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Humanity's deepest desire for knowledge is justification
enough for our continuing quest. And our goal is nothing
less than a complete description of the universe we live in.

—Stephen Hawking,
A Brief History of Time
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Abstract

A series of rigid and semi-rigid donor-spacer-acceptor complexes,
[Ir(,u»pz*)(CO)(thP-O-C6H4-(CH2)n-py+-R)]2 (pz* = 3,5-dimethylpyrazolyl; CgHy =
phenylene; py” = pyridinium; R = H, 4-tert-butyl, and 4-amide; and n = 0, 1, 2, and 3),
has been synthesized for the purpose of studying photoinduced electron-transfer (ET)
reactions. The spacers separating the iridium center (electron donor, Iry) and pyridinium
cation (electron acceptor, py”) are based on terminal phosphinite ligands, consisting of a
phenylene group and a number of methylene groups ranging from O to 3. Three distinct ET
reactions can be studied in each complex: singlet excited-state electron transfer ( 1ET),
triplet excited-state electron transfer (3ET), and thermal back electron transfer (ETb).

Atomic positions, obtained from the X-ray crystal structure of
[Ir(u-pz*)(CO)(Ph,yP-O-CgHy-CHs],, were used as a basis for molecular mechanics
calculations, furnishing solution structures for the series of Ir,-py* donor-acceptor
complexes. These results revealed that the spacers in complexes where n =0 and n = 1 are
rigid, and that in complexes where n =2 and n = 3, the spacers are semi-rigid, taking on
either folded or stretched conformations in fluid solution.

Steady-state and time-resolved emission and absorption experiments were employed to
determine 'ET, 3ET, and ETP rates in these complexes. The IET and 3ET rates for the
n =2 and n = 3 complexes exhibit Gaussian free-energy dependence, in excellent
agreement with classical ET theory (n = 2: A = 1.10 eV, Hpy =26 cm’l; n=3: A =
1.05eV and Hpy =7 cm’!). However, the 'ET and *ET ratesinn=0and n = 1
complexes exhibit dramatically different behavior: the 3ET rates in these rigid complexes
are on the order of 10,000 times slower than the corresponding 'ET rates. Hp s for the
ETP reactions (n =1, 2) are similar to those of the corresponding IET reactions. These
results are discussed in terms of the solution structure parameters obtained for the series of
donor-acceptor complexes. Evidence that through-bond and through-space couplings play

different roles in singlet and triplet electron transfer is presented for the first time.
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Chapter 1

Introduction and Background



Electron-transfer (ET) reactions play a central role in many chemical and biological
processes.!3 For example, energy production in both plants and animals is a direct
consequence of ET occurring in cells.# The most extensively studied biological electron-
transport process is photosynthesis occurring in purple bacteria®>8 (two species of which
have been structurally characterized®-11). These organisms capture the energy of sunlight
and through a series of efficient electron-transfer steps, convert it to chemical energy in the
form of long-lived oxidative and reductive species. These remarkable reactions occur
between several distinct redox components contained within the so-called reaction center
(RC). Following light absorption, a bacteriochlorophyll dimer in its singlet excited state
transfers an electron, on a picosecond time-scale, to a monomeric bacteriochlorophyll
which in turn reduces a quinone, again on a subnanosecond time-scale. The competing
back ET reaction to the ground state is ~4,000 times slower than the forward charge-
separating reaction. Clearly, an understanding of the precise role the medium plays in
determining ET rates, the nature of the high quantum yields, and the origin of the
diminished back ET rates is important in the effort to mimic these reactions that lead to
efficient conversion of light into chemical energy. However, there are fundamental
limitations at present in the ability to manipulate such a complicated natural system. Model
compounds that actually mimic important features of the RC thus have a valuable role to
play in unraveling the mysteries of RC function.1#-20

Many model systems have been prepared in an effort to understand the effects of (1)
electronic parameters such as donor-acceptor distance and relative orientation!216.17.21,22
and the chemical nature of the medium,?-26 and (2) nuclear parameters!327-29 such as
solvent and internal reorganization energies, and thermodynamic driving forces.

This thesis deals with the mechanistic aspects of photoinduced intramolecular electron
transfer in iridium d8-d® complexes. Many of the questions posed above will be addressed
in the following chapters with the ultimate goal of coupling photoinduced charge transfer to

bond-forming chemical reactions (as occurs in photosynthesis) in mind. Our studies have



focused on d8-a® complexes because they are powerful excited state reductants and their
corresponding a8-d’ complexes are reactive toward C-X and C-H bond activation. This
chapter reviews theoretical models associated with electron-transfer reactions, introducing
relevant concepts and terminology, and presents a summary of the systems that inspired

this research.

Electron Transfer Theory: An in-depth description of all existing electron-transfer
theories (for some examples see refs. 2,30-37) is beyond the scope of this thesis (and the
author), however, a brief review of classical ET theory3!-33 (where nuclear tunneling
effects are neglected) will be provided.

All theoretical expressions for the rate of electron transfer between two redox sites
consist of two important components; an electronic factor and a nuclear factor. The nuclear
factor can be discussed by considering the potential-energy curves in Figure 1.1. In this
figure, the reactant and product potential curves (representations of multi-dimensional
potential surfaces) are drawn along a reaction coordinate ¢ which represents the positions
of all the nuclei in the system (including solvent). For electron transfer to occur, the
system must attain a geometry that is intermediate between that of the reactants and
products (a statement of the Franck-Condon principle), corresponding to the intersection of
the potential surfaces. The horizontal displacement of the two wells gives an indication of
the extent of nuclear motion involved in the electron-transfer event. The energy involved in
moving all the nuclei to their appropriate positions is referred to by Marcus as the
reorganization energy, A, from inner sphere effects (A;,) and from outer sphere effects
(Aoup)-3® Ay includes changes in bond angles and bond lengths in the molecule itself while
Aout includes changes in solvent configuration, and is largely due to the repolarization

energy of the solvent associated with the charge transfer reaction.



Figure 1.1. Product and reactant potential energy surfaces plotted as a function of
nuclear coordinates (q), showing free energy change for the reaction (AG®), and solvent
and internal reorganization energy (A).
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Once a suitable nuclear configuration has been reached, the fate of the transferring
electron lies in the electronic factors. If there is no electronic interaction between the wave
functions representing the donor and acceptor sites, the surfaces will intersect, and the
reaction cannot occur. If, however, there is an electronic interaction, the intersection of the
two curves results in an avoided crossing, a consequence of overlap between the reactant
and product electronic wavefunctions. This situation is represented in Figure 1.2. The
overlap causes a splitting of the two surfaces by an amount 2Hp, (electronic coupling
matrix element). The magnitude of this interaction energy, which is the main concern of
this thesis, depends on structural parameters such as donor-acceptor distance and
orientation. If Hp, is large enough (Hp, > ~100 cm'1), the system remains on the lower
surface when passing through the intersection region, with unit probability. This situation
is termed the adiabatic limit and is represented by an electronic transmission coefficient, kg,
equal to one. However, when Hpy, is small (Hp, <~10 cm’Y), the splitting between
surfaces is also small, and the system can sometimes jump to the upper surface, retaining
an electronic configuration indicative of the reactants. It may therefore pass through the
transition state many times without proceeding on to products. Such a system is said to be
nonadiabatic, and is characterized by a value of k; less than unity.

Electron-transfer rates can be expressed in terms of these electronic and nuclear factors
by eq 1.1, where vyis the effective frequency for nuclear motion (kv represents the
activationless reaction rate constant), and FC is the Frank-Condon factor for electron
transfer. Electron-transfer rates in the nonadiabatic limit have been treated classically by
Marcus,3!-33 and can be expressed by eqs 1.2 and 1.3, where AG® is the free energy
change for the reaction.

One of the most remarkable predictions of Marcus theory is that for very exergonic
reactions the rate constant should decrease with increasing driving force. The range in
which such behavior is predicted to occur (-AG® > A) is termed the inverted region.

Naturally, the region (-AG® < A) where reaction rates behave normally (increasing with



Figure 1.2. Representation of the avoided crossing at the transition state region,
showing the interaction energy, Hp,. If electron transfer is adiabatic (x = 1), the reactants
pass with unit probability to the lower product surface. If, however, the reaction is
nonadiabatic (x < 1), the system can be excited to the higher energy surface and may have
to pass through the transition state many times before being converted into products.
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km- = K'EVN(FC) (1.1

~(AG"+2)
ken = (m/ h’%kBT)“Z(H.b)zexp(—(—gé;)—) (12)
X=1m+lom (1.3)

increasing driving force) is termed the normal region.

The inverted region has attracted a great deal of attention. Its experimental
confirmation has only recently become available,!322:273942 Jending strong support to the
validity of Marcus theory for electron transfer. With an adequate knowledge of electron
transfer theory in hand, we proceed with an outline of the studies that motivated the
research presented in this thesis.

Our research regarding photoinduced electron transfer in a8.a8 compounds began
several years ago with a driving force study of excited-state electron transfer between a
pyrazolyl-bridged iridium dimer and a series of substituted pyridiniums dissolved in fluid
solution.*3* The results from these bimolecular reactions, summarized in Figure 1.3,
demonstrated the reactivity of the metal localized triplet excited state (3Ir2*) with respect to
electron transfer. The expected increase in ET rates at low driving forces was observed;
however, the inverted region predicted by Marcus theory was elusive due to diffusion
limited reactions at high driving force. The reactivity of the higher lying singlet excited
state (IIrZ*) also remained a mystery, presumably due to the subnanosecond intrinsic
lifetime of the iridium dimer, (COD)Ir(u-pz),Ir(COD). The limitations inherent in this
study led to the synthesis of a redox system that eliminated bimolecular diffusion as a rate
limiting process. This was accomplished in a series of complexes,
[Ir(u-pz*)(CO)(Ph,PO-CH,CH,-py*-R)], (R = -H, -2,4,6-(CH3)3, -4-CH3, -4-Ph),
where the pyridinium cation (acceptor) was covalently linked to the iridium dimer

chromophore (donor) via a phosphinite ligand.2”4346 With the elimination of bimolecular
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Figure 1.3. The driving force dependence data of Marshall et al., displaying diffusion
limited electron-transfer rates at high driving forces.
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diffusion, this system revealed the reactivity of llirz* toward electron transfer and the
elusive inverted region. Figure 1.4 summarizes the data obtained from the linked donor-
acceptor complexes. The singlet, triplet, and recombination ET rates were fit to classical
Marcus theory with the same set of nuclear and electronic parameters (Hpy = 24 cm-l,

A =1.05eV). The origin of this surprising result was difficult to ascertain due to the
flexible nature of the bridge (-P-O-CH,-CH;-) separating the donor and acceptor groups.
The effect of the intervening medium on Hp, was therefore not possible to determine.
Thus, we set out to design a donor-spacer-acceptor system that would facilitate the study of
medium effects on intramolecular electron transfer. This was accomplished by
incorporating a structurally rigid group into the bridge separating the iridium donor and
pyridinium acceptor sites. The goals of this research were (1) to explore the effects of the
intervening medium on electron transfer with respect to donor-acceptor distance and
orientation, and (2) to determine if differences between singlet and triplet electronic
couplings would arise in a system that effectively eliminated direct donor-acceptor
interaction.

In this chapter, concepts concerning electron-transfer reactions and the importance of
understanding the factors that control them have been presented. Chapter 2 outlines the
preparation and characterization of a series of iridium d8-g8 donor-acceptor complexes. In
Chapter 3, a discussion of their solution structures, obtained from the X-ray crystal
structure of [Ir(u-pz*)(CO)(PhyP-O-CgHy4-CH3)], and molecular mechanics calculations,
is presented. Chapter 4 is concerned with spectroscopic (steady-state absorption,
emission, and excitation) and electrochemical properties of the complexes. These data were
used to construct a state diagram of the metal localized and charge-transfer excited states,
from which electron-transfer driving forces were extracted. Finally, in Chapter 5,
photoinduced (forward) and thermal (back) electron-transfer rates were measured from
time-resolved absorption and emission experiments. These results are discussed in terms

of through-bond and through-space mechanisms.



-13-

Figure 1.4. The driving force dependence data of Fox et al. IET (m); 3ET (a); and
ET® (®). The dashed line is the best fit of these data to classical Marcus theory
(Hpa =24 cm™l, A = 1.06 V).
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INTRODUCTION

Electron-transfer (ET) reactions between donor and acceptor groups are governed by
parameters that express the nature of the intervening medium, the free energy change for
the reaction, and relative donor-acceptor distance and orientation. A majority of studies
until the last decade had been conducted on systems where the donor and acceptor were
dissolved in fluid solution.!# In these systems, electron transfer occurs only when
diffusion brings the donor and acceptor groups within a contact distance necessary for
reaction. However, more recently, numerous /inked donor-acceptor complexes have been
synthesized and studied.>?> Two major classes of bridges have been used to link donors
and acceptors: (1) flexible bridges such as hydrocarbon chains® ¢ 23-27 and (2) rigid or
semi-rigid bridges such as ring systems’9- 14-19. 21,23, 28 or peptide bonds.24 2930

If the bridge is flexible and not too long, it serves to bring the donor and acceptor
together, much the way donor and acceptor groups interact in bimolecular reactions, but at
a much higher frequency. This type of bridge nearly eliminates the troublesome
complication of diffusion limited electron-transfer rates.?

Alternatively, if the bridge is semi-rigid or completely rigid it can serve to orient the
donor and acceptor in a specific geometry. Depending on the nature of the bridge it can

also provide multiple electron-transfer pathways. For example, in the hypothetical donor-

Figure 2.1. Structures of model rigid donor-
spacer-acceptor complexes, demonstrating the
concept of through-bond versus through-space
electron-transfer mechanisms.
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acceptor complex 1 (Figure 2.1), bridged by a rigid spacer, electron transfer from the
donor to the acceptor can occur via the hydrocarbon chain (through-bond mechanism)
and/or via a direct interaction between the donor and acceptor (through-space mechanism).
On the other hand, the through-space mechanism in 2 is unlikely to be a contributing factor
in the transfer of electrons from the donor to the acceptor due to the large through-space
separation. Therefore, only through-bond mechanisms will be important in determining the
electron-transfer rate in 2. From a study of the ET rates in these complexes, a distinction
between through-space and through-bond mechanisms can be established. If the ET rates
turn out to scale with the number of carbon atoms between the donor and acceptor, we
would deduce that the through-bond mechanism in 1 is the only mechanism operable (the
dependence of electron-transfer rates on the number of intervening carbon atoms can be
determined by extending the series further to include complexes with more than two
intervening norbornane groups). However, if the ET rates did not scale with the number of
carbon atoms in the bridge, and the electron-transfer rate in 1 was unexpectedly fast, then
we would deduce that through-space interactions in 1 are the primary contribution to the
overall coupling of the donor and the acceptor. This example demonstrates some of the
advantages of linking donors and acceptors with rigid spacers in studies aimed at
elucidating orientation, distance, and through-space vs. through-bond effects on electron-
transfer rates.

The donor-acceptor complexes used in the present study utilize rigid and semi-rigid
bridges to link donor and acceptor groups. These complexes, shown in Figure 2.2, are
represented as [Ir(u—pz*)(CO)(thPO-C6H4-(CHZ),,-py"'-R)]2(PF6')2, where pz* =
3,5-dimethylpyrazolyl, Ph = phenyl, -CgH,- = phenylene, py™ = pyridinium, and
n=0,1,2,3. They are similar to a8-a8 compounds of previous bimolecular and
unimolecular ET studies conducted in our laboratory in which pyrazolyl-bridged iridium
dimer chromophores were used as electron donors and pyridinium groups (in solution or

covalently attached to the donor) were employed as one-electron acceptors. In the present
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Figure 2.2, Structure of donor-spacer-acceptor complexes,
[Ir(u-pz*)(CO)(PhyPO-CgHy-(CH),-py*-R)],, where the iridium center (Iry) and
pyridinium group (py™) act as electron donor and electron acceptor. Ph = phenyl, n =0, 1,
2, or 3, and R = H, 4-r-butyl, or 4-amide.
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study the pyridinium acceptor was covalently attached via a phosphinite ligand to the metal
center. A phenylene bridge was incorporated into the bridge separating Ir, (donor) and py*
(acceptor). In all but one molecule the phenylene bridge was 1,4-disubstituted (in one
molecule the phenylene group was 1,3-disubstituted). The number of methylene groups,
n, bridging the pyridinium acceptor to the phenylene group, was varied fromn=0to 3. In
addition, the pyridinium R group was varied in n = 1 complexes.

As will be demonstrated in Chapter 4, intramolecular electron-transfer studies also
require that model complexes, in which only the donor is incorporated into the complex, be
prepared. Therefore, complexes of the type, [Ir(u-pz*)(CO)(PhyPO-CgHy-Y)1,, where
Y is a poor electron acceptor (CH3 or CH,-Quin*PF") have been synthesized.

In this chapter the syntheses of the series of donor-acceptor complexes and two model
complexes are presented. The characterization of all the molecules by 14, 3'P NMR and IR
spectroscopies is described. The complexes will, from here on, be denoted as [Ir;]-R.
[Ir,] represents the iridium dimer core including the pyrazolyl bridge and carbony! ligands,
the diphenyl phosphine group, and the oxygen atorn and phenylene group of the bridge,
i.e., [Irp] = (-CgHy-O-PhyP)(CO)Ir(u-pz*),Ir(CO)(PhyP-O-CgHy-). R denotes the

remainder of the bridge and in all but the two model complexes, the pyridinium acceptor.

EXPERIMENTAL

Materials:

Tetrahydrofuran was distilled from sodium/benzophenone. The color of the
solvent/drying agent prior to distillation was dark blue or purple. A yellow color indicated
the presence of HyO or O, at unacceptable levels. Methylene chloride was distilled from
calcium hydride under argon. Acetone and ethanol were spectral grade in quality and used

as received. Acetonitrile was either dried over activated 3A Linde sieves for 24 hrs and
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distilled onto freshly activated 34 sieves for storage in the dry box (VAC Atmospheres) or
the acetonitrile (Burdick & Jackson) was used directly from freshly opened bottles and
stored over Linde 3A molecular sieves for at least three days. Synthesis of
N,N-dimethyl-P,P-diphenylphosphine is described elsewhere.>! Tetracarbonyl-
bis(u-3,5-dimethylpyrazolyl)diiridium(T), [Ir(u-pz*)(CO),],, was prepared according to
previously established procedures.32 All other chemicals were of reagent grade or better

and were used as received.

Physical Measurements:

TH spectra were recorded on either a JEOL FX-90Q or JEOL GX-400 FT
spectrometer. IH chemical shifts are reported in ppm () using the solvent
(CHDCl, 85.32, CHD,CN 81.93, CD3COCHD,, 82.04, or HOD 64.63) as an internal
standard. Proton decoupled 31p NMR spectra were recorded on a JEOL FX-90Q
spectrometer and referenced to external 85% aqueous phosphoric acid. IR spectra were
recorded as Nujol or fluorolube mulls, KBr pressure pellets, or in dichloromethane
solutions on a Beckman Instruments IR-4240 spectrometer or on a Perkin-Elmer 1600

FTIR. Elemental analyses were obtained at the Caltech analytical facility.

Synthesis of Phenols:

N-(4-hydroxyphenyl)pyridinium, HO-CgH4-py* (n = 0): disodium 4-nitrophenyl
phosphate hexahydrate (0.31 g, 1.4 mmoles), pyridine (4 mL) and HyO (25 mL) were
added to a Schlenk flask. The flask was immersed in an HO filled, jacketed dewer fitted
with a Pyrex window (Figure 2.3). A refrigerated cold unit was attached to the dewer and
water was circulated at 4°C. While compressed air was directed at the window, to prevent
condensation, the sample was broad-band irradiated with excitation from a 1000 W lamp
for 24 hrs, upon which the solution turned from pale yellow to bright yellow. The reaction
mixture was then evaporated to dryness, leaving a dark yellow residue. The solid was

dissolved in 3 mL H,O followed by the addition of 20 mL of ethanol which forced the
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Figure 2.3. Apparatus employed in the synthesis of HO-C6H4-py+.

precipitation of the pyridinium salt. The solid was collected by filtration and dissolved in
concentrated hydrochloric acid (25 mL) in a round bottom flask fitted with a Kontes Teflon
needle valve. The solution was stirred for 24 hrs at 100°C in the closed system which
resulted in the hydrolyzes of the phosphate group. The solvent was again removed in
vacuo. Ethanol was added to the solid (dissolving the desired product), and the solution
was filtered and evaporated in vacuo yielding the crude product as a red oily residue. 1 mL
of HyO was added followed by 5 mL of a saturated H,O solution of ammonium
hexafluorophosphate which caused the precipitation of the hexafluorophosphate salt of the
desired product, HO-CgHy-py™.

