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Abstract

This thesis addresses several important issues of the physics and

applications of double barrier resonant tunneling devices on which the

author worked during his graduate study at Caltech:

(1)

(2)

(3)

(4)

Epitaxial growth of AlAs/GaAs double barrier resonant tunneling
structure on both GaAs and Si substrate (Chapter 2).

Investigation of terahertz modulation of resonant tunneling effect
(Chapter 3).

Study of the imaginary potential in double barrier resonant
tunneling (Chapter 4).

Development of the first series of optical resonant tunneling devices

and parallel resonant tunneling (Chapter 5).

The history of the development of double barrier resonant tunneling

and the basic theory are also discussed (Chapter 1).
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Chapter One

Introduction to DBRT

The double barrier resonant tunneling (DBRT) effect was first
proposed and demonstrated by Tsu, Chang and Esaki in 1973 [1-2]). It
became an active research area in recent years after a demonstration of a
very fast response (2.5 THz) by Sollner et al. in 1983 [3] . In this chapter,
the basic principle of DBRT will be introduced and the development of
DBRT will be discussed.

1.1 Basic Principle of DBRT

A typical DBRT device and its potential profile are shown in fig. 1.1.
It is a two-terminal device which consists of a double barrier structure
sandwiched between the emitter electrode and collector electrode. A
typical I-V curve of this device is shown in fig. 1.2. The I-V curve consists
of a sharp peak due to resonant tunneling effect which is explained as
follows.

Because of the small size (about 50A) of the quantum well between
the two barriers, several discrete energy levels exist inside the quantum
well. When a voltage V, is applied across the double barrier structure as
shown in fig. 1.2, the Fermi level of the emitter electrode is raised relative
to the ground level in the quantum well. If the Fermi level is lower than
the ground level in the quantum well as shown in fig. 1.3a, most of the

clectrons at the emitter electrode do not have enough energy to tunnel
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through the ground level. The tunneling current is then very small. When
Va, is increased so that the Fermi level becomes closer to the ground level,
more electrons have enough energy to reach the ground level. Then the
tunneling current increases as shown in fig. 1.3b. When the applied
voltage is further increased so that the Fermi level is above the ground
level, the electrons cannot tunnel through the ground state and the
tunneling current then decreases as shown in fig. 1.3c. This leads to a
sharp peak in the I-V curve shown in fig. 1.2. Multiple peaks in the I-V
curve can also be observed if there are several discrete levels inside the
quantum well. However, in a typical DBRT structure which is designed to
produce a large resonance peak associated with the ground state, only one

to two discrete states exist inside the quantum well.

In the following, we will derive an expression for the tunneling
current based on the theory given by Tsu, Chang and Esaki [1-2]. We first
define: (i) Jier as the sum of the particle currents incident on the double
barrier structure from the electrode on the left (emitter) and (ii) Jrgn: as
the sum of the particle currents from the electrode on the right (collector).
The total current Jioa1  is equal to the difference, Jierr - Jrignt . In order to
calculate Jierr and Jrjgne , we have to calculate the particle current, J(k;), due
to a single particle, where k; is the z-component of the incident
wavevector of the particle wavefunction and the z-direction is normal to

the barrier layers.

We first calculate the eigenfunctions of the DBRT structure by solving

the Schrodinger Equation. Each eigenfunction describes a particle incident
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from one side of the structure, reflected back and transmitted to another
side as shown in fig. 1.4. The particle current density, J(ki), is given by:
—eh [y Oy w Oy )
J(kl) 2 m*i Wklaz\vkl \quaz\vkl (1.1)

where e is the electronic charge, A=h/2n and h is Planck's constant, m* is

the effective mass of the electron in the layer material which is different

from layer to layer, ¥, is the eigenfunction:

Wi, = exp(ikjz) + ajp exp(-ik;z) in layer I
ap1 exp(ikaz) + azy exp(-ikaz) in layer II
a3y exp(iksz) + a3y exp(-ikaz) in layer III
as1 exp(ikqz) + a4y exp(-iksz) in layer IV
asy exp(iksz) in layer V

The coefficients, ajj, can be found by matching ‘I’kl and V‘Pkllm* at each
interface, kj, (2 <i<5), are the z-component of the wavevector at different
layers which depend on k; . The particle current J(k;) calculated by
equation (1.1) using the wavefunction in layer V is given by:
J(k1) = elas1|® hks/m*

The transmission coefficient |asi|? versus the longitudinal energy,
(#k1)2/2m*, is plotted in fig. 1.5. The peak in fig. 1.5 shows that only those
electrons within a narrow range of k; can possess a significantly large
tunneling amplitude. The states with large tunneling amplitude are the

discrete levels of the quantum well.

To obtain an expression for Jier; , we sum up J(k;) with different

weighting factors according to the Fermi-Dirac distribution:
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3" -
Ter= | K 2 k) 3kp)
(21c

where l_c’ = ( kx, ky, k1), f(E) is the Fermi-Dirac distribution of layer I, and
the factor of two is due to the spin degeneracy. Since J(k;) depends on k;
only, we can integrate the expression over the transverse components, ky
and ky. Jigne is calculated in a similar way. Finally, we take the

difference, Jief; - Jright » to obtain the expression for Jiota) :

* 2 i
Jiotal = em kT |a51| —11:—5— x log 1+ exp [(E - E JKT] dE

212 K 1 1+ expl(Es- E, - eVoJKT]) ~ (1.2)

0

where k is Boltzmann's constant, T is the absolute temperature, Ef is the
Fermi level of the electrode on the left, V, is the applied voltage across the
double barrier structure. The variable of integration is changed from kj to
the longitudinal energy (E;= #’k,’/2m*). An I-V curve calculated by this
formula is shown in the inset of fig. 3.2 in Chapter Three.

The above theory gives the basic idea of resonant tunneling. This is
enough for the basic understanding and design of useful resonant
tunneling devices. However, other minor effects which are neglected in
the simple theory may be important in certain considerations such as the
evaluation of the valley current, understanding the physics of fast
modulation and switching, resonant tunneling in indirect band gap
materials, etc. Therefore, a more accurate calculation should include the
scattering effect from impurities, phonons, and defects, the space charge

effect, and the band structure effect. As for the study of fast response of
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DBRT, the temporal behavior of the electron wavefunction has to be
considered. This issue will be discussed in Chapter Three. Scattering effect
‘will be discussed in Chapter Four where an imaginary potential is used to

model the scattering effect.

1.2 Development of DBRT

In this section, the development of DBRT at different stages over the
last two decades will be described, including the author's contributions in
recent years.

The simplest resonant tunneling structure called the double barrier
structure was proposed and demonstrated by Tsu, Esaki and Chang in 1973
and 1974 [1-2]. This early demonstration shows a peak in the I-V
characteristics which was explained by a simple resonant tunneling theory
described above. However, due to the relatively primitive state of the
technology of sample preparation, the effect could only be seen at 779K.
Application of this effect was not demonstrated until 1983 when a double
barrier resonant tunneling diode was used by Sollner's group to detect and
mix a 2.5 THz signal [3]. This exciting demonstration served to kick off a
large research effort in DBRT.

The research efforts on DBRT after Sollner's experiment were focused
on two areas: (i) estimation and reduction of the fast response time scale
[4-10], and (ii) material improvement for the enhancement of the resonant
tunneling effect [11-15]. The incoherent tunneling picture [4] which is
totally different from the coherent picture was proposed to explain the

resonant tunneling effect. Using new materials, such as AllnGaAsP [13] for
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the double barrier structure and Si and InP {11,13] for the substrate was

attempted and led to many successful demonstrations of large and fast

resonant tunneling effect. The author's contributions in this primary stage
include:

(1) First time simulation of resonant tunneling when the double barrier
structure is modulated at a few THz. This work introduces a new
method to simulate the tunneling of a mono-energetic electron. The
ultimate frequency limit of DBRT is found which is consistent with the
experimental result [5].

