid-like properties will appear. For a liquid in which

the density is slightly less than that in a solid, the amplitude of the motion of the
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molecules is larger. The concept of small vibrations is not valid in a liquid; the
molecules,v therefore, are nof confined to the vicinity of a particular position but
can wander over the entire volume of the liquid-like cluster. (C’)‘Thg calculation
of normal modes of vibrational frequency v; ; needs information on intermolecular
bond lengths and bond angles (30, 31) as well as solving a 37 x 37 force constant
matrix (26, 32-34). These approaches are difficult and many approximations are
implicit, »for example, decoupling between the vibrational and rotational degrees
of freedom is necessary even when possible anharmonicity is significant and more
degrees of freedom are activated for larger clusters. (D) The binding energy can
only be evaluated accurately by searching for a minimum configuration of a polyhe-
dron in the many-dimensional neighborhood of some appropriately chosen starting
configuration, followed by summing over potentials between any two molecules at

their equilibrium positions, i.e., summing over all bond energies (15, 35, 36).

Many authors use various approximations in the determination of vibrational
and binding energy contributions to the partition function in the atomistic theory.
For example, Andres (37) adopted a model of Herschbach et al. (38) of expressing
a polyatomic system partition function in terms of the local properties of its atoms
that neglect off-diagonal terms in the force constant matrix. The final expression
of Andres corresponds to assuming that all normal modes of vibration are the same
and only interaction with nearest-neighbor molecules is considered. Kulmala (18,
19) considered an effective second nearest-neighbor interaction and assumed equal
normal modes of vibration. For the purpose of later comparison with results of the
present paper, we briefly formulate Kulmala’s approach in the remainder of this

section.

For larger clusters, one can assume the three principal moments of inertia can

be approximated as that of a sphere
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2.
Ly=IL,=1I3= gzs/smlff . [19]

We now consider the intermolecular potential is a Lennard-Jones 6-12 potential:

) =4¢](1)" - ()7 20

where € and 6 are the Lennard-Jones potential parameters. The moment of inertia

of a dimer (¢=2) is therefore given by

1 1,2/3
12 = §m1(21/66)2 = (5) m162 . {21]

The normal modes of vibration are assumed equal and can be estimated from the

intermolecular potential vibrational frequency:

1 [d%u(r)/dr® 1/
vij =y =constant =v = —| ———— [22]
27 m1/2 r=21/6§
or
_ € 1/2
v= 1.7015(m152) 23]

With v given by Eq. [23], for ¢ > 3 situations, the (37 — 6) vibrational degrees of
freedom now correspond to vibrations between a center molecule and its (3¢ — 6)
neighbors (z.e., the first layer). However, vibration between the center molecule
and the other non-nearest neighbors should also be taken into account; this is ac-
complished by considering additional vibrational degrees of freedom. The effective

second-layer vibrational degrees of freedom are found to be

[Q ~ (3i - 6)] /115694 ,
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where the bracket is the difference of numbers between all interaction pairs, (7 —
1)/2, and nearest intera.ctioﬁ pairs, 3¢ — 6. The value 11.5694 is obtained by as-
suming an “effective” second-layer with a mean distance 2\/5(21/ 6¢$),7Which gives
thé effective potential energy per second-layer interaction of u(r) = —e¢/11.5694
from the Lennard-Jones formula, Eq. [20]. The vibrational partition function now

becomes, under these approximations,

{3i—6+(3(i—1)/2—3i+6)/11.5694}

N B exp(—hl//szT)

qi,vib (T) i1 _vexp(—hV/kBT) |
N _ exp(—hV/szT)

9i,vib (T) T 1 exp(—hl//kBT) ,

(7 > 3) [244]

(i = 2) [24b]

Because ¢ is the magnitude of the intermolecular potential u(r) at its maximum
depth, the binding energy can be deduced by a similar argument as in the vibra-

~ tional case; it was found that

21

Vo(i) = —e[3i -6+ ( —3i+6)/11.5694] , (i > 3) [254]

Vold) = —¢ (6=2). [250)

Altogether, the Helmholtz energy of an i-mer is related to the i-mer partition

function (Eq. [15]) and can be written as

F, ,;(V, T) = —kgT [ln @trans + I grot + Ingyip + In Qbind] ,

. t—mer
=—kpT In [V (M):’/z]
64n% ;m\3/2 kpT\3/2. .
et {ln[ 177; (%)3 2(%)3 225/2m";/2rﬂ . (i>3) "
In [24/372 (Z%Z)ml &, i=2)
(Byip — €)(4.3217 x 107%% + 2.6975i — 5.4814) , (i > 3)
+ . ;

Eyp—e€ , (i=2)



- 250 -

where

E,p = kgT [2kBT +In (1 - exp(-—gf))]

‘ [27]
= 0.8508 h( 62)1/2 + kpT In [1 - exp( - I'Zgiﬁh\/ m:52)]

is the average vibrational energy. Substituting Eqs. [9] and [26] into Eq. [5], the

free energy change predicted by Kulmala’s atomistic theory is

AF}/kpT = (z'—1)1n(——'5§-—1:—) ~(-1)nS- glni

{sa.t}AS
647{' 3/2 kBT 3/2, 5/2 3/2 3
i [ mi (5) Che h? ) N 28]
Ev1b —2 2
+ —— kpT (4 3217 x 10 + 2.69751 — 5. 4814) ,
(atomistic theory; : > 3)
and for the dimers,

kBT =In (p{sat}A3) —In [2 /y ('7‘—2—)77‘”5 S] + —lgj;—- . [29]

Equations [28] and [29] shall be used for later comparison.

Tt is ?:onsidera.bly'ea.sier to accurately calculate by atomistic theory the vibra-
tional frequencies, rotational symmetry factor, and the binding energy of clusters
composed of relatively few molecules as opposed to the calculations for larger
clusters. Thus, in a nucleation situation atomistic theory should apply if the su-

persaturation is sufficiently high that the critical clusters are sufficiently small.

In the next section, we present a new statistical mechanical approach to nu-
cleation. We intend to calculate the partition function for clusters of larger sizes
(¢ > 20) where liquid-like properties start to appear and the atomistic theory

becomes less appropriate and less accurate.
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A NEW THEORY FOR THE CLUSTER PARTITION FUNCTION

In this section, we will present a new approach to calculating tﬁe free energy of
formation of clusters sufﬁcientlyk large that they start to possess liquid-like proper-
ties. Table 1 summarizes the basic ideas of the atomistic approach and the present
work. For external motion of the clusters, we will again consider cluster transla-
tion as in the atomistic theory. We will, instead, use a cell model of liquids to
describe the motion of molecules within a cluster. In the cell model of liquids
(20-23), each of the molecules is assumed to possess a cell; each cell does not allow
double occupancy of molecules. Interchanging positions between cells is permitted
by the addition of what is termed the communal entropy to the cluster internal
entropy. Because of this interchanging motion, the cluster rotation is therefore ac-
counted for. The ambiguity of the determination of the rotational symmetry factor
in the atomistic theory is avoided. For vibrational motion, molecules in a cluster
are now allowed to vibrate in all directions and any at magnitude within their
own cells, and we do not need to obtain detailed information about vibrational
frequencies as is needed in the atomistic theory. Binding energy calculations, on
the other hand, are the same as in the atomistic approach; that is, the minimum
potential a molecule experiences is calculated. In addition, the molecules in the
outermost shell (the surface molecules) will be treated as a different group from
those of the interior molecules because the surface molecules experience different
potentials from the interior ones (39-41). As will be shown later (see Eq. [37] and
the discussion following), this consideration leads to a microscopic description of

the surface tension of a cluster.

The canonical ensemble partition function of a cluster composed of ¢ molecules

is now written as
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q'i(Va T) = qi,transQ: ) q'f = q4,intq4,surf [30}

where ¢; trans is given by Eq. [7], and

doim = [PL55 exp (- e )| T 31)
and
it = [21% e (— o ) 2]

are the partition functions of the total interior molecules and the surface molecules,
respectively. In Eqs. [31] and [32], vs’s denote effective volume available to a
molecule; ©*’s denote the minimum potential energy within a cell; and 75, is
the number of surface molecules. The factor €, so introduced in Egs. {31] and
[32], accounts for the addition of a full communal entropy (20-23). The dividing
factors (i — ¢gurr)! and 7gyrf! do not appear in Egs. [29] and [30] because the cells
are distinguishable (the cells can be labeled). Also in these two equations, p* is
divided by a factor of 2 because each intermolecular interaction is shared by two
molecules. (Note that in the atomistic theory, the factor 2 is not included because
the number of interaction pairs are calculated.) As will be evaluated later (see
Eqgs. [43], [61], [66], and [67]), !, and vjeur are weak functions of ¢, though
not expressed explicitly, because the surface curvature may influence the potential

experienced by the surface molecules.

The i-mer Helmholtz energy F; therefore becomes

F;=—kgT Ing;

=t {§1ni ¢ () 5 6 () 41 2

+ igurt [In (”fngi) +1- ﬁﬁf-]} :
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For a bulk phase, ¢ approaches infinity, so one sets 1 >> igy >> Ini in Eq.

[33], and the bracketed part in the last term on the right-hand side of Eq. [14]

becomes,
dln g; 1 aFi|i—>oo Uf.int € o5
7 _ - = |p | 8" — it |
3 | IcBT( 2 ipy n [=H5— ex 2kBT)] 54
Substituting Eqs. [31], [32], and [34] into Eq. [14], one obtains
i V2rmy i kpT\3kpT
AFz:__ Il[( 7rm123 ) B ]—ilnS
kBT P [35]
: (psurf <lolni; In Yf,int
+ zsurf|: 2%pT + ('Uf,surf)] .

