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Abstract

Numerical simulations are presented for viscous incompressible homogeneous tur-
‘ ‘bulent flows with pefiodic boundary conditions. Our numerical method is based on
the spectral Fourier method. Rogallo’s code is modified and extended to trace fluid
particles and simulate the evolution of material line elements.
The first part of the thesis is about modifying and applying the code to simulate
a passive vector field convected and stretched by the so-called ABC flows in the
presence of viscosity. The correlation of the geometry of the physical structures of
the passive vector with the external straining is investigated. It is observed that
most amplifications either occur in the neighborhoods of local unstable manifolds of
the stagnation points of the ABC flows, if they exist, especially those with only one
positive eigenvalue, or they are confined within the chaotic regions of the ABC flows
if there is no stagnation point. Tube-like structures in all simulations are observed.
The second part of the thesis is an investigation of the power-law energy decay of
turbulence. Two decay exponents, 1.24 and 1.54, are measured from simulations. A
new similarity form for the double and triple velocity autocorrelation functions using
the Taylor microscale as the scaling, consistent with the Kdrmdn-Howarth equation
and a power-law energy decay, is proposed and compared with numerical results. The
proposed similarity form seems applicable at small to intermediate Reynolds number.
For flows with Very large Reynolds number, an expansion form of energy spectrum is
proposed instead. Two lengthscales are used to express the energy spectrum in the
energy-containing range and in the dissipation range of wave numbers. The uniform
expansion is obtained by matching spectra in the inertial subrange to the famous
Kolmogorov’s k=5/3 spectrum.
The third pért of the thesis is a presentation of the Lagrangian data collected by
tracking fluid particles in decaying turbulent flows. The mean growth rates of the

magnitudes of material line elements, that of the vorticity due to nonlinear forces, and
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the mean principal rates of strain tensors are found to be proportional to the square
root of the mean enstrophy. The proportional coefficients remain constant dining the
decay. The .mea,n angles between material line elements and the principal directions of
the strain tensors corresponding to the most stretching and the intermediate principal
rates are about the same which is probably caused by the averaging process and by the
possible switch of principal directions. The evolution of these angles under the action
of one Burger’s vortex is examined and the results support the conjecture. Following
fluid particles which suffer substantial stretching in their history, we, through use
of flow visualization tools, observe the evolution of nearby vorticity structures. It
is observed that vortex sheets are created first by the nonlinear stretching which

gradually become tubes at later times by diffusion.



English Symbols

A B,C

€a,8,v

Fi(k)

vil

List of Symbols

parameters in the ABC flows

uniform rate of strain

the antisymmetric part of velocity gradient tensor
parameters in the model energy spectrum, Eq.(4.111)
magnetic field

dimensionless energy dissipation spectrum

three dimensional energy spectrum

energy spectrum of large eddies

energy spectrum of small eddies

one dimensional energy spectrum, a=1,2,3

energy spectral tensor

eigenvectors of a stagnation point, 1=1,2,3

unit eigenvectors of the strain tensor

azimuthal shear

expansion function of energy spectrum for large eddies;
external force in j** direction

generalized expansion function of energy spectrum for large eddies



S, fa
/e
fu
bj?

T

2
NL+P

F

fNL

FNL+P
1

Vil

tvfo—point-one—time velocity autocorrelation function

self—similar fupctions defined by Eq.(4.18a)

one-point-two-time Eulerian velocity autocorrelation function

Lagrangian velocity autocorrelation function

self-similar Lagrangian velocity autocorrelation function defined by Eq.(5.31)
the 7** component of the nonlinear terms

the j** component of the nonlinear terms combined with the pressure term
the j** component of the Fourier coefficient of the nonlinear terms

the j** component of the Fourier coefficient of the nonlinear terms combined

" with the pressure term

defined by Eq.(4.14)

expansion function of energy spectrum for small eddies

generalized expansion function of energy spectrum for small eddies
eigenfunction

generalized expansion function of energy transfer spectrum for large eddies
helicity

defined by Eq.(4.28¢)

indicator of isotropy defined by Eq.(4.51)

=

turbulent kinematic energy

expansion function of energy transfer spectrum for small eddies



Lg

Lr

Er,e,z

)

o~

r.b.z

M

Ma,b,z)

X

generalized expansion function of energy transfer spectrum for small eddies
wave vector in j** direction

Wave number; triple velocity autocorrelation function

maximum available wave number

peak wave number in the initial energy spectrum

self-similar functions defined by Eq.(4.18b) and Eq.(4.39)

the product of wave number and Kolmogorov dissipation lengthscale
Kolmogorov wave number

the size of simulated domain

a linear operator defined by Eq.(3.8); lengthscale in Eq.(4.68);

an operator defined by Eq.(4.104)

longitudinal integral length scale defined by Eq.(5.25)

Eulerian integral length scale

Lagrangian integral length scale

material line element vector

components of a material line element in the cylindrical coordinates

dimensionless components of a material line element in the cylindrical coordinates

magnitude of a material line element vector
number of fluid particles released
regular confluent hypergeometric function

numerical resolution



=

RGA
Re,\max

Re,\w

decay exponent of turbulent energy

eigenvalue; turbulent pressure

turbulent velocity

transformation matrix which diagonalizes strain tensor
dimensionless radius of a Burger vortex

Taylor Reynolds number

Taylor Reynolds number at which skewness is maxmum
enstrophy Reynolds number (= (w?)%?/¢,)

spatial separation

skewness of longitudinal velocity derivative

maximum skewness

strain tensor (the symmetric part of velocity gradient tensor)
dimensionless time variable

inverse of the exponent of the exponential tail of the self-similar
Lagrangian velocity autocorrelation function

energy transfer spectrum

time variable

reference time origin

Eulerian integral time scale

Lagrangian integral time scale

eddy turnover time defined by Eq.(4.46) and Eq.(5.13)



U(a,b,z)

wO’ yO? zO

Greek Symbols

«

x1

singular confluent hypergeometric function

turbulent velocity component in j** direction;

velocity component in j** direction of the ABC flows
velocity components in the cylindrical coordinates
dimensionless velocity components in the cylindrical coordinates
velocity Fourier coeflicient in 7' direction

turbulent velocity component in x-, y-, and z- directions
particle square displacement

particle position

spatial coordinate in j** direction

X-, y- , z- coordinates

stagnation point

particle initial position

the most positive principal rate of strain tensor; exponent in the
power-law dependence of skewness on Taylor Reynolds number;
ratio of dissipation scales defined by Eq.(5.26)

the intermediate principal rate of strain tensor;

ratio of dissipation scales defined by Eq.(5.27)

Gamma function



=D

AI

€w

"

(k)

Q*

Xii

circulation

dimensionless circulation

the most negative principal rate of strain tensor
defined by Eq.(5.56)

Dirac’s delta function

energy dissipation rate

enstrophy dissipation rate

Kolmogorov dissipation lengthscale

a linear operator defined by Eq.(3.13)

defined by Eq.(4.73)

Taylorv microscale

principal rates at a stagnation point, i=1,2,3
defined by Eq.(3.26)

molecular diﬁ‘uéivity

order function in Eq.(4.69)

kinetic viscosity

order function in Eq.(4.70)

mean squart root enstrophy

enstrophy spectrum

dimensionless enstrophy dissipation spectrum



<l

wj
Wy

¢°‘n8"’

g;

os

To

TE

TL

Xiii

1/2 mean enstrophy

vorticity magnitude; frequency

vor.ticity component in j** direction

Kolmogorov frequency

angles between a vorticity vector (or a material line element) and

the principal directions of strain tensor defined by Eq.(5.51) (or Eq.{5.50))
Lagrangian frequency spectrum

fluid density; resolvent of a linear operator

spectrum of a linear operator; 5/n (n = decay exponent of turbulent energy);
growth rate of vorticity by nonlinear forces (= w;S;;w;/w?)

variance, 1=1,2,3

variance of straining magnitude

time measured éince particles were released

reference time origin

Kolmogorov dissipation time scale defined by Eq.(4.47)

Eulerian dissipation time scale defined by Eq.(5.21)

Lagrangian dissipation time scale defined by Eq.(5.22)

characteristic turbulence time scale



xav

6.8~ ~ mean angles of a vorticity vector (or a material line element) with réspect to
the prinéipal directions of strain fensor defined by Eq.(5.49)

£ the product of wave number, Taylor microscale, and Taylor Reynolds number;
initial position of fluid particle

¢ spatial separation nondimensionalized by Taylor microscale; the product of
wave number and Kolmogorov dissipation lengthscale; the growth

rate of the magnitude of a material line element vector



Xv

Contents

1 Introduction

2 Navier-Stokes Solver

2.1
2.2
2.3

2.4
2.5

3.1
3.2
3.3
3.4

3.5

'2.3.2 Phase Shifts

Fourier Spectral Method

.........................

Dealiasing

.................................

Time Marching

..............................

2.3.1 Second Order Runge-Kutta Method

...............
............................

Initialization

................................

.....................

............................
.................................

3.4.1 Mathematical Formulation

3.4.2 Simulation Conditions

......................

Discussions

3.5.1 3D Structures

...........................

.........................

11
11
12
14
16



xvi

3.5.3 Probabiliy Distribution . . . .. .. .. ... 000 35

3.6 Conclusions . . . . v v v i e e e e e e e e e e e e e B . 59
Power-Law Energy Decay of Isotropic Homogeneous Turbulence 69
4.1 Infroduction ................................ 69
4.2 Similarity Hypotheses . . . . . . .. ... ... o 0o 72
4.2.1 Theoretical Review . . . . . ... .. ... ... 72
4.2.2 Proposed Similarity . . . . . .. .. L0000 75
4.3 Numerical Simulations . . . . . .. . e 80
4.3.1 Algorithmic Implementation . . . . .. ... .. ... ... .. 80
4.3.2 Imitial Conditions . . . . . . .. . . . L. 81
4.3.3 Power-LawDecay . . .. .. .. .. ... ... ... 82
4.3.4 Velocity Correlation Coeficients . . . . ... .. ... ..... 88
4.4 Modified Similarity Hypothesis . . .. . . . . ... ... 98
4.5 Multiscaling of Energy Spectra . . . . . ... ... 101
4.5.1 | Re,™! as a Small Parameter . . . . .. ... .. .. ...... 103
4.5.2 Spectral Kérmdn-Howarth Equation . . ... ... ... ... 106
4.6 Far-Dissipation Range of Energy Spectra . . . . .. .. .. ... ... 111
4.6.1 Together with Power-Law Energy Decay .. .. ..... ... 112
4.6.2 Numerical Results . . .. ... ... ... ... ... ..... 113
477 Conclusions . . . v v v vt e e e e e e e e e e e e 121
Lagrangian Studies 123
5.1 Interpolation Methods . . .. ... .. ... .. ... . ........ 126
5.1.1 T13 and T36 Schemes . . . ... ... ... .. .. ...... 126
5.1.2 Interpoltaion Accuracy . . . . . .. . . ... ... .. ... .. 129
5.1.3 Simulation Conditions . . . ... ... ... ... .. ..... 132
5.2 Double Velocity Correlations . . . . . . . ... ... .. 135

5.2.1 Relations Among Velocity Autocorrelation Functions . . . .. 137



Xvil

5.2.1.1 Dissipation Time and Length Scales. . . . . .. .. .. 137

5.2.1.2 Comparisons . . . . . ... ... .. .... L. 140

5.2.2  Similarity of fo(7,7) © . .o 140
5.2.3 ParticleDispersion . . . . ... ... 0 147

5.3 Small-Scale Properties . . . ... ... ... ... .. ... ...... 152
5.3.1 Growth Rates and the Rate of Strain Tensor . . . . ... ... 153
5.3.2 Alignments of Vector Fields . . .. ... ............ 157
5.3.2.1 Rotation Effects . . . . . .. ... ... ... ...... 160

5.3.2.2 Effects of Straining Magnitudes . . . . ... ... ... 163

5.3.3 Burger’s Vortex Model . . . . ... .. ... .. ... ... .. 166

5.4 Origin of Vorticity Structures . . . . . ... ... ... ........ 171
55 Conclusions . . ... . ... L e 183
Conclusions and Future Work 184
6.1 Conclusions . . .. .. .. ... ... ... ... .. 184
6.2 | Future Work . . . . . . .. ... 190

References 192



xviii

List of Figures

2.1

2.2

3.1

3.2

-3.3a

3.3b

3.4a

3.4b

The transformation between laboratory coordinates (e;, ez, e;) and
(ef,eh,ef) where e || kand ej-es=0. .. ............. 16
Flow Chart of Rogallo’s Navier-Stokes solver using the spectral method
and a 2nd order Runge-Kutta time marching scheme. A grid-shift

technique is also implemented to nearly eliminate aliasing errors. . 18

The projected orbits of an integrable ABC flow with A=B=1 and
C=0onthex=zplane. . ... ... ... ... ............ 26
The space of parameters A,B, and C normalized by A=12> B >
C > 0. The bifurcation values of parameters (B? + C? = 1) are
indicated by the dash dotted line. Solid circles represent the values
of parameters chosen for the present simulations. . . ... ... .. 27
Poincare Map of the ABC flow (A=1 and B = C = 1/+/2) for run2
on the section x=0. Solid lines represent points where £ =0. . . . . 33
Poincaré Map of the ABC flow (A=1 and B = C = 1/+/2) for run2
on the section y=0. Solid lines represent points where y =0.. . .. 33
Poincare Map of the ABC flow (A=B=C=1) for run3 on the section
x=0. Solid lines represent points where £ =0. . . . . .. ... ... 34
Poincare Méip of the ABC flow (A=B=C=1) for run3 on the section

x=m/4. Solid lines represent points where £ =0. . ... .. .. .. 34



3.5a
3.5b
3.6a
3.6b
3.7
3.8
3.9

3.10
3.11a

3.11b

3.11c

3.12a

3.12b

3.12¢

xix

Poincare Map of the ABC flow (A=1, B=0.8, and C=0.5) for run4

and run6 on the section x=0. Solid lines represent points where & = 0.

Poincaré Map of the ABC flow (A=1, B=0.8, and C=0.5) for run4

and run6 on the section y=0. Solid lines represent points where g = 0.

Poincare Map of the ABC flow (A=1, B=0.5, and C=0.3) for run5

and run7 on the section x=0. Solid lines represent points where & = 0.
Poincaré Map of the ABC flow (A=1, B=0.5, and C=0.3) for run5

and run? on the section y=0. Solid lines represent points where y = 0.

Evolutions of mean enstrophy Q(¢). .. .. ... ..........
Evolutions of Re, = (20)*?/e,. . . . o o o o o oo
Evolutionsof A,. . . . . . . . . ...
Enstrophy spectra at large times. . . . . . . ... ... ... ....
The intense vorticity regions with ||w|| > 30%||w||mez for runl. Su-
perposed are the projected orbits of the integrable ABC flow (C = 0)
on the y = 0 section which flow direction is determined by £ = sin 2
OF Z=mCOSTv v v v vttt et et e e e e e e e e e e e e
Vortex lines starting from a neighborhood of the stagnation points
for runl: (U) (37/2,7,0) (B) (x/2,7,7). . ... .. ... ....
Vortex lines in the core region of the integrable ABC flow for runl
(A=B=1,C=0). .. ... ... ... ... ...
Intense vorticity structures with ||w|| > 30%]||w||mas for run2. Stag-
nation points are indicated by the solid circles. . . ... .. .. ..
Vorticity structures with [jw| > 50%]||w||mez for Tun2. Stagnation
points are indicated by the solid circles. . . . . . ... ... .. ..

Vortex lines near the stagnation point (37/2, 7,7 /4) of run2. The
associated local unstable manifold is (1,-1,/2). . ... .. .. ..

35

35

36

43

44

45

47



3.12d

3.13

3.14

3.15a

3.15b

3.16a

3.16b

3.17a

3.17b
3.18a

XX

Vortex lines near the stagnation point (7/2,0,57/4) of run2. The as-

sociated local unstable manifold is (1, —1, —1/2) and the local center

manifold is (1,1,0). .+ . oo v it e e
Intense vorticity structures with ||w|| > 30%||w||mez for run3. The
a-type stagnation points are indicated by the solid circles and the
B-type are indicated by the open squares. . . ... ... ......
Intense vorticity structures with lwll > 30%||w||mes for rund which
has no stagnation points. . ... ... . ... ............

Intense vorticity structures with ||w]| > 30%||w||mez for rund which

has no stagnation points.

Intense vorticity structures with ||w|| > 50%|}w||mez for run5 which

has no stagnation points. . ... ... ... ... .. ... .....
The contour plot of the vorticity magnitude ||w||? on the section y=0
for runl. Contours of large magnitudes are plotted by solid lines and
those of small magnitudes by dotted lines. . . . ... ........
The contour plot of the vorticity magnitude ||w]||? on the section z=0
for runl. Contours of large magnitudes are plotted by solid lines and
those of small magnitudes by dotted lines. The dash dotted line is
the continuum of stagnation points. . . . . ... ... ... L. ..
Vorticity vectors projected on the section y=0 for runl. Compared
with the projected orbit of the ABC flow shown in Fig. 3.1, the
passive flow does not quite follow the stream direction. . . . . . ..
Vorticity vectors projected on the section z=0 for runl. . ... ..
The contour plot of the vorticity magnitude ||w]|? on the section x=0

superposed with the chaotic seas on the Poincaré section of the ABC

flow (A=1, B=C=1/v2)forrun2. . ... ..............

49

50

31

52

33

60

60

61
61



3.18b

3.19a

3.19b

3.20a

3.20b

3.21a

3.21b

3.22

XXi

The contour plot of the vorticity magnitude ||w||? on the section
y=0- superposed with the chaotic seas on the Poincaré ‘section of
the ABC flow (A=1, B=C=1/+/2) for run2. Two stagnation points,
(7/2,0,57/4) and (37/2,0,7x/4), are there on the section. . . . . .
The contour plot of the vorticity magnitude ||w||? on the section x=0
superposed with the chaotic seas on the Poincaré section of the ABC
flow (A=B=C=1)forrun3. ... ...................
The contour plot of the vorticity magnitude ||w||? on the section
z = 7 /4 superposed with the chaotic seas on the Poincaré section of
the ABC flow (A=B=C=1) for run3. One a-type stagnation point,
(v/4,57 /4,37 /4), and one B-type, (x/4,Tx /4,57 /4), are there on
thesection. . . . . . . . . .. ... ...
The contour plot of the vorticity magnitude ||w||? the section x=0
superposed with the chaotic seas on the Poincaré section of the ABC
flow (A=1, B=0.8, and C=0.5) forrun4. . . . . .. ... . ... ..
The contour plot of the vorticity magnitude ||w||? the section y=0
superposed with the chaotic seas on the Poincaré section of the ABC

flow (A=1, B=0.8, and C=0.5) forrund. . . ... ..........

‘The contour plot of the vorticity magnitude ||w||? the section x=0

superposed with the chaotic seas on the Poincaré section of the ABC
flow (A=1, B=0.5, and C=0.3) forrun5. . . . . .. ... ......
The contour plot of the vorticity magnitude ||w||? the section y=0
superposed with the chaotic seas on the Poincaré section of the ABC
flow (A=1, B=0.5, and C=0.3) forrun5. . . . .. ... ... .. ..
{a) Nonconditional probability distributions (b) Probability distri-

butions conditioned on |jw|| > 30%||w||mes for runl. (1) —— e; (2)

62

63

63

64

64

63

65



- 3.23

3.24

3.25

3.26

3.27

4.1

4.2a
4.2b
4.3a
4.3b

4.4a

xXXil

(a) Nonconditional probability distributions (b) Probability distri-

butions conditioned on ||w|| > 30%||w||maz for run2. (1) e (2)
———ep(3) e €3 e e e
(a) Nonconditional probability distributions (b) Probability distri-
butions conditioned on ||jw|| > 30%||w||mes for run3. (1) er (2)
————— € (3)--ccrre3 .
(a) Nonconditional probability distributions (b) Probability distri-
butions conditioned on ||w|| > 30%||w||mas for rund. (1) e; (2)
————— € (3) crrrrez .
(a) Nonconditional probability distributions (b) Probability distri-
butions conditioned on ||w|| > 30%||w||maz for run5. (1) e; (2)
————— €2 (3) --rrrea e
(a) Nonconditional probability distributions (b) Probability distri-
butions conditioned on ||w|| > 30%||w||maer for run6. (1) e; (2)

Confluent hypergeometric function f1({) = M(n,5/2, —2(?) with
n=1,15, 2 and 2.5. f1(0) =1 and fi({) — ("% as { — o0.

The decay of turbulent energy K = 3¢*/2. The time is nondimen-
sionalized by the eddy turnover time 7, at kpoen~ 1. . . . .. ..
The decay of turbulent energy K = 3¢?/2. The time is nondimen-
sionalized by the eddy turnover time 7, at kpazp = 1. . . . .. ..

The decay of Rex = ¢\/v. Solid lines are the fitted curves

Rey = 23%%- (t +t,)1~™/? with n, t,, and K, given in Table 4.2 .

The decay of Rey = ¢)\/v. Solid lines are the fitted curves

Re, = \IZ%Q (t 4+ t,)=™/? with n, t,, and K, given in Table 4.2 .

The evolution of \/(t + t,)}/2. Horizontal lines are /10v/n with n
given in Table 4.2.

...........................

66

67

67

63

68

79

85

85

86

86



4.4b
4v.5a‘ :
4.5b
4.6

4.7
4.8

4.9

4.10

4.11a

4.11b-

4.11c

XXxiil

The evolution of A\/(¢ + t,)}/2. Horizental lines are /10v/n with n
given in Table 4.2. ‘

The extent of isotropy of turbulence indicated by I,(k,t) for run3
which L = 27.

The extent of isotropy of turbulence indicated by I,(k,t) for run5
which L = 4r.

Double velocity correlation coefficient f(r,t) against r for run2. Cor-

relations increase as simulated time increases. . . . . .. .. .. ..

‘Triple velocity correlation coefficient k(r,t) against r for run2. . . .

G plotted as a function of Rey during kp..n > 1 and A/L < 0.1
Symbol = represents those data measured by Yeung and Pope [72]
for stationary turbulence. The lower solid line is eqn. (4.17) with
n=1.54 while the upper one with n=1.24. . . . .. .. ... .. ..
S plotted as a function of Rey during k,..7 > 1 and A/L < 0.1. The
solid line is the fitted curve of the form S = CRe} ' with C = 0.44
and B=1.04. . . . . e

The decay exponent n calculated by using eqn.(4.57) plotted as a
function of Re, during k.. > 1 and A/L < 0.1. Horizontal lines

vrepreSent decay-exponents of 1.24 and 1.54. . . .. .. ... .. ..

Double velocity correlation coefficients f(r/), ) against v/ for run2

(solid lines) and the regular confluent hypergeometric function

M(n,5/2,-5(%/4n) with n=1.54, where {( = r/)\ (dash dotted line).

Double velocity correlation coefficients f(r/),t) for rund against r/A

(solid lines) and the regular confluent hypergeometric function

M(n,5/2,-5¢?/4n) with n=1.24, where { =r/X\. . ... ... ..

Double velocity correlation coefficients f(r/A,t) against /A for run5

(solid lines) and the regular confluent hypergeometric function

M(n,5/2,—5(?/4n) with n=1.24, where ( =r/X\. .. ... ....

92

93

94



4.12a

4.12b

4.13a

4.13b

4.14a

4.14b

4.15
4.16

4.17a

4.17b

xXxiv

The difference between the double correlation coefficients and the
solution of fi in the similarity form of f = f; + Rex”fz, namely
FOIN) = filr/A), forrun2. L L 96
The difference between the double correlation coefficients and the
solution of f; in the similarity form of f = fi; + Re)\?f,, namely
f(r/At) = fi(r/X), for rund (dash dotted lines) and run5 (solid lines). 96
fa(r/X) for run2 by first subtracting the solution of f; with n = 1.54
from the measured double correlation coefficients f and then divided
by Rex? with B=1.04 .. .. e 97
fa(r/A) for rund (dash dotted lines) and runj (solid lines) by first
subtracting the solution of f; with n = 1.54 from the measured

double correlation coefficients f and then divided by Re,? with g =

1.04. . . e 97
The similarity of the scaled triple velocity correlation coefficients
k(?‘/x\,t)/Ref'—l forrun2 with 8 =1.04. ... .. ... ....... 98
The similarity of the scaled triple velocity correlation coefficients
E(r/A\t)/ReS ™ forrunbs with B=1.04. .. ... ... ....... 99
S/Smaz against Rey/Rexmagpe -« « = = = o o o e e e e e 101

An example of the energy spectrum having k2-behavior near the
origin, the k~5/3-Kolmogorov’s spectrum in intermediate wave num-

bers, and an exponential tail at large wave numbers. Cx = 1.5 is

used. . . ... e e 110
Energy spectra E(k,t)(kn)*/3/(ev®)/* for run2. — . — - — model
spectrum using a=5.0, b=-5/3, m=1 and (4.115). . . ... ... .. 114
Energy spectra E(k,t)(kn)5/3/(eﬁs)1/4 for run5. - - —-— model

spectrum using a=5.0, b=-5/3, m=1 and (4.115). . . .. ... ... 114



4.18

4.19a

4.19b

4.20a

4.20b

4.21a

4.21b

4.22

XXv

B verus Re). Symbols represent the results of (4.115) and the hor-

izontal line represents the constant value of B evaluated by (4.113)

- with a=5, b=-5/3 andm=1............. ... . ...... 115
Energy dissipation spectra D*(k*,t) for run2. Model spectra using
a=5, b=-5/3, and m=1: ---..--.. (4.113) and — - — - — (4.115). 116
Energy dissipation spectra D*(k*,t) for run8. Model spectra using
a=5, b=-5/3, and m=1: ----..--. (4113)and — - — - — (4.115). 117
Enstrophy dissipation spectra Q*(k*,t) for run2. Model spectra us-
ing a=5, b=-5/3, and m=1: ----.---. (4.113) and — - — - — (4.115).117
Enstrophy dissipation spectra Q*(k*,t) for run8. Model spectra us-
ing a=5, b=-5/3, and m=1: --------. (4.113) and — - — - — (4.115).118
W*(k*) for run2. Model spectra using a=5, b=-5/3, and m=1:
--------- (4.113)and — - —- — (4115). ... ........... 118
W*(k*) for run8. Model spectra using a=5, b=-5/3, and m=1:
--------- (4.113) and — - —-— (4115). . . ... ... ...... 119
S(a,m) from (4.120) with n=1.3 for example. ——— m=1 and

4.23

4.244
4.24b

5.1

5.9

————— m=2 with a=3.5, 4, and 5 (S decreases as a increases);

--------- m=2andB=15... ... .................. 119

S verus Re,. Direct computation using simulation data are the sym-

bols. Predictions using (4.118) and measured values of n and G are

shownbysolidlines. . . . ... ... ... ... . .......... 120
The asymptotic ratio of B to S of decaying turbulence verus m. . . 120
The asymptotic ratio of B to S of decaying turbulence verus a.. . . 121

Grid points used in the modified T13 scheme. The particle position
Xp 1s located within the cube shown. . . . . . ... ... ... ... 127

Grid points used in (5.6) and (5.7). . . . . . . ... 128



3.3

5.4

5.5
5.6
5.7

5.8

5.9a

5.9b

5.10a

5.10b

5.11a

XXVl

-Accuracy tests of the modified T13 and T36 schemes on the gradient
of the one-parameter (n) family of flows (5.10) with (a) n =1 (b) n

=2 (c)n=3. + linear interpolation, A T13,0 T36 ... ..
Accuracy tests of the modified T13 and T36 schemes on a turbulent
flows. + linear interpolation, A T13, o T36 applied to Vu; e T13
appliedtou. . ... .. ... ...
Decay of turbulent energy K = 3¢%/2. The time is nondimensional-
ized by the eddy-turn-over time 7, at a time at which k,..n =~ 1.

Decay of Reynolds number Rey =qAfv. . . ... .. ... .. ...
Dea=grg/A(2)ofB=qr/A . . .. . o
Numerical measurements (solid symbols) and Tennekes’ prediction
(open symbols) of 7g. o is for runl and o for run2. . ... ... ..
Lagrangian velocity correlation coeflicients fr(7/, 7) at several differ-
ent 7 for runl. The dash dotted curveis one of them at one particular
time for clarity. Time is nondimensionalized by the eddy-turn-over
time Z,(r=0)=5.84. ... ... ...
Lagrangian velocity correlation coefficients fz(7/, 7) at several differ-
ent 7 for run2. The dash dotted curveis one of them at one particular
time for clarity. Time is nondimensionalized by the eddy-turn-over
time T,(7=0)=8.26. . ... .. .. .. ...
Eulerian velocity correlation coefficients fg(7’,7) at several different

7 for runl.

Eulerian velocity correlation coefficients fg(7',7) at several different

rforrun2. ... oL
Velocity correlation coefficients (runl): (1) — fo(7',7) (2) — - —
fe(r',t) (3) ------ f(r,7) against (7' — 7)/1L, (7' — 7)/7E and r/A

respectively.

130

131

133

133

137

139

141

141

142

142



5.11b

5.12a

5.12b
5.13

5.14

5.15a

5.15b
5.16

5.17

5.18a

XXVii

Velocity correlation coefficients (run2): (1) — fr(7/,7) (2) — - —

fe(’,7) (8)-----: - f(r/A,7) against (7' — 7)/7L, (7' = 7)/7g and

r/X respectively. . . ..... ... ... e e ... 143
The Lagrangian autocorrelation function fy(s”) for runl. . . . . . . 146
The Lagrangian autocorrelation function fr(s”) for run2. . . . . . . 147

The ratio of the integral length scales, £L/Lr: (1) e for runl (2) o
forrun2. . . . .. e e e 148
fr verus (v’ — 7)/Ty with Ty, calculated by (5.33). The curves de-
caying faster are from run2 and the others are from runl. Symbols

are from the data of Sato and Yamamoto: A Rey = 66 o Re) = 46

The mean square displacement of particles, < X? >, for runl. “Ex-
perimental” data computed directly from Lagrangian histories are
shown by symbols. Predictions based on the similarity hypothesis
with (5.43) and (5.44) are shown by the dotted and dash dotted
curves, respectively. . . . .. .. .. L L L o oL 151
The mean square displacement of particles, < X? >, for run2. . . . 151

Tube-like vorticity structures: constant surfaces with ||w|| > 40%||w||maz

‘are plotted for runl at 7/7* = 2.57 (Rey = 26, A\/L =9%). . ... 152

The decay of square-root-mean enstrophy Q(t) = WP: . Open
symbols are for runl and solid for run2 and 7 = 7,(t.). . . .. .. 154
The evolutions of mean growth rates and mean principal rates of
strain tensors nondimensionalized by the square root of mean en-

strophy for runl. (1)—---f a2y--— BB)——— v(4) — -



5.18b

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26 -

xxviil

The evolutions of mean growth rates and mean principal rates of

strain tensors nondimensionalized by the square root of mean en-

strophy forrun2. (1) —---— a(2) == B@)——— 7)) —

The evolutions of the mean angles, 8, 5, = cos™! < |cos up~| >,
between the vorticity vectors and the principal directions of strain
tensors. (a)runl (b)run2. . .. .. .. .. ...
The evolutions of the mean angles, 8,5, = cos™! < |cos a4 >,
between the material line elements and the principal directions of
strain tensors. (a) runl (b)run2.. ... ... ... ... ... ...
The mean growth rates (a) ¢ and (b) o conditioned on the magni-
tudes of vorticity w. 7/7,(t.) = + 1.56 e 584 A 17.53.

