LARGE OPERAND DIVISION
AND
AN ASYNCHRONOUS APPROACH TO
FAULT DETECTION

Thesis by

Kathleen A. Kramer

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1991
(Submitted January 9, 1991)

11

To my father

111
Acknowledgements

First, I would like to express my gratitude to Professor Rodney M. Goodman

for his generous support and guidance as my advisor.

Professor A. J. Martin classes taught me much that was useful in my work,
for this and other things, I thank him. I also thank his student Tony Lee for helpful

discussions in developing the divider.

I am extremely grateful to Masahiro Sayano for several days he donated to
the write up of this work. I also thank R. Ramésh for his friendship and the hours

he devoted to the writing of this work.

Silicon Compiler Systems generously provided the GDT software used in the
development of the divider architecture; their support in this respect is gratefully

acknowledged.

I owe a word of thanks to my officemate and dear friend John W. Miller who
has helped me in my quest for a doctorate by serving as a good sounding board for

my ideas and a willing audience for a loquacious and sometimes intolerable speaker.

I also thank Professors Edward C. Posner, Robert J. McEliece and Yaser S.

Abu-Mostafa who graciously consented to be on my committee.

However, I owe my greatest debt to Dr. Anthony J. McAuley of Bell Com-
munications Research for his support, guidance, and mentoring throughout my
graduate studies. I also thank Bill Marcus for his work on the C program simula-
tion of the divider. Dr. C. Cotton and Dr. D. Sincoskie of Bell Communications

Research deserve a word of thanks for their understanding and support.

v
Abstract
Larger, faster ICs are creating a rash of new problems for the system designer.
Designers faced with building larger and larger systems base their architectures on
-smaller systems that may scale poorly. As a result of VLSI, many new architectures

are coming into favor, either because of the changing importance of design factors

or because 1t 1s now possible to design bigger chips.

Efficient VLSI methods for implementing the basic arithmetic operations
can push back many system-performance limitations. There is continued need for
re-evaluation of arithmetic architectures, as the efficiency of implementation is re-
lated to both implementation technology and size of the operands. A new binary
divider for n-bit integer operands, which produces the quotient and remainder in
O(n) time using O(n) area, is presented. For very large operands, such as those
required in Public Key Cryptography, the new divider is faster than comparable
carry-save dividers and is more area-efficient than implementations using more re-

dundant arithmetic.

A further problem faced by the designer of very large systems is their suscep-
tibility to error. The system must be efficiently designed to function in the presence
of errors, which become more likely as the size of the system increases. Qualities
inherent in many asynchronous designs can be used to provide fault detection and
therefore, fault tolerance. An approach to fault tolerance, one not possible with
conventional, clocked, systolic arrays, is presented. This method of fault detec-
tion/correction exploits the inherent redundancy of architectures using four-state

coding, a data-driven technique for implementing bit-level wave-front arrays.

v

TABLE OF CONTENTS

Chapter 1 Introduction

Chapter 2 The Problem of Division 3

Chapter 3 Current Dividers 7T
3.1 1Introduction oL L 7
3.2 Commonly Implemented Dividers 8
3.3 Requirements for O(n) Delay and O(n) Area Dividers 8

3.3.1 Constant time selectionof ¢; 9
3.4 Constant Time Adders 10
3.4.1 Carry-Save Addition 12
3.4.2 Constant time addition using more redundancy 13
3.4.3 Comparison of carry-save and signed-digit addition 14
3.5 Purdy and Purdy Divider 16
3.6 Preparata and Vuillemin Dividers 18

Chapter 4 The Divider Algorithm 19

4.1 Introduction00 L0 19
4.2 The Algorithm 0000 19
4.3 Why the Algorithm Works 27
4.4 Comparison with Other Dividers 32
4.4.1 Comparison with PP . ., e e e e, 33
442 Comparison with PV 33

Chapter 5 Architecture of the Divider

5.1 Introduction 0000 35
5.2 Normalization Circuitry 37
5.3 Carry-Save Adder 38
5.4 Quotient Generation 41

vi

Chapter 6 Faults in Asynchronous Arrays 44

6.1 Introduction O V.
6.2 Four-State Coding - 11
6.3 Faults in MOS Circuits and Their Detection e e e 46
6.3.1 Transient faults or soft errors e e e .. . 48
6.3.2 Detecting and correcting soft errors49
6.4 Faults in a Four-State Shift Register e e 50
6.4.1 Sticking 1]
6.4.2 Slipping e e e 50

Chapter 7 Exploiting the Inherent Fault Tolerance
of Asynchronous Arrays+ 53
7.1 Introduction e e e e e e e 53
7.2 Faults in a Four-State, Convolutional Encoder e e e e . 53
7.2.1 Version 1 - a fault-prone, four-state convolutional encoder architecture . 54
7.2.2 Version 2 - a fault-detecting convolutional encoder architecture 59
7.3 More General Architectures e e I i1
Chapter 8 Conclusion @67

References v v v v v v v e e ... 89

Chapter 1 Introduction

Larger, faster ICs are creating a rash of new problems for the system designer.
Designers faced with building larger and larger systems base their architectures on
smaller systems that may scale poorly. As a result of VLSI, many new architec-
tures are coming into favor, either because of the changing importance of design
factors or because it is now possible to design bigger chips. Efficient VLSI methods
for implementing the four basic arithmetic operations have recently pushed back
many system-performance limitations. There is continued need for re-evaluation
of arithmetic architectures, since the efficiency of implementation can be divorced
from neither the implementation technology nor the size of operand. However,
when compared with improvements in performance of addition, subtraction, and

multiplication, division has been relatively ignored [1].

2
A new binary divider for n-bit integer operands, which produces the quotient
and remainder in O(n) time using O(n) area, is presented. For very large operands,
such as those required in Public Key Cryptography, the new divider is faster than
comparable carry-save dividers and is more area efficient than redundant arithmetic

implementations.

Chapter 2 introduces the reader to the problem of division. Then, in Chapter
3, current division techniques are briefly reviewed. Chapter 4 presents a new divider,
explaining how and why the algorithm works and comparing its performance to

comparable dividers. Chapter 5 gives an implementation for the 16-bit version of

the divider.

One further problem faced by the designer of very large systems is their
susceptibility to error. The system must be efficiently designed to function in the
presence of errors, which become more likely as the size of the system increases.
Qualities inherent in many asynchronous designs can be used to provide fault de-
tection and therefore, fault tolerance. Chapter 6 and Chapter 7 present the basis
to such an approach to fault tolerance, one not possible with conventional, clocked,
systolic arrays. This method of fault detection/correction exploits the inherent
redundancy of architectures using four-state coding, a data-driven technique for

implementing bit-level wave-front arrays.

Chapter 2 The Problem of Division

The division operation involves finding the quotient (Q) and remainder (R)

of a dividend (V) and divisor (D). These four parameters satisfy the equation:
N=QxD+R, (1)

where |R| is less than [D| and of the same sign as N. The usual method of division,
the paper-and-pencil method, is illustrated with Example 2-1, which shows the
division of 50333 by 93. Example 2-2 shows division of the same numbers using
the same method, but it includes calculations and comparisons that are needed and
implied in using the paper-and-pencil method, but are not explicitly included in

most written calculations.

4

541 = quotient
divisor = 93 t 50333 = dividend
—46500 = 93 x 500

3833
113
93 =93x1

20 = remainder

Example 2-1

divisor = 93) 50333 = dividend = pr°
(50333 < 93 x 1000) => g3 =0
(50333 > 93 x 100)
(50333 > 93 x 200)
(50333 > 93 x 300)
(50333 > 93 x 400)
(50333 > 93 x 500)
(50333 < 93 x 600) => ¢ = 5
—46500 = 93 x 500
3833 = pr!
(3833 > 93 x 10)
(3833 > 93 x 20)
(3833 > 93 x 30)
(3833 > 93 x 40)
(3833 < 93 x 50) == ¢q; = 4
-3720 = 93 x 40
113 = pr?
(113 > 93 x 1)
(113<93x2)=>¢qy=1
-93 =93 x1

20 = remainder = pr?
quotient = g3x10%4¢2 x10%4¢; x 10! 4¢¢ x 10°

=0x1000+5%x100+4x10+1x1
= 541

Example 2-2

For an n digit dividend and an m digit divisor, we must generate an n—m+1
digit quotient and a remainder of no more than m digits. To generate each quotient

digit, one must find the greatest single-digit multiple of the divisor that when sub-

5
tracted from the partial remainder yields a non-negative, new partial remainder.
As Example 2-2 shows, some quotient digits may require several multiplications
or additions and then comparisons to complete the search. In binary division this
potentially troublesome search is curtailed because the quotient bit can be at most
1. Of course, more quotient bits need to be generated in binary division than in
the case of decimal division, but the lack of complexity, reduced overall area, and
faster cycle time make binary division preferable for a digital logic implementation.
Complexity, as it is used in this thesis, refers to design complexity, not algorithmic
complexity; a more complex design generally requires more area and sometimes

more delay.

