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Abstract

This thesis presents a design framework and circuit implementations for integrating sensory
and motor processing onto very large-scale integrated (VLSI) chips. The designs consist
of analog circuits that are composed of bipolar and subthreshold MOS transistors. The
primary emphasis in this work is the transformation from the spatially-encoded representa-
tion found in sensory images to a scalar representation that is useful for controlling motor
systems.

The thesis begins with a discussion of the aggregation of sensory signals and the re-
sulting extraction of high-level features from sensory images. An integrated circuit that
computes the centroid of a visual image is presented. A theoretical analysis of the function
of this circuit in stimulus localization and a detailed error analysis are also presented. Next,
the control of motors using pulse trains is discussed. Pulse-generating circuits for use in
bidirectional motor control and the implementation of traditional control schemes are pre-
sented. A method for analyzing the operation of these controllers is also discussed. Finally,
a framework for the combination of sensory aggregation and pulse-encoded outputs is pre-
sented. The need for signal normalization and circuits to perform this task are discussed.

Two complete sensorimotor feedback systems are presented.
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Chapter 1

Introduction

The realization of new integrated circuit technologies gives the circuit designer the op-
portunities to explore novel, previously unavailable computational paradigms. However,
innovative technologies also require the development of new computational primitives, im-
plementation strategies, and analytical tools to solve traditional problems. Mead [Mea89]
has presented a very large-scale integrated (VLSI) circuit design paradigm for implementing
analog circuits using MOS transistors operated in their subthreshold regime. This paradigm
allows for the implementation of highly collective architectures that are constructed from
primitive elements, which are characterized by their low power, small physical size, and
complex functionalities.

One of the primary advantages of this design paradigm is that sensing and processing
(both local and global) can be integrated on a single VLSI chip. This advantage is especially
important because the inherent dimensionality in sensory images requires communicating
the high bandwidth signals from the sensing surface to the external environment. The tradi-
tional approach to handling this type of high-bandwidth data is to scan the sensory images
serially and then to process the resulting data stream. By allowing for the combination
of sensing and processing on a single chip, significant data processing can be accomplished
on the chip, where the communication bandwidth is potentially much higher than that
available at the electrical interface to the chip [SMM87].

One reason for incorporating processing onto the sensing surface is to reduce the data
bandwidth that must be transmitted off the chip, and, in particular, to extract a class of

features that can be encoded using a fixed number of wires (independent of the array size)



[Tan86] [DM88]. By reducing the number of continuous-time output signals, the need for
time sharing the output wires of the chip is eliminated. Processing found in the nervous
systems of biological organisms suggests similar computational paradigms that use highly
parallel computational structures to aggregate sensory information causing the reduction in
signal bandwidth and the extraction of useful features [RP76] [PR76].

By using this analog VLSI design paradigm, the designer can combine sensing, compu-
tation, and motor control on a single chip. Global computation facilitates the conversion
of one- or two-dimensional spatially encoded sensory images into motor signals that can
be used in feedback applications [DeW91]. In the past, there has been significant effort
(in fields such as control theory [Wil60]) to build systems that combine sensing and motor
control. The designer can take advantage of these traditional approaches by studying the
effects of implementing such systems with analog VLSI circuits.

In this thesis, we present a novel conceptual framework and accompanying circuitry
for accomplishing the task of converting sensory images to motor signals. The primary
contribution of this work is in the design and analysis of circuits that are integrated on a
single VLSI chip and convert spatially encoded sensory data into scalar signals that can be
used to control motors. We discuss the advantages and limitation of the technology on the
implementation of these circuits.

The first part of this thesis (Chapter 2) presents circuitry to aggregate sensory images,
such that the bandwidth is reduced to that which can be communicated on a fixed number
of wires. We present a circuit that uses this aggregation network to compute the centroid
of a visual image. We develop a theoretical basis for analyzing this circuit when it is used
to localize a bright constant illumination area (the stimulus) on a darker background, and
present data to compare to this theory. We also describe, in detail, the sources of error for
this circuit, and quantify the error from each source to demonstrate the limitations of the
circuitry.

The second part of this thesis (Chapters 3, 4, and 5) discusses the use of pulses to drive
motors, and presents VLSI circuits to generate these pulses. Chapter 3 is an overview of
the operation of a DC motor when driven by pulses. We present analysis of pulse-driven
systems in the presence of friction, and discuss the reasons that pulses are preferable to a

DC voltage for controlling such systems. Chapter 4 is a description of circuits for generating



pulses. We present a modified version of the aggregation network that converts an array on
inputs to a dual-rail encoded pulse output, which is sufficient for controlling the motion of a
DC motor bidirectionally. Chapter 5 presents a proportional-derivative servo implemented
within the pulse-output aggregation network. We present a method of analysis which takes
into account the nonlinear elements in the system and which can be applied to controllers
implemented within the aggregation network. We compare this analysis with data acquired
from a feedback system for the control of motor position.

The third part of the thesis (Chapter 6) presents a circuit framework that combines
sensory aggregation with pulse generation to implement complete sensorimotor feedback
systems. We discuss the need for signal normalization in this framework, and present
circuits for linear and winner-take-all normalization. We present an implementation of the
framework that, when incorporated into a mechanical system, causes the system to track
a bright visual stimulus (spot of light). We also discuss the advantages of winner-take-all
normalization in this system. Finally, we present two electromechanical systems into which

this circuit has been incorporated.



Chapter 2

Signal Aggregation and the
Centroid Detector

In this chapter, we present circuitry that converts a one-dimensional array of input signals
into an output representation that encodes a weighted combination of these inputs. We
discuss how this circuit can be used to convert a place-encoded input into a pair of output
signals. We then describe an integrated circuit that combines this aggregation circuitry with
visual input and electrical feedback to compute the centroid of a visual image. Finally, we
present data from a chip that performs this centroid computation, and discuss the ability

of the chip to localize a bright stimulus in the visual field.

2.1 The Aggregation Network

We shall describe a circuit that aggregates an array of input currents and differential voltages
to produce a pair of dual-rail output currents that encodes a weighted combination of the
inputs. This aggregation network consists of an array of differential-pair circuits. We shall
first discuss the operation of the differential pair; we shall follow with a description of the

aggregation network.

2.1.1 The Differential-Pair Circuit

Dating from the days of the vacuum tube, the differential pair [Vit85] is one of the most

common circuits used in analog VLSI systems. This circuit consists of two similar transistors
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Figure 2.1: The differential-pair circuit. This two-transistor circuit differentially divides a

bias current ¢, between the two output currents 7; and 2 as a function of the differential

input voltage Vi — Va.

with their sources connected. Figure 2.1 is a schematic of an n-channel MOS version of this
circuit. The inputs to the circuit are a bias current 7}, and a pair of voltages Vi and Va.
The outputs are two currents (¢; and 42). Although the circuit can be designed with either
MOS or bipolar transistors, for purposes of analysis, we shall describe it as designed with
MOS devices. (We shall later discuss the advantages of using bipolar devices.)

The basic operation of this circuit occurs as follows. The bias current is divided between
the two transistors to form the two output currents. The amount of the total current passing
through each transistor depends on the relationship between the two input voltages. We
know from Kirchoff’s current law that the sum of the two output currents must be equal to
the input current, or

iy =11 + 29

If we ignore drain conductance and assume that the transistors are saturated (see [Mea89] for



derivations of transistor equations), we obtain the following equations for the two transistors:

-V
11 = 19 Ut

an-—V
19 = 19e Ut

where Uy = kTT is the thermal voltage.

By combining the three preceding equations, we can derive the following equation:

e (1)
’1,()6 t = xV] an
el +els

___._K
If we use this equation to substitute for ige Ut in the previous two equations, we can derive
the following for 7; and 7o in terms of the bias current and the differential input voltage

k(Vh — Va):

o= i (2.1)

is = ip (2.2)

14+e Y

Equations 2.1 and 2.2 describe a complementary pair of sigmoidal functions, as shown
in Figure 2.2. In theory, when the differential input voltage is zero (Vi = V3), the two
currents are equal. However, due to mismatches in the two transistors, this equality does
not generally hold, and we are left with a nonideality in the circuit. We can describe
this nonideality with an offset voltage, which is the differential input voltage necessary to
produce equal output currents.

As the magnitude of the differential voltage increases, the magnitude of the difference
between the two currents also increases, with one current asymptotically approaching zero
and the other current asymptotically approaching 71,. Notice that mismatches in the tran-
sistors do not affect the values of the asymptotes. These values are ensured by the direct
current path from input to output.

Quite often, the value with which we are concerned in our computations is the difference

between the two output currents. This differential input current is the hyperbolic tangent
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Figure 2.2: Differential-pair output currents. The sum of the output currents from the
differential pair are equal to the bias current. When the differential input voltage is zero
(V1 = V,), the two currents are equal. As the magnitude of the differential voltage increases,
the magnitude of the difference between the two currents also increases, with one current

asymptotically approaching zero and the other current asymptotically approaching zy,.



of the differential input voltage [Mea89]:

£(Vi— V2))

11 — 19 = tanh < 2T,

The use of the differential current 7; — 72 as a signal itself often simplifies the computations
in larger networks (as we see later in this chapter). Obviously, if we are to use this current

as a signal, the subtraction must actually be performed at some point in the system.

