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THESIS ABSTRACT

1. Stability of Tchebyshev Collocation

We describe Tchebyshev collocation when applied to hyperbolic equations in one
space dimension. We discuss previous stability results valid for scalar equations
and study a procedure that when applied to a strictly hyperbolic system of
equations leads to a stable numerical approximation in the ILp-norm. The
method consists of using orthogonal projections in the Lz-norm to apply the

boundary conditions and smooth the higher modes.

II. On 2-D Interpolation for Surfaces wilth 1-D Discontinuities

This> problem arises in the context of shock calculations in two space dimen-
sions. Given the set of parabolic equations describing the shock phenomena the
method proceeds by discretising in time and then solving the resulting elliptic
equation by splitting. The specific problem is to reconstruct a two dimensicnal
function which is fully resolved along a few parallel horizontal lines. The interpo-
lation proceeds by détermihing the positicn of any discontinuity and then inter-

polating parallel to it.

III. On Composite Meshes

We collect several numerical experiments designed to determine possible numer-
ical artifacts preduced by the overlapping region of composite meshes. We also
study the numerical stability of the method when applied to hyperbolic equa-
tions. Finally we apply it to a model of a wind driven ocean circulation model in
a circular basin. We use stretching in the angular and radial directions which

allow the necessary resclution to be obtained along the boundary.
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Part I:

Stability of Tchebyshev Collocation



1. Introduction

In this part of this thesis we discuss the numerical method of Tchebyshev
coll»oeation when applied to a system of symmetric hyperbelic equations in one
space dimension. It is wéll known that the method is not stable for general
problems unless some care is taken with the higher modes. We are interested in
developing procedures to stabilize the numerical method when applied to the
following problem:

%:A(z,t) %%+B(x,t)g_+ Cx.t), (t.1a)

defined for =1 < z < 1 and for £ = 0; w(z,t) is an r-dimensional vector, A(z t)

is a symmetric matrix and B(x,t) is a general square matrix. We consider equa-

tion (1.1a) with the initial values given by
wlz £=0) = ug(z) . (2.1b)

We will also require that A(z,f) be knonsingular atz =+ landf=0.

In order to have a well posed problem we still have to provide boundary con-
ditions for this equation. We know that the problem is well posed if the boundary
conditions specify incoming variables in terms of cutgoing variables. We define

incoming and outgoing variables in the following way: we know there exists a

smooth orthogonal transformation T-(¢) such that

'A” o
0 (1.1¢)

Tty A(-1.6)T(¢) = T

() A(-1.£) 1 ( I
I n

where A_ is negative definite and A’ is positive definite. If we introduce z_by

w(-1,¢) =T ()2 (£); (1.1d)

and if we split . (t) according to equation (1.1c), that is
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v (2) = (ul()2Z(t))t | then 2l are the incoming variables and uZ are the
outgoing variables. The type of boundary conditions that we will consider are of

the form
vl (t) = S_uf(t) + G_(t) (1.1e)

where G_ is a given vector and S_isa rectangular matrix subject to the con-

straint
AT+ S'A'S >0 (1.1f)

for all £ > 0. In a similar way we introduce T,(¢) and u,(t); the boundary condi-

tions at =1 are of the type
vl (t) = S, u(t) + Gu(2) (1.1g)

where (.(¢) is a given vector and S, is a given rectangular matrix subject to a

restriction similar to {1.1f).

Equation (1.1a) with the initial value given by {1.1b) and the boundary con-
ditions given by (1.16)-(1.1g) is well posed in the Ly;-norm. The restriction (I.1f)
is given so that the proof of well-posedness reduces to integration by parts. We
study modifications of the numerical method for which we can alse use integra-
tion by parts in order to obtain a numerical stability result. This idea was suc-

cessfully used by Kreiss and Oliger | 7] in the context of Fourier collocation,

Tchebyshev collocation, as with any spectral method, has a high rate of
convergence which makes it particularly attractive for problems with smooth
solutions. It is also useful in problems where the sclution has sharp gradients in
the vicinity of the boundaries of ﬁhe interval and hence high resolution is
needed. Tchebyshev cellocation is also attractive because of its efficient imple-

mentation using the Fast Fourier Transform algorithm.
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Gottlieb and Orszag in [4] discuss the convergence rate of Tchebyshev inter-
polation for smooth functions and for functions with boundary layers. ‘They also
discuss the convergence rate of Tchebyshev coliocation when applied to écalar
hyperbelic equations. In chapter 2 we collect some results concerning this inter-

polation procedure.

We are interested in a method which is convergent in the sense that if we
increase our efforts ( the number of grid points ) then the numerical solution
obtained gets closer to the real solution. There is a general result due to lax
and Richtmyer which says that if a numerical method is stable and consistent

then it is convergent, Thusg we will address the stability of the method.

The main source of difficulties in obtaining a stability result for this
method is that problem (1.1) is in general not well posed in the Tchebyshev
norm which is the natural norm to consider for this numerical method. We will
discuss in chapter 3 the well-posedness of the continuous equations in different

norms introduced by Gottlieb and Orszag [4]

Consider the system of parabolic equations

% = Az t) e+ Biz 1) w + Clz.t) + v Dz 1) g—}

where D is a symmetric positive definite matrix, called the viscosity matrix, with
eigenvalues bounded away from zero for all z and ¢, and vis a positive nhumber.
Unlike systems of hyperbolic equations, systems of parabolic equations are
stable in the Tchebyshev norm ({ provided that the v, the viscosity, is large
enough ). It is not unreasonable to expect that Tchebyshev collocation applied
to this problem will lead to a convergent numerical methed; in fact Canuto and
Quarteroni [1] and also Gottlieb [3] proved that this is the case. The estimates

obtained are not valid in the singular case when the v is much smaller than the

inverse of the number of points used in the numerical method. For these
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problems it is important to have a stable approximation to the hyperbolic part

of the problem.

Gottlieb in [3] considers the following type of scalar hyperbolic equations
—-—=cz——;+bu+c, (1.2)

with appropriaﬁe initial value and boundary conditions. He proves that the
Tchebyshev collocation method applied to the above equation is stable for all
t>0, in different norms related to Tchebyshev norm, either when a(z,f) does
not change sign inside the interval [~1,1] or when it has a sign change at
-1 < s(t)< 1 and a(z,t) /(z~-s(t)) has no sign changes in the interval. In
chapter 4 we introduce smoothing operators that ensure the stability of the pre-
vious scalar problem without these restrictions. These smoothing operators can
be implemented with a minimal amount of extra computational effort; the boun-
dary conditions are imposed in a way consistent with the smoothing operator.
We describe these operators in chapter 7. We use different norms and stabiliz-
ing procedures for different cases of the scalar hyperbolic equation. These
norms are not equivalent to ea.ch other when congidered over the entire space of
functions defined in the interval [-1,1]. Therefore it is not clear whether it is
possible to draw either a stability or a weaker algebraic stability result for sys-
temn (1.1a) from the stability of all the different cases of scalar hyperbolic equa-
tions. In chapter 8 we will show that all the norms we will consider are algebrai-
cally equivalent to each other when restricted to the finite dimensional space of
the numerical solutions. In this way if we consider the above equation with

homogeneous boundary conditions the following estimate will hold:
luw{z £)llz = c(t) N N [uy(z.0)]2, (1.3)

where N is the number of grid points, vy(x,t) is the numerical solution, ¢ (£) is a



-8 -

positive function which depends on the coeflicients of the equation and r and s

are real constants that could be positive.

In order to obtain a stability result we will use a smoothing operator that
guarantees sﬁability in the Lz-norm for general hyperbolic equations ( this also
immediately implies a’stability result for systems of hyperbolic equations). If
the coefficients of equation (1.1) are not smooth, the extra amount of work can
be significant; the total amount of work nevertheless remains smaller than that
required by spectral methods based on other special functions. The Lg-
stabilizing operator consists in truncating the higher modes of the Legendre
expansion of the solution. In chapter 4 we alse discuss other types of stabilizing

operators which lead to more accurate numerical approximations.

Finally chapter 5 contain lemmas necessary for the final stability results

for this stabilized method which are described in chapter 8.



2. Tchebyshev Interpolation

~In this chapter we introduce and develop some basic results about Tche-

byshev interpolation.

Given a function w(z) & C[—l,l]. introduce the pericedic, even C(R) func-

tion T(¥) = u( cos () ). If we now expand (9 in its Fourier series
(8 = Y u, cos(ns), (2.1)
n=
the corresponding expansion for u{z),

u(z) = i’ u, cos( n arccos(z)) (2.2)

n=0
is called the Jchebyshev ezxpansion of u(z). From the recursion formula
¥ecos((n+1)8) + % cos( (n—1)8) = cos () cos{ n &) (2.3)

it follows that T,(z) = cos(n arccos(z) ) is actually a polynomial of degree n

with leading order coefficient 2! for =n>0; 7T,(z) is called the
n** —Tchebyshev poly nomigl. -

The coefficients w, of this expansion can be easily computed and are given

by
Uy = %‘Zu(cos(ﬂ)) cos(nvd) d¥ = %—__fl‘u(z) Tp(x) \,ﬁ%—? n=0 (2.4a)
1L 1] d
Ug = ;—{u(cos(ﬂ)) d¥= F_flu(x) \/:7 (2.4b)

This suggests introducing the following norm for functions defined in the

interval [-1,1]

lu(z) |5 = J;u%x) A (2.5)
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which will be balled the chebyshev norm. or T—norm. We denote the

corresponding inner product by (-, )r.

From the recursion formula
sin{ (n+1) 8) +sin{ (n—-1)B8) =2 cos(n ¥) sin(B) (2.8)
it follows that

1 d TnH(z) + 1 d Tn~1(z)
n+l dzx n-1 dzx

=2 7, (z). (2.7)

This recurrence relation leads to an efficient way to obtain the coefficients of
the Tchebyshev expansion of the derivative of a function «(z) in terms of the

coefficients of the Tchebyshev expansion of w(z).

We normalize the Tchebyshev polynomials with respect to this new norm
obtaining

ve/sm n>0

Tn(z) = ¢p Tp(z) where ¢, = ViF n=0 - (2.8)

The coefficients of this expansion decay exponentially fast for smooth func-

tions: we have that if u(z) e Cp[—l,l] then

P u (cos(d)) I (2.9)

M -
lu, | < ZT—L; where M = max | PwY:

It is this fast decay of the coefficients that makes spectral methods so appeal-
ing.

We now are ready to define Tchebyshev interpolation. Let N be a natural

number and introduce the sequence of points

z, = cos(d,) = cos(v%) v=0,12- " N. (2.10)
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These are called the Tchebyshev points. For a function u (z) ¢ C[=1,1], wy(z),
the*mwm;_intemolaﬁt of u(x), is defined as the only polynomial in Py[z]

such that
vy(z,) =u(z,) v=0,12 ‘N (R.11)
where Py[z] is the vector space consisting of all polynomials of degree less or

equal to NV,

We introduce the following bilinear form in C[~1,1]

(w(@)w(zh = = [%v(zo)'w (zo) + Nil v (e ) w () + % v (zy)w (zy) ](-2-12)

—ﬁ k=1
Using

N N (-1)*(EN+1) nARN integer
b;jve""“"’” =2 }cz=:1 cos(n %) + 1=[ (=1)" otherwise (2.13)

N Y
it is easily seen that if we write uy(z) = Y vy, Tp(z) then
n=0

(@) L) osk<N
Un =% (@) @y k=N (2.14)

This also can be written in the following way ( which is a well know result ) :

Lemma 2.1 : Given u(z) and v(z) in Py[z] such thaot the sum of their

degrees is strictly less than 2N, then

Ju=)v@) \,1%2 = (u(z) () -

We now want to relate the Tchebyshev coefficients of a given function u (z)

and the coefficients of its Tchebyshev interpolant uy(z ):
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. Lemma 22

Up = Up + ), (Uaiv-n + UziNen) 0=n<N;
1=1 ;

Uy = 2 U21+1)N -
1=0

Proof: We have that
Tomsn(z,) = cos((RM +n) %) = cos(n ZJZ\}T—) = T.(z,)

and the lemma follows.

The previous lemma implies the following error formula for the interpola-

tion:

o (z)—vn(z) || § (2.15)

|

The first term on the right hand side is called the truncation error and the

N=1 2

l 2 (UgiNen + UziN-n )
i=1

Ld

= X uk"‘+[

k=N+1

+ [ i UN+N

k=0 i=1

second term the aliasing error; both sums can be bounded in terms of the

smoothness of the function u(z):

Lemma2.3: Givenu(z) e Ca[—l,l]. we have

_”M D,
NO(

ulz)—uy(z) | 7=
where D? = 1+2§j (1427 -1))** and ¥ = max le_
@ P D=9 ABP
Proof: Kreiss and Oliger [7].
The natural space of functions in which the Tchebyshev expansion can be

defined is the Lp([~1,1],7), that is the completion of Cw[—l,l] with respect to
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the T—nprrn, and its correspondirig Sobolev spaces with fractional indices. The

previous lemma can be extended to cover these spaces ( Quarteroni [11]).
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3. Well-posedness of the Cdntinuous Problem

.In general terms we can say that when solving a differential equation, or
some mathematical problem that is well-posed in some sense in the Tchebvyshev
norm ( or T-horm ); a spectral or pseudo-spectral method based on Tchebyshev
expansion is stable provided some special attention is paid to the higher modes
in the case of pseudo-spectral methods. If we are interested in solving hyper-
bolic equationg, the main scurce of difficulties is that hyperbolic equations are
not in general well-posed in the 7-norm. In this chapter we want to describe
some norms used in the literature to prove stability results for Tchebyshev col-

location.

For simplicity we will only consider the following scalar hyperbolic equation
u; = a(z)u, -1=z<1 (3.1)

with initial values given by: u(z,t=0) = up{x) and appropriate homogeneous
boundary conditions; where the coefficient a(z) ¢ C![—1,1]. Using Duhammel’s
principle it is easily seen that the well-posedness results we obtain for equation

(3.1) remain valid for equation (1.2), a more general class of scalar problems.

We say that equation (3.1) is well-posed, for the mixed initial-boundary
value problem, in a norm | .| when given T,> 0 there exist constants # and «

such that
ju(z.t)|| = Me* |ulz.t=0)] (3.R)

for any O< t=< T, and any ug(z) = u{z.t =0).

The natural norm for hyperbolic equations is the Lg-norm,; in fact integrat-

ing by parts we have the following result:

Proposition 3.1 : The eguation (3.1) is well posed in the Lgz-norm and we

hove the following estimate
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luz )z et Julz t=0)],

wh. = .
here o = Y _max, o, (z)

The T-norm is not a natural norm for hyperbolic equations; it is possible to
have a problem ill-posed in the 7-norm while we know that it is always well-posed

in the Ly-norm. More precisely we have the following result:

Proposition 3.2 : The equation {3.1)is not well posed in the T-norm if there

is on oulflow condition af either end, that is if either 0 (—1)< 0 or a(1)> 0.

FProof: We can restrict ourselves to consider the following problem
ug +u, =0 u(-1,)=0

with the set of initial conditions given by

0 < 6/2
w(z,t=0;6) =1 1 SRz x=< 52
0 x> 6/2

where 0< & << 1. For these initial values we have
lu(z,t=08)I'% ~ 6

and for the solution at tg;=1-48/2 we have

e tan)lf= [ B> b

Therefore

lu(z tsd) | F s i 4w
Ju(z t=0;6) |3 ™ (26)4 &0

so the equation is not well posed in the sense of the previous definition. This

same argument can be easily modified to the case of variable coefficients.
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We have a completely different situation when there is only inflow at both
ends of the interval [—1,1]; we will refer to this as Case 7 of the equation (3.1):

Proposition 3.3 : The equation (3.1) is well posed in the T-norm when there

is an inflow condition at both ends, that is,a(—=1)=0 and a (1)< 0,

Proof: We first consider the case when a(—1)> 0 and a{1)< 0: there exists a

constant 6> 0 such that
a{z)>0 for z<-14+8 and a(z)<0 for =>1-6

Multiplying both sides of equation {3.1) by u{z) and integrating over the interval

we obtain

%£u2<z) -Jf%? =S a@) u) wu) F=.

