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Abstract

I. Statistical mechanics of bubbly liquids. The dynamics of bubbles at high
Reynolds numbers is studied from the viewpoint of statistical mechanics. Individual
bubbles are treated as dipoles in potential flow. A virtual mass matrix of the system
of bubbles is introduced, which depends on the insfantaneous positions of the bubbles,
and is used to calculate the energy of the bubbly flow as a quadratic form of the bub-
bles’ velocities. The energy is shown to be the system’s Hamiltonian and is used to
construct a canonical ensemble partition function, which explicitly includes the total
impulse of the suspension along with its energy. The Hamiltonian is decomposed into
an effective potential due to the bubbles’ collective motion and a kinetic term due
to the random motion about the mean. An effective bubble temperature—a measure
of the relative importance of the bubbles’ relative to collective motion—is derived
with the help of the impulse-dependent partition function. Two effective potentials
are shown to operate: one, due to the mean motion of the bubbles, dominates at low
bubble temperatures where it leads to their grouping in flat clusters normal to the
direction of the collective motion, while the other, temperature invariant, is due to
the bubbles’ position-dependent virtual mass and results in their mutual repulsion.
Numerical evidence is presented for the existence of the effective potentials, the con-
densed and dispersed phases and a phase transition.

I1. Behavior of sheared suspensions of non-Brownian particles. Suspensions
of non-Brownian particles in simple shear flow of a Newtonian solvent in the range of
particle phase concentration, ¢, from 0.05 to 0.52, are studied numerically by Stoke-
sian Dynamics. The simulations are a function of ¢ and the dimensionless shear rate,
4* which measures the relative importance of the shear and short-ranged interparticle
forces. The pair-distribution functions, shear viscosity, normal stress differences, sus-
pension pressure, long-time self-diffusion coefficients, and mean square of the particle

velocity fluctuations in the velocity-gradient and vorticity directions are computed,



v
tabulated and plotted. In concentrated suspensions (¢ > 0.45), two distinct mi-
crostructural patterns are shown to exist at the highest and lowest shear rates. At
4* = 0.1 the particles form hexagonally packed strings in the flow direction. As ¥* in-
creases, the strings are gradually being replaced by non-compact clusters of particles
kept together by strong lubrication forces while the particle pair-distribution displays
a broken fore-aft symmetry. These changes in the microstructure are accompanied by
increases in the shear viscosity, normal stress differences, suspension pressure, long-
time self-diffusion coefficients, and fluctuational motion. Agreement is found between

the simulation results and the theoretical predictions of Brady & Morris (1997).
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Part 1

Statistical Mechanics of Bubbly
Liquids



Chapter 1 Introduction

The dynamics of bubbly liquids—a Newtonian liquid filled with a dispersed ‘gas phase
in the form of bubbles—is of interest in a variety of engineering problems. Bubbly
flows are common in the energy-conversion, oil and chemical industries, in natural
gas distribution networks, and in any flow in whi(;h rapid pressure variations can lead
to phase change, e.g., cavitation, or where sound waves can be strongly modified by
bubble clouds. A major theoretical and technical problem associated with bubbly
flows is predicting, and thus controlling, the flow regime, and then within the flow
regime understanding the transport of heat, mass, momentum, and sound.

Continuum modeling of gas/liquid flows in the region of dispersed bubbly flow
is an active area of research and has been approached through a variety of different
methods. One of these has been developed by Batchelor (1976), Delhaye & Achard
(1976), Hinch (1977), Voinov & Petrov (1977), Banerjee & Chan (1980), Drew (1983),
Biesheuvel & van Wijngaarden (1984), and Pauchon & Banerjee (1986) among others.
These authors have applied averaging—in time, space, in time and space, over an
ensemble, etc.—to the continuum-mechanical equations describing the exact motion
of each phase at each point. The system of resulting averaged equations is closed
with the help of constitutive relations determined from a list of variables that are
supposed to influence the phase interactions. The resulting equations have several
unknown cbefﬁcients that have to be determined in some way, e.g., from experiments.
The models that different investigators have proposed usually differ in the choice of
closure relationships.

Another, variational, approach has been developed by Geurst (1985, 1986) and
Pauchon & Smereka (1992). These authors have chosen to volume average the energy
of a two-phase flow and then treat the volume averaged energy as the Lagrangian
by applying to it a generalized form of Hamilton’s variational principle. Pauchon &

Smereka (1992) have shown the variational and averaging approach to be comple-
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mentary: the variational approach is capable of providing explicit analytical forms
for the constitutive equations of the averaging approach. However, as Smereka (1993)
has poiﬁted out, although Geurst’s model seems to have a sound theoretical basis, it
turns out to be ill-posed in the dilute limit; Geurst and other authors argued that
the ill-posedness is associated with the assumption of an isotropic arrangement of
bubbles. As a result, much effort has been devoted to studying the related issues
of clustering of bubbles and voidage wave propagation in bubbly liquids. Sangani &
Didwania (1993a, b) and Smereka (1993) carried out computer simulations of bub-
bles in an ideal fluid. In both studies, it has been found that, if initially given similar
velocities, the bubbles would tend to form clusters positioned broadside to the direc-
tion of motion; Smereka found that the clustering would be inhibited, however, if the
variance of the initial velocities of bubbles was sufficiently large.

A kinetic theory-like approach to the problem of bubbly liquids has been inves-
tigated by Biesheuvel & Gorissen (1990) and van Wijngaarden & Kapteyn (1990).
These workers have obtained effective equations by taking moments of an N-particle
probability density function for bubble positions and velocities and focused their at-
tention on the propagation of void fraction disturbances in bubble flows.

In this thesis, we present a formulation of the problem of bubbly flows from a
statistical mechanics point of view. This idea was hinted at in the work of Smereka
(1993), but not developed nor explored. Indeed, it is an interesting and open question
as to whether this continuum problem of bubble motion has a statistical description of
the same form as atoms or molecules. On the one hand, classical statisfical mechanics
is a powerful means of studying macroscopic bodies. It provides the molecular basis
of macroscopic properties by explaining the connection between the observed values
of a thermodynamic function and the properties of the molecules making up the
system. On the other hand, bubbles, as considered in this thesis (of constant spherical
shape and size, monodisperse, inviscid and described as dipoles in potential flow)
are fundamentally different from molecules as ,“element‘ary particles” of statistical
mechanics in one important aspect, namely, they do not have mass; rather, their

motion results in flow of the underlying liquid of nonzero density. Thus, “virtual,”
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or “added,” mass of the flow is critical to the behavior of the bubbles as a statistical
system. Like a molecular system, the total energy and momentum of the flow are
shown to be integrals of the bubbles’ motion. The interactions among the bubbles
occur through the velocity field in the fluid generated by the bubbles’ motion, and will

¢ interactions in molecular systems.

be seen to be of the form similar to repulsive r~

By formulating and examining a bubbly flow as a statistical ensemble we can
predict, discuss and quantify patterns of collective behavior of a macroscopically large
number of bubbles as consequences of the distinctive features of bubbles treated as
individual particles. We are able to discern factors influencing the flow’s structure and
properties, and describe them in thermodynamic terms, such as interaction potentials,
temperature, phase transition, etc. Finally, in a fashion similar to classical atomic
systems, the validity of our predictions and calculations will be tested by simulating
the bubbly flow numefically and by analyzing the results of the simulations.

In Chapter 2, we approximate a bubbly flow at high Reynolds numbers as potential
flow and derive its total energy. We apply Lagrange’s formalism to the energy in order
to derive the equations of motion for the bubbles. In Chapter 3, we show that the
bubbly flow is a Hamiltonian system and define the canonical ensemble partition
function, along with the “temperature” for such a flow in much the same way as
is done for atomic systems. Unlike atomic systems, however, the virtual mass for
the bubbly flow is dependent on the positions of all the bubbles, and as a result
the partition function for an ensemble of bubbles explicitly depends on the total
impulse of the flow determined in a frame of reference in which the liquid would
be motionless were it not for the presence of the moving bubbles. As the relative
position of the bubbles changes, so does the “mass” of the system, and therefore
the center-of-mass or collective motion is coupled to the internal degrees of freedom.
These two distinctive features—the coordinate-dependent mass and the momentum-
dependent partition function—together give rise to a number of unusual effects not
found in atomic systems. In particular, the coordinate—‘dependent mass results in
the clustering of bubbles in the direction normal to that of their mean motion, and

also in an effective repulsive potential that can prohibit the clustering at sufficiently
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high values of the bubble temperature (defined as a measure of the bubbles’ chaotic
motion). Also in Chapter 3, we predict the value of the temperature at which a
phase transition occurs between the clustered and dispersed states. In Chapter 4, we
develop a molecular-dynamics-like method for simulating bubbly flows and present
and discuss numerical results: snapshots of representative bubble configurations for
27 and 64 bubbles at different volume fractions and at different bubble temperatures;
the influence of viscous dissipation and gravity; evidence of the effective repulsive
potential and the phase transition between the C:lustered and random phases. These

results are shown to support the statistical mechanical description.



Chapter 2 Equation of Motion for a
Dispersion of Bubbles

2.1 Kinetic Enérgy of a Bubbly Flow

We shall make use of Lagrange’s formalism in order to derive an equation of motion
for bubbles in a dispersed flow. In this framework, the first step is to obtain an
expression for the Lagrangian £. In this problem, the kinetic energy of-the fluid 7
will be found to be quadratic in the vector of the bubbles’ velocities U, and thus the
Lagrangian is the kinetic energy 7 minus the potential energy £ We shall set the
potential energy to zero; this restriction, of course, can be relaxed if so desired. Thus,
L = T, and we determine the kinetic energy as a function of the bubbles’ positions
and velocities. In order to do so, we model the bubbly flow as a dispersion of a finite
number, N, of monodisperse spherical bubbles (maintained spherical by a presumed
large interfacial tension), characterized by a constant internal pressure moving in an
unbounded fluid at high Reynolds number (Re = Ua/v > 1) subject to gravitational,
external or fluctuating pressure forces. Because the Reynolds number is large and the
bubble surface is a free surface, the flow outside the bubbles is approximately inviscid
and irrotational. Hence, the fluid velocity can be written as the gradient of a velocity

potential, ¢, satisfying Laplace’s equation
V2¢ =0, (2.1)
everywhere in the fluid, with no flux boundary conditions on the bubble surfaces

n-Vé¢=n-U",
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where n is the unit outward normal from the surface 9" of bubble v and U” is
that bubble’s velocity. This is, of course, an approximation, but it is known from the
work of Moore (1963, 1965) that the flow outside a moving bubble is to a very good
approximation irrotational, with the vorticity confined to a thin O(Re~'/?) boundary
layer at the bubble surface and to a narrow O(Re~'/*) wake. Furthermore, Kok
(1993a, b) has shown both theoretically and experimentally that the motion of two
interacting bubbles can also be predicted by the appropriate two bubble solution of
Laplace’s equation. 3

The total kinetic energy of the fluid is (cf. §§2.7-2.10, 6.2, 6.4 of Batchelor 1967)

1

1
T = 5P oU*® . n*dS — EPZUU . ¢n"dS, (2.2)

Qe v

where U® denotes the fluid velocity at infinity and p, the density of-the fluid. The
first integral in (2.2) is taken over a closed boundary at infinity and is, therefore, equal
to zero as long as we assume that the fluid’s motion is entirely due to the bubbles;
indeed, we treat the bubbies as dipoles in this study (cf. Appendix), i.e., the potential
6 falls off as r~2 and the liquid velocity U* falls off as r=2 at large r and thus the
first integral in (2.2) vanishes. The solution of (2.1) is linear in the bubbles’ velocities
U and therefore the kinetic energy can be recast, with the help of the virtual mass
matrix M, into a quadratic form:

1

T= 2pTU-M-U, (2.3)

where 7 = (4/3)7a® is the volume of a spherical bubble of radius a and U is a vector
of the individual bubble velocities U”. The derivation of the mass matrix is given in
detail in the Appendix.

We also find it convenient to write the total energy of the flow as

1
T = SprU* M- U, (2.4)

where the Greek indices denote the individual bubbles and, if repeated, imply a
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summation; M* are the coupling submatrices of the mass matrix M (cf. Appendix).

Finally, the individual bubbles’ momenta are defined as
P* = prM*" . U?, (2.5)

and the total impulse of the suspension (i.e., the linear momentum that needs to be
imparted to the fluid in order to generate from rest the flow due to motion of the

bubbles with translational velocities U*) is
N
p=1

The total impulse P; is an integral of the motion (cf. Art. 119 of Lamb 1932), as is
the total energy 7.

2.2 Lagrangian Formulation of the Problem

From expression (2.3) for the total kinetic energy, we can derive the equation of
motion for the bubbles. Let R denote the vector of the bubbles’ centers, F9 the
external forces such as gravity, and F¥ the viscous forces. Then, recalling Lagrange’s
equation, the equation of motion of the bubbly suspension is:

d (oL\ oc
_— | ——] = — g v
dt(a.) 5+ E (2.7)

Lamb (1932) and, more recently, Hinch & Nitsche (1993) have shown that the La-

grangian generalized force,

pb= & 9L\ oL
oR/) OR’
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is the same as the pressure force exerted by the fluid on the bubbles F?. Thus, the

equation of motion (2.7) is equivalent to the force balance on the massless bubbles!
FP+F +F' =0. (2.8)

From (2.3) together with the fact that £ = 7, we compute the necessary quanti-

ties:

oL 9T _ 9 (1 N 1 9My
5% = 37, = 98 (g7 UMa(RU; ) = gprUigpl,

and

oc o1 1
A §pT(UiMik + My;U;) = pr My;Uj,

due to the fact that the mass matrix is symmetric. Furthermore,

oT
(aUk) (MkJU + MkJU )

with
OM; - B = OMy;
OR, OR,

T (aMkj U(Uj + Mijj> )

My; =

4 (T _
di\ou,) P

and the equation of motion (2.7) becomes

Ui

Hence,

OR;

prMy;U; = pr ( U; é)M”U _ My,

. g v
9, 8R, UJ) + F9 + F°. (2.9)

Equation (2.9) is the governing equation for determining the bubbles’ motion. We

see clearly that the virtual mass matrix does indeed act as the mass of the system.
Equation (2.9) defines the dynamics of the bubbles and is sufficient to follow their

motion for given initial conditions under the action of prescribed forces. Before doing

so, we turn to a consideration of the bubbles as a statistical ensemble and investigate

1Bubble mass could be added to (2.8) or (2.7) without difficulty. The conclusions of the work
would not be affected for small bubble mass. Similarly, angular momentum could be added for
nonspherical particles.
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whether this dynamical system has thermodynamics akin to a molecular system.
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Chapter 3 Bubbly Flow as a Statistical

Ensemble

Consider the bubbly flow of Chapter 2 in the absence of gravity and fluid viscosity.
It proves possible then to treat the total energy of the bubbly flow

_1_13 Ml.pP
2pT

as the system’s Hamiltonian, #(P,R), with P and R as the corresponding generalized

momenta and coordinates. Indeed, H satisfies Hamilton’s equations,

. OH
: oH
P= _éﬁ—, (32)

which are equivalent to the equation of motion (2.9) with F¢ = F* = 0, and thus the
inviscid, neutrally buoyant bubbly flow is a Hamiltonian system (with 6N degrees of

freedom) to which the standard methods of statistical mechanics can be applied.

3.1 Effective Energies

We begin by decomposing the full energy of the bubbly flow into effective potential
and kinetic energies. First, we write each bubble’s individual impulse, defined by
(2.5), as follows:

1
P* = p* + =P,
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‘where the deviation from the mean, p#, can be regarded as the “chaotic” impulse of

bubble . The total energy of the flow is then

T = %7: (%Pt . “Z; (M“l)’“' Pi+p-M'.p+ %pt . (z}; (M‘l)'“' ) pu)> :
(3.3)
where p denotes the full vector of the bubbles’ chaotic impulses. The first term on
the right-hand side of (3.3) is due to the collective motion of the bubbles with the
same velocity ug = (o7 N)™'P,- %, , (M) it &epends only on the positions of the
bubbles’ centers, R, and thus can be thought of as an “effective potential energy.”
The sum of the second and third terms in (3.3) we shall call the effective kinetic
energy; it accounts for the individual, or chaotic, portion of the bubbles’ motion. It
is easy to see that the chaotic impulses p along with the positions of the bubbles’
centers R can play the role of the generalized coordinates that satisfy Hamilton’s
equations of motion.
Smereka (1993) has defined effective energies by decomposing the bubble’s velocity,

rather than its impulse, as follows:

U¥ = ug + u”,
such that
M* .u” =0,
pTM ug =Py,
where
M= M~
Y

Then, recalling (2.4), the total energy of the flow is

1 T
T =g P M Pt G M, (3.4)
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Again, the first term on the right-hand side of (3.4) is due to the collective motion of
the bubbles with the same velocity uo; it depends only on the position of the bubbles’
centers R, and thus Smereka has termed it the effective potential energy; the second
term is the corresponding effective kinetic energy.

Smereka used the decomposition (3.4) to show that the effective potential energy
(207)"'P; - M~ . P, approaches a minimum when the bubbles arrange themselves
in flat clusters positioned broadside to the direction of the collective motion. For the
purposes of the present study, we shall use the ;lHamiltonian” decomposition (3.3),
rather than (3.4). As given by (3.3), the total energy of the flow satisfies Hamilton’s
equations (3.1) and (3.2), if p is used as the generalized momentum instead of P,
and thus equation (3.3) can and will be used to construct the canonical ensemble
partition function. The decomposition of Smereka in (3.4) is not in the standard
form for statistical mechanics and cannot be used to construct the partition function.

Another result of Smereka (1993) is that the variational principle of minimal
potential energy is equivalent to the principle of maximal virtual mass. To show that
bubbles in collective motion with no random velocities will indeed tend to increase
their virtual mass, we consider the following situation. ,

Suppose that initially the bubbles are randomly positioned in space but all have
the same velocity, e.g., (0,0,1). They are then released and we are interested in the
change in the added-mass coefficient Cs defined as the following norm on the mass

matrix:
U-M.-U

CM=—g. g

If we write the Lagrangian of the system as £ = 1/2p7CpU?, then Lagrange’s equa-

tion (2.7) can be transformed to

. _1 0C U,'U,'
e () 13 -

Initially, when U = [0,0,1;0,0,1;...;0,0,1], the first term on the right-hand side of
(3.5) is proportional to the change in Ciy corresponding to a rigid translation of the

‘whole suspension along the z-axis and therefore is zero. The randomly distributed
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bubbles will begin to develop velocities in the two other orthogonal directions, z and
y. In order to do so, energy will have to be extracted from the bubbles’ collective
motion, the bubbles will slow down in the z-direction, to conserve the total energy and
impulse, and thus U; and U; will be anti-parrallel, i.e., U;U; will be negative and Ciy
positive, which means that Cs will initially tend to increa,se; In other words, since the
bubbles have to decelerate in the z-direction while their total impulse in that direction
must be conserved, their virtual mass must increase. Smereka (1993) recognized the
analogy between potential flow outside the bubbies and the effective conductivity of
a material where the liquid has a unit conductivity and the spherical bubbles are
insulators (cf. Appendix). He was able to show that the only way for the bubbles
to increase their virtual mass would be to organize themselves in clusters positioned
broadside to the direction of the collective motion; this situation corresponds to the
minimal effective conductivity of the matrix in the direction of the mean flow. Thus,
following Smereka, we also conclude that the bubbles’ collective motion will lead to
their clustering. In the next section we investigate how this clustering manifests itself

when the bubbles are viewed as a thermodynamic system.

3.2 Canonical Ensemble Partition Function for

Bubbly Flow

We now apply the apparatus of equilibrium statistical mechanics by treating the
suspension of N bubbles as a canonical ensemble. Denoting the Hamiltonian of the

ensemble by H, the partition function, within a constant factor, is given by
Q= / exp[—AH(R,P) — v - Py(R, P)|dRdP. (3.6)

The integration in (3.6) is performed over the entire phase space. The form (3.6)
follows from the fact that there are only seven additive integrals of motion of a
classical system: the energy, linear momentum, and angular momentum. Since we

have no angular momentum for spherical bubbles, only two constants 3 and ~ are
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needed (cf. 84 of Landau & Lifshitz 1969). G will be seen to play the role of the
inverse temperature, and -/ will be the average velocity of the bubbles.

The necessity of including the total impulse of the bubbly flow, P;, in the ex-
pression for the canonical ensemble partition function, is dictated by the fact that
the “center-of-mass” motion is coupled to the internal degrees of freedom. As the
relative coordinates change so too does the mass, leading to the coupling with the
total impulse.

Let us denote for convenience the effective potential energy as U and the effective

kinetic energy as K, such that

1 o\
U= 5P T (M) P, (37)

By

and

K= 2}.% (p.M-l.p+ %pt. (Z (M_l)uu_pu))

m

The potential energy U is purely R-dependent, just as in the classical case of a gas of
particles interacting via a potential. However, due to the fact that the virtual mass
of the bubbly suspension is position-dependent, the kinetic energy X is both R- and
p-dependent and differs from that of a classical statistical mechanical system.
Depending on the choice of the momentum generalized coordinates—one can
choose either the bubbles’ full impulses P or their chaotic impulses p—the following

two alternative expressions for the partition function are possible:
Q= /exp [——-Qﬂ—TP M.P . ZP”] dRdP, (3.8)
P n

or

Q= / exp[—BU — v - Py ( / exp [—BIC —- Xu:p“] dp) dR. (3.9)

Upon integrating (3.8) and (3.9) by parts with respect to an arbitrary component

of the vector P or p and denoting by angle brackets averaging over the ensemble, we
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obtain

B
pT

—(P -M™.P) <ZP"> = 3N, (3.10)

and

b <p ‘M~ .p+ %Pt- (Z (M) P")> —- <Xﬂjp“> =3N. (311

pT I

At thermal and mechanical equilibrium of the ensemble with its surroundings

(Tr) -

o).
_ u
and it follows from (3.10) and (3.11) that

1

ﬂ‘1=3pTN<p-M‘ p+—Pt (Zﬂj( B )> (3.12)

and

= pTN<N#2:( )W-Pt+(Z(M'1>W'pu)>

n

= —o§ <§u: “1ymy P"> = —% <;U~>. (3.13)

w2

Thus v/ is equal to minus the average velocity of all the bubbles in the flow, showing
that —- - Pt /B is the energy of the collective motion.

That ~/B must be proportional fo the average velocity of the bubbles in the
ensemble could also be deduced from the following argument, adapted from §14 of
Hill (1956). We consider here a generalized ensemble which can, with probabilities py,
be found in a number of states with energies Ej; this formulation can be generalized

to account for continuous states. We associate the thermodynamic internal energy E
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with the ensemble average E (the averaging denoted by the overbar):

where

In differential form,

P =

E & FE,

F = Z PkEk,

where the Ej are constants. We now use (3.14) to eliminate Ej in (3.15),

dE =

Since

(3.16) becomes

kP,
—BE. — ~ -]
exp(=f R Po) (3.14)
= > exp(—BE;r—v-Py).
kP,
dE =} dpiEy, (3.15)
kP
1
—= 2 (7 Pe+Inpe +InQ)dpx. (3.16)
kP
Pt = E kat>
kP
1 > (Inprdpi) — 17 dP
ﬂ 7 Pk pk ﬂ i
ld > (pxlnp) | - l‘y dP (3 17)
5\ & k In px 3 t :

where we have employed " dp; = 0. With the further association P; < P;, (3.17) is

seen to be just the statistical version of the thermodynamic equation

dE = TdS — 11 - dP;, (3.18)

where E,T and S are, as usual, the internal energy, temperature, and entropy of
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the system, whereas II is the generalized force appropriate to P, (treated here as a

generalized coordinate). By comparing (3.17) and (3.18) we have

H(—)l‘.

B

It can further be seen that Il, along with +/8, must have units of velocity. In our
problem, there is only one characteristic velocity, namely the average velocity of the
bubbles. Thus, it is reasonable, in agreement with'(3.13), to assume ~/( proportional
toU=N-! <Zu U”).

Now, given an ensemble at specified values of § and 4, we can always rotate the
coordinate system, simultaneously rescaling the time, such that in the transformed
frame of reference, U = e, where e, is a unit velocity vector pointing in fhe direction
of the collective motion, this direction being the same in all appropriately rotated

ensembles. In other words,

¥ = Be., (3.19)

and the partition function (3.6) can be rewritten as
Q= /exp (—BIH(R, P) + e. - P(R, P)]) dRdP.

Finally, we define the temperature T of the system as the inverse of 3, as given

by (3.12):

M

[ =

T
The bubble temperature T' can take on values from zero to infinity; it provides‘ a

measure of the relative importance of the chaotic to collective motion of the bubbles

in the flow.