2.1.2 Signal Aggregation

We can use the differential-pair circuit as a basis for a circuit that aggregates a number of
input signals. We implement this aggregation using an array of N + 1 differential pair ele-
ments configured as shown in Figure 2.3. Each element has a current input and a differential
voltage input. The current outputs from the differential pairs are aggregated onto a pair
of wires so that the aggregated currents retain the differential nature of outputs from the
individual elements. The aggregated currents (I; and I2) are the sums of the N + 1 input
currents multiplied by their respective sigmoidally compressed differential input voltages

(AV = k(Vy — V3)). The equations for these two currents are

L=y (2.3)

—_——n
n 14+e Ut
1

L = ) — 5 (2.4)

n 14+e Ut
Kirchoff’s current law mandates that the sum of the output currents (I + I2) must
be equal to the sum of the input currents (3" 4,). This restriction guarantees that the
magnitudes of the signals are retained in this circuit. Since the difference of the output
signals (I1 — I3) is the same as the sum of the individual differential output currents, the

following equation describes the differential output current:

. AV,
L—-1= zﬂ:zntanh ( 5T, )
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Figure 2.3: The aggregation network of differential-pair circuits. Each element takes as
input a differential voltage AV, and a current 4,. The output currents from the differential

pairs are summed onto a pair of wires. The resulting aggregated currents are I; and Is.
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2.2 The Centroid Circuitry

In this section, we present a circuit that, combined with the aggregation network, computes a
function similar to the centroid of a spatially-encoded array of currents. In a true centroid,
this function is the mean of the positions of the elements weighted by their respective
input currents. If our elements had linear transfer functions (as opposed to the hyperbolic
tangent transfer function) the computation would be a true centroid [DM88]. In this circuit,
however, the position is compressed by the hyperbolic tangent function. Although the
function computed by the circuit is not a true (mathematical) centroid, we shall use this

term to describe the circuit.

2.2.1 Position Encoding

In the previous section, the input voltages to the aggregation network were independent of
one another. These voltages, however, can be used to encode the position of each element
in the array. This encoding can be performed by a chain of N + 1 series resistors used as a
voltage divider, as shown in Figure 2.4. By applying voltages Vg and Vy to the ends of the
resistive line, we can create a linear voltage gradient along the array, where the voltage at

the nth node is given by

V, = (‘—@——]5—‘@) n+ Vo (2.5)

This position-encoding scheme can be incorporated into the aggregation network as
shown in Figure 2.5. The position of the nth element is encoded by the differential voltage
Vi — Viet, where V), is set by the voltage divider and Vit is a constant. Vier sets the origin
of the array (the position in the array at which the input current is equally distributed

between the two output currents).

2.2.2 Subtraction Circuit

As stated earlier, we must eventually perform the subtraction of the two aggregated output
currents to take advantage of the differential nature of the outputs from the aggregation
network. The subtraction can be performed locally (at each element) or globally on the
aggregated signal. A current mirror circuit [Mea89] can be used to perform this subtraction

on the chip (either locally or globally). We can use this circuit to subtract two currents of
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o VW ——V VTV~ NV Wy

7/ /7
Viet 7/ 7/

Figure 2.4: The resistive voltage divider. By applying a voltage to each end of a resistive
chain, we can use this circuit to encode linearly the position of the elements in the array.

The voltage at the nth element is V;, = (‘—/‘\—’ﬁ—v—") n+ V.
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Figure 2.5: The aggregation network with position encoding. The position of the nth
element is encoded by the differential voltage V,, — Vi, where V,, is set by the voltage

divider and V¢ is a constant.
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1
11 — 12
_—
11 i2

Figure 2.6: The current mirror used as a subtractor. The current mirror can be used to
subtract two currents (¢; and i5) with the same sign. ¢; is mirrored and the resulting current
is added to the output current. i3 is subtracted directly from the output current with the

result 2out = 71 — %9.

the same sign, such as those produced by a differential pair. Figure 2.6 shows how a current
mirror can be used to perform the subtraction.

Due to nonidealities in the transistors, the current mirror does not produce a perfect
replica of the original current, and we must take this fact into account when using it in
our circuit. Although we can subtract the currents at each individual node and then sum
these bidirectional currents onto a single wire, this approach would produce an offset at
each element and thus a random error in the apparent position of each element [DM88].

A more desirable alternative is to sum the 7; and 79 currents separately (as in Figure 2.3,
and use a single current mirror to subtract these aggregated currents. This scheme intro-
duces only a single offset in the system, changing the apparent position of all the elements
by the same constant value. A single current mirror, however, must be large enough to

handle the sum of the currents that are generated by all of the input current sources.
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Figure 2.7: The centroid detection circuitry. This circuit consists of an aggregation network,
a resistive divider for position encoding, and a current mirror. The current mirror computes
the difference between the two aggregated currents and feeds this current back onto the
voltage reference wire. The current is integrated on this wire until the differential current
is 0, at which point the voltage on the wire (Voy) is equal to the centroid of the array

referenced to the position voltages.

2.2.3 Electrical Feedback

The completed centroid circuit is shown in Figure 2.7. This figure shows the aggregation
network with the addition of the position encoding circuitry and the feedback using a single
current mirror. The current mirror computes the difference between the two aggregated
currents and feeds this current onto the voltage reference wire. The current is integrated
on this high-gain node until the differential current is 0, at which point the voltage on the
wire (Vou4) approximates the centroid of the array referenced to the position voltages.

The sum of the differential currents from all of the elements must be equal to 0. The

differential current from each element is the hyperbolic tangent of the differential input
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voltage weighted by the input current. Thus, the following equation describes the operation
of the closed-loop system in the limit of infinite gain (i.e., ignoring the finite drain resistance
of the transistors feeding the voltage reference wire):

0= i,tanh (%ﬁvﬂ) (2.6)
n t

Even with this simplifying assumption, we have not discovered a closed-form solution for
Vout for Equation 2.6. After the discussion of the circuit implementation, we shall discuss
methods for analyzing the functionality of this circuit under specific operating conditions.

We can set the voltage gradient along the resistive voltage divider by changing V; and
Vn. By Equation 2.6, the output voltage (Vo) is a weighted combination of the amplifier
input voltages, and is constrained to lie within the input voltage range. Thus, the maximum
possible differential voltage at the input of any amplifier is [Vy — Vp|.

If |Vn — Vo| < 2Us, all the amplifiers will be operating in their “linear” regimes, and
the network will approximately compute the mean of the input voltages of the amplifiers
weighted by their corresponding input currents. Since the input voltages encode the posi-
tions of the elements, performing this calculation is equivalent to computing the centroid of
the image represented by the currents [DM88]. In this regime, the network approximates
the function of a similarly configured network of linear resistors. This type of network has
been shown to perform the centroid computation [DM88].

If |Vy — Vo| > 2Uy, the slope of the sigmoidal t-ransféi:o’f'-unction with respect to distance
along the array will be very large. The differential pairs (except for those with input
voltages very near the output voltage) then can be approximated as threshold elements,
and the network will approximate the weighted-median calculation [DM88].

If [Viy — Vp| falls between these two regimes, the calculation will be a combination of the
two computation modes. In particular, the section of the array with input voltages near
the output voltage (near the center of intensity) will compute a weighted mean, whereas

the parts distant from the center of intensity will compute a weighted median.
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2.3 Circuit Implementation

We shall present the circuit details necessary to implement a centroid detector. The current
inputs to this circuit are generated by an array of photoreceptors. We shall describe the
photoreceptors used in this system, and shall show how these elements, combined with
the previous circuitry, can be used to implement both one- and two-dimensional centroid

detectors for visual images.

2.3.1 The Photoreceptor

We can implement the photoreceptors in our system using either photodiodes or phototran-
sistors. Photodiodes are implemented using the junctions formed between the substrate and
the active regions of opposite doping. Phototransistors are implemented using the vertical
parasitic bipolar transistor existing in the standard CMOS fabrication process [Mea85].

In a phototransistor or photodiode of this type, at a given wavelength of light,
¢photo X I 2.7

where Zphoto is the current through the device (the emitter current of the phototransistor)
and I is the light intensity applied to the device.

For receptors of similar sizes, we were able to obtain a much higher coverage factor (ratio
of light collecting area to total area) with photodiodes than we were with phototransistors.
For this reason, we chose to use photodiodes in our design. A close packing of receptors
increases the coverage factor of the array, but allows minority carriers that are generated
in the substrate near one photodiode to diffuse to neighboring diodes, thus increasing their
photocurrents. This effect, known as blooming, rarely affects diodes more than two pixels
away from the site of photocurrent generation (given the pixel sizes and light wavelengths
that we normally use). Blooming effectively increases the apparent spatial extent of the

stimulus to the array.

2.3.2 A One-Dimensional Visual Centroid Detector

Figure 2.8 shows a one-dimensional centroid detector with photodiode inputs. The photo-

diodes are placed in a regularly spaced pixel array. The resistive divider is implemented
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using a resistive wire (either well or polysilicon) that runs the length of the array. Voltages
W and Vy are applied to the ends of the wire, and equally spaced taps are placed along the
wire to encode the position of each pixel.

The differential pairs in the aggregation network are implemented using bipolar transis-
tors. We replaced the MOS transistors with bipolar transistors because bipolar differential
pairs have much smaller input offset voltages than do their MOS counterparts. The smaller
offset voltages allow the circuit to have much better resolution and thus more accurate op-
eration. One negative feature of bipolar transistors is that they exhibit a nonzero current
generated at the base terminal (unlike MOS transistors, which have an infinite impedance
at the gate terminal). This factor does not affect the operation of the circuit as long as the
resistance of the voltage divider is small enough that the base currents have an insignificant

effect on the position voltages (V).