Joint probability distribution of w/Q and S/Q at 7/7,(t.) = 17.53.
The contours are labelled by the numbers of particles collected. Plus
signs (+) are the conditional mean values of S/Q on w/Q. . . . ..
The mean angles between vorticity vectors and principal directions
of strain tensors conditioned on the magnitudes of vorticity w.

o: cosb,, o : «cosby, A : cosb, 7/r,(t.) = 584 (open)
and 17.53 (solid symbols). . . . . . . . . ...
The mean angles between material line elements and principal direc-
tions of strain tensors conditioned on the magnitudes of vorticity w.
o : cosby, 0o : cosbg, A : cosb, (L) 7/m(t) =1.56 (R)
7/7p(t«) = 5.84 (open) and 17.53 (solid symbols). . . . . . ... ..
The growth rates (a) ¢ and (b) ¢ conditioned on the straining mag-
nitude S = ,/5;;5;;. 7/7,(t.) =+ 1.56 e 5.84 A 17.53.

P.df. of § = (S— < S >)/os. The dash dotted curveis a lognormal
distribution with mean < S > and variance os. 7/7,(ts) = + 1.56

o 5.84 A 17.53.

............................

155

158

159

161

162

162

162

164



5.27

5.28

5.29

5.30

5.31
5.32a,
5.32b
5.32¢
5.33

XX1X

The mean angles between vorticity vectors and principal directions of
strain tensors conditioned on the straining magnitude § = Sij Sij-
o : cosby, o : cosfs, A : cosh, 7/7(t.) =584 (open)
and 17.53 (solid symbols). . . . . . . ... ...
The mean angles between material line elements and principal di-
rections of strain tensors conditioned on the straining magnitude
S =,/8;;S;.0 1 cosby, o 1 cosbs, A : cosf, (L)7/m(t)
=1.56 (R) 7/7,(t.) = 5.84 (open) and 17.53 (solid symbols). . . .
The evolutions of angles ¢, 5. under the action of Ashurst’s Burger
vortex model. R = 4vfal?, =1 and 7, = rofl, = 1, 1.5, and 1.8.
and

...... are cos™ V(4 £ 4g) /20 - .

The evolutions of angles ¢, 5 under the action of Ashurst’s Burger

— - — ¢, = ¢3 whenever —0.5 + |eqg/al > 1; ¢, otherwise.

vortex model. 7, = r,/{,, = 1 and R = 4v/af?, = 1, 0.1, and 0.01.

and

...... are cos 1L, £ Lg)/V2E. . .
Pathlines of the selected particles (L) #1 (M) #2 (R) #3. . . . ..
History of particle #1. T =T,(t.). . . . . . . ... .. ...
History of particle #2. T* = T,(te). - - - v v o v v v v v v oo
History of particle #3. T =T,(t.). . . . . . o v v .

—-— ¢, = ¢3 whenever —0.5 + |e,p/a| > 1; ¢, otherwise.

(1) Vorticity structures in the neighborhoods of particle #1 which
location at the particular time is indicated by the solid circle and
which initial position is presented as the solid square; 7* = T,(t.) =
(2) Vorticity structures in the neighborhoods of particle #1 which
location at the particular time is indicated by the solid circle and

which initial position is presented as the solid square; 7* = 7,(t.) =

165

165

169

170
171
172
173
173

175



3.34

5.34

3.34

5.35

5.35

5.36

XXX

(1) Vorticity structures in the neighborhoods of particle #2 which

location at the particular time is indicated by the solid circle and

WhiCh initial position is presented as the solid square; T.* = 7T,(t.) =

(2) Vorticity structures in the neighborhoods of particle #2 which
location at ‘the particular time is indicated by the solid circle and

which initial position is presented as the solid square; 7* = T, (t.) =

(3) Vorticity structures in the neighborhoods of particle #2 which
location at the particular time is indicated by the solid circle and

which initial position is presented as the solid square; 7. = 7,(t.) =

(1) Vorticity structures in the neighborhoods of particle #3 which
location at the particular time is indicated by the solid circle and

which initial position is presented as the solid square; 7* = T,(t.) =

(2) Vorticity structures in the neighborhoods of particle #3 which
location at the particular time is indicated by the solid circle and
which initial position is presented as the solid square; 7* = 7,(t.) =
The vortex lines of the vorticity structures in the neighborhoods of
particle #3 which location at the particular time is indicated by the
solid circle and which initial position is presented as the solid square;

T = T,(t,) = 5.84

o

177

178

179

180

181



XXX1

List of Tables

3.1

3.2

3.3

3.4 -

3.5

3.6

4.1
4.2

“points.”

Initial conditions. ¢, = 1 for all cases and s.p. means “stagnation
Stagnation points in runl, where 0 <y < 27, and their local man-
ifolds (e). Eigenvalues of the associated linearized systems are de-
noted as JA;, i=1, 2, and 3.

......................

Stagnation points in run2 and their local manifolds (e). Eigenvalues

of the associated linearized systems are denoted as A;, i=1, 2, and 3.

Stagnation points in run3 and their local manifolds (e). The eigen-
values of the a-type stagnation points are A\; = 1/2 and Xy = A3 =
—1/4/2; those of the B-type are A\; = Ay = 1/4/2 and X3 = —/2. . .

Nonconditional means (|cosé;|) and variances (o;) of the absolute

values of the cosine of the angles between vorticity vectors and the

principal directions of the strain tensors of the ABC flows. . . . . .
Conditional means (] cos §;]) and variances (o;) of the absolute values

of the cosine of the angles between vorticity vectors and the principal

31

31

32

32

57

directions of the strain tensors of the ABC flows on |jw|| > 30%||w||maez- 57

Initial Conditions and conditions at the beginning of power-law decay. 83

The decay exponents, n, and the time reference ¢, in (4.48) which

provide a best fitted curve to the numerical data. . . . . .. .. ..

84



4.3

5.1

5.2

5.3

xxx1i

‘Terms appearing in the spectral energy equation in order of Re,°,

Rex™'2, Rey™', Rex™/? Rey~%and Rey ™% . . .. ... ... R

CPU seconds per time step for N computer nodes with M particles
released. . . .. ... L.
Flow Conditions at ¢ = 0 and at times at which a power-law en-
ergy decay starts (kmq.7 = 1) and at which particles were released
(Frazl R 20Tt =1).  « v v o o e e e e e e e
Power-law decay exponents and some important characteristic time

scales. . . . L L L e

109

132

134



Chapter 1

Introduction

What is turbulence? Those who study turbulence usually ask this question. Ac-
cording to Batchelor [7], a turbulent flow is a ﬂow‘ in which the velocity takes different
~values under seemingly identical macroscopic conditions, although the average mo-
tions may be determined uniquely by these macroscopic conditions. And even if the
average motion in turbulence is determined completely by macroscopic conditions,
its substantial variations in space that often exist in actual turbulent flows leads to
poorly understood interactions. What are the mechanisms that causes a flow so in-
tricate and unpredictable? One must try to answer this question for turbulent flows
occur in rhany applications, e.g., aeronautics, hydraulics, and chemical engineering,
and in nature.

Homogeneous isotropic turbulence is an idealized turbulent flow in which average
properties are independent of position in the fluid and are invariant under the re-
flection and rotation of the coordinates. In this respect it is the simplest turbulent
flow one can investigate to understand the physical properties of turbulence. There
is no way of realizing such a flow exactly, but in the laboratory there are various
ways of producing such a flow with only a slight departure from the idealized flow.
One example is uniform flow passing through a regular array of holes or bars held

at right angles to the flow. The fast development and progress of modern computers
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now makes it also possible to perform experiments on a computer. There is some sac-
rifice due to the limited capacity and speed of compﬁters (e.g., only small Reynolds
numbers pbssible), but in a numerical simulation it is relatively easy, for example,
to collect full flow-field data at any number of times during the simulation. This
can provide much needed qualitative and quantitative information for further study
by both theorists and experimentists. The motivation of this thesis comes from this
consideration.

In this thesis we are particlarly interested in investigating the small-scale struc-
tures of turbulence in physical space. Two reasons are considered. The first is an
attempt to explain the observed intermittency phenomenon by a random distribu-
tion of small-scale structures in turbulence and enable the study of its effects on the
statistic properties of turbulence. A review on this issue is given below. The history
begins with the shadowgraphs of flows taken in the laboratory which suggest many
characteristics of a turbulent motion. First, for a flow to be turbulent, its Reynolds
- number must be large enough, but once it becomes a turbulent flow, the magnitude
of Reynolds number becomes of less importance. The primary consequence of higher
Reynolds number is the production of finer scales of the smallest eddies in flow. Sec-
ondly, the large-scale characteristics of flows certainly must be determined by the
Macroscopic conditions such as the geometry of the boundary, but the small-scale
properties may be universal. Moreover, for sufficient large Reynolds numbers it is
thought that the small-scale eddies are approximately isotropic and homogeneous.
These observations lead to the concept of energy cascade of turbulence. Large eddies
are considered unstable and break into smaller eddies under the action of nonlinear
forces. The higher the Reynolds number, the stronger the inertial forces are. This
leads to finer scale eddies. Energy is transferred in this way from large eddies to small
eddies and is eventually dissipated by the action of viscosity. The information of the

large scales is gradually lost during the process of cascade, thus introducing universal

small-scale eddies.
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It is the energy cascade concept and the isotropy and homogeneity of small eddies
* that led Kolmogorov to his local similarity hypothesis of 1941 [37][38][39] which states
tha,tv, pfovided the Reynolds number is large enough, there may exist a range of scales
(universal equilibrium range) in which the associated motions are independent of the
nature of ‘la,rge—scale motions and thus are determined statistically only by the rate
of energy transfer ¢ and the viscosity v. For an even larger Reynolds number, there
may exist a subrange of scales (inertial subrange) between the large-scale motions
and the small-scale motions, in which not only information of large-scale motions
is lost but also little viscous effects are present and thus inertial forces become the
only dominant forces within this subrange of scales. Assuming that ¢ is uniformly
distributed in space, dimensional analysis shows that, within this subrange of scales,

the energy spectrum is given by
E(k) ~ &Rk, (1.1)

This famous k~%/% spectrum has subsequently been observed in many experiments
(for exdmple, Chapman in 1979 [15] and Saddoughi and Veeravalli in 1993 [56]). It is
found that this spectrum exists sometimes even if the assumptions in the hypothesis
are not satisfied, implying an excluded generality.

Kolmogorov’s scaling was not questioned until intermittency or spotiness of the
dissipation rate € was vobserved. The resulting structures or the regions of intense
dissipation rates have a profound effect on the statistic properties of turbulence such
as the probability distribution of the velocity derivatives. To understand how inter-
mittency affects statistic properties, many different modifications of Kolmogorov’s
scaling (1941) have been proposed using various models: fractal (e.g., 8-model by
Frisch, Sulem, and Nelkin, 1978 [25]; Mandelbrot, 1976 [43]) or multifractal (e.g.,
‘p-model by Meneveau and Sreenivasan, 1987 [45]; random-3 model by Benzi et al.,
1984 [14]), statistical (e.g., Lognormal- (LN-) model by Kolmogorov, 1962 [40] and
Oboukhov, 1962 [48]‘)‘ or physical (e.g., vortex sheets used by Corrsin, 1962 [17]; vor-
tex tubes used by Tennekes, 1968 [68]; Lundgren-Townsend vortex used by Pullin and
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Saffman, 1993 [52]), and dynamic models (e.g., Two-Fluid model by She et al., 1991
[62])." With the help of flow visualization tools, the geometry and size of the small-
scale structvure‘s, have shown their importance in determining the statistic properties
of turbulence. We don’t intend to review all of the models mentioned above. Readers
who are interested in the models are referred to the literature cited. The main goal of
the present research is to capture small-scale structures from direct numerical simula-
tions and to increase our understanding of the mechanism of the nonlinear (inertial)
interactions through observiﬁg the formation or origin of these structures.

Another reason that an understanding of the small-scale structures is important
is in subgrid modelling for large-eddy simulations. In real applications of engineering
interest, the Reynolds numbers are usually very large (~ 10° or higher) compared
with those reachable in direct numerical simulations at ’the present time (~ 10%). A
truncation of resolved scales is therefore required for economic and practical simula-
tions. A large-eddy simulation is a simulation which models the effects of small-scale
- eddies on large eddies and solves the averaged equations for the large-scale motions,
.say for incompressible fluid and constant viscosity, solves

@+i—.—. __@_*_ __62_—._*_—1:'—.__6_7-..
P\Bt " 0z, ) T "oz Mooz, T B, Y

Ti; = WUy — UiU;j

=uu; + ﬁ;u_’,- + u;-TZj + u{u; — U U, (1.2)

with proper boundary conditions, where u = @ + u’ (u is turbulent velocity), @
is the large-scale velocity, and F are external forces. The subgrid stress 7;; needs
modelling. It is ébvious that a good model must be a model which captures the correct
nonlinear interaction mechanism among motions of different scales. Ideally direct
numerical simulations (DNS), simulations which solve all scales of motion without
using any models, could prbvide new qualitative concepts for developing new and

improving subgrid models. In addition DNS could provide quantitative measures of



the performance of existing subgrid models.

Other statistic properties of turbulence of great interest are considered in this
thesivs as well, such as similarities, correlations, and so on. Our aim is to obtain an
improved understanding of turbulence and to accumulate numerically or analytically
as much new knowledge as possible for further study of turbulence in the future and,
in some cases, to be confirmed experimentally in the future.

This thesis is arranged as follows. In chapter 2 we first describe the numerical
method used in the simulations. The relation between the vorticity structures and
the straining is simplified and investigated in chapter 3 by studying a “passive” vor-
ticity field under the action of a known and independent velocity field. Effects of
straining and chaotic properties of the flow on the origin of vorticity structures are of
interest. The actual Navier-Stokes equations for decaying turbulence with zero mean
are simulated and the results are presented in chapter 4. Power-law decay of turbu-
lent energy is observed and similarity laws for the energy spectrum and the double
and triple velocity autocorrelation functions are studied. In chapter 5, we discuss
numerical experiments including tracking fluid particles and material line element
vectors. Lagrangian and Eulerian statistics are considered. Effects of the small-scale
structures on the statistics are investigated. The origin of small-scale structures is
examined by following fluid particles and observing the evolution of nearby vorticity

structures. Finally, conclusions and future work are given in chapter 6.



Chapter 2

Navier-Stokes Solver

We consider a periodic divergence-free vector field u(x,?) which satisfies the in-
compressible Navier-Stokes equations. Direct numerical simulations are performed
by a Fourier spectral method. In this work we use a slightly modified version of a
code by Robert Rogallo [55], originally developed for the Illiac computer at NASA
~ Ames, but later optimized for the CRAY, Intel iPC, and the Intel Delta. Much of the
code is written in VECTORAL language, which is a high-level vector language for
scientific programing developed at NASA Ames. Unlike a FORTRAN program which
vectorization depends on the particular compiler being used, a VECTORAL program
defines a set of vector operations which will use vector hardware to the fullest extent
possible after it is compiled. Meanwhile, FORTRAN and C subroutines are callable
from VECTORAL and like in C, subroutinés in VECTORAL may be recursive. In
this chapter we describe features of this code.

We write the governing equations in general form as follows

Bui aui 2
W—I—uja;—; =-VP+ vV U,
V.u=0, (2.1)

where v 1s molecular viscosity, P is the pressure and the density p = 1. The velocity

field u (and therefore the préssure') is assumed periodic with period (L, Lo, L3)in a 3D
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physical domain. A direct numerical simulation resolves motion of all scales without
~ using a model and therefore several basic reqﬁirements have to be met. First, since
the flow is periodic, the size of the largest eddies in turbulence cannot be too large
compared with the size of the simulated box. Secondly, because the sample of wave
numbers is proportional to the square of wave numbers, statistical resolution at low
wave numbers is thus poor. The resolution can be improved by shifting energy to
smaller scales, but then a smaller mesh is required to capture the viscous dissipation

scales if the Reynolds number of turbulence remains the same.

2.1 Fourier Spectral Method

Let @i and P be the Fourier coefficients of u and P. Note we denote fields in the

"wave space by adding a “*” on the top of the symbols throughout the thesis. The

velocity u(x, t) therefore can be expanded as

u(x,t) = > _{(k,1)exp(ik - x), (2.2)
k
where ¢ = /—1. If N; is the resolution in the j** direction, then k; = _Z%n_’ m =
j
A +1,---, N 1. In the wave space, equation (2.1) becomes
9 FNL D 2~
k;u; =0, (2.4)
where k% = k - k and
e =% igiui(p)i;(a). (2.5)

p+a=k
Multiplying (2.3) by k; and applying the incompressibility condition (2.4) to the

result, one obtains

P =k fNL /R (2.6)



Therefore, with

- kik; o
P = (8 - 25) - B, (27)
the governing equations are rewritten as
du; FNL+P 2~
or
0 24\ ~ 2 FNL+P
5 exp(vk®t) u; |= —exp(vk°t) - f; . (2.9)

By applying a suitable time-marching scheme to (2.9), we are able to obtain the

evolution in time of the #;.

2.2 Dealiasing

A direct computation of the convolution summation required for the nonlinear
term (2.5) would yield a very time-consuming and inefficient code. An alternative
approach is the so-called pseudo-spectral method which is described as follows. Sup-
pose we want to calculate the Fourier coefficients of the product of variables u(x)
and v(x) given their Fourier coefficients u(k) and v(k). Taking advantage of the Fast
Fourier Transform (FFT), we first compute u(x) and v(x) and then make the prod-
uct u(x)v(x) in the physical space. The Fourier coefficients of the product are then.
obtained by applying FFT once again over the discrete mesh in x.

However, in the pseudospectral method an error called “aliasing error” usually
arises for the Fourier transformation used is discrete and finite. For simplicity, we
explain this error in a one-dimensional problem with period 27. Provided we have

u(z) = Y (k) exp(ik - z)

k

v(z) = (k) exp(ik - z), (2.10)

k



the product is computed by

u(z)v(z) = ZZU(P)U(Q)eXP( (p+q)- =) (2.11)

and consequently

(k) = 53233 a(p)o(g) expli(p + ¢ — k) - ), (2.12)

where ¢ = 27xj/N, 7 =0,1,2,---, N — 1. Noting that

dexp(i (p+q—k)-a)=Né(p+q—k=0mod N), (2.13)

we actually obtain in the pseudo-spectral method
aw(k) = Y @pilg+ D apilg) (2.14)
ptg=k p+q=k+N

for —-—]2\[ +1<pg < %[- — 1. The second term on the right-hand side arises from

the fact that the wave numbers of a product can exceed the maximum available wave
number in the discrete expansion so that instead of contributing to the correct wave
number £+ V, these terms contribute to the wave number k. Such an error is called
an "aliasing error.”

There are many investigations of the effects of the aliasing error and a number of
ways of eliminating this error (see [30] [49] [50]). For example, the aliasing errors in the
1D problem (2.14) can be easily eliminated by nullifying Fourier coefficients with wave
numbers outside the range (—&,% = ’). In the present research, we use a variation of
Orszag’s phase-shift technique [49] as summarized below. To obtain alias-free Fourier
coefficients of uv, we consider the products vv = u(z)v(z) and v'v' = u(z' v (z’),
where ¢’ = z 4+ Az /2. The Fourier coefficients @v(k) and w/v'(k) are then computed

as

Fo(k) = - 5 X ule)o(a) exp(—ik - 2) (2.15)

and
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u'v'(k) = N > u(a’)v(a’) exp(—ik - z'). (2.16)
The former is also given by (2.14) and a similar analysis leads to
Cuv'= 3 Ao - X e (2.17)
p+g=k p+g=kEN
Therefore, the alias-free Fourier coefficient of the product uv can now be obtained by
taking the average of @ and u/v'.
The situation in 3D problems is a little more complicated. Supposing the period

in j** direction is 2m;w, i.e., a multiple of 27, it can be shown that

w= > up)p@Q+ >,  ip)w(q) (2.18)
p+a=k p+a=k+N,
and
wo'= 3 ap)E(a) + Y e a(p)i(q)
p+a=k p+a=k+N,
= 3 ap)a) + (-DZ=% Y alp)(a), (2.19)
p+a=k p+a=k+No

where v’ = u(x’) = u(x+3Ax) and N, is a nonzero vector defined as N,; = o;N;/m;,
o; € {—1,0,1} but not all zero. The second term in (2.19) should include all possible
N, (a total of 26 terms). The average of (2.18) and (2.19) is

1/, — S A

s(@+uv) = 3 a@Ep@+ X ap)(a). (2.20)

p+a=k p;q=k+N°
ZJ:l O'J even

The remaining aliasing error {the second summation) can be further eliminated by

nullifying Fourier coefficients outside the following truncated wave domain D:

N
ki <
ik kil 4 .. .
'mN- + m]&J < 3 fori, j = 1, 2, 3and i#]. (2.21)
B 7 ’

For an “isotropic” resolution, a “spherical” wave domain,
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2 2 2
maky | maks masks 2
< = .
(m)*(m)*(m)—w (2.22)

which is the maximum “spherical” wave domain that can be inscribed in domain D,

is recommended and used in the present research.

2.3 Time Marching

We now describe our time differencing scheme used to evolve (2.9) in time.

2.3.1 Second Order Runge-Kutta Method

We recall given an ordinary differential equation,

W h.) (2.23)

the 2nd order Runge Kutta method differences the equation as follows

ki = dt - h{(ym, tn), (2.24)
ky = dt - h(yn + aky, b + Bdt), (2.25)
v =yt ik + ks, (2.26)

where 71, 72, @, and B are free parameters. In Rogallo’s code, 1 = 72 = % and
& 2

a = =1. When applied to (2.9), the first substep gives

1 ~
;7 = exp(—vk*dt) - (ap — NP () - dt)

(2.27)
as a result of
ki =dt- (— exp(vk2tn)f3VL+P(ﬁ")> . (2.28)
CXP(Vthn+1)T7?+% =y" + ak

= exp(vk®t,)a? — dt - exp(vk?t,) FNLHP(G7).
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In the second substep one computes

ky =dt- (— exp(yk2tn+1)ﬁNL+P(ﬁ"+%)) , (2.29)
, exp(vk2tn+1)ﬁ?+i = exp(vk®t,)ar — %fexp(z/k%n)ﬁ-NL"'P(ﬁ")

dt ~ 1
=S exp(vh s AP ()

resulting in

ar+ = exp(—vk2dt) (a? _ %tﬁVL+P(ﬁn)) _ % ’;NL+P(ﬁn+%)-

(2.30)

Note once the Fourier coefficients of the nonlinear terms fV7 are obtained by the

pseudo-spectral method, those of fNL+F are obtained as follows:

zNL+P=szL+ki'§7

. FNL
where { = —T3_, kJ—]{JT——

(2.31)

2.3.2 Phase Shifts

To eliminate completely the aliasing errors based on the grid-shift technique, we
would need to compute both u(x,t) and u(x + Ax/2) at each substep. Additional
FFTs would then be required at each time step. In order to reduce the computational
time, we execute the phase-shift technique in a slightly different way as described
below. At the first substep we calculate f¥X(x’) with x’ = x + Ax/2 and its Fourier

coefficients @NL( k) (note we use “’” to represent fields related to the grid x’); while

at the second substep we compute on the grid x. In other words, we compute for

each time step in the present code

U;

= exp(—vk2dt) - (4 — ]?z"NL+P(an) - dt)

(2.32)
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at the first substep and

'anﬂ = exp( uk2dt) ( n _ dtf/NL+P( n)) _ %ﬁNL+P(ﬁ7"+%) (2 33)

a.tb the second substep. It is obvious then that this scheme is not completely aliasing-
free. However, we take one step further to help eliminate remaining aliasing errors
by introducing random numbers r; and r, at each time step [55]. That is, instead of
forming ﬁonlinear terms at grids x and x’, we form them at grids X’ 4+ r; and x + ro,
where r; and ry are uniformly distributed within (0, Ax). The aliasing error terms

in (2.32) can be evaluated as follows
105 iNewy s—vk?dt FO -~
—dt (—1)&i=1% gNeT1g fi (k+ No;a™) (2.34)

and those in (2.33) are given by

t i zo
__(;_ (_l)zjaj ezNo-r1e—uk2dt fz' (k+NO; ﬁn)

-5 (ﬁ (k; u’n+2) ﬁo(k;ﬁ\"”%))a (2.35)

where ﬁ-o(k; an) is the alias-free coefficient of the nonlinear terms based on @i® and
ﬁBM% is the alias-free coefficient of velocity at the first substep. These errors can be
controlled to be very small as long as motion of small scales is well resolved so that
f,-o(k + No; ") is extremely small. The idea of introducing random numbers r; and
ry is as seen to multiply the aliasing errors by a random value taken from a uniform
distribution around the unit circle (¢!Ne'™ and eiNer2),

The accuracy of the original Rogallo’s code was tested by Eswaran and Pope [23].

They found the scheme is stable and the accuracy is satisfactory as long as

| lul | vl | vl
At (Am MRV <1. (2.36)
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2.4 Initialization
Simulations are initialized by imposing a specified energy spectrum
1
B(k) =5 / aiar(k)dA(k) (2.37)

and the incompressibility condition.

Let (e;,es,e3) be the normal Cartesian coordinates in the wave space. To satisfy
the incompressibility condition, we consider another coordinate system in wave space,
(e},e5,e5), such that ej is parallel to the wave vector k. Therefore, k = kej =

k1e1 -+ kgeg + k3€3 and
U = uze; = uje; = a(k) e} + B(k) e} + Oey, (2.38)

where a(k) and F(k) are functions of wave number k related to the specified initial

energy.spectrum E(k). Substituting (2.38) into (2.37), one finds

E(k) = % [(ea +87) da(k). (2.39)

By introducing three free parameters ;,0; and ¢, one can write

1/2
(k) = (ifll:z) et cos ¢

1/2
Blk) = (fﬁ:g) €2 sin ¢, (2.40)

ifk#0and a=p=0ik=0. If 6, , 6, and ¢ are random numbers uniformly
distributed on the interval (0, 27 ), there is no mean helicity H = —u - (V X u) in the

initial low. On the other hand, if

 |sin(6; — 62)] = |sin24| =1 (2.41)

or

- = _% and ¢ = Z- (2.42)
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then the initial flow has the méximun helicity since the helicity, H, is defined as
H=—u-(Vxu)
=2Im Z(kla;,ﬁ; + kotizu] + kstyul) (2.43)
=2Im Z (K + kyugiy + kgt @y
=2Im Z ky af*(k)
"

=> Kk 12'5'751,1:2 sin(6; — 8;) sin 2¢. (2.44)
kl

In the latter case, we have

o\ 1/2
alk) = (E(L)) et L

2k :/_5’
EMW\NY* ... 1 . i
s = (2] eosr. L=, (249

‘and

_ _ E(k)
= = 3 5

= -3 2kae"(k) < 0. (2.46)
k

At the last step of constructing an initial flow field, we need to recover i from i’.
This can be easily done by making the choice €] - e3 = 0. With the help of Fig. 2.1,
we find that the transformation matrix between the coordinates (e, ez, €3) and the
coordinates (e, é’z, ey) is given by

kofkiy  kaka/kkiy E/k
T=|—ki/kiy koks/kkiz ko/k (2.47)

0 kofk  ks/k
if bz # 0 and T = I (the identity matrix) if kiy = 0, where kiz = /K + K.

Therefore, u = T'u’, or

akky + Bk k koks — akk B(ks + k21?2 . )
. (m—_k(kfz-!- k%)ll/g) e; + (_—i(lch3+ k?)lm/;) e, + (J—T—L e; if ki &k, # 0;
ae; + fBe, +0 e3 otherwise.

(2.48)
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e, Ik e,

| cos (ky/k) /

- e; 4 €
A Iez A c0s ™ (ky/kyy)

4 ey / ‘
& k / &
A '/

Figure 2.1: The transformation between laboratory coordinates (e;,e2,es) and
(e}, eh,e}) where e} || k and e} - e3 = 0.

The initial velocity field is thus constructed as follows. We first specify the initial
- energy spectrum E(k). A set of three random numbers (6,, 6, ¢), different for each
wave vectors, is obtained by the random-number generator if zero mean helicity is
specified; otherwise, only #; needs to be determined if maximum helicity is desired in
the initial velocity field. The velocity Fourier coefficients satisfying the incompress-

ibility condition and a prescribed energy spectrum are then obtained by (2.48).

2.5 Vectorization and Parallelization

There are a total of 3 x Ny x N3 X N3 ordinary differential equations in (2.9). With
the Intel Delta parallel computer at Caltech, we are able to solve these equations
simultaneously with at most 512 nodes based on a “plane” scheme. Basically, the 3D
data are distributed over and stored at, say, N3 nodes. Each node then is responsible
for time marching its one “plane"’ 3D data (3 x Ny x N;). Communication among

nodes is required for these nodes do not share their memories and the evaluations
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of the nonlinear terms f"Z*F for a single wave vector k requires information from
all 3 x N; x Ny x N3 Fourier coefficients. Except for communication time, i.e., time
consﬁméd in sending messages among nodes, the computation is roughly speeded up
- by a factor of the number of nodes used.