N-(4-hydroxyphenylmethyl)pyridinium, HO-CgH4-CH,-py* (n = 1): p-cresol
(21.13 g, 0.195 moles) was dissolved in dry THF (30 mL) and triethylamine (27.2 mL,
0.195 moles) was added to the solution. Acetylchloride (13.9 mL, 0.195 moles) was

added slowly to the reaction mixture which caused the immediate precipitation of a white
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solid. The solution was stirred for ~30 min to ensure complete consumption of the starting
material. The product, which is soluble in THF, was separated from the insoluble
byproducts by filtration, the solvent was evaporated in vacuo, and the crude product was
fractionally distilled yielding AcO-CgHy-CHj3 as a colorless liquid (24.4 g).
AcO-CgHy-CH3 (24.4 g, 0.163 moles) was dissolved in carbon tetrachloride (50 mL) and
freshly recrystallized N-bromosuccinimide (28.9 g, 0.162 moles) was added as well as
tert-butyl hydroperoxide (0.1 mL) which acts to catalyze the reaction. The reaction vessel
was fitted with a condenser and under constant supervision the mixture was stirred
vigorously and heated to reflux. Several minutes after reflux temperature was reached a
dark orange gas formed above the solution (presumably Bry gas) and the solution itself
turned red. After ~15 min the solution cleared and the Bry gas was consumed. The solvent
was removed in vacuo leaving AcO-CgHy-CH,Br as yellow oily residue.
AcO-CgHy4-CH;Br (2 g) without further purification was then dissolved in neat pyridine
(20 mL) and stirred for 24 hrs. The reaction mixture was filtered and the solid was dried at
40°C yielding AcO-CgHy-CH,-py*Br’. A pyridine molecule of solvation still remained (as
evidenced by n NMR) after rigorous drying. No further attempts were made to remove
the pyridine and the next reaction was conducted with the unpurified compound.
AcO-CgHy-CH,-py* Br -pyridine was dissolved in 30 mL H,O and 0.5 mL of 48% HBr
was added. The solution was stirred vigorously for 24 hrs. followed by the addition of a
large excess of a saturated water solution of ammonium hexafluorophosphate. The
hexafluorophosphate salt of HO-CgH,-CH,-py* was separated from the solution by
filtration and washed extensively with H,O until the washings were of neutral pH.

N-(4-hydroxyphenylmethyl)quinuclidinium, HO-CgH4-CH,-Quin™ (n = 1): The
synthesis of this complex was conducted by the same procedure as described for
HO-CgH,4-CH,-py™ except quinuclidine was used instead of pyridine. The reaction of 1 eq
of quinuclidine with AcO-CgH,4-CH,Br was conducted in THF.
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4-tert-butyl-N-(4-hydroxyphenylmethyl)pyridinium, HO-CgH4-CH,-py*-tB
(n = 1): The synthesis of this complex was conducted by the same procedure as described
for HO-CgHy-CH,-py™ except 4-¢-butylpyridine was used instead of pyridine. The
reaction of 1 eq of 4-z-butylpyridine with AcO-CgHy-CHyBr was conducted in THF.

4-amido-N-(4-hydroxyphenylmethyl)pyridinium, HO-CgH4-CH,-py*-Am
(n=1): The synthesis of this complex was conducted by the same procedure as described
for HO-CgHy-CH,-py™ except isonicotinamide was used instead of pyridine. The reaction
of 1 eq of isonicotinamide with AcO-CgHy-CH,Br was conducted in THF. Analysis
Calculated for Cy3H;3FgN,O,P: C, 41.73%; H, 3.50%; N, 7.49%. Found: C, 41.71%;
H, 3.50%; N, 7.06%.

N-(4-hydroxyphenethyl)pyridinium, HO-CgHy4-(CH,),-py* (n = 2):
4-hydroxyphenethyl alcohol (2.56 g, 18.53 mmoles) was dissolved in 48% HBr (35 mL)
and stirred for 3 hrs. at 90°C upon which dark red-brown droplets separated from the
solution. The reaction mixture was then poured onto ice, initiating the precipitation of a
white solid. The crude product was extracted with three portions of 30 mL diethylether.
The ether solution was then washed with water until the washings were at neutral pH (6
times), dried with anhydrous magnesium sulfate, filtered, and evaporated leaving a white
solid. The crude product was collected and recrystallized from hot cyclohexane yielding
1.47 g of white needles. SB-(p-hydroxyphenyl)ethyl bromide (0.40 g) from the previous
step was dissolved in neat pyridine (3 mL) and stirred for 5 hrs. at 40-50°C at which time a
white precipitate formed. The mixture was filtered, washed with hexane, metathesized to
the hexafluorophosphate salt and washed three times with H,O, yielding 100 mg of the
desired pyridinium salt, HO-CgHy-(CHy),-py™.

N-(3-hydroxyphenethyl)pyridinium, HO-C4H4-3-(CH,),-py™ (n =2): The
synthesis of this complex was conducted by the same procedure as described for
HO-CgHy-(CH,),-py™ except that 3-hydroxyphenethyl alcohol was used instead of

4-hydroxyphenethyl alcohol.
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N-(4-hydroxyphenylpropyl)pyridinium, HO-CgH4-(CH,)3-py* (n = 3): The
synthesis of this complex was conducted by the same procedure as described for
HO-CgH,4-(CH,),-py* except that 4-hydroxyphenylpropyl alcohol was used instead of
4-hydroxyphenethyl alcohol.

Synthesis of Phosphinite Ligands:

Ph,P-0-C¢H4-CHjy: p-cresol (1.83 g, 7.0 mmoles) was dissolved in dry THF
(100 mL) in a 50 mL Schlenk flask with a side arm. The solution was pump-flushed three
times while being stirred. Triethylamine (2.59 mL., 18.6 mmoles) was added via syringe.
After ~1 min of stirring, chlorodiphenylphosphine (3.43 mL) was added slowly via
syringe. The total volume was added over 5 min. Upon contact with the solution, the
insoluble triethylamine hydrochloride precipitated from solution. The reaction mixture was
stirred for 15 min to ensure complete consumption of the starting materials. The solution
was separated from the white powder by cannula filtration. The solution at this point could
be exposed to ambient atmosphere. The flask containing crude product, solvent, and small
amounts of triethylamine hydrochloride was fitted with a short-path distillation apparatus.
The solvent was removed at room temperature in vacuo leaving an oily, cloudy residue.
The crude product was then fractionally distilled, collecting the product between 145° and
180°C at ~102 torr in a cow receiver. The purified phosphinite product at room
temperature solidified in the cow receiver after ~1 hr.

Ph,P-0-CgH4-py™*, PhyP-0-CgH4-CH,-py*, PhyP-0-C4H4-CH,-Quin*,
Ph,P-0-C¢H4-CH,-py*-tB, Ph,P-0-C¢H4-CH,-py*-Am,
Ph,P-0-CgH4-(CHy),-py”, PhyP-0-CgH4-3-(CHy)z-py”, and
Ph,P-0-C4H4-(CH,)3-py*: In all cases, the syntheses of these phosphinite ligands
were accomplished by the following procedure: 0.5 g of the appropriate phenol (syntheses
described above) was dissolved in CH3CN (~2 mL) in the dry box, followed by the
addition of an CH3CN solution of N,N-dimethyl-P,P-diphenylphosphine, Ph,PNMe,
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(1 eq). The reaction was stirred for 1 hr, then transferred to a Schlenk flask. The solvent
was removed in vacuo outside the box, leaving an oily residue which was not further

purified owing to the extreme air-sensitivity of the phosphinite ligands.

Synthesis of Iridium(I) Complexes:
[Ir,]1-CHj, [Ir,]-py*, [Iry]-CH,-py™, [Ir3]-CH,-Quin™,

[Ir,]-CH,-py*-tB, [Ir;]-CH,-py*-Am, [Ir;]-(CH;),-py*,
[Ir,]-3-(CH,),-py*, and [Ir;]-(CH,)3-py*: The iridium complexes were all
synthesized by a similar procedure. A concentrated acetonitrile solution of the phosphinite
(2.1 eq) was added to an acetonitrile solution of [Ir(u-pz*)(CO),], (1 eq) in the dry box
(the scale of this reaction was typically 100-200 mg of [Ir(u-pz*)(CO);]7). An immediate
liberation of carbon monoxide gas was observed with a corresponding change in solution
color from orange to orange/red. The reaction mixture was stirred for ~2 hrs to ensure
complete consumption of the starting materials. CH3CN was removed in vacuo, leaving in
all cases an orange/red residue, which was taken up in a minimum of dichloromethane.
Addition of excess ethanol to the saturated, deep red solutions precipitated the iridium(I)
products as light orange powders. [Ir;]-CH3 Analysis: Calculated for
IryC5oH4gN4O4P5: C, 49.42%; H, 3.98%; N, 4.61%. Found C, 49.19%; H, 3.96%; N,
4.69%. [Ir,]-py* Analysis: Calculated for Ir,CsgHgoF19NgO4P4: C, 42.65%; H,
3.21%; N, 5.15%. Found: C, 42.34%; H, 3.18%; N, 4.96%. [Irz]-CHZ-py+ Analysis:
Calculated for IrpCgoHscF120NgO4P4: C, 43.38%; H, 3.40%; N, 5.06%. Found: C,
44.26%; H, 3.38% N, 4.60%.
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RESULTS and DISCUSSION

The series of donor-acceptor complexes,
[Ir(,u-pz*)(CO)(thPO—C6H4-(CHZ),,-py*’-R)]Z(PFG')z (n=0,1,2,3), and two model
complexes, [Ir(u-pz*)(CO)(PhyPO-CgHy-Y)], (Y= CHj or CH,-Quin*PFg") have been
synthesized, and are shown in Figure 2.4. The syntheses of these iridium complexes were

accomplished in three general steps, outlined in Figure 2.5.

Step 1:

The phenol, 1, was first synthesized by simple, relatively high yield reactions. Four
classes of phenols, categorized by the number of methylene groups in the molecule, have
been synthesized (n = 0: HO-CgHy-py*; n=1: HO-CgHy-CHy-py™,
HO-CgH4-CH,-Quin*, HO-CgH-CH,-py*-tB, and HO-CgHy-CHy-py*-Amy;

n =2: HO-CgHy-(CHyp),-py*, and HO-CgHy-3-(CHy)p-py*; n=3:
HO-CgHy-(CHp)3-py™). The synthetic schemes used to prepare the four classes of
compounds are outlined in Figures 2.6 (n =0), 2.7 (n= 1), and 2.8 (n = 2, 3). The final
step in the synthesis of the pyridinium salts was to metathesize them to their corresponding
hexafluorophosphate salts, in order to enhance the solubility of their corresponding
phosphinite ligands and iridium complexes in organic solvents.

The isolated yield of the n = 0 reaction (Figure 2.6) was approximately 40%.
Attempts to increase the yield of 2 by increasing reaction times were unsuccessful and
served only to produce more byproducts, decreasing the overall yield. This reaction was
also found to be specific to pyridine. Attempts to react substituted pyridines with 1 were
unsuccessful due to the poor solubility of the pyridine in H,O at 4°C.

The syntheses of n = 1 complexes (Figure 2.7) were complicated by the susceptibility
of the intermediate benzyl bromide to attack by base, specifically, the phenol itself; initial
attempts at preparing this class of compounds were frustrated by the unavoidable

production of polymers. This complication necessitated capping the hydroxy group with a
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Figure 2.4. Structures of the phosphinite ligands in the two model complexes and the
series of Ir,-py* donor-acceptor complexes.
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Figure 2.5. Three step synthesis of Ir,-py* donor-acceptor complexes. (1) Synthesis
of pyridinium phenols. (2) Synthesis of phosphinite ligands. (3) Synthesis of iridium
complexes.
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Figure 2.6. Synthesis of complex with n = 0.
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Figure 2.7. Syntheses of complexes with n = 1. AcCl = acetyl chloride, EtzN =
triethylamime, NBS = N-bromosuccinimide, -BuOOH = terz-butyl hydroperoxide.
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Figure 2.8. Syntheses of complexes with n =2 and n =3.
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protecting group until the benzyl bromide was converted into the corresponding pyridinium
salt, at which point the protecting group was hydrolyzed off.
The reactions used to synthesize complexes with n =2 and 3 (Figure 2.8) are

straightforward and will not be discussed further.

Characterization of Phenols:

Each of the phenols was characterized by 1 and 3P NMR spectroscopy. These data
are summarized in Table k2. 1, and the corresponding numbering scheme is shown in Figure
2.9. The 1,4-phenylene groups of all the molecules exhibit the characteristic AA'BB'
doublet of doublets between 6.6 and 7.5 ppm, the precise chemical shift of which depends
on the nature of the 4-substituent (columns j and & in Table 2.1). The methylene groups in
n =1 compounds show up as singlets shifted downfield (~5.5 ppm) by the effect of the
positive charge on the adjacent pyridinium cation (column m). For n=2 and 3
compounds, the methylene resonance closest to the pyridinium is a triplet at ~4.5 ppm,
while the remaining resonances are in normal positions (2.2 to 3.2 ppm). The pyridinium
resonances are resolved for each unique position (2-position: 8.45-8.81 ppm; 3-position:

7.78-8.23 ppm; 4-position: 8.30-8.59 ppm).

Step 2:

The next step was the alcoholysis of N, N-dimethyl-P, P-diphenylphosphine by the
phenol synthesized in Step 1. 3! This transformation was carried out in a dry box. The
phosphinite product was isolated but not purified for the next step. Characterization by
31p NMR was conducted, showing single peaks between 109.8 and 112.6 ppm for each
compound (first column of Table 2.2), identifying the ligands as esters of

diphenylphosphinous acid.3
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Figure 2.9. Numbering scheme used in assigning TH NMR spectra of phenols. j and k
are phenylene protons; m, n, and o are methylene protons; p, ¢, and r are pyridinium
protons; s, f, and u are quinuclidine protons; and v are the methyl protons of the terz-butyl
group.
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Table 2.1. 'H NMR Resonances for Phenols €

Compounds Jj k m n 0 p(s) q(t) r(u) v
HO-CgH4-CH; 704 710 — — @ — - - @ — —
HO-C¢H4-CH,-Quin*  6.82 7.10 408 — — 331 —P 188 —
® (m)
HO-CgHy-py* 707 751 — — — 881 8.11 859 —
\ @ o O
HO-CgH,4-CH,-py* 688 7.32 560 — — 868 798 848 —
@ o
HO-CgH4-CHy-py*-Am 6.89 7.34 564 — — 880 823 — —
(@
HO-CgH4-CHp-py*-tB4 —¢ —¢ 531 — — 831 781 — 1.38
(d)
HO-C¢Hs-(CHp)o-pyt 670 693 4.69 3.16 — 843 792 848 —
® ® @ O
HO-CgH4-3-(CHp)p-pyt —¢ —% 473 318 — 845 793 838 —
® ® @ o

HO-CgHy-(CHp)3-py* ¢ 6.58 6.89 4.39 217 248 8.53 7.78 8.30
M @ ©® @ O @®

9 Bromide salt in D70.
b Obscured by phenyl resonances.

¢ Obscured by resonances from PhyB- which are at 6.95 and 7.30 ppm.

d The phenylene resonances are 7.20 (s), 7.11 (s), 7.02 (s), 6.73 (br,s), and 6.55 (m).

€ The splitting patterns are given in parentheses; a singlet is inferred unless otherwise indicated.

Table 2.2. 3P NMR Resonances for Phosphinite
Ligands and Iridium Complexes

R Ph,PO-CgH,-R (Ir,]-R
-CH3 ¢ 109.8 100.4
-Quin* 110.4 b
-py*t 112.6 103.6
-CH,-py* 111.2 102.5
-CHy-py*-Am 110.9 102.3
-CH,-py*-tB 110.4 102.5
-(CHy),-py* 110.3 101.0
-(CHp)3-py* . 100.6

%n dg-acetone.

b These values were not obtained.
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Step 3:

The series of iridium(I) donor-acceptor complexes and corresponding model
compounds were prepared using procedures similar to those described previously for an
analogous series of pyrazolyl-bridged phosphinite iridium dimers.3! Two equivalents of
the phosphinite ligand were added to a solution of [Ir(u-pz*)(CO),], in acetonitrile at room
temperature and the immediate liberation of carbon monoxide gas followed by a darkening
of the solution from orange to orange/red indicated the formation of the pyrazolyl-bridged
dicarbonylbisphosphinite iridium(I) dimer. As observed previously in phosphine reactions
with analogous metal complexes,3* the phosphinite added in a transoid fashion. The trans
configuration of the terminal ligands has a pronounced effect on the TH NMR resonances.
There are two separate resonances for the methyl substituents on the pyrazolyl bridge
(~1.97 and ~2.10 ppm). As expected, the NMR spectra also reveal two magnetically
inequivalent phenyl groups. These NMR data are summarized in Table 2.3, and the
numbering scheme is shown in Figure 2.10. An IH NMR spectrum of the model complex,
[Irp]-CH3, is provided in Figure 2.11, showing the inequivalent phenyl and pyrazolyl
methyl resonances as well as the AA'BB' doublet of doublets for the phenylene proton
resonances (see Table 2.3 for chemical shifts).

31p NMR revealed a singlet for each complex with chemical shifts between 100.4 and
103.6 ppm (second column of Table 2.2), consistent with coordination of the phosphinite
ligands to an Ir(I) metal center.3

The solution IR spectrum of [Iry]-CHj, given in Figure 2.12, reveals a single strong
band at 1966 cm™., corresponding to the carbonyl C-O stretching mode. This is

comparable to the value of 1955 cmf1 for the analogous compound,

[Tr(u-pz*)(CO)(PhyPO-CyHy-py)2(PhyB ).
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Figure 2.10. Numbering scheme used in assigning IH NMR spectra of iridium
complexes. a and b are the methyl protons on the pyrazolyl bridge; c is the proton in the 4-
position on the pyrazolyl bridge; d, e, f, g, h, and i are the phenyl protons; j and k are the
phenylene protons; and remaining protons m-v are as shown in Figure 2.9.
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Table 2.3. 'H NMR Resonances for Iridium Complexes

R a b [ d e 18 h i J k
[Ir,]-CH3 ¢ 1.97 2.14 537 7.96 828 7.24,7.48 7.13 17.24
[Ir,]-py* 1.97 2.14 546 7.95 8.20 7.50 7.64 7.84
[Ir,]-CH,-py* 1.95 2.00 5.38 7.89 8.17 7.43 6.95 —P
[Ir,]-CHy-py*-Am 195 2.18 559 —¢ —* b 691 2
[Ir,]-CHy-py*™tB  1.97 2.00 5.38 7.89 8.18 7.43 6.82 —F
(Ir,]-(CHy),-pyt  1.96 2.12 543 7.90 8.19 7.24,7.45 7.08 7.53
[Ir,]-(CHy)z-pyt  1.95 2.10 539 7.90 8.21 7.42 7.16 7.52

R m n [ )4 q r s t U v
[Ir,]-CH3 @ 227 — @ — = = — — = = —
[Iry]-py”* — — — 882 8.16 866 — — — —
[Iry]-CH,-py* 565 — — 867 798 851 — — — —
[Ir;]-CHp-py*-Am 562 — — 875 824 — — — — —
[Ir,]-CHp-py*tB 559 — — 855 795 — — — — 135
[Iry]-(CHp)p-pyt 472 323 — 846 791 845 — — — —

® @ @ O
[Ir;]-(CHj)3-py”* 450 2.30 2.67 8.62 799 848 — — — —

®

@

®

@

®

%I dg.acetone.

b Obscured by phenyl resonances.
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Figure 2.11. IH NMR (400 MHz) spectrum of [Ir(u-pz*)(CO)(PhyP-O-CgHy4-CH3)ly
in CD3CN, showing inequivalent pyrazolyl methyl resonances at 1.97 and 2.14 ppm, and
o-phenyl resonances at 7.96 and 8.28 ppm, indicating transoid configuration of terminal
phosphinite ligands.
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Figure 2.12. Solvent subtracted IR spectrum of Ir(u-pz*)(CO)(PhyP-O-CgHy-CHj3)], in
CH,Cl,, showing single CO band at 1966 cml. Other unassigned bands appear at 2350
(d), 1506, 1437, 1206 (d), 1166, and 1102 cm’!. The large feature at ~1270 cm’!
corresponds to an intense solvent (CH,Cl,) band assigned.
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CONCLUDING REMARKS

The synthetic methodology used to prepare the series of donor-acceptor complexes,
[Ir(u-pz*)(CO)(PhyPO-CgHy-(CHy) n-py+~R)]2(PFé')2, can be applied to the preparation of
a wider class of donor-acceptor complexes. Three features of these complexes make this
an attractive prospect: (1) the phosphinite ligand containing the electron acceptor can be
attached to a large variety of chromophores with metal centers that bind phosphines; (2) the
nature of the bridge can also be easily varied by either completely replacing the phenylene
group or by simple substitution directly on the phenylene group; (3) and the pyridinium
acceptor can be replaced with other one-electron acceptors by utilizing similar synthetic
methods as described in the previous sections. Research involving the preparation and

study of new ligands and complexes is currently being pursued in our laboratory.
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Chapter 3

X-ray Crystal Structure and

Molecular Mechanics Calculations
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INTRODUCTION

A main goal of our research is to understand how structural parameters such as
distance and orientation affect excited-state and thermal electron-transfer rates in linked
donor-acceptor complexes. The series of Iry-py* donor-acceptor complexes, described in
the previous chapter, were prepared with this goal in mind. A study aimed at correlating
donor-acceptor distance and orientation to electron-transfer rates must clearly involve a
detailed investigation of their solution structures.!> We have therefore obtained
conceivable solution structures for the series of donor-spacer-acceptor complexes,
[Ir(,u—pz*)(CO)(thPO—C6H4—(CH2)n—py+)]2 (n=0, 1, 2, and 3). This was accomplished
by using data from an X-ray crystal structure of one model complex as a basis for
constructing the remaining Ir,-py* complexes by computer modeling (in most cases two
distinct low energy structures were proposed to exist in solution).