We notice first that for any ¢> 0 we have that u?(z.t) = 0 in neighborhoods of

either end point of the interval ; therefore integrating by parts we obtain

1 1
b lule O1F=% [uie) a (@) SE + % [ wie) al@) 2 i

1=

S+ 7 ute) afe) 2 o

—-1+6 (

= % max <a,,<z>)fu (z)

75}2 max go,(z)+ max E'E-L—]Hu(-’ft)]:"

—-l=z=1 14852518 1-—g®

and the proposition follows. Now if the boundary z =1 is sub-characteristic ( i.e.

a (1)=0 ) we write the equation (3.1) in the form
ug(z ,t) + (1—z)f &(z) uz(z,t) =0

and using the same method it is possible to get a similar estimate for g=%.
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Gottlieb and Orszag [4] have introduced two other type of norms that are

appropriate when addressing the stability of Tchebyshev collocation:

) 1 . 1 —
w3 = [uie) R dz | u@E = [uie) /{2 de (33a)

and
1
lufz) ) 2 = J u(z) V1-z? dx (3.3b)

We also have stability results in these norms. The following propositions can be

proved in the same way as the previous ones:

Proposition 3.4 : 7The egquafion (3.1) is well posed in the T"-norm when
outflow conditions are specified at z =1 and either inflow conditions are specified
at z=-1 ( Case Il ) or the boundary at z=-1 is subcharacteristic; o similar

result holds in the T -norm.

Proposition 3.5 : 7he equation (3.1) is well posed in the T°-norm when

outflow conditions are specified at x=1 and at x=-1 ( Case ).

Given a scalar hyperbblic equation, we will develop a suitable modification
of Tchebyshev collocation in such a way that the method obtained will be stable
in either the T-norm, the T*-norm or the T-norm depending on the boundary
conditions. We will also develop a methed which ensures stability of the different
cases of scalar problems under a common natural norm, the Ly-norm. This last
method can be easily generalized to the system of equations (1.1) with the boun-

dary conditions we have already discussed.
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4, Tchebyshev Collocation

We are now ready to describe Tchebyshev collocation when applied to a

scalar hyperbolic equation. We consider the equation

%—(z,t) = a(z) g—";(x,t) Ff(zt) (4.1a)

with initial conditions
wl(z,t=0) = ug(z). (4.1b)

For convenience we assume that the boundary conditions are homogeneous
whenever it is necessary to specify them. ( The boundary conditions can be
made homogeneous by subtracting a function which satisfies the boundary con-
ditiqns. This introduces a new forecing function in the original differential equa-
tion. ) There are three cases with different combinations of conditions at the

boundaries:
Case I a{-1)<0and a(1)>0 u(-1t)=u(1,t)=0 fort>0,

Case IT K (-1)=0and a(l)=<0 no boundary conditions, (4.1¢)

Case IIT a(-1)<0and a{1)<0 w{-1,t)=0 fort>0.

We assume that the initial value uwo(z ) satisfies the corresponding boundary con-
dition.

Given N a natural number and the Tchebyshev collocation points
z, = cos(8,) , v=0,1, - -+ N, the solution of Tchebyshev collocation, vy(zx t), is a
polynomial of degree less or equal to N uniquely defined by

duy
ot

(ut) =alz,) a—;ixj!-(mv,t) + f(zut) at v=0,1,- - N. (4.2)

In Case I the equations corresponding to v=0and v=AN are replaced by
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B‘UN

a ,
——(zg,t) =0 and (xN.t) 0; no changes are necessary in Case Il and in

dv ‘
Case Il the equation corresponding to v = N is replaced by —c;,-f’-(xN,t) = 0.

We want to describe the collocation methed in terms of operators. In order

to achieve this we first introduce two polynomials g#{z) and ¢x(z) defined by
ei(1)=1 and pHz,) =0 for v=1,2,' "N
eilz) = gn(-=) . (4.3)
We also introduce the bilinear transformation * defined on Py[z] by
*: Py[z] x Pylz] » Py[z]
S (urtv)z,) =ulz)v(z,) v=01,-"N. (4.4)

Define ay(z) as the Tchebyshev interpolation over N poeints of a(2). The method

can now be described in the following way

duy Suy
— -
Cose I' 3 : oy iz +fN>

—[EN '”N(“l--)’rfN(-l,-)](ﬂﬁ—[ﬂ-}v"ﬂn(l--)"'fN( 1~)]9"ﬁ

duy Buy
——un *

Case I praal) v (4.5)
v v

Case IIT —atf—v--_- ay * a;;’ +fN—[zzN *uy(-1,.) + fal-1, ‘)] PN

Consider a general inner product {-,-),; defined on Py[z] . Given ¥ an

N
integer less than or equal to N define By's as the orthogonal projection with
respect to the inner product (-, ), of the space Py[x] onto its subspace of

polynomials which satisfy the boundary conditions given in (4.1¢). To avoid
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: ' N
encumbering the notation, we will suppress the dependence on N of B}J‘s.

. In particular if we consider the discrete inner product introduced in

chapter &

k=1

(v (z)w (@)n = %[%u (zo)w(ze) + 3 (20)w (o) + hulan)w (zm} (4.6)

and its corresponding preojection BN‘,, then all three cases can be described in

the following common way:

81.:N

a'vN

This is the form in which Tchebyshev collocation is usually applied to practical

problems.

It is possible to define a similar numerical method using the prejection
BN,T. orthogonal with respect to the Tchebyshev inner preduct, onto the same
subspace. If we expand the solution of either numerical method in a Tchebyshev
series

ol t) = 30 up(t) Ta(z) (4.8)

n=0

then the numerical method based on the T-orthogonal projection differs from
the previous one only in the differential equation corresponding to the last
mode, vy(t) of the solution wy(z,t). In both methods the number of cperations

involved in imposing the boundary conditions is negligible compared to the

iz .t).

v
number of operations involved in computing the term a{x) * p
The second method applied to the wave equation

Bu(

- t)+ (x ty=0 (4.9a)
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w(~1,£)=0 for t>0 and wu(z,0)=wug(2), (4.9b)

or more generally to equation (4.1a) when the coefficient a(z) is a linear func-
tion of z, leads to a Galerkin type method; this will not always be true for gen-
eral o{x). We will call methods of the type (4.7) collocation methods because of
the way the advection terms are approximated. We leave open the possibility

that the boundary conditions might be impoesed in various ways,

The methods described above are not stable in general. This is not surpris-
ing since Tchebyshev collocation can be reduced to Fourier eollocation, and that
method is known to be unstable unless a smoothing operator is introduced to
control the cascade of energy inte the higher modes. Consider for example the

following problem defined in [-1,1]:

o) + (1=22 0(z) L(zt) =0, a=} (4.10a)
u(z,t=0) = ug(z) (4.10b)

where ug(z) is a 2-periodic function. Tchebyshev collocation for this problem is

exactly Fourier collocation applied to

%%(m ) — sin(8)2%1 o (cos (§) gﬁ;(ﬂ,t) =0 (4.11a)
WSt =0) = dg{cos(F)). (4.11b)

This new problem will have coefficients as smooth as we want if we pick « large
enough, but it is not stable for general a(z). Fornberg [2] has a discussion on

practical aspects of Fourier collecation for hyperbolic equations.

There are two types of smoothing operators. Kreiss and Oliger [6] suggest a
smoothing which enforces a given decay rate on the spectrum keeping the

phases of the computed higher modes. The main feature of their smoothing
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operator is that it is a projection in the sense that, if it is squared, the operator
is obtained again. Majda, McDonough and Osher [8] suggest multiplying the
higher modes by a smooth sequence of weights that decay to zero. Onée the
numerical approxﬁnation has been stabilized, the particular choice of the

smoothing operator makes no practical difference to the computed solution.

Having shown the need of smoothing we we will discuss the stability for the

following type of numerical approximation:

Juy vy
S TH Bioyns Caopns (an” el Tw) (4.12a)

and initial value given by

Buoyws Capyns (un(z £=0)) (4.12b)

where C(lﬂ)ﬁ.s is the orthogonal prejection with respect to the inner preduct
(+,')s of the space Py[z] onto the space of Pu)nlz] and uy(z.£=0) is the
Tchebyshev interpolation over N points of w(z,t=0) = ug(z)}. (7 could depend

on N subject to the constraint that 0< y= o< L for all N.)

The consistency of these numerical methods follows from the censistency
of Tchebyshev collocation and from the algebraic equivalence of the different
norms. Since the solution of the differential equation satisfies the boundary

conditions, it is possible te prove consistency.

We are going to consider three different inner products corresponding to
the norms we have already considered, that is the T-norm, the 7*-norm and the

Lg-norm. In this context we are going to prove the following stability result:
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Theorem: Iet I.1ls be @ norm in which equation (4.1a) with boundary con-
ditions defined in (4.1c) is stable for the initial value problem. That is for any

To> O there exist constants M and o such that

t
lulz t)lls = M e lu(zt=0)]s +M_0f9"‘“") I7xC s dr

Jor any 0<t< To. Then the numerical approrimation to the equation (4.1) and

its boundary conditions defined in equation (4.12) satisfies the following esti-

male

low(z ) lls = [ # e + K (xM)T (1)) ) [un(z £=0) ],

t
+ M {e“(‘"*’ 1D s dr

where K is o constant which depends on ay(z). For sufficiently roapid decay of
the coefficients of the Tchebyshev expansion of ay(z) 7+q is positive, In these
cases the estimate of the numerical solulion converges to the corresponding esti-

mate of the differential equation as N>,

We will find the exact form of the operators B(l_,,)N_s . C(l_,,)N's and the
necessary bounds for the proof in the following chapters. We will also write

down estimates of the different constants involved in the theorem.

A sketch of the proof will be useful to understand what sort of estimates we
are looking fér. We first multiply both sides of equation (4.12a) and integrate
with the appropriate weight to get:

‘a'UN

_ a‘UN
YN e ) T

vy, Baopyws Caopns (an * rra In)
8

% owlf =

Since the initial data satisfy the boundary conditions it follows that the solution
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éatisﬁes them for all times. Therefore

d 2 _ 6'UN a’UN
% 7y H?N 12 =|vx. Cupyms on * - (ay * Tz ) i
duy duy duy
+ , * -ay —— Oy —— . .
vy, (ay Iz ) —ay 5z ]+ UN e . +['U.N f.N]s

The first term of the right hand side is zero since the operator C(1-7)N.s is
orthogonal; the second term can be bounded in terms of the smoothness of
a(z); the bound for the last two terms corresponds to the usual estimate for

the continuous problem.
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H. Some Useful Estimates

- We know that the operator of differentiation D = 56; is unbounded over the

space of once differentiable functions; the same operator restricted to Py[z] is

bounded but the constant involved depends on N. The distance between colloca-
tion points is 0(1ﬁ) in the interior of the interval [—1,1] and O( ;—2) near the end
peints; it is natural to expect the norm of the operator D to be proportional to
the inverse of the minimum distance between collocation points: that is, the
norm of D should increase like N as N-» =, In the following lemma we show this
result using the T-norm. It is possible to prove a similar result using the Lg-

norm although we do not include this proof ( which involves some manipulation

of Legendre polynomials).

‘Lemma 5.1: For any v(z) in Py[z], we have
| 22y 3= €1 N u(2)]3

where C, is a positive constant independent of N.

N
Proof: Givenw(z) = ) v, T,{z), we have that

n=0

O os(e)) = 3 m v, SDOD

oz " sin()

n=0

It is easy to check that

3 n
M: 7n,lc COS(k'lS)
]

sin(9) 2

where

k+n odd and 2>0
n odd and k=0
k +n even

Tne =

(o3 ]
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This result is just a different for'ni of the recursion formula (R.7) for the deriva-

tives of Tchebyshev polynomials. It follows that

Bosy =5
Py cos —k=0{ =

n +1

T Un Tnk } Tk(z) .

Now we are ready to bound the norm of D{v] :

2 2
Bv N-1 N N
Iz @ F=Yen] ¥ nwul +n) 3 non
) k=1 =i +1 n=1
7 +k odd n odd

ntk odd

The second factor can be estimated

N-1 N-1 N-1 N 1
S =3, $onRPlak Y Y, nRi~ =N as N » o,
k=0 n=k+1 k=0 | n=k+1 8
n+k odd

Therefore there exists a constant C; = % such that

N

| =) 5= ¢ N'*{ v? .g—]s Cy N* v (@) I

n=1

which is the statement of this lemma.

Remarks: (i) Given £ > 0 then the constant C, can be taken to be equal to

% + e for N large enough (depending on epsilon).

N
(#) The result of the lemma is sharp: consider v(z) = ), T,(z). We have
n=1

that

; N N-1 N
12y a=n] $ n2l+en S| P nl nEEN a5 Now,
oz ° =1 k=1 | n=k+1 g 15

n
n odd n+k odd
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and

lv(z)1f= 5N

therefore

1208,

— < — N*.
lu(z)lIF = 15

o7,
The sharpness of this result can also be obtained using v(z) = a—;(m), which is

zero at all interior collocation points and equal to N® at the end points; this

function is the natural guess for maximizing the above quotient.

We are ready now for the main lemma. We want to find a bound for the
aliasing error using the rapid decay of the Tchebyshev coefficients of a(z) and
assuming that the last YN coefficients of v(z) are zero; in this way the aliasing

error only involves coefficients of a(z) with index greater than yN.

(1 N
lemma 5.2 : For any v (z) = f v Tn(z) we have that
n=0

Hew)(z)-a(z)v(z)|F= Co(1-7IN [ax(z) | F [viz)]F

N N N
where a(z) = ), a, Tp(z) = i ap Tn(Z) + Y o, Tn(z) =ai(z) + az(z) and C;
n=0 n=0 n>yN

s a constant independent of N.

Proof: For convenience introduce

Ruv] (z) = (a%)(z) —alz)u(z).

From the relation cos(nd) cos(m) = ¥cos({n-m M) + ¥cos{(n+m)9), it follows

- that

Tn(x)~Tm(z) = %Tln-m[(x) + %Tn-ﬂn(x)l
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and therefore

Tnim(z) mn+m=N

Tn(z)* Tm(z) = “T\n-mi(z) +% TzN—(n+m)(x) n+m>N-

The norm of the aliasing error is

N
IRIvINZF=11 Y 2nvm (B Ton-nim)(®) = % Tnsm(z) ) |13
., m =0
n+m>N
1 N 0, 1 N 2
= Z ” Z oy U, TZN—(n+m)(x) ”T + Z ” 20 Qpn Uy Tn+m(x) ”T
n,m =0 n,m=
n+m>N n+m> N

Using that (7x(z),Ti(z))r = 0if k#1 and = g— when k=I>0, and Cauchy's ine-

quality, we obtain

1\)|=!

2
||Ra[v]n%=}é‘2§’"{ g akm}

i=N+1 | k=l-(1—)N

SR ITIERS

i=N+1 | k=l-(1-9)N k=1~-N

- LL:M[ & o g_] [‘l}’_j’j”ukzg]s UV o @) 1$ w13

m k>yN

which is the result of this lemma.
Remarks: (i) C, can be taken equal to %—

(i) 7 can depend on N, as long as 0< y< y,< 1 ag N2 o,

(#4i) The  result of the lemma is sharp. To see this, consider

Ny=(1—=)N

a(z)=v(z)= Y  T,(z).Wecompute the aliasing error:
n=1

BNy
|Rlw] @) F=% 5 (N+N—1+1)? T g %{ = (1INF = = (V)
l=N+1

and the norm of a(z)



-27 -
la(@)1f = lv(=)f= Z- (1N .

Hence

IRlv] ()15 _Jj_[ (1=9)° = 5° ]< (12
la(z) % [v(z)IF ~ 8m | (1= |~ V" VBn

for N » = ,
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6. BEquivalence of the Different Norms

We know that any two norms, ||.{; and |.[2 on a finite dimensional vector
space V, are equivalent in the sense that there exist two positive constants C

and D such that fof any v £ V the following inequalities hold

Cluly= lvlle= D vy, (6.1)

If we restrict any of the norms introduced in previous chapters and the 7-
norm to the space Py[z ] then the constants € and D, involved in the definition
of equivalence for these norms, depend on N. Since norms are not equivalent to
each other over the space C[~1,1], we expect a deterioration of the constants
involved as N, the dimension of the space, tends to infinity. We will show that
this deterioration is at most algebraic for the different cases; we will also write
dowﬁ the coefficients of the corresponding inner products when the Tchebyshev

polynomials are used as a basis for the space Py[z].

N N
Specifically, given v (z) = 3} v, T,(z) and w(z) = ), w, Tn(z)then

n=0 m =0
‘ 1
(v{z)w(z)) = f'v(x) w(x)dr =V A2 W (6.2)
4
where ¥ = (vo,vy, -~ - wn), W = (wewy, -, wy) and A% = [4%] has the following

coefficients:

1 ™
A% = [ Ti(z) Tj(z) dz = [ cos(i®) cos(j) sin(¥) d v
21 0

!
={ TGaF | TP
0 | . i+j odd - (8.3)

i+j even

We will need this matrix when we implement the boundary conditions.
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For the equivalence of the Lé-norm and the T-norm we have the following
result:

Lemma 8.1 : Given v(x)in Py[z], the following inequalities hold

Cs

& v lf=llvld< lvif

where Cgis o constant which does not depend on N.