Example 2-3 illustrates the paper-and-pencil method with binary operands
dividing 503 (= 010011) by 9 (= 01001) . As this example shows, each quotient bit
is determined by comparing the current partial remainder with one multiple of the

divisor that can be obtained by the shifting of bits, without additions.

divisor = 01001) 0111110111 = dividend = pr® = 503
-0100100000 g5 =1
011010111 = pr! = 503 — 9 x 2° = 215
—010010000 ¢, =1
01000111 = pr2 =215—-9x 2¢ = 71
—0100100 (71 <9x2)=¢3=0,¢2=1
0100011 = pr3 =71 -9 x 22 =35
-010010 ¢ =1
010001 = prt =35 -9 x 2! = 17
01001 g9 =1
01000 = remainder = pr® = 17-9x2% =8

quotient = q5x105+Q4><104+q3x103+q2x102+q1 %1014 g9 x10°
=1x32+1x164+0x8+1x4+1x2+1x1
= 55

Example 2-3

6
Although the final remainder was calculated after five subtractions (2% x D,
2¢ x D, 22 x D, 2! x D, and 2° x D), all six multiples of the divisor had to be

compared with the current partial remainder.

Normalization, or sizing, of the divisor was also required to determine how
many quotient bits had to be generated. In the paper-and-pencil method, this is
accomplished by lining up the first non-zero digits of the divisor and dividend. In
the examples trailing zeros were added to this shifted version of the divisor; written

calculations often omit them.

Division and multiplication are in many respects dual operations. As a shift-
and-subtract process, division superficially resembles the shift-and-add method of
multiplication. Division, however, requires the results of one subtraction to deter-
mine the next quotient bit. This introduces a sequential ordering in the subtraction
of multiples of the divisor from the partial remainders, which is not present in the

addition of the partial products.

Chapter 3 Current Dividers

3.1 Introduction

This chapter contains a brief survey of conventional divider implementations,
the algorithms they implement, their performance, and the area they require. The
emphasis is on those that combine O(n) delay with O(n) area, where n is the number
of bits of the operands. Area-efficient division architectures (those achieving O(n)
delay or less) are needed for the large operands required in Public Key Cryptography

and many other digital signal-processing applications.

8

3.2 Commonly Implemented Dividers

Often, using iterative techniques [1], the faster multiplier has been used to
speed up division. However, this is very area-ineflicient, unless a multiplier is already
required. A division algorithm based on multiplication that achieves O(logn) delay

exists [2], but it requires great complexity and more than O(n?) area.

Other methods, notably the CORDIC algorithm, employ a fast adder in
their design. This extremely versatile algorithm uses methods based on coordinate
rotation to calculate trigonometric functions, multiplication, conversion between
binary and mixed-radix number systems, and division [1]. Because of this versatility,
variations of the CORDIC architecture are often used in general purpose computers
and calculators. This method has an O(nlogn) worst-case delay because it makes
use of O(n) iterations of three fast adders (each with O(logn) delay) operating in

parallel.

3.3 Requirements for O(n) Delay and O(n) Area Dividers

Other conventional divider implementations use some variant of the paper
and pencil method of division: either by doing explicit comparison and subtraction
(non-restoring), or by using subtraction and compensating addition (restoring divi-
sion). For binary radix arithmetic, the recursive loop at the center of this class of

dividers is given by following equation.

RY =R —g;x2xD (2)

Although there are often initialization and rounding operations before and
after the central loop, Equation 2is the key arithmetic operation. Therefore, the

central problem for dividers of the same class as the paper and pencil method

9

reduces to two related operations needed to implement Equation 2:

d1. Selecting g;, by comparing partial remainder with the divisor (0 or 1 for the

binary paper-and-pencil method).
d2. Adding/subtracting R and a multiple of the divisor.

How these two operations (d! and d2) are performed differentiates the per-

formance of the various dividers based on the paper-and-pencil method.

Since the selection of ¢; (step d1) and the addition (step d2) in the paper-and-
pencil method are both at best O(logn) operations in VLSI [3], a straightforward
implementation of the paper-and-pencil method requires n iterations and therefore
O(nlogn) delay. Altering these operations such that the delay for each of n itera-
tions is constant, independent of n, would achieve O(n) delay . By using a constant
time adder that introduces redundancy into the partial remainder, the need for a

complete O(log n) addition at each iteration is avoided.

3.3.1 Constant time selection of ¢;

It will be shown by later examples that introducing redundancy into the
representation of the quotient digit ¢; can allow determination by a constant number
of bits of the divisor and remainder. The redundancy allows subsequent quotient
digits to make up for some error. A trivial example with ¢; € {+1,—1}, depending

only on the sign bit of the current partial remainder, is shown in Example 3.3.1-1.

The series of 4+1’s and -1’s produced as a quotient in Example 3.3.1-1 must

finally be recoded into the non-redundant form of 0’s and 1’s with an addition.

10

divisor = 01001) 0111110111 = dividend = pr® = 503
-0100100000 (503> 0=>q5 =1
011010111 = pr! = 503 — 9 x 25 = 215
-010010000 (215 >0=qs =1
01000111 = pr2 =215-9x2* =71
—0100100 (71 > 0)=g¢g3=1
11111111 = pr3 =71 -9 x 28 = —1
+0100100 (—1 < 0) = ¢y = —1
0100011 = prt = -1 +9x 22 = 35
010010 (35>0)=¢q1 =1
010001 = pr® =35 -9 x 2! = 17
01001 (17>0)= g =1
01000 = remainder = pr® =17-9x2° =8

quotient = ¢5x10°+q4 x10%+¢3x 103 +¢ox 10%+¢1 x 1014+ go x 10°
=1x324+1x164+1%x8—-1x4+1x2+1x1
= 5d

Example 3.3.1-1

3.4 Constant Time Adders

In integer addition (as opposed to polynomial or finite field addition), the

carry propagation slows the worst-case addition time, as shown in Example 3.4-2,
where the carry bit of the least significant bits leads eventually to a carry out of
the highest bit. A standard O(n) delay and O(n) area implementation of an n-bit
carry-propagating adder is shown in Figure 3.4-2. This adder is a linear array of n
full adders. Each full adder produces a two-bit total, SUM and CARRY QUT, of
its three binary inputs, A, B, and CARRY IN. The equations relating the outputs

of the full adder, shown in Figure 3.4-1, to the inputs are given with the following;:

SUM = A+ B +CARRYIN (mod 2)

=A®B®CARRYIN

11

<—-—-;>
-

CARRYOUT —— FA ~@———— CARRYIN

J

SUM

Figure 3.4-1: Full adder.

and
CARRYOUT = |(A+ B+ CARRYIN) = 2|

= (AAB)V(AANCARRYIN)V (B ACARRYIN)

Example 3.4-2: Carry-Propagating Addition

Even the fastest non-redundant adder algorithms, such as the Brent-Kung
adder [3], have delay O(logn) at the expense of area. Producing a constant time
adder requires the introduction of some redundancy into the operands. Carry-save

addition and signed-digit addition are two ways of doing this.

12

CARRYOUT <@ pp [<@pp |[#{FpA|® ©® O ~@[pp|«@—CARRYIN

T Y

SUM SUM SUM SUM

Figure 3.4-2: Carry-Propagating Adder.

3.4.1 Carry-Save Addition

In carry-save addition, the current total is in the form of two n-bit numbers,
the carry and the sum. With each addition an n-bit number is added to the old sum
and carry, and the result is in the form of a new sum and a new carry. Addition is
performed as in standard addition, but the carry’s of each bit are not propagated but
are saved to be added in the next addition at the full adder to the left. Eventually
the sum and carry must be added together in non-redundant addition; but when a
series of m n—bit numbers are to be added, the whole addition can be performed
in m + n full-adder delays, rather than m x n full-adder delays. An example of the

carry-save addition of a series of binary numbers is given in Example 3.4.1-3.

13

Addition of the binary numbers 00110011, 00010100, 00010001, and 01011100:

000110011 = sum® = 99
000000000 = carry® = 0
+ 000010100 — 1, — 36

000100111 = sum! =71
000100000 = carry! = 64

000100111 = sum! =71
000100000 = carry! = 64
+ 000010001 — }, — 33

000010110 = sum? = 38
001000010 = carry? = 130

000010110 = sum? = 38
001000010 = carry? = 130
+ 001011100 — p =172

000001000 = sum® =
010101100 = carry® = 332

000001000 = sum3 = 8
+ 010101100 — carry® = 332

010110100 = total = 340

Example 3.4.1-3:

Carry-Save Addition

3.4.2 Constant time addition using more redundancy

Constant time addition can also be achieved using more redundancy, as in
signed-digit addition. Each operand digit is allowed to take on any integer in the
range [—r,+r], where r > 1. When adding two numbers (Z and Y') together, we
first form two intermediate results, the direct sum (W) and the transit (T), before
forming the final sum (S). Because of the large operands, higher radix forms are
not considered; although faster, they require significantly more area and complexity.

