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Abstract

The high transition temperature, short coherence length and long penetration
depth of high-temperature superconductors result in novel vortex properties associ-
ated with the large thermal and disorder fluctuations. This thesis presents systematic
experimental invetigations on the vortex phases of YBa;CuzOy single crystals with
different types of controlled disorder. Measurements of dc current-voltage character-
istics and ac impedance as a function of frequency are carried out on dilutely twinned
YBayCus0O7 single crystalé irradiated with 3.0 MeV protons. It is found that the
moderately increased vortex pinning caused by the increasing density of controlled
point defects does not change the nature of the second-order vortex-glass transitions
in YBa;Cu307 single crystals with dilute twin boundaries, as manifested by the uni-
versal critical exponents and scaling functions for samples with different densities
of point defects. In YBayCu3O~ single crystals with c-axis correlated columnar de-
fects created by 0.9 GeV Pb-ion irradiation, a Bose-glass to “superfluid” transition
is demonstrated by the universal critical scaling behavior of the ac impedance versus
frequency isotherms. The static and dynamic critical exponents and the universal
scaling functions are determined from our self-consistent critical scaling analyses.
The Bose-glass transition temperature is found to decrease with the increasing an-
gle between the applied magnetic field and the column orientation, in contrast to
the angular dependence of the vortex-glass transition temperature which increases
monotonically with the increasing angle due to the intrinsic sample anisotropy.

The interplay of vortex pinning and thermodynamic vortex phase transitions is fur-
ther studied in the weak pinning limit by investigating the vortex transport properties
of a nearly defect-free, untwinned YBa;Cu30~ single crystal. Two novel phenomena
are observed and studied quantitatively. The resistive hysteresis near the vortex-solid
melting transition is ascribed to a current-induced non-eqilibrium effect; the resistive

“peak effect” below the vortex-solid transition is found to be a general phenomenon



vi
existing in extreme type-II superconductors, and is associated with the softening of
the vortex-solid before the thermodynamic melting transition. It is therefore con-
cluded that the current-induced effects are of particular importance in determining

the vortex properties of extreme type-II superconductors with weak pinning.
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Chapter 1 Introduction

The discovery of superconductivity at 30K in the Ba-La-Cu-O system by Bed-
norz and Miiller at IBM Zurich Research Laboratory in 1986 (Bednorz & Muller,
1986) has brought superconductivity research into a new era. Superconductors with
transition temperatures (7,’s) of 93 K in YBa;Cu307 (Wu et al., 1987) and 120 K in
Bi,SryCa;CuzOs (Subramanian et al., 1988) were found soon afterwards. To date, the
highest T; has reached 135 K in HgBa;CayCu3Os4s (0 < § < 1) (Tsuei et al., 1994).
These discoveries have led to numerous applications of these high-temperature su-
perconductors(HTS’s) without the expensive liquid helium environment required for
conventional superconductors. However, the brittle nature and chemical reactivity
of these high-temperature superconducting materials have limited the major devel-
opment in the applications to thin film devices, such as high-temperature SQUIDS
(Gupta et al., 1994), superconducting microwave filters (Chew et al., 1991) and high
speed electronics (Raider, 1988). In addition to a wide range of applications, HTS’s
have also opened new opportunities for studying novel phenomena that are associated
with the fundamental physics in high-temperature superconductivity. One issue that
has received considerable attention is the novel vortex properties due to the large
thermal and disorder fluctuations in HTS’s. In fact, not only that the superconduct-
ing to normal state transition becomes significantly broadened in HTS’s, but also that
a dissipative new vortex phase is found between the nondissipative superconducting
vortex phase and the normal state. Understanding when and how the superconduct-
ing phase becomes dissipative is very important since it is the nondissipative nature
of superconductors that is desired in their applications. It is the goal of this thesis to

investigate these issue.



1.1 Motivation

1.1.1 Novel Vortex Phases in High-Temperature Supercon-

ductors

The copper oxide based high-temperature superconductors(HTS’s) share three

most unusual fundamental properties:

i. high superconducting transition temperature (7);
ii. large electronic mass anisotropy;

iii. short coherence length ({,) and long penetration depth (\).

The large anisotropy reflects the layered crystalline structure of HTS’s. The high
T. and short & result in large thermal fluctuations. The short ¢; and long A result
in a large Ginzberg-Landau parameter k = A/¢, and therefore a soft vortex lattice.
Together with the large anisotropy, the vortex system of HTS’s are very sensitive
to disorder fluctuations. One major consequence of the large thermal and disorder
fluctuations in HTS’s is the novel vortex phase diagram as compared with that of
conventional superconductors shown in Fig. 1.1. A brief description of these phase

diagrams is given below. More theoretical background will be provided in Chapter 2.

Superconductors are generally categorized into two types according to their mag-
netic properties; type-I superconductors with £, > v/2X and type-II superconductors
with €, < v/2\. In type-I superconductors, the normal-metal state is recovered by in-
creasing the external magnetic field to above the thermodynamic critical field H,(T)
(see Fig.1.1(a)). In conventional type-II superconductors, two critical fields are found
which separate three thermal equilibrium phases (see Fig.1.1(b)). A Meissner state
exists in a very low magnetic field below the lower critical field H, (T'). With an in-
creasing external field, the magnetic field begins to penetrate the sample in the form
of “quantized” flux lines in the Abrikosov vortex-lattice state, each of the flux lines

encloses one flux quantum (®o = 2.07 x 107*° Tesla-m?). At the upper critical field
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Figure 1.1: The vortex phase diagrams of (a) type-I superconductors, (b) conventional
type-1I superconductors, and (c) high-temperature superconductors.
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H.2(T), a normal state is recovered. High-temperature superconductors are extreme
type-11 superconductors with k ~ 100. The vortex dissipation in HTS’s begins before
H(T) is reached, suggesting the existence of a new vortex phase, the vortex-liquid
phase (see Fig.1.1(c)). The vortex-solid phase at lower temperatures is also different
from the Abrikosov state, the latter being characterized by a regular vortex lattice
in conventional type-II superconductors. Because of the large penetration depth in
HTS’s, the magnetic fields associated with the vortices are usually so strongly over-
lapped that there is no longer a well-defined discrete flux line lattice, even though
the vortex positions can still be identified. The line separating the vortex-solid phase
and the vortex-liquid phase in the magnetic field (H) versus temperature (T") phase
diagram is called the melting line. The focus of this thesis is to explore the nature of

the melting line in the presence of different types of static disorder.

1.1.2 Vortex Dissipation and Pinning

To study the vortex-solid melting, we need to first understand the origin of vortex
dissipation and the effects of static disorder on the vortex properties. In the presence
of an applied current, if the vortex lattice is not pinned by either material defects or
impurities, vortices will move with a finite velocity v transverse to the current under
the Lorentz force F', = J X ®¢, and v x F. Here, ®¢ is parallel to the external filed
B. This vortex motion results in an electricfield E o< (B Xx v) which is the origin of the
vortex dissipation. In any real material, however, there are always structural defects,
or sometimes referred to as static disorder in this thesis, which provide energetically
preferred positions for the flux lines and thus inhibit their motion. This inhibition
of vortex motion is called “pinning”. The vortex pinning force provided by defects
is due to the weakening or absence of superconductivity in the local defect regions,
so that the energy cost of locating a flux line (which has a normal core with a free
energy higher than the superconducting region) in the defect position is reduced. The
reduced energy is therefore the pinning energy for vortices, and can be estimated as

Up = e(H?/8m)V,, where € is the fractional depression of superconductivity in the
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defect, H, is the thermodynamic critical field, and V, is the volume of the vortex
core that is pinned. Apparently, ¢ and V, depend on the nature of the defect and
the vortex-defect interaction. In addition to the defects in as-grown superconductors,

one can create control densities and types of defects by means of ion irradiation.

1.1.3 Vortex Phase Transitions

Our experimental investigations of the vortex phase transitions in extreme type-
IT superconductors with different types of static disorder were initially inspired by
various theoretical work (Nelson & Seung, 1989; Marchetti & Nelson, 1990; Fisher
et al., 1991; Nelson & Vinokur, 1992). In particular, the proposal of a vortex-glass
phase transition (Fisher et al., 1991) for a vortex system with weak random point
defects, and that of a Bose-glass transition (Nelson & Vinokur, 1992) for a system
with correlated vortex pinning provided by parallel columnar defects, have had the
most important impaction on the experimental studies of vortex phase transitions in
HTS’s.

In addition to possible new universality classes of second-order vortex phase tran-
sitions in samples with different types of static disorder, another very important issue,
regarding the nature of the vortex-solid melting transition in very “clean” HTS’s, has
also received intense attention (Brezin et al., 1985). Since direct theoretical calcula-
tions of vortex-pin interaction are very difficult, systematic experimental investiga-
tions on HTS samples of different dominating pinning mechanisms are of particular
importance for providing crucial information for the interplay of the thermal fluctu-

ations and disorder effects near the vortex-solid melting.

1.2 Previous Work

High-temperature superconductivity research has been a very competitive area
since the beginning of the field. Although most of the research topics in our group
were uniquely designed, it is unavoidable that some of our experimental work still

overlapped that of other research groups. In the following, a brief summary is given
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for the work by other groups that is related to this thesis. More technical discussions
will be referred to in later chapters.

As stated in the previous section, the vortex-glass model has inspired various
experimental studies of the vortex-properties in HTS’s. Although several publications
on the DC transport measurements (Koch et al., 1989; Gammel et al., 1991) and one
paper on the low-field AC transport measurements (Olsson et al., 1991) had been
suggestive of a second-order vortex-glass transition prior to our work, there were two
common flaws which hindered a convincing experimental proof for a second-order
vortex phase transition below H.. One is the large error bars involved in the “critical
exponents” determined by other research groups (Koch et al., 1989; Gammel et al.,
1991; Olsson et al., 1991); the supposedly “universal” exponents for a second-order
phase transition in fact vary by a few hundred percents with varying the applied
magnetic field, the sample, and the experimental technique. The other serious flaw
is to do with the absence of a reasonable critical regime near the supposedly second-
order critical temperature in those reports (Koch et al., 1989; Gammel et al., 1991;
Olsson et al., 1991). For instance, in Ref. (Koch et al., 1989) the critical analysis was
applied to the current-voltage isotherms over a temperature interval of 11.8K around
the “vortex-glass” temperature T for H = 40 kOe. This temperature interval is not
only much broader than what is allowed by the Ginzberg criterion, but also overlaps
the upper critical field line H; for the same field. In other words, the “vortex-glass”
transition quoted in Ref. (Koch et al., 1989) is essentially not distinguishable from
the upper critical field H(T'), rendering serious doubts for the correctness of the
critical exponehts and phase transition temperature, as well as for the entire issue of
a true vortex-glass transition.

On the other hand, in an effort to determine whether first-order vortex-solid melt-
ing transitions exist in samples nearly free of static disorder, electrical transport
measurements were attempted in untwinned YBa;CusO7 single crystals (Safar et al.,
1992a; Kwok et al., 1994a; Charalambous et al., 1993). Resistive hysteresis was ob-
served in the vortex state and was initially viewed as the experimental evidence for

the first-order transition. However, as the issue was further scrutinized, it becomes
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questionable whether a non-thermodynamic quantity such as the resistivity should
follow the same hysteretic behavior as the internal energy.

Although the effects of controlled disorder had been studied via electrical transport
(Vichery et al., 1989), magnetization (van Dover et al., 1989; Civale et al., 1990; Civale
et al., 1991; Konczykowski et al., 1991), AC susceptibility measurements (Civale et al.,
1990; Civale et al., 1991), and AC transmittivity and transmissivity (Konczykowski,
1991; Konczykowski et al., 1991), most experimental work only focuses on the effects
of disorder on the linear resistivity, the critical current density, and the irriversibility
line (Muller et al., 1987; Yeshurun & Malozemoff, 1988). No attempts had been made
prior to our work to investigate of the vortex-solid to liquid transition with controlled

disorder.

1.3 Owur Experimental Approach

In this thesis, the interplay between the thermal and disorder fluctuations in
HTS’s is investigated by studying the vortex properties near the vortex-solid to liquid
transitions in YBa;Cu3O~ single crystals systematically with different types of static

disorder.

1.3.1 Controlled Static Disorder

Most as-grown YBa,;CusO7 single crystals contain two types of defects: twin
boundaries which are planar defects extending through the entire sample thickness,
and the random point defects associated with oxygen vacancies. To study the effects
of static disorder in a controlled manner, we use the ion irradiation technique. This
technique allows the flexibility of varying the species, fluences and energies of the
irradiating ions to alter the types and densities of the defects created in the sample.
The use of ion irradiation technique to modify material properties was first employed
in semiconductor research as early as in the 1950s. In the 1970s, the applications
of jon irradiation technique on conventional type-II superconductors were mostly on

implanting ions into superconducting films to form new metastable alloys which have



8
better superconducting properties such as higher transition temperatures or higher
critical currents (see Ref. (Richard, 1980) and references therein). Shortly after the
discovery of HTS’s, the ion irradiation technique was carried out to create structural
defects without adding foreign species in the HTS samples (van Dover et al., 1989;
Vichery et al., 1989; Civale et al., 1990). In our work, two types of ion irradiation
were employed to create defects of different nature: 3 MeV protons irradiation and
0.9 GeV Pb-ion irradiation. By using the 3 MeV proton irradiation, we are able to
vary the density of randomly distributed point defects. By using the 0.9 GeV Pb-
ion irradiation, a unique type of defects, the columnar defects, were created. The
columnar defects had an average diameter comparable to the vortex core size at low
temperatures. In addition, these parallel defects extend through the entire thickness
of the sample, providing a long pinning length and giving rise to very different vortex

dynamics from that incurred by random point defect pinning.

1.3.2 Experimental Approach to Studies of Phase Transi-

tions

In order to study the nature of the vortex-solid to liquid transition experimentally,
we need to review the basic concepts of critical phenomena near a phase transition?.

When a system is sufficiently close to the critical point (T¢) of a phase transition,
anomalies occur in a variety of static properties such as the magnetization or specific
heat, and in dynamic properties such as the transport coefficients and relaxation
times. According to the critical scaling hypothesis, long range correlations give rise
to the singular behavior near T,. In other words, the critical anomalies may be
asymptotically expressed in terms of the average size of critical fluctuations, the

correlation length £. For a system with isotropic critical fluctuations, the correlation

1For a more comprehensive description of the theory of critical phenomena, see for example
Ma, Shang-Keng, Modern Theory of Critical Phenomena (W. A. Benjamin, Inc., Advanced Book
Program, Massachusetts, 1977) and the review article: Hohenberg and Halperin, Rev. Mod. Phys.
49, 435 (1977).
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length diverges as the temperature (T') approaches the transition temperature (7,),

-V

5~‘1-—% , (1.1)

where v is the static critical exponent. The dynamic properties are related to the re-
laxation time 7 of thermal fluctuations, which is the time needed to approach thermal
equilibrium after a disturbance. As T' — T, it takes longer and longer to equilibrate
the system. This phenomenon is known as the critical slowing down. As £ diverges,

the relaxation time also diverges with the relation

T~ E7, (1.2)

where z is the dynamic critical exponent.

With the development of the renormalization group theory, the idea of scaling
hypothesis is linked to an important concept — wuniversality. Since the study of
critical phenomena concerns the behavior of a system whose correlation length ¢ is
very large compared to the interatomic spacing, it is natural to suppose that many
details of the microscopic Hamiltonian become irrelevant for critical behavior. It
follows that systems showing critical phenomena can be divided into groups known
as universal classes, such that all members of a given class have “identical” critical
exponents.

Based on these concepts, second-order phase transitions can be studied experi-
mentally via different physical quantities and using different techniques. Although
this thesis emphasizes the electrical transport properties near the vortex phase transi-
tions, other related work conducted in our group has also unambiguously manifested
universal critical quantities such as the AC magnetic susceptibility and the third-
harmonic transimissivity (Reed et al., 1994; Reed et al., 1995). Since the electrical
transport experiment does not measure thermodynamic quantities directly, systematic
and self-consistent studies have to be carried out in order to interpret the experimen-

tal results properly. The advantage of measuring electrical transport properties is
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that it provides a more effective way of investigating vortex motion and dissipation
in high-temperature superconductors, as supposed to the specific heat and magneti-
zation measurements which yield very small vortex contributions to a large electric
and phonon background.

The electrical transport properties under investigation include the measurements
of DC resistivity as a function of the temperature and current in different magnetic
fields, and the AC impedance as a function of frequency and temperature in different
magnetic fields. The relevant critical exponents are the static critical exponent v
and the dynamic critical exponent z. The critical scaling relations for these physical
quantities near the vortex-solid melting temperatures can be obtained based on the
critical scaling hypothesis and the symmetry consideration of disorder fluctuations,

and will be described in details in Chapters 4 and 5.

1.4 Thesis Overview

The thesis is organized as follows. An introductory theoretical background for
the magnetic properties of superconductors is first given in Chapter 2. The basic
concepts of superconductivity, the Ginzberg-Landau theory for conventional type-II
superconductors near H.y, the consequences of the high transition temperature, short
coherence length and long penetration depth in HTS’s are discussed. In addition,
the elastic properties of the vortex lattice are briefly described. After reviewing the
conventional concepts of vortex dissipation due to flux-flow and flux-creep, a recently
developed collective flux-creep theory is introduced, and the vortex dissipation in the
presence of pinning is considered in the context of vortex bundle hopping and vortex
elasticity. Once the existence of a truly nondissipative vortex-solid phase is justified
based on the flux-creep model, the theoretical models for the vortex-solid to liquid
phase transitions in the presence of different static disorder are introduced.

Chapter 3 describes the basic experimental techniques used for carrying out the
investigations in the thesis, including details of the sample preparation and general

techniques used for cryogenic measurements. In the sample preparation section, the
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ion irradiation techniques are also described, with the point defect creation process
detailed in Appendix A. A summary of the sample information for six YBa;CuzO7
single crystals studied in this thesis is also provided in this Chapter.

The main experimental results are presented in Chapters 4 to 6. Chapter 4
focuses on the universality of second-order vortex-glass transitions among various
YBa;Cusz07 twinned single crystals with different densities of point defects. Chapter
5 demonstrates the experimental evidence for a second-order Bose-glass transition in
YBa;CusOy single crystals with parallel columnar defects by showing universal crit-
ical scaling of frequency-dependent AC resistivity data from 102 to 2 x 10 Hz. The
signature of the transition, that the Bose-glass transition temperature Tre decreases
with the increasing angle () between the applied magnetic field and the c-axis, has
been confirmed and is in sharp contrast to the smooth increase of the vortex-glass
temperature (Ths) with increasing §. Chapter 6 studies two current-induced phe-
nomena in nearly defect-free, untwinned YBa;Cu307 single crystals. The physical
origin of the resistive hysteresis near the vortex-solid melting transition, as well as
the nonlinear resistive “peak effect” below the thermodynamic melting transition,
are investigated extensively. Finally, Chapter 7 summarizes the contributions of this

work,
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Chapter 2 Magnetic Properties of Type-II

Superconductors

In order to investigate the novel vortex properties of high-temperature superconduc-
tors (HTS’s), it is necessary to review the magnetic properties of conventional super-
conductors, particularly the vortex properties of type-1I superconductors. This chap-
ter serves as an introduction of the basic concepts and terminology that are required
to describe the research presented in later chapters'. In addition, the consequences of
the high transition temperature, short coherence length and long penetration depth
of HTS’s will be discussed to illustrate the importance of both thermal and disorder

fluctuations on the vortex phase transitions presented in this thesis.

2.1 Meissner Effect and Superconductivity

One of the key signatures of superconductivity is the disappearance of the elec-
trical resistance in certain materials as they are cooled below certain critical temper-
atures, the superconducting transition temperatures (7.) (See Fig. 2.1). However, a
superconductor is more than a perfect conductor. The expulsion of magnetic flux,
the Meissner effect, which is best demonstrated in type-I superconductors as shown
in Fig. 2.2, represents an important aspect of superconductivity in addition to the
infinite electrical conductivity. However, Meissner effect does not occur exactly ev-
erywhere in the superconductor. The magnetic field actually penetrates a rather
small but finite distance into the superconducting material. This distance is called

the penetration depth (\), within which the shielding supercurrents are flowing. It

'For a more comprehensive description of the theory of critical phenomena, see for example
Ma, Shang-Keng, Modern Theory of Critical Phenomena (W. A. Benjamin, Inc., Advanced Book
Program, Massachusetts, 1977) and the review article: Hohenberg and Halperin, Rev. Mod. Phys.
49, 435 (1977).
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is this Meissner effect which makes the superconducting state a thermal equilibrium
state. Superconductivity can be destroyed by increasing the magnetic field above the
thermodynamic critical field (H,) which is related to the condensation energy of the
superconducting state that differentiates the free energies between the normal and
superconducting states. In terms of the energy densities for the normal state f,(7")
and the superconducting state f;(71"), we have (in the cgs units)

fu(T) = fs(T) = Héng), T <1T, (2.1)

Note that f(T) < fo(T) for T < T., and H.(T) =0 for T > T..

Resistivity (pQ em)

Temperature (K)

Figure 2.1: Resistance versus temperature curves a conventional superconductor
Mos3Si in different magnetic fields.

2.2 Microscopic Properties of Superconductivity

The microscopic properties of superconductivity for many conventional supercon-
ductors in the absence of magnetic field has been well described by the BCS theory
(Bardeen et al., 1957). According to this theory, the carriers responsible for super-
conductivity form the Cooper pairs, which are paired electrons bound by a weak
attractive force through the electron-phonon interaction. The Cooper pairs condense
into the ground state below the superconducting transition temperature, resulting in

an infinite conductivity. The binding energy of the electron pairs is 2A, where A is
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Figure 2.2: Schematic diagram showing the exclusion of magnetic flux from the inte-
rior of a superconductor. Here A is the penetration depth.

called the superconducting gap energy.

2.3 The London Theory

In the presence of an applied magnetic field, the Meissner effect can be phe-
nomenologically explained by the London theory. Since the ground state momentum
of the superconductor is zero, i.e., P = m* < vy, > +e*A/c = 0, where m*(= 2m for
weak-coupling systems, where m is the rest mass of a free electron.) and e* (= 2¢) are
the effective electronic mass and charge, respectively, of the Cooper pairs, v, is the
superfluid velocity and A is the vector potential. Therefore, the superfluid velocity

1s given by
e*A

9
m*c

<V >= — (2.2)
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which is related to the superconducting screening current density J, by the expression

*f % 2A
J,=nie" <v,>= _&%%_' (2.3)
From the Maxwell equation
V xh =2 (2.4)
c
and the magnetic field h = V x A one obtains
4mnt(e*)? 1 m*c?
Th=""h=—h XN=—""T—_ 2.
v'h m*c? B AL TR T 4 (er)? (2:5)
which has the solution
h = hee "/, (2.6)

Here, Az is called the London penetration depth.

The London theory is valid when v(r) and J,(r) vary slowly in space. More
specifically, since h , J, and v all vary on the scale of Ar, the London equation holds
when Ay, >> &, & is the superconducting coherence length. One can estimate £, from

the uncertainty principle by considering the relevant momentum space for electrons:

2

Er—A<f < EpiA, (2.7)
2m

where Er is the Fermi level. Therefore, %2 ~ vpdp ~ 2A, and the coherence length
is given by
h h h’l)F

o N A jor T 2A

(2.8)

From Eq.(2.2), one can see that if the magnetic field becomes so large that the
kinetic energy of the Cooper pairs exceeds the gap energy, all pairs may break and

the sample becomes normal.

2.4 Type-I and Type-II superconductors

Among all superconductors, only cylindrical type-I superconductors have simply
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two thermal equilibrium phases in an applied magnetic field: the Meissner phase
with complete field expulsion, and the normal phase. The superconductor goes to the
normal state through a first-order phase transition at the thermodynamic critical field
H.(T). In a type-I superconductor of an arbitrary shape, due to the demagnetization
factor of the sample, there is generally an intermediate state when magnetic field
can enter the superconductor as discrete normal domains, as shown in Fig. 2.3, each
containing many flux quanta. The real magnetic field distribution pattern can be very

complicated and has been beautifully illustrated in the work of Huebener (Huebener,

1979).

"

7
5

|

Figure 2.3: Schematic diagram showing magnetic flux channeling through the normal
region in the intermediate state of type-I superconductors.
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In type-II superconductors, the Meissner state occurs only at fields below the
lower critical field H.(see Fig. 1.1(b)). In higher fields, the magnetic field penetrates
the sample in the form of quantized fluxoids enclosed by vortices of shielding currents
(see Fig. 2.4). Each vortex contains one flux quantum, ®¢ = 2.07 x 1077 Gauss cm?.
This state is called the mixed state, or the vortex state. Because each vortex contains
exactly one flux quantum, the density of vortices must increase with increasing applied
field until the upper critical field H,, is reached, at which the entire sample becomes

normal.



17

4l D <0
] ] i ] ]
- - P N i
ot I Potin BRI o i R I
i [ B I 1 1] L] ]
H HERERHIEEEHEHY ¢
T
1 [ ] ] [ 1t 1 1
] [T g8 ] 13 by ]
] § 'R i g T By [
] ] B 1 i 18 [ 1 [l
! By gk [ 1 iy 1
i T HHE i T :
] ] [ | B L] L] ]
A | | g
vy I HE
1 B ] 1 I__l
s

Figure 2.4: Schematic diagram of a vortex lattice of a type-1I superconductor in an
applied magnetic field H.

2.5 The Ginzburg-Landau Theory

To understand the difference between type-1 and type-II superconductors, we
need to introduce the Ginzburg-Landau theory. The Ginzburg-Landau (GL) theory
(Ginzburg & Landau, 1950) is based on purely phenomenological concepts. However,
Gor’kov has shown (Gor’kov, 1958; Gor’kov, 1959) that, for both very pure and very
dirty superconductors, the GL theory follows rigorously from the BCS theory near
Ho(T), provided that the spatial variations of both the order parameter and of the
magnetic field are slow.

The starting point of GL theory is to express the free-energy density in terms of

the superconducting order parameter 1 = |1)|€* as follows,

to-24)s

where h is the local magnetic field. For ¢ = 0, we have f = f, + h%/(87), i.e., the

2
h2
— 2.

£ = gt o+ Oy L

free-energy density of the normal state. The meaning of the order parameter becomes
clear from its relation with the density of the Cooper pairs n, given by n,(r) = [4(r)|?.

Following a standard variational procedure, one finds two GL differential equa-
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tions, .
oty + By + 21 " (Zv - e—A) Y =0 (2.10)
m 2 C
and
3, = h ($*Vep — pVep*) — e P*PA (2.11)
® 7 omx m*c ’ '

and the boundary condition for a superconductor-insulator surface satisfies
h e
(—,V - —A) ln =0, (2.12)
i c
where the subscript n denotes the component normal to the surface.

These equations yield the coherence length

&(T) = \l %:%ﬂ, (2.13)

which represents the natural length scale for spatial variations of the superconducting

order parameter ¢, and the magnetic field penetration depth

m’c )} 1/2, (2.14)

0 = [

where 9§ = —a/B. Since A(T) and &,(T') have the same temperature dependence of
&(T) ~ MNT) ~ |T — To|7*/? near T, it is useful to introduce the ratio of these two

length scales

A
£,

which is nearly constant, at least near 7. This ratio  is called the Ginzburg-Landau

K =

(2.15)

parameter and its value determines whether a superconductor is of type-I or type-II.

As shown in Fig. 2.5, near the boundary from a superconducting state material
to a normal state material in an external magnetic field, neither the superconducting
parameter nor the magnetic field can vanish abruptly at the boundary. Instead, the
order parameter drops off over a characteristic length scale ¢,, and the magnetic field

drops off over another length scale A. As a consequence, we encounter an increase of
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free energy due to the loss of negative condensation energy in the superconducting
region as the result of the increasing normal region near the interface. The increase of
free energy per unit area is approximately {;H2/(87). On the other hand, the pene-
tration of magnetic fields into the superconducting phase results in a reduction of the
magnetic energy which is about AH2/(87) per unit area of the interface. Therefore,

the domain-wall energy per unit area of the interface becomes

HQ
= ¢ - ). 2.
\ T —
h ane i h P
e -
(a) Type (x<<1) (b) Type-H (x>1)

Figure 2.5: Schematic superconductor-normal material interface in the case of (a)
type-I (k¢ << 1), and (b) type-II (x > 1) superconductors. Here h is the magnetic
field and % is the superconductiong order parameter.