Proof: The second inequality follows immediately from the definition of each
norm. In order to prove the first inequality we introduce two bases for Pylz],

each one orthonormal in a different norm.

Pa(z) = (n+4)% P, (2)

~

TN(z) = Cn Tﬂ(x)

where P,(z) is the n'*-Legendre polynomial and 7,(z) is the n**-Tchebyshev

polynomial. We introduce now the matrix corresponding to the change of basis:

Using the generating function for the Legendre polynomials

(1 —2scos®+s?)#= Y s™ P,(cosd)

m=0

it is possible to obtain an analytic formula for the coeflicients hwm,n ( Whittaker

and Watson [13]):

~ drn-gm (n+%)}§ (zm_l)” [Z(R—m)“l]” n=0,n-2m=0

h, _ =2
noRm Cn-2m m12™  (n-m) 2"

!

hn_gm_i_,; =0 n=0,n-2m-1=0
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here

Ty
B =% it k=0

and m!=m (m-2)(m—-4) -+ 531 with the usual convention (-1)'!=1. For

convenience we also define

N -
Now given v(z)= Y, v, P,(z) we can compute the different norms and
n =0

reduce the lemma to an algebraic problem. For the Ly,-norm we have

1
||v||§=[v2<m>dm= 2 v, v mfP () Pp(z) dz

n,m =0

2 Up Uy Bp sz—V‘V

n.m=0 n=
where V* = (vovy, . ..,uy); for the Tchebyshev norm,
X o ~ dz
”U H% f’U \/——ﬁé = n,§=g 'Un Um £ Tm(x) Tm(x) \/{:F‘
N ~ ~r
= 2 Un""mhic,nhk,m"—"WHtHV
n,m k=0

where # is the N+1 square matrix with entries i:hm,for O=sn,m=N. Thus we

tan compute

(o ¥]
X — = max = Amao{HH).
viz)20 |v |5 V#o mex( 1 H)

vl VRV ~
Vv

where Apn.z(H H) is the maximum eigenvalue of #H To obtain the result in the

lemma we must now find an upper bound for this eigenvalue. We know that
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Amex (FE) < |EEH| < | B | H]

where | | is any matrix norm induced by a vector norm. In particular if we con-

sider the maximum vector norm we cbtain

o=n=N|'p t=n=N| 2

Amax (Fz‘f;) < max [2 hwm.n} max [}: hr:;m} .

That is, Apax is bounded by the product of the maximum row sum and the max-
imum column sum of A ( No absolute values are necessary since h:,”m = 0 for

all n,m. )

First we estimate the maximurm celumn sum. We have
P, (1) = (n+%)% and Tn(1) = cp

therefore

(n+%)’é = (CI—CD) ho.n +c, E hm.n

m=0

and hence

3 Frn = NIt + (2-1) R

Using Stirling’s asymptotic formula for the factorial
n! = (2nn )k (ne)" (1+0(;1L-v))

we obtain

N~ [ en -1 ® _ 1 1.
Progn = VA (gn.;.%)}‘{ n! 2" } T (r (2n+R)® (1+0(n))

-and h}zn” =0for n=0.
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Hence we obtain a bound for the growth of the maximum column sum:
N 1
max $ A = N/ (VB (1+0(L)

Now we estimate the maximum row sum. First we notice that the
coefficients of the matrix H when appropriately weighted decrease in size as n

and m simultaneously increase;

A"

hn+1—2m.‘n+1 Cn+1—2m/a!n+1ﬂ--2m
T

hn -2m.n Cn—z2m /d'n —2m

_ (32 2(n-m)+1 _ [n+32)F 2nat _
(n+)t 2(n-m+1)  |n+lR| 2n+2

therefore

d l/C 1 N Y
max T e h .
O=nes N ZQ dQ/C G I’TLZ:U 0m

Using again the asymptotic behaviour of hNO.m for large m , we obtain

FanY

N+BY% (1+0¢ N))
thus

max, 3 = N/ 2 (V) (1+0(4))
and so finally,

Amax (BH) = (N+4) (1+0(55)

and the desired result follows,
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Remarks: (i) Given & > 0, the constant Cz can be taken equal to 1—& for N
large enough.

(i1) We were not able to show the first inequality of the lemma to be sharp.
In Table 1 we show the result of the numerical calculation corresponding to the
maximum eigenvalue of }?FI for different values of N, Instead of generating Fit !:'
we introdtice the matrix Z = (gfﬁt)_l whoge coefficients are related to the

coefficients of 4% by :

2]

Ay g =0y C5 14«;2.1’

The eigenvalues were computed using the inverse power method using Ay, (A)=0
as initial guess, The numerical computations suggest the following asymptotic

result:
ARE) = 25 L=
Amax(HH) = 0863 N ( 1+ ~ +o( N)) as N-w
which has to be compared with the bound obtained in the lemma:
A 1
Amax (H H) < N (2+0(5)) -

We now show a result equivalent to lemma (6.1) for the T*-norm and for the

T%norm,

We first compute the matrix AT = :Aﬂ] corresponding to the inner product

associated to the 7*-norm. From the definition of the coefficients

1
A%y = [ Ta) Ti(e) (1-2) \,f_f? (6.4)

we obtain



-3 -

1 =% 0 . 0]
% % K 0
e (69
.0 K %
0o . 0 ¥ 4

Using this matrix we can prove the following result:

Lemma 6.2 : Given v(z)in Py[z], the following inequalities hold

T lvlF= Jvlg= 2 vl

where (415 a constant which does not depend on N.

Proof: The second inequality follows from the definition of each norm. In

order to prove this lemma we have te compute

lv(m)M _ vt AT v
T Te@IE T ey vy

where Ap;n(B) is the minimum eigenvalue of the following symmetric matrix

1 2L 0 . 0
22 1 %0
0 - 1 -
5= '}é | '}é |
. 0 =% 1 %
0 . 0 % 1]

If we introduce the diagonal matrix T'=[{; ;] defined by

_ NZ/2 n=0
LELI n#0
then
Amin( TBT)
Amin(B):z rmm

z
l?\max(T)
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Using standard methods for banded matrix with constant coefficients along

each diagonal it is easy to prove that

- B .
Amin{ TBT) = 1 — cos( BN+3)'
from which it follows that
2
7
Amin(B) >, BIE

which shows the result of this lemmas.
. Remarks: (i) The estimate is sharp.

(i) Given £ > 0, the constant C, can be taken equal to 72/8 — & for N large
enough.
Finally we obtain a similar result for the 7%-norm. Using again the Tche-

byshev polynomials as a basis for Py[z] we can find AT = [Af_?]. the matrix of

the inner product corresponding to the T%-norm :

10 =% 0
0 -¥ 0 -4 .
| ¥ 0 % 0 -¥ 0 .
AW-%O—%O ¥ o0 <% o |. (6.8)
X 0 % 0
0 0 Y 0 -¥

We have a similar result for the equivalence of the 7%-norm and the T-norm:

lemma 8.3: Given v(z) in Py[z], the following inequalities hold

Cs

= lvlf= Jvlifs Jvif

where C5 is a constunt which does not depend on N,
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Proof: We notice that Tchebyshev polynomials of even degree are 70-
orthogonal to Tchebyshev polynomials of odd degree. If we permute rows and
columns putting first the coefficients corresponding to odd polynomials followed
by the coefficients corresponding to even polynomials then the lemma is
reduced to finding the minimum eigenvalues of two tridiagonal matrices with
similar, and almost constant, coefficients, The proof follows as in the previous

lemma.,
Remarks: (i) The estimate is sharp.

(i1} Given £ > 0, the constant C5 can be taken equal to 2/ — & for N large

enough.
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7. Projection Operators

We want now fo describe the projection operators CM,S and BM‘S in the
various cases corresponding to different inner products. The first operator pro-
jects PN[Q:] onto Py[z] ( where ¥< N ) and in this way can be considered a chop-
ping or smootlﬁng operator, The second operator projects Py[z] onto the sub-

space of polynomials which satisfy the boundary conditions given in (4.1c¢).

We start with CH.23 we know that the Legendre polynomials form an Ls-
orthogonal basis of Py[z]; this implies that the Lz-orthogonal projection of u (z)
in Py[z ] onto the subspace Py[z ]| amounts to finding the Legendre expansion of
U (x) and then eliminating the last N—# terms. We want to determine the matrix
corresponding to this projection when the Tchebyshev polynomials are taken.as
a basis for Py[z]. Since Py[z]is the set of all polynomials of degree less than or
equal to ¥, the projection does not modify the first # terms of the Tchebyshev
expansion of u(z). The matrix that transforms Tchebyshev expansions to

Legendre expansions was already introduced in lemmma 6.1 : if we write
Pr(z) = 3 hpp Tnlz) . (7.1)

it follows from the proof of that lemma that

(Bm = [2(n—-m)—-111
ml 2™  (n—-m)I "™

hn—zm..n =2 dn-2m m=0, n—2m=0, (7.26.)

hyem-1n=0 m=0, n-8m-120 and h,,=0 n>m. (7.2b)

Introduce H7! = [h, L], the inverse of the matrix H. Now we can find the projec-

tion operator Cy 5

Cus (1] = Cul & it Pa 1= 32 by £y (7.50)

n
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T, form>4M,

and
Cu2lTnl=T, form=M. (7.3b)

The matrix of this projection operator is a full matrix, therefore the
number of operations involved in applying this operator is (N-#)x M. This can
be a costly operation depending on the size of N—#M. Our final stability result
includes an estimate of N—¥ in terms of the smoothness of the coefficients of
the equation. In practice the actual size of this difference is determined empiri-
cally and for most problems can be taken to be equal! to a small integer. We
want to point out that for cur proof there is an actual need for this projection

since

I Cuz - Curllz = O(1); (7.4)
if, on the other hand
I Cuz — Curlle = Oy,
with a> 2 were to hold, then there would be no need to use CH_g instead of CM,T

(which is much simpler to apply).

We now want to describe the boundary condition operator BM_E. There are
two cases for this operator: (i) the solution should vanish at one end of the

interval, say at z=-1, and (i) the solution should vanish at both ends. In the

first case the operator BM.E can be written in the following way:

Bua [ul(z) = u(z) - (wly).e2w))e (=) (7.5)
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where the pblynomial ¢2(z) £ Py .z] is of unity Ly-norm, and Lg-orthogonal to

N
any polynomial which vanishes at z=-1. If we write u(z) = 3 w, T,(z) and

n=0
introduce Ut = (uputy, - uy) and ¥¥=(1,—-1, - ,+1), then it follows that
u(-1) = U* ¥_ . From the definition of By it follows that
(w(x)pP (2 (FLE2)= (U AR B2) (VL ER)Y =Vt U (7.6)

where A® is the matrix of the Lo-inner product and &2 is the vector containing
the Tchebyshev coefficients of ¢?{z). The previous equation has to hold for any

u {x); hence,
(FEB2)Y(APB2Y=V_, (7.7)

which determines 2 up to a normalization constant. In this case the final form

of the operator is:

Byz [ul(z) = w(z) - u(~1) (=) (7.8)

where %(z) = p2(z) /¢2(~1).
If the boundary condition were imposed at the other end of the interval,

that is z =1, from the symmetry of the problem it follows that

Bus [u](z) = u(z) —u( 1) g¥z) (7.9)

where B%(z) = g3(-=).
Finally if the boundary conditions were imposed at both ends, it is easy to

see that the operator can be written as

Buz [ul@) = u(z) ~u( 1) f.(z) —u(-1) g5 (z) (7.10a)

where



-40 -

Bi(z) — pH(~1) ¥(=)
1 - g2(-1) pE(1)

BE.+(z) = and  B§(z) =pE(-=). (7.10D)

This completes the discussion of the boundary condition operator L;-orthogonal

for scalar equations.

1t is algo possible te find the corresponding smeothing projection and boun-
dary condition operator for the system of equations (1.1a) and its boundary
conditions defined by (1.1¢)-(1.1g) . These projections have to be orthogonal

with respect to the natural extension of the Lz-norm to vecltors consisting of

functions; that is if w(z) and u(z ) belong to { C[ —1,1] )" then
1
(ufz),ulz))e= £y_‘(x)y_(x) dz . (7.11)

For simplicity we assume the boundary values Gi {t) to be zero for all £=0 (it is
always possible to transform the system (1.1a) into this form by a smooth affine

transformation).

Using this inner product, the smoothing projection for meapping a vector of
polynomials u(z) ¢ (Pylz])™ ‘onto {Py[z])” is obtained by simply applying the
smoothing operator we have already found for the scalar probiem to each of the
components of u(x).

We now want to discuss the boundary condition operator: the polynomial
wu(z) needs 7x(#M+1) coeflicients to be determined; if S- is a r_x(¥—r.) matrix
and S, is a X (M—r,) matrix then the sﬁbspace of vectors that satisfy the
boundary conditions is of codimension (r-+r)x(#+1). From this it is easily
seen that the evaluation of this projection involves O #x(r,+r_)) operations.

We describe now the operators CH,T and BH,, corresponding to the 7-norm.

In this case it is clear that
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q
Curlullz) = Y up Tni(z). (7.18)

m =0

We will use the T-norm only for the pure outflow condition in which case the

operator BM'T reduces to the identity operator.

For the T* and 7° norms the computation of the projection operators is
simpler than in the Lz case. This is due to the fact that the matrices

corresponding to the remaining inner products are banded matrices.

Recall that the matrix corresponding to the 7* inner product is a tridiago-

nal matrix. This implies that:

(Tw(z),Tn(z)) =0 for n=M+2 and m= M, (7.13)

therefore

CMT'*[U'](I) = CM.TJl. ﬁ Up Tn | = L_I_O Um, Tm(x) + Uy CH?’*[ TM+1](I)('?-14)

n=0
where CM.T* [Tyei] {2) must be determined. 1f we write

¥ .
CH.T*[ Tusr)(2) = ), e Tm(z), then since the projection is T*-orthogonal, it fol-
m =0

lows that
' i + 2 7T*
(CuptTunl T = 3 o (T . B ) = 2 om Al (7.15)
m=0 m =0

= (Tge1, D) e = “J:;:-l,z for i< M.
This equation can be written as
AT .= RT, (7.18)

ok .
where C, = (ed.cf,  cg)t and BT =(agi11, Cysra *, Ggerg). In this way
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finding the smoothing operator has been reduced to sclving a tridiagonal linear
system of equations.

As before, we write the boundary condition operator in the following way
B, ;+[ul(z) =ulz) —u(-1) g°(z) (7.17)

where f*(z) has to be T*-orthogonal te any polynomial in Py[z] which vanishes

X !
at z=—1, If we write *(z) = 3 b T, () and introduce 8, = (b¢, - ,bg) then
m =0

the coeflicients of 8*(z) are determined by
+ t 4
AT By =(BiAT By) ¥, (7.18)
To obtain the operators for the T%norm recall that
(T, Tm)p0=0 for l+modd or |l-m >2. (7.19)

This implies that the projection operator can be written as

CM.TO[’U‘](Z) = f: ume."l" Ug+1 CM'TD[TMH](x) T Uysz CM,TO[ T+2]{z).(7.20)

m=0

The coeflicients of the last two polynomials can be found by seolving tridiagonal

systems of linear equations.

In a similar way the boundary condition operator can be written as

By rolul(®) = u(z) ~w(=1) fo%=z) —u(1) g¥(=), (7.21)

where BX(-1)=0,8%1)=1 and, from the symmetry of the problem,
B(x) = BO(=z).

0
If we introduce ﬁi, the vectors of the Tchebyshev coefficients of 82({z), then

these coefficients are determined by:
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0 c ¢ C 0
AT B = (B AT B Y_+ (B, AT B V. (7.22a)
0 0 0 0
AT BI=(BIAT B Yo+ (B2AT B) Y, (7.22b)
where ¥ = (1,1, -+ ,1). As usual this system of equations can be reduced to tri-

diagonal system of linear equations.
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8.1 Stability Results in the Z;-Norm

‘We are now ready to prove our stability theorems. Consider the following

scalar one dimensional hyperbolic equation:

%—(z,t} =g(z) %{x,t) +b(zt)ulzt) + f(z,t) (B.1a)

with appropriate homogeneous boundary conditions and initial value given by
u(z,0)=g(z). (8.1b}

Introduce N, the number of collocation points, and M=(l1—y)N where
0< y= yp< 1. Given ap(z), the Tchebyshev interpolation of a(z) in Pylz ], define
ay(z) and ay¢(x) in the following way:

N
ay(z) = ZO Cxn Tn(z)
n=

4

N
= Gxn Tolz) + 2 Eym Tn(x) = aN.l(m) + aN.E(x) ' (8.2)
n=0 n>yN

=

in a similar way define by(z ,t), by (2 .t), byol(z 1), fa(z.t) and gylz).