The minimume-area, signed-digit adder with r = 2 is demonstrated in Example 3.4.2-

4.
Augend=Z= 0201120 =2x3"4+1x334+1x324+2x3" =528
Addend=Y= 0012011 =1x34+2x33+1x3"+1x3"=139
bit# 6 5 4 3 2 1 0
Augend=7Z= 0201120
Addend=Y= 0012011
Intermediatesum =N= 02 1 3 13 1 n;=2z+vy;
Carry=C= 0101010 ¢g=0for —1<n;<1
cg=1forn;>1
¢ =—1forn; < -1
Direct Sum=W= 0-110101 w;=n;i—3xXc¢
Transit=T= 1 010100 tj=¢-1
Sum=S= 1-120201 s;=w;+1

Sum = 86X36—|—S5 X35+S4><34 33X33+52X32+51X31+80 x 30
=1x30-1x3+2x3"4+2x32+1x3°
= 667

Example 3.4.2-4

3.4.3 Comparison of carry-save and signed-digit addition

The two basic, constant-time add techniques have a real difference in re-
dundancy and complexity. The carry-save adder is shown in Figure 3.4.3-3. The
structure of the signed-digit adder is shown in Figure 3.4.3-4. A minimum of three
bits are necessary to express the five different values possible (2 to -2) for each
of two digits input-to and the one digit output-from each stage of the signed-digit
adder. In comparison, each bit of the carry-save has three inputs (SUMIN, B, and
CARRYIN), each expressed with only one bit, and two bits of output expressing
four different values (SUM =0 or 1, CARRYOUT = 0 or 1) ; thus the circuitry
of the signed-digit adder must process six bits for input and contain latches for the

three-bits output at each of n stages. This is the most important difference between

15

implementations of the two constant time adders.

O=tipate— © 0 Ny la Oa{paf=

Figure 3.4.3-3: Carry Save Adder.

Since each stage of output must be latched, the signed-digit adder requires
three registers per stage, while the carry-save needs only two. Significantly more
area is required for the complex circuitry needed to process the six-bits input per
stage of the signed-digit adder. To generate the transit bit, ¢;, and direct sum, w;,
for each stage addition of the three-bit operands, complexity and area equivalent
to three bits of binary addition are required (delay and area of three full adders, or
some equivalent trade-off of increased area for delay reduction to that of a single
full adder). The final combination of the two bit w;’s and two bit ¢;’s requires area
and delay equivalent to two full adders. Thus, each stage of the signed-digit adder
requires three latches and an area-delay trade-off equivalent to five full adders. Each
bit of the carry save adder requires just one full adder and two latches. Although the
increased range of the operands, -2 to 2, of the signed-digit adder means that only
about half the number of stages is required to add over the same range (ignoring

preprocessing to convert the usual binary operands), the total area cost of the

16

z[2:0] z[2:0] z[2:0]
x[2:0] x[2:0] x[2:0]
2 1 0
t[1:0] t[1:0] t[1:0]
wl[1:0] w[1:0] w[1:0]
® L J ®
2 | 0
s[2:0] s[2:0] s[2:0}

Figure 3.4.3-4: Signed Digit Adder.

redundant adder is about three times that of the carry-save [1]. Although the extra
redundancy of the signed-digit adder might mean selection of ¢; with less digits of
information, the carry-save adder has clear complexity and area advantages which

make it a better choice for large operand arithmetic.

3.5 Purdy and Purdy Divider

The Purdy and Purdy divider (PP) uses carry-save adders to achieve O(n)
delay and O(n) area [4]. PP divides non-negative n-bit integers by positive n-
bit integers in O(n) time with O(n) area. It differs from most dividers in that the

remainder is calculated first. At each iteration three consecutive tests are performed

17
on the most significant bits of a cérry-save representation of the partial remainder.
Each of these three tests relies on only one of the most significant two bits of
the sum and one of the most significant two bits of the carry. A positive result
causes the current, shifted version of the divisor to be subtracted. At most, two
of these three tests will cause a subtraction to occur. The most significant bit
of the carry and the most significant bit of the sum are eliminated with these
tests/subtractions reducing them by one bit each iteratiion. After no more than
n iterations, the final result of these successive reductions is a carry-save version
of the partial remainder that is equal to R + k x D, where k € {0,1,2}. A non-
redundant addition and two comparisons are made finally to produce the remainder.
The remainder is then subtracted from the dividend to make a divisible dividend.
The quotient is then generated from least to most significant bit by successively
testing the even/oddness of the divisible dividend and subtracting. This difference
in generation of the quotient is not fundamental; some form of the quotient is still
needed to get the remainder, in this case ¢; € {+2,41,0}. An example taken from
[4] is given in Example 3.5-5. It shows the contents of the sum register and the
carry register, prsum and prcarry, which contain the partial remainder after each

test /subtraction.

Initialize: load dividend into sum register
find the 2’s complement representation of —9
normalize (multiply —9 x 16 in this case)

prsum= 503 = 0111110111
prcarry= 0
B = -9 x 16 = 101110000

1=0 B = 101110000 prsum = (10000111 (010000111 000010111
prcarry = (011100000 011100000 011000000
1=1 B = 110111000 prsum = 001101111 001101111 001101111
prcarry = (000100000 000100000 000100000
1=2 B = 111011100 prsum = 000010011 000010111 000010111
prcarry = 001011000 000110000 000110000
1=3 B = 111101110 prsum = (000001001 000001011 000001011

18

prcarry = 000101100 000011000 000011000

1i=4 B = 111110111 prsum = 000000100 000000101 000000101
prcarry = 000010110 000001100 000001100

Example 3.5-5

At each of the three steps for each iteration, the sum and carry registers stay
the same, or a carry-save addition is performed to combine prsum, prearry, and
B. At the end of each iteration, ¢, the first 7 4+ 1 bits of the sum and carry registers
are all zero. In Example 3.5-6, the total contained in prsum and prcarry after the
last iteration is equal to 17 (= 5 + 12) and the divisor must be subtracted to once
to get the final remainder, R=17-9=8.

3.6 Preparata and Vuillemin Dividers

There are those dividers that use more redundant arithmetic [5], [6], [7], [8],
[2], and [9]. The Preparata and Vuillemin divider (PV) achieves O(n) area and O(n)
delay [2]. It produces a redundant version of the remainder with approximately n
redundant additions rather than the approximately 3 x n required by PP. Function-
ally, the additions are quite similar to the standard carry-save in that transition bits
or carries are saved for addition at the next add; but PV requires more redundant
additions than PP. Even the least redundant version of PV requires s; € {—1,0}
and ¢; € {~1,0,1}, meaning that more complex circuitry is needed to implement
the adder for each of n stages and that two latches rather than one are needed for

carry storage. Further, generation of the quotient is based on 5 bits of the partial

remainder and 8 bits of the divisor.

19

Chapter 4 The Divider Algorithm

4.1 Introduction

This chapter describes a fast algorithm that offers divides in approximately n
steps with n cells, to attain better performance than comparable proposed dividers,
such as PV and PP. This chapter includes the division algorithm to be implemented,

the way it works, and finally, the divider is compared with PP and PV.

4.2 The Algorithm

This algorithm is based on the paper-and-pencil method and therefore the

partial remainder is generated in successive steps on the basis of the equation:

20

PR'=PR"™ —¢; x D x 2 (3)

where PR’ represents the partial remainder after iteration s, g; is the quotient value
for iteration ¢, and D is the divisor. The algorithm divides an n-bit dividend, N,
by the n-bit divisor, D, to generate a quotient and a remainder. N and D can be

either positive or negative integers.

The addition or subtraction for each iteration is performed on 2’s complement
operands, using carry-save addition, where the carry’s are not propagated but stored
as inputs to the adder during the next add. With each iteration of the algorithm
the sum and carry registers containing the partial remainder, prsum and prcarry,
decrease in size by one bit, until each are one bit smaller than the divisor, D. That

1s:

|logs(lprsum|)] < [logy(|D])]
and

|logz(lprearryl)] < [logy(D])].

The two most significant bits of prsum and prcarry and the sign of the
divisor determine the quotient value for each iteration. This quotient value, ¢; €
{—2,-1,0,1, 2}, determines which multiple of the divisor is to be subtracted from
the current partial remainder. All these multiples are readily obtained from D using

only shifts and bitwise inversions.

In the following program text for the algorithm, the partial remainder is
represented by the sum of the values in PRSUM and PRCARRY'; similarly, the
sum of QSUM and QCARRY represents the current quotient. As shown in the

program, the algorithm begins by assigning to the variable SD a normalized version

21
of the divisor, where |SD| is greater than or equal to 2"~2. The number of shifts of

the divisor required to find this normalized version is stored in the variable m.

In each iteration of Step 2, a quotient value, g, is determined from the first
two bits of PRSUM and PRCARRY . As per Equation 3, a multiple of the divisor,
specifically, ¢ x SD, is subtracted from the current partial remainder to get a new
one. The subtraction is done using carry-save addition designated in the program

with the notation:

< sum,carry >:= sum + carry + b.

After the final reductions to PRSUM and PRCARRY , a comparison must
be made with the divisor to determine whether the partial remainder needs to
be adjusted by the divisor. The adjustment is performed with a last carry save
addition. Finally, non-redundant 2’s complement addition is performed on PRSUM
and PRCARRY to obtain the remainder.