3.3 Effective Potentials

We shall now show that the coordinate-dependent virtual mass matrix of the bubbly

flow, along with the bubbles’ collective motion, give rise to two effective inter-bubble
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potentials. Recalling (3.19), we begin by evaluating the integral in (3.8) over the
P-subspace of the phase space:

Q= (2”’”) v /(det M)? exp ('B”Te° M- e“) dR, (3.20)

B 2
(prr>
B

as the partition function @ of an ideal gas of N particles of mass pr each, normalized

where we recognize the factor
3N
2

by the volume occupied by the suspension V, raised to the Nth power. Recall that
M is the sum of the coupling submatrices M*” of the mass matrix.
The integral in (3.20), also called the excess part Q°® of the partitién function,

can be rewritten as

Q= =V, N / exp[=B(U + Us)]dR, (3.21)

where the two effective potentials U; and U, are defined as

By = —%ln(detM), (3.22)
and
Uy = —”—QT-ec ‘M -e.. (3.23)

To understand the behavior of the effective potential ¢, it will be useful to con-
sider a dilute suspension in which only two of the N bubbles, ¢ and v, are appreciably
close to each other, while the remainder are sufficiently distant—from g, v, and each
other. Then, in the matrices M; and M; (from (6.12) and (6.13) in the Appendix),
VVr;} and VVr;} will contain all the significant interactions. Furthermore, if we

normalize the distance between p and v by the bubble radius a and choose a coordi-

nate system such that in it r,, = (r,0,0), then it is straightforward to compute the
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determinant of the full mass matrix of the system:

det M, 1 9 /1) 1\
detM‘det(Ml—I)”Eﬁ‘(l_ﬁ(F> +O((F> ))

6
In(det M) ~ const — % (l) for large values of r, (3.24)
T
and thus: .
BUy ~ 2 (-1—) for large r,, . (3.25)
4 \ru

The coordinate dependence of the virtual mass matrix acts as a repulsive, r~%, po-

tential.

The other effective potential, U;, bears a very close resemblance to the effective
potential energy of the bubbly flow as defined in (3.7) or by Smereka (1993); the
absolute value of U, increases as the bubbles form clusters positioned normal to the
direction of their collective motion. However, the role played by U, in the partition
function @ differs fundamentally from that played by U, in that it is insensitive to
changes in the inverse temperature 3. Thus, the influence of Us, unlike that of ¢4, is

expected to diminish with increasing temperature.

3.4 Phase Transition

The results of the previous section suggest that the spatial arrangement of bubbles
in a suspension will strongly depend on the relative importance of the two effective -
potentials: the one due to the collective motion acts to make the bubbles cluster,
whilé the effective potential due to the coordinate-dependent virtual mass is repul-
sive. Because B, is independent of temperature, while S, is proportional to 1/T,
the repulsive potential dominates at high temperature, while the collective dominates
at low temperatures. Thus, one expects a “phase transition” to occur. A clustered
bubbly flow (“condensed,” or “frozen” phase) started at a low temperature will be-
come more and more random as the temperature increases until at a certain value of

T it becomes completely random (“gaseous,” or “melted” phase).
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We shall now attempt to predict the temperature of the phase transition (or, at
least, an upper bound on it) for the bubbly suspension. We treat the suspension
as a rarefied gas, in which not more than one pair of bubbles may be assumed to
be interacting significantly at any one time, and obtain an expression for the second
virial coeficient, B, as a function of the inverse temperature 3 for this gas. Recall
the corresponding equation of state (Landau & Lifshitz 1969):

P= %/' (1 + -"y—l—?ﬁ) : (3.26)

where the gas has been assumed to consist of N particles, P is the pressure, and V
is the volume occupied by the gas. The second virial coefficient can be evaluated as

(Landau & Lifshitz 1969)

B(B) = % / (1-ePU") av, (3.27)

where U'? is the energy of interaction of the two particles and the integration is
performed over the entire volume V. One can expect the phase transition to occur
in the vicinity of the point where the isotherm exhibits singular behavior, i.e., where
the derivative of the pressure with respect to the volume, obtained from the equation
of state (3.26), vanishes. Differentiating (3.26) with respect to V' yields for the value

of the second virial coefficient corresponding to the phase transition temperature

Vv

B(Bpt) = —1- (3.28)

The interaction energy U'? can be written as the sum of the potentials Uy and U,

from (3.22) and (3.23):

1

U12 —
2p

In(det M) — Bzzec M -e..

Assume now that the collective motion of the bubbles takes place in the z-direction,

i.e., that e, = (0,0,¢e.). The evaluation of e, - M - e, together with the result (3.24)
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for In(det M) yield (to the leading order in the small quantity a/r):

1 9 ra\° npela’ 3 /a\®
v _ﬂ(ln8+4(r> ) 24 (2 2" (r) )

The evaluation of the integral in (3.27) produces (again, we retain the leading order

terms only),

BB)=V (81n8 - g'/rﬂpecztﬁ) ,
and, from (3.28) we have the following estimate of the phase transition temperature,

(81n8 +1/4)

2mpelad

3
:Bpt =

For the dimensionless phase transition temperature we thus obtain

T

pe.2a3

~ 0.124. (3.29)

In the next chapter, we shall test the validity of the above arguments by analyzing

the results of numerical simulations of bubbles in a potential flow.
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Chapter 4 Numerical Method and
Results

To simulate the motion of bubbles in a suspension, we place at the origin a cell con-
taining N bubbles, and periodiclly replicate the celi to fill all space (cf. Appendix). At
the beginning of a simulation run, the bubbles are assigned initial positions and veloc-
ities. The equation of motion (2.9) is numerically integrated to produce the bubbles’
trajectories, along with data on their velocities, accelerations, etc., so that we will
be able to follow the total energy and impulse of the system—these quantities must
be con‘served at all times. As the simulation evolves in time, we expect the influence
of the initial coordinates and velocities to diminish so that the resulting distribution
will be determined solely by the nature of external and internal forces acting on the
bubbles. In the course of a run, the bubbles’ trajectories along with the effective
kinetic and potential energies and other quantities of interest are computed. The
stabilization of the effective energies signals equilibration, and all necessary statistics

can then be computed.

4.1 Dynamics of a Collision of a Pair of Bubbles

We have aiready covered the derivation of the equation of motion. As far as its
numerical integration is concerned, there are numerous codes and packages available,
and we shall not discuss this aspect in detail. However, one issue still needs be
resolved—that of a possible collision of a pair of bubbles. Here we follow Sangani &
Didwania (19936). In an inviscid flow bubbles can come arbitrarily close to each other.
The viscous forces are small at large Reynolds numbers énd therefore cannot prevent
the bubbles from touching one another. Thus the bubbles can come in contact and the

following two possibilities arise: they will either coalesce if the surface tension forces
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are large compared to the inertia forces, in the absence of surface-active impurities,
or, if the latter condition is not satisfied, as numerous experiments indicate, the
bubbles will bounce away almost instantaneously. As reported by Kok (1993b), if the
concentration of the impurities is not too high, the observed trajectories of the bubbles
are in a very good agreement with those obtained theoretically using the potential
flow approximation for the fluid velocity. On the other hand, if the concentration
of impurities is moderate or high, wake formation affects the dyhamics of the pair
of bubbles, and the potential flow approximation will have to be modified to include
wake effects.

When a pair of bubbles—labeled for convenience 1 and 2—undergoes a collision,
the total impulse and kinetic energy of the liquid remain unchanged. Suppose that a
very short range force comes into play when these two bubbles approach each other

and that this force is directed along the separation vector d given by

1
d= %(rl — rz).

We then may think that an equal and opposite impulse is applied to the two bubbles,

% = F0(t —t.)d,
for time ¢t close to the collision time ¢.. Here, F, is the magnitude of the impulse.
Integrating with respect to time in the immediate vicinity of ¢, leads to a change in
the impulse of bubble 1 during the collision process AZ = F.d. The change in the
impulse of bubble 2 is equal in magnitude and opposite in the direction to that of
bubble 1, and the impulse change of all the other bubbles in the cell is zero. Thus
the total impulse of the system is conserved and we need only calculate the change

in the kinetic energy of the system.

The impulse due to the motion of bubble y is

Pt =M. U,
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and the total energy of the system can be written as
1
T = Z’T“ = Ep'rZU“ - P#
7 p

We therefore require that the sum of 7* over all the bubbles does not change during
the collision, i.e.,

Y ATH=0. (4.1)

During the collision, the velocities of the bubbles change linearly with the magnitude

of the impulse F; thus,

2 - A A A
p AT* = A(U* - P*) = F,(U* - P* + U* . P*) + F2(U* - PH), (4.2)
p

where U* is the change in the velocity of the bubble y, and U* is the velocity before

the collision. The same convention applies to P# and in particular we have

whereas for all 4 > 2, P* = 0. Now, substituting (4.2) into (4.1) yields two values of
F., one of which equals zero and corresponds to no collision, and the other corresponds

to the magnitude of the total impulse during the collision

(U Pt 4+ Ux. P*)

F,.=- —=
zuUu.Pu

(4.3)

Thus, in dynamic simulations we first move the bubbles to the point where they
collide and determine U* by solving for the velocity potential é given the impulses
P* associated with each bubble. Substituting for U* in (4.3) allows us to determine
F. and hence the values of P# and U* for all the bubbles immediately after the
collision.

The fact that generally the velocities of all the bubbles will change in the after-

math of the collision of just two bubbles can be explained as follows. The fluid and
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the bubbles are assumed to be incompressible and thus the information about the
collision is instantaneously transmitted to all the bubbles in the flow. (Physically,
it is transmitted at the sound speed, which is infinite for the incompressible media.)
Thus all bubbles will change their velocities in such a manner so that both the total

impulse and the kinetic energy of the suspension will be conserved.

4.2 Bubbly Flow in the Absence of External Forces

To study configurations of inviscid, neutrally buoyant bubbles (F?¢ = F¥ = 0) at dif-
ferent values of the bubble temperature, we conducted numerical experiments with 27
and 64 bubbles placed in a cubic unit cell at different values of the void fraction. The
initial positions of the bubbles varied from closely packed clusters oriented normally
to the z-direction (close to a minimum of the effective potential energy, as the collec-
tive motion in all experiments was also directed along the z-axis) to bubbles randomly
distributed throughout the cell; the initial velocities—from purely collective motion,
all with the same velocity, to completely random motion, with negligible resultant
collective motion. As a result, the equilibrium temperatures in these experiments
varied greatly. Figure 1 presents typical equilibrium configurations corresponding to
different temperatures of 27 and 64 bubbles. At low temperatures the bubbles have
very little kinetic energy and remain clustered as their configuration corresponds to
a minimum of the effective potential energy (cf. Smereka 1993). The individual bub-
bles’ motions are highly correlated and the added-mass coefficient is relatively large.
As the temperature increases, the bubbles develop more chaotic motion until, at a
certain point, the clusters disappear completely, the bubbles become randomly dis-
persed and, appropriately, the added-mass coefficient takes on values close to 1/2;
after this point, there are no changes in the spatial arrangement of the bubbles. This
point can be described as one where the transition between the clustered and random
phases becomes complete.

In Figure 2 and Figure 3, we have plotted the added-mass coefficient Cps and

the value of the pair-distribution function at 1.1 bubble diameters, g(1.1), versus
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the bubble temperature T for two different void fractions, f = 0.014 and f = 0.11.
Both Cjs and g¢(1.1) can serve as measures of the relative degree of clustering of
the bubbles: they increase as the bubbles collect themselves in clusters. The results
in Figures 2 and 3 suggest that the transition between the clustered and random
phases takes place in a temperature interval near T = 5 x 10~° for f = 0.014 and
near T' ~ 5 x 10~ for f = 0.11. Because we use a microcanonical ensemble in our
simulations, coexistence of the two phases is observed in this temperature interval;
it would thus be appropriately called a “two—pllase” region. Also, because of the
relatively small number of bubbles in the ensemble, we observe that the values of Cs
and g(1.1) are not unique when plotted against the temperature (cf. §11.3 of Allen
& Tildesley 1987). Nevertheless, at very low values of the temperature, e.g., less
than 1078, the bubbles are always close-packed in a flat cluster, while at high enough
températures, T > 1072 say, they are always randomly distributed throughout space.
These results are evidence for the existence of the two potentials (3.25) and (3.23).
At low temperatures, the influence of the r~8 repulsive potential (3.25) is negligible
and the bubbles form flat clusters due to the action of their collective potential given
by (3.23). As the temperature grows, however, the repulsive potential gains more
prominence and finally prohibits clustering of the bubbles (even though there is still
significant collective motion).

It is interesting to see how well our earlier calculation of the transition temperature
(3.29) compares with the results in Figures 2 and 3. In both cases, (3.29) seems
substantially to overpredict the phase transition temperature, by a three (for f =
0.11) to four (f = 0.014) orders of magnitude. On the other hand, one has to keep in
mind that (3.29) should be viewed as an estimate of the upper bound on the phase
transition temperature since we only considered the second virial coefficient.

In another series of runs, conducted at three different values of the void fraction,
the bubbles were initially randomly distributed in space and assigned random veloc-
ities so that the total momentum of the flow in the unit cell was small compared to
the characteristic value of momentum associated with the motion of one bubble. This

ensured that the bubbles did not have any appreciable collective motion during the
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simulation; thus, their motion could be termed purely chaotic and it was hoped that
there would be evidence of the r~® repulsive potential that we discussed earlier.

We compare pair-distribution functions of bubbles without collective motion against
those of hard spheres at three different void fractions: 0.014, 0.11, and 0.38 in Fig-
ure 4. At all values of the void fraction the hard-sphere pair-distribution function
has a noticeable peak at contact. On the other hand, the bubble distribution either
completely lacks such a peak, or, at the largest void fraction where the bubbles have
little freedom of movement, the peak is lower in n;agnitude. These results confirm our
earlier predictions that an effective repulsive potential governs the bubbles’ behavior
when there is little collective motion.

We conclude this section by commenting on the results of our attempt to apply
a Monte Carlo procedure to compute the partition function (3.21). for our bubbly
flow as a canonical ensemble. Unfortunately, these experiments proved prohibitively
computer-expensive since we needed on the order of a million of bubble configura-
tions, and the inversion of a 3N x 3N matrix was required in order to compute the
mass matrix for each configuration. When we gave the Monte Carlo routine the sev-
eral thousand configurations that had been obtained from the molecular dynamics
simulation, all but very few of these configurations were found suitable for a Monte
Carlo calculation of ), thus providing an indirect confirmation that the bubbly flow

behaves as a thermodynamic system.

4.3 Bubbly Flow with Gravity and Viscous Drag

To study the influence of gravity (or, equivalently, buoyancy) as well as viscous dissi-
pation on the structure and dynamics of a bubbly flow at high Re numbers, we used

the following expressions for the forces on a single bubble yu:
FI = prg, ' (4.4)

" FY = 12mnaU¥, (4.5)
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where 7 is the viscosity of the liquid. The viscous drag, as given by (4.5), is valid only
as a leading order approximation (Smereka 1993). This approximation, however, will
be sufficient for the purposes of the present discussion.!

First, we discuss the influence of buoyancy, in the absence of viscous dissipation.
In our numerical simulations, we have always found the bubbles, regardless of their
initial positions and velocities, to aggregate in flat clusters normal to the direction
of gravity. Why this should be the case can be explained by examining the following
situation. Consider two bubbles separated by a) certain distance rising in a liquid
under the influence of gravity. Such bubbles will be subjected to a force of mutual
attraction; this force will grow in magnitude as the bubbles approach each other.
Simultaneously, the velocity of the bubbles’ rise will grow and this too will result in
a larger value of the force of attraction. If the bubbles collide, they will not come
as farvapa,rt as their initial separation, while their velocities collinear to the direction
of gravity will grow larger, which in turn will result in an increasing attractive force,
and so forth. Eventually the two bubbles will form a cluster with the line joining
their centers directed normally to gravity. We can add here that Kok (1993a) has
shown that a pair of bubbles rising under buoyancy will always rotate to be oriented
in the cross-stream direction, regardless of the pair’s initial orientation. This point
further strengthens the applicability of the above argument to our problem.

Bubbles under the action of gravity can also be characterized in thermodynamic
terms given in Chapter 3 of this thesis. As the bubbles accelerate in the direction of
gravity, their collective velocity in this direction grows faster than the magnitude of
their random motion and thus the temperature of the suspension decreases resulting
ina phase transition from randomness to flat clusters of bubbles normal to gravity.

Finally, the combined effect of buoyancy and viscous dissipation will also be that of
eventual clustering of the bubbles, regardless of their initial spatial arrangement and

velocity distribution. Due to viscous dissipation, the initial velocities whose direction

In general viscous forces are obtainable from the Rayleigh dissipation function, F¥ = —3F/ OR,
where F = 1E,, and E, =29 [IVV¢|2dV is the rate of energy dissipation for the inviscid flow.
Equation (4.5) is the result for an isolated bubble.
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“will not coincide with that of gravity will decrease in magnitude until they become
negligible. From that point on, all the bubbles will be moving in the direction of
gravity with the same velocity that can be determined from the balance of viscous
drag (4.5) and buoyancy (4.4). This motion will lead to the creation of flat clusters
of bubbles normal to the direction of gravity. The corresponding numerical results
have been found in agreement with the above discussion.

Thus, it can be concluded that buoyancy, acting on its own or in combination with
viscous dissipation, leads to the formation of clusters of bubbles positioned broadside

to the direction of gravity.



31

T=1.45x107 T=5.72x10

0.4~ 0.4
0.2 0.2
N -0.0 ~ w N -0.0 ~ w
0.2 0.2 .
0.4 -0.4 -]
] T T 4 ] 1
0.4 -0.0 0.4 0.4 -00 0.4
X
T=2.42x107
@) _
0.4y o o 0.4
0.2 - 0.2
N -0.0 %O e g@ N -0.0
0.2 o0 0.2
0.4 OO -0.4~
1 T 1 v 1 T 1 M ]
0.4 -0.0 0.4 0.4 -0.0 0.4
X
T=1.25 T=8.18x10
O
0.4+ O Pes 0.4 % %3089
0.2 O @ 0.2 - ®) O
N 004 O a N 0.0 %(@3

0240 -0.2
PR 8| ps%sd

T T 1 T T T 1
-0.4 -0.0 0.4 -0.4 -0.0 0.4
X

(a) - (b)

Figure 4.1: Representative configurations of 27 (a) and 64 (b) bubbles, at a void
fraction of 0.014, projected onto the (z, z)-plane. As the temperature increases, the
bubbles become less clustered.
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Figure 4.2: Added-mass coefficient (a) and g(1.1) (b) vs. the bubble temperature as
obtained in numerical runs with 27 (empty circles) and 64 bubbles (filled circles) at
a void fraction of 0.014.
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Chapter 5 Conclusions

In this thesis, we have shown that bubbly liquids at high Reynolds numbers can be
modeled as a gas of particles obeying the laws of statistical mechanics. The inviscid,
massless, neutrally buoyant bubbles are approximated as dipoies in potential flow
of an ideal fluid. The integrals of the bubbles’ motion—the kinetic energy and the
linear momentu;'n of the flow—are derived. The second-rank tensor that arises in the
derivation plays fhe role of an addéd, or virtual, mass of the flow; it accounts for the
dynamical role of the fluid brought into motion by the bubbles. The expressions for
the integrals of motion are similar to those of “classical” systems of material particles
in that the energy is a quadratic (and Hamiltonian) and the impulse a linear form of
the vector of the bubbles’ velocities.

These similarities are useful in that they let us conduct further analysis along the
lines of such traditional methods as statistical mechanics and molecular dynamics.
Moreover, they provide a background for highlighting and analyzing the important
physical features that distinguish a collection of bubbles in potential flow from ma-

terial particles in vacuum. These features are:

(i) The virtual mass of the bubbly suspension depends on the bubbles’ relative spatial

arrangement.

(ii) The collective motion of the bubbles relatively to the otherwise undisturbed un- |

derlying liquid is coupled to the internal degrees of freedom.

Treating a collection of dipoles in potential flow as a canonical ensemble, we
account for the above features by including in the partition function not only the
system’s Hamiltonian, but also its total impulse in the frame of reference in which
the fluid would stay motionless were it not for the presence of the bubbles. Similarly,
for non-spherical bubbles or particles in potential flow, one would need to explicitly

include the total angular momentum in the integral for the partition function, thus
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accounting for the influence of the total angular momentum on the internal degrees
of freedom of the particles.

Having constructed the partition function, we proceed to treat the bubbly dis-
persion as an ensemble of particles interacting by means of additional effective ther-
modynamic potentials capturing the dynamics that distinguishes the bubbles from
material particles in vacuum. In principle, the partition function is all that is needed
to characterize fully the thermodynamic state of the ensemble. | Though unable to
compute the par}:ition function for the bubbles wiéh position-dependent mass, we can
manipulate and ‘analyze it such that conclusions ca;,n be made about the collective
effects in the suspension.

In a fashion similar to that used in studying atomic systems, we define:the temper-
ature of the bubbly suspension as a measure of the bubbles’ random motion. However,
unliké classical systems, due to the position-dependent added mass of the bubbles,
their random motion also results in a repulsive r~¢ potential.

On the other hand, the collective motion of the bubbles, resulting in a non-zero
total impulse of the suspension, also influences the bubbles’ spatial arrangement be-
cause of its coupling to the internal degrees of freedom of the bubbles. By including
the total impulse in the integral for the partition function, we are able to describe
the action of the collective motion as that of another effective potential. The action
of this potential results in the formation of flat clusters of bubbles oriented normally
to the vector of the total impulse of the suspension.

Finally, in our thermodynamic treatment, by computing the second virial coeffi- |
cient for the ensemble of bubbles, we estimate the temperature of the phase transition
betwéen the clustered and random phases.

The above theoretical results were verified by conducting molecular-dynamics-like
simulations of bubbles as dipoles in potential flow.

This is the first instance we know of that has shown that a system of hydrody-
namically interacting particles behaves as a thermodynamic system, obeying the same
laws of classical statistical mechanics. This statistical mechanical approach may find

use in modeling other hydrodynamic systems for which a Hamiltonian can be found.
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Chapter 6 Appendix: Mass Matrix for a
Bubbly Flow at High Reynolds Numbers

6.1 Derivation for a Finite Number bf Bubbles

Following the ﬁethod for solving Laplace’s equation by Bonnecaze & Brady (1990,

1991) we write Laplace’s equation:(2.1) in its integral form,

894200 = =% [ (Py-+ 47, )M&,T (6.1)

anv

where ¢(x) is the potential field at x, ¢¥(x) is the imposed or external potential
field at x in the absence of any bubbles, F is the flux, defined as F = —AV, ¢, A
being the conductivity of the medium (equal to 1 in the fluid and 0 inside a bubble),
and the integral is over the surface of the v bubble. The distance r = |x — y| and
V, = 08/9(y — x). The bubble moments are defined by

¢=[ F-nds, (6.2)
anv

S = /a _,(xF + Agl)ndS, (6.3)

which are the charge (monopole) and dipole respectively, and where the position x
in the moment definitions is defined relative to the center of the spherical bubble.
Here and throughout, I is the usual notation for the identity matrix. Expanding the

integral in (6.1) in terms of bubble moments yields,

89 - 850 = 5 2 (7748 Vup )
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where the expansion has been truncated at the dipole level and the moment prop-

agators (1/r,V,1/r,...) are evaluated at x — R”, where R” is the center of bubble

v.
We can also act on the integral form of Laplace’s equation (6.1) with V =V, to
obtain
Vo(x) — VgE(x) = Z (¢v.: + s.v,v, + ) (6.4)
In our problem, F = —v, where v is the fluid velocity. The evaluation of the integrals

in (6.2) and (6.3) yields
¢ =0," (6.5)

s*= [ ¢ndS - U (6.6)
anv

Before going further, we need to address the issue of including mulfipoles of order
higher than two. Accounting for the quadrupoles, octupoles, etc., will surely enhance
the precision of the bubble dynamics simulations. However, as such a modification will
inevitably result in a manifold slowing down of the speed of computer calculations,
one must carefully consider whether the inclusion of higher order moments will affect
the results significantly. The bubblée problem is analogous to the effective conductivity
problem with the bubbles having zero conductivity, and for this reason, as Bonnecaze
& Brady (1990) have shown, the inclusion of multipoles of order higher than the
dipole will lead to insignificant changes in the final results. In earlier work, we have
considered the two-bubble problem, and arrived at the same conclusion. Having said

that, we shall now truncate the expansion (6.4) at the dipole level, thus obtaining,

with the help of (6.5) and (6.6),

Ve(x) — VEE(x) =

) 1
7D) ( [ énds —1U > YV (6.7)

Recalling equation (2.2) for the kinetic energy, we see that in order to calculate -

the kinetic energy of the bubbly flow, we shall need the integrals f;q. ¢ndS. Applying

1The zero “charge” arises because we have assumed the bubbles to be of constant size. Non-zero
charges would be obtained for bubbles of variable size (e.g., oscillating bubbles).
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the divergence theorem and placing the origin at the center of the bubble, we find

To determine the above quantity, we derive a Faxén-type law, which relates the
integral [;q. #ndS to the analogous integral [5g. ¢'ndS in the v bubble’s absence
(the fact being denoted by the prime), known from the potential theory to be equal
to 7V,¢'(R”) (cf. Kellogg 1953), and the dipole of that bubble. As a first step, we
rewrite (6.1) in ?he form appropriate for a point on the surface of the bubble,

qS(X) 2¢/(x) = - (F1 + ¢9—‘;Ty—)) - ydS,.

r

Now multiply both sides of the above expression by x and integrate the product over

the surface of the sphere with respect to the variable x to give

Xl —20(ldSs =i [ [ x rly =Y ylusas,. (68)
aQvs 2ma Joqvs Joqry r T

The evaluation of the right-hand side of (6.8) yields

9."!4

[ s S L[

or just
2

2 — _ a
Sxf() — *F0) = — U, (6.9)

where

XP) = 1z [, X60S

We can now introduce the following quantity:

Vo) = - J,, véav.
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and, by virtue of the divergence theorem,

2

xp(x) = %Vqﬁ(x).