(2) First time epitaxial growth of DBRT on Si substrate. High current peak
and valley ratio of 2.9 at room temperature was obtained which was

comparable to the record (3.9) on GaAs substrate [11].

As the device technology for DBRT improved, considerable research
was aimed at understanding the basic physics of the device such as the
space charge effect, e-e interaction, e-phonon interaction, and other
inelastic scattering, magnetic resonant tunneling, one-dimensional
quantum wire DBRT, etc. [16-25]. At this stage, the author's contributions
include:

(3) Simulation of tunneling escape from the quantum well inside the
double barrier structure. In this work, an imaginary potential in DBRT
is used to model the recombination process which is important in the
tunneling time experiment [16].

(4) Discovery of the total resonant tunneling without reflection in

asymmetric double barrier structure with an imaginary potential.
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This work changed the concept of impossible total tunneling in

asymmetric structure [17].

Together with the pursuit of fundamental understanding, many
novel new devices [26-38] were developed, namely, Stark Effect Transistor
(SET), Resonant tunneling Bipolar Transistor (RBT), Resonant Tunneling
Field Effect Transistor (RTFET) and Resonant Hot Electron Transistor
(RHET). The author is responsible for the development of the first series of
optical resonant tunneling devices [26-30]:

(5) Resonant Tunneling quantum well Laser (RTL) [26-27].
(6) Optically-controlled Parallel resonant-Tunneling (OPT) devices  [28-
301.

The field of resonant tunneling continues to grow nowadays as seen
from the numerous publications in various kinds of journals. This is
because of the large potential of applications and possibility of discovering
new physics. Many new ideas have been proposed or demonstrated in
recent years. The most important driving force for this field is the fact
that resonant tunneling effect can survive even when the device size
becomes much smaller. Another important driving force comes from the
optical processing capability demonstrated by the author [26-30] which is
necessary to utilize the advanced processing power in the optical devices.
Therefore, the author believes that the ultimate functional devices in the

future must be based on the resonant tunneling effect.
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Chapter Two

Sample Preparation of DBRT on GaAs Substrate and Si
Substrate by MBE

In this chapter, the sample preparation of DBRT structures by
Molecular Beam Epitaxy (MBE) will be discussed. The first work using
GaAs-on-Si technology to grow a GaAs DBRT structure on lattice-

mismatched Si substrate will be described.

2.1 DBRT Structure Grown by MBE

Since the tunneling barriers and quantum well in DBRT structures
have to be extremely thin and abrupt, only two methods at present lead to
satisfactory DBRT structures. They are the Molecular Beam Epitaxy (MBE)
[1-3] and Metal Organic Chemical Vapor Deposition (MOCVD) [4-5]. In our
laboratory, we exclusively use MBE to prepare the DBRT structures. MBE is
a technique for epitaxial growth of thin film crystals on crystalline
substrates. The distinctive feature of a MBE system shown in fig. 2.1 is the
capability to perform layer-by-layer epitaxial growth. In a typical MBE
growth, the substrate is put in front of the effusion cells. The molecular
beams from the effusion cell react on the substrate surface and form the
crystal extension of the substrate. Since the growth process is layer-by-
layer, the growth can be easily controlled, and very abrupt (mono-layer

accuracy) heterojunctions and doping profiles can be obtained.
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Although DBRT structures can be prepared by growing several
heterojunctions as in fig. 1.1 in a straightforward manner, the tricks to
prepare a good DBRT structure, however, take years to develop [6-15]. As
described in Chapter One, DBRT structures have been produced by MBE as
early as 1974 [6]. However, the technology to prepare a good substrate
and produce an abrupt and high quality heterojunction was not up to the
task and the resonant tunneling effect could be observed only at 770K.
The most important steps in preparing a good DBRT structure are the
growth of high purity undoped double barrier structure [7] and the
introduction of spacer to prevent the Si impurity migration into the
structure as shown in fig. 2.2 [8]. Other important steps include the
introduction of growth interruption at the heterojuncntion interface, and
incorporation of strained layer and deep quantum well using InGaAs [9-
15]. All these efforts lead to the success of room temperature resonant
tunneling effect and fast response demonstration. Using different strained
layer and deep quantum well further enhances the resonant tunneling

effect and using new materials such as InSb improves the response time.

2.2 GaAs-on-Si Technology

As the technology of growing DBRT structures on lattice-matched
GaAs substrate became mature, the effort was shifted to prepare DBRT
structures on the practical but lattice-mismatched Si substrates [11]. In
this section, the technology of growing GaAs epitaxial layers on Si

substrates by MBE will be reviewed.
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Epitaxial growth of GaAs on Si substrate has been extensively studied
in recent years [16-20]. Electronic and optical devices from this composite
structure have been fabricated for novel applications [21-25]. The
resultant devices make it possible to combine the advantages of
GaAs/AlGaAs and Si monolithically, i.e., the optical devices from
GaAs/AlGaAs and mature electronic circuits and devices from Si can be
operated on the same chip. Other advantages of using Si material are that
Si is less brittle, has higher thermal conductivity which is essential to
dissipate heat efficiently, and has a smaller defect density compared to
GaAs. However, there are several critical problems of growing GaAs
epitaxial layers on Si substrate:

(1) One problem is the anti-phase. Because of the polar nature of GaAs
crystal and the nonpolar nature of Si crystal, it is very difficult to have
uniform Ga layer and As layer over a large area on the wafer surface.
Unwanted change from Ga atoms to As atoms on the same layer is called
anti-phase problem as is shown in fig. 2.3. An arsenic prelayer before the
growth of GaAs and slow initial growth rate of GaAs were used to alleviate
this problem. The substrate temperature was set between 400 and 500°C
at the initiation of the growth with a 7 sec of As; exposure prior to gallium
flux. The growth rate and the substrate temperature were then increased
to 1 um/hr and 600°C respectively in 20 minutes during the first 200 A of
growth.

(2) Another problem is the dislocation spreading. Because of the 4%
lattice mismatch between GaAs and Si crystal, a significant amount of

dislocations are developed at the GaAs-Si interface. A tilted substrate is
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used to alleviate this problem. The substrate used to demonstrate the first
GaAs DBRT structures on Si is an n-type Si wafer tilted by 4 degrees
towards the (110) direction. Strained layer superlattice is also used to
bend the propagation direction of dislocation in order to reduce the
number of dislocations which will extend to the layers for the device

structure.

2.3 GaAs-DBRT-on-Si

The high performance of quantum well devices grown on Si, e.g.,
quantum well lasers and modulation doped field effect transistors
(MODFET) has demonstrated that device quality epitaxial layers can be
obtained on Si. However, a DBRT device based on perpendicular and
coherent quantum transport is more difficult to prepare because the
electron wavefunction has to extend coherently over a wide region away
from the double barrier structure. Therefore, in order to obtain a large
resonant tunneling effect, a wide region of high crystalline quality is
required. In the following, we describe the first GaAs DBRT structure
grown on Si substrate by MBE using the techniques mentioned above.

The DBRT layered structure is as follows:
(1) a GaAs spacer of 1000 A
(2) an AlAs barrier of 20 A
(3) a GaAs quantum well of 56 A
(4) an AlAs barrier of 20 A
(5) a GaAs spacer of 1000 A
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The entire structure is lightly doped to 1016 cm-3 with Si. A 0.2 pm
n type ( Si, 1018 cm-3 ) top GaAs electrode was grown on top of the double
barrier structure. Growth rates of GaAs and AlAs layers were 1 and 0.5
pm/hr, respectively. A 2 um n type Si, 10!8 cm-3 GaAs buffer layer was
grown to smooth out any imperfection before the growth of the DBRT
structure.