INPUT DIVIDEND[n], DIVISOR[n];

OUTPUT QUOTIENT[n], REMAINDER[n];

stepl:

begin
PRSUM:= DIVIDEND; PRCARRY:=0; SD:= DIVISOR;
m:=0;
while (SD[n-1] = SD[n-2] & m != n-1)

do begin

22

SD := S5D<<1;
m :=m +1;
end
step 2:
i :=0;
while (i != m+1)
do begin
sumg := -2* (PRSUM[n-1-i] + PRCARRY[n-1-i]) +
(PRSUM[n-2-i] + PRCARRY[n-2-1i1);
if (sumg = -4) g:= -2*SIGN(DIVISOR);
if (sumg = -3 || sumg = -2) g:= -1*SIGN(DIVISOR);
if (sumg = -1) g:= 0;
if (sumg = 0 || sumg = 1) g:= 1*SIGN(DIVISOR);
if (sumg = 2) g:= 2*SIGN(DIVISOR);
<PRSUM, PRCARRY> := PRSUM + PRCARRY -g*SD;

truncate (PRSUM, PRCARRY) ;

QSUM := QSUM <<1;

QCARRY := QCARRY << 1;

<QSUM, QCARRY> := (QSUM + QCARRY + gy

SD := SD >> 1;

23

end;
Step 3:
glst := compare (PRSUM, PRCARRY, SIGN(DIVIDEND), SIGN(DIVISOR))
<PRSUM, PRCARRY> := PRSUM + PRCARRY -glst*DIVISOR;
<QSUM, QCARRY> := QSUM + QCARRY + glst;
REMAINDER := PRSUM + PRCARRY;

QUOTIENT := QSUM + QCARRY;

end;

Example 4.2-1 shows the algorithm working to divide 503 by 9. In nor-
malization the divisor, 9, is shifted over 5 times to form the initial 10 bit shifted
divisor, 288. Successive tests on the most significant bits of prsum and prearry
and resulting additions reduce the partial remainder to -1. Since the sign of the
remainder and the sign of the dividend, 503, need to be the same, the divisor is
added to the partial remainder to form the final remainder, 8. This example of the
algorithm, like the others that follow, was generated using a C program simulation
of the algorithm. In Example 4.2-5, the PP algorithm was used to perform division

on the same numbers and 15 tests/additions were required.

Dividing an 9 bit number by a 4 bit number:
dividend => 503 (00000000000000000000000111110111)
divisor => 9 (00000000000000000000000000001001)

24

sd => 288 (0100100000)
pr_sum => 503 (0111110111)
pr-car => 0 « 0000000000)
pr 503
At bit position 9 a=01 b=00 sum=1 So, pr = pr + -1l*sd
a=01 b=00 sum=1 So, pr = pr + -1l*sd
sd => 144 (010010000)
pr_sum => 41 (000101001)
pr-car => 174 (010101110)
pr 215
At bit position 8 a=00 b=01 sum=1 So, pr = pr + =-l*sd
a=00 b=01 sum=1 So, pr = pr + -1*sd
sd => 72 01001000)
pr.sum => 105 (01101001)
pr._car => -34 11011110)
pr 71
At bit position 7 a=01 b=11 sum=0 So, pr = pr + -1*sd
a=01 b=11 sum=0 So, pr = pr + ~-1*sd
sd => 36 (0100100)
pr-sum => -63 (1000001)
pr_.car => 62 (0111110)
pr -1
At bit position 6 a=10 b=01 sum=-1 So, pr = pr + 0*sd
a=10 b=01 sum=-1 So, pr = pr + 0*sd |
sd => 18 « 010010)
pr.sum => 31 (011111)
pr-car => -32 | 100000)
Pr -1
At bit position 5 a=01 b=10 sum=-1 So, pr = pr + 0*sd
a=01 b=10 sum=-1 So, pr = pr + 0*sd
sd => 9 (01001)
pr_sum => 15 | 01111)
pr.car => -16 (10000)
pr -1
At bit position 4 a=01 b=10 sum=-1 So, pr = pr + 0*sd

a=01 b=10 sum=-1 So,

sd => 4 0100)
pr_sum => 7 | 0111)
pr-.car => -8 1000)
pr -1
Final Adjustment step: pr adjusted by +divisor
quotient => 55 (00000000000000000000000000110111)
remainder => 8 (00000000000000000000000000001000)

Example 4.2-1 Division of 503 by 9

Example 4.2-2 shows division of 503 by -9. Here the initial shifted version of
the divisor is -288. As when the divisor was +9, the final partial remainder is -1.
This partial remainder needs to be adjusted by subtracting the divisor to obtain

the final remainder of +8.

Dividing an 9 bit number by a 4 bit number:

dividend => 503 (00000000000000000000000111110111)
divisor => -9 (11111111111111111111111111110111)
sd = -288 (1011100000)
pr_sum = 503 (0111110111)
pr_car = 0 (0000000000)
pr 503

sd => -144 | 101110000)
pr_sum => 23 | 000010111)
pr-car => 192 (011000000)
pr 215
At bit position 8 a=00 b=01 sum=1 So, pr = pr + 1l*sd

sd => -72 | 10111000)
pr_sum => 39 | 00100111)
pr_car => 32 (00100000)

pr 71

26

At bit position 7 a=00 b=00 sum=0 So, pr = pr + l*sd

sd => -36 (1011100)
pr-sum => -1 | 1111111)
pr_car => 0 0000000)
pr -1

sd => -18 (101110)
pr_sum => 31 011111)
pr_car => -32 | 100000)
pr -1

sd => -9 10111)
pr_sum => 15 (01111)
pr._car => -1l6 (10000)
pr -1

sd => -5 1011)
pr_sum => T (0111)
pr_-car => -8 1000)
pr -1

quotient => -55 (11111111111111111111111111001001)
remainder => 8 (00000000000000000000000000001000)

Example 4.2-2 Division of 503 by -9

27
4.3 Why the Algorithm Works

Step 1 of the algorithm normalizes the divisor by multiplying it by 2 (with

shifts) m times. Thus, after Step 1,
SD =2"D.

At the end of Step 1, SD,_; is not equal to SD,_5, so for a negative divisor
SD,—1 =1, SD,_2 = 0, and for a positive divisor SD,_y =0, SD,,_2 = 1. Since
these bits represent —2"~! and 42"~2, respectively, and the lower n — 2 bits can

contribute at most 22 — 1, the following ranges apply for SD:
2" 1< 8D <22 D<0

" 2<SD <21 D>0
or
2n—2 < ISDI < 2n-—1’

and since D =27 x SD,

2n—-m—2 S |D| < 2n—m——1. (4)

Since the basis of the algorithm, Step 2, is the ability to compress the partial
remainder, prsum and precarry, into 2’s complement representations that are 1 bit
smaller after each iteration, it must be shown that ¢; and SD* are chosen in such a

way as to make this compression possible.

Initially, prsum and prcarry are n-bit 2’s complement numbers. prsum,_;
and prcarry,_1, the sign bits, can each contribute —2"~! to the partial remainder.
prsumg_z and prcarry,_o can each contribute 42772, The total contribution of

the first two bits of prsum and prcarry, sb, is therefore given by the following:

8b = (=2 X prsump_1 — 2 X prearryn—1 + prsumy_g + prearryp—2) X on—2

28

or, using sumgq as defined in the program:

sb = sumg x 2"7?

Since prsumap—1, prearrys_y, préumy_s, and prearry,_o are each € {0,1},

sumg is € {—4,-3,-2,-1,0,1,2}.

The lower n — 2 bits of prsum and prcarry will, after a carry-save addition
with eny n — 2 bit binary number, produce a new prsum and precarry with n — 2

bits each and one carryout, co, with a potential contribution of +2"2.

Compression to two n—1 bit numbers is possible if the new partial remainder
is in the range [—2",2" — 2], the range that the sum of two n—1 bit 2’s complement
numbers can represent. Using only this range requirement might require adjustment
of all the bits of both registers, however. The algorithm works by choosing ¢; such
that only the first bits need to be adjusted. This is possible because the algorithm
ensures that each carry-save addition results in a total contribution by the upper
bits, which is in the range of values that can be represented with the sign bits of

n — 1 bit 2’s complement numbers, 0, —1, or —2 x 2"~2. That is,

sumg X 2" 2 4 co x 2"72 4 beont = sbnew = (0,—1,0r — 2) x 2" 2, (5)

where bcont is the contribution from —g¢; X SD, and sbnew is the new value to be

represented in the sign bits.

It will now be shown that every possible value of sumg and resulting ¢; x SD
achieves the appropriate range for sbnew, which can therefore be mapped into

thenew sign bits.

For sumg = —4:

29
g =—-2,B=2x|SD|, an n + 1 bit 2’s complement number with b, = 0,

bp—1 =1 and b,_y = sdnext = sd,_3, for D > 0 or sdy_3, for D < 0,

sbnew = sumgq x 2" 2 4+ 1 x 2" + sdnext x 2" ? + co
= [~4 + 2 + sdnext + co] x 2”2
= [~2 + sdnext + co] x 2" 2.

As co and sdnect are each € {0,1}, sbnew can be apportioned to the new
sign bits with the following assignments: prsumy_s = sdnezt and prearry,_s = to.