Now (6.9) can be put in the form

2 — U
§V¢(x) —-Vé'(x) = —-3" (6.10)

We remark here briefly that a Faxén-type relation, analogous to (6.10), holds for the

quantity
—_ 1
) = o [ #(x)ds.,

and it reads

Py YRS TTARY q

$(x) — ¢ (x) = —,
which, upon recalling the expression for the charge (6.5), reduces to the simple form

$(x) — ¢'(x) = 0.

For bubble p, in the absence of the gradient of any external potential, i.e., when the

fluid’s motion is wholly due to the motion of the bubbles, using (6.7), we obtain
761" a® NPV 1) v 1

V¢ (R*) = —— ) (Vé(R¥) - U") - V,V,—,

3 2 Ty

where r,, = |R* — R”|. Combining the above result with the Faxén law (6.9) and
recalling that V¢'(x) = V¢'(x) (cf. Kellog 1953), we have

JE— U+ & 1

VoRA = —— — L Y (VR - U) - V, ¥, —. (6.11)

2 v#u Tuy
Now we find it convenient to put (6.11) in matrix form,

Vé(R) =M, - V(R)+M,- U,
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where V¢(R) and U are vectors defined as

and

V(R) = [V§(R), V4(R?), ..., Vg(RN)]"

= [UL%,..., UM,

whereas M, and M; are matrices of the following form,

|,

m|9w

[ 0 YV} VY,V

N
X
B

H

V,Vyra 0 V, Ve

\Vyvyr}_vll VyVyrne VyVyris

a—SI —.VyVyT;zl -—V Vyrlsl

~V, Vit a1 A

\‘“vyvyrl—\}ll —VyVerrlz —vyvyrﬁé

Vyvyrl_l\ll \

-1
VyVyron -~

~V,Vyrin

-1
=VyVyron

a=31

)

/

(6.12)

(6.13)

We are now in a position to deduce a formula that will establish a direct relation

between the vectors Vé(R) and U,

VR = (I-M;)™ - M, - U.
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We shall define as the mass matriz the following matrix of tensors,
M= —(I - Ml)‘l . M2.

The reason why it is appropriate for the matrix M to be called mass matrix will
become clear in the course of the following argument. Once again, recall the expression

(2.2) for the total kinetic energy of the fluid in our problem together with the relation

YU [ ¢ndS=rU-Vg=—1U-M-U.

Then the expression for the total Kinetic energy can be rewritten as
1
T= ipTU M- U, (6.14)

and it is now obvious that, indeed, the matrix M plays here the role of virtual, or

added mass of the entire system, normalized by a factor of p7.

6.2 Extension to Infinite Systems

To model the infinite medium, we apply periodic boundary conditions to a cell of
volume V, containing N particles. We are no longer in a position to argue that the
velocity at infinity is zero. Rather, the whole medium is now set into motion, i.e.,

there is a bulk flow; the kinetic energy (per unit cell) of this flow is

P, - P,
Tof = =7
YT V(1)
and there is a corresponding velocity,
P,
Uy = ———m—,
T pv(- )

where f is the void fraction.

Returning to the potential flow problem, the bulk flow corresponds to a continuous
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- dipole distribution throughout the medium. We must account for this distribution in
our derivation of an expression for the gradient of the potential. Bonnecaze & Brady
(1990) have addressed this problem; proceeding along the lines of §§4 and 5 of their
paper, we rewrite the equation for the potential gradient in a form similar to (6.4),

recalling the expression for the charge (6.5) and accounting for an infinite number of

bubbles (cf. equation (35), Bonnecaze & Brady 1990),

n(S)

Vo) ~ V() = - rOBLEAA ATy REECII A A

Y
1

where n(S) is the average particletdipole density, related to the motion of the entire
liquid as a whole, V is the volume Enclosed by §°°, a distant boundary sg_rface, which
surrounds x, and V; is the volume of a sphere of radius € surrounding x

The cell is periodically replicated to fill all space; the sums over the infinite par-
ticles are replaced by double sums over the N particles in the Ith cell of the system
and over all the replicated cells. To make the resulting double sums converge rapidly,

we use the Ewald summation expression (A 2.4) from Bonnecaze & Brady (1990),

n(S) 1 v 1 1/ 1
5 T Zs VyVym— = | Ven(S) V,Vy=dV
sno 20, "
= e — S" . A
47 36 Z Z
v # ko
L E ZS"’-A(k)
4Tt 'V,
k#0
where
A® — [(serrt - 366507 + 1660 4 agr?) L 4 2oHelEr)
= |(8¢7r* — 36¢°r? + 16¢% + 4¢r72) =t
(R#o — RW)(R#O - RW) .
X 2

& ric({r
T



y [(R“° — R")(RH — RT) I] ’

3

r r
2 4
AB % [1 + Zli (%) + % (%) ] e /% coslk - (R — R")[kk.

In the expressions above, [ is the cell index number, v is the particle index number,
R# is the position of the particle y in the zeroth cell, R is the position of the particle
v in the [th cell, k is the periodic cell reciprocal or wave vector, k is its magnitude,
r = |R* —R*|, and R* —R" is the position vecxtor difference between bubbles y and
v within a cell.“'1 The arbitrary number ¢ regulates the speed of convergence for the
sums and is typically chosen to be. 1/ Vcé. Each sum converges exponentially fast.

It is now straightforward to rewrite matrices M, and M, of (6.12) and (6.13) in
terms of the Ewald sums. All of the analysis of the previous subsection will apply
to the case of an infinite number of bubbles, except the total kinetic energy as given
by (6.14) should now be thought of as that of an elementary cell rather than all fluid

(the same obviously applies to the total momentum as given by (2.6)).
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Part 11

" Behavior of Sheared Suspensions

of Non-Brownian Particles
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Chapter 7 Introduction

Suspensions of non-Brownian particles (usually, 10 gm and larger in size, with negligi-
ble Brownian motion) in a Newtonian fluid undergoing Stokes flow are very common
in nature and in many important industrial processes; clays, coal and cement slurries,
and drilling muds are some of the more immed}ate examples. The detailed knowl-
edge of the pat%lerns of macroscopic behavior of such suspensions is necessary for
the improvement of the existing téchnologies, as well as for the development of new
processes and applications.

Non-Brownian particles suspended in fluid flow interact through -hydrodynamic
and interparticle forces; it is the relative importance of these forces that determines
the structure and properties of the flow. Over the last years significant research effort
has focused on the non-Newtonian rheological behavior (finite normal stress differ-
ences and a particle phase contribution to the isotropic stress) that these systems
are known to exhibit. Gadala-Maria (1979) reported normal stress differences scaling
roughly as 1y, where 7 is the viscosity of the solvent and + the shear rate, for a sus-
pension of polystyrene spheres in water undergoing simple shear motion at vanishing
Reynolds number. Phung (1993) calculated finite normal stress differences scaling
as ¥ in his Stokesian Dynamics simulations of sheared colloidal suspensions at high
(10%) values of the Péclet number, defined as the ratio of shear to Brownian forces,
Pe = 4a*/2D, where a is the particle radius and D is the diffusivity of an isolated
parficle.

Net migration of particles in inhomogeneous stress or shear fields (e.g., those
occuring in flows in tubes or channels) along with its influence on the suspension
rheology have been observed in experimental studies. Among such studies, Leighton
& Acrivos (1987) and Abbott et al. (1991) observed the movement of particles away
from regions of high to low shear in Couette devices, while Gadala-Maria & Acrivos

(1980) observed the steady decrease of the viscosity of a concentrated suspension due
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~ to the migration. Nof.t & Brady (1994) carried out Stokesian Dynamics simulations
of the pressure-driven flow of a non-Brownian suspension in a channel and reported
the migration of particles towards the center of the channel, where the shear rate is
lower. Theoretical models for this migration phenomenon have been put forward by
Leighton & Acrivos (1987b) and Nott & Brady (1994). The former authors proposed
a diffusion equation for particles, to be solved in conjunction with the continuity and
momentum equations for the entire suspension. Nott & Brady developed a model in
which macroscopic mass, momentum, and energ); balances are constructed and solved
simultaneously, l’ifor the particle phase and for the entire suspension. They showed
how the diffusive flux model of Lei_ighton & Acrivos is contained within their model;
moreover, by introducing the notions of the suspension pressure and .temperature
as measure of the particle fluctuational motion (thus making the description of the
suspénsion nonlocal), the suspension balance model of Nott & Brady was proven
successful where the diffusive flux model failed, viz. in explaining the lack of migration
in torsional flow, observed in the experiments of Chow et al. (1994), and the absence
of close-packing of particles in the regions of zero shear rate. The results of the
suspension balance model for channel flow have been found in good agreement with
Stokesian Dynamics simulations.

Investigating hydrodynamic diffusion of non-Brownian particles is another active
area of research (cf. Davis (1996) and references therein). Hydrodynamic diffusion
refers to the fluctuating motion of particles in a dispersion, which occurs due to par-
ticle interactions. Eckstein, Bailey & Shapiro (1977), Leighton & Acrivos (1987), and
Phan & Leighton (1996) have experimentally obtained long-time self-diffusion coef-
ficients for sheared suspensions of non-Brownian particles. Phung (1993) computed
finite long-time self-diffusivities for suspensions of hard spheres at Pe > 1.

Phung’s findings of finite normal stress differences and long-time self-diffusivities
were initially considered surprising in that at high Pe there did not appear signs -
of a transition to the pure hydrodynamic limit, Pe~! = 0, when the normal stress
differences and particle pressure must vanish owing to the reversibility of Stokes flow.

Brady & Morris (1997) have demonstrated how the non-Newtonian rheology of
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strongly-sheared suspensions is related to the fore-aft microstructural asymmetry (de-
termined analytically in their paper and observed by Parsi & Gadala-Maria (1987)
experimentally and by Phung (1993) in simulations) due to weak Brownian motion
combined with an interparticle force of hard-sphere type maintaining particles at a
minimum separation of 2b, with b > a. Brady & Morris have investigated the thin
O(aPe™') boundary layer at particle contact in which the effects of Brownian dif-
fusion and advection balance while the interparticle force results in an asymmetric
pair-distribution function with an O(Pe) contaét value. Normal stress differences
of O(ny¢?) and Za shear-induced self-diffusivity of O(ya2¢) as Pe — oo thus result.
Brady & Morris expect the conclusions of their work to apply to suspensions of par-
ticles interacting via a force of an extended (but short) range even in the absence of
Brownian motion.

It‘is the purpose of this work to report on a study of the structure, rheology,
diffusion, and the fluctuational (i.e., relative to the bulk) particle motion of sheared
monodisperse suspensions of non-Brownian particles interacting by means of a pair-
wise short-ranged repulsive interparticle force. For a given type of particle interaction,
the system is described by two parameters, the particle phase volume fraction ¢ and
the ratio of the shear to the interparticle force, denoted ¥*.

At low values of the volume fraction (0 < ¢ < 0.25), suspended particles stay
well-separated for most of the time of a simulation, encountering their neighbors only
infrequently. The interparticle force does not influence the structure nor the macro-
scopic properties to any significant extent as we see little variation with 4* of the
shear viscosity, normal stress differences, etc. Nor, to any appreciable extent, is the |
motion of the particles observed to display a diffusive; the particles simply follow
the streamlines of the bulk shear motion, with little random walk present, due of
the rarity of important collisions of pairs of particless. Accordingly, the values of
the long-time self-diffusion coefficients remain very low and difficult to determine in
a molecular-dynamics-like simulation. At higher volume fractions, however, parti-
cle collisions become much more common. The values of the macroscopic properties

rapidly increase; in the absence of interparticle force, at high values of ¢, particles
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captured by strong lubrication forces would eventually form cell-spanning clusters
leading to an infinitely large shear viscosity. The repulsive interparticle force, how-
ever, works to limit the growth of clusters. Moreover, as ¢ continues to increase, the
interparticle force eventually leads to the particles’ ordering in flowing strings accom-
panied by a decrease in the shear viscosity, self-diffusivites, and other properties. The
particle volume fraction at which this transition occurs, the extent of the transition,
and the influence it exerts on the properties all depend on 4*. For a higher value of
¥*, the transition to hexagonally packed strings occurs at a higher value of ¢. In a
pattern reminis&ent of Phung’s simulations, we calculate finite non-Newtonian rheo-
logical properties and long-time self-diffusivities even at the highest simulated shear
rate, ¥* = 104 | |

The microstructure of the simulated suspensions is investigated with the help
of the pair-distribution function, g(r). An examination of the radial and angular
dependence of g(r) establishes the connection between changes in microstructure and
macroscopic suspension properties, such as rheology and self-diffusivity.

An important aspect of this work is that it presents for the first time, in addition
to the other rheological quantities such as the shear viscosity and normal stress dif-
ferences, the results of a calculation of the osmotic, or suspension, pressure defined as
negative one-third of the trace of the suspension bulk stress tensor. The significance
of the suspension pressure has been demonstrated only recently by Nott & Brady
(1994). Together with the normal stress differences, the pressure is used in their sus-
pension balance model in the momentum balance in the directions perpendicular to
the mean rﬁotion, to explain net migration of particles, or lack thereof. A calculation
of the suspension pressure as part of a dynamic simulation became possible only re-
cently, after Jeffrey, Morris & Brady (1993) determined the hydrodyﬂamic functions
necessary for the computation of the elements of the trace of the bulk stress tensor.
For the osmotic pressure as well as for the other rheological quantities, we tabulate
and plot its total value as well as the separate contributions to it from hydrodynamic

interactions and the interparticle force, for the entire range of simulated values of 4*

and ¢.
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Chapter 8 Outline of the Simulation
Method

8.1 Stokesian Dynamics of Non-Brownian Sus-
pensions

In this section we follow the rele\?iént discussions in Phung, Brady & Bossis (1996)
and Phung (1993) and present only a brief description of the Stokesian Dynamics
method used in our simulations. A more detailed treatment is available elsewhere in
the literature (Brady & Bossis 1985, 1988; Bossis & Brady 1984, 1987, 1989). We
will be investigating a suspension of N rigid spherical particles, all of the same radius
a, in an incompressible Newtonian fluid of viscosity n and density p. The motion
of the fluid is governed by the Navier-Stokes equation, while the particle motion is

described by the N-body Langevin equation:

m.%ltl:FH+FP+FB, (8.1)
where m is the generalized mass/moment-of-inertia matrix of dimension 6N x 6N,
U is the the vector of the particles’ translational/rotational velocity of dimension
6N, and FZ FFP and F? are the force/torque vectors, all of dimension 6 N. F¥ is
the hydrodynamic force/torque exerted by the fluid on the particles, F¥ represents
the deterministic non-hydrodynamic forces, interparticle and external, and FZ is the
stochastic force that gives rise to Brownian motion.

-In this work, we will be concerned with suspensions of non-Brownian particles in -

Stokes flow; this means that both the inertia term and the Brownian force term in

the Langevin equation (8.1) can be set equal to zero. Thus, appropriately simplified,
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(8.1) becomes
FZ+FP =0 (8.2)

The hydrodynamic force on the particles in a suspension undergoing bulk linear

shear flow is

Ff = —Rpy - (U - (U)) + Rpg : (E), (8.3)

where (U) is the velocity of the bulk shear flow (imposed at infinity) evaluated at
the particle center, (E) is the symmetric part éf the gradient of the imposed shear
flow (the bulk shear rate is given by ¥ = |[(E)]), and Rpy(x) and Rpg(x) are the
configuration-dependent resistance tensors, independent of the flow field. The gener-
alized configuration vector x speci%ies the location and orientation of all the particles.

In general, the non-hydrodynamic force F¥ may be of any form, interparticle or

external. In this work we will exclusively study the effects of the pairwise-repulsive,

along the line of centers, force of the following form:

p TET®

01 —es’

Fl;=F (8.4)
where o and 8 denote the particles in a pair, s = (Jx, — Xg| — 2a)/a is the dimen-
sionless separation between particle surfaces, |F{| is the force magnitude, and 7 is
a variable parameter setting the range of the force. This form of the interparticle
force corresponds to charged particles interacting in an ionic salt solution through
Derjaguin-Landau-Verwey-Overbeek-type forces at constant surface charge. As given
by (8.4), the interparticle force varies as 1/s as s — 0 and decays to O(107%|F§|7)
when s ~ O(4.5771). All of the simulation runs presented in this study were con-
ducted using 7 = 1000; this value of 7 roughly corresponds to polystyrene spherical
particles of O(10 pum) in size suspended in 50 percent glycerol-water mixture contain-
ing ‘10‘3 M KCl. However, for our purposes, these specific details are unimportant
as ‘fwe expect the conclusions of our work to apply to all suspensions of particles
interacting by means of a short-range repulsive force.

The evolution equation for the particles is obtained by integrating (8.2) over a time
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step At that is small compared with the time over which the configuration changes. A

second integration in time produces the evolution equation for the particle positions

with error of O(At?):
Ax = {(U)+ Rz - [Rre : (E) + FF]} A, (8.5)

where Ax is the change in particle position during the time step- At.
Non-dimensionalizing x by the characteristic particle size a; the time by the con-

vective time scale given by 4~!; the shear force by 6mna?y; the interparticle forces by

their magnitude1,|F(},’ |; the hydrodynamic resistance tensors Rry by 67na and Rrg

by 67na?, the evolution equation (85) becomes:
Ax={(U)+ Ry [Rre: (B) + 7 'FF} A, (8.6)

where ¥* = 6mna?y/|FE| is the nondimensional shear rate, defined as the ratio of the
shear and interparticle forces.

The resistance tensors Rpy and Rpg can be written as part of a grand resistance
tensor R that relates the force/torque (F) and stresslet (S) exerted by the fluid on
the particles to the particle velocities and the rate of strain. The corresponding
inverse is called the grand mobility tensor, M = R~!. The method to construct
the tensor R proceeds by obtaining an approximation to M by combining Faxén
laws for particle velocities with a truncated multipole moment representation of the
particles. This approximation to the grand mobility tensor, denoted M, is then
inverted to yield a far-field approximation to the grand resistance tensor. This many—
body approximation to the resistance temnsor lacks, however, the itnportant near-
field lubrication effects. Lubrication would only be reproduced upon inversion of the
mobility tensor if all multipole moments were included. Because of their short-range
nature, lubrication forces are two-body interactions and are introduced in a pairwise-

additive fashion in the resistance tensor. Thus, the approximate grand resistance
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tensor that includes near-field lubrication and far-field many-body interactions is
R = (M®)" + Riw, (8.7)

where Ry stands for the near-field lubrication interactions. Thus constructed, the
grand resistance tensor is then partitioned and used in the evolution equation (8.6)
and in the calculation of macroscopic properties. This procedure captures both the
near- and far-field physics and has given excellent results for all situations in which
a comparison has been possible (Durlofsky, Brady & Bossis 1987; Brady et al. 1988;
Phillips, Brady 81(, Bossis 1988).

It should also be noted that tile long-range (1/r) nature of the hydrodynamic
interactions requires care in simulating infinite suspensions, i.e., lettin:é N — oo,
V — oo, keeping n =N /V fixed. To avoid badly divergent summatic;; expressions,
O’Brien’s (1979) method is employed in dynamic simulation. Used with periodic
boundary conditions, this method renormalizes all divergent and conditionally con-
vergent hydrodynamic interactions and accelerates the convergence of the interactions
with the help of the Ewald summation technique (Beenakker 1986).

From the evolution equation (8.6) we conclude that, for a given form of the in-
terparticle force, the behavior of the suspension depends on the dimensionless pa-
rameters 4* and ¢, the volume fraction of particles. In our computer simulations,
given an initial C(;nﬁguration of N particles at time ¢ = 0, we integrate (8.6) in time
to follow the dynamic evolution of the suspension microstructure and calculate and
store quantities of interest, e.g., the velocities of the particles, the components of the -
bulk stress tensor, etc. We employ a fourth order Adams-Bashforth scheme for the
integration. A small amount (—107% < s < 0) of particle overlap may occur because
of the finite time step. When overlap occurs we set the interactions at a nondimen-
sional surface-surface separation s = 10~% and proceed with the integration. This
metﬂo_d preserves the symmetry of particle trajectories in the pure hydrodynamic
limit (Brady & Bossis 1988) and produces the correct equilibrium structure in the

pure Brownian limit (Phung et al. 1996). A multiple time-stepping scheme is also
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used since the mobility interactions vary on the scale of the particle size, while the
lubrication interactions vary on the scale of the particle surface separation. The time
step is governed by accurately resolving the close particle encounters and the mobility
interactions are computed less frequently so that the computer time required in the
two sections is roughly the same.

Appropriately averaged over particle configurations and time, the results of a simu-
lation yield the macroscopic properties of the suspension. We will mainly concentrate
on the diffusion coefficients and rheological propérties, such as the bulk viscosity, the
normal stress differences, etc. The long-time self-diffusivity D2 measures a particle’s

ability to move far from its initial position. It is defined as
1

Dz, = Jim 35 (6= Y, (5:5)

where the angle brackets denote averaging over the N particles.
For rheology, the bulk stress (X) is needed. This is defined as an average over the

volume V containing the N particles and is given by
(Z) = —=(p) I+ 20(E) + (), (8.9)

where (p); is the constant pressure in the fluid phase, I is the isotropic tensor, and
2n(E) is the deviatoric stress contribution from the fluid. The particle contribution

to the stress (X,) is given by
(Zp) = n{(S™) + ()}, (8.10)

where n is the number density of particles. The particles make two contributions to
the bulk stress: (a) a mechanical stress transmitted by the fluid due to the shear flow,
(SH); and (b) a stress due to the interparticle forces, (S¥). These contributions are

given by

(S7) = —(Rsv-Rpy - Rre — Rsg) : (E), (8.11)
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(SF) = —((Rsv-Rpy +xI) - FF). (8.12)

The configuration-dependent resistance tensors Rsy(x) and Rgg(x) are similar to
Rry and Rpg and relate the particle stresslet S to the particle velocities and to the
imposed rate of strain, respectively. In the absence of external torques and because
the interparticle force is along the line of particle centers, the stresslet is the symmetric
(but not traceless) first moment of the force distribution integrated over the particle
surface.

From this poént on, for labeling purposes, we shall assume that the imposed shear
flow in a dynamic simulation takes place along the z-axis while the velocity gradient
is in the y-direction, so that (u,) - Jy; the vorticity of the bulk flow will point in the
direction of the z-axis. For simple shear flow, the relative viscosity of the éuspension is
defined by the ratio of the zy component of the bulk stress (X,,) to the zy component

of the rate of strain (E,). In the dimensionless form, the relative viscosity becomes:

(Bzy)

"7?=Z?—(—E—)—=1+nr}"{+nf7 (8.13)
Ty
with
o= 2lssm, (8.14)
2 Na=1
o= delsse.,, (8.15)
2 Na:l

where a denotes individual particles and the overbar time-averaging over the course
of a dynamic simulation run. The factor of 9/2 arises in equations (8.14) and (8.15)
as a result of non-dimensionalization.

The non-Newtonian rheology of a suspension is characterized by the first and

second normal stress differences defined as follows,

Ny = (Zez) — (B4),
Ny = (Eyy)'—<2n>a
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and by a contribution to the isotropic stress, called suspension (or particle, or osmotic)
pressure. Nott & Brady (1995) have shown that the requirement that the suspension
pressure be constant in directions perpendicular to the mean motion leads to particle
migration and concentration variations in inhomogeneous flow. In the next section

we describe in detail the procedure employed to calculate the suspension pressure.



60
8.2 Calculation of the Suspension Pressure

The osmotic or suspension pressure II of a suspension of particles is defined as minus

one-third the trace of the bulk stress tensor. Recalling (8.9), we write
1
I = —2n{(S") + ($7)}, (8.16)

where S¥ = 1: S and S¥ =1 : S have been used to denote the contributions
to the osmotic pressure due to the hydrodynan;ic and interparticle forces. Using
the expressions "(8.11) and (8.12) and introducing the notation P = I : Rgy and
Q= ‘I : Rsg, we obtain ;

(SHY = —(P-R7l-Rpz—Q): (E),
(SFy = —((P-Rpy +x)-FF).