It is found that for type-I superconductors (£, >> A or £ << 1), the domain wall
energy is positive and for type-II superconductors (£, < A or k > 1), the domain
wall energy becomes negative, and therefore the latter case favors flux penetration.
Figure 2.5 demonstrates a superconducting-normal metal interface for both type-I
and type-II superconductors. Note that Eq. 2.16 is only a simple estimate. Following
Ginzburg-Landau theory, the exact crossover from positive to negative wall energy
is found to occur at & = 1/+/2. Subsequently, Abrikosov showed that (Abrikosov,
1957) the negative wall energy in type-II superconductors causes the flux-bearing
(normal) regions to subdivide until a quantum limit is reached, in which each quantum
of flux ®, passes through the sample as a distinct flux tube at low temperatures.
The diameter of each tube is about the superconducting coherence length £,. With

the increasing temperature, the vortex diameter £, grows until the entire sample
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becomes normal beyond a temperature T, determined by Heo(T) = ®o/(27E,(T)).
On the other hand, for a given temperature, the density of vortices increases with the
increasing magnetic field until H.,(7T') when the entire sample becomes normal.

The high-temperature superconductors are extreme type-II superconductors with
%k ~ 100. The coherence length & of HTS’s is very small compared to that of the
conventional type-II superconductors. For example, the anisotropic coherence lengths
of YBayCuzOr are 2 = 12 to 18A and &= 2to 3A in the ab-plane and along the
c-axis, respectively (Welp et al., 1989a), both values much smaller than that of the
conventional superconductor Nb which is &, =~ 380A. Large T, and short & result in
large thermal fluctuations near T,. The size of the critical regime, Gi = |1 — T} /T,
within which the thermal fluctuations are important and therefore mean-field theory
is no longer applicable, can be estimated from the Ginzburg-Landau theory. Using
the Ginzburg criterion, T is the “fluctuation” temperature when |61/9|*(Tf) = 1
is satisfied, where 6v denotes the critical fluctuation of the superconducting order

parameter.This criterion yields (Ginzburg, 1950; Lobb, 1987)

Gi~

1 kgT. \° 167%k* kT2
<H2B >: e (2.17)

2 \HZ(0)€(0) ®  Ha(0)
where in the second step we have used the relation H.(T) = Hy(T)/(v/2k) for type-
IT superconductors. For anisotropic HTS’s, the superconducting coherent volume &3
becomes (£9%)2¢¢. With an anisotropy factor ¢ defined as the square root of the ratio
of the effective mass in the ab-plane to that along the c-axis, ¢ = \/m/_——M = £/E%,
where Eq. 2.13 for the relation between & and the effective mass has been used.

Therefore, Eq. 2.17 yields

Gi x

1 kgT, 2 16m3kt kpT?
N-2.<H2( ) = (2.18)

0)e(£5%)*(0) o} 2HZ(0)
For HTS’s such as Y Bay,Cu3O; superconductors, T, ~ 93 K, H2(0) ~ 5 x 10° G,
k =~ 80 and € ~ 1/7, resulting a Gi of the order of 1073 K, much larger than that of

conventional superconductors which is typically less than 107%. That is why fluctua-
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tion effects in most type-II superconductors are only important when the temperature
is very close to the critical temperature. Therefore, the discovery of HTS’s opens up
new experimental opportunities for studying the thermal fluctuation effects in super-
conductors. In addition, we note that the superconducting transition temperature 7,
in Eq.2.18 can be generalized to a critical temperature of a second-order vortex phase
transition, with the critical field adjusted correspondingly.

Various novel vortex properties in HT'S’s can be attributed to the large Ginzburg-
Landau parameter, k = A/&,, in addition to the large fluctuation effects. With a small
coherence length, the vortices in HTS’s are very sensitive to the effects of sample
disorder. With a large penetration depth compared to the average vortex lattice
constant, the magnetic fields of the vortices strongly overlap each other, even though
the vortex positions can still be identified from the zero points of the superconducting
order parameter. Therefore there is no well-defined, discrete flux line lattice in HTS’s.
Overall, the large k results in a “soft” vortex lattice in HTS’s with a small elastic
deformation energy. To understand the softening of the vortex lattice, we introduce
key concepts about vortex interactions and vortex lattice elasticity in the following

section.

2.6 Vortex Interactions and Vortex Lattice Elas-
ticity

The simplest approach to understanding vortex interactions is to start with the

line energy of a single flux line and the interaction of two parallel flux lines.

2.6.1 Vortex Line Energy and Interaction Between Two

Parallel Flux Lines

The line energy per unit length (the line tension ¢) of an isolated vortex line

can be obtained by considering the magnetic and kinetic energies associated with the
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vortex (excluding the core):

€= alr—l—[h2 + A%(V x h)?, (2.19)
(r>g) 8

in the limit A >> £;. Minimizing ¢ relative to gives
h+ )M’V x Vh =0 7| > &. (2.20)

Since the vortex core size £, is small, the core contribution to the line tension can be

expressed as a two-dimensional delta function and rewritten into
h + A2V x Vh = ®yd,(r), (2.21)

where &, = &7 and 7 is a vector along the line direction. The solution of Eq.(2.21)
together with the Maxwell equation V - h = 0 gives

(I)O r
h= gk (5) (2.22)

where K is the zero-order modified Bessel function. The line tension is then

. &g \ 2 A
=(—) In|—]. 2.23
“ (47r)\) ! ({'}) (2.23)
Next we consider two parallel flux lines directed along the z axis with positions
r; = (x1,y1), r2 = (z2,¥2). The magnetic field distribution is determined by the

equation

h + A2V x Vh = &[6(r — 1) + 6(r — 13)). (2.24)
The solution h is the superposition of the field h; and hy due to the flux lines 1 and

2:
h(r) = hi(r) + ha(r) (2.25)

%y L [(ri—12) .
hl_.%vm( - ) i=1,2. (2.26)
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The energy of the system is therefore
Lo g2 2
o= /drs—ﬂ[h +AX(V x h)? = 2¢ + Ua, (2.27)

where Ujq represents the interaction between the two flux lines

Pohig

Ui =
12 dn

h12 = h1 = hg. (228)

This is a repulsive energy which decreases as (1//712)e”"2/* at large distances, and

diverges as In(|A/r12|) at short distances.

2.6.2 Lower Limit for Flux Penetration and H_

For a vortex lattice, the Gibbs free energy density can be written as:

BH
=nre + ZU - — (2.29)

where the first term represents the individual energies of the lines, ny is the real

density of flux lines which is related to the induction B by
B = nL<I>0; (230)

the second term in Eq.(2.29) describes the interaction between vortices; and the last
term gives the magnetic energy density which favors large values of B.
At very low line densities (low B), the interaction term is small and can be ne-

glected. From

€ H
GxB|——-— 2.31
(q)() 47T), ( 3)

we can see that for H > 4me;/®y, G can be lowered by choosing B # 0 so that there
is some flux penetration. Therefore, the first penetration field, the lower critical field
H., is given by

47e i A
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2.6.3 Abrikosov Lattice and Upper Critical Field H,,

In large magnetic fields, the superconducting order parameter becomes small so
that the GL differential equation (Eq.(2.10)) can be linearized by neglecting the higher

order terms in |¢|:

m

2
! (—mv - 23@_) p——y (2.33)

c
Consider the case of an infinite medium in the zy plane with H along z-axis. Equation
(2.33) together with the London gauge V - A = 0 describes a particle of mass m*

moving in a circle in the zy plane with the frequency

. 2¢eH

We =

(2.34)

m*c

and a constant velocity v, along the field. The eigenvalues are the Landau levels
€n = (n+1/2)hw, + (1/2)m™v2. (2.35)

The lowest level and therefore the highest field (H,) at which superconductivity can

nucleate in the interior of a large sample corresponds to n = 0, v, = 0. This leads to

1 R
—2-hwc = —Qa= W, (236)
which gives
Q¢
Hy = . .
2= S (2.37)
In addition, from the following equations,
H? o2
P ﬁ’ (2.38)
H. = V2kH,, (2.39)

we find that, if & > 1/v/2 (H, < H,), a condensed phase will appear in the bulk of the

sample for fields H < H,.,. This phase cannot correspond to a complete exclusion of
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the magnetic flux, since a complete Meissner effect is energetically unfavorable at fields
H > H. When the external magnetic field is very close to H., Abrikosov demon-
strated that there exists close packed flux lines forming a triangular or square vortex
lattice, with each flux line containing one flux quantum (Abrikosov, 1957). Such a
vortex lattice structure has been verified experimentally. On the other hand, when
k < 1/v/2 (Hgp < H,.), a complete Meissner effect takes place when H is decreased

below H,. In this case, the superconductor is therefore a type-I superconductor.

2.6.4 Elastic Properties of the Flux Line Lattice (FLL)

In general, the vortex lattice is not in its equilibrium configuration but rather
in some distorted state. The elasticity of a vortex lattice describes how the lattice
respond s to elastic distortions such as thermal fluctuations or static disorder. The
nonlocal elastic theory of a vortex lattice in an isotropic superconductor has been
worked out by Brandt (Brandt, 1977) using the GL description at high inductions
B > 0.6H. and the London theory for small fields B < 0.2H,.

Define the displacement field of an elastically deformed flux line lattice as u,(z),
u,(z) =r,(2) — R, (2.40)

where r,(z) = (2,(2);4.(2);2) and R, = (X,;Y,;2) are the displaced and regular
lattice positions of the vth flux line, respectively. Note that u,(2) = (u®(z); u¥(z2);0)

14 Y v

is a two-dimensional vector. Its Fourier transform is

uk) =3 / dze=*Roy, (). (2.41)

The corresponding inverse Fourier transform is

3
u,(z) = /B . zg—;)—;;e"k'R"u(k), (2.42)

where the integration is over the two-dimensional Brillouin zone (BZ) of the vortex
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lattice. Within local elastic theory, the energy of such a distorted state is given by
(Brandt, 1977; Blatter et al., 1994)

Flu(2)] = Flr,(2)] - FIR.(2)]
= -;- [%:EV: / dz / 42, (r — '), (v)u, (r) (2.43)
_; / dz f,,(z)u,,(z)]

where ®(r) is the elastic matrix of the vortex lattice, and f,(z) is the force field
which generates the distortion u,(z). Here, the harmonic approximation has been

used. While expressing F in term of u(k), we have

1 d3k
== [ o (k) Bag (k) ug(—k) — fa(k)ug(—k)], 2.44
Flu = 5 [, 555 o) Bas (Bus(—F) = falkua(—)], (249
where ®(k) and f(k) are the Fourier transformations of ®(r) and f,(z), respectively.
In the low fields with B <~ 0.2H., when the vortex cores do not overlap and the

London theory is applicable, the elastic matrix can be expressed as (Brandt, 1977;

Blatter et al., 1994)

Bap(k) = 1= S lfuslk +Kor) — fus(K. )] (2.4

with
faﬁ(k) = (kakﬂ + 6aﬂk3)vim(k)’ (246)
K., being the two-dimensional reciprocal lattice vector, and V" (k) the interaction

potential between two vortex segments. For a regular triangular lattice, both R,

and K,/ can be reduced to two-dimensional vectors: R, = (nlgﬁao, 2”%&0, 2), K, =

2m(25== ) where m and n are two integers. In the nonlocal continuum limit
V3ao 7 a0

(Brandt, 1977; Blatter et al., 1994),

(I)aﬁ(k) = [Cll(k) - 066]-[{&[{,9 -+ 5«1,3[066]{2 + C44(k)kz], (247)
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with ¢;1(k) and cqs(k) denoting the dispersive compression and tilt moduli and cgg
the non-dispersive shear modulus. Here, K = (k,, k,), and k? = K2 + k2. From Egs.
(2.44)-(2.47), the elastic energy can then be expressed in terms of the elastic moduli

3
FLu]) = 5 [ g {en (K - + culIK. - wOP + cua9full] = (-1 - ulio},
(2.48)
with K, = (k,, —k,). Correspondingly, in terms of u(r),
Flu] = % [ &rlen = coo) (V- 0)? + cos(Vs - w)® + cas(D0)?] (2.49)

Within the local ésotropic approximation (corresponding to taking K,» = 0 in equation
2.47), the resulting compression and tilt moduli are

B 1

Cll(k) ~ C44(k) ~ Em—,

(2.50)

and the shear modulus is zero such that this description applies to a vortex liquid
phase. The nonlocal terms (K, # 0) which correspond to nonlocal interactions add

up to produce a finite shear modulus

Co6 ~ %%5, (2.51)
which is essentially non-dispersive. The corrections of K,» # 0 terms to ¢;; and cy
are small.

In the high induction limit, GL theory yields an expression for the elastic matrix
which is similar to the London results in Eq.(2.47) except for a double sum over two
sets of reciprocal lattice vectors K, and G,/ (Brandt, 1977). For a regular triangular
lattice, G,/ can be expressed as G,y = m'Gig + n'Gyy, where Gy and Gy; are the
Brillouin zone boundary vectors. Also, the reduction in the order parameter at large

fields renormalizes the length scales A and & to X = A/(1—b)Y/2and £, = £,/(1-b)'/?,
with the reduced field b = B/H,y (Brandt, 1977; Brandt, 1986; Brandt, 1991).
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It is the dispersive behavior and the renormalization of the penetration depth in
the compression and tilt moduli ¢11(k) and cas(k) shown in Eq.(2.50) that leads to a
considerable softening of the vortex lattice. Near the BZ boundary Kp; ~ V41 [ag
a suppression factor (AKpz)? & Bln(x/H,;) is obtained with respect to the value at
k = 0 describing a uniform distortion. In the HTS’s, k is of the order of 100, and the
lower critical field H,; is small due to a larger A (see Eq.(2.32)). Thus the softening
of the lattice is an important effect in the high field limit. In addition, in HTS’s
the shear modulus cg¢ goes to zero before H. is reached, resulting in a novel vortex

phase, the vortex-liquid phase, between the normal phase and the vortex-solid phase.

2.7 Vortex Dissipation

So far, the vortex motion in superconductors has not been discussed. Let us now
consider the effects of vortex motion. It is known that the presence of an applied
current can give rise to vortex dissipation. However, such dissipation is generally
negligible in conventional superconductors so that various type-II superconductors
can be used to make superconducting solenoids which can supply steady fields of over
100 kOe without noticeable dissipation of energy. The ability of making supercon-
ducting magnets with these type-II superconductors is one of their most important
applications, and the issue of vortex dissipation under the influence of a finite applied
current is undoubtedly of both fundamental and applied concern.

To consider the vortex dissipation due to finite applied currents, consider the

Lorentz force on a fluxoid:

F,=J x &,. (2.52)

Because of this force, flux lines tend to move transverse to the current, provided that
the Hall angle is small. If vortices respond to the force by moving with a velocity v

along the direction of Fp,, an electric field E || J is induced, since

E=Bxv. (2.53)
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The existence of a finite electric field E under a finite current density J corresponds
to a finite resistivity and therefore dissipation in the superconductor. Therefore, a
type-II superconductor in a magnetic field H > H, will show resistance and will be
unable to sustain a persistent current unless some mechanism exists which prevents
the Lorentz force from moving the vortices. Such a mechanism is called a “pinning”

force.

2.7.1 Theory of Flux Flow

Flux flow occurs when pinning is negligible, so that the vortex motion is only

retarted by the viscous drag, i.e.,
J®y = nu, (2.54)

with 7 the viscosity per flux line length. This vortex motion gives rise to a flux-flow

resistivity,

_E_wB_ _vB _ B
PP=TT Twl®

(2.55)

According to the Bardeen-Stephen model (Bardeen & Stephen, 1965), each vortex
contains a normal core with a diameter of &, the superconducting coherence length.
In the flux-flow limit, the total dissipation is a fraction of the normal resistivity:

B, B
pf pna% ’I‘Lch(T)'

(2.56)

Comparing Egs. (2.55) and (2.56), the Bardeen-Stephen viscosity is therefore given
by

H,(T)
pn(I)O .

n= (2.57)

Since the flux-flow resistivity is current independent as shown in Eq.(2.55), the

current-voltage characteristic in the limit of flux-flow is linear.
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2.7.2 Conventional Flux-Creep Theory

The first theoretical model for the vortex dissipation in the presence of pinning is
the Anderson-Kim theory (Anderson, 1962; Anderson & Kim, 1964) of flux creep. In
this theory, vortex bundles are effectively modeled as a single, approximately indepen-
dent, zero-dimensional “particle” moving in a random pinning potential U,. Vortex
bundles can hop from one local pinning well to another due to thermal fluctuations
and Lorentz force. As shown in Fig. 2.6, in the absence of a transverse current, the
probability is the same for hopping along any direction. With a transverse current,
it becomes easier for the flux bundle to hop along the direction of the Lorentz force
exerted by the current. In this case, the hopping rate is determined by the following
relation:

Vhop = vole™ Ur=dW)/(k8T) _ o=Up+AW)/(k5T)) (2.58)

where vq is the attempt frequency, AW is the work done by the Lorentz force (An-
derson & Kim, 1964). Defining a hopping distance w and a coherent volume of the

flux bundle V., U, and AW can be expressed as

U, = (J.Br,)V., (2.59)

AW = (JBw)V,, (2.60)

I

where 7, is the pinning range, J is the applied current and B is the magnetic field
inductance.
The hopping rate gives rise to a net flux-creep velocity v = v,,,w. The vortex

dissipation is therefore

E |vxB| 2uwB . AWYN _y
- = - h|{ — P/(kBT)' .
P J J J St (k‘B] ) ¢ (2 61)

In conventional superconductors the pinning potential U, is large, the temperature is



(a)

(b)

Figure 2.6: Schematic diagram of vortex bundles hopping due to thermal fluctuations
(a) in the absence of an applied current when the probability is the same for hopping
towards left and right, and (b) in the presence of an applied current when it is easier
for the vortex bundles to hop towards right due to an effectively smaller energy barrier.
Here fr, is the Lorentz force density. See the text for the definition of other quantities.

low, and therefore the creep is weak if J << J,, and

22
W BVe| —v,/(kaT)
W = el e-Up/(kaT), 2.62
— [ T Je (2.62)

In the limit of (J. — J)/J. << 1, i.e., when the current density is very close to the

critical current density, since sinh(AW/(kgT)) =~ %eAW/(kBT)’
. yoj,vBe_(UrAw)/(kBT)_ (2.63)
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This theory established the concept the hopping conductivity of vortex bundles.
However, the pinning potential U, in Eq.(2.59) remains finite even as J << J,, which
means a nonzero flux creep resistivity p ~ e~U/*8T) at any finite temperature.

Since vortex lines are extended one-dimensional objects, the consideration of elas-
ticity and collective interactions of vortices is in fact essential. A recently developed
theory, the collective flux creep theory (Feigel'man et al., 1989), has taken this more
rigorous approach, (in contrast to the single vortex pinning model by Anderson &

Kim), which leads to a diverging energy barrier at low temperatures as J — 0.

2.7.3 Collective Flux-Creep Theory

The starting point of collective pinning theory (Feigel’'man et al., 1989) is the
elastic free energy (see Eq.(2.49)) in the presence of weak pinning,

Flo] = [ dor lﬁ%c@(v W+ BT, 0+ B0 4 Ul )| (2.6)

Here, the two-dimensional vector u(r) is the displacement field of the flux-line lattice
in the continuum limit; c¢y;, ¢4 and cgg are bulk, tilt, and shear elastic moduli,
respectively, and Uy, (r,u) is the random potential describing the lattice interaction
with the static defects. The random potential leads to the destruction of long-range
translational order in the vortex lattice. It has been shown in the collective pinning
theory by Larkin and Ovchinnikov (Larkin & Ovchinnikov, 1979) that a new set of
correlation lengths, R, and L, for the transverse and longitudinal correlation lengths
(relative to the B direction) for vortices, can be used to describe the elastic response
of the vortex lattice to the presence of pinning disorder. Defining W as the mean-
square value of random force produced by defects, Larkin and Ovchinnikov (Larkin

& Ovchinnikov, 1979) find that

L.~ Rc(c44/066)1/2» R, ~ 1{1%2{,.253/14/. (2-65>
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In addition, the critical current density J, is given by (Larkin & Ovchinnikov, 1979):
J, o (W/V)YEB™ ~ g6,/ (R2B), (2.66)

where V, &~ R?L, is the vortex correlation volume.

In the case of collective pinning, the flux bundle activation barrier U(J) is compa-
rable to the elastic energy of the hopping flux bundle. In the presence of a current, the
flux bundle hopping distance (up,p) can be estimated from the relation (Feigel’'man
et al., 1989)

T Bunap(J) ~ costilon( )/ FE(T), (2.67)

where R is the size of the bundle in the direction of the vector B x up,, where the
correlation volume V, = R, R L., and R =~ (-gﬁ;)% R, . The first term in Eq.(2.67)
corresponds to the work done by the current per unit volume and the second term
describes the elastic energy density due to us,, > 0. It has been shown (Feigel’'man
et al., 1989) that the relation between the hopping distance (us,p) and the bundle
size (R, ) follows that of the displacement field (u) at the distance R

u(R) =< |u(r) — u(r + R)|? >/2x RS, (2.68)

where ¢ > 0. Using the relation U(J) ~ JBV, upep(J) ~ JR“R(f_l)uhop(J), and
substituting Eq.(2.68) into (2.67), one obtains

U(J) ~ J* (2.69)

where p = (d — 2+ 2¢)/(2 — {), and d is the dimensionality of the elastic lattice. It
has been found that x> 0 at low temperatures (Feigel’'man et al., 1989) so that the

corresponding resistivity becomes:

611 o[22 - e[ (2] ] o

which goes to zero as J — 0 for Jy(T') > 0, and therefore defines a true superconduct-
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ing vortex-solid phase. As shown later in our experimental results, such a nonlinear
resistivity described by Eq.(2.70) is indeed observed.
Generally speaking, the value of y depends on the vortex bundle size and the
dimension of vortex system. As shown in Blatter, et al (Blatter et al., 1994), two

representative values for d = 3 are

5/2, large vortex bundles;
lj b
7/9, small vortex bundles.

2.8 Vortex Pinning and Vortex Phases in HTS’s

The high transition temperature, short coherence length and long penetration
depth of HTS’s have opened up new opportunities for studying the effects of thermal
and disorder fluctuations on the vortex properties. The mere inspection of the resis-
tivity versus temperature curve of HTS’s in an applied magnetic field near 7, has led
to unequivocal realization that the transition from the normal state to the supercon-
ducting state is much broader in HTS’s than that in conventional superconductors.
Another important consequence of the large thermal fluctuations and disorder fluc-
tuations in HTS’s is that the critical regimes in the phase and the amplitude of the
superconducting order parameter become separated, with the former associated with
the vortex-solid to vortex-liquid transition, and the latter with the vortex-liquid to
normal state transition. In contrast, for most conventional superconductors, with
moderate Ginzburg-Landau parameters, the thermal fluctuations of the order param-
eter are only important very close to Ho(T). The main thrust of this thesis is to
investigate the vortex-solid to vortex-liquid phase transition in HTS’s, with special
emphasis on the effects of static disorder. These experimental studies were inspired
by various recent theoretical investigations. In the following, we briefly introduce
the theoretical concepts which are related to the research topics presented in later
chapters. More details and discussions are left to chapters 4 to 6.

The concept of dislocation-mediated melting was first applied to the two-dimensional
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melting by Nelson and Halprin (Nelson & Halperin, 1978). It was argued by Marchetti
and Nelson (Marchetti & Nelson, 1990) that “vortex loops” due to correlated vortex
dislocations may be the underlying mechanism for the melting of a vortex lattice into
a fluid phase. (Examples for such dislocation-mediated “vortex loops” are given later
in sections 4.1 and 5.2.)

More specifically, in the case of randomly distributed weak pinning sites, Fisher,
Fisher, and Huse (Fisher et al., 1991) have proposed that the long-range correlation
in the vortex lattice is replaced by a new “vortex-glass” phase that has a spin-glass
like off-diagonal long-range ordering and is truly superconducting. It is argued that
in this phase there exist thermally activated vortex dislocation loops. The energy
barrier U(J) for the vortex loop excitations diverges with the decreasing J with a
functional form U(J) ~ J7#, and u < 1. Therefore, thermally activated vortex loops
lead to nonlinear vortex dissipation as shown in the electric field E ~ exp[—(Jr/J)"],
where Jr is a characteristic current density. Therefore resistivity p = E'/J approaches
zero in the limit of J — 0. With the increasing temperature, the vortex system goes
through a continuous phase transition from the vortex-glass phase to the vortex-liquid
phase. Although the collective flux creep theory described by Feigel’'man et al. (1989)
and Section 2.7.3 does provide indirect theoretical evidence for the existence of a
vortex-solid state with a diverging energy barrier for vortex motion, it is still an open
question whether rigorous theoretical evidence can be found for such a vortex-glass
phase in 3D system (Fisher et al., 1991; Blatter et al., 1994).

In the case of correlated strong pinning, provided by parallel columnar defects of
diameter comparable to the superconducting coherence length and extending through
the entire sample, the vortex system is found (Nelson & Vinokur, 1992; Nelson &
Vinokur, 1993) to be isomorphic to a two-dimensional dirty boson system (Fisher
et al., 1989). In real samples, this kind of correlated disorder is recently realized by
means of high-energy heavy ion irradiation (Civale et al., 1991; Konczykowski et al.,
1991; Hardy et al., 1991). The vortex-solid to vortex-liquid transition associated
with such correlated pinning in superconductors is described as a Bose-glass to a

“superfluid” transition (Nelson & Vinokur, 1992; Nelson & Vinokur, 1993). The
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isomorphic mapping between the system of two-dimensional bosons and that of three-
dimensional vortices in the presence of one-dimensional correlated disorder, as well
as the signatures of Bose-glass transitions, will be described in more details later in
Chapter 5.

Finally, we note that rigorous theoretical calculations involving both thermal fluc-
tuations and disorder fluctuations are very difficult and still lacking. Therefore, exper-
imental investigations of the vortex phases in the presence of different static disorder
are particularly important in shedding light onto these complicated issues. For in-
stance, there have not been theoretical calculations of the critical exponents that are
associated with various universality classes of the proposed vortex phase transitions.
Experimental determination of the critical exponents and vortex phase diagrams will
naturally play a crucial role in unraveling many important physics issues.

The static disorder investigated in this thesis involves random point defects, twin
boundaries, and correlated columnar defects in YBayCu307 single crystals. The phys-
ical quantity studied is the resistivity as a function of the temperature, current, fre-
quency (of the applied AC current), and the applied magnetic field. As shown later,
near a vortex phase transition, various physical quantities can be scaled with the
diverging vortex correlation length and the relaxation time of thermal fluctuations.
The critical scaling analysis derived in our recent work (Yeh et al., 1993a; Yeh et al.,
1992a; Reed et al., 1993; Reed et al., 1992; Yeh et al., 1993b; Yeh et al., 1994; Jiang
et al., 1994), which is based on general critical scaling hypothesis and symmetry
consideration, has yielded both static and dynamic critical exponents and universal
functions for different vortex phase transitions. Similar experimental investigations
based on the same critical scaling analysis has been proven applicable to various other

physical quantities such as AC susceptibility and the third harmonic transmissivity

(Reed et al., 1994; Reed et al., 1995).
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Chapter 3 Experimental: Samples,

Experimental Apparatus and Techniques

This thesis consists of experimental investigations of six YBayCuzO7 single crys-
tals. Two of them were as-grown samples and the other four had been modified by
ion irradiation. In this chapter, general structural properties of the as-grown single
crystals are given. In addition, the procedures of sample preparations for electrical
transport measurements, the techniques for sample modifications, and the exper-
imental apparatus for the electrical transport measurements are also described in
detail. Since most of the transport measurements require a high magnetic field and
a temperature stability better than +£0.01 K in the range of 70 to ~ 95 K, this chap-
ter also discusses the design of the cryogenic dewar for measurements in magnetic
fields and the general temperature control techniques. Additional refinements for
high-sensitivity resistivity measurements using lock-in techniques and precision tem-
perature control to £1 mK stability will be left to Chapter 6 where these improved

techniques are applied to measurements of an untwinned single crystal.