In this chapter, the X-ray crystal structure determination of
[Ir(u-pz*)(CO)(Ph,yP-O-CgHy-CH3)], is presented, followed by a description of the
molecular mechanics calculations conducted on the four general classes of Iry-py* donor-
acceptor complexes (n =0, 1, 2, and 3). The results of these calculations will be

discussed in relation to donor-acceptor electronic couplings in Chapter 5.

EXPERIMENTAL

X-Ray Structure Determination:

Slow evaporation of a methylene chloride/acetonitrile solution produced acicular
crystals of [Ir(u-pz*)(CO)(PhyP-O-CgHy-CH3)]». A section, cut from a needle, was
coated with epoxy to prevent reaction with air and solvent loss. Unit cell parameters and an
orientation matrix were obtained on a CAD-4 diffractometer by a least squares calculation

from the setting angles of 24 reflections with 30° < 26 < 33°. Two equivalent data sets out
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to a 260 of 45° were collected. The data were corrected for a slight decay in intensity.
Since calculated absorption correction increased goodness of fit (GOF) for merging, an
absorption coefficient 30% of the calculated value was used (this value was found to
minimize GOF for merging). Lorentz and polarization factors were applied and the two
data sets were then merged to yield the final data set. Preliminary Weissenberg
photographs and systematic absences in the diffractometer data revealed the space group to
be P2/c.

Hydrogen atom positions were determined from difference maps for the methyl groups
and by calculation for the remainder. All hydrogen atoms were placed at 0.95 A from the
attached carbon atom and given isotropic B values 20% greater than that of the attached
atom. No hydrogen parameters were refined.

Analysis of a Patterson map provided the iridium atom coordinates. The electron
density maps indicated the presence of a dichloromethane solvent molecule. The remaining
non-hydrogen atoms were located via successive structure factor-Fourier calculations. The
complete least squares full matrix, consisting of spatial and anisotropic thermal parameters
for the non-hydrogen atoms, a population factor for the solvent molecule, and a scale
factor, contained 588 parameters. A final difference Fourier map showed deviations
ranging from -0.64 eA3 t0 +0.78 eA3. The refinement converged with an R-factor of
0.0316 (0.0235 for F2 > 36(F2)) and a goodness of fit of 1.46 for all 6662 reflections.

Calculations were done with programs of the CRYM Crystallographic Computing
System and ORTEP. Scattering factors and corrections for anomalous scattering were
taken from a standard reference.3 R = £|F, — | .||/ ZF,, for only FZ > 0, and
goodness of fit = [Zw(Fg-Fz)Z/(n -p)l v 2, where n is the number of data and p the number
of parameters refined. The function minimized in least squares was Ew(Fg—F%)Z, where w
= 1/0'2(F§). Variances of the individual reflections were assigned based on counting
statistics plus an additional term, (0.0141)2. Variances of the merged reflections were

determined by standard propagation of error plus another additional term, (0.014(1))2. The
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absorption correction was done by Gaussian integration over an 8 X 8 x 8 grid.

Transmission factors varied from 0.39 to 0.54.

Molecular Mechanics Calculations:

Molecular mechanics calculations were carried out on the full series of donor-acceptor
complexes using Biograf (the molecular design and analysis program from Biodesign
Inc.).* version 2.10 with the Dreiding force field. Atomic positions from the X-ray
structure of [Ir(u-pz*)(CO)(PhyP-O-CgHy-CHz)l,, [Irp]-CHj, were used as a base upon
which the remaining portion of the bridge and pyridinium group were constructed. Energy
minimizations of the computer constructed complexes were carried by holding the iridium
core atomic coordinates fixed (both Ir atoms, the entire 3,5-dimethylpyrazolyl bridges, and
the phosphorous atoms and attached phenyl groups and oxygens), and allowing the atoms
of the phenylene groups, the hydrocarbon chains, and the pyridinium groups to be

adjustable.

RESULTS and DISCUSSIONS

X-ray Structure:

The structure of dicarbonylbis(u-3,5-dimethylpyrazolyl)bis(O-4-tolyl-P,P-diphenyl-
phosphinite)diiridium(I) ([Irp]-CHjy), IrpC5oHygN4O4P5-CH,Cl,, has been determined by
X-ray diffraction techniques. The molecule crystallized in the monoclinic system, in the
space group P21/c (#14), with a = 18.677(2) A, b = 13.817(1) A, ¢ = 20.225(3) A,

B =101.37(1)°, volume = 5116.8(10) A3; Z = 4 and density = 1.688 gcm>.
Crystallographic data are summarized in Table 3.1.

ORTEP diagrams showing the iridium coordination sphere and ligand geometry are

presented in Figures 3.1a and b. The atomic numbering scheme is given in Figure 3.2.

Selected bond lengths and angles are provided in Table 3.2. All other data pertaining to
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Table 3.1. Crystallographic Data for [Ir(u-pz*)(CO)(PhyP-O-CgHy-CH3)],

Formula: Ir,C50HygN4O,4P,-CH,Cly Space Group: P2/c (#14)

a=18.6772) A T =293°K

b=13.817(1) A A=0.7107 A

¢=20.2253) A Pearc = 1.688 g cm™>

B=101.27(1)° p=157.28 cm™

V =5116.8(10) A3 Transmission coeff. = 0.39 — 0.54
R(F,) = 0.316

GOF = 1.46
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Figure 3.1. (a) ORTEP diagram of [Ir(u-pz*)(CO)(Ph,P-O-CgHy-CHjs)],, showing the
nearly eclipsed 3,5-dimethylpyrazolyl groups. (b) A second view of the same complex,
showing the square planar coordination of Ir and the trans CO and phosphinite ligands.
For the sake of clarity, the four phenyl groups have not been shaded.
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Figure 3.2. mic num m L
Atomic number scheme for [Ir( -pz*)(CO)(Ph,P-O-CgHy-CHj3)]
“Mrletig-Lt3) 2.
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Table 3.2. Selected Bond Lengths and Angles for
[Ir(u-pz*)(CO)(PhyP-O-CgHy-CH3)1p

Iridium Coordination Sphere

Distance(A) Angle(°)

Irl — Ir2 3.307(1) NP1A -Ir1- NP2A  85.1(2)
Irl - C1 1.797(6) ~ NP1A-Ir1- Ci 91.6(2)
Ir2 - C2 1.810(6) P1 -Irl- Ci 91.0(2)
Ir1 - P1 2.224(1) P1 -Irl- NP2A  92.3(1)
Ir2 - P2 2.224(1) NP2A-Irl- Ci1 176.3(2)
Irl - NPLA 2.075(4) P1 -Irl- NP1A 177.4(1)
Ir2 - NP1B  2.068(4) NP1B - Ir2 - NP2B 83.1(2)
Irl - NP2A  2.091(4) NP2B-Ir2- C2 92.9(2)
Ir2 - NP2B  2.073(4) P2 -Ir2- C2 91.8(2)

P2 -Ir2- NPI1B 92.5(1)

NP1B -Ir2- C2 174.1(2)

P2 -Ir2- NP2B 174.2(1)
Irl - NP1A -NP1B 117.9(3)
Irl - NP2A -NP2B 117.2(3)
Ir2 -NP1B-NP1A 117.1(3)
Ir2 - NP2B-NP2A 118.0(3)

NP1A -Ir1 - Ir2 61.7(1)
NP2A -Ir1 - Ir2 62.2(1)
P1  -Irl1- Ir2 117.0(1)
c1 -Il- Ir2 117.4(2)
NP1B -Ir2 - Irl 62.3(1)
NP2B -Ir2- Irl 62.5(1)
P2 -Ir2- 1Irl 112.1(1)
c2 -Ir2- Il 119.6(2)
CO Ligands
Distance(A) Angle(°)

Cl1-01 1.1747) O1-C1l-Ir1 179.3(5)
C2-02 1.1657)  02-C2-Ir2 178.0(5)



NP1A - NP1B
NP1A - CP1A
NP1B - CP1B
CP1A - CP1C
CP1A - CP1D
CP1B - CP1C
CP1B - CP1E
NP2A - NP2B
NP2A - CP2A
NP2B - CP2B
CP2A - CP2C
CP2A - CP2D
CP2B - CP2C
CP2B - CP2E
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Pyrazole Ligands

Distance(4)

1.370(6)
1.349(7)
1.334(7)
1.371(8)
1.493(9)
1.377(8)
1.494(8)
1.376(6)
1.337(7)
1.332(7)
1.365(9)
1.488(9)
1.377(9)
1.493(9)

Angle(°)

Ir1 - NP1A -CP1A
CP1A - NP1A -NP1B
CP1B - NP1B -NP1A
Ir2 - NP1B -CP1B
CP1C - CP1A -NP1A
CP1D - CP1A -NP1A
CP1D - CP1A -CP1C
CP1C - CP1B -NP1B
CP1E - CP1B -NP1B
CP1E - CP1B -CP1C
CP1B - CP1C -CP1A
Ir1 - NP2A -CP2A
CP2A - NP2A -NP2B
CP2B - NP2B -NP2A
Ir2 - NP2B -CP2B
CP2C - CP2A -NP2A
CP2D - CP2A -NP2A
CP2D - CP2A -CP2C
CP2C - CP2B -NP2B
CP2E - CP2B -NP2B
CP2E - CP2B -CP2C
CP2B - CP2C -CP2A

135.1(3)
106.8(4)
109.3(4)
133.0(3)
109.2(5)
120.8(5)
130.0(5)
108.2(5)
120.8(5)
130.9(5)
106.5(5)
134.3(4)
108.4(4)
107.4(4)
134.5(4)
108.6(5)
121.6(5)
129.7(6)
109.1(5)
121.5(5)
129.5(6)
106.5(5)



P1-03

P2 - 04

P1 - CAl1A
P1 - CB1A
P2 - CA2A
P2 - CB2A
03 - CS1A
04 - CS2A
CS1D - CS1G
CS2D - CS2G

Phosphinite Ligands

Distance(A)

1.629(4)
1.633(4)
1.817(5)
1.820(5)
1.826(5)
1.815(5)
1.410(6)
1.404(7)
1.512(9)
1.524(14)

Angle(°)

Irl -P1- O3
Irl -P1- CAlA
Irl -P1- CBlA
CB1A - P1 - CAlA
Ir2 -P2- 04
Ir2 -P2- CA2A
Ir2 -P2- CB2A
CB2A - P2- CA2A
CA1B - CAl1A -P1
CA1lF - CAl1A -P1
CB1B - CB1A -P1
CB1F - CB1A -P1
CA2B — CA2A -P2
CA2F - CA2A -P2
CB2B - CB2A -P2
CB2F - CB2A -P2
CAl1A-P1- O3
CB1A-P1- O3
CS1A -03- P1
CA2A -P2- 04
CB2A -P2- 04
CS2A -04- P2
CS1B - CS1A -03
CS1F - CS1A -03
CS2B - CS2A -04
CS2F - CS2A -04
CS1G - CS1D -CSs1C
CS1G - CS1D -CS1E
CS2G - CS2D -CS2C
CS2G - CS2D -CS2E

119.3(1)
116.5(2)
116.4(2)
101.7(2)
119.7(1)
116.2(2)
117.8(2)
102.1(2)
122.2(4)
119.4(4)
117.6(4)
124.0(4)
119.9(4)
122.0(4)
117.5(4)
123.0(4)
102.4(2)

97.5(2)
125.9(3)
101.8(2)

95.8(2)
121.0(3)
116.5(5)
122.7(5)
119.5(5)
119.6(5)
121.6(6)
120.9(6)
121.2(8)
120.1(8)



CP2D —CP2A — NP2A - Irl
—CPlA - NP1A - Ir1
—CP2B - NP2B - Ir2
—CP1B - NPIB - Ir2

CP1D
CP2E
CP1E

Ir1
Irl

—NP2A — NP2B - Ir2
—NPI1A — NP1B - Ir2
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Dihedral Angles

CP1D -CP1A - CP1C- CPIB
CP2D - CP2A - CP2C- CP2B
- CP1B - CP1C - CPI1A
—CP2B - CP2C - CP2A

CPIE
CP2E

Angle (°)

-1.51
-6.19
-4.76
-11.43

4.93
12.15

178.97
-178.37
-177.44

179.97

Angles Involving Ir---Ir Connectivity

Irl
Ir1
Ir2
Ir2

Irl
Ir2
Irl
Ir2

~Ir2 -
~I2 -
-Irl —
—Irl -

I
—TIrl -
—~Ir2 -
—Irl —

NP1B
NP2B
NP1A
NP2A

Cc2
C1
P2
P1

Angle (°)

62.46
62.23
62.25
61.70

119.61
117.36
112.10
117.01
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this structure have been collected in Appendix I (Table A.1. Crystal and Intensity
Collection Data, Table A.2. Final Non-Hydrogen Coordinates and Displacement
Parameters, Table A.3. Anisotropic Displacement Parameters, Table A.4. Assigned
Hydrogen Parameters, Table A.5. Complete Distances and Angles, and Table A.6.
Observed and Calculated Structure Factors). A brief description of the structure is now
presented.

The molecule has approximate C,, symmetry. Figures 3.3a and b show ORTEP
diagrams for [Ir,]-CH3 with views down the approximate C,-symmetry axis. The largest
deviations from perfect Cy, symmetry occur between the axial phenyl groups (CA1 and
CAZ2) and between the tolyl groups (CS1 and CS2). An illustration of the former deviation
is the difference in relative geometry of the CA1/CB1 axial phenyl groups compared to the
equitorial phenyls, CA2/CB2. The CA1 and CB1 phenyl groups are nearly eclipsed
(dihedral angle, CA1B-CA1A-CB1A-CB1B = 3.1°), while phenyls CA2 and CB2 are far
from eclipsed (analogous dihedral angle, CA2B-CA2A-CB2A-CB2B = 44°). Examination
of more than one unit cell reveals the origin of these particular deviations. It appears that
the benzene rings of the molecule (four phenyl groups and two tolyl groups) accommodate
positions that maximize their overlap. Perfect Cy, symmetry is, however, not a necessary
condition for this overlap to occur.

The iridium atoms exhibit slightly distorted square planar coordination geometry. The
standard deviation from 90° of the angles N-Ir-N, N-Ir-C, N-Ir-P, and P-Ir-C is 3.8°. The
average of the two N-Ir-N angles is less than 90° (84°), while the average of the N-Ir-C,
P-Ir-C, and P-Ir-N angles is greater than 90° (92°).

The bridging-pyrazolyl groups retain their isolated structure, deviating by no more
than 0.8° from perfect planarity. The angle between the planes of the pyrazolyl groups is
78.8(6)° which is 5.3° less than the average N-Ir-N angle, implying that the pyrazolyl

groups are not perfectly eclipsed (this is indeed apparent in Figure 3.1a).
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Figure 3.3. (a) ORTEP diagram of [Ir(u-pz*)(CO)(Ph,P-O-C¢Hy-CH3)l,, showing the
approximate Cp-axis. Two of the phenyl groups and the pyrazolyl groups are
superimposed by rotation about the Cy-axis. (b) However, the tolyl groups, as seen in this
view of the molecule, deviate from perfect Cy-symmetry (phenyl groups have been omitted
for clarity).
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The IrIr solid-stat¢ non-bonding separation in the present structure is the same ag the
M:--M separations in analogous pyrazolyl-bridged Ir and Rh dimers within the standard
deviation of distances (Table 3.3). It appears that the nature of X, Y, R, or M has no
consistent effect on the MM separation. For example, the average M--M separations in Ir
and Rh dimers are 3.28+0.12 A and 3.31%0.18 A (the same within the standard error), for
dimers with R = CH3 and R = H the average MM separations are 3.24+0.06 A and
3.34+0.18 A , and for dimers with X = Y = CO and X,Y = COD the average M--M
separations are 3.34+0.15 A and 3.2120.06 A.

\ / \ /
M M
/ \ / \

Table 3.3. M--M Separations in Pyrazolyl -Bridged Iridium(I) and Rhodium(I) Dimers

M R X Y MM (A) Ref.
Ir CHs (¢0) (¢0) 3.245 5
Ir CHj3 CcOo PhoPOCyHy-py* 3.219 6
Ir CH3 co PhyPOCgH4-CH; 3.307 here
Ir H (00 CcO 3.506 5
Ir H oD 3.216 7,8
Ir H (60 Ph3sP 3.162 9
Rh CHj3 o CO 3.262 10
Rh CH3 COD 3.154 10
Rh H COD 3.267 7
Rh H Cco (PhO)3P 3.568 11

COD = 1 4-cyclooctadiene; Ph = phenyl; py” = pyridinium; CgHy = phenylene; CoHy = ethylene
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Having demonstrated that the Ir-Ir separation in [Ir(u-pz*)(CO)(PhyP-O-CcH,-
CHj3)], is typical of analogous d8-a8 dimers, a comparison of other bond lengths and
angles to analogous complexes will be made. This was accomplished by considering the
structure of [Ir(,u-pz*)(CO)(thPO-C2H4-py+)]2(Ph4B')2 (a donor-acceptor complex
previously studied in our laboratory), which also contains a 3,5-dimethylpyrazolyl bridge,
and CO and phosphinite ligands.® Table 3.4 summarizes selected bond lengths and angles
for this complex (2) and for the structure of concern (1). The short Ir-C and long C-O
bond lengths in 2 have been attributed to systematic errors in correcting the diffraction
intensities for iridium absorption effects. Other than this discrepancy, however, deviations
were found to be minimal. The iridium coordination spheres show similar structural
parameters for both complexes: Ir-P=2.22 A, and Ir-N = 2.08(2) A. The pyrazolyl
bridge also exhibits similar structural parameters: N-N = 1.36(2) A, and
Ir-N-N = 117(2)°.

In Chapter 4 it will become apparent that the similarities between these two structures
will serve to simplify the analyses of absorption and emission spectra for [Ir;]-CHj3, as

well as the series of donor-acceptor complexes described in Chapter 2.

Table 3.4. Comparison of Bond Lengths and Angles
Between [Ir;]-CHj3, 1, and [Ir(pz*)(CO)(Ph,POCoH4-

py"la, 2

Bonds and Angles 1 2
Ir1-Ir2 3314 322 A
Ir1-C1 1.80 1.65+0.01
Ir2-C2 1.81 1.76x0.01
Ir-P (avg) 2.22 2.22

Ir-N (avg) 2.08+£0.01 2.07+0.02
C-O (avg) 1.17£0.01 1.23+0.02
P-O (avg) 1.63 1.64+0.01
N-N (avg) 1.37 1.35
Ir-N-N (avg) 117.6+0.5° 116.8+3.0°
N-Ir-P(C) (avg) 175.5 172.9
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Molecular Mechanics Calculations:

Possible solution structures for the series of donor-acceptor complexes,
[Ir(,u—pz*)(CO)(PhZP-O-C6H4-(CH2)n-py+)]2 (n=0, 1, 2, and 3), have been determined
by the method described in the Experimental Section of this chapter. The complexes are
categorized based on the number of methylene groups, n, in the bridge between
Ir, (donor) and py* (acceptor). The computer generated structures of the n=0and n=1
complexes are shown in Figures 3.5 and 3.6a. The angles and distances, defined in Figure
3.4 and summarized in Table 3.5, will be used to structurally describe these two
complexes. 0 is the angle between the planes of the phenylene and pyridinium rings, and vy
is the cant angle between the rings. A more detailed view of the Ir-spacer-py™
(Ir-P-O-CgHy4-(CHy),,-py™, n = 1) portion of the complex is provided in Figure 3.6b,
showing the interaction between the pyridinium and phenylene rings. This depiction of the
electron-transfer pathway also serves to demonstrate that the pyridinium acceptor cannot
come within van der Waals contact of the iridium donor.

The pyridinium group of the n = 2 complex can exist in one of two possible low
energy conformations in relation to the phenylene ring (there are many other possible
conformations; however, knowledge of the two extreme conformers will be sufficient to
understand the dynamics of the spacer and acceptor). The first conformer, shown in
Figure 3.7a, and in more detail in 3.7b, is the lowest energy structure (minimum gauche
interactions) in which the methylene chain is completely stretched. The relevant distances
and angles that characterize the relative orientation of the pyridinium and phenylene rings in
the stretched conformer are given in Table 3.5. The second conformer, shown in
Figure 3.8a and b, is a slightly higher energy structure in which the pyridinium ring is
brought as close to the phenylene group as allowed by van der Waals interactions. In this
extreme conformation the pyridinium ring is 3.1 A from the phenylene ring at its closest

contact point , and will therefore be termed the folded conformation.
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phenylene

End view

Figure 3.4. Definition of r, 8, and y between the
phenylene and pyridinium rings. These angles and
distance are used to characterize the series of Iry-py”*
donor-acceptor complexes.

Table 3.5. Structural Parameters Obtained from Molecular Mechanics Calculations for
Stretched and Folded Conformations

stretched folded
compounds I-N° I-N? 609 NS 60 v©® rd)
[Ir2]-py* 6.5 9.5 180 6.5 180 42 1.4
[Ir2]-CH2-py* 7.0 11.0 110 7.0 110 0 2.4
[Ir2]-(CH2)2-py* 9.4 12.5 180 6.4 50 0 3.1
[I]-(CHa)s -py* 104 140 110 63 40 0 37

5 Edge-to-edge iridium-pyridinium through-space distance in A.
b Edge-to-edge iridium-pyridinium through-bond distance in A.
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Figure 3.5. Computer generated solution structure of [Irp]-py™ (n = 0).
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Figure 3.6. (a) Solution structure of [Irz]-CHz-py"' (n=1). (b) Detailed view of
electron-transfer pathway.
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Figure 3.7. (a) Solution structure of the stretched conformation of [Irz]—(CHg)z-py+
(n=2). (b) Detailed view.