For sumg = —3:

g=-1,and B = |SD| with b,_1 =0, b2 =1

sbnew = sumg x 2" 24+ 1x 2" %+ co
=[-3+1+co] x 2" 2
=[-24 co] x 2"72,

sbnew can be apportioned to the new sign bits with the following assignments:

prsumy,_o = 1 and prearry,._, = co.
For sumg = —2:
g=-1,and B = |SD| with b,_1 =0, b2 =1
sbnew = sumg x 2" 2 +1x 2" %2 4 co
=[-24+1+co] x 2"
= [~1 + co] x on—2,

sbnew can be apportioned to the new sign bits with the following assignments:

prsumy_9 = 0 and prearry,_o = ¢o.

30
For sumg = —1:
g=0,and B=0withb,1=0,b,0=0
sbnew = sumg x 2" 72 + co
=[-1+ eo] x on—2,
sbnew can be apportioned to the new sign bits with the following assignments:
prsumgp—2 = 0 and precarryp—2 = 0.
For sumgq = 0:
g=1,B=—|SD|,withb,—1 =1, bp_2 =0
sbnew = sumg x 2" 2 — 2" 4 ¢co
= [=2+ co] x 2" 2
=[~2+ co] x 2"2.
sbnew can be apportioned to the new sign bits with the following assignments:
prsump—2 = 1 and prearryy,—2 = co.
For sumgq = 1:
g=1, B=—|SD|, with b1 =1, b2 =0
sbnew = sumg x 2" 2 — 2" 1 4 ¢co
=[1-2+co| x 2"2
= [~1+ co] x 2" 2.
sbnew can be apportioned to the new sign bits with the following assignments:
prsumyp—2 = 0 and precarryn—2 = co.

For sumgq = 2:

31
=2 B=-2x|SD|,with b, =1, b1 =0, bp—3 = 1 — sdnext
sbnew = sumq x 22 — 2(n) 4 (1 — sdnext) x 2"~% + co
=[2—4 41— sdnext + co] x 2"2
= [~1 — sdnext + co] x 2" 2.

sbnew can be apportioned to the new sign bits with the following assignments:

pPrsumy_o = sdnezt and prearry,_s = Co.

These assignments to the new sign bits are not unique, but do correctly
apportion sbnew. The sign bit of prearry, prearryn—2, is equal to €6 for every case
of sumgq. The results for the sign bit of prsum, prsum,_s, are summarized in Table

4.3-1.

sumq -4 -3 -2 -1 0 1 2
quotient -2 -1 -1 0 1 1 2
sign of

prsum sdnext 1 0 0 | 0 sdnext

Table 4.3-1: New Sign Bit

Thus, with an n-bit |[SD°| > 2"~2, as ensured by the initial normalization
of the divisor, a quotient value ranging from -2 to 4+2 can be chosen, based on just
two bits of prsum and prcarry, which allows compression of any n-bit prsum and
prcarry into n—1 bit registers after execution of Equation 3. By induction, at each
iteration, ¢, the n — ¢ bit numbers prsum and prcarry can be reduced ton —7 —1

bit numbers using an n — ¢ bit shifted divisor, SD*, where |SD?| > 27~*~2,

32
SD is reduced from its normalized n-bit form by one bit with each iteration
until the final iteration, when SD is equal to the n —m bit divisor, D, with a range

as given in Equation 4.

After the mth and final iteration, prsum and precarry are each n —m —1 bit

2’s complement numbers and therefore:
—2" M2 < prsum < 2W™2 1 (6)

and

—2n~m=2 < prearry < 272~ 1 (7)

Combining Equations 6and 7with 4, the following ranges can be obtained for

the final partial remainder:
—2"~ "1 < prsum + prearry < 271 2 (8)

—2|D| < =2""™"1 < prsum + prearry <27 — 2 < 2|D| (9).

Since the final remainder, R, must have the same sign as the dividend, N,
and |R| < |D|, the range of the partial remainder shows that an adjustment of at

most twice the divisor at Step 3 obtains R.

4.4 Comparison with Other Dividers

This section will show that implementation considerations favor this ap-

proach over both PP and PV.

33

4.4.1 Comparison with PP

The proposed algorithm is more flexible than PP in that it permits division
by and of negative numbers, while PP is restricted to non-negative dividends and
positive divisors. At each addition, the algorithm must process a total of 4 sum
and carry bits to generate the three-bit quotient, while PP looks at just 2 bits to
generate 1 of 3 parts of the quotient. The additional processing for the quotient bit
has, as n gets large, a negligible effect on area because the quotient is generated only
once, regardless of the size of the divider. As for delay, there is a cost in generating
from more inputs and processing from more outputs, but this delay is more than
offset by the two more additions and quotient selections required for each iteration
of PP. PP also discards the quotient values used to generate the remainder, and
computes the quotient after the remainder in approximately n steps, while the new
divider is more suited to generate the quotient in parallel with the remainder. The
result is that the remainder and the quotient are computed more than 2 times faster.
The reduction in adders results in an area reduction by more than a factor of 2 over
PP. The O(n) area of the dividers translates this decrease in area into an ability to

divide numbers of twice as many bits.

4.4.2 Comparison with PV

The comparison with PV dividers will be restricted to the least redundant
version because greater redundancy can improve delay only at a significant cost of
area and complexity [1]. In the minimum-area implementation of PV, the addition
operation is similar to carry-save arithmetic, but the operands at each digit are al-
lowed a greater range: s; € {—1,0},¢; € {-1,1},d; € {-1,0},¢; € {-2,-1,0,1,2}
[2]. Since each bit slice of the adder is to implement < sj,¢; >:=s; + ¢; — ¢; X &J,

each bit slice of the redundant adder must receive a minimum of 1 bit for the S5

34
input, 2 bits for the ¢; input, and 2 bits for the d; x ¢;. Each bit slice of the adder
must then output and latch at least 1 bit for the s; output and 2 for bits for the
c¢j output. The standard carry-save adder must process only 3 bits of input and
latch only 2 bits of output, and therefore requires less area and less delay. The quo-
tient selection in PV also compares unfavorably. It is more complex and is based
on the first 5 bits of the divisor and 8 bits of the partial remainder [2]. Despite
the greater complexity and area of PV, it has a significant delay advantage over
PP because the remainder is computed with approximately n additions rather than
the 3 x n required with PP. The new divider, like PV, computes the remainder in
approximately n additions, but the n additions performed require less delay and

less area.

35

Chapter 5 Architecture of the Divider

5.1 Introduction

This chapter contains the main structural information for a 16-bit syn-

chronous implementation of the algorithm.

The overall architecture is shown in Figure 5.1-1, a diagram of the main
modules that shows where the main operands of the algorithm are being input and
output. The divisor is received by the input module. The input module outputs
the shifted divisor to the pr_adder module which receives the quotient bits from
the controller and the dividend that is input to the chip. The pr_adder outputs
the remainder. The g_adder module receives the quotient bits generated at each

iteration in order to finally output the total quotient. The controller generates the

36

divisor
g — input
controller
4 shifted divisor
g———
dividend
- pr_adder
. o —
remainder
e
qbits g_adder
S —

quotient
Figure 5.1-1: Divider Architecture.
quotient bits from unmarked inputs from the input module and pr_adder. It also

controls which kind of addition, carry-save or ripple carry, is being performed by

pr-adder and q_adder. Subsequent sections will describe the structure and functions

37

of input, pr_adder, and q.adder in more detail.

5.2 Normalization Circuitry

0 —» ones
token - |
divisor
L sdivisor

* shifted divisor

Figure 5.2-2: Input Module.

The n-bit divisor must be shifted over until its shifted version, SD, has an
absolute value of at least 2”2, This is implemented with a shift register initially
loaded with the divisor and then shifted left as many times as necessary. The number
of shifts that are required is stored in an accompanying shift register, called token,
which is initially loaded with a one and is shifted left with the divisor with ones being
loaded into the left. After the shift is completed, the value in token, containing m+1
ones, is loaded into another register called ones. As the central loop implementing

the carry-save additions is performed, the ones register will be shifted to the right

38
(with zeros being input at the left) until it contains only a single one, signalling
the end of the main loop. The token register, containing n — (m + 1) zeros, is
used to store the final size of the partial remainder sum and carry registers, prsum
and prcarry. Obviously, both the token register and the ones register could have
been implemented with log n-size counters, but n-bit registers were used instead to
maintain the bit slice nature of the architecture and to lower complexity. These
three n-bit registers and the multiplexors associated with the inputs to each bit
form the O(n)-size module shown in Figure 5.2-2 . The schematic diagram of the
bit slice of this module is shown in Figure 5.2-3 ; an n size array of these, with only

nearest neighbor connections, forms the input module.

The carry input to each bitslice allows the contents of prcarry to be loaded

into the sdivisor register, needed for the final ripple carry addition of the remainder.

5.3 Carry-Save Adder

The standard n-bit, carry-save adder is a linear array of n full adders with n
latches for the output sum bits and n latches for the output carry bits. The standard
configuration is to have the latched sum fed back as input to its accompanying full
adder and the latched carry used as input to the next full adder to the left. Using a
standard carry-save adder would require complicated n-dependent, select circuitry
to find the current, high-order bits of prsum and prcarry, since quotient bits are
determined by, and truncation circuitry must act on, the (n—1)th bits of the prsum

and prearry (¢ being the current iteration).