3.1 YBayCu3zO; Single Crystals

The YBayCu3z0; single crystals studied in this thesis have been provided by Dr.
F. Holtzberg at IBM Thomas J. Watson Research Center. A mixture of YBayCus0O,
BaCuO, and CuO are pressed into a pellet which is placed in a solid gold crucible
and heated to 975°C for 1.5 hours. The mixture is then cooled slowly at a rate of
5°C per hour to allow the growth of the crystals. After the melt cools, the crystals
are carefully removed from the remaining melt. The crystals are found to be oxygen
deficient so that they have to be annealed in pure O (1 atm) at 420°C for a month

or longer to ensure that oxygen fully diffuses into the interior of the crystal (Kaiser
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et al., 1987).

The resulting chemical composition is Y Ba, CUg,géAUQ.0206.g7i0_02 with orthorhom-
bic structure and lattice constants a = 3.8177(1) A, b = 3.8889(1) A, and ¢ =
11.7136(4) A. Shown in Fig. 3.1 is the unit cell structure of YBayCu3O7, with Cu(2),
O(2) and O(3) atoms in the so-called CuOy planes and Cu(1) and O(4) atoms along
the CuO chains (Beno et al., 1987). It has been established that the CuO, planes
are the most important building blocks for the high-temperature superconducting
cuprates, and the CuO chains in YBayCu3zO, provide charge transfer to the CuQO,
planes. The crystalline axes of the YBayCu3O, system are defined as the c-axis per-
pendicular to the CuO, planes, the a-axis perpendicular to the CuO chains, and the
b-axis parallel to the CuO chains. The absence of oxygen atoms at O(5) sites results
in an orthorhombic instead of tetragonal structure. In real samples, there are random
oxygen vacancies within the layers of the CuO chains. Because the samples are grown
in a gold crucible, a small amount of Au atoms (Au3*) are found to have substituted
Cu(1) atoms (Cu?*) in the crystals. The presence of Au?* has an effect of increasing
the oxygen content (~ 0.015 of extra oxygen for each 1 atomic percent of Au®*), and
therefore helps to increase T,. Since this thesis is not concerned with the small effect
incurred by the Au atoms, all samples will be referred to Y BayCuzO7 single crystals
for simplicity.

The typical dimensions of the crystals are generally smaller than lmm x 1mm X
25pm, with the smallest dimension along the c-axis. The preparation procedures for
electrical transport measurements are considerably difficult because of the small size

as well as the brittle nature of these crystals.

3.1.1 Anisotropic Superconductors

As shown in Fig. 3.1, the crystalline structure of YBayCuzO; system consists
of layers of CuOs which are most responsible for the electrical conduction. This
structural anisotropy gives rise to anisotropic conduction such that the conduction

in the ab-plane is much better than that along the c-axis. The anisotropic effective
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CuO, plane

CuO,, plane

Ve o6)  cu()

Figure 3.1: Unit cell of YBayCu3zO7 crystal
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mass tensor of the carrier, with the coordinate axes coinciding the crystalline axes,

can be expressed as

mi, 0 0 m 0 0
M=| 0 m;, 0 || 0 m o0 |- (3.1)
0 0 m 0 0 M

Among the high-temperature superconducting cuprates, the moderately anisotropic
system YBayCuzO7 has a mass anisotropy ratio €72 = M/m = 60. For comparison,
the highly anisotropic system BisSroCaCuyQOg has a mass ratio as large as 72 ~ 10*

(Martin et al., 1988). In the literature, an anisotropic factor «y is often used to repre-

sent the quantity v = /M/m = ¢ L.

3.1.2 Twinned Microstructure

Most of the as-grown YBasCu3zO7 single crystals have twinned microstructures
which are formed during the crystal growth when the structure changes from tetrago-
nal to orthorhombic upon cooling. The a-axis and b-axis rotate by 90° next to a “twin
plane” which extends along the <110> direction (see Fig. 3.2(a)). The region within
which the crystalline structure is distorted due to the presence of the twin plane is
called a twin boundary, the width of which is typically 30-50 A. These twin bound-
aries generally extend throughout the entire thickness of the sample. The distribution
and density of the twin boundaries in a sample can be observed with polarized light
optical microscopy (PLM). This technique relies on the small difference in the phase
of the reflected light when it is polarized along the a and b axes. For an incident
polarization intermediate to @ and b directions this leads to reflected light which is
elliptically polarized. It has a different direction of rotation (i.e. clockwise or anti-
clockwise) for the two twins, resulting dark and light regions in a PLM picture (see
Fig. 3.2(b)). The twin boundaries are aligned either in parallel or in perpendicular to

each other, and the twin density is found to be very sensitive to the post-annealing
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conditions. A lower temperature (< 500°C) longer time annealing in oxygen generally
yields lower twin densities. The twin separation in our samples varies from 2 to 10 u
m. The larger twin separation (lower twin density) in our crystals compared with
that in the samples used by most other research groups is consistent with our slow

post-annealing processes.

<110>
Twin P:ane b

Figure 3.2: Twin boundaries in YBayCu3O7: (a) Atomic structure; (b) Polarized light
microscope picture: Twin boundary distribution.

3.1.3 Untwinned Crystals

Recently, it has become possible to produce crystals without (110) twinning by
quenching the melt during growth and post annealing the crystals in a stress-free
environment (Rice & Ginzberg, 1991). Twinned crystals can also be detwinned at
elevated temperatures by using thermo-mechanical detwinning (Kaiser et al., 1989;
Schmid et al., 1989; Giapintzakis et al., 1989; Welp et al., 1989b). Alternatively,
since the untwinned configuration has lower total free energy, longer annealing time
in oxygen results in less twin boundaries in a sample. Our untwinned sample was
found among one batch of samples after being annealed for two months. There are

only a couple of twin boundaries at the edge of one corner, which were subsequently
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covered by one of the gold contacts during the transport measurements, and therefore
do not make significant contribution to our transport studies.
In the following, we denote the two as-grown samples as sample #1 for the twinned

crystal and sample #5 for the untwinned crystal.

3.2 Sample Preparation for Electrical Transport
Measurements

In order to perform standard four-probe transport measurements, four electrical
contacts have to Be made on these very small single crystals. This sample prepara-
tion procedure includes (i) cleaning the sample surface to remove non-stoichiometric
surface layer, (ii) making the contacts on the sample surface, and (iii) making elec-
trical connection between the contacts on the sample surface and the electrodes on
the sample probe.

The YBayCuzOy single crystals are moderately air sensitive and the sample surface
degrades in air by forming a non-stoichiometric surface layer. This has to be removed
before good electrical contacts can be made. A chemical etching method has been
developed by Dr. R. P. Vasquez at the Jet Propulsion Laboratory. The procedure
involves first etching the single crystal in a 1% solution of Brs in ethanol for at
least 10 minutes to fully remove the deleterious surface layer, and then rinsing the
samplé twice in pure ethanol. After etching, a clear Fermi edge is observed in x-
ray photoelectron-spectroscopy (XPS) studies (Vasquez et al., 1991), indicating the
improved sample surface quality.

To make electrical contacts, the sample has to be masked in preparation for evap-
orating gold pads onto the four corners so that bulk currents can be applied to the
sample. To minimize the time during which the sample is exposed to the air, the
masking procedure is always carried out before the chemical etching process. In case
there is grease on the sample surface, the sample ié usually cleaned in toluene for 15

sec and then rinsed in pure ethanol before being masked. As shown in Fig. 3.3, the
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sample is masked with gold foil, and the loose ends of the gold foil are held onto a
glass slide with silver paint. (The glass slide has been cleaned in acetone(C3HgO)
and n-propyl alcohol.) The use of gold foils is essential because gold dissolves much
slower than most metals in the Bry etch, so that the mask remains intact during the

10-minute etching of the YBCO single crystals.

Gold Foil

YBa2Cu307
Single Crystal

Figure 3.3: YBayCu30; single crystal masked with 0.020” Au foil in preparation of
Bry etching and deposition of Au contact pads.

Immediately after etching, the sample is transferred to our Perkin-Elmer Ultek
ultra-high vacuum chamber which is subsequently pumped down to a vacuum level
of ~ 1.0 x 1078 torr before gold evaporation. After depositing ~ 2500A of gold
contacts, the sample is post annealed in pure O at 300°C to 400°C for up to 24
hrs. Gold sputtering has also been used to make contacts, in which case the sample
is transferred to an evaporator with an ion sputtering system. The chamber of the
evaporator is pumped down to a pressure lower than ~ 1.0 x 1075 torr and then filled
with pure argon gas to a pressure of ~ 30 mTorr before gold is sputtered onto the

sample surface. The contacts made by gold sputtering can be used for the next step
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without post annealing.

After the gold contact pads are made, the sample is mounted onto a sapphire
substrate of either 0.375 inch or 0.5 inch in diameter with a small amount of N-type
Apiezon thermal grease placed between the sample and the sapphire. The sapphire
substrate has been cleaned in boiling nitric acid and rinsed in ethanol and then in
distilled water. Two methods are used to attach electrical leads between the gold pads
on the crystal surface and the substrate. The first method requires gold pads made on
the substrate. Gold wires of 0.001 inchin diameter are bonded with an ultrasonic wire
bonder onto the gold pads on both the crystal surface and the substrate, as shown in
Fig. 3.4(a). Since gold does not diffuse into sapphire, a buffer layer of aluminum of
~ 5000A thick is first evaporated onto the sapphire substrate. The whole procedure
is time consuming and the ultrasonic wire bonding is especially difficult because of
the brittle nature of the crystals. In the second method, 0.005 inch indium wires are
used in the place of gold wires(see Fig. 3.4(b)). Indium wires cleaned in acetone are
very malleable and they stick very well to both gold and bare sapphire surface after
being pressed into place using a sharp plastic tip or tooth-pick.

The first method gives typically ~ 1) contact resistance at room temperature.

With the second method, the contact resistance can be as small as ~ 0.052.

3.3 Sample Modifications

To investigate the effects of controlled disorder, two types of ion irradiation tech-
niques are applied to the samples under investigations: 3 MeV light ion (proton)
irradiations and 0.9 GeV heavy ion (Pb) irradiations. The ion irradiation is usually
performed after the gold contacts are made onto the sample for the following rea-
sons. The 3 MeV ion irradiation is usually performed at room temperature. Since
high-temperature superconductors are not good conductors at room temperature,
gold contacts on the sample can reduce the surface charging effects. In the case of
heavy-ion irradiation, the damaged regions become amorphous. Since these regions

are susceptible to removal during the surface cleaning procedure employing a 1% Br,
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(a) YBa, Cuz Oy
Single Crystal

Sapphire
Substrate

(b) v
Single Crystal

Indium
‘Wire

Sapphire
Substrate

Figure 3.4: (a) Y BayCu307 single crystal mounting onto a sapphire substrate with
gold pads. Electrical contacts are made with gold wires; (b) Y BasCu3O5 single crystal
mounting onto a sapphire substrate. Electrical contacts are made with indium pressed
onto the gold contact pads.
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solution of ethanol, their etching rate is much larger than that of the rest of the sam-
ple surface. Therefore the sample surface will not be smooth if it is etched after the

heavy-ion irradiation and the gold contacts can no longer stick to the sample surface.

3.3.1 3 MeV Proton Irradiations

negative ion source

)
I
I

S

acceleration chamber

90° analyzing magnet
aperture

central scattering chamber
sample

1
2
3
4
5
6

charge exchange canal

Vo terminal voltage

Figure 3.5: Block Diagram of Tandem Van de Graff Accelerator

The 3 MeV proton irradiations are performéd using the tandem Van de Graff
accelerator at Caltech. The block diagram of the accelerator is shown in Fig. 3.5.
Negative hydrogen ions (H™) with initial kinetic energy of 45 keV are extracted from
the duoplasmatron negative ion source and are accelerated under the terminal voltage
Vr = 1.475 MeV to the gas exchange chamber where the ions lose 2 electrons and

become protons (H*). The protons are then accelerated under the same terminal
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voltage and gain a kinetic energy E = 45keV + 2eVy = 3.0 MeV at the end of the
tandem accelerator. The 3 MeV protons are then selected by the analyzing magnet
and focused by a series of electric and magnetic lenses onto the sample through
an aperture confined by horizontal and vertical slits. The sample on its sapphire
substrate is mounted onto an aluminum sample holder (see Figs. 3.6 and 3.7) in the

central scattering chamber with a vacuum level of ~ 1.0 x 10~¢ Torr.

Sapphire
Substrate

Aluminum
Sample
Holder

Figure 3.6: Sample arrangement for 3.0 MeV proton irradiations (top view).

The slowing down process of light ions in matter has been well understood, and
the traveling range of incident ions in most materials can be calculated numerically
using the program TRIM (Biersack & Ziegler, 1989). As shown in Appendix A, the
traveling range of a 3 MeV proton in Y BayCu307 single crystals is 46.5um. Since
our sample thickness is typically 20 to 30 pm, all the protons pass through the sample
and stop in the sapphire substrate. The incident charges go through the conducting
paths from the sample to the aluminum sample holder and eventually pass through

the integrator to the ground (see Fig. 3.7). For the sample arrangement shown in Fig.
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Figure 3.7: Schematic diagram of the ion path and charge collection in the 3 MeV
proton irradiation.

3.4(b), an additional aluminum foil is used for masking so that only the sample is
exposed to the ion beam, and the electrical charges will go through the aluminum foil
and sample holder to the ground to prevent charging effects due to the direct impact
of protons onto the insulating sapphire surface. The areal density of the incident
protons, which is called the fluence of the irradiation, can be calculated from the total
charges passing through the current integrator. To ensure a uniform areal density, the
incident ion beam on the sample is an elongated spot slightly larger than our sample
size which is typically under Imm X Imm. The ion beam is scanned by magnetic
deflection through a much larger area (confined by the aperture) with a speed of 1 Hz
horizontally and 11 Hz vertically. An averaged current passing through the integrator

is measured and correspondent charges are counted with respect to time. The total
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counts (C) for a specific fluence (®) can be calculated by the following equation:

_ d x Sapt X Z,'on

I’mam

C

: (3.2)

where S,y is the aperture area, Z;,, is the charge per ion, and Iz is the integrator
scale. All the experimental parameters are summarized in Table 3.1. along with the

defect type as a summary of the sample information.

Table 3.1: Experimental Parameters for the 3.0 MeV Proton Irradiation

species H*
fluence 5.0 x 10'® ions/cm?
initial negative ion energy - 45 keV
terminal voltage 1.475 MeV

analyzing magnetic field

NMR frequency 12.3330 MHz
beam scanning frequency Horizontal: 11 Hz; Vertical: 1 Hz
scanning averaged current 75 — 90 nA
integrator scale 200 nA
central scattering chamber vacuum ~ 1.0 x 107% torr

To ensure the accuracy in the counting of the total numbers of incident protons,

a copper grid at —600 V is placed between the aperture and the target, as shown
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schematically in Fig. 3.7, to collect the secondary electrons excited by the ion beam
on the surfaces of the aperture and the sample.

One twinned single crystal which is from the same batch as sample #1 is irradi-
ated twice with a fluence of 5 X 10'® protons/cm? each. After the first irradiations,
the sample is denoted as sample # 2, and after the second, sample #3. The same
irradiation is performed on the untwinned crystal sample #5, after which the sample

is denoted as sample #6.

3.3.2 GeV Heavy Ion Irradiations

The sample irradiated with 0.9 GeV Pb ions at Grand Accelerateur National
d’Ions Lourds (GANIL, Caen, France) is denoted as sample #4. The irradiation
is performed at liquid nitrogen temperature with the ion beam along the c-axis of
the sample. High resolution transmission electron microscopy (TEM) studies reveal
the formation of continuous amorphous tracks of a typical diameter of ~ 704, and
these tracks extend throughout the entire thickness of the sample (Konczykowski
et al., 1991). These columnar defects are randomly distributed in the ab plane of the
sample. Since vortices in superconductors also have line structures and the vortex
lattice constant (ag) satisfies B ~ ®g/a3, where B &~ H (the applied magnetic field),
it is convenient to compare the areal density of vortices and that of the columnar
defects by defining a matching field B, = ®y/d?, with &, being the flux quantum and
d the average separation of columnar defects. For a fluence of ~ 5 x 10'° jons/cm?
used for sample #4, the corresponding matching field is B, ~ 10.0 kOe. The averaged
separation of the columns observed by TEM studies is about 490A, consistent with

the vortex lattice constant ag = 489A for H = 10kOe.

3.3.3 Defects Created by Ion Irradiation

The slowing down of incident ions in a solid is mainly due to two energy loss
mechanisms, the nuclear energy loss S, and the electronic energy loss S.. The nu-

clear energy loss S, results from energy transfer from the incident ions to target atoms
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during elastic collisions, i.e., without excitations of internal degrees of freedom, while
S, originates from ionizations and/or electronic excitations of target atoms. Generally
speaking, S, leads to defect production provided that the energy transferred to a tar-
get atom exceeds a material dependent displacement threshold Ty. In contrast, defect
production via electronic excitations and/or ionizations requires an additional mech-
anism to convert the excitation energy into atomic motion. For most materials, there
exists an effective electronic energy loss threshold S.q, below which defect production
is predominantly due to S,,, and above Which the structure becomes progressively
sensitive to electronic excitations.

In the 3 MeV proton irradiation, both S, and S, are small (see Table 3.2 for
the calculated values averaged over all the elements in YBaysCu307). The defect
production is mainly due to the random events of elastic collisions when the energy
transferred to a target atom is larger than T. Obviously, oxygen atoms are the easiest
to be knocked out of their equilibrium lattice positions because of their light weight.
As shown in Appendix A, this process can be well described by the elastic collision
theory. The defects created through atomic displacements are mainly atomic-size
point defects. For a fluence of 5.0 x 10'® protons/cm?, the defects density in a sample
of thickness 25 pm is approximately 1.1 x 10'° defects/cm3 ( see Appendix A ),
corresponding to an average separation of defects about 4004, i.e., about 500 unit
cells per defect (cf, the total number of unit cells in typical sample of dimensions
1.0mm x 0.5mm x 20um is ~ 5 x 10'8).

If the energy transferred to the target atom is much larger than Ty, secondary
displacements or cascade effects could occur and larger clusters may be created. In
the TEM studies on a similar irradiated single crystal (Civale et al., 1990), clusters
of ~ 30A in diameter have been observed. The cluster density is found to be about
0.1% of the calculated atomic-size point defect density.

In the case of GeV heavy ion irradiations, the main energy loss is through S,
i.e., electronic excitations and ionization, as clearly shown in Table 3.2 which the
magnitude of S, is much larger than that of S,,. The electronic energy loss is approx-

imately 46 keV/nm. High-resolution TEM imaging reveals continuous amorphous
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Figure 3.8: The ion explosion spike mechanism for track formation (Fleischer et al.,
1975). The original ionization left by a charged particle (top) is unstable such that the
induced ions are ejected into the solid, creating vacancies and intersitials (middle).
Later the stressed region relaxes elastically (bottom), straining the undamaged matrix.
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Table 3.2: Projected Ranges and Energy Losses S, and S,

(Calculated by TRIM (Biersack & Ziegler, 1989) )

Projectile | Energy Projected Range Se Sn
(MeV) (pm) (keV/nm)  (keV/nm)
H 3.0 45.6 0.04 2.34 x 1075
208py, 900 26.4 46.4 0.10

tracks along the ion paths (Hardy et al., 1991; Konczykowski et al., 1991). Although
there has been a long history of ion irradiation techniques, the application of such
high energy heavy ions in the GeV range has not been unprecedented. Therefore
the process of defect production through the electronic excitations and ionizations
are not well understood. Recent experimental studies (Hardy et al., 1991) have sug-
gested that the track formation process is similar to the ionization process in inorganic
crystals during nuclear fission (Fleischer et al., 1975) (see Fig. 3.8). Following a burst
of ionizations along the path of a charged particle, an electrically unstable array or
adjacent ions are created, followed by the formation of an array of interstitial ions
and vacant lattice sites via the Coulomb interactions between the ions, and then elas-
tic relaxation takes place to reduce the local stresses by spreading the strain more
widely. It is the creation of long range strains in this third step that makes possible

the continuous tracks in the single crystals.

3.4 Sample Characterization

Before any detailed measurements were performed, the quality of all the as-grown

samples were first characterized by measuring the magnetic susceptibility and resis-
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tivity in zero magnetic field. The superconducting volume of these samples in zero
field is 100%, from the magnetic susceptibility measurements, and the magnetic tran-
sition width is about ~ 0.2 K (Kaiser et al., 1987). The resistive transition width is
typically less than 0.1 K. The irradiated samples were characterized by the electrical
transport measurements. The corresponding zero-field transition temperature (7,’s)

are summarized in Table 3.3 along with the defect type and other sample information.
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Table 3.3: Sample Information

Sample | As-Grown Controlled Defects T,
defects Ion Ion Energy Fluence Defects

Specie | (MeV) | (ions/ecm?)| Type | (K)

# 1 TB! _— — — _— 92.95
PT?

# 2 TB protons 3.0 5 x 10%° PT 92.25
PT

# 3 TB protons 3.0 1.0 x 106 PT 91.62
PT

# 4 TB Pb ions 900.0 5 x 1010 CL® |91.77
PT

#5 PT — — — — 93.18

# 6 PT protons 3.0 5 x 10%? PT 92.5

1Twin Boundaries
2Point Defects
3Columnar Defects
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3.5 Experimental Low Temperature Environment

To investigate vortex phase transitions in YBayCuz Q7 single crystals, stable tem-
perature control and applied magnetic fields larger than H,; are required. The tem-
perature range of interest varies with the strength and the orientation of the applied
magnetic field. For the field range available in our lab from ~ 1.0 kOe to 90 kOe
(which is well above H (0) ~ 1000e), the temperature range is from 75 K to ~95 K.
To stabilize the sample temperature to high precisions within this range and to apply
large external magnetic fields, one needs proper designs for the cryogenic dewar and

the sample probe.

3.5.1 Cryogenic Dewars

Two cryogenic dewars have been used for different magnetic field ranges. The
high-field dewar, as shown in Fig. 3.9, contains a superconducting solenoid which
can provide a magnetic field up to ~90.0 kOe. Because the magnet is made of
conventional superconducting material of NbTi, it is crucial to submerge the entire
magnet in liquid helium. During the experiments, the cooling of the sample chamber
is provided by a weak thermal link between the helium exchange gas in the chamber
and the liquid helium reservoir. For the temperature range of interest, the amount of
needed exchange gas is typically about 0.1-0.2 mbar at room temperature. The sample
chamber is enclosed by a stainless steel tube which extends to the top of the dewar.
A vacuum jacket shown in Figure 3.9 extends ~ 40 cm above the sample to prevent
direct thermal contact between the liquid helium bath and the sample chamber. All
the vacuum jackets are pumped down to ~ 10™* mbar at room temperature.

For more accurate measurements in magnetic fields below 10 kOe, a low-field
electric magnetic dewar is used in order to prevent inaccuracies in the superconducting
magnet due to flux trapping. As shown in Fig. 3.10, the dewar used for low-field
measurements has a narrow tail which inserts into the gap of an external standard
DC electrical copper-coil magnet. The magnet provides a horizontal magnetic field

up to 6.3 kOe. The residual ﬁeld of the DC magnet is about 40 Oe which is negligible
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Figure 3.9: Schematic diagram of the high-field dewar (Cross-Section).
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Figure 3.10: Schematic diagram of the low-field Dewar (Cross-Section).
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for our measurements when fields above 0.5 kOe are used. The dewar is equipped
with a “SuperVariTemp” system built by Janis Research Co.. As illustrated in Fig.
3.11, a capillary tube carries liquid helium to the bottom of the sample chamber
where the liquid helium is vaporized by a DC current heater before entering the
sample chamber. The flow of liquid helium is controlled by adjusting a needle valve
that is accessible at room temperature. The cold helium vapor provides the cooling
power for the temperature control. This technique generally works very well for the
temperature range from ~ 5.5K to ~ 20K. However, for the temperature range of
interest (~ 70 K to ~ 90 K) in most of our experiments, the cold helium vapor results
in a large temperature gradient between the sample and the thermal shield around the
sample. This large temperature gradient makes steady temperature control difficult.
In addition, it results in an offset between the temperature sensor reading and the
real sample temperature. To resolve these problems, an alternative way of controlling
temperature near 90 K is developed by using helium gas instead of liquid helium in
the helium reservoir. With the needle valve open, the helium gas, which is cooled by
liquid nitrogen to ~ 77K, flows through the capillary tube into the sample chamber.
In addition, the helium gas flow rate can be controlled by an external regulator. This
modification greatly reduces the temperature gradient between the sample and the
cooling source, and with a steady exchange gas flow rate, the temperature stability
can be improved from $0.01K to £0.003K. The only disadvantage of this technique

is the limited temperature range of its applicability.

3.5.2 Sample Probe

A sample probe is used to transfer samples to the low temperature cryostat and
to provide a sample stage where the temperature sensor and heater for temperature
control as well as the electrical wiring for measurements can be assembled. For our
measurements, the sample probe is usually made of a long stainless steel tube with
a sample stage attached at the bottom end. The top section is made of anodized

aluminum (which is a good thermal conductor with an electrically-insulating surface
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usually used.
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layer) for mounting the electrical connectors with vacuum seals. Stainless steel tubes
are used for the purpose of thermally isolating the sample stage from the room tem-
perature environment. The sample stage is made of copper to minimize temperature
fluctuations around the sample. Two commonly used probes are shown schematically
in Fig. 3.12.

From Fig. 3.12 it is clear that probe (a) can be easily used in the low-field dewar to
study the angular dependence of vortex transport properties to a resolution of 1° to
2° by rotating the probe relative to the vertical axis. In the high-field dewar, however,
this probe can only be used for the measurements with § = 0° and 90°, where 8 is the
angle between the magnetic field and the sample c-axis. The ball-shape sample stage
on probe (b) is specially designed for varying # for the high-field measurements. The
sample stage can be rotated along a horizontal axis by a stainless steel rod attached
to the side of the ball, and the height of the rod is adjustable with the threaded screw
at the top of the probe. On both probes, the sample stage is enclosed by a copper
can which serves as a thermal shield. Thermofoil heaters are attached to the copper
shield of the sample stage in order to reduce the temperature gradient across the
sample stage and between the sample and the cold environment outside the copper
shield. Both probes can be used for DC and AC transport measurements. The BNC
and SMA connectors are used to make electrical connections through coaxial cables

to the sample.

3.5.3 Temperature Control

For most of the experiments, a temperature stability of £10mK at temperatures
around 90 K is desirable. The temperature is controlled by commercial LakeShore
temperature controllers DRC-91, DRC-93C or DRC-93CA. The sample stage design
is crucial for good temperature control. Shown in Fig. 3.13(a) is a typical sample
stage in our experimental setup. The sample stage is made of copper because of its
large thermal conductivity at low temperatures It is arranged in such a way that the

temperature sensor is place right next to the sample and the heater slightly further
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from the sample. Cryocon grease is applied between the sensor and the copper to
enhance the thermal conduction. Thermofoil heaters are used to provide uniform
heating of the entire sample stage. In addition, it is also important to minimize any
possible heat flow across the sample stage to ensure the temperature stability, and to
minimize the temperature difference between the sample and the temperature sensor

to ensure the accuracy of temperature measurements.

b
(2) Sapphire Substrate (b)

Epoxy Ring Sample

~— Temperature
Sensor

Epoxy
Ring

Thermofoil Heater

_____
_______
.....
------

“Brass
¢ Electrodes

Sapphire

Substrate

Figure 3.13: Sample stage design for temperature control: (a) cross-section view; (b)
top view.

To minimize undesired external heat flow across the sample stage, the electrodes
on the sample stage and the electrical leads extending to the room temperature envi-
ronment should be properly heat-sunk to the copper sample stage before they reach
the sample. Meanwhile, the electrodes on the sample stage have to be electrically
isolated from each other and from the copper stage. The Stycast 2850KT Blue epoxy
is therefore used for this purpose. As shown in Figs. 3.13(a) and (b), brass electrodes
are molded in an epoxy ring, so that both good thermal conduction and good electri-
cal insulation can be achieved. To make AC transport measurements up to ~ 107 Hz,
flexible coaxial cables with thin insulation layers are needed for better heat-sinking
purposes in a limited sample space. In the case of the specially designed ball-shape

sample stage, due to the limited volume and surface area of the ball for heat sinking,
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the electrical leads have to be held together first and then heat-sun k to the copper
ball by using varnished KimWipes which provides good thermal contact but electrical
insulation.

In order to obtain accurate temperature measurements, it is necessary to maintain
a uniform temperature across the sample stage in addition to placing the temperature
sensor close to the sample. The techniques used for this purpose, such as enclosing
the sample stage with a copper thermal shield and reducing the temperature gradi-
ent between the desired temperature and the cooling source temperature, have been
discussed in the previous two sections.