The transpose of the 3D data array is required also in order to finish the 3D
Fourier transformation. For example, with a 3 X N; x N, data plane stored in a
node, each of the N; nodes can execute the Fourier transformation in the first and
the second directions. However, transformations in the third direction require all ks-
Fourier coefficients for every pair of (k1, k2) and therefore can not be executed until
the data array is transposed such that a 3 x N; x N3 data plane is stored in each of
N, nodes.

An alternativeis a “pencil” scheme which performs an O(N?3) simulation on O(N?)
processors such that each processor can span only one dimension at a time and that
requires twice as many transposes as a “plane” scheme does. The number of messages
per processor required in a “pencil” scheme is generally smaller than that in a “plane”
scheme, but the length of the message is longer. Because the communication time
is determined by the number of messages per processor as well as the length of the
messages, which scheme, the “plane” one or the “pencil” one, has a higher efficiency
is still under investigation (for example at NASA Ames); but a “pencil” scheme is
seemingly more beneficial on a larger machine.

The code is vectorized on each node. A flow chart of the Navier-Stokes solver can

be found in Fig. 2.2.
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o) (oo

yes

Set IC or Input data at time step n no

in wave space STOP

FFT 1in x and z directions

transpose data Finish second Runge-Kutta substep

FFT in y direction n+l in wave space
. . . FFT in y direction
Form nonlinear terms in physical transpog,e data
space X+dx/2+1.2 FFT in x and z directions
FFT in y direction Form nonlinear terms in physical
transpose data space X +1_1
FFT in x and z directions

. FFT in x and z directions
Finish first Runge-Kutta substep transpose data

n+1/2 in wave Space FFt in y direction

Figure 2.2: Flow Chart of Rogallo’s Navier-Stokes solver using the spectral method
and a 2nd order Runge-Kutta time marching scheme. A grid-shift technique is also

implemented to nearly eliminate aliasing errors.
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Chapter 3

Dynamo Action of ABC-Flow

Non-zero vorticity is usually named as one of the primary ingredients of a turbulent
flow, for the chaotic characteristics and the unpredictability of a turbulent flow come
~often from a seemingly random distribution of its vorticity field. For a Navier-Stokes’

fluid, the equations of evolution for the vorticity vector, w = V X u, are given by

?9_“: + (u . V)w = (w- V)u + VV2w, (3-1)

where u is the veldcity and v is the kinematic viscosity. In physical space, the vorticity
field sometimes reveals particular structures, i.e., the regions over which the vorticity
field has rapid variations, such as horseshoes, tubes, sheets and so on. The existence of
these vorticity structures implies a non-uniform distribution of turbulent quantities,
for example the energy dissipation rate ¢, and non-Gaussian turbulent statistics. An
understanding of what these vorticity structures really look like and how they are
created in a turbulent flow may be very useful in turbulent theories, for instance in
the subgﬁd modelling of small eddies.

In studying the phenomenon of intermittency in a turbulent flow, investigators
sometimes search for prominent physical structures of the vorticity. For instance,
Corrsin [17] assumed that a turbulent flow has randomly distributed vorticity sheets
having characteristic thickness on the order of the Kolmogorov dissipation microscale

n = (v®/€)/%; while Tennekes [68] thought the intermittency phenomenon is caused
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by randomly distributed vorticity tubes with diameters on the order of n and stretched
by eddies of size A, where A is Taylor microscale. It is thought that these vorticity
structures o'ccupy only a small fraction of volume in a flow and, although having large
magnitudes of vorticity themselves, are created by a “background” straining field, a
straining field created by the large-scale motions. A solution of (3.1) by assuming w
and u are independent in the sense that w represents the vorticity of the structures and
u, the velocity of the large-scale motions, that is, by assuming w is just a passive vector
in the u-motion, would then yield a possible vorticity structure appearing in an actual
turbulent flow. Probably the most impressive work along these lines is by Townsend
in 1951 {70]. By choosing a shearing motion u(x,t) = (az, —ay,0) (a > 0}, Townsend
identified a stationary solution of (3.1) which is sheet-like of finite thickness ~ \/11/70.'.
A tube-like solution is obtained instead if one selects u(x,t) = (28z, -8By, —5z2)
(8 > D). The diameters of these tubes are found to be O(W) One can further
improve the models by taking the induced motion of w into account when solving (3.1).
- Lundgren’s tube-like structures surrounded by spiral sheets [42] are an example.

In this chapter, we are particularly interested in obtaining a picture of how a
velocity fleld u acts on the w-field and creates the w-structures. Thus we assume
u(x,?) is known at all time and w is a passive vector. Equation (3.1) then becomes
linear. We hope that knowledge obtained from this study can help us understand and
explain the origin of vorticity structures in an actual turbulent flow when we simulate
the full Navier-Stokes equations and accumulate Lagrangian statistics (see Chapter 5).
This chaper is arranged in the following way. In Sec. 3.1, an analogous problem in
magnetohydrodynamics is discussed. Terminology used in magnetohydrodynamics
such as “dynamo” is introduced. In Sec. 3.2 we study the property of the compact
linear operator £, where Lw = V x (u x w) + vV2w. Next we introduce the ABC
(Arnold-Beltrami-Childress) flows in Sec. 3.3 as we will use this class of flows as the
model velocity field u(x,?) in (3.1). The numerical methods and the initial conditions

used for simulations are described in Sec. 3.4. The simulations were all performed
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with 128% Fourier components. Discussions of numerical results are given in Sec. 3.5,

- and finally conclusions are given in Sec. 3.6.

3.1 What is a Dynamo?

The interaction between the motion u of an electrically conducting fluid and a

magnetic field B is governed by the magnetohydrodynamic (MHD) equations:

%+U.VU=B-VB—VP+VV2u+f, (3.2)
aa_]?.;.u.VB:B-Vu—i—z/BV?B, (3.3)

and
V-u=V-B=0, (3.4)

where v and vp are the kinematic viscosity and magnetic diffusivity and fis the driving
force. The magnetic field lines are stretched, folded and/or twisted by the velocity
field and act back on the velocity field as Lorentz forces. In some cases the stretching
of the magnetic field lines by the fluid motion may be sufficiently strong to overcome
the Joule dissipation and therefore prevent the magnetic field from decaying. Such a
flow, capable of maintaining a magnetic field, is said to be a “dynamo.”

Considering the cases in which the magnetic field is so weak that the Lorentz
fofces are negligible and therefore do not affect the fluid motion, the equation of
evolution of the magnetic field (3.3) then becomes linear and analogous to (3.1). In
the following text, all the discusions are applied to the magnetic field which, however,
according to the analogy, can be applied equally effectively to the vorticity field. We
are not concerned with how the velocity field u is maintained by the forcing. We

focus our attention on the following problem: Given a precribed fluid motion u, will
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the passive magnetic field B or the passive vorticity field w grow exponentially with

time?" Or, equivalently, what fluid motions (u) can be a dynamo? _
Working with the spatially periodic motions of an infinite fluid, Roberts [54]

proved that if the determinant of a certain symmetric tensor determined by u is

not zero, then there exists some j and magnetic (vorticity) field solutions in the form

of
B(x,t) = H(x) exp(pt + 7j - x) (3.5)

such that Re(p(j)) > 0 to the first order in [j| for all positive values of diffusivity vz
except possibly a bounded set of discrete values, where H has the same periodicity
as u and |j| is assumed as a small parameter. However, we note the solutions of
this particular form can not appear in the present research for in our simulations the
velocity field and the vorticity field are both spatially periodic of the same period
(27). That is |7| = 0 always.

The possible existence of a dynamo at large magnetic Reynolds numbers, Re,, =
i/vB, is of particular interest. A dynamo is said to be a “fast dynamo” if the ex-
ponential growth rate of the magnetic field approaches a positive nonzero value as
the diffusivity approaches to zero; otherwise, it is said to be a “slow dynamo” ([74]).
Moffatt and Procfor [46] studied the zero-diffusivity system and argued that a fast
dynamo is impossible at least under the assumption of a smooth eigenfunction if the
diffusivity is exactly zero because of the invariance of helicity of the magnetic field.
However, considering the analog of

0B
—— =V x (uxB) (3.6)
at ,

to the equations of evolution of an infinitesimal material line element, which char-
acterizes the separations of fluid particles in a turbulent flow, the amplification of

magnetic energy is expected if a flow u produces Lagrangian chaos, i.e., positive

Lyapunov exponents or the exponential growth rate of the separation of particles
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infinitesimally close over a long time on a set of positive measure. Another approach
to the diffusionless system instead of eigenfunction approach is thus required. For
examvple’,,Bayly_ [13] had 7approached the diffusionless system by catching an eigen-
function which when multiplied by any smooth function is measurable, and Finn and
Ott [24] measured dynamo action by integrating the flux of B across a fixed surface
in space.

We now come back to hydrodynamic problems. Knowledge accumulated from
magnetohydrodynamic studies, due to the analogy, can be very helpful to us in ex-
plaining and understanding phenomena observed in our simulations. Conversely, we
hope the study here is also useful to those interested in magnetohydrodynamic prob-

lems.

3.2 Theoretical Results

Before we perform numerical simulations, it is worth exploring (3.1) analytically.
When the flow is time-independent such as the ABC flows, the dynamo problem,
(3.1) or (3.3), can be viewed as an eigenvalue problem. If we write w(x,t) = H(x)e?,

where p is complex, equation (3.1) becomes
pH =V x (u x H) + vV?H. (3.7)

Thus we are led to consider the eigenvalues and eigenfunctions of the linear operator

of
LH=V x (uxH)+vV*H. (3.8)

The properties of £ are determined by the flow u(x) and the diffusivity v. At large
fime, solutions to (3.1) will be dominated by the eigenfunction(s) corresponding to
the eigenvalue(s) which has (have) the maximum real part. A steady state (time-
independent) solution of (3.1) is an eigenfunction of (3.7) corresponding to the zero

eigenvalue.
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If we write H(x) = H + H'(x), where H is the spatial average and H'(x) is the

fluctuation, assume T = 0, and spatially avera,ge (3.7), we obtain

oH = 0 (3.9)

and consequently
pH =V x (ux H)+ V x (u x H) + vV*H'. (3.10)

Therefore, if H# 0, p =0 and LH' = —V x (u x H). Equation (3.7) is thus reduced
to LH = 0 and the zero solution becomes the only solution of (3.1) if £ is invertible
(no dynamo action).

For the rest of this section, we look for steady solutions of (3.1) with a fixed

spatially periodic u(x) and H = 0. That is, we consider the eigenproblem
LH =pH (3.11)

with H = 0 and look for the values of viscosity v which give a nontrivial kernel of L.
According to Roberts’ analysis [54], the linear operator £ in this case is a compact

linear operator (see [22]). Let
LH=V*vI-S3)H, (3.12)
where
SH = (V?) 7 {-V x (ux H)} (3.13)

is a compact linear operator as well, and let p() denote the resolvent of & and o(3) be
the spectrum. Therefore, if v € p(3), (vI—)71 exists as a bounded operator, so does
L. tha,t means the operator £ does not have a zero eigenvalue and therefore (3.1)
has no non-zero steady solution. On the other hand, if v € o(S), eigenfunction(s)
corresponding to the zero eigénvalue of £ exists and a steady state of (3.1) is possible.

Because the spectrum of a compact linear operator is bounded and discrete with
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no non-zero point of accumulation, we can make the following assertation. For v
sufficiently large, greater than the bound of ¢(S), equation (3.1) has no non-zero
steady solution. If £ has eigenvalues with positive real part, there exist solutions of
equation (3.1) which grow exponentially with time (a dynamo action). The situation
becomes complicated and interesting as v — 0 because zero is the only possible point

of accumulation of o(3).

3.3 ABC Flow
The ABC-flow is defined as u = (u, v, w), where

u= Asinz + C cos y,
v= Bsinz + Acosz,

w=Csiny + Bcosz. (3.14)

It was named by Dombre et al. [21] after Arnold [1], who first recognized it as a three

dimensional steady solution of the incompressible Euler equations

du 1, .
E+(qu)xu:—V(p+ 54 ) (3.15)

Vou=0, (3.16)

Beltrami, for the flow possesses the Beltrami properties (V x u = {u and u-V¢ = 0),
and Childress, who introduced the specal case A = B = C = 1 independently [16].
This class of flows is of interest for it is simple (spatially periodic and steady) from
an Eulerian viewpoint but varied and intricate from a Lagrangian viewpoint.

The flow is integrable (the flow has invariants) when one of the three parameters A,
B, and C is zero. For example, if C = 0, the invariant is B sinz + A cos z = constant;
that 1s, particles’ motions are restricted to the surfaces of Bsinz+Acosz = Bsinz,+

Acos z, and the y-motion is simply linear, namely, y(t) = y, + (Bsinz, + A cos 2, )i,
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3n/2

3n/2

Figure 3.1: The projected orbits of an integrable ABC flow with A=B=1 and C=0
on the x-z plane.

where (Z,, Yo, 2o) 1s the initial position of a particle. Orbits projected on the x-z plane
| of this special case are shown in Fig. 3.1.
The flow has stagna,tion points when a triangle can be formed out of sides with
lengths A%, B? and C?. Let (%,7,%) denote the stagnation points. They are deter-
mined by

1/2
—Csiny = BcosT = + (—;—(B2 +C?* — A2)> /
1 1/2
—Asinz =Ccosy= =% (5(02 + A? — B2)>
1 1/2
—BsinT = Acosz =% (5(,42 + B* — 02)) : (3.17)

The characteristic polynomial associated with the linearized motion about the stag-

nation points is given by

1
X3 — 3(A2 + B* + C*)X —24ABC cosTcoscosz = 0, (3.18)

&

where the A are the principal values of the velocity gradient tensor at the stagnation
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Figure 3.2: The space of parameters A,B, and C normalized by A=1>B>C >
0. The bifurcation values of parameters (B? + C? = 1) are indicated by the dash
dotted line. Solid circles represent the values of parameters chosen for the present
simulations.

points. The eigenvectors e’s, which represent the local stable, unstable, or center

manifold of the stagnation points, are given by solving

- —Csiny Acosz
Bcosz —-A —Asinz |e=0. (3.19)
—Bsinz  Ccosy -

Since an ABC flow possesses the Beltrami properties (with £ = 1), the vorticity at
the stagnation points is also zero and therefore the eigenvalues As and eigenvectors
determined by (3.18) and (3.19) are also the principal rates and principal directions,
respectively, of the strain tensor at these points.

To be consistent with the terminology used by previous investigators [19] [21], we
i.dentify an o-type stagnation point as a stagnation point having two stable and one
unstable local manifolds and a 3-type stagnation point as one with one stable and
two unstable local manifolds. When the normalization A =1> B > C > 0 is used,

with no loss of generality (see the analysis of Dombre et al. [21]), the saddle-node
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bifurcation occurs at B? + C? = 1. That is, when B? + C? <, =, and > 1, there
exist zero, four, and eight stagnation points (excluding the integrable cases). These
bifurcation vélués are shown in Fig. 3.2 (dash dotted line). Several sets of parameters
(A,B,C), including an integrable case, cases with discrete stagnation points, and cases
without stagnation points, are selected for the present simulations, and they are shown

by the solid symbols in Fig. 3.2.

3.4 Numerical Scheme and Simulations

3.4.1 Mathematical Formulation

The spatial periodicity of an ABC flow makes it possible to implement a code
solving (3.1) by taking advantage of the Navier-Stokes’ solver described in Chapter 2.
We consider a “passive” vorticity field, which is initially randomly distributed and
Ahas the same period as that of the ABC flow, i.e., 27 in each direction, under the
action of the ABC flow. Because both w and u are divergence-free (V-u = V-w = 0),

we may rewrite (3.1) as follows

8wz- 3]
5 T 8._'z:j(ujw7: —uiwj) = vV (3.20)

for i=1,2, and 3. The corresponding equations in wave space are given by
d(:’i . o~ ~ -~ -~ 2~
- + 1Y ki 4(p)@i(k — p) — 4(p)&;(k — p)) +rkie; = 0. (3.21)
P

Because Gi(k) = 0 unless k = o, where 0 = (£+1,0,0) and its permutations, the inter-
actions among w-Fourier components are local in the sense that a Fourier component
of a wa,vé vector k only interacts with Fourler components of wave vectors k 4+ o. Let
®;; = v;w; — u;w;. Because @;; is an antisymmetric matrix, only three independent
compornents of ®;; need to be evaluated and stored. The following equations are then

marched in time by the second order Runge-Kutta method:
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%(&i(k)exp(vkzt))= —ik;0i;(k) exp(vk?t). | (3.22)

» The estimate of the numerical stability of (3.21) is simplified by frozening the
velocity components of the ABC flow. The result shows the scheme is stable if the

time increment dt satisfies

dt - Ma:c(k1||u1|| + k‘z”’dz“ + kg‘

ugf]) < C (3.23)

where C is the Courant number.

3.4.2 Simulation Conditions

We restrict our attention to w-fields which satisfy V. w = 0. According to the
method described in the section 5 of chapter 2, we need three sets of random numbers
and need to specify an initial “enstrophy” spectrum. In this chapter, we shall use
Q(k) to denote the enstrophy spectrum or w- spectrum and D(k) = 2vk*Q(k) the
enstrophy dissipation spectrum. The mean enstrophy (0 is then the integral of Q(k)

over the wave numbers. The turbulent vorticity magntitude T is defined as
3 _2 _ —_— _ kma.‘r 3 .
pE=0= /0 Q(k)dk: (3.24)
and the mean enstrophy dissipation (e, ) is defined as
kmaz:
€ = f D(k)dk. (3.25)
0

The smallest scale A, generated by (3.1) with finite v is O(V3w/w)~Y/? « v1/? for
Vu ~ O(1) (see [46] and [24]), which may be characterized as

. 1/2
Ao = (5 fo e k) dk /0 e k?Q(k)dk) . (3.26)

We would like to define a \}orticity Reynolds number as Re, = (20)3?/e,.

In the present simulations, two initial energy spectra are employed. One is
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32 k? .
« v i ke <k < ka
Qk) = { 2kn — &) " (3.27)
0, - otherwise.

For this case the initial lengthscale and the enstrophy Reynolds number are
25 (kK —k\"?
Ay =4[ | 2= 3.28
/5 (&) (528

5¢. (k7 + knke + £2)°2
v (k} + KRk, + E2R2 + knk3 4+ k%)

and

Re, =

(3.29)

The other initial spectrum is given by

Q(k) = 16\/—%qf,kp (%) exp(—2 <7€k;) ) (3.30)

The initial lengthscale and Reynolds number are computed as

20
Ao = ) = (3.31)
Tk2

2184,
vk,

~and

Re, =

(3.32)

The code was tested by choosing the initial w-field to be exactly the vorticity field
generated by the ABC flow.

Presented in Table 3.1 are the initial conditions for the simulations. Stagnation
points of the ABC flow, if they exist, and their local manifolds are summarized in
Table 3.2 - 3.4. Poincaré maps of these ABC flows are shown in Fig. 3.3a - 3.6a,
revealing some of the regular and/or chaotic zones of the flow. Points on the the
Poincaré map are shown whenever a trajectory pierces the plane. Regions of positive
and negative normal velocity are separated by solid lines (at which the normal velocity
of particles is zero). We expect the stable and unstable manifolds of stagnation
points, if they exist, to dominate the geometry of vorticity structures, while significant
stretching of vorticity is expected in chaotic regions for they usually possess positive

Lyapunov exponents. We shall come back to this later.



31

Table 3.1: Initial conditions. g, = 1 for all cases and s.p. means “stagnation points.”

A B C | # of s.p. v O |k kn k| A Re,,
runl | 1 1 0 oo 0.0132 14 - 2 410686 138.3
rn2 | 1 1/v2 12| 4 | 0006 169]3 - - |0363 615
rund | 1 1 1 8 f 0.0036 1693 - - [0.363 102.5
run4 | 1 0.8 0.5 0 0.005 1693 - - [0.563 73.8
rund | 1 0.5 0.3 0 0.0036 16913 - - |0.563 102.5
run6 - 1 0.8 0.5 0 0.0036 169 3 - - |0.563 102.5
run? | 1 0.5 0.3 0 0.0036 1693 - - 10563 102.5 |

Table 3.2: Stagnation points in runl, where 0 < 7 < 2, and their local manifolds
(e). Eigenvalues of the associated linearized systems are denoted as );, i=1, 2, and 3.

=T
<
|

Ao A €1 €9 €3

(#/2 7. ™| 1 0 -1[(10:) (0,1,0) (1,0,1)

Br/2, 7, 0|1 0 -1] (1,0,1) (0,1,0) (1,0,-1)
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Table 3.3: Stagnation points in run2 and their local manifolds (e). Eigenvalues of the
associated linearized systems are denoted as X;, i=1, 2, and 3.

T T z /\1 )\2 /\3 ey e, es3

(7(‘/2, 07 571'/4) 1 0 -1 (13‘_13"'\/5) (1’1’0) (17“17\/§)
(r/2, =, 3x/4)| 1 0 -1| (1,1,-v2) (1,-1,0) (1,1,v2)
(3r/2, 0, Tx/4)| 1 0 -1 (1,1,v2) (1,-1,0) (1,1, —-v/2)

(3r/2, =, =/4) 1 0 -1| (1,-1,v2) (1,1,0) (1,-1,—v?2)

Table 3.4: Stagnation points in run3 and their local manifolds (e). The eigenvalues
of the a-type stagnation points are A\; = /2 and Xy = A3 = —1/\/2_; those of the
- B-type are Ay = Ay = 1/4/2 and A3 = —/2. ‘

T ¥y 0z type e, e, es

(r/4, 5Bw/4, 37/4)| « (1,1,-1) (1,0,1) (0,1,1)
(3r/4, w4, 57/4)| o« |(1,-1,-1) (1,1,0) (1,0,1)
(57/4, 3n/4, w/4) | @ (1,-1,1)  (1,1,0) (0,1,1)

(Tr /4, Tr/s, Tn/4) | « (1,1,1) (1-1,0)  (1,0,-1)

(x/4, Tr/4, 57/4) (1,1,0) (0,1,1)  (1,-1,1)

(37/4, 37/4, 37/4) (1,-1,0) (1,0-1)  (1,1,1)

(57/4, w/4, Tr/4) (1,0,1) (0,1,1)  (1,1,-1)

W™ ™ ™

(Tn /4, 57/4, =/4) (1,1,0) (1,0,1) (1,-1,-1)




Figure 3.3a: Poincaré Map of the ABC flow (A=1 and B = C = 1/+/2) for run2 on

the section x=0. Solid lines represent points where z = 0.
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Figure 3.3b:‘P0incaré‘Map of the ABC flow (A=1 and B = C = 1/+/2) for run2 on
the section y=0. Solid lines represent points where y = 0.
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2n

In/?

Figure 3.4a: Poincaré Map of the ABC flow (A=B=C=1) for run3 on the section
x=0. Solid lines represent points where z = 0.

2n

3n/2

Figure 3.4b: Poincare Map of the ABC flow (A=B=C=1) for run3 on the section
x=7 /4. Solid lines represent points where z = 0.



35

v Y T % % 7
o o . l.:'l' "..‘o ° % .g..:.':il- \
0
- u. ) 'Y J Ny "0.} .o'. .'..::-. 3

.,‘.~ o -:'.CV - vl % ...:;
o/ ( Q #.:_\ C )>."‘;:'~ »

TFigure 3.5a: Poincare Map of the ABC flow (A=1, B=0.8, and C=0.5) for run4 and

run6 on the section x=0. Solid lines represent points where z = 0.
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Figure 3.5b: Poincare Map of the ABC flow (A=1, B=0.8, and C=0.5) for run4 and
run6 on the section y=0. Solid lines represent points where § = 0.
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Figure 3.6a: Poincaré Map of the ABC flow (A=1, B=0.5, and C=0.3) for run5 and
run7 on the section x=0. Solid lines represent points where z = 0.
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Figure 3.6b: Poincarée Map Qf the ABC flow (A=1, B=0.5, and C=0.3) for run5 and
run7 on the section y=0. Solid lines represent points where g = 0.



37

3.5 Discussions

3.5.1 "3D Structures

The evolution of the enstrophy {I(t) and the enstrophy Reynolds numbers Re,,
are shown in Fig. 3.7 and 3.8. The decay of enstrophy by molecular viscosity 1is
clearly overcome by dynamo action in all cases. Except for run2, the enstrophy
grows exponentially at large time implying that the compact linear operator £ has
eigenvalues with positive real parts for those values of viscosity investigated. The
enstrophy of run2 (v = 0.006) stays approximately stationary. However, we may not
be observing a non-zero steady solution of the eigenproblem, because the evolution
time required for the eigenfunction(s) corresponding to the eigenvalue(s) with the
maximum positive real part(s) to dominate is determined by the initial conditions.
For example, consider run5 and run7 which have the same initial energy spectrum
for the same ABC flow and viscosity, but use different sets of random numbers to
generaté the initial Fourier components. The long-time behaviors are dominated by
the same eigenfunction(s) but run7 clearly develops faster than run5.

Although the enstrophy grow exponentially in time, the smallest scale A, involved
is determined only by v. It should approach to the constant lengthscale which char-
acterizes the dominant eigenfunction(s) at large time. The evolution of ), is shown
in Fig. 3.9. The prediction A, x v!/? is obtained if one examines the ratio of A, of
run4 and run6 which have the same ABC flow but different viscosities. The enstrophy
spectra (k) at late times are also given in Fig. 3.10. The “tails” of the spectra are
well resolved, implying a satisfactory numerical resolution is obtained.

We now consider the 3D vorticity structures in the physical space. We recall that
fhe ABC flow in runl is integrable and has a continuum of stagnation points which
are connected by heteroclinic orbits. Each heteroclinic orbit is a stable manifold of

one stagnation point and an unstable manifold of another. To help interpret the
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Figure 3.10: Enstrophy spectra at large times.
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results, we superpose the projected orbits of the integrable ABC flow on the section
y = 0.  In addition, the reader should keep in mind the flow direction, i.e., & = sin z.
The,regions' with vorticity magnitudes higher than 30% of the maximum value are
shown in Fig. 3.11a for runl. It is observed the high amplitude vorticity is confined
to a small neighbdrhood of the heteroclinic orbits and are shaped like “tubes,” even
although the manifolds form the plane ¢ + 2z = —7 /24 2n7, n an integer. In addition
to the memory effect of the initial conditions, the effect of viscosity may produce
the tube-like structures. Noticed also that the vorticity magnitude is small along
the directions of the stable manifolds near the stagnation points. (Refer also to
Fig. 3.16a in which vorticity contours on the section y = 0 are plotted.) Evidently,
when the vortex lines approach the stagnation points along the stable manifold, not
only are they largely stretched in the direction of unstable manifold, but also they
compressed in the direction of the stable manifold. Thus gradients of vorticity and
the viscous dissipation can be significant in those regions. Moreover, cancellations
“are also expected for folded, compressed vortex lines in the presence of viscosity.
Vortex lines starting from a neighborhood of the stagnation points (37/2,7,0)
and (7/2,7,7), 0 £7 < 27 are shown in Fig. 3.11b. These vortex lines stay close to
the heteroclinic orbits and are nearly straight where vorticity magnitude is high but
found spiral where the magnitude is smaller. Reasons cited above to explain the low
magnitudes along the stable manifold near a stagnation point may be applied here as
well. When vortex lines spread out along the direction of unstable manifold, they are
eventually “cut” off by viscous dissipation or by cancellations and thus form spirals.
Vortex lines in the core region shown in Fig. 3.11¢ are mainly y-directed which is not
surprising because of the linear y- motion of the integrable ABC flow.
When the values of parameters (A,B,C) are changed to generic nonintegrable case,
the heteroclinic orbits are broken and chaotic particle motions are possible. With
four stagnation points (run2), the ABC flow creates tube-like physical structures of

vorticity once again as shown in Fig. 3.12a in which only contours with vorticity



41

lwll > 30%]||w||maz are plotted (with the locations of stagnation points indicated by
“solid circles). Some of the tubes actually have flattened cross sections, however. When
the threéhold is increased to 50%||w||mez (see Fig. 3.12b), the tubes are seen to have
‘nearly circular cross sections. Moreover, it is found that they surround only two of the
four stagnation points, (37/2,7,7/4) and (7/2,0,57/4). From Fig. 3.12c we see that
these tubes are directed along the local unstable manifolds of these two stagnation
points. Vortex lines near the other two stagnation points, which have much smaller
magnitudes, are found to be approximately orthogonal to the local center manifold
and not particularly biased in either of the other two manifolds (Fig. 3.12d). This
suggests that, in the low enstrophy regions, the stretching effect (w]g;‘—;) is small and
the convection effect (u]gg‘c"—;) probably dominates the alignments of vorticity vectors.
The reason why amplifications are observed only around two of the four stagnation
points is not clear, but we believe the two where amplification is observed will become
a-type stagnation points under the saddle-node bifurcation, while the other two will
be B-type. This conjecture is supported by the results of run3 discussed below.

In run3, there are eight stagnation points — four of them are a-type and four are
B-type. We show the vorticity structures with ||w| > 30%||w||mes in Fig. 3.13. The
a-type stagnation points are indicated by solid circles, which are “buried” in the tube-
like structﬁres and therefore are not clearly seen in Fig. 3.13. The 3-type stagnation
points are indicated by open squares. It is obvious that the most amplified vorticity
lies close to the a-type stagnation points and is concentrated near the local unstable
manifold. Physical vortex structures in this case are thus completely dominated by
the a-type stagnation points. Same phenomena had been observed by Galloway and
Frisch [26] who studied the possibility of ABC flows as a dynamo over a wide range
of magnetic Reynolds numbers.

In run4 and run5, there are no stagnation points. Amplifications of vorticity
are thus expected in the chaotic regions of the flow originating from broken KAM

tori. Fig. 3.14, 3.15a, and 3.15b show the physical structures of vorticity with |jw|| >
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30%||w||maz OF 50%||w]|mez for rund and run5. Basically, the structures are flat and
long, especially for the 30% threshold. In Fig. 3.15a, the “thickness” of the tubes
is of the order 4)\w while the “width” is a few As and the length of the tubes is of
the order of the simulated box size (a few tens of A,). Note spiral arms like those in
Lundgren’s model [42] are never observed.