The procedure used to calculate the osmotic pressure follows closely the algorithm
employed in Stokesian Dynamics to compute the rheological quantities (Brady et al.
1988). First, we calculate the far-field, many-body approximation to the pressure.
The Faxén law for the pressure moment integrated over the surface of a given particle
a is (Jeffrey et al. 1993):

Sy = 4ma®p™(x4), (8.17)

where p™(x,) is the “ambient” pressure that would exist at the location x, of the
center of the particle in its absence. Using the Green function for the pressure field
of Stokes’ flow (Ladyzhenskaya 1963), the ambient pressure p®(x,) can be written
in terms of integrals of the force distribution on the surfaces of all the other pdrticles

and an integral over a mathematical surface I of large radius lying entirely within

fluid:
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pra) = Z /Ix y[3 +o - ndS,
ﬂ#a
L o[22y gy V) —Y)
+47r /Sr/ [Ix_y|3 o 6.7711 |x—y|3 ndSy. (8.18)

For the particles in the periodically replicated unit cell of a dynamic simulation,
we follow Brady et al. (1988) and expand the integrals over the individual particle
surfaces in (8.18) in terms of the force distribution moments, truncating the expan-
sion at the stresslet level. We then apply the renormalization procedure of O’Brien
(1979) together with Ewald’s summation technique and obtain the following rapidly

convergent expressions:

1 r
poo(xa) S = _472 Z (M;F)' ‘Fp, + M( ). : Sp,)
boog
B # a0
1
_47!'V Z Z(Mg;:)' : Fﬁl + M(k) Sﬁ,), (819)
€ B
k
k#0

where (Bonnecaze & Brady 1990)

r 5 3 e fc R — RA
MO = [(46 r — 1265 4 26r) NG += r(fr)] ( )

2 4
) _ 4 L(k L(k -k /48 ke . (R — Rk
M = 2 [1+4 (5) +8 : e sinfk - (R* — R7)]k,

: —£2,2
r) _ 7.4 5,2 3 -2\ € 2erfc(ér)
M = [(8@« — 365r% + 16€° + 4¢r7?) v + =

’
r

(Rao — Rﬁl)(Rao — Rﬁz)

r2
e~ ric({r
+ [(4€5T3 _ 12£3T 4 2§T_1) ﬁ + € f(;(zé )]

l(Rao — RA)(R™ — RA) 1] |

r3 r

2 4
k) 47 1 (k& l ]_C- _k2/4€2 . a_nb
M,s = ) [1 +7 (f) + s \¢ e coslk - (R* — R”)]kk.
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In the above expressions, [ is the cell index number, V; is the volume of the cell, 8
is the particle index number, R*° is the position of the particle a in the zeroth cell,
R? is the position of the particle 8 in the Ith cell, k is the periodic cell reciprocal or
wave vector, k is its magnitude, r = |R* — R#|, and R* — R” is the position vector
difference between bubbles a and 8 within a cell. The arbitrary number { regulates
the speed of convergence for the sums and is typically chosen to be /m/ Vc%. Each
sum converges exponentially fast.

For pairs of nearly touching particles, the use of the exact values for the particle
forces and stresslets in (8.19) leads to aphysically large values of the suspension pres-
sure. This happens because the force distribution moments higher than the stresslet,
not included in (8.19), become largé for lubricating particles subjected to highly non-
localized hydrodynamic forces. Recall that, in Stokesian Dynamics, higher moments
and screening effects are accounted for by inverting the far-field mobility matrix and
adding to the invert the exact near-fild resistance matrix. For the purposes of cal-
culating the suspension pressure, however, no similar mobility-to-resistance inversion
procedure is possible, since the pressure does not appear in the equations of motion
of individual particles. To overcome this difficulty without having to account for the
higher moments explicitly, and in the hopes of capturing important screening effects,
we propose to use in (8.19) “effective” forces and stresslets obtained in the following

manner:

F L, (u-u=
= (M=), . (8.20)
S —E>

The physical meaning of the effective forces and stresslets as given by (8.20) can be
interpreted as follows. For the purposes of the far-field approximation, we treat the
particles as if they were subject to only two non-zero force distribution moments, viz.
forces and stresslets, exerted by the fluid, with all the higher moments assumed equal
to zero. In order to create the actual flow field, as represented by the velocity/rate-
of-strain vector, the forces and stresslets on such particles must assume the values
given by (8.20).

Next, we add to the far-field approximation of the suspension pressure the near-
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field or lubrication contribution from close pairs of particles. Following Jeffrey et al.
(1993), we calculate the contributions to the pressure at the reference particle « by all
its neighbors within a dimensionless distance of four (an arbitrary choice that allows
for computational efficiency and is physically sensible since at so large a distance

near-filed pairwise interactions safely can be neglected):

U, - U
SOI choz Pa ao a U _Uoo
— o Qoo Qoo | | Us = Uj , (8.21)
o8 Pso Ppp Qpa Qpp .
_E®

where the quantities P and Q are computed according to the procedure outlined in
Jeffrey et al. (1993). To avoid double counting the portion of the near-field interaction
which has been captured by the mobility approximation (8.20), we have followed
Jeffrey et al. by subtracting from the sum the terms in the resistance formulation of
O(s~7) and larger, where s is the separation distance, noting that the leading error
in the moment expansion is due to neglect of the change to the pressure environment
of a reference sphere by the induced quadrupole upon a neighboring sphere, which
behaves as s75.

This concludes the description of the numerical method employed in this study.
In the next sections we shall describe the results of our investigation of non-Brownian

suspensions as a function of the particle volume fraction ¢ and nondimensional shear

rate y*.
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Chapter 9 Simulation Results

In this chapter we present the results of Stokesian Dynamics simulations of unit cells
of 27 and 64 monodisperse particles, subject to hydrodynamic and repulsive pairwise
interparticle forces. The specifications of the simulations and details of the sampling
and averaging procedures are summarized in Tables 9.1-9.3 for runs with 27 particles
in the unit cell. In these tables we report the number of runs for each studied point
in the 4*-¢ parameter space; the simulation time step, At; the total duration of
each run, T'; the length ¢4 and the number of the simulation intervals used for the
computation of the long-time self-diffusivity coefficients. In the beginning of each
run particles were assigned random positions; the first 5,000 to 10,000 time steps
were not used in the calculation of the rheological and other properties. To avoid
severe particle overlap, shorter time steps were employed in the runs of concentrated
suspensions at v* = 0.1.

The runs with 64 particles in the unit cell, conducted at ¢ =0.30, 0.40, 0.45, 0.50,
and 0.52 and 4* =10, 100, and 1000, were all 50 strains long, with the time step
At = 1073, Because the 64-particle runs were not long nor numerous enough, no
long-time self-diffusivity was computed.

The outline of the presentation of the results will be as follows: first, we will dis-
cuss the suspension microstructure (the angularly averaged pair-distribution function
g(r) and the probability density functions g(z,y), g(z, z), and g(z,y)); second, the
suspension rheology (the shear viscosity, the normal stress differences, and the sus-

pension pressure); third, the short-time self-diffusivity (or particle mobility) and the

S

oy and

long-time self-diffusivity in the velocity-gradient and vorticity directions, D
D;, ..; finally, the suspension temperature defined as a measure of the translational
and rotational velocity fluctuation, (U'U’) and (Q2'2).

We conclude these general remarks by noting that, unless indicated otherwise in

the table or figure caption, the results presented in this chapter are those obtained in
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simulation runs with 27 particles in the unit cell.
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9.1 Suspension Microstructure

In this section we investigate how suspensions sheared at different shear rates display
different patterns of microstructural particle arrangement. We will see later how
these different microstructural pétterns profoundly affect the macroscopic suspension
properties.

We study the suspension microstructure by determining the angularly-averaged
pair-distribution function g(r) together with the probability density functions g(z, y),
g(z,z), and g(z,y). Given a particle at the origin, the pair-distribution function g(r)
describes the pr‘obability of finding a second particle at the location r normalized
by the particle density in the susﬁension. The angularly-averaged pair-distribution
function g(r) contains only information on the relative separation of theirparticles. It
is obtained by dividing the central portion of the unit cell into thin épherical shells
(we employed the radial thickness of 0.001 in our simulations). We then compute the
particle density in each shell and weight it with the overall particle density of the
suspension.

The angular dependence of g(r) can be concluded from the projections of g(r)
on the (z,y), (z,2), and (z,y) planes, i.e., from the probability density functions
9(z,y), g(z,2), and g(z,y). In simulations, these functions are obtained by dividing
the faces of the unit cell into small squares of a (0.1,0.1) dimension each. The particle
positions are then projected onto these squares and the probability density function
is computed of finding a particle at a position in a particular square relative to the
particle at the origin. A density plot of the plane projection distribution function can
then be created.

In the next sections we present the functions ¢(r), g(z,y), g(z,2), and g(z,y)
focusing mainly on the region of high ¢, where changes in ¥* have pronounced effect

on the microscopic structure and macroscopic properties of suspensions.
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9.1.1 Angularly-Averaged Pair-Distribution Function

The results of the calculation of g(r) are presented in Tables 9.4-9.8 and plotted in
Figures 9.1-9.8.

The pair-distribution functions g(r) for simulation runs with 64 particles in the
unit cell are plotted in Figure 9.1; the unit cell dimensions in these runs allow us to
investigate g(r) until the center-center separation r = 4. We observe two peaks of pair-
distribution, one at r = 2, the other at slightly less than r = 4. At high shear rates
the first peak corresponds to pairs of particles kept together by lubrication forces; the
second, much leés strongly pronounced peak suggests that, to some extent, particles
form chains (or clusters) consisting‘i'of more than two particles. In Tables 9.4-9.5 and
9.8 and in Figure 9.2 we have compiled and plotted the values g(2) of the angularly-
averaged pair-distribution function at the particle-particle separation corresponding
to particle contact, r = 2, as a function of the particle phase volume fraction ¢ and
dimensionless shear rate 4*. For the runs at the highest 4*, 1000 and 10%, based on
our simulations, it would appear as if r = 2 were the location of the maximum of
the pair-distribution function. In reality, however, g(r) must peak at an r > 2 for all
finite shear rates; the peak is located where particle advection due to the imposed
shear flow is balanced by the flux due to the repulsive interparticle force.

In Figures 9.6-9.8 we have plotted g(r) for the runs at the highest concentrations,
¢ = 0.45, 0.50, and 0.52. As 7" and ¢ increase, so does the magnitude of g(2). As
4" — o0, in the pure hydrodynamic limit, g(2) becomes singularly large, of O((r —
2)~0"8(In(r — 2)71)~%29) (Batchelor & Green 1972). However, as ¥* decreases, we
see the peak of the g(r) shift away from r = 2 and that signals the appearance of a
fluid-filled gap separating particles in close pairs. In Tables 9.6-9.7 we have compiled
the data on the magnitude and location of the peak of g(r).

The above observations lead us to the conclusion that particles in concentrated,
strongly-sheared suspensions form clusters, bound by strong lubrication forces, that
later will be found responsible for the shear-thickening behavior at high ¢. This

behavior is similar to that of Brownian suspensions at high Pe numbers observed by
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Phung (1993) and Phung et al. (1996) in their Stokesian dynamics simulations.

9.1.2 Probability Density Functions

The plots of the probability density functions g(z,y), g(z, 2), and g(z,y), shown in
Figures 9.9-9.20, help visualize the striking differences in the structural arrangement
of suspended particles as we go from low to high shear rates. At the lowest value
of the shear rate, ¥* = 0.1, the particles form strings oriented in the flow direction
(the z-axis), hexagonally-packed in the velocity-gradient-vorticity plane (the (z,y)-
plane). As 4* in‘z:reases, the string pattern gradually disappears until eventually, at
the highest ¥* = 104, we no longer observe strings even in runs at the highest particle
density simulated, ¢ = 0.52.

The plots of g(z,y) are very useful in analyzing the boundary layer in the com-
pressive quadrants (zy < 0), where particle surfaces come in contact, in contrast to
the extensional quadrants (zy > 0), where we observe fewer (or none at all) close
pairs. Again, the degree to which this phenomenon is pronounced depends on the
value of 4*. When the latter is low, there is only small distortion of the fore-aft
symmetry; as 4* increases, the distortion and the difference between the compressive
and extensional quadrants become more obvious.

Brady & Morris (1997) have investigated the connection between the broken fore-
aft symmetry and the non-Newtonian rheology (normal stress differences and suspen-
sion pressure) and hydrodynamic diffusion in a suspension. In the next section we
discuss the results of our simulations and test their agreement with the predictions

of Brady & Morris.
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9.2 Suspension Rheology

9.2.1 Shear Viscosity

The results for the steady shear viscosities of suspensions in the range of ¢ from
0.05 to 0.52 as a function of 4* are summarized in Tables 9.9-9.14 for 27 particles
and in Table 9.33 for 64 particles and plotted in Figures 9.21-9.23 together with
experimental measurements of Rutgers (1962), Gadala—Maria (1979), and Patzold
(1980) and Phung’s (1993) Stokesian Dynamics simulation results for a Brownian
hard-sphere suspension sheared at Pe = 10%.

For simple shear flow in the (@, y)-plane, the relative viscosity 7,, the viscosity
of the suspension normalized by the fluid viscosity, is the relation between the zy
component of the bulk stress tensor (¥) and the zy component of the bulk rate of
strain (E). The viscosity of a suspension along with the contributions to it due to
the hydrodynamic and intrparticle forces are defined with the aid of the equations
(8.13)—(8.15).

An examination of the plots in Figures 9.21-9.23 reveals little variation with ¥* in
either the total viscosity 7, or the hydrodynamic contribution n* to the total for the
runs at low particle fraction, ¢ < 0.3. When the suspension becomes concentrated,
at high values of 4*, i.e., with little repulsive force present, the particles form clusters
bound together by strong lubrication forces and that results in an increase in the
hydrodynamic contribution n to the viscosity. In this range of 4* the magnitude of
the interparticle force contribution n¥ to the total shear viscosity is lower than that
of the hydrodynamic contribution by several orders of magnitude. As 4* decreases,
the interparticle force becomes more effective in breaking the clusters of lubricating
particles and that results in an overall decrease of the total shear viscosity, even
though the interparticle force contribution increases dramatically (by two decades
going from 7* = 0.1 to 10%).

We observe good agreement between our results and other researchers’ experi-
mental findings shown in Figure 9.21. The results obtained by Phung (1993) for the

shear viscosity of a hard-sphere suspension at Pe = 10* agree most closely with our
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results for the highest value of 4* = 10%; this means that, as far as the suspension
viscosity is concerned, the actions of weak Brownian motion and of weak interparticle
repulsion are similar in that they manage to keep particles in the suspension from

forming large, unit-cell-spanning clusters.

9.2.2 Normal Stress Differences

The normal stress differences help characterize the non-Newtonian behavior of sus-
pensions due to the anisotropic deformation of the microstucture. Tables 9.15-9.26
and 9.34-9.35 a}ld Figures 9.24-9.29 present the simulation results for the first and
second normal stress differences and the contributions due to the hydrodynamic and
interparticle forces for runs with 27 and 64 particles. Unfortunately, the poor quality
of the results of the normal stress differences limits us to making only qualitative
generalizations.

Whenever possible, we have compared our results with those obtained by Phung

(1993) for hard spheres at Pe = 10%.

First Normal Stress Difference

The results of the first normal stress difference are detailed in Tables 9.15-9.20 and
9.34 and in Figures 9.24-9.26. From these we conclude that the dominant contribu-
tion to the total comes from the hydrodynamic forces. The total first normal stress
difference N, is negative and grows in magnitude with 4*. The contribution from the
interparticle force N¥ is positive (except in runs with 64 particles at ¥* = 10) and

decreases in its magnitude as ¥* grows (behavior similar to that of n¥).

Second Normal Stress Difference

The results of the second normal stress difference (the total N,, together with the
hydrodynamic and interparticle force contributions, N and NI) can be found in
Tables 9.21-9.26 and 9.35 and in Figures 9.27-9.29. All three quantities have been

found negative. We note reasonable agreement between our data for N at v* = 104
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and Phung’s (1993) results for N} at Pe = 10*. The hydrodynamic contribution Nf
displays behavior similar to that of Nff and n*, namely that at high enough values
of ¢, the hydrodynamic contributions increase with increasing v*. Of all the normal
stress quantities, NI" has proven the most difficult to estimate reliably; the available
data do not allow us to make any conclusions as to the influence of changes in ¥~
on NF; it is also doubtful that, unlike NF, the interparticle force contribution NF
should appear to dominate the hydrodynamic contribution NF | even in runs at the

highest values of 4* (it should be noted that the scatter of the results is significant).

Comparison with the Normal,Stress Data of Gadala-Maria (1979)

Using a parallel-plate Couette device, Gadala-Maria (1979) measured the difference
between the first and second normal stress differences, N; — N, for a concentrated
sheared suspension of polystyrene spheres (40 to 50 pm in diameter) in oil. Ny — N,
was found roughly to scale with the shear rate. In Figure 9.30 we have plotted
Gadala-Maria’s data together with N; — N, obtained in our simulations.

We observe reasonable agreement between the results of our simulations at high

shear rates (¥* = 10*,1000, and 100) and Gadala-Maria’s experiments.

Interpretaion of the Signs of the Normal Stress Differences

To explain why we have obtained positive values for N and negative for N¥, we note
that for close pairs of particles the behavior of the interparticle-force contribution to

the stress is given by

(SF) ~ - / rrg(r)dr, (9.1)

where r is the vector separating the centers of the two particles and g(r) is the
pair-distribution function. A positive NI results from the resultant negative yy
interparticle-force stress generated along the extensional axis of the flow. The in-
terparticle force acts to repel two particles that are pushed together by shear, and
the component of this repulsion along the y-axis is a positive yy pressure or a nega-

tive stress. A similar component exists along the z-axis and, owing to the symmetry
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along the compressive axis,(cf. the (z,y) plots in Figures 9.17 and 9.20) the cor-
responding contribution to the first normal stress difference is zero. The symmetry
is broken along the extensional axis, however, and the absence of close pairs in the
far-aft region results in a relatively larger magnitude of the yy stress and a positive
NF. The interparticle-force contribution to the second normal stress difference, N
is negative because, owing to the compression of the shear flow, the yy stress is larger
in magnitude than the zz stress.

We now address the issue of the sign of the hydrodynamic contribution to the nor-
mal stresses. For a suspension that is subject to bulk steady simple shearing motion,
by considering pairs of particles, Batchelor & Green (1972) derived the components of
the particle contribution to the bulk suspension stress. Using expressions from §6 of
their paper, we conclude that the hydrodynamic contributions to the first and second

normal stress differences should be proportional to the following integrals:

riry(r —r?)

Ny ~ / —infg—_—z—Mp(r,t)dr, (9.2)
rir; r: —r?

Ny ~ /—TT<L+ > M) p(r, t)dr, (9.3)

where p(r,t) is the time-dependent probability density for the vector r, and the non-
dimensional scalar functions M and L depend on the non-dimensional distance be-

tween the particles, r/a; their asymptotic behavior is as follows:

25a3

M 53 (9.4)
5a3

L ~ 55 (9.5)

as r/a — oo.

The examination of the zy-projections of steady state pair distribution at high
shear rates, in Figures 9.17 and 9.20, taking into account the lack of close pairs along
the extensional axis, lets one conclude that (9.2) predicts a negative Nf¥ which is in
agreement with our simulation results. This type of analysis fails, however, to predict

the sign of NJ.
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9.2.3 Suspension Pressure

The suspension pressure is defined by equation (8.16) as minus one-third the trace of
the bulk stress tensor. We have summarized in Tables 9.27-9.32 and 9.36 and plotted
in Figures 9.31-9.33 the simulation results for the total suspension pressure as well
as for the separate contributions to it by the hydrodynamic and interparticle forces.

By examining the plots we conclude that the behavior of all three quantities,
the total and the two contributions, is similar to that of the shear viscosity. At
high particle phase concentrations, there is significant dependence of the suspension
pressure Il on the shear rate: as 4* increases so too does the total pressure and the

hydrodynamic-force pressure while the interparticle-force contribution vanishes.

9.2.4 Normal Stresses and Net Migration of Particles

In order to explain the absence of particle net migration in torsional flow (observed
in the experiments of Chow et al. 1994), Nott & Brady (1995) proposed the following
argument. In cylindrical coordinates (r,0,z) the velocity of torsional flow is in the
f-direction, grows linearly with the radius r and has a gradient in the z-direction:

(u) = rh(z)d. The radial momentum balance is given by

a<2rr>p = (Err>p - (209>p'

or r

(9.6)

Because of the linear dependence of (X) on r, the radial momentum balance (9.6)
implies the following relation among the pressure and the first and second normal
stress differences to prevent migration,

1

II
+3

(4N, + 5N;) = 0. (9.7)

In Figure 9.34 we have plotted the quantity on the left-hand side of (9.7), based on
results of our simulations, to determine whether there is cancellation. We conclude
from the plot that the cancellation is rather poor. This, at least in part, may be due

to the poor quality of the data on the interparticle-force contribution to the second
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normal stress difference, NI, as obtained in our simulations. Excluding N from 9.7
(based on the assumption that in reality NF should be small in comparison to N,
as indeed is the case with NJ and N/), we observe a much better cancellation of

normal stresses, in Figure 9.35, up to the particle phase fraction of 0.45.

9.2.5 Comparison with Scaling Predictions of Brady & Mor-
ris (1997)

In this section we check the agreement between our simulation results and the relevant
scaling predictio;ls made by Brady‘& Morris (1997). These authors have analytically
calculated the viscosity and secondj\ normal stress difference for a suspension of parti-
cles of radius a that are prevented from approaching one another at distaﬁces smaller
than b > a by a hard-sphere-type pairwise interparticle force. This force breaks
the fore-aft symmetry for close pairs of particles and thus leads to a finite viscosity
correction and second normal stress difference. Below are the scalings obtained by
Brady & Morris for the hydrodynamic and interparticle-force contributions to the

shear viscosity and normal stresses of a dilute suspension:

n" ~ n¢*(bfa—1)"%, (9.8)
n" ~ n¢*(bfa—1)"7, (9.9)
N (b — 102, (9.10)
N~ e — 1), (9.11)

where the hydrodynamic contribution to the viscosity (9.8) is over and above the
relative high-frequency dynamic viscosity n2°, corresponding to the equilibrium, hard
sphere distribution. This quantity has been calculated by Phillips et al. (1988), Phung
(1993) (as the hydrodynamic contribution to the viscosity of a Brownian sheared
suspension in the limit of low Pe number), and determined experimentally by van
der Werfl et al. (1989), among others. In this work, we have used the results obtained
by Phillips et al.
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For concentrated suspensions the right-hand sides of (9.8)-(9.11) should be multi-
plied by a factor of g™ (2b; ¢)/ljg(¢), where g°°(2b; ¢) is the pair-distribution function
at infinite Péclet number evaluated at the location of its peak, 2b, and D3(¢) is
the short-time self-diffusivity at the volume fraction and flow conditions of interest,
nondimensionalized by the short-time self-diffusivity at infinite dilution.

To compare our results with the scalings (9.8)—(9.11), we have plotted the hydro-
dynamic and interparticle-force viscosities, normal stress differences, and suspension
pressures against both ¢? and ¢?¢g>(2b; qS)/DS(qS), thus testing the entire range of sim-
ulated values of . For g°(2b; ¢) we used the maximum value of the pair-distribution

function determined at ¢ and 4* of interest; for Dg(qﬁ), the short-time self-diffusivities

0.22

obtained in our simulations. We did not account for the factors of (b/a — 1)°** and

(b/a — 1) in our scaling checks because we could determine a finite (b/a — 1) only
for the simulation runs at low 4* (cf. Tables 9.6-9.7) and even in those runs the vari-
ation in (b/a — 1)°?? and (b/a — 1)1?? was not large enough to let us make a definite
conclusion as to the specific influence of those factors on the rheological functions.
The double logarithmic plots of nf — 7%, nf, N¥, NF, N, Nf, TI¥, and TI¥
against ¢? and 2 (2b; )/ D3($) are presented in Figures 9.36-9.51. By examining
the plots we conclude that the agreement of nf, pf, TI7 ) and II¥ with the scaling
predictions is quite good at both low and high ¢. The normal stress differences scale
as ¢? at low ¢; the high ¢ scaling with $?g>(2b; ¢)/D3(¢) is not as well-pronounced,

due to the high degree of scatter in our results.

9.2.6 Relation between the Suspension Microstructure and
the Interparticle-Force Contributions to the Shear Vis-

cosity, Normal Stress Differences, and Suspension Pres-
sure

From the original non-dimensionalization employed to derive the evolution equation

(8.6) it follows that the interparticle contributions to the stress tensor scale as y* 1.

To clarify the dependence of these contributions on the suspension microstructure as
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the shear rate changes over five decades, we have plotted the products of ¥* with nf’,
NF, NF, and II¥ as a function of 4* at fixed ¢.
The interparticle-force contributions to the shear viscosity and suspension pressure
in concentrated suspensions at high shear rates scale linearly with the contact value

of the angularly-averaged pair-distribution function, as evidenced in the plots shown

in Figures 9.53 and 9.57.
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9.3 Self-Diffusion of Suspended Particles

9.3.1 Short-Time Self-Diffusion

In this section we present the results of calculation of the short-time self-diffusion

coefficient as average of the elements of the trace of the diffusion tensor
D; = (trD), (9.12)

where the translational and rotational diffusion tensors, Do and D, respectively, are

defined according to the Stokes-Einstein relations:

DO - kTR;v(lj,
D, = kTR,

Even though the motion of non-Brownian particles on short time-scales is not diffu-
sive, D3 and D? are still useful as measures of the instantaneous particle mobility.
Tables 9.37-9.47 and Figures 9.58 and 9.59 present the short-time self-diffusion

coefficients D§__, D, D5, Dr.., D7, D7, ., together with the averages

rrz?