-85 .-




- 86 -

Figure 3.8. (a) Solution structure of the folded conformation of [Irz]-(CHz)z—py*'
(n=2). (b) Detailed view.
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Figure 3.9. (a) Stretched conformation of [Ir;]-(CHy)3-py” (n = 3). (b) Detailed view.
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Figure 3.10. (a) Folded conformation of [Iry]-(CHy)3-py™ (n = 3). (b) Detailed view.
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The structures of the two extreme conformations (stretched and folded) for the n =3
complex are shown in Figures 3.9a and b, and 3.10a and b. The difference in values of r
(see Table 3.5) between the stretched and folded conformations for this complex are much
larger than in the previous three complexes (n =0, 1 and 2).

The pronounced dependence of the calculated pyridinium and methylene chain
geometries on n has been demonstrated in Figures 3.5-3.10. The results, shown in
Table 3.5, reveal interesting dependencies of angles and distances on the value of n. In the
folded conformations of #» = 0 and 1 complexes, 6 values are greater than 90°, while for
complexes with n =2 and 3, 8 values are less than 90°. In the folded conformations the
value of r increases as n increases while the values of 8 decrease. In the stretched
conformations 6 alternates between 180° and 110° for all complexes: for n=0and 2,
6=180°% and for n =1 and 3, 8 = 110°. An attempt to correlate these structural

parameters to observed electron-transfer rates will be described in Chapter 5.
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INTRODUCTION

Having chemically and structurally characterized the series of donor-spacer-acceptor
complexes, [Ir(u-pz*)(CO)(PhyPO-CgHy-(CHy),,-py*-R)12(PFg ), (n =0, 1, 2 or 3), an
investigation of their photophysical properties is now presented. It was demonstrated in
the previous chapter that the nature of the spacer has pronounced effects on the orientation
of the pyridinium acceptor relative to the Ir, donor. The spacer-acceptor unit also plays an
important role in determining the photophysical properties of the Irp-py* donor-acceptor
complexes. For example, the quantum yields of emission from the d8-d8 iridium donor-
acceptor complexes are all attenuated relative to an appropriate model complex. The source
of this emission quenching is electron transfer, originating from the metal-localized excited
states (singlet and triplet) of the iridium chromophore and terminating at the pyridinium
cation. The result is the formation of an excited charge-transfer state with an electron
deficient metal center and a neutral pyridinium radical. An important goal of the
spectroscopic studies described in this chapter is to quantify the effects that each
spacer-acceptor group (n =0, 1, 2, and 3) has on the photophysical properties of these
d8-d8 excited states.

In this chapter, results from steady-state absorption and emission studies were used to
determine Ir, singlet and triplet excited-state energies, and results from ground-state
electrochemical studies were used to calculate energies of the Iry*-py’ charge-transfer states
for each donor-acceptor complex. These calculations were combined to yield driving
forces for each electron-transfer step. Fluorescence and phosphorescence quantum yield
measurements were obtained for the series of Iry-py™ donor-acceptor complexes, revealing
the extent of electron-transfer quenching of the iridium d8-a8 singlet and triplet excited-

states.
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BACKGROUND

Research in our laboratories have established the rich reactivity of d8-d8 transition
metal complexes toward C-X and C-H bond activation,! and outer and inner-sphere
electron transfer.7 Spectroscopic studies of these complexes have indicated that the
electronic structure of these complexes can be represented by the MO diagram shown in
Figure 4.1.8-10 The interaction between two square planar ad fragments in these molecules
forces an interaction between the d,; and p, orbitals of each monomer fragment forming do
and po dimer MOs. Filling the molecular orbitals with 16e” for each monomer leaves the
do* level as the HOMO and the po level as the LUMO. The lowest electronic excited states
in these complexes are generated by promoting a do* electron into the vacant po orbital,
which forms a do*po state in either a singlet or triplet spin state. These excited states,
l(dc*pc) and 3(dc*po-), can then decay by radiative and nonradiative pathways, at
characteristic rates, back to the ground state, (do*)z. This model will be used as a basis for
understanding the electronic absorption and emission spectra of the iridium donor-acceptor

complexes presented here.

EXPERIMENTAL

Materials:

Acetonitrile (Burdick & Jackson) was used as received for UV-vis experiments; for
emission measurements this solvent was degassed with three freeze-pump-thaw cycles on a
high-vacuum line (<1O'5 torr), dried, and stored under vacuum over activated 3A sieves.
Dichloromethane and acetonitrile were freshly distilled from calcium hydride and syringe-
degassed before use for electrochemical experiments. Tetra-n-butylammonium

hexafluorophosphate (TBAH) was recrystallized 2 times from 95% ethanol.
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Figure 4.1. Molecular orbital diagram for the interaction of two square planar d8 metal
ions, showing HOMO and LUMO for d8-d8 metal dimers.
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Electronic Absorption Spectroscopy:

Electronic absorption spectra were measured on one of three spectrophotometers:
Cary 14, converted to computer operation by On-Line Instruments Systems Inc.;
Shimadzu UV-260; or Hewlett Packard 8450A Diode Array. Samples were prepared in
high-precision 1 cm quartz cells, fitted with a Kontes needle valve, and either freeze-pump-

thawed or bubble deoxygenated with argon.

Electronic Emission Spectroscopy:

Electronic emission spectra were obtained on an emission spectrometer constructed at
Caltech, which has been described previously.1%1! Measurements were made on freeze-
pump-thawed acetonitrile solutions in 1 cm non-precision quartz cells. The samples were
excited with the 436 nm line of an Oriel 200 Watt Hg/Xe lamp. This line was selected with
a SPEX 1620 monochrometer and filtered with an Oriel 436 nm interference filter to
remove stray excitation light. The luminescence from the sample was collimated, focused,
and then filtered with a Corning 3387 sharp-cut filter to remove stray excitation before
being directed into a SPEX 1870 monochrometer. Detection of the signal was achieved
using a Hamamatsu R955 PMT. The signal from the PMT was amplified with an EG&G
PAR 182A lock-in amplifier and plotted on a Soltec 3314 chart recorder. The data was
digitized and corrected for PMT response. Room temperature quantum yields were
determined by the optically dilute solution method described by Crosby and Demas.!2
Integrated emission intensities were determined by calculating the areas under Gaussian
curves that best fit the data. The quantum yield standard was [Ru(bpy)3]Cl, in water
(@ =0.042, A, = 436 nm).13 The absorbance of the samples and reference at 436 nm
were adjusted so that they were equivalent within experimental error and less than or equal

to 0.2.

Electronic Excitation Spectroscopy:

Electronic excitation spectra of optically dilute solutions (in CH3CN) were recorded
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using an instrument built at Brookhaven National Laboratories. Singlet and triplet spectra
were obtained by detection at 560 and 750 nm, respectively. Excitation was controlled by
an electronic feed-back circuit that kept the excitation source constant and eliminated the

necessity to correct for excitation fluctuations.

Electrochemistry:

Electrochemical measurements were conducted using a Princeton Applied Research
(PAR) model 173 potentiostat/galvanostat, a model 175 universal programmer, and a
model 179 digital coulometer. Cyclic voltammograms were plotted on a Houston
Instruments Omnigraphic 2000 x,y recorder. All electrochemical studies were conducted
in acetonitrile (dried over 3A sieves) using a standard one-compartment cell'4 with a Pt
disk electrode as working electrode (surface area approximately 1.3 mmz), coiled Pt wire
or mesh as counter electrode, and aqueous saturated sodium calomel electrode (SSCE) as
reference electrode. The ferrocene/ferrocenium couple was used as an internal reference
redox system. The use of aqueous SSCE as a reference electrode introduces an unknown
and irreproducible liquid junction potential, E;. Therefore, all potentials were referenced to
the ferrocene/ferrocenium couple (0.302 vs. SSCE) and reported versus SSCE.
Supporting electrolyte in all cases was 0.1 M tetra-n-butyl ammonium hexafluoro-

phosphate (TBAH).

RESULTS and DISCUSSION

Absorption Spectra: Electronic absorption spectra of the model complexes,
[Ir(u-pz*)(CO)(PhyPO-CgHy-Y)], (Y is poor electron acceptors, CH3 or CHZ—Quin“*PFG‘),
and donor-acceptor complexes, [Ir(/z-pz*)(CO)(thPO-C6H4-(CH2)n‘py+—R)]2(PF6')2, all
show identical features at nearly equivalent frequencies, indicating the dominance of the

spectra by the photophysical properties of the d8-8 iridium core (see Background section
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of this chapter). The spectra in acetonitrile solution show two intense bands with maxima
at approximately 22,000 cm™ (A = 460 nm, € = ~10,000 M"! cm’!) and 28,000 cm™!
(A = 350 nm, € = ~5,000 M1 cm’l). Table 4.1 summarizes the absorption data for the
iridium complexes. Figure 4.2 shows the absorption spectrum of the model complex,
[Ir,]-CH3, which was typical of absorption spectra for all the iridium d8-a8 complexes.
The band at 22,000 cm! is assigned, by analogy to similar d8-d8 metal complexes,'0to a
fully allowed S,—S(ds*—po) electronic transition. The corresponding absorption into
the triplet manifold (S,—T) was not observed at room temperature due to its low
extinction coefficient.1 The band at 28,000 cm™! has been tentatively assigned to
(dxz,dy,—P,) transitions also by analogy to similar 8.8 metal complexes. More research
into the precise nature of this and other higher energy bands is still necessary to

unequivocally assign them to specific electronic transitions.

Table 4.1. Absorption Data for the Iridium Donor-Acceptor Complexes

So—S] Band II°¢
Compounds ¢ cm’! nm cm’! nm
[Ir,]-CH; 21,800 458 28,400 353
[Ir,]-CH,-Quin* © 21,700 460 28,200 355
[Ir,]-py* 21,700 460 28,200 355
[Ir,]-CH,-py* 21,700 461 28,300 354
[Ir,]-CH,-py*-tB 21,700 462 28,400 353
[Ir,]-CH,-py*-Am ® 21,700 460 28,200 355
[Ir,]-(CH,),-py* 21,800 460 28,200 354
[Ir,]-3-(CHy)y-py* ? 21,700 460 28,200 355
[Iry]-(CH,)3-py* ? 21,700 460 28,200 355

4 All measurements were conducted in CH;3CN solutions.
These data have an error of +2 nm.
€ This band is referred to in the text as the higher energy transition.
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Figure 4.2. Absorption spectrum of [Ir(u-pz*)(CO)(PhyP-O-CgHy-CH3)lp. The band
at 460 nm is assigned to the S;—S;(do*—po) electronic transition.
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Excitation Spectra: Singlet and triplet excitation spectra were obtained by detection
of emission at 560 nm and 750 nm, respectively. These wavelengths correspond to
emission maxima for fluorescence and phosphorescence of the iridium complexes.

Tables 4.2 and 4.3 summarize excitation data for two model complexes and one donor-
acceptor complex. Figures 4.3a and b show singlet and triplet excitation spectra for the
model complex, [Ir;]-CH3. The features of these spectra are similar to those of the
absorption spectra described above. The S,—$; transitions appear in both singlet and
triplet excitation spectra at wavelengths comparable to those in the absorption spectra. The
high energy band at ~370 nm is weaker in the singlet excitation spectra, presumably due to
diminished intersystem crossing to the singlet manifold from these higher lying excited-
states (or possibly enhanced intersystem crossing to the triplet manifold). This point was

not further investigated and is left for more extensive studies in the future.

Table 4.2. Singlet Excitation Data

So—S1
Compounds cr! nm
[Ir;]-CHj 21,300 471
[Ir;]-CHp-Quin* 20,900 479

[Iry]-(CHp)3-py" 21,200 472

Table 4.3. Triplet Excitation Data

So—8, Band II
Compounds cm’! nm cm’! nm
[Irp]-CH3 21,200 471 27,400 365
[Iry]-CH,-Quin* 20,900 478 26,900 372

[Ir,]-(CHy)3-py*t 21,200 471 27,400 365
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Figure 4.3. (a) Singlet excitation spectrum of [Ir(u-pz*)(CO)(Ph,P-O-CgHy-CHj3)l,, at

room temperature in CH3CN solution, showing band corresponding to S,—S; transition at
470 nm. (b) Triplet excitation spectrum of [Ir(u-pz*)(CO)(PhyP-O-CgHy-CH3)l,, at room
temperature in CH3CN solution, showing band corresponding to S,—$; transition at

470 nm and a higher energy band at 365 nm.
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Emission Spectra: Electronic emission spectra of the model compounds,
[Ir(u-pz*)(CO)(PhyP-O-CgHy-CHj)l, and [Ir(u-pz*)(CO)(PhyP-O-CgHy-CH,-Quin™)],,
at room temperature in acetonitrile solution show two emission bands in the spectral region
between 11,000 and 22,000 cm™! (450 and 900 nm) with maxima at approximately
17,500 cm’! (570 nm) and 13,500 cm’! (750 nm). The steady-state emission spectrum of
[Ir]-CHj3 is given in Figures 4.4. The absorption and emission spectra for [Irp]-CHjz are
combined in Figure 4.5. These bands are assigned to S{—S,(po—dc*) and
T1—-8,(po—ds*) electronic transitions, respectively, by analogy to emission features
observed for similar d8-d8 chromophores.1® The emission spectra of all the donor-acceptor
complexes also show two emission bands at nearly the same energies as the model
complexes, however, they exhibit diminished emission intensities compared to the model
complexes. Table 4.4 summarizes the emission data for the series of Ir,-py* complexes,
and Figure 4.6 shows the emission spectrum of the donor-acceptor complex,
[Irz]-(CH2)3-py*, demonstrating the decrease in emission intensities upon incorporation of
the pyridinium acceptor into the molecule. The fluorescence and phosphorescence
quenching is attributed to excited-state electron transfer, culminating in formation of an
excited charge-transfer state. This deactivation pathway has been thoroughly characterized
in similar d8-d8 iridium donor-acceptor complexes, where other possible mechanisms have
been ruled out by energy and intensity considerations.!? Table 4.5 lists the fluorescence
and phosphorescence quantum yields. The dramatic effect of the number of methylene
groups in the bridge between the donor group (d8-d8 iridium center) and the acceptor group
(pyridinium cation) is apparent on inspection of the data in Table 4.5. The fluorescence of
the donor-acceptor complex, [Iry]-py”, is 96% quenched as compared to model complexes
([Ir,]-CHj3 and [Irp]-CH,-Quin™), however, only 52% of the fluorescence is quenched in
[Ir,]-CHy-py*. In the next chapter, these results will be combined with excited-state
lifetime data, yielding singlet and triplet electron-transfer rates, and the origin of these

differences will also be discussed in Chapter 5.
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Table 4.4. Emission Data for the Iridium Donor-Acceptor Complexes

S1-S, T1-S,
Compounds ¢ cm’! nm cm’! nm
[Ir,]-CHj 17,200 583 13,300 754
[Ir,]-CH,-Quin™* 17,200 583 13,200 758
[Ir)]-py* 18,300 547 b b
[Ir,]-CH,-py* 17,500 572 13,400 749
[Ir,]-CH,-py*-Am 17,300 577 13,300 750
[Iry]-(CHy)y-py”* 17,800 563 13,900 720
[Iry]-3-(CH,),-py ™ 17,900 558 13,700 729
[Iry]-(CHy)3-py”* 17,400 576 13,700 732

- % All measurements were conducted in CH3CN solution.

b Signal intensity too low to observe.

Table 4.5. Quantum Yields for Fluorescence and
Phosphorescence in Ir,-pyt Complexes

Quantum Yields ¢
Compounds D¢ (><103) Dppy (x103)
[Ir,]-CH; 1.0 12
[Ir,]-CH,-Quin* 1.2 17
[Ir,]-py”* 0.039 b
[Iry]-CH,-py”* 0.53 4.3
[Ir,]-CH,-py*-Am 0.69 11
[Irp]-(CHy)p-py™ 0.19 0.045
[Iry]-3-(CHy),-py* 0.093 0.021
[Ir,]-(CHp)3-py* 0.76 0.25

2 These values are associated with error of +30%.

b Emission too weak to measure,



-112 -

Figure 4.4. Emission spectrum of [Ir(u-pz*)(CO)(PhyP-O-CgHy-CH3)lp showing
S1—-S,, transition at 17,200 cm™! and T;—S,, transition at 13,300 cm’".
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Figure 4.5. Absorption spectrum (— — —) of [Ir(u-pz*)(CO)(PhyP-O-CgHy4-CH3)]
and emission spectrum (— - —) generated by excitation into 460 nm band.
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Figure 4.6. Emission spectrum of [Ir(,u»pz*)(CO)(Ph2P~O—C6H4—(CH2)3-py+)]2
showing S;—S, and T1—S,, transition, at decreased intensity compared to the model
complexes. The emission intensity scale is 8 times that of the spectrum in Figure 4.4.
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Electrochemistry:

Electrochemical studies were conducted on the series of phenol-pyridinium complexes,
HO-CgH4-(CHy),,-py™-R, and Irp-py* donor-acceptor complexes. The one-electron
reduction of the pyridinium cation in the former complexes was irreversible on the time
scale of the cyclic voltammetry experiment (up to 20 V/s scan rate), with the exception of
HO-CgH4-CH,-py*-Am (Am = 4-C(O)NH,) which showed a reversible (py*/py*) couple.
The cathodic peak potentials, E,,, (and half-wave potential for HO-CgHy-CH,-py*-Am)

are summarized in Table 4.6.

Table 4.6. Cathodic Peak Potentials of
pyt + e = py’ Reaction in Phenol-

Pyridinium Complexes

Compounds Epe
HO-CgHy-py”* -1.19
HO-CgH4-CH,-py* -1.33
HO-CgH4-CH,-py*-tB -1.56
HO-CgHy-CH,-py*-Am ¢ -0.93
HO-C6H4-(CH2)2—py+ -1.42
HO-CgHy-3-(CHp),-py* -1.40
HO-C6H4-(CH2)q-py+ -1.40

% This couple was reversible, E, , is given.

Figure 4.7 shows a cyclic voltammogram (CV) of HO-CgHy-(CHy),-py™, which is
representative of the irreversible (py*/py*) couples for the phenol-pyridinium complexes.
The wave at -1.4 V vs. SSCE corresponds to the one-electron reduction of py*. The wave
at ~-0.2 V has not been definitively assigned, but is only observed after initial negative
scans through the reduction wave, indicating the oxidation of a species formed as a

consequence of reducing the pyridinium cation to its radical (see below).
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Figure 4.7. Cyclic voltammogram of HO-CgH-(CH,),-py”, in 0.1 M TBAH CH;CN
solution, showing the irreversible wave at -1.4 V vs. SSCE corresponding to reduction of
the pyridinium cation. Scan rate was 200 mV/s.
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The irreversible behavior of the pyridinium reduction is due to the rapid dimerization
of the pyridinium radical to form bipyridine complexes,!> represented by the eqs 4.1 and
4.2.

pyt+e — py (4.1)
2py° — Dy (4.2)

The process in which an electrochemical reduction is followed by a second-order
chemical reaction (EC, mechanism) has been treated theoretically.(14,p. 451-461.) The
equations that relate the cathodic peak potentials (Ej,) to their corresponding half-wave

potentials (E, ,) are given below:

Eyp = Epe + S 0.902 - 1k In(2kCoRT/30Fv) (4.3)
Eyp2 = Epe +0.058 — 0.008563 In(k,C/v), (4.4)

where kg is the rate of the following second-order chemical reaction, C, is the
concentration, and v is the CV scan rate. These equations, however, break down at large
k¢ (more specifically, when | E, n- Epl 2 ~60 mV). Since the rates of dimerization are
nearly diffusion limited (~ 108 M1 s'l), eq 4.4 cannot be applied to the present
electrochemical experiments. The experimental values for E,; were, therefore, not
converted to E,, values as has previously been done.10 The errors associated with using
E,. values in calculating driving forces will be discussed in the next section of this chapter.
The complex HO-CgHy-CH,-py*-Am exhibited reversible electrochemical behavior
which has been attributed to the stability of the radical py*-Am in acetonitrile solution. The
electron-withdrawing 4-amide group is the origin of this stability (4-cyanopyridiniums also

exhibit reversible reduction waves). The CV of HO-CgH4-CH,-py*-Am, showing the
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reversible pyridinium reduction, is given in Figure 4.8.

The CV:s of the Ir)-py™ donor-acceptor complexes exhibit the same irreversible waves
between -1.6 and -0.9 V vs. SSCE, corresponding to the familiar one-electron reduction of
the pyridinium cation. The E,; values for the iridium complexes were the same as those
given in Table 4.6, within experimental error, indicating that there is virtually no effect of
the phosphine or iridium dimer on the isolated electrochemical reactions of the pyridinium
cation. The one-electron oxidation of the d8-d® dimers to form their corresponding a8-q’
species was observed in methylene chloride solution as a reversible wave at By, =031V
vs. SSCE. An irreversible wave at ~-0.7 V was also observed (as of yet unassigned). The
wave was, however, only observed when the initial scan direction was positive (forming
Ir,* species) and was not observed when the initial potential sweep was negative. CVs of
the model complex, [Iry]-CHj3, where the initial scans were positive (Figure 4.9a) or
negative (Figure 4.9b) demonstrate the behavior of this irreversible cathodic wave.