2.3.3 A Two-Dimensional Array

The one-dimensional centroid circuit can be expanded to two dimensions. Because the
two dimensions of the calculation are independent, the value of the intensity at any point
along each axis is taken to be the sum of the currents from the receptors in a row (or
column) perpendicular to that axis. The two-dimensional array can be implemented using
dual-output photoreceptors and current summing along each row and column as shown in
Figure 2.9. To produce a photoreceptor with two outputs, we use a three-transistor current
mirror to produce two copies of the photocurrent. We then use the row and column currents
as the input (bias) currents to two centroid circuits (one on each axis of the photoreceptor
array), which compute the centroid of the image in each dimension.

This configuration is problematic, however; the layout area of a photoreceptor increases
by more than a factor of two when the current mirror is added, reducing the resolution and
the coverage factor of the array. For this reason, a second scheme of photoreceptor placement
using single-output receptors can be used to tile the plane, as shown in Figure 2.10. In
this array configuration, each photoreceptor contributes its current to only one axis. The
receptors are alternated spatially so that the currents from adjacent receptors are added to
opposing axes. When this scheme is used, only one-half of the receptors contribute current

to each axis, but the effective density of receptors is increased due to the unit size reduction
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tion of the centroid detector. The input image is generated by an array of photodiodes. The
differential pairs are implemented using bipolar transistors because bipolar differential pairs
generally have much smaller input offset voltages than do their MOS counterparts. The

resistive divider is implemented using a polysilicon wire with voltages Vy and Vy applied

to the ends of the wire.
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Figure 2.8: A one-dimensional centroid detector. This circuitry is used in the implementa-
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Figure 2.9: Two-dimensional configuration of dual-output photoreceptors. The photocur-
rents from the receptors are replicated and summed onto wires running parallel to each axis.
These current sums are used as bias currents for the amplifier arrays along the edges of the

receptor array. This edge circuitry performs the weighted mean/median computations.



Figure 2.10: Two-dimensional configuration of single-output photoreceptors. In this config-
uration, each receptor consists of a single phototransistor and thus has only one output. The
receptors are alternated spatially so that the currents from adjacent receptors are added to

opposing axes.

made possible by the removal of the current mirror.

2.3.4 Experimental Apparatus

We studied the centroid circuit used as a sensor for localizing a bright visual stimulus (a spot
of light) on a dark background. We fabricated a two-dimensional version of the circuit shown
in Figure 2.8 using the alternating receptor scheme shown in Figure 2.10. The receptors
were photodiodes in the substrate. We fabricated the chip with a 160 x 160-pixel array
in 2 4 BiCMOS. We implemented the resistive dividers using polysilicon wires running the
length of each of the two edges of the chip. The resistance of these lines was approximately
TEQ.

To measure the response of the circuit, we placed the chip on a two-dimensional preci-

sion motion table (accurate to 0.2 um) under a microscope. The stimulus was created by



21

4.0 T

3.8 1

3.6 1

3.4+

3.2+

3.0 1

‘/out (V)

2.8+

2.6+

2.4+

2.2 1

1 ] i i Il ]
T T T T T 1

2.0 ; : :
-100 -80 -60 -40  -20 0 20 40 60 80 100
position (pixels)

Figure 2.11: Output voltage versus stimulus position. This figure shows the output voltage
as a function of the position of the image of the stimulus on the chip. The curve represents
a sweep of the stimulus along one axis of the chip. As the image of the stimulus moves
across the receptor surface, the output voltage increases linearly. As this stimulus passes off

the edge of the surface, the output voltage returns to the uniform-intensity output value.

projection of the image of an incandescent lamp through the microscope onto the chip. The
background was created with an incandescent lamp placed to the side of the microscope.

We moved the stimulus across the surface of the chip by moving the motion table.

2.3.5 Stimulus Position to Output Voltage Relationship

We investigated the output response of the chip by moving the stimulus parallel to one axis
of the chip (Figure 2.11). We set the voltage divider inputs (the voltage at the ends of the
polysilicon wire) to 2.0 and 4.0 V. As the stimulus passed across the surface of the chip,
the output voltage changed as a function of the position. At the ends of the sweep (as the
image moved off the edge of the chip), the output voltage leveled off and then began to

move rapidly toward the value obtained for a uniformly illuminated background.
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2.4 Stimulus Localization

We are interested in using the moment chip in the localization of a bright stimulus. As
shown in Figure 2.11, the chip produces an approximately linear relationship between stim-
ulus position and output voltage. The range of the output voltage is dependent on the
input voltage range, the stimulus and background intensities, and the stimulus width (in
relationship to the width of the array). The output voltage range effectively sets the slope
of the linear relationship between position and output voltage. We shall derive theory to

predict this slope, and shall compare our theory with data taken from the chip.

2.4.1 The Continuous Approximation

To analyze the operation of the circuit, we can separate the current (ioyt) on the output
wire into multiple currents generated by multiple areas in which the illumination may be
assumed to be constant. When the system is in steady state, Kirchoff’s current law at the
output node dictates that the sum of all of the separated currents must be equal to 0. Thus,
we can analyze each of these constant illumination areas separately, and add their outputs
to calculate the total system operation. Since the voltages on the resistive voltage divider
are linear with respect to position, we can define the position of a point in voltage space to
be the voltage on the resistive voltage divider.

We define the following variables for one region of constant illumination. The region
falls on pixels (elements) n; to m2, giving a width (in pixels) of na — n;. The position
voltages (set by the voltage divider) at elements n; and ng are V; and Vs, respectively. The
width of the region in voltage space, defined as the difference between the voltages on the
voltage divider at the endpoints of the region, is Vo — V. The total photocurrent generated
by the illumination from this source is %;,; thus, the current from each pixel is %5/ (n2 — n1).
By applying these definitions, we derive the following equation for the output current from

this region:

na .
. Zin Vn - I/:)ut’.
Tout = ——tanh (—-——————)
ou n;} N9 — Ny 2U;

l

iin o ‘/2—‘/1 (Vn_%ut)
tanh | —————
Voa—1; n‘:‘; ng — ny 20U
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When the voltage difference ((Vy — Vo)/N) between adjacent elements on the resistive
voltage divider is smaller than 2U;, we can approximate the the piecewise linear function
described by the preceding summation as a continuous hyperbolic tangent. In this case, we
make the following continous integral approximation to the summation:

'. V2 V-V
. %in out
ut = tanh | ——— } dV 2.8
out V2—V1/vl ‘m( 20, ) (28)

We shall use this continuous approximation in our analysis of the operation of the circuit.
The maximum voltage that we shall place across the resistive divider is 3.2 V. Since N = 160,
the maximum voltage difference between adjacent elements is thus 20mV, which is less than

2U;.

2.4.2 The Solution in the Continuous Limit

We can use Equation 2.8 to analyze the function of the moment circuit when presented with
a constant illumination stimulus and a constant illumination background. We restrict the
light coming into the circuit such that the current generated by the background is constant
over the entire array. We define 7g to be the total background current, and define 25 to be
the total stimulus current. Thus, the current in the region of the stimulus is a combination
of both stimulus and background current. We define the voltage at the center of the voltage
divider (the center of the background) to be 0, and the voltages at the endpoints to be
—Vg/2 and Vi/2, giving a total background voltage range for the background of V. We
define the voltage at the center of the stimulus (with reference to the voltage divider) to
be Vi, and the voltage range of the stimulus to be V5. These definitions are illustrated
in Figure 2.12. We also define a to be the ratio of the total stimulus current to total
background current, and 3 to be the contrast ratio (the ratio of the stimulus current per
distance to the background current per distance), as described by the following equations:

s 5= is/Vs
B 13/VB

«

)

We shall analyze separately the aggregated currents generated by the stimulus and the
background. Since the sum of all of the output currents must be equal to 0, we combine

these equations by adding the values of the two aggregated currents and setting the sum
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Figure 2.12: Illustration of stimulus localization parameters. The image is divided into
stimulus and background, both of which have constant illumination. The voltage at the
center of the background (the midpoint voltage on the resistive voltage divider) is defined
as 0. The width of the background in voltage space (the difference between the endpoint
voltages) is Vg. Vi, is defined as the center of the stimulus, which has width of V5. The
output voltage Vo defines the position of the center of the aggregated transfer function,

which is a hyperbolic tangent.
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equal to 0. This separation is possible by linear superposition because, for a voltage range
[V1, V2] covered by both the stimulus and the background, the value of the output current

is

i Vs V —Vou iB V2 V — Vout
= s tanh [ ——22 ) dV /th(—-—-—)dV
bout Vo—Vi ,/Vl o ( 2U; ) * Vo = V1 Jwy, o 204

is + 18 /Vz (V—Vout>
tanh { ———— ) dV
Vo—-1p i * 204

The equation for the stimulus (from Equation 2.8) is

o [VintVs/2 V-V
. 18 out
= — tanh | ——— ) dV
touts Vs /Vl v an ( 2T, )

fiS e(‘/in +VS/2—Vout)/2Ut + e(—‘/in Vs /2+Vout)/2Ut
Vo "\ eV —V6/2~Vout) 12U  o(~Via Vs /2+ Vour)/ 20

The equation for the background (from Equation 2.8) is

1 VB /2 V-V
. B out
ou = — tanh | ——— | dV
foutp VB /—VB/2 o ( 2Uy >

ZB e(_VB /2‘Vout)/2Ut + e(VB/2+Vout)/2Ut
= b S e

Since ioutg + touts = 0 at equilibrium, we set oyt = —Ioutz. By moving the constants
inside of the logarithms (as exponentials) and exponentiating both sides of the equation,

we derive the following equation for the system.

e(VinHVs/2=Vout)/20s 4 o(=Vin=V6/24Vout) /200 \ P [ o(=VB/2=Vout)/2Us | (V3 /2+Vous)/2Us
e(vin_VS/Q_Vout)/ZUt + e(—‘/}n+VS/2+Vout)/2Ut = e(VB/2“Vout)/2Ut + e(_VB/2+Vout)/2Ut
(2.9)

We have not discovered a closed-form solution to this equation for V,,,;. We can, however,
make simplifications to our system to derive approximate answers for the slope of the V

versus Vi, curves for specific cases.