One thing worth mentioning is there may exist a correlation between the geometry
of chaotic zones of ABC flows and that of the vorticity structures. It wouldn’t be
so surprising if a tube-like chaotic zone in the 3D space creates a tube-like vorticity
structure. However, it is too hard to present the chaotic zones in a 3D space. To study
the differences of stretching effects in regular and chaotic regions, we take advantage

of Poincaré maps and the results are given in the next section.
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Figure 3.11a: The intense vorticity regions with [|lw|| > 30%||w||mas for runl. Su-
perposed are the projected orbits of the integrable ABC flow (C = 0) on the y = 0
section which flow direction is determined by & = sinz or 2 = cos z.
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Figure 3.11b: Vortex lines starting from a nei
runl: (U) (37/2,7,0) (B) (m/2,9, 7).
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Figure 3.11c: Vortex lines in the core region of the integrable ABC flow for runl
(A=B=1, C=0).



46

Figure 3.12a: Intense vorticity structures with ||w|| > 30%|/w||mas for run2. Stagna-
tion points are indicated by the solid circles.
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Figure 3.12b: Vorticity structures with |Jw|| > 50%||w]||mez for run2. Stagnation points
are indicated by the solid circles.
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Figure 3.12c: Vortex lines near the

stagnation point (37/2,7,7/4) of run2. The

associated local unstable manifold is (1,1, V2).
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Figure 3.12d: Vortex lines near the stagnation point (7/2,0,57/4) of run2. The

associated local unstable manifold is (1,~1,—+v/2) and the local center manifold is
(1,1,0). .
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Figure 3.13: Intense vorticity structures with ||w|| > 30%||w||maz for run3. The a-type
stagnation points are indicated by the solid circles and the B-type are indicated by
the open squares.
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Figure 3.14: Intense vorticity structures with |w|| > 30%||w||maz for rund which has
no stagnation points.



Figure 3.15a: Intense vorticity structures with ||w|| > 30%||w||mas for run5 which has
no stagnation points.
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Figure 3.15b: Intense vorticity structures with ||w|| > 50%||w||mqz for rund which has
no stagnation points.
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3.5.2 Poincaré Sections

In this section, we stukdy contour plots of the vorticity magnitude. The first case
is that of the integrable ABC flow and is shown in Fig. 3.16ab. Note contours of
large magnitudes are plotted in solid lines while those of small magnitudes are in
dotted lines for distinguishment. We are now not surprised to observe substantial
amplifications of vorticity in the neighborhoods of unstable and stable manifolds
(except along the latter near the stagnation points). Shown in Fig. 3.17a and 3.17b
are the projected vorticity vectors on the y=0 and z=0 sections. We notice in some
regions vorticity vectors are directed in an opposite direction to the velocity vectors
of the flow.

In order to study the correlation between the amplifications of vorticity and
the chaotic zones of the ABC flow, we superpose the vorticity contour plots to the
‘Poincare sections of the ABC flow (figures 3.3ab to 3.6ab) and the results are shown
in figures 3.18ab to 3.2lab. A common figure in these maps is that amplifications
are concentrated in the chaotic zones and only in some of the chaotic zones when
stagnation points exist. For example, not much amplification is observed in the
chaotic region in the upper right corner of Fig. 3.18a and the upper left corner of
Fig. 3.18b. A stagnation point with one positive eigenvalue seems a dominant fac-
tor of dynamo actions. For example there are two stagnation points, (7 /2,0, 57 /4)
and (37/2,0,77/4), on the section of Fig. 3.18b and large amplifications are ob-
served along their local unstable manifolds, (z,2) = (1, —v/2) and (1, +/2). Similarly,
contours of larger magnitudes are observed more in the neighborhood of the a-type
stagnation point (7 /4,57 /4,37 /4) in Fig. 3.19b than in the neighborhood of the 8-
type, (7r/4, 7w /4,57 /4). The other regions in Fig. 3.19b with dense contours must be
caused by tubes surrounded by the other a-type stagnation points which do not lie
on the section z = « /4.

We also notice that the amplifications of vorticity in run4 and rund are more

uniformly distributed in the chaotic zones than in run2. The difference must be caused
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by the fact that only run2 has stagnation points. Also, more and more KAM tori are
broken from run2 to run4 to run5 (compare Fig. 3.3a, Fig. 3.5a, and Fig. 3.6a). We
may idehtify flows more and moré “chaotic” from run2 to run4 to run3. The existence
-of a stagnation point and the survival KAM tori cause nonuniform stretching.

In the cases which flows have stagnation points, we have observed a strong corre-
lation between the alignment of a vorticity vector and the local manifolds, especially
the unstable one. For those cases which flows do not have stagnation points, we can
instead study the alignment of a vorticity vector relative to the principal directions of
the local strain tensor. Cases without stagnation points are actually of more interest
for they are more chaotic (more KAM tori broken) and might provide more hints
in the prediction of an actual turbulent flow which is believed chaotic everywhere in

SOIme sense.

3.5.3 Probabiliy Distribution

The strain tensor of ABC flows is defined as 5 (3u1 + B—l) Its correlation with
the alignment of a vorticity vector is obtained through the study of a probability
distribution of the absolute value of the cosine of the angle between the vorticity
vector and the principal directions of the strain tensor. We shall call the directions
corresponding to the most positive, the intermediate, and the most negative principal
rates as the first, the second, and the third directions from now on.

Initially, the vorticity is randomly directed and thus the probability is uniformly
distributed in the range of [0,1] for all three angles. As time increases, the flow motion
and maybe the viscosity adjust the vorticity vector in some way and any change in
the probability distribution reflects thé results. Since at large time, the solutions are
dominated by the eigenfunction(s) of the compact linear operator £ with the most
positive real part of eigenvalue(s), probability distributions collected here can be taken

as the correlations between that (those) eigenfunction(s) with the ABC flows.
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The probability distribution in the present study is constructed in the following
way. We first calculate the absolute value of the cosine of the angles at 128% grid
points in thé physicalAspace., The ,donﬁain [0,1] is divided into 128 bins. The 7
bin collects data points having the absolute value within the range of (T%S’ Z—fjj—gl]
for i=0,1,2,---,127. The number of data points in each bin is then counted. The
probability of finding the absolute value of (z_—l_i—z_%_f)_) is then approximated as the
ratio of the number of data points in i** bin to the total grid points 1283. Results are
presented in Fig. 3.22 to Fig. 3.27. Note in all the figures, the probability distribution
for the angle between the vorticity vector and the first direction is shown by the solid
lines. The dash dotted lines are for the second direction and dotted lines for the third
one. Conditional probability distributions are also constructed by using only those
data points having {|w|| > 30%||w||maez- These probability distributions thus represent
those of the observed vorticity structures in the previous section (Fig. 3.14, etc). The
mean values ([ cos 6;]) and the variances (o;), nonconditional and conditional, for all

“cases are listed in Table 3.5 and Table 3.6.

The probability distributions of run2 and run3 which both have finite stagnation
points look very similar as shown in Fig. 3.23 and 3.24. The vorticity vectors tend
to align with either the first direction or the third one in the low enstrophy regions,
while in the high ehstrophy regions they are nearly parallel to the first direction. Tails
in the third directions seemingly exist at both ends. This is a little surprising for it
implys some vortex lines align with the third direction also even in the high vorticity
regions. The probability distribution for the first direction of runl (see Fig. 3.22) has
a peak at about 0.75 in addition to a tail at the right end which must be contributed
by the high vorticity structures. A peak in the probability distribution of the third

~ direction is also observed approximately at 0.6. Both values are greater than 0.5, the
mean value of a random distribution. Obviously, the above three cases all imply the

vorticity vector is not simply directed in the first direction although stretching in that

direction is the strongest.
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Table 3.5: Nonconditional means (| cos§;|) and variances (o;) of the absolute values
of the cosine of the angles between vorticity vectors and the principal directions of
the strain tensors of the ABC flows.

t lcos ;| |cosfz| |cosbs]| oy 0 o3

runl 23.8| 0.60 0.41 048 |0.27 0.31 0.27
run2 26.7 | 0.58 0.39 049 |0.32 0.26 0.32

rund 19.5] 0.59 0.34 0.52 |0.31 025 0.32
rund 13.2 | 0.58 0.42 0.48 |0.30 0.27 0.29
runb 28.2 | 0.50 0.62 0.39 |0.28 0.28 0.24
run6 22.1 | 0.58 0.39 0.51 | 0.30 0.27 0.30

run7?7 26.0 | 0.50 0.61 0.40 |0.29 0.27 0.24

Table 3.6: Conditional means (|cos 6;|) and variances (o;) of the absolute values of
the cosine of the angles between vorticity vectors and the principal directions of the
strain tensors of the ABC flows on |jw| > 30%||w||maz-

t | |cosfy| |cosb| |cosls|| o1 o2 o3

runl 23.8 | 0.60 0.43 0.10 ;044 045 0.21
run2 26.7 | 0.79 0.24 0.21 ]0.34 0.23 0.32
rund 19.5| 0.82 0.07 0.21 ]0.36 0.12 0.36
rund 13.2 | 0.79 0.32 0.21 }0.29 0.26 0.28
run5 28.2 | 0.68 0.53 023 1 0.30 0.29 0.16

runb 221 ) 0.75 0.30 0.24 |0.32 0.28 0.32

run? 26.0 |  0.69  0.56 0.22 10.27 0.25 0.15
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We also notice the results of runl unlike those of run2 and run3 show it is also
very likely to have a vorticity vector aligned with the second direction (implied by
the tail of the dash dotted curve at the right end in Fig. 3.22). Considering runl is
a special case which flow is integrable, we believe the probability is increased by the
associated linear y-motion.

Results of Run4 and runj are very different (Fig. 3.25 and 3.26). First of all, the
probability for a v.orticity vector to be aligned with the third direction is largely de-
creased, especially in run5. In run4, a vorticity vector shows no preference in the third
direction and the probability distribution for the second direction is similar to those
of runl, run2, and run3; nonetheless in rund, a vorticity vector becomes more likely
to be orthogonal to the third direction and a peak near the right end in the proba-
bility distribution for the second direction appears. The nonconditional probability
distributions of run actually are very similar to those observed in direct numerical
simulations of homogeneous isotropic turbulence, for example Ashurst in 1987 [3].
" However, numerical simulations of turbulence also show an even larger probability of
finding a vorticity vector aligned with the second direction when conditioned on high
vorticity regions, which is not consistent with the results shown in Fig. 3.26b.

We notice the peak in the probability distribution for the third direction has
shifted gradually.to the left-hand side from run3 (8 stagnation points) to run2 (4
stagnation points) to run4 and run5 (no stagnation points). It seems true that a
passive vorticity vector become more orthogonal to the third direction when the flow
is more chaotic. We also notice on the alignment of vorticity vectors, the magnitude
of viscosity has little effect. This is observed by comparing the results of run4 and

run6 which have the same ABC flows but different viscosities.
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3.6 Conclusions

In all the simulations, viscous dissipations are overcome by the dynamo actions.
Or the cémpact' linearb operafor L contructed by the ABCbﬂows with those values of
viscosity investigated has eigenvalues with postive real parts. The dominant eigen-
functions create tubes with a length on the order of the simulated box size and at
least one dimension of the tubes is on the order of A, ~ (Vzw/w)_ln.

The tube-like vorticity structures and their correlations with the local manifolds
of stagnation points, if they exist, suggest regions with local strain tensors having
one positive and two negative principal rates accumulate most of the amplifications.
Otherwise, amplifications are confined within the chaotic zones of the ABC flows. An
existence of a stagnation point seems dominant in a dynamo action over an existence
of chaotic zones of the flow.

Conditional probability on the high vorticity regions shows the passive vorticity
vector is most likely directed in the principal direction corresponding to the most
positive principal rate of the strain tensor. It is found that the vorticity vector
is also likely to be aligned with the principal direction corresponding to the most
negative principal rate, especially in low enstrophy regions. This probability, however,

1s decreased when the flow becomes chaotic.
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0 n/2 T 3n/2 27

Figure 3.16a: The contour plot of the vorticity magnitude ||w||?> on the section y=0
for runl. Contours of large magnitudes are plotted by solid lines and those of small
magnitudes by dotted lines.

Figure 3.16b: The contour plot of the vorticity magnitude ||w]|?> on the section z=0
for runl. Contours of large magnitudes are plotted by solid lines and those of small
magnitudes by dotted lines. The dash dotted line is the continuum of stagnation
points. ‘
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Figure 3.17a: Vorticity vectors projected on the section y=0 for runl. Compared
with the projected orbit of the ABC flow shown in Fig. 3.1, the passive flow does not
quite follow the stream direction.
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Figure 3.18a: The contour plot of the vorticity magnitude ||w||? on the section x=0

superposed with the chaotic seas on the Poincaré section of the ABC flow (A=1,
- B=C=1/?2) for run2.
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Figure 3.18b: The contour plot of the vorticity magnitude |[w]|? on the section y=0
superposed with the chaotic seas on the Poincaré section of the ABC flow (A=1,
B=C=1/+/2) for run2. Two stagnation points, (7/2,0, 57 /4) and (37/2,0, T /4), are
there on the section.
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Figure 3.19a: The contour plot of the vorticity magnitude {|w]|? on the section x=0 su-
perposed with the chaotic seas on the Poincaré section of the ABC flow (A=B=C=1)
for run3.
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In/2 &

Figure 3.19b: The contour plot of the vorticity magnitude |wl|* on the section
z = 7w /4 superposed with the chaotic seas on the Poincaré section of the ABC flow
(A=B=C=1) for run3. One o-type stagnation point, (v/4,57/4,3x/4), and one B-
~ type, (7/4, 77 /4,57 /4), are there on the section.
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Figure 3.20a: The contour plot of the vorticity magnitude ||w||? the section x=0
superposed with the chaotic seas on the Poincaré section of the ABC flow (A=1,
.B=0.8, and C=0.5) for run4.
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Figure 3.20b: The contour plot of the vorticity magnitude |jw||* the section y=0
superposed with the chaotic seas on the Poincaré section of the ABC flow (A=1,
B=0.8, and C=0.5) for run4.
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Figure 3.21a: The contour plot of the vorticity magnitude |lw||? the section x=0
superposed with the chaotic seas on the Poincaré section of the ABC flow (A=1,
B=0.5, and C=0.3) for run5.

Figure 3.21b: The contour plot .of the vorticity magnitude ||w||* the section y=0
superposed with the chaotic seas on the Poincaré section of the ABC flow (A=1,
B=0.5, and C=0.3) for run5.
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Chapter 4

Power-Law Energy Decay of Isotropic

Homogeneous Turbulence

.4.1 Introduction

Grid;generated turbulence was first extensively studied by Batchelor and Townsend
[9] [10] [11]. The turbulence, which was nearly isotropic and homogeneous, was ob-
served to have a power-law decay in energy. Batchelor and Townsend distinguished
three stages of the decay: an initial period, during which turbulence is being devel-
oped, a transition period, and a final period, during which viscous forces are believed
to dominate inertial forces throughout the full wave number range. The associated
decay exponent was found to be about one for the initial period of decay and 2.5 for
the final period. More recent measurements made by Sato and Yamamoto [60] also
followed a power-law decay with exponent 2.5 in the final period, but found exponents
between 1 and 1.3 for the initial period of decay. Recently Smith et al. [65] measured
the decay of enstrophy for towed grid-generated turbulence with grid Reynolds num-
ber of order 10° without using Taylor’s ”frozen field” hypothesis. They observed a

power-law decay of the rms vorticity with an exponent of 1.5 £ 0.2, corresponding to
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a decay exponent of 2 for the turbulent energy.

Re'sults of numerical simulations of turbulence at ‘small Reynolds numbers were
studied by Mansour and Wray [44]. Power-law decays were observed and decay ex-
ponents between 1.1 and 2.5 were found depending on the Reynolds number and on
the behavior of the energy spectrum at low wavenumbers.

On the theoretical side, a number of analyses, based on various assumptions, have
been developed to 'treét decaying homogeneous turbulence. As an example one may
start with the hypothesis of complete and/or partial self-similarity of the double and
triple velocity correlation functions and use the Kdrmdn-Howarth equation [71] to
deduce further results. A detailed study of self-similar solutions of the Kdrmdn-
Howarth equation and their stable equilibria can be found in Speziale and Bernard
[66] (also see Batchelor [6]). They conclude that completely self-similar solutions
always lead to a decay exponent of one, unless the Reynolds number is zero, a state
that can be reached only as time goes to infinity.

Partially self-similar solutions, i.e., correlation functions that are self-similar only
for some ranges of r, can lead to decay exponents other than one. Some of the
criteria required by complete self-similarity must be relaxed and replaced by other
assumptions. For example, by relaxing the criterion that the scaling length has to be
Taylor’s microscalé, a decay exponent of 10/7 can be obtained provided Loitsianskii’s
integral is invariant in time [41] while, on the other hand, an exponent of 6/5 is found
if Saffman’s invariant is assumed [59].

To predict the power-law decay during the final period, one ignores the inertial
force in the energy equation (almost by definition of "final period”). The turbulent

energy can then be determined by

K ~’/ E(k, to) exp (—20kX(t — 1,)) dF, (4.1)
0
where E(k,t) is the three dimensional energy spectrum, k is the magnitude of the

wave vector k and t, is some reference time. Because of the exponential factor in

the integrand, contributions from small wave numbers dominate and a power-law
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behavior of E(k,t,) near k = 0 results in a power-law decay of turbulent energy. A
"decay exponent of 2.5 therefore follows from an analytic behavior of E;j(k,t,), the

energy spectral tensor, near the origin (see [33]), namely,
Ek) ~ Ck*+ o(k"). (4.2)

However, Batchelor and Proudman [8] studied the asymptotic form for large separa-
tions of thev double and triple velocity correlations based on their hypothesis and ob-
tained a non-analytic Behavior of the energy spectral tensor near the origin. Saffman
subsequently [39] modified the hypothesis and made it less restrictive. He showed,
in general, that the double correlation function is O(r~3) for large separation. This

corresponds to a non-analytic behavior of energy spectra near the origin with the

result
E(k) ~ CK*+ o(k?). (4.3)

The decay exponent then becomes 1.5 for the final period of decay.

The decay problem makes the motivation of the research presented in this chapter.
The similarity hypotheses are studied in more details in Sec. 4.2. A new self-similar
solution of the Karmdn-Howarth equation is proposed based the assumption of of a
power-law energy decay. Results of direct numerical simulations are presented and
the self-similarity is examined in Sec.4.3. An alternative of the similarity which may
be a transitional state during the initial period of decay is discussed in Sec.4.4. Both
similarities involve with only one lengthscale, the Taylor microscale. In Sec.4.5 we
consider a possible expression of the energy spectrum using multiscales. Multiscales
are needed because it is believed that there are more than one characteristic length-
scales involved in a turbulent flow which Reynolds number is large. Part of the idea
is further used to predict the skewness of longitudinal velocity derivative and the

analysis is given in Sec.4.6. Conclusions of this chapter are given in Sec.4.7.
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4.2 Similarity Hypotheses
4.2.1 Theoretical Review

We investigate the energy decay of incompressible turbulent flow which is governed

by the Navier-Stokes equations

%—ltl +u-Vu=-Vp+rViu (4.4a)

V.u=0, (4.4b)

where u is the turbulent velocity, p is the pressure and v is the kinetic viscosity. In
this paper, we restrict our attention to isotropic homogeneous turbulence. Because of
homogeneity, isotropy and the incompressibility, the two-point second-order moment
tensors. of velocity can be expressed in term of a single scalar function f(r,t), the

longitudial velocity correlation coefficient, defined as

flr,t) = u(x, t)u(x +r,t)/q(t)?, (4.5)

where r is the separation of the two points, t is the time, u is the velocity component

in the r-direction and :—;q2 is the turbulent energy. Similarly £(r,t), the triple velocity

correlation coefficient, is defined as

k(r,t) = u(x,t)2u(x + r,t)/q(t)°. (4.6)

The dynamical equation connecting these two scalar functions derived by Kédrmdn

and Howarth [71] from the Navier-Stokes equations is given by

0¢S) _ s (8_1» + L) g (?_f. N és"f’_f) , (47)

ot or agr?  ror

Kdarmdn and Howarth [71] showed that completely self-similar solutions of the above

equation, if they exist, must be of the form

CF(rt) = f(r/MD) and k(r.t) = k(r/\(2) (4.82)
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and two constraints,’

g+ A = constant ‘ (4.8b)
and
dA
/\E = constant, (4.8¢)

must be satisfied. Here A is the Taylor microscale (see [33] [66] [71]) as defined by
N2 (4.9)

A power-law decay of the turbulent energy is consequently obtained with the decay

exponent equal to one, that is
,_3 92

A more general hypothesis of similarity may be formulated such that the decay
exponent # 1. George [27], instead of assigning a self-similarity of the correlation

coefficients, assumed a self-similar energy spectrum, £/(k,?) and energy transfer spec-

trum, T'(k,t), as ’follows',

E(k,t) = E,(t)E(kL) (4.11a)
T(k,t) = To(t)T(kL). (4.11b)

Substituting into the spectral energy equation for isotropic turbulence

BE(k,1)
a1

= T(k,t) — ’2Vl<2E(];,t) (4.12)

and enforcing consistency, he found
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L= (4.13a)

E(k,1)/¢?) = E(k)), | (4.13b)
T(k,t)/¢> = Re;t T(k)), ' (4.13¢)

and an arbitrary decay exponent n. Corresponding results were obtained earlier by
Barenblatt and Gavrilov [5] using an equivalent similarity hypothesis for the double

and the triple correlation coefficients.

Self-similarity assumptions such as (4.8) or (4.13) imply that for all p, )\p%

r=0
" is constant. In particular for p=4, we define
Nf
G=M— 4.14
87'4 r=0 ( )

a quantity that appears in the dissipation rate equation. We write the evolution

equations for energy, dissipation rate and Rey as follows

. 10vK
K=-e=- IR (4.15a)
e /7 7
=S (Lsop ——> 4.15b
‘T K (30 3¢ (4.13b)
1 dRe,\ 57, 1(1)\
Rer dt ~ % TXd (4.15¢)

where S = —A3Qi]£

3
87" r=0

power-law decay exists, i.e., there exists an n and a time reference ¢, such that

is the skewness of longitudinal velocity derivatives. If a

K ~ (t+t)™ and so e¢ ~ (t41t,)"N (4.16)

Equation (4.15b) then implies that the quantity in the bracket has to be a constant.

In other words, we must have

1 15(n + 1)
G—§SR6A+7 .

(4.17)

Therefore, similarity solutions of the form given by (4.8) (constant Rey, S and n=1)

or of the form given by (4.13) with a Re~'— dependence of skewness S (George’s
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similarity) imply a constant G during the decay. Although the early-time data from
“some of the runs are suggestive of a variable S and constant G, our a.sjmptotic results
show strdngly a linear dependen‘ce of G with Rey and constant S (see Figs. 4.8 and

4.9).

4.2.2 Proposed Similarity

We -propose a more general similarity form for the functions f(r,t) and k(r,1).

Based on (4.17), we anticipate a complete similarity given by

flr,t) = fi(r/X) + RS fo(r/)) (4.18a)

and

k(r,1) = ReS ky(r/A). (4.18b)

Since f(r,t) and k(r,t) are related to E(k,t) and T'(k,t) by

2

Ek,t)= q? /oo kr(sinkr — krcoskr) f(r,t) dr (4.19a)
0
and
3 o0 [ 2P -
T(k,t)= %—/é k%r (3551 kr _ 3 cos kr — krsin kr) k(r,t) dr, (4.19b)
r

the above hypothesis is equivalent to assuming self-similarity of the energy and energy

transfer spectra of the form

E(k,1)/¢°) = E1(kX) + Re? Ey(k)) (4.20a)
T(k,t)/q° = ReS Ty(k)), (4.20D)

where E;, F, and T, are the self-similar functions related to f1, f2 and ky, respectively.
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Substituting (4.18a) and (4.18b) into (4.17) and (4.7) and using relations (4.15a)
and (4.15c), we obtain ‘

+ Ref -

_ & b
d¢4 I¢=0 d¢4 1¢=0
_15(n+1) 1 &3k,

7 n 2 d(3|<0

Rest! (4.21)

and
on s 3+ 22 (%)
+ Reg™! & dc( )
+ R {00455 - 217+ 24 22 (92 <o,
(4.22)
where { =7/ and 3 = 293 From (4.21), we require
f=a+l, (4.23a)
656{‘1 I<=0 - ? ' (n: 2 (4.23b)
and
%Ic:o - _% %lczo, (4.23¢)

If 3=0and so a = '—l, we recover George's self-similarity [27]. On the other
hand, if 8 # 0, fi, f2 and Ay, therefore, must satisfy

5 dfl .., dfl
0f, = 2 = .
0fi+ (- ac @4dC (C 4) 0 (4.24a)

and

5 5 dfy 2 L df )
(10+58 = =8)f+ CZ G (c 2) G (c k2)=. (4.24b)
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Equation (4.24a) is the same équation as that governing a completely self-similar
- f(r/)) when the triple correlation coefficient k(r,t) in the Kdrmdn-Howarth relation
is ighoréd (see [4]). It’s known that (4.24a) has solutions for all n € 7(0,00) and
function f; can be expressed in terms of the regular confluent hypergeometric function

M(a,b,z) as

f(¢) = M(n, g,—ﬁ;@) (4.25)

under the conditions

H(0) =1, fi(c0) =0. (4.26)
Moreover,

3 3

S (4.27)
no [T RO

provided fi; — 0 as ( — co at least faster than (2.
Although (4.24b) is not closed, we can write f; in terms of an integral involving

the unknown funtion k, as follows:

U(a,b, 2')h(z)

B(O) = - M(“’b’z)/o M(a, b, 2)U (a, b,z’)—M’(a,b,z’)U(a,b,z’)dz,
‘ z M(a,b,2")h(Z") ,
+ U(“’b’z)/o M(a,b,z')U’(a,b,z’)—M’(a,b,z’)U(a,b,z’)dz ’
(4.28a)
with
_ 9 2 — B(n —1) —
ZZ_EC , a=n+ 5 , b=5/2, (4.28Db)
and
o ((5k(¢) . 1d k()
ey = - (B L ) (4.250)

under the conditions
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F200) =0, fafoco) =0, | (4.29)

where U(a, b, z) is the singular confluent hypergeometric function and k() is taken
to be an odd function of (. Expanding (4.24b) about ¢ = 0 with (4.29), we find that

1 &3k,

f2(C) ~ s

o). (4.30)

Condition (4.23c) is therefore satisfied implicitly. Condition (4.23b) follows by differ-
entiating (4.24a) twice and evaluating the results at ¢ = 0. We now have a consistent
theory with two free parameters n and 8 (or a), and one function that must be

determined.
In some cases it is possible to fix n by using the asymptotic behaviors of f1({) and

f2(¢) as ( — oo predicted by earlier investigators ([8] [59]). In particular, consider
Saffman’s result [59] that f(r,t) in general has a power-law asymptotic behavior,

given by
fir,t) ~ r3 as r— co. (4.31)

The asympototic behaviors of functions fi(¢) and f,(¢) can be obtained from (4.25)
and (4.28a). As ( — oo, it can be shown that

fi(Q) ~ ¢, (4.32a)

and

FAQ) ~ (A,  (4.32b)

provided those integrals involved with k5(() in the solutions of f, converge rapidly
enough. Solutions of f; corresponding to several values of n within interest are shown
in Fig. 4.1 They are found everywhere positive implying from (4.27) n» > 1. With
n>1and >0 (o> —1), we obtain

L) ~ A0 ~ T as (e, (4.33)
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Figure 4.1: Confluent hypergeometric function fi({) = M(n,5/2,-2(?) withn =1,
1.5, 2, and 2.5. f1(0) =1 and f1(¢) — (7" as { — oo.

giving n = 1.5 if we envoke (4.31).
In summary, a complete similarity hypothsis of the velocity correlation coeflicients

given by

F0)= M (m,2,~ 257 + RS 1a(3) (4342)

and

r

k(r,t) = ReP™ Iy( 5

) (4.34b)

is proposed with f, and %, related by (4.28).
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4.3 Numerical Simulations
4.3.1 Algorithmic Implementation

We perform direct numerical simulations of the decay problem by using Fourier-
Spectral method presented in chapter 2. To save the memory on the disk, we write

the governing equations in the following form:

us + (u? — v‘z)z + (uv)y + (uw), = —(P + v, + vViu (4.35)
v + (uv)y + (vw), = —(P +v?), + vV (4.36)
wi + (uw)z + (vw)y + (w? = v?), = —(P + v*); + vV?w, (4.37)

where u = (u,v,w) and the subscript means the partial derivative in the specified
direction. Thus we only need store u? — v?%, uv, vw, vw, and w? — v? in memory.
. Given an initial condition, solutions at later time are now available through the use
of the solver discussed in chapter 2.

Due to the nonlinearity, we estimate the stability of the linearized equations; that

is, we "freeze” the velocity components in the nonlinear terms, i.e.,
8u,-
= |uyl=— 4.38
or
fz' = |ujlikjaia ’ (439)

and study the scheme stability. Empirical results are then relied on to obtain a stable

scheme for the nonlinear equations. The linearized spectral Navier-Stokes equations

are

kik; ... . R
+ (6:; — k—zj)zkriurluj + vk®y; = 0. (4.40)

J1;

at
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To study stability, we set i;(k,t) = @2(k)e* and substitute the result into (4.40) to
"obtain | ‘
A R)E (65— TRk g = 0.
A+ vk)a3 + (8 — 37 Jike u, |03 = 0. (4.41)
The eigenvalues, A, are readily found as

Al = —l/li;'2

)\2’3 = ---'I/]{,'2 -— Z(kll"tLl' + k2|u2| + k‘3|"d3|) (442)

Therefore, we may choose the time increment to be

CFL

\ 4.43
(klmaa:lul‘ + k'ZmaquZ‘ + k3maz|u3|). ( )

dt

where C F'L is the Courant number (Courant-Friedrichs-Lewy). Since kiper = —jgl %,

where N; is the resolution and L; is the domain dimension in #** direction, (4.43) be-

comes

CFL (N N. N, -t
P G TR T .
— (Tl + el + Pl (1.44)

In the solver, the value of CF' L is fixed and a maximum value of the quantity in the
bracket is evaluated at every time step. Experience suggests a value of CFL <1 is
necessary for the stability of Rogallo’s solver.