In acetonitrile solution, however, the (Ir/Ir,*) couple is not reversible, presumably
due to coordination of acetonitrile solvent molecule(s) to the oxidized iridium species. In
Figure 4.10 a typical CV of the donor-acceptor complex, [Irz]-CH2~py+, in acetonitrile is
shown. This CV is simply a combination of the oxidation wave corresponding to the
(Ir2/1r2+) couple (seen in the CV of [Iry]-CHj in Figure 4.9) and the reduction wave
corresponding to the (py*/py” ) couple (seen in the CV of the phenol-pyridinium
complexes, HO-CgH4-(CHy),,-py*-R in Figures 4.7 and 4.8).

These electrochemical data, in combination with spectroscopic data, are now used to
calculate driving forces for all three electron-transfer reactions in the series of donor-
acceptor complexes: (1) singlet excited-state electron transfer, IET = Uy *-py* — Iny*-py’;
(2) triplet excited-state electron transfer, 3ET = 3][r2"‘-py+ — Iry*-py’; (3) and thermal back
electron transfer, ET? = Ir,*-py" — Irp-py™.

The approximate energetics of the charge-transfer complexes, Iry*-py*, were obtained

by summing the half-wave potential for one-electron oxidation of the iridium dimer and the
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Figure 4.8. Cyclic voltammogram of HO-CgHy-CH,-py*-Am, in 0.1 M TBAH
CH;CN solution, showing the reversible wave at -0.9 V vs. SSCE corresponding to
reduction of the pyridinium cation. Scan rate was 200 mV/s.
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Figure 4.9. (a) Cyclic voltammogram of model complex, [Ir(u-pz*)(CO)(Ph,P-O-
CgHy4-CH3)l,, in 0.1 M TBAH CH,Cl, solution, showing the reversible wave at 0.3 V vs.
SSCE corresponding to the (Irp/Iry*) redox couple. The initial scan direction was anodic,

and the scan rate was 500 mV/s. (b) Same as Figure a, except initial scan direction was
cathodic.
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Figure 4.10. Cyclic voltammogram of donor-acceptor complex, [Ir(u-pz*)(CO)(Ph,P-
O-CgHy-CH,-py "), in 0.1 M TBAH CH3CN solution, showing irreversible one-electron
oxidation of Iry at 0.3 V vs. SSCE and one-electron reduction of py™ at-1.3 V. Scan rate
was 20 V/s.
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peak potentials of the one-electron reductions of the pyridinium acceptor. Thus, the driving
forces for ETP in the donor-acceptor complexes can be given by eq 4.5.16 The driving

forces for the two excited state electron-transfer reactions (\ET, 3ET) are logically

expressed by eqs 4.6 and 4.7.
-AG°(ET®) = B, p(Iry/Iry*) - E; p(@y*/py") (4.5)
-AG°(\ET) = Ey(S1) + AG°ETP) (4.6)
-AG°CET) = Eg(Ty) + E1s(py*/py") - By pIry/Iry ") 4.7)

The results of these calculations are given in Table 4.7, and in Figure 4.11 in the form of a
state diagram. In the next chapter, the driving forces presented here will be employed in
calculations aimed at elucidating electronic-couplings for the electron-transfer reactions

described above.

Table 4.7. Driving Forces for 1ET, SET, and ET? Reactions?

compounds -AG° (ET)?  -AG° CET)?  -AG° ETY)?
[Irp]-py* 0.90 0.40 1.50
[Irp]-CH,-py* 0.76 0.26 1.64
[Ir,]-CH,-py*-tB 0.53 0.03 1.87
[Iry]-CHy-py*-Am 1.16 0.66 1.24
[Ir,]-(CHp),-py”* 0.67 0.17 1.73
[Iry]-3-(CHy),-py”* 0.69 0.19 1.71
[Iry]-(CHy)3-py”* 0.69 0.19 1.71

@ Ego(S1) = 2.40 £ 0.05 eV, Eg(Ty) = 1.90 + 0.03 V.
b Driving forces are associated with an error of 0.1 ¢V.
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Figure 4.11. State diagram for donor-acceptor system, constructed from the
spectroscopic and electrochemical data found in Tables 4.1, 4.2, 4.3 and 4.6.
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Time-Resolved Experiments
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INTRODUCTION

The steady-state spectroscopic results presented in Chapter 4 demonstrated that
emission quenching in the series of Iry-py* donor-spacer-acceptor complexes was a direct
consequence of electron transfer from both the singlet and triplet excited states of the d8.a8
iridium donor. It was also established that the extent of quenching depended dramatically
on the number of methylene groups in the bridge separating the donor and pyridinium
acceptor. In this chapter, excited-state and thermal back electron-transfer rates were
measured for the series of complexes by employing time-resolved experiments. Figure 5.1
summarizes the three distinct reactions under investigation: (1) singlet excited-state electron
transfer, !Ir,* — py* (ET); (2) triplet excited-state electron transfer, 3Ir2* - py* CET);
and (3) thermal back electron transfer from py* — Ir2+ (ETb). An expression that
correlates the electron-transfer rates to the number of methylene groups in the bridge is
presented in this chapter. The issue of through-space versus through-bond mechanisms of
electron transfer is also discussed. The evidence presented in this chapter suggests for the
first time that electron transfer in linked donor-acceptor complexes can occur via different

mechanisms, depending on the initial spin state of the donor.

EXPERIMENTAL

General Procedures:

Samples of the iridium donor-acceptor complexes were prepared in acetonitrile
solution and placed in sealed quartz cells. For picosecond experiments, the samples were
flowed at rates rapid enough to ensure that a fresh portion of sample was irradiated with
each laser shot. Acetonitrile was dried over activated 3A Linde sieves for a minimum of
3 days, and freeze-pumped-thawed 4 times before being vacuum distilled into the quartz

cells holding the samples.
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Figure 5.1. A state diagram, showing approximate energy levels of the metal localized
and char%)&transfer excited states, and summarizing photoinduced (IET, 3ET) and thermal
back (ET") electron-transfer reactions.
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Picosecond Experiments:

Transient absorption and emission experiments on the picosecond time-scale were
conducted using the same laser source.

Laser source: Figure 5.2 shows the layout of the optical table which was common
to both transient absorption and emission experiments. A train of 25 ps (FWHM) pulses
was generated in an active/passive mode-locked Nd: YAG laser cavity. A saturable
absorber was positioned near the back mirror (passive) and an acousto-optic mode-lock
was placed near the front mirror (active). A Pockel cell pulse extractor was used to select
one peak from the train of picosecond pulses. The beam was then amplified at Amp1,
passed through apertures and amplified a second time at Amp2. The beam was then split
into two beams: 20% was sent through a third amplifier, Amp3, and the remaining 80%
was directed to a second optical table with no further amplification. In both experiments
the former beam became the excitation source, and the latter beam became either the trigger
pulse in the emission experiment or the probe and reference beams in the transient

absorption experiment.

Transient Absorption Experiment: This experiment was conducted by using the
pump-probe method for detecting changes in absorption after laser excitation.!> The
schematic in Figure 5.3 shows the setup used in this experiment. The excitation beam was
generated by frequency doubling the beam from Amp2 and sending it directly to the
sample. The probe beam was generated in the following manner: the beam from Amp3
was frequency doubled and tripled, filtered with a 350 nm sharp cut-off filter, passed
through a prism and directed to a double-pass movable track. The beam was then passed
through a 10 cm cell containing an 80:20 mixture of D,O/H,0O which generated continuum
light. The beam was then passed through a 1:1 beam splitter. One of the beams, which
was used as the probe beam, was sent directly to the sample and the other was allowed to

bypass the sample and was used as a reference beam. The probe beam, which was delayed
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Figure 5.2. Schematic diagram of Nd:YAG laser source used to generate 25 ps
(FWHM) laser pulses.



- 139 -

_
10108nx9
\m! ——{ osjd | w\ o
_

poi Joxnnw
‘ - JuoI} OVAPN

ureoq :O:a _OKO




- 140 -

Figure 5.3. Layout of transient absorption experiment showing excitation, probe, and
reference beams.
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relative to the excitation beam by adjusting the position of the double-pass movable track,
was passed through one of two slits of a monochrometer. The reference beam was passed
through the other slit and both beams were detected using one photomultiplier tube for
each. 200 laser shots were used for each delay time and wavelength. 100 ratios of the
probe and reference beams were measured without sample excitation and another 100 ratios
were measured with sample excitation. The Iog of the ratio of these ratios is equal to A
Absorbance. Data were transferred to a PDP 11/23 computer and analyzed using software

developed at Brookhaven National Laboratories.

Emission Experiment: In this experiment, the beam from Amp3 was frequency
doubled and tripled, then sent through an IR filter where about 20% of the beam was
reflected and used as a timing pulse. The remaining 80% was focused into a 10 cm cell
containing methanol which generated raman shifted Stokes and anti-Stokes emission at
~630 and ~460 nm. The anti-Stokes emission was separated from the Stokes and
fundamental emission by passing the beam through a prism. The trigger pulse was
generated from filtered leakage of intensity from Amp2. The trigger pulse, timing pulse
and picosecond excitation pulse at 460 nm were directed to a third optical table. The
excitation beam was made to pass through a 460 nm narrow-band-pass filter, focused, and
vertically polarized before exciting the sample. Emission from the sample was directed into
a spectrometer at magic angle polarization (57.74°), eliminating artifacts arising from solute
rotation. The signal (spectrally confined to 250 nm) was then focused into the 400 um slit
of a Hamamatsu Temporal Disperser C1587. The data was transmitted from a High Speed
Streak Unit M 1952 to a monitor via a high resolution video camera. Data were transferred

to a PDP11/23 computer and analyzed using software developed at BNL.

Nanosecond Experiment:
A laser system built at Caltech that has been previously described,? was used for

determining phosphorescence lifetimes. The excitation source was a Quanta Ray DCR-1
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Q-switched Nd:YAG laser, which was frequency doubled and tripled with a Quanta Ray
HG-1 harmonic generator (KDP). Doubled (532 nm) and tripled (~355 nm) 8 ns (FWHM)
laser pulses were separated from the YAG fundamental (1064 nm) using a Quanta Ray
PHS-1 prism harmonic separator. Light emitted from the sample was collimated at 90°
from the excitation beam, and focused through a Corning 3483 sharp cut-off filter onto the
entrance slit of a MacPherson monochrometer. Luminescence was detected using a
Hamamatsu R955 photomultiplier tube, and the signal was amplified with a LeCroy
VV101ATM amplifier. Signals were digitized with a Biomation 6500 waveform recorder
and transferred to a Digital PDP11/103-L computer. The data were analyzed on a Compaq
386 PC using OLIS software.

RESULTS

Figure 5.4 shows transient difference spectra immediately following (0-20 ps) and
90 ps after 355 nm laser irradiation for the n = 2 donor-acceptor complex,
[Ir(u-pz*)(CO)(PhyP-O-CgHy-(CH,)p-py )1, ([Irg]-(CHy)p-py*). Two main features are
apparent in the spectra: a bleach centered around 460 nm which corresponds to the position
of the ground-state Sy—S; absorption, and a broad positive absorption feature at around
400 nm which was logically assigned to absorption by the singlet and triplet (do*po)
excited states.* The kinetics of these features obtained by detection at 460 nm and 405 nm
are given in Figures 5.5 and 5.6. Both show biexponential behavior with lifetimes of
120+20 ps and 2.4+0.2 ns for the positive absorption region, and 190+30 ps and 2.5+0.2
ns for the bleach region. Independent time-resolved emission measurements conducted on
[Ir2]—(CH2)2-py”' (presented in the next section) revealed triplet and singlet lifetimes of 1.7
ns and 36 ps, respectively. The transient species in the absorption experiments are,

therefore, assigned to the triplet excited state (T = ~2 ns) and a species (T = ~150 ps) which
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Figure 5.4. Transient difference spectra of [Ir(pz*)(CO)(thP—O-C6H4-(CH2)2-py+)]2
at 0 ps (o) and 90 ps (e) after laser excitation. The spectra show the decay of the bleach
and absorption regions.
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Figure 5.5. Kinetics of bleach obtained by excitation at 355 nm and detection at 460 nm
of [Ir(pz*)(CO)(PhyP-O-CgH,-(CHy),-py*)], donor-acceptor complex. Biexponential fit
to the data yielded T; = 2.5 ns and 1 = 190 ps.
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Figure 5.6. Kinetics of absorption feature obtained by excitation at 355 nm and detection
at 405 nm of [Ir(pz*)(CO)(thP-O-C6H4-(CH2)2-py+)]2 donor-acceptor complex.
Biexponential fit to the data yielded T; = 2.4 ns and 1, = 120 ps.
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does not correspond to the singlet or triplet excited state. This species has been identified,
by analogy to transient absorption experiments conducted on similar donor-acceptor
complexes,* as the charge-transfer complex. Similar results were obtained for the n = 1
complex, [Ir;]-CH,-py™, which revealed a charge transfer state lifetime, T, of about an
order of magnitude longer than was found for [Ir,]-(CH,),-py*. These results are
summarized in Table 5.1.

Time-resolved emission experiments, conducted on the series of donor-acceptor
complexes, [Ir(u-pz*)(CO)(PhyP-O-CgHy-(CH,),-py -R)],, and on two model
complexes,[Ir(u-pz*)(CO)(PhyP-O-CgHy-Y)], (Y was either CH3 or CH,-Quin™, both of
which are extremely poor electron acceptors), were employed to measure singlet and triplet
excited-state lifetimes. Either of two emission experiments was used depending on the

lifetime of the complexes. A Streak Camera experiment was utilized in obtaining the

Table 5.1. Fluorescence, Phosphorescence, and Charge-Transfer
State Lifetimes of Model and Donor-Acceptor Complexes

Compounds ¢ (ps) T, (n8) Ter (ns)
[Ir,]-CH; —a 640+50%€¢ ¢
[Ir,]-CH,-Quin* 124+7¢  1000+100¢ —9
[Ir,)-py* b 360+40¢ 9
[Ir,]-CH,-py* —a 660+50¢ 18+027f
[Iry]-CH,-py*-tB 93+6° 740+ 110¢ —*¢
[Ir,)-CH,-py*-Am —a 680+50¢ 4
[Ir,]-(CHp),-py* 36£3°¢  17:01°¢ 015002
[Ir,]-3-(CH,)»-py* 19+1¢  18x02°¢ ¢
[Ir,]-(CHy)3-py* 7465  20:2° —a

2 These lifetimes were not measured.

b The lifetime of this complex was too short to measure.

€ Obtained from Streak Camera experiment.

d Obtained from nanosecond emission experiment, Caltech.

€ Obtained from picosecond emission experiment, Brookhaven National Laboratories.

/ Obtained from picosecond transient absorption experiment, Brookhaven National
Laboratories.
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singlet lifetimes of [Iry]-(CHy),-Quin*, [Iry]-CHy-py*-tB, [Iry]-(CH,),-py™,
[Ir]-3-(CHp),-py*, and [Irz}-(CH2)3—py+ donor-acceptor complexes, as well as the short
triplet lifetimes of [Iry]-(CH,),-py™ and [Iry]-3-(CHy),-py*. Figure 5.7 shows
spectral/kinetic data for the n = 3 complex, [Ir,]-(CH)3-py*. This time-resolved emission
spectrum in the range between 440 and 580 nm showed the expected maximum at ~550 nm
(refer to Table 4.4. Emission Data) which decayed with a lifetime of 74 ps over the entire
emission band (470-570 nm). Figure 5.8 shows the kinetic data accumulated from the
most intense spectral window (520-580 nm). The data for this compound and the
complexes mentioned above were all fit to monoexponential intensity functions, the results
of which are given in Table 5.1.

The triplet lifetimes of the [Ir;]-CHj, [Irz]-CHz-Quin*', [Irz]-CHz-py*’-tB, and
[Irz]-(CH2)3-py+ complexes were obtained using standard emission experiments (laser
excitation at 460 or 355 nm, and detection of emission at 750 nm using a PMT).

Figure 5.9 shows representative kinetic data for the model complex, [Irz]—(CHz)z-Quin+,
(T = 1.0 us). The data for all compounds were fit satisfactorily to monoexponential
intensity functions and are summarized in Table 5.1.
The excited-state electron-transfer rates were calculated from the lifetime data by using
eq 5.1. The factor of 1/2 in the equation is required by the 2:1 acceptor/donor
kEr:l/z(%—}l;) (5.1)
stoichiometry in these complexes. 1, is the intrinsic singlet or triplet lifetime of the
unquenched complexes, i.e., the lifetime of the model complex, and 7 is the singlet or
triplet lifetimes of the donor-acceptor complex. This equation is valid because the radiative
and nonradiative rate constants, intrinsic to the d8-g8 chromophore, are unperturbed by the
pyridinium cation (this situation was established from the spectroscopic data presented in

Chapter 4). In cases where lifetime data were not available, emission quantum yields were
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Figure 5.7. Kinetic/spectral data obtained from Streak Camera experiment for
[Ir(u-pz*)(CO)(PhyP-O-CgHy-(CHa)3-py ™ )]a.
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Figure 5.8. Kinetics of [Ir(,u-pz*)(CO)(thP-O—C5H4~(CH2)3-py+)]2, T¢ = 74 ps,
Aex = 460 nm, data collected between 520 and 580 nm. The dashed line is the best fit to
the data, and the dotted line is the instrument response function.
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Figure 5.9. Kinetics of [Ir(u-pz*)(CO)(PhyP-O-CgH,4-CH,-Quin™)],, Toh = 1.0 us,
Aex = 460 nm, Ay, = 750 nm, obtained from nanosecond emission experiment.
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employed to determine singlet and triplet electron-transfer rates using egs 5.2 and 5.3,
respectively. (I)g and @g are the fluorescence and phosphorescence quantum yields for the
model complex and ®fand <I>p are the corresponding quantum yields for the donor-acceptor
complex. Thermal back electron-transfer rates were calculated using eq 5.4, where kb is

simply the inverse of the charge-transfer state lifetime, T¢;.

@;

o, =142k, 77 (5.2)
(&)
D o
(Qé) =14 2k, Tp (5.3)
(DP
kpp = Ytep (5.4)

The results of these calculations are summarized in Tables 5.2 and 5.3. The driving forces
for each reaction, calculated in Chapter 4, are also given. In the next section these ET rates
will be discussed in light of the structural parameters presented in Chapter 3. A discussion

of the effects of the initial spin-state of the donor on ET rates will also be given.

DISCUSSION

A previous study conducted in our laboratory on the donor-acceptor complexes,
[Ir(pz*)(CO)(thP-O—(CH2)2—py+-R)]2, has demonstrated the effects of driving force on
electron-transfer rates.> The 'ET, 3ET, and ETP rates were fit to classical Marcus theory
with the same set of parameters: A = 1.0 eV and Hp, =24 cm™. These results are applied
to the present investigation in an effort to extract electronic coupling matrix elements. This

was accomplished by first assuming that the nuclear reorganization energies (mainly due to
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Table 5.2. Singlet and Triplet Excited-State Electron-Transfer Rates for
Donor-Acceptor Complexes

IET 3ET
Compounds -AGEV)?  kgp (s -AGEV)?  kgp (5H
[Iry]-py* 0.90 1.0:0.3x 10%  0.40 8.9+1.8 x 10°
[Ir,]-CH,-py* 0.76 3.6:09x10°? 026  2.5:0.5 x 10°

[Ir,]-CH,-py*-tB 0.53  1.3:0.1 x 10° 0.03  1.840.4 x 10°
[Ir,]-CH,-py*-Am  1.16  1.8:0.5x 10°%  0.66  2.4+0.5 x 10°
[Ir,]-(CH,)»-py* 0.67 1.4:0.1x10'°  0.17 1.6x1.4x 10}
[Ir)]-3-(CHp)o-py*  0.69  3.1:02x 101 0.19  1.6:1.3 x 108
[Ir,]-(CHo)3-py”* 0.69  2.7+0.3 x 10° 0.19  2.1x0.3 x 10’

% Driving forces are associated with an error of 0.1 eV.

® Obtained from quantum yield measurements using eq 5.3 since triplet lifetimes were not
available.

Table 5.3. Thermal Back Electron-Transfer Rates
for Two Donor-Acceptor Complexes ¢

Compounds -AG°EeV) ker 67D
[Iry]-CHy-py* 1.50  5.6+0.6 x 108
[Ir5]-(CH,),-py* 173 6.7x1.9 x 10°

2 the back electron-transfer rates for the remaining Ir2-py+
complexes were not measured.

solvent reorganization with little contribution from internal modes*) in both systems are
similar. This assumption is valid because the same solvent (CH3CN) was used, and the
approximate donor-acceptor separations are comparable. The values of Hp 4 for electron
transfer in [Ir@z*)(CO)(thP-O-C6H4—(CH2),,—py+)]2 were then calculated by solving the
Marcus expression for electron-transfer rates,® imputing a value for A of ~1.0 eV. These
calculations were conducted on the four classes of donor-acceptor complexes (n =0, 1, 2,

and 3) for 1ET, 3ET, and ET® reactions. We will refer to electronic couplings associated
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with singlet and triplet excited-state electron transfer as 1HD A and 3HD A» Tespectively, and
the electronic couplings associated with the thermal back electron transfer as bHD A In
Figures 5.10a-d, the results of these calculations are shown in the form of four separate
Marcus curves for the n =0, 1, 2, and 3 complexes. The results are also summarized in
Table 5.4.