With the above precautions, we are able to achieve a temperature stability within

+0.008K.

3.6 Electrical Transport Measurements

As mentioned earlier, two types of routine measurements have been carried out on
all the samples: DC current-voltage characteristics and AC impedance as a function
of the frequency up to < 107 Hz. Both DC and AC currents (J) are always applied
in the direction that ensures J L H for any angle (8) between the magnetic field
direction and the sample c-axis (see Fig. 3.14). Since the Lorentz force on vortices is
Fi = J x B, this arrangement ensures that the vortices are subject to the same Fy,

for different 8.

3.6.1 DC Transport Measurements

The block diagram of DC electrical transport measurement is shown in Fig. 3.15. A
wide current range from 107 and 10~ A is provided by a Keithley 220 current source.
The DC voltage at each applied current is measured using Keithley 181 or Keithley
182 nanovoltmeters. The four-terminal method eliminates the effects of contact and
lead resistances. The DC offset voltages are canceled by reversing the applied current
direction so that the sample voltage is given by Vs = [V(I) — V(=1)])/2.

To resolve a very small sample voltage signal to an accuracy better than 10 nV,
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Figure 3.14: Relative orientations of the applied transport current (J), the sample
c-axis and the applied magnetic field (H). Note that the coordinate axes are defined
such that the z-axis is parallel to the sample c-axis and J || . When the sample is
being rotated, the magnetic field is always in the y-z plane and can be expressed as
H = Hsindy + Hcosfz. The condition that H L J is therefore always satisfied.

precautions have to be taken to minimize possible sources of noise. For instance, as
shown in Fig. 3.16, in order to eliminate the noises due to the ground loop currents,
the chassis ground of the voltmeter has to be separated from the ground of the power
line by a 101 resistor. In addition, the chassis grounds of all other equipment have to
be shorted together before connecting to the power line ground. RF power line filters
are also inserted in the circuit to eliminate AC current noises. Although the thermal
EMF's provides a small DC offset voltage, they are often time dependent and therefore
may not be completely canceled by reversing the current. To minimize such noise, it is
necessary to take measurements within as short time periods as possible. On the other
hand, a longer low-pass filter time constant eliminates more RF noise. Consequently,
there is a trade-off in selecting the filter mode on the voltmeter. The better way is
to take voltage measurements with a relatively short filter time constant so that the
thermally induced voltage offset can be mostly canceled, and then to perform external
filtering by averaging over several readings at each constant current.

With all these precautions, the noise level is found to be < 50 nV. It should be
emphasized that good contacts on the sample surface is essential to achieve a low

noise level. In high magnetic fields when the Lorentz force may pull the gold or
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Figure 3.15: Block diagram of the DC transport measurements.
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indium wires on the sample surface, bad electrical contacts may be worsened which
cause additional DC offset voltages that cannot be completely canceled by reversing
the current. Overall, such noise level is low enough for most analysis of our data.
For linear resistance measurements, much improved voltage resolution (<~ 1079 V)
can be obtained by using the low-frequency lock-in techniques. These measurement

techniques will be described later in Chapter 6.

3.6.2 AC Transport Measurements

The purpose of AC performing transport measurements is to study the frequency
dependence of the linear AC resistivity of YBa,Cus0~ single crystals near the vortex
phase transitions, so that the critical scaling behavior at low frequencies can be in-
vestigated. The technique developed in our lab (Reed, 1995; Reed et al., 1992; Reed
et al., 1993) has proven successful in fulfilling this purpose. An outline of the technique
and the calibration procedures are briefly described below. The block diagram of the
experimental set-up is shown in Fig. 3.17. Using the standard four-terminal contact
arrangement, a sinusoidal AC current is applied through the bulk of the sample in
the ab-plane. The current is provided by a 0.5 volt oscillator output of an HP4194A
impedance analyzer. A noninductive 1 k{} load resistor is placed at the high current
output in series with the sample to ensure a constant current through the sample for
the entire frequency range of our measurements. The voltage across the sample is
measured by the HP4194A impedance analyzer enhanced with an EG&G PARC 80dB
low noise preamplifier. This amplifier limits the maximum frequency to 2 MHz. The
sample signals are carried by double shielded low-loss coaxial cables, and all shielding
connections are arranged to eliminate ground loops (see Figure 3.17). The HP4194A
impedance analyzer uses a lock-in technique to reduce the bandwidth to 10Hz about
the applied current frequency, permitting a noise level of 10nV which corresponds to a
measurable resistance of 20uf). For more details of the AC measurement techniques,
please see the Ph.D. thesis by D.S. Reed and related publications (Reed et al., 1993;
Reed et al., 1992; Reed, 1995).
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Figure 3.17: Block diagram of the AC impedance measurement system.

In addition to careful electronic arrangements, a detailed frequency-dependent
calibration is needed to resolve the real sample signals. A reasonable approach is
to consider the measured impedance signal Z,,.,s as a combination of the following

contributions:

Zmeas(w) - [Zsignal(w) + Zback(w)]G(w)ew(w)- (33)

Here, Zgigna is the desired signal from the sample, Zy,.x is some purely imaginary
background signal due to the parasitic inductance and capacitance in the circuit

components, G(w) and (w) are the frequency-dependent amplitude and phase of the
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preamplifier gain, and w = 27 f is the angular frequency of the applied AC current.
Generally G(w) and 6(w) can be found from Z,,.,, at Toom temperature, because
at room temperature we can assume a frequency-independent sample signal for w <
2MHz, i.e., Zyignal = Zsignai(w = 0), and a much large sample signal than the parasitic
background, |Zsignat] >> |Zsack]- This approximation gives a measured signal with
an amplitude |Zmess(w)| = |Zsignai{w = 0)|G(w) and a phase which is simply §(w).
One can confirm the accuracy of the calibration for #(w) by measurements at low
temperatures where the sample is completely superconducting so that

Zsignat(w) becomes purely imaginary. Finally, Z, can found by measuring an
ideal short, such as a small piece of gold foil, so that Z,igna(w) = 0, and Zeqs(w) =
Zback(w)G(w)e®™), where G(w) and f(w) are already known. Best results are obtained
if the short has the same geometry and contact configuration as that of the sample.

An additional requirement for the success of this technique is the negligible contact
resistance. Bad contact resistance will give an additional background signal which is
hard to calibrate due to the complicated frequency and temperature dependence of

the effective capacitance incurred by the poor electrical contacts to the sample.

3.7 Data Acquisition

The data acquisition is automated through the GPIB interface using IBM PS2/286
and 386 computers. The computer programs for controlling the data acquisition for

all the measurements are described in the Ph.D. thesis by D. S. Reed (Reed, 1995).
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Chapter 4 Vortex-Glass Transitions in
As-Grown and Proton Irradiated Twinned

YBayCu3O; Single Crystals

The primary goal of this thesis is to reveal the effects of different types of static dis-
order on the nature of the vortex-solid to liquid melting transition in high-temperature
superconductors. A natural starting point is to investigate the as-grown YBa,CusO7
single crystals which contain mainly twin boundaries and point defects. Although var-
ious reports of DC and at transport measurements by other research groups (Koch
et al., 1989; Gammel et al., 1991; Olsson et al., 1991) prior to our work had been
suggestive of a second-order vortex-glass transition, the large error bars in the critical
exponents and the unjustified broad temperature interval involved in the so-called
“critical scaling” analysis about each “critical point” in those reports provided lit-
tle convincing evidence of a true second-order transition. In addition, as shall be
discussed below, various complications arise if one considers DC transport measure-
ments alone. Although presented in this chapter are mostly detailed studies of the DC
transport properties near the vortex-solid melting transition, it should be emphasized
that this work is only part of our full-scope investigations which involve self-consistent
studies of the vortex-solid melting transition. With three different experimental tech-
niques: DC current-voltage characteristics (Yeh et al., 1992b; Yeh et al., 1992a; Yeh
et al., 1993a; Jiang et al., 1993), frequency-dependent AC impedance (Reed et al.,
1993) , and frequency-dependent AC magnetic susceptibility (Reed et al., 1994), we
have found that the application of our rigorous critical scaling analysis to all three
independent experiments yields universal critical exponents v = 2 /3 and z ~ 3 (Yeh
et al., 1993a; Reed et al., 1993) and universal scaling functions. The manifestation
of universality therefore provides a strong support for a second-order vortex-glass to

liquid phase transition in samples with twin boundaries and point defects.
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Rather than verifying the universality of vortex-glass transitions with different
experimental techniques, this chapter focuses on the universality of such transitions
among various YBa;CusO7 twinned single crystals with different densities of point
defects. This approach is accomplished by studying the transport properties of as-
grown and 3 MeV proton-irradiated YBa;Cu3O7 single crystals. The DC transport
measurements are studied in the context of both critical scaling behavior and vortex-
pinning related properties. The idea of probing the critical phenomena within certain
temperature regime (the “critical regime”) and certain applied current range becomes
clear with our investigations. It will be shown that the current range within which the
critical scaling analysis is applicable is limited by the finite size effect at low currents

and the flux-flow crossover at high currents.

4.1 Critical Scaling Analysis

In a vortex state with weak random pinning, thermal fluctuations can excite vortex
dislocation loops consider from the originally pinned vortex configuration, as illus-
trated in Fig. 4.1. Assuming a second-order vortex-solid melting transition driven by
isotropic static disorder and thermal fluctuations, the vortex correlation length &, for

a constant magnetic field H will diverge as T — Ta(H):
&(T,H) = EO(H)H = T/Tm|™, (4'1)

where ¢ is the zero-temperature correlation length, Ty is the transition temperature,

and v is the static critical exponent. The critical relaxation rate wr o« 7!, with 7

being the thermal relaxation time for fluctuating vortices, is related to ¢, as wr(T) ~
o7, le.,

wr(T) = well — T/Tu", (4.2)

where w, is the zero-temperature relaxation rate, and z is the dynamic exponent.
Since §, — oo and 7(~ ) — oo near T, we may scale various physical quantities

near T with &, because ¢, and tau are the most significant length and time scales.
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Figure 4.1: Hlustration of the vortex dislocation loop caused by thermal fluctuations.
After the time 7, the vortices relax back to the ground state.

Consider the sample resistivity p as a function of temperature (7'), frequency
(f), and the applied current density (J). The resistivity is related to an effective
“superfluid density” p, by p~' ~ ip,/f. It should be emphasized that the effective
superfluid density p; is not directly related to the superconducting order parameter of
the sample. Rather, it is similar to the stiffness of the vortex-solid and is related to the
shear modulus. In the critical regime, the superfluid density scales as (Fisher et al.,
1973) p, ~ £27¢, where d is the dimensionality of the phase transition. Combining
this expression with the frequency scaling, f = w/(27) ~ &, *, gives the scaling for

the resistivity p ~ 27277, The general scaling relation can be expressed as
p; fiJ) ~ €2 pa (06,7 f€5 T Ir), 6= 11— (T/Tw)), (4.3)

where p are the universal functions for temperatures 7' > Ty (+) and T' < Ty (—),

respectively, and the characteristic current density Jr is defined by (Fisher et al.,
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1991)
JrEd @y = kT, (4.4)

as shown in Fig. 4.2 for d = 3.
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Figure 4.2: The J-vs-T' diagram for H = 30 kOe showing the characteristic current
density Jr (7', H) (the solid line) which separates the current-dominated regime from
the thermal-dominated regime.

In the presence of a DC current (f — 0), when the driving force exerted on the
vortices by the applied current is smaller than that of the thermal fluctuations, i.e.,

J < Jr, the scaling relation of the resistivity (p) can be simplified into:

v(2+2—d) 5 J J&ﬁ—-l@o
pi(ﬂf), T JT(T, H) - k'BT 9
(4.5)

where E is the electric field. The forms of the scaling functions g, and p_ can be

. T
p=BJJ ~ €7 (e ~ |1 -
M

obtained by the following considerations. We expect g, — constant as ¢ — 0 because
the sample resistance becomes Ohmic in the normal state. On the other hand, for

z — oo J >> Jr or T — Tyy), the correlation length becomes limited by the applied
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current density J according to Eq. (4.4), such that

1/(d—1)
b~ () (46)
J &g
and (z+2-d)/(d-1)
AN [ N G TG
P~ £ (kBTL ) , (4.7)

for T — Ty. The scaling functions (5(.J)) follows the same asymptotic behavior as
p(J), ie., pe(z) oc JEHz=DE=1) a5 5 5 oo,
According to Eq. (4.5), if the values of Ty, v and z are known, one may scale the

quantities p and J by the following expressions:

(E/J)|L = T Tpg| =),

AT
(

(4.8)

L
I

JIL =T/ T |7,

such that the p-vs-J isotherms in the critical regime of Typs can be “collapsed” into
two universal functions g, (z) and g_(z) for the isotherms at temperatures above and
below Ty, respectively. Here, ¢ = J/Jr = J/Jr, with Jp = kgT/(®otd ™).

In reality, Ths, v and z values are unknown and therefore are treated as input
parameters to a computer program which does the data transformation according
to Egs. (4.6) and (4.7) and displays the scaled isotherms. The Ty, v and z val-
ues are obtained when scaled isotherms “collapse” into two universal curves. For a
self-consistent check, the critical exponents v and z should be independent of the
magnitude and orientation of the applied magnetic fields. In addition, the scaling
functions should be universal for all fields and angles, following the asymptotic be-
havior described above except for a non-universal coefficient.

In the case of frequency-dependent measurements of AC impedance, as long as
the current density is much smaller than Jr, the amplitude and phase of the linear
AC resistivity (poc = |pac]€®?) near Ty can be expressed according to the following

scaling relations (Fisher et al., 1991; Yeh et al., 1993a; Yeh et al., 1992a; Reed et al.,
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1993):
Pac] ~ |1 —T/Ta["C=4*ps(f), f=fI1 = T/Tnl|™,
(4.9)
¢p = ¢:l:(f)
Similarly, defining
~a.c = |Pac 1-T7T TM -V(Z_LH-Z)?
p |Pacl| /Tl (4.10)

f o= fl-T/Tul™,
the amplitude and phase versus frequency curves can be scaled into the corresponding
universal functions py and ¢4. Similar considerations for the asymptotic behavior of
the scaling functions (Fisher et al., 1991; Yeh et al., 1993a; Yeh et al., 1992a; Reed
et al., 1993) lead to po(f) o flet2=d)/z a5 f 3 00 or T — Ts. In addition, as shown
by Dorsey (1991), by inserting the phase and amplitude of the AC resistivity into the

Kramers-Kronig relation,

p [ A7)

¢p: T f,_fa

(4.11)

where P denotes a Cauchy principal-value integral, a frequency-independent critical

phase is obtained as ¢, = &,(Tyr) = z [1 - d'Q].

z

The physical significance of a frequency-independent phase ¢, at Ths can be
qualitatively understood as follows: Since both the real and imaginary parts of
p follow the same asymptotic relation with the frequency at T, and since ¢ =

tan~! {Iﬁ%%} ,Re[o(Twm)] = constant - fA=2) Im[p(Ths)] = constant - FA-3), we

find that ¢, is independent of frequency.

4.2 Experimental Results & Data Analysis

4.2.1 Samples and Electrical Transport Measurements

Three samples have been studied to yield information about the role of point
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defects. The samples were two similar ¥ BayCu3O7 single crystals originally from the
same batch of crystal growth. Both crystals were dilutely twinned with an average
twin boundary separation of ~ 2 ym. One of these two as-grown crystals, studied with
both DC and AC transport measurements in applied magnetic fields from 1 kOe to 90
kOe (Yeh et al., 1993a; Reed et al., 1993) and for different field orientations with the
angle(#) between the field and crystalline c-axis from 0° to 90°, is denoted as Sample #
1 (see also Table 4.1 and also Table 3.3). The other single crystal was used for 3.0 MeV
protons irradiations. It was irradiated twice with a fluence of 5 x 10'®protons/cm?
each. As discussed in Chapter 3, the defects created by 3-MeV protons were randomly
distributed point defects with a volume density ~ 1.1 x 10®cm™2 for the fluence of
5 x 10" protons/cm?. Following each proton irradiation, DC transport measurements
were carried out using the standard four-probe method in magnetic fields (H) ranging
from 1 kOe to 90 kOe, with H perpendicular to the applied current density (J), and
for H both parallel and perpendicular to the c-axis of the sample. We denote the
sample after the first irradiation as Samples #2, and that after the second Sample
#3, respectively. In addition, AC transport measurements are carried out on sample
# 3. In the following, the Samples #1, #2 and #3 are also denoted as Samples A,
B, and C, respectively. The zero-field transition temperatures (T.’s) for these three

samples are shown in Table 4.1.

Table 4.1: The proton fluence f dependence of the zero-field transition temperature
T, the zero-field critical exponents vy (H | ¢) and vo (H L ¢), and the power a for
the critical current density J,(T') (see text ).

f T. 40
Sample (protons/cm?) (K) Vo)) VoL a
A (#1) 0 92.95 £ 0.05 0.65 0.65 0.62
B (#2) ~ 5 x 108 92.25 + 0.05 0.63 0.64 0.58

C (#3) ~ 1 x 10 91.624+0.05  0.62 0.63  0.67
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4.2,2 FE-vs-J Isotherms and Critical Scaling

The electric field (E) versus current density (J) isotherms are obtained from DC
transport measurements in a constant applied magnetic field and at temperatures
near the transition. Shown in Fig. 4.3 are the representative data taken at H). = 10
kOe and H;,. = 10 kOe for Sample A. Figure 4.4 shows the data for H . = 50 kQOe
for Sample B and H|. = 10 kOe for Sample C.

We find that with the critical scaling analysis described earlier, all the E-vs-J
isotherms within the critical regime can be “collapsed” into two universal curves jy
with proper values of Ty, v and z. The insets of figures 5.2 and 5.3 are the 1. curves
obtained from corresponding E-vs-J isotherms. For all the fields from H = 1.0 to
90 kOe and angles (0) between the field and the sample c-axis from 0° and 90° and
for all three samples, universal critical exponents are obtained with v = 0.65 & 0.05
and z = 3.0 £ 0.3, consistent with the power-law dependence of the scaling function
p o< JE=U/2 when T — Ty which yields 1.0 £ 0.1 & (z — 1)/2. Furthermore, as
demonstrated in Fig. 4.5, the universal functions g1 are identical for different fields
and different samples, except for a nonuniversal constant that provides information
about the vortex correlation length & (H) which will be discussed later. Consequently,
the critical scaling behavior of the vortex transport properties in HT'S samples with
different densities of weak pinning defects is found to be universal, lending strong
support for a true second-order phase transition.

The melting temperature Tas(H) obtained from the above critical scaling analysis
for different fields and different samples are plotted in the H-vs-T phase diagram (see
Fig. 4.6). We note that all melting lines follow the same relation

Hu(T) = Hy(0)]1 — T/T.[ (4.12)

with the zero-field critical exponent v = 0.6340.02, consistent with a 3D XY model
which asserts 1o = 2/3. Interestingly, however, the high-field melting temperatures
for both H || ¢ and H L c increase with the increasing disorder (see Fig. 4.6(a))
despite the decrease in T;. When plotted in reduced temperatures (T'/T.) , as shown
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Figure 4.3: Representative electric field F vs current density J isotherms of the as-
grown YBa,Cuz07 single crystal (Sample #1) for (a) H.. = 10 kOe, and (b) Hj. =
10 kOe. The insets are the universal functions ji(z) obtained from collapsing the
isotherms with Jy(T,H) < J < J,(T, H) and T within the critical regime indicated
by arrows. The parameters used for the collapsing are v = 0.67 and z = 3.0 and the
Ty (H) values indicated in the insets. 8T is the averaged temperature increment of
the isotherms in the critical regime.
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Figure 4.4: Representative electric field £ vs current density J isotherms of proton
irradiated YBa;CusOy7 single crystals (Samples B (#2), and C (#3)). (a) Sample B
with H L c-axis and H = 50 kOe. (b) Sample C with H || c-axis and H = 10 kOe.
The insets are the universal functions j;(z) obtained from collapsing the isotherms
with Jo(T,H) < J < J,(T, H) and T within the critical regime indicated by arrows.
The parameters used for the collapsing are v = 0.67 and z = 3.0 and the Tx/(H) values
indicated in the insets. 4T is the averaged temperature increment of the isotherms in
the critical regime.
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Figure 4.5: The scaled functions pi for all three Samples #1, #2 and #3 and for
different magnetic fields plotted together.

in Fig. 4.6(b), the slopes of the melting lines increase with increasing disorder.

To verify the isotropic critical scaling behavior, various data sets taken at different
# values have been studied, yielding the same critical exponents as a function of 6.
As shown in Fig. 4.7, the smooth increase of T), with increasing # results from
the intrinsic anisotropy. The solid line is a theoretical fitting curve to the melting

transition temperatures of an anisotropic superconductor, following the expression:

Hy(T = 0,0 = 0)[1 — T/T,|
vV cos20 + e2sin20 '

(4.13)

Hu(T,0) =

All these results have proved that the vortex-glass transition is insensitive to
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Figure 4.6: (a) The anisotropic vortex-solid melting transition lines for H || c-axis
(Hary(T)) and H L c-axis (Hpr.(T)), and for Samples A, B, C. All solid lines satisfy
the relation Hpr(T') = Hp(0)|1 —T/Teo|® with 14 values given in Table 4.1. (b) The
same Tys(H) data plotted in the reduced temperature (7/T,).
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Figure 4.7: The vortex-solid melting transition temperature (Tys) as a function of the
angle (#) between the applied magnetic field and crystalline c-axis.

the density of randomly distributed weak-pinning point defects and that the vortex
dissipation near the melting transition are governed by the same critical phenomena,

independent of moderate variations in the density of point defects.

4.2.3 Critical Regime

As discussed earlier, critical phenomena can only be observed in the critical regime
where the thermal fluctuations are dominant. We have shown in Chapter 2 that an
estimate using the Ginzburg criterion yields a critical regime (—%\%) ~1072t0 107 K
in high-temperature superconductors, which is much larger than most conventional
superconductors. The concept of restricting to the critical regime in the data analysis
1s essential for obtaining accurate critical exponents (see also Yeh et al. (1993a). For
instance, the melting line Hp(T') is below the mean-field upper critical field line

H(T) in the phase diagram. The former corresponds to phase transitions associated
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with the phase of the order parameter, and the latter with the amplitude of the order
parameter. Since both lines converge to T, in the low fields, the need for narrowing
into the transition temperature T3/(H) becomes even more important so that the
corresponding critical phenomena can be revealed without being seriously influenced
by the presence of another critical point Too{ H).

Empirically, the critical regime can be determined by the following method. After
scaling functions are achieved with certain Ty, v and z values, rescale the F-vs.-J
isotherms are rescaled again with the same Tjs and and critical exponents over a
smaller temperature range. If the quality of the scaling function is worsened or no
scaling can be observed, then the Ty, v and z values have to be readjusted . Such
process is repeated until consistent results are obtained. Then more isotherms at
both higher and lower temperatures are included until the newly added isotherms no
longer fall on the scaling functions. The temperature range within which consistent
scaling behavior can be observed is then defined as the critical regime for that field.
The critical regime obtained using this method for sample #1 is shown in Fig. 4.8

as the shaded regime. It ranges from 107! K to ~ 2.5 K for magnetic fields from 1.0
kOe to 70 kOe.

4.2.4 Vortex Correlation Length Coefficient

Next, let’s consider the asymptotic behavior discussed earlier in Section 4.1. From
the scaling functions g+ we can obtain the vortex correlation length coefficient &o(H).
As shown in Fig. 4.9, if we assume that 5, (z) = p_(z) = poz* /2 for z — co and
p+(x) ~ po for z — 0, where fo is a constant independent of T and J, and z is defined
by = = J/Jr = J/Jr, with Jp = kgT/(£2®,), we can obtain Jr(Ty), and therefore
§o, directly from the universal function g, (Yeh et al., 1993a; Yeh et al., 1992a). The
results of & as a function of fields for all three samples are shown in Fig. 4.10. The
£o values, within the order of a few hundreds of angstroms, increase with increasing
H, consistent with a stronger intervortex correlation in higher magnetic fields.(Jiang

et al., 1993). In addition, & decreases with increasing density of defects in fields
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Figure 4.8: The critical regimes of the anisotropic vortex-solid melting transition lines

for H || c-axis (Ha(T)) and H L caxis (Hyo(T)).

H > 10 kG for both H || c and H L c. The decrease of { may be attributed to
the smaller vortex dislocation loops in the presence of larger densities of point defects
after proton irradiations. The inset of Fig. 4.10 shows that &(H L ¢) ~ &(H || ¢) is
within the experimental error, consistent with our definition of one vortex correlation
length for all the field orientations. In other words, we find that the evolving of the

dislocation loop near the vortex-glass to vortex-liquid transition is isotropic.

4.2.5 Finite Size Effect

As mentioned before, the vortex correlation length &, is a function of J when J is
comparable to Jr. If a broad current range is used for measurements of the E-vs-J
isotherms, the general expression for the vortex correlation length can be given as

follows:

J

§o = Co(H) L =T /Tu|™ f(2),2 = m

(4.14)
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Figure 4.9: Illustration of how the vortex correlation length coefficient {,(H) values
(see the text) are obtained experimentally from the critical scaling analysis.
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Figure 4.10: The correlation length (£) as a function of the magnetic field (H) for
Samples A, B, C with H || c. The inset shows the & values of Sample B for H || ¢
and H L c¢. The results for the other two samples are similar in that £(H) values
are the same for the two H orientations within the experimental error.

The functional form of the f(z) satisfies two conditions: f(z) — 1 for z — 0 and
f(z) = z74=Y) for £ — oo, so that Eq. (4.14) reduces to &, = &|1 — T[Ty |~ for
J << Jr, and &, = [kgT/(J®0)]*/@) for J >> Jr (see (Yeh et al., 1993a) and the
references therein).

In twinned YBa,Cu307 single crystals, as T approaches Ty, the growth of £, will
eventually be disrupted by the twin boundaries whenever &, ~ £, where £ is a “vortex
mean free path” comparable to the average twin boundary separation. Consequently,
for constant T" and H there is a characteristic current density J,(T, H) defined by the
relation (T, H, J;) = £, such that for J < J; the vortex dislocation loops are pinned
by the twin boundaries, and the critical scaling of the E-vs.-J isotherms breaks down.
From Eqs. (4.14) and (4.4), we note that Jy(Tar) = (kaTar)/(£2®y) is independent
of the exact functional form of f(z), and therefore £ can be determined if J,(T, H)
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is known. Experimentally, the J,(T") values can be identified as the current density
below which the scaled isotherm deviate from the universal scaling functions. Plotted
in Fig. 4.10, are the 5-vs.-J data for Sample # 1. The circles indicate the J; values for
each T. The obtained J, values are plotted in Fig. 4.12 for the J versus T' diagram.
Shown in Fig. 4.13 are the £ values as a function of field. We note that £ varies from
2.2 to 1.3 um for the magnetic fields from 1 to 70 kOe, in agreement with the averaged
twin boundary separation in the sample which is ~ 2 um. The slight decrease of £
with the increasing field may be attributed to the increasing vortex-pinning center
interaction which reduces the vortex mean free path. Thus, the presence of J, is a
natural consequence of the finite-size effect, not to be mistaken as the hint of another

phase transition.

8
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Figure 4.12: The current density (J) vs temperature (T) diagram for H = 30 kOe.
The solid curve shows the characteristic current density J7 (7T, H) which separates the
current-dominated regime from the thermal-dominated regime. The dashed curve
shows the effective “depinning” current density J,(T, H). The data points are the
experimental .J; values obtained from analyzing the E-vs-J isotherms.

Another self-consistent way of demonstrating the pinning effects is to measure the
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Figure 4.13: the vortex mean-free-path £(H) obtained from Sample A and for H || c.

linear magnetoresistivity p versus T' with a small current density J << Jr, and then
to identify a temperature interval AT near Ty where the resistivity critical scaling
relation (Eq. 4.5) breaks down. Here AT is obtained by asserting &,(T, H,J) = £
at constant J and H, so that AT = TM(fo/Z)l/ Y. Note that AT increases with the
increasing H (larger o) and the decreasing vortex mean free path ( smaller £). In
Fig. 4.14, the second-order melting temperatures Th(H) for H || c are indicated
by the arrows on the p-vs-T plot, so are the crossover temperature T,(H), defined as
T = Tm+A. Wefind good agreement between the T,,( H) values and the temperature
where distinct changes in the resistivity occur. It should be noted that such resistivity
“kink” near T, is only visible for twinned crystals with a well defined vortex mean
free path (£). The “kink” disappears in inhomogeneous samples ( such as epitaxial
films) with a broad distribution of £ values, also in untwinned single crystals where #

is practically the size of the sample and £ >> &, AT — 0.
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Figure 4.14: The linear p-vs-T' curves at constant magnetic fields for H || ¢, and H =
0, 10, 30, 50, and 70 kOe. The melting temperatures Ta(H) obtained from the critical
scaling analysis are indicated by the bold arrows, and the crossover temperatures
T.(H) (see the text) are indicated by the light arrows.