The cleaning procedure included a degreasing in TCE, removal of
heavy metals in nitric acid/sulphuric acid (volume ratio is 1:1), a series of
oxide growth in HC/¢/water/peroxide (volume ratio is 3:5:3) and stripping
steps in HF/water (volume ratio is 1:10), and a last oxide growth. The
oxide was then desorbed in the MBE chamber at 1000°C for about one
minute.

A circular mesa of 50 pm diameter shown in fig. 2.4 was fabricated
by chemical etching. The current-voltage (I-V) characteristics were
measured by an I-V tracer. The deviation of the peak and valley currents
for all the diodes fabricated is only about 10% indicating high uniformity
and crystalline quality over large areas. The largest current peak to valley
ratio is 2.9 and 12.5 at room temperature and 77°K (fig. 2.5), respectively.
The diode with the largest negative resistance has a peak current density
of 1600 A/cm2 and valley current density of 550 A/cm2 at room
temperature. At 77°K, the peak current density increased to 2500 Afcm?2
and valley current density decreased to 200 Afcm2. The current peak to
valley ratio of 2.9 at room temperature is comparable to the best result

(3.9) obtained from devices grown on GaAs substrates.
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2.4 Conclusions

In conclusion, we have successfully prepared the first GaAs DBRT
structure on Si substrate. The current peak to valley ratio of 2.9 at room
temperature was fairly high as compared to the record of 3.9 on GaAs
substrates, indicating the material quality of the epitaxial layers grown on
Si substrate is comparable to that on GaAs substrates. This important step
makes the integration of GaAs resonant tunneling devices with the well-
developed Si devices possible. Complex functional devices based on this

achievement should be foreseeable in the future.
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Fig. 2.5
Experimental I-V Curve of
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Chapter Three

Tera Hertz Modulation of DBRT

In this chapter, the issue of high frequency modulation of DBRT
structure at a few tera hertz will be addressed. @A new approach to
treating the problem of the frequency response at high frequency
modulation will be introduced. Using the new approach, we determine the
frequency limit of DBRT and reveal the details of the tunneling in the fast
modulated structure.

One of the major advantages of DBRT is that the resonant tunneling
effect can be obtained even when the double barrier structure is
modulated at very high frequency [1-5]. Modulation of DBRT at low
frequencies can be treated by using the static DBRT theory discussed in
Chapter One. When the modulation time scale is comparable to the
intrinsic tunneling time, a dynamical DBRT theory is needed to describe the
time-dependent DBRT. The frequency response of the DBRT will be studied

by a new approach in this chapter.

3.1 Simulation of DBRT at High Frequency Modulation

In this section, a new approach is introduced to simulate the DBRT at
very high frequency modulation [6]. The frequency response of the DBRT
is determined from the simulation result. The model structure in our
study is a typical symmetric double barrier structure similar to the device

on which the fastest operation was reported. It is composed of two 22.5 A
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wide Aly3Gag,As barriers and a 52.5 A wide GaAs quantum well. The

barrier height is 0.24 eV. The structure is sandwiched between GaAs

electrodes which are n-doped to 5 x 10'7/cm3. The temperature is 77°K.
The modulation of the double barrier structure is described as

follows. A voltage drop V,(t) is applied across the structure as shown in

fig. 3.1. This voltage drop is changed in time in the following way:
V, )=V, fort < 0,

V, (@) =Vi+V, sin (ot) fort > 0.

That is, when t < 0, the potential is static and when t > 0, the double barrier

structure is modulated periodically in time.

The values of Vy and V., are chosen in the following way. We first
calculate the static I-V curve of the device using the formula derived in

Chapter One:

— em*kT[ IaSIIZII—z‘i log { 1+eXp[(Ef'Ez)/kT] } dEZ (3‘1)
1

2 2 K2 0 1 +exp [ (Ef-EzeVa) /KT ]

which is plotted in the inset of fig. 3.2. The parameters in equation (3.1)
are defined in Chapter One after equations (1.1) and (1.2). The I-V curve
in fig. 3.2 indicates that the negative conductance is largest when V, =
0.15V. Since the point with largest negative conductance is usually chosen
to be the operation point in most applications, we choose Vi to be 0.15V.
We also choose Vi, to be 0.01V so that the operation point will sweep

through most of the negative conductance region on the I-V curve.
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We consider a mono-energetic electron plane wave incident on this
modulated structure. For t < 0, the electron wavefunction is the eigenstate
of the time-independent structure since the potential is static. For t > 0,
the wavefunction will evolve according to the time-dependent Schrodinger

equation:
i P __ p? 92¥(z,1)

” R + V(z,t) ¥(z,t)
m Z

where A = h/2r and h is Planck's constant, ¥ (z,t) is the electron
wavefunction, and V(z,t) is the modulated double barrier potential which
depends on V,(t) as shown in fig. 3.1.

The electron energy is chosen in the following way. First, we re-
examine the current expression (3.1). The integrand in the expression is
the current distribution due to the electrons with different longitudinal
energy (Ez) which is plotted in fig. 3.2. The area under the distribution
corresponds to the total current. Several curves corresponding to the
structure with different applied voltage V, are plotted. The position of the

dominant part (i.e., the peak) of the distribution changes significantly in

the positive resistance region from V3=0.12 volt to 0.14 volt. But for the
negative resistance region from V4=0.14 volt to 0.17 volt, which is of great
interest, the peak of the distribution does not change much and the main
effect from the increase of Vg is the decrease in the overall area. This
means that the electrons with longitudinal energy, E; ranging from 0 to 10
meV make a dominant contribution to the change of the total current. This
narrow spectrum also suggests that simulation of these electrons will give
meaningful  information about the resonant tunneling. Hence, in our

study, we pick the longitudinal energy of our model electron to be 4 meV.
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The eigenfunction with Ez = 4 meV, which is the initial wavefunction,
is then calculated. The time evolution of the wave function is then
obtained by solving the time-dependent Schrédinger equation based on
the effective mass approximation [7]. The wavefunction ¥ and its first
spatial derivative d¥/dz/m* are matched at each interface. The time-
dependent Schrodinger equation is solved wusing the Crank-Nicolson
implicit scheme [8] which is described in the appendix. The local current
of the wavefunction can be calculated from the local current operator in

equation (1.1).

3.2 Simulation Results

In this section, the simulation resulté will be presented. The
simulations at different modulation frequencies (f=385 GHz, 770 GHz, 1.54
THz, 3.08 THz, 6.16 THz) are performed. The probability density and
current at different places ( ppeak. P1, p2 and Jp(t) shown in fig. 3.3) as a
function of time are plotted in fig. 3.4. The results are categorized as

follows:

3.2.1 General dynamics

According to fig. 3.4, the evolution of the wavefunction is
summarized as follows. Before t = 0, the wavefunction is the eigenfunction
which involves incident, reflected and transmitted plane waves. After t =
0, we find that the "old" transmitted and reflected plane waves, which
leave the structure before t = 0, propagate in the same way as in a time-

independent system. But for the plane wave incident on the structure
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after t = 0, the "new" transmitted and reflected waves change in amplitude.
The sum of the transmitted current and reflected current is not necessarily
equal to the incident current because of the charging and discharging
processes of the quantum well which correspond to the on and off of DBRT
in time. The changes of the transmitted wave and reflected wave are
propagating away from the double barrier structure. Hence, the current in
the left and right electrodes is also changing with time. The change of the
wavefunction undergoes a transient stage and then a periodic
modulation following the varying potential. The amplitude of the
periodic modulation of the wavefunction decreases with frequency and

from this, the ultimate frequency limit is determined.