L1 1 S k3 L3
(Do> = g(Dou + Doyy + Don))

s 1o s s
(Dr> = :?;(Drxx + Dryy + Dr”)'

In the tables and plots the translational and rotational self-diffusion coeflicients
are normalized by the corresponding infinite dilution coefficients, kT /(6mna) and
kT/(8mna®), respectively. Going from dilute to concentrated suspensions, the self-
diffusion coefficients decrease dramatically. At the highest concentrations there is a
pronounced dependence of both DJ and D; on 4*: particle in the suspensions un-
dergoing motion at higher shear rates have less of a mobility, both translational and
rotational. This is not surprising considering that particles in strongly-sheared sus-

pensions spend more time in close pairs and clusters (cf. data on the pair-distribution
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function g(r) in Section 9.1); accordingly, the mobility of particles in close contact
with other particles is expected to be lower than that of particles in weakly-sheared
suspensions, where the repulsive force succeeds in preventing close encounters of par-
ticles.

Examining the plots in Figure 9.58, we observe that the mobility does not asymp-
tote to unity as ¢ — 0 and that at ¢ = 0.30 and 0.40 simulations with 64 particles
in the unit cell yield higher values of Dj. Following Phillips, Brady & Bossis (1988),
we attribute these findings to the periodic replication of the unit cell employed in
our simulations.: Indeed, due to periodic boundary conditions imposed on the unit
cell of N particles in our simulations, we have the motion of each individual particle

" or “sedimenting,” motion of a simple cubic lat-

in superposition with the ”drifting,’
tice of volume fraction ¢/N. Insofar as the translational short-time self-diffusivity is
concerned, this “sedimenting” effect scales as N ~5. In order to correct for this effect
and thus obtain the “true” short-time translational self-diffusivities, for those data

points in the (¢,7) space for which we have D§ values for both N=27 and 64, we
have extrapolated to infinite N using the scaling from Phillips et al. (1988):

sn=Djo +a(d)NT, (9.13)

where a(¢) is a function used to describe the decay of the effects of periodicity. Thus
obtained extrapolated mobilities can also be found in Figure 9.58.

Phillips et al. also analyzed the finite size effects for the rotational mobility and
found them to be much weaker, scaling at most as N~!. Our results of D?, plotted

in Figure 9.59, agree with these findings.

9.3.2 Long-Time Self-Diffusion

The long-time self-diffusion coefficients are obtained by differentiating the mean
square displacement of the particles with respect to time. Such differentiation is
performed on a number of sample intervals in each run and then the mean values

of the coefficients along with their standard deviations are obtained by averaging
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over all the sample intervals. In Tables 9.48-9.51 we have reported the long-time

self-diffusion coefficients in the velocity-gradient and vorticity direction, D, . and
D;, .., respectively, and their standard deviations. The results in these tables are for

simulation runs with 27 particles only; our runs with 64 particles in the unit cell were
not long nor numerous enough for the calculation of the diffusion coefficients. We
have plotted the coefficients in Figures 9.60 and 9.61. Although the standard devia-
tions are high, due to the relatively short simulation runs, we can nevertheless draw
important conclusions about patterns of self-diffusion of particles in the studied flow.
When the particle volume fraction is low, ¢ < 0.3, there is little diffusive motion,
as the particles are following streamlines most of the time; interparticle collisions,
necessary for random walk, occur only rarely.

However, as ¢ increases, collisions become more frequent, and the particles’ self-
diffusion becomes much more evident; accordingly, the self-diffusion coefficients in-
crease by an order of magnitude until, at around ¢ = 0.4 — 0.45, depending on the
relative magnitude of the interparticle repulsive force, the suspension begins to order
itself in a string-flowing pattern, and the self-diffusion coefficients drop dramatically.
This phenomenon is best pronounced at the lowest values of 4*, 0.1 and 1. At the
highest shear rate, * = 10*, we do not see a decrease in self-diffusion, as the suspen-
sion does not show signs of ordering even at the highest value of the particle volume
fraction.

Another feature of the plots in Figures 9.60 and 9.61 is that D?_ . is generally

o0\YY

Also, D?_ . peaks at a higher value of ¢.

00,22

larger than D7 ..

For comparison we have plotted the self-diffusion coefficients obtained by Phung
(1993) for a hard-sphere suspension at Pe = 10* as well as the results of experi-
ments of Eckstein et al. (1977), Leighton & Acrivos (1987), and Phan & Leighton
(1993). These researchers’ and our results agree reasonably well. Also, our finding

that D? > D?

o0, YY 00,22

is in qualitative agreement with the coresponding results of Da
Cunha & Hinch (1996) who studied irreversible pairwise collisions in a dilute suspen-
sion of non-Brownian particles with small surface roughness, modeled as a normal

force between the surfaces of the spheres which stops the particles becoming closer
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than a non-zero minimum separation but no force is exerted when the particles sepa-
rate. Da Cunha & Hinch predicted very anisotropic diffusion, with the diffusivity in
the direction of the velocity gradient being more than an order of magnitude larger

than the diffusivity in the direction of the vorticity.

Comparison with Scaling Predictions of Brady & Morris (1997)

Brady & Morris (1997) have determined the self-diffusivity of a sheared suspension
for Pe > 1 from the temporal evolution of the spatial correlation of particle position.
At high particle' concentrations, they predict the following scaling for the long-time

self-diffusion coeflicient:

D3, ~ 4a*(bfa — 1)°P4g™(25; 6), (9.14)

where ¢ (2b; ¢) is the pair-distribution function evaluated at the location of its peak,
2b, at the volume fraction and flow conditions of interest. In a fashion similar to that
employed in Section 9.2.5, we have plotted in Figures 9.62 and 9.63 the long-time self-
diffusion coeffeicients D;, ., and D:Z'OO obtained in our simulations against ¢¢g*(2b; ¢).
For ¢ (2b; ¢) we used the maximum value of the pair-distribution function determined
at ¢ and ¥* of interest. We did not include the factor of (b/a — 1)°* in our scaling
checks due to the insufficient resolution of the pair-distribution function g(r) (cf.
Section 9.2.5). Upon the inspection of the plots in Figures 9.62 and 9.63 we conclude

that there is reasonable agreement of our results with the scaling prediction (9.14) of

Brady & Morris (1997).
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9.4 Suspension Temperature

In Tables 9.52-9.65 and Figures 9.64-9.69 we report the results of our calculations of
the translational and rotational suspension temperature defined as the mean square

of the translational and rotational velocity fluctuation, i.e.:

Ttr — (U,U,>,
Trot — <QIQ'>

Nott & Brady (;1994) introduced the suspension temperature as a fundamental vari-
able determining the particle press‘hre to enable a nonlocal description, accounting for
the finite size of the particles, in their suspension balance model. Based on the fact
that the hydrodynamic pressure has a contribution from the motion of the particles
relative to the average motion, Nott & Brady argued that the pressure should be
related to the fluctuational motion of the particles. More specifically, it should be
proportional to the square root of the temperature, rather than being proportional to
the local value of the shear rate. In a homogeneous shear flow, these alternative ap-
proaches are equivalent, as the temperature is proportional to the shear rate squared,
42 in inhomogeneous flow, however, the temperature need not be proportional to 72
nor be zero where the shear rate is zero.

We have separately calculated the three components of each temperature, in the
z-, y-, and z-directions. All the temperatures remain low at low values of ¢ (zero
when ¢ = 0) due to the little fluctuational translational and rotational motion in all
directions.

For higher particle phase concentrations, the temperatures display behavior sim-
ilar to that of the self-diffusion coefficients: interparticle collisions and random walk
become more common, the fluctuational motion and the temperatures grow until, in
cases of stronger interparticle repulsion, at low shear rates 4* and high enough values
of &, the suspended particles order themselves in flowing strings and this leads to a

decrease in fluctuational motion. At high shear rates, noncompact clusters rotating
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en masse in the zy plane lead to an increase in the fluctuational motion. Appropri-
ately, TY" and T," are found to be larger than T!, while T7° is larger than both 7%
and Tymt.

An examination of the plots of T} and T, also reveals a discrepancy between the
results for 27 particles in the unit cell and those for 64 particles, at ¢ = 0.30: the
temperature is higher in the cell with 64 particles. As ¢ increases, the discrepancy
disappears. We propose the following explanation of this phenomenon. The particle
concentration ¢ = 0.30 corresponds to the early stage of particle cluster formation in
the unit cell, when not all particles are involved in this process yet. The noncompact
clusters that do form, however, grow to a larger size in a cell with more particles.
This results in a higher value of the temperature for N = 64 than that.-for N = 27.
As ¢ increases, eventually all particles in the unit cell participate in cluster formation

and thus the difference between the results for 27 and 64 particles disappears.
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Table 9.1: The specifications of the Stokesian Dynamics simulation runs with 27
particles in the unit cell at 4* = 0.1.

(}5 #runs At T td,’ff #int
0.05 | 2 0.001 |[100.0 | 50.0 | 12
0.10 | 2 0.001 | 100.0 | 50.0 | 12
0.15 | 2 0.001 |80.0 |40.0 |10
0.20 | 2 0.001 |80.0 |40.0 |10
0.25 | 2 0.001 |60.0 |30.0 8
0.30 | 2 0.0005 | 60.0 | 30.0 |8
0.35 | 2 1] 0.0005 | 60.0 |30.0 |8
0.40 | 2 0.0005 | 60.0 | 30.0 |8
0.45 | 1 0.0002 | 100.0 | 30.0 | 8
0.50 | 1 0.0002 | 100.0 | 30.0 | 8
0.52 | 1 0.0001 | 100.0 | 30.0 | 8

Table 9.2: The specifications of the Stokesian Dynamics simulation runs with 27
particles in the unit cell at 4* = 1.

¢ | #runs | At T taigs | #int
0.05 | 2 0.001 | 100.0 | 50.0 | 12
0.10 | 2 0.001 | 100.0 | 50.0 | 12
0.15 ]2 0.001 | 80.0 |40.0 | 10
0.20 | 2 0.001 | 80.0 |40.0 |10
0.25 | 2 0.001 |60.0 |30.0 |8
0.30 | 2 0.001 | 60.0 |30.0 8
0.35 | 2 10.001 |60.0 |30.018
0.40 | 2 0.001 |60.0 |30.0 8
045 | 2 0.0005 | 100.0 | 30.0 | 16
0.50 | 2 0.0005 | 100.0 | 30.0 | 16
0.52 | 2 0.0005 | 100.0 | 30.0 | 16
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Table 9.3: The specifications of the Stokesian Dynamics simulation runs with 27
particles in the unit cell at 4* = 10, 100, 1000, and 10%.

¢ | #runs | At T taigs | #int
0.05 | 2 0.001 | 100.0 | 50.0 | 12
0.10 | 2 0.001 | 100.0 | 50.0 | 12
0.15 | 2 0.001 | 80.0 | 40.0 | 10
0.20 | 2 0.001 | 80.0 | 40.0 | 10
0.25 | 2 0.001 { 60.0 |30.0 |8
0.30 | 2 0.001 [ 60.0 |30.0 |8
0.35 | 2 -0.001 | 60.0 |30.0 |8
0.40 | 2 0.001 | 60.0 |30.0 |8
0.45 |3 0.001 | 100.0 | 30.0 | 24
0.50 | 3 0.001 | 100.0 | 30.0 | 24
0.52 |3 0.001 | 100.0 | 30.0 | 24

Table 9.4: The mean (g(2)) and the standard deviation (o) of the angularly-averaged
pair-distribution function at particle contact for v* = 0.1, 1, and 10.

¥ = 0.1 P =1 3+ =10

¢ | 92| o | 9@2)| o | g(2)] <
0.05 | 0.000 | 0.000 | 0.000 | 0.000 | 0.58 | 0.49
0.10 | 0.000 | 0.000 | 0.000 | 0.000 | 0.145 | 0.041
0.15 | 0.000 | 0.000 | 0.000 | 0.000 | 0.16 |0.16
0.20 | 0.000 | 0.000 | 0.000 | 0.000 | 0.102 | 0.062
0.25 | 0.000 | 0.000 | 0.000 | 0.000 | 0.058 | 0.082
0.30 | 0.010 | 0.014 | 0.010 | 0.014 | 0.378 | 0.014
0.35 | 0.000 | 0.000 | 0.000 | 0.000 | 0.57 |0.27
0.40 | 0.000 | 0.000 | 0.015 | 0.021 | 0.66 |0.14
0.45 | 0.000 0.013 | 0.018 | 0.62 | 0.15
0.50 | 0.000 0.064 | 0.008 | 0.79 | 0.22
0.52 | 0.000 0.129 | 0.040 | 0.772 | 0.047
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Table 9.5: The mean (g(2)) and the standard deviation (o) of the angularly-averaged
pair-distribution function at particle contact for 4* = 100, 1000, and 10

¥ =100 | 4 =1000 | +* = 107
¢ | 9@)] o | 9@ o] 9@)] o
0.05]22 |12 |92 |67 |48 29
0.10 | 1.60 |0.29 |6.58 |0.25|18.2 |3.1
0.15]0.99 |0.90 |11.12 |0.30 | 38.5 | 1.9
0.20 | 0.946 | 0.021 [ 125 |6.3 |4l 16
0.25 | 1.15 |0.28 |21.8 |22 |57.9 |52
0.30 | 2.37 | 0.71 |41.6 |28 |101.5 | 0.2
0.35 | 4.25 |0.08 |87.7 |1.6 |173.9 |22
0.40 | 12.63 | 0.89 |158.4 | 7.2 |281 |31
0.45|17.0 |12 |181.4 | 2.7 |306.0 | 7.2
0.50 | 45.2 | 2.6 |262.7 |76 |400 |15
0.52 | 47.2 |27 |256 |16 |409 |15
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Table 9.6: The magnitude (¢g™**(r)) and location (r™**) of the peak of the angularly-
averaged pair-distribution function for 4* = 0.1, 1, and 10.

7 =0.1 =1 ¥ =10
QS gmax(,r) pmaz gmaa:(r) pmez gmax(,r) pmaez
0.05 | 26.0 2.010 | 28.2 2.008 | 26.3 2.006
0.10 | 18.1 2.010 | 19.5 2.008 | 16.9 2.005
0.15 | 23.0 2.010 | 24.0 2.007 | 24.9 2.005
0.20 | 31.3 2.009 | 34.3 2.007 | 30.7 2.005
0.25 | 51.4 2.009 | 50.3 2.007 | 42.0 2.005
0.30 | 76.0 2.009 | 68.0 2.007 | 58.2 2.004
0.35 | 83.7 2.009 | 85.0 2.006 | 83.3 2.004
0.40 | 109.1 2.008 | 113.5 2.006 | 105.6 2.004
0.45 | 116.6 2.008 | 123.1 2.006 | 118.2 2.004
0.50 | 127.8 2.008 | 120.7 2.006 | 141.0 2.003
0.52 | 122.9 2.008 | 120.5 2.005 | 142.7 2.003

Table 9.7: The magnitude (¢™**(r)) and location (r™**) of the peak of the angularly-
averaged pair-distribution function for 4* = 100, 1000, and 10*.

4% = 100 5* = 1000 7* = 10°

¢ gmax(,’.) pmaz gma:c(,r) ymaez gmaczz(r) pmoez
0.05 | 28.8 2.005 | 25.3 2.002 | 48.2 2.000
0.10 | 19.5 2.003 | 15.1 2.001 | 18.2 2.000
0.15 | 28.1 2.003 | 32.6 2.001 | 42.9 2.001
0.20 | 28.2 2.003 | 32.7 2.001 | 40.6 2.000
0.25 | 39.3 2.003 | 54.9 2.001 | 57.9 2.000
0.30 | 67.4 2.002 | 75.0 2.001 | 101.5 2.000
0.35 | 96.6 2.002 | 101.0 2.001 | 173.9 2.000
0.40 | 112.1 2.002 | 158.5 2.000 | 281.0 2.000
0.45 | 126.1 2.002 | 181.4 2.000 | 306.0 2.000
0.50 | 179.2 2.001 | 262.7 2.000 | 399.8 2.000
0.52 | 176.8 2.001 | 256.5 2.000 | 409.5 2.000
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Table 9.8: The magnitudes of the angularly-averaged pair-distribution function at
particle contact (¢(2)) and of its peak (¢™**(r)) and the location (r™**) of the peak
for runs with 64 particles in the unit cell. At 4* = 1000 the peak is located at
r = 2.000 at ¢ = 0.40,0.45,0.50, and 0.52. At 4* = 1000,¢ = 0.30, the peak is
located at r™®* = 2.001 with ¢™**(r) = 76.9.

¥ =10 4 = 100 4* = 1000
¢ [d@ [0 [ [g@ =) [ 4
0.30 | 1.54 | 57.8 2.004 | 9.64 | 61.5 2.002 | 56.2
0.40 | 3.44 | 98.8 2.004 | 19.25 | 104.1 2.002 | 138.1
0.45 | 5.02 | 105.2 2.003 | 35.5 120.7 2.001 | 212.1
0.50 | 6.04 | 134.1 2.003 | 41.3 149.0 2.001 | 262.1
0.52 | 7.44 | 145.8 2.003 | 68.2 166.2 2.001 | 314.9
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Table 9.9: The mean and the standard deviation of the relative shear viscosity for
¥* = 0.1, 1, and 10.

v*=0.1 * =1 ¥* =10
¢ |nr o Mr g Nr g
0.05 1 1.151 | 0.001 | 1.154 | 0.003 | 1.153 | 0.003
0.10 1 1.350 | 0.005 | 1.350 | 0.007 | 1.349 | 0.002
0.15 { 1.589 | 0.018 | 1.597 | 0.011 | 1.601 | 0.020
0.20 | 1.892 | 0.011 | 1.910 | 0.019 | 1.908 | 0.021
10.25 | 2.336 | 0.003 | 2.360 | 0.006 | 2.333 | 0.001
0.30 | 3.005 | 0.026 | 2.999 | 0.012 | 2.995 | 0.029
0.35 |1 4.049 | 0.057 | 3.966 | 0.031 | 4.015 | 0.055
0.40 | 5.550 | 0.056 | 5.694 | 0.057 | 5.77 | 0.11

0.45 | 7.622 7.82 10.22 |841 |0.12
0.50 | 9.511 10.54 | 0.76 | 12.72 | 0.37
0.52 | 10.470 13.13 | 0.94 | 143 | 1.2

Table 9.10: The mean and the standard deviation of the relative shear viscosity for

4* =100, 1000, and 10°.

~* =100 4* = 1000 ¥* =104
¢ | g is a nr a
0.05 | 1.154 | 0.004 | 1.152 | 0.003 | 1.156 | 0.004
0.10 |1 1.354 | 0.002 | 1.354 | 0.000 | 1.354 | 0.002
0.15 | 1.620 | 0.042 | 1.630 | 0.007 | 1.633 | 0.002
0.20 1 1.918 | 0.035 | 1.925 | 0.034 | 1.955 | 0.055
0.25 1 2.360 | 0.008 | 2.412 | 0.012 | 2.430 | 0.007
0.30 | 3.082 | 0.005 | 3.097 | 0.048 | 3.167 | 0.007
0.3514.198 | 0.024 | 4.332 | 0.021 | 4.522 | 0.057
0.40 | 6.012 1 0.035 1645 |0.10 | 7.05 |0.33
0.4519.02 {011 (991 |0.36 |11.110.14
0.50 | 13.62 | 0.44 |16.13]0.38 |19.7 |1.5
0.52 |1 15.17 {1 0.68 |[189 | 1.9 254 | 1.0
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Table 9.11: The mean and the standard deviation of the hydrodynamic contribution
to the relative shear viscosity for ¥* = 0.1, 1, and 10.

¥ =01 =1 ¥ =10
¢ |0 o |n o | o
0.05 | 0.151 | 0.001 | 0.154 | 0.003 | 0.153 | 0.003
0.10 | 0.349 | 0.005 | 0.350 | 0.006 | 0.348 | 0.002
0.15 | 0.588 | 0.017 | 0.596 | 0.011 | 0.601 | 0.020
0.20 | 0.888 | 0.011 | 0.908 | 0.018 | 0.907 | 0.020
0.25 | 1.323 | 0.003 | 1.35 | 0.01 | 1.334 | 0.001
0.30 [1.97 |0.02 |1.98 |0.01 |1.98 |0.03
0.35 [2.93 [0.04 [290 {003 {297 |0.05
0.40 | 4.27 | 0.04 |4.47 |0.04 |4.64 |0.10

0.45 | 5.99 6.32 |0.19 |7.05 |0.11
0.50 | 7.46 8.49 1053 |10.8 |03
0.52 | 8.22 103 | 0.6 120 | 1.0

Table 9.12: The mean and the standard deviation of the hydrodynamic contribution
to the relative shear viscosity for 4* = 100, 1000, and 10%.

4% = 100 4% = 1000 = 10°
¢ | nf o |7 o U o
0.05 | 0.154 | 0.004 | 0.152 | 0.003 | 0.156 | 0.004
0.10 | 0.354 | 0.002 | 0.3541 | 4x10~* | 0.354 | 0.002
0.15 | 0.619 | 0.042 | 0.630 | 0.007 | 0.633 | 0.002
0.20 | 0.917 | 0.034 | 0.925 |0.034 |0.955 | 0.055
0.25|1.36 |0.01 |1.41 |0.01 1.43 | 0.01
0.30 | 2.08 |0.01 |210 |0.05 |217 |o0.01
0.35)3.18 [0.02 333 [0.02 |352 |0.06
040 | 4.96 |0.03 |544 [0.10 |6.05 |0.33
045|787 011 |88 |036 |10 |01
050 | 123 |04 |151 |04 18.7 | 1.5
052|137 |06 |17.8 |1.9 244 | 1.0
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Table 9.13: The mean and the standard deviation of the interparticle force contribu-
tion to the relative shear viscosity for ¥* = 0.1, 1, and 10.

7 =0.1 =1 =10
¢ | o U a . o
0.05 | 7.82x10°° | 2.5x10°° | 6.8x10-° | 2.3x10~° | 3.96x107° | 3.4x10~°
0.10 | 4.26x10™* | 4.5x107° | 2.71x107* | 9.4x107° | 1.34x10~* | 1.8x 1075
0.15 | 8.9x10™* | 5.2x107* | 7.2x10~* | 1.2x10~* | 5.1x10~* | 1.2x10~*
0.20 | 0.00329 | 5.7x107* | 0.00273 | 6.6x10~¢ | 0.00144 | 4.5x10~*
0.25|0.0117 . | 1x10™* |0.00954 | 7.8x10~4 | 0.00441 | 2.6x10~*
0.30 | 0.0384 0.0030 | 0.0249 0.0018 | 0.0151 0.0019
0.35 | 0.116 0.012 0.0641 0.0038 | 0.0426 0.0058
0.40 | 0.282 0.018 0.221 0.013 0.134 0.010
0.45 | 0.632 0.494 0.029 0.359 0.013
0.50 | 1.05 1.05 0.23 0.971  |0.097
0.52 | 1.25 1.83 0.29 1.32 0.23

Table 9.14: The mean and the standard deviation of the interparticle force contribu-

tion to the relative shear viscosity for ¥* = 100, 1000, and 10

4* = 100 ~* = 1000 y* = 10*
6 [F I | o

0.05 | 1.75x107° | 6.2x107% | 3.3x107° 2.1x107° | 8.3x10"7 |5.0x1077
0.10 | 6.78x107% | 7.7x107% | 1.15x107% | 9x10~7 1.12x107% | 3.8x10°7
0.15 | 2.7x107* 1.7x1074 | 7.08%x107° | 1.5x107% | 5.70x107% | 2x10~8
0.20 | 6.5x10~* 2.3%x107% | 1.24x107* | 5.8%x107% | 1.31x107% | 7.7x107®
0.25 | 0.00201 2.0x107* | 4.74%x107* | 1.5x107° | 4.0x107° 8x10~°
0.30 | 0.00709 3.5x107° | 0.00126 6x107° 1.22%x107* | 5%x107¢
0.35 1 0.0202 8x10~4 0.00393 1x107° 3.70x107% | 4x107¢
0.40 | 0.0551 0.0010 0.0110 7x1074 0.00126 1.8x1074
0.45 | 0.144 0.007 0.0264 0.0021 0.00291 2.1x10~4
0.50 | 0.356 0.023 0.0655 0.0048 0.0084 0.0011
0.52 | 0.446 0.039 0.091 0.018 0.0128 5x1074




Table 9.15: The mean and the standard deviation of the total first normal stress
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difference, normalized by n7¥, for 4* = 0.1, 1, and 10.