We define the g-—stabilized Tchebyshev collocation method, when applied

to equation (B.1), as follows:

6?}N
*
an(z) p

—xz.t) = By Cps +by(z ) ¥ un(z t) + Fulz t) (8.32)

with initial values given by
un(z t=0) = By, Cy, [Q’Jv(m) } (8.3b)

and where s denotes any of the previously considered inner products.

We are ready now for our stability theorems:
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Theorem 8.1 : The L,-stabilized Tchebyshev collocation method applied to

equation (8.1) satisfies the following estimate :

L ont)la = [max bu(z ) ~ % Ta) ]”UN('-t)Hz

+ [ Co [(L=IND® lleyellr + Col(1—y)N] ilb.N.z('-t)”T] lvn(£) 2

+ 17w E) 2

where Cg and C; are constants which do not depend on either N or 7.

Praof: We notice that wy(z ,£), the solution of the numerical approximation

to equation (B.1), satisfies
un(z £) = Buz Cua [un(z.t) ] (8.4)
for all £= 0. This implies that

61)N _
. _E)t_("t) ]2 =

u(£) a * a) + by ) P it) + Fnlet) | (85)

Now we are going to estimate each of the terms in the right hand side of this

equation. We start with the last one:

{1) Schwartz’'s inequality implies
| (unCt) FaCtDe | = lunC )z 1780 e (8.8)

(1) Using Schwartz’s inequality it follows that
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[vm'.tﬁ ) ) ), =
[oC6) onCtyunC) |, + [one)  ouC) 2 o) = batyuntet) ]
< [n(t) o) un() |, + 1oy8) ¥ wy(2) = baC£)wn() T2 lun(t) e
From lemma (5.2) we have that

lon(-2) * vy(t) — byt vy(t) g = CE [{1=7)NTE |ogoCt) 7 lunl )iz

andiusin'g now the equivalence between the Lg-norm and the 7-norm we obtain

[unC)  Batt) ontt) ), (8.7)

%
[(L=)NTE [onaCt) 7 funlt) e .

= (w6 Bt yun) ], + [ %:‘

(i4i) We find the bound corresponding to the higher order term of the

equation; using again Schwartz’s inequality we obtain

un(-t) , ay* aﬂ” ] (8.8)
= [ on(t) oy T2 |+ o) ane ) () = aw Sot)

2
< | unt8) oy FoE) |+ law® Taat) = 22 ) |2 [ow) e

Using the results from lemmas (6.1), (5.2) and (5.1) we obtain
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duy Bu 6v v
lan® Z2) = aw =2 . e

——(8)lz=< lan* )7 (8.9)

< C¥ [(1-7)VT¥ |anallr | 5 BWN Ct)lir= [Ce CYAL(L—7NI Jlanzllr lun(t) ‘7

[ %
= | A ‘ [(L=)NT Nowelr lun(£) s
3

Integrating by parts we obtain

() S t)] (0. Pt | . (8.10)
From equations (8.8)-(8.10) it follows that
. 6”!‘*'(.1)] (8.11)
Ox o
< <% uaCt), 2y (-t)] ] G (W fanalr o))
= N ' dz N\ 2 l CS N2l T N\ 2

(tv) Finally we notice that given any two functions w(z) and c¢(z) defined

n [—1,1] the definition of the L,-norm implies that
. 2 /
(v ceru@les [ max o)} 1wz, (8.12)

The theorem then follows from equations (8.5), {8.6), (8.7), (8.11) and (B.12).

Femarks: (i) A similar proof can be used to show that the ZLy-stabilized
Tchebyshev collocation applied to system (1.1) produces a stable numerical
approximation. The first step in the proof is to find a smooth transformation
which diagonalizes the matrix A(m,t) for all z and ¢, this reduces the problem

to a scalar problem for which we have all the necessary estimates.
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(#1) Given £ >0 then Cg can be taken greater than 51; +g and Cy can be
taken greater than ﬁ_—- +& for N large enough ( depending on & ).

{(i41) The theorem is a stability result assuming that e (') and b(',t) belong

to Sobolev spaces with high enough indices; that is, we assume that if we expand

these functions in Tchebyshev series

alz) =S & T.(z) (8.13a)
n=0

b(zh)= Y bnlt) Tnlz), (8.13b)
m =0

then there exist constants M, and M, = M, (t) such that for n,m > 0 the follow-
ing inequalities hold:

e ana B | = -2—%"—51)— (8.14)

n?P

| & | =

wherep ,9 > % . Using the result from lemma (2.3) we also obtain that

R M, R Myt

la, | < == and |bp(t) |=< ——°5(—?- (8.15)
n m
- where M, < M, (1+2D,). Using Schwartz’s inequality it follows that
laxel <ﬂM{ $ o | s Tl (8.162)
N, T = n _—r i
¢ ¢ n>yN [7N]p%
where K, < '\/B:E%l— . In a similar way we obtain
, m My(t) Kq

lon2Ct)lrs ——=z— (8.16b)

[yN]? %
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We now rewrite the previous theorem showing that the smoother the func-
tions ay(z) and by(x.t) are,the less smoothing is necessary in the numerical

procedure in order to guarantee numerical stability:

Corollary: The L,-stabilized Tchebyshev collocation method applied to

equation (8.1) satisfies the following estimate :

da,;,,

by(zt) =% ——(z)

L funtt) e {n;lax ] w61l

(1-NP?

+ [ Ce TTJWG.KP [’}IN]F“%

+ Oy iy (D), H—N—“]’-qﬂ,ﬁl] lonC-2) o + 1 7n(-8) e

If we takey = N5, where a > 0 and 0 < s <1 are constants independent of N,

then for

3 1
D> 1_s+}éa 2 and g > = +1%= 3,2

this estimate convef‘ges to the corresponding estimate for equation {B.1) as

Noow

For comparison we now write a particular case of a similar theorem proved
by Kreiss and Oliger 7] in the case of Fourier collocation ( the original theorem

allows a more general type of smoothing operator );

Theorem: 7he solution of stabilized Fourier collocalion applied to equation

(8. 1a) with periodic boundary conditions satisfies the following estimate

day 3My NP
dz (Rm)yP~t LyN P

d
lwwle = [orggsxl ba(z £) - % luwlle + 175 e,
If » > 2 then the estimate of this theorem converges to the corresponding esti-

mate for the conlinuous problem ag N- « |
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8.2 Stability Results in the Remaining Norms
We have similar stability theorems for the remaining norms. In all of these

cases there is no need to use the smoothness of b(z.t) in order to get an esti-

mate for the lower order term b(x,t)* vy(z) of the numerical approximation

(8.3a).
Given b (z) in Py[z ] we define the following bilinear form
Qupslvwl(z) = (wiz)b(z)*w(z))s, (8.17)

where v(x) and w(z) are in Py[z] ( M< N ) and (') is any of the T-related
inner products. The following lemma provides such estimate for the remaining

nermis:

l=mma B.2 : The following inequalifies hold:

Qs s[v w](z) = [_g}ggl b(z))| ] lv(@) ls lw@)ls

M<N=1 fors =T
where { M< N-2 fors =T,
M<N-3 fors =T7°

Proof: These estimates are a direct consequence of lemma (2.1) :

1

@@)2 (@) wz)r = [v(=) o) wE) N

Yo (20)b (zoyw (zo) + 3 v (2n)b (2 )0 (25) + Bv (za)b () (zx)

‘n=1

w2

—lsr=s

< [ max [b(z)| ] (@) 7 (=)

The results for the 7" -norm and the T°-norm follow in a similar way.
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Using the results from Lemmas (5.1), (6.2) and {(8.2), and the technique
introduced in the proof of theorem (B.1), it is possible to obtain the following

stability theorem for the T-norm:

Theorem 8.3 : The T-stubilized Tchebyshev collocation applied to Case [ of
equation (8.1) (that is with inflow conditions af both z=—1 and z=1) satisfies

the following estimate ;

‘:—t lonCit) 7= {Cs [(1=y)N]?% HGN.zllT] lunCE) 7+ 1 FnCE)r

. day -o(x)z
+ t) - % —— + "L .
Jax| bv(z. ) dz %) _1+a§22§1_%[ Tzt | | Ity

where é; > 0 depends on the behaviour of a(x) at the boundaries.
If we again assume that there exists a constant ¥; such that that the Tche-
byshev coefficients of o (z) satisfy

R My

&= S5

, (8.18)

forn > 0, we obtain the result ;

Corollary: The following estimate holds :

e o) e = Comttay UL o) r + 170001

day —a(z)z
- b
) @A oaled) ~k ) v max, T | | et

If we takey = aa N°°, where a > 0 and 0= s <1 are constants independent of N,

then f a-r
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P> —1%+}§>3

this estimate converges to the corresponding estimate for equation (8.1) as
N-w

Using the results from Lemmas (5.1), (5.2), (6.2) and (B.2) it is possible to
obtain a corresponding stability theorem for the 7'-norm :

Theorem B.4 : The T*-stabilized Tchebyshev collocation applied to Case Il of
equation (8.1) (thot is with inflow condition at x=-1 ond outflow condition ut

x=1) sutisfies the following estimate :

L oyt o = [ 250 ()N T2 g nT] unC) e + 17w o

dU«N a(x)
+ b £ + ) -k ,
k| wlat) - <>] m[l__] (231 7

where é, > 0 depends on the behaviour of ¢ (z) at the boundaries,

Corollary. The following estimate holds :

a7 D) e = Co sttty DL o)) o + 17000 e

+ max bylz,t) -}é~———~——(m) +

f'—ﬁﬂ] lon( )] r, .

max P
“1+§,80a1-6| 1 —z”

If wetakey = a N™°, where a > 0 and 0 < s <1 are constants independent of N,
then for

= 4,

P> :?éi-+%

this estimate converges to the corresponding estimate for equation (B.1) as



-53 -
N-soo |

Finally using the results from Lemmas (5.1), {5.2), (6.3) and (B.2) it is possi-
ble to obtain the following stability theorem for the T%-norm :
Theorem B.6 : The T%-stabilized Tchebyshev collocation applied to Case Il of

equation (8.1) (that is with outflow condition atf both x=-1 and x=1) satisfies

the following estimate ;

L Yop(6) g0 % [ 228 ()N naN.auT} fonC6) o + 1738 bpo

dtLN

+ max, bylz, t)—}ﬁ——-—() +

1—x?

max
—lt§,= 2= 1-5,

“‘“’)'”] lon(t) e

where 6, > 0 depends on the behaviour of oz ) af the boundaries,

Corollary: The following estimate holds :

o JuwCit) o= CoRM Ky % lunCtdgo + I FwCE) ]| o

1—-x2

+ max bylz,t) — % () fonC ) o -

—1+6 =zs1-6;

If we take ¥y = a N°, where o> 0 and 0= s <1 are constants independent

of N, then for

7R
P > s =4,
this estimate converges to the corresponding estimate for equation (B.1) as

Naow
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Maximum eigenvalues of H'H

N Amax Amax /(N+%)
4 41,8633 1.0807
e 8.2801 0.9741
16 15.162 0.89189
38 28.963 0.8912
64 56.591 0.8774
128 111.86 0.87056
266 222.46 0.8673

Table 1
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Part I1:

Interpolation for Surfaces with 1-D Discontinuities
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1. Introduction

In this part we discuss an interpolation problem that arises in the context
of numerically resolving shock profiles in two space dimensions. The problem,
described in simple terms, is how to accurately reconstruct a function defined
on the plane which is known only on a finite number of appropriately chosen
parallel lines, or cross sections. We assume that on each line we know the func-
tion exactly, in practical terms we mean that the function is fully resolved on
each line by a sufficiently refined mesh. If the function being considered is
smooth, the problem can be solved in many standard ways. On the other hand,
we are interested in solving the problem when the function has structure cn a
scale» which is much smaller than the average distance between these parallel
lines. The interpolation problem with this last feature cannot be solved for gen-
eral functions; it is necessary to have information about the specific structure

of the function we want to reconstruct.

We know that sol»utions}of singular paraboelic equations can have sharp gra-
dients confined to one-dimensional regions, usualiy called shocks. This type of
function can be reconstructed from a finite number of its cross sections. The
idea of the method is to locate these regions and then perform the interpolation
using fﬁnction values ali lying only on one side of the shock; if this is not possi-
ble then we perform the interpolaticn using values which are all placed on a
curve parallel to the shock. In this way we interpolate using function values

which are close to each other,

First, we describe how the interpclation problem arises in the context of
calculating shpcks in two space dimensions, Our appreach is one of several pos-
sible but has thé advantage that it is easy to implement. Brown [1] discusses two
altérnative approaches to the problem, one due to Oliger [12], Berger [2] and
Gropp [3] and a second one by B. Kreiss (6], The origin of the problem justifies

the assumptions we make regarding the specific structure of the function; it
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also gives an idea of what error estimates may be used.

Secondly; we describe a second order interpolation formula where we fit
the shock locally using straight lines. This may not be enough for problems
where the equation iz sensitive to corners in the shock fronts. We study the
error of the method and we obtain a criterion for placing the cross sections so
as to minimize the errors committed in the procedure. The criterion involves
the orientation and the curvature of the shock as well as the distance between
the parallel sections. It is possible to fit the shock using higher order formulas,
but the above relation must nevertheless hold for the interpolation to be mean-

ingful.

Finally, we successfully test the method for some model functions and we
apply it to Burgers’ equation in two space dimensions for two sets of initial data.
The numerical calculations corresponding to Burgers' equation were performed
with Brown [1]. The method still needs to be tested on more challenging prob-
lems; we would also like to study the performance of higher order interpolation

methods.
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2. Adapting Splitting for Problems with Shocks

We present a different approach to the conventional splitting technique

that allows us to solve shock problems in two space dimensions. Let us consider

2 2
?E..*.A.@_""'_.,_Bau_sz(a?:. 67:_)
ox dy

ot FA oz tB oy T (.1)

for —» < z,y < w andt > 0, where A =A(uzy,t), B=Bluz,yt)and ¢> 0is
a small parameter. We first discretize in time using any of Gear's methods. (It is
important to use a stiffiy stable method in this step.) In order to minimize the
change in the solution per time step we use a local moving coordinate system

with velocity defined by the functions U = U{z y.t) and V = V(z,y.t). For sim-

' - plicity we now use implicit Euler (also called backward Euler) in time and obtain

& ( g;%‘(-,tﬂc) + -Zgl;—(.'t+k) ) = (A (- t+k )t +k) = U ) %g‘('-ﬂk)

—( B(u(-,ﬂk),-,“k) ~V) —g—s—(',t+k) - }C—u(-,t+k) (2.2)

where k& is the time step. (We are intentionally using the same notation
w(-t+k) =u(§:,y t+k) for the solution of both the continuous and the time-

discrete problems.)

Equation (2.2) is a nonlinear singular elliptic problem for u (-t +k) that has
to be solved at each time step. In order to solve this problem there is a need to
" generate a m.esh on which the solution u(-,f +k) is resolved and at the same time
th_e}ydiﬁere'nt terms of the equation are correctly approximated. It is in the
rﬁéthqd of generating‘this mesh that our splitting method differs from previous
approaches. The question is how to locate and orient the mesh to align it with

the curves on which the solution exhibits sharp gradients. We reduce the
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problem of determining w{ .f+k) to that of solving a sequence of one dimen-

sional equations. We apply splitting to (2.2) to obtain

&2 ( ﬁ;’l(.,ﬁk) — (AT L +E) ot +e) = UCE+R)) ?,—f(nﬁk))

ox
~Lpttk) = — Zu(t) (2.3a)
k k
£ ( -Z-Z%-(-,tm) ~(Blu, t+k) — V(£ +k) ) g—Z(-,Hk)
— Lot k) = — =Bt +k) (2.3b)
. k k ’ ’

The errors we commit in this step are O(k ),

So far we have not discussed the practical problem of computing (2.1) in a
finite domain with specified boundary conditions. It is not always possible to
split the differential operator in a manner consistent with the boundary condi-
tions. This is usﬁally the case for non-rectangular domains. Even in these cases
it may be possible to use a composite mesh technique, coupled with an iteration
procedure between the different meshes, which transforms the problem to a set
of two new singular equations each one defined on rectangular domains where

the splitting can be done,

We notice that the spatial variable y only appears as a parameter in equa-
tion (R.3a), so we can solve this nonlinear singular perturbation problem for
different values of ¥, say y1.%2, ° " * " Yy where these values are appropriately
chosen. The function Uy z.f+k) = U(z,y,.t+k) is determined when solving for
@hz t+k) = 0z y,t+k), one of the cross sections of ®(z.y,t+k). Brown [1]
and Hyman [4] discuss two different ways of determining this function at each

time step. We are assuming that we have full knowledge of w(x,y .t), the right

hand side of {2.3a).
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The ﬁonlinear two point boundai‘y value problem can be reduced to a linear
one using Newton iteration on the differential equation. It is important to per-
form Newton iteration on the continuous problem and then digeretize the linear
problems as opposed to discretizing and then performing Newton iteration to
solve the nonlinear system of algebraic equations. Using the second approach,
we may converge to a solution of the algebraic system which is not close to the

solution of the continuous problem.