3.2.2 Frequency response

Simulation results show that the amplitude of the periodic
modulation of the wavefunction decreases with the modulation frequency.
Here we focus on the transmitted current density at the right edge of the
second barrier, J(z=z; , t) which is denoted by Jp(t) in fig. 3.3. The relative
values, Jrp(t)/J7(0) for different frequencies are plotted in fig. 3.4. The
linear and nonlinear frequency responses are calculated in the following
way. We expand Jp(t) .into a Fourier series:

o0

Jr(t) = Y. [ & cos(nwt) + by sin(nat) ]

n=0
The linear response (cp) is taken as V a? +b% corresponding to the first

. . . A/ 2
harmonic, and the nonlinear response (cp) is taken as a%+b2

corresponding to the second harmonic.  The linear response (cy) and
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nonlinear response (co) as a function of frequency are plotted in fig. 3.5.
The linear response (cy) starts decreasing above 1.54 THz and is down by
50% at 3.08 THz and displays a 1/f dependence at high frequency. This is
consistent with the experimental result of 2.5 THz response in Ref. 3. The

nonlinear response (c,p) also starts decreasing above 1.54 THz but an

enhancement at 770 GHz 1is observed.

3.2.3 Charging and discharging

One important effect of the modulation is the charging and
discharging process in the double barrier structure. Since the spatial
profile of the probability density inside the quantum well is generally bell
shaped, the total probability inside the quantum well is roughly
proportional to the peak value of the probability density, W (z,t)I2 .4
which is denoted by ppeak(t) in fig. 3.3. The relative value,
Ppeak(t)/Ppeak(0), is also plotied in fig. 3.4 for different frequencies.

To shed more light on the the charging and discharging process, the
local current near the double barrier structure at different times within
one period of the modulation is plotted in fig. 3.6 for the 1.54 THz case.
The current varies in space which signifies charge accumulation and
depletion. The slope inside the quantum well is changing from positive to
negative and vice versa in time. From the continuity equation, we know
that the positive and negative slopes correspond to the discharging or
charging process, respectively. The steeper slope inside the quantum well
compared to the slope in the barriers or electrodes means the charging and

discharging rates are faster in the quantum well.
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3.2.4 Transmitted pulses - On and Off of DBRT

By plotting the probability density to the right of the second barrier
in fig. 3.7, we observe the generation of the transmitted pulses due to the
on and off resonance during a modulation period. The width of the pulse,
about 5000 A, corresponds to a spread of about 1 THz in the energy of the
electron. This is about the same as the modulation frequency of 1.54 THz.
This is also the evidence of the scattering to higher energy states and
lower energy states with a quantum of A® absorbed and emitted as
considered by time dependent scattering theory [5]. An unexpected
phenomenon is that the pulses do not disperse but are compressed. The
peak of the pulse is increasing at a constant rate and the width of the pulse
is decreasing. This is probably due to overtaking of the early "slow" charge
by the late "faster” charge as the kinetic energy of the electron is

modulated.

3.3 Conclusions

In conclusion, we have developed a new method to simulate the
resonant tunneling when the double barrier structure is modulated at a
few THz. The simulation results explicitly show that the resonant
tunneling effect diminishes when the modulation frequency is increased.
This determines the ultimate frequency limit of double barrier resonant

tunneling.
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3.5 Figures
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Chapter Four

Imaginary Potential in DBRT

The imaginary potential is a phenomenological tool for describing the
scattering loss of a particle. This concept was introduced by Niels Bohr at
the early stage of Quantum Mechanics [1]. In many-body theory, it is used
to understand the concept of quasi-particle [2]. The imaginary potential
was used by Stone and Lee in 1985 to study the inelastic scattering effect
on DBRT in 1985 [3]. This method, in general, is very useful in treating the
scattering loss effect in DBRT [4-5]. In this chapter, the general properties
of a Hamiltonian with an imaginary potential are discussed. Two
applications of imaginary potential to DBRT system are illustrated. One is
to model the recombination process by the imaginary potential in the
simulation of tunneling time experiment. Another one is to model the
general scattering processes in the study of asymmetric double barrier

structure.

4.1 Non-hermitian Hamiltonians

The eigenvectors of a hermitian operator with different eigenvalues
are known to be orthogonal to each other and all the eigenvalues are real
numbers [6]. Here, we re-examine the overlap integral of two eigenvectors
of a non-hermitian Hamiltonian with different eigenvalues. First, we write

down the time-independent Schrédinger equation for an eigenvector (12> :

[Ho -1 VIM(x)] 11) = Eq |1) (4.1)
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and the hermitian conjugate of the equation for another eigenvector [2>:
@[Ho+ i V") = B | (4.2)
where Hg is a hermitian potential, Vim(x) is the imaginary potential which
is assumed to be positive, E; and E» are the eigenvalues. By making an
inner product of 11> with equation (4.2) and an inner product of <2| with
equation (4.1), and then taking the difference, we get:
- 21 Vl= (E-E3) 211) (4.3)
where V5] =(2| ViM(x) l1). The overlap integral between 12> and (1>

becomes:
-2iVH

: 4.4
B (4.4)

@) =

V8 is non-zero in general and hence 12> is not orthogonal to {1> although
E, #E,.
Next we examine the eigenvalues of the Hamiltonian. By setting 12>
= 11> in equation (3), we get the imaginary part of the eigenvalue:
vy

Since V1 and (111 are positive, Im(E) is negative.  This gives an
exponential decay of the amplitude of the wavefunction with time since:
e-i(E/Mt = e-i[Re(E)/Alt o-[Im(E)/A]t ‘ (4.6)
where A=h/2m and h is Planck's constant. This is exactly the property of a
quasi-particle in the many-body theory. However, a distinction has to be
made between extended states and localized states. For localized states,
(11} is unity and therefore, Im (E) = - V] which is nonzero in general. But
for the extended states, (/1) is infinite. If Vim(x) is localized within some

region, v is finite and therefore, Im(E) is zero. Im(E) can have non-
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zero value only if Vim(x) is not localized which corresponds to a large
recombination bath in the bulk material. Therefore, for extended states,
the eigenvalues of a Hamiltonian with a localized imaginary potential are

real numbers.

4.2 Non-conservation of Matter

Now, we examine how the non-orthogonality of extended states is
related to non-conservation of matter. We construct a normalizable wave
packet from the superposition of extended eigenfunctions, k> with the

eigenvalue Ey = hoy,

P(xt) = f A(K) |k) e-iaddk (4.7)

with <¥(x,0)/¥(x,0)> = 1. The norm of ¥(x,t) becomes:

((xd) [#(xt) = L AXK?) A(K) (K] k ) e i(wew)t dk ok’ s

oo

Note that the only time dependence of <W¥(x,0)I¥(x,1)> comes from the
nonzero contribution of < k'l k > when k #k' which is -2i V"k';(-/ (Ex - Ex).
For a hermitian Hamiltonian, < k' |k > = S(k-k‘) and hence, <¥(x,D)I¥(x,t)>
is time-independent. Therefore, the non-orthogonality of the eigenvectors
is responsible for the non-conservation of matter.

The loss of matter through the imaginary potential becomes more
apparent in the continuity equation derived from the time dependent

Schrodinger equation:
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ni 2N 2 gPe 4 [V - § VM) Bk

ot 2m (4.9)
where V(x) is the real potential. The continuity equation becomes:
ap(x.t) -
o= - Vedxb) - 2 VMx) plx;t
ot h () plxt) (4.10)

where J = (/2 m* i) (¥* V ¥-¥ V ¥*). The last term in equation (4.10)

corresponds to a sink for the probability density.

4.3 Application of Imaginary Potential (I)

In this section, the imaginary potential is used in the numerical
simulation of the tunneling time experiment. In the tunneling time
experiment, the electrons inside the quantum well in the double barrier
structure are excited from the valence band to the conduction band. By
measuring the recombination rate, one can estimate how fast these
photoexcited electrons can escape from the double barrier structure. Here
we use the imaginary potential to model the recombination process inside
the quantum well and simulate the dynamics of the photo-excited
electrons. The lifetime of these photo-excited electrons is measured from

the simulation results.