4.2.6 Pinning Energy

The field dependence of the vortex mean free path £ in a dilutely twinned single
crystal can be related to the twin boundary pinning range r, by the expression {(H) =
Ly — rp(H), where L; is the average twin boundary separation and r, is the twin
boundary pinning range. The physical meaning of J; is associated with the work
(Jf>®;) done on the vortex dislocation loop by the Lorentz force. In the steady
state, the total thermal energy kgT of each dislocation loop is equal to the difference
of the work done by the Lorentz force and by the pinning force on the dislocation
loop, i.e.,

Jol2®o — W, = kgT. (4.15)

Given a volume density n, of randomly distributed point defects, it is known (Larkin
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& Ovchinnikov, 1979) that the pinning energy W, satisfies W, o n, if the single-
particle pinning dominates, and that Wp o n2 if the collective-pinning dominates.
In the limit of n, — 0, such as in the case of as-grown YBa,CusO; single crystals,
we recover the result Jo(Tar, H) = kgTp(H)/(¢*®0) described in the previous section
because W, — 0. The £(H) values obtained from the data for sample # 1, shown
in Fig. 4.13, decrease with the increasing magnetic field, consistent with the fact
that L, is constant and the twin-boundary pinning range r,(H) increases with the
increasing density of vortices. In the case of proton-irradiated samples, we assume
that the volume density of randomly distributed point defects is directly proportional
to the proton fluence, such that the n, value for Sample C is twice that of Sample
B. Since £(H) is independent of n,, and since experimentally J; increases with the
increasing ny, it follows from Eq. (4.15) that the pinning energy W, increases with
the increasing n,. Inserting the experimental values of £(H), Tas(H), and Jo(Tas, H)
into Eq. (4.15), we obtain W,(Ta, H) vs H data for samples # 2 and # 3, as shown
in Fig. 4.15. Note that for each field, the ratio of the W,(Ts) values for the two
samples is about the same as that of n,’s, consistent with W, o« n, and therefore

single-particle pinning.

4.2.7 Flux-low Crossover Current Density

The flux-flow crossover current density J,(T') places an upper limit for the validity
of the critical scaling relation in Eq. (4.5), so that for J > J,(T), the superconducting
system is in the flux-flow regime with the ohmic vortex dissipation. Experimentally,
Ji at a constant temperature can be obtained by identifying the current density of an
E-vs-J isotherm above which the isotherm becomes ohmic. This flux-flow crossover
behavior is observable for H L ¢. The results of the Jo-vs-T /T, curves are given in
Fig. 4.16 for all three samples.

There are two important features associated with the flux-flow crossover current

densities. First, the fitting curves in Fig. 4.16 all follow the relation

Jo(T) = J,(0)[1 — T/TJ? (4.16)
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Figure 4.15: The pinning energy W, as a function of the magnetic field H for Samples
B and C. Note that (W,)c =~ 2(W,)s. The inset shows the vortex mean-free-path
£(H) obtained from Sample A and for H || c.

where a is very close to vy as shown in Table 4.1. Second, the magnitude of J,(0) is
independent of H and is significantly enhanced for the irradiated samples.

One possible explanation for the magnitude and the temperature dependence of
J:(T) is as follows. The flux-flow crossover current density can be related to the
single vortex pinning energy (U,) by the relation U, = J,®orL, where L is the length
of a flux line, and r is the pinning range. Furthermore, U, is approximately equal to
the condensation energy B2V./(2u0), where B, is the thermal dynamic critical field,
po is the vacuum permeability, V. ~ €3 is the correlation volume per vortex in the
flux-flow limit, and & = &;(0)|1 — T'/T¢|™" is the superconducting coherence length.

Since B? ~ ®%/(87%k%£2), where  is the Ginzburg-Landau parameter, we find that .

J(T) =

O T]"°

16pom2r Lr2E,(0) [1 T, (4.17)
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Figure 4.16: The flux-flow crossover current density (J,) versus the reduced temper-
ature (T/Tx) for Samples A, B, C and H L c-axis. Note that J, is independent of
the magnetic field.

Consequently, we have a = vy = 2/3, and J, independent of H, consistent with
the experimental observation, provided that r and L are only weakly dependent on
the temperature and the magnetic field. (For instance, r could be the average size
of a point defect and L could be the thickness of the sample.) In addition, since
J(0) o< 1/k* from Eq. (4.17), and since k = A.ss/&,, where A ;s is the effective
penetration depth, we find that for Acsf = Ao = \/ad—kp, with A¢ being the Campbell
penetration depth (Campbell, 1971), c44 the tilt modulus, and k, the Labusch pinning
force constant (Campbell & Evetts, 1972), « decreases with the increasing pinning
force constant k,. Therefore J;(0) « k,, consistent with the observation of increasing
Jr with the increasing strength and density of pinning.

By taking into consideration both J.(T') and J¢(T'), we obtain a typical J-vs-T'
diagram shown in Fig. 4.17 for H = 30 kOe. It should be noted that the experimental

observation of J; and J; depends on the experimental current density range relative
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Figure 4.17: The J-vs-T diagram for H = 30 kOe showing the characteristic current
density Jr(T, H) (the solid line) which separates the current-dominated regime from
the thermal-dominated regime. The dashed lines are the effective “depinning” current
density Jy(T, H) and the flux-flow crossover current density J, (7).

to the positions of J, and J,. Our experimental current range is about the same for
all three samples, but the positions of J; and J; are sample dependent. For instance,
within our experimental current range, the E-vs.-J characteristics for magnetic fields
lower than 10 kOe are usually not affected by the finite size effect. As for the flux-flow
crossover behavior, since it decreases as the temperature goes to T, it has only been
observed for H L ¢ when Ty(H) values are much closer to T.. Therefore, detailed
analysis presented here is important to fully understand the physics embedded in the

experimental data.

4.2.8 Ohmic Resistivity Versus Temperature

To further understand the effects of irradiation, we note that the Ohmic resistiv-

ity is generally higher in the irradiated samples, as shown by the resistivity versus
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temperature curves in Fig. 4.18 for H || c. The large normal resistivity in samples
with more point defects is consistent with the decrease in the electron mean free path
due to the increasing static disorder.

Another important effect of irradiation can be noted from the gradual disappear-
ance of the “kink” in resistivity near the onset of vortex dissipation upon increasing
the fluences of proton irradiation, as clearly shown in Figs. 4.18. This observation can
be attributed to the large J, values in irradiated samples, because J, = kgTar/(£06?),
and Ty is higher and & is smaller in high fields with the increasing point defect
density. Thus for the irradiated samples, a larger part of the current range falls into
the pinning dominated regime shown in Figs. 4.12 and 4.17 where the current-voltage
characteristics are linear. Therefore, the Ohmic resistivity can still be measured below

Ty for the irradiated samples, and the p-vs-T data goes to zero smoothly.

4.2.9 AC transport results

In addition to the DC measurements, AC resistivity (po. = |pac|€®*) isotherms
as a function of frequency (f) from 100Hz to 2MHz were also measured on Sample
#3 for H=3kOe and H=6kOe and with H || c-axis. Shown in Fig. 4.19 are the
representative |pac|-vs-f and ¢,-vs-f data for H = 3.0 kOe. By applying the scaling
analysis outlined in Egs. (4.9)-(4.11), consistent critical exponents v ~ 2/3 and
z &~ 3 and the corresponding scaling functions (shown in the insets) were obtained.
The critical phase obtained is ¢(Ta) = 60° & 3°, in good agreement with the critical

scaling hypothesis which asserts that ¢, == $(Tar) = 5(2 —1)/z = Z for d = 3 if

3
z ~ 3. The fact that the same critical exponents v and z, as well as universal scaling
functions have been obtained for data taken at different magnetic fields and from
different experimental techniques provides strong support for the existence of a true
second-order phase transition.

It is worthwhile making a comparison between the time scale associated with

the critical dynamics of the vortex-glass transition and our experimental time scales.

As shown in the paper by Yeh et al. (1993a), from the universal functions P+, We
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can identify the coefficient f. of the characteristic frequency fr = f.|l — (T'/Tn)|**
with a procedure similar to that used for obtaining &. It is found that f. ~ 10!
Hz for H = 10 kOe, and f, varies slowly with H (Yeh et al., 1993a). With our
smallest temperature increment of AT = 0.02 K, which indicates how close to the
true transition temperature we can get, the smallest fr (corresponding to the longest
relaxation time) needed for our system to detect the critical fluctuations is about
fr ~ |AT/Tp|" ~ 5 x 10* Hz at H = 10 kOe where Ty = 90 K. Since our lowest
measurement frequency is 100 Hz, our entire experimental frequency range has covered

the complete critical dynamic time scales for the given temperature resolution.

4.3 Concluding Remarks and Discussions

In summary, we have investigated the critical phenomena of the vortex trans-
port properties in 3-MeV-proton-irradiated Y-Ba-Cu-O single crystals. We find that
the onset of vortex dissipation is consistent with a second-order vortex-solid melting
transition, with universal critical exponents v &~ 2/3 and z = 3, independent of the
density of point defects. On the other hand, variations in the point defect density
have important effects on the pinning-related material parameters, as summarized

below:

e The high-field melting transition temperature (T)s) increases with the increasing

point defect density;

o The zero-field transition temperature 7, decreases with the increasing point

defect density;

o The vortex correlation length &, decreases with the increasing point defect den-
sity;

e The flux-flow crossover current density J, as a function of the reduced temper-

ature (T'/T.) increases with increasing point disorder.

Despite these observations, there are several issues which are not clear at this

point and need to be mentioned here. Although we have obtained a second-order
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vortex-solid to liquid melting transition line below H.o(T'), this fact is by no means
the proof for the same “vortex-glass” transition proposed by Fisher et al. (1991),
because the latter model provides no prediction for the critical exponents except for
a simple mean-field estimate which yields v = 0.5 and z = 4.0 (Dorsey et al., 1992).
Theses are different from our experimental results of v ~ 2/3 and z ~ 3.0. More
rigorous theoretical calculations which incorporate both the thermal and disorder
fluctuation effects are necessary for a meaningful comparison. The use of the phrase
“vortex-glass” in the title of this chapter and in the following chapters is only meant
to distinguish the second-order transition with an isotropic critical exponent from
those with anisotropic static critical exponents due to other types of disorder.

Since most as-grown samples are twinned, two types of defects are important for
vortex pinning: twin boundaries and point defects. A natural question to ask is which
type of defects provides the dominant pinning mechanism for the observed vortex-solid
phase. The fact that an isotropic static critical exponent v can account for the critical
phenomena for all field orientations indicates that the responsible static disorder in
the vortex-solid state is spatially random and orientationally isotropic. Although on a
macroscopic scale, the twin boundaries are randomly distributed in the ab-plane, and
the average twin boundary separation is about 2 pum in our samples. This is much
larger than the flux line separations for applied magnetic fields from 1.0 to 90 kOe.
Therefore, our observations presented in this chapter seem to suggest that random
point defects are the primary source of disorder determining the critical phenomena
near the vortex-solid phase transition. However, to be more rigorous, it is necessary
to study untwinned single crystals with random point defects only. As we shall see
in Chapter 6, this issue is in fact rather complicated. Further experimental studies
seem to suggest that the collective effects of both point defects and twin boundaries
are responsible for the vortex-glass transition with isotropic exponents; any one type
of disorder alone cannot account for all the experimental observations.

Finally, we emphasize again that this chapter focuses on the universality of vortex-
glass transition upon moderately enhanced point disorder. However, since it involves

similar techniques used by other research groups for the investigation of vortex-glass
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transition, it is necessary to compare our results with those of others. As mentioned
earlier, prior to our work, DC transport measurements had been carried out by Koch
et al. (1989) and Gammel et al. (1991) and AC transport measurements by Olsson et
al. (1991). The comparison of the approaches related to the AC transport measure-
ments has been discussed by Reed et al. (1992; 1993) and in the Ph.D thesis by Reed
(1995). Here we compare the critical scaling analysis of the DC resistivity.

The measurements by Koch et al. (1989) were performed on epitaxial thin films
which usually contain a very high density screw dislocations. As have discussed by
Yeh et al. (1993a), the lower current limit (J;) for observing critical scaling behavior
due to the finite size effect in epitaxial films could become as high as 10% ~ 107 A /m?
(¢f. their experimental current range is 10° to 10° A/m?). However, finite size effect
were not considered as a possible limiting factor in their studies. Another important
issue as we have emphasized in the beginning of this chapter is that the critical scaling
analysis is only applicable to data within the critical regime. However, in the studies
by Koch et al. (1989), much broader temperature intervals, such as 11.8 K for H = 40
kOe with a temperature increment between successive E-vs.-J isotherm of 0.1 K, have
been used in their so-called “critical scaling analysis”. On the other hand, we have
found that the critical regime for 50 kOe is less than 2.0 K (see Fig.4.8), which is
consistent with the allowed temperature interval according to the Ginzburg criterion.
As we have discussed earlier in section 4.2.3, when a broad temperature range is
covered, the presence of the critical point 7,2 associated with the upper critical field
H. may affect the results of the critical exponents. In addition, a systematic error
of 0.2 K exists in their transition temperatures, which could also affect the accuracy
of the critical exponents. In Fig. 4.20, we compare the critical regime given by the
Ginzzburg criterion with the temperature intervals involved in the scaling analyses by
various groups. The severe inconsistency with the Ginzburg criterion in the “critical
regimes” used by Koch et al. (1989) obviously imposes serious problems on their
conclusions.

In addition to the issue of the critical regime, there are large discrepancies be-

tween the critical exponents obtained from DC and AC transport measurements on
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similar samples in the work by Koch et al. (1989) and Olsson et al. (1991). Since
the critical exponents for the same type of phase transition should be universal, their
results indicate that either their scaling analysis lacks self-consistency, or the trans-
port properties they studied may have been dominated by mechanisms other than
critical fluctuations, as suggested by Coppersmith et al. (1990). To make a clear
comparison between our results and others work, the values and the error corre-
sponding bars in the critical exponents are plotted in Fig. 4.21. We note that the
large errors in the critical exponents by Gammel et al. (1991) are possibly due to
the fact that their sample used in the study is heavily twinned with an average twin
boundary separation £ < 103A. Since their estimates for the transition temperatures
are obtained from the Ohmic resistivity with very small current densities (10% to 10*
A/m?), and since the lower current limit imposed by the finite size effect is given by
Jo = (kTwm)/(£2®o) = 5 x 10" A/m? if Tpy = 74.0K for their H = 60 kOe data is
assumed (see also the discussion by Yeh et al. (1993a)), we speculate that their data
have been strongly limited by the finite size effect.

Furthermore, as listed in Table 4.2, our results are based on self-consistent anal-
yses of a much larger amount of experimental data, in sharp contrast to the very
limited experimental information by other groups. Based on the fact that our results
carry much smaller errors and the fact that consistent results have been obtained for
different magnetic fields, field orientations, samples and techniques, we conclude that
our work has provided the most important evidence — the universality, for a true
second-order phase transition. For more detailed discussions on various issues related

to the vortex transport properties, please see the review article by (Farrell, 1994).
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This Work Koch et al. (1989) | Gammel et al.
Olsson et al. (1991) (1991)
Experimental | DC AC AC DC & AC DC & AC
technique transport  susceptibility transport
# of magnetic 9 9 6 4 1 ) 0
fields measured
# of samples 3 2 1 1 1 1 0
measured (2 w/
controlled
defects)
# of magnetic 5 1 2 1 1 1 0
field orientations
# of isotherms ~40 ~ 80 ~ 80 ~20 ~20 ~15 0
per field
Total
isotherms > 5000 ~ 100 < 100
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Chapter 5 Bose-Glass Transition in Twinned

YBayCuzO; Single Crystals with Columnar Defects

As discussed in the previous chapter, a moderately increased amount of random
point defects pinning does not affect the nature of the vortex phase transition. The
enhancement of vortex pinning due to the addition of random point defects is also
limited. From simple topological considerations, one can imagine much improved
vortex pinning if cylindrically-shaped pinning sites, with a diameter comparable to
the size of the superconducting coherence length and a length comparable to that
of the flux lines, can be artificially created in the superconductors. The technique
available for this purpose is the high-energy heavy ion irradiation which has been
used to create amorphous columnar defects throughout the entire thickness of the
sample. Over one order of magnitude enhancement in the critical current density of
YBa;Cus07 single crystals subject to heavy-ion irradiation has been first reported
by Civale et al. (Civale et al., 1991). However, simple measurements of the critical
current densities alone do not provide insight into the nature of the vortex phases and
phase transitions in the presence of columnar defects. It is the goal of this chapter to

investigate these issues.

5.1 2D Boson Analogy

As illustrated in Fig.5.1, the columnar defects provide long pinning centers which
interact with a vortex along its entire length. Nelson and Vinokur (Nelson & Vinokur,
1992) have shown that the vortex system in the presence of columnar defects can be
mapped onto a two-dimensional interacting boson system.

Consider parallel columnar defects aligned with the c-axis of the sample, the

trajectories of the flux lines can be described by {rj(z)}, with r;(z) = (z;(2),y;(2))
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Figure 5.1: Illustration of vortices interacting with correlated columnar defects along
the c-axis of a superconductor.

and the vortex system can be described by a simple model free energy Fy for N flux
lines in an isotropic sample of thickness L (Nelson & Vinokur, 1992; Nelson & Seung,
1989),

dr,

gy 22/ (Jri(2) — x5 |)dz—|-2/ Up(ri(2))dz,

1#] J
(5.1)

:_glz/

where &) is the local tilt modulus, V(|r;(z)—r;(2)]|) is the interaction potential between
flux lines, and Up(r;) represents a z-independent random pinning potential. The

partition function is then
r;(L)=Pr;(0)

- NI Z [H/r ) r,(z)] exp(—BFn), (5.2)

where 8 = 1/(kpT), and 3" p means summing over all permutations.

Comparing Eqgs.(5.1) and (5.2) with the following partition function of interact-
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ing bosons in two dimensions with a random static potential Up (Feynman, 1965;

Feynman, 1972)

7z = ]—\1[7; [H /rpri(o) Dri(t)] exp (—;1{ / ﬁh]-'(t)dt)

:(0)

7 k2

(5.3)

2

+ ZZ V(I‘z(t) — I‘j(t)) + Z UD(I‘Z'),

#]

dri
dt

and F(t) = %Z

where r = (z,y), the two systems are isomorphic with the following analogies:

2D — boson Vortices

I3 kgT
h/(ksT) L

m &1

t z

The phase transitions in 2D boson system at 7" = 0 have been well established
(Fisher et al., 1989). Note that by following the above analogy, 7' = 0 corresponds to
an infinite sample thickness L in the vortex system. As illustrated in Fig.5.2, three
phases are expected in the vortex system with columnar defects: the Bose-glass phase
in which the vortices are localized at the vicinity of the columnar pins, the “super-
fluid” phase in which the flux lines are delocalized and hop freely from one columnar
pin to another, and the “Mott insulator” phase (which does not mean an electrically
insulating phase in the vortex system) when there is exactly one flux line localized
on every one of the columnar pins. By definition, the “Mott insulator” can occur
only when the number of vortices is the same as that of the columnar pins (n,:,),
i.e., when the applied field is the same as the matching field, By, which is defined
as Npin®o. Furthermore, although this phase may exist at low temperatures and for
B = B,, it could undergo a Mott-insulator to Bose-glass transition at a higher tem-

perature (Fisher et al., 1989), so that eventually all the high-temperature Bose-glass
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to superfluid transitions for all magnetic fields may belong to the same universality
class. The randomly distributed columnar defects also reduce the possibility of form-
ing a Mott-insulator phase because the latter requires commensurate vortex-column
registrations. We shall verify the nature of the vortex phase transition by considering

magnetic fields ranging from below the matching field to above the matching field.

5.2 Critical Scaling Hypothesis for a Bose-Glass
Transition

In the case that the density of vortices is smaller than that of the columnar defects
(or, equivalently, if the applied magnetic field H is smaller than the “matching field”
B,), it is argued that strong pinning of the artificially created columnar defects results
in an equivalent “Bose localization” effect on vortices at low temperatures. At high
temperatures, vortices could “hop” into neighboring empty columns via the formation
of “superkinks” (Nelson & Vinokur, 1992; Nelson & Vinokur, 1993), thereby resulting
in an entangled vortex liquid which resembles a superfluid state. On the other hand,
it B > B,, a Bose-glass to superfluid transition can still take place via dislocated
vortex “half-loops” (Fisher et al., 1989), as shown in Fig.5.3. The theoretically well-
defined Bose-glass transition differs from the vortex-glass transition for YBa,Cus0-
single crystals with random point defects in that the tilt modulus in the former is
infinite. Furthermore, for columnar defects along the sample ¢ axis, the Bose-glass
transition temperature (Tpg) is predicted to decrease with the increasing angle (6)
between the applied magnetic field and c-axis, in sharp contrast to the increasing
vortex-glass melting temperature (T3s) due to the sample anisotropy.

To find the Bose-glass to superfluid transition temperature (T5g) and the corre-
sponding critical exponents, we follow the discussion by Nelson and Vinokur that the

transverse and longitudinal correlation lengths of vortex dislocations diverge at T’zg
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(a)

(b)

(c)

Figure 5.2: Schematic illustration of vortex interaction with the columnar defects in
a superconductor. Following the 2D-boson analogy (see the text), there are three
expected phases: (a) the vortex liquid phase; (b) the Bose-glass phase; and (c) the
Mott insulator phase.
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Figure 5.3: Schematic illustrations of Bose-glass to superfluid transitions for (a) B <
B, via dislocated vortex loops, and (b) B > B, via dislocated vortex “half-loops”.
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with the following temperature dependence
§L ~ 1 =T/Tge|™, & ~[1—T/Tpa|™, (5.4)

where v, and vy are the transverse and longitudinal static exponent, respectively.
The dynamic exponent 2’ may be defined by 7 ~ ¢%', where 7 is the characteristic
thermal relaxation time for the transverse vortex fluctuations. Assuming v = (v,
and a (d' + 1)-dimensional phase transition with d’ = 2, the superfluid density scales

L&
&4

Note that Eq.(5.5) recovers the scaling relation p, ~ £27¢ for an isotropic correlation

length &, (T, H) = &(H)6, if vy =yy=v, 6 = |1 — (T/Ty(H))| and d = 3. Since

por 27 ~ g, (5.5)

the frequency scales as f ~ .fj_zl, the scaling relation for the resistivity becomes

pr~ Zi ~ 5“;1 ~ 5—“((—7/), 0= Il — T/TBgl. (5.6)
Ps f”
In general, the critical scaling form for the AC resistivity (p,c = [pac|e®?) in

an 1soiropic superconductor with columnar defects (anisotropic critical exponents) is
given by
Paclf3 T3 H) = 8O p(fE75 661" b1 816/ Do), (5.7)

where b ~ Hsinf, § is the angle between the direction of the columnar defect and
the magnetic field in an isotropic superconductor, and ®, is th flux quantum. We
have assumed that the induction B ~ H.

For a constant field H, and in the limit that § << 90°, Eq.(5.7) yields the following

frequency-dependent scaling relations for |pa.| and ¢,:

Ipac(ﬂ T, H)I ~ 5VL(ZI_<)I§:|:(]?)I9

¢p(f7 T? H) = %:t(f')? (58)

f fl1 = T/Tpe|™+%,
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where j, (¢4) and p_(¢_) are the universal scaling functions for the amplitude (phase)
at T > Tgg and T' < Tgg, respectively.
In the limit of f — 0, Eq.(5.7) yields the following angular dependence of the ac
resistivity:

Ipacl ~ 6+ 915 (0)), (5.9)

where 8 = sinf|1 — T/Tgg|"+(+9.

5.3 Anisotropic to Isotropic Scaling Transforma-
tion

The scaling analysis outlined above assumes an isotropic sample system with the
same effective mass along all principal crystalline axes. For HTS’s, the intrinsic
electronic anisotropy has to be accounted for in the critical scaling relations near the
Bose-glass transition. Here, we adopt the anisotropic to isotropic scaling approach
by Blatter et al. (Blatter et al., 1992; Blatter et al., 1994) which allows one to map
results obtained for isotropic superconductors to anisotropic materials in a simple and
direct way.

The scaling approach starts with the Gibbs free energy for an anisotropic super-

conductor (in the cgs units)

2

1
2m,

B? H-B

8 4

?

(5.10)

(E_Q__ Q_GAﬂ) 2

10z, ¢

3
G= [ [aw + ot >

where o and 3 are coefficients of the Ginzberg-Landau Hamiltonian, ¢(r) is the order
parameter, A is the vector potential, and B = V X A is the external magnetic field
and H is the microscopic magnetic field. The external field B is chosen to lie in the y-
z plane and encloses an angle § with the z axis (see Fig.5.1), and we also assume that
H ~ B for the field and temperature range of interest. This approximation generally
holds well for these extreme type-II superconductors at moderate temperatures and

for B >> H.. Here, the coordinate axes are chosen such that z-axis is along the
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a-axis, y-axis along the b-axis, and z-axis along the c-axis of the sample. Since these
oxide superconductors generally exhibit uniaxial symmetry, we choose m, = m, = m,
m; = M, and denote the mass anisotropy ratio by 2 = m/M < 1. It is worth noting
that for untwinned YBa,CusO~ single crystals, m, # m,. However, the difference is so
small that m, = my << m, is still a good approximation. Furthermore, for twinned
single crystals, the difference between m, and m, can be completely removed.

To transform the anisotropic Ginzburg-Landau expression in Eq.(5.10) to an
isotropic superconducting frame, we note that the anisotropic mass terms enter the
gauge-invariant gradient term. Therefore, we consider the following rescaling of the
coordinate axes

=T, y=9, z=¢z, (5.11)

(with “~” denoting the variables for the corresponding isotropic system), together

with a rescaling of the vector potential

A= (A, A, Al (5.12)

By using Eqs.(5.11) and (5.12), the anisotropy can be removed from the gradient
term and reintroduced in the magnetic energy term, so that the Gibbs free energy

becomes

1 h - 2e ~
g::/d3r |:a]’¢'|2+§}'¢|4+§;n—’('.—V—;A>¢

4

} +Gn (5.13)

where and the magnetic energy term G,, is defined as

1 B . B H, -
G, = g;/d% [(;Z—JFBZ) —2< —+ B.H. ||, (5.14)

and the magnetic field satisfies the following rescaling relation B = (B, /¢, B, /e, B,).

In general, it is not possible to remove the anisotropy in both the gradient term
and the magnetic energy term. But when the fluctuations in the magnetic field can be

neglected, the anisotropy in G, can also be removed by minimizing G,, with respect to
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B. In the field range of interest, the intervortex spacing a is much smaller compared
with the scale of fluctuations of the magnetic field A and therefore the field can be
considered as uniform.
Minimizing G, gives

B = (¢H,,cH,, H,), (5.15)

corresponding to B = H in the original system. Thus Eq.(5.15) becomes B =

~

eB;,eB,y, B,), or equivalently, B = 4B, with ¢4 defined by the following relation
Yy
€2 = cos*0 + e*sin’0. (5.16)

Based on this scaling approach, if we introduce columnar defects along the c-
axis of an anisotropic superconductor, and then transform the system to an isotropic

frame, we find that the transverse magnetic field component,

H =
= = sind, (5.17)
H

which is a direct measure of the vortex fluctuations in the isotropic frame, can be
related to the original sample coordinate (the anisotropic frame) by the following
scaling transformation:

H I esinb

H - \Vcos?0 + e2sin20 (5.18)

sinf =

In the isotropic frame, the critical scaling behavior of H, / H follows that of £
and {7“ by the relation
H,

—

~EET ~ 8O, (5.19)

where £ (=€) and E“(z §||/¢) are the transverse and longitudinal correlation lengths
in the isotropic frame. Consequently, the angular dependence of the ac resistivity in

an anisotropic superconductor can be expressed by

|0ac| ~ 6"+E=95.(8)], © = sind 574040 (5.20)
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in the limit of f — 0. As T — Tpg, the scaling hypothesis yields the power-law

dependence

pi o GE-010+0), (5.21)

5.4 Experimental Results & Data Analysis

5.4.1 Sample and AC Transport Measurements

Despite its sound theoretical foundation, experimental verification of a Bose-Glass
transition may be complicated by the presence of point defects or twin boundaries
which could compete with the effect of columnar defects on vortices. It is therefore
important to select superconducting single crystals with minimal defects and smaller
anisotropies before creating columnar defects in them. The YBay;CuzO~ single crystal
sample (# 4) with c-axis columnar defects was originally a dilutely twinned single
crystal with an average twin boundary separation of ~ 10 um.