The terms of Eq. [35] are, respectively, the cluster translation energy, the energy
released by condensing 7 molecules (or the volume contribution), and the energy
needed in creating a surface composed of ¢z, molecules (or the “surface contri-
bution”). The second and third terms are the same as in the classical nucleation
theory except we now have a theoretical expression for the microcluster surface
energy in terms of the intermolecular potential. The bracketed last term on the
right-hand side of Eq. [35] was first obtained by Lennard-Jones and Corner (40)
as an expression of surface tension for bulk liquids by using the cell model from a
different approach; they directly took the difference of Helmholtz energies of a bulk
liquid system with and without the presence of a surface and reached this result.
In Eq. [35], on the other hand, we have shown that the same expression can be
used for é. mici'oscopic definition of microcluster surface energy. Furthermore, the
free volume available to a microcluster surface molecule, vs gy, is different from
that available to a bulk liquid surface molecule, v gurt|planar, due to the curvature

of the cluster. We will return to this point in a later section.
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We will now explain from a physical viewpoint why the last term in Eq. [35]
correspondé to a surface enefgy contribution. Owing to the intermolecular repul-
sions, the probability of observing the central molecule in a given eléement of volume
must be obtained from a Boltzmann factor (20, 21). As a result, the effective vol-
ume vy (for either an interior cell or a surface cell) is reduced to a value less than v
(the molecular volume of the liquid) and can be obtained by the cell configuration

integral,

VUf,int = / eXP{_h%[@int(r) - Soi*nt]} dr = exP{‘,@%[@int - Soi*nt] }” 36a]

Vfgurf = / exp{ _k'%; [‘Psurf (r) - ‘P:urf] } dr = exp{ _kb% [‘psurf - <to:urf] }v [36b]

where the integrations are carried over the entire cell volume, and @i,y and @gurt
 are the mean potentials (defined by Egs. [36a] and [36b]) of an interior cell and a

surface cell, respectively. The last term of Eq. [35] can therefore be written as

x X . " *
foure | R0 (:,f::f)] = 2 [Pt — o] — [Pt} g3
In Eq. [37], the first bracketed term on the right-hand side is the difference between
the mean potentials of an interior cell and a surface cell; on the other hand, the
second bracketed term on the right-hand side is the difference of the binding energy
per interior cell molecule and the binding energy per surface cell molecule. The
sum of the two bracketed terms is simply the energy needed to elevate a molecule
from an interior cell to a surface cell. In other words, to expose an interior cell
molecule to a surface cell, not only the net potential energy difference between
the two cells should be provided, but an additional energy, %(p;‘nt — %‘p:urf’ which

corresponds to the destruction of the binding energy of the interior cell molecule
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and the reconstruction of the binding energy of the same molecule in a surface cell,
should be provided. Therefofe, the right-hand side of Eq. [37] represents the total
energy needed (normalized by kgT') to create a surface composed of tsurf molecules
a.n.d cb,rresponds to the classical 47 R%0 /kgT expression, where o is the surface

tension.

The present evaluation for the microcluster surface energy term only takes into
account é single layer of surface molecules, and the remainder of the molecules
in the cluster are treated the same, that is, the interior molecules are, to a first
approximation, assumed to experience the same potential regardless their location.
However, if we consider non-nearest neighbor (long-range) interaction around a
interior cell, the interior molecules adjacent to the surface molecules, for example,
must experience a different potential from those interior molecules far from the
surface. A question therefore arises: Will the present model that is based on a
single layer of surface molecules predict the correct bulk surface tension? In a later
section of this paper, it will be shown that the bulk surface tensions predicted by
our model are within 35% for six different test materials. This shows promise for
the present first approximation model. We will combine the present model with
the use 6f the measured bulk surface tension value to obtain a final expression for
AF;r that is to be compared with other theories. In other words, Eq. [35] is not
regarded as a final form for the free energy change prediction; with the detailed
calculation of the cell potentials and effective molecular volumes in the next few

sections, the final AFiT expression of the present model will be given later.

In the remainder of this section, we will present a general discussion of the
appearance and disappearance of the cluster rotational degree of freedom. In Eq.
[35], one notices that no terms corresponding to the cluster rotational motion ap-

pear because we have assumed that the surface molecules and the interior molecules
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are fully communal or interchangeable. This is particularly applicable for larger

clusters with liquid-like properties.

' As a more general formulation, we now consider a situation in Which the cells
within a cluster are not fully communal, ¢.e., the cells cannot freely interchange
their positions. Realistically, this case arises for clusters composed of relatively
few aggregated molecules (e.g., 1 < 30), The natural logarithmic constant “e” in
Egs. [311 and [32] should now be replaced by a factor “” having value between
1 and e (here we use the same notation as in Ref. (21); should not be confused
with the surface tension notation). Situations of & = 1 and & = e correspond
to non-communal and full-communal intercellular motions, respectively. We have
already considered the latter case; for the former situation (& = 1), the cells
are rigidly connected lattices in which molecules can vibrate, and the rotational
degree of freedom of the entire cluster should then be considered as in the atomistic
theory. In other words, as clusters become smaller, we expect that the liquid-like
property of a cluster should gradually disappear, and the rotational degree of
freedom should gradually emerge. As an illustration, if we assume this emergence
of cluster rotational degree of freedom is linear in (e — 1), the i-mer absolute

Helmholtz free energy can be written as

e—0
F,= —kgT [ln( Qi trans %i,int Qi,surf) + (e 1

) In ‘Ii,rot] ) [38]

- where ¢; trans is given by Eq. [7]; ,int and g; gyrr are given by Egs. [31] and [32]
except the factor e is replaced by &; and ¢; ;s is given by Eq. [16a]. It is reasonable
to assume that a bulk liquid phase must possess a full communal property and Eq.

[34] still holds. Upon combining Eqs. [7], [34], and [38], Eq. [14] now becomes
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AF!/kpT = |
. ,ln[(\/27rm1i1fBT)3kBT] B (e—a) ln{\/77(M)s/z(h’l[i"z[i’s)uz}

h D1 e—1 ni N h?

+iln (6) tln S + Zsurf[ SkpT + In (vf,surf)} ,

39)

where the last two terms correspond to the usual volume and surface contributions;
the former three terms correspond to the contributions due to cluster translation
and rotation and non-liquidification (s.e., loss of -communa.l property), respectively.
Equation [39] is quite similar to the energy change expression of the Lothe-Pound
theory of nucleation (5-7, 27, 28). Lothe and Pound in their theory, considered
an imaginary experiment in which a cluster is reversibly cut from a bulk liquid
phase; six degrees of freedom of the cluster must be deactivated before they can
be replaced by the free translational and rotational motions in vapor. The six
degreés of freedom deactivated are the small translational and torsional motions
of the cluster as a whole in bulk liquid with the relative positions of the molecules
in the cluster remaining fixed. Accordingly, the increase in free energy resulting
from the deactivation can be described by a replacement term, k BT Ing; rep > O,
better known as the “replacement factor.” The third term in Eq. [39], ¢1n(e/5),
arises from the fact that the cluster loses its communal property, which corresponds
to fixing the relative position of molecules during the deactivation process in the
Lothe-Pound imaginary experiment, and has exactly the same physical meaning
as the replacement factor of the Lothe-Pound theory. The expression of Eq. [39)
itself, hoWever, is not totally equivalent to the Lothe-Pound free energy expression;
for example, we pointed out that the cluster rotational degree of freedom should
disappear when thé cluster size becomes sufficiently large that the molecules in

the cluster have communal properties; the Lothe-Pound theory does not include
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this consideration. Also the replacement factor in the Lothe-Pound theory is not
a function ‘of cluster size, While in our expression, @ is a function of cluster size
(recall that & has the value of e for very large clusters, and has the value of unity

for clusters containing only a few molecules).

Another major difference between the current theory and the Lothe-Pound
theory is that the present work includes an expression for the microcluster surface
energy. Our point in this discussion on the partially communal intercellular motion
in a cluster is to show that the free energy change expression of the present theory
can reduce to a form similar to that of the Lothe-Pound theory; however, because
the functional dependence on cluster size of & is still unknown, and also because
the assumption of linear appearance of the rotational degree of freedom in Eq.
[38] is a qualitative approximation, we shall return to Eq. [35] for the cases of
clusters with full communal properties, which is presumably a good approximation

for larger liquid-like clusters.

CELL POTENTIALS

In this section, we give a detailed description of the methods to calculate the
potentials in either an interior cell or a surface cell. The effective volumes of these

two kinds of cells will also be calculated.

In the traditional cell theory of Lennard-Jones and Devonshire (LJD theory)
(20-23), each molecule moves within its own cell in the potential field of its near-
~ est neighbors which are assumed fixed at the centers of their cells. The problem
is simplified by assuming that the ¢ nearest neighbors are uniformly “smeared”
over a spherical surfa.ce of radius a, and the potential at any position within the

sphere can be calculated by an integration over spherical coordinates; the vari-
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able a stands for the mean nearest-neighbor distance. In our current model for
liquid-like cvlusters,r the interior cells are surrounded by ¢ nearest neighbors and
correspond to the cells of the LID theory. On the other hand, the surfa.ce cells
arevsurrounde'd by only ¢’ molecules (¢’ < ¢), which can be assumed uniformly
smeared over a broken spherical surface of radius @ with an open angle 2x (see
Figure 1). Note that an interior cell (i.e., that of the LID theory) corresponds to
a limiting.ca,se of a surface cell with an open angle 2y = 0. We will first calculate
the potential field and the effective volume of a surface cell in a general sense and,
later on, the calculated results can be reduced to either the surface cell situation

by appropriately specifying x, or the interior cell situation by setting x = 0.