4.3.1 Quasi-bound state in double barrier structure

The electrons inside the quantum well of the double barrier
structure have a finite lifetime because of the finite tunneling escape
amplitude. This lifetime, which is related to the tunneling time, can be

measured experimentally by picosecond time-resolved photoluminescence
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technique [7-9]. In the‘experiment, the electrons inside the quantum well
were photo-excited from'the valence band to the conduction band. These
electrons proceed to either tunnel from the quantum well or recombine
with the holes inside the quantum well emitting photons as shown in fig.
4.1. The luminescence intensity was measured in the experiment as a
function of time and the tunneling rate can be found by assuming the

following rate equation:

1 -1 __1 (4.11)

Ttun  Tiotal  Trecom
where Ty, is the tunneling escape time, Tiecom 1S the recombination time

and Tioat is the total lifetime of the electron measured from the decay of

luminescence intensity. This experimental method introduces a
recombination channel inside the quantum well so that the electron
tunneling cannot be simulated without taking the amplitude of the
wavefunction in the valence band into account. A simpler approach is to
model the recombination process by a localized imaginary potential. In
this way, the simple picture of the wavefunction, which consists of the
amplitude in the conduction band only, can be maintained. The imaginary
potential, Vim(x), is shown in fig. 4.1 and fig. 4.2. Vim(x) is taken to be
constant (I') inside the quantum well and to be zero in the barriers and
outside the structure. The localization of the imaginary potential
corresponds to a localized density of holes inside the quantum well.
Numerical simulation of the electron tunneling in such a complex potential

1s demonstrated in the next section.
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4.3.2 Simulation of tunneling escape
In this section, we simulate the tunneling escape of the photo-excited
electrons inside the quantum well in the double barrier structure by

directly solving the time-dependent Schrodinger equation [10]:

QP iR 92F(x,0) eal(y _  vima
hi %" ImE a2 + [ Vral(x) - i VIMm2g(x) ] P(x,t)

where W (x,t) is the electron wavefunction, VT€l(x) is the double barrier
potential and Vimag(x) is the localized imaginary potential as in fig. 4.2.
The simulation method is described in Chapter Three.

An initial localized wavefunction is constructed as follows. First we
calculate the resonance energy at the peak in the transmission spectrum
and then the resonance eigenfunction, ®,.s(x), of a double barrier structure
without the imaginary potential. The initial wavefunction for the
simulation is constructed by multiplying this resonance eigenfunction by a
Gaussian envelope so that it is localized in the quantum well:

¥(x,t=0) = B ex/af dres(X)
where B is the normalization constant and A is a constant for the
localization of the wavefunction.

Two different symmetric structures with different barrier width Ly
(fig. 4.2) are considered. Both structures have a quantum well of 64 A and
barrier height of 0.96 eV. Ly = 21 A and 32 A, respectively. In order to
study the time scale for the tunneling and recombination processes, we

define several time-dependent quantities:

(1) The total integrated density:
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oft) = L e (x.fax

(2) The integrated density inside the structure:
b

qin(t) = I I\P (X’dz dx

(3) The integrated density outside the structure:

Qout(t) = q(t) - qin(t)
where x=-b and b are the positions of the barriers shown in fig. 4.2. q(t),
Qin(t) and qgu(t) are plotted as a function of time for Ly=21 A in fig. 4.3a
and for Ly,=32 A in fig. 4.3b. Decay of these quantities in time is observed.

In order to compare the decay time scale with the theoretical
estimation, we calculate the transmission spectrum of the double barrier
structure with and without the imaginary potential. We denote the width
of the resonance peaks as AEr,p and AEr-p for the structure with and

without the imaginary potential, respectively. Half width at half maximum

is taken in the calculation. The tunneling escape time scale (Tiyn) is taken
to be A/AEr-p . The total lifetime (Tio1a)) of the electron inside the quantum
well is taken to be A/AEr.y. The recombination time (Trecom) iS taken to be
A/T which is 66 ps in this simulation.

For the structure with Ly=21A, we found that AEr_¢= 3.8x104 eV and
AEr,.0 = 4.0x104eV. Therefore, Tiun = 1.7 ps and Tipta1 = 1.6 ps. These two
time scales should correspond to the decay time of qin(t). As seen in fig.
4.3a, qin(t) decays from about 100% to about 40% in 1.6 ps. There is very
small difference for the cases with I'=0 and TI'#0. This agrees with the small

difference between 1.7 ps and 1.6 ps.
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For the structure with L,=32A, we found that AEr_g= 2.7x10-5eV and
AEr.0 = 4.2x105 eV. Therefore, Tiun = 24 ps and Tyoa = 16 ps. As seen in

fig. 4.3b, qin(t) decays from about 100% to about 40% in about 24 ps for
I'=0 and in about 14 ps for I'#0. This also agrees with the estimation.

The evolution of the total "charge”, q(t), is of interest. As seen in fig.
4.3a&b, q(t) remains unity for I'=0 because of the conservation of matter
and decreases with time for I'#0 because of the loss of matter through
recombination. Since the loss of q(t) corresponds to the recombination, -
dg/dt should be proportional to the luminescence intensity observed in the
experiment [7]. In fig. 4.4, we plot -dq/dt as a function of time. The
faster decay of -dq/dt for L,=21A is due to the faster tunneling escape of
electrons frofn the quantum well and hence the smaller chance to
recombine in the quantum well. These results agree qualitatively with the

experimental results.

4.4 Application of Imaginary Potential (II)

In this section, the imaginary potential is used to study the resonant
tunneling in asymmetric double barrier structure. Tunneling with zero
reflection was shown to be impossible in asymmetric double barrier
structure [11]. In the following, we will describe a discovery of the
possible total tunneling without reflection in a double barrier structure in
the presence of a localized imaginary potential. In section 4.4.1, the
interpretation of the imaginary potential in this study will be explained.
In section 4.4.1, the effect of the imaginary potential on the resonant

tunneling in asymmetric structures will be presented.
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4.4.1 Modeling of scattering by imaginary potential

As discussed in section 1.4, the simple tunneling theory introduced in
Chapter One is only an approximation to the real system. Due to some
kinds of imperfection of the system like lattice vibrations, impurities, and
other kinds of defects, scattering processes different from the resonant
scattering from the double barrier potential may exist. These scattering
processes can destroy the coherency of the wavefunction, which is
essential to the resonance. This leads to the incoherent tunneling or
sequential tunneling picture [12-14]. Those scattering processes
essentially remove the probability density of the electron from the original
wavefunction, which transports coherently across the double barrier
structure.

In this study, we model all those other scattering mechanisms by a
potential with a small imaginary part. In this way, the removal or decay
of the probability density of the electron can be described. The magnitude
of the imaginary potential (T'), in the first approximation, is taken to be A/t
where t is the time scale for those scattering mechanisms which can be
either calculated from the first principle [15] or measured by experiments

[16].

4.4.2 Effect on asymmetric structure
The effects of the imaginary potential on the reflection and
transmission spectra ( Ir(E)I2 and [t(E)I2 ), the resonance width and the

resonance energy of an asymmetric double barrier structure are studied in
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this section. The potential of the double barrier structure is plotted in fig.
4.5. The structure consists of an AlAs barrier with a thickness (b;), a 53 A
wide GaAs quantum well, and another AlAs barrier with a thickness (by).
Barrier height is 0.96 eV. Effective mass in GaAs is 0.067 mp and in AlAs
is 0.19 mp where mg is free electron mass. The imaginary potential, Vim(x)
shown in fig. 4.5, is zero outside the quantum well and is constant (-i I')
inside the quantum well. The magnitude (I') is taken to be positive which
corresponds to a loss of matter through the imaginary potential as
explained in section 4.2. The interface conditions are the continuity of ¥
and (d¥/dx)/m* where ¥ is the wavefunction and m* is the effective mass.