The sample (#4) used for the heavy-ion irradiation is a YBay,CuzO7 single crystal
of dimensions 0.65 x 0.50 x 0.020 mm?®. The information of 0.9 GeV Pb ion irradiation
has been provided in Chapter 3. The fluence corresponds to a matching field B, ~ 10
kG and an averaging column separation = 490 A.

To study the frequency (f) dependent ac resistivity, four-probe ac transport mea-
surements are carried out by using the technique described in Chapter 3 and the
references therein. An HP4194 impedance analyzer is used to supply a uniform ac
current to the entire thickness of the sample through a series 1 k) noninductive
resistor. Since our sample resitance is only of the order of 10 mf} even at room tem-
perature, and our sample contact resistance is <~ 1 {2 at room temperature, the
current in the circuit can be maintained as a nearly constant value determined by
the 1 k) load resistor. As shown in the Ph.D. thesis by Reed ((1995)), the vari-
ations in the current due to slightly increased sample contact resistances at lower
temperatures are usually small in our measurements. The resulting sample voltage

is enhanced by an 80-dB low noise amplifier. Impedance versus frequency isotherms
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are taken in various applied DC magnetic fields with the field direction tilted at an
angle § from 0° to 90° relative to the c-axis of the sample. Each isotherm consists of
400 frequencies from 10? to 2.5x10° Hz. The temperature stability for each isotherm
is better than 10 mK. For three different magnetic fields H = 3,6, 15 kOe, two below
and one above the matching field B, = 10 KG, an average of 50 such isotherms are

taken in each field and at a given angle. The angular dependence is investigated at

§ =0,7.5°(9.4°),15° 22.5°,30°,45°,60°, 75°, and 90°.

5.4.2 6 < 30° — Bose-Glass Transition

Representative amplitude (|p,|) and phase(¢,) of the ac resistivity versus fre-
quency isotherms are shown in Figs. 5.4(a) and 5.5(a) for H = 3.0 kQOe, 0 = 7.5°,
and in Figs. 5.4(b) and 5.5(b) for H = 6.0 kOe, § = 22.5°. According to the scaling
relations in Eq.(5.8), we may define |p| = |pac|6™* and f = f6~?, where a = vi(z'—()
and b = v, 2. With these scaling relations, we find that |p..(f)| and ¢,(f) isotherms
for all data taken at H < B, and § < 30° can be simultaneously scaled into uni-
versal functions jy and ¢y with the same set of parameters ¢ = 1.1 = 0.1 and
b= 2.2+0.2, and with the Tga(H,0) value as a fitting parameter, as shown in the
insets of Figs. 5.4(a)-(b) and 5.5(a)-(b). In addition, since scaling analysis asserts
that |px] — f1-/¥N and ¢y — ¢, = I(1~ <) if f — oo, the data |5+ ~ fO° in the
insets of Fig.5.4 and the phase ¢. = 45° +5° in the insets of Fig.5.5 both confirm the
finding that (¢/2') = 1 — (a/b) =~ 0.5. This demonstration of universality provides
strong support for a second-order phase transition at Tgq.

The values of Tpe(H,0) have been determined to within 30 mK accuracy from
the above critical scaling analysis, and are shown in Fig.5.6 as a function of § and
for H = 3 and 6 kOe. We note that the drastic “cusp” feature at § = 0 is the
signature of the Bose-glass transition (Nelson & Vinokur, 1992; Nelson & Vinokur,
1993; Hwa et al., 1993), and is in sharp contrast to the smooth increase of the vortex-
glass melting temperature (T3) with increasing  in as-grown and proton-irradiated

YBa;Cus07 single crystals (Reed et al., 1993; Reed et al., 1992; Yeh et al., 1993a;
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Figure 5.4: Amplitude of the AC resistivity |pe.| vs. frequency (f) isotherms taken
at (a) H = 3.0 kOe, § = 7.5% (b) H = 6.0 kOe, 6 = 22.5°; and (c) H = 15.0 kOe,
§ = 15°. The arrows indicate the isotherms in the critical regime which are scaled into
universal functions |5+ (f)] in the insets by using Eq.(5.8). The temperature increment
in the critical regime is AT = 0.03 K. Note that the same critical exponents have

been used for all data taken at § < 30° to yield the same universal functions.
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Figure 5.5: Phase of the AC resistivity ¢, vs. frequency (f) isotherms taken at (a)
H = 3.0 kOe, 8 = 7.5° and (b) H = 6.0 kOe, § = 22.5°. The arrows indicate
the isotherms in the critical regime which are scaled into universal functions |@.(f)]
in the insets by using Eq.(5.8). The temperature increment in the critical regime is
AT =~ 0.03 K. Note that the same critical exponents have been used for all data
taken at § < 30° (including data for H = 15 kOe which is not shown) to yield the
same universal functions.
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Figure 5.6: The reduced Bose-glass transition temperature (Tsg/T.) for a YBa;CuzO-
single crystal with columnar defects (T, = 91.77 K) and the reduced vortex glass

temperature (Ths /7., thick solid line) for an as-grown YBa;CuzO- single crystal (T, =
92.95 K) are shown as functions of the angle (6).

e

Although the ratio of ({/2z’) & 0.5 has been obtained, additional information is
still needed in order to find the values for v, ¢ and 2’. If the Bose-glass phase were
compressible as has been suggested (Nelson & Vinokur, 1992; Nelson & Vinokur,
1993), so that the compression modulus ¢i; ~ (€4 /¢) ~ (€4 /€$) approaches a finite
value at Tpg, the necessary condition would be ( = d' = 2 (Fisher et al., 1989),
yielding the exponents v; &~ 0.5 and 2z’ = 4.0 as reported previously (Yeh et al.,
1993b). However, the value v, & 0.5 violates the theoretical constraint v, > (2/d') =
1 (Fisher et al., 1989; Chayes et al., 1986), thereby implying that the assumption
¢ = 2 is incorrect. In fact, theoretical evidence shows that ( — 1 can be realized

in the limit of a long-range Bose interaction (Fisher & Grinstein, 1988). Since the
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magnetic penetration depth (~ 1400A at T = 0) in our sample is much larger than the
separation of the columnar defects, it is not surprising that the vortex interaction is
long-range and that { may differ from 2 even if H < B,,. Recent numerical simulations
(Lee et al., 1993) have also shown evidences supportive of ¢ — 1

The angular dependence of the AC resistivity described in Eq.(5.20) adds an
additional scaling relation to determine the absolute values of {, v, and 2’. Figure
5.7 shows the real part of the resistivity versus temperature curves taken at various
angles for H = 6 kOe and f — 0. We find that for 8 < 30°, the p,.-vs.-T data at
various angles near Tpg(0) can be scaled into universal functions jx(0), as shown
in the inset of Fig.5.7 for both H = 3 and 6 kOe. The power-law dependence p4 ~
0% yields (2’ — ¢)/(1 + ¢) = 0.53 + 0.03. Knowing that (¢/z') = 0.50 + 0.03 and
b=vi2 =22+£02, weobtain ( =1.14+0.1, v, =1.040.1, and 2/ =2.2+0.2.

In the case of H = 15 kOe (H > B,) and § < 30°, the same scaling functions
|5+| and ¢, can be obtained with the same set of exponents v; = 1.0, ¢ ~ 1.1 and
z' ~ 2.2, as shown in the insets of Fig.5.4(c). The angular dependence of the phase
transition temperatures (which we also call Tg) is also similar to that for H < B,
and 6 < 30°, as shown in Fig.5.6. Since an effective Bose-glass to superfluid transition
is also possible for H > B,, via the dislocated vortex “half-loops” as described earlier,
we speculate that the critical phenomena observed for both H > B, and H < B,,

and for § < 30°, are governed by the same type of phase transitions.

5.4.3 6> 60° — Vortex-Glass Transition

Next, we consider the scaling behavior for § > 60°. For all three fields we find
that neither |p,c(f)| nor ¢,(f) isotherms at § > 60° can be scaled with the critical
exponents derived from the low-angle (§ < 30°) scaling analysis. Rather, different
scaling functions |5+| and ¢+ can be achieved for all data taken at 6 > 60° by using a
different set of exponents v, = v = v ~ 2/3 and 2 = 2’ &~ 3, which is consistent with
the three-dimensional XY-model predicted by Nelson and Vinokur ( 1993) for 6 — 90°

in systems with c-axis columnar defects. The difference between the scaling behavior
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Figure 5.7: The angular dependence of the resistivity Re[p,.] vs. temperature (T
curves at H = 6.0 kOe are shown for the YBay;CuzO7 single crystal with columnar
defects and for < 30°. The upper inset shows Re[p,.]-vs.-T for § > 45°. The lower
inset shows that p,.(7',6) data near Tsg(H, 6) can be scaled into universal functions
7+(0) by using Eq.(5.20).

for 0 < 30° and that for # > 60° can be further contrasted by considering the critical
phases ¢, at the transition temperatures. We find that for § > 60°, the critical phase
¢(T = Tyr) = 5(1 — 1) = 60° is consistent with z ~ 3.0 for the XY model (Reed
et al., 1993; Reed et al., 1992). In contrast, ¢.(T = Tpc) ~ 45° is found for all data
taken at # < 30°, as shown in the insets of Figs. 5.5(a)-(b). Furthermore, the phase
transition temperatures obtained for § > 60° (see Fig.5.6) are found to increase
with increasing 0, resembling the angular dependence in samples with point defects
and in sharp contrast to the decreasing Tgs with increasing § for data taken at
9 < 30°. It should be noted that for the data taken at an intermediate angle § = 45°
( between 30° and 60°), neither the Bose-glass nor the vortex-glass scaling relations
are applicable.

The differences in the angular-dependent transition temperatures between the
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data for § > 60° and those for § < 30° may be understood by the following argument.
At sufficiently small angles, columnar defects become less efficient in confining vortices
when the applied field is tilted away from the c axis, thereby resulting a decreasing
transition temperature Tge with increasing 6. On the other hand, at sufficiently high
angles intrinsic electronic anisotropies in YBa;Cu3O7 become dominant, giving rise

to an increasing Ths with increasing 6.

5.4.4 The H-T Phase Diagram

The anisotropic phase transitions for the sample with columnar defects are de-
lineated in the H vs. T phase diagram in Fig.5.8. For comparison, we also show
the anisotropic vortex-glass melting lines (Hyy,(T')) for = 0° and 90° in samples
with random point defects. At § < 30°, the Bose-glass to superfluid transition line
Hpg(0,T) moves to lower temperatures with increasing 6. In contrast, the effective
“vortex-glass” transition line at § > 60° (see the inset of Fig.5.8) not only shifts
towards higher temperatures with increasing @, but even shows an abrupt change of
slope at 8 = 90° when H > B,.

Furthermore, both the Bose-glass transition lines and the vortex-glass transition

lines are found to follow the empirical relation

219

T
Hyo(T,6) = HBGO,(O)ll—T , (5.22)

'
2y,

Hu(T,0) = HM0(9)|1—% (5.23)

where T, is the zero-field transition temperature and vy and 1} are the zero-field crit-
ical exponents for Bose-glass and vortex-glass transitions, respectively. As discussed
previously in Chapter 4, the v values for the vortex-glass transitions at all 8’s yield
vo = 0.65 &+ 0.05. On the other hand, for the Bose-glass transitions with 6 < 30°, we
find that vy = 0.5 £ 0.05.
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Figure 5.8: The low-angle (6 < 30°) H-vs.-T vortex phase diagram for a YBa,CuzO-
single crystal with columnar defects (7. = 91.77 K). The inset shows the high-angle
(0 > 60°) phase diagram. The thick solid lines denote the vortex-glass melting lines
Hyy(T) and Haro (T') for an as-grown YBa,CuzO7 single crystal (7, = 92.95 K), and
the thin solid lines are those for a YBa,CuzOy7 single crystal irradiated with 3 MeV
protons(1, = 91.62 K). The data for all samples have been scaled to the same T, for
comparison.

5.5 Discussions

5.5.1 Anisotropic Vortex Phase Diagram

From the vortex anisotropic phase diagram shown in Fig.5.6, the angle beyond
which the Bose-glass transition breaks down is approximately 30°, known as the
accommodation angle (Nelson & Vinokur, 1993). To facilitate a better understanding
of the effects of the transverse fields (H; = Hsin(0))) on the vortex phase transition,
we first employ the scaling transformations described in section 5.3 to remove the
intrinsic anisotropy in Y Ba;CusO; and plot the rescaled transition temperature (T')

versus the effective angle (@) for the rescaled isotropic superconductor. As shown
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earlier in Eq.(5.18), the rescaled angle 9 is given by

sinb

H esing
H \Vc0s20 + e2s51n20

The rescaled transition temperature (T') can be obtained by rewriting Eq.(5.22) for

the rescaled isotropic superconductor for a fixed field Hpg(T), i.e.,

~ 121y 2uy

-7

c

T
= EQHBGO(O) ’1 et

Hpe = Hpeo 7

(5.24)

Since Hpg/Hpeo(0) = |1—(T'/T.)|**, the rescaled transition temperature is therefore

related to T' and 6 by the following expression:

~ T-T,
Fer, .
T (Veor8 1 2sin?0)1/ )

(5.25)

By replacing BG with VG and v with v§ in Eq.(5.25), we can obtain the rescaled
vortex-glass transition temperatures. The resulting T —vs—(ﬁ JH ) for the Bose-glass
transition is plotted in Fig.5.9(a) for different fields. The resulting T-vs-(H, /H) for
the Vortex-glass transition in the as-grown twinned crystal (Sample #1) is plotted
in Fig.5.9(b) for H = 6.0 kOe. We note that for all fields, the Bose-glass transition

temperatures ng(g) follow the critical scaling relation:
[Tac(0°) — Tag(8)] o (sind) 700, (5.26)

Using Eq.(5.26), we find that the theoretical fitting to the T-vs-(sinf) data is con-
sistent with a power r(i-_l—c—) ~ 0.45, once again confirming the self-consistency of our

Bose-glass critical scaling analysis.

5.5.2 Critical Exponents for Bose-Glass Transition

One of our key results, { < d = 2, suggests that the compression modulus

e ~ 4/ £y diverges at Tgg, and that the Bose interaction is long ranged and the



126

1.00
. «  H=3.0kOe |
0.99 0 . R . ]
O ° 6.0kOe °
—
T 098]
L
097}
0.96 L~ : : '
-0.10 -0.05 0 0.05 0.10
H;/ H
1.00
|
0.99 |
(@’
= . ]
~ 098/ ]
4 et s 1TOOKOe
0.97 |
0.96 - ' ‘
-0.50 -0.25 0 025 0.50
H,;/ H

Figure 5.9: The scaled phase diagram T-vs.-(H, /H) obtained (a) for the Bose-glass
transitions by using Eqgs. (5.18) and (5.25) for different magnetic fields H, where the
solid lines are the fitting curves for the low angle data using Eq. (5.26) and a power
1/{(vi(1 + () ~ 0.45, and (b) for the vortex-glass transitions (see Fig. 4.7 for the
original anisotropic phase diagram) using the same approach.
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Bose-glass incompressible. However, it is likely that ¢ is a parameter dependent on
both the density of columnar defects and the strength of the other types of defects.
We speculate that a compressible Bose-glass transition with { = 2 may be achieved
in superconducting samples nearly free of point defects and twin boundaries and
with columnar defects of separations greater than the magnetic penetration depth.
However, due to the long magnetic penetration depth in all high-temperature su-
perconductors, the requirement of column separations greater than 1400A may cast
additional complications due to the potential existence of other types of defects (e.g.,
oxygen vacancies) that may become more dominant because of their higher densities
than the columnar defects.

It is worth noting another beautiful demonstration of the Bose-glass universality in
a recent work (Reed et al., 1995) on YBa,;CusO7 single crystals with c-axis columnar
defects and B; = 10 kG. That work involves a completely different experimental
technique, the third-harmonic transmissivity. The critical scaling analysis on the data
thus taken yields essentially identical critical exponents v, = 0.9£0.1, 1) = 1.240.2,
and 2z’ = 2.3 £ 0.3 within experimental errors, once again supporting the universality
of the Bose-glass transition in vortex systems with parallel columnar defects.

In summary, in this chapter we have demonstrated the experimental evidence
of a second-order Bose-glass transition in YBay;Cu3O7 single crystals with parallel
columnar defects by showing universal critical scaling of frequency-dependent AC
resistivity data from 102 to 2 x 108 Hz. The signature of the transition, that the Bose-
glass transition temperature Tps decreases with the increasing angle (8) between
the applied magnetic field and the c-axis, has been confirmed and is in sharp contrast
to the smooth increase of the vortex-glass temperature (Tyr). For § < 30°, the
static and dynamic exponents v; ~ 1.0, = (v, = 1.1 and 2’ = 2.2 are found to be
independent of the magnitude and orientation of the magnetic field. On the other
hand, for § > 60°, the vortex phase transitions become consistent with the vortex-
glass transitions. The different set of critical exponents distinguishes the Bose-glass
transition from the universality class of the vortex-glass transition, and the diverging

compression modulus at Tpq suggests an incompressible Bose glass with long-range
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interaction at temperatures below Tzg.
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Chapter 6 Vortex Transport Properties of
Untwinned Y Ba,Cu3O; Single Crystals

The experimental investigations presented in the previous chapters have shown
that large thermal and disorder fluctuations in high-temperature superconductors re-
sult in various universality classes of second-order vortex-solid to liquid transitions.
Depending on the nature of the static disorder, such vortex phase transitions can
be vortex-glass transitions for superconductors with random point defects and dilute
twin boundaries, or Bose-glass transitions with correlated columnar defects. To fur-
ther explore the interplay between vortex pinning and thermodynamic vortex phase
transitions, it is necessary to study the vortex properties in the weak pinning limit of
“clean” superconductors with minimal structural defects. In this chapter, we present
our investigations on the vortex transport properties of untwinned YBa;CuzO~ single
crystals.

One of the most important issues to be explored in clean type-II superconductors
is the nature of the vortex-solid melting transition. Balents and Nelson have pointed
out that renormalization group analysis for type-II superconductors which are free
of pinning disorder yields a weak first-order melting transition due to the thermal
fluctuations (Brezin et al., 1985). Recent theoretical work using Monte Carlo sim-
ulations (Hetzel et al., 1992) has also provided convincing evidence for a first-order
vortex-solid melting transition in high-temperature superconductors free of pinning by
demonstrating hysteretic behavior of the internal energy. However, the only nonequiv-
ocal experimental proof for a first-order phase transition relies on the observation
of a discontinuous jump in relevant thermodynamic quantities such as the specific
heat or magnetization at the transition temperature. Unfortunately, experimental
measurements of these thermodynamic quantities were found to be technically very

difficult because of the smallness (about one part in a million) of the vortex specific
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heat relative to the contributions from electrons and phonons in the superconductor.
In addition, recent state-of-the-art magnetization measurements on an untwinned
YBayCu3zO7 single crystal by Farrell et al. (Farrell et al., 1995) have also shown that
the latent heat associated with a first-order vortex-solid melting transition, if exists,
is at least two orders of magnitude smaller than that predicted by the Monte Carlo
simulations.

Due to the extreme difficulties in the thermodynamic measurements, there have
been other experimental attempts to resolve the order of the vortex-solid melting
transition in “clean” high-temperature superconductors. For instance, the observation
of resistive hysteresis (Safar et al., 1992a; Safar et al., 1992b; Kwok et al., 1994a) in
the vortex state of untwinned YBa,Cuz O single crystals were initially viewed as the
experimental evidence for the first-order transition. However, as the issue was further
scrutinized, it became questionable whether a non-thermodynamic quantity such as
the resistivity should follow the same hysteretic behavior as the internal energy. In this
chapter, rather than trying to conclude whether the vortex-solid melting transition is
first-order, we aim at understanding the physical origin of the resistive hysteresis in the
vortex state. A current-induced non-equilibrium effect is proposed based on detailed
investigations of the resistive hysteresis as a function of time, frequency, and magnetic
field orientation. The experimental results suggest that the resistive hysteresis alone
is neither a sufficient nor a necessary condition for a first-order phase transition. In
addition, another current-induced phenomenon, the nonlinear resistive “peak effect”

below the vortex-solid melting transition temperature, is also investigated extensively.

6.1 Sample, Experimental Setups and Techniques

Before going into details of our experimental investigations of the issues stated
above, we first describe the sample characterizations and the experimental techniques.
The sample (#5) studied in this work is an untwinned YBa,Cu3O7 single crystal
with dimensions of 0.5mm X 0.5mm x 20um. The high quality of the sample is
manifested by the high superconducting transition temperature 7. = 93.44 + 0.03
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K and the low normal-state a-axis resistivity p, = 25ufd-cm at T,. This sample is
subsequently used for 3.0 MeV protons with a fluence of 1.5 x 10'® protons/cm?, and
we denote the sample after the irradiation as Sample #6. For more information on
the comparison of these two samples with other samples investigated in the previous
chapters, see Table 3.3.

The experimental techniques used in this investigation involve three types of elec-
trical transport measurements performed with the use of a standard four-terminal
method: the linear resistivity (p) as a function of the temperature (T'), the AC
impedance as a function of the applied current frequency (f) from 100 Hz to 1 MHz,
and the DC current-voltage characteristics. Both AC and DC transport techniques
have been given in Chapter 3. Described in this section are the lock-in technique and
an improved temperature control technique for measuring the linear resistivity near
the vortex-solid melting transition.

As demonstrated in the first observation of resistive hysteresis by Safar et al.
(Safar et al., 1992a; Safar et al., 1992b), the hysteretic behavior occurs within a
very narrow temperature range, no more than a few tens of millikelvins, near the
vortex-solid melting transition temperature. In addition, the hysteretic behavior only
appears with a very small applied current, giving rise to a typical voltage signal of a
few tens of nanovolts for untwinned YBa,Cu3O7 single crystals. Therefore, a voltage
sensitivity of 1 nV and a temperature stability of 1 mK are essential in order to observe
the resistive hysteretic behavior. Described below are the experimental setups and

techniques used to achieve such voltage sensitivity and temperature stability.

6.1.1 Low-Frequency Resistivity Measurements

To achieve nanovolt sensitivity, the lock-in technique is used. As shown in Fig. 6.1
for the block diagram of the experimental set-up, two EG&G 5210 lock-in amplifiers
are used. An AC current at 27 Hz supplied by one of the amplifiers is applied
directly to the sample. A noninductive load resistor with a resistance of Ry = 10 kQ

(compared with the sample contact resistances of ~ 0.1 Q at room temperature) is
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connected in series with the sample to ensure a constant current. The sample voltage
signal (f/s) is measured by the same lock-in amplifier phase referenced to the drive
current. The voltage signal of the load resistor (V%) is measured by the other lock-in
amplifier with the same reference frequency to yield the applied current to the sample.
The sample resistance is therefore

~

Re[V]

- (Re[VL)/RL)’ (6-1)

where “Re” refers to the real part signal.

To obtain the best sensitivity, voltage signals are measured using differential in-
put connections with a floating (15§2) ground, and the electrical connections are all
made via BNC coaxial cables. In addition, the current and voltage coaxial cables
are twisted in pairs to minimize any possible loops which may result in magnetic
noise pickups. Cautions in electrical shieldings are taken to eliminate ground loops.
However, even with all these efforts, noises of a few tens of nanovolts or larger still
exist particularly during the day time. After adding a TOPAZ power conditioner to
the power line, these random noises were greatly suppressed and a voltage resolution
of ~ 2nV was achieved, which is essentially to the instrumental limit (with a quoted

voltage resolution of ~ 10nV') of the lock-in amplifiers.

6.1.2 Temperature Control with Millikelvin Resolutions

For most of the experiments discussed in the previous chapters, a temperature
stability of £10mK at temperatures around 90 K is sufficient and can be achieved with
the commercial LakeShore temperature controllers DRC-91 and DRC-93C, provided
that proper designs for the cryogenic insert are made as discussed in Chapter 3.

However, to achieve the required stability of ~1 mK for measurements on un-
twinned YBa;Cu307 single crystals, additional modifications to the sample stage are
needed. As shown in Fig. 6.2, on a sapphire substrate, the sample and a carbon-glass
resistance temperature sensor are mounted next to each other (about 2 mm apart) to

minimize the temperature gradient between the sample and the sensor. A ring heater
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Figure 6.1: The block diagram of the experimental setup for low-frequency resistivity
measurements using the lock-in technique.
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Figure 6.2: The sample stage specially designed for achieving mK temperature sta-
bility. (a) The side view; (b) The top view.
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made of a twisted heating wire is varnished to the edge of the sapphire for uniform
heating. The sapphire is in good thermal contact with a copper block to which a
constant heating power is supplied through the heating foil. About one inch of each
electrical lead to either the sensor or the sample is varnished to the copper block for

proper heat sinking.

§ranmmmanaeaaa Heater Current Output
i :
2,
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—
s
o
ot
P
Temperature Sensor
Op-amp
Current Source & . Ring Heater
I 'og"—", .......................................
.—1> ;\ H
\ 3 Keithley 220
i current source
Computer
Interface Module
: Keithley 182
—+ nanovoltmeter
IBM PS2/286 : :
Computer N oot :

Temperature Measurement

Figure 6.3: The block diagram of the experimental setup for temperature measure-
ments. Two current sources are used to achieve a resolution of 0.2 uA in the total
current output to the ring heater.

In addition to an improved design for the sample stage, the following two condi-
tions have to be satisfied to achieve millikelvin stability for the temperature range of
interest (80 —100K’): The carbon-glass sensor resistance has to be measured to an ac-
curacy of 1078, and the current passing through the ring heater has to be adjustable

with an accuracy of 1077 A. Since the commercial LakeShore DRC temperature con-
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trollers do not have sufficient resolutions in either the sensor resistance measurement
or the heater current output, different electronic instruments are used as shown in
Fig. 6.3. The sensor resistance is measured via the standard four-point method as
shown by the “Temperature Measurement” block in Fig. 6.3. With a Keithley 220
current source and a Keithley 182 nanovoltmeter, an accuracy in the sensor resis-
tance reading, ~ 2 x 107°Q), is achieved. In addition, the offset of the carbon-glass
sensor resistance in magnetic fields has been calibrated using a capacitance sensor.
The output current to the ring heater is supplied by a home-made op-amp current
source and a Keithley 220 current source, as shown by the “Heater Current Output”
block in Fig. 6.3. Two current sources are used, one for the coarse control of the
temperature and the other for the fine tuning. The electronics layout of the op-amp
current source used for fine-tuning the temperature is shown in Fig. 6.4. The input
voltage (Vi) is provided by an analog signal from the computer interface module and
the output current in the ideal case is I,us = kVi,, where k = (Ry/R3) x R;. The
actual coefficient k with the load resistor of the ring heater is obtained by measuring
the current-voltage characteristics of the op-amp current source. The current output
(11) of the op-amp current source is adjustable within a few tens of microamperes on
a scale of a few tens of milliamperes. When a smaller variation in the total current is
necessary, I3 is added to I; which has a resolution of 0.2uA on the scale of 200uA.