It is apparent from the calculations of Hp, for IET, 3ET and ET? in the series of
donor-acceptor complexes that: (1) in complexes with n =0 and 1, 1HD A S>> 3HD As (2)in
complexes with n =2 and 3, lHD A= 3HD 4; and (3) in the two complexes where kgt were

measured, 1HD A= bHD A

Table 5.4. Electronic Coupling Matrix Elements for IET, 3ET and
ETP in the Donor-Acceptor Complexes

Compounds n 1HD A (cm™) 3HD A (cm') bHD A (cm’)
[Iry]-py* 0 21 0.4 —
[Ir;]-CHy-py*-R 1 5 <0.3 5
[Ir;]-(CHp)p-py*t 2 26 26 26
[Ir)]-(CHp)3-py* 3 7 7 —

¢ Back electron-transfer rates were not measured for these complexes.

In an effort to understand these observations, the singlet ET reactions (along with the
thermal back ET reactions) will first be discussed followed by a discussion of the triplet ET
reactions. Once we have established the possible explanations for the electronic couplings
observed for each excited-stated ET reaction, the results from the donor-acceptor complex,
[Ir5]-3-(CHy),-py?, which has in its bridge a 1,3-disubstituted phenylene group, will be
discussed. This complex will serve to further substantiate our theoretical models

concerning electron transfer from singlet and triplet excited states.
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Flgure 5.10. (a) Fit of IgT (o) rate for [Irp]- py (n = 0) to Marcus theory (eq 1 2). (b)
Fit of ET (o) and ET (a) rates for [Ir2] CH,- py (n=1). (c) Fit of ET (o), 3ET (o),

and ETP (a) rates for [Irp]-(CHj),- py (n =2). (d) Fit of IgT (o) and 3ET (o) rates for
[Ir;]- (CHz)z-py (n=73).
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Singlet Electron Transfer:

Even though the through-bond edge-to-edge Ir; to py" distance in [Ir,]-CH,-py™ is
~1.5 A shorter than that of [Irp]-(CHy),-py™ (refer to Table 3.5. Structural Parameters), the
IHD A in the former is about five times smaller. This strongly suggests that the principal
pathway for the electron transfer from the singlet excited state of the iridium dimer is
through the bonds of the hydrocarbon bridge.” We will therefore discuss the singlet
electronic couplings in terms of through-bond mechanisms only. Through-bond (TB)
interactions are the result of mutual mixing of orbitals via the intervening o (or x)
framework. Model calculations’-? and experimental results!®-13 have led to several
important generalizations concerning orbital interactions through n methylene groups: (1)
The extent of orbital interactions through n methylene groups (n - 1 = m bonds), for a
given value of n, depends on the geometry of the o relay and is maximized for an all-trans
arrangement of ¢ bonds; (2) ET rates, in a series of donor-acceptor complexes with all trans
bridges (n must be even), decay exponentially with an increasing number of intervening
o-bonds. Oliver ez al.16 recently observed this behavior in molecules possessing
1,4-dimethoxynaphthalene donors attached via rigid hydrocarbon spacers (norbornyl
groups) to 1,1-dicyanoethylene acceptors. Their hydrocarbon spacers had either an
all-trans arrangement of single bonds or a single -cis kink in the chain. In each case the
all-trans isomer gave the faster rate by about a factor of 10. Similar results were also
obtained by Wasielewski et al.l” in rigid porphyrin-quinone complexes, shown in
Figure 5.11. The all-trans isomer exhibited a singlet ET rate approximately two times
faster than the cisoid isomer. These examples demonstrate that through-bond coupling of
donor and acceptor through saturated bridges plays an important role in determining ET
rates, and furthermore, trans donor-acceptor configurations result in enhanced ET rates
over cisoid configurations.

A discussion of the experimentally determined singlet electronic coupling matrix

elements (IHD a) for the four classes of Iry-py™ donor-acceptor complexes (n =0, 1, 2,
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Ll @)

all-trans cisoid

wemmm = -C.Hs or -CcHy—
m()m = quinone
P = porphyrin

Figure 5.11. Edge-view of porphyrin-quinone complexes.

and 3) will therefore be presented in light of through-bond electron-transfer mechanisms.
The discussion that follows hinges on the assumption that in these complexes,
photoinduced electron transfer from the singlet excited state of the Iry donor occurs via the
stretched conformations (stretched and folded conformations are discussed in Chapter 3).
In the stretched conformation, gauche interactions between the aromatic rings (phenylene
and pyridinium groups) are minimized, implying that it is the lowest energy conformation
in solution. Therefore, during the short lifetime of the Ir; singlet excited state (~100 ps),
the most populated structure found in solution would be the stretched conformation.
Through-Bond Electron Transfer Mediated by One Methylene Group: The orbital
interactions in complexes where ©t systems are separated by one methylene group can be
modelled by the n-orbital overlap in norbornadiene.!® The © MOs in }his complex are
known from photoelectron (PE) spectroscopy to interact predominantly through space.!®

Therefore, in the n = 1 donor-acceptor complex, [Ir,]-CH,-py™*, only through-space

interactions between the phenylene and pyridinium groups are expected to play a role in
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coupling 'Iry* and py*. Since it has already been established that solely through-bond
interactions couple 1Ir2’" and py™, the value of 1HD A is predicted to be extremely small.
The experimentally determined 1HD A Of 5 cm’! for [Ir,]-CH,-py™ is therefore not
surprising.

Electron Transfer through Two Methylene Groups: The orbital interactions in
complexes where n systems are separated by two methylene groups can be modelled by

compound 1 shown in Figure 5.12. From PE spectroscopy, the difference in vertical

Figure 5.12. Structure of molecules which exhibit strong

n through-bond interactions (1) and diminished through-
bond interactions (2)

ionization potential, Al (r), for the n_and =, MO levels can be calculated.!® Large
values of Al (r) have been shown to imply efficient through-bond orbital interactions.?°
Al (r) in this molecule was found to be 1.16 eV. This value can be compared to 0.78 eV
for the syn-isomer, 2, where the reduced Al () is due to the presence of competing
through-space interactions, which are of course absent in the 1.

The results from this model predict that 1HD a for [Iry]-(CHy)o-py* (n = 2) should be
much larger than for [Iry]-CH,-py™ (n = 1), due to enhanced through-bond coupling in the
former complex. This was experimentally observed: 1HD Al)=5 cm™! and 1HDA(2) =

26 cm’l.
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Electron Transfer through Three Methylene Groups: The orbital interactions in
complexes where r systems are separated by three methylene groups can be modelled by
the compound shown in Figure 5.13. Al (r) in this compound was found to be only
0.87 eV2! as compared to 1.16 eV for compound 1 in Figure 5.12. The diminished
through-bond orbital interaction in this compound can been attributed to the trans effect for
electron transfer. The relatively small value of 1HD A (7 cm!) for [Iry]-(CHp)3-py™* is

therefore not surprising.

Figure 5.13. Structure of model compound for p orbital
interactions through three methylene groups.

The experimental values of 1HD A (given in Table 5.4) for the series of donor-acceptor
complexes are adequately explained by invoking through-bond interactions in the stretched
conformations of the Ir,-py™ donor-acceptor complexes. The result, which indicates that
electronic coupling in the n = 2 donor-acceptor complex is the most efficient of the series,
can be attributed to the trans effect for electron transfer. The values of bHD Aforthen=1
and 2 complexes are equivalent to the corresponding values of 1HD A- A satisfactory
explanation for this is not presented; however, this result implies that thermal back electron-
transfer in these complexes occurs from a charge-transfer state exhibiting singlet
character.

The n = 0 complex, [Iry]-py”, was not modelled in the preceding discussion,
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however, its large value of 1HD A (21 cm’l) implies that the p-orbitals at the point of
attachment of the pyridinium and phenylene rings interact strongly. This point is discussed
in more detail in the next section, where electronic couplings for triplet electron-transfer

reactions are considered.

Triplet Electron Transfer:

The results presented in Table 5.4 show that 3HD A values forthe n=0and n=1
donor-acceptor complexes are considerably smaller than for the n = 2 and » = 3 complexes,
and furthermore, the 3HD A for the n = 2 complex is larger than for the n = 3 complex.
These results imply that the through-bond mechanism (which plays an important role in
determining values of 'Hp,) does not play an important role in 3HD A - Therefore the
3HD AS will be discussed in terms of through-space (TS) interactions. TS interactions, as
the term implies, result from direct spatial overlap of two interacting (basis) orbitals.”-?

Evidence that through-space interactions can lead to such strong couplings of ©
systems (3HD A(2) =26 cm’l) is available in a system comprised of xanthene and related
dyes dissolved in the non-polar solvents anthracene, phenanthrene, and
1-chloronaphthalene.?2 In this system of interacting aromatic rings a determination of the
pure through-space electron-exchange matrix element, Hp,, was possible. A value of
35cm’! for Hp, was obtained by fitting the charge-transfer data to the Marcus expression
for electron transfer. This system clearly demonstrates that through-space coupling of face-
to-face aromatic groups can be considerable. It is, however, not clear what the precise
structural requirements are for large through-space interactions to persist, and more
precisely, what role, if any, the number of intervening methylene groups play in
determining the extent of through-space coupling.

Studies of the charge-transfer quenching of benzophenone phosphorescence (3ET) by
olefins shed some light on these questions.?3 In this system, the benzophenone and olefin

were separated by n methylene groups (n = 1-21). It was observed that there was a
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sudden increase in kgr(n) for chains of length n = 8 and another significant jump for
n=9, as seen in the data presented in Table 5.5. Space-filling models indicated that only
chains of at least eight CH, groups permit the terminal -CH=CH, group to come within
van der Waals contact of the ketone carbonyl. The suggestion was made, from these
results, that a close approach between the alkene and the ketone carbonyl group was
necessary for quenching of the ketone triplet to occur. The diminished ET rates at large
values of n (18 and 21) are most likely due to the decreased probability of the donor and

acceptor meeting in a favorable conformation.

Table 5.5. Triplet Electron-Transfer
Rates in a series of Benzophenone-

Alkene Complexes
n kpp X 10 (s'l)
1 0
2 0
4 1.0
6 1.3
8 23.5
9 54.1
10-15 63.6x10¢
18 36.3
21 30.2

@ Average of rates for n = 10-15.

When our results are considered in light of the above observations, a correlation of the
number of methylene groups in the bridge to 3HD A arises. If through-space coupling is
primarily responsible for the observed values of 3HD A» then the through-space interactions
in [Irz]-(CHz)z—py+ (n =2) are the largest of the series followed by the n = 3 complex, and
then the n =0 and n = 1 complexes which presumably have diminished TS interactions.

In an attempt to quantify the dependence of 3HD A On n, the assumption will therefore
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be made that the origin of the coupling between the donor and acceptor is specifically the
TS interaction between the pyridinium ring and the phenylene ring in the folded
conformation. Furthermore, since the structures of the folded conformations for the series
of complexes (see Figures 3.5-3.10) reveal that the most important interaction between the
two aromatic rings is between the C4 atom of the phenylene ring and the N atom of the
pyridinium ring, only the TS interaction between the corresponding p-orbitals on C4 and N
will be considered. The electron accepting molecular orbital (LUMO) of the pyridinium
acceptor has p-character on the N atom,2* warranting consideration of the interactions of
the 2p-orbitals on the C4 and N atoms.

Since electron densities usually fall off exponentially as the distance between the
electron and the nucleus is increased, the orbital overlap between C4 and N is also expected
to fall off exponentially as their separation, r, increases.?> 26 If the assumption is made
that electron transfer occurs via electronic coupling between the p-orbitals of C4 and N,
then the electron-transfer rates would also be expected to fall off exponentially with r. The
exponential dependence of electron-transfer rates on r has been demonstrated in many

donor-acceptor systems!1-13. 25, 27-33 and can be expressed by eq 5.1, where A is a

kgt = A exp(-pr), (5.1)

preexpontential constant and § is a measure of the steepness of a log kgt vs r plot.
However, eq 5.1 neglects stereoelectronic details of the p-orbital overlap. The introduction
of angular terms into the equation will take into account the asymmetry of the p-orbitals.
This is accomplished by considering the angular dependence on the overlap between the
2p-orbitals on C4 and N.

The overlap between two 2p-orbitals, S5, whose axes lie in parallel planes at a
distance r is a function of the overlap integral of parallel 2p orbitals, S, and the cant

angle, ¥, which is defined in Figure 5.14a* S, is a function of the effective nuclear
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charge, Z, usually taken to be 3.09, and decays exponentially with r, as described above.
Eq 5.2 reflects the dependence of S on Sy and ¥. When the p-orbitals are also slanted
towards one another at the angle 6, as defined in Figure 5.14b, the expression for Sy,
(which is now resolved into ¢ and & type overlaps) is given by eqs 5.3 and 5.4, where
S;2(0) and S,(x) are the o and = contributions to the total overlap. The values of S5 and
Sy Were obtained from Kopineck's compilation.3> It was established in Chapter 1 that the
electron-transfer rates are proportional to the square of the electronic coupling or, in this

case the direct orbital overlap (eq 5.5).

S12 = Sy COSY (5.2)

S12=Ss6 cos?6 + Sin sin?@ cosy (5.3)

SIZ = Slz(c) + Slz(n) (54)

Ker o< ST, (5.5)
pyridinium

phenylene
ring

Figure 5.14. (a) Definition of y and r. (b) Definition of
C4, N, and 6.
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Before the validity of eq 5.5 is tested, we must consider the statistical distributions in
solution of the folded conformations. If we assume that only a finite number of low energy
conformations exist in solution and that the energy associated with each possible
conformation is approximately the same, then a statistical factor, P, can be introduced into
eq 5.5, which is the number of conformations in the folded form divided by the total
number of possible conformations. For example, in the n = 2 complex there are three

possible low energy conformations, shown in Figures 5.15: two folded (a and b) and one

Irz II'Z II'2
~d 7
I, +
. UN H H Na H H
H H H H H H
H H N+
S
Q
a b c

Figure 5.15. Newman projections of the three low energy
conformations for n = 2 donor-acceptor complex, (a) and (b)
represent the folded conformations, and (c) represents the
stretched conformation.

stretched (c). Therefore, P in this case is 2/3. The value of P decreases rapidly as n
increases, expressing the fact that at large » the probability of finding the pyridinium ring
eclipsed over the phenylene ring is severely diminished (as in bimolecular reactions). P can

now be incorporated into eq 5.5 yielding the final expression, egs 5.7, which relates
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electron-transfer rates to the statistical and angular terms of eqs 5.2-5.6.

kpp o< P S2, (5.6)
kEr o< IT2 (57)

The parameters in eqs 5.1, 5.3, and 5.6 (7, ¥, 6, P, Sgq, and S,,) are given in
Table 5.6 for the series of donor-acceptor complexes. Included in the table are the
parameters for the analogous n = 4 complex, which were not prepared in this study, but

can lead to predictions concerning future studies.

Table 5.6. Structural and Electronic Parameters for Donor-Acceptor Complexes

Compounds n r (A) Y 6 P Soo Sin
[Iry]-py* 0 1.4 42 90 1 0.32 0.27
[Ir,]-CH,-py* 1 2.4 0 55 1 0.17 0.046
[Ir,]-(CHy),-py* 2 3.1 0 25 67  0.085 0.015
[Ir;]-(CH2)3-py* 3 3.7 0 20 .11 0.056 0.0074
[Ir)]-(CHo)gpyt 4 4.0 0 8.5 07  0.038  0.0038

Assuming that kgp(n) is proportional to the square of the statistically adjusted C4-N p-
orbital overlap, ITZ(n), experimental values of 3HD Az(n) can be compared to the calculated
values of IT2(n). If the calculated orbital overlaps parallel the experimental results for every
n, we would conclude that the p-orbital overlap between C4 and N is responsible for the
coupling between the 3Ir,* donor and the py* acceptor. However, if the calculated )
values did not correlate with the experimental values of 3HD Az(n), an alternate analysis
would have to be considered. The answers to these questions can be found in Table 5.7.

The first column of the table contains the calculated values of ITZ, the second column is the
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Table 5.7. Calculated Orbital Overlaps (Ir2) and Experimental Matrix

Elements (Hp AZ)
Calculated Normalized Found

Compounds I:2 x 10* I 3Hpa? (cm™)
[Iry]-py™ 400 10,000 0.2
[Ir;]-CH,-py* 60 2,000 <0.1
[Iry]-(CHp)o-py* 30 900 900
[Irp]-(CHy)3-py™ 0.4 10 50
[Iry]-(CH,)4-py* 0.08 2 —

same data normalized to match 3HD 42(2), and the third column contains the experimental
3HD A2 values. The normalized values of ITZ(n), for all n, do not compare favorably to the
experimental 3HD Az(n) values: IT2(1) is twice IT2(2) which was not observed
experimentally (3HD A2(2) >> 3HD A2(1)); the largest orbital overlap is ITZ(O) which is also
not consistent with experiment. Clearly, the C4-N p-orbital overlap is not responsible for
the observed coupling in this series of Iry-py* donor-acceptor complexes. The calculations
must therefore be reanalyzed in a search for the origin of 3HD Aln).

It was demonstrated in eq 5.4 that ¢ and & terms contribute to the total orbital overlap.
Table 5.8 summarizes the results of separating IT2 into Iﬁ2 and I,,‘2 components. I(,2 and Iﬂ2
represent ¢ and & type p-orbital overlaps. These two types of orbital overlaps show
dramatically different dependences on n. For example, I,tz(n) values predict (as did ITz(n)
values) that Hp,,2(0) should be the largest of the series followed by Hp,%(1) and then
3HD A2(2). However, Icz(n) values predict that 3HD A2(2) should be the largest followed by
3HD AZ(I). The 6 contribution to the total overlap also predicts that 3HD AZ(O) should be
very small. A comparison of the normalized values of Icz(n) with 3HD Az(n) for all n
reveals the relatively good agreement of the o-type p-orbital overlaps with the matrix
elements for SET: 1,2(2) > I;2(1) > I,2(3) >> I,2(0) compared to *Hp,%(2) >

SHpa%(3) >> *Hpa2(0) > 3Hp,2(1).
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Table 5.8. Calculated o and & Orbital Overlaps (I, and L) and Experimental Matrix
Elements (Hp,2)

Calculated Normalized ¢ Found
Compounds I,,2 x 10* 102 x 10* I,t2 162 3HD A2
[Ir,]-py* 400 0 2 x 107 0 0.2

[Ir2]-CH,-py* 6 20 3x10° 450 <0.1
[Ir,]-(CH,),-py* 0.02 40 900 900 900
[Ir,]-(CHp)3-py* ~0 2 ~0 45 50
[Iry]-(CH,)4-py* ~0 1 ~0 20 20 ®

2
1,7 = P $1,(0)
2
1.2=P Siy(n)
@ These values are normalized to *Hp, A2 for n = 2 complex.
b Predicted value based on normalized 102 value.

The theoretical prediction that through-space coupling is maximized when the number of
intervening methylene groups is 2 has also been confirmed in a study of
X-CgHy-(CHj),-py*-Y complexes, where n = 1, 2, or 3, X = H, OMe and Y = 3-CN,
4-CN.36 The intensities of charge-transfer transitions in these complexes, which is a
measure of the coupling between the redox sites, were found to strongly depend on the
methylene chain length with the n = 2 compounds exhibiting by far the most intense CT
bands compared to n = 1 and 3 compounds.

Although the trend of 3HD Az(n) values is approximately predicted by the Icz(n) values,
there are discrepancies between the magnitudes of these values. Two major disagreements
between Ioz(n) and 3HD A2(n) arise when we assume that the value of 102(1) accurately
describes the through-space interaction between the phenylene and pyridinium rings: (1)
the unusually small calculated value for 102(0); and (2) the unusually small calculated values
of 1,2(2) and I,2(3).

The small value of 102(0) can be adjusted to more closely match its associated 3HD A2

by simply invoking a small contribution of n-type orbital overlap in this complex. Since
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11:2(0) is much larger than the other I,tz(n) values, this would only serve to increase the
calculated orbital overlap in the n = 0 complex with no appreciable effect on the other
complexes.

The unusually small values of In2(2) and I,:Z(B) can be attributed to two problems
associated with their calculations. First, in considering the conformations that would lead
to efficient overlap of the p-orbitals on C4 and N, high energy conformations were
neglected, and only low energy staggered configurations were considered. From molecular
mechanics calculations (described in Chapter 3) it was apparent that high energy eclipsed
conformations exhibited potentially large values of p-orbital overlaps. Consideration of
these high energy conformations would almost certainly increase the calculated orbital
overlaps. It should be noted that for complexes with n =0 and n = 1, such high energy
structures need not be considered due to the rigid nature of these bridges. The second
possible shortcoming in the calculations is the neglect of the overlap of the remaining
p-orbitals of the rings aside from the C4 and N orbitals. If the contribution of all p-orbitals
on the phenylene and pyridinium rings are considered in calculating the through-space
coupling in these donor-acceptor complexes, a factor of up to 52 can be added to the 102(2)
and 102(3) values. Again, this correction would not apply to n = 0 and 1 complexes
because the large plane angle between the two rings precludes additional p-orbital overlap
above that of the C4 and N p-orbitals.

We have demonstrated that there are three factors that contribute to 3HD A» the
electronic coupling between 3Ir2* and py*: (1) the relative orientation and (2) separation
between donor and acceptor, and (3) a statistical factor that measures the probability of the
donor and acceptor to interact favorably in solution. The conditions for large coupling
between the donor and acceptor groups are short distances, relative orientations leading to
o-type p-orbital overlaps (i.e., plane angles between the phenylene and pyridinium rings
approaching 0°), and large statistical factors the make contact between donor and acceptor

highly probable (i.e., short bridges). When two methylene groups bridge the phenylene
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and pyridinium rings, the effect of these three factors appears to be balanced, resulting in
the maximum electronic coupling between donor and acceptor. Although the relative
orientation in complexes with three methylene groups is more favorable, the distance is
longer and statistical factors are unfavorable, thus the result is diminished donor-acceptor
coupling. When one methylene group separates donor and acceptor, the beneficial effect of
a short through-space separation and a large statistical factor are outweighed by an

unfavorable orientation.