Each Newton iteration reduces to solving a linear singular two point boun-
dary value problem. There is extensive literature on this type of problem; we
refer to H.O. Kreiss [B], Keller and Cebeci [5] and B. Kreiss and H.O, Kreiss [7].
These methods are based on choosing grid points in the z-direction,

ZyZa, XN, (a different set of grid points for each value of ¥,) and a suitable

discretization of the spatial operators in such a way that we cbtain an accurate

numerical solution.

If the initial values are given such that the solution of {2.1) exhibits a shock
structure we will need extra points to resolve this jump. The number of extra
points due to the singular behaviour depends on the specific structure of the
shock. Numerical results obtained by H.0. Kreiss [B] suggest that the exira
number of points required, for each value of ¥, to resolve the transition region
grows like O(Ing) as £+ 0, for a given error bound on the solution.

We also notice that z only appears as a parameter in equation (2.3b) and
introduce discreie values Z1,Ta "IN In the process of solving this equation
we need the function vaiues of @{zy,t+k) for values of y that in general we

should not expect to have computed, i.e., for ¥ not in the set {y .y ' yul
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Our interpolation problem is to determine 4z i .t +k) for any value of vy, know-
ing @(z,y,t+k), forv=12, - - M. (See Figure 1).

y—-axis

shock line

yM ‘\-
values of u(.,.,t+k)
{ are needed at these

_\ refined points.

=
./

s,

x-axis

Figure 1
The next immediate problem is determining in which norm we should get
bounds for the error of the procedure. This is equivalent to the question of in
which norms equation (2.1) is well-posed. Actually, from the computational point
of view, we neéd well-posedness of (2.1) and the corresponding norm estimate
must be independent of £, the small parameter. This involves obtaining stability

results for the shape of the shock fronts of equation (2.1) with £ = 0.

Majda [10] proves a result concerning the existence of shock front solutions
for nonlinear hyperbolic system of conservations laws in several space dimen-
sions. If wé define the position of the front at time t as the solution of
S(Lt) = 0 then the result says that for smooth initial data which exhibits a

jump discontinuity across the C® hypersurface S(z.t=0) =0, then for short
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enough time the solution exists and the front remains a C*® hypersurface. For
two space dimensions Majda's result states that if the initial data belong to HP
away from the shock, where H? denotes a Sobolev space and p > 10, then
S(zpye.t) as a function of £ also belongs to HP. In other words the rate at which
the shock is deformed is determined by the smooth part of the initial values in

a small enough time interval.

A different stability result is due to Oleinik [11]. In this case the resuilt

refers to one-dimensional quasi-linear hyperbolic equation.

A more complete knowledge of the solutions of equation (2.1) will determine
how sensitive the numerical sclution is to the errors introduced in the interpo-

lation procedure,
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3. Description of the Numerical Method
Consider the function ug(z,y) defined on the rectangle [0,1]x[0,1]. We now
want to determine I(ug)(zo.¥g). the interpolant of the function uq(z,y) at
(z0.Y0), from the function values of ug{z,y) for any x and for values of y that
belong to the sequence 0=y ,<...<yy = 1. For simplicity we consider the prob-

lem without boundaries, that is we assume that ug(z,y,) is defined for

-~ zlw andv=12, " N.

The interpolation method we describe is a local procedure; this is a useful
feature when the singular domain is topologically complex, for example when
two or more shocks come together to a common point, when any of the shocks
is not a simple curve, or when there is more than one shock in the computa-

~tional domain.

Our aim is to interpolate using function values obtained from points which
can be joined by a smooth curve entirely lying on a same smooth part of the
solution. It is also important for the points to be relatively close to each other.
We introduce h, a small positive number, where h? is the prescribed error toler-

ance for the interpeclation.
We now present the assumptions on ug{z,y¥) on which the method is based.

(i) The function should be smooth at distances greater than ¢ away from a
one dimensional region where there is singular behaviour. Here, £ is a positive
number much smaller than the natural scale corresponding to changes of
ug(z,y) outside of this region. If the function wug is only known at discrete
values, we then assume that away from this singular region a mesh of size h

completely resolves the function, where A>> ¢,

" (i1) We assume that the singular region is the union of a finite number of
smooth curves. In this way the curves can be isolated from each other, and if

they intersect, the number of possible intersections is finite.
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(i41) We assume that the singular behaviour is of the shock type, i.e., an actual
jump and not a high frequency oscillation which matches two different smooth
states. We use this assumption in the method to define the local orientation of

the shock.

We restrict ourselves to describing a second order interpolation procedure;
the shape of the front is approximated by piecewise straight lines and the

smooth parts of the solution by piecewise linear functions.

In this second order interpolation method, we make use of only two cross
sections of the function ug(zg.yg) to determine I{ug){zo,y0), that is we only use

the values wo(Z Ym+1) and Ug(Z Y ), Where Ym= Y o< Ym+1-

Denote P, = (x0.Ym) and Pp+1 = (Zo,Ym+1) (see Figure 2) and introduce the
jump in function values from top (¥ = Y, 4+1) to bottom (¥ = ¥y, ) lines and the

heorizontal curvatures:

Sug(£m) = |uolf Yme1) — Lol Ym) | (3.1a)
~ _ 8% ug, O ug , d (3.1b)

oFm) = | S E ) = S HE ) | e .

T(Fm) = max ( Sug(Em) ,x(Fm) ). (3.1¢)

We have two general cases:

Case I. T(zgm) < B h, where B is some positive constant (fudge factor).
We are assuming that away from the singular region, the magnitude of the gra-
dients of ug(x ,y) are strictly bounded by 8. In this case we assume that there is

no shock structure nearby and we perform linear interpelation:

Yo Ym Ym+1~ Yo
—_— uc(xO-ymH) L

wolZy, . 3.2
Yms1—Ym Ym+1—Ym o(ZoYm) (8:2)

f(uo)(xo-yo) =

It is usually the case that there is no need to interpolate in this case; there
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would be no need to know the values of the right hand of (2.3a) or (2.3b) if there
is no shock structure nearby. It is important to look at the values of the hor-
izontal second derivatives since ignoring them will cause the top and bottom
part of the jump to be deformed. (In a higher order approximation we should
look at the T(&m), for £ =z¢-h xgandzy+h, as well as for

m =m-1,m and m+1, to determine the existence of a shock in the vicinity of

the points where we are interpolating.)

Case II. T(zgm) > Bk (there is a singular structure in the vicinity). We

have two different cases according to size of the jump Sug{ze.m).

Case IIa. (See Figure 2) If dug(xg.m) > Bh , then we know the shock line

' crosses the segment [Py, Pn+1l. Our aim now is to isolate the region of singular
- behaviour. Practical experience has shown that it is best to define this region
with two curves. In Figure 2 these are the lines defined by [(z?.4,).(z¢ Ym+1)]

and [(z§ Ym).(z 1 Ym+1)]. For convenience we agsume that

61 = vo(To.Ym+1) —Uo{Bo¥m) > O . (3.3)

xl L 1 =
0 m+1 Xl y = Y1

L

1
slope s

Figure 2
We now determine x% ,for v = 0,1, according to the following equation
Lo(Zy Ym+1) = Uo(ZoYm+1) = L5061, (3.4a)

where lg = 1/3 and 1, =2/43. In a similar way we determine .'z?? by
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shock line

Y= Vw1 ,,_»/
—
/ _///
e g
~
- —
e
Yo
A ,/
g vy =Y,
X
y= ym+l

Figure 3

Figure 5

/ v o=
// Y ym+l
'\ !
xl+h
shock #1
=2
y =y,
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uo(23 Ym) = wo(ZoYm) + 1,0 . ' (3.4b)
The slope in the shock region is of O(¢7!) and a change in the constants 1., will

only produce a change of O(g¢) in the determination of the points zJ which

themselves determine the direction of the shock.

We now make sure that the points obtained are close enough, that is we

compute
(@)% = (Yma1—Ym)® + (20 —2d)? (3.52)
(d6)° = (Yms1—Ym)® + (2§ —21)?. (3.5b)

If either d; or d, are greater than 2k, or it is not possible to determine any of
the points :::;’. for y = 0,1 and o = 0,1, then we decide there is not enough infor-
mation to perform an accurate interpolation. In this case we need to obtain the
values of uo(z.7), where " = % (¥ +¥m+1) and —= < z< . In the shock problem
this has to be done going back to the last half time step computation. (See Fig-
ures 3 and 4 for some possible situations in which this procedure asks for more

information).

We must still consider the possibility illustrated in Figure 5, that is when
two or more shocks come together at one point. In order for the method to

recognize this situation we also make sure that
| wo(z ] +h . Ym 1) —uo(xoilym” < gh

and similarly that
| wo(? ~h Ym) —uo(ZoYmw)| < Bh .

(The example in Figure 5 would fail the second test because of the presence of

shock #R2.) If either of these conditions were not to hold we ask for more
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information again. .

Having ruled out the anomalous cases we now determine the slope of the

segments joining the points that lie on the same part of the smooth selution

= Ym+1~Ym

§ 3.6a
s = ym_r‘l__y.#m (3.6b)
1 —Zg

and the intersections of the segments with the vertical line through 7, and

P+t
Ye =5 (2-25) + Ym (3.7a)
Yo = Sp (2-28) + Y . (3.7b)
Defining s in the following way

J St for Ym+1=yo=1ut
_ 1 Yo Yy Yi—Yo
= 8 + Ly
Y ~Yy Yt Yo
Sp for ¥e=Yo=Ym

8

) for ye=yo=yp (3.8)

we compute the intersections of a straight line through the point (zq,%¢) with

slope s with the top and bottom linesy =y, and ¥ = Ym+1

Tpr = ZTo + T —— (3.92)
Ty = 2y + 3"-9-:—”'1”— (3.9b)

and finally perform linear interpolation using the function values of ug at the

POINLS (Zm Yrm) ADA (Zm 41 Yim+1):



_71_

Yo~ Um

I(uo)(zoyo) = y

uo(xmﬂnymﬂ) + Muo(xmvym) . (3.10)

m+1"YUm Ym+17 Ym
Case II.b. If dug(zom) =< Bh , we then have a shock close to either point

(or close to both points). Introduce

§(&m n) = max ( | wo(2iym) —uo(E+h ¥n) | | Uo(EYm) ~ uolE~h yp)| ) ;

™~ ~

and define §; = max ( 6(xgm ,m+1), 8(zgm+1,m)). If 6,< Bh then we need
more information (see the discussion following equations (3.5)). Otherwise we
proceed as in Case /lo looking for either a vertical or an oblique or curved
shock, as in Figure 4. If it is not possible to find any such structure we again

need extra information.

-We notice that the interpolation procedure does not produce a continuous
function of (zg,y¢); specifically it may be discontinuous at (zq.y¢) When z4 = x,
Or Tg = 2y ahd Ym < Yo < Ym+1. The interpolation nevertheless produces a con-
tinuous function along the y-direction for any given z, and this is all that is
needed since the interpolant is computed at only a discrete set of = values. In
principle, the discontinuities can be eliminated from the definition of the inter-
pelant. For example, we can use a "buffer” zone of width s6y =5 (Yms1—Ym) to
switeh from an interpolation using points along a segment of slope s to an inter-
pelation using a vertical segment. Even though this modification produces a
smooth interpolant, it is of no practical use; the buffer zone introduces the
extra complexity that in order to determine the orientation of the interpolation
segment, we would have to test for a shock in an interval of width d where
d? = 4h? - 6y® (see equation (3.5)). This testing would involve a substantial

amount of work.

We now discuss the possibility of using higher order methods for fitting the

shape of the front. In the cases corresponding to Figures 3 and 4 the
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iﬁterpolation method w111 fail and will ask for extra information until dy, the
distance in between two consecutive horizontal lines, gets to be of 0(g), the
width of the shock. If we use a higher order fitting method and even if we
assume that the sﬁape of the front is known exactly, we will still need to add
extra horizontal lines. In order to find the value of the interpolant at
Pg = (z.yg), we will perform some interpolation along a curve parallel to the
front. The interﬁolation formula will link values of the functions at points like 1';1
and fN’g, and possibly points on other horizontal lines, The distance between
these points is O(dy*) in the cases of Figures 3 and 4, This implies that if we
only restrict ourselves to interpolate using points that are O(h) apart from each
other then we must restrict 6y to be O(k?). Hence,a higher order fitting method
will reduce the number of operations when compared to the second order fitting
metﬁod we have described; but, there will be no saving in the numerical effort

for £ << R?. if the shock lies horizontally (s small) and £ >> A%,

YT Yol

region T

y =y, “n 1/ b \
shocl: curve Ficure 6
In order to study the error, we consider the problem corresponding to ¢ =0
(that is an actual discontinuity) and to only one shock. In this case
zd =zl =a,, 2 =z} ==, and §¢ = 8§, = & where z, corresponds to the intersec-

tion of the shock line with the line ¥ =y, and similarly for z; (see Figure 6).

Without any loss of generality we can consider z, < z;. In this case the
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interpolant evaluated at (zg,%0) (for Ym< Yo< Ym+1) is defined by equation (3.2)

when zg> z; or z¢< z,, and by equation (3.10) when z, < zo< z;.

It isvnof.possible to obtain an error formula in the maximum norm. The
existence of such an error formula would imply that it is possible to determine
the shape of an arbitrary curve on the plane from a finite number of its points.
Nevertheless we have the following obvious local error estimates: the error is
0(6y?) away from the shock (region I), O(6y?*V1+s?) near the shock region
(region II), and O{1) between the shock and the chord [(Zy.Ym).(Z:Ym+1)]
(region ZI]}. The area of this last region is A = %@ (¥—sin(¥)) ( 1+0(dy) ) where «
is a value characteristic of the curvature of the shock front when the front lies
between the lines ¥ = ¥,, and ¥ = Yp, 41, and ¥ is the change in the angle of the
tangents of the shock front as the shock moves from ¥ =y¥m to ¥=yYm+1. The

angle ¥is determined by sin(% ) = % k 6y Vi+s %

In ordef to have an accurate interpolation, the shape of the front has to be
resolved. We can assume that this has been achieved when Ag, the total area of
regions of type I/, is O(h®). Now, when ¥ is small and |s|>dy we have that
AR g (V1+s® 8y)8. Thus in order to resolve the shock we need A dy & = O(h?).
In this way when s = 0{1) and when the shock is a smooth curve (i.e. when we
have an upper bound for k), the condition on the area amounts to dy /A being
O{h). This relation between the orientation of the shock and the distance
between two consecutive horizontal lines was enforced by making d; and d,
smaller than 2h. On the other hand when |s |< §y, we have that A~ dy; hence in
this case we need 6y = O(h?). This implies that we should stop adding extra hor-

izontal lines when 8y is O(h*).
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4, Numerical Experiments

In this chapter we present a test problem for the interpolation procedure

and we include an application of the method to a time dependent problem.

Example 1. Wé introduce a set of parallel horizontal (that is y =constant)
cross sections uniformly distributed in the y-direction in the interval [0,1], each
cross section corresponds to ¥ =y¢¥;, ' ' - YN, Where N is a natural number and
yp=k /N for k=0,1, - - - N. On each cross section the function values are specified
at N® uniformly distributed mesh points z=z¢21, "' Ty where z,=k /N°® and

k=01, - N?

In the test problem we considered different functions wo(r,y). Each fune-
tion was evaluated at the N® mesh points of the N cross sections, and at the 4N?
points corresponding to the function values on the boundary of the region

D=z y=1.

In the first step the function uo(z,y) was interpolated over N-1 vertical
cross sections (that is z=constant) uniformly distributed ingide the interval
[0,1] (there is no need to perform interpolation on the boundaries) each one
consisting of N? points. We obtain a function w,(z,y) which is defined only on a
mirror image of the mesh points where the original function uolz,y) was

evaluated.

In the second step u,(x,y) was interpolated to the original horizontal cross

sections to obtain a second function ug(z.y).