This complicated circuitry is avoided by propagating the results of each ad-
dition to the left one bit. This can be done without losing data, because the new

prsum and prcarry are one bit smaller with each iteration.

39

carry
A
divisor | mux2l jout ja in out sdivisor
] mux21 jput slatch -

stated celec b
>] select clock
load_b
D,
instate
=
incllock
(s
reset_a
= a in cut token_out
Efset_b mux21 put slatchy e

: clock

pe]ect
tokenclacK
=
_P.

a in oUtl ones_ocut
E;setl_b mux21 put slatch Lo

b clock
1dst3 Fe]ect
D
onesclock
=

Figure 5.2-3: Bit Slice of Normalization Circuitry

A three-bit quotient determines which multiple of the shifted divisor is to be
added to (or subtracted from) the current partial remainder. When the quotient
1s +2 or -2 and twice the shifted divisor is to be subtracted/added, the inputs
to the full adders are sd x 2, or sd shifted left one bit. A multiplexor is used to
determine whether the potential input to bit j of the adder is sd; or sdj_;. Another

multiplexor determines whether +sd, —sd, or 0 is added to the partial remainder.

A multiplexor whose output determines the sum input to each full adder
allows an initial parallel load of the sum register with the dividend, and subsequent

inputs from the latched output of the full adder to the right.

40

sout

cout

- &}
sumin mux21 jodt in out
= slatch
sumse |l eledt
[I a clock
o q9 s
> b —
1 Ject b in out
&1 9 addbit slatch
cg '
c &— clock
sd] I |

sdnext
[-
sd mux21 put
= -
§2 select =
clock mux2! put
= —

s

select

cin c
[alterchk
E;terin alterin altercut
decin decin decout
>
ripplj
=

The final step of the algorithm requires a standard, carry-propagating ad-
dition. The same full adders used for the carry-save additions can be used for the
carry-propagating addition when a multiplexor is used to determine whether the
carryin input to each full adder is the carryout of the full adder to the right or
the latched carry of the full adder, two to the right. The additional multiplexor
on each carry input reduces area by avoiding n additional full adders (a 2:1 mul-
tiplexor has significantly less area than a full adder) and associated latches at no

delay cost, because there is already a delay on the inputs to each full adder by the

Figure 5.3-4: Bit Slice of pr_adder

two multiplexors required to process the quotient bits.

41

The schematic diagram of the bit slice of this is shown in Figure 5.3-4 . As
can be seen from Figure 5.3-4 the bit slice contains one full adder, four multiplexors,
and two latches. The additional logic pictured is used for comparison after the main
loop. The computational delay is that of two multiplexors and one full adder. The
critical path delay of pr_adder during the main loop is through two multiplexors,
one full adder, and a final inverter for the sign bit of the carry register, as discussed
in Chapter 4.

5.4 Quotient Generation

At each iteration i, the quotient g; represents a ¢; x 2™~ 1% addition to the
total quotient, (). This is implemented at each iteration by shifting the old quotient

one bit to the left (multiplying by two) and adding g;.
Q-1=0

Qi =2x%xQi—1+¢g

After m iterations, @ is given by the following equation:

Qm=¢qox 2™ 14+ g1 x2™ 2 4 . 4 g1 x 20 (10)

The quotient update is implemented with a carry-save adder whose output
is shifted one bit to the left (as in the partial remainder update) with the B input to
the adder being determined by the current quotient, ¢;. The n-bit 2’s complement
of ¢; is given by 111...11110, 111...11111, 000...00000, 000...00001, or 000...00010 .
Table 5.4-1 gives the three-bit mapping of ¢; into g2, ¢1, and ¢g. The b input to each
full adder, except the rightmost two, is therefore non-zero only when ¢; is less than

0. It can be seen from the table that b can therefore be set equal to q;. The least

42
significant b input, bg, is non-zero only for ¢; = —1 or 1, and is given by g2 A (g1 Vqo)-
The next to last b, b1, is non-zero for ¢ = —2, ¢ = —1, or ¢ = 1; and is given by

q1 V(g0 ANG2).

The additional circuitry to implement by and b; does not add to the latency
of the divider because q_adder is being updated at the same time as pr_adder, which

requires more delay for its inputs.

gi g2 gl a0

-2 1 1 0

-1 0 1 0

0 0 0 0

1 0 0 1

2 1 0 1
Table 5.4-1

The resulting architecture of a bit slice of the gq_adder is shown in Figure

5.4-5 .

43

in

ms latch |

clock

out %SDUt

0
8]
3

sSin
oD
a
mux21 ou
b
start Felec +
- a
a b)
E;n mux21 put 1addbit
b
Belectt
cir
a
Eflm mux21 Ut
h
: Tect
ripple S e
>
clock

ms latch

out %Cout

clock

Figure 5.4-5: Bit Slice of q_adder.

44

Chapter 6 Faults in Asynchronous Arrays

6.1 Introduction

Architectures using four-state coding, a data-driven technique for implement-
ing bit-level wave-front arrays and their responses to various faults are described.
They are shown to be resistant to soft and hard error propagation. This resistance
to propagation of errors is the basis of a simplified approach to fault tolerance not
possible with conventional, clocked systolic arrays. In Chapter 7, architectures that

implement this approach will be presented.

45
6.2 Four-State Coding

With clockless (self-timed, or asynchronous) wave-front arrays, the timing is
controlled by the elements themselves, not by a common clock [10]. In order to keep
computations ordered, it is necessary to employ more than two states to represent
a single bit of information. Four-state, asynchronous communication code employs
two states to represent logical 1 (P1 and Q1) and two states for logical 0 (PO and
QO0), where P and Q can be thought of as two phase representations. These states
can be coded in binary logic using two bits: 00 = logical 0 (P0), 01 = logical 1
(Q1), 10 = logical 0 (Q0), and 11 = logical 1 (P1). If outputs and inputs alternate
between the P and Q phase representations, there is always exactly one bit changed
for every transition in output or input, avoiding the problem of races when the

output changes [11].

The major drawback of four-state coding is area (true for asynchronous de-
signs in general); but it claims three important advantages over the equivalent syn-
chronous systolic array: faster throughput, reduced design complexity and greater
reliability. Four-state asynchronous coding will be demonstrated using a simple,

serial shift register.

Figure 6.2-1 and Figure 6.2-2 show three stages in the middle of a longer shift
register. It consists of three asynchronous delay cells (D-cells), whose truth table is
shown in Table 6.2-1. Of the 8 possible input states, half change the output state
and the other half leave it in its existing state. The D-cell passes Q-phase data only
when the next element has P-phase data, and passes P-phase data only when the
next element has Q-phase data. Each cell in the shift register will alternate between
P and Q phase as stored values are shifted through from left to right. Figure 6.2-2
shows a simplified view of Figure 6.2-1, the type of view that will be used in the

rest of this chapter. Here, each line represents three wires: two for the flow of

46

parity parity parity
1 1 0
_—— -
phase phase phase

data data data

Figure 6.2-1: Four-State Shift Register.

information (PO, QO0, P1 or Q1) going in the direction of the arrow and one for the

phase acknowledgment (P or Q) going in the opposite direction.

6.3 Faults in MOS Circuits and Their Detection

The need for increased processing speeds (in communications, defense, com-
plex modeling and real-time image processing) is coupled with a need for increased
reliability. For many applications, processing errors in the individual processing
elements must be detected and corrected in order to provide assurance that the

results are correct.

47

> Pl | — » Q0 |——» PO }—» --

Figure 6.2-2: Four-State Shift Register - Simplified View.

On-line detection of both permanent (or hard) errors and temporary (or
soft) errors is necessary in order to provide fault-tolerant computing [12]. The
continuing decrease in the minimum feature sizes has tended to increase the severity
and frequency of both hard and soft errors [13]. The impact of failures upon the
validity of the circuit operation may vary from none to catastrophic. While hard
errors may seriously affect system performance, soft errors tend to be more difficult
to detect and fix, potentially causing more harm in an application. It has been
estimated that in most systems 80-90% of physical faults are soft [14]. It is in
mitigating the effects of these faults that asynchronous logic can have an important

impact.

48

Input phase Acknowledge { Output phase
and data Phase and data
00 (PO) P No change
00 (PO) Q 00 (PO)
o1 (A1) P 01 (Qt1)
otr(Qt) Q No change
10 (Q0) P 10 (Q0)
10 (Q0) Q No change
11 (P P No change
11 (P1) Q 11 (P1)

Table 6.2-1: Four-State, Shift-Register Truth Table

6.3.1 Transient faults or soft errors

Environmental factors, such as electromagnetic interference and radiation,

cause all circuits to receive undesirable charges in the form of alpha particles and cos-

mic rays [12]. The soft-error rate in MOS circuits is almost exponentially dependent

on Qcrit, the critical charge necessary to change the logic value [15]. As processes

49
are scaled Qcriz tends to decrease by the square of the scale factor. The decrease
in Q¢rjt more than compensates for any improvement in hit probability caused by
smaller devices (assuming device area scales by the square of the minimum-feature
size). If the improved density is used to make larger arrays, keeping the active area
unchanged, then scaling down by a factor of 2 increases the soft-error rate by a

factor of between 2 and 4 [15].