The first asymmetric structure to be studied has b;=21A and
by=27A. The Ir(E)2 and W(E)2 of this structure with an imaginary potential
at different magnitudes ( I'=0 eV, 1.4 x 10-6 eV, 1.385 x 10-5 ¢V and 1.4 x
10-4 eV) are plotted in fig. 4.6. As shown in the figure, the minimum of
Ir(E)I2 , denoted by Ir(E)2p;, , drops when I' increases from zero. The
Ir(E)I2min becomes zero at a certain value of I'. It then increases when T
further increases. In fig. 4.7, W(E)2y;, is plotted against I . Five
structures are studied. b1=21A for all structures and by= = A, 27A, 23A,
214, 20A respectively. Zero reflection was observed for those structures
with by > b;. We denote the value of I', at which Ir(E)I2,,;, becomes zero, by
I'p. The dependence of I'g on by is plotted in fig. 4.8. Ty approaches a
constant value when by approaches infinity and drops to zero when by =
bi.

The change of the polarity of T’y when by becomes smaller than b,

can be understood in the following way. The zero reflection is a
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consequence of the totally destructive interference between the reflections
from the barriers. If the two barriers are not the same, the reflections
cannot be totally cancelled out. Therefore, it is impossible to have total
tunneling without reflection in asymmetric double barrier structure.
However, in a double barrier structure with a localized imaginary potential
inside the quantum well, the imaginary potential helps to compensate the
difference of the reflections from two barriers. The polarity of the
compensation changes when the polarity of the difference of the barriers
changes and hence, I'g changes sign.

As seen in fig. 4.6, the resonance position does not change with I' for
all structures. The peak transmission, i.e., the maximum of [It(E)2, is found
to decrease with I' in all the structures.  The resonance width ( AE ), i.e.,
the half width at half maximum of the resonance peak, is broadened

according to the formula: AE = AEyr-g + I’ where AEr.o is the intrinsic

resonance width of the structure without the imaginary potential.

4.5 Conclusions

In conclusion, we have investigated the role of localized imaginary
potential in the scattering problems in double barrier structure. = We have
shown that the non-orthogonality among the eigenstates is responsible for
the non-conservation of matter. We also demonstrated two applications of
imaginary potential in double barrier structures. For the numerical
simulation of tunneling time experiment, we have demonstrated that
imaginary potential is useful to study the tunneling dynamics in the

conduction band without considering the amplitude of the wavefunction in
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the valence band when a recombination channel is present in the double
barrier structure. For the study of asymmetric DBRT, we have discovered
the tunneling without reflection in asymmetric structure with an
imaginary potential which is used to model any scattering processes

generally.
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Chapter Five

Optical Resonant Tunneling Devices

In this chapter, we introduce two optical resonant tunneling devices,
Resonant Tunneling Laser (RTL) [1-2] and Optically-controiled Parallel
resonant-Tunneling device (OPT) [3-5]. In recent years, DBRT structure
has been used in making new electronic devices [6-12]. RTL and OPT are
the first two examples of using DBRT structure in making new optical
electronic devices. In RTL, the voltage-controlled resonant tunneling
current is used to pump the laser diode monolithically and produce a
voltage-controlled nonlinear laser output. In OPT, a new tunneling device
concept called parallel resonant tunneling was developed by the author to
produce several new optical electronic characteristics. @ RTL will be

discussed in section 5.1 and OPT in section 5.2.

5.1 Resonant Tunneling Laser (RTL)

RTL is a single quantum well laser diode monolithically integrated
with a DBRT structure (fig. 5.1). The single quantum well laser structure is
first grown by MBE on a p-type GaAs substrate and a DBRT structure is
then grown on top of the n-type top layer of the laser. The laser section
includes an undoped 120 A GaAs quantum well active region, parabolic
graded index AlxGaj.xAs regions 3000 A thick, with Al concentration (x)
varying from 0.5 to 0.2, and cladding layers 1.7 Um thick of AlpsGagsAs.

The DBRT structure consists of two undoped AlAs barriers, each 20 A thick



and an undoped quantum well, 50 A thick. Au/AuGe and Au/AuZn
metallic contacts are evaporated on the top and bottom of the device,
respectively.

After the epitaxial growth, an etched mesa broad area laser of stripe
width of 40 pm (fig. 5.2) is fabricated using photolithography and chemical
etching. The I-V curve of the device is measured by an I-V tracer and
shown in fig. 5.3. The peak and valley current density of the DBRT
structure is 300A/cm2 and 170A/cm2 . By measuring the light output of
the device as a function of the injection current, we found that the
threshold current density of the laser is 250A/cm2. The lasing wavelength

was found to be 8634 A.

5.1.1 Negative Differential Optical Response (NDOR)

The voltage-controlled laser output characteristic of the device is
examined by applying a triangular voltage pulse Vj(t) across the device.
The circuit used in the experiment is shown in fig. 5.4. The negative of the
applied voltage -V,(t) , the injection current and the laser output as a
function of time are shown in fig. 5.5. A resonance peak in the laser
output is observed which is explained as follows. In fig. 5.6, the I-V curve
of the double barrier structure and the load lines for differeht applied
voltage ( Va = Vyalley , Vpeak and Vhigh ) associated with the total series
resistance to the double barrier structure are plotted. Since the resistance
of the p-n junction in the laser diode is voltage-dependent, the load lines
should be nonlinear.  However, this nonlinearity is neglected in the
following explanation. The intersection points of the I-V curve with the

load lines are the operation points of the device. The x-intercept of the



load line is the applied voltage V, across the whole device. The slope of
the load line is equal to -1/R where R is the total series resistance to the
double barrier structure.

In the experiment, as V, is increased from zero, the load line moves
to the right with its slope unchanged. The operation point of the device
(the intersection point) , therefore, moves up from the origin along the I-V
curve of the double barrier. The laser is turned on when the current is
higher than the threshold current. As Vj, is further increased to the
resonance peak (point P) and passes Vpeak in fig. 5.6, the operation point
of the device jumps from point P to P'. Since the currerit at point P' is less
than the threshold current of the laser, the laser is turned off. Therefore,
a negative differential optical response (NDOR) is produced. As V, is
further increased so that the current is higher than threshold current, the
laser is turned on again (e.g., at V3= Vhjgh in fig. 5.6).

Va is decreased at the falling edge of the triangular pulse. The laser
is turned off when the current is less than the threshold current. As V, is
further decreased to the valley (point V) and passes Vyalley in fig. 5.6, the
operation point jumps from V to V'. However, since the current at V' is
less than the threshold current, the laser is still off. The laser remains off

to the end of the pulse.

5.1.2  Optical Memory Operation
One useful characteristic of the resonant tunneling diode is the
memory property. An optical memory operation is illustrated using the

Resonant Tunneling Laser. The circuit used in the experiment is shown in



fig. 5.7. The applied voltage across the device V, and the laser output as a
function of time are shown in fig. 5.8. In the beginning, V, is increased to
Vo from zero. The laser is then on because the injection current is higher
than the threshold current. A positive Voltage pulse is then added on the
device. After the pulse, the applied voltage returns to V, and the laser is
off. A negative voltage pulse is then added on the device. After the pulse,
the applied voltage returns to V, and the laser is on again. These
phenomena are explained in the following, using the concept of the load
line.

In fig. 5.9, we plot the I-V curve of the double barrier structure
and the load lines associated with the total series resistance to double
barrier structure. Because of the negative resistance, there are three
intersection points of the I-V curve with the load line for V,=V,. At
which point the device will operate when V,;=V, depends on the history of
Va in the following way:

(1) If the operation point of the device moves to the point at V,=V, from
the points at Va > Vpeak (the case after a positive pulse), then the device
will operate at the point with the lowest current.