2.4.3 Small Differential-Voltage Approximation

When the voltage (V) across the voltage divider is less than 2U;, all of the elements in the

array are working within the central, unsaturated region of the hyperbolic tangent. In this
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operating regime, we make the following linear approximation to the hyperbolic tangent:

tanh (V - ‘/out) ~ V - ‘/;)ut

20, /  2U:
We insert this approximation into Equation 2.8 to derive the following equations for the
stimulus and background currents:
. B E'-S_/Vin+Vs/2 (V - Vout) iV
outs Vs Jvia—vs/2 2U;
13
- ﬁ(‘fm - Vout)

s (VB2 (V -V,
. B out
= B L= Yout) g
fouts VB /—VB/2 ( 2U; ) v

1B
— 2Ut "V;)ut)

If we set the sum of these two aggregated currents equal to 0, we can derive the follow-
ing equation relating the slope of the resulting line to the total stimulus and background

currents:

I/vout: iS o
= = 2.10
Vi is+ig a+1 ( )

This equation describes the asymptotic limit approached as the voltage across the resistive
voltage divider is decreased toward 0. This equation is equivalent to the solution for the

analysis of a discrete linear resistor array [DM88].

2.4.4 Large Differential-Voltage Approximation

When the voltage (V) across the voltage divider is much larger that 2U;, the differential
voltages across most of the elements in the array are very large and the hyperbolic tangent is
saturated. In this regime of operation, we make the following piecewise-linear approximation

to the hyperbolic tangent:

-1V < V:)ut
V - Vout
tanh | ——— | = 0 V="V

2U;
1 V > V:)ut
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Since the output voltage must lie within the background voltage range, we can combine
this approximation with Equation 2.8 to derive the following equation for the background

current:

. iB Vout VB/2
loutg V_ / (—l)dV + / (l)dV
B —VB /2 Vout

B
= —(=Vou
Ve (~Vout)

To analyze the current generated by the stimulus, we assume that the complete stimulus
falls within the array, and that the output voltage lies within the stimulus voltage range
(Vin — Zzs- < Vout < Vin + %&) Given these assumptions, we derive the following equation

describing the current generated by the stimulus:

'LS Vout V;n+VS/2
s = = ([ (0w [ (1)av
VS V; —VS/2 Vout

)
= vss'(‘/m - Vout)

We can set the sum of these two currents to 0 and derive the following equation for the

slope of the linear relationship between the input voltage and the output voltage:

V::)ut — ZS/‘/S — :8
Vin tg/Vs+ig/VB [+1

(2.11)

This equation describes the asymptotic limit approached as the voltage across the resistive
voltage divider is increased. This equation is equivalent to the solution for the analysis of a
discrete array of threshold elements (with the same functionality that we described in this
section) [DM88].

Using this equation, we can verify our initial assumption that the output voltage falls
within the range of the stimulus voltage. For Vi, > 0, the following inequality must be true

for this assumption to hold:

V<
b ysvn— B

V;ut=m _7

Since the difference between the input voltage and the output voltage is largest near the

edges of the array, we check the assumption for the input voltage at the edge of the array
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(Vin = VB/2). By making this replacement and rearranging the previous equation, we can

derive the following relationship between the stimulus and background widths:
Vs> (1-a)Vp

Thus, if the stimulus intensity is at least as large as the background intensity (a > 1), the

output voltage will always fall within the stimulus voltage range.

2.4.5 Intermediate Approximation

The approximations in Sections 2.4.3 and 2.4.4 define asymptotic values for the slope of
the input—output voltage curve for small and large differential voltages across the voltage
divider. We would like to be able to approximate this slope for intermediate differential
voltages.

In the intermediate region, we assume that the stimulus is small with respect to the
hyperbolic tangent, thus we can treat it as a point stimulus. This assumption is valid for
narrow stimuli or for wide hyperbolic tangents (small differential voltages across the voltage
divider) in which the function can be approximated as linear over a narrow region. The
output current (the difference between the two aggregated differential-pair output currents)

from a point stimulus is
V-in - ‘/out)
20U

toutg = s tanh (

To compute the output current from the background, we assume that the magnitude of
the output voltage is small enough that the central (unsaturated) region of the hyperbolic
tangent does not extend to the ends of the array. Given this assumption, the currents
from the unsaturated region sum to 0 (because the function is symmetic about the origin).
Thus, we are only concerned with the current generated by the saturated region, and we
can approximate the hyperbolic tangent as a threshold function. The output current (from

Section 2.4.4) is

. 1
loutg == ‘V'%'('—%ut)
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By setting the sum of these two currents equal to 0, we derive the following equation:

. Lin [‘out . [Out
h ————— — —_—
1g tan ( 5T, ) 18 Ve =0

We rearrange this equation to derive the following equation for Vi,:

Vin = Vout + 2U; tanh™! (‘—/9—‘—11)
aVp

Since we want to determine the slope of the Vi, versus Vi, curve, we can take the derivative

of this equation with respect to Vot to arrive at the following equation:

avi 20U 1

o W ()

From this equation, we see that the derivative when Vout & 0 (near the center of the array)

can be approximated by the following equation:

dVin 2Uy
dVout mlt aVp

Finally, we invert this equation to get the following equation for the approximation to the

slope of the Vo versus V;, curve:

dvvout ~ VB
dVin Vi + 20/

This equation is a reasonable approximation to the true slope when the voltage across the
voltage divider is large enough that the unsaturated regions of the hyperbolic tangent do

not reach the ends of the array.

2.4.6 Experimental Data

We measured the slope of the output voltage versus stimulus position curves as a function
of the differential input voltage (the voltage across the resistive voltage divider). We took
data for differential input voltages in the range of 10mV to 3.2V.

We held the stimulus and background intensities constant (for all of the curves) such

that the total stimulus current (ig) was 1.24nA and the total background current (i) was
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1.24nA. The width of the stimulus was 3.0 pixels. From these values we computed o = 1.0
and # = 0.019. From the analysis in Sections 2.4.3 and 2.4.4, we can compute values for the
asymptotes for small and large values of the differential input voltage V. The asymptote

for small currents (from Equation 2.10) is

(¢4

= 0.50
a+1

The asymptote for large currents (from Equation 2.11) is

,B_f—_l =0.98

Figure 2.13 shows the data relating differential input voltage to normalized slope for
this experiment. We computed the normalized slope by dividing the slope of output voltage
versus stimulus position curves by the differential input voltage, and then dividing by the
slope of a curve taken when the background current was equal to 0. (This normalizes the
data to compensate for any discrepancies in the scaling of the position or the endpoint
voltages of the voltage divider.)

Along with the data we plotted the horizontal asymptotes at 0.50 and 0.98. The data
for small voltages fit the lower asymptote quite well. The data for large voltages approached
the upper asymptote. We also show the theoretical curve from the analysis in Section 2.4.5.
As expected the theory fits the data very poorly for small values of Vg where the hyperbolic
tangent is not saturated. For large values of Vg the curves are similar. The theoretical
values are larger than the experimental values because of the point stimulus assumption.
The upper asymptote for a curve taken with a point stimulus has a value of 1, and thus

the theoretical curve is slightly larger than the data curve, which approaches an upper

asymptote of 0.98.

2.5 Error Analysis

When the centroid circuitry is used to localize a stimulus, the ideal response would be a
perfectly linear relationship between the position of the stimulus and the output voltage.

However, imperfections in the devices lead to errors that show themselves as non-linearities
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Figure 2.13: Effects of varying the voltage across the resistive divider (V). We took data for
a number of differential input voltages by moving a stimulus across the chip and measuring
the output voltage. The solid line represents the data taken for Vg in the range of 10mV to
3.2 V. The horizontal lines represent the asymptotes for small and large values of V. The
dotted curve was generated from the theory in Section 2.4.5. Since Vgyu:/Vin approaches
asymptotes as Vp approaches 0 and oo, we plotted the horizontal axis on a logarithmic

scale.
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in the transfer functions. There are four primary device nonidealities and resulting effects:

e Variations among the photodiodes (or phototransistors) cause the individual diodes

to output different photocurrents for the same applied light intensity.
e The finite gain of the feedback causes an output offset voltage.

o Mismatches between the differential pair transistors (due to variations in k and 1)

cause fixed offset voltages at each node.

e Nonuniformities in the resistivity of the resistive divider lead to variations in the

voltage-encoded position.

One metric for studying the effects of offsets and mismatches and their effects on local-
izing a stimulus is the amount of inaccuracy in the apparent position of the stimulus with
respect to the true position of the stimulus. Since the ideal transfer function is linear, we
can measure error as the deviation from the best-fit line to the position-voltage curve. This
line is fixed for a given stimulus-to-background ratio and differential input voltage (across
the resistive divider). We shall compute all offsets in pixels for the chip being tested, and
shall use the worst-case analysis whenever there are multiple options. When measuring
offsets, we shall delete the data from the outer 20 pixels at each end of the array, to account
for effects (such as decreased photocurrents) that decrease the precision of the circuitry in

that region.