Figure 1 shows the coordinates of a surface cell; the nearest neighbor molecules
are assumed uniformly smeared over a broken spherical surface which is defined as
" the radial distance r = a with a range of position angles from 8; = x to 7 and with
a range of azimuthal angles ¢ from 0 to 27; @, is measured from the center of the
hole. The present goal is to calculate the potential at any point within the surface
cell. In Figure 1, point P is at a distance r from the cell center with a position
angle 6; measured from the center of the hole and an azimuthal angle ¢ = 0. Point
Q, on the other hand, is at a distance a from the cell center (i.e., @ is on the
smeared surface) with a position a,ngble 02 and an azimuthal angle ¢. The distance

between point P and point Q is denoted as R. One finds

R% =a?% + 7% —2ar [SiI_l 61 sin 83 cos ¢ + cos 5 cos 01] . [40]

The unit surface area at point Q is a®sinf;d¢ df;. Assume ¢’ nearest neighbors
are uniformly distributed on the smearing surface, the total number of smeared

molecules at point @ is therefore
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sin 0y dgddy x ¢ = ¢ ]
(1 — &) 47a? 4(m —x)
Vis

sin 0 do df . [41]

The intermolecular potential u(r), in the subsequent calculation, will be ap-
proximated by the Lennard-Jones 6-12 potential given in Eq. [20]. One can obtain

the total potential at point P by carrying out the following integral

' T 27
Psurt(r,01,X) = [4(7:—_)] / / u(r = R) sinf; d¢ db,
X f2=x $=0
! T ) 12 é 6 42
B [4(”"")]02[”4 A pam) ~ Granay) o

where the subscript “surf” denotes that the cell is a surface cell. Upon substituting

Eq. [40] into Eq. [42] and integrating over ¢, Eq. [42] becomes

surf (T, 2, 01, clm ce
et = () (o)

kgT 7 —x)/ kT
P L A(BA* +40A42B? +15B%)  , 24®+B? q [43]
< [ [ T~ ar gy Sntdh
Wl 4(A2 — BY) (4% — BY)
2:
where

A =1+ 1~ 24/T cosb cos by
B= - 2\/zsinb;sinb; [44]
T\2 62
e=(G) . ==(Q)
In Egs. [43] and [44], z/2 stands for the dimensionless radial distance; z!/2 stands

for the ratio of the Lennard-Jones interaction length é to the intermolecular dis-

tance a.

For an interior cell, the open angle is zero, and the number of surrounding
nearest neighbors is ¢. Therefore, by setting x = 0 and ¢/ = ¢ in Eq. [43] and

integrating, the LJD cell potential (20-23) is recovered:
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©int(T,2) = 4ce{z6 [l(x) + 1] -2 [m(x) + 1]} | [45]

; With

lz) = (1+12z+25.22% + 1223 + =) (1 —2)"° — 1
[46]
m(z)=(1+z)1-z)*-1.

As expected, a difference between the potentials of a surface cell and an interior
cell is that the former depends not only on the radial distance £ but also on the

position angle 6;, and on the (half) open angle x.

A final note of calculating the cell potential presented in this section (see Eq.
[42]) is that only the nearest-neighbor interactions are accounted for. Potentials so
calculated comprise about 83% (22) of the actual cell potential where long-range
non—néa,rest neighbor interactions are also considered. However, the final goal for
calculating the cell potential is to calculate the microcluster surface energy, and it
was shown earlier in Eq. [37] that the cell potential enters the microcluster surface
energy calculation only in the form of differences. That is, much of the errors
that are caused by the approximation of nearest-neighbor interaction will cancel
in the microcluster surface energy calculation. Also, the present evaluation of cell
potential by only considering the nearest-neighbor interaction is in agreement with
the earlier statistical formulation where only a single layer of surface molecules
is treated as a group different from the interior ones (see Egs. [31] and [32]).
| Moreover, we will later use the measured bulk surface tension as a final correction
of our theory. Therefore, in the next few sections we will continue to calculate
minimum potentials‘ and effective molecular volumes based on the approximation

of nearest-neighbor interaction.
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- MINIMUM POTENTIALS AND =

As we pointed out earlier in Egs. [36] and [37], the minimum potentials of both
intérior cells and surface cells are important factors in the determination of either
effective volume or surface energy per molecule. In this section, we continue our
analysis of cell theory to determine the minimum potentials of interior cells and

surface cells.

The minimum potentials of a surface cell and an interior cell, ©} ; and @i |,
are not necessarily located at the center of the Cells. The position of the interior
cell minimum potential, for example, is approximately at a dimensionless distance
z1/2 = 1 — 21/2 from the cell center if the ratio 6/a (or z!/2) is low, because under
such a situation the smeared neighbor molecules are too far from the cell center
to have an effective attraction to make the center potential minimum. Figure 2
shows ini/ce from Eq. [45] as a function of the radial distance z!/? with z as a
parameter. It is seen that the minimum potential position is offset from the cell
center for small z values. We also note that as z increases the minimum potential
position approaches the cell center and the potential well width narrows, because
the smeared neighbor molecules interact at a closer distance (the larger the z the
larger the Lennard-Jones parameter §). The situation that a = 21/8§ (or z = 0.8)
corresponds to all molecules at their equilibrium positions. At a z value larger
than 0.8, the minimum potential is smaller than the z = 0.8 case because the
intermolecular distance is shorter than the equilibrium distance, 2!/66, and the
repulsive forces of the surrounding neighbors become predominant. As a result,
short-range repulsive forces from the neighbor molecules overlap with each other

thus elevating the minimum potential at the cell center.

Figure 3 shows the interior cell minimum potential as a function of z3. For
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23 < 0.5, the larger the value of 2, the stronger the overlapping of the nearest-
neighbor long-range attractioﬁ, and the deeper the minimum potential. Also shown
in Figure 3 is the location of the minimum potential z* = (r*/a)? as a function of
23.' For 2% > 0.23 (or 212 = S/a > 0.783), the minimum potential is at the cell
center. The interior cell minimum potential in Figure 3 can be represented by the

following equations; for the off-centered minimum potential situations,

*
Pt — _0.104244 — 3.35042% + 3.060782°  (0.464 < z1/2 < 0.783)  [47d]
Cc€E

and for the centered minimum poteni.al situations,

Tm oy -F) (M 20789). [475)

Equation [47a] is obtained by a least-squares fit, and Eq. [47b] is the exact repre-
sentation of v, obtained from setting z = 0 in Eq. [45]. We see that 21/% is an
important factor to determine. In the remainder of this section, we will use both
Egs. [47a] and [47b] to show that z!/2 is a function of ce/kpT only. The determined
21/? will then be used in the calculation of the potential field in a surface cell, Eq.
[43], from which one éan find the surface cell minimum potential. We first seek an

appropriate relation between z/? and ce/kpT.

The i-mer Helmholtz energy F; is given by Eq. [33]. For a bulk phase, ¢ >>

In? >> tgy1, all molecules are present in interior cells, and we have

Filineo = —ikpT [m(%ﬁ) +1- 2wt 48’

The pressure withih the bulk phase can be found through the thermodynamic

relation
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r= (el = 1)
() |rinee 0 dv Ti [49]
_ 1 Ovpim 1 9(phy/kBT)
__ kBT[ﬁf,int ov 2 dv ] )

in which v is the volume of a cell (i.e., the molecular volume of the liquid, or the
reciprocal of the liquid density). The smeared sphere radius a can be related to v

by

a®=. [50]

where - is a constant depending on the type of packing of the cells. For example,
~ has the value of 1/2 for a face-centered cubic (f.c.c.) packing (20). The radius of

a cell (or the effective radius of a molecule) is, therefore,

ry = (iv) 1/s = (a—’:- %) 18 . [51]

With the cell radius given by Eq. [51], the effective volume of an interior cell

molecule, Eq. [36a], can be written as

Ufint = -/r:O exP{ - kB%T [‘Pint - Qo;nt] } dmr® dr
3 )2/3 ; (52
=2myv zz‘é”” exp{ " ke [‘Pint - wi“nt] } Vzdz .

Substituting Eq. [52] into Eq. [49] and differentiating with respect to z, Eq. [49]

becomes .

pv 2 s ce z 0
kT 3_g'(1car) (Geas" — -
- 1a)e -+ 00+ (5 (2%
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where
(i 2/3
1= [0 gl L[ i) Vi
i)Z/3 v . .
9= /z =§7T'7 eXP{ " %aT [<Pint - <Pi*nt] } iz) Vzdz [54]

gm = L =§"” exp{ — k;%T [t — Oht) } m(z) Vadz .

Equation [53] is the equation of state of the present theory with the expressions for

o5y given by Egs. [47a] and [47d].

At an equilibrium saturation condition, combining Eqs. [12] and [34], we have

pv v (p;:nt 1 (piknt
- -1} = —- 1. 35
kBT  vfims exp[szT ] 27 g & 2kpT ] [35]
Equating Egs. [53] and [55], one obtains
2 ce 0 (pins/ c€) 6 3 6 3
‘1—5( kBT)v[(z 2 242° 4 122 )g — 242%; + 122°gp] "
l( ce )z O(pi,¢/ce) _ 1 exp[l( ce )_(&11_,;_ B 1]
3\kgT 0z 2myg 2\kpT/ ce |

Equation [56] is a highly nonlinear integral equation which relates 2112 uniquely
with ce/kpT. We solve this by Newton-Raphson’s method with the use of Egs.
[47a] and [47b], and the result is shown in Figure 4. The value of v = v/2 has been
~ used, Wh'ich corresponds to the f.c.c. packing situation. As expected, the lower
the temperature, the closer the nearest-neighbor molecules, and the higher the
value z!/2. The curire in Figure 4 can be represented by the following least-squares

best-fit polynomial:
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6 13 _ | ' _1( CE _g( CE \2
= =21 = ~2.43770 + 5.97756 x 10 (k]TT) — 4.50665 x 10 (k_lﬁ)
. 3 ce 4 :
1.79339 x 1073 ()" — 3.95503 x 1075

+ X (kBT)v x 10 (kBT) [57]

- . 5 ce 13

457711 x 107 (-5} — 2.17152 x 109 .
+ x 1077(=7) x107° ()

For most of the situations in which we are interested in a nucleation process (that
is, at low temperature conditions) ce/kpT lies between 20 and 40; for example, for
an f.c.c. packing ¢ = 12, ce/kpT = 34.31 for water at 10°C. We see that, from
Figure 4, 21/2 in this range of ce/kpT has a value between 0.83v and 0.875. This

1/2 is expected since z!/2 should not greater than 2~/ (= 0.891)

range of values of z
at which molecules are repulsive in nature, nor should 21/2 be too small which may

correspond to a situation in which molecules are dissociated.

Although the present relation between z'/2 and ce/kpT is found from an anal-
ysis of interior cells, it will be applied for surface cells. The reason is that both the
interior cells and the surface cells of a cluster must have the same intermolecular
distance @ and Lennard-Jones parameter § such that the value of 212 is the same
throughout the entire cluster. Also Eq. [57] is obtained from thermodynamic equi-
librium relations at saturation conditions, however, one can approximate that Eq.
[567] is applicable for non-equilibrium supersaturation situations, because micro-
scopic intermolecular interactions in a cluster are not affected by the macroscopic

supersaturation.