4.3.2 Initial Conditions

‘Aga,in all simulations start from a random velocity field in a periodic domain of

size L on a side, with a specified initial energy spectrum. Initial energy spectra were

chosen from

2¢2 (k\° k.,
= = — | e 2 (—
E{k,t » 0) =16 ~ 7 (kp) exp( 2 (kp) ) (4.45a)

or
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‘ Cq? exp(—a)(k/k,)? for 0<k <k, ;
Ek,t=0)= ‘ . (4.45b)
Cq*(k/k,) "% exp(—a k/k,) fork >k, , :
or ‘
o3¢ (kY [ %

where all spectra have a peak at k = k,. Parameters used in each simulation and
certain dynamical .quantities at the initial time and at the time the power-law decay
appears to begin are listed in Table 4.1. Included are the product of the maximum
available wave number k,,,, = lgL . QT” (N is the resolution, i.e., the number of grid
points in each direction) and Kolmogorov's dissipation lengthscale 5, Rey, the eddy

turnover time, and the eddy dissipation time. The eddy-turnover time, 7,, and the

dissipation time scale, 7,, are defined as

= %—;1 /0°° k1 E(k, 1) dk//ooo E(k, ) dk (4.46)

“and

™ =07y (4.47)

respectively.
Note that to produce reasonably high Rey when the turbulence reaches the state
of power-law decay, the initial values of k,,,,7 are chosen relatively small giving rather

poor resolution during the initial stage of development. However, we do not use the

data from this stage.

4.3.3 Power-Law Decay

The evolutions of turbulent energy K and those of Rey are shown in Fig. 4.2ab

and Fig. 4:3ab. The existence of a power-law decay is clear. The solid lines are the

fitted curves of the‘form

K = K,(t +1t,)™" (4.48)
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Table 4.1: Initial Conditions and conditions at the beginning of power-law decay.

runl run2 run3 run4 rund run6
| L 27 4r 2T 27 47 2m
E(k,0) | (4.45a) (4.45a) (4.45b) (4.45b) (4.45¢) (4.45¢)
k, 10 10 4 8 6 6
v 0.0015 0.0015 0.002 0.0004 0.0013 0.003
N 128 256 128 256 256 128
time = 0
Rey 1333 1333 203.1 3479  165.5 71.6
kmazn 0.53 0.53 0.40 0.39 0.51 0.78
AL 3% 1.6% 3% 2% 2% 3%
7, 0.59 0.59 0.22 0.22 0.40 0.40
time = powef—law decay begins
kmazn | 1.09 1.09 1.07 0.99 1.03 0.98
Re) 21.52 21.65 42.29 49.59 42.62 29.34
AL 2.6% 1.3% 3.6% 1.8% 1.7%  2.7%
T, | 191 134 200 280 289 102
T 0.22 0.22 0.16 0.17 0.22 0.09
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Table 4.2: The decay exponents, n, and the time reference ¢, in (4.48) which provide
a best \ﬁttedr curve to the numerical data.

1runl rtun2 r1un3 rund rund runb

n | 1.56 1.51 1.54 1.23 1.27 1.22
t, | 0.40 0.064 0.03 -1.28 045 0.21

K,| 031 026 171 024 0.65 0.38

with choices of K,, t,, and n which give the least square errors to those data between
times during which k.7 > 1 and A/L < 0.1. In Fig. 4.3ab the solid lines represent
Rey in terms of the power-law parameters determined from Fig. 4.2ab so that

20K,

3vn

Re,\(t) =

(t+1,)07™/2 (4.49)

The decay éxponents, n, and the time reference, t,, are presented in Table 4.2.
Except for run3 these decay exponents are consistent with the findings of Mansour and
Wray [44]. From Fig.6b of their paper, we might have predicted an exponent closer
to 1 for run3 (relatively high Rey and k? low wavenumber spectrum). For power-law
decay we expect A\ = M%——tﬂl The asymptotic time-independence of \/\/T + ¢,
is shown in Fig. 4.4ab. In these figures the numerical data in some cases deviate from
the fitted curves at large times. We believe that this occurs because the large eddies
eventually become too large relative to the box size. Note runl (Fig. 4.2a) shows this
effect whereas run2 with twice the box dimension but the same initial spectrum as
runl does not show this effect.

Before we can compare the numerical results with isotropic turbulence theories, we
need to check the extent of isotropy of the turbulence. Consider the one dimensional

energy spectrum defined as
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Figure 4.2a: The decay of turbulent energy K = 3¢2/2. The time is nondimensional-
ized by the eddy turnover time 7, at kpq..n = 1.
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Figure 4.2b: The decay of turbulent energy K = 3¢%/2. The time is nondimensional-
ized by the eddy turnover time 7, at kpq.n =~ 1.
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Figure 4.3a: The decay of Rey = ¢A/v. Solid lines are the fitted curves

Rey, = \/23%& (t +t,)~")/2 with n, t,, and K, given in Table 4.2.
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Figure 4.3b: The decay of ReA = gA/v. Solid lines are the fitted curves
Re, = \/2‘91/[};’ (t+¢ )(l 7)/2 with n, ¢,, and K, given in Table 4.2.
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Figure 4.4b: The evolution of A/(i +1,)"/2. Horizental lines are 1/10v/n with n given
in Table 4.2. ~ '



88

1.4
1.2
1.0 | agn fonnisinis
0.8¢ 1
0.6} Re, = 32.81 1

0.4
6.0 05 1.0 15 20

kn

L(kt)
L(kt)

Ia(k,t)
L(k,t)

Figure 4.5a: The extent of isotropy of turbulence indicated by I,(k,t) for run3 which
L = 2r.

Ey(k,t) =

B

> aatn(k, ), (4.50)
fk|=k
where o = 1, 2, 3. The extent of isotropy is measured by I,(k,t) defined as

L(k,t) = 3Eu(k,t)/E(k,?). (4.51)

For isotropic turbulent flow, we expect I,(k,t) to be close to one. The distributions
of I,(k,t) over the wave number k at several Re, are shown in Fig. 4.5ab. The large-
scale eddies are never isotropic while the small-scale eddies lose isotropy as Reynolds
number decreases. Eddies of intermediate sizes possess the isotropy longer. This

anisotropy should be kept in mind for the discussions below.

4.3.4 Velocity Correlation Coeficients

In Fig. 4.6 and Fig. 4.7 we show the double and triple velocity correlation coef-

ficients, f(r,t) and k(r,t) for run2. The correlations are obtained by computing the
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Figure 4.5b: The extent of isotropy of turbulence indicated by I,(k,t) for run5 which
L = 4r.

velocity structure function
Aug(r) = ua(X + reg) — uq(x), (4.52)

where e,, o = 1,2,3, are the unit vectors in the Cartersian coordinates, and using

the isotropic relations (m spite of the anisotropy observed above)
f(r,t) =1 — Au(r)?/2¢ (4.53)
and
k(r,t) = Au(r)3/6¢° . (4.54)
Averaging is takén over the full volume and over the three directions.

The double correlations can also be obtained by measuring the one dimensional

energy spectra and taking the Fourier transform. We found the results agree with
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Figure 4.6: Double velocity correlation coefficient f(r,t) against r for run2. Correla-
tions increase as simulated time increases.
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Figure 4.7: Triple velocity correlation coefficient &(r,t) against r for run2.
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the relation (4.53) very well. The zeros of k(r,t) at r = 0, :i:-;{’)— come directly from
(4.54) and the periodicity of the flow field. |

The felatively high values of function f(r,t) shown in Fig. 4.6 for r = L/2 ( =
27 ) at later times indicate the box-size contamination once again. The persistence
of the peak values of function k(r,t) implies the presence of the inertial forces for all
time and so the so-called final period of decay is not observed in the range of Re)
investiga,ted in agreement with Mansour and Wray [44].

In the present study, the quantities G and S are computed as

-5 / K E(k, 1)dk (4.55)

and

(eo] ’2 ]
6T /0 K2T(k, 1)dk

(2 /0°° k'a’E(k,t)dk)S/T

From the relation (4.17) with computed Re), G and S, we can also compute the decay

(4.56)

exponent as follows:

= (G _ - cReQ (4.57)

These three duantities are all plotted as a function of Rey in the range investi-
gated (see Figs. 4.8, 4.9, and 4.10). Again, only those data between times during
which k.7 > 1 and A/L < 0.1 are plotted. In this way we obtain a reasonable
representation of the dissipation range and minimize the contamination due to peri-
odicity. Except for some transitional early-time behavior, a nearly linear dependence
on Ke) of G and a nearly constant S are observed for each run during the decay,
implying 8 ~ 1. Note also included in Fig. 4.8 is the data taken from Fig.16 of Yeung
and Pope [72] for stationary turbulence.

Because the data from runi, run2, and run3 yield nearly the same decay exponents

(see Table 4.2), we group them as a whole with an average n=1.54. Similarly, we group



92

20 r T T T T - . T - T T T

15 '-_ - ——
O 10 -
T e funi B
L o run2 4
L 4 run3 J
5 ¢ run4d |

A runb
5r- * runb 7
I u stationary 7
0 i . . . i , . \ ! . ; . \ ]

0 20 40 60

Re,

Figure 4.8: G plotted as a function of Rey during kmq.n > 1 and A/L < 0.1. Symbol
u represents those data measured by Yeung and Pope [72] for stationary turbulence.
- The lower solid line is eqn. (4.17) with n=1.54 while the upper one with n=1.24.
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Figure 4.9: S plotted as a function of Rey during Epmaen > 1 and A/L < 0.1. The
solid line is the fitted curve of the form S = C'Res ' with C = 0.44 and § = 1.04.
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Figure 4.10: The decay exponent n calculated by using eqn.(4.57) plotted as a function
of Rey during kpmqe.n > 1 and A/L < 0.1. Horizontal lines represent decay-exponents
of 1.24 and 1.54.

rund, runb, and run6 with an average n=1.24. These two average decay exponents
are shown in Fig. 4.10 as horizontal lines. Except for the results of run3, which
show a significant amount of scatter, the decay exponents from Table 4.2 are in good
agreement with those computed from (4.57) giving assurance that we are observing
isotropic, power-law deéay.

The data for S in Fig. 4.9 could be described by S = constant =~ 0.50 or
S~ ReS! (4.58)

with 8 = 1.04 as shown. With the latter fit and using the two decay exponents
discussed above, we plot two curves for G given by (4.17) in Fig. 4.8. Again we see
consistency with the results for G computed directly by (4.55). Use of S = 0.50 rather
makes only a slight change in the curves shown in Fig. 4.8.

Finally, we attempt to test thg similarity of the form proposed, that is, to test the
existence of the self-similar functions f2(r/)) and ky(r/)). Note to determine fo(r/X)
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Figure 4.11a: Double velocity correlation coefficients f(r/A,t) against r/) for run2
(solid lines) and the regular confluent hypergeometric function
M(n,5/2,—5(*/4n) with n=1.54, where { = r/ (dash dotted line).

and ky(r/)) we need to know 8 and n. From the above discussion, § = 1.04 should
apply to all runs and Reynold numbers investigated, but two distinct decay exponents
are observed, one for each group of runs. Runs in the same group are then expected
to possess the same self-similar functions fs and k;. To minimize the contamination
due to periodicity, we use only the 256° runs within each group, run2 with n=1.54
and run4 and rund with n=1.24.

In Fig. 4.11abc we show double velocity correlation coefficients f as a function
of r/\ for the three runs. Fig. 4.12ab shows the result of subtracting fi(r/A) from
F(r/A,t). Next we divide the above results by Re’ to obtain our estimate for f>(r/))
for the two cases. This is shown in Fig. 4.13ab. Although some spread in the curves
persisté, it is clearly reduced from the spread shown in Fig. 4.12ab. The difference

between the f; functions of the two cases is clearly much larger than its spread in

each.
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Figure 4.11b: Double velocity correlation coefficients f(r/A,t) for rund against /X
(solid lines) and the regular confluent hypergeometric function
M(n,5/2,—5(?/4n) with n=1.24, where { = r/A.
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Figure 4.11c: Double velocity correlation coefficients f(r/A,t) against r/A for rund
(solid lines) and the regular confluent hypergeometric function
M(n,5/2,~5¢* [4n) with n=1.24, where { =r/A.
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run2.
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Figure 4.12b: The difference between the double correlation coefficients and the so-
lution of f; in the similarity form of f = f; + Rex? fa, namely f(r/\,t) — fi(r/}), for
rund (dash dotted lines) and run5 (solid lines).
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coefficients f and then divided by Re,? with 8 = 1.04.
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Figure 4.14a: The similarity of the scaled triple velocity correlation coefficients
k(r/),t)/Re5™" for run2 with 8 = 1.04.

Similarly, we show k(r,t) in its proposed self-similar form in Fig. 4.14ab. Here the
collape of the data is reasonably good, but seemingly not as good as it was with the
double correlation functions where two functions fi(r/A) and fa(r/)) are used. An
alternate similarity hypothesis, using two functions for k(r, ), is presented in Sec. 4.4,
but, at the present timé, we pfefer (4.18b) for its simplicity, the fact that only one
undetermined function (f; or k;) is at our disposal once n and B are fixed and the

fact that the alternate hypothesis clearly does not apply at low Re,.

4.4 Modified Similarity Hypothesis

A modification to the similarity hypothesis proposed in Sec. 4.2.2 is discussed

here. Instead of (4.18b), one may consider
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Figure 4.14b: The similarity of the scaled triple velocity correlation coefficients
k(r/A,t)/Re2™" for run5 with 8 = 1.04.

k(r,t) = Re;! ki(r/)) + Re3 ka(r/\) (4.59)

which together with (4.18a) also consists with relation (4.17). The expression for G

(4.17) and skewness S now become

L dh| d'f;
G=—2 Rel =22
&t oo T A o
3 3
_ (B (”+ 1) 18R ) lpen &k (4.60)
7 n 2 d(3 l¢=0 2 d(3 l¢e=o
and
A3k, &k 1
=2 . Re® — . ReTl. 4.61
S dc3 ¢=0 € dCS ¢=0 Re}\ ( )
Therefore, it is required that 8 = o« + 1 as before and
4 3
£h ZE(”“) _ 1k (4.62)
d(* =0 T n 2 d(3 l¢=o0
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with

df 1k
dl* =0 2 d¢3 =0

Two equations with four unknown functions are obtained if one substitutes (4.18a)

(4.63)

and (4.59) into Kdrmdn-Howarth equation. They are

5  dfi dfy :
10f1' + - (—4 + FE (C4 dC) IFTs (C4k1) = (4.64)
and
d
(10 + 58 — —ﬁ)fz + = ng + < (44 fz) AT (§4k2) =0. (4.65)

This similarity form actually is favored by George (in private disscussions) for it
predicts a maximum values of skewness during the decay. George suggested in his
paper [27] that it is likely that the skewness S increases and reaches a maximum value
during the initial period of decay and then remains approximately constant before the
inertial forces die out. This self-similar solution can thus be treated as a transitional
- state before the flow enters the self-similar state discussed in the previous sections.

The maximum value of skewness predicted from (4.61)

~1/(1+2)
Simaz = d (1 + 3) (i) (4.66)

a/ \ ca
3 3
occurs at Rey = Reypmy, = (d/ca)l/(1+°‘)’ where ¢ = __3_‘24%2 and d = __Cil.gﬁl

Note the maximum exists only if —1 < a@ < 0, d < 0, and ¢ > 0. Scaled by these

maximum values, (4.61) becomes

S . 1 Re,\ * Re>\ -1
Sma:z: N 1+oc ((Re)\max) T (ReAmax) ) ’ (467)

suggesting that experimental data should collapse in this similarity form if (4.61)

1s valid and if « is universal. In most, but not all, of our computational data did
we observe the existence of a maximum S. For those cases (all but run5), we show
S/ Smaxiaga,inst Rey/Rey ., in Fig. 4.15. The data do not collapse particularly well.
In addition, this modified version of similarity with the Rey™'-dependence in k(r,t)

1is not applicable at small Reynolds numbers as predicts a negative skewness.
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Figure 4.15: S/Snq- against Rey/Rejmqz-
4.5 Multiscaling of Energy Spectra

We mentioned before that a similarity form using only one lengthscale is not
applicable at large Reynolds numbers. One way to recognize a proper similarity then
is use multiscales in the proposed similarity form. One must decide what lengthscales
exist in a turbulent flow with large Reynolds numbers and which are dominant and
thus should appear in the similarity form. One way to investigate scales involved in a
turbulent flow is to express the energy spectrum function in such a way that reveals
the relevant lengthscales. We first choose a lengthscale to characterize the large eddies
containing most of the kinetic energy and another lengthscale to characterize the small
eddies responsible for viscous dissipafions. The energy spectrum is then expanded
in terms of these two lengthscales. The Rey-dependence of the energy spectrum and
the dependence on other turbulent lengthscales, if they exist, should be implicit in

the expansion. We further force 'a match at the intermediate scales and attempt to
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determine dynamical equation(s) to 1dentify the order functions in the expansions.

A substantial amount of experimental data [6] exists which suggests that the decay
of turbulenf enérgy at large Reynolds numbers is dominated by large eddies and that
there exists a lengthscale (usually an integral lengthscale) £ such that

d 2 3
d—qt ~ qf, (4.68)

which in turn, frofn the definition of Taylor microscale A ~ \/W , implies
L ~ ARey. We choose this lengthscale as the lengthscale which characterizes large
eddies. On the other hand, the Kolmogorov dissipation lengthscale (n = (v/€)}/*) is
the likely choice for the characteristic lengthscale of small eddies. Our consideration
now is to expand the energy spectrum by using the lengthscale £ at small wave
numbers (large eddies) and the lengthscale 5 at large wave numbers (small eddies).
Matching is then done in the inertial subrange as proposed by Kolmogorov in 1941.
We recall that the 1941 Kolmogorov hypotheses (see [37] [38] [39]) argue the
" existence of a universal equilibrium range of wave numbers in turbulence having large
bRe » (more precisely Rei’;/ * ~ Re»%/* > 1, is required when the hypothesis is combined
with the empirical relation (4.68)) and that of an inertial subrange for even larger
Rey (namely Rei/ ® ~ Rey®/* > 1 with (4.68)). The former introduces Kolmogorov
dissipation lengthscale n into problem while the latter, in addition, introduces some
other lengthscale which characterizes the eddies of intermediate size, perhapes the
Taylor microscale. In summary at large Re,, turbulence has large eddies of size £
from which energy is transferred to smaller eddies by inertial forces. Small eddies
of size 7 are responsible for energy dissipations. For high enough Re, there may
be eddies of intermediate size which receive energy from large eddies and transfer it
with little dissipation to the smallest eddies, and which are themselves independent
of the large-scale characteristics of flows. ‘This concept should be kept in mind in the

following analysis.
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4.5.1 Re,~! as a Small Parameter

We consider a series éxpansion of the energy spectrum using Rey™! as a small
parameter. Forthe low wave numbers (energy-containing eddies), we anticipate
E(k) ~ Ex(k) = g¢*(\Rey) S i(Rer) FkMRes) (4.69)
' i=
while at large wave numbers (dissipation eddies), we assume
E(k) ~ Ex(k) = (e*)/*3 vi(Re) Gj(kn), (4.70)
=0
where 242 vis the mean turbulent energy a,nd’ pi(Rey) and v;(Rey) are functions of

Re) ordered by

Mo > p1 > fo > -+ and Yo > vy S>vp > - (4.71)

‘as Rey > 1. It is assumed that both spectra possess Kolmogorov’s k~3/3-spectrum in
their asymptotic behaviors. For simplicity, in the rest of this section, we will denote

variables (EARe,) and (kn) by £ and ¢, that is

¢ = kARey = (kAReyM*) - Rey®/*
¢ = kn ~ (kARex!/*) - Rey =%, (4.72)

It is obvious from (4.72) an intermediate variable x can be chosen as
X = kARey/* (4.73)

such that E;(k) and E,(k) approach Kolmogorov’s k=%/3-spectrum as { — co and
¢ — 0 respectively when Re), — oo with y fixed. Note this approach is equivelent
to Kolmdgorov hypothesis in a sense that Rey** must be much greater than one to
completely sepafa.te eddies of size £ from those of size n and to create an inertial
subrange in between (see [7]). Meanwhile, ¥ ~ O(1) suggests that the lengthscale
characterizing those intermedia,te’eddies should be ARe,'*. If we define the upper and

lower limits of the inertial subrange as the geometric means of adjacent chacteristic
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lengthscales, ARe»*® and ARey~'/%, the width of the inertial range is then O(Rex*/*),
slightly wider than the prediction of O(Rey!/?) by Dimotakis for a jet turbulence [20].
We next assume that all functions F; and G; are at most O(k~%/3) when ¢ — oo

or { — 0. We write

Fi(€) ~ f; €5 as € — oo, (4.74)
Gi(¢) ~g; (T as (-0, (4.75)
where f; (or g;) is nonzero if F; = O(£-5/%) (or G; = O(¢~3/3)) and zero otherwise.

Then if { — oo and ( — 0, we force the leading order term of the spectra to be

Kolmogorov’s spectrum, (4.69) and (4.70) become

Ei(k) ~ ¢®ARex Y fipi(Rey) (FARey) ™3

—0

~ 15723 ()43 fipi(Rex)(kn)~%/
i=0

~ Cr(ev®)4(ky)~3/3 (4.76)

and

Eak) ~ (er®)V* 37 givi(Ren)(kn) =/
/=0
~ Crelerh ()3 (4.77)
where Ck is Kolmogorov cons'tant. Therefore, we require
po(Ren) = vg(Rey) =1
157° fo = go = Cx (4.78)

and
pi(Res) = vi(Rey), 15723 f; =g;, forj >1. (4.79)

Because the commom parts of expansions can be written as a function of ¢ as well as

¢, there are two equivalent ways to write the expansion of the energy spectrum. One

18
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E(k) ~ q2/\Re,\ Z pj(Re,\) FJ(]C/\RB,\)

=0 ‘
+ (@) T ps(Rer) (Gs(kn) — g(kn) /%) - (480)
. , §=0
and the other is
E(k) ~ ¢*ARex Y. pi(Res) (Fj(kARes) — 1522 g;(kARey)™™/?)
7=0
+ (@) 3 ui(Ren) Gi(kn). (4.81)
=0
Both expressions will be used in the following analysis.
Before we consider dynamical equations for the expansion functions F; and Gj,
we determine the constraints implied by the definitions of the kinetic energy 3g%/2

and the energy dissipation rate e. Using (4.80) to define the kinetic energy, we find

3 00
20 = /0 E(k)dk

5
= qzjz_% ﬂj(Rex)/Ooo F(&)d¢

+ V15 queA"ljZ_% ﬂj(Rex)/Ooo (Gi(0) — g;¢™*) . (4.82)

Because uo(Rey) = 1, we thus require
/0 " Fo(€)dé = % (4.83a)

and
S (won(Ben) [ Fu(©)de + V8 Rexps(Res) [ (Go(0) — g¢¥) dc) =
"~ (4.83b)

On the other hand, using(4.81) to compute €, we find

£ _ [T
21/_/0 K E(k)dk

=5 wiRen) / " G(0)de

+ 15%}26,\—2 Z /j,j('Re)\) ]000 62 (Fj(g) _ 152/3 gj€—5/3> d€ (484)
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Therefore, we also require -
|7 e =3, (4:852)

and

) (ﬂj+1(Rek) /Ooo ¢*Gima(Q)d¢ + %ReA_Z’#j(ReA) /Ooo €2 (Fy(¢) — 153 ¢=°F%) dé) = 0.
=0

(4.85b)
For convenience, we introduce (F;(¢), G;(C)) to denote either
(Fi(e) , Gi(¢) — 9;¢™*?)
or
(Fi(6) — 152,61, G3(())

whichever is suitable in discussion. The uniform expansion of the energy spectrum

 thus becomes ,
E(k) ~ ¢*ARex 3 pi(Rex) Fi(kARer) + (ev®)* 37 pj(Res) Gj(kn).  (4.86)
=0 7=0
Note we will denote the first term on the right-hand side as Fy(k) and the second
term as Ea(k).

4.5.2 Spectral Kirmdn-Howarth Equation

To correspond to the energy spectrum expression (4.86), we propose an energy

transfer spectrum of the form

T(k)=¢" 3 ni(Res) Hi(kARes)

+ (ev)¥* 3 pi(Res) K;(kn). (4.87)

7=0
Relations between the functions ﬁ’j andj{\ ; and between the functions @j and K, ; are

then determined by the spectral Kdrmdan-Howarth equation
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E(k)
ot

We will find the following relations useful:
| 3{ v

=30 =5)¢
¢ o+5
at ( 2 ) CFex
d)\Re
dt A = q(20 - 5)?
dg?ARe
L2 = (20 - 13),
dRe q
th =3l =93),
d(ey5)1/4

Ii
-

dt 2

Ad)

where o = odr We will also need
(ev®)/* = 155 ¢?ARey*/?
and

(ev)¥* = 151 ¢3Rey~3/2.

The terms appearing in (4.88) can then be written as follows:

OB, ' B
-El = ¢° Re, Z (0 —5) ﬂij(ﬁ)

j=0

+¢° Z (20 = 15) wiE(€) + (20 —5) p€F}(6))

7=0

aEz 1 — 1A
at = 15% q3 Re,\ 3/2 Z (0’—5) ,ujGj(C)

=0

1 5 ~ ~
+ 15% q3 ReA—5/2 Z (0"2*‘ > 1 ((G;(C) _

7=0

T(k)=¢° Zu;H(é ) + 15% ¢® Rey™ 3”2# K;(¢),

=0
Wk?E, = ¢ Rti)\_2 Z 2 #jﬁsz(f)’
: =0

21/k2E2 = 15% -q3 Re,\_3/2 Z 2,“_7'42@1'(4)'
7=0

= T(k) — 2vk* E(k).

5% (-——-——U T 5) qSRe,\_s/z,

(4.88)

(4.89)
(4.90)
(4.91)
(4.92)

(4.93)

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)

(4.99)

(4.100)

(4.101)
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We know that 1 = pog > pq > po > --- so that the leading order terms are therefore
O(1). In comparing the higher order terms, the appearance of factors Rey?/ %=

1,2,--- suggests a general choice for {y;} as
1i(Rey) = Rey™#?, §=0,1,2,---. (4.102)

With this choice of {u;} and matching terms up to and including O(Rey~%?), we
find

(@) Hole)

(6) Hi(6) = L(Fi(¢)
(¢) Hy(&) = L(Fy(E)
() Bule) = LIF(E) — 5(0 ~5)Fx(8)

(e) Hi(€) = L(Fu(£)) —2(0 — 5)Fu(€) + 267 Fo(€) (4.103)
(f) Fsl) = £(B()) — 3(0 ~ ) Fs(€) + 262 Fa(©)
(9) Rol(Q) =20Go(¢

(k) Ei(¢) =2¢*Gi(¢

(©) Ral0) =26°Ga(0) + (E2) (¢64(0) — Gol0)

)

)~ 5(o~5)R ()
)~ (o~ 3)Fy(6)
)

)

)
)

where

L(F;(8)) = (20 — 15)F;(¢) + (20 — 5)EFL(E). (4.104)

Table 4.3 also gives the dependencies for the order of the magnitudes from O(Re,°)
to O(Rex~%/?). We see that up to O(Re,~*?) the decay of the energy-containing
- eddies is purely through the draining of energy from large eddies to smaller eddies by
inertial forces and not until order O(Rey~%/?) do the small eddies dissipate energy.
This is again consistent with Kolmogorov’s hypothesis that Re 33?2 > 1 is required to
separate large eddies from small eddies.

In conclusion an energy .spectrum of the form
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Table 4.3: Terms appearing in the spectral energy equation in order of Re 2%, Rey™1/2,
v Re,\fl, Rey™%/? Rey~? and Re,~%2.

28 | T(k) 2wk2E(k)

Fo ﬁ1 F2 F3 F4 F‘s ﬁo ﬁl Eg ﬁg j{\4 H5 0 0 0 0 PO F‘l

0 0 0 0 0 Go|0 0 0 K K K|000 G G G

E(k) ~ (¢°ARex) 30 Re,~i1? F’j(k)\Re,\) + (ev®)1/4 >i=o0 Re,~i/? @j(n)

(4.105)

is proposed. The constraints, (4.83) and (4.85), coming from the definitions of tur-
bulent energy and energy dissipation rate, with the choice of p;(Rey) = Re, /% now

become

J5° Fo(§)dg = 3,
Jo* Fa(§)d¢ =0,

I8 Fisa(€)de + VI3 & (G4(¢) — g;¢™>%) d( = 0, for all j >0

(4.106)
and
J5° (*Go(Q)d( =5
J5° CBGHQ)dC =0 for j =1,2,3,
1345 CCira( O + ¢ (F(6) — 15¥3g,675/3) dé = 0 for all j > 0. (100

We now construct an example of the energy spectrum (shown in Fig. 4.16) only
using the leading order terms. We choose
b &?

—IE2/3 TS
Ro€) =150 T

(4.108)
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Figure 4.16: An example of the energy spectrum having k2-behavior near the origin,
the £~%/3-Kolmogorov’s spectrum in intermediate wave numbers, and an exponential
tail at large wave numbers. Cx = 1.5 is used.

and

Go(¢) = Cr(™** exp(—a(), (4.109)

where a = (201\—'F(%))3/4 from (4.106) and b = (111 - 15%/3 CKI‘(%)F(%))_H/Z from
(4.107). This energy spectrum has a k%2—behavior near the origin of wave numbers,
a k=% —inertial subrange and an exponential tail at very large wave numbers. The
energy spectrum when scaled by Kolmogorov scaling and multiplied by the factor
(kn)®/3, sometimes is observed to have a positive “bump” at the intersection of inertial
subrange and dissipation range of wave numbers (see experimental data of Saddoughi
for example [56]). Our example does not possess such a bump, but it should be easy

to construct another example having the bump, if one prefers.
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4.6 Far-Dissipation Range of Energy Spectra

Eddies of scales within the far-dissipation range are now considered. These eddies

- are considered indepehdent of the large-scale characteristics of flows. This indepen-

dence, as predicted by 1941 Kolmogorov universal equilibrium hypothesis and also

supported from the perturbation study presented in the previous section, should be
3/2

true as long as Rey'“ > 1. Dimensional analysis based on the assumption that Kol-

mogorov dissipation scale 7 is the only characteristic lengthscale for motions within

this range suggests
E(k) ~ (ev®) Y F(kn), k> A7 (4.110)

where A 1s S(;me integral lengh scale characterizing the large-scale eddies. The precise
form of function F'(k7) is unknown. Many model spectra have been proposed, either
purely empirically or derived from the spectral energy equation with some assumed
relation between the energy spectrum FE(k), the energy transfer spectrum T'(k), and
the wave number k ([47] [51] [58] [64]). In the present work, we are particularly inter-

ested in a slightly generalized form of a spectrum proposed by Smith and Reynolds
[64]:

E(k) = B(ev®)/* (kn)~Pe ™7 ki AT (4.111)

where a, b, and m are constants. Smith and Reynolds [64] actually used (4.111) with
b = —5/3 to predict the value of skewness S of the velocity derivative for decaying
isotropic turbulence.