Singlet and Triplet Electron Transfer:

The electron transfer results from [Ir(u-pz*)(CO)(thP-O‘C6H4—3-(CH3)2-py+)]2
([Iry]-3-(CHy),-py™), which remain to be discussed, will serve to bridge the two separate
discussions of singlet and triplet electron transfer. Recalling the structure of thisn =2
donor-acceptor complex reveals the unique nature of its bridge: the phenylene group is 1,3-
disubstituted rather than the familiar 1,4-substitution. The 1ET and 3ET rates in this
complex are compared to those of the similar # = 2 complex, [Ir;]-(CH,),-py™, with the

results given in Table 5.9.

Table 5.9. Singlet and Triplet Excited-State Electron-Transfer Rates for
Selected Donor-Acceptor Complexes

IgT 3T
Compounds -AGeV) kg (5D -AGOEV)  kep (5D
[Iry]-(CHy),-py”* 0.67 1.4+0.1x10'°  0.17 1.6:1.4 x 108
[Irp]-3-(CHy)»-py*  0.69  3.1+0.2 x 10'° 0.19  1.6x1.3 x 10

The 3ET rates in these complexes are identical within experimental error, while the IET
rates differ by a factor of more than two. These results are consistent with a through-bond

mechanism dominating in the IET reactions and a through-space mechanism dominating in
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the 3ET reactions, in agreement with the discussions of the previous sections.

We have established that in the series of Ir,-py* donor-acceptor complexes, triplet
electron transfer occurs via a folded conformation of the bridge, where through-space
interactions between the phenylene and pyridinium rings are maximized. If this is the case,
we would expect 3ET rates in the two complexes to be similar, since the point of attachment
of the hydrocarbon chain to the phenylene ring (3- or 4-position) does not affect the
distance, orientation, or statistical factor of the folded conformation . The experimental
results corroborate this hypothesis.

We have also established that in the series of Ir,-py* donor-acceptor complexes,
singlet electron transfer occurs via a stretched conformation of the bridge, where through-
bond interactions between the phenylene and pyridinium rings are maximized. In this case,
the point of attachment of the hydrocarbon chain to the phenylene ring does have an effect
on the electron-transfer pathway. Namely, the electron-transfer pathway in
[Ir,]-3-(CHy),-py"*, across the phenylene group, is shorter than in [Ir,]-(CH,),-py”,
giving rise to a slightly faster IET rate in the former complex.

For the donor-acceptor complex, [Irz]-3-(CH2)2—py+, the 'ET rate is consistent with a
through-bond mechanism, while 3ET rate is consistently a through-space mechanism,

exclusively.

CONCLUSIONS

The series of iridium donor-acceptor complexes presented in this thesis is the first
example of an ET system that exhibits different electronic coupling matrix elements
depending on the spin state of the excited donor. The IET and 3ET rates for the series of
Iry-py* donor-acceptor complexes have been correlated separately to the number of

intervening methylene groups in the bridge. The IET rates in the series, [Iry]-(CHy) ,,-py+
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(n=0,1, 2, and 3), follow a trend consistent with through-bond mechanisms, where

1HD A(2) = 1HD A(0) >> 1HDA(S) = 1HD A(1). However, the 3ET rates in the series follow a
trend consistent with through-space mechanisms, where 3HD A(2) >> 3HD A(3) >> 3HD A0)
=~ 3HDA(I). The ETP rates appeared to parallel the IET rates: 1HD A(2,3) = bHD A(2,3).
Future investigations will be aimed at understanding the back electron-transfer rates in more
detail, with the goal of discovering the structural parameters that lead to smaller values of
bHD A Theoretical work aimed at elucidating the origin of the observed differences in 3HD A
and 1HD A 1s currently in progress. Below is a brief summary of our current understanding

of this theoretical problem:

This two-electron system can be represented by three orthogonal
molecular orbitals, D, D¥, and A, shown in Figure 5.16 (a one-electron
treatment of the problem cannot distinguish between singlet and triplet ET).
The simplest approximation of the initial and final states (neglecting
normalization) for singlet ET is:

IS

‘I’z = |®p @p-[” = [#p(1)¢p+(2) + $p@)Pp+(DI[(DAQ) - a2)B(1)]

¥p = 0p @4 P= [Pp(1)PA(2) + dp(2)PA(DI[DAQ) - «(2)B(1)],

and similarly for triplet ET,

‘I‘E = [bp (DD‘TF = [¢p(1)¢p(2) - Pp(2)Pp+(D]a(1)eA(2)
Vg = 0p sl = [dp(1)¢a(2) - $p()Pa(D]a(1)e(2).

For either singlet or triplet ET, the initial and final states must have the same

spin wave function for Hp, to be nonzero. The Hamiltonian of the system
is therefore given by:

H=T; + T+ [(Vip+ Via) + (Vop+ Vou)l + Vpo,

where T is the kinetic energy operator; Vip, V14, Vap, and V,, are the one-
electron interactions between molecular potential wells and the two
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electrons, and V, is the electron-electron repulsion. Since the system has
been defined in terms of only two statcs Hp, is equal to (¥;/HIYp).
Similarly, H} , = (¥ ng!\m and Hp, = (¥] [H|'¥[). The only
difference between Hy, and HD AlS the sign of the two-electron matrix
element, (¥ V12| Yg), which enters with a (+) sign for singlets and a (-)
sign for triplets because of the different signs in the spatial parts of ¥ and
WT. This may account for the smaller value of H}; 4 (referred to as 3HD Al
the main text) in these donor-acceptor complexes. Theoretical work along
these lines is in progress.3’

Singlet Triplet
.....L D" _...1.“. D"
:Té —A —A
1, 1,
= —A —A
.E

Figure 5.16. Schematic of initial and final states for
singlet and triplet electron transfer in a two-electron system,
showing the orthogonal molecular orbitals, D, D¥, and A.
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Appendix Supplementary material for the X-ray crystal structure determination of
[Ir(u-pz*)(CO)(PhyP-O-CgHy-CH3)1,
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Table A.1. Crystal and Intensity Collection Data

Formula: Ir;CsoH4s N4O4P, - CH,Cly Formula weight: 1300.28
Crystal color: Orange/red Habit: Irregular

Space group: P2;/c (#14)

a=18.677(2)A

b=13.817(1)A B = 101.37(1)°

c = 20.225(3)A

V = 5116.8(10)A3

Pcalc = 1.688 g cm™3

p=5728 cn™! (urmax = 5.70) Transmission coeff. = 0.39 — 0.54
w scan

A =0.7107A Graphite monochromator

20 range: 3°-45° Octants collected: +h,k, £l

T = 293°K

Number of reflections measured: 14173

Number of independent reflections: 6662

Number with F2 > 0: 6470

Number with F2 > 30(F2): 5547

Number of reflections used in refinement: 6662

Gooduness of fit for merging data: 1.02

Final R-index: 0.0316 for 6470 reflections with F2 > 0
Final R-index: 0.0235 for 5547 reflections with F2 > 34(F?)

Final goodness of fit: 1.46 for 588 parameters and 6662 reflections
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Table A.2. Final Non-Hydrogen Coordinates and Displacement Parameters

z,y,z and U x 10*

Atom T y z Ueq
Irl 2540(.1)  593(.1) 8324(.1) 370
Ir2 2248(.1)  2833(.2) 8783(.1) 384
P1 2457(1)  —576(1)  9062(1) 438(3)
P2 3275(1)  3689(1)  9024(1) 444(3)

NP1A 2567(2)  1700(3)  7636(2) 408(10)
NP1B 2361(2)  2607(3)  7798(2) 407(11)
NP2A  1458(2)  1024(3)  8281(2) 430(11)

NP2B 1346(2)  1941(3)  8505(2) 444(11)

01 4071(2) 45(3)  8293(2) 776(13)
02 1901(3)  3201(3) 10135(2) 835(14)
03 2176(2) —1645(3)  8786(2) 576(10)

04 3235(2)  4862(2)  9105(2) 560(10)
C1 3466(3) 257(4)  8308(3) 553(15)
C2 2050(3)  3056(4) 9611(3) 576(16)
CP1A 2700(3)  1753(4)  7005(3) 526(15)
CP1B  2360(3)  3200(4) 7278(3) 518(15)
CP1C 2577(3)  2681(4) 6771(3) 572(17)
CP1D  2934(4) 880(5)  6668(3) 884(22)
CP1E 2126(4)  4232(4) 7305(3) 733(20)

CP2A  811(3) 579(4)  8120(3) 547(16)



Atom

CP2B
CP2C
CP2D
CP2E
CS1A
CS1B
CS1C
CS1D
CS1E
CS1F
CS1G
CS2A
CS2B
cs2c
CS2D
CS2E
CS2F
CS2G
CAlA

CA1B

631(3)

281(3)

745(4)

318(4)
2366(3)
1825(3)
1987(3)
2668(3)
3199(3)
3057(3)
2830(4)
2791(3)
3087(4)
2653(5)
1932(5)
1649(5)
2078(4)
1439(6)
3285(3)

3455(4)
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2048(5)
1204(5)
—424(5)
2971(5)
—2126(4)
—2647(4)
—3147(4)
—3135(4)
—2608(5)
—2108(4)
—3656(5)
5284(4)
5539(4)
5975(5)
6133(5)
5887(6)
5465(5)
6555(6)
—854(4)

~1792(4)

8470(3)
8231(3)
7848(4)
8673(4)
8231(3)
7831(3)
7288(3)
7136(3)
7550(4)
8100(3)
6525(4)
9511(3)
10151(3)
10548(4)
10304(5)
9652(5)
9249(4)
10748(6)
9670(3)

9904(3)

Ueq

593(17)
700(20)
842(21)
899(22)
506(14)
580(16)
663(18)
607(16)
728(19)
618(17)
895(21)
522(15)
659(17)
863(24)
898(25)
1078(28)
876(22)
1621(39)
492(14)

654(17)



Atom

CA1C
CA1D
CA1lE
CA1lF
CA2A
CA2B
CA2C
CA2D
CA2E
CA2F
CB2A
CB2B
CB2C
CB2D
CB2E
CB2F
CB1A
CB1B
CB1C

CB1D

4075(4)
4508(4)
4345(4)
3739(3)
3914(3)
4586(3)
5068(3)
4890(4)
4233(4)
3758(3)
3859(3)
4139(3)
4623(3)
4817(4)
4531(4)
4055(4)
1804(3)
1787(3)
1326(3)

882(3)
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—1951(5)
~1209(7)
—292(6)
~111(5)
3350(4)
3813(5)
3585(5)
2900(6)
2420(6)
2641(4)
3707(4)
2829(4)
2792(5)
3639(6)
4502(5)
4555(4)
—385(4)
525(4)
710(5)

__.5(6)

10400(4)
10666(4)
10445(4)
9947(3)
9793(3)
9961(3)
10544(3)
10971(3)
10808(3)
10213(3)
8405(2)
8237(3)
7798(3)
7520(3)
7673(4)
8117(3)
9609(3)
9900(3)
10341(3)

10491(3)

Ueq

833(22)
882(24)
833(22)
652(17)
475(13)
669(17)
748(19)
807(21)
847(22)
641(17)
470(14)
561(15)
686(17)
791(20)
835(21)
692(18)
443(13)
599(16)
660(17)

704(19)
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Atom z v z Ueq

CB1E  891(3) —890(5) 10210(4) 744(19)

CBIF 1348(3) —1096(4) 9770(3) 611(16)

cl1 210(2)  2650(2) 6341(2) 1670(12)
Cl2 491(2)  716(3) 6059(2) 2264(18)
C3 790(5)  1722(7) 6512(5) 1322(35)

2 Ueg = 3 2 2;[Usj(ata})(a; - @;)]



Atom

Irl
Ir2
P1
P2
NP1A
NP1B
NP2A
NP2B
01
02
03
04
C1

CP1A
CP1B
CP1C
CP1D
CP1E
CP2A
CP2B
Cp2C
CP2D
CP2E
CS1A
CS1B
Csi1C
CS1D
CS1E
CS1F
CS1G
CS2A
CS2B
CS2C
CS2D
CS2E
CS2F
CS2G
CAlA
CA1B
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Table A.3. Anisotropic Displacement Parameters

Ui Uaa Uss Uiz Uis
353(1 387(1 373(1% 1351} 78%1)
436(1 408%13 322(1 25(1)  106(1)
432(8 404(8 485(8 -—11(7 111 6;
563(9 405 8; 379(8 —9(7 131(7
470(26)  397(25)  393(25) 6521) 176(20)
523(27 432(26 260(23 3(21 64(19
352(25 467(27 466(26 —-27(21 69(20
375(26 507(29 465(26 61(21 116(20
483(26 901(33 995(35 168(24 269(24
1046(37 1044(37 509(27 —55(29 379(26
724(27 434(21 616(24 —-95(20 242(21
775(27 380(21 577(24 -37(20 262(21
595(40 520(36 583(38 15(30 214(31
543(37 573(39 604(40 —26(29 90(31
667(39 559(37 363(31 65(30 126(27
628(38 541(36 363(31 5(29 41(27
804(44 634(40 290(30 31(33 140(28
1361(66 843(52 534(41 250(45 397(42
1087(55 523(40 560(40 128(36 94(36
388(33 620(38 598(37 —-T72(31 10(27
395(35 766(44 647(39 138(33 172(28
347(34 890(50 855(47 —81(36 101(32
672(45 750(49) 1021(55 —187(37 —36(39
677 47 963(55) 1116(58 245(41 319(42
567(3 462(33 483 33 8(29 87(28
480(3 619(39 677(4 —125(30 200(30
627(4 § 641(42 720 44 —149 33§ 129(33
673(4 556(39 631(40 —107(32 220(33
571(4 748(45 926(51 —-36(35 297(37
443§ é 612(39 815545 —T78(30 163(31
1069 934(55 T77(48 —~208 45 411(43
656(4 369(32 577(3 212(32
877(4 530(37 582(4 176(35
1532(7 485(40 706 48 547(53
1134(6 467(42) 1312(75 130 772(62
871(5 907(62) 1468(83 239 47 261(58
846(5 779(51 959(55 213(43 74(44
2221 113) 831(62) 2346 116) 137 67 1753 101)
497% 491(36 512(34 28 161(2
809 553(39) 626 40% 111 34§ 208(3 ;
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Atom Un Uas

CAl1C 886(56 862(56 733(49 403(45 117 42 281(42
CA1D 585(46) 1177(69 834(53 196(46 7(38 262(51
CA1lE 549(42) 1002(58 846(51) —202(39 -—-109 36 177(43
CA1lF 510(38 647(41 751(44 -12 33) 4(32 111 35)
CA2A 530(35 464(32 437(32 —32(28 108 26 —45(27
CA2B 704(43 671(43 581 39; —-138 35; 4(33 64 33;
CA2C 621(43 937(52 649(4 —156(37 32(35 9 38
CA2D T08(47) 1128(59 522(3 —20(44 —30(34 103 40
CA2E 767(49) 1121(60 603(4 —78(44 11(36 323 40
CA2F 629(40 714(43 571(3 —145(33 94(31 121 33)
CB2A 533(34 501(35 384(3 —55(28 110(26 —1(26
CB2B 606(38 563(37 539 35 —47 31 171(30 —10(30
CB2C 605(40 831(48 665(42 5(36 233(33 —24(37
CB2D 817(51 960(55 680(44 —-131 44 354(38 —-—89(41
CB2E 1067(57 804(52 762(48) —281(44 493(43 38 39;
CB2F 931(50 564(41 674(42 —87(35 387 38 -7 32)
CB1A 423(31 492(35 416 1 —-13(26 5(24 3(25
CB1B 673(40 595(39 555(3 —74 33 185 31 ~—-23 31
CB1C 727(43 739(45 561(3 5(36 245 33 -—64 33
CB1D 568 41) 944(54 663(4 100 39 274(3 40
CB1E 617(42 T77(49 948(5 —90(36 419(3 40
CB1F 636(40 503(36 743(4 —81(31 253(3 32
Cl1 1416(26) 1199(23) 2500(4 452(19 645 384 3)
Cl2 2275(44) 1424 31 2913(5 305 29 —425(31
C3 924(68) 1156 77 1732(9 3 Saes)  _1100e 392€ 2%

U;,; values have been multiplied by 10*
The form of the displacement factor is:

exp ~—-21r2(U11h2a"3 + Uzzkzb‘, + U33£2

¢*’ + 2Uiahka*b* + 2Uyshea*c* + 2U3klb*c

")
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Table A.4. Assigned Hydrogen Parameters

z,y and z x 10*

Atom T Y z B
HB1F 1349 —-1724 9579 5.8
HB1E 577 —1380 10318 7.0
HB1D 565 120 10796 6.7
HB1C 1318 1332 10538 6.3
HB1B 2095 1025 9795 5.7
HB2F 3865 5161 8223 6.6
HB2E 4661 5078 7469 7.9
HB2D 5151 3623 7222 7.5
HB2C 4818 2190 7690 6.5
HB2B 3996 2246 8425 5.3
HA2F 3312 2293 10094 6.1
HA2E 4107 1940 11101 8.0
HA2D 5219 2755 11380 7.6
HA2C 5527 3903 10651 7.1
HA2B 4713 4295 9669 6.3
HA1F 3634 533 9794 6.2
HA1E 4651 229 10634 7.9
HA1D 4926 —1328 11008 8.4
HA1C 4196 —2591 10554 7.9
HA1B 3150 —2319 9725 6.2
HP2C —229 1080 8158 6.6
HP1C 2632 2919 6343 5.4
HS1E 3677 —2588 7454 6.9
HS1F 3434 —1756 8384 5.8
HS1B 1346 —2665 7925 5.5
HS1C 1613 —-3512 7011 6.3
HS2B 3589 5419 10329 6.2
HS2C 2863 6166 10996 8.2
HS2E 1148 6008 9473 10.2
HS2F 1877 5303 8794 8.3
HP1DA 3388 1016 6546 8.4
HP1DB 2572 745 6279 8.4
HP1DC 2981 356 6976 8.4
HP1EA 2544 4630 7344 6.9
HP1EB 1903 4307 7685 6.9
HP1EC 1787 4371 6901 6.9
HP2DA 871 —860 8215 8.0
HP2DB 1067 —491 7543 8.0

HP2DC 253 —-523 7623 8.0



Atom

HP2EA
HP2EB
HP2EC
HS1GA
HS1GB
HS1GC
HS2GA
HS2GB
HS2GC
H3A

H3B

500
465
-199
3335
2718
2540
1682
996
1350
852
1246
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Y z
3489 8448
3039 9147
2936 8548

—3818 6613

—-3234 6150

—4221 6455
6500 11203
6201 10669
7215 10627
1572 6978

1909 6411

8.5
8.5
8.5
8.5
8.5
8.5
154
15.4
15.4
12.5
12.5
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Table A.5. Complete Distances and Angles

Distance(4)
Irl - Ir2 3.307(1)
Ir1 - C1 1.797(6)
Ir2 - C2 1.810(6)
Ir1 - P1 2.224(1)
Ir2 - P2 2.224(1)
Ir1 - NP1A 2.075(4)
Ir2 - NP1B 2.068(4)
Ir1 - NP2A 2.091(4)
Ir2 - NP2B 2.073(4)
C1- 01 1.174(7)
C2 - 02 1.165(7)
P1-03 1.629(4)
P1- CAlA 1.817(5)
P1 - CB1A 1.820(5)
03 - CS1A 1.410(6)
P2 - 04 1.633(4)
P2 - CA2A 1.826(5)
P2 - CB2A 1.815(5)
04 - CS2A 1.404(7)
NP1A - NP1B  1.370(6)
NP1A - CP1A  1.349(7)
NP1B - CP1B  1.334(7)
CP1A - CP1C  1.371(8)
CP1A - CP1D  1.493(9)
CP1B - CP1C  1.377(8)
CP1B - CP1E  1.494(8)
NP2A - NP2B  1.376(6)
NP2A - CP2A  1.337(7)
NP2B - CP2B  1.332(7)
CP2A - CP2C  1.365(9)
CP2A - CP2D  1.488(9)
CP2B - CP2C  1.377(9)
CP2B - CP2E  1.493(9)
CS1A - CS1B  1.368(8)
CS1B - CSIC  1.380(8)
CS1C - CS1ID  1.365(9)
CS1D - CS1E  1.374(9)
CS1E - CS1IF  1.379(9)
CS1A - CS1F  1.368(8)
CS1D - CS1G  1.512(9)

Distance(4)