MORE ON SURFACE CELLS AND SURFACE ENERGY

With the relation determined between z and ce/kpT, Eq. [57] in the previous
section, the potential field in a surface cell (Eq. [43]) as well as the effective volume

of a surface molecule can be now evaluated. There are four goals, therefore, in this
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section concerning surface cells: (A) To find a relation between the surface cell
(half) opeﬂ angle, x, and the number of molecules in a cluster; (B) With x so
determined and with z!/2 given by Eq. [57], to calculate the potential rnumerica.lly
baséd on an integration of Eq.v [43] for both the planar surface and the nonplanar
cluster situations. The minimum potentials of surface cells will be compared with
that of the interior cells; (C) To calculate the molecular effective volume in a
surface cell and compare it with those of the interior cells; and (D) With ¢} 4,

Ot Vf,ints and Vs gy, to calculate the surface energy per molecule based on Eq.

[37].

The relations between X, tgyrf, and ¢ — We recall that a surface molecule is
surrounded by ¢’ nearest molecules; these molecules were assumed to be smeared
over a broken spherical surface in order to calculate the potential within the cell.
~ For a molecule on a planar liquid surface, in particular, the “surface density” (i.e.,
the number of molecules per unit area of the smeared surface) can be approximated
to be the same as for an interior cell, in which case, ¢ nearest neighbors were
assumed uniformly smeared over the entire 47a® area. In other words, x can be

determined by

1

Xplanar = ﬂ'(]- - %) . [58]

The situation is shown schematically in the upper part of Figure 5. For a surface
molecule of a cluster, the number of nearest neighbors is still ¢/, however, these
molecules are closer to one another than in the planar surface case, and the surface
density iS presuina.bly higher. We show this situation in the lower part of Figure 5,
where the angle between the original planar surface and the tangent line along the
cluster surface is dehoted as £. The angle ¢ can be estimated through a relation

with the total number of surface molecules. Consider an i-mer of radius R; whose
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number of surface molecules is i4;,; one can approximate the relation

47TR,?
ma?

[59]

isurf &

From geometry (see Figure 5) together with the use of Eq. [59], £ can be estimated

as
a 2

Ri v isurf '

/60]

The open angle x, in the present case, is the sum of £ and that of a planar surface

situation,
¢ 2
X = Xplapar + E =71 — —) + —F—. 61
s + € =7(1=0) + 7 .

The effect of the nonplanar correction of x, the last term of Eq. [67], is expected

to be larger as cluster size decreases.

There naturally arises a problem of finding a closed form relation between the
number of molecules contained in an i-mer (¢) and the number of surface molecules
of an i-mer (fgy,f). For smaller clusters, the exact relation between ig,;y and ¢ is
difficult to find because the shape of the clusters is not necessarily spherical. In this
regard, wé will use the idea of a series of icosahedral packing clusters derived from
Mackay (35, 42), for which a closed form relation between ¢ and 74, is available. In
Mackay’s icosahedron, the intermolecular geometry is basically an f.c.c. packing,
however, a small distortion is required to preserve overall icosahedral symmetry.

Geometrical considerations give (35)

1 A
i(X) = g(10X3 +15X% + 11X + 3) 62

and

(X)X -1) _ox2 g 63

| z.surf()() = Z(X) :
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where X is the number of molecule layers (X > 1) around a central molecule.
For example, for X = 1, the ’icosahedron corresponds to a 13-mer (Eq. [62]), and
there exists only one layer composed of 12 surface molecules (Eq. [63])7 For a very
large duster, as expected, the number of surface molecules is proportional to the

two-thirds power of the total number of molecules,

fsurt = (3V/107)%/® = 4.48144%/3 (for large 3) . [64]

Equation [64] will later be used to evaluate a relation between the microcluster

surface tension and the bulk surface tension.

From Eqs. [62] and [63], we obtain, by directly cancelling X,

) I'f /.
= su + 3\/_ (zsurf + 9) tgurf — 2. [65]

Equation [65] expresses ¢ as a function of ig,s. However, we want to obtain an
explicit relation that expresses tz,s as a function of ¢ that can be used in the
calculation for the surface energy term of Eq. [35] (or Eq. [37]), and for a direct
relation between x and 7 in Eq. [61]. Note that the relation between ¢ and tgyy
in Eq. [65] is strictly valid only when both ¢ and g, are integers (for example,
when ¢ = 55, 15 = 42). To obtain an expression for ig,s as a function of ¢, to a
first approximation, we solve Eq. [65] by assuming that the result is valid even for
situations where the outermost shell in the icosahedron is not fully covered, and the
calculated 7g,., if fractional, will be truncated to integers. Using a least-squares

fit for inverting Eq. [65], we obtain the following formula,

Tourf = Integer{exp[5.752 X 1072 +1.0261n ¢
, [66]
—3.160 x 1072 In % + 9.547 x 107* 1n3z‘]} :
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The Numerical Calculation of Surface Potentials — We will now show the
calculatioﬁ of the integral of Eq. [43] for evaluating the surface cell potential
field. We assume that the cluster obeys an f.c.c. packing lattice; the number
of vneé.vrest neighbors of an interior cell molecule is 12 (¢ = 12), and the value
of v in Eq. [50] is V2. We choose f.c.c. packing as an illustration not only
because Mackay’s icosahedron (35, 42) has an f.c.c. packing which results in a
closed fo;m relation between ¢4 and ¢, but also because it is the most natural
packing arrangement of spheres if their interactions are sufficiently weak that the
molecules lose any directional orientation preference. This appears to be a good
approximation especially for liquid-like microclusters. It is, however, first necessary
to decide which face of the f.c.c. lattice is exposed. Corner (41) showed that the
(111)-plane is preferred; this corresponds to the number of nearest neighbors of a
surface molecule as 9 (¢’ = 9, 6 of them are surface molecules themselves, and 3 of
them are interior molecules; see the upper-left part of Figure 5). The planar surface
half open angle, Xplanar in Eq. [58], is therefore equal to m/4 in our subsequent

calculations.

Figure 6a schematically shows a side view of a surface cell, i.e., a view of a
cross section at an arbitrary constant azimuthal angle ¢. The surface cell can be
divided into two portions along the 8; = 7/2 surface; a molecule in the “sealed
side” (/2 < 0; < 7) experiences stronger intermolecular interactions than if it is
in the “open side” (0 < ; < 7/2). Three cross sections at 6; = 0, 7/5, and 7/2
(see Figure 6a) are chosen to see the variation of the potential as a function of

position angles.

Figures 6b—6d show the potential profiles of a cell that belongs to a planar
surface (igyr = oo),‘a, 55-mer surface (igyf = 42), and a 13-mer surface (tgy = 12),

respectively. The reason for choosing the 55-mer and 13-mer situations is that these
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are the smallest perfect icosahedra. For the 13-mer case, for example, it is the
most curved surface from Which the present analysis based on cell theory is valid;
12 molecules are exposed at the surface, and x = 7/4+2/V12. Thrge solid lines‘
which’ correspond to the aforementioned three cross sections are shown in Figures
6b-6d. The internal cell potential is also shown in these figures by a dashed line
for comparison. We have used ce/kpT = 25 in the computation as an illustration.
On the sealed side of a surface molecule, as expected, the potential fields shown
in Figures 6b—6d are very close to that of an interior cell. Along the 6; = 7/2
cross section, the potential profiles in Figures 6b—6d are exactly. symmetrical to
the cell center. The 8; = 7/2 profiles are also the most narrow ones in comparison
to the profiles of 8; = 0 and #; = n/5. The potential profiles along the §; = 0
cross section, on the other hand, are the most unsymmetrical profiles, because the
intermolecular interactions substantially decrease close to the edge of the smeared
surface at the open side of the cell. Also one notices that a potential barrier may
occur along the 8; = 0 cross section at the open side as shown in Figure 6b, even
though no molecules are smeared in the open angle region; a molecule can be
moved out of the cell cage only when enough energy is provided to the molecule
to overcome the potential barrier. Comparing Figures 6b—6d, we find that the
potential humﬁs of the 81 = 0 curve at the open side of the cell disappear as the
surface cell changes from a planar case to a cluster case. The open side potential
along 6, = 7/5 also substantially decreases as a cluster becomes smaller due to a

wider open angle .

The minimum potential in a surface cell always occurs at the sealed side along
the 61 = 0 cross section, as shown in Figures 6b—6d. Figure 7 shows the calculated
minimum potential of a surface cell. A line for the interior cell minimum potential

is also shown for comparison. In Figure 7, the surface cell minimum potentials of
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a planar surface, a 55-mer, and a 13-mer, are all higher than that of the interior
cell since the latter has moré nearest interacting neighbors. For smaller clusters,
the open angle x is larger, and, therefore, the minimum potential is more shallow.
One also notices in Figure 7 that the higher the value of ce/kpT (or the lower the
temperature), the closer the intermolecular distance, and the deeper the minimum

potential for all cells.

Surfabe Cell Effective Volume Calculations — The effective volume was dis-
cussed earlier above Eq. [36a]. The expression for an interior cell effective volume,
Ufint, Was first given by Eq. [36a| and reformﬁla.ted in Eq. [52]. Similarly, the
expression for a surface cell effective volume, vy g, was given by Eq. [36b], which

can be rewritten as the following cell configuration integral

Vfsurf = / /;1_0 Ic T [‘Psurf ‘Psurf] } 2772 sin 0y dy dr

( 3 )2/3

- m

=Tyv /_z=;17f’7 /;120 exp{ - é [gosurf - p;urf]} VT sin 6, d, dz [ |
67

Figure 8 shows the calculated vfgys/v as a function of ce/kpT for the planar
surface, 55-mer surface, and 13-mer surface situations. The dashed line is v f,int/V
for the interior cell case. We find the following: (A4) The interior molecule effective
volume is always smaller than that of a planar surface molecule because a planar
surface molecule is not as tightly bound as in the interior cells; (B) For a given
number of nearest neighbors, ¢’ = 9, the smaller the cluster, the smaller the effective
volume. 'At first glance, this seems contradictory to intuition because a smaller
cluster should have a wider open angle x, and in consequence, the surface molecule
should move more freely. On the other hand, if the open angle does not vary

dramatically (in our calculations, x varies from 0.257 for a planar surface to 0.437
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for a 13-mer), the number density of molecules on the smeared surface for a smaller
cluster is higher than that of a larger cluster because ¢’ is constant, and thus the
surface cell molecule of a smaller cluster would be more confined than that of a
larger t;luster.. Figure 8 shows that under the conditions considered, fhe effect of
increasing surface density that lowers the effective volume predominates over the
effect of the wider open angle that would increase the effective volume. (C) For
a molecule present in any cell, the lower the temperature, the lower the kinetic

energy, and the lower the effective volume.