(2) If the operation point of the device moves to the point at Va=V, from
the points at Va < Vyalley (the case after a negative pulse), then the device
will operate at the point with the highest current.

Since the device will operate at the point even after the input pulse passes

away, the device exhibits a memory operation.



5.2 Optically-controlled Parallel resonant-Tunneling (OPT)

In this section, we introduce another new optical resonant tunneling
device called OPT which stands for Optically-controlled Parallel resonant-
Tunneling. A completely new resonant tunneling concept (Parallel
resonant-Tunneling) was developed in this new device to produce several
new optical electronic characteristics:

(1) a negative photoconductivity,

(2) a new bistable photoconductivity (positive and negative),
(3) a new middle trace, and

(4) the optical switching of the new middle trace.

In section 5.2.1, the OPT structure will be introduced. In section
5.2.2, the experimental result will be presented. In section 5.2.3, a theory

of the middle trace and its optical switching will be described.

5.2.1 OPT Structure

The OPT structure, which is shown in fig. 5.10, consists of a double
barrier resonant tunneling structure grown by MBE on an n-type GaAs
substrate: two 40 A undoped AlAs barrier layers and a 47 A  undoped
GaAs quantum well layer. A 7000 A n-type GaAs layer is grown on top of
the double barrier structure. The mesa structure shown in fig. 5.10
consists of a top surface of 100 Um x 25 wm, capped by a AuGe/Au contact,
18 0.1 wm high and is sitting atop a 100 Um x 75 um base. The back side of
the substrate is coated with another AuGe/Au contact. The mesa structure

was fabricated by conventional photolithographic techniques and wet



etching. In the experiment, a voltage V, is applied across the two metal
contacts.

The main characteristic of OPT device which is different from the
traditional resonant tunneling devices is that the voltage drop across the
double barrier structure:

V() = (X, y=Yiop) - $(X , ¥=Ybottom) »
where ¢(x , y) is the electrical potential inside the device, y = yiop and y =
Ybottom are shown in fig. 5.11, varies laterally along the structure in the x-
direction while it is constant in traditional devices as shown in fig. 5.11.
The variation of V(x) does not exist in the traditional devices because the
electric field is perpendicular to the double barrier structure. Due to the
variation of V(x) in OPT, the resonant tunneling processes along the
tunneling plane in x-direction do not occur everywhere simultaneously.

A circuit model shown in fig. 5.12 is developed to study the
tunneling processes in OPT. It consists of an array of resonant tunneling
diodes T; (1 £i< N), each simulating the resonant tunneling process on
part of the tunneling plane. The array is connected to a resistor network
(determined by the resistors, R1, R2, R and R3) which simulates the top
layer of the device. A voltage V, is applied across the terminals of the
circuit. The total tunneling current ( lioa; ) can be written as the sum of

the diode current (I;) which depends on the diode voltage (Vi):
N
Lotar = 2, Li(Vy)
i=1

or, in the continuous case, the sum becomes an integral:

f JIx,V(x)] dx



where L is the length of the device in x-direction and J[x,V(x)] is the
current density at point x which depends on V(x), Therefore, the total
current is a functional of V(x) or { V; (i=1 to N) }. In a traditional device,
V(x) is equal to a constant which depends on the applied voltage V, and

therefore, the total current is only a function of V,.

5.2.2 Operation Principle of OPT
As discussed above, the total current of the device depends on the
variation of V(x). When V(x) = constant, all the diodes in the circuit model

can reach the resonance state at the same applied voltage V,. Therefore,

the peak current of the device Ipmtal = N Ipi and the valley current of

al = N Ivi where I¥.

and I'. are the peak and valley current
1 1 p y

. v
the device I,
of the individual diode, respectively. When V(x) # constant, each diode

reaches the resonance state at a different applied voltage V,. Therefore,

PP < NI, and I',,,; > NT,; as shown in fig. 5.13. The difference
between Ipwml and N Ipi ( or, IVtotal and N IVi ) increases with the
variation of V(x). Therefore, we can increase and decrease the peak and
valley current, respectively, by decreasing the variation of V(x).

Now, we consider the dependence of V(x) on the top layer's
conductivity of the device. V(x) is constant if the top layer's conductivity
is infinite. When the top layer's conductivity is finite, the electric field has
a non-zero component in Xx-direction because of the device geometry.
Therefore, V(x) is not constant. The amount of the variation of V(x)
decreases with the top layer's conductivity. In the experiment, we

increase the conductivity by illuminating the top layer with light. The



variation of V(x) will then decrease and the resonant tunneling peak will
become sharper.

The measured I-V curve of the device is determined by the
intersection points of the load line with the intrinsic I-V curve of the
device. When the load line is moved into the region shown in fig. 5.14 (as
the case for the optical memory in section 5.1.2), there are two stable
points at which the device can operate. When the device is illuminated
with light, the peak current will increase and the valley current will
decrease in the intrinsic I-V curve as discussed above. The stable point
with higher current thus moves up while the stable point with lower
current moves down as shown in fig. 5.14. The decrease of the current at
the lower stable point demonstrates the negative photoconductivity. The
optical effect on both the high and low current states demonstrates a new

bistable photoconductivity (positive and negative).

5.2.3 Experimental Results

The current-voltage (I-V) characteristics of OPT are measured by an
I-V tracer at room temperature and shown in fig. 5.15. The lower left I-V
curve is measured when the device is not illuminated. A resonant peak is
observed. The lower right I-V curve is measured when the device surface
is illuminated by a tungsten lamp of 500 W/cm2. We found that the peak
current is increased by 4 mA and the valley current is decreased by 24
mA.

The upper left and right I-V curves are measured with the maximum

applied voltage on the device increased by 0.2 volt. The upper left I-V



curve is measured when the device is not illuminated. A third trace
appears after the second trace in the lower left I-V curve. The upper right
I-V curve is measured when the device is illuminated. The second trace
on the upper left I-V curve disappears. In the following, we call the three
traces shown in the upper left I-V curve as the peak trace, the middle
trace, and the valley trace, respectively. The upper two I-V curves show
the middle trace can be switched off optically. The lower two I-V curves
show the optical switching from the middle trace to the valley trace. The
changes of the peak and valley traces with light ( the peak current is
increased by 4 mA and the valley current is decreased by 3 mA) also show
the demonstration of the positive and negative photoconductivities

explained above.

5.2.4 Theory of the Middle Trace

In order to understand the new middle trace observed in the
experiment, we calculate the I-V curve of the circuit model shown in fig.
5.12.  The result is shown in fig. 5.16. The middle trace observed in the
experiment is reproduced from the calculation. The origin of the middle
trace involves new tunneling dynamics discovered in OPT which will be
described in the following. The optical switching of the new middle trace

can also be explained.

Our circuit model consists of an array of resonant tunneling diodes, Tj

(1 <1< 101), which are all grounded at the bottom contact plane. The top

side of each Tj is connected to the applied voltage V3 through a resistor

network which simulates the top layer of the device. The voltage across
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each Tj is Vij. The I-V characteristic of each Tj is modeled by two linear
branches (peak branch and valley branch) shown in fig. 5.17.
On the peak branch, where Vj < Vp s

Ii=Vi/Rp ;
on the valley branch, where Vj > Vp,

ILi=ly + (Vi - Vp) /Ry
where Vp is the voltage at the resonance peak, Rp and Ry are the
resistance of the peak branch and valley branch, respectively, and Iy is the
valley current. The first diode (T1) simulates the part of tunneling plane
(25 pum x 100 pm) under the metal contact, while the other Tj's (2 < i< 101)
simulate the rest of the tunneling plane ( each for an area of 0.5 pm x 100
pm). Ri , R2 and Ry, are estimated using the resistance formula, R=L/cA.
o is taken to be 1.0 x 105 Q-1 m-1, Ry = 0.05Q. R2 = 0.2Q. Rm=R2/50.
R3=2R]. Vp=0.2V. Rp=10-4 Q cm2. Therefore, Ip=2 kA/cm2. Iy is taken
to be 0.6 kA/cm?2.