The central unit of the above experimental setup is the computer, which performs
the temperature control by reading the sample temperature (T'), comparing T with
the set point temperature Tyesp: and calculating the output heating power based on

the idea of conventional proportional-integral (PI) control:
¢
u(t) = gAe(t) + 7 / Ae(t)dt!, (6.2)
0

where u(t) is the heater power output at time ¢, ¢ and 7 are the controller gain and
reset, respectively, and Ae(t) is the difference between the set point temperature Tsetpt
and the actual sample temperature T" at time ¢, i.e., Ae(t) = Tsetpe — T(t). In reality,

the sample temperatures are measured at a series of sampling times #;, YK S
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Figure 6.4: The electronics layout for (a) the op-amp current source, and (b) its power
supply.
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with a time interval At between two consecutive times. Converting Eq.(6.2) into its

discrete form, we obtain

u, = gAe, + T'Z Ae,, (6.3)

1=0

where Ae, = Tsetpe — T'(1,) and 7' = 7A¢. Similarly, the heater power at ,_; is

n—1

Un—1 = gAe,_; + 7 Z Ae,_q. (6.4)

=0

From Eqgs.(6.3) and (6.4), an iteration relation between u, and u,_; can be expressed

as

Up = Un_y + g(Ae, — Aeny) + 7' Aey, (6.5)

which yields the relation for the total current output I,,:
I2=1', +G(Ae, — Aen_y) + TAe,, (6.6)

because the heating power u,, is proportional to the square of the total current output
at tn, In = I1n + I, to the heater, with I, and I, being the current outputs of the
coarse and fine controls at ¢,. Here, G and 7 are the normalized gain and reset with
the unit of A*/K, and their values are obtained from trial-and-error. For simplicity,

I and Iy, are calculated with the following rules:

o if I, — I,.1< 100HA, Iy, = I, — [n—-l, Iln = Il,n—l;

e otherwise, Ipp, = I, — I = I, — k(Vin)n.

Typical values of k, G, T and the voltage supply V,_ = V, — V_ are listed in Table
6.1.

This control process results in a temperature stability better than +1.0 mK over
a time scale of approximately two to three minutes, as shown in Fig. 6.5. A possible
constant offset between the set point and the real temperature has been considered
in the computer program, so that the performance of the temperature control is not

affected as long as the real temperature is stable within the experimental time scale.
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Table 6.1: Experimental Parameters (k, G, 7 and V,_) for the Temperature Control

k G T V,_
@) (A*/K) (4%/K) (V)

1.070 2.0 x10°° 1.0 x 10™° 31.5

6.2 Resistive Hysteresis in the Vortex State of
Untwinned YBayCu3O; Single Crystals

Let us now return to the issue regarding whether it is justified to interpret the
resistive hysteresis as an experimental evidence for a first-order vortex-solid melting
transition. Figure 6.6 shows the resistive hysteresis data taken by Safar et al. (Safar
et al., 1992a) on an untwinned Y Ba,;CusOr single crystal at H = 60 kOe. The hys-
teretic behavior had been once regarded as the evidence for a first-order vortex-solid
melting transition. However, if the resistive hysteresis were indeed associated with the
occurrence of a first-order phase transition, one would expect partial hysteresis loops
upon partial heating and cooling cycles, due to the presence of a finite latent heat and
a finite solidification time. Furthermore, if the temperature width of the hysteresis
ATy, were indeed proportional to the latent heat as suggested (Geshkenbein et al.,
1993), one would expect ATy, in anisotropic YBay;Cuz O single crystals to increase
with increasing angle () between the applied magnetic field and the crystalline c-axis,
because the melting temperature (Ths) and therefore the latent heat increases with
9. However, none of these crucial tests had been conducted prior to our work (Jiang
et al., 1994). In the following, we shall see that the experimental results contradict

the properties expected for a first-order related hysteretic behavior.
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Figure 6.5: The temperature (T') of the sample as a function of time (2).

6.2.1 Experimental Results and Discussions

As mentioned in the previous section, three types of electrical transport measure-
ments have been conducted for this investigation. The first measurement is that of
the linear resistivity (p) as a function of the temperature (T') by using the lock-in
technique with four different current densities of 0.27, 2.70, 9.99 and 16.55 A /cm? at
27 Hz. The voltage resolution for these measurements is ~ 2 nV, and the temperature
stability is within 1 mK, as detailed in the previous section. The second experi-
ment involves measuring isotherms of the AC impedance as a function of the applied
current frequency (f), from 100 Hz to 1 MHz. The third experiment measures DC
current-voltage characteristics. All measurements are performed in applied magnetic
fields (H) from 1 to 90 kOe and for angles (6) from 0° to 90°. The applied current

density J is always transverse to H and J L é.

Hysteresis behavior is observed in the p-vs.-T measurements of our sample for
H > 10 kOe and 6 < 90°. Shown in Figs.6.7(a) and 6.7(b) are the representative
data taken at H = 50 and 70 kOe and for § = 0°. At each constant magnetic
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Figure 6.6: Hysteresis behavior observed by Safar et al. in normalized linear resis-
tance (R/Ry) versus temperature T' for H = 60 kOe, near the vortex-solid melting
transition of an untwinned YBa;CusO single crystal. (After reference (Safar et al.,
1992a).)

field, the temperature is ramped in steps of 5 mK. At each step, the temperature is
monitored for ~ 3 min to ensure the temperature stability before the data is taken.
The hysteresis width ATy, for a given H and 6 is defined as the temperature width
at the top of the resistive loop. The magnetic field dependence of ATy, for H | ¢is
shown in the inset of Fig. 6.7(b). A peak in AT}, is found at ~ 70 kOe, consistent
with previous reports by Safar et al. (1992a; 1992b). However, we notice that the
hysteretic behavior in our system appears to be more pronounced than that reported

by Safar et al. (Safar et al., 1992a).

Metastability and Time Dependence

To investigate whether the resistive hysteresis is directly associated with the latent
heat of a first-order melting transition, consider a hysteresis loop A — B — ' —
A" — B’ — (' — A arising from superheating and supercooling vortices so that the
bulk melting temperature Tjs is between 1’4 and Tg, as shown schematically in the
inset of Fig. 6.8. If the hysteresis width is comparable to the latent heat and is due to

superheating or supercooling, as suggested by Hetzel et al. (1992) and Geshkenbein
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the temperature width of the hysteresis ATy, as a function of the magnetic field H.



143
et al., (1993), then a partial heating and cooling cycle which follows the history of
A = B — C — A would result in a subloop indicated by the dashed line. The reason
is during the cooling process from T to T4, the liquid regions have to dissipate
excess latent heat before complete solidification. Therefore the resistivity would not
immediately reduce to that of the heating process A — B. Similarly, for a partial
cooling and heating cycle following the history of A’ - B’ — C' — A’, a subloop
indicated by the dashed line is expected, because once some liquid regions solidified,
they would not melt immediately upon the heating process B’ — C’. However, our
experimental data for all H# and § do not show any evidence of subloops, as exemplified

in Fig. 6.8 for H = 50 kOe and 6 = 0°.
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Figure 6.8: History and time-dependence of the resistivity hysteresis. The solid curves
are the experimental data given in Fig. 6.7(a), and the data points shown are taken
for partial heating and cooling cycles. The inset is a schematic hysteresis and the
corresponding subloops based on the assumption of a first-order phase transition.

Next we consider the time dependence of the hysteresis. If the hysteresis is as-

sociated with the conventional superheating and supercooling, when the system is
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warmed up from T4 to T and kept at Tp for a sufficiently long time, a larger area
of the vortex-solid melts, so that the resistivity at T increases with increasing time.
Similarly, if one follows the supercooling curve A’ — B’ and keeps the system at Tp
for a long time, the resistivity decreases with increasing time because larger regions of
the liquid solidify. Similar time-dependent resistivity is also expected for a “first-order
glass transition” in systems with a broad distribution of metastable states (Geshken-
bein et al., 1993), because the longer vortices stay in the glass state, the lower-energy
metastable states they fall into, giving rise to smaller resistivity with increasing time.
However, all experimental data taken at 75 and Tg: for various scans and with wait
times ranging from 1 to 10® sec show no visible changes in the resistivity. The lack
of time-dependence again suggests that the hysteresis is not directly related to the
latent heat. It is worth noting that a weakly time-dependent c-azis resistive hysteresis
has been reported previously (Charalambous et al., 1993) on a twinned YBa;CuzO7
single crystal with a different experimental configuration of J || ¢ and H || ab-plane.
The difference in the samples (a twinned crystal by Charalambous et al. (1993) vs.
an untwinned crystal in this work), as well as the complications involved in the c-axis
conduction of the anisotropic superconducting system, make it difficult to directly
compare the observation by Charalambous et al. (1993) with those described in this
work.

One possible explanation for the absence of subloops and time dependence could
be that the hysteresis width is not directly proportional to the latent heat and the
latent heat associated with the first-order vortex-solid melting may be so small that its
effect is hard to be observed experimentally. In that case, the resistive hysteresis could
be due to effectively overheating the vortex-liquid with an applied current during the
cooling cycle, so that vortices “supercooled” to a temperature below the first-order
melting transition temperature, as suggested by Koshelov and Vinokur ((Koshelov
& Vinokur, 1994). However, this assumption would have led to a hysteresis width
independent of the orientation of the applied field (Vinokur, private communications),
which is inconsistent with the distinct angular dependence of the hysteresis observed

in our experiments which is detailed below. Thus, to our knowledge, none of the
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theoretical works by Hetzel et al. (1992), Geshkenbein et al. (1993) and Koshelov and
Vinokur (1994) can conclusively address the issue of first-order phase transtions in a

clean vortex system.

Angular Dependence

In addition to investigating the subloops and time dependence, it is also important
to understand the anisotropic behavior of the resistive hysteresis. According to the
first-order glass transition model (Geshkenbein et al., 1993), the latent heat absorbed
during the melting process is proportional to Tas. Since Ty increases with increasing
6 in YBayCusO7 single crystals, one expects ATj, to also increase with 8 if AT, is
proportional to the latent heat. However, as shown in Fig. 6.9, ATy, — 0 as 8 — 90°,
contrary to the expected increasing ATy,(0). Such angular dependence cannot be

straightforwardly explained by the first-order melting model.
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Figure 6.9: The angular dependence of the resistive hysteresis width ATj,(6) and the
melting temperature Tys(0) for H = 50 kOe. The dotted line is the theoretical fitting

for the angular dependent ATy,(6) by using Eq.(6.9), and the dashed line is the fitting
for the angular dependent T(6) by using Eq.(6.10).
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Frequency Dependence

To find out whether pinning is responsible for the above experimental observation,
we perform frequency dependent measurements of ATy, by applying AC transport
currents to the sample. Figure 6.10 shows AT,-vs.-f data for § = 0° and H = 50
and 70 kOe. We note that the data does not follow the typical frequency dependence
for a vortex energy barrier U ~ kgT'In[1/(27 f7)], if ATy, ox U is assumed, and 7 is
a characteristic relaxation time (van der Beek et al., 1993). Instead, ATy, is nearly
independent of the frequency up to f ~ 3 x 10? Hz and then decreases rapidly until
f ~ 106 Hz.
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Figure 6.10: The frequency dependence of the hysteresis width ATp,(f) for 6 = 0°,
H = 50 and 70 kOe.

Current Voltage Characteristics for H| c—axis

Another important issue to be addressed is the sharpness of the resistive transition.
We find that although the resistive transition for # = 0° and H > 10 kOe is always
very sharp, typically within < 107! K, the linear resistivity near the onset becomes

more gradual with increasing §. In particular, for data taken at € = 90° and for all
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fields, the onset of resistivity is such that the current-voltage characteristics follow the
critical scaling behavior for a second-order XY-like transition (Yeh et al., 1993a; Reed
et al., 1993), consistent with recent experimental observation (Kwok et al., 1994b)

and the theoretical interpretation of a smectic crystal to vortex-liquid transition near

6 ~ 90° (Balents & Nelson, 1994).

6.2.2 Possible Origin of the Hysteresis—Current-Induced
Non-Equilibrium Effect

In view of all the experimental results given above, we propose a current-induced
non-equilibrium effect as a possible scenario for the occurrence of resistive hysteresis.
Suppose that the untwinned samples are nearly free of defects so that the pinning
potential (Up) is less significant than the elastic energy near the vortex-solid melting
temperature Tps. As the sample is cooled down from the vortex-liquid state and
a current is applied for resistive measurements, vortices are continuously driven by
the Lorentz force until the local shear elastic modulus cgg becomes finite. The shear
energy per flux line below Ts can be expressed by Us = ces€2L, (Geshkenbein et al.,
1993), where cgg is the shear modulus, £ the superconducting coherence length, and
L. the longitudinal vortex correlation length. We note that cgs = 0 at Ty, although
the total elastic energy is still finite due to the finite tilt energy (css # 0). This
definition is different from the conventional one (Brandt, 1977) which asserts cgg # 0
until Ho(T'), so that the presence of a vortex-liquid state is implicitly neglected.
Since vortices are moving with an initial velocity v upon cooling, where v « J is the
flux-flow velocity, the onset of finite cgg would not be sufficient to impede the vortex
motion immediately. Thus, the system “supercools” until U, exceeds the work (W)

done by the Lorentz force. That is,
Us = CGGéELc ~W = (J — Jc)¢0§ch at T = (TM — AT[Z,), (67)

where ®q is the flux quantum, and J, is the critical current density. Once U, > W, the
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resistivity begins to drop precipitously. On the other hand, if the system is warmed
up from the vortex-solid state, the initial vortex velocity is smaller than the flux-flow
velocity, so that the resistivity (which is proportional to v) increases smoothly and

stays below that of the cooling curve until U, — 0.

Field and Angular Dependence

To test our scenario quantitatively, consider the following expression for the shear

modulus

ces(T < Tar, H) = coo(H) [1 — (T/Tra(H))]™,, (6-8)

where v; > 0 so that cgs = 0 at Ty, and cd5(H) as well as v, are to be determined

empirically. Thus, ATy, can be derived from Eqs.(6.7) and (6.8), which yields:

1/ve
I/ — Je(6))% JCW‘I’O} . (6.9

ATyp(H,6) = Tu(H, ‘9){ a(H, O)E,

To obtain the angular dependent quantities Ty (H, 8), &;(Tar(H, 0)) and c3(H, 8),
let us first consider the empirical relation Hp(T) = Hy|1 — (T/T.)|**. Combining
this temperature dependence with the anisotropic property Has(8) = ;' Hpr(0°)
(Blatter et al., 1994), we obtain

Tn(H,0) = T,[1 — (Heqg/HY)Y @), (6.10)

Here £g = Vcos? 0 + 2 sin? 0 and =2 = 60 is the mass anisotropy ratio (Beck et al.,
1992). Similarly, since £2(T') = £2(0)|1 — (T/T.)|™!, we can employ Eq. 6.10 to yield

the angular dependence for &;:

H{io) —1/(4w)

&(Tu(H, 0)) = £5(0) (@ (6.11)

The angular dependence of ¢ is given by the hard-axis shear modulus of the vortex-
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lattice (Kogan & Campbell, 1989; Blatter et al., 1992; Blatter et al., 1994)

c26(H’ ‘9) = 651086(H7 00)7 (612)

because J L H and J 1 ¢ for all 8 so that the Lorentz force is always along the hard
axis. By inputting Eqgs. (6.10) to (6.12) into Eq. (6.9) and using the approximation
J.(0) = €;1J.(0°), Eq. (6.9) can be expressed for § = 0° as the following:

_ o 1/vs
ATy (H,0°) = Tos(H, 0°) {686(15{00)?:((%3](? ) } . (6.13)
For a constant field Hy, Eq. (6.9) yields:
— °)/€6)|®Po e
T(010) = Tul O e ey | - 9

By simultaneously applying Eqs.(6.13) and (6.14) to the ATp,-vs.-H data for
0 = 0°, and the ATy-vs.-0 data for H = 50 kOe, we obtain the fitting parame-
ter v, =~ 1.3 and an empirical functional form for c2;(H,0°) shown in the inset of Fig.
6.11 which satisfies both the field and angular dependence of AT,,. The resulting
curves of ATy, (0 = 0°)-vs.-H and ATy,(H = 50kOe)-vs.-0 are shown by the solid
line in Fig. 6.11 and the dotted curve in Fig. 6.9, respectively. Both semi-empirical
fittings are in good agreement with our data. We note that for H < 70 kG, AT,
increases with H, indicating a decreasing c3g(H,0°) which is consistent with a de-
creasing superconducting order parameter and therefore smaller elasticity (Brandst,
1977). However, our observation of decreasing AT, for H > 70 kG and the report
by Safar et al. (1992a; 1992b) of ATy, — 0 at H >~ 100 kG suggest an increase in
either ¢gg or J, above H ~ 100 kG. This finding may be attributed to the increasing
importance of pinning when the flux line separation in higher fields becomes compa-
rable to the average distance between point defects (Safar et al., 1992a; Safar et al.,
1992b). However, this issue still awaits further theoretical investigations.

The input parameters for the fitting curves in Figs. 6.9 and 6.11 are summa-
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Figure 6.11: The theoretical fitting for the ATy, (H,0°)-vs.-H data with the use of
Eq.(6.9) is represented by the solid line. The inset shows the fitting curve of ¢24(H, 0°)-
vs.-H.

rized in Table 6.2, where Hy; and v are obtained from fitting the melting transition
temperatures (Th) as a function of the magnetic field, £,(0) = 20A is the typical
value for the superconducting coherence length in the ab-plane for YBay;Cu307, and
Jo(0%7¢) = 0.2J with J = 0.27 A/cm? the applied current density is an approximation

for a weak pinning system.

Current Dependence

Another stringent test for our model is to consider the current dependence of
ATy,. If the applied current density is too high, vortex motion occurs well below the
thermodynamic melting temperature Tas. Therefore the condition U, ~ W in Eq.(6.7)
cannot be satisfied near Ty, the resistive transition broadens and hysteresis vanishes.
On the other hand, if the applied current density is so small that (J — J.)®¢ < 3&s,
then ATy, — 0 according to Eq.(6.9). It is therefore not surprising that the anisotropic
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Table 6.2: Input parameters used for obtaining c3¢(H,0°) and v;.

Hyy Y €o Je(0°)/J
(Tesla) (A)
50 0.7 20 0.2

hysteresis width ATy, decreases rapidly when 6 — 90°, because both ¢Z4(#) and J.(6)
increase substantially. Another corollary of our model is that for comparable values
of (J — J.)®o and (cdeé,), the cooling branch of the resistivity would move slightly
towards lower temperatures with increasing J, because vortices had to “supercool”
more to compensate for the larger driving force of the currents. This argument
predicts an increase in ATy, with a small increase of J according to Eq.(6.9), and is
confirmed by the data in Fig. 6.12 for three different current densities J = 0.27, 2.70
and 9.99 A/cm? and for H = 70 kG. Similar results for H = 50 kG and J = 0.27,
9.99, 16.55 A/cm? are also shown in the inset of Fig. 6.12. We note that for both
magnetic fields, the heating branches broaden with increasing J, in contrast to the
nearly constant width of the cooling branches. Furthermore, the temperatures where
the heating curves begin to increase rapidly remain the same for all current densities,
whereas those for the cooling curves decrease with increasing J. Thus, AT}, increases
with J, qualitatively consistent with Eq.(6.9) and the report by Kwok et al. (1994a)
as shown in Fig. 6.13.

Since it appears that an opposite current dependence was reported by Safar et al.
(1992a) and Charalambous et al. (1993), this issue requires further discussions. Let us
first compare the data by different research groups. In the studies by Safar et al., no
hysteresis data with currents between 5 4A and 1 mA has ever been shown. As shown
in Fig. 6.6, their data at 1 pA for H = 60 kOe shows a maximum hysteresis width

which is no more than a half of the widths observed in our data for either H = 50
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Figure 6.12: The current dependence of the resistive hysteresis for H = 70 kOe and
0 = 0° is shown for three different current densities J; = 0.27 A/cm?, J; = 2.70 A/cm?
and J3 = 9.99 A/cm? The inset shows similar results for H = 50 kOe, § = 0° and
J = Jl, J3, J4(= 16.55 A/Cl’l’lz).

kOe or H = 70 kOe. In addition, the shape of the hysteresis loop in Fig. 6.6, similar
to that obtained by Charalambous et al. (1993), is very different from ours shown in
Fig. 6.7 and that by Kwok et al. shown in Fig. 6.13. The broadness of the transition
in the data by Safar et al. is indicative of the presence of large scale inhomogeneities
in the sample. In fact, we note that the current density used by Safar et al. (1992a)
(~0.015 A/cm?®) is the lowest, comparing to our lowest current density of 0.27A /cm?
and that of 1A/cm? used in the studies by Kwok et al. (1994a). If we consider the
finite size effect associated with the sample thickness (£ ~ 0.020 mm), and noting
that the thickness is comparable for our sample and the sample used by Safar et al.
(1992a), the current density below which surface pinning prevails can be given (see
Chapter 3) by Jo(Ty) = (ksTa/(£2®o) ~ 0.13 A/cm? at a melting temperature of 80
K. Therefore, the broadness of the transition shown in Fig. 6.6 by Safar et al. may
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Figure 6.13: The current dependence of the hysteresis width in resistivity versus field
data by Kwok et al. (1994a).

have been the result of inhomogeneities on the scale of the sample thickness. Note
also that the smallest dimension of the sample used by Kwok et al. (1994a) is much
larger (0.08 mm). Therefore their data shall not be affected by the finite size effect.

Next, let us consider the current effect. As shown from both our data and that
by Kwok et al. (see Fig. 6.13), with increasing current, the heating curve becomes
broadened but the temperatures (or the fields) at which the resistance drops abruptly
upon cooling shift to lower temperatures in our experiment and to lower fields in the
work by Kwok et al. (1994a). In addition, the broadening of the heating curve is
more significant than the increase of the hysteresis width at the top of the transition.
With an overall broad transition (“background” of the sharp transition part) to start
with in the work by Safar et al. (1992a) (see Fig. 6.6), it is very likely that the
observed “decreasing” hysteresis width with the increasing current is only an artifact
due to the broadening of the background. The same explanation can be applied to

the observation by Charalambous et al. (1993).



154

Our scenario of current-induced nonequilibrium effect may also be applicable to
the frequency dependence of ATy, (f) in Fig. 6.10, because cg¢ becomes effectively
“stiffer” with the increasing frequency of the AC current, so that ATy, decreases.
However, quantitative understanding of the frequency dependence requires better
knowledge of the dispersion relation for cgs( f). Finally, we notice the importance of
small J., small { and high T3 for the occurrence of resistive hysteresis. The latter
two conditions are unique features of high-temperature superconductors, and the first

is unique for weak-pinning samples such as untwinned YBay;CuszO7 single crystals.

6.2.3 Discussions

Although the proposed current-induced non-equilibrium effect can successfully
explain qualitatively the magnetic field, current, frequency and angular dependence
of the resistive hysteresis in untwinned YBa;Cuz O~ single crystals, it is important to
realize that this model does not distinguish whether the vortex-solid melting transition
is first or second-order. The only conclusions we can draw from the investigations are
that vortices are weakly pinned, and that the resistive hysteresis occurs below the
thermodynamic melting temperature. The hysteresis itself is neither a sufficient nor
a necessary condition for a first-order melting transition, and its width is not directly
related to the latent heat. Although the weak pinning and sharp resistive transition
in the vortex state of untwinned YBayCuszO7 single crystals are very suggestive of
a first-order melting transition, this issue can only be unambiguously settled with
measurements of thermodynamic quantities such as specific heat or magnetization.

Finally, we notice that our interpretation for the resistive hysteresis is qualita-
tively consistent with recently developed theory by Koshelov and Vinokur (1994).
According to this theory, the presence of an applied current could enhance the effec-
tive temperature of vortices, and therefore upon cooling, the melting occurs at a lower
temperature. However, as stated earlier, this model cannot account for the angular
and frequency dependence of our data. Consequently, more quantitative comparisons

await further investigations.
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6.3 Nonlinear Resistive Peak Effect due to Vortex-

Solid Softening in Untwinned YBayCu3O; Sin-
gle Crystals

In addition to the resistive hysteresis which has been attributed to an current-
induced non-equilibrium effect in the weak pinning limit, another current-induced
phenomena, the “peak effect”, is observed in the same untwinned YBa,Cuz O~ single
crystal. The “peak effect” refers to a peak feature in the critical current density (J)
as a function of the temperature or magnetic field (DeSorbo, 1964; Pippard, 1969;
Wstrordenweber et al., 1986). Unlike the resistive hysteresis which was only recently
observed in high-temperature superconducting YBay;CusO7 untwinned single crystals,
this peak effect has been of interest in the research of type-II superconductors since
1964. In conventional superconductors such as niobium (DeSorbo, 1964) and Nb;Ge
films (Wstrordenweber et al., 1986), the peak effect has been observed just below
the upper critical field H.,, and has been attributed to the softening of the elastic
moduli of the vortex lattice first by Pippard (Pippard, 1969) and then generalized
by Larkin and Ovchinnikov (Larkin & Ovchinnikov, 1979). Recently similar peak
effects have been reported in both conventional superconductors such as 2H-NbSe,
single crystals (Bhattacharya & Higgins, 1993) and high-temperature superconductors
such as YBa;Cu307 single crystals with very few twin boundaries (Ling & Budnick,
1991; Kwok et al., 1994c) or completely untwinned (D’Anna et al., 1994). One
common factor among all these superconductors is that they are all extremely type-
II superconductors with a large Ginzburg-Landau parameter « > 1. In addition,
it is believed that all these observations occur just below the vortex-solid melting
temperature Ty, which is sufficiently away from the upper critical field line (Larkin
et al., 1994). These results suggest that in extreme type-II superconductors, the
shear modulus cgs goes to zero at Ty (Nelson & Seung, 1989; Jiang et al., 1995;
Larkin et al., 1994) due to the rapid softening of the vortex lattice. In this section,

quantitative analysis the nonlinear resistive peak effect will be given based on the
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transport measurements of untwinned YBay;Cu3z07 single crystals.

6.3.1 Experimental Observations

The peak effect is mostly investigated by various DC transport measurements.
The DC current-voltage characteristics are measured using a standard four-terminal
method. The measurements are performed in applied magnetic fields (H) from 1 to
90 kOe and for angles () from 0° to 90°. The applied current density J is always
transverse to H and J || @. The resistivity defined as p = FE/J is obtained from the
electric field versus current density (F-vs.-J) isotherms. Illustrated in Fig. 6.14 are the
temperature-dependent resistivity curves near the vortex solid melting transition for
different applied currents. For J <~ 15A/cm?, the p-vs.-T curves exhibit hysteretic
behavior upon cooling and heating, as reported in the previous sections. However,
for current densities J >~ 15 A/cm?, the hysteretic behavior disappears, and a
resistive peak occurs and becomes more pronounced with increasing J until J ~
240A /cm?®. We note that a “dip” in the resistivity occurs at temperatures lower than
the thermodynamic vortex-solid melting temperature Tys, which corresponds to the
occurrence of a peak in the critical current density. The nonlinear vortex response
near the peak region is further illustrated by the current-voltage characteristics shown
in Fig. 6.15 for the E-vs.-J isotherms taken with H = 50 kOe and H || é. We note
that the temperature interval within which the current-dependent resistive peaks
occur (see Fig. 6.14)) corresponds to the occurrence of nonlinear E-vs.-J isotherms
in Fig. 6.15. A summary of our measurements which exhibit the resistive peak effect
is given in Table 6.3. We note that for field along the c-axis, the peak effect always
exists if H <90 kOe. On the other hand, for field in ab plane the peak effect can be
observed only if 10 kOe > H < 90 kOe.

6.3.2 Quantitative Analysis of E-vs-J Characteristics

To attain a better understanding of the E-vs.-J characteristics, we notice the

curvature of the nonlinear E-vs-J isotherms at low temperatures is suggestive of a
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Table 6.3: Summary of “Peak Effect” Data

H(kOe) 6 Peak Effect

1.0 0° yes
1.0 90° no
3.0 0° yes
3.0 90° no
5.0 0° yes
5.0 90° no
6.0 0° yes

6.0 10° yes
6.0 45° yes

6.0 90° no
10.0 0° yes
10.0  90° yes
50.0 0° yes
50.0  90° yes
90.0 0° yes

90.0 90° no
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vanishing resistivity as J — 0. Such nonlinearity is consistent with the bundle-

hopping resistivity of vortices proposed by the collective flux-creep model (Blatter

et al., 1994; Feigel’'man et al., 1989),

o1.9) = (e |- (2D, (6.15)

where Jy is a characteristic current density, and y is a positive exponent. Applying
Eq.(6.15) to our data, we find that the resistivity agrees well with the collective flux-
creep model with a fixed y value and two temperature dependent fitting parameters
po(T) and Jo(T'). As a demonstration, three representative E-vs-J fitting curves
are plotted as solid lines in Fig. 6.16 together with the original data points. In
addition, the solid lines in Fig. 6.14 are also fitting curves to the p(T, J)-vs-T data
with Eq.(6.15). The p values are found to be increasing with the increasing field, as
shown in the inset of Fig. 6.16 for the results for both H || ¢ and H 1 & This increase
of p is consistent with the collective flux creep model as the vortex bundles become
smaller in higher fields. In fact, all the u values obtained experimentally fall between
the theoretical values 7/9 for large vortex bundles hopping and 5/2 for small vortex
bundles hopping (Blatter et al., 1994).