2.5.1 The Distribution of Photocurrents

We can study the photocurrents generated on the chip by measuring the input current to
the circuit while moving a fixed-intensity, single-pixel light source over one row of the chip
perpendicular to the axis of measurement (to ensure that all other circuitry is the same).
We acquire the value of the photocurrent from a transistor whose gate and source are
connected to the common gate and source of the current mirrors. The output current from
this transistor is a scaled version of the current through the current mirror. The current
through the current mirror is equal to one-half of the photocurrent, because the feedback
causes the two aggregated currents to be equal in steady state. Thus, this output current

is a scaled version of the photocurrent generated by the chip.
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Figure 2.14: Photocurrent versus position of stimulus on chip. We measure the photocurrent
generated by the circuit while moving a fixed-intensity, single-pixel light source over one
row of the chip perpendicular to the axis of measurement. We acquire the value of the

current using a transistor that replicates the current flowing through the current mirror. In

steady state, this current is equal to one-half of the total photocurrent.
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Figure 2.14 shows a plot of photocurrent data from one row of photodiodes. The curve
shows an obvious increase in current toward the center of the chip. This variation in
current probably is due to two effects that cause the stimulus not to appear as a point
light source. Minority carrier diffusion [Sze81] causes blooming (the spread of photocurrent
to neighboring pixels). This effect has an extent of less than 50 um, and thus affects only
nearby pixels. The second effect is the scattering of the light as that light passes through
the optics in the microscope. This effect has the potential for a much wider spread, and
thus can explain the general current variations over large numbers of pixels.

We can quantify the effects of this intensity spread by comparing the total photocurrents
when the stimulus is at the edges of the array to those when the stimulus is in the center
of the array. The current at each end of the array includes the current generated by the
stimulus plus one-half of the distributed current, whereas the current at the center of the
array should include all of the available current. Thus, if we add the currents at the two
edges and subtract the center current from this sum, the resulting current should be equal
to the current generated by the pixel on which the stimulus is placed. For the data shown
in Figure 2.14, this equation is 63pA + 65pA — 74pA = 54pA. This value indicates that
approximately 73 percent of the current generated in the array comes from the column at
the stimulus. This distribution of current causes a statistical averaging of errors on the
chip, thus affecting the magnitude of the measured errors. In the worst case, this averaging
would cause the measured error to be approximately 73 percent of the real error. We shall

consider this fact when we analyze the errors from the circuitry.

2.5.2 Photodiode Mismatches

Figure 2.14 showed the distribution of photocurrents as a single-pixel stimulus was swept
across the photodiode array. We computed the relative error for the central 120 pixels (75
precent) of the array using the average current as the expected value. Figure 2.15 is a plot
of the percent relative error. Even in this region, there still is a tendency for the currents
near the center to be larger than those near the edges. Even with this effect, however,
the maximum error in this region is approximately 2 percent. The maximum local error
(difference between two adjacent currents) is approximately 1 percent, so including the

variation due to position increases the error by no more than a factor of two. Factoring in
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Figure 2.15: Relative error in the photocurrents. Using the data from Figure 2.14, we have
generated a plot of the error relative to the average current value for the pixels in the center

of the array. The variation is less than 2 percent.

the worst-case averaging due to the distributed photocurrents, we obtain a relative error of
approximately 3 percent.

To determine the effect of these current variations on the operation of the system, we
can convert the current variations to variations in the position (in pixels). The amount
of positional error generated by these offsets is dependent on both the voltage across the
resistive divider and the ratio of stimulus to background intensity. The effect of the voltage
across the resistive divider is due to the functional variation (weighted mean or median)
produced by variation of this voltage. Since the variation of a particular photocurrent
has a much larger effect on the weighted-mean computation (and, from Equation 2.11,
practically no effect on the weighted-median computation as long as the stimulus is larger
than the background), we shall analyze the effects of photocurrent variation for the case of
the weighted mean.

We can analyze the error by considering the case where there is a stimulus with a total
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current g at some position z, a background with a total current g centered at the origin
(position = 0), and a stimulus to background intensity ratio . For the weighted mean, the
output position would then be

is-£c+iB-0_ a- -z
is+ig 1+«

Tout =

A relative error of € in the intensity of the stimulus would give the following equation for
the position:

_ (I+e¢a-=z

T 14+ (14 ea

Terror

We can compute the relative error in position due to the offset by taking the difference

between these two values and dividing by the position of the stimulus, giving

Zerror — Tout — (1 + C)CY __«a
x 1+(14+ea 14a
€
(I+ea+i+(2+e¢

From this equation, we can see that the largest positional error for a given error in photocur-
rent is produced when the stimulus and background intensities are equal (o« = 1). When
the background intensity is very small with respect to the stimulus intensity, the variation
in photocurrent will have practically no effect on the output voltage from the circuit, since
this voltage is approximately equal to the input voltage at the center of the stimulus.

We can now derive the worst-case positional error due to the photocurrent variation.
We shall use the value for € of 3 percent that we computed from the data, and shall set
the intensity ratio (o) equal to 1. Plugging these values into the preceding equation gives a
relative positional error of approximately 0.7 percent. Since the maximum distance that a
stimulus can be from the center of the array is 60 pixels (ignoring the outer 20 pixels), the
maximum error is approximately 0.4 pixels. Since we used the worst-case analysis at every
point in our computation, this value is much larger than it would be in normal operation,

especially when either the contrast ratio or the voltage across the resistive divider is large.
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2.5.3 Finite-Gain Offset

We can measure the offset due to the finite gain of the feedback by setting the endpoints
of the resistive line to the same voltage and presenting to the chip a constant background
intensity. We sweep the input voltage (the voltage on the resistive wire) and measure the
output voltage. The other sources of error are statistical and should cancel each other out,
leaving only the finite-gain offset.

In this circuit configuration, the corresponding nodes of the individual elements are all
connected and the current mirror feeds back the differential pair. Thus, the complete system
can be analyzed as if it were a single transconductance amplifier configured as a voltage
follower. There is an additional amplifier configured as a voltage follower at the output of
the chip whose input offset voltage is also included in this analysis. This output amplifier
is designed so that it has a very high gain, and thus we shall not consider this gain in the
analysis. We shall consider the finite gain of the circuit and the offset voltage of the output
amplifier to be a single offset.

The gain A of a transconductance amplifier is set by the ratio of the transconductance
to the output conductance of the amplifier [Mea89]. The relationship between the input
and the output voltages in the voltage follower configuration is described by the following

equation:
dVous A
dVin 1+ A4

(2.12)

Thus the finite gain causes the follower to have a gain less than unity.

Figure 2.16 shows a plot of the output voltage (V,y¢) as a function of the input voltage
to the ends of the resistive wire (Vi,). This plot shows the voltage operating range of the
chip that results from restrictions set by the differential pairs, current mirror, and output
amplifier. The central voltage region (1.0 to 4.0 V) appears quite linear. Thus, we shall use
this range of voltages for our error analysis and restrict the circuitry to operating voltages
within this range.

We measure the average amplifier gain by performing a linear regression over the central
region of the curve in Figure 2.16. The slope of this line is equal to the average value of
A/(1+ A). We measured a best-fit slope of 0.985. This value gives an average gain of 66.

We measure the error due to the finite gain and the feedback amplifier by taking the
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Figure 2.16: Vg versus Vi, given uniform illumination. We set a uniform background
illumination on the chip and swept the input voltage from 0 to 5V while measuring the

output voltage. The curve is approximately linear except at the two ends at which points

the circuitry limits the output voltage range.
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Figure 2.17: Absolute error due to the finite feedback gain. We computed the absolute
error by subtracting the input voltage from the output voltage in Figure 2.16 for the input
voltage range of 1.0 to 4.0 V. We plotted this error as a function of the input voltage.
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difference between the output and input voltages in Figure 2.16. Figure 2.17 shows a plot of
this absolute error over the input voltage range of 1.0 to 4.0 V. The absolute error changes
monotonically with the input voltage. If the gain of the amplifier was constant, this error
curve would be linear, and the error would have no effect on the total error of the system
since we are comparing our data to a best-fit line. However, there is some curvature which
denotes a variation in the gain over the input voltage range. We computed the local gains
by taking local differences in output voltage divided by the input voltage difference for the
same points. A smoothed version of the resulting curve showed a gain of approximately 125
at the low end of the voltage range to a gain of approximately 45 at the high end.

To see how the finite-gain error affects the circuitry in operation, we can examine the
case in which the resistive divider endpoint voltages are 1.0 and 4.0 V. The deviation of the
curve in Figure 2.17 from a best-fit line is in the range 26 mV. If we divide this value by
the total range of the input voltage (3.0V) we get a relative error range of +0.2 percent.
If we take into account the averaging due to the distribution of photocurrent, this error is
less than +0.5 pixels over a 160 pixel range.