Calculation of the Surface Energy Per Molecule — Based on knowledge of the
effective volume and cell potential discussed in this section, we now present the
calculations of the surface energy per molecule, the bracketed term on the left-hand
side of Eq. [37]. Figure 9 shows the latter as a function of x and ce/kgT. We
- find that the higher the temperature the lower the surface energy per molecule.
Though this phenomenon is commonly observed experimentally for bulk surface
tensioﬁ of many liquids, the microscopic explanation from the present theory is that
an increase in temperature will decrease the difference of the average potentials
between an interior cell and a surface cell, and the energy needed to elevate a
molecule from interior to surface will be lowered. Also we notice that for smaller
clusters, the surface energy per molecule is higher because, from Figure 7, the
difference between ¢}, ; and o, for a smaller cluster is greater than that of a

larger cluster.

MICROCLUSTER SURFACE TENSION AND COMPARISON

In this section, microcluster surface tension will be appropriately related to the
surface energy per molecule. The surface tension variation as a function of cluster

size can be subsequently calculated by the present cell model and will be compared
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with that predicted by the Tolman approach. With a self-consistent bulk surface
tension expression, we will provide the final form of free energy change that is to

be compared with expressions from other theories in the next section.

The surface enei‘gy contribution to the cluster formation free energy change,
the last term in Eq.. [35], is a simple product of two parts: the number of surface
molecules, t4,,f, and the surface energy per molecule. The expression for 74,,; was
given by Eq.' [66]; and the calculations for the surface energy per molecule were
shown in Figure 9. To relate the surface energy contribution to the surface tension
of a liquid-like microcluster, the work needed to form a microcluster from a macro-
scopic thermodynamic viewpoint is necessary. In this regard, we will first make a
distinction between the equilmolar dividing surface and the surface of tension due

to Tolman (43).

According to Tolman (43), the location of “equilmolar dividing surface” is
where the surface excess concentration is zero; the location of “surface of tension,”
on the other hand, is where the surface tension is defined thermodynamically by
the Laplace equation. The difference between the distances of these two surfaces
from the. cluster center is denoted as 67, better known as the Tolman delta. We
denote the radii of these two surfaces, from the center of the spherical droplet, as

R, and R,, respectively, and

67 =R — R, . [68]

In the recent work of Bartell (44), it was shown that in terms of these two radii

the work needed to create a surface is

2R3
R,

surface work = —7ra(
3

+R.2) . [69]
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That is, th‘g surface work is not simply 4mR%0. The surface work for creating a
droplet with large surface are#, however, approaches 47rRezaoo, since Re and R, will
be identical in this case, and the surface tension approaches its bulk value 0. The
ratib of the surface work given by Eq. [69] to 47 R0, will be termed “effective
surface tension ratio” since it represents the ratio of actual surface work needed
for creating a liquid-like cluster surface to that of a fictitious situation where the

cluster radius is R, and surface tension remains its bulk value 0.

By equating the surface energy contribution expression of the present work,
the last term of Eq. [35], with the macroscopic thermodynamic surface work ex-

pression, Eq. [69], one has

e ] =St ()

which, in the bulk surface limit, becomes

— ok 2
planar Pint In Ufint _ 47 Re*00
2kpgT kgT

(3\/Ei)2/3[‘r0:urf

71

v
fysurt planar

Equation [64] has been used to obtain Eq. [71]. The “effective surface tension
ratio” of our present theory is therefore the ratio of the left-hand sides of Egs. [70]
and [71]. Figure 10a shows the calculated effective surface tension ratio from the
present theory as a function the size of the cluster, ¢, with ce/kpT as a parameter.
Again, f.c.c. packing is assumed. We find that the smaller the cluster the lower the
surface tension from the bulk. Our theory predicts that for clusters smaller than
20-mer (down to the smallest icosahedron 13-mer) the surface tension increases
when size decreases. For clusters smaller than a 13-mer, however, the present

theory is not applicable because there does not exist a full covered surface.



- 276 —

The reason for the minimum around ¢ = 20 is as follows: The effective surface
tension ratio, by taking the ré.tio of the left-hand sides of Egs. [70] and [71], is the
product of ggy.s/ (34/107)%/3 and the ratio of the surface energies per molecule of a
clu‘ster‘ and of a planar surface.b The former, which stands for the ratio of the actual
number of surface molecules to that in the bulk limit, monotonically decreases as
¢ decreases. On the other hand, the ratio of the surface energies per molecule
of a cluster and of a planar surface, from Figure 9, monotonically increases as 7
decreases since the surface energy per molecule of a cluster is higher than that
of a planar surface. Because of these contrary 7 dependencies, the product of the
aforementioned two ratios possesses a minimum which occurs at ¢ = 20. From
Figure 10a, we see that the former ratio, igyf/(3v/104)%/3, predominates over the
range for ¢ greater than 20, and the decrease of the surface tension from the bulk
in this size range, therefore, is mainly due to the variation of the number of surface

molecules from the bulk limit.

The effective surface tension ratio, the ratio of the right-hand sides of Egs. [70]
and [71], can also be obtained once an expression of the surface tension variation,
0/0c, is known. In this regard, Tolman (43) showed, from classical thermodynam-

ics, that the variation of surface tension as a function of size is governed by

b 1rye
v et t3E)] -
cdR.

R EL e

Bartell (44) used a different thermodynamic route to obtain Eq. [72]. The
expression for -a/ac,o can be obtained once one integrates Eq. [72]. This was
accomplished analytically by Plesner (45). The Tolman delta, é7, was assumed not
to be a function of size. From Plesner’s result, the “effective surface tension ratio”

can be written as (notice that in Eq. [42] of Plesner’s work (45), an integration
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constant 1.3115 was still missing; see equation below)

)+ (% -

Oco
4 b7
0.804 + = (—
%[2(%:) + (%)2] ex:){1.3115 —1.691 ta,n_l[ 0.91?;8(}2“)]} -
0.55 g.721
X [1.794 i (%)] [0.558 + 0.804(%) + g(%)z]

/{1+2(%€-) [1+ (%) + %(%)2]} :

The determination of ér is given in the Appendix, based on a theory of Kirk-
wood and Buff (46) and with the use of the Lennard-Jones potential, Eq. [20],
together with solving Eq. [56] of the present work. We have, for the first time,
. determined that the Tolman delta, é7/r1, is a unique function of ce/kpT. Thé size
dependence of ép is still unknown; this quantity is ill-defined for small clusters in

Tolman’s theory and in Kirkwood and Buff’s work.

With the use of Eq. [73] and the ér calculated in the Appendix, the ratio of the
right-hand sides of Eq. [70] and Eq. [71], i.e., the effective surface tension ratio,
is shown in Figﬁre 10b as a function of the cluster size ¢. This result is termed
the “Tolman approach” since the concept of é7 and Tolman’s original formulation,
Eq. [72], have been used. Again, as in Figure 10a from the cell theory, the cluster
surface tension is smaller than the bulk value. Comparing Figures 10a and 10b in
the range of ce/kpT = 25 and 35, the predictions from the two totally different

approaches agree well with each other when the cluster is larger than about 100.
The two theories, however, predict different trends in the temperature dependence

of the effective surface tension ratio.
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Bulk Surface Tension Prediction and Reconciliation with Measured Value —
We will néw show the coniparison between the predicted bulk surface tension
and measured values. We start from Hq. '[71] that relates the work needed for
crevat;uig a la;‘ge surface predicted by the cell theory and macroscopic classical
thermodynamics. We first recognize that the relation between the cluster size, 1,

and the equilmolar dividing surface radius, R,, is

(Z2)° = [74]

r1

where r; is the monomer radius. Equation [74] states that an i-mer is defined
within a sphere of radius R, which divides the gas phase from the liquid phase;
that is, the cluster radius should be the equilmolar dividing surface radius. An
expressioﬁ that is commonly used, (R;/r;)® = 1, is erroneous because R is only
- related to the surface tension and there is no direct relation to . With the use of

Eq. [74], Eq. [71] can be rewritten as

(3v10)¥8 1, o) + kp “Ljat
Oco = 47['7']2_ [2 (F surf ‘pla.na.r lnt) n Uf surt ] [ ]
’ planar

Table II 'shows‘ the predicted surface tension of six substances by using Eq. [75]
with the measured surface tension values. The predicted surface tensions are within
about 35% of the measured values for these substances. This comparison shows
promise for the present theory because the calculation is based only on the micro-

scopic Lennard-Jones intermolecular potential.

It is not, however, our purpose to calculate a correct bulk surface tension
based on the cell model of liquids, but rather the surface tension variation is of
interest. Secondly, we expect the predicted surface tension to differ from the mea-

sured value because we have employed the nearest-neighbor interaction approxi-
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mation throughout the calculation. A reconciliation of the present theory with the
measured 1bvulk surface tensién value is therefore necessary. In other words, the
prediction of bulk surface tension by Eq. [75] will not be used further. Instead
- we .will use the measured bulk éurface tension and the prediction of surface tension
variation from the present theory (¢.e., Figure 10a) in order to predict the micro-
cluste: sﬁrface tension. Thus, upon combining Egs. [71] and [75], the expression

for free energy change incorporating the bulk surface tension is

AFiT _ ln[(\/27rm1ikBT)3kBT] — IS
14 47”'%000 QO;urf - <P;‘uyflpla.na.r +1n (Uf,surf|pla.na.r)
surf (3\/ 10)2/3kBT 2kpT Uf,surf '

Equation [76] is 6ur final expression for AF;r to be compared with other theories

in the next section.
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PREDICTION OF THE FREE ENERGY CHANGE

The goals of this final section are first to summarize the equations to be used in
thev coinpa.risqn of free energy change in the formation of microclusters, and then
to use an example to show the influence in the free energy change, as well as in the
nuc_leatidn rate, by considering cluster translational and rotational motion and the
cluster surface tension variation. The theories to be compared are: (A) classical
nucleation theory with constant surface tension, (B) classical nucleation theory
with surface tension variation due to Tolman, (C) Lothe-Pound nucleation theory
with conéta.nt surface tension, (D) Lothe-Pound nucleation theory with surface
tension variation due to Tolman, (E) the atomistic theory of Kulmala, Eq. [28],
and (F) the present cell model, Eq. [76]. We first briefly summarize the equations

to be used for each of the theories.