6.3.2 Detecting and correcting soft errors

The most straightforward approach to detecting and correcting soft errors is
replication. It is applicable to most circuits; and, although it costs a great deal of
area, 1t is not very complex to implement. Triplication, like triple-repetition coding,
enables single-error correction. An erroneous output from one circuit will be cor-
rected if the other two circuits are outputting the correct value. With duplication,
only error detection can be done, since there is no way to decide correctly between
different outputs. The ability to mark one circuit as having gone wrong can, like
an erasure in a communication channel, allow for single-error correction. The result
would be error correction with only two-thirds the area required by triplication.
Asynchronous logic can be made to output erasures rather than errors allowing for

error correction with duplication.

More sophisticated detecting schemes have been employed in some applica-
tions [16]. Examples of this include single-error correcting and double-error de-
tecting codes for memories, parity bits for data buses, residue codes for ALU’s,
watchdogs and redundant links in switches [17] [18] [19] [20]. In general, a circuit
is self-testing for a set of faults F, if for every fault in F, the circuit produces a
non-code output [21] [22]. Although these schemes are more area-efficient, they

lack the simplicity and generality of replication coding.

50
6.4 Faults in a Four-State Shift Register

Section 6.2 described how a four-state shift register operates in the absence
of faults. Although the resulting shift register is functionally similar to a clocked
shift register, it is affected by faults very differently. In particular, the asynchronous

shift register can react to an error by either “sticking” or “slipping.”

6.4.1 Sticking

Figure 6.4.1-3 illustrates how a hard error could cause the register to “stick.”
The marked cell in Figure 6.4.1-3 has a permanent fault, causing the data bit to
be “stuck-at-zero.” There are no problems as long as this bit is not supposed to
change; but when P1 is input as in Figure 6.4.1-3 IV, the cell cannot acknowledge
the data, and no further data can be received from, or sent to, this cell. Although
sticking may appear to be undesirable behavior, it can, in fact, act as error detection.
Regular circuit behavior would result in a parity transition, a new output, within
some reasonable interval of time. Here, there is no such transition, so it can be
recognized that no new output has been received from this circuit. In effect, the
circuit has output an erasure. Circuit duplication would result in a repetition
code of length two. Duplication, not triplication, is thus sufficient for single-error

correction, as only erasure correction is required.

6.4.2 Slipping

Figure 6.4.2-4 illustrates how a soft error could cause the register to “slip.”
The correct shift-register contents of Figure 6.4.2-4 I are changed by a “hit” into
those of Figure 6.4.2-4 II. Now the cells to the left of the error, because of the new

phase acknowledgement, think that the data they sent had been received, when

51

III

Figure 6.4.1-3: Shift Register with a Hard Error.

actually it had not; and the the cells to the right would never see the data that had

52

II1

v

Figure 6.4.2-4: Shift Register with a Soft Error.

been changed in error. The eventual result is shown in Figure 6.4.2-4 IV, with the
leftmost P1 allowed to propagate two cells to the right, while the Q1 and PO to its
right were effectively erased. This behavior is likely to be catastrophic and needs

to be avoided.

53

Chapter 7 Exploiting the Inherent Fault Tole-

rance of Asynchronous Arrays

7.1 Introduction

In this chapter, the responses of two different convolutional encoders are
compared in order to demonstrate which types of asynchronous arrays will slip and
which will stick in the presence of faults. Finally, the fault responses of more general

four-state architectures are demonstrated.

7.2 Faults in a Four-State, Convolutional Encoder

An n-stage, convolutional encoder is a polynomial multiplier, where an input

stream is multiplied by a fixed coefficient. The function is illustrated by Figure 7.2-

54

Data

\\ Exclusive-OR /

Result
out

Figure 7.2-1: Convolutional Encoder.

1, where the input stream is stored in latches, and the coefficient associated with
each latch determines whether the latch output is included in the exclusive-OR
operation. For large n the encoder would be built using a more regular systolic
structure, consisting of n identical elements chained together. Two such elements,
each employing four-state cells, are shown in Figure 7.2-2 and Figure 7.2-3 . It is
instructive to consider these two functionally equivalent architectures, since they
exhibit different behavior under error conditions. First, a fault-prone architecture

will be discussed, and then an alternate fault-resistant architecture will be described.

7.2.1 Version 1 - a fault-prone, four-state convolutional encoder architecture

Three elements from a chain that make up a convolutional encoder are shown
in Figure 7.2.1-2 . It is a fairly straightforward implementation, optimum in terms

of the throughput achievable. The top latch performs the same function as a latch

55

Data Data

Result Result
out in

4 state delay
cell (D- Cell)

@ 4 state
exclusive-OR cell

Figure 7.2.1-2: Convolutional Encoder - Version 1.

in Figure 7.2.1-2, delaying the input as it passes from left to right. The bottom
cell on the right-hand side performs part of the overall exclusive-OR operation as
the partial result is passed from right to left. The final latch in the bottom left
is employed to improve throughput. Thus, the top cells act as a shift register,
with each cell receiving its inputs from the previous element, and outputting its
information both to the next element and to the exclusive-OR cell. The bottom cells
act to accumulate the result, with the right-hand cell doing the actual convolution

and the left-hand cell acting as a buffer.

If one of the cells that make up this convolutional encoder receives enough

radiation to change its output spontaneously, its behavior will depend on the state

56

©
U ©
\
el
T ©

©
©
\—/
"o
<[©
U ©

o
)

U2 U U U U A A U A U W,

Figure 7.2.1-4: Version 1 without Errors.

57

PP PP
PPP QPP
@ P PP P Q Q p
b pp QQp

PQP QpQ

"sticking” 1oops

"slipping” loop

Figure 7.2.1-4: Version 1 with Errors.

of its neighbors. A single-bit error will change the phase (i.e., P to Q or Q to P)
of the element receiving the error. In order to illustrate this point consider five
of the cells in isolation. Specifically, pick three cells from an element and the two
right-hand cells from the element to its left. Now these five cells will each be in
one of four-states (P0, QO0, P1 or Q1); however, for this analysis just the phase,

P or Q, will be noted. There will then be 25 possible phase states. If each cell

58
obeys its truth table, then the legal transitions from a given state will be very
limited. A convenient way of describing the possible sequences is by means of a de
Bruijn diagram [23]. Figure 7.2.1-4 and Figure 7.2.1-5 show the resulting de Bruijn
diagram for the five cells. It has four loops: two of size one (which will be termed
the “sticking” loops), one of size ten (which will be called the “slipping” loop), and

one of size 20 (the error free loop).

Assume initially that the encoder has been reset so that it is in the error-free
loop. Then, provided there are no errors in the system, the five cells will remain in
this loop. However, an error can cause the system to jump spontaneously into any
possible state, including those of the “slipping” and “sticking” loops. If an error
moves the system into either of the “sticking” loops, the system will come to a
complete standstill and the error will be detected. But if an error moves the system
into the “slipping” loop, two very undesirable, non-reversible events occur. First,
two bits of data will be totally obliterated. This is easiest to see if the middle cell,
initially in the Q state, was changed by radiation into the P state, and the remaining
cells were already in the P state. Then, not only is the bit of Q phase information
lost, but also one of the bits of phase P information to its left or right will be lost,
since there is no longer any way of distinguishing them. The rest of the system
will then have no way of knowing of this lost data, leaving the errors undetected.
A second problem that occurs is that the new loop introduces a bottleneck. This
“slipping” loop allows data to pass through at only half the rate of the “desired”

loop.

Although this encoder is optimal in terms of throughput under normal con-
ditions, it can exhibit some changes catastrophic to system function as a result of

a soft error.

59

7.2.2 Version 2 - a fault-detecting convolutional encoder architecture

O 4 state delay cell (D- Cell)

Parity inverting 4 state
exclusive-OR cell

Figure 7.2.2-3: Convolutional Encoder - Version 2.

The convolutional encoder shown in Figure 7.2.2-3 makes use of a technique
called phase inversion. That is, cell A will input information from cell B with the
parity bit inverted, making cell B appear to cell A as if it were in the opposite
phase from its true state; and cell B will see inverted versions of cell A’s acknowl-
edgment, so that it receives the acknowledgment it is expecting. In Figure 7.2.2-3,
the exclusive-OR cell is marked in black because it uses phase inversion. This en-

coder works in a manner similar to the previous one and is functionally identical.

60
It, too, is optimal in terms of throughput and is actually more efficient in area,

since it employs one less cell. Its response to soft errors is, however, very different.

Figure 7.2.2-6: Version 2 without Errors.

A de Bruijn diagram for two elements of this encoder is shown in Figure 7.2.2-
6 and Figure 7.2.2-7 . These diagrams show five loops: four of size one (“sticking”
loops) and one of size twelve (error-free loop). Again assuming that the system is

initialized to start in the error-free loop, then, provided there are no system errors,

61

Figure 7.2.2-7: Version 2 with Errors.

it will remain permanently in this loop. With this encoder, unlike the previous one,

errors can move the system only into a “sticking” loop.