7" =0.1 =1 =10

¢ ~—N1 g "Nl o ‘—Nl g
0.05 | 0.00175 | 6.3x10~% | 0.00234 | 5.0x10~* | 0.00227 | 1.9x10*
0.10 | 0.00834 | 2.4x10™* | 0.00732 | 6.4x107* | 0.00735 | 7x107°
0.15 | 0.0165 | 0.0036 0.0174 | 0.0062 0.0192 | 0.0050
0.20 | 0,044 0.011 0.045 0.010 0.043 0.014
0.25 | 0.089 0.014 0.106 0.027 0.083 0.012
0.30 | 0.219 0.065 1 0.200 0.027 0.202 0.018
0.35 | 0.507 0.016 10.342 0.085 0.360 0.004
0.40 | 0.738 0.052 0.705 0.077 0.800 0.037
0.45 | 0.922 1.00 0.11 1.38 0.48
0.50 | 0.256 0.152 0.076 1.52 0.39
0.52 | 0.783 1.17 0.14 -0.4 1.8

Table 9.16: The mean and the standard deviation of the total first normal stress
difference, normalized by n7, for 4* = 100, 1000, and 104,

¥* = 100 4* = 1000 A* = 10*

¢ | —N o - Ny o —-N; o
0.05 | 0.0022 | 0.0013 | 0.00166 | 7.3x10~* | 0.0029 | 0.0018
0.10 | 0.00809 | 6x10~% | 0.00643 | 6.6x10~* | 0.00632 | 1.2x10~*
0.15 | 0.0242 | 0.0079 | 0.0227 | 0.0020 0.0190 | 7x10~*
0.20 | 0.0377 | 0.0087 | 0.0386 | 0.0087 0.0352 | 0.0081
0.25 1 0.0796 | 1x107% | 0.084 0.035 0.089 0.010
0.30 | 0.235 0.001 0.195 0.036 0.173 0.019
0.35 | 0.333 0.094 0.367 0.050 0.378 0.079
0.40 | 0.87 0.12 0.88 0.21 0.94 0.15
0.45 | 1.24 0.29 1.77 0.33 1.20 0.09
0.50 | 1.22 0.32 2.03 0.55 1.45 0.17
0.52 | -0.11 0.29 1.0 1.3 2.2 1.3
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Table 9.17: The mean and the standard deviation of the hydrodynamic contribution
to the total first normal stress difference, normalized by 57, for ¥* = 0.1, 1, and 10.

v*=0.1 =1 ¥* =10

¢ | —Nf o —NH o ~N{ o
0.05 | 0.00186 | 6.4x10~* | 0.00245 | 5.2x10~* | 0.00234 | 2.1x10™*
0.10 | 0.00886 | 3.2x10~* | 0.00776 | 4.4x10~* | 0.00759 | 1.0x10~*
0.15 | 0.0175 | 0.0039 0.0184 | 0.0062 0.0200 | 0.0052
0.20 | 0.047 0.011 0.048 0.010 0.044 0.014
0.25 | 0:0978 | 0.013 0.112 0.025 0.087 0.012
0.30 | 0.231 0.056 | 0.213 0.027 0.209 0.018
0.35 | 0.514 0.018 | 0.364 0.074 0.378 0.018
0.40 | 0.755 0.049 0.725 0.049 0.813 0.018

0.45 | 1.00 1.06 0.09 1.37 0.41
0.50 | 0.757 0.662 0.053 1.62 0.35
0.52 | 0.530 1.30 0.03 0.2 1.3

Table 9.18: The mean and the standard deviation of the hydrodynamic contribution
to the total first normal stress difference, normalized by 1%, for ¥* = 100, 1000, and
104

* = 100 v* = 1000 A* = 10*

¢ | —N o - N o —N{ o
0.05 | 0.0023 | 0.0013 | 0.00167 | 7.4x10~* | 0.0029 | 0.0018
0.10 | 0.00825 | 7x107° | 0.00647 | 6.7x10~* | 0.00632 | 1.2x10~*
0.15 | 0.0247 | 0.0082 | 0.0229 | 0.0020 0.0190 | 6x10™*
0.20 | 0.0386 | 0.0088 | 0.0389 | 0.0087 0.0353 | 0.0081
0.25 | 0.0819 | 1x10™* | 0.085 0.034 0.089 0.010
0.30 | 0.240 0.002 0.197 0.035 0.174 0.019
0.35 | 0.346 0.091 0.370 0.050 0.378 0.078

0.40 | 0.88 0.11 0.88 0.21 0.94 0.15
0.45 | 1.27 0.28 1.77 0.32 1.20 0.09
0.50 | 1.39 0.30 2.06 0.54 1.46 0.17

0.52 | 0.14 0.31 1.1 1.3 2.2 1.3
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Table 9.19: The mean and the standard deviation of the interparticle force contri-
bution to the first normal stress difference, normalized by n%, for 4* = 0.1, 1, and
10.

=01 =1 3 =10

¢ NF o N{ o NF o
0.05 | 1.07x107* | 1.6x107° | 1.09x107* | 2.1x107° | 6.9x10™° | 1.4x107°
0.10 | 5.18x10™* | 7.5x107° | 4.4x10™* | 2.0x107* | 2.34x107* | 2.9x10~®
0.15 | 0.00106 3.4x10~* | 0.00102 1.1x107% | 7.6x107* | 2.6x10~*
0.20 | 0.00298 2.1x107* | 0.00261 2.2x107* | 0.00161 8x10~°
0.25 | 0.0086 . 0.0015 0.0060 0.0024 0.00405 4.5x10™*
0.30 | 0.0123 0.0088 0.0122 2.9x107* | 0.00790 2.8x107*
0.35 | 0.00631 0.0018 0.021 0.011 0.0182 0.0018
0.40 | 0.0174 0.0032 0.020 0.027 0.013 0.020
0.45 | 0.082 0.062 0.017 -0.01 0.07
0.50 { 0.500 0.510 0.023 0.099 0.037
0.52 | -0.253 0.13 0.11 0.61 0.45

Table 9.20: The mean and the standard deviation of the interparticle force contribu-
tion to the first normal stress difference, normalized by n¥, for ¥* = 100, 1000, and
10%.

3 =100 3 = 1000 = 10°
¢ NF o N o Ny o
0.05 | 3.90x107% | 6.4x10™% | 1.40x107° | 6.5%107® | 3.0x10~° | 1.1x10°®
0.10 | 1.56x10™* | 4.4x10™° | 4.03x107° | 8.3x1076 | 7.31x1076 | 9.8x10~7
0.15 | 4.7x10™* | 2.7x10™* | 1.89x107* | 2.0x107° | 2.72x107° | 2.3x10°®
0.20 | 8.7x107* | 1.1x10™* |2.69x107* | 6.0x107° | 5.4x107° | 1.5x107®
0.25 | 0.00227 4x107° 8.2x107% | 2.8x107* | 1.15x107* | 2.2x107°
0.30 | 0.00420 5.43x107* | 0.00161 1.2x107% | 2.88x107* | 8x107°
0.35 1 0.0128 0.0031 0.00360 2.2x107% | 6.6x10™* | 1.4x107*
0.40 | 0.0094 0.0097 0.0056 0.0019 9.1x107* | 4.5%x107*
0.45 | 0.0303 0.0086 0.0049 0.0054 0.00240 1.4x10-*
0.50 | 0.164 0.027 0.029 0.013 0.00619 3x107°
0.52 | 0.257 0.018 0.038 0.021 0.00620 2.0x107*
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Table 9.21: The mean and the standard deviation of the total second normal stress
difference, normalized by 5%, for ¥* = 0.1, 1, and 10.

=01 =1 =10

¢ —N2 o "“Nz g —-N2 o
0.05 | 0.00100 | 7x107° | 0.00112 | 7.7x10~* | 0.0016 | 0.0012
0.10 | 0.0054 | 0.0011 | 0.0048 | 0.0038 0.0029 | 0.0010
0.15 | 0.0056 | 0.0070 | 0.0081 | 0.0011 0.0079 | 0.0043
0.20 | 0.0190 | 0.0058 | 0.029 0.015 0.11 0.13
0.25 {'0.0525 | 0.0042 | 0.0794 | 0.0032 0.17 0.18

0.30 |°0.164 0.001 .} 0.25 0.11 0.37 0.31
0.35 ] 0.409 0.035 | 0.425 0.021 0.83 0.55
0.40 | 0.683 0.036 0.80 0.16 2.81 0.69 -
0.45 | 1.08 1.12 0.27 5.89 0.23
0.50 | 0.311 1.4 1.9 12.5 3.3
0.52 | 0.766 21.0 0.4 14.1 1.7

"able 9.22: The mean and the standard deviation of the total second normal stress
difference, normalized by 5+, for 4* = 100, 1000, and 10*.

¥* =100 ¥* = 1000 * = 10*

¢ —N, o ~N, o —N, o
0.05 ] 3.2x107% | 3.8x107% | 5.0x107* | 5.3x107* | 3.1x10~* | 1.0x10™*
0.10 | 0.0031 0.0012 0.00186 1.2x107* | 4.3x107* | 3.1x10~*
0.15 | 0.010 0.011 0.0083 0.0011 0.0045 0.0019
0.20 | 0.023 0.010 0.012 0.014 0.010 0.013
0.25 | 0.0468 9%10~4 0.095 0.070 0.24 0.11
0.30 | 0.203 0.031 0.277 0.045 0.26 0.15
0.35 | 0.67 0.19 1.26 0.83 1.36 0.02
0.40 | 1.69 0.44 3.37 0.10 3.2 1.5
0.45 | 4.26 0.09 9.9 1.8 7.61 0.55
0.50 | 7.4 3.0 13.4 1.1 12.1 3.1
0.52 | 6.0 1.2 18 10 15.1 3.3
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Table 9.23: The mean and the standard deviation of the hydrodynamic contribution
to the second normal stress difference, normalized by 77, for ¥* = 0.1, 1, and 10.

¥ =0.1 ¥ =1 ¥ =10

¢ | —NJ o -N,' o —NJ o
0.05 | 9.01x10~* | 5.5x10~° | 0.00101 | 7.4x10~* | 0.0016 | 0.0012
0.10 | 0.0048 0.0011 0.0043 | 0.0037 0.00270 | 9.9x107*
0.15 | 0.0047 0.0063 0.0072 | 0.0013 0.0071 | 0.0039
0.20 | 0.0164 0.0051 0.027 0.014 0.0229 | 0.0057
0.25 | 0.0469 0.0037 0.0721 | 0.0033 0.0452 | 0.0067
0.30 | 0.146 0.006 .|0.1582 |1x10™* | 0.163 0.023
0.35 | 0.348 0.029 |0.380 0.023 0.354 0.080
0.40 | 0.564 0.024 0.70 0.14 0.78 0.17
0.45 | 0.838 0.95 0.20 1.22 0.24
0.50 | 0.347 0.76 0.76 1.57 0.10
0.52 | 0.598 1.21 0.57 1.3 1.0

Table 9.24: The mean and the standard deviation of the hydrodynamic contribution
to the second normal stress difference, normalized by 7, for ¥* = 100, 1000, and 10*.

v* =100 " = 1000 y* = 10*

¢ | —NJ o —-NJ o —NJ o
0.05 | 3.0x107% | 3.8x107* | 4.9x107* | 5.2x10* | 3.1x10~* | 1.0x10*
0.10 | 0.0029 0.0011 0.00182 | 1.3x107* | 4.2x107* | 3.1x107*
0.15 | 0.010 0.011 0.00803 | 0.0010 0.0029 0.0041
0.20 | 0.0173 0.0038 0.012 0.014 0.010 0.013
0.25 | 0.0446 0.0021 0.053 0.011 0.0271 0.0076
0.30 | 0.166 0.010 0.136 0.014 0.099 0.032
0.35 | 0.410 0.065 0.439 0.063 0.345 0.080
0.40 | 0.929 0.067 0.975 0.095 0.952 0.076
0.45 | 1.55 0.11 1.73 0.19 2.22 0.12
0.50 | 1.53 0.37 2.67 0.38 3.39 0.74
0.52 | 1.89 0.78 2.70 0.04 5.45 0.40




96

Table 9.25: The mean and the standard deviation of the interparticle force contribu-
tion to the second normal stress difference, normalized by 17, for ¥* = 0.1, 1, and
10.

=01 =1 A = 10
¢ [ —NF v —NF E —NF "
0.05 | 1.0Ax10-% | 1.5x107° | L.04x10~2 | 2.9x10°° | 6.1x10-° |3.2x10°°
0.10 | 6.77x10~* | 6.1x1075 | 4.7x10~* | 1.5x10~* | 2.45x10~* | 2.9x10~5
0.15 | 9.2x10* | 7.0x10™* | 9.4x10~* | 1.4x10~* | 7.3x10~* | 3.6x10~*
0.20 | 0.00264 | 7.7x10~* | 0.0026 0.0011 | 0.09 0.12
0.25 | 0.00562 | 5.9%10* | 0.00733 | 1.3x10~* | 0.13 0.18
0.30 | 0.0183 0.0047 | 0.09 0.11 0.21 0.29
0.35 | 0.0611 0.0059 | 0.0457 0.0011 | 0.48 0.63
0.40 | 0.119 0.012 0.095 0.028 2.03 0.52
0.45 | 0.238 0.170 0.069 4.67 0.47
0.50 | -0.0364 0.6 1.2 10.9 3.4
0.52 | 0.168 19.8 0.9 12.8 2.7

Table 9.26: The mean and the standard deviation of the interparticle force contri-
bution to the second normal stress difference, normalized by 57, for 4* = 100, 1000,
and 10%.

3 =100 5 = 1000 =100

¢ | =Ny o ~NJ o —N¥ o
0.05 | 2.93x107° | 1x10~7 1.12x107° | 4.5x107% | 2.5x107% | 1.0x107°
0.10 | 1.60x10™* | 2.4x107° | 4.11x107® | 5.1x107° | 7.4x107% | 1.4x107°
0.15 | 4.4x10™* | 4.2x107* | 2.5x10™* | 1.7x107* | 0.0016 0.0022
0.20 | 0.0054 0.0067 1.4x107* | 1.2x107% | 3.5x107% | 1.2x10°
0.25 | 0.0022 0.0012 0.042 0.059 0.21 0.12
0.30 | 0.036 0.040 0.141 0.060 0.17 0.12
0.35 1 0.26 0.12 0.82 0.89 1.01 0.09
0.40 | 0.76 0.50 2.40 0.01 2.2 1.4
0.45 | 2.71 0.03 8.2 1.6 5.39 0.66
0.50 | 5.8 2.6 10.7 1.4 8.7 2.3
0.52 | 4.15 0.47 16 10 9.7 3.7
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Table 9.27: The mean and the standard deviation of the total suspension pressure,
normalized by 7y, for 4* = 0.1, 1, and 10.

¥* =0.1 =1 ¥* =10

¢ IT o II o I o
0.05 | 0.0043 | 0.0011 | 0.00496 | 9.5x10~* | 0.00624 | 2.9x10~*
0.10 | 0.0200 | 0.0031 | 0.0193 | 0.0033 0.0144 | 0.0020
0.15 | 0.0379 | 0.0097 | 0.0400 | 0.0051 0.0397 | 0.0086
0.20 {'0.132 | 0.023 | 0.124 0.023 0.109 0.028
0.25 {0.333 | 0.014 | 0.333 0.007 0.268 0.022
0.30 | 0.756 | 0.001 | 0.697 0.023 0.653 0.060

0.35 | 1.57 0.05 1.45 0.07 1.28 0.08
0.40 | 2.80 0.04 2.88 0.10 2.69 0.02
0.45 | 4.59 4.72 0.12 5.07 0.25
0.50 | 6.94 8.4 1.4 10.4 0.8
0.52 | 8.00 11.7 0.7 13.2 1.5

Table 9.28: The mean and the standard deviation of the total suspension pressure,
normalized by n¥, for 4* = 100, 1000, and 10*.

¥* =100 v* = 1000 * = 10*

¢ I1 o II g II o
0.05 | 0.0050 | 0.0014 0.0025 | 0.0011 | 0.0043 | 0.0023
0.10 | 0.0161 | 3.3x10~* | 0.0106 | 0.0017 | 0.0080 | 0.0033
0.15 | 0.044 | 0.015 0.0415 | 0.0043 | 0.0277 | 0.0064
0.20 | 0.0094 | 0.019 0.070 | 0.019 | 0.056 | 0.033
0.25 | 0.243 | 0.019 0.221 | 0.002 |0.151 | 0.013

0.30 | 0.635 | 0.008 0.494 |0.027 | 0.384 | 0.018
0.35 | 1.34 0.06 0.805 | 0.67 0.937 | 0.007
0.40 | 2.79 0.02 2.78 0.17 2.64 0.33
0.45 | 5.43 0.20 5.82 0.29 5.54 0.38
0.50 | 11.0 0.5 12.7 0.8 14.8 2.0

0.52 | 13.1 0.8 15.6 1.2 22.1 0.9
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Table 9.29: The mean and the standard deviation of the hydrodynamic contribution
to the suspension pressure, normalized by n7, for 4* = 0.1, 1, and 10.

=01 =1 3 =10

1) ¥ o g o g o
0.05 | 0.00409 | 9.7x10~* | 0.00476 | 9.0x10=* | 0.00612 | 2.9%x10~*
0.10 | 0.0190 | 0.0031 0.0186 | 0.0030 0.0141 | 0.0020
0.15 | 0.0356 | 0.0088 0.0381 | 0.0049 0.0383 | 0.0083
0.20 | 0.124 0.022 0.117 0.022 0.105 0.027
0.25 | 0.306 0.013 0.312 0.007 0.257 0.021

0.30 | 0.680 0.006 - 0.645 0.019 0.619 0.057
0.35 | 1.35 0.04 1.30 0.06 1.18 0.06
0.40 | 2.22 0.02 2.42 0.12 2.40 0.02
0.45 | 3.17 3.60 0.10 4.27 0.21
0.50 | 3.76 4.92 0.56 7.68 0.45
0.52 | 4.02 6.55 0.45 9.0 1.1

Table 9.30: The mean and the standard deviation of the hydrodynamic contribution
to the suspension pressure, normalized by 17, for 4* = 100, 1000, and 10%.

v* =100 ¥* = 1000 * = 10*

¢ Y o g o 4 o
0.05 | 0.0049 | 0.0013 | 0.0025 | 0.0011 | 0.0043 | 0.0023
0.10 | 0.0159 | 3x10~* | 0.0105 | 0.0017 | 0.0080 | 0.0033
0.15 | 0.043 | 0.0015 | 0.0412 | 0.0043 | 0.0277 | 0.0064
0.20 | 0.093 | 0.018 0.069 | 0.019 |0.056 | 0.033
0.25 | 0.237 | 0.018 0.219 | 0.002 |0.151 | 0.013
0.30 | 0.617 | 0.007 |0.489 | 0.027 |0.383 | 0.018
0.35 | 1.29 0.05 0.79 0.67 0.935 | 0.007
0.40 | 2.65 0.02 2.74 0.17 2.63 0.33
0.45 | 5.05 0.18 5.74 0.29 5.53 0.37
0.50 | 9.77 0.46 12.4 0.8 14.7 2.0
0.52 | 11.5 0.8 15.3 1.2 22.1 0.9




Table 9.31: The mean and the standard deviation of the interparticle force contribu-
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tion to the suspension pressure, normalized by n¥, for 4* = 0.1, 1, and 10.

¥*=0.1 =1 ¥* =10

¢ I* o I o I* o
0.05 | 2.25x107% | 8.4x107° | 2.00x10™* | 4.9x107° | 1.27x10™* | 2x10~°
0.10 | 9.57x10™* | 1.3x107° | 6.8x10™* | 2.4x107* | 3.85%x10™* | 2.0x107°
0.15 | 0.00226 9.6x10* | 0.00187 2.2x107* | 0.00140 3.1x10"1
0.20 | 0.0076 0.0011 0.0062 0.0011 0.0038 0.0010
0.25 | 0.0267 5%x10™% | 0.0205 4x10™* | 0.0111 0.0010
0.30 | 0.0764 0.0045 0.0520 0.0047 0.0338 0.0032
0.35 | 0.221 0.011 0.149 0.009 0.096 0.014
0.40 | 0.577 0.022 0.465 0.011 0.291 gx10~*
0.45 | 1.42 1.12 0.02 0.798 0.042
0.50 | 3.18 3.44 0.81 2.67 0.40
0.52 | 3.99 5.20 0.23 4.23 0.40

Table 9.32: The mean and the standard deviation of the interparticle force contribu-

tion to the suspension pressure, normalized by 5+, for 4* = 100, 1000, and 10*.

¥* =100 ¥ = 1000 * = 10*
10 17 o I o I o

0.05 | 7.4x107% | 2.5x107° | 2.2x10™° | 1.2x107% | 7.5x107¢ | 3.5x107°
0.10 | 2.35x10™* | 8x10~® | 6.0x10™° | 1.3x107% | 1.10x107° | 1.4x107°
0.15 | 8.6x107* | 3.7x107* | 3.23x10~* | 2.1x107° | 5.95x107° | 7x 1077
0.20 | 0.00195 6.1x107% | 5.9x10™* | 1.3x107* | 1.07x107* | 3.5x107°
0.25 | 0.00574 4.3x107* | 0.00191 3x107° | 2.99x107* | 4.1x107°
0.30 | 0.0181 6x10"* | 0.00459 2.7x107* | 7.76x107* | 7x1077
0.35 | 0.0510 0.0022 0.0128 4%x10~% | 0.00205 4x107°
0.40 | 0.1332 0.3x107* | 0.0349 1x10™* | 0.00580 8.1x10™*
0.45 | 0.380 0.018 0.0893 0.0027 0.0133 5x10~*
0.50 | 1.19 0.06 0.263 0.016 0.0418 0.0049
0.52 | 1.65 0.03 0.370 0.031 0.0645 4x10™1
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Table 9.33: The relative shear viscosity (the total, together with the hydrodynamic
and interparticle force contributions) from simulation runs with 64 particles in the

unit cell.

7 =10 4 = 100 4* = 1000
¢ | n |0y o |n | Tr ny | nf
0.30 [ 3.03 | 2.01 |0.01553.11 |2.10 | 0.00833 | 3.14 | 2.14 | 0.00154
040 | 5.66 |4.53 |0.123 |5.91 |4.85 |0.0518 |6.43 |5.42 |0.0107
045|837 |7.03 0339 |886 |7.72 |0.132 |9.84 |8.82 |0.0253
0.50 | 12.27 | 10.41 | 0.866 | 12.38 | 11.10 | 0.275 | 16.03 | 14.97 | 0.0631
0.52 | 15.65 [113.22 | 1.43 | 13.49 | 12.14 | 0.353 | 20.69 | 19.60 | 0.0989

Table 9.34: The first normal stress difference (the total, together with the hydrody-
namic and interparticle force contributions), normalized by 77, from simulation runs
with 64 particles in the unit cell.

4 =10 3 =100 4 = 1000
¢ [=N, [=NF [ NF —N, |—-NF [ NF “N, | —-NF [ NF
0.30 | 0.238 | 0.245 | 0.00714 | 0.259 | 0.263 | 0.00411 | 0.276 | 0.277 | 0.00132
0.40 | 1.03 |1.02 |-0.0150 |0.826 | 0.836 | 0.00977 | 0.875 | 0.880 | 0.00501
0.45 | 1.35 |1.33 |-0.0219 |1.40 |1.41 |0.0109 |1.91 |1.91 |0.000873
0.50 | 1.80 | 1.75 |-0.0479 | 1.52 |1.56 |0.0405 |2.32 |2.33 |0.0110
0.52 | 2.00 |1.92 |-0.0797 {1.10 |1.17 |0.0730 |2.66 |2.67 | 0.0109

Table 9.35: The second normal stress difference (the total, together with the hydro-
dynamic and interparticle force contributions), normalized by 77, from simulation
runs with 64 particles in the unit cell.

7 =10 3 = 100 4% = 1000
6 [=N; [-NF[-NF | =N, |=NF[=NF[=N, | -NI' |-}
0.30 | 0.328 | 0.172 | 0.157 | 0.806 | 0.187 | 0.620 | 0.371 | 0.147 | 0.224
0.40 | 4.07 | 0.668 | 3.40 |1.85 |0.848 | 0.998 | 5.44 | 0.980 | 4.46
045 9.85 |1.39 |846 |9.30 |1.62 |7.68 |265 |1.54 |25.0
050 | 11.1 | 1.52 | 955 |13.4 |1.96 |11.4 |16.0 |2.79 |13.2
052 | 22.4 | 228 |20.1 |13.9 |0.367 |13.6 |20.3 |451 |15.8
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Table 9.36: The suspension pressure (the total, together with the hydrodynamic and
interparticle force contributions), normalized by 77, from simulation runs with 64
particles in the unit cell.

= 10 4 = 100 4* = 1000

¢ [T o7 |1 1 7 |1 i 7 [ 11F

0.30 | 0.747 | 0.712 | 0.0351 | 0.753 | 0.733 | 0.0204 | 0.644 | 0.639 | 0.00531
0.40 | 2.83 | 2.56 |0.269 |2.86 |2.73 |0.128 |2.93 |2.90 |0.0340
0.45 | 5.38 | 4.55 |0.828 |5.50 |5.15 |0.355 |5.91 |5.82 |0.0903
0.50 | 10.20 | 7.82 | 2.47 |9.37 |8.45 |0.918 |12.49 |12.24 | 0.256
0.52 | 14.66 | 10.47 | 4.19 | 11.48 {9.98 |1.51 |18.86 | 18.44 | 0.416
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Table 9.37: The translational short-time self-diffusion coefficients, normalized by the
diffusion coefficient of an isolated Brownian particle, kT/6mna, for ¥* = 0.1, 1, and
10.