We can calculate the error for any input voltage range by dividing the absolute error
in that range by the voltage range and multiplying by the number of pixels (160). We can
center our input ranges around 2.5V, and set the error (relative to a best-fit line at that
point) equal to zero. Since the absolute error curve is monotonic, the maximum error will
then occur at one of the endpoints of the curve. We can thus divide the deviation from
the best-fit line by the range at a given voltage (2 - |Vi, — 2.5 V), multiply by the number
of pixels, and account for photocurrent distribution. Figure 2.18 shows the results of this
computation. The maximum error of less than 1 pixel occurs at the point 4.0V when
the voltage range is 3.0 V. Note that this error range is the same as the error calculated

previously (0.5 pixels) for the 3.0V range.

2.5.4 Differential-Pair Offsets

We can measure the differential pair offsets by sweeping a single-pixel stimulus along the ar-
ray while measuring the output voltage. The other errors can be isolated properly to make
this measurement as follows. We isolate the photodiode variations by making the back-

ground intensity significantly smaller than the stimulus intensity. This restriction causes
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Figure 2.18: Error (in pixels) due to finite feedback gain. We computed this error from the
data in Figure 2.17 by computing the error values from a best fit line (that intersects the
curve at an input voltage of 2.5V), dividing these values by twice the difference between
the input voltage for the point and 2.5V, and multiplying by the total number of pixels.
The resulting curve represents a measure of the maximum error (in pixels) generated by

the finite gain for differential input voltages centered about 2.5V.
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Figure 2.19: Differential-pair offset voltages. We are able to measure the offset voltages
of the differential pairs by setting the ends of the resistive divider to the same voltage
and moving a one-pixel stimulus across the chip. The voltages displayed are the difference
between the output voltage and the input voltage (to the resistive divider). The common
offset voltage (= 17.3mV) in all of these data is due to the finite gain error. The variation
around this point is due to the differential-pair offset voltages. The range of offset voltage

among the differential pairs is less than £0.4mV.

the output voltage to be equal to the input voltage to the differential pair (modulo the offset)
because only the one differential pair is active. We eliminate the resistive divider variation
by setting the two ends to the same voltage. Since there is no voltage drop along the wire,
the voltage along the resistive divider will be constant (and will be equal to the endpoint
voltages) independent of resistivity variations. Finally, we can remove the constant offset
voltage due to the finite feedback gain by subtracting the average output voltage from the
data.

Figure 2.19 shows a plot of the difference between the output and input voltages (for

an input voltage of 3.00 V') versus the position of the stimulus over a 100-pixel range. The
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Figure 2.20: Histogram of differential-pair offset voltages. This figure is a histogram of the
offset voltages seen in Figure 2.19. The average voltage is subtracted from each voltage to

account for effects from the finite gain.

offsets appear to be random and to be fairly independent of position in the array. Figure 2.20
shows a histogram of the distribution of the offset voltages. The variation in the offset is
less than £0.4mV. When the possible effect of the light-source distribution is taken into
account, the range of offset voltages is less than +0.5mV.

We can analyze the effect of these offset voltages on the relative error of the centroid
circuit by dividing the offset voltage by the voltage across the resistive divider, and multi-
plying by the total number of pixels. The result of this calculation is the error in pixels due
to the differential-pair offset voltages. Since these offset voltages are constant (independent
of the voltage range on the resistive divider), there is an inverse relationship between their
effect on the relative offset in the system and the range of voltages across the resistive
divider. To derive a number for this relative offset, we must first assume a value for the
voltage across the resistive divider. For example, for a voltage of 1.0V, the relative error

from this source is less than 0.1 pixels.



44

2.5.5 Resistive-Divider Nonuniformities

We can study the nonuniformity of the resistive divider by placing a large differential voltage
(1.0 to 4.0V') across the resistive divider and measuring the output voltage from the chip
as a single-pixel stimulus is swept across the chip. Since the error is due to the voltage
drops along the resistive line, the absolute error will scale with input-voltage range, and the
relative error will be independent of input-voltage range.

In Figure 2.21, we show data for the relative error of the output voltage from a best-fit
line, in which the error is divided by the range of the input voltages. We also show a plot
of the relative finite gain offset (with respect to a best-fit line) described previously with
the horizontal axis scaled to the position of the appropriate input voltages. Most of the
deviation in the data is due to the finite gain. We eliminate the effect of the finite gain by
subtracting the finite-gain data from the error data. From this difference, we computed an
error for the resistive divider of less than £0.1 pixels. This error takes into account both the
differential pair offset voltages, which are relatively small at this differential voltage input

range, and the resistive divider nonuniformities.

2.5.6 Overall Error

We can now analyze the overall error generated on the chip. The maximum total error is
the sum of the errors from all sources. The sum of the numbers derived in the analyses in
the previous sections is less than one pixel of error. Since there are 120 pixels in the region
that we analyzed, the circuit has a resolution of approximately 7 bits. Since these were all
worst-case estimates and the actual error can be made to be much smaller, we can expect
to achieve resolutions much better than the worst-case prediction.

In this error analysis, we computed our error from a best-fit line. In a controlled situation
(where the stimulus and background intensities are constant), we can compute (or measure)
the slope of this best-fit line, and can use this information to calibrate the output voltage
versus position curve. In this situation, the error analysis presented here is valid. If we do
not know the intensity levels of the environment (or if they change with time), we cannot
calibrate our system by using the best-fit line. In this situation, we must consider the
effects of lighting changes on the error. In this situation, the system generates the least

error when the voltage across the resistive divider is large, and the system is operating
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Figure 2.21: Resistive-divider offset voltages. The solid line is a plot of the relative error
of the output voltage from a best-fit line, in which the error is divided by the range of
the input voltages (3.0V'). The dotted line is a plot of the relative finite-gain error (with
respect to a best-fit line) described previously with the horizontal axis scaled to the position
of the appropriate input voltages. We can see that most of the deviation shown in the solid
line can be explained by the finite gain error. If we take the difference between the two
curves (scaling by the number of pixels and accounting for the photocurrent distribution),

we obtain an error of less than £0.1 pixels.
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near the weighted mean functionality. If we assume a slope of 1 for the output voltage
versus input position voltage line (i.c., assume Vouy = Viy), the relative error (derived from

Equation 2.11 for the weighted median) is described by the following equation:

Vvin_V:)ut= 1
Vi B+1

For example, if the total stimulus and background currents are equal and the stimulus width

is 5 percent of the background width, the relative error is less than 5 percent.
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Chapter 3

DC Motors and Pulse Control

In typical use, DC motors are controlled by analog currents or voltages. However, a DC
motor may have other types of signals as inputs; in particular, it may be controlled with a
binary pulse train. This type of input signal has many advantages over the typical analog
control signals. These advantages include ease of amplification, resistance to noise, and
ability to overcome friction for small motor velocities. Ease of amplification is important
when we build small, robust systems using VLSI circuits as the controllers. In these cases,
we need to amplify our signals using a minimal amount of circuitry external to the chip.

One example of the use of pulses to drive mechanical systems can be found in biological
systems. The nervous systems of higher animals use pulses as a means of communicating
information throughout the animal’s body. It is generally accepted that this pulse repre-
sentation of the information improves reliability in the transfer of information. However,
nature also makes a virtue out of using pulses when controlling muscles. Muscles are com-
plicated mechanical actuators with both damping and internal friction [WCHS85] [EL90].
Thus, muscles pose a complictated control problem for which pulses were chosen as an
evolutionary solution.

In this chapter, we formulate a general model for a DC motor, and present characteriza-
tion data for the motors that we use in our experiments. We explain why the use of pulses
is an effective method for driving motors (and other DC actuators). We discuss the effects

of friction on DC systems, and explain the advantages of pulse control in these conditions.
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3.1 The DC Servo Motor

Before we can analyze the effectiveness of pulses at driving DC motors, we must first
develop a sufficient model of the electromechanical properties of these devices. We present
a standard linear model that takes into account the basic electrical properties of the motor
[Edw86]. Simplifying assumptions will be made and noted. An analysis similar to that

presented here can be applied to other linear and rotational DC actuators.

3.1.1 Motor Operation

The DC servo motor is a device that converts a DC current into a torque applied to a
shaft. Each motor consists of a fixed part called the stator, and a rotating part called
the rotor. One of these two parts of the motor consists of a set of permanent magnets of
alternating polarity; the other consists of a set of current-carrying coils. As the shaft of the
motor rotates, the direction of the current through each coil is switched, depending on the
position of that coil with respect to the adjacent magnets.

The two basic types of DC servo motor differ in whether the coils are part of the stator
or rotor, and by what method the current switching is accomplished. In the traditional DC
motor, the coils are part of the rotor and the magnets are part of the stator. The current
is distributed to the rotating coils by a set of brushes on the stator. The brushes contact a
set of commutators on the rotor that are connected to the coils. Each brush is connected to
one of the two motor terminals, depending on the position of the brush with respect to the
magnets. Thus, the motion of the rotor causes the direction of the current through each
coil to change, depending on the position of the coil with respect to the magnets.

In the other type of motor, called a brushless DC motor, the coils are part of the stator
and the magnets are part of the rotor. The mechanical switching is replaced by electrical
switching; thus, the need for brushes and commutators is removed.

Aside from the control of switching, the operation of both types of motor is essentially
equivalent. A magnetic field of flux density 3 is generated by the permanent magnets, and
passes through the coils, which lie normal to the field. A voltage across the terminals of
the motor causes an electric current ¢ to flow through the coils. This current flow normal

to the magnetic field causes a torque to be generated by the motor and applied to the
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Figure 3.1: An electrical model of a DC motor. The motor consists of three primary
elements: a resistor, an inductor, and a voltage source. The resistor and inductor represent
the resistance and the inductance of the coil of the motor. The voltage source represents
the back EMF of the motor; thus, the voltage is proportional to the angular velocity of the

motor.

rotor. Rotation of the rotor causes the coils to move with respect to the magnetic field.
This motion generates an electric potential across the coils. The potential is called the back

EMTF of the motor.

