Endogenous Gene Regulation by DNA Binding Polyamides

Thesis by

Nicholas George Nickols

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California
2008
(Defended 5 June 2007)
© 2008
Nicholas George Nickols
All Rights Reserved
For my family
Acknowledgements

I would like to express gratitude to my advisor, Professor Peter Dervan, for the privilege to work under his guidance in a research group that has been and continues to be filled with exceptionally intelligent and motivated individuals. His scientific vision and intellectual leadership are models for all of us who have studied with him. During my time in graduate school I have had the enviable opportunity to collaborate with a number of outstanding people. Tim Best, Ben Edelson, Bobby Arora, Bogdan Olenyuk, Jim Puckett, Claire Jacobs, Michelle Farkas, Ryan Stafford, Mike Brochu, Mazen Karaman, Joe Hacia, John Phillips, and Katy Muzikar: it has been my pleasure to work side by side with all of you. In addition to all of the people mentioned above, I would also like to thank Ray Doss, Michael Marques, Eric Fechter, Adam Kerstien, Justin Cohen, Jim Sanchez, Dave Chenoweth, Christian Dose, Sherry Tsai, Carey Hsu, Mareike Goeritz, Dan Harki, Julie Poposki, Shane Foister, Jason Belitsky, Victor Rucker, and Professor Michael Warring for valuable insight into science and for their friendship.

However, most of all I would like to extend huge love and appreciation for my family. Family is the most important thing in the world. That’s it.
Abstract

Cells integrate stimuli through networks of proteins that affect programs of gene expression. The expression of genes is controlled by transcription activators and repressors that recruit or inhibit the recruitment of transcription complexes to the promoters of target genes. Molecules that can specifically modulate these protein-DNA interfaces could have significant applications in human medicine. Polyamides containing N-methylimidazole (Im) and N-methylpyrrole (Py) comprise a class of programmable DNA-binding ligands capable of binding to a broad repertoire of DNA sequences with affinities and specificities comparable to those of natural DNA-binding proteins. Numerous polyamide-dye conjugates localize in the nuclei of cultured cells. Multiple studies have shown that polyamides are capable of displacing DNA binding proteins from their target sites in a sequence specific manner. Early experiments in viral systems showed that polyamides can be active in cell culture. This thesis describes the use of polyamides to modulate the activity of two transcription activators: hypoxia inducible factor 1 (HIF-1) and androgen receptor (AR). Direct inhibition of the HIF-1-DNA and AR-DNA interfaces has relevance to human cancer. A polyamide that targets the hypoxia response element (HRE) binds its target site with high affinity and inhibits the expression of Vascular Endothelial Growth Factor (VEGF) and other HIF-1 induced genes in cultured cells. Similarly, a polyamide that targets the androgen response element binds its target site with high affinity and inhibits the expression of prostate specific antigen (PSA) and other androgen-induced genes in cultured cells. In both systems, the inhibition of target genes is consistent with a decrease in the occupancy of the transcription factor at relevant loci. The genome-wide effect of the HRE-targeted polyamide was compared to that of siRNA against HIF-1α. Remarkably, a comparable number of genes were affected by the HRE targeted polyamide as by the siRNA. The effect of the ARE targeted polyamide was compared to the synthetic antiandrogen bicalutamide. The polyamide and bicalutamide had a comparable effect on PSA expression, and genome-wide expression analysis reveals that both affected a similar number of transcripts. In addition, HIF-1α siRNA and bicalutamide affected nearly all genes induced by hypoxia or androgen, respectively, while the HRE- and ARE- targeted polyamides affected a subset of each pathway that could be consistent with the DNA binding preferences of the polyamides. The data suggest that polyamides can be used to modulate the activity of selected transcription factor pathways.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures and Tables</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Inhibition of Vascular Endothelial Growth Factor with a Sequence-Specific HRE Antagonist</td>
<td>26</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Improved Nuclear Localization of DNA Binding Polyamides</td>
<td>53</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Modulating Hypoxia Inducible Transcription by Disrupting the HIF-1-DNA Interface</td>
<td>80</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Suppression of Androgen Receptor Mediated Gene Expression by a Sequence-Specific DNA Binding Polyamide</td>
<td>109</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Gene Expression Changes in Saccharomyces cerevisiae in Response to Sequence-Specific DNA-Binding Polyamides</td>
<td>131</td>
</tr>
</tbody>
</table>
Chapter 7 A Brief Study on the Distribution of Polyamide-Dye Conjugates Between Cells...155