In order to understand the origin of the middle trace, we follow the
change of Vj’s on each diode when the applied voltage, V4 , is increased
from zero to Vfina] in the following:

STAGE ONE (Peak trace) --- When V3 is increased from zero, Itotal
grows linearly with V4 as all the diodes are still on the peak branch until
one of Vij's reaches Vp. Since the effective resistance between the top
metal contact and the diode (Tj) increases with i, Vi always decreases with
increasing i. As V] is the largest Vi, switching first occurs when V1 equals
Vp. This switching causes discontinuous changes over all node voltages.

Other diodes Tj's (j > 1) may also switch to the valley branch if their final
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Vj's after this discontinuous change are greater than Vp. However, at this
switching, only the first diode switches to the valley branch. All other
diodes stay at the peak branch because the discontinuous increase of Vj
due to the switching is not large enough to bring Tj to the valley branch.
We called it a one-diode change. This is the first large discontinuity shown

in fig. 5.16.

STAGE TWO (Middle trace) --- As V, increases further, the change of
each Vj is continuous until V2 equals Vp. The switching of T2 to the valley
branch introduces a discontinuous increase in all the node voltages and
only diode T2 switches to the valley branch, i.e., another one-diode change.
Similar one-diode changes occur successively for the diode from T3 to T6§
as Va increases, until V69 equals Vp. However, the change of Iiotal
caused by all these one-diode changes from T2 to Tg8 is very small
because these diodes are much smaller than the first diode (1:50). These
small changes are not resolvable in fig. 5.16 but the locus of (Va, Itotal)

forms a middle trace.

STAGE THREE (Valley trace) --- When Tg9 switches to the valley
branch, all the diodes which are still on the peak branch (T70 - T101)
switch to the valley branch because those Vi's (V70 - V101) after the
change are larger than Vp. This is the second large discontinuity shown in
fig. 5.16. Further increase of V3 does not cause any additional
discontinuous change of the Vj's.

The switching dynamics in the backward scan of Vg3 from Vfipal to

zero are qualitatively the same as the dynamics in the forward scan of Vj.
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The number of diodes in the many-diode change at the right-hand side of
the circuit and the values of V5 at the discontinuous changes are different,
resulting in the hysteresis shown in fig. 5.16.

The experimental result in fig. 5.15 also shows the optical switching
of the middle trace: it disappears when the device surface is illuminated.
Since the illumination is to increase the top layer's conductivity o, we
increase ¢ from 1.0 x 105 Q-1 m-1 to 1.3 x 105 @-1 m-1 in our model and
reduce R1, R2, Rm and R3 accordingly to simulate the optical effect. The
calculated I-V curve for the circuit with ¢ = 1.3 x 10° Q-1 m-1 is shown by
the curve on the right in fig. 5.16. Compared to the I-V curve on the left,
the middle trace for & = 1.3 x 105 Q-1 m-1 occurs for a smaller range of
Va, and its slope decreases. The optical switching of the middle trace in
the experiment can now be explained by considering the attainable points
on the intrinsic I-V characteristic. = The measured I-V characteristic that
we actually observe consists of the intersection points of the load line with
the intrinsic I-V characteristic of the device shown in fig. 5.16. When the
device is not illuminated, the middle trace intersects the load line and,
therefore, can be observed. However, under illumination, the top layer's
conductivity increases, eliminating the intersection point of the middle
trace with the load line as shown in fig. 5.16, so the middle trace is not
seen. Fig. 5.16 also shows the positive and negative photoconductivities

explained and observed above.

5.3 Conclusions
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In conclusion, we have demonstrated the first series of resonant
tunneling devices (RTL and OPT). We have observed the basic optical
resonant tunneling characteristics in RTL and demonstrated the optical
memory operation. We have developed an optically-controlled parallel
resonant tunneling process in OPT and observed the negative
photoconductivity, a bistable photoconductivity (positive and negative), a

new middle trace and its optical switching.
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Appendix

Crank-Nicolson Scheme for Simulation of Tera Hertz DBRT

A1 Explicit and Implicit Schemes
Simulation of the evolution of an electronic wavefunction in a double
barrier structure modulated in time is done by solving the time-dependent

Schrédinger equation:
2
pi08@D _ 1 0@ v gy
ot 2m* 972 (A1)

where A = h/2r and h is Planck's constant, ¥ (z,t) is the electron
wavefunction, m* is the effective mass and V(z,t) is the modulated double
barrier potential. Since the Schrédinger equation is a parabolic partial
differential equation with a first order derivative of ¥(z,t) with respect to
time, ¥ (z,t) can be found when the initial ¥(z,t;) at t = t, is given. A
straightforward numerical method called explicit scheme is described as
follows. [Equation (Al) can be rewritten as:

hi 0¥/dt = HY (A2)
where H is the Hamiltonian operator. In the numerical method where the
time is discretized, 0'¥/dt is replaced by (¥*°¥-¥°l9)/At where At is the time
division. If H¥ is replaced by H¥°¢ as in the explicit scheme, ¥"¥ can be
expressed as:

PV = (1 + At/hi H) wold (A3)
The wavefunction W¥(zt) at any time can be evaluated by iterating equation

(A3). However, the result from this explicit scheme is usually unstable



because the norm of the operator 1 + At/A1 H is typically larger than unity
[1]. An alternative way, called Crank-Nicolson implicit scheme, is to
replace H¥ by (H¥"®Y + H¥°'4)/2 instead of H¥°'Y only. Using this
replacement, we obtain:

wnew = [ (1 + At/2h H) / (1 - At/2h1 H) ] wold (A4)
Since the norm of (1 + At/2A1 H) / (1 - At/2hi H) is unity as H is hermitian,
the result from this implicit scheme is relatively stable [1].

In practice, the operator (1 + At/2hi H) / (1 - At/2h1 H) is rewritten
as -1 + 2/(1 - At/2f1 H) in equation (A4). Since the operator H involves a
second spatial derivative of ¥(z,t), equation (A4) consists of terms of three
neighboring WMV 's: ¥PeV¥(z=z,-Az), YV (z=2,), ¥"®V(z=2,+Az) in a discretized
spatial region where the space division is Az. In solving W™V in equation

(A4), the boundary conditions of ¥"W has to be known [1].

A 2 Boundary Conditions

In the study of Tera Hertz DBRT, the double barrier structure is
modulated in time as discussed in Chapter Three. Since the potential of the
leftmost layer is static in time, the wavefunction at the left boundary is
constant in time which is the sum of the incoming and reflected plane
wave (neglect the trivial exponential factor e’i®!) until the time-modulated
reflection from the double barrier structure propagates to the left
boundary. However, since the boundary is chosen to be far away from the
double barrier structure, the modulated reflection does not have enough

time to reach the boundary in the simulation. Therefore, we take the



wavefunction at the left boundary to be constant over time throughout the
simulation.

The boundary condition for the wavefunction at the right boundary
is different from constant. Since the potential of the rightmost layer is
modulated in time, the wavefunction is changing even though the time-
modulated transmitted wave outcoming from the double barrier structure
has not yet reached the right boundary. The Schrédinger equation in this
layer is:

2
RidY o L B9 L v, + Vosin(wt)] P
Jt 2m* 822 (AS)

whose solution is:
t
W(zt) = ¥(z,0) exp { -;l- f e Vmsin(ot) dt }
0 (A6)
where ¥(z,0) is the transmitted plane wave and the factor e1®tis dropped
again. Hence, on the right boundary, the wavefunction is changing
according to equation (A6) when the modulated transmitted wave from

the double barrier has not reached the right boundary.
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