3.1.2 A DC Motor Model

Figure 3.1 shows a model of the electrical system for the motor. This circuit consists
of three primary elements: a resistor, an inductor, and a voltage source. The resistor and
inductor represent the resistance R and the inductance L of the coils of the motor. The
voltage source represents the back EMF induced in the motor by the movement of the coils

through the electric field. This voltage is proportional to the angular velocity w of the
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motor. By Kirchoff’s voltage law, the equation for this electric circuit is

di
V= LEZ— + Ri + kpw (3.1)

where kpw is the back EMF generated by the motor.
If we neglect friction and loads, the mechanical system for the motor, from Newton’s

second law of motion, is described by the equation:

J %J{ = kri (3.2)
where J is the moment of inertia of the rotor and ki is the torque generated by the current
flowing through the coils normal to the magnetic field.

The constants kp (the back-EMF constant) and kr (the torque sensitivity) are both in
units of V-sec (or kg-m-A~1-sec™2). By studying the effects that lead to the generation of
torque from current flow and the generation of back EMF by magnetic-field motion [GB42],
we can see that not only are the units for the two constants the same, but also the theoretical
values of the constants are equal. Given coils with a radius of 7, N total number of turns

for all coils active at any given time, and a rotor with an effective radius (distance from

center of rotor to center of coils) of d, we can derive the relationship
kBZkT=27T7‘-N'ﬂ-d

This constant is called the electromechanical-coupling constant of the system.
We can combine Equations 3.2 and 3.1 by solving for ¢ in Equation 3.2 and substituting

this solution into Equation 3.1:

_Ldy RIde
_kT dt? kr dt B

From this equation, we can derive the Laplace transfer function for the motor from input

voltage to output angular velocity:

w 1/kp
V' st rips 1
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Equation 3.3 describes a second-order system in which one time constant is a function
of the electrical system and the other time constant is a function of the mechanical system.
The electrical time constant 7, is a result of the resistance and the inductance of the coils,

and is defined by the equation:

Te = —R (34)

If we assume that the mechanical time constant 7y, is much larger than the electrical time

constant, we can approximate the mechanical time constant by the equation:

_R-J
~ ks ko

(3.5)

Tm

Given these time constants, we can approximate the transfer function in Equation 3.3 by

the following equation:
w 1/kp

V" (tms+ 1)(Tes + 1)

Since Te € Tm, the motor transfer equation can be even further simplified (for small values

of s) to the following first-order equation:

w  1/kp
V"~ (tms+ 1) (3.6)

In our experiments, we shall use this simplified model to characterize the type of motor
that we use in most electromechanical systems. The motor is a Swiss-made combination

motor and tachometer measuring approximately 10 cm in length and 3 cm in diameter.

3.2 Pulse Control of First-Order Linear Systems

In Section 3.1, we presented transfer functions relating the angular velocity of a DC motor
to the input voltage. Generally, these equations are used to describe the behavior of the
system given smoothly varying input voltages. We are, however, interested in controlling
motors using a switched input or binary pulse train. This technique for driving DC elec-
tromechanical systems is traditionally referred to as pulse-width modulation [AH91]. We
shall describe the behavior of a generic first-order linear system when driven by a pulse

train. We shall apply this analysis to both the torque and velocity for a DC motor.
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Figure 3.2: The anatomy of a single period of a pulse train. We define the voltage when
the pulse is low (off) to be equal to ground or 0, and the voltage when the pulse is high
(on) to be equal to V. The time intervals ¢; and 3 are the periods during which the pulse

is low and high, respectively.

3.2.1 The Constant Pulse Train

We shall discuss the system operation for the case of a constant signal, which, for a pulse
train, means that the characteristics of the signal (high and low voltages, frequency, and
pulse width) remain constant. Given this restriction, we need to consider only one pulse
period in our analysis of a particular set of pulse-train parameters.

Figure 3.2 is a diagram of a single pulse with the time and voltage values defined. The
voltage when the pulse is low (off) is equal to 0 (ground), and the voltage when the pulse
is high (on) is equal to V. The time interval 5 is the period during which the pulse is high
(the pulse width), and the time interval ¢; is the period during which the pulse is low (the

inverse pulse width). Using these values, we can define the following figures of merit for the
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pulse train:

period t, =1 + 1o

1
frequenc =
1 Y f 11+ 19
1
duty cycle a= 2
11 + 1o

3.2.2 Owutput Response

We shall describe the behavior of a generic first-order linear system when driven by a pulse
train (as shown in Figure 3.2). We define a first-order linear system with input voltage

V(t), output signal Y (¢), and transfer function

k
T rs+1 (3.7)

<I=

The response of this system, when driven by a constant pulse train, is shown in Figure 3.3.
We shall extend the analysis of this generic system to the analysis of first-order systems for
torque and angular velocity. This extension is accomplished by replacing Y and k& by the
appropriate output variable and proportionality constant for the system being analyzed.
Because the input pulse train (square wave) is a piecewise constant function, we can
analyze the response of the system by separating each pulse period into two sections: the
interval when the pulse is low (At = (1 — a)t,) and the interval when the pulse is high
(At = atp). To analyze the response of the system, we define the time ¢ to be equal to
0 at the beginning of each interval. Given this definition, the equations that describe the

response of this system as the pulse switches low and high, respectively, are:

Y'lo(t) = Ymaxe_t/T (38)
Yhi(t) = kVp+(Ymin"‘kVp)e—t/T (39)

where Ynax and Yiin are the output values at the beginning of the low and high intervals,
respectively.

If we set t = 0 at the beginning of each interval, the solutions at the endpoints of the
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Figure 3.3: The response of a first-order linear system driven by a pulse train. The input
and output waverforms are shown for a system with proportionality constant & = 1. The
input is a square wave with amplitude V},, pulse period %, and duty cycle a. The output
waveform decays exponentially, approaching asymptotic values of 0 and kV},. The time
constant for the exponential decay is 7. Yiuin and Y. are defined to be the minimum and

maximum output values.
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two intervals give the following two equations in two unknowns (Yiui, and Yiax):

Ymin = Ymaxe_(l_a)tp/T

Ymax = kVp+ (Yiin — kVp)e o0/7

Solving for these two equations, we derive the following values for Yiin and Yiax:

e_(l"a)tp/‘r — e—tP/T
1—eto/7
1— e—atp/r

Yoin = kV, (3.10)

Ynax = kY

Oy (3.11)

We can replace Ynin and Ymax in Equations 3.8 and 3.9 with these values to derive the

following equations for the output response of the system during the low and high intervals:

1— e—otp/T

_ —t/r
Yilt) = KVpr———e (3.12)
1 — e—(l_a)tP/T ¢
. — P 7k
Vi (6) kV, (1 e (3.13)

3.2.3 Effective Input Voltage

When the system described by Equation 3.7 is driven by a DC input voltage the output
generated by the system is described by the equation:

Y=k V

and the magnitude of the control signal is the input voltage V.

When the system is driven by a constant pulse train, the magnitude of the effective
control signal should also be constant. We can derive this value by considering the response
of the system during one pulse period. The average output during one pulse period is the
integral of the output Y (Equation 3.12 for time #; plus Equation 3.13 for time #9) divided
by the time period of the integration (¢,). The average output is described by the following

1 Q—a)tp/r atp /T
Vo= o | [ Yo()dt+ [ V(e
0 0

tp

equation:

The result of this integration produces the following equation for the average output gen-
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erated by the system:
Yoo =k (aV}) (3.14)

The effective control voltage in this equation is aV}, (the product of the duty cycle and the
amplitude of the pulse train). This value is the average voltage of the pulse train and is

independent of the frequency of the input pulse train.

3.2.4 Minimum and Maximum Output Values

In some applications, it is important to know the minimum and maximum values of the
output of a pulse-driven system. The values Ypin and Ynax for a pulse-driven first-order
system were given in Equations 3.10 and 3.11. We can analyze these two values with respect
to the pulse frequency by considering the values to be functions of £,. Figure 3.4 shows the
values of Ypnin and Yiax (divided by kV}) versus normalized pulse period (¢, /7).

For very low frequencies (¢, 3> 7), the values of Yiniy and Yiax move toward asymptotic
values. The limits of these values (from Equations 3.10 and 3.11) as the frequency decreases

toward 0 are:

lim Yo, = O
tp—00
i Yo = 4

The output waveform in this regime closely approximates the input square wave (scaled by
the constant k).

As the frequency increases, the output waveform becomes averaged by the integrating
functionality of the system, and for very high frequencies (t, < 7) the output will approach
a constant value. The limits of Yiin and Y.y as the frequency increases toward infinity
are:

tii_r_{lOYmin = k(avp)

lim Yiax = k(aVy)

p

The magnitude of the ripple at the output of the system is another important parameter.