We introduce the maximum norm, the L;-norm and the Lg-norm for the

error function
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le(zy)lw = max | e(z4,) |
le(zy)18= 3 (elorm) 57 (8.1)

ley) =3 | elmw) |-J%,3—.

where k=0,1, -+ ,N® and 1=0,1, -+ N. According to the discussion of the previ-

ous chapter we expect that
lle(z.y) - = 0(1)
le(z.y) 1§ = O(N™*)+0(£N) (4.2)
le(z.y) ) = O(NT) + O(kN?)

where k is some measure of the curvature of the shock.

We show two numerical examples: Figure 7 corresponds to 11 cross sections

of the function
wo{z,y) = ~tanh (S(z.y)%) . (4.3)

where S(xy) =y —¥%x?-¥%z and & =.02; Figure B shows the function uolz,y)

after it has been interpolated twice. The corresponding errors are:

le(zy)le =018 . [el(zy)lz= 012 and [e(zy)],=0022.  (44)
As a‘second examplé we considered the function

ug(z,y) = —tanh (S(x.y')/s) + XSin(ﬁ(x +y)) . (4.5)

where S(z,y) =y -z and £ = .02, Figure 9 shows again 11 cross sections of this
function and TFigure 10 corresponds to the same function after two

interpolations.
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The errors obtained were:
le(zy)ll-=0043 , [e(z.y)lz=.0067 and |[e(zy)|,=.0026. (4.6)

Example 2. We consider the numerical solution of Burgers’ equation in two

space dimensions

du ou fu _ , Ru |, Pu
ot Vo T ey i o ayz)' (47)

for 0<z,y<1 and £>0. The calculations were performed using the code

developed by Brown [1]. Two different initial values were considered.

The first set of initial values (Figure 11) corresponds to a ramp connecting
the constant values w = £ 1, If there were no boundaries involved, then this
problem could be solved exactly by reducing equation (4.7) to Burgers’ equation
in one space dimension. The solution corresponds to a stationary shock with
planar front. In Figure 12 we show the solution at time £ = 1. The boundary
conditions were given such that the shock did not develop high curvature at the

boundaries.

The second initial vahies (Figure 13) correspond to two ramps that inter-
sect each other pfoducing a wedge. The ramps connect the constant values
4 =+ 1. The solution corresponding to the inviscid case of (4.7) (that is £ = 0)
consists in a contact discontinuity and the development of a shock. The effect of
the viscosity is to smear out in time the contact discontinuity, simultaneously
the corner of the wedge gets rounded. In Figure 14 we show the solution at

t = 0.20, and in Figure 15 at £ = 0,50. For further details refer to Brown [1].
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Original Function

Figure 7

Interpolated Function

Figure 8§
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Original Function

Figure 9

Interpolated Function

Figure 10
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Part III:

On Composite Meshes
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i. Introduction

In this part, we pfesent a study of the composite mesh techn;que when
ap;;lied to two dimensional problems. The method arises as a possible solution
to the problérn of numerically apprdximating a differential equation defined on
a demain of complicated geometry. Specifically, we are interested in the genera-
tion of meshes on which the differential operators can be approximated in an
accurate way. The mesh generation technique has to be general enough that it
can be applied to any reasonable geometry. From a practical point of view, it is
important to have meshes with simple storage structure; in this way any
differential operator can be easily approximated. Such meshes are particularly

convenient for computers with vector processors.

The composite mesh technique inveolves the use of rectangular meshes to
cover the domain. A transformation of the independent variables is used in
crder to accommodate each mesh to the boundary and to the shape of any
region where the solution exhibits singular behaviour. An interpolation pro-

cedure connects the numerical solutions corresponding to the various meshes.

There are two other approaches to the problem of generating meshes for

domains with complicated geometry.

One approach uses the finite element method where the mesh is generated
from an arbitrary distribuition of peints inside the domain, so there is much
freedom in the choice of the mesh. Its disadvantage is that the development of
numerical approximations to the differential operators in non-regular meshes
becomes extremely inveolved. Even though the method provides a framework
where approximations can be generated, it is difficult to define higher order
approximations. There is an extensive literature on these methods; we mention

Gelinas, Doss and Miller [13], Bank [2] and Alexander, Manselli and Miller [1].
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A second approach invelves the introduction of an auxiliary problem to gen-
erate the mesh. A simple idea is to find a conformal transformation to map the
domain of computation into a simpler geometry, for example a circle or a
square, For problems that are essentially harmonie, this is a reasonable
approach, but it is not clear how useful the method is for other types of prob-
lems: the distribution of points is determined by properties of analytic functions
and not by the problem we want to solve. {(Fornberg [12] has developed and suc-
cessfully used a fast method to compute these transformations. Other computa-
tional approaches have been developed by Ives and Livtermoza [17], and Davis
[10].) Finding the transformation becomes difficult when the geometry is com-

plicated, and this presents us with a problem harder than the original one.

Another way to generate orthogonal meshes is by solving an appropriate
‘nonlinear hyperbolic system of equations (see Sorenson [24] and Starius [25]),

but these methods run into the familiar problem of the formation of shocks.

Finally Steger and Sorenson [28] consider the problem of improving a given
mesh by solving a Poisson equation with a forcing function chosen to produce a
high density of points where needed. This methed is particularly pepular for

golving low Reynold’s number flows around airfoils.

Composite mesh techniques seem to be a reasonable way to approach this
problem; they have enough flexibility to produce a high concentration of mesh
points wherever we need them. The generation of the mesh is fast and in this
way the mesh can be regenerated to follow shocks or any singular behaviour of

the solution.

In chapter 2 we describe the method and apply it to some simple problems.

We pay special attention to possible numerical artifacts.

In chapter 3 we study the numerical stability of the composite mesh tech-

nique when. applied to hyperbolic equations. We also show an example of a
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simple interpolation procedure between the meshes which defines an unstable

numerical method,

Finally ih chapter 4 we apply the method to a model of a wind-driven ocean
circulation iri a circular basin. The problem in a rectangular geometry has been
considered by Beardsley [3-5], Beardsley and Robbins [8] and Bryan [B] using
different numerical techniques. Our method allows us to efficiestly place the
mesh points along the boundaries and at the separation point of the current
without introducing unnecessary points at the center of the circle. In order to
avoid one-sided formulas to update the value of the vorticity on the wall and at
the same time keep a second order accurate approximation, we locate the boun-
dary of the basin between two consecutive grid lines. In our numerical compu-
tations we only used an explicit method in time; we discuss a combination of
implicit and explicit discretizations that will enable us to take longer time steps

in the time—dyependent problem.
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2. Description and First‘Experime’nts on the Composite Mesh Technique.

In this section we describe how the composite method is used for a problem
in Which.thév domain of interest, Q, is a simply connected subset of R®* whose
boundary, 800, is a simple smooth curve. We consider the case when the use of
two regular grids. Gy and G; is enough to cover () ; one grid is used to follow the

boundary and the second grid to fill the interior (see Figure 3a).

Each regular grid consists of a rectangular grid defined in the unit square
S =[0,1]x[0,1] and a smooth function T which maps the unit square onto a sub-
set of the plane; the transformation 7 is one to one and its Jacobian is never
singular. Each rectangular mesh is generated from uniform grids defined in the

interval [0,1] with grid spacing M7}, for some natural number M.
The rectangular grid A, corresponding to the boundary grid consists of

(N, +1)x (M, +1) points of the form ( ) uniformly distribu ted in S, where

"My
i=01,-- N,and j =0,1, - ,M,. The interior of the rectangular grid, Ef, con-
sists of the points (-N— A ) wherei =12, ' ,Ny=1 and j = 1,2, -+ -  Mp—1, we

define the boundary of this grid, 8F,, a similar way. The transformation from 7,
to the original curvilinear coordinate system is denoted by 7,. Note that,in par-

ticular, 7, must satisfy

T,(0y) = L, (1y) (2.1)

for 0= y < 1; we can always assume that 7,([0,1]x{03}) = 80). In a similar way
we introduce the interior mesh R,. This mesh need not be the entire unit
square; it may have indentations. From a practical point of view it is convenient
to use a rectangular mesh for £, and '"flag" the unnecessary points. We also
introduce the interior, A7, aﬁd the boundary points, 80/;. The interior grid is

picked so that we can cover the entire domain 2 with both grids, that is,
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L(R) U T(R)=0. (2-2)

It is important that the grids are placed in such a way that the boundaries of

each grid lie inside the interior of the remaining grid, that is
L(0R) < T (R) and T,(0R, ) < Ti(AY), (2.3)

where 8K, is the connected part of the boundary of R, which does not

correspond to 8Q . ( 8K, ; = T, ([0,1]x{1) ).

B. Kreiss [1B] has developed a numerical code that given a simply con-
nected domain ? defined through its boundary generates both of the grids dis-
cussed above and computes the derivatives of the transformations involved, Fig-
ure 3a was taken from [1B]; Figure 3b corresponds to a composite mesh gen-
erated to study a free boundary problem associated to the displacement of oil in
reservoirs. In this application a non-affine transformation was used in order to
convenientlj distribute the grid points (see Reinelt [23]). Both grids were gen-

erated using this code.

Example 1 In our first numerical experiment we considered the initial

value problem for the two-dimensional wave equation

Pu _ Pu |, 8Pu

9t 9z% T oy ? (242)
defined for f > 0 and on z% + y® < 1; with initial values given by
u(z,y,t=0) = uo({z,y) and %%—(x.y,t =0) =u(zy), (2.4b)
and boundary conditions given in polar coordinates by
u(r =1,’151,t) = uy () ; (R.4c)

here uo(z,y and u,(z,y) are given functions.
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We use two fegular_meshes to numerically approximate equation (2.4a); a
polar grid that covers the annulus r > % and a cartesian grid that covers the

center: max(|z |,|y |) < %. We first introduce the mesh widths

1 1
= = 2.5
il e A (2.5a)
- _¥ _ _Rm
or = N2 &= N3 (R.5b)
The cartesian grid G, is defined as
Ge = { (Zpyy) |1=12, - Nz and j=12 - N, } (R.8a)

where z; = =% + (i —2) 6z and y; = =% + (7 —2) dy. For the polar grid G, we use
G, = { (rycos( ) mysin(d)) | k=12, -+ Ny and l=1,2,..N,.] (2.6b)

where 7 =%+ ({-2)d6r and 4§ =(k-2)d&8 Notice the overlapping of the

meshes,

We denote the vaLlues of the numerical solution Z{z % .t) on each mesh by
uls =@z y;mot) and oy = T(re,8,mét); (2.7)

where 6/ is the time step. We consider the numerical appreximation to equation

(R.4a) defined using standard centered formulas, that is

wt - 2l 4wt
1%

(2.Ba)

_ wlhig =R uly +ulty + ulhey =R uly +uy
oz ? 6y ®

fori=g3, - ,N;—1 and =23, - N,—1;
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m+1 -— m m-1
Vi) R Ury + ULy
ot 2

(2.8b)

m
o Ykuer TRUEL HUEL4 1 UEie —UEae1 1 YEhg TR UEn YU
&re 2 R or T2 s

for =23, - Ng—1 and {=2,3, - -+ N,. The initial datas< imposed by providing

two consecutive time levels,

We now impose ¥ -periedicity
UiN, T Ungn, and Uy =UNw (.Be)
the boundary condition
VN, = Up (%) (2.84)

for k=12, - - - Ng.(For simplicity we are dropping the superscript m+1.)

Finally we update the interior rim (k=) and the boundary of the cartesian
grid. First we find the positz‘mn of the the points of the interior rim in the rec-

tangular grid, that is we find (k) and j (k) such that

Zige) < T1008(%) € Tyie)r1 and  Yip) = 718i0(%) < Vi) (2.8e)

for k=12, + Ny From the way the grids were defined it follows that
1<i(k)< N;=1 and 1<j{k)< N,—1. In this way we can perform linear interpola-
tion using the values corresponding to the cartesian grid wBdYe). @i

wit )+ and Uil i)+ to define v, That is, we define
Uiy = Wil T1) Uige) jte) + Walthe 1) Uige)+1.4e) (2.8f)
+ wa(Be, 1) Uite).s0e)+1 T WalBe T 1) Wilk)+15(k)+1

were the weights w are appropriately chosen.
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In our numerical experiment we considered the initial values given by

w(r 8t =0) = Ji(agr) cos(d) , (2.9a)
%(r,ﬁ,t=0) = — J1(egr) sin(®) , (2.9b)

where J; is the Bessel function of order one, op its smallest real zero
(g & 3.83171), 7 and ¥ are the usual polar coordinates; the boundary condition

given is given by
u(r=18t)=0. (2.9¢)
The analytic solution corresponding to equations (2.4) and (2.9) is given by

wulr 8t) = Jy(agr) cos( 9+t ) . (2.10)

The method as described is extremely efficient to compute. The interpola-
tion coeflicients are computed once at the beginning of the program and stored
with the corresponding pointers. All kimportant inner loops of the numerical
approximation defined in (2.8) vectorize, this is not the case for the loops

corresponding to the interpolation procedure.

In Figures 4a and 4b we show a contour map of the initial data computed

using deﬁnedbby
N. =20 Ny=68 N,=23 N, =23. (2.11)

Because of our plotting package we have to show the interior mesh and the
boundary mesh separately. In Figures 5a and 5b we show the computed selution
at £=9 (a little less than 3 revolutions of the initial data) and in Figures 6a and
6b the corresponding errors. (In these figures N is the number of time iterations

that were used.)
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The results shown are typical of what we observed in our calculations: the
error plots correspond to smooth functions and there are no numerical

artifacts introduced by the composite mesh technique.

Example 2 Browning, Kreiss and Oliger [7] pointed cut, and showed numeri-
cal evidence, the possibility of diffractien at the interface between two grids. The
following experiment was designed to detect this numerical artifact. Trefethen
[29] and [30] discuss a related problem: the dependence of the numerical group

velocity on the orientation of the wave front and the mesh.

We consider the scalar hyperbolic equation

ou _ du

T (:112)
valid for £ > 0 and on 7 < 1, with initial values given by
u(r B8f=0) = welr ) . (2.11b)

(No boundary conditions are necessary.) The analytic solution to equation (2.11)

is given by
w(rBt) = ug(r o+t) . (2.12)

In the experiment we used uy(r,8) = J,{ogr) cos We again consider standard

centered schemes in space and time.

We first consider the mesh defined by
N, =13 Ng=120 N, =23 N, =23. (2.13a)

In Figures 7a and 7b we show the contour lines of the numerical solution at
= 37, Notice that the angular speed of propagation in the innermost lines of
b is slower than the exact selution, ag if the solution were dragged by the inte-

rior mesh, In Figures Ba and 8b we digplay the corresponding errors. The actual
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numerical velocity of propagation is smaller than the velocity corresponding to
the continuous problem. This effect is due to the lack of resolution in the interi-
or mesh; the artifact disappears as we increase the resolution of the method: in

Figures 9a and 8b we show the computed solution over the grid defined by
N, =20 Ny=180 N, =23 N, =R3. (2.13b)

and in Figures 10a and 10b the corresponding errors.

Example 3 Finally we consider Laplace’s equation

2 2
Au = Z;j + gy‘; =0 (2.14a)

defined on the unit circle, with Dirichlet boundary conditions
w(r=139) = uo(¥) , (2.14Db)

where ug is a given function. We consider again centered formulas to approxi-
mate equations (2.14); these formulas correspond to the steady state of equa-
tions (2.8a) and (2.8b). We again need the interpolation formula (2.8f) to obtain
equations for the internal boundaries associated with this composite method. As
a result we obtain a linear system of equations to be solved to determine the nu-

merical solution:
Auw=1 (2.15a)

-

where 4 = [a,, »] is a sparse matrix, . imposes the boundary conditions and 2

is the numerical solution. The vector w_is defined by
Uir(G-)N, = Uiy BNA Uy N sk rQ-1)NVEL (2.15b)

where i,7,k,0 are in their usual ranges.
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We notice that due to the interpolation equations (2.8) the matrix 4 is not

symmetric, However, the matrix is diagonally dominant, so that

2 mnl < |Cmm] (2.15¢)

R#EM

for all n; we have strict inequality for the equations corresponding to the boun-
dary conditions and equality for the remaining equations. This equation holds
because the coeflicients were chosen to be all positive. It is readily seen that this

matrix cannect be singular.

Note that the band width of this system is O(N,), where N? is the total

number of equations, when the overlapping region is only a few cells wide.

Starius '[25] suggests using an iteration technique to solve the linear system
of equations arising from composite mesh techniques. The method consists of
first guessing the sclution at the boundary of the interior mesh, then solving
Laplace’s equation in the interior of this mesh. The next step is to interpolate
from this solution to obtain values for the interior rim of the boundary grid. We
now solve in the annulus, imposing the necessary boundary condition on 80,
and from this solution we inte‘rpolate the values corresponding to the boundary
of the interior mesh. These new boundary values are then used in the next itera-

tion.