7 = 0.1 =1 =10

¢ | D, | Do, |Ds., |Ds., |Di, |Ds, |Ds., |Ds, |Ds.
0.05 | 0.666 | 0.647 | 0.647 | 0.656 |0.637 |0.643 | 0.655 | 0.638 | 0.644
0.10 | 0.583 | 0.553 | 0.554 |0.585 |0.554 | 0.560 |0.585 |0.554 |0.561
0.15 | 0.512 | 0.477 |0.484 |0.510 |0.475 |0.486 |0.509 |0.474 | 0.486
0.20 | 0.438 | 6.403 |0.399 |0.435 |0.400 |0.404 |0.430 |0.395 |0.393
0.25 | 0.359 |0.327 [0.320 |0.360 |0.328 |0.328 |0.359 |0.326 |0.318
0.30 | 0.286 | 0.262 |0.261 | 0291 |0.261 |0.265 |0.287 |0.260 |0.259
0.35 | 0.222 |0.205 |0.206 |0.227 |0.203 |0.206 |0.221 |0.198 |0.199
0.40 | 0.167 | 0.154 |0.153 |0.164 |0.150 |0.149 |0.157 |0.145 |0.145
0.45 | 0.127 | 0.115 |0.113 |0.124 |0.112 |0.111 |0.113 |0.106 |0.104
0.50 | 0.0981 | 0.0877 | 0.0861 | 0.0908 | 0.0781 | 0.0746 | 0.0784 | 0.0738 | 0.0699
0.52 | 0.0889 | 0.0810 | 0.0821 | 0.0762 | 0.0724 | 0.0681 | 0.0700 | 0.0624 | 0.0600

Table 9.38: The translational short-time self-diffusion coefficients, normalized by
kT [6mna, for 4* = 100, 1000, and 10*.

4 = 100 4* = 1000 4 = 10°

¢ Dgxz Dguv Dgzz Dgzz Dawu D(s)zz DSJ::!: Dguv DSZZ
0.05 | 0.649 | 0.631 | 0.637 | 0.650 |0.637 | 0.642 | 0.636 |0.624 | 0.626
0.10 | 0.583 | 0.551 | 0.566 |0.582 |0.551 |0.565 |0.578 |0.550 | 0.555
0.15 | 0.497 | 0.464 | 0.480 |0.490 |0.460 |0.471 |0.479 |0.451 | 0.466
0.20 | 0.430 |0.395 |0.394 |0.426 |0.394 |0.395 |0.423 |0.393 |0.407
0.25 | 0.358 | 0.323 |0.321 |0.347 |0.318 |0.318 |0.347 |0.316 |0.316
0.30 | 0.276 |0.252 |0.253 |0.279 |0.249 |0.252 |0.267 |0.242 |0.238
0.35 | 0.212 | 0.189 |0.190 |0.204 |0.182 |0.183 |0.196 |0.172 |0.177
0.40 | 0.149 | 0.137 |0.137 |0.140 |0.127 |0.126 |0.126 |0.115 |0.114
0.45 | 0.104 | 0.0958 | 0.0946 | 0.0913 | 0.0854 | 0.0835 | 0.0822 | 0.0748 | 0.0749
0.50 | 0.0699 | 0.0623 | 0.0595 | 0.0580 | 0.0529 | 0.0514 | 0.0462 | 0.0425 | 0.0416
0.52 | 0.0620 | 0.0556 | 0.0537 | 0.0469 | 0.0439 | 0.0415 | 0.0364 | 0.0353 | 0.0336
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Table 9.39: The rotational short-time self-diffusion coefficients, normalized by the
diffusion coefficient of an isolated Brownian particle, kT /8mna®, for 4* = 0.1, 1, and
10.

=01 =1 7 =10

o |D;, | D, |\ D, |\ D, | D, | D, | D7, | D), |D;,
0.05 | 0.884 | 0.902 | 0.908 | 0.876 | 0.896 | 0.897 | 0.875 | 0.896 | 0.895
0.10 | 0.845 | 0.871 | 0.875 | 0.850 | 0.878 | 0.874 | 0.850 | 0.879 | 0.874
0.15 | 0.803 | 0.836 | 0.836 | 0.801 | 0.838 | 0.829 | 0.799 | 0.836 | 0.826
0.20 | 0.743 | 0.779 | 0.783 | 0.740 | 0.779 | 0.776 | 0.728 | 0.766 | 0.770
0.25 | 0.665 | 0.701 | 0.711 | 0.671 | 0.709 | 0.707 | 0.656 | 0.696 | 0.707
0.30 | 0.604 | 0.631 | 0.634 [0.603 | 0.638 | 0.632 | 0.593 | 0.629 | 0.626
0.35 | 0.544 | 0.562 | 0.560 | 0.536 | 0.566 | 0.557 | 0.521 | 0.550 |-0.545
0.40 | 0.478 | 0.491 | 0.490 | 0.465 | 0.481 | 0.478 | 0.450 | 0.464 | 0.460
0.45 | 0.424 | 0.431 | 0.433 | 0.414 | 0.423 | 0.421 | 0.396 | 0.399 | 0.399
0.50 | 0.386 | 0.381 | 0.382 | 0.355 | 0.363 | 0.369 | 0.341 | 0.341 | 0.344
0.52 | 0.380 | 0.366 | 0.360 | 0.348 | 0.342 | 0.345 | 0.321 | 0.322 | 0.325

Table 9.40: The rotational short-time self-diffusion coefficients, normalized by
kT /8mna®, for 4* = 100, 1000, and 10*.

3 = 100 4 = 1000 & = 10°

¢ | Dy, | D, | D (DL, | Dk, D (DL | D, | D)L
0.05 | 0.866 | 0.887 | 0.889 | 0.872 | 0.893 | 0.889 | 0.853 | 0.872 | 0.872
0.10 | 0.850 | 0.882 | 0.866 | 0.849 | 0.881 | 0.864 | 0.843 | 0.874 | 0.862
0.15 | 0.782 | 0.819 | 0.808 | 0.769 | 0.806 | 0.797 | 0.751 | 0.787 | 0.778
0.20 | 0.723 | 0.764 | 0.765 | 0.719 | 0.759 | 0.758 | 0.742 | 0.778 | 0.764
0.25 | 0.651 | 0.697 | 0.698 | 0.638 | 0.681 | 0.678 | 0.627 | 0.675 | 0.669
0.30 | 0.574 | 0.610 | 0.602 | 0.560 | 0.607 | 0.597 | 0.528 | 0.572 | 0.574
0.35 | 0.495 | 0.528 | 0.521 | 0.468 | 0.504 | 0.496 | 0.437 | 0.480 | 0.462
0.40 | 0.426 | 0.441 | 0.435 | 0.388 | 0.408 | 0.401 | 0.343 | 0.359 | 0.356
0.45 | 0.364 | 0.371 | 0.368 | 0.322 | 0.327 | 0.324 | 0.276 | 0.285 | 0.280
0.50 | 0.303 | 0.309 | 0.312 | 0.264 | 0.266 | 0.265 | 0.215 | 0.214 | 0.213
0.52 | 0.294 | 0.295 | 0.295 | 0.245 | 0.242 | 0.244 | 0.200 | 0.195 | 0.196
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Table 9.41: The mean and the standard deviation of the average short-time transla-
tional self-diffusivity coeflicient, normalized by kT /67na, for ¥* = 0.1, 1, and 10.

7 =0.1 =1 ¥ =10
¢ | (Dg) o | (Dg) o | (Dg) o
0.05 | 0.653 | 0.007 | 0.646 | 0.003 | 0.645 | 0.001
0.10 | 0.563 | 0.001 | 0.566 | 0.002 | 0.567 | 0.001
0.15 | 0.491 | 0.005 | 0.490 | 0.003 |0.490 | 0.003
0.20 | 0.413 | 0.004 | 0.413 | 0.002 | 0.406 | 0.003
0:25 | 0.335 | 0.001 | 0.338 | 0.002 |0.334 |0.004
0.30 | 0.269 | 0.002 | 0.273 |0.002 |0.269 | 0.003
0.35 | 0.211 | 0.002 | 0.212 | 0.001 | 0.206 | 0.006
0.40 | 0.158 | 0.001 | 0.155 | 0.001 |0.149 | 0.001

0.45 | 0.119 0.116 | 0.001 | 0.108 | 0.002
0.50 | 0.0906 0.0812 | 0.0050 | 0.0740 | 0.0018
0.52 | 0.0840 0.0722 | 0.0004 | 0.0641 | 0.0001

Table 9.42: The mean and the standard deviation of the average short-time trans-
lational self-diffusivity coefficient, normalized by kT /67na, for ¥* = 100, 1000, and
104

7 = 100 4 = 1000 A = 10°

¢ | (Dg) o | (Dg) o | (Dg) o

0.05 ] 0.639 | 0.007 |0.643 | 0.001 |0.629 |0.010
0.10 | 0.567 | 0.003 |0.566 |0.003 |0.561 | 0.003
0.15 | 0.480 | 0.004 |0.474 |0.010 |0.465 | 0.009
0.20 | 0.406 | 0.001 |0.405 |0.001 |0.408 | 0.004
0.25 | 0.334 |0.003 |0.328 |0.006 |0.326 |0.004
0.30 | 0.260 | 0.002 |0.260 |0.003 |0.249 | 0.001
0.35 | 0.197 |0.003 |0.190 |0.004 |0.182 |0.001
0.40 | 0.141 |0.002 |0.131 |0.002 |0.118 |0.005
0.45 | 0.0981 | 0.0015 | 0.0867 | 0.0002 | 0.0773 | 0.0001
0.50 | 0.0639 | 0.0008 | 0.0541 | 0.0006 | 0.0435 | 0.0025
0.52 | 0.0571 | 0.0005 | 0.0441 | 0.0015 | 0.0351 | 0.0016
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Table 9.43: The mean and the standard deviation of the average short-time rotational
self-diffusivity coefficient, normalized by kT /8mna?, for * = 0.1, 1, and 10.

¥ =0.1 =1 A = 10
¢ D) | o (D] o |[(D)| @
0.05 | 0.898 | 0.006 | 0.889 | 0.002 | 0.889 | 0.002
0.10 | 0.864 | 0.003 | 0.868 | 0.002 | 0.868 | 0.001
0.15 | 0.825 | 0.006 | 0.823 | 0.008 | 0.820 | 0.005
0.20 | 0.768 | 0.005 | 0.765 | 0.001 | 0.755 | 0.004
10.25 | 0.692 | 0.004 | 0.696 | 0.003 | 0.687 | 0.008
0.30 | 0.623 | 0.003 | 0.625 | 0.003 | 0.616 | 0.009
0.35 | 0.555 | 0.005 | 0.553 | 0.001 | 0.539 | 0.012
0.40 | 0.486 | 0.001 | 0.475 | 0.001 | 0.458 | 0.003

0.45 | 0.429 0.420 | 0.001 | 0.398 | 0.004
0.50 | 0.383 0.363 | 0.008 | 0.342 | 0.004
0.52 | 0.369 0.345 | 0.001 | 0.322 | 0.001

Table 9.44: The mean and the standard deviation of the average short-time rotational
self-diffusivity coefficient, normalized by kT'/8mna®, for 4* = 100, 1000, and 10*.

7 =100 | 4 = 1000 = 107
¢ |((DH) | o D) ] o [(D))] o
0.05 | 0.880 | 0.010 | 0.885 | 0.001 | 0.866 | 0.013
0.10 | 0.866 | 0.006 | 0.865 | 0.005 | 0.859 | 0.003
0.15 | 0.803 | 0.009 | 0.791 | 0.010 | 0.772 | 0.009
0.20 | 0.750 | 0.004 | 0.745 | 0.001 | 0.761 | 0.013
0.25 | 0.682 | 0.006 | 0.666 | 0.009 | 0.657 | 0.010
0.30 | 0.596 | 0.002 | 0.588 | 0.005 | 0.558 | 0.002
0.35 | 0.515 | 0.007 | 0.489 | 0.011 | 0.460 | 0.012
0.40 | 0.434 | 0.004 | 0.399 | 0.003 | 0.353 | 0.013
0.45 | 0.368 | 0.004 | 0.325 | 0.001 | 0.280 | 0.001
0.50 | 0.308 | 0.001 | 0.265 | 0.001 | 0.214 | 0.007
0.52 | 0.295 | 0.001 | 0.243 | 0.003 | 0.197 | 0.006




106

Table 9.45: The short-time translational self-diffusivity coeflicients, normalized by
kt/6mna, obtained in simulations with 64 particles in the unit cell.

5 =10 4 =100 4* = 1000

¢ |Ds,, | Do, |Ds. |Di. |Ds, |Ds, |Di., |D5, |Ds,
0.30 | 0.315 | 0.285 |0.289 |0.304 |0.278 |0.277 | 0.297 |0.270 | 0.268
0.40 | 0.176 | 0.165 |0.162 |0.170 |0.156 |0.154 |0.158 |0.142 |0.145
0.45|0.121 |0.117 |0.115 |0.116 |0.108 |0.107 |0.101 |0.0950 | 0.0912
0.50 | 0.0845 | 0.0813 | 0.0777 | 0.0775 | 0.0741 | 0.0717 | 0.0611 | 0.0583 | 0.0560

0.52 | 0.0711 | 0.0672 | 0.0642 | 0.0686 | 0.0615 | 0.0586 | 0.0483 | 0.0480 | 0.0451

Table 9.46: The short-time rotational self-diffusivity coefficients, normalized by
kT /8mna®, obtained in simulations with 64 particles in the unit cell.

4* =10 4* =100 4* = 1000

¢ [D:i_ [D: [D:i |D:i [Di [D: |D: [D:, [Di.
0.30 1 0.594 | 0.630 | 0.620 | 0.574 | 0.604 | 0.602 | 0.548 | 0.584 | 0.582
0.40 | 0.456 | 0.466 | 0.466 | 0.432 | 0.447 | 0.445 | 0.394 | 0.414 | 0.401
0.45 1 0.394 | 0.395 | 0.394 | 0.367 | 0.374 | 0.369 | 0.321 | 0.325 | 0.324
0.50 | 0.341 1 0.339 | 0.343 | 0.318 | 0.314 | 0.316 | 0.262 | 0.261 | 0.261

0.52 ] 0.317 | 0.317 | 0.320 | 0.295 | 0.294 | 0.301 | 0.243 | 0.240 | 0.240

Table 9.47: The average short-time translational and rotational self-diffusivity coeffi-
cients, normalized by kT /67na and kT /8mna®, respectively, obtained in simulations
with 64 particles in the unit cell.

=10 3 = 100 4% = 1000
¢ | (Dg) (D7) [ (Dg) [ (D7) |(Dg) |(D;)
0.30 | 0.296 | 0.614 | 0.286 | 0.593 | 0.278 | 0.571
0.40 | 0.167 | 0.463 | 0.160 | 0.441 | 0.148 | 0.403
0.45 | 0.118 | 0.395 | 0.110 | 0.370 | 0.0958 | 0.323
0.50 | 0.0812 | 0.341 | 0.0744 | 0.316 | 0.0585 | 0.262

0.52 | 0.0675 | 0.318 | 0.0629 | 0.297 | 0.0471 | 0.240
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Table 9.48: The mean (D, ) and the standard deviation (o) of the long-time self-

(X)Yyy
diffusivity, normalized by 4a?, in the velocity-gradient direction for 4* = 0.1, 1, and

10.

¥ =01 =1 ¥ =10
¢ | Doy g Déo g Déo uy g
0.05 | 0.0037 | 0.0064 | 0.0036 | 0.0036 | 0.0031 | 0.0041
0.10 | 0.0018 | 0.0025 | 0.0022 | 0.0046 | 0.0031 | 0.0031
0.15 | 0.0028 | 0.0039 | 0.0022 | 0.0044 | 0.0023 | 0.0030
0.20 | 0.0023 | 0.0041 | 0.0032 | 0.0062 | 0.0053 | 0.0067
0.25 | 0.0035 | 0.0040 | 0.0103 | 0.0068 | 0.0108 | 0.0054
0.30 | 0.0149 | 0.0083 | 0.0133 | 0.0096 | 0.0220 | 0.0127
0.35 | 0.0268 | 0.0127 | 0.0221 | 0.0150 | 0.0157 | 0.0068
0.40 | 0.0262 | 0.0084 | 0.0291 | 0.0113 | 0.0371 | 0.0281
0.45 | 0.0280 | 0.0133 | 0.0234 | 0.0161 | 0.0228 | 0.0154
0.50 | 0.0046 | 0.0038 | 0.0243 | 0.0114 | 0.0204 | 0.0177
0.52 | 0.0021 | 0.0034 | 0.0017 | 0.0029 | 0.0173 | 0.0121

Table 9.49: The mean (D2, ) and the standard deviation (o) of the long-time self-

0, Yy

diffusivity, normalized by va?, in the velocity-gradient direction for v* = 100, 1000,
and 10

+* =100 ¥* = 1000 * =101
¢ | D, .. o D;, ., o D, .. o
0.05 { 0.0013 | 0.0042 | 0.0037 | 0.0041 | 0.0046 | 0.0062
0.10 | 0.0032 | 0.0025 | 0.0019 | 0.0024 | 0.0031 | 0.0049
0.15 | 0.0025 | 0.0031 | 0.0045 | 0.0058 | 0.0057 | 0.0049
0.20 | 0.0058 | 0.0058 | 0.0025 | 0.0039 | 0.0046 | 0.0028
0.25 | 0.0079 | 0.0064 | 0.0106 | 0.0067 | 0.0058 | 0.0054
0.30 | 0.0113 | 0.0086 | 0.0231 | 0.0089 | 0.0130 | 0.0063
0.35 | 0.0243 | 0.0168 | 0.0243 | 0.0098 | 0.0171 | 0.0173
0.40 | 0.0428 | 0.0281 | 0.0290 | 0.0179 | 0.0275 | 0.0206
0.45 | 0.0309 | 0.0184 | 0.0430 | 0.0208 | 0.0391 | 0.0253
0.50 | 0.0216 | 0.0146 | 0.0315 | 0.0177 | 0.0513 | 0.0262
0.52 | 0.0183 | 0.0193 | 0.0259 | 0.0162 | 0.0561 | 0.0231
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Table 9.50: The mean (DZ, ,.) and the standard deviation (o) of the long-time self-

00,22

diffusivity, normalized by Ya?, in the vorticity direction for 4* = 0.1, 1, and 10.

* = 0.1 ¥ =1 A* =10

¢ Dgo,zz o Dgo,zz g Dcio,zz g
0.05 | 0.0017 | 0.0024 | 0.0018 { 0.0020 | 0.0007 | 0.0010
0.10 | 0.0005 | 0.0008 | 0.0013 | 0.0019 | 0.0006 | 0.0008
0.15 | 0.0018 | 0.0013 | 0.0021 | 0.0018 | 0.0020 | 0.0021
0.20 | 0.0019 | 0.0010 | 0.0027 | 0.0026 | 0.0024 | 0.0022
0.25 | 0.0035 | 0.0022 | 0.0062 | 0.0041 | 0.0046 | 0.0031
0.30 | 0.0071 | 0.0044 | 0.0066 | 0.0048 | 0.0081 | 0.0044
0.35 | 0.0122 | 0.0060 | 0.0205 | 0.0118 | 0.0163 | 0.0049
0.40 | 0.0231 | 0.0121 | 0.0212 | 0.0094 | 0.0140 | 0.0108
0.45 | 0.0210 | 0.0079 | 0.0372 | 0.0177 | 0.0216 | 0.0169
0.50 | 0.0093 | 0.0096 | 0.0200 | 0.0133 | 0.0185 | 0.0195
0.52 |1 0.0019 | 0.0036 | 0.0020 | 0.0020 | 0.0189 | 0.0147

Table 9.51: The mean (D, ,.) and the standard deviation (o) of the long-time self-

00,22

diffusivity, normalized by Ya?, in the vorticity direction for ¥* = 100, 1000, and 10%.

A = 100 3~ = 1000 ¥ = 10°
¢ DZO,ZZ g D;O,ZZ g D(S)O,ZZ 4
0.05 | -0.0002 | 0.0023 | 0.0025 | 0.0052 | 0.0021 | 0.0019
0.10 | 0.0003 | 0.0012 | 0.0008 | 0.0005 | 0.0011 | 0.0014
0.15 | 0.0012 | 0.0011 | 0.0016 | 0.0011 | 0.0014 | 0.0009
0.20 | 0.0025 | 0.0024 | 0.0018 | 0.0023 | 0.0021 | 0.0019
0.25 | 0.0022 | 0.0020 | 0.0018 | 0.0014 | 0.0035 | 0.0015
0.30 | 0.0030 | 0.0032 | 0.0035 | 0.0034 | 0.0018 | 0.0032
0.35 | 0.0100 | 0.0074 | 0.0093 | 0.0081 | 0.0097 | 0.0047
0.40 | 0.0238 | 0.0085 | 0.0227 | 0.0104 | 0.0134 | 0.0093
0.45 | 0.0308 | 0.0148 | 0.0396 | 0.0231 | 0.0250 | 0.0148
0.50 | 0.0335 | 0.0207 | 0.0319 | 0.0140 | 0.0328 | 0.0150
0.52 | 0.0155 | 0.0107 | 0.0283 | 0.0142 | 0.0390 | 0.0229




109

Table 9.52: The mean square (T!") and the standard deviation (o) of the particle
translational velocity fluctuation, normalized by (ya)?, in the flow direction for ¥* =
0.1, 1, and 10.

=01 =1 7 =10
o [T7 o TF e T 7

0.05 | 0.00640 | 0.00076 | 0.00631 | 0.00094 | 0.00637 | 0.00073
0.10 | 0.0165 | 0.0011 |0.0160 | 0.0047 |0.0144 | 0.0061
0.15 | 0.0187 | 0.0016 |0.0219 | 0.0044 |0.0230 | 0.0028
0.20 | 0.0256 | 0.0027 |0.0262 |0.0006 |0.0244 |0.0015
0.25 | 0.0404 | 0.0016 |0.0435 |0.0010 |0.0516 |0.0107
0.30 | 0.0616 | 0.0010 | 0.0581 | 0.0002 | 0.0614 | 0.0053
0.35 | 0.0962 | 0.0066 |0.102 |0.005 |0.0898 |0.0011
0.40 | 0.127 |0.000 |0.125 |0.001 |0.124 |0.005

0.45 | 0.149 0.167 0.006 0.168 0.005
0.50 | 0.141 0.222 0.007 0.205 0.016
0.52 | 0.161 0.158 0.003 0.233 0.032

Table 9.53: The mean square (T) and the standard deviation (o) of the particle
translational velocity fluctuation, normalized by (¥a)?, in the flow direction for ¥* =
100, 1000, and 10*.

* = 100 * = 1000 v* = 10*

¢ | TYF o Tk o T o
0.05 | 0.00627 | 0.00088 | 0.00617 | 0.00076 | 0.00630 | 0.00021
0.10 | 0.0190 | 0.0034 | 0.0200 | 0.0043 | 0.0189 | 0.0006
0.15 | 0.0248 | 0.0042 | 0.0235 | 0.0079 | 0.0293 | 0.0086
0.20 | 0.0366 | 0.0001 | 0.0354 | 0.0023 | 0.0398 | 0.0012
0.25 | 0.0448 | 0.0039 | 0.0491 | 0.0031 | 0.0493 | 0.0053
0.30 | 0.0677 | 0.0011 | 0.0659 | 0.0026 | 0.0630 | 0.0034
0.35 | 0.0932 | 0.0069 | 0.0892 | 0.0008 | 0.0990 | 0.0031
0.40 | 0.135 0.001 0.138 0.001 0.158 0.005
0.45 ] 0.183 0.012 0.195 0.005 0.214 0.007
0.50 | 0.231 0.028 0.270 0.021 0.324 0.017
0.52 | 0.237 0.009 0.303 0.015 0.393 0.024
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Table 9.54: The mean square (T") and the standard deviation (o) of the particle
translational velocity fluctuation, normalized by (¥a)?, in the velocity-gradient direc-
tion for 4* = 0.1, 1, and 10.

¥*=0.1 =1 v* =10
¢ T;' o T;’ o T;r o
0.05 { 0.0136 | 0.0039 | 0.0140 | 0.0014 | 0.0142 | 0.0024
0.10 | 0.0334 | 0.0050 | 0.0342 | 0.0023 | 0.0329 | 0.0012
0.15 ] 0.0525 | 0.0052 | 0.0591 | 0.0029 | 0.0615 | 0.0007
0.20 | 0.0712 | 0.0006 | 0.0793 | 0.0039 | 0.0730 | 0.0016
0.25 | 0.1040 | 0.0057 | 0.0995 | 0.0027 | 0.112 | 0.012
0.30 | 0.1245 | 0.0007 | 0.123 | 0.006 | 0.127 | 0.008
0.35|0.144 | 0.017 |0.162 | 0.008 | 0.149 | 0.003

0.40 | 0.170 | 0.000 | 0.184 | 0.003 |0.178 | 0.009

0.45 | 0.168 0.191 |0.015 |0.198 |0.012
0.50 | 0.133 0.212 | 0.006 |0.198 | 0.013
0.52 1 0.138 0.149 10.009 |{0.213 | 0.031

Table 9.55: The mean square (7,") and the standard deviation (o) of the particle
translational velocity fluctuation, normalized by (7a)?, in the velocity-gradient direc-
tion for 4* = 100, 1000, and 10*.