CS2A - CS2B 1.350(8)
CS2B - Cs2C 1.385(10)
Cs2C - CS2D 1.358(12)
CS2D - CS2E 1.362(13)
CS2E - CS2F  1.380(12)
CS2A - CS2F 1.356(9)
CS2D - CS2G  1.524(14)
CA1A - CA1B  1.395(8)
CAlA - CAIF  1.378(8)
CA1B - CAIC  1.393(10)
CA1C - CA1D  1.351(11)
CA1D - CA1E  1.358(11)
CAIE - CAIF  1.382(9)
CA2A - CA2B  1.390(8)
CA2A - CA2F 1.365(8)
CA2B - CA2C  1.371(9)
CA2C - CA2D  1.365(10)
CA2D - CA2E  1.378(10)
CA2E - CA2F  1.380(9)
CB2A - CB2B  1.389(8)
CB2A - CB2F 1.388(8)
CB2B - CB2C 1.388(8)
CB2C - CB2D  1.377(9)
CB2D - CB2E 1.366(10)
CB2E - CB2F 1.386(10)
CB1A - CB1B  1.392(8)
CB1A - CB1F 1.382(8)
CB1B - CBI1C  1.378(9)
CB1C- CB1D  1.362(9)
CB1D - CB1E  1.350(10)
CBIE - CBIF  1.378(9)
C3 - CL1 1.670(10)
C3 - CL2 1.697(11)
CP1C - HP1C 0.950
CP1D - HP1DA  0.947
CP1D - HP1DB  0.948
CP1D - HP1DC 0.948
CP1E - HP1EA 0.946
CP1E - HP1EB 0.949
CP1E - HP1EC 0.949



Distance(A)

CP2C - HP2C
CP2D - HP2DA
CP2D - HP2DB
CP2D - HP2DC
CP2E - HP2EA
CP2E - HP2EB
CP2E - HP2EC
CS1B - HS1B
CS1C - HS1C
CS1E - HS1E
CS1F - HS1F
CS1G - HS1GA
CS1G - HS1GB
CS1G - HS1GC
CS2B - HS2B
CS2C - HS2C
CS2E - HS2E
CS2F - HS2F
CS2G - HS2GA
CS2G - HS2GB
CS2G - HS2GC
CA1B - HA1B
CA1C - HA1C
CA1D - HA1D
CAlE - HA1E
CA1lF - HAIF
CB1B - HB1B
CB1C - HB1C
CB1D - HB1D
CB1E - HB1E
CB1F - HB1F
CA2B - HA2B
CA2C - HA2C
CA2D - HA2D
CA2E - HA2E
CA2F - HA2F
CB2B - HB2B
CB2C - HB2C
CB2D - HB2D
CB2E - HB2E

0.950
0.948
0.947
0.950
0.947
0.948
0.950
0.950
0.950
0.950
0.950
0.951
0.947
0.944
0.950
0.950
0.950
0.950
0.945
0.948
0.951
0.950
0.950
0.950
0.950
0.950
0.950
0.950
0.950
0.950
0.950
0.950
0.950
0.950
0.950
0.950
0.950
0.950
0.950
0.950
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Distance(A)

CB2F - HB2F
C3 - H3A
C3 - H3B

0.950
0.950
0.950



Angle(°)

NP1A -Irl1 - NP2A
NP1A -Ir1- C1
P1 -Ir1- C1

P1 -Ir1 - NP2A
NP2A -Ir1- C1

P1 -Irl1 - NP1A
NP1B -Ir2- NP2B

NP2B -Ir2- C2
P2 -Ir2- C2

P2 -Ir2- NP1B
NP1B -Ir2- C2
P2 -Ir2- NP2B

Irl - NP1A -NP1B
Irl - NP2A -NP2B
Ir2 - NP1B -NP1A
Ir2 - NP2B -NP2A
NP1A -Ir1 - Ir2
NP2A -Ir1 - Ir2
P1 -Ir1 - Ir2
C1 -Ir1 - Ir2
NP1B -Ir2- Irl1
NP2B -Ir2- Irl
P2 -Ir2- Irl
C2 -Ir2- Irl
01 -Ci1- Ir1
02 -C2- Ir2
Irl -P1- O3

Irl -P1- CAlA
Irl -P1- CB1lA
CB1A -P1- CAlA

CA1B - CAl1A -P1
CAl1F - CA1A -P1
CB1B - CB1A -P1
CB1F - CB1A -P1
CAl1A-P1- O3
CB1A-P1- O3
CS1A -03- P1
CS1B - CS1A -03
CS1F - CS1A -03
Ir2 -P2- 04

85.1(2)
91.6(2)
91.0(2)
92.3(1)
176.3(2)
177.4(1)
83.1(2)
92.9(2)
91.8(2)
92.5(1)
174.1(2)
174.2(1)
117.9(3)
117.2(3)
117.1(3)
118.0(3)
61.7(1)
62.2(1)
117.0(1)
117.4(2)
62.3(1)
62.5(1)
112.1(1)
119.6(2)
179.3(5)
178.0(5)
119.3(1)
116.5(2)
116.4(2)
101.7(2)
122.2(4)
119.4(4)
117.6(4)
124.0(4)
102.4(2)
97.5(2)
125.9(3)
116.5(5)
122.7(5)
119.7(1)
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Angle(°)
Ir2 -P2- CA2A
Ir2 -P2- CB2A
CB2A -P2- CA2A

CA2B - CA2A -P2

CA2F - CA2A -P2

CB2B - CB2A -P2

CB2F - CB2A -P2

CA2A -P2- 04

CB2A -P2- 04

CS2A -04- P2

CS2B - CS2A -04

CS2F - CS2A -04

Ir1 - NP1A -CP1A
CP1A - NP1A -NP1B
CP1B - NP1B -NP1A
Ir2 - NP1B -CP1B
CP1C - CP1A -NP1A
CP1D - CP1A -NP1A
CP1D - CP1A -CP1C
CP1C - CP1B -NP1B
CP1E - CP1B -NP1B
CP1E - CP1B -CP1C
CP1B - CP1C -CP1A
Ir1 - NP2A -CP2A
CP2A - NP2A -NP2B
CP2B - NP2B -NP2A
Ir2 - NP2B -CP2B
CP2C - CP2A -NP2A
CP2D - CP2A -NP2A
CP2D - CP2A -CP2C
CP2C - CP2B -NP2B
CP2E - CP2B -NP2B
CP2E - CP2B -CP2C
CP2B - CP2C -CP2A
CS1F - CS1A -CS1B
CS1C - CS1B -CS1A
CS1D - CS1C -CS1B
CS1E - CS1D -CS1C
CS1G - CS1D -CS1C
CS1G - CS1D -CS1E

116.2(2)
117.8(2)
102.1(2)
119.9(4)
122.0(4)
117.5(4)
123.0(4)
101.8(2)

95.8(2)
121.0(3)
119.5(5)
119.6(5)

120.8(5)
130.9(5)
106.5(5)
134.3(4)
108.4(4)
107.4(4)
134.5(4)
108.6(5)
121.6(5)
129.7(6)
109.1(5)
121.5(5)
129.5(6)
106.5(5)
120.7(5)
118.7(5)
122.3(6)
117.5(6)
121.6(6)
120.9(6)



CS1F
CS1E
CS2F
Cs2C
CS2D
CS2E
Cs2G
CS2G
CS2F
CS2E
CAlF
CA1C
CA1D
CAlE
CA1lF
CAlE
CA2F
CA2C
CA2D
CA2E
CA2F
CA2E
CB2F
CB2C
CB2D
CB2E
CB2F
CB2E
CB1F
CB1C
CB1D
CB1E
CB1F
CB1E
Cl2
HP1C
HP1C

Angle(°)

- CS1E - CS1D
- CS1F - CS1A
- CS2A -CS2B
- CS2B - CS2A
- CS52C - CS2B
- CS2D -CS2C
- CS2D -CS2C
- CS2D -CS2E
- CS2E - CS2D
- CS2F - CS2A
- CA1A -CA1B
- CA1B -CA1lA
- CA1C -CA1B
- CA1D -CA1C
- CA1E -CA1D
- CA1F -CAlA
- CA2A -CA2B
- CA2B -CA2A
- CA2C -CA2B
- CA2D -CA2C
- CA2E -CA2D
- CA2F -CA2A
- CB2A -CB2B
- CB2B -CB2A
- CB2C -CB2B
- CB2D -CB2C
- CB2E -CB2D
- CB2F -CB2A
- CB1A -CB1B
- CB1B -CB1A
- CB1C -CB1B
- CB1D -CB1C
- CB1E -CB1D
- CB1F -CB1A
-C3- Ch

- CP1C -CP1A
- CP1C -CP1B

HP1DA - CP1D - CP1A
HP1DB - CP1D - CP1A
HP1DC - CP1D - CP1A

121.8(6)
119.0(6)
120.8(6)
119.6(6)
120.6(7)
118.7(8)
121.2(8)
120.1(8)
121.2(8)
119.1(7)
118.3(5)
119.5(6)
121.0(7)
120.0(7)
120.4(7)
120.8(6)
118.1(5)
120.8(6)
120.2(6)
119.9(6)
119.5(6)
121.4(6)
119.5(5)
120.8(5)
119.2(6)
120.2(7)
121.5(7)
118.9(6)
118.4(5)
120.7(5)
119.7(6)
120.3(6)
121.3(6)
119.6(6)
112.8(6)
126.7

126.7

108.3

108.3

108.3
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Angle(°)

HP1DB - CP1D - HP1DA
HP1DC - CP1D - HP1DA
HP1DC - CP1D - HP1DB
HP1EA - CP1E - CP1B
HP1EB - CP1E - CP1B
HP1EC - CP1E - CP1B
HP1EB - CP1E - HP1EA
HP1EC - CP1E - HP1EA
HP1EC - CP1E - HP1EB
HSIE - CS1E-CS1D
HSIE - CS1E - CS1F
HS1C - CS1C -CS1B
HSIC - CS1C'-CS1D
HS1B - CS1B -CS1A
HS1IB - CS1B -CS1C
HP2C - CP2C -CP2A
HP2C - CP2C -CP2B
HP2DA - CP2D - CP2A
HP2DB - CP2D - CP2A
HP2DC - CP2D - CP2A
HP2DB - CP2D - HP2DA
HP2DC - CP2D - HP2DA
HP2DC - CP2D - HP2DB
HP2EA - CP2E - CP2B
HP2EB - CP2E - CP2B
HP2EC - CP2E - CP2B
HP2EB - CP2E - HP2EA
HP2EC - CP2E - HP2EA
HP2EC - CP2E - HP2EB
HSIF - CSIF - CS1A
HSIF - CSIF - CS1E
HS1GA - CS1G - CS1D
HS1GB - CS1G - CS1D
HS1GC - CS1G - CS1D
HS1GB - CS1G - HS1GA
HS1GC - CS1G - HS1GA
HS1GC - CS1G - HS1GB
HS?B - CS2B - CS2A
HS2B - CS2B -CS2C
HS2C - CS2C -CS2B

110.6
110.6
110.7
108.4
108.2
108.2
110.8
110.8
110.4
119.1
119.1
118.8
118.8
120.7
120.7
126.8
126.8
108.2
108.3
108.3
110.8
110.6
110.7
108.4
108.2
108.4
110.6
110.7
110.5
120.5
120.5
108.1
108.1
108.3
110.4
110.7
111.2
120.2
120.2
119.7



HS2C
HS2E
HS2E
HS2F
HS2F

Angle(°)

- CS2C - CS2D
- CS2E - CS2D
- CS2E - CS2F
- CS2F - CS2A
- CS2F - CS2E

HS2GA - CS2G - CS2D
HS2GB - CS2G - CS2D
HS2GC - CS2G - CS2D

HS2GB - CS2G - HS2GA
HS2GC - CS2G - HS2GA
HS2GC - CS2G - HS2GB

HA1B
HA1B
HA1C
HA1C
HA1D
HA1D
HA1E
HA1E
HA1F
HA1F
HA2B
HA2B
HA2C
HA2C
HA2D
HA2D
HA2E
HA2E
HA2F
HA2F
HB2B
HB2B
HB2C
HB2C
HB2D
HB2D
HB2E
HB2E
HB2F

- CA1B -CAlA
- CA1B -CA1C
- CA1C -CA1B
- CA1C -CA1D
- CA1D -CA1C
- CA1D -CA1lE
- CA1E -CA1D
- CA1E -CA1F
- CA1F -CA1lA
- CA1F -CA1lE
- CA2B -CA2A
- CA2B -CA2C
- CA2C -CA2B
- CA2C -CA2D
- CA2D -CA2C
- CA2D -CA2E
- CA2E -CA2D
- CA2E -CA2F
- CA2F -CA2A
- CA2F -CA2E
- CB2B -CB2A
- CB2B -CB2C
- CB2C -CB2B
- CB2C -CB2D
- CB2D -CB2C
- CB2D -CB2E
- CB2E -CB2D
- CB2E -CB2F
- CB2F -CB2A

119.7
1194
119.4
120.5
120.5
108.3
108.2
108.1
111.1
110.7
110.4
120.3
120.3
119.5
119.5
120.0
120.0
119.8
119.8
119.6
119.6
119.6
119.6
119.9
119.9
120.1
120.1
120.3
120.3
119.3
119.3
119.6
119.6
120.4
120.4
119.9
119.9
119.3
119.3
120.6
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Angle(°)

HB2F - CB2F -CB2E
HB1B - CB1B -CB1A
HB1B - CB1B -CB1C
HB1C - CB1C ~-CB1B
HB1C - CB1C -CB1D
HB1D - CB1D -CB1C
HB1D - CB1D -CB1E
HB1E - CB1E -CB1D
HB1E - CB1E -CB1F
HB1F - CB1F -CB1A
HB1F - CB1F -CB1E
H3A -C3- Cl1
H3B -C3- Cl1
H3A -C3- Cl2
H3B -C3- Cl2
H3B -C3- H3A

120.6
119.6
119.6
120.2
120.2
119.9
119.9
119.3
119.3
120.2
120.2
108.6
108.6
108.7
108.7
109.4
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Table A.6. Observed and Calculated Structure Factors

2
The columns contain, in order, £, 10F,, 10F .4 and 10(%). A minus sign

obs

preceding Fop, indicates that F2, is negative.
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14 1312 1332 -11 -7 1 1 609 577
0 1212 124%

5
6
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11 742 730 (] 12 683 654 17 5 114 78 3 2 1473 1458
12 1007 1015 -6 13 141 141 0 6 834 826 4 $ 274 191
13 419 377 20 7 680 692 -6 4 1939 1921
14 987 992 -3 14 2 1 8 151 99 6 5 301 321
15 988 1001 -9 9 498 504 -2 6 421 404
16 1243 1203 24 0 1580 158383 -1 7 537 470
1 225 203 7 -18 $ 1 8 1594 1625
10 2 1 2 994 982 6 9 3801 259
8 442 396 17 1 -95 102 -10 10 189 127
0 1455 1431 15 4 1498 1457 22 2 862 846 10 11 1150 1155
1 298 287 2 5 498 512 -7 3§ -387 87 -8 12 283 266
2 1530 1518 7 6 132 77 7 4 1208 1164 27 13 128 93
3 367 330 18 7 -78 62 -6 5 587 585 0 14 100 17
4 1019 1029 -7 8 234 218 4 6 316 271 14 15 741 744
5 272 292 -7 9 291 272 6 7 366 335 11 16 483 501
6 210 178 10 10 2583 201 18 8 725 T17 5 17 276 201
7 684 684 0 11 223 200 7 9 641 668 -15
8 248 242 1 12 404 370 13 10 122 140 -8 -13 $ 1
9 264 207 18 11 583 578 2
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5 76 107 -2 14 201 214 -3 10 1562 1604
8 777 766 (] -19 3 1 15 -89 28 -3 11 47 111
7 862 358 1 16 689 666 13 12 598 585
8 -85 22 -3 1 -55 0 -1 13 1154 1170
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4 196 139 18 10 2179
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9 738 708 23 15 526
10 2183 2213 -14 16 349
11 438 425 8 17 684
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14 408 430 -10 20 144
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16 211 238 -8
17 592 578 8 -3
18 232 157 19
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3 3 1 6 1082 1092 -7 7 628 655 -
7 1328 1318 7 0 1710 1685 14 8 119 159
106 16 17 8 936 981 -35 1 371 3841 15 9 705 726 -
2704 2748 -18 9 1005 1006 -1 2 1316 1307 5 10 240 263
200 130 33 10 1996 2042 -23 3 1521 1518 2 11 -102 2
1513 1487 17 11 352 360 -3 4 75 52 2
971 984 -12 12 402 415 -5 5 413 413 0 15 3 1
1629 1623 3 13 161 214 -11 6 168 81 16
1727 1789 -7 14 1347 1337 6 7 1034 10683 -19 0 1530 1556 -
112 11 13 15 272 256 5 8 3861 288 32 1 375 3938
20868 2085 -8 16 1078 1093 -10 g 625 646 -11 2 423 374
844 840 2 17 295 295 0 10 1072 1087 -9 3 125 78
464 488 -14 18 4283 385 15 11 248 232 5 4 1126 1138
89 214 -26 12 513 482 18 5 500 485
2530 2535 -1 7 3 1 13 361 386 -11 6 187 136
333 282 18 14 624 632 -4 7 688 691
473 498 -10 0 428 380 33 15 108 101 0 8 93 140
205 156 10 1 2821 2278 20 9 127 116
1319 1304 9 2 1358 1405 -34 11 3 1 10 149 1486
-97 68 -8 3 170 78 25
768 756 7 4 389 3871 11 0 1501 1490 7 16 3 1
505 528 -9 5 1684 1736 -31 1 778 775 -1
208 162 10 6 790 777 11 2 1040 1035 3 0 895 897
7 913 891 16 3 432 385 23 1 53 59
4 $ 1 8 1713 1743 -17 4 973 994 -14 2 1381 1384
9 599 625 -17 5 1495 1482 8 3 215 158
1847 1849 -1 10 389 396 -2 6 454 438 7 4 124 68
432 435 -3 11 561 595 -19 7 541 564 -11 5 454 458
175 60 42 12 1165 11866 0 8 131 56 16 6 525 537
1645 1625 12 13 74 115 -6 9 256 232 8. 7 239 235
120 105 4 14 962 967 -3 10 267 3810 -17 8 310 339
781 720 10 15 166 85 13 11 621 627 -4
1949 1942 4 16 861 856 3 12 762 769 -4 17 3 1
956 972 -14 17 83 136 -6 13 198 8 27
1797 1864 -39 18 1046 1008 23 14 795 801 -3 0 1158 1199 -
414 4538 -22 1 118 3
2564 2622 -24 8 3 1 12 3 1 2 263 265
171 196 -6 3 338 367 -
199 245 -11 0 1792 1791 0 0 1239 1239 0 4 1033 1012
31 11 0 1 44 34 0 1 125 55 8 5 142 171
1834 1833 0 2 1063 1061 2 2 1759 1744 8 6 431 398
257 278 -5 3 1402 1390 7 3 1253 1242 7
1001 970 21 4 465 483 -12 4 -40 72 -4 18 3 1
255 321 -28 5 120 57 9 5 251 204 12
546 523 12 6 92 137 -8 6 518 493 11 0 548 554
217 183 8 7 1264 1296 -22 7 596 587 4 1 191 133
8 778 784 -4 8 -66 14 -3 2 1308 1307
5 $ 1 9 626 638 -7 9 961 978 -12 3 194 141
10 1505 1528 -14 10 662 654 5 4 180 249 -
375 864 8 11 845 298 17 11 207 173 10
2740 2721 7 12 600 607 -3 12 493 478 7 19 $ 1
889 839 45 18 412 418 -3 13 410 439 -12
852 881 -28 14 1048 1065 -12 0 1117 1097
871 883 -11 15 269 237 11 13 3 1 1 1383 35
1387 1422 -25 16 1124 1125 0
1308 1278 17 17 -170 107 -21 0 1590 1590 0 -19 4 1
1030 1021 7 1 952 926 18
1890 1915 -138 9 3 1 2 597 596 0 1 234 256
788 810 -17 $ 179 168 2 2 141 177
324 308 6 0 1063 1035 20 4 1101 1089 7 3 426 429
278 285 -2 1 1128 1144 -12 5 776 1771 3 4 227 17
2075 2097 -10 2 991 980 8 6 224 195 8 5 1118 1141 -
190 199 -1 3 264 223 16 7 833 866 -23 8 517 508
856 877 -11 4 751 743 6 8 2083 163 10 T 275 1266
-65 28 -3 5 1644 1662 -10 9 486 458 15
1018 1025 -4 6 674 690 -11 10 -67 56 -4 -18 4 1
130 145 -2 7 576 580 -2 11 666 690 -14
918 888 19 8§ 808 817 -5 12 475 474 0 1 401 406
462 475 -5 9 642 616 15 2 319 295
10 102 37 5 14 3 1 3 901 913
6 3 1 11 694 721 -15 4 299 276
12 1205 1231 -18 0 1252 1260 -4 5 198 193
1894 1841 29 13 340 317 10 1 131 4 6 -101 37
164 105 23 14 920 925 -3 2 1468 1479 -6 7 1217 1219
143 88 16 15 91 105 -1 3 615 616 0 8 576 586
2328 2348 -9 16 582 562 10 4 187 130 12 9 825 822
167 193 -10 5 487 518 -17 10 156 37
401 380 13 10 3 1 6 435 449 -6 11 805 800
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4 181 209 -6 19 1286 1249 22
-17 4 1 5 1163 1176 -8
6 742 761 -11 -9 4 1
1 221 223 0 7 346 282 20
2 3863 366 -1 8 571 559 8 1 1361 1319 27
3 456 445 5 9 1190 1190 0 2 215 201 6
4 257 218 11 10 595 6338 -18 3 923 923 0
5 1216 1231 -10 11 1857 1888 -14 4 1483 1472 7
6 461 446 7 12 734 738 -2 5 432 435 -2
T 477 492 -7 13 217 155 13 6 56 49 0
8 -99 13 -5 14 441 463 -10 7 847 337 4
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