Classical Nucleation Theory with 0o —

1 2
A (%) s 7]

The two terms are the “volume term” and “surface tension term.”

Classical Nucleation Theory with o —

t 2
S R T

The bracketed term in Eq. [78] is the “effective surface tension ratio” discussed in

the previous section. The Tolman approach, as in Figure 10b, will be used.
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The Lothe-Pound Theory (5-7) with o and 60 —

2
AF, iT/ kpT = 47r(o];—;) 123 x [with or without multiplication of ¢ variation]

——z'lnS—ln[(

2amitkpT\3/2 kgT
h2 ) p{sa.t}S]

[ ) ) |

exp(—hv/2kgT) \-
a lIl[(1 —I;((p(-—l/w/iB;‘)) 6exp(——4)] )

[79]

The terms of Eq. [79] are the contributions from volume creation, surface tension,
cluster tr‘a.nsla.tion, cluster rotation, and the Lothe-Pound replacement factor. We
have used the expression of the replacement factor by Abraham and Pound (28)
based on an Einstein model of normal mode vibrations. We will use Eq. [23] for
the calculation of the normal mode vibration frequency v. The surface tension

variation, if included, is again due to the Tolman approach as in Figure 10b.

The Atomistic Theory — For interpretation and comparison, Eq. [28] can be

rewritten as

27mmytkgT\3/2 kgT
h2 ) p{sat}s]

' 647 (m\3/2 (kBT \3/2 513 3/2 3

_ lnl:n_t(g) (7) 1 m1 Tl
Evip —¢€ -22 :

+ —kB—T(4.3217 x 107242 +2.69751 — 5.4814)
. 2mm1kgT\3/2 kT

+ Zln[( h2 ) p{sat} ’

AF}/kpT = —iln$ —In(

[80]

The first three terms are, again, the volume, cluster translation, and cluster rota-
tion terms; the fourth term is the vibrational and binding term, and the fifth term
arises from the deactivation of the free translation of ¢+ monomers. In comparison
to other theories, thé sum of the last two terms can be interpreted as the “surface

energy contribution” in the atomistic theory.
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The Present Cell Model of Liquids — Eq. [76].

vIn'order ‘go demonstrate the effect of the inclusion of cluster tfanslationa.l,
rotational motion, as well as the surface tension variation due to Tolman and the
present work, we choose water at a saturation ratio S = 3 at 293K as an illustration.
The results for different values of S would look qualitatively the same because all
the equations contain the same volume term, —:InS, and thefefore comparisons for
different S will not be considered. For water at 293K, the ¢/kp value is 809.1K, and
from Figure 12, the Tolman delta is é7 = 0.64r;. Water saturation vapor pressure

is pl®t} = 2.3378 x 10° Pa, and the bulk surface tension is 72.88x10~3J m~2,

Figure 11 and Table III show the predictions of the free energy change from
" various theories for water at 293K at S = 3. Two values of the rotational sym-
metry factor 7; are used in the calculation of the cluster rotation term in both
the atomistic theory and the Lothe-Pound theory; n; = 1 for a cluster that does
not have any rotational symmetry, and n; = 60 for a cluster with an icosahedron
configuration (26). The maxima in the curves of Figure 11 are interpreted as the
critical sizes, and we find that different theories can predict different critical sizes.
The number of monomers contained in a critical cluster, g*, is shown in the 6th
column of Table III for each of the theories. The free energy change associated with
these critical sizes are given in the 7th column in Table III. The critical free energy
change is decomposed into the volume term, surface tension term, translational
term, rotrational term, and the Lothe-Pound replacement factor term, and the nu-

merical values of these terms are given in columns 1-5 of Table III, respectively.

We find that, in Figure 11, Kulmala’s atomistic theory overestimates the free

energy change of a critical cluster for ¢ > 20 as compared to the predictions of other
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theories, though the atomistic theory is perhaps more appropriate for ¢ smaller than
20 (region hot shown). For the present situation considered (g* > 30 for all cases,
see Table III), the large discrepancies in comparison to other theories may result
from fhe fact tha.t the atomistic theory fails to provide for the nature éf a surface.
The Lothe-Pound theory and the present work, Eq. [76], in Figure 11, on the
other hand, predict much lower free energy change at the critical cluster size than
the classical theory does. We find that with an increase of the rotational symme-
try factor n; from 1 to 60, the free energy change curves shift upward by about
4.1kpT for both the atomistic and Lothe-Pound theories, which would decrease

the nucleation rate by about a factor of 100.

In Table III, we find that the cluster translational term is approximately con-
. stant and has a value of about —24kpgT for the case considered. The rotational
contributions, on the other hand, have a value of about —20kgT for n; = 1 and a
value of about —16kgT for n; = 60 for the Lothe-Pound theory. Kulmala’s atom-
istic theory predicts the rotational contribution about 3.3kgT different from the
Lothe-Pound prediction for both the n; = 1 and n; = 60 cases, because the crit-
ical cluster sizes predicted from Kulmala’s theory are smaller. The present work
predicts a zero rotational contribution because we have considered the cluster ro-
tation by assuming the cells can freely interchange their positions. That is, for
relatively large ¢, the cluster is not rigid and the rotational contribution should
become insignificant. The volume and surface contributions, shown by the first
two columns in Table III, are both strong functions of the critical cluster size g°*,
and they vary dramatically for different theories because ¢g* varies when predicted
by different theories. Thus, despite the inclusion or exclusion of the cluster trans-
lational and/or rotational contributions, a major cause in the discrepancies of the

total free energy change prediction is the sum of the volume term and surface term.
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For example, the sum of the first two columns in Table III is about 73kpT both for
classical and Lothe-Pound theories without surface tension variation, and is about
27kpT for the above two theories with Tolman’s surface tension vziriai;ion and for

. the present theory. -

In the comparison of the total free énergy change and nucleation rate, the last
two columns in Table III, we find that the Lothe-Pound theory predicts a 1017
enhancement of the nucleation rate in comparison to the classical rate. Allowing
for a surface tension variation, on the other hand, the classical rate itself predicts
a 10'° enhancement (see the first and second rows). The Lothe-Pound theory and
surface tension variation together lead to a 10%® enhancement over the classical rate
(compare the first and fifth rows). The Lothe-Pound theory with surface tension
variation, however, predicts the free energy change at the critical size as a negative
" value (rows 5 and 6 of Table III); this means that the free energy change over the
entire cluster range is negative (see also the lower two dotted curves in Figure 11).
In the present cell theory (the last row of Table III), the cluster translation and the
surface tension variation (through the cell theory approach) are also considered,
however, a nucleation rate enhancement of 10%° is predicted as compared to the
1036 of the Lothe-Pound theory. A major difference between the present prediction
and the Lothe-Pound theory with surface tension variation, despite the fact that
the predictions of surface tension variation in both approaches are different, is that
the Lothe-Pound theory does include the cluster rotational contribution which will
cause an underestimation of free energy change (as pointed out earlier, the free
energy change in the entire range may become negative) and an overestimation of

the nucleation rate.
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SUMMARY AND CONCLUDING REMARKS

In this work, we have applied the cell model of liquids to predict the free energy
change' of cluster formation in homogeneous nucleation. In particular,-the surface
tension (or suffa.ce energy) of a microcluster can be appropriately defined by the
statistical mechanical formulation. We have compared the surface tension variation
as av function of cluster size with that predicted by the Tolman approach, and the
results agi‘ee bwell with each other. Unlike the Tolman approach which lacks a
microscopic or molecular basis, the present model provides a better understanding

of the cause of the surface tension decrease from the bulk for clusters.

The classical nucleation free energy change expression has been criticized for
its failure to include the energy correction due to external degrees of freedom
: (traﬁslational, rotationé,l, etc.). The Lothe-Pound theory, the atomistic theory,
and the present work provide different approaches to recalculate the free energy
change in a nucleation process. We summarize our findings in the comparison
of these theories: (A) The atomistic theory estimates the free energy change for
small clusters. When the critical clusters become larger and possess surfaces, unless
~ all the intra-cluster vibrational frequencies are obtainable, the atomistic theory is
less appropriate. (B) The Lothe-Pound theory overpredicts the cluster rotational
contribution. For clusters larger than a certain size, liquid-like properties should
appear, and the cluster rotational motion may become much less important as
a contribution to the free energy. For example, the Lothe-Pound theory with
a surface tension variation with cluster size may predict a negative free energy
change for the critical cluster formation, which is an incorrect prediction; (C) In
the Lothe-Pound and atomistic theories, the cluster rotational symmetry factor
that varies from 1 to 60 can only increase the free energy change by 5k5T, which

is not a major factor in the enhancement or retardation of the nucleation rate.
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The present theory is not intended to replace the atomistic theory. The atom-
istic theory and the present vwork practically cover different size ranges; the for-
mer is a better theory for smaller clusters when a surface does not exist or the
» sur'facélis sma.ll, and the liatte‘r for larger clusters when a surface is present and
liquid-like properties appear. The surface tension variation with size, the cluster
translatibna.l contribution, and/or rotational contribution all decrease the total free
energy change prediction and, in consequence, predict many orders of magnitude
increase in the nucleation rate in comparison to the classical theory. Therefore,
one must conclude that if classical nucleation theory overestimates measured nu-
cleation fates, the most likely explanation is kinetic reasons, such as the sticking

probability between monomer and clusters.
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APPENDIX

Determination of the Tolman ép

v Kirkwood and Buff (46) were the first to give a statistical mechanical expression
to calculate 5;_,., though Tolman (47) himself obtained a formula to estimate the
order of magnitude of é7 through the use of the van der Waals equation of state.
We will calculate o7 as a function of the Lennard-Jones potential parameters based

on Kirkwood and Buff’s theory. Their expression for ér is

) /r5 di;(:) g(r) dr
6T = 1= ooo [Al]
o /r4d1;£r g(r) dr
0

_ in which u(r) is the intermolecular potential, g(r) is the radial distribution function
defined as the mean local density at r deviating from that of the bulk. It can be

shown that for a dilute surrounding gas g(r) can be related to u(r) as (48)

g(r) = exp (— Z;(;—r’l)’) . [A2]

If u(r) obeys the Lennard-Jones 6-12 potential (Eq. [20]), Eq. [A1] can be written

as
Z1/6
/ (2ZX® — 1) exp(X® — ZX2) dX
br _ 4 2Pry3) s [ A3
rn 15 Z1/6 z/8 |
/ X(22X° - 1) exp(X® — ZX'2)dX
0
where
‘ 4e \1/66 kgT .
= — . = . |
X (kBT) r Z 4e A4
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In obtaining Eq. [A3], the following relations of the cell theory in this paper have
been used: @ = v (Eq. [50]), z = 6%/a® (Eq. [44]), and Eq. [51] which relates
ry and v. 6 and € are the Lennard-Jones 6-12 potential parameters, and r; is the
radius of a molecule. Also in Eq. [A3], we have changed the limits of integration
in both the denominator and numerator from that of Eq. [Al]; that is, r =0 — oo
is cha.nged to r = r; — oo. The latter is nondimensionalized according to Egq.
[A4]. This change of integration arises from the fact that for the distance r < ry,

u(r) — oo and ¢(r) = 0.