¥* =100 v* = 1000 v+ =104

1) T;’ o Ty" o T;’ o
0.05 1 0.0139 | 0.0024 | 0.0140 | 0.0045 | 0.0134 | 0.0030
0.10 | 0.0367 | 0.0058 | 0.0383 | 0.0025 | 0.0363 | 0.0049
0.15 1 0.0619 | 0.0016 | 0.0773 | 0.0082 | 0.0750 | 0.0007
0.20 | 0.0860 | 0.0094 | 0.0848 | 0.0013 | 0.0913 | 0.0157
0.25 { 0.101 | 0.004 |0.111 |[0.009 |0.120 | 0.007
0.30 { 0.129 | 0.007 | 0.1436 | 0.0001 | 0.144 | 0.003
0.35 [ 0.160 | 0.001 |0.172 |0.011 | 0.208 | 0.006
0.40 | 0.204 | 0.007 | 0.194 | 0.025 |0.237 | 0.004
0.45 { 0.210 | 0.009 | 0.242 | 0.002 |0.272 |0.015
0.50 | 0.217 ] 0.018 | 0.268 | 0.028 | 0.327 | 0.020
0.52 1 0.216 |0.007 |0.282 |0.006 |0.361 | 0.021
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Table 9.56: The mean square (T}") and the standard deviation (o) of the particle
translational velocity fluctuation, normalized by (¥a)?, in the vorticity direction for
v* =0.1, 1, and 10.

y*=0.1 =1 v =10

¢ | T o Tr o T o
0.05 | 0.00356 | 0.00006 | 0.00365 | 0.00128 | 0.00367 | 0.00098
0.10 | 0.00848 | 0.00078 | 0.00889 | 0.00047 | 0.00941 | 0.00034
0.15 | 0.0135 | 0.0007 |0.0148 | 0.0012 | 0.0154 | 0.0008
0.20 {.0.0177 | 0.0005 | 0.0161 | 0.0015 | 0.0206 | 0.0009
0.25 | 0.0256 | 0.0021 |0.0302 |0.0026 | 0.0287 | 0.0023
0.30 | 0.0418 | 0.0016 | 0.0377 |0.0011 |0.0399 | 0.0051
0.35 [ 0.0553 | 0.0062 | 0.0614 | 0.0011 | 0.0567 | 0.0065.
0.40 | 0.0822 | 0.0012 | 0.0855 | 0.0030 | 0.0722 | 0.0063

0.45 | 0.0909 0.111 0.010 0.108 0.004
0.50 | 0.0887 0.137 0.010 0.130 0.012
0.52 | 0.0855 0.0944 |0.0051 | 0.140 0.023

Table 9.57: The mean square (7}") and the standard deviation (¢) of the particle
translational velocity fluctuation, normalized by (7a)?, in the vorticity direction for

¥* = 100, 1000, and 10%.

3 = 100 3 = 1000 3 = 100

¢ | TF a T o Tr o
0.05 | 0.00368 | 0.00036 | 0.00377 | 0.00094 | 0.00371 | 0.00081
0.10 | 0.00950 | 0.00092 | 0.0109 | 0.0016 | 0.00937 | 0.00095
0.15 | 0.0149 | 0.0011 | 0.0167 | 0.0012 | 0.0193 | 0.0010
0.20 | 0.0243 | 0.0027 | 0.0214 | 0.0027 | 0.0280 | 0.0027
0.25 | 0.0298 | 0.0023 | 0.0314 | 0.0017 | 0.0309 | 0.0012
0.30 | 0.0407 | 0.0077 |0.0452 | 0.0004 | 0.0435 | 0.0033
0.35 | 0.0597 | 0.0047 | 0.0616 | 0.0052 | 0.0633 | 0.0022
0.40 | 0.088 0.009 0.0880 | 0.0095 |0.0928 | 0.0108
0.45 ] 0.115 0.001 0.132 0.005 0.139 0.004
0.50 | 0.144 0.018 0.177 0.017 0.206 0.018
0.52 | 0.145 0.003 0.188 0.008 0.253 0.001
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Table 9.58: The mean square (77°) and the standard deviation (o) of the particle
rotational velocity fluctuation, normalized by 4%, in the flow direction for 4* = 0.1,
1, and 10.

¥ =0.1 =1 =10
¢ Tar;ot o T;at o T;Ot o

0.05 | 0.00161 | 0.00019 | 0.00200 | 0.00019 | 0.00202 | 0.00016
0.10 | 0.00224 | 0.00007 | 0.00231 | 0.00001 | 0.00263 | 0.00015
0.15 | 0.00397 | 0.00040 | 0.00403 | 0.00040 | 0.00422 | 0.00005
0.20 | 0.00541 | 0.00025 | 0.00551 | 0.00086 | 0.00583 | 0.00040
0.25 | 0.00840 | 0.00124 | 0.00867 | 0.00023 | 0.00906 | 0.00213
0.30 | 0.0119 | 0.0004 }0.0111 | 0.0005 | 0.0116 | 0.0003
0.35 | 0.0150 | 0.0014 | 0.0165 | 0.0008 | 0.0168 | 0.0001
0.40 | 0.0194 | 0.0008 |0.0197 | 0.0009 | 0.0200 | 0.0005

0.45 ] 0.0191 0.0222 | 0.0019 | 0.0229 | 0.0010
0.50 | 0.0151 0.0244 | 0.0010 | 0.0243 | 0.0025
0.52 | 0.0150 0.0168 | 0.0009 | 0.0256 | 0.0038

Table 9.59: The mean square (T7°) and the standard deviation (o) of the particle
rotational velocity fluctuation, normalized by 4%, in the flow direction for 4* = 100,

1000, and 10%.

v* =100 ¥* = 1000 y* = 10*

QS T;ot o T;ot o T;ot o
0.05 | 0.00194 | 0.00001 | 0.00192 | 0.00063 | 0.00260 | 0.00056
0.10 | 0.00248 | 0.00006 | 0.00244 | 0.00020 | 0.00256 | 0.00023
0.15 | 0.00411 | 0.00019 | 0.00510 | 0.00013 | 0.00540 | 0.00017
0.20 | 0.00679 | 0.00061 | 0.00690 | 0.00124 | 0.00843 | 0.00048
0.25 | 0.00921 | 0.00017 | 0.00940 | 0.00044 | 0.0103 | 0.0019
0.30 | 0.0116 | 0.0022 |0.0145 | 0.0012 | 0.0158 | 0.0012
0.35 | 0.0170 | 0.0013 | 0.0189 | 0.0025 | 0.0206 | 0.0012
0.40 | 0.0223 | 0.0011 | 0.0238 | 0.0004 | 0.0300 | 0.0007
0.45 | 0.0261 | 0.0004 | 0.0326 | 0.0004 | 0.0379 | 0.0014
0.50 | 0.0283 | 0.0026 | 0.0378 | 0.0033 | 0.0474 | 0.0034
0.52 | 0.0273 | 0.0011 | 0.0383 | 0.0004 | 0.0549 | 0.0028
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Table 9.60: The mean square (17°") and the standard deviation (o) of the particle
rotational velocity fluctuation, normalized by 42, in the velocity-gradient direction
for 4* = 0.1, 1, and 10.

7 =01 ¥ =1 7 =10
q/) Tyrot o T;ot o Tyrot o

0.05 | 0.00156 | 0.00008 | 0.00207 | 0.00040 | 0.00214 | 0.00015
0.10 | 0.00184 | 0.00004 | 0.00217 | 0.00005 | 0.00300 | 0.00007
0.15 | 0.00318 | 0.00006 | 0.00330 | 0.00040 | 0.00352 | 0.00022
0.20 |.0.00369 | 0.00034 | 0.00385 | 0.00064 | 0.00500 | 0.00028
0.25 | 0.00572 | 0.00044 | 0.00742 | 0.00100 | 0.00695 | 0.00022
0.30 | 0.00926 | 0.00068 | 0.00842 | 0.00049 | 0.00976 | 0.00121
0.35 | 0.0130 | 0.0011 | 0.0138 | 0.0007 | 0.0133 | 0.0005
0.40 | 0.0161 | 0.0006 | 0.0171 | 0.0004 | 0.0170 | 0.0004

0.45 | 0.0197 0.0215 | 0.0013 | 0.0229 | 0.0004
0.50 | 0.0178 0.0264 | 0.0019 | 0.0262 | 0.0016
0.52 | 0.0138 0.0188 | 0.0004 | 0.0268 | 0.0032

Table 9.61: The mean square (7;°") and the standard deviation (o) of the particle
rotational velocity fluctuation, normalized by 42, in the velocity-gradient direction

for 4* = 100, 1000, and 10*.

4% =100 4* = 1000 v = 10"

qs T;ot o T;Ot o T;ot o
0.05 | 0.00223 | 0.00007 | 0.00233 | 0.00044 | 0.00306 | 0.00070
0.10 | 0.00224 | 0.00015 | 0.00305 | 0.00088 | 0.00224 | 0.00001
0.15 | 0.00350 | 0.00011 | 0.00404 | 0.00011 | 0.00510 | 0.00030
0.20 | 0.00641 | 0.00021 | 0.00522 | 0.00053 | 0.00714 | 0.00050
0.25 | 0.00729 | 0.00035 | 0.00912 | 0.00036 | 0.00814 | 0.00066
0.30 | 0.00944 | 0.00196 | 0.0121 | 0.0010 | 0.0126 | 0.0007
0.35 | 0.0148 | 0.0010 | 0.0161 | 0.0003 | 0.0182 | 0.0006
0.40 | 0.0199 | 0.0027 | 0.0230 | 0.0038 | 0.0263 | 0.0014
0.45 | 0.0253 | 0.0005 1} 0.0298 | 0.0010 | 0.0357 | 0.0004
0.50 | 0.0306 | 0.0030 | 0.0390 | 0.0030 | 0.0488 | 0.0029
0.52 | 0.0291 | 0.0004 | 0.0402 | 0.0020 | 0.0560 | 0.0012
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Table 9.62: The mean square (77°") and the standard deviation (o) of the particle
rotational velocity fluctuation, normalized by 42, in the vorticity direction for ¥* =
0.1, 1, and 10.

=01 =1 A =10
d) T;at o Tzrot o Tzrot o

0.05 | 0.00556 | 0.00072 | 0.00644 | 0.00061 | 0.00643 | 0.00007
0.10 | 0.00868 | 0.00050 | 0.0101 | 0.0009 | 0.00866 | 0.00004
0.15 | 0.0135 | 0.0006 | 0.0148 | 0.0013 | 0.0152 | 0.0004
0.20 {;0.0182 | 0.0001 | 0.0203 | 0.0012 | 0.0198 | 0.0005
0.25 | 0.0276 | 0.0011 | 0.0253 | 0.0023 | 0.0318 | 0.0042
0.30 | 0.0324 | 0.0031 .| 0.0343 | 0.0007 | 0.0327 | 0.0008
0.35 1 0.0394 | 0.0045 | 0.0439 | 0.0042 | 0.0428 | 0.0014
0.40 | 0.0469 | 0.0009 | 0.0485 | 0.0007 | 0.0509 | 0.0024

0.45 | 0.0497 0.0543 | 0.0007 | 0.0568 | 0.0019
0.50 | 0.0373 0.0560 | 0.0013 | 0.0562 | 0.0020
0.52 | 0.0371 0.0393 | 0.0020 | 0.0571 | 0.0056

Table 9.63: The mean square (77°") and the standard deviation (o) of the particle
rotational velocity fluctuation, normalized by 42, in the vorticity direction for 4* =
100, 1000, and 10%.

7" =100 v = 1000 y* = 10*

¢ T;ot o Tzrot o T;ot o
0.05 | 0.00715 | 0.00051 | 0.00656 | 0.00111 | 0.00831 | 0.00180
0.10 | 0.00978 | 0.00027 | 0.01150 | 0.00059 | 0.0110 | 0.0012
0.15 | 0.0151 | 0.0004 | 0.0190 | 0.0014 | 0.0187 | 0.0004
0.20 | 0.0227 | 0.0006 | 0.0224 | 0.0001 | 0.0256 | 0.0030
0.25 | 0.0283 | 0.0002 | 0.0305 | 0.0004 | 0.0340 | 0.0043
0.30 | 0.0389 | 0.0003 | 0.0408 | 0.0020 | 0.0440 | 0.0017
0.35 | 0.0472 | 0.0011 | 0.0528 | 0.0047 | 0.0610 | 0.0001
0.40 | 0.0586 | 0.0048 | 0.0649 | 0.0050 | 0.0766 | 0.0018
0.45 | 0.0642 | 0.0014 | 0.0791 | 0.0007 | 0.0931 | 0.0053
0.50 | 0.0662 | 0.0052 | 0.0836 | 0.0049 | 0.106 0.003
0.52 | 0.0628 | 0.0024 | 0.0868 | 0.0022 | 0.114 0.005
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Table 9.64: The mean square of the particle translational velocity fluctuation, nor-
malized by (Ja)? for simulation runs with 64 particles in the unit cell.

¥ =10 7 =100 4* = 1000

¢’ T;r T;r thr Tmtr TJr thr T‘ér T;r thr
0.30 | 0.0793 | 0.142 | 0.0440 | 0.0879 | 0.156 | 0.0503 | 0.0986 | 0.170 | 0.0474
0.40 { 0.139 1 0.192 | 0.0911 | 0.148 | 0.203 | 0.0887 | 0.160 | 0.232 | 0.0967
0.45 | 0.18 | 0.211 | 0.123 |0.198 | 0.233 | 0.125 | 0.209 | 0.275 | 0.129
0.50 | 0.236 | 0.232 | 0.153 | 0.218 | 0.214 | 0.144 | 0.288 | 0.283 | 0.184
0.52 | 0.308 | 0.268 | 0.200 | 0.206 | 0.184 | 0.141 | 0.325 | 0.323 | 0.228

Table 9.65: The mean square of the particle rotational velocity fluctuation, normalized
by 42, for simulation runs with 64 particles in the unit cell.

7 =10 5 = 100 4+ = 1000

rot rot rot rot rot rot rot rot rot
¢ [T7 T, T Tr T, T Tr 7 T”

K’} Y
0.30 | 0.0113 | 0.00994 | 0.0347 | 0.0139 | 0.0114 | 0.0388 | 0.0139 | 0.0116 | 0.0445
0.40 | 0.0205 | 0.0181 | 0.0531 | 0.0222 | 0.0194 | 0.0572 | 0.0251 | 0.0234 | 0.0672
0.45 | 0.0252 | 0.0229 | 0.0554 | 0.0268 | 0.0248 | 0.0666 | 0.0325 | 0.0280 | 0.0794
0.50 | 0.0273 | 0.0279 | 0.0584 | 0.0265 | 0.0271 | 0.0617 | 0.0382 | 0.0358 | 0.0825
0.52 | 0.0326 | 0.0341 | 0.0622 | 0.0245 | 0.0263 | 0.0544 | 0.0446 | 0.0426 | 0.0845
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Figure 9.1: The angularly-averaged pair-distribution function for runs with 64 parti-
cles in the unit cell.
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Figure 9.2: The magnitude g(2) (shown on a logarithmic scale) of the angularly-
averaged pair-distribution function evaluated at particle contact as a function of ¢
and ¥*.
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Figure 9.3: The magnitude g(2) (shown on a linear scale) of the angularly-averaged
pair-distribution function evaluated at particle contact as a function of ¢ and ¥*.
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Figure 9.5: The maximum ¢g™**(r) of the angularly-averaged pair-distribution func-
tion as a function of ¥* and ¢.
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Figure 9.6: Angularly-averaged pair-distribution function for runs at the particle
volume fraction of 0.45.
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Figure 9.7: Angularly-averaged pair-distribution function for runs at the particle
volume fraction of 0.50.
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Figure 9.8: Angularly-averaged pair-distribution function for runs at the particle
volume fraction of 0.52.
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Figure 9.9: A plot of probability density for finding a particle given that there is a
particle at the origin, in the (z,y)-plane (top row), (z,z)-plane (middle row), and
the (z,y)-plane (bottom row) for suspensions at ¢ = 0.45 and ¥* = 0.1 (left column)
and 1 (right column). There are 27 particles in the unit cell. Regions of light color
represent high probability and dark low.
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Figure 9.10: A plot of probability density for finding a particle given that there 1s
a particle at the origin, in the (z,y)-plane (top row), (z, z)-plane (middle row), and
the (z,y)-plane (bottom row) for suspensions at ¢ = 0.45 and 4* = 10 (left column)
and 100 (right column). There are 27 particles in the unit cell. Regions of light color
represent high probability and dark low.
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Figure 9.11: A plot of probability density for finding a particle given that there is a
particle at the origin, in the (z,y)-plane (top row), (z, z)-plane (middle row), and the
(z,y)-plane (bottom row) for suspensions at ¢ = 0.45 and 4* = 1000 (left column)
and 10* (right column). There are 27 particles in the unit cell. Regions of light color
represent high probability and dark low.
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Figure 9.12: A plot of probability density for finding a particle given that there is
a particle at the origin, in the (z,y)-plane (top row), (z, z)-plane (middle row), and
the (z,y)-plane (bottom row) for suspensions at ¢ = 0.50 and 4* = 0.1 (left column)
and 1 (right column). There are 27 particles in the unit cell. Regions of light color
represent high probability and dark low.
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Figure 9.13: A plot of probability density for finding a particle given that there is
a particle at the origin, in the (z,y)-plane (top row), (z, z)-plane (middle row), and
the (z,y)-plane (bottom row) for suspensions at ¢ = 0.50 and 4* = 10 (left column)
and 100 (right column). There are 27 particles in the unit cell. Regions of light color
represent high probability and dark low.
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Figure 9.14: A plot of probability density for finding a particle given that there is a
particle at the origin, in the (z,y)-plane (top row), (z, z)-plane (middle row), and the
(z,y)-plane (bottom row) for suspensions at ¢ = 0.50 and 4* = 1000 (left column)
and 10* (right column). There are 27 particles in the unit cell. Regions of light color
represent high probability and dark low.
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Figure 9.15: A plot of probability density for finding a particle given that there is
a particle at the origin, in the (z,y)-plane (top row), (z, z)-plane (middle row), and
the (z,y)-plane (bottom row) for suspensions at ¢ = 0.52 and * = 0.1 (left column)
and 1 (right column). There are 27 particles in the unit cell. Regions of light color
represent high probability and dark low.
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Figure 9.16: A plot of probability density for finding a particle given that there is
a particle at the origin, in the (z,y)-plane (top row), (z, z)-plane (middle row), and
the (z,y)-plane (bottom row) for suspensions at ¢ = 0.52 and 4* = 10 (left column)
and 100 (right column). There are 27 particles in the unit cell. Regions of light color
represent high probability and dark low.
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Figure 9.17: A plot of probability density for finding a particle given that there is a
particle at the origin, in the (z,y)-plane (top row), (z, z)-plane (middle row), and the
(z,y)-plane (bottom row) for suspensions at ¢ = 0.52 and 4* = 1000 (left column)
and 10* (right column). There are 27 particles in the unit cell. Regions of light color
represent high probability and dark low.



133

Figure 9.18: A plot of probability density for finding a particle given that there is a
particle at the origin, in the (z,y)-plane (top row), (z, z)-plane (middle row), and the
(z,y)-plane (bottom row) for suspensions at ¢ = 0.45 and 4* = 10 (left column) and
1000 (right column). There are 64 particles in the unit cell. Regions of light color
represent high probability and dark low.
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Figure 9.19: A plot of probability density for finding a particle given that there is a
particle at the origin, in the (z,y)-plane (top row), (z, z)-plane (middle row), and the
(z,y)-plane (bottom row) for suspensions at ¢ = 0.50 and 4* = 10 (left column) and
1000 (right column). There are 64 particles in the unit cell. Regions of light color
represent high probability and dark low.
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Figure 9.20: A plot of probability density for finding a particle given that there is a
particle at the origin, in the (z,y)-plane (top row), (z, z)-plane (middle row), and the
(z,y)-plane (bottom row) for suspensions at ¢ = 0.52 and ¥* = 10 (left column) and
1000 (right column). There are 64 particles in the unit cell. Regions of light color
represent high probability and dark low.
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Figure 9.21: The total shear viscosity of suspensions.
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Figure 9.22: The hydrodynamic contribution to the shear viscosity of suspensions.




138

llll'llll‘ll'fllllll]l|lll‘lllllllllllll[llll'l
(VN
10 _E_ g=22,1=1000
F —=-7'=0.1
[ ;...u..y‘:]
G m-v=10
0 E A y=100
E - 7'=1000
S
107 |
S _3'
= 107 B
10'4 o e

I | lllllll

Z
g\
N

10°

1

—

=)
Ll

o> =
-<I*'.<Q
o
g8

lllllllllllllllllllllllllllllllllllllllllﬁ

0.1 0.2 03 04 0.5

¢

Figure 9.23: The interparticle-force contribution to the shear viscosity of suspensions.
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Figure 9.24: The total first normal stress difference.
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Figure 9.25: The hydrodynamic contribution to the first normal stress difference.
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Figure 9.26: The interparticle-force contribution to the first normal stress difference.
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Figure 9.28: The hydrodynamic contribution to the second normal stress difference.
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Figure 9.32: The hydrodynamic contribution to the suspension pressure.
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Figure 9.36: The hydrodynamic contribution to the shear viscosity (over and above
the relative high-frequency dynamic viscosity 1., as reported by Phillips et al. 1988)
plotted against ¢. At low ¢, (nff — n:°) scales as .
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Figure 9.57: The product of the dimensionless shear rate and the interparticle-force
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Figure 9.58: The translational short-time self-diffusivity.
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Figure 9.60: The long-time self-diffusivity in the velocity-gradient direction.
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Figure 9.61: The long-time self-diffusivity in the vorticity direction.
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Figure 9.62: The long-time self-diffusivity in the velocity-gradient direction plotted
against ¢g™*.
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Figure 9.63: The long-time self-diffusivity in the vorticity direction plotted against
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Figure 9.64: The mean square of particle translational velocity fluctuation in the flow
direction.
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Figure 9.65: The mean square of particle translational velocity fluctuation in the
velocity-gradient direction.
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Figure 9.66: The mean square of particle translational velocity fluctuation in the
vorticity direction.
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Figure 9.67: The mean square of particle rotational velocity fluctuation in the flow
direction.
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Figure 9.68: The mean square of particle rotational velocity fluctuation in the
velocity-gradient direction.
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Figure 9.69: The mean square of particle rotational velocity fluctuation in the vor-

ticity direction.
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Chapter 10 Conclusions

In this work we have conducted a comprehensive study of suspensions of non-Brownian
particles interacting by means of a short-range pairwise repulsive force. We have used
Stokesian Dynamics to simulate the range of particle phase concentrations from very
dilute (¢ = 0.05) to very dense (¢ = 0.52) over five decades in the nondimensional
shear rate (from4* = 0.1 to 10*). The goal of the simulations was to clarify the na-
ture of the connection between the suspension microstructure, as determined by the
balance of the shear and interparticle forces, and the macroscopic suspension prop-
erties, such as the non-Newtonian rheology (normal stress differences and suspension
pressure), hydrodynamic diffusion, and the suspension temperature defined as the
mean square of the particles’ velocity fluctuation.

The main conclusions of this study can be summarized as follows.

(1) Suspension microstructure. In concentrated suspensions at the lowest values of the
shear rate 4* (i.e. when the repulsive interparticle force dominates the suspension) the
particles form strings oriented along the direction of the flow, hexagonally packed in
the velocity-gradient—vorticity plane; at the same time individual particles at all times
stay separated from other particles by a thin layer of the solvent. As v* increases, the
ordering of particles in strings gradually disappears being replaced by noncompact
clusters of particles kept together by strong lubrication forces. Additionally, at high
shear rates, pairwise particle collisions display a broken fore-aft symmetry in a thin

boundary layer adjacent to the particle surface.

(i1) Suspension rheology. In concentrated suspensions at high values of 4 the non-
compact clusters of particles result in a marked increase in the shear viscosity. Si-
multaneously, due to the broken fore-aft symmetry of particle pair-distribution, the
normal stress differences and suspension pressure increase, in agreement with theo-

retical findings of Brady & Morris (1997).
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(iii) Hydrodynamic diffusion. The long-time self-diffusivity of suspended particles

is found dependent on the details of their microstructural arrangement. The long-

S

time self-diffusion coefficients in the velocity-gradient and vorticity directions, D7,

and D}, , at the highest value of 4* = 10, monotonically increase over the entire
simulated range of particle phase concentrations ¢. As ¥* decreased, the particles
begin to form strings and that leads to a dramatic decrease in D3,  and D3,  at

high concentrations ¢. In dilute suspensions little long-time self-diffusivity is found

owing to the infrequency of inter-particle collisions.

(iv) Suspension temperature. In concentrated suspensions both the translational and
rotational suspension temperatures are found to be the highest at the highest shear
rates 4*. At the lowest ¥* the formation of strings results in a decrease in the particles’

fluctuational motions; accordingly, the computed values of the temperatures are low.
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