The rate of convergence depends on the width of the overlapping region. In

order to understand this we consider the following iteration
Ay =0 (2.16a)
onTr<sT, wit}:h'boundary condition given by u, ,,{r=7,) = 4, (r =r,), and
Ad,,, =0 (2.18b)

on the annulus re= 7= 1 with boundary conditions @, 4, (r =7, ® = Uy (7 =78
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and dp.(T=1,29) = 0, here 0<ro<7T,< 1. If we start with uo{r=r1. % = cos(w?) it

1—r e
1-rg°

easily seen that u,(r=r;)=o(w)*cos(w) where a(w)=(-:_i" This
1

implies that modes corresponding to small & are slow in convergence unless
71~7p is small (a case in which we are not usually interested). This example sug-

gests that the use of a multigrid method might be appropriate to solve the sys-

tem (2.15a), see Linden [21]).

We decided to use a sparse matrix solver in our numerical experiments. In
order to obtain the L{U-decompeosition of A we used the package developed at
Yale University which has a reordering routine to minimize the overall number
of oi)erations. The package itself has no pivoting strategy. The numerical exper-
iments we present were performed using single precision arithmetic on a
VAX11/780 computer; this machine carries 7 digits for each real variable. Simi-
lar experiments were performed using a Cray-1 computer, which uses 14 digits
per real variable, The results obtained agree with each other to at least 4 digits;
this strongly suggests that there is no need to use a pivoting strategy to guaran-

tee numerical stability in the LU-decomposition.

We consider the following regular meshes:

Mesh I: N;=N,=B Ny=33 N, =7, (2.17a)
Mesh II: N,=N,=13 Ng=65 N =12, (2.17b)
Mesh II: Ny=N,=1B Ng=99 N, =17, (2.17¢)
Mesh IV: N;=N, =23 Ns=868 N, =20, (2.174)

with boundary values given by

u(r=1,9 = cos{w ) . (2.18)
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In Table 1 we show the results corresponding to these four meshes for
w=12,,86. We also show the storage requirement, which gives the total
number of operations needed to perform a back-substitution, and the total
number of equations. The result suggests that the number of operations grows
at a rate smaller than N2, where again N, is the total number of equations. The
total number of operations might be substantially reduced if the mesh points
corresponding to the corners of the inner mesh get "flagged out". The Lg error is
defined as

e =Y ez, y;)? 6z 0y + Y e(Y.m) 7 or 69, (2.19)
g Py

were e{z,y) is the error function.

In Chapter 4 of this part we will need the to solve Poisson’s equation discre-
tized on a stretched mesh. For convenience we describe the type of stretching in
this chapter, at the same time we present the difference approximations and

same numerical results.

We introduce the stretching transformations given by

r—1

F=f(r)=r+e 7 (2.20a)

~ ! n—3 -8
V=g(d) = -%— In{cosh( —ﬂ—rﬂg———)) - In{cosh( 'z_Sm_a:_)) +9+a®; (2.20b)

0 1 1
where the derivatives are given by
r—1
G _df v sle B

el (ry=14+ : e (2.20c)
28990 -1 4 < | tann( ) ann(®=% | (220
e dﬂw) 1+ 208 2o tanh( e } — tanh( - Y. (R.20d)
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E’quation (2.20a) defines an exponential stretching of characteristic length s,
which smoothly connects to the identity transformation. Similarly equation
(2.20b) defines a uniform grid between Y, and ¥,,; and a different uniform grid
in the rest of the interval [0,27]; the mesh ratio of these grids is given by 1/
and the transition region from one mesh width to the other has a characteristic

width of £y.

We consider the cartesian grid defined in {2.5a) and ({2.8a); for the polar

grid we consider
7 = F1+(L=2)67 = f (1) (2.21¢)
B = 8 +(k —R)6T = g (%) (2.21f)

where &8 = (g(Rm)~g(ODANsR), 6F = (f (1)~f UWNAN—R), Fi=s(%) and
B = g(0). The constant « was chosen so that % +2m = Ungi and %+2m = dy; due
to the fact that the ._angular stretching decays exponentially fast away from B
and . the constant o is a small number. (Notice that in order to obtain each
grid point it is necessary to sqlve a nonlinear equation.) Figure 14 shows a typi-

cal mesh that can be obtained using these transformations.

We are now ready to describe the numerical discretization. Since there is
no stretching in the rectangular mesh we use the usual five point formula to
approximate the Laplacian operator. To define the discretization in the polar

mesh we first transform to the stretched variables ¥ and # to obtain:

&Pu £2+§y_(

1df, . 1 | 6% ,d4d u 4%
BFe () o7 v ar) (8 * o5 aF | =

r dr’ @ pR dd a3 d&® |

| 5% 0. (2.22)

d>F
dr?
We approximate the derivatives of the dependent variable » using standard cen-
tered second order accurate difference appproximations. The coefficients of this

equaticn, which involve derivatives of the stretched variables with respect to the
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physical variables, can be computed using the exact form of the transformation.

‘In Table 2 we show the numerical results obtained using four different
meshes, each one generated using N;, N;, Ny and N, as in equation (2.17). The

Lg-error is defined as

=Y e(zy;)? 6z oy + 2 e (% .1)° r oF 6&3—7' 3% (R.23)
i

were e(z,y ) is the discrete error function. The parameters used for the stretch-

ing transformation are

£, =0.0345 £5=0.1111 £ =0.3333 Opin =72 Vmex = X7 .  (2.24)

In the case of Ng= 65 (Mesh II), 8 points were placed in the third quadrant
(away from the stretched region), in this way its corresponding error has to be

compared to the error obtained for Mesh I of the uniform meshes (Table 1).

In Figures 1la and llb we show the exact solution and the computed solu-
tion for Mesh IV and w = 4 and in Figure 11c we show the contour plot of the
numerical errors. Notice again that no numerical artifacts show up. In this case
there are enough points to compute the solution accurately away from the
stretched region and we do not see any difference in the nature of the error due
to the stretching, this is not the case when we increase the number of modes of

the solution. (We only show the polar meshes for convenience.)

Finally, in Figures 12a and 12b we show again the exact and computed solu-
tion for Mesh IV and © = 9 and in Figure 1R2c we show the corresponding error.
Notice that the error in the stretched region is an order of magnitude smaller

thar the error in the third quadrant.
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3. Some Stabi]ity Results

We devote this chapter to the study of the numerical stability of the compo-
site mesh technique when applied to hyperbolic equations. We consider the fol-

lowing model problem in one space dimension

ou u
ot T Bz

=0, (3.18)
for —» <z <= and t> 0, with initial values given by

w(z,£=0) = ug(z). {3.1b)

The approach we use to study the stability of the numerical method when

applied to this problem was introduced by Browning, Kreiss and Oliger [7].

We consider two uniform grids, each one with a possibly different mesh

width; the grids are defined by (See Figure 1)

r,=xzg—vh;, and y,=yg+Vvh; (3.2)

L | 1 L ] 1 .
Y T T T T T ¥ 1) T T 1
X4 X3 X2 Xl XO
Tirure
where v= 0,1, - and where h, and h, are the mesh widths. The grids cover

the entire real line and they overlap in the sense that z¢ > ¥y, and Yo < &1, We
also assume that end points of each grid do not correspond to a point cn the
opposite grid, that is we assume that z, is not a peint on the y-grid and simi-
larly fer yo. We consider the following second order centered approximation for

the spatial operator of (3.1)
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duv,t) _ Uprr{E) = wupa{f)

F7 oh, =0, (3.3a)
d;“(t) + u‘*“(t)zg:”‘l(” =0, (3.3b)
for w, ¥ = 1,2, - - «; with initial values given by
u,{0) = ug(z,t) and v,(0)=wuoly,t) (3.3¢)
for v, .u=0,1--e. We need interpolation formulae to connect the solution on
each grid; they are defined by
wo(t) = o Vp(t) + O sy Vpa(E) (3.3d)
volt) = By wilt) + Bis1 Uyay(f) (3.3e)
where 4, < Z9 < Yes1 s Te1 < Yo < 7, and
To = Qg Y + Ry Y1 8D Yo =B 2y + Brar Ty (3.3)

Because of these conditions on g, ¥ the constants invelved in the interpola-

tion formulae lie in the interval (0,1): thatis 0 < og , G+, B . fi+1 < 1. Here
uv(t) = ﬁ(zv-t) and 'Up,(t) = 'l'f'('y_u,,t) ‘ (3.4)

define the numerical approximations to u(z .t).

According to the theory developed by H.-O. Kreiss [19] and Gustafsson,
Kreiss and Sundstrom [15] (often referred as the GKS-theory) the stability of
the numerical approximation defined by (3.3a)-{3.3f) can be studied by intro-

ducing the resolvent problem deflned by
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2R Uy = { Uy ~Upey ) =0, (8.50)
oS vyt (Uyey —Upey ) =0, (3.5b)
":ﬁ=0‘k ';'k + Qg ":Jcﬂ +F1. (3.5¢)

;’o =8 ;z + B ;Hl +fz, (3.5d)

for v.u=12, - =, In the context of the GKS-theory equations (3.5¢) and
(3.5d) are called the reflection conditions. The method is stable if for any

Real(s) > O there is a unique solution of equations (3.5a)-(3.5d) statisfying

3 (w2 + (9,3 < =, (3.5¢)

v=0
and if that solution can be estimated in terms of the forecing functions:
lug| + vl = K (1f1] + [F2!): (3.5)

where the constant X does not depend on either s, f; or fa.

Solutions of equations (3.5) can be found by introducing

w=pi¥ and w,=o A, (3.8)
forv=0,1, - =,where k£ and A are the roots with modulus smaller than one of
Rhisk—(k*=21)=0 and 2hss A+ (A2-1)=0. (3.7)

When Real(s) > 0 we have
K=his =1+ (s, and A= —hes +V 1+ (Rg8) . (3.8)

The interpolation conditions can be written as follows:

| 1 o i = oy [

[ o _
—l—ﬁzkl‘ﬁlﬂ}\éﬂ 1 »\.g,

C(s) [ . (3.9)

)
[4™) -

1}
—_——
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In order to obtain the estimate (3.5f) we need to show that
ldet C{s)| = |1 = (B N + Brar N1 ) (o 6% + oy £ )| = 6> 0, (3.10)

for Real {s) = 0 where § is some positive constant.

First we notice that «-» 0 and A+ 0 as s - «; this implies that
det C(s) » 1 in the same limit. Thus we only need consider the behaviour of the

determinant as Feal(s) -» 0.

Since 0< B, Br+1: 0%, 2 +1 < 1 and |&], [A]| = 1 it follows that det C(s) =0
can -only hold when A = ¢k =1 (or equivalently when s = 0). But from equation
(3.8) we have that A~ 1 and k- -1 as s » 0. The stability result follows

immediately. {The stability result still holds if either g or B+ is equal to one.)

We now consider the numerical approximation to equation (3.1) defined by

(3.3a)-(3.3c) where the grids defined by (3.2) are aligned in such a way that
Zo=Yr and Yo =1 (3.11)

for some k and I (in such a case the ratio k/; would be a rational number), If

we now use the simple-minded interpolation between the meshes defined by
ug(t) = v (t) and wolt) = u(t) (3.12)
then >the determinant condition for this case is
ldet C(s)| = [1 —Al g1 = 65 0. (3.13)

But for s = 0 we have det C(0) =1 —(—1)* which is zero for I even. We have
found that for this case it is not possible to draw a stability result. In this limit-
ing case the numerical stability can be affected by the time discretization or the

presence of boundaries.
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We now show an example in which the use of the interpolation defined in
equation (3.12) combined with the numerical approximation of equations {3.3a)

and (3.3b) leads to an unstable method.

We again consider equation {3.1) this time defined for £>0 and for z = =zy,
where N is some natural number; we impese an homogeneous boundary condi-
tion at x = zy, that is u(zy,t) = 0 for all £>0. The numerical approximation is
defined on the grids introduced in equations (3.2); we consider h /A =2 and

To =Yg and yo = Z,. (See Figure 2).

§‘N X9 1 YgTEL Y1 VoTXg V3 Y,
| } $ + i $ + b :
Figure 2

The numerical approximation we wani to consider consists of equations

(3.32)-(3.3b) with Leap-Frog used to discretize in the time variable:

m+l __,,m~1 m M
Uy, Uy Uyt Uy

T - oh =0, (3.14a)
,um+1 _.um-—l ™ —’Um
b .t a1 A1 "

ok + ha 0, (3.14Db)

where v=12,- N, u=12,- -0 and k is the time step, with the boundary

condition

(3.14¢)

1
o

uy(t)
and the interpolation formulae
ug(t) = ve(t) and wvo(t) = u,{t). (3.14d)
The corresponding initial values given by equation (3.3¢).

0

wl =ug(z,) and vl =ugly,). (3.14¢)
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for u=12, = and v=12,-'-N. We are only interested in solutions that

belong to I, that is

$ urRg e (3.14f)
=0

forallm = 0.

We want to show that the problem defined in (3.14) admits a solution which
grows exponentially at a rate which depends on N. We mention that the instabil-
ity of the method is a result of the combination of the boundary at z = zy and

the use of Leap-Frog as a discretizaticn in time; Lax-Wendroff in the same situa-

tion will lead to a stable method.

We seek a solution of equations (3.14) of the type
ul = (pyef +parf )™, (3.15a)
v =0 Aa2™, (3.15b)

Here x4, k2 and A are determined by

By g2

lca—lm-}c—l-zz—l-tc=0, (3.16a)
3

o142 La=0. (3.16b)

Recall that, since equation (3.14f) must be satisfied, we have to pick the

root A which satisfies |A} < 1. The boundary condition at x = zy implies that
ul =p (b ¥ —y¥)zm (3.17a)
=g Ntz™, (3.17b)

and if we now impose the interpolation conditions on (3.15) we then obtain
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rp r ICII-N - ngl_N -1
C2) g | =] ko ge? a2 |=2 (3.18)
Using that ;€ = —1 the condition det C{z) = 0 can be written as
(1=(~D)Vef"y =i, (1 + (-1)V BV 2Y) =0, (3.19)

In order to show that the method is unstable, we need to find a root z of equa-
tion (3.19) with |z | > 1. The stability analysis for the model problem suggests
that instability may cccur at A close to —~1. From equation (3.16b) it follows that
this situation corresponds to z® — 1% 0 and Real(z-1/) < 0, which implies

that'z ® =1, In this case we have

A=— g%— (z~1/2) = (( g:? (z=1/2))% + 1)%, (3.20a)

and we can always consider £, to be the root defined by

o =% Sk (2-1) - (6 2 (2-1/2))° + 1. (5.20b)

A ‘
Introduce s = _k_z_ (z—-1/2); under the assumption that s is small (we are

considering 2% — 1 to be small) we can write
A=—ehstO0Y) gng g =es +O6Y ‘3.21)

We now determine asymptotically the roots of equation (3.18), For N even the

roots of (3.19) are almost roots of the following eguation

~

Dis)y=(1—-a® )R (1 4 gBNRs) =1 g g2 = 3.22)

We notice that IX0) = =2 and D(=~=) =, therefore there exists a root sy, with

FReal (sy) < 0 which behaves like
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P lo Nz-j-vlo 2 . : (3.23)

as N » «., In this way we have obtained a root zy of det C(z) = 0, the root

behaves

1k logN o ‘
zy ~—1 hy BN as N » =, 13.24)

So the growth of this mode is

log ¥ tog (N 3
2t (1)t g 2P fl e T '3.25)
which clearly deteriorates as N increases. Hence the approximation defined by

(3.14) is unstable.

In Figure 13a we show the solution of the numerical approximation
defined in (3.14); the calculations were performed in the interval [0,2] . We use
homogeneous initial data, and boundary  conditions given by
uy(t) = u(z=0t) = sin(2rw(t ~¥)). In Figure 13b we show the numerical solu-
tion when the problem is considered in the interval [0,3]; we notice that the ins-
tability corresponds to the interface and the left boundary, while the solution is
not affected by the conditions on the right boundary. (We use one sided
difference schemes at this new boundary.) Here h; was taken to be 0,10 and
k/hg =0.90; the predicted + | oscillation in time was observed, though for clar-

ity we only show every other time step.

In order to avoid this instability, we can use a three point formula of the

type
wo(t) = ooy Vg1 (E) + 0 U (t) + Qg Vpra(E) (3.26a)

volt) = By wy(E) + B wy(t) + Bray (), (3.26b)
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where the coefficients a and 8§ are picked to be positive, instead of (3.12). (A
similar analysis can be used to show that these interpolation formulae define a

stable method.)