In addition to the physical significance of the u-values, we note that Jlgl}o p —
po(T) according to Eq.(6.15), and the fitting result of pp has a similar but much
weaker temperature dependence than that of p. The characteristic current density
Jo(T') shows a distinct peak at the dip of the resistivity, and therefore is analogous to
the behavior of the critical current density J. (Kwok et al., 1994c). To make a direct
comparison between Jo and J., we employ the common criterion E(J.) = 104V /cm for
deriving J.. The resulting temperature dependence of the J,(T') curves are consistent

with that of Jy(T'), although we believe that Jy is a more intrinsic quantity.

6.3.3 Vortex Dissipations Near the Peak Region

It is worthwhile comparing the temperature dependence of the current-independent

quantities po(T) and Jo(T') (or J.(T')). As shown in Fig. 6.17, the characteristic cur-
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rent dencity Jo(T') first decreases with the increasing temperature, then begins a sharp
upturn at the onset of a “viscoelastic motion temperature” T, where p(7) is at locat
maximum values, reaching a peak value at the “fluctuation temperature” Ts; where
both po(T) and p(7') dip to a local minimum, and finally decreases rapidly to zero at
approxiamtely the htermodynamic temperature Tys that has been defined previously
with the resistive hysteresis studies ((Jiang et al., 1995)) in the small current limit
(J <10 A/cm®.

Noting the correlation between the po(T') and Jo(T') curves as shown in Fig. 6.17,
the theoretical understanding of the vortex-softening near the peak of J.(T' — Ty;)
(Larkin & Ovchinnikov, 1979; Pippard, 1969), and the fact that resistive peak effects
only occur if the condition J >~ J.(T') holds for the temperature range of interest, we
propose the following phenomenological explanation for the observed resistive peak
effect. Following the p-vs.-T and Jy-vs.-T curves in Fig. 6.17, we note that for T' < T},
the presence of an external current density exceeding J, gives rise to finite dissipation
due to the plastic vortex motion at low temperatues. As T — T,., vortex bundles
with the size of the Larkin domian ((Larkin & Ovchinnikov, 1979)) becom depinned,
and the resistivity p(T') reaches a maximum. The assertion of complete depinning of
vortex bundles for J >> Jy is consistent with the fact that po(T < T,.) ~ constant
due to the plastic motion of all vortex bundles at T' < T,., as shown in Fig. 6.17(a).
However, the moving vortex bundles with short-range crystalline correlations become
increasingly softened due to the thermal effects. Therefore the rapidly decreasing ceg
results in softened vortex bundles which no longer move like a rigid body, and the
effective mobility for the vortex motion becaomes smaller with increasing temperature
for T < T,.. Such a “viscoelastic” motion of vortex bundles gives rise to an increase
in the effective viscoelasticity and the critical current density J,(7'), and therefore in
this temperature region resistivity decreases with the increasing temperature.

With further increase of the temperature, thermal fluctuations become more and
more important, and the root-mean-square amplitude of vortex lattice vibrations
\/W becomes so large that the softened mobile vortex bundles begin to break apart,

and resistivity rises rapidly at T' > Tj;. Eventually at Tas, 1/(u2) exceeds the Linde-
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mann criterion crag, where ¢, and ag are the Lindemann constant and vortex lattice
constant, respectively. At this temperature T a vortex-solid melting transition takes
place, the resistivitycontinues to rise until the phase fluctuation effects associated
with the melting transition subside and resistivity becomes current-independent at a
temperature T}, slightly above T.

By plotting in the H-vs-T diagram (see Fig. 6.18) all the characteristic tempera-
tures Ty, Ty and Ty, for different fields, together with the thermodynamic vortex-
solid melting transition line Hy(T), we find that all three lines H,.(T'), Hs(T), and
Hiin(T) merge to the thermodynamic melting line H, m(T) in high fields, although in
the low field limit the peak effect is found to occur at temperatures more than 0.5 K
away from Tyy. Furthermore, we note that H,.(T') and Hp;(T) lines are below H m(T),
whereas Hy;,(T') is above Hp(T).

6.3.4 Quantitative Analysis of the Resistive Peak Effect

In order to perform quantitative analysis of the the rsistive peak effecs, we consider
the quantity po(7), Jlgr}c p(T) — po(T'). Assuming that the saturated resistivity for
po(T < T,.) is proportional to the average mobility of the vortex bundles, we compare
po(Tye) with the flux-flow resistivity ps; at the same temperature which corresponds
to the complete coherent motion of all vortices if the vortex system is without either
short-range elasticity or pinning. We may therefore define a parameter o, which is
the ration of the mobility of viscoelastic vortex bundles to that of the coherent-motion
vortices:

oy = Lollve) (6.16)

Pri(Tue)’

where pyy is the flux-flow resistivity defined by Bardeen-Stephen model,

pff(T7 0) = %L%’ (6‘17)

with p,(7¢) being the normal resistivity at T, and Be(T, ) defined in (Blatter et al.,
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1994)
Bea(T,0) = BY(0)[1 — T/T,|/es, (6.18)

where g5 = V/cos? 8 + £2sin’ 0, and €? is the anisotropic factor. By using the empirical
values for po(Tye) and p,(T.) = 25.0uQcm, as well as B(0) = 50 Tesla, and €? =~
1/60 (Beck et al., 1992), the o, values are obtained for different fields and angles as
shown in Figs.6.19(a) and 6.19(b), respectively. The field dependence is found to be

@, o« B7Y/%, Furthermore, as shown in the inset of Fig. 6.19(b), an empirical relation
a, B4 = (a0 + 01 /ey), (6.19)

with ag = 0.22 and oy = 0.084, is found to be applicable to all the a, values. The 6-
independent contribution from ap may be attributed to the point-defect-like, isotropic
pinning sites such as oxygen vacancies, whereas the angular-dependent contribution
from the term o;/ey follows the same angular dependence as some of the intrinsic
anisotropic properties such as the hard-axis shear modulus cl; and the upper critical
field H,(0) (Kogan & Campbell, 1989; Blatter et al., 1994). Consequently, the second
contribution in Eq.(6.19) may be related to the intrinsic pinning due to the layered
structure of YBayCu3Oy, or to the sample surfaces which can also contribute to the

anisotropic pinning mechanism.

6.3.5 Effects of 3.0 MeV Proton Irradiation

The same sample is subsequently irradiated by 3.0 MeV protons with a fluence of
5 x 10'® protons/cm?. After proton irradiation, neither peak effect at high currents
(see IFig. 6.20) nor hysteresis at low currents is observed in the resistivity as a function
of temperature. The corresponding E-vs.-J isotherms as shown in the inset for the
representative data taken at H). = 50 kOe, and are found to be mostly ohmic for
the entire temperature range. It seems that a large density of point defects may have
provided such strong disorder that the shear modulus is significantly hardened and

the phase transition widely broadened so that the critical current peak effect due
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to softening of the vortex-solid never occurs. Furthermore, the large disorder may
have resulted in an effectively frozen vortex-liquid at low temperatures, and therefore

ohmic resistivity is observed over the entire temperature range of interest.

6.3.6 Concluding Remarks

To summarize our studies of the nonlinear resistive peak effect in an as-grown
untwinned YBay;CusO7 single crystal, we have shown that the current-voltage char-
acteristics in the temperature range where the peak effect occurs are consistent with
the collective flux-creep theory. The nonlinear resistive peak effect (which appears
only if J > J.) is closely correlated with the peak effect in the critical current density
near the vortex-solid melting transition. With the increasing temperature, the resis-
tive peak can be described in terms of a plastic vortex motion at lower temperatures,
followed by a maximum vortex dissipation due to thermally depinning of vortices,
and then a decrease in dissipation due to the viscoelastic motion of softened vortex
bundles, and finally a rapid rise in the dissipation when thermal fluctuations become
so large that the vortex lattice eventually undergoes a melting transition. By com-
paring our results with various previous reports of similar observations in samples
different from ours, we conclude that the peak effect in J, is a general phenomenon
in both conventional type-II and high-temperature superconductors when the vortex-
solid becomes significantly softened before its melting transition. The only difference
in the studies of this nearly defect-free untwinned single crystal is that the pinning
mechanisms at low temperatures are attributed to two possible origins, one is the bulk
pinning due to either the dilute random point disorder or the intrinsic layered struc-
ture of the superconductor, and the other is the surface pinning due to the sample

boundaries.
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Figure 6.14: Nonlinear resistivity p versus temperature 7' curves of the as-grown

untwinned YBayCuzO7 single crystal taken at different current densities and for H =
50 kOe, and H || ¢.
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Figure 6.15: A representative set of electric field (E) versus current density (J)
isotherms on the sample for H = 50 kOe and H || &
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Figure 6.16: Representative theoretical fitting curves (solid lines) on the E-vs.-J
isotherms with the use of the collective flux-creep model in Eq.(6.15) and a fitting
parameter p = 1.28. The inset shows the p values for different magnetic fields and
orientations. We note that the range of y values is between y = 5/2 in high fields for
small bundle pinning, and g = 7/9 in low fields for large bundle pinning.
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Figure 6.17: Representative data of (a) po-vs.-T and p(J = 75A/cm?)-vs-T' curves
for H = 50 kOe and H || ¢ is compared with (b) the corresponding Jo(T') and J,(7T)
data. Note the strong correlations between the peak feature in po(T) and those in
Jo(T') and J.(T'). Various vortex regimes are as indicated.



167

100

80

T

60

H (kOe)

40

N
H (T )/ \\tl\\\:\
20 7

T
S
Rapx
4
'/o
oG
’

H Il c-axis H,,(T) a

R R - /R —D

T (K)

Figure 6.18: The H-vs.-T vortex phase diagram showing the thermodynamic phase
transition line Har(T') and various other crossover lines Hy,(T), Hy(T) and Hy(T).
The inset shows a close-up look at the phase diagram in the lower field limit, with
various vortex regimes as indicated.
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Figure 6.19: (a) The magnetic field dependence of a,, defined as the ratio of the
pinned vortices relative to the total vortices, is shown for both H || ¢ and H L ¢é.
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demonstrates the empirical relation a,BY* = ag + oy /eg that accounts for all data
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Figure 6.20: Comparison of the ohmic p versus T curves of the untwinned YBay;Cu307
single crystal before (with J = 7.5 A/cm?) and after (with J from 1.4 to 708 A /cm?)
3 MeV proton irradiation. Note that the nearly complete ohmic behavior after irra-
diation, shown in the inset, is in sharp contrast to the significant nonlinear E-vs.-J
isotherms before irradiation.



170

Chapter 7 Conclusions

This thesis has focused on investigating the effects of static disorder on the vortex
phases of high-temperature superconducting YBay;Cuz Oy single crystals. By studying
the critical phenomena near the vortex-solid to liquid phase transition, we are able
to obtain critical exponents and universal scaling functions for different vortex phase
transitions associated with different types of disorder. In addition, novel current-
induced vortex properties in nearly defect-free samples near the vortex-solid to liquid
melting transition are also studied quantitatively. This work has therefore provided
new understandings for the interplay of vortex pinning and vortex dynamics in high-
temperature superconductors.

The experimental investigations have focused on the vortex transport properties
near the vortex-solid to liquid transition. A self-consistent critical scaling analysis
has been applied to the critical behavior in both DC and AC resistivity. Samples
containing different types of static disorder, such as point defects, columnar defects
and twin boundaries, have been investigated in Chapters 4 to 6.

Since most as-grown YBa;CuszO~ single crystals contain mostly point defects and
twin boundaries, controlled point defects have been created by 3.0 MeV proton irra-
diation on as-grown samples with dilutely twinned boundaries. By comparing both
the DC and AC transport properties in samples with different point defect densities,
we have shown in Chapter 4 that the critical exponents and scaling functions asso-
ciated with the second-order vortex-glass transition are invariant under moderately
increased random point disorder. However, variations in the point defect density have
important effects on the pinning-related material parameters. For instance, the high-
field melting transition temperature (Ts) increases with the increasing point defect
density; the zero-field transition temperature 7, decreases with the increasing point
defect density; the zero-temperature vortex correlation length £ decreases with the

increasing point defect density; and the flux-flow crossover current density J, as a
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function of the reduced temperature (7'/7;) increases with the increasing point dis-
order. In addition, in an effort of studying the critical behavior of DC resistivity,
we have emphasized the importance of considering the critical regime and the ap-
propriate current range within probing the vortex critical phenomena, because the
limitations of the finite size effect at low currents and the flux-flow crossover at high
currents impose additional complications to the critical analysis. Further investiga-
tions in Chapter 6 on the vortex transport properties in samples with similar point
defect densities but without twin boundaries, together with the results in Chapter
4, have suggested that the presence of a second-order vortex-glass transition is the
result of collective effects provided by both the random point defects and the twin
boundaries.

Another type of controlled disorder that has been studied extensively in Chapter 5
is the correlated columnar defects created by 0.9 GeV Pb ion irradiations. This type of
disorder results in very different vortex pinning effects because of the following general
features: The average diameter of the columnar defects is comparable to the vortex
core size at low temperatures; the defects extend throughout the entire thickness
of the sample, thereby providing very efficient pinning; and the parallel columnar
defects break the symmetry of the vortex system, giving rise to anisotropic static
critical exponents. The experimental evidence of a second-order Bose-glass transition
in YBayCusOy7 single crystals with parallel columnar defects has been manifested by
the universal critical scaling of frequency-dependent AC resistivity data from 10? to
2x10° Hz. The signature of the transition, that the Bose-glass transition temperature
Tpa decreases with the increasing angle (8) between the applied magnetic field and
the c-axis, has also been confirmed and is in sharp contrast to the smooth increase of
the vortex-glass temperature (Tjs). For magnetic fields aligned sufficiently close to the
parallel columns, § < 30°, the static and dynamic exponents (v, = 1O,y = (v =
1.1 and 2’ ~ 2.2) are found to be independent of the magnitude and orientation of
the magnetic field. On the other hand, for § > 60°, the vortex phase transition become
consistent with the vortex-glass transitions. The different set of critical exponents

(v1,v)), and 2’) distinguishes the Bose-glass transition from the universality class
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of the vortex-glass transition. In addition, the diverging compression modulus at
T suggests an incompressible Bose-glass with long-range vortex interactions at
temperatures below Tgg.

The effects of the intrinsic mass anisotropy of YBa;Cu3zO7 on the vortex phase
transitions have been studied in all samples, and anisotropic vortex phase diagrams
have been obtained. As discussed in Chapter 5, by applying an anisotropic to isotropic
scaling transformation to remove the intrinsic sample anisotropy, we are able to obtain
the rescaled vortex phase diagrams which demonstrate the distinct differences among
different universality classes of vortex phase transitions: An angular independent
vortex-glass transition is obtained in the rescaled isotropic frame. On the other hand,
the “cusp” feature (a sharp decrease in the transition temperature upon increasing the
tilt of the magnetic field, relative to the columns) remains in the rescaled Bose-glass
transition temperature versus angle phase diagram.

The interplay of vortex pinning and thermodynamic vortex phase transitions has
been further studied in the weak pinning limit by investigating the vortex transport
properties of an untwinned YBayCu3z0;7 single crystal. Two novel phenomena have
been observed near the vortex-solid to liquid melting transition. One is the resistive
hysteretic behavior near the melting transition. The other is the resistive “peak effect”
slightly below the melting transition. These two phenomena have also been observed
by other research groups. However, prior to our work, the resistive hysteresis had
been commonly interpreted as the experimental evidence for a first-order vortex-solid
melting transition, and the peak effect was only qualitatively described as a precursor
of the vortex-solid, melting transition in a system with few twin boundaries. Our
detailed and quantitative investigations presented in Chapter 6 have clarified that
both phenomena are current-induced effects in the weak pinning limit. In particular,
the resistive hysteresis occurs near the vortex-solid melting transition temperature
(Ta) if the applied current density is sufficiently small and is attributed to an excess
momentum of the vortices due to the applied current that makes the solidification
process of the vortex system more difficult. On the other hand, the resistive peak effect

is the result of the softening of vortex lattice at temperatures below Ths when the shear
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modulus c¢gg becomes very small but still finite. As a softened vortex-solid becomes
more adaptable to the local disorder, vortices become more strongly pinned, giving rise
to a peak in the critical current density. The peak effect in the critical current density
also results in a nonlinear resistive peak, and the current-voltage characteristics in the
temperature range where the peak effect occurs have been quantitatively described in
terms of the vortex bundle hopping resistivity p = po exp[—(Jo/J)*], with the u value
corresponding to the increasing vortex bundle size in an increasing magnetic field. We
therefore conclude that the nonlinear vortex dissipation below the thermodynamic
melting transition temperature is consistent with the collective flux-creep theory.
The corresponding pinning mechanisms at low temperatures are also inferred from

the experimental data.
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A Controlled Defects Due to 3.0 MeV Proton

Irradiation

Among various means of creating defects in a solid, irradiation has been widely used
for material modifications because the concentration, distribution and nature of the
defects produced by irradiation can be controlled. The defect concentration is pro-
portional to the dose of irradiation, and the nature and distribution of defects is
a function of the species and energy of the irradiating particles. In addition, the
impurities contained in the material, which may be capable of trapping the defects
originally produced by the irradiation, are also important in determining the final
defect structure in the material. The slow-down process of an energetic particle in a
known material can be well modeled. In the following, the mechanism of defect cre-
ation, the characteristics and density of defects created by 3.0 MeV protons are given.
For more comprehensive descriptions for the collision theory and defect creations, see,
for example, references (Bourgoin & Lannoo, 1983; Chu et al., 1978).

When light ions such as protons pass through a solid, the energetic particles lose
their energy primarily through inelastic collisions with atomic electrons. Such an
energy loss mechanism is called “electronic-energy loss.” The energetic particles can
also transfer energy to the nuclei of the solid through small angle elastic scattering
events. This energy loss mechanism is called “nuclear energy loss.” In the case of 3.0
MeV proton irradiation, defect creations are mainly due to the nuclear energy loss.
When the energy transferred to the target nucleus is large enough, the nucleus will
be knocked out of its lattice position, which results in a pair of atomic size defects:
one void and the other interstitial. The primary scattering mechanism between the
protons and target nuclei can be described by the well-known Rutherford scattering

theory. A brief description of this theory is given below.
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A.1 Rutherford Scattering

Rutherford scattering describes the elastic collisions between charged particles under
a Coulomb interaction. Let E and m be the kinetic energy and mass of an incident
particle. When a collision occurs between the incident particle and an atom (of mass
M) of a solid, the kinetic energy T transferred to this atom depends directly on the
deflecting angle 6 of the incident particle (see Fig.A.1). For an elastic collision with
the incident particle at a nonrelativistic energy, the conservations of kinetic energy

and momentum yields the following relation between 7' and 6:

T _ M 1-n0)
E_2m(l+M/m)2’ (A1)

where 7(0) is given by

1+ (M/m)n -
V1+2(M/m)y + (M/m)?

(A.2)

cosl =

The maximum energy (T)nq.) transferring to the atom occurs when 6 = 0, i.e., for

n(f) = —1:
4Mm

Tmaz‘ =0
(M +m)?

(A.3)

The interaction between the charged incident particles and the nuclei of the solid
can be represented by a Coulomb potential (Rutherford scattering). The differential
scattering cross section do, i.e., the cross section for scattering in the solid angle (6,

0 + do) is directly related to the impact parameter (see Fig.A.1):
do = 27bdb. (A.4)

The relation between 7" and b can be obtained by assuming that T is small enough
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Figure A.1: Rutherford scattering.

to leave the velocity of the incident particle unchanged:

M Z1 2264 1
T = — 5 (A.5)
The resulting differential scattering cross section
db
= —dT .
do = 2mb o7 (A.6)
is given by the Rutherford formula
Zye* M
do=Lar, o= "HZEM (A7)

T2 E m
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A.2 The Range and Energy Loss of the Incident

Ions

Next, we want to know how far a 3.0 MeV proton can travel in a presumably infinitely
thick YBa;Cu3zO7 sample and how much energy it loses by passing through a real
sample.

The traveling range of the incident ions is related to the total stopping power

contributed by all the elements in the solid:

123 1dE 17
= i(——):| dE, A.
Y (A3)
where p; is the percentage composition of the ith element,
Ami
P T A 49

with n; the atomic composition of ith element, A; the atomic weight for the ith

1dE

= )i the stopping power of the ith element. The range R can be

element, and (
calculated by the numerical program TRIM (Biersack & Ziegler, 1989) which utilizes
Monte Carlo simulations based on the collision theory described above. The results
are found to agree very well with the experimental data. As shown in the Table
A.1, the range of a 3 MeV proton in YBa;CuzO7 is ~ 46um. For our samples of
typical thickness of 20pm, the protons can all pass through. The approximate energy
loss of protons in the sample can be obtained in the following simple manner. We
know that a 3.0MeV proton, after passing through the sample, is able to penetrate
through another 46 — 20 = 26pum depth of YBa;Cu3O7 material. The initial energy
required for a range of 26pum can be found in Table A.1 as approximately 2.1MeV .
Therefore, the energy loss of a 3.0 MeV proton in a sample of thickness 20um is

simply 3.0 — 2.1 = 0.9 MeV.
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A.3 The Creation of Defects

With the collision theory given above, we are ready to calculate the point defect
density created by 3.0 MeV protons when they pass through a YBay;CuzOy single
crystal.

The minimum energy F; required to displace an atom from its lattice site is called

the threshold energy. The total cross section for the displacement of an atom in the

solid is
Tmam
o= / do(E,T). (A.10)
Eq4
Using Eq.(A.7),
1 1 7TZ1Z264 M
= a(— — = T%22e M 1
o a(Ed 7 ) P (A.11)

A primary knocked-on atom, to which the energy T has been transferred from the
incident energetic particle, can in turn displace other atoms when T is large enough.
This process is called the secondary displacement. Here, for simplicity, we only con-
sider the primary displacements. The number of defects (np) created by each 3.0

MeV proton in an YBay;CusO~ single crystal can be estimated by
np =2 x »_ o;Nit, (A.12)

where ¢ indicates each types of atom, NV; is the number density of each types of atom,
ie.,

N; = AUZ"’Z’:”. (A.13)

with A, the Avogadro number, and ¢ is the thickness of the sample. The factor of

2 is from the fact that one displacement creates a pair of defects: one void and the

other interstitial. The density of defects for a fluence of ® is given by

o
Np = —"2. (A.14)

Assuming that the threshold displacement energy is ~ 20 eV, same for all the atoms,
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and that the average ion energy in the sample is about 2.5 MeV, we get np ~ 4.7
defects/proton. Therefore, for a fluence of 5 x 10'® protons/cm? and a sample of

20 pm thick, Np is approximately 4 x 10'° defects/cm?.
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Table A.1: Results of traveling range (R) and energy losses calculated by using TRIM
for 3.0 MeV protons in YBayCuzOs.

Ion dE/dx dE/dx Projected Longitudinal Lateral
Energy Elec. Nuclear Range Straggling Straggling
100.00 keV 1.996E+02 3.608E-01 5364 A 949 A 1588 A
110.00 keV 1.993E+02 3.367E-01 5839 A 977 A 1660 A
120.00 kev 1.982E+02 3.159E-01 6317 A 1004 A 1731 A
130.00 keV 1.967E+02 2.975E-01 6801 A 1029 A 1799 a
140.00 keV 1.946E+02 2.815E-01 7290 A 1054 A 1867 A
150.00 kev 1.923E+02 2.674E-01 7786 A 1079 A 1934 A
160.00 keV 1.898E+02 2.548E-01 8290 A 1103 A 2000 A
170.00 keV 1.871E+02 2.434E-01 8801 A 1127 A 2066 A
180.00 keV 1.843E+02 2.331E-01 9321 A 1150 A 2132 A
200.00 keV 1.785E+02 2.145E-01 1.04 um 1202 A 2265 A
220.00 keV 1.728E+02 1.994E-01 1.15 um 1253 A 2399 A
240.00 keV 1.671E+02 1.864E-01 1.26 um 1304 A 2535 A
260.00 kev 1.618E+02 1.752E-01 1.38 um 1356 A 2673 A
280.00 keVv 1.567E+02 1.654E-01 1.50 um 1409 A 2814 A
300.00 kev 1.518E+02 1.567E-01 1.63 um 1462 A 2959 A
330.00 keV 1.451E+02 1.454E-01 1.83 um 1552 A 3181 A
360.00 kev 1.391E+02 1.357E-01 2.03 um 1643 A 3411 A
400.00 keV 1.318E+02 1.248E-01 2.32 um 1780 A 3729 A
450.00 keV 1.240E+02 1.136E-~01 2.71 um 1971 A 4147 A
500.00 keV 1.172E+02 1.043E-01 3.11 um 2166 A 4586 A
550.00 keVv 1.114E+02 9.660E-02 3.54 um 2366 A 5045 A
600.00 keV 1.062E+02 9.002E-02 4.00 um 2571 A 5524 A
650.00 keV 1.017E+02 8.434E-02 4.47 um 2780 A 6022 A
700.00 keV 9.761lE+01 7.933E-02 4.96 um 2993 A 6539 A
800.00 keV 9.063E+01 7.115E-02 6.01 um 3583 A 7624 A
200.00 keV 8.481E+01 6.457E-02 7.13 um 4170 A 8775 A
1.00 MevV 7.987E+01 5.918E-02 8.33 um 4758 A 9988 A
1.10 MeV 7.560E+01 §5.467E-02 9.60 um 5352 A 1.13 um
1.20 MeV 7.186E+01 §5.085E-02 10.94 um 5954 A 1.26 um
1.30 MeV 6.855E+01 4.756E-02 12.35 um 6563 A 1.40 um
1.40 MeV 6.559E+01 4.470E-02 13.82 um 7182 A 1.54 um
1.50 MeV 6.292E+01 4.218E~-02 15.36 um 7810 A 1.69 um
1.60 MeV 6.050E+01 3.996E-02 16.96 um 8448 A 1.84 um
1.70 MeV 5.829E+01 3.7%87E-02 18.62 um 9097 A 2.00 um
1.80 MeV 5.627E+01 3.618E-02 20.35 um 9756 A 2.17 um
2.00 MeV 5.268E+01 3.309E-02 23.98 um 1.17 um 2.51 um
2.20 MeV 4.959E+01 3.052E-02 27.85 um 1.35 um 2.87 um
2.40 MeV 4.690E+01 2.835E-02 31.96 um 1.54 um 3.24 um
2.60 MeV 4.452E+01 2.64BE-02 36.29 um 1.73 um 3.64 um
2.80 MeV 4.241E+01 2.485E-02 40.85 um 1.92 um 4.05 um
3.00 MeV 4.052E+01 2.343E-02 45.62 um 2.11 um 4.48 um
3.30 MeV 3.802E+01 2.159E-02 53.19 um 2.48 um 5.15 um
3.60 MeV 3.586E+01 2.004E-02 61.24 um 2.85 um 5.86 um
4.00 MeV 3.338E+01 1.830E-02 72.70 um 3.43 um 6.86 um
4.50 MeV 3.077E+01 1.653E-02 88.16 um 4.26 um 8.20 um
5.00 MeV 2.860E+01 1.509E-02 104.87 um 5.07 um 9.63 um
5.50 MeV 2.675E+01 1.389%9E-02 122.79 um 5.88 um 11.15 um
6.00 MeV 2.515E+01 1.288E-02 141.91 um 6.70 um 12.76 um
€.50 MeV 2.376E+01 1.202E-02 162.19 um 7.52 um 14.46 um
7.00 MeV 2.253E+01 1.126E-02 183.63 um 8.36 um 16.23 um
8.00 MeV 2.046E+01 1.003E-02 229.83 um 11.07 um 20.04 um
9.00 MeV 1.878E+01 9.044E-03 280.45 um 13.67 um 24.16 um
10.00 MeV 1.739E+01 8.246E-03 335.36 um 16.23 um 28.60 um
Multiply Stopping by for Stopping Units
1.0000E-01 eV / Angstrom
1.0000E+00 keV / micron
1.0000E+00 MeV / mm
1.5291E-03 kev / (ug/cm2)
1.5291E-03 MeV / (mg/cm2)
1.5291E+00 keVv / (mg/cm2)
1.3012E-01 eV / (1E15 atoms/cm2)

1.0575E-01 L.S.8. reduced units
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