This encoder is to be preferred because it does not exhibit the potentially
catastrophic changes (slipping) as a result of soft errors that were exhibited by the

previous architecture.

7.3 More General Architectures

Some general comments can be made regarding the relationship between
architecture and error characteristics. First, slippage will always be possible when

a cell is receiving from only one cell and outputting to only one cell. This results in

62
the shift register case and is also true for the delay cell in the bottom left of Figure
7.3-8 . Any configuration in which cells receive input from only one cell and output
to cells whose outputs are independent, as in the tree-type configuration shown in

Figure 7.3-9 will have the potential for slipping.

O~-0~-0-0O~

Figure 7.3-8: Simple Slipping Configuration.

In a stable state, when there is no drive to change the phase of a cell, C,
the phase information is being stored by the cell and is therefore vulnerable to soft
error. One type of stable state occurs when the cell receiving the information, R,
is not acknowledging the new phase thaat C is sending. The other type occurs
when no new phase input is available from the input cell, I. When C is in the simple

configuration of Figure 7.3-10, sticking results from soft errors received during either

type of stable state because the other cell, D, acts as a fault detector.

Figure 7.3-10: Simple Sticking Configuration.

63

O

O

O

O

Figure 7.3-9: More General Slipping Configuration.

In Figure 7.3-11, cell C is shown in a stable state where the cell R is not

acknowledging its output. After being hit by a soft error, the phase of C is changed

64
from P to Q. The phase of cell D, however, remains unchanged and will not change
until cell R acknowledges its P phase. Cell R cannot change phase because cell C
is of the wrong phase and does not appear to hold new information. Cell C can
change phase because its old P input from cell I is still stored at cell I. This error

correction is the only change that can occur in this phase state.

Figure 7.3-11: Correcting Phase State.

Figure 7.3-12 shows the same phase configuration except that cell I has al-
ready received new information. In this phase configuration, cell R cannot change
because its inputs are of a different phase. Cell D cannot change because its output
is not being acknowledged by cell R. Cell I cannot change because its Q phase is not
acknowledged by cell D. Finally, cell C cannot change because it is not receiving

new phase information from cell L.

Figure 7.3-13 shows cell C waiting for a new input from cell I. After an error
changes the phase of cell C, cell I is no longer receiving an acknowledgement of its
information and cannot change phase. Cell R cannot receive cell C’s error because
cell D is still in phase P. Cell D cannot change phase because it is still waiting for
a new input from cell I. Additional inputs‘ to the cell C or outputs from the cell

would not change this sticking response, because they can only add more phase

65

Figure 7.3-12: Waiting for New Input.

restrictions. In Figure 7.3-14, every cell in the mesh, except the upper left and
lower right endpoint, is in the configuration of Figure 7.3-10. The entire mesh will
therefore stick if any one of the cells gets an error. Further, a sticking architecture
results when any of the cells of the mesh is replaced by a configuration of cells which

itself sticks in response to errors.

Figure 7.3-13: Waiting for Acknowledgment.

66

Figure 7.3-14: More General Sticking Architecture.

67

Chapter 8 Conclusion

As ICs become denser and faster, the system designer is able to use very
large operands in their arithmetic units. These architectures, such as those required
for Public Key Cryptography (1024 bit operands), push back system performance
limits. As the size increases, however, there is need to re-evaluate the scalability of

the architecture and the susceptibility to errors.

As an example of the need to change the architecture, a new binary divider
for large operand division has been proposed. This architecture, one which can be
applied to Public Key Cryptography, produces the quotient and remainder in O(n)
time using O(n) area, where n is the operand size. The new divider is faster than
comparable carry save dividers, and more area-efficient than implementations using

more redundant arithmetic.

68
Besides architecture scalability and area, key design complexity issues were
also addressed. A small 16 bit synchronous version of our divider showed that the
architecture is suitable for VLSI implementation. Future research on the division
architecture will include implementing a large 1024 bit asynchronous version, with

a fault tolerant architecture.

The error susceptibility of denser, faster IC’s motivated the research for a
simplified approach to fault tolerance. A novel method was proposed for asyn-
" chronous arrays; the method exploits the inherent fault tolerance of asynchronous
arrays to achieve fault tolerance with duplication rather than triplication. Errors

always resulted in sticking, rather than slipping that masks the errors, in architec-

tures of a general form to which non-sticking architectures can be easily converted.

Although the architectures discussed all used four-state coding, this approach
is not necessarily limited to only these asynchronous circuits. Other types of wave-
front arrays could be analyzed to find, or even alteréd to achieve, the sticking or

deadlock response to faults that would allow error correction with only duplication.

69

References

[1] K. Hwang, Computer Arithmetic: Principles, Architecture, and Design. New
York: Wiley, 1979.

[2] F. P. Preparata and J. E. Vuillemin, “Practical Cellular Dividers,” IEEE
Trans. on Computers, vol. C-39, pages 605 - 614, May 1990.

[3] R. P. Brent and H.T. Kung, “A regular layout for Parallel Adders,” IEEE
Trans. on Computers, vol. C-31, pages 260 - 264, March 1982.

[4] C. N. Purdy and G. B. Purdy, “Integer Division in Linear Time with Bounded

Fan-In,” IEEE Trans. on Computers, vol. C-36, pages 640 - 644, May 1987.

[5] J. E. Robertson, “A new class of Digital Division Methods,” IEEE Trans.
on Computers, vol. C-07, pages 218 - 222, September 1958.

[6] D. E. Atkins, “Higher-Radix Division Using Estimates of the Divisor and
Partial Remainders,” IEEE Trans. on Computers, vol. C-17, pages 925 - 234,
September 1968.

[7] Atkins, “Design of the Arithmetic Units of ILLIAC III: Use of Redundancy
and Higher Radix Methods,” IEEE Trans. on Computers, vol. C-19, pages 720 -
733, August 1970.

[8] K. S. Trivedi and M.D. Ercegovac, “On-Line Algorithms for Division and
Multiplication,” IEEE Trans. on Computers, vol. C-26, pages 681 - 687, July 1977.

[9] M. D. Ercegovac and T. Lang, “Simple Radix-4 Division with Operand Scal-
ing” IEEE Computer, vol. 15, pages 37-46, Jan. 1982.

[10] R. M. F. Goodman and A. J. McAuley, “An Efficient Asynchronous Mul-

tiplier,” International Conference on Systolic Arrays, San Diego, California, USA,

70
May 25-26, 1988.

[11] A. J. McAuley, “Four State Asynchronous Archtectures,” submitted to the

IEEE Trans. on Computers.

(12] T. J. Brosnan and N.R. Strader II, “Modular Error Detection for Bit-Serial
Multiplication,” JEEE Trans. on Computers, vol. 37, No. 9, 1043- 1052, September
1988.

[13] Niraj K. Jha, “Multiple Stuck-Open Fault Detection in CMOS Logic Cir-
cuits,” IEEE Trans. on Computers, vol. 37, No. 4, pages 426-432, April 1988.

[14] O. Tasar and V. Tasar, “A Study of Intermittent Faults in Digital Comput-

ers,” in AFIPS Conf. Proc., vol. 46, pp 807- 811, 1979.

[15] B. Chappell, S. Schuster, G. A. Sai-Halasz , “Stability and SER Analysis of
Static RAM Cells”, IEEE Trans. on Electron Devices, vol. ED-32, No. 2, pages
463 - 470 , Feb. 1985.

[16] A. Mahmood and E. J. McCluskey, “Concurrent Error Detection Using
Watchdog Processors — A Survey,” IEEE Trans. on Computers,vol. 37, No. 2,
160 - 174, Feb. 1988

[17] I. Gazit and M. Malek, “Fault Tolerance Capabilities in Multistage Network-
Based Multicomputer Systems,” IEEE Trans. on Computers, vol. 37, No. 7, pages
788 - 798, July 1988.

[18] J. R. Connet, E. J. Pasternak, and B.D. Wagner, “Software Defenses in Real
Time Control Systems,” in Dig. Int. Symp. Fault Tolerance Comput., FTCS-2 ,
Newton, MA, 94-99, June 19-21, 1972.

[19] J. S. Novak and L. S. Tuomenoksqua, “Memory Mutilation in Stored Pro-

71
gram Controlled Telephone Systems,” in Conf. Rec. 1970 Int. Conf. Commun.,
vol. 2, 43-32 to 43-45, 1970.

[20] S. M. Ornstein, “Pluribus-A Reliable Multiprocessor,” in Proc. AFIPS
Conf., vol 44, Anaheim, CA May 19-22, 1975 551-559.

[21] T. Nanya and T. Kawamura, “Error Secure Propagating Concept and its
Application to the Design of Strongly Fault-secure Processors,” IEEE Trans. on
Computers, vol. 37, No. 1, pages 14 - 24, Jan. 1988.

[22] D. Nikolos, A. M. Paschalis, and G. Philokyprou, “Efficient Design of To-
tally Self-Checking Checkers for all Low-Cost Arithmetic Codes,”IEEE Trans. on
Computers, vol. 37, No. 7, 807 - 811, July 1988.

[23] B. Bannister and D. Whitehead, Fundamentals of Digital Systems, McGraw
Hill, London, 1973.