The model problem we have just finished analyzing suggests that if we are
using a composite mesh technique in the numerical approximation of a hyper-

bolic equation a three point formula such as (3.26) would be appropriate,

Our simple proof for the stability of the numerical method defined in (3.3)
is based on the coefficients of the interpoclation procedure (3.3d) and (3.3e)
being positive; this condition does not hold for higher order interpolation for-
mulae. Starius [27] proves that the composite mesh technique is stable when
applied to equation (3.1) defined in the semiinfinite interval [zy,~). He consid-
ers the Lax-Wendroff approximation on each grid and a general interpolaticn

formula of the type:

k+,
uelt)= B e unlt), (3.272)
. k
velt)= X Famlt), (7.27b)

to connect the solutions on each grid. He proves that this method is stable, in
the norm considered by Kreiss, Gustafsson and Sundstrom [15], when either the
dissipation of the method is large enough (that is for £/, = O(1), where k is the

time step), or when the width of the overlapping segment [yq,2¢] is independent

of the mesh widths. More work is needed to determine which com-
binations of interpolation procedures and numerical approximations on each

grid lead to stable methods.
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4. Ocean Circulation Model

In this chapter‘ we apply the composite mesh technique to a model of a wind
driven ocean in a circular basin. The model describes a homogeneous ocean,
that is, no density»stratiﬁcation is present, with the wind stress acting on the
surface as the 6n1y source of motion. It ignores possible effects of the bottom
topography and assumes the g-plane approximation which is only valid at mid-

latitudes.

The dimensionless formulation of the model is described by the following

mixed hyperbolic-elliptic initial boundary value problem

a¢ _ _ 0%, 8%¢ 3
4R (u +,,_‘l)+v -5 5¢+E,,(Bz+ayz), (4.18)
__VL _j’_- (4_1}3)
Bz® ay?
_ Y _
u = 5y v =t (4.1¢)

for 2%+y?<1 and t>0. The boundary conditions, expressed in polar coordi-

nates, are given by
wr=1) = =) =0; (414)

the usual initial values are the rest state: ¢{z,y,£=0) = 0.

In the equation the dependent variable ¢ denotes the usual vorticity, ¥ the
stream function, A, a Rossby number, £, an Ekman number, S the curl of the
wind stress and & corresponds to the bottom friction. {R,, F; and § are the
parameters which determine the specific problem.) The Rossby number meas-
ures the relative importance of the inertial acceleration to the Coriolis accelera-
tion. The Ekman number compares the effects of the viscosity and the Coriolis

terms; for large scale motions the value of E is estimated using Ay, the
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horizontal kinematic eddy viscositj The corresponding Reynolds number for
this flow, defined as £, =Ra‘/E'k. is always larger than one. For large scale
dynamics E, is 0(107%), or smaller depending on the values of Ay, and K, is
0(107%). The bottom friction coefficient & is 0(107*) when computed using the
average depth of the main thermocline of the ocean. The scaling used for the

velocity is such that the curl of the wind stress is 0(1).

Pedlosky [22] and Greenspan [14] describe the main features of this homo-
geneous model for the ocean circulation. Equations (4.1) also arise in the
description of a rapidly rotating cylindrical container with a sleping bottom
where the wind stress term is simulated using a lid which rotates at a slightly
larger angular velocity. The experiment can be easily performed and it is used

as a laboratory model of the ocean. (See Beardsley and Robbins [68].)

The solutions of equations (4.1) are known te develop a thin layer of high
vorticity in the western semicircle of the basin, which in the ccean corresponds
to the presence of the Gulf Stream, the Kuroshio Current and other sea
currents. The model is successful at predicting the observed separation of these

currents from the coastline.

In our numerical approximation we need to generate a mesh on which the
boundary layer can be resolved, we also need high resclution in the angular

direction in the second quadrant (<9< nR) where the separation occurs.

Beardsley [4] and Beardsley and Robbins [8] considered discretizations of
equation (4.1) with meshes generated in polar coordinates; they considered
spectral methods in the angular direction and an appropriate stretching in the
radial direction. The mesh they consider has the usual clustering of points near
the origin where no resolution is needed. We approach the problem using the
composite mesh technique with angular and radial stretching as described in

Example 3 of the chapter 8; this method allows us to locate mesh points only



where they are necegsary.

bThe composite»mesh’we.consider consists of the regular cartesian mesh
defined in (2.5a) and (2.6a) and the polar grid defined using the stretching func-
tions presented in equations (2.20a) and (2.20b). The angular part of the polar
mesh was defined in (2.21f); in order to facilitate the implementation of the no-
slip boundary condition, we consider a radial grid that does not include the

boundary as a grid line:
R =M+ -1R)6 = f (), (4.2)

where 67 = (f (1)~f (¥))/N, and 7y = f (%). (Notice that ry < 1<7y ;) Figure 14

shows such a mesh,

As in our previous numerical experiments we consider an explicit numerical
approximation in time and standard second order accurate centered approxi-
mations for the spatial operators of equation (4.1). In the time discretization,
we use Leap-Frog for the hyperbolic and lower order terms of (4.1a), while the

dissipation term is evaluated using forward Euler,

We consider a two time level approximation: given the vorticity at {=mdt
and t= (m ~1)6f and the stream function at ¢t = m¢ét, we define the values of the
stream function and the the vorticity at a new time level: t= (m +1)dt. We start

first with the interior mesh
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g‘-mﬂ m 1
2ot )
+ R (- ’¢z+1; Yty i — 4G Py — P Ty — g )
o 20z ooy 2dy 26z
w’i,?'l,j - ’wiﬂ—.’l,]‘ _
M= R
PPN v Kk Ll oV ¢ 5 Bk B I
6z2 6’9‘2
for i=2,3, -+ ,N;—1 and j=2,3, - - - \N,—1. (It is possible to define a second order

accurate formula in time for the parabolic terms using the vorticity at the pre-
vious time level: t =(m —~R) 6f. The Ekman number is a very small parameter and
usually it is not necessary to use a second order accurate formula to approxi-

mate the time derivative of the viscous term.)

We use a similar formula to update the values of the vorticity on the polar
mesh v, for 1=23, - N,—1 and £=2,3, -+ Ng~1. In order to complete the
definition of the approximation to (4.1a) we need to consider the interpolation

formulae and ¥-periodicity conditions.

The Laplacian operator is approximated using the standard five point for-

mula

rr:‘-rg -2 W‘L”;*-I + ,¢m+1 ”3111 — ,w{l’;-l—l + 'l,{/m+l
oz oy

= ¢t (4.4a)

for 1=2,3, - Ny~1 and 7=23, - ,N,—1. For the polar mesh we have (for simpli-

city we write the equation when no stretching is used)

Vi R + '¢’m+1 + L L W/
oz 7 _or

(4.4b)

Ve — R Yy + g = o
2 kel

1
+ ——
rf &y
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for =23, ' Nyg—1 and r=213, N,wl. We again include the interpolation for-

mulae and the ¥-periodicity.

Equations (4.4) specify a large linear system of equations for the discrete
values of the stream function which can be solved once we impose the necessary
boundary conditions. We now use the location of the boundary between two grid

lines to define a simple second order approximation to the boundary conditions

by
Yo =0 and Yy =0 (4.5)

for k=12, - - - Ng. Using the first of these conditions, we can solve for the new

values of the stream function.

We still need to make the tangential velocity zero along the boundary.
Finally, we need to define new values for the vorticity at =N, {that is, the vorti-
city at the wall). It is in obtaining these values that we use the no-slip condition:
we write equation (4.2) for I =N, using the boundary condition (4.8) to obtain

vE! A

2t ry Ber ke

(4.8)

which is used to define the right hand side.

We now show the results obtained using the method just described. In the

numerical experiment we consider the following parameters in equation {4.1)
R, =2702x107% £, =5702x107° §=12.531x107? (4.7)

and S$=1, (The parameters were taken from Beardsley and Robbins [8] who

chose them for comparison with experimental data which were available.)

The mesh is defined using
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&, = 00345 g =0.2000 &, = 0.4472 (4.8a)
N, =25 Ng=70 N,=23 N, =23. (4.8b)

The minimurﬁ distance between two consecutive mesh circles is
0T min = 2.19%x1079, and the maximum 67 . = 6.20x107%, the ratio of these dis-
tances corresponds to the stretching factor &, there are 18 mesh circles with
radius greater than 0.90. In the angular direction we have 0¥, = 3.44x 1072 and
S¥nex = 1.38x7!, with corresponding ratio &g. (The mesh obtained is shown in Fig-

ure 14.)

.The method we describe is explicit in time, which immediately introduces
an upper limit for the time step. The problem we are solving is non linear which
makes it difficult to estimate this upper bound. By numerical experimentation
we found that the stability limit is & < 0.04; the results we show were obtained
using & = 0.025. The calculations were performed on the Cray-1 computer at
the National Center for Atfnospheric Research in Boulder, Colorado with each

time iteration taking 0.06 seconds.

We consider the rest state as initial vaiues. As time increases from 0, the
curl of the wind stress generates the motion by producing vorticity throughout
the ocean basin. To accomodate the no-slip condition, a thin viscous layer
develops along the boundary of the basin; the layer persists in time. In the inte-
rior of the basin a smooth flow develops where the Coriolis effects and the wind
stress are balanced; the ﬁomf is usually referred to as the Sverdrup balance.
Vorticity is transportedifrom the interior to the west of the basin by long
Wavelength,Rés'sby modes. The presence of these modes is a direct consequence
of >the north-south variation of the Coriolis force. (For a full discussion of the

model see Greenspan [14] and Pedlosky [22].)
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As the system evolves in' time, .energy piles up along the western boundary
and a strong current or jet develops. Nonlinear effects now become important.:
the flow is neo longer symmetric with respect to the east-west axis and the
current intensifies towards the north. The width of the viscous layer is smaller
than that of the jet which is due purely to inertial effects and as a result of an

existing adverse pressure gradient along the wall the viscous layer separates,

Finally, if the friction terms and the dissipation of vorticity along the
western boundary are strong enough to balance the vorticity generated by the
wind stress, a steady state is reached. For large values of F,/4* (depending on
E.), the steady flow is no longer stable, a small region of recirculation appears
and the flow becomes periodic in time. (The characteristic time scale for these

processes is 1/6.)

In Figures 15a-15¢ we show contour plots of the numerical values of the
stream function and the vorticity obtained at {=25. Notice the high concentra-
tion of vorticity and the formation of the jet along the western portion of the
boundary; notice also the smoothness of the solution in the interior of the basin
and the difference in thickness of the boundary layers corresponding to the

stream function and the vorticity respectively.

Figures 16a-16c show the solution at £=50 where the jet has already
separated. Finally, in Figures 17a-17¢ we show the flow at {=100 which is now
slowly evolving. Figures 17c-17d show the contour lines of the golution in the
stretched variables 3 and 7+ sharp gradients have been properly resolved.
(Recall that there are 25 grid points in the radial direction and 70 points in the
angular direction.) The program was not run long enough to reach the steady

state which is estimated to occur at £& 5/.

In order to check the accuracy of the solution, we increased Ny the number

of points in the angular direction, to 128 keeping the other parameters that
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define the mesh unchanged. The results obtained were unchanged to within
0.19% when the same time step was used. Each time iteration for this new mesh

took 0.10 seconds.

The constraint £ < 0.05 is impractical since the time scale on which the
numerical solution evolves is 0(10). Our next step therefore is to use the solu-
tion to study which terms should be computed implicitly in time to get a stabil-

ity limit on the time step at least of 0{1).

The local stability conditions due to the advection terms are of the form

kFE, l.'l'_"'.l

I <1, (4.9a)

where |u ] is the local magnitude of the velocity field and ¢ is a local mesh size.
In the interior mesh this condition translates into k< 1. Using the numerical
values for |u | over the polar mesh we obtain a constraint of the same order for

the time step.

For the diffusion terms the stability limnit is

RkE,
62

<1, (4.9b)

and in the polar grid the minimum upper bound cccurs at the boundary with

k< 0.04.

This suggests a more practical numerical approximation to (4.1). The
method consists in updating the vorticity in the interior using the previcus
explicit scheme in time, We then interpolate to obtain the values of the vorticity
in the innexjniost circle of the polar grid. In order to update the vorticity on the
annulus we use the following discretization in time (written in Cartesian coordi-

nates)



-119 -

(o gmty w R, (g (4 B 4y (B0 1 B (00)

=T = S ST SRS (M g+ B (AT AT

which is a linear equation, related to the biharmonic, for the new values of the
vorticity ¢**!. The boundary values correspond to the the usual no-slip condi-

tion, that is, if we solve
AymHl = gmtl with g"mti(r=1)=0,

we should obtain ¢/ *!(r=1) = 0.

In order to solve for ¢™*!, we consider an iteration scheme which involves
solving the Laplacian over the composite mesh and an elliptic problem on the
annulus. This iteration scheme is presented in Israeli [16]. In the iteration, we
guess the new values of the vorticity on the wall E‘:E,o) using an extrapolatidn pro-
cedure. With these values we compute for the vorticity E«‘(l) on the annulus and
then the corresponding stream function @tl) using the boundary conditions

{r=19=0. We now improve the guess for the vorticity on the wall using
)
G =M+ K g%r(r:l.ﬂ) . (2.12)

where the constant K has to be appropriately chosen. (See Israeli [16].)

We plan to develop a computer code using this method and use it to exam-

ine the various assumptions that have been made regarding the solution of this

ocean model.
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cartesian mes

COMPUTED SOLUTION

~ contour from -0.5600 to 0.5600
our interval of 0.70e-01

WAVE EQUATTION
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T=29.0 N = 600 WAVE EQUATION

cartesian mesh

Figure 6a

COMPUTATIONAL ERROFR

polar mesh

Figure 6b

contour from -0.22e-01 to 0.22e-01

contour interval of 0.87e-03
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contour from -0.32e-01 to 0.32e-01
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Figure 8a

Figure 8b
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T =9.42 N.=1200 ] RIGID ROTATION

Figure 10a

contour from -0.90e-02 to 0.90e-02

contour interval of 0.10e-02

COMPUTATIONAL ERROR

T = 9.42 N =1200

—
i/ Figure 10b

contour from -0.63e~02 to 0.63e~-01

contour interval of 0.70e-03
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Figure 1lec
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contour interval of 0.10e-02
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computational error

Figure 12¢
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Figure 13a

Figure 13b
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Computational Mesh
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T = 25,300 N =1000 STREAM FUNCTION
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Figure 15a
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Figure 15p
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T = 25.000 N =1000 VORTICITY
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T .00 N 3000 STREAM FUNCTION
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Figure l6a
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Figure 16b
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T = 100,000 N =4000 STREAM FUNCTION
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Figure 17a
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Lg-Error for the Dirichlet Problem

Uniform Meshes

Mesh T Mesh I7 Mesh 17 Mesh IV

storage 9742 47044 120820 125906
Ny 295 949 2007 1889
to=1 3.01F-03 | 6.41F-04 2.B4FE-04 5.47F-04
w=2 5.0BE-03 | 7.08K-04 254F-04 1.0RE-03
w=23 1.20£-02 | 1.59E~-03 5.Y7E—-04 1.1RE-03
=4 4.49F~-02 | 8.81F5~03 3.60E-03 2.91FE-083
w=5 3.52FA~02 | B.74FE-03 2.24E-03 3.365-03
=86 3198 -02 | 5.Y7E-03 2.37E-03 4,395 -03
=7 8.58E£-02 | 7.49F-03 3.04E-03 5,575 -03
tw=8 9.64F-02 | 1.05£-03 4.12E-03 7.06E-03

Tahle 1




Lg-Error for the Dirichlet Problem

Non-Uniform: Meshes

Mesh I Mesh IT Mesh T Mesh IV

storage 8092 43780 118592 1186126
N, 295 949 2007 1889
o 1.98E—05 3.13E-05 | 3.91E—05 | 3.31£-05
w=1 5.14E-02 @ 6.17E-03 | 433E-03 | 3.04£-03
w=2 B.13E-02  9.835-03 | 6.145-03 | 5.05£-03
w=3 1..6E-01 | 1.395-02 | 6.84E-03 | 6.53£-03
w=4 1.51F~01 | 2.256-02 | 9.356-03 | :.04E-02
w=5 1.535-01 | 2.0686-02 | 8.76E-03 ' -.26F£-02
=6 1.235-01 | 2.216-02 | 9.67E-03  1.82E-02
W=7 1.52E-01 | 2.635-02 | 1.11E-02 | 2.07E-02
w=8 | 2.60E-01 | 3.24E—-02 | 1.31E-02 | 2.56£-02

Table 2
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