Experimentally, there exist technical obstacles in measuring the energy spectra
beyond the Kolmogorov wave number k, = 1/7. In our simulations, instead we have
flows well resolved much beyond k, = 1, although the flows are limited to low-Re,.
We can then attempt to study the effect of Rey on the validity of (4.111) and its

relation with the power-law energy decay of isotropic turbulence and its prediction of

skewness S.
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4.6.1 Together with Power-Law Energy Decay

As noted by Pao [51] as well as by Smith and Reynolds [65], provided Re, is large
enough so that the contributions to the energy dissipation € from low wave numbers

are negligible, we may compute
¢ =2 /°° K E(k)dk (4.112)
0

by assuming (4.111) for all wave numbers. Substituting (4.111) into (4.112), one finds

the relation

b+3

m
B=— q®+3)/m p-t(___ = 4.11
5 ¢ ( — ) (4.113)

has to be satisfied. On the other hand, we recall that in isotropic turbulence, the

quantity G is computed as follows:

2 M

= 22 [T e Ek)dk .
G 35q2/0 K E(k)dk, (4.114)

which together with (4.111) requires

B = Ej% ab+8)/m F-l(b:—f’ E% (4.115)
Equation (4.113) should provide a better estimate of B than (4.113) provided G is
known due to the factor £* in the integrand of (4.114). When Re, is not large, the
preditions by (4.113) and (4.115) can be very different.

We also recall the dissipation rate equation in the following form

. €T 7
. which gives
1 15 fn+1
G=gShest = ( =) (4.117)

under the assumption of a power-law energy decay with exponent n. The skewness S

is thus predicted by using (4.117) provided G is available as
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2 15 /n+ 1)>
S= o (G - ( ). (4.118)
Combinihg with (4.115), (4.118) becomes |
S = {% g~ (6+5)/m F(b_+___5_)} B — §9 (n + 1> Re}. (4.119)
m m 7 n

If (4.113) is assumed also, then

5= O goam 220y p 213

m m 7

b+5. ., b+3 _@(n-Fl)Re;l' (4120)

n

Notice the form of the skewness (4.120) above can be anticipated by the modified
similarity hypothesis presented in Sec. 4.4 with the choice of 8 = 1 which has the
problem of yielding a negative skewness at small Rey. This enhances our belief
that the modified similarity hypothesis can not be applied at small Re,. (Note the
analysis in this section is done for large Rey.) In the rest of this section, we will use
(4.113)-{4.120) to estimate the applicability of the model spectrum to our simulated
turbulence.

Note all the above analysis can be applied to stationary turbulence as well as long
as the large-scale forcing does not affect the far-dissipation range of energy spectrum.
All the terms involving the decay exponent n then disappear. The ratio of B to S for
stationary ﬁurbulénce, or as an asymptotic ratio for decaying turbulence for Rey > 1,

is thus given by (4.119) as

S 12415 b+ 5
2o 2V Y —(b+5)/m _ v
B Tm I( m )

(4.121)

4.6.2 Numerical Results

We have shown the results of a power-law energy decay and those of the measured
quantity G verus Rey in Sec. 4.3. Since many investigators [35] [36] have observed
an exponential tail for the energy spectrum of the form E(k,t)(kn)%3/(ev®)1/4, we

first show the energy spectra in this form in Fig. 4.17ab. The exponential tails are
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Figure 4.17a: Energy spectra E(k,t)(kn)%3/(ev®)Y/* for run2.
using a=>5.0, b=-5/3, m=1 and (4.115).

E(k,t)(kn)™>/ (er®)'7*

Figure 4.17b: Energy spectra E(k, t)(kn)§/3/(61/5)1/4 for run3.
using a=5.0, b=-5/3, m=1 and (4.115).
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Figure 4.18: B verus Rey. Symbols represent the results of (4.115) and the horizontal
line represents the constant value of B evaluated by (4.113) with a=5, b=-5/3 and
m=1.
observed in our simulations as well, implying m=1 and b = —5/3. The exponent
a is found nearly constant during the decay. The measured value of ¢ = 5.0 £ 0.1
also agrees with that obtained by earlier investigations [35] [36]. We thus assume
b=-5/3, a =50, and m =1 for the rest of the study.

We next calculate B with the measured G and the assumed values of parameters
a, b, and m from both (4.113) and (4.115). The results are shown in Fig. 4.18.
The estimate from (4.113) is poor and is no doubt due to the fact that Re, are too
small for (4.113) to be valid. In Fig. 4.19ab we show the dimensionless dissipation
spectrum D*(k*,t) = 2vk?E(k,t)/(ev)?/?, where k* = kn. As shown, using (4.115)
for B gives a reasonable estimate of ithe spectrum at large wave numbers but not
(4.113). Similarly, we also show Q*(k*,t) = 2vk*E(k,t)/(?/v®)*/* and W*(k*,t) =
2vkSE(k,t)/ (€7 /v®)Y/* in Fig. 4.20ab and Fig. 4.21ab. Equation (4.115) as seen when

applied to the present numerical results overestimate D*(k*,t) and underestimate
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Figure 4.19a: Energy dissipation spectra D*(k*,t) for run2. Model spectra using a=3,
b=-5/3, and m=1: --------- (4.113) and — - — - — (4.115).

| W*(k*,t). Although (4.115) is supposed to give a right value of G, its prediction of
Q*(k*,t) does not quite coincide with the simulation data.

It was mentioned above that skewness S calculated by using (4.120) becomes
negative at small Reynolds number (see Fig. 4.22). In particular, negative skewness
is antipated within the fange of Re, investigated with the choice of a=5, b=-5/3 and
m=1. Therefore, we consider only the estimate (4.118) with simulation data as shown
in Fig. 4.23. Solid lines are the predictions from (4.118) by using the measured G
from Fig. 4.8 and n listed in Table 4.2. Although the agreement of the spectra is not
completely satisfactory, the estimate of skewness S using (4.118) seems reasonably
good.

The asymptotic ratio of S to B, (4.121), is shown in Fig. 4.24a (verus a) and
Fig. 4.24b (verus m). The value is about 11.59 as m=1 and 0.502 as m — oo when

a=>h.
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Figure 4.19b: Energy dissipation spectra D*(k*,t) for run8. Model spectra using
a=5, b=-5/3, and m=1: --------- (4.113) and — - — - — (4.115).

Figure 4.20a: Enstrophy dissipation spectra Q*(k*,t) for run2. Model spectra using
a=5, b=-5/3, and m=1: ---..--.. (4.113) and — - — - — (4.115).
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Figure 4.20b: Enstrophy dissipation spectra Q*(k*,t) for run8. Model spectra using
a=5, b=-5/3, and m=1: -+------. (4.113) and — - — - — (4.115).
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Figure 4.21a: W*(k*) for run2. Model spectra using a=5, b=-5/3, and m=1:
--------- (4.113) and — - — - — (4.115).
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Figure 4.21b: W*(k*) for run8. Model spectra using a=5, b=-5/3, and m=1:

--------- (4.113) and — - — - — (4.115).
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Figure 4.22: S(a,m) from (4.120) with n=1.3 for example. m=1and —-—-—
m=2 with a=3.5, 4, and 5 (S decreases as a increases); --------- m=2 and B=1.5.
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Figure 4.24a: The asymptotic ratio of B to S of decaying turbulence verus m.
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Figure 4.24b: The asymptotic ratio of B to S of decaying turbulence verus a.

4.7 Conclusions

Simulations of decaying homogeneous turbulence at small to intermediate Reynolds
numbers have been performed. We find that the turbulent kinetic energy decays
eventually as a power-law in time. The decay exponent for the initial conditions
summarized in Sec.ITI. A is found to be about 1.54 for one group of runs and 1.24 for
another group. The particular characteristics of the initial conditions that determine
the decay exponent are not evident at this time. A new theory of self-similarity for
the double and triple velocity correlations of decaying turbulence has been proposed
in which the Taylor microscale is the appropriate scaling. The double correlation co-
efficient is divided into two parts — oné has a power-law dependence on the Reynolds
numbers and the other does not. The nonlinear terms as measured by the triple ve-
locity correlations vary as Re'f'1 during the decay. George’s complete self-similarity

can be recovered by putting § = 0. Provided § # 0, two independent equations can
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be obtained with three unknown functions. Although the problem is still not closed,
the asymptotic behavior of f(r,t) at large separation r is found uniquely related to the
decay expoﬁent n. Together with Saffman’s proposed asymptotic behavior of f(f,t),
- the theory predicts a decay exponent of 1.5 in agreement with one of the groups of
runs.

A nearly linear relation between Rey and G, a quantity related to the dissipation
of enstrophy, was observed, in agreement with the observation that the skewness
S~ Ref\i_1 with 8 = 1.04. Provided 8 > 1 (so the inertial force increases as Reynolds
number increases), the theory may be applicable to the limiting case of zero Reynolds
number — to the final period of decay in which the inertial effect is negligible and
the double correlation coefficients approach a complete self-similar state. On the
other hand, we believe there exists an upper limit for the validity of the proposed
similarity. At large Re) we anticipate at least two length scales will be required,
the Kolmogorov scale, n ~ )\Rexl/ 2 and the empirical lengthscale, L ~ ARex. A
- perturbation method has been used to investigate the uniform expansion of the energy
spectrum by assuming it is scaled by £ at small wave numbers and by 7 at large wave
numbers and also assuming Kolmogorov’s k=%/3-spectrum in the inertial subrange.
Dynamical equations for the expansion functions are derived from the spectral energy
equation and the order of the functions used in the expanions (u;{ Rey)) are found to
be Re, /2. Eddies within the inertial subrange are found of size ~ ARe)*/* and the
width of the inertial subrange is O(Rey>*).

Finally, the model energy spectrum (4.111) with a = 5.0, b = —5/3, and m =1
is compafed with our numerical spectra. Skewness is predictable by assuming a
power-law energy decay and a model spectrum. Using the measured values of G,
a parameter in the dissipation rate equation; and decay exponent n, the prediction

agrees reasonably well with the numerical data.
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Chapter 5
Lagrangian Studies

In this chapter we study the small-scale properties of turbulence whose importance
in the improvement of subgrid models for large-eddy simulations and in the under-
.standing of intermittency phenonmena cannot be overemphasized. In many cases the
data was collected from the viewpoint of a Lagrangian tracer, i.e., a point moving
with the local velocity of the fluid continuum. Let ¢ be the initial position of a fluid
particle and x, be the position of the particle at time t. A Lagrangian tracer or a
fluid particle is thus tracked by solving

dx,(t

Xst() —u(x,,t) with x,(0) =& (5.1)
Use of Lagrangian coordinates is natural in the study of turbulent dispersion which
is fundamental to heat and mass transport problems. Following a fluid particle, the

evolution of an infinitsimal material line element can be easily obtained also by solving

dl : _
- = (£-Vu(x,,t) with £(0) = 1. (5.2)

The dynamics of this quantity characterizes the stretching power of turbulence. With
the Eulerian velocity field u(x,t) at hand, we shall solve (5.1) and (5.2) based on
finite-difference methods which interpolate velocity and velocity derivatives at the

particle’s position. Lagrangian statistics are then collected by taking averages over a

large number of fluid particles.
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The first part of the present study is focused on the Lagrangian velocity autocor-
relation function whose importance was first revealed in Taylor’s classic work on the
diffusion of. fluid particles. According to his work, experimentists can determine the
Lagrangian velocity autocorrelation function by measuring particle dispersion. For
example, Shlien and Corrsin [63] so measured the autocorrelation function in an ap-
proximately isotropic, grid-generated turbulent flow and studied its self-preservation.
Sato and Yamamoto [60] [61], by means of an optical tracer-particle tracking method,
were able to measure directly the Lagrangian autocorrelation function. The results
were then compared with the one-point-two-time Eulerian autocorrelation functions
obtained from the two-point-one-time functions under the Taylor “frozen” hypothesis.
Both measurement techniques found that the Lagrangian autocorrelation function is
larger than the Eulerian for all time lags.

Numerical simulations can be used to determine both Lagrangian and Eulierian
temporal velocity autocorrelation functions directly but are limited to small to inter-
- mediate Reynolds number. Such determinations made by Riley and Patterson [53]
in decaying turbulence as well as by Gotoh et al. [29] in stationary turbulence show
that the Lagrangian autocorrelation function is larger at small time lags, but smaller
at large time lags as opposed to the above-mentioned experimental observations. We
notice the Eulerian autocorrelation function measured according to Taylor’s “frozen”
hypothesis is different from the numerical one which has zero mean flow.

Theoretical studies include Corrsin’s use of a “independence” hypothesis [18] to
predict that Lagrangian scales are approximately equal to the Eulerian ones under
the assurhption that both Lagrangian and Eulerian frequency spectra possess Kol-
mogorov scaling. This work had been extended by Saffman [57] who derived an
integro-differential equation for the Lagrangian autocorrelation function. Tennekes
[69] further introduced the “advection” concept which introduces a new cutoff fre-
quency and an advection-inertial subrange in addition to the Kolmogorov inertial

subrange. Assuming this new cutoff frequency for the Eulerian frequency spectrum
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and Kolmogorov cutoff frequency for the Lagrangian frequency spectrum, he obtained
- different results from Corrsin’s. Our ambition here is to measure directly both La-
grangiaﬁ and Eulerian, temporal and spatial, velocity autocorrelation functions and
then examine their relations compared with theoretical predictions.

The second part of this chapter is devoted to the small-scale properties of turbu-
lence from a Lagrangian viewpoint. Similar studies have been done by Yeung and
Pope [72] [73], who developed and tested interpolation schemes for particle track-
ing and studied the acceleration autocorrelation function. Girimaji and Pope [28]
also considered material-element deformation in isotropic turbulence. Their work
was concerned exclusively with stationary forced turbulence. As discussed by Yeung
and Pope [73], decaying turbulence is more difficult to analyze because the energy is
decaying and the eddies are growing. Long-time tracking is not possible. However,
with a numerical resolution up to 2562 available and the high speed calculations on a
parallel computer, we are able to collect meaningful Lagrangian data in decaying tur-
bulence. Because no artifical forcing is required in the present simulations, there is no
concern about the contamination of integral scales by non-physical forcing. However,
the effect of periodicity can be harmful.

This chapter is arranged as follows. A description of the interpolation meth-
ods used in the present research is given, and their accuracy is tested in Sec. 5.1.
Two-time-one-point and one-time-two-point Lagranian and Eulerian velocity auto-
correlations as well as particle dispersion are investigated in Sec. 5.2. Small-scale
phenomena are next studied in Sec. 5.3. Effects of small-scale properties such as vor-
ticity magnitude and strain magnitude on the evolution of the vorticity vector and
the material line element vector are of particular interest. Finally, we attempt to ob-
serve the conditions leading to intense vorticity values by following fluid particles and
taking advantage of flow visualization techniques. The results are given in Sec. 5.4.

Conclusions are given in Sec. 5.5.
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5.1 Interpolation Methods
5.1.1 T13 and T36 Schemes

Yeung and Pope [72] have investigated in detail the accuracy of a variety of in-
terpolation methods for particle tracking. They found that the linear interpolation
method is too inaccurate for turbulent flows, but cubic spline interpolation is rea-
sonably good. For a planwise data set, they suggest a method called “T13” based
on Taylor’s series expansion and 13 grid points. The interpolation errors of T13 are
found larger than the cubic spline method, but still within reasonable bounds. How-
ever, in this method (T13) velocities and velocity derivatives at both the grid points
x and X 4+ Ax/2 are required. Additional FFTs and memory space are therefore
required. In order to make the code more efficient, a scheme slightly different from
T13 is developed here. In principle we would like a scheme that requires only velocity
fields at grid points x and remains third-order accurate.

The modified T13 method is described as follows. If x, is the particle’s postion at
time ¢ and it locates within a cube centered at the grid point x¢ as shown in Fig. 5.1,

the modified T13 algorithm estimates the particle’s velocity as

u(xp Z cu(x;,t) (5.3)

i=1
with
=(—z—y—z+y*+ay+z2+yz—zy2)/8,
=(—z—y—z+y*+2y—z2—yz +2Yy2)/8,
=(z—y—z2+y’ —zy+22—yz —2Y=2)/8,
=(z — —z+y2—$y;xz+yz+xyz)/8,
=(—z4+y—z+y*—zy+z2—yz+ 2Y2)/8,
Cs = (:z:—l—y—-z—l—y —-xy—xz+yz—:cyz)/8
c—/__(x—l—y—z-i-y +:vy+:vz+yz+xyz)/8
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Figure 5.1: Grid points used in the modified T13 scheme. The particle position x, is
located within the cube shown.

ca=(r+y—z+y’+zy —z2 —yz —2Y2)/8,
1 1 1
—1_ip2_t,2_ 1.2
Cg 4.’1‘ 2y 42 3
c10 = (2% — y*)/8,
o = (2% —%)/8,

Ci2 = C10,

C13 = (11, (54)
where

z = (z, — z9)/ Az,

¥ = (4 — 1)/ Ay,
z= (2 —’29)/Az.

It can be shown that with this choice of {c;}, the right-hand side of (5.3) gives a

third-order accurate particle velocity; that is,
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Figure 5.2: Grid points used in (5.6) and (5.7).

i cu(x;,t) = u(x,,t) + O(Ax). (5.5)

t=1
In addition, an algorithm, called T36, was developed for interpolating velocity
derivatives. The idea of T36 is to reduce the 3-D interpolation problem to a 1-D
problem. We consider in a 1-D problem in which z; < z, < z;41, where z; is the grid

point as shown in Fig. 5.2. It can be shown that

1

g(xp) = KQ—: (ai—llu’(xi—l) + azu(xz) + ai+1u($i+1) + ai+2u(1}i+2))
Ou
=5 (2,) + O(AY) (5.6)
and
h(zp) = bisqu(zizg) + biu(z:) + bipru(zi)
= u(z,) + O(Aa?), (5.7)
if
a l + lr2
=1 — 3 r 2 ’
a; = ——% —2r + grﬂ,
3
a;+1 = 1 +7r— —2‘7'2,
11
A2 = ~% + 5"'2’ (5.8)

and
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b1 = %7’2 - —;—r_,
vbz' =1- 7‘2,
bi+1 = f—lz-rz -+ —;—T, 7 (59)

and r = (z, — z;)/Az. In 3D problems, a velocity gradient in a preferred direction
is thus so obtained by first forming the third-order accurate velocities in the other
two directions using (5.7) and then calculating the gradient in the perferred direction

using (5.6). A total of 36 grid points are involved.

5.1.2 Interpoltaion Accuracy

We test the accuracies of the modified T13 and T36 schemes on the gradients of

the one-parameter familiy of flows given by
u(z,y,z) = sin(z™) + sin(y™) + sin(z"), (5.10)

0 <=z,y,2 <2r withn = 1, 2 and 3. (T13 is applied to the gradients directly while
T36 is applied to the velocity. Therefore, both estimate the gradients of (5.10).) The
flows become more complex as n increases. The results of the tests are shown in
Fig. 5.3. The errors shown are the averaged absolute difference between the exact
solutions and the interpolated results normalized by a factor of 3n(27)"~! — the
maximum gradient of the flow. Notice that the third-order accuracy is obtained, but
larger N is required as the flow becomes more complex as expected, where N is the
number of the uniformly distributed grid points in (0,27). Note T36 scheme behaves
strangely when the resolution N is large and the flow is simple. This is probably
caused by its using so many grid points and the roundoff errors.

Accuracies of the schemes when tested on the turbulent flows are shown in Fig. 5.4.
Turbulent velocity and velocity gradient at x + Ax/2 are interpolated. The difference
of the results from those obtained by taking advantage of FFT based on the shifted

grid points is treated as the error of the interpolation method. The algorithms are
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Figure 5.3: Accuracy tests of the modified T13 and T36 schemes on the gradient of
the one-parameter (n) family of flows (5.10) with (a) n =1 (b) n = 2 (¢) n = 3.
+ linear interpolation, A TI13 ,0 T36



131

1000
F A
[ + ﬁéa
o ° 4
le) r Oo & .. .
< 1 LR 3++ .. 2nd order
o 107 F ‘. A4 E
E o .,
8 00 A ++
N o ° a
P . A
o] 2 [ A
£ 107%F o E
o} e ©
c ., 3rd order @
.. O
]
-3
10 : .
1 10

kmcxn

Figure 5.4: Accuracy tests of the modified T13 and T36 schemes on a turbulent flows.
+ linear interpolation, A T13, o T36 applied to Vu; e T13 applied to u.

applied to a single flow at several decaying times. The errors are estimated on one
plane of points and normalized by the mean value of the tested field (velocity or ve-
locity derivative). They are plotted as a function of the product of the Kolmogorov’s
dissipation length n and the maximum available wave number k., = N/—gﬂ%’ In the
present simulations, we employ T13 to interpolate particle velocity and T36 to inter-
polate particle velocity gradients (both methods are applied directly to the velocity
field). The above results show that the schemes work well with turbulent flows and
suggest that a minimum value of k.7 of 1.5 is required to have an error under 5%.
In the present simulations, we thus release particles at a time at which knq.n ~ 2.
The accuracy at later decaying times is expected even better because k.., Increases
with decaying time.

The CPU seconds per time step having the code running on N nodes of the Delta
parallel computer with M particles traced are listed in Table 5.1. The increase of

CPU times due to the tracing is acceptable.
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Table 5.1: CPU seconds per time step for N computer nodes with M particles released.

NAM| 0 |4,096 | 16,384 | 30,000

128 | 1.61 | 2.63 | 4.50 -

256 | 7.96 - 11.15 | 13.17

5.1.3 Simulatidn Conditions

The Eulerian velocity fields chosen correspond to two of the direct numerical

simulations of decaying homogeneous turbulence discussed in chapter 4 (run3 and

run5). The Reynolds numbers (Re,) of these two cases are about in the same range

and Rey ~ 42 when the power-law decay starts (kmqe.n =~ 1). The box size is 27 on a

side for one of the cases (renamed as runl) and 4« for the other (renamed as run2).

The latter has twice the Fourier modes in one direction (256) as the former (128)

does so that the highest available wavenumbers are the same. Moreover, the decay

exponent is found to be about 1.5 for runl while it is about 1.2 for run2 (see Fig. 5.5

and 5.6). These two cases were chosen primarily to represent the two different decay-

exponents. Flow conditions at zero simulated time and at times at which kneen = 1

and k.27 = 2 can be found in Table 5.2.

We recall that the initial eﬁergy spectrum chosen for runl is
Cq?exp(—a)(k/k,)? for 0 <k <k, ;
E(k,0) =

Cq*(k/k,)~%3exp (~a k/k,) for k, <k

and that for run?2 is

3 ¢ (2k>2 ( 2k>
Ek,0)==—{|—] exp|—7].
2%, \ &, k,

The eddy-turnover time 7, and the dissipation time scale 7, are defined as
= 3l/°ok‘1E(k 9 dk//ooE(k t) dk
o - 4q 0 ’ o ’

and

(5.11)

(5.12)

(5.13)
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Figure 5.5: Decay of turbulent energy K = 3¢%/2. The time is nondimensionalized
by the eddy-turn-over time 7, at a time at which k..n =~ 1.
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Figure 5.6: Decay of Reynolds number Rey = gA/v.



134

Table 5.2: Flow Conditions at ¢ = 0 and at times at which a power-law energy decay
starts (kmaen & 1) and at which particles were released (kmqzn &~ 2 or t = t.).

kv L N M
runl 4 0.002 27 128 16,384
rup? 6 0.0013 | 4= 256 30,000
t=0 Emaen = 1 Emazn &2 2
runl run2 | runl run2 | runl run2

Rey | 203.10 165.48 | 42.29 42.62 | 32.81 35.74
ML | 43% 1.7% |3.6% 1.7% | 57% 3.0%

7, 0.22 040 | 2.09 2.89 | 584 8.26

Tn 0.022 0.055 | 0.16 0.22 | 0.51 0.77

T = 12/v (5.14)

respectively. In the following sections, we will refer a Lagrangian average as an average
taken over reléased pa,rticles. There were a total of 1282 = 16384 particles released
in runl while 30,000 were releaéed in run2. Particles are initially randomly placed in
the periodic physical domain. The sampling error is known proportional to M~/2,
where M is the number of particles released. In the present simulations, we estimate
that this error is relatively small compared with the interpolating errors and time
differencing errors [28].

In the present study, we concentrate on the comparisons of numerical results
of simulations with theories assuming isotropic turbulence, even though we observed
that simulated decaying turbulence loses isotropy as Re, decreases. When applicable,

however, we take averages over all three directions.
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5.2 Double Velocity Correlations

In studying the transport and dispersion processes in a turbulent flow, G.I. Tay-
lor [67] was first to note the the importance of Lagrangian statistics. In particular,
the spread of matter,. such as smoke from a smokestack, can be predicted by La-

grangian velocity autocorrelations following a single particle (see [67]) for homoge-

neous isotropic turbulence

d< X? T
S22 = [TUE (g T

=2 [ (el fulr', r)ir’ (5.15)

where < X? > is the mean square displacement of particles, ¢(7) is turbulent velocity
at time 7, and f7, is Lagrangian velocity autocorrelation coefficient defined below. The
significance of particle dispersion lies not only in the spread of matter, but also in
the significant transport of momentum, heat, and kinetic energy, usually dominating
over transport by molecular diffusion.

Considering the anisotropy observed in low-Re, turbulence, we average the cor-
relations over the three directions and treat the results as isotropic. We compute the

spatial correlation coefficients as follows

f(r; T) = %ui(x, T (x + re;, 7)/¢*(7), (5.16)

where the overbar represents a volume average. The two-time-one-point Eulerian and

Lagrangian coefficients are computed as

fo(r',) = gl Ty ) a(r)a(r) (5.17)

and

felt', ) = 3 < w6, (e, ) > Ja(r)a(), (5.18)
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Note both 7 and 7’ are measured from the time the particles were released. The
notation < - > represents a Lagrangian averaging and ¢ is the Lagrangian marker.
Moreover, with the Fourier components.of velocity fields at hand, we can easily com-

pute fr as

Xk: ik, )i (k, )/ q(7)q(7) (5.19)

C»JIP-‘

and

k1 \kz,ks

3f(r,7) = Z (E ﬁl(k,T)iZI(k,%)) exp(—tkyr)

+ Z (Z do(k, T)us(k, )) exp(—ikar)

ko \ks,k1

+Z (Z as(k, 7)us(k, T)) exp(—iksr) (5.20)

Where ({3

means the complex conjugate.
We now consider time and length scales. The Eulerian and Lagrangian dissipation

~ time scales, 7g and 77, are defined as

TE = (— ?;J; Z )_,1/2 (5.21)
and -
= (_%) —,1/2 . (5.22)
The integral scales are given by -
= /0 Z fa(r, ), (5.23)
and
Ty = /0 S (e P (5.24)

The quantities Lg = ¢q7z and L = ¢7; are then defined as the integral Eulerain
and Lagrangian lengthb scales, respectively. The dissipation length scale of f(r,7) is

well-known as Taylor’s microscale A and its integral scale, denoted by Ly, is given by

Ly = /0 " f(r,7)dr. (5.25)
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5.2.1 Relations Among Velocity Autocorrelation Functions
5.2.1.1 Dissipation Time and Length Scales

The behaviors of velocity autocorrelation functions at small time lag (7’ — 7) or
small spatial distance (r) are given in terms of their dissipation time/length scales.
Here we introduce two dimensionless parameters as ratios of dissipation scales as

follows

a=— 5.26
K (5.26)
A
p=LL, (5.27)
A
1.00F ! T T E
: ]
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- :.................................O...o...o...o ..... .o. O o I o DU O...............................:
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C ® 3
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080F v ]
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Figure 5.7: (1) e o= qre/X (2) o B =gt/ A

In general we expect o and § to be T-dependent; our numerical results show the
dependence is very weak (see Fig. 5.7). The time scales 71, and 7g are calculated by

determining the curvatures of fr and fz at 7/ = 7 with fourth-order finite differencing
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assuming a parabolic behavior near 7 = 7 for both autocorrelation functions. A
slight increase of a and a slight decrease of 5 with decieasing Rey, are observed. The
average valué of o is 0.624 and that of 3 is 0.785 within the range of Re) investigated.
We recall that Corrsin [18] applied Kolmogorov scaling in the inertial subrange to
the frequency spectra of both the Lagrangian and Eulerian velocity autocorrelation
functions and obtained o, 5 ~ Re;!/2. A prediction by Heisenberg [32] suggests that

for low Reynolds number
B? = Rex?/ (aRex + b (0, 7)) (5.28)

with constant a and . Both theories predict an increasing 3 with increasing Re) as
observed in our numerical results, although the observed increase is very gradual.
The above prediction of an increasing « with decreasing Re), on the other hand, is
in opposition to the present numerical results. Tennekes [69] questioned this result and
proposed a modification. Noting that an Eulerian observer sees small eddies convected
" by large eddies, Tennekes suggests a new cutoff frequency ¢/n for the Eulerian velocity
autocorrelation function, which is larger than the one for the Lagrangian function
based on Kolmogorov scaling, namely v,/n or (¢/v)!/2. Tennekes further predicts 7

by assuming Taylor’s “frozen” hypothesis, which approximates

Ou ou  Ou  Ou
~ —y ou

and by assuming that the energy-containing eddies and the dissipation eddies are

statistically independent so that in an isotropic turbulent flow
ou\® —(0u)’
— | =5u?|{—]. 5.29

' 2
Together with the other isotropic relation € = 151/(%) , he obtains

2 _ 2w (Br\ _ o
2 W_<6> or o =1/2/5 = 0.632. (5.30)
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Figure 5.8: Numerical measurements (solid symbols) and Tennekes’ prediction (open
symbols) of 7g. o is for runl and o for run2.