Because 6/a = z!/? is uniquely related to ce/kpT by Eq. [57] according to
the cell model, é7/r1, given by Eq. [A3], is also a function of ce/kpT only; the
calculated result is shown in Figure 12, where the number of nearest neighbors,
¢ = 12, is used. The value of ér/r; determined lies between 0.51 and 0.77 in the
- c€/kpT range of interest; that is, ép is of the order of magnitude of a molecular

radius.
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Table I. Comparison between the Atomistic
Theory and Present Work

' approach
- Atomistic
EAT Theory Present Work
contri—
bution
g
L2 The movement
pHE |
< of clusters
- is in the Same as left
5 gas—cluster :
8 system.
]
Cells that contain
g one molecule are od
= The cluster 2%110"92 ti.-'geil?ter— :_g
5 r?t’.at'es as a relaartl.lgve positions L
rigid body. .| Be
o hence the cluster ]
- rotation is ]
accounted for. na
—————————————— 2
g Molecules in the g,.. >
= cluster vibrate Molecules are .,0%
o in the vicinity allowed to Sad
& of their vibrate within | .99
: minimum energy| their cells. -4
B positions. BHS
______________ goH
The motion of ﬂ“é
ap molecules is 285
E under a con-— Ofmy
T stent potential | Same as left | ¢ 88
s energy through— He9
e out the entire =
cluster volume.
7}
2 Surface molecules
g are considered as
S 9 a different group
"o from the inferior
g = molecules.




- 293 -

21wle0%®

02'Se—|LE' G | VP OT |PBE'E |GOE'T |GAL'TS|O°TES
Oz 1Kyye

. . . . . . . 21aelaowe
09 Z2e— (LB E2|BT 8T |9GT'E |[LTT'T |¥E2°6T |18°69F 02 1L}
ot'e- |TL'E2|6L 12|v60E |0%F'T |29'e2 |2 9Ls| OZ ﬁoamao.Hm

PR P . . . . . SPIIINSIP
2sve—|zg 2e 0T T2|898'2 |2a2'1 |g¥'12|0'88%| O HOqI60
2291 |0og'zg|cT 92|eeg 2 |¥S1°'T |[64°6T |8°18% | O |[ouerisws
9L'%1|8B'2L|v9 E8 | 4281 | eorE [¥1'6E|1°608| O I971em

o Q Q o’

S | B |BL | L |BEE| 8 | € | ==

c | B |g5 | < |84 N | &F |8

~ = & | ES8] o g |eouelsqns

—~ | B EF | = 3B o = b

S| By | =g |28

Suo1oTpedJ JUeseld oY} pPUR SUOISUD],

sorvyIng Ppoeansesl uUsamilsq uostreduwio) °‘II 219qe]




- 294 -

SO[FIoTUS UORVISURI) JSWOUOWI pUe 'FUpUlq 'UCIIVI]lA JSISN[OVIIU] Buipniouj,

. . N . o 9.)bE
$1°0€ £9'€ 99 g9'ce £9'88 | 2919 M.HAO W STTLL
. . . . . (s2)ba ‘op='4
£8'E2— | 40'02T 2e _— | Te'er— | wage— | e°861 | BT'9E— Brewmy)
OISO G
B ‘=%t
og' 12— | 492er 28 — | perar— | vae— | ue'061 | 9T 0B Am&wﬂmﬂwﬁ
a}sTUIOYe
- . . . . . . = ‘(*a)o
gzve - 29 go'9 | serar— | seez—| o101 | TAwa— | D9
489 “ PUNOJ 8307
10'98 LB'8— a6 €9’ | 6aL'68T— | 46'88B— | 4B TOT | T&Pa— =t '("J)o
PUNOJ 2Y107]
op=tl
¥'QT 8e8°LE 221 go's | gt'a1— | ou'vE— | 08°'0O2 |EOFEI— *1EUAOD =D
punodg—eylog
1=t
I2°LT oe'ee 221 gc'e | gz'te— | ouve— | 08'902 |80°¥ET— “1EUDD=0
punod—ey3o]
. . . . (*y)o=0
1461 Qo'Lg o8 £9°'4TT | 680°08 [eo1ssero
. . apr_| "ISUTOO=D0
0 ve'gd gel co'etz | 2t'avi TeoISse[o
— uao (= =i 9o o
= @ vm Nd (8g.g| o .lﬂ.m.. FRE |BSd Lrosy,
S F| Bleg 282 | 56 |EEE|JER | EY
-y o O Ol P -+ |fhwm g - 0 m Fast
m. = m._ ] 1..% mm o | n m % B odmnIoo
LI <, [, 1| B H | LEA NNV

‘§91J031], SNOLIBA WIOJI] Pa1oIPodd ME8Z=J PuUe g=§
I91epm Jo o8ueyn LSasuyg aa1g jJo uoerreduwio)n °[II Slqel




" Figure 1.

Figure 2.

Figure 3.
Figure 4.

Figure 5.

Figure 6.

.Figu:e 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.

Figure 12.

- 295 -
LIST OF FIGURES

Coordinates of a surface cell.

Interior cell potential as a function of the radial distance with z as a

parameter.
Interior cell minimum potential and its location as functions of z3.
z1/2 as a function of ce/kpT. v = /2.

Relations between the half open angle of a cluster, x, and that of a planar

surface, X|planar-

Surface cell profiles: (a) cross-sectional view of a surface cell; (b) planar
surface situation; (c) 55-mer situation; (c¢) 13-mer situation. ce/kpT = 25.

f.c.c. packing is assumed.

Minimum potentials of a surface cell and an interior cell as functions of

ce/kpT and particle size. f.c.c. packing is assumed.

Effective volumes of a molecule present in a surface cell or an interior cell

as functions of ce/kgT and particle size. f.c.c. packing is assumed.

Surface energy per molecule as a function of ce/kpT and particle size.

f.c.c. packing is assumed.

Effective surface tension ratio as a function of the cluster size with ce/kgT

as a parameter. (a) present theory; (b) Tolman approach.

Comparison between the free energy change of formation of water clusters

at 293 K and saturation ratio S = 3 predicted by various theories.

Tolman delta as a function of ce/kpT.



- 296 -

Figure 1



- 297 ~

['0==2

4

80

01—
G0-
S
B
00 <
o
™
S0

01

- Figure 2



- 298 -

100

30 / 4“?*05

T

X

A2/ 4)

Figure 3



- 299 -

L9y /30

DG 1514 oy Ge OE ge oe
| 1 ! 1 |
(L8 /30= 1)
L X 0T™ 2GTLT 2~ X, OT* TTZLS' %+
»Ae 0T E0GS6'E—gX, 0T BEE6L T+
2Rz 0T G990G'¥— X, 0T 9GLL6°G+
6LLEV 2—=,,,2=D/Q
- ‘TeTuroujod 1j—189d -

008°0

ées'o

068°0

G480

006°0

'D/Q.:z/;z

Figure 4



- 300 —

. ?‘plapar

* o
"« H
S 1

{surface)

_—

/ ' {(interior)
some molecules nearest-neighbor
are below molecules smeared

tangent line along
the cluster surface

Figure 5



- 301 -

" Figure 6a



- 302 —-

|
|

(eprs uedp) < I > (ap1s polEsg)
_

30 /¥
rerjusjod
@0 TeuJajul

-
o
|
- Figure 6b

QO/J.IHSOS



- 303 -

> (9p1S PoTUos)

30 /¥4 - 8O-
Terjuajod
@0 [euJajul

¥

|
{
\
1
i
|
§
1
i

30 /H"edh

0°0

¥°0

Figure 6¢c



- 304 -

(ep1s uwadg) <

> (ep15 PoOTEeR)

20 \ L7,
renyuajod
eo Teurajul

30 /H"E4h
" Figure 6d




L9% /30

Ge

- 305 —

bz

o¥—

ov—

Ge—

0€—

Ga—

17/ " b
Figure 7

oovlins Jeueld
meuraﬁw GG=2 ~— T~
oT=*"1) g1=2 777"




— 306 —

L9 /30

G¥ 0% Ge 08 G2 02
1 L | I LD
=, ~ < - HN\NQ.NH\. 7
S (e
. (21=""%) e1=1
- \ .