Appendix A ..159

Appendix B ..169

Appendix C ..177

Appendix D ..181
List of Figures and Tables

Chapter 1

Figure 1.1	Activation of three representative signaling pathways and their targets	3
Figure 1.2	Depiction of an active transcription complex	6
Figure 1.3	The structures of DNA	7
Figure 1.4	Crystal structures of three DNA-binding proteins	8
Figure 1.5	Crystal structures of two DNA-binding natural products	9
Figure 1.6	Crystal structure and pairing rules for minor groove recognition by polyamides	10
Figure 1.7	Hairpin polyamide structures with putative hydrogen bonds	12
Figure 1.8	Polyamide structural motifs	13
Figure 1.9	DNA binding proteins inhibited by polyamides	14
Figure 1.10	Crystal structure of a hairpin polyamide bound to the nucleosome core particle	15
Figure 1.11	Cellular localization of polyamide fluorescein conjugates	16
Figure 1.12	Cellular localization of 22 polyamide-dye conjugates in a panel of cultured cells	17

Chapter 2

Figure 2.1	Regulation of HIF-1 activity	28
Figure 2.2	Structures of polyamides used in this study	30
Figure 2.3	Determination of DNA binding affinity, HIF-1-DNA	
gel-shift activity, and uptake of polyamides

Figure 2.4 Inhibition of VEGF expression

Figure 2.5 Inhibition of a VEGF-Luc reporter construct

Figure 2.6 Effects of HIF-1α siRNA on VEGF expression

Table 2.1 Expression of selected HIF-inducible genes

Figure 2.7 Venn diagrams of affected genes

Figure 2.8 Inhibition of endothelin 2 expression

Figure 2.9 Inhibition of VEGF expression in A549 cells

Chapter 3

Figure 3.1 Structures of polyamide-fluorescein conjugates

Figure 3.2 Binding schematic, cellular uptake, and effects on VEGF expression of polyamide-fluorescein conjugates

Table 3.1 Equilibrium association constants

Figure 3.3 Structures of polyamides

Figure 3.4 Inhibition of VEGF expression and DNA-binding properties of polyamides

Figure 3.5 Inhibition of VEGF expression by polyamides and mismatch controls

Figure 3.6 Dose-dependent inhibition of VEGF by isophthalic-acid conjugates

Figure 3.7 Activity of polyamides in U251 and MCF7 cells

Figure 3.8 DNase I footprint titrations for polyamides used in this study

Table 3.2 MALDI-TOF MS data
Chapter 4

Figure 4.1 Approaches to inhibiting HIF-1 induced gene expression.................85
Figure 4.2 DNase I footprinting experiments of polyamides and echinomycin.......86
Figure 4.3 Effects on VEGF and FLT1 expression...88
Table 4.1 Numbers of transcripts affected...91
Figure 4.4 Genome-wide effects of polyamide, siRNA, and echinomycin..................93
Figure 4.5 Venn diagrams of affected transcripts...94
Table 4.2 HIF-1 induced genes, HRE sequences, and affects from polyamide and siRNA..95
Figure 4.6 Chromatin immunoprecipitation of HIF-1 at multiple loci.................96
Table 4.3 Equilibrium association constants..97

Chapter 5

Figure 5.1 Crystal structure of androgen receptor bound to DNA.......................111
Figure 5.2 Androgen receptor activation in prostate cancer..............................112
Figure 5.3 Targeting androgen receptor mediated gene expression.....................114
Figure 5.4 Binding of polyamides to the PSA ARE and gel-shift experiments116
Figure 5.5 Inhibition of DHT-induced PSA and FKBP5 expression.......................119
Figure 5.6 Genome-wide effects of polyamides and bicalutamide......................120
Table 5.1 Number of transcripts affected..121
Table 5.2 Fold-changes of selected AR-target genes...121
Figure 5.6 Effects on KLK2 and TMPRSS2 ... 126

Chapter 6

Figure 6.1 Structures of polyamides .. 137
Figure 6.2 Effects on yeast growth rates ... 138
Figure 6.3 Localization of polyamide-Bodipy conjugates 139
Figure 6.4 Transcriptional responses to polyamides 140
Table 5.1 Expression changes of annotated genes by polyamide 1 148
Table 5.2 Expression changes of annotated genes by polyamide 2 149
Table 5.3 Expression changes of annotated genes by polyamide 3 150

Chapter 7

Figure 7.1 Structures of polyamides .. 157
Figure 7.2 Cellular localization of polyamides ... 157

Appendix A

Table A.1 Transcripts induced by DFO .. 160
Table A.2 Transcripts inhibited by polyamide and induced by DFO 167

Appendix B

Table B.1 Transcripts induced by DHT .. 170
Table B.2 Transcripts inhibited by polyamide and induced by DHT 175