Comparisons between the numerical results and the prediction of (5.30) are given in
Fig. 5.8. The agreement is quite good. On the other hand, Yeung and Pope [73] ex-
amined Tennekes’ assumptions and found no agreement with their numerical results
up to at least Re, = 93, the highest Re, in their numerical simulations. Their con-
clusion, however, is queétionable because the sample of particles they used (M=4000)
was not large and their turbulence was forced. In addition, their examination only

»8'&1

included an analysis of one component, (—at—)2, for a single timestep so that isotropy

of the data is suspect.

Finally, we notice the result o < B actually implies 75 < 71 or fg < fr at
small time lags as also observed by previous investigators ([53] [63]). The same result
was obtained also by Kaneda and Gotoh who applied the Lagrangian renormalized
approximation to a Gaussian velocity distribution [34]. The advection concept of
Tennekes suggests that the Lagrangian autocorrelation is more persistent than the

Eulerian one (because in the latter case new fluid particles are continuously swept
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the observation point), and, therefore, suggests fz < fr at small time lags as well.

5.2.1.2 Comparisons

The computed autocorrelation functions are plotted against (7' — 7)/7,(7 = 0)
in Fig. 5.9ab and Fig. 5.10ab. These curves are clearly non-symmetric because the
turbulence is decaying. Longer tails are obseryed at positive (7' — 7)s than negative
ones, implying edciies lose their memory more slowly at later times. The decay of
fE at the larger times appears slow. One might even doubt the existence of its first
integral moment, namely 7z. In any case, the results as shown are insufficient to
compute 7g directly.

Finally, we compare the velocity temporal/spatial autocorrelation functions by
plotting them together against variables (7' —7)/71, (7' —7)/7E, and 7/ respectively
(see Fig. 5.11ab) [32] [57] [60]. These three autocorrelation functions as seen differ
from each other except that fg (against (7' — 7)/7g) is close to f(r,7) (against r/})
* for negative (7" — 7)s (negative r). Tails of fg(7’,7) are the longest among the three,

implying the convective eﬂ?eqt of large eddies to an Eulerian observer as suggested by

Tennekes [69].

5.2.2 Similarity of fr(7/,7)

In stationary turbulence. fg and f; are self-preserving (depending only on 7/ —7);
in decaying turbulence, it was first argued by Batchelor and Townsend [12] that
Lagrangian velocity correlation coefficients may be self-similar as well in a new time
variable s, provided a power-law decay of turbulent kinetic energy exists (see [33]
[60]). Batchelor and Townsend’s argument is described as follows. Suppose that

turbulent energy decays according to a power-law, namely

K~(t+t)" ~(r+7)",
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Figure 5.9a: Lagrangian velocity correlation coefficients fr,(7/,7) at several different
7 for runl. The dash dotted curve is one of them at one particular time for clarity.
Time is nondimensionalized by the eddy-turn-over time 7,(7 = 0) = 5.84.
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Figure 5.9b: Lagrangian velocity correlation coefficients fr(7/,7) at several different
7 for run2. The dash dotted curve is one of them at one particular time for clarity.
Time is nondimensionalized by the eddy-turn-over time 7,(r = 0) = 8.26.
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fe(t’st) (3) ------ f(r/X, 1) against (7' — 7)/7L, (7' — 7)/75 and r/) respectively.
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where 1, (7, = t,+%.) is some reference time origin, there may exist some characteristic
time scale, 7, such that u(7) (1 + 7/7,)/? is a stationary random function of a new
time variable s'deﬁnedA by ds = dr/7,(7). Consequently, the Lagrangian correlation

coefficients are self-similar in this new time variable s since

oy = <wuému,T) >
P = e
< (u({,T)(l + 'r/‘ro)”/z) (u({,'r')(l + T//To)n/2) >
(@)@ + r/m)™2) (o(r)(1 + 7' [7.)"/?)
_< (¢, s)u(¢,s') >
q(s)g(s")

= fL(s' —s) = fL(s"), (5.31)

where @(7) = u(r)(1 + 7/7,)"? and §(r) = ¢(7)(1 + 7/7,)"/2.
' The determination of 7,(7) still needs to be made. It should be, as a consequence

of the hypothesis, related to the Lagrangian integral time scale 77, by

Ti(7) E/ fo(r',r) dr’

= / fo(r'y ) 75(7") ds’

= / fr(s',s) 75(s") ds’
=/ To(s + 8") fr(s") ds”, (5.32)

0

where we write 75(7(s)) = 75(s) for simplicity. Batchelor and Townsend [12] suggested
that 7, ~ A/q while Sato and Yamamoto [60] proposed 7, ~ 7. However, because
of different assumptions (Batchelor and Townsend assumed the decay exponent n=1
while Sato and Yamamoto used empirical relations £ /Ls=constant and Lr/A ~
* Re,), they both found that 7,(7) ~ (7 + 7,); therefore, s = log(1 + 7/7,) and 75(s) =

70€° for s(7 = 0) = 0. Although (5.32) does not necessarily give 75 ~ 7, the choice of

7s = (T 4+ 7,) does result in 7, ~ T7,. Moreover, 74(s + ") = 7,5(s)7,(s")/7,; therefore,

T = (r+7) /0 T Fo(s”) ds”, (5.33)
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implying 77, grows linearly in time. For 77 to exist, a fL(s” ) must decay faster than
. e_s//' |
The choice of 7, ~ 7, seems reasonable, but the empirical relations used by Sato

and Yamamoto are not supported by experimental data. Recall the empirical equation

describing the energy decay,

d 2 3
d_qt ~ .‘IZ (5.34)

where L is the length scale characterizing the decay of energy. A substantial amount
of literature has been devoted té the predictions of £, and it is usually believed
that £ ~ L; for they are both dominated by large-scale eddies. Also, it is usnally
assumed that 8 = L1 /Ly is a constant ([18] [31] [57] [61] [63] [73]) which then implies
Ly ~ L; ~ L. Without considering the validity of £ ~ L or the constancy of 3,
we accept L ~ L. In particular, at large Reynolds number, if one approximates the

energy spectrum by

0 for k <k, = L1
E(k)={ Ce*k=3/3, for k, <k <k,=1/9 (5.35)
0 k> k,,

and approximates the Lagrangain frequency spectrum (frequency w) by

0 for w < w, = T *
¢r(w) = § Bew™2, for w, < w < w, = (e/v)}/? (5.36)
0 w > Wy,
then
¢~ /Ooo E(k)dk ~ /Ooo pr(w)dw (5.37)

leads to q7; ~ L. Consequently,

7o ~ Ty ~ L]q ~ ARex/q ~ (T + 7o) (5.38)
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.Figure 5.12a: The Lagrangian autocorrelation function f(s”) for runl.

and s = log (1 4+ 7/7,). Note the result is as the same as that of previous investigators
but based on the assumptions of 7, ~ 77 and Ly ~ L.

The function fr as a function of s” = s’ — s is shown in Fig. 5.12ab. Note
this function is even because f(7,7') = fi(r',7) implies fr(s — ') = fr(s' — s)-
The existence of a self-similaﬁty is clear. Moreover at large s”, the tail becomes
exponential, i.e., fz(s") ~ exp(—s"/T.), implying an algebraic decay of fr(7’,7) at
large time lags. The measured T; < 1 (see Table 5.3) suggests that the integral in
(5.33) converges. If we define £ = ¢®/¢ and use (5.33) to estimate £ = ¢77, the
ratio of £/L; is shown in Fig. 5.13. Note since we have used (5.33), a result of the
assumptions, Fig. 5.13 only shows how large the ratio £/Ly, is and its dependence on
the initial conditions (about 0.54 for one run and 0.30 for the other), but can not be
used to Support the assumptions.

With the similarity and (5.33), we can now calculate 77, (by extending the expo-

nential tail of the self—similér autocorrelation function to infinity) and thus show fr
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Figure 5.12b: The Lagrangian autocorrelation function fz(s”) for run2.

against (7' — 7)/7z(7). The results are shown in Fig. 5.14 and compared with the
data measured by Sato and Yamamoto. Their data agrees with the autocorrelations
measured by Yeung and Pope [73] of stationary turbulence, but nontheless not with

ours of decaying turbulence, although they declared they had caught the decay effects

In their measurements.

Table 5.3: Power-law decay exponents and some important characteristic time scales.

n T T, b

runl | 1.48 9.61 0.475 12

run2 | 1.27 13.50 0.688 4
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Figure 5.14: fr, verus (7' — 7') /71 with 77, calculated by (5.33). The curves decaying
faster are from run2 and the others are from runl. Symbols are from the data of Sato
and Yamamoto: A Re) = 66 o Rey =46 o Rey, =25.
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5.2.3 Particle Dispersion

We now compare the diffusion of particles predicted by the classic work of Taylor
using our self-similar fr, determined above with “experimental” data obtained by our
simulations. Applying the similarity hypothesis to (5.15), one obtains

d 2 — 2 (1-n)s /s ( n II) F (M
o < X(r)> = 2r,q. € | exp (1- -2—)3 fr(sM)ds',

= 27,¢2 e(1-")° /s exp (—(1 - g—)s”> fr(s")ds" (5.39)
0

using q(7) = ¢.(1 + 7/7,)""/% and fr(—s") = fi(s"), where ¢, = ¢(r = 0). For small
T (s" < 1), fr =1 and

/Os exp (—(1 — g)s") Fr(s")ds" ~ s + O(s2);

therefore,

d
— < X?> m27,¢% s el1-7)s
dr

= 27,q2 log(1 + 7/7) (L + 7/7. )"

=2¢2 7+ O(7?). (5.40)

That is < X? > =~ ¢?7? at small 7. On the other hand, as 7 — oo (s — o0}, provided

the integral in (5.39) converges, one can show

4]

< X? > C(n) 7‘3 q2 1+ T/To)(z—n), (5.41)

where

C(n) = (é._z____

) /OOO exp (—(1 - %)s") fr(s")ds". (5.42)
The long-time growth as seen is different from that of a stationary turbulence. In a
étationary turbulence one would expect < X? >~ 7 as 7 >> 1, provided the integral in
(5.15) converges. Note the result (5.41) can not be applied to a stationary turbulence
by simply assuming n=0 because the new time variable s does not exist at all in a

stationary turbulence (7, # 75(7)).
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Numerical results and the solutions of (5.39) obtained by assuming
~ S” | \
fo(s")y = exp(——f) (5.43)
with T listed in Table 5.3 and by assuming

fi(s") = (exp(—s"/2s2) + bexp(—s"/Ts)) /(1 + 1), (5.44)

where the paramefer b is used to adjust the tail of fL(s”) to the correct asymptote,
are plotted together in Fig. 5.15ab. The use of (5.43) slightly overestimates < X? >
because it overestimates the exponential tails of f7(s”). The use of bin (5.44) on the
other hand provides an adjustment of the curve to match the measured exponential
tails at large values of s”. The improvement of the agreement between theoretical
curves and experimental data at large s” is thus obtained. The asymptotic behavior

of < X%(1) >~ (1 + 7/7,)%™™ at large time 7 is not observed yet, but expected.
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Figure 5.15a: The mean square displacement of particles, < X? >, for runl. “Ex-
perimental” data computed directly from Lagrangian histories are shown by symbols.
Predictions based on the similarity hypothesis with (5.43) and (5.44) are shown by
the dotted and dash dotted curves, respectively.
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Figure 5.15b: The mean square displacement of particles, < X? >, for run.
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Figure 5.16: Tube-like vorticity structures: constant surfaces with ||w|| > 40%||w||me=
are plotted for runl at 7/7 = 2.57 (Rey = 26, A/L = 9%).

5.3 Small-Scale Properties

In this section we study the small-scale properties of turbulence primarily from the
viewpoint of Lagrangian particle. An example of the small-scale vorticity structures
of turbulence are shown in Fig. 5.16 in which only constant surfaces of vorticity
magnitude with magnitudes > 40%||w||mqsr are plotted. As usual, tube-like or cigar-
like structures are observed. Merging of vortices in the presence of viscosity take

place constantly. It is these strong vorticity structures that determine other small-
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scale statistics of turbulence, although their own mechanism of formation is itself

“unclear. One of the purposes of the present research is to study the *effercts and the

Qrigiﬁ of these small-scale structures.

5.3.1 Growth Ratés and the Rate of Strain Tensor

The rate of the strain tensor, the symmetric part of the velocity gradient tensor,
is given by 'Sij = % (g% + g%f) The principal rates of strain will be denoted as
a, 3, and v with & > 8 > 7. We compute not only the principal rates but also the
growth rates of magnitudes of material line elements, ¢, and of the vorticity due to

the nonlinear stretching, o, that is

= 1d¢ —p.G..p. /p2
(=5 =Syt (5.45)
and
o= wiSijwj/wz. (546)

All rates are nondimensionalized by the square root of mean enstrophy, Q(7) =

\/ < |jw(&,7)||? > and the time after released by the dissipation time scale 7, at 7 = 0
(kmasn & 2 or t = ¢.), denoted as 7. The decay of Q(7) itself is shown in Fig. 5.17
and the evolution of the principal rates as well as the two growth rates following
fluid particles are showﬁ in Fig. 5.18ab. It is found that the dimensionless rates stay
approximately constant or approach to a constant value quickly after a transient time
period, a period required for particles to forget their initial conditions. The ratios are
about 0.39, 0.10, -0.49, 0.11,and 0.14 for < a > /Q, < B> /Q, <7y > /Q, < 0 > /Q,
and < ¢ > /Q respectively. We recall that Kolmogorov scaling predicts these rates
are on the order of square-root-mean enstrophy when Reynold number is large. Our
numerical results'suggest that it is also true even for flows with Reynolds numbers as
low as ours and for decaying flows. These ratios are observed by Girimaji and Pope

as well for stationary turbulence [28] except the rate < o > /Q which they didn’t

measure.
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Figure 5.17: The decay of square-root-mean enstrophy Q(t) = /< ||[w||2 >. Open
symbols are for runl and solid for run2 and 77 = 7,(%.).

The ratios of the principal rates, < a >:< f >:< v >, are about 4:1:-5 as the
same as those from Girimaji and Pope’s calculations, but different from those of 3:1:-4
observed by Ashurst et al. [3]. Ashurst [2] proposed a physical model of turbulence as
a collection of Burger vortices with strength I',/v = 96, where I, is the circulation,
using the latter set of ra.tios.‘ Recently Pullin and Saffman [52], starting with the
Lundgren-Townsend vortex model, predict many turbulence quantities. In particular,
using what they consider is the best set of values for the free parameters, they obtain
4:1:-5 for the principal rates. In estimating these ratios, both models assume (nearly)
axisymmetric vorticity structures created by an external straining field (-ar/2, 0, az)
in the polar coordinates, where a > 0 is the uniform rate of strain, and ignore the
axial variation by assﬁfning relatively long structures. The ratios of the principal

rates of strain tensors are therefore approximated as

<a>:<,(3>:<'y>=——g+-|?9|:a:—g—|cjg—[ (5.47)
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provided —?-{- lere] > a, where e,y = 25— ( ) However, volume averaging and even
time averagmg over a single vortex hlstory as well do not lead to a convergent lers]-
Ashurst instead uses the maximum value of |e,4| which is about 98?% occurring at
ar?[4v ~ 1.79 in (5.47). A choice of T',/v =~ 967 (more precisely 93.47) then gives
the ratios 3:1:-4. Pullin and Saffman, on the other hand, suggest approximating [e,¢|
by \/_e_z = \/cﬁ/_ = \/% Using their favored values of dimensionless numbers
I,/v = 100 and NR2/a = 0.6, they obtain a\/z_/ﬁ 2~ 1/9 and therefore < a >:<
B >:<y>=4:1:~5, where N in the model is the rate of creation of vortex length
per unit volume per unit time and R is a characteristic radius of the vortex structures.
An assumption made by Ashurst based on the numerical results computed by She,
Jackson and Orszag [62] is that the Burger vortex has a radius of \/m and a length
of 124/4v/a. (This is similar to assuming a value for N in Pullin and Saffman’s model.)
By assuming there exists on the average one Burger’s vortex within a spherical volume

of diameter 124/4v/a, i.e., assuming the volume fraction occupied by these Burger

* vorticies is (47r1//a 12\/41//&) (477 61/4v/a) ) = 1/24, Ashurst was then able to

2 _
calculate ¢ = 28%%96?” Use of Pullin and Saffman’s approximation for |e,s| with

Ashurst’s model then predicts the ratios as

L,/v 1. 1 L,/v

327v/3 0 2 32m/3

A value of I, /v = 194~ is then required for 3:1:-4 and 2507 for 4:1:-5.

1
<a><f><y>= —§—|— (5.48)

Thus the models suffer from having a number of free parameters and the fact that
there is no specific way of approximating [e,s|. The uniform rate a can be estimated
as < B >. The numerical result < 8 > /Q = 0.10 then implies a\/z//_e ~ 0.10 which
is close to the value of 1/9 favored by Pullin and Saffman.

The prediction of < > /2 on the other hand was first given by Batcherlor [7] who
believed the material line elements will eventually align with the principal direction
corresponding to the maximum principal rate; that is, < ( >=< «a >. Neither

our numerical results nor those of Girimaji and Pope [28] support this conjecture.
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Girimaji and Pope proposed that vorticity effects and nonpersisting property of the
" strain tensor are responsible for this disa,greenient. We will discuss this issue in the

next section after more numerical results have been given to shed more light on these

- effects.

5.3.2 Alignments of Vector Fields

The evolutions of the mean angles between the vorticity vectors and the principal
directions of the strain tensors are shown in Fig. 5.19. Those for the material line

elements are in Fig. 5.20. The mean angles are defined by
Oc oy = cos™! < | cos PoBv] > (549)

where ¢ is the angle between a vorticity vector or a material line element with the

principal directions, that is,

oS Gopy =L €opn/t (5.50)

or

COS Po gy = W - €4 5~/ |w] (5.51)

where e, g are the unit vectors in the principal directions of the strain tensor cor-
responding to the principal rates «, 8, and «. Therefore, 6, 4., = 60° when a vector
field is uniformly randomly directed. This definition of 8, g, is slightly different from
that in Girimaji and Pope’s study [28] in which < cos™! | cos ¢a 5] > is used instead.
In this latter case the mean angle is one radian for a random field.

Fig. 5.19 shows, as usually observed, that the vorticity vector is more likely aligned
with eg and its angle with e, is close to 60°, the mean of a random vector field.
The material line elements show different orientations. After a short transient time,
they settle down to a “steédy” aljgnment. Like the vorticity vectors, they are more

perpendicular to e, but are nearly equally aligned with e, and with eg. The “dip” in
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Figure 5.19: The evolutions of the mean angles, 8,5, = cos™ < |cos s >,
between the vorticity vectors and the principal directions of strain tensors. (a) runl

(b) run2.

the evolution of 8, found by Girimaji and Pope is also observed in our simulations.
Girimaji and Pope believe this “dip” is a transition state caused by vorticity effects.
They found that by not including the antisymmetric part of the velocity gradient,
ie.,

d¢;
— =1:5;; 5.52
that the “dip” disappears. To explore this point further, we examine the equations
of evolution of a material line element in new coordinates e’ = RTe, where R is the

transformation matrix which diagonalizes the strain tensor S. All primed quantities

in the following are relative to this new base. Considering £ = RT{ and

_DR

k=2 =RA, (5.53)

where A’ is an antisymmetric matrix whose dual vector —%EijkA;-j is the instantaneous

vector of rotation of the new base, one can write
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Figure 5.20: The evolutions of the mean angles, 0,5, = cos™! < |cosdapqyl >,

between the material line elements and the principal directions of strain tensors. (a)
runl (b) run2.

£I — —-AI£I + SI£I + Algl, (5.54)

where A is the antisymmetric part of the velocity gradient tensor; or by denoting the

diagonal elements of S’ by S], S, and S, one has

3 | I / 1 ! / ’ 1 ! /
Bu=S10 - (e +80) 6+ (5405 &,

2
. 1 1
By= 5 0+ (5 + A% ) 4= (i + %) £,
. 1 1
by =S, 4, - (gw; + Agl) m <§w; + A’23> ¢ (5.55)

From the incompressible Navier-Stokes equations, one can show that

R + !

, — U ifi £,

0, otherwise,

2 .
where II;; = %s_c— accounts for the anisotropic effects of the pressure gradients and
1 7 ! :

® = V25 comes from the dissipation terms. Since A’ is antisymmetric as well, the
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effects of the rotation of the principal directions of the strain tensor on the evolution
of a material line element is nothing more than modifying the antisymmetric part of
velocity gradieht tensor.

If both A’ and A’ are zero matrices, the growth rates of the components of material
line elements are just the principal rates of the strain tensor and therefore Batchelor’s
predictions follow, unless two principal rates become equal at some time so that the
principal direction corresponding to the most positive principal rate is thus switched
with another one. On the other hand, as discussed above, simulations of equation
(5.52) ignore A’ but keep A’ and show no “dip.” Ignoring A’ and keeping A’ instead,
we find the characteristic polynomial for (5.55) is

A3 4 N(S1Sh + 84S, + S4S1 + %wz) — (51858, + ide) =0, (5.57)

where w? = Wi + W + W and cw? = WES] + WS, + wWESE as before. If we further
assume that o equals to some principal rate, say S5 (numerical results suggest it
~ would most likely be the intermediate principal rate), the growth rates are then S
and —S55/2 + \/(S{ — 5%)? —w?/2. Therefore, two of the growth rates can be both
positive and about the same if (5] — S%)?/w? > 1. All features of Fig. 5.20 may be

possible with this “model” (a transient state and a competition among the growths
of the three cornpbnenté of a material line element).

We can see now from (5.55) that the alignment of a material line element is
actually determined by the balance between S’ and A’ — A’. The latter is in turn
determined by w;, S;;, and V2S;;. An investigation of the growth rates and alignments
conditioned on the vorticity magnitudes, w?, and the strain magnitudes, tr S?, might

provide more useful information for us as discussed in the following.

5.3.2.1 Rotation Effects

The distributions of the g‘rowth rates ¢ and o conditioned on the magnitudes of

vorticity are shown in Fig. 5.21 for run2 at three times — in the transient state as well
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Figure 5.21: The mean growth rates (a) ( and (b) o conditioned on the magnitudes
of vorticity w. 7/7,(t.) = + 1.56 e 584 A 17.53.

as in the “steady” state. Discarding the data at very small and very large vorticity
magnitudes which fluctuate significantly due to the small number of samples there,
o 1s seen to increase as w increases but, surprisingly, ¢ is nearly uncorrelated with
w. Although the definitions of both rates do not depend on the vorticity magnitude
explicitly, é correlation between strain magnitude and vorticity magnitude is expected
and therefore correlations between vorticity magnitude and growth rates are also
expected.

The mean angles between these vectors conditioned on w are shown in Fig. 5.23
and Fig. 5.24. At early time, the effect of vorticity is not yet dominant (the angles
show no dependence on w). The material line elements are simply stretched in e,
direction and compressed in e, direction at the time they are released, which causes
the rapid increase of { at small times. As time increases, the vorticity effect starts
to appear (see Fig. 5.24b). At small w, material line elements have a bias toward e,

as expected. As w increases (the vorticity effect increases), a competition between
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0, and 63 takes place and eventually material line elements tend to align with e
‘instead. The switch occurs at an w/Q1 =1 ~ 1.5. The material line element seems to
adjus.t its alignment in such a way so that ¢ is nearly independent of w, even though
the vorticity magnitude is correlated with straining magnitude.

The dependénce of the alignment of the vorticity vector on its own magnitude is
showﬁ in Fig. 5.21b and Fig. 5.23 and agree with previous findings. Basically a strong
bias toward eg is observed, especially when the vorticity is large. This observation has

been used in many existing models such as Ashurst’s as well as Pullin and Saffman’s

discussed above.

5.3.2.2 Effects of Straining Magnitudes

The mean growth rates conditioned on the straining magnitude S = /5;;S;; are
shown in Fig. 5.25. A nearly linear dependence of ( is observed. By examining the
definitions, we see that this strong correlation is not so surprising. One may write

£ = {(cos §,sin @ cos 1, sin @ sin 1)) in the coordinates (ex,€p,€y) and consider
27 T
¢ =4:8:4;]0% = a/o dib/ sin 6d0 sin® §(cos® ¢ — sin® ) P(8,; S)
)
27 T
— 'y/ dy / sin #d0(sin® § sin® ¢ — cos® 8) P(8,; S),
0 0

where P(8,4; S) is the ﬁrobability distribution function, conditioned on the straining
magnitude S, of the direction of a material line element relative to the principal di-
rections of the strain tensor, for example ( = 0if P(4,%;5) = 1. A linear dependence
of { on S (= /a? + B? + +2) implies that P(6,1;S) has only a weak dependence on
S. ;

The probability density function (p.d.f.) of the normalized straining magnitude
5 = (§— < S >)/os is shown in Fig. 5.26, where o is the variance. The p.d.f.
isbclose to a lognormal distribution as many other turbulent small-scale quantities.
Conditional mean angles for vorticity are shown in Fig. 5.27 and those for material

line elements are in ‘Fig. 5.28. The dependence of the mean angle of vorticity on
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Figure 5.25: The growth rates (a) ¢ and (b) o conditioned on the straining magnitude
S =4/5i8i. T/m(ts) =+ 1.56 e 5.84 A 17.53.

S is close to its dependence on w and very similar to that found by She [62] who
investigated the distribution of < cos? ¢ >. The dependence of £ on S, on the other
hand, changes somewhat, especially in the angle 6.,. At small S, it seems that the
material line elements are directed randomly, producing a small growth rate {. The
curves for cosf, and cosfs also intersect at an S in the range (0.5,1). This switch
of e, and ez must reduce the slope of the curves in Fig. 5.25a to some extent but
not so significantly as the vorticity effect does. Recall a slope & 0 in Fig. 5.21a was
observed.

Some conclusions are made. First the alignment of material line elements is ad-
justed by the vorticity or the rotation of the strain tensor (A’) in such a way that ( is
independent of |jw|]. The strong dependence on the straining magnitude S of growth
rates comes directly from their deﬁnitioné. The intersection of the distributions for
cos ¢, and cos ¢g in Fig. 5.24 and 5.28 suggests that the competition between 6, and

03 in Fig. 5.20 may also be explained by a switch of the principal directions e, and
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eg. The reason is not so obvious but will become clear when we show an example in

which the evolution of a material line element under the action of a Burger vortex is

studied.

5.3.3 Burger’s Vortex Model

We explore the evolution of the alignment of a material line element under the
action of Burger’s vortex model. In cylindrical coordinates, the material line element

is governed by

dl,  Loug
dt - r +(£ V)’U,T,
de L,
e R (A
dl
z _(p. 5.58
= (¢ Vs, (559)
where .
0 4 0 0
. =f — 3+ 2 . .59
(£-v) erar_i— r 00 +Ezaz (5.59)

We consider (u,, ug, u,) = (—ar/2,us(r), az), where a is the uniform rate of straining
and ug(r) is given by

ug(r) Lo (1 — ezp(—ar2/41/)) . (5.60)

= o
Denoting the initial z-component of the material line element as £,,, we define the

following dimensionless variables:

t=at, F=r/l,, i1s=uslal,, and
(ane,zz) = (er/gzoa ée/zzoazz/gzo)-

Equation (5.58) then becomes

: 7., (5.61)
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and the dimensionless azimuthal velocity is

o~

ag(m:%(1_ezp(—?2/1§2)), L 562)

where T' = —F-Z?-Z— and R? Ek &% are two of the three dimensionless parameters in
problem. The otz}oler dimensionle;; parameter, 7,, is the ratio of the initial r-component
of the material particle, r,, to £,,.

The particle pathline, x = (r(¢), 6(t), 2(¢)), is determined by

dx

7{? =Uu= (UT,UQ,UZ). (5-63)

In this flow 7#(f) = 7,exp(—%/2). The system of equation (5.61) is thus nonau-
tomonous. To reduce the number of free parameters, we will assume (5.48) with
T'/v = 1441/3% (~ 250%). Consequently I' = 361/3R2. The competition between
uniform straining (a) and straining due to the vortex (e,q) is then characterized by
'R and the initial condition is controlled by the parameter 7, = 5/,

Equation (5.61) was first solved with a random initial orientation of £ with fixed B
and 7, (by fourth order Runge-Kutta method). The results did not differ qualitatively.
Therefore, to study the effect of R and 7,, we then choose initial angles, o, dg, by
defined in the previous sections, to be cos"lﬁ ~ 54.7°. With R fixed (=1) and 7,
varied, the evolutions of these angles are shown in Fig. 5.29 and those with 7, fixed
(=1) and R varied are in Fig. 5.30. .

The growth of £, is simply exponential (~ exp(f )), but £, and £y are stretched
by e;s and compressed by du,/dr. The evolutions of £, and £y are similar due to
the interaction through the terms £yug/r and —£,ug/r, respectively. In this flow the
principal directions of the strain tensor are e, (e, + e5)/v/2, and (e, — e¢)/+/2 with
corresponding principal rates a, —a/2 + ey, and —a/2 — e,g, where €4 1s

Lol ) 4 oL el ) (5649

~

a 272
Therefore, e, = eg if —a/2 + |ers| > a; otherwise, it is e,. In the flow created by a

single Burger vortex and the uniform straining field, both cases exist. In addition, e,
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and e, switch whenever e,s changes signs. For simplicity, In Fig. 5.29 and 5.30 we
plot angles defined as cos™4,/¢, cos™ (¢, + ee)/\/iE; and cos~!({, — £)/+/2¢ which
are _continubus; v A

The successive stretching and compression of £, and £; are reflected in the oscil-
lation appearing in Fig. 5.29 and Fig. 5.30. This results in negligible net growth of
£, and £ cémpared to the exponential growth of £,. A larger 7,, i.e., the particle is
initially farther from the center of the vortex, yields a delay of the fast oscillations
as observed in Fig. 5.29. Moreover, the amplitudes of oscillations are larger when
a fluid particle is farther away, so that the material line element components in the
(r,8) plane are significantly stretched and compressed also. On the other hand, a de-
crease in R implies a decrease in e, (R ~ T ~T/a). The uniform straining becomes
dominant and thus the oscillations caused by rotation are reduced.