(2y=""1) GG=1

ooelans Jeuerd \

1000

a/ms'fn

10°0

Figure 8



- 307 -

5.0

(m‘;ﬂ/'}mgﬂ)tl[[—l-“_l;ng /[m*os_sms*dj]

Figure 9

ce/kgT



—- 308 -

000001

1 ‘QU91UO0) JOUWIOUOW

000071

0001

00T

01
9°0

rrrri

|

I

N

L L

leggr b 11

i

begd 8.1 4

0’1

@

“o/0 [,Cu/fa)+(d/ 4)2] £

‘Figure 10a



- 309 -

000007

1 ‘JU21U0) JOUWIOUON

00007 000T 00T

0t

JLi g1 ¢ ¢

T T T T 1 T T T T 1 L

02 =I5y /30

(qoevoaddy
ﬂmdﬁo&v

ligge 001 ) bty s 0 ¢ %

(TN |

(a)

9°0

40

80

6°0

01

“0/0 [,(Ca/*4)+(°4/°4)2] &

Figure 10b



- 310 -

1 ‘QU81U0)) JOWOUON

002 081 091 O%T 02T 00T 08 09 OF omom
TR (wospmmogemor || | ] o
. ....................... - . OH -

e i gk e G

. (9) by P P Y
. 4 07
- = 02

_ ot - o€
ov
- 0%

i (*¥)o+1e0188010 . 41 09

e —— 4 04

VAL VALY

[BJISSBIO

< 08

9
L%u 9
- .w - 06
0-
S

<4 0071

B H ”._p - Sl f] O H .ﬂ
Aomvb"b —so-n-o / - 021
1 ] i ] 1 1 ] 1 Omw.n

Figure 11



- 311 -

0.8

IJ,/.IQ

Figure 12

ce/kgT



- 312 -

CHAPTER 9

SUMMARY AND CONCLUDING REMARKS
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THESIS SUMMARY

In the first few chapters, we have addressed issues on Brownian coagulation and
the role played by an interparticle potential in coagulation. This nonequilibrium
process is studied both analytically and numerically. The present research provides
a fundamental and first-principle based theoretical routine for calculating aerosol
particle coagulation in the presence of an interparticle potential. The application
of a coagulation process is also demonstrated in a simulation of a chemical vapor

deposition reactor.

In the latter part of the thesis, we have focused on the issue of the cluster
formation free energy change in a nucleation process. We have shown that the
inclusion 6f cluster translational and rotational motion is necessary in the formu-
" lation of free energy change, and we have been able to provide an explanation
of the microcluster surface tension. The new theory that fulfills several aspects
lacking in earlier theories reveals important information about the properties of a

microcluster such as the surface tension.

RECOMMENDATIONS FOR FUTURE RESEARCH

A. For charged particle coagulation in the presence of an external field, a situation
that commonly occurs in many aerosol instruments, the FPE or BGK equation
as well as the interparticle image potential derived in Chapter 4 can be applied
to obtain either the interparticle coagulation rate or the ion-particle charging

rate for a situation in which one of the colliding particles is an ion.

B. Numerical simulation can be further pursued for the ion nucleation situation.

The coagulation between an uncharged monomer and a charged cluster, in
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this case, is of interest. The simulation result can be compared with the ear-
lier experiments and can continue to open new opportunities in experimental

developments.

. Investigation of the sticking probability between microclusters is the most im-
portant issue remaining in the nucleation field. The sticking probability is
often taken as unity, however, one expects particles of molecular sizes will have
a sticking probability close to zero. It is necessary in future nucleation research
to express the sticking probability as a function of both the material properties,

such as the intermolecular potential, and the cluster sizes.

. Evaluation of the importance of aerosol coagulation and nucleation in chemical
vapor deposition processes, including manufacturing semiconductor thin films

and superconductor powders, is required.
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THESIS APPENDIX

. ON THE RELATION BETWEEN BINARY
DIFFUSIVITY AND MEAN FREE PATH

Appeared in Journal of Colloid and Interface Science

Vol. 125, No. 2, pp. 733-735, June 1988
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In problems of the diffusion of a vapor species A through a background gas B
(e.g., air) the relation between the binary mixture diffusivity, D4p, the mean free

path, Agp, and the mean thermal speed, ¢4 is of interest.

From so-called zeroth-order kinetic theory of gases it can be argued that (1)

1
DaB = EAABEA . 1]

Fuchs and Sutugin (2) called Eq. [1] Meyer’s formula. In the same article Fuchs

and Sutugin used another formula for the ion diffusivity in a neutral gas,

D _37r
4B~ 16v2

(14 2)Y?Aapta, 2]

- where z = m4/mp, m4 and mp are the ion and carrier gas molecule mass, respec-

tively.

Fuchs (3) suggested yet another relation

Vi
Dap = g}\ABEA 3]

and Davis (4, 5) used the following equation from a hard sphere model:

3
Dap = —ﬂ-(l—}—z)z\ABEA . (4]
32
Loyalka (6) has used
Dap = %—EAABEA . (5]

Equation [2] was also used by Bricard and Pradel (7) and by Liu and Yeh (8).

Based on Kennard (9), Pui (10) added a correction factor, (1 + €45), to Eq. [2],
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' 3
Dap = (L+ eas) 1= (14 2)/*Aapta 6]

where e4p = 0.132 for 2 << 1and 0.016 for z >> 1. This formula was consequently

used by Liu and Pui (11) and by Adachi et dl. (12).

- The purpose of the present note is to attempt to clarify the relationship be-
tween the binary diffusivity and the mean free path. Starting from Chapman (13),
Enskog (14), and Chapman and Cowling (15), the first-order Chapman-Enskog

approximation of the binary mixture diffusivity is

3 \/k3T3(1+z)/2mA .
8v/m pcrfwﬂ%)* ’ 4

O3 -

where the superscript “< 1 >” indicates the first-order approximation, p = (N4 +
NB)kT is the system pressure, 045 is the binary collision diameter between A and

B, and ﬂ%)* is the normalized collision integral having the form (16)

oo
ﬂ%)* - 22 /-oo / 6_72’75(1 — cos x) bdbd~ [8]
O'AB 0 0
in which.
d 2
=T 2b /-oo T/T
rm /1= b2/r? — @ 45 /KT~

(9]

is the collision solid angle, b is the collision impact parameter, 42 = mamplvg —
vB|?/2kT (ma+mp), rm is the distance of closest approach of the colliding particles,

and ®4p is the potential between 4 and B.

In many aerosol studies, we are interested in the diffusion of vapor molecules
(A) in a background gas (B), and the interaction between A and B is usually
assumed to be potential-free (¢ 45 = 0) and r,, = o4p5. Thus from Eq. [9] we

immediately have, in this case,
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2cos Y(b/oaB); b< oam
X = (hard sphere) . [10]
0; b>ousp

Using Egs. [9] and [10], Eq. [8] leads to

altx _ 1 hard sphere) . 11
AB

One must keep in mind two points: (A) when using Eq. (7], we are dealing with the
first-order Chapman-Enskog approzimation, which does not imply QE‘L’;)* =1, and
(B) when using Eq. [11], a hard sphere model is implicit. [t #s not a consequence

of the first-order approzimation.

By combining the first-order approximation, Eq. [7], and the hard sphere

model, Eq. [11], one obtains

3 KT3(1+ 2)/2ma4

D<1> —
AB 8/1 poig

[12]

The next step is to employ a formula relating 045 and the mean free path A 45.

Jeans (17) theoretically showed that

1
AAB = 13|
V2rNgoas + (1 + 2)1/2Ngo? |
Because the vapor concentration N4 is generally diluted, Eq. [13] becomes
1
AaB = 14
AB 7r(1+z)1/2NBaiB 14
Combining Eqgs. [12] and [14], one has
<1'> 37 _ o
Dig” = —(1+2)AsBTys . 15

32
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where €4 = (85T /mm4)'/?, and we have used p ~ NpkT. Equation [15] is identical
to Eq. [4]. It is the ﬁrst-order hard sphere approximation. Equations [2] and [6]
apparently arise from misinterpreting the afw term, i.e., Agp = (V27Npoig) .,

which leads to incorrect expressions for Djllf.

We proceed to the second-order approximation of the binary diffusivity. Enskog

(14, 18) obtained, for a hard sphere model,

Dig” =Dig /(1-¢€);

¢ = a2(5ANA/NB +1) + b2(5BNB/NA + 1) — 2abe .
- (5ANA/NB+1)(5BNB/NA+1) L ’

z 1
a= ;b= ;
V1322 + 162+ 30 V3022 + 16z + 13

5 _(O'AA)Z 1+= 8(1+z)2 .
A= o5’ V2 3021162413 °
opB\2 |1+z 8(1+2z)?
6 = i/ . 16
B (aAB) 2z 1322 + 16z + 30 [16]

Letting N4/Np = 0, Eq. [16] becomes

¢c=27ab;

D<2> — D§é>
1-052

or

ABC4A . [17]

3T 3022 + 162 + 13
<3> _ oT
Das _64(1 )( 15z2+8z+6)

This is a closed form of Djlzf as a function of z.

Let us examine the limiting cases, 2 << 1, z =1, and z >> 1. From Eqs. [15]

and [17], we have
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3 . . '

—E, 1=1; 13m 1=2 (2<<1)

32 128’
DLy 3 177n
S4B = o1y 2R =2 (2=1) [18]
AABCA 16 928

3rz

=7 forbothi=1landi=2 (2>>1).

For other higher-order approximations, Chapman (13, 19) obtained the asymptotic

values

1.083, i=2; 1107, i=3; L1117, i=4..
Diy . converges to 32/9m orl.132, =00 (z<<1)
i

. . 19
1.015, 1 =2 ... converges to 1.016, it =00 (z=1) [19]

1, foralld (z>>1) .
Although there is no closed form expression available for approximations higher
than the second order, we suggest that one can use either Eq. [15] or [17]. The
final value of D5 /D<) is not altered by further approximations by more than

0.001 or 0.002 (19).

In Eq. {19], the infinite approximations correspond to the ezact Dqp values.

therefore,

: t s %Djﬁ (z<<1)
Dip™ = D5~ = { 101605 (z=1) [20]
DSy (z>>1) .
By using Eq. [15], this leads to,
1
gAABEA (z << 1)
DSt = { 059850 4p84 (2 =1) [21]

3
SLZZ’\ABC—A (z >> 1) .

It is noteworthy that the rigorous solution Eq. [21] coincides with the result from

zeroth-order kinetic theory of gases, Eq. [1], for 2z << 1.
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CONCLUSIONS

In this work, we have clarified ambiguities in the relations linking D45, ¢4, and

A4p- It is shown that the formula used by Fuchs and Sutugin, Eq. [1], is an ezact

result for z << 1. For other cases (2 =1 and z >> 1), Eq. [21] can be used.

We suggest that one can use Eq. [15] or [17] as either the first- or second-order

approximations of Chapman-Enskog solution, for arbitrary z.

10.
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