We conclude that the above observations are not, obviously, the same as those
observed for particles in turbulent flow (Fig. 5.20) in which 6, = 03 and 8, is closer to
- 90°. But such particles are subject to the same effect of rotation on alignment as that
revealed by Fig. 5.24. First of all, we believe the amplifications of some components
of £ are much reduced in the process of successive stretching and compression due to
the rotation effect. Moreover, if we consider an averaging which takes into account
the switch of the'principal directions, for example e, sometimes is e, and sometimes
is eg in the Burger’s vortex model, the averaged angles < ¢, > and < ¢3 > in the
model over the history of a particle for a finite period of time, could be made very
close. Thus the observed competition between 8, and 65 in Fig. 5.20 could also be a
result of the averaging process and the switch of principal directions, in addition to

being a result of the vorticity effect (A’) and the rotation effect of the strain tensor

(A’) as discussed in Sec. 5.3.2.
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Figure 5.29: The evolutions of angles ¢, under the action of Ashurst’s Burger
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5.4 Origin of Vorticity Structures

Figure 5.31: Pathlines of the selected particles (L) #1 (M) #2 (R) #3.

We attempt to observe the origin of the small-scale vorticity structures in turbu-
lence by following 16,384 material particles. Particles are selected for further inves-
tigation if their vorticity satisfies w?/ < w? > > 18 at any 7. A total of 16 particles
‘are so selected. We then examine the histories of these 16 particles and choose three
of them for a detailed study of the surrounding vorticity structures. The pathlines
of the three particles are shown in Fig. 5.31. The evolution of particular quantities
associated with these particles are shown in Flg 5.32abc. The histories of the other
13 particles are either similar to these or less interesting. The results presented here
surely can. not be taken as a serious quantitative study, but we believe this can help
in understanding the physics of turbulence.

As seen, particle #1 has a peak in its evolution of w?/ < w? > and particle #2
has two. The time scale for an excursion is seen to be about one initial eddy-turnover
time (7,(t.)). Particle #3, on the other hand, is continuously stretched and has a
montonically increasing w?/ < w? >. Notice that the cosine of the angle between
the vorticity vector and es is very close to one during the peak times, consistent
with the previous observations as shown in Fig. 5.23. The material line elements on
the other hand show no bias toward e, even during the peak times. In particular,
the oscillations appeafing in the evolution of cos ¢, of particle #2 support our beliefs

concerning the rotation effects on the alignment of material line elements as discussed
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Figure 5.32a: History of particle #1. T * = T,(t.).

in the previous sections.

From Fig. 5.33 to Fig. 5.35 vorticity structures, defined as vorticity regions with
lwl] > 50%||w||maz, are plotted at a series of times. The magnitudes are represented
by colors, decreasing from red to yellow to green to blue, scaled at each particular
time. Shown together is the particle pathline (open circles) with their initial positions
indicated by solid square symbol, and their positions at each particular time, at which
vorticity structures are superposed, by solid circles. The reader may need these
symbols to orient themselves in these 3D plots. The boxes shown are subsets of the
1282 data set which enclose the particle pathline. The box for particle #1 consists of
31 x 16 x 26 grid points; 50 x 31 x 31 grid points are required for particle #2 and
51 x 26 x 16 for particle #3. |

In the neighborhood of the initial position of particle #1, there exist many vorticity
structures which quickly mergebtogether and catch up to the particle. The peak

observed in the particle’s history starts to fall off as the structure decays to some
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extent and the particlé no longer moves together with the structure. In the case of
particle #2, a small vorticity blob is first formed (7/7=0.513) and seems to attract
the particle when the first peak begins. The particle stays within the structure as the
structure graduall& changes its ishape and merges with other structures. A sheet-like
structure is created when two tube—like‘ structures merge with each other (7/7 =
0.822 and 1.027). This sheet structure is then diffused and becomes again tube-like
(1/7=1.438). Apparently the interaction in the neighborhood of particle #2 is so
strong that the second peak is created. The 3D plots for the final two times suggest
that more peaks can be expected if the tracing is continued because the interactions
among vortex structures are still strong. Similar phenomena are observed following
particle #3. In particular, a sheet structure is observed (7/7* = 0.822 and 1.027),
which gradually becomes a tube (7/7*=2.397). Particle #3 remains close to the sheet
as its vorticity begins to be amplified. It stays inside the structure till the end of the
simulation. The lifetime of these vorticity structures is fairly long (O(7,)). Vortex
lines from some of the structures are shown in Fig. 5.36. The lines appear relatively

straight when |jw]| is large and more spiral when ||w|| is smaller.



T/{;r:: = 0.822 T/g;* — 1.027

Figure 5.33: (1) Vorticity structures in the neighborhoods of particle #1 which loca-
tion at the particular time is indicaled by the solid circle and which initial position
is presented as the solid square; 7 = 7, (t.) = 5.84.



176

rfT* =122 T/7T; =1.438

7T = 1.643

Figure 5.33: (2) Vorticity structures in the neighborhoods of particle #1 which loca-
tion at the particular time is indicated by the solid circle and which initial position
is presented as the solid square; 7" = T,((,) = 5.84.



Tt r/T; = 0.205

L r/Tx =0.513
7Ty = 0.411

Figure 5.34: (1) Vorticity structures in the neighborhoods of particle #2 which loca-
tion at the particular time is indicated by the solid circle and which initial position
is presented as the solid square; 7 = T,(¢.) = 5.84.



Figure 5.34: (2) Vorticity structures in the neighborhoods of particle #2 which loca-
tion at the particular time is indicated by the solid circle and which initial position
is presented as the solid square; 7" = 7,(t.) = 5.84.
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7T = 1.849

7/T} = 2.056

7T = 2.926
Figure 5.34: (3) Vorticity structures in the neighborhoods of particle #2 which loca-

tion at the particular time is indicated by the solid circle and which initial position
is presented as the solid square; 7 = T,(t..) = 5.84.



T = 0.822
/T = 0.411 /T,

/T =1.027

Figure 5.35: (1) Vorticity structures in the neighborhoods of particle #3 which loca-
tion at the particular time is indicated by the solid circle and which initial position
is presented as the solid square; 7* = T,(.) = 5.84.
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/T = 1.438 /T = 1.643

{T* = 2.055 1= 2397

Figure 5.35: (2) Vorticity structures in the neighborhoods of particle #3 which loca-
tion at the particular time is indicated by the solid cirycle and which initial position
is presented as the solid square; 7* = To(t.) = 5.84.



r)Tx = 1438

7/T* = 2.055

/T = 2.397

Figure 5.36: The vortex lines of the vorticity structures in the neighborhoods of
particle #3 which location at the particular time is indicated by the solid circle and
which initial position is presented as the solid square; 7* = 7,(t.) = 5.84.
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5.5 Conclusions |

The origin of intense vorticity structures is observed by tracking material particles.
The conjecturé according to what was observed is the folloWing. Little vorticity blobs
are created first. Under the stretching of the nonlinear forces, they gradually become
tube-like. When tube-like structures merge together, sheet-like structure is observed
temperarily. The sheet-like structures gradually become tube-like again because of
the diffusion and/or the instability of the sheet-like structures at later times.

The combination of these vorticity structures causes successive stretching and
compression of the material line element vectors. The component which suffers more
continuous stretching thus dominates. This component is either £, or £ determined
by the relative magnitude of the local straining rate (e, in the Burger vortex model)
to the background straining rate (a in the model). The balance of the symmetric part
- with the antisymmetric part of the velocity gradients and the rotation as well as the
switch in time and/or in space of the principal directions of the strain tensors cause
Ly = [ﬁv > £, and a mean growth rate 8 < { < a. |

The mean growth rates of magnitudes of material line elements and vorticity
vectors by the nonlinear force are found to be proportional to the square-root of
mean enstrophy during the decay of turbulence. So are the mean principal rates of
strain tensors. The proportional coefficients are 0.39,0.10, and -0.49 for the principal
rates and 0.11 and 0.14 for the growth rates.

Velocity autocorrelation functions, Lagrangian and Eulerian, spatial and tempo-
ral, are computed. The measured Eulerian dissipation times agree with Tennekes’ pre-
diction under Taylor’s “frozen” hypothesis and his independence hypothesis. It was
also proved numerically that the Lagrangian autocorrelation functions are self-similar
‘in a new time variable. The similarity is then used to predict particles’ diffusion in

decaying turbulent flows.
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Chapter 6_’

Conclusions and Future Work

6.1 Conclusions

In the present research, we have investigated the fundamental physics of homo-
geneous isotropic turbulence numerically and theoretically. The conclusions of each

aspect are summarized as follows.
1. Use of the ABC Flows as a Dynamo

In order to search for a possible vortex pattern for a turbulent flow, Townsend [70]
explored the solution of the vorticity equations in which the velocity is assumed to
be a known large-scale motion while the vorticity solution represents the small-scale
motion evolving under the action of the known large-scale motion. Vortex patterns
such as tubes and sheets were found in this way. In this thesis, we assume the large-
scale motion to be the so-called ABC flow and solve the same problem numerically.
The correlation between the geometry of thé vorticity solutions and the features of
the ABC flow was investigated.

It was observed in all cases that the decay of vorticity by dissipation is overcome

by the stretching (dynamo actions). The geometry of intense vorticity regions (struc-
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tures) is dominated by the external straining in a way as described as follows. When
the ABC flows are integrable, amplifications of vorticity are focused within a small
»neig.hbo’r,hood of the heteroclinié orbits. Tube-like vorticity structures are observed,
- although those heteroclinic orbits form planes. When the ABC flows have stagnation
points, tube-like structures are observed around the local unstable manifolds of the
a-type stagnation points (which have one positive and two negative eigenvalues). The
result is not so surprising because the local flow pattern (u) near an a-type stagnation
point of the ABC flow is similar to one of the flow patterns used by Townsend which
gives him the tube-like vorticity solution. When there are no stagnation points in-
volved, amplifications are found to be confined within the chaotic regions of the ABC
flows. We have also found that vorticity vectors of very large mangitudes are nearly
aligned with the principal direction corresponding to the most positive principal rate
~of the local strain tensor of the ABC flow.

The above results suggest the small-scale structures are completely dominated by
the external large-scale motion. In numerical simulations of incompressible isotropic
homogeneous turbulence, it has been observed that, on the average, two of the prin-
cipal rates of the strain tensors are positive. Townsend’s work suggests sheet-like
structures. According to the observations in the present research, a tube-like struc-
ture with a flattened cross section is also possible. Nonetheless, in both studies, the
induced fluid motion by the small-scale motion, i.e., the effects of the small-scale
motion on the imposed large-scale motion, is ignored. The nonlinear interactions
between motions of different scales in a turbulent flow are, therefore, not modelled

properly.
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2. Power-Law Energy Decay of Isotropic Homogeneous Turbulence

Over the years, a power-law energy decay of a turbulent flow has been observed
from experimeﬁtal as well as ﬁumerical data. Theoretically, decay éxponents of 1,6/5,
3/2,10/7, and others have been proposed. In this thesis, we performed high-resolution
numerical simulations on the Intel Delta parallel computer of incompressible isotropic
homogeneous turbulence and found two decay exponents, 1.2 and 1.5. We examined
classic theories, which predict a power-law energy decay, by measuring and comparing
dynamic quantities such as skewness S = —A3k"(r = 0) and G = A*fIV(r = 0), where
A is Taylor’s microscale, and f(r,t) and k(r,t) are the double and triple velocity
autocorrelation functions, and we found no theory in agreement. New theories are
thus required.

A power-law energy decay can be obtained by assuming a self-similar solution to
the Kérmdn-Howarth equation for isotropic homogeneous turbulence. A self-similar
~ solution proposed by Von Kdrmdn and Howarth of the form f (r,t) = f(r/A) and
k(r,t) = k(r/)) requires a decay exponent n=1, which was not observed. A self-
similar solution of the form f(r,t) = f(r/)) and k(r,t) = Re;'k(r/)) is compatible
with an arbitrary decay exponent n, but suggests a stronger nonlinear interaction
with decreasing Reynolds number. As a modification, we propose a new self-similar
solution of the form f(r,t) = fi(r/\)+Re$™ fo(r/)) and k(r,t) = Reg ko(r/A). This
self-similar solution is shown to be consistent with a power-law energy decay with an
arbitary decay exponent and can be physically reasonable with & > 0, i.e., it predicts
a stronger nonlinear interaction with increasing Reynolds number. In addition, the
predicted behavior of S and G agrees with the numerical results.

A transitional state, during the initial period of decay and before the flow en-
ters into the proposed‘ similarity state, was observed in our numerical simulations.
For such a transitional state, we conjecture that a self-similar solution of the form

f(ryt) = filr/A)+Res™ fz‘(r/)\)v and k(r,t) = Re;" ki(r/)\)+ Re$ ko(r/X) may apply.
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The combination of the two proposed self-similar solutions and the numerical result
" that a = 0, therefore, suggests that during the decay, the skewness increases with de-
creaéing,Reynql‘ds number, reaches a maximum value, and then stays approximately
- constant as Reynolds number decreases further.

’I‘he Reynolds number Re, in our numerical simulations ranges from 10 to 50,
which is probably not large enough to separate characteristic lengthscales of the
energy con'ta,ining range and the dissipation range, and, therefore, the proposed self-
similarity, involving only one lengthscale, works reasonably well. For turbulence with
very large Reynolds number, we expect that there exist more than one characteristic
lengthscale.

A candidate for the characteristic lengthscale of large eddies is the lengthscale £ ~
ARe) appearing in the empirical equation of energy decay of turbulence, i.e., d¢?/dt ~
¢/ L, while Kolmogorov dissipation lengthscale 5 is chosen to be the characteristic
lengthscale of small eddies. Using kARe) and kn as the self-similar variables, we
propose an energy spectrum of the form E(k) ~ ¢*ARex Y ;=0 Re;jﬁFj(k/\Re,\) at
small wave numbers and of the form E(k) ~ (e®)/4 3, Re}jﬂG’j(kn) at large wave
numbers, where F; and G;, j=0,1,2,- - -, are self-similar functions of variables kARe)
and kn respectively. This particular energy spectrum was shown to be consistent with
a power-léw energy decay and with the spectral Kéarméan-Howarth equation.

Finally we show that the above similarity of the energy spectrum at large wave
numbers and the observation of an exponential tail of the energy spectrum of the
form (kn)>2E(kn,t)/(ev®)'/* in the far-dissipation range can be used to predict the
skewness of the longitudinal velocity derivative for turbulence with a power-law energy

decay.
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3. Lagrangian Studies

In order to collect Lagrangian statistics which are very helpful in understanding
turbulent transport, we developed third-order finite difference interpolation schemes
to track fluid particles and simulate the motion of material line elements. In addition,
we compute the Lagrangian double velocity autocorrelation function (fz), the two-
time-one-point (fg), and two-point-one-time (f) Eulerian autocorrelation functions.
The numerical results show that fg is smaller than fi at small time lags, suggesting
that fr, is more persistent, in agreement with the advection hypothesis proposed by
Tennekes. The function fg, however, has a longer tail than fr at both positive and
negative large time lags. It implies that more energy is contained within eddies of
small frequencies for an Eulerian observer than for a Lagrangian observer.

‘With the observation of a power-law energy decay, i.e., ¢ ~ ¢%(1 + 7/7,)™™, we
reconsider the classical hypothesis of Batchelor and Townsend that u(7)(1+ 7/7,)"/?
is a stationary random function of some new time variable s, where u(7) is particle’s
velocity and ds = dr/7,. With the assumption that 7 ~ 77, where 7z is the La-
grangian integral time scale, and the assumption that ¢77, < ARey, we find 7, = 747,
and therefore, we obtain a self-similar Lagrangian velocity autocorrelation function
of variable s = log(1 4 7/7,), as observed from our numerical results. This similarity
enables us to predict particle dispersion in decaying turbulence by evoking Taylor
classical work of 1921. The long-time growth of the mean square displacement of
fluid particles is o 72°". Note the growth is o< 7 in a stationary turbulence. The
agreement of the theoretical prediction with the numerical data was observed.

In addition to the Lagrangian velocity autocorrelation function, Lagrangian statis-
tics of certain small-scale quantities of decaying turbulence were collected. We remark
the results as follows. The mean principal rates of the strain tensor were found to be

proportional to the square root of mean enstrophy. The proportional coefficients are

about 0.4, 0.1, and -0.5, remaining constant during the decay. The ratios of the mean
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principal rates are 4:1:-5 which are as the same as those measured by Girimaji and
" Pope from a simulation of stationary turbulence but different from f,hose measured
by Aéhui‘st who measured 3:1:-4. These ratios, (4:1:-5), could be used as a check or as
an input to phenomenological models of turbulence such as Ashurst’s Burger vortex
model and Pullin and Saffman’s Lundgren-Townsend vortex model.

The mean growth rate of the magnitude of a material line element and that of the
magnitude of vorticity due to the nonlinear forces are found proportional to the square
root of mean enstrophy as well. The proportional coefficient is 0.10 for vorticity and
0.14 for material line elements and both also remain nearly constant during the decay.

The mean absolute values of the cosines of the angles between a material line
element and the principal directions of the strain tensor corresponding to the most
stretching and the intermediate principal rates are found about the same. This fact
and the observed difference in the line element growth rate and the maximum principal
rate imply the importance of vorticity effects and rotation effects of the strain tensor
on the evolution of a material line element. The switch of principal directions could
be a factor also. The evolution of a material line element under the action of a Burger
vortex is also studied. The results show that a process of successive stretching and
compression is caused by the above effects, resulting in a net small amplification of
the compohents in the plane normal to the vortex. The component aligned with the
axis of the vortex, which is the principal direction either corresponding to the largest
principal rate or to the intermediate one, depending on the relative magnitude of the
local straining to the external straining, therefore becomes dominant.

Numerical results show that there is no correlation between the growth rate of
the magnitudes of material line elements with the vorticity magnitudes. The growth
rate, on the other hand, increases approximately linearly with straining magnitudes.
Further investigation is needed to explain these phenomena.

Finally by taking advantage of the flow visualization tools and following material

particles, we were able to observe the origin of high-magnitude vorticity structures in
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turbulence. Vortex sheets are observed temporarily when tube-like structures merge
together, but they gradually become tube-like at later times because of the diffusion

and/or the insyt,a,bilitonf the sheet-like structures.

6.2 Future Work

A few observations follow regarding future investigations of the physics of homo-
geneous isotropic turbulence.

1. Decaying turbulence

a. It was observed in chapter4 that the periodicity of the flow contaminates seri-
ously the velocity autocorrelations and therefore the numerical results can not
be used to verify the proposed similarity form, in particular at large separations.
Simulations of decaying homogeneous turbulence with Reynolds numbers high
enough so that the integral lengthscales are relatively small compared to the
box size and so that the eddies remain isotropic should be performed in the

future when they become possible.

b. The similarity forms found herein for the double and triple velocity autocorrela-
tion functions are applicable to flows with small and/or intermediate Reynolds
number; while Kdrmdn-Howarth’s similarity may be expected for flows with
very large Reynolds numbers. Also, we have discussed the possibility that
George’s similarity may be a transient state during the initial period of decay.
Future research could be directed towards classifying all the possible self-similar
solutions of the Kdrmdn-Howarth equation, in identifying the range of valid-

ity of these solutions, and studying how turbulence passes from one state to

another.
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2. Lagrangian studies

a. The history of a siﬁgle particle shows that the material line element is stretched
and compressed succeSsively, resulting in a net positive growth. The charac-
teristic time period and the characteristic growth rate during the stretching

- periods and/or compression periods must characterize in some way the lifetime
of nearby vorticity structures and the dispersion of particles by turbulence. A

study along these lines should be carried out in the future.

b. The Lagrangian statistics of the small-scale properties of turbulence are valuable
in helping subgrid modellers select free parameters in their models. It was
found the ratios of principal rates of the strain tensor are 4:1:-5 and many
other important rates are proportional to the square root of mean enstrophy
in decaying as well as stationary turbulence. However the mean growth rate of
the magnitude to a material line element is even found to be uncorrelated with
the magnitude of the vorticity. This information and more should be used in

the development of subgrid models.

c. We know the rotation of the strain tensor acts on the material line element like
a vorticity vector, but how does the strain tensor rotate as we follow a material

particle? An invéstigation of the Lagrangian history of the strain tensor may

help answer these questions.

d. Finally, the particle’s tracing scheme can be easily extended to simulate the
evolutions of material surfaces and material volumes so that applications to

turbulent combustion problems can be made.



192

References

[1] V.I. Arnold. C.R. Acad. Sci. Paris, 261, 1965.
[2] Wm.T. Ashurst. Is turbulence a collection of burgons? Phys. Fluids, 1992.

[3] Wm.T. Ashurst, A.R. Kerstein, R.M. Kerr, and C.H. Gibson. Alignment of vor-

ticity and scalar gradient with strain rate in simulated navier-stokes turbulence.

Phys. Fluids, 30, 1987.

[4] G.J. Barenblatt. Similarity, Self-Similarity, and Intermediate Asympototics.
Plenum, New York, 1979.

[5] G.J. Barenblatt and A.A. Gavrilov. On the theory of self-similar degeneracy of
homogeneous isotropic turbulence. Sov. Phys. JETP, 38, 1974.

[6] G.K. Batchelor. Energy decay and self-preserving correlation functions in

isotropic turbulence. Quarterly of Applied Mathematics, 6, 1948.
[7] G.K. Batchelor. The Theory of Homogeneous Turbulence. Cambridge, 1953.

[8] G.K. Batchelor and I. Proudman. The large-scale structure of homogeneous

turbulence. Proc. Soc. London Ser. A, 248, 1956.

[9] G.K. Batchelor and A.A. Townsend. Decay of isotropic turbulence in the initial
period. Proc. Roy. Soc. London, 193A, 1948.

[10] G.K. Batchelor and A.A. Townsend. Decay of turbulence in the final period.
Proc. Roy. Soc. London, 194A, 1948.



193

[11] G.K. Batchelor and A.A. Townsend. Decay of vorticity in isotropic turbulence.
Proc. Roy. Soc. A, 190, 1948. ‘

"~ [12] G.K. Batchelor and A.A. Townsend. Turbulent diffusion. Surveys in Mechanics,

1956.
[13] B.J . Bayly. Infinitely conducting dynamics and other horrible eigenproblems.
[14] R. Benzi, G. Paradin, G. Parisi, and A. Vulpiani. J. Phys. A, 17, 1984.

[15] F.H. Champagne. The fine-scale structure of the turbulent velocity field. J.
Fluid Mech., 86, 1978.

[16] S. Childress. New solutions of the kinematic dynamo problem. J. Math. Phys,
11, 1970.

[17] S. Corrsin. Turbulent dissipation fluctuations. Phys. Fluids, 5, 1962.

[18] S. Corrsin. Estimates of the relations between eulerian and lagrangian scales in

large reynolds number turbulence. J. Atm. Sciences, 20, 1963.

[19] S.W.H. Cowley. Radio Sci., 8, 1973.

[20] P.E. Dimotakis. Some issues on turbulent mixing and turbulence. GALCIT
Report, FM93-1a, 1993.

[21] T. Dombre, U. Frisch, J.M. Greene, M. Henon, A. Mehr, and A.M. Soward.
Chaotic streamlines in the abc flows. J. Fluid Mechanics, 167, 1986.

[22] N. Dunford and J.T. Schwartz. Linear Operators I. 1958.

[23] V. Eswaran and S.B. Pope. An examination of forcing in direct numerical sim-

ulations of turbulence. Computers and Fluids, 16, 1988.

[24] J.M. Finn and E. Ott. Chaotic flows and fast magnetic dynamos. Phys. Fluids,
31, 1988.



194

[25] U. Frisch, P.L. Sulem, and M. Nelkin. J. Fluid Mechanics, 87, 1978.

[26] D. Galloway and U. Frisch. Dynamo action in a family of flows with chaotic
~ streamlines. Geophys. Astrophys. Fluid Dynamics, 36, 1986.

[27] W.K. George. The decay of homogeneous isotropic turbulence. Phys. Fluids A,
4, 1992.

[28] S.S. Girimaji and S.B. Pope. Material-element deformation in isotropic turbu-

lence. J. Fluid Mechanics, 220, 1990.

[29] T. Gotoh, R.S. Rogallo, J.R. Herring, and R.H. Kraichnan. Lagrangian velocity
correlations in homogeneous isotropic turbulence. Turbulence Research Center,

Stanford, 1992.

[30] D. Gottlieb and S.A. Orszag. Numerical Analysis of Spectral Methods: Theory
and Applications. 1981.

[31] S.R. Hanna. Lagrangian and eulerian time-scale relations in the daytime bound-

ary layer. J. Appl. Met., 20, 1981.
[32] W. Heisenberg. Zur statischen theorie der turbulenz. Z. Physik, 124, 1948.
[33] J.O. Hinze. Turbulence. McGRAW-HILL, 1975.

[34] Y. Kaneda and T. Gotoh. Lagrangian velocity autocorrelation in isotropic tur-

bulence. Phys. Fluids A, 3, 1991.

[35] R.M. Kerr. Velocity, scalar and transfer spectra in numerical turbulence. J.

Fluid Mechanics, 211, 1990.

[36] S. Kida and Y. Murakami. Kolmogorov similarity in freely decaying turbulence.
Phys. Fluids, 30, 1987.



195

[37] A.N. Kolmogorov. Dissipation of energy in locally isotropic turbulence. C.R.
Acad. Sci. U.R.S.S., 32, 1941. '

[38] A.N. Kolmogorov. The local structure of turbulence in incompressible viscous

fluid for very large reynolds numbers. C.R. Acad. Sci. U.R.S.S., 30, 1941.

[39] A.N. Kolmogorov. On degeneration of isotropic turbulence in an incompressible

viscous liquid. C.R. Acad. Sci. U.R.S.S., 31, 1941.
[40] A.N. Kolmogorov. J. Fluid Mechanics, 13, 1962.

[41] L.G. Loitsianskii. Some basic laws of isotropic turbulent flow. Natl. Advisory
Comm. Aeronaut. Tech. Mem., No. 1079, 1945.

[42] T.S. Lundgren. Strained spiral vortex model for turbulent fine structure. Phys.
Fluid, 25, 1982.

[43] B. Mandelbrot. J. Fluid Mechanics, 1976.

[44] N.N. Mansour and A.A. Wray. Decay of isotropic turbulence at low reynolds
number. NASA Ames Research Center, 1993.

[45] C. Meneveau and K.R. Sreenivasan. Phys. Rev. Lett., 59, 1987.

[46] H.K. Moffatt and M.R.E. Proctor. Topological constraints associated with fast
dynamo action. J. Fluid Mechanics, 154, 1985.

[47) A.M. Oboukhov. On the distribution of energy in the spectrum of turbulent
flow. Compt. rend.acad.sci URSS, 32, 1941.

-[48] A.M. Oboukhov. J. Fluid Mechanics, 13, 1962.

[49] S.A. Orszag. Numerical simulation of incompressible flows within simple bound-
aries. i. galerkin (spectral) respresentations. Studies in Applied Mathematics, L,

1971.



196

[50] S.A. Orszag. Comparison of pseudospectral and spectral approximation. Studies

in Applied Mathematics, L1, 1972.
[51] Y.H. Pao. Phys. Fluids, 8, 1965.

[52] D.I Pullin and PG Saffman. On the lundgren-townsend model of turbulent fine
scales. Physical Fluid A, 5, 1993.

[53] J.J. Riley and G.S. Patterson. Diffusion experiments with numerical integrated

isotropic turbulence. Phys. Fluids, 17, 1974.

[54] G.O. Roberts. Spatially periodic dynamics. Philos. Trans. R. Soc. London, 266,
1970.

[55] R.S. Rogallo. Numerical experiments of homogeneous turbulence. NASA Tech-
nical Memorandum, 81315, 1981.

[56] S.G. Saddoughi and S.V. Veeravalli. Local isotropy in turbulent boundary layers
at high reynolds numbers. CTR Manuscript 142, Stanford, 1993.

[57] P.G. Saffman. An approximate calculation of the lagrangian auto-correlation

coefficient for stationary homogeneous turbulence. Appl. Sci. Res. A, 11, 1962.

[58] P.G. Saffman. On the fine-scale structure of vector fields convected by a turbulent
fluid. J. Fluid Mechanics, 16, 1963.

[59] P.G. Saffman. The large-scale structure of homogeneous turbulence. J. Fluid

Mechanics, 27, 1967.

[60] Y. Sato and K. Yamamoto. Empirical equations for the structure of isotropic

tﬁrbulence. J. Chem. Engng. Japan, 16, 1983.

[61] Y. Sato and K. Yamamoto. Lagrangian measurement of fluid-particle motion in

an isotropic turbulent field. J. Fluid Mechanics, 175, 1987.



197

[62] Z. She, E. Jackson, and S.A. Orszag. Structure and dynamics of homogeneous
turbulence: Models and simulations. Proc. R. Soc. Lond. A, 434, 1991.

[63] D.J. Shlien and S. Corrsin. A measurement of lagrangian velocity autocorrelation

in approximately isotropic turbulence. J. Fluid Mechanics, 62, 1974.

[64] L.M. Smith and W.C. Reynolds. The dissipation-range spectrum and the
velocity-derivative skewness in turbulent flows. Phys. Fluids A, 3, 1991.

[65] M.R. Smith, R.J. Donnelly, N. Goldenfeld, and W.F. Vinen. Decay of vorticity

in homogeneous turbulence. 1993.

[66] C.G. Speziale and P.S. Bernard. The energy decay in self-preserrving isotropic
turbulence revisited. J. Fluid Mechanics, 241, 1992.

[67] G.I. Taylor. Diffusion by continuous movements. Proc. London Math. Soc. Ser.
2, 20, 1922.

[68] H. Tennekes. Simple model for the small-scale structure of turbulence. Phys.

Fluids, 11, 1968.

[69] H. Tennekes. Eulerian and lagrangian time microscales in isotropic turbulence.

J. Fluid Mechanics, 67, 1975.

[70] A.A. Townsend. On the fine-scale structure of turbulence. Proc. Roy. Soc.
(London), A208, 1951.

[71] Th. von Karman and L. Howarth. On the statistical theory of isotropic turbu-
lence. Proc. Roy. Soc. London, 164A, 1938.

[72] P.K. Yeung and S.B. Pope. An algorithm for tracking fluid particles in numerical

simulations of homogeneous turbulence. J. Computational Physics, 79, 1988.

[73] P.K. Yeung and S.B. Pope. Lagrangian statistics from direct numerical simula-

tions of isotropic turbulence. J. Fluid Mechanics, 207, 1989.



198

[74] Ya.B: Zeldovich, A.A. Ruzmaikin, and D.D. Sokoloff. Gordon and Breach, 1983.