This magnitude is defined as the difference between the maximum and minimum output
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Figure 3.4: Output extremes for a pulse-driven first-order system. The two curves represent
Yiin and Yax as a function of ¢, for o = 0.40. The horizontal axis is normalized by the time
constant 7. The vertical axis is normalized by kV},. For small values of t,/7, Yiyin and Ymax
asymptotically approach «a(kV,). For large values of t,/7, Yinin and Ypax asymptotically
approach 0 and kV},, respectively.
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Figure 3.5: Magnitude of ripple in a pulse-driven first-order system. The magnitude of the
ripple (the difference between the maximum and the minimum values of the output of the
first-order system) is shown for a number of values of «. For high frequency inputs (tp € 1),
this magnitude is approximately equal to 0, and the output is almost constant. For low
freqency inputs (¢, > 7), this magnitude is approximately equal to kV},, and the output

approximates a square wave.

values, and is given by the equation:

(1- e—atp/r)(l - e—(l—-a)tp/r)

1—e /7

AY = Ymax - Ymin = kVp (315)

From the above limits, we see that this function approaches kV,, for low frequency inputs,
and approaches 0 for high frequency inputs. This function is symmetric about o = 0.5. In

Figure 3.5, we show AY versus t,/7 for different values of .
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3.3 Torque and Pulses

The stall torque of a motor is defined as the torque generated by the motor in the absence
of motion. Since the angular velocity is 0, we can reduce Equation 3.1 to the following

equation:
di
V=R+L—
7 -+ 7t
Since the torque T' produced by the motor is proportional to the current ¢ (with propor-
tionality constant kt), the stalled motor has a first-order relationship between the input
voltage and the stall torque defined by the electrical time constant alone. The stall torque

thus has a transfer function:
T kt/R
T_ /R (3.16)
V.  Tes+41
Since this is a first-order system, we can analyze the effects of driving the system with

pulses using the theory presented in Section 3.2.

3.3.1 Stall Torque versus Input Voltage

Equation 3.14 showed that the effective voltage generated by a pulse train is equal to the
product of the duty cycle and the amplitude of the pulse train. From our analysis of pulse-
driven first-order systems, we see that the average stall torque produced by a pulse-driven
motor is:

Tav - —R'(CYVP)

We can measure the stall torque produced by the motor using an experimental apparatus
consisting of a motor connected via a spindle and cable to a load cell (a device that linearly
converts force to voltage). This apparatus converts the torque produced by the motor to
a voltage. We calibrate the load cell, and use the calibration curve (and the radius of the
spindle) to determine the torque produced by the motor.

Figure 3.6 shows stall torque versus input voltage data for a DC voltage input and three
pulsed inputs (of different frequencies). These data all fit a linear model well, with an error
from a best-fit line of less than 1 percent. The slope of the best-fit line to these curves is

4.91- 1073 N-m-V~1. The slope should be equal to %7 and we computed the value of kr
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Figure 3.6: Stall-torque data for DC and pulsed inputs. The solid line represents data taken
when the inputs were DC voltages in the range 0 to 10 V. The points represent data taken
when the inputs were pulse trains with an amplitude of 10V and with a duty cycle in the
range between 0 and 100 percent. For the pulsed data, the horizontal axis represents the
amplitude multiplied by the duty cycle. Three sets of data with pulse frequencies of 30 Hz,
300 Hz, and 3kHz are shown superimposed.
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(from the slope and a previously measured value of R) to be:
kr =3.07-1072V - sec

3.3.2 Effects of Pulses on Torque

We can study the effects of pulses on the stall torque by fixing the rotor in place, applying
an input pulse train, and measuring the resulting torque using the load cell. The inclusion of
the load cell, however, may introduce another time constant that would affect the operation
of the system. To alleviate this problem, we can measure the current through the motor
(since the torque is proportional to the current). We add an external resistance Rey in series
with the motor, and apply the input voltage across both resistor and motor. We measure
the current through the motor by measuring the voltage drop Vext across the resistor with
an oscilloscope. The resulting torque is proportional to this voltage, and is described by
the equation:
kr

Text = _""‘/ext
Rext

The addition of the external resistor, however, causes the torque produced to be less than
it would be with the resistor removed (given the same input voltage in both cases). For
the input pulse train presented here, the torque produced by the motor with the external

resistor removed would be:
kr R+ Reyt

T =
Rext R

Vext (3.17)

Figure 3.7 shows the temporal relationship between stall torque and input voltage for
a pulse-driven motor. The response appears first-order with the waveform exponentially
approaching asymptotic values. The torque in this figure is scaled by the constant T},, which
is the stall torque produced by the motor when the input voltage is V,. T}, is described by
the following equation:
kr

Tp = —EVp

3.3.3 Measurement of the Electrical Time Constant

We measure the electrical time constant 7, of the motor using the experimental apparatus

described in the previous section. The addition of the external resistor causes the test
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Figure 3.7: Temporal stall torque characteristics from a pulse-driven motor. The temporal
waveforms for normalized input voltage and normalized output torque are shown. The input
is normalized by dividing by the pulse amplitude (V}, = 10 V). The output is normalized by
dividing by the stall torque (T},) that is generated at a DC voltage input of V.
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circuit to have a time constant different from that of the motor. The time constant 7ey; of

this circuit is
L
R + Rext

Text =

We measure the time constant 7ext by applying an input voltage step of magnitude V}, to the
motor and measuring the time for the output to reach (1—e™! )T}, where T}, is the stall torque
that is generated at a DC voltage input of V},. By measuring the time constant at other
points, we found that the response of the electrical system is not an inverse exponential as
expected. This response implies that the electrical system is not a first-order linear system.
In our analyses, however, we shall approximate the transfer function as in Equation 3.16.
The measured value of the external resistance was Rexy = 5.04Q). We measured the value
of Text to be 1.1-10"%sec. We measured the following motor resistance, and computed the

following motor inductance and eletrical time constant:

R = 6.25Q
= 1.2-107%H

Te = 2.0- 104 sec

3.4 Angular Velocity and Pulses

A motor experiencing no frictional load spins freely and an average torque of 0 is produced
in steady state. Equation 3.6 gave the following approximate transfer function for a DC

motor with no frictional load:
w _ 1/ks
vV (Tms + 1)

This approximation is valid only if 7. < 7. We shall analyze the relationship between
input voltage and angular velocity using this first-order transfer function and the theory

presented in Section 3.2.
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Figure 3.8: No-load speed data for DC and pulsed inputs. The solid line represents data
taken when the inputs were DC voltages in the range 0 to 10 V. The points represent data
taken when the inputs were pulse trains with an amplitude of 10V and with a duty cycle
in the range between 0 and 100 percent. We took three sets of data at 30 Hz, 300 Hz, and

3kHz. The error from a best-fit line for all of these data is less than 1 percent.

3.4.1 Angular Velocity versus Input Voltage

By using Equation 3.14, we derive the following equation describing the average angular

velocity of a pulse-driven motor:

1
ay = —(aV}) (3.18)
kg

To measure the average speed (angular velocity) of the motor, we attached an optical
encoder to the shaft of the motor, and measured its output frequency, which is proportional
to the speed of the motor. The addition of the optical encoder adds an inertial load to
the system. This load increases the moment of inertia J and the time constant 7, of the
mechanical system. The added inertia does not affect the DC operation (or the average

angular velocity) of the motor.
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Figure 3.8 shows angular velocity versus input voltage data for a DC voltage input
and three pulsed inputs (of different frequencies). These data all fit the linear model in
Equation 3.18 well, with an error from a best-fit line of less than 1 percent. The slope
of the best-fit line to these curves was 32.1V~l.sec™!. The slope is equal to é—, and we

computed the value of kg to be
kp =3.12-1072V - sec

This value differs from the measured value of kt by less than 2 percent. Also, using these

two values and Equation 3.5, we calculated the moment of inertia J to be
J=20-10"%kg  m?

We removed the rotor from the motor and measured its radius and effective mass to be
approximately 14 g and 1.14 cm, respectively. These values give an approximate moment of

inertia of J ~ 1.8 - 1076 kg-m?2.

3.4.2 Effects of Pulses on Angular Velocity

We can study the effects of pulses on the angular velocity of the motor by measuring the
voltage generated by the tachometer attached to the motor. This voltage is proportional
to the angular velocity of the motor. By using the tachometer, we are able to remove all
external frictional and inertial loads from the motor. We can make temporal measurements
to determine whether the first-order transfer function approximation (for w/V) is valid.
Figure 3.9 shows the temporal relationship between angular velocity (speed) and input
voltage for a pulse-driven motor. The response appears first-order with the waveform ex-
ponentially approaching asymptotic values. The angular velocity in this figure is scaled by
the constant w;,, which is the angular velocity produced by the motor (with no load) when

the input voltage is V},. w,, is described by the following equation:
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Figure 3.9: Temporal speed characteristics from a pulse-driven motor. The temporal wave-
forms for normalized input voltage and normalized output speed are shown. The input is
normalized by dividing by the pulse amplitude (V}, = 10 V). The output is normalized by
dividing by the angular velocity (wp) that is generated at a DC voltage input of V.
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3.4.3 Measurement of the Mechanical Time Constant

We measure the mechanical time constant 1, of the motor by measuring the temporal
response of the angular velocity of the motor (via the tachometer) when a voltage step of
magnitude V}, is applied at the input. The time constant is defined as the time that it takes

for the output to reach (1 — e‘l)wp. We obtained a mechanical time constant value of
Tm = 1.3- 1072 sec

Comparing this value to the value for the electrical time constant, we can see that 7, is
indeed much larger than 7. (by approximately two orders of magnitude). Thus, our first-

order approximation for the motor (in Equation 3.6) is valid.

3.5 Torque and Velocity Characteristics

In Section 3.3, we described the effect of pulses on the torque of a motor with infinite
load (w = 0). In that case, the torque is only dependent on the electrical system (and
electrical time constant). When the motor is rotating, however, the torque is dependent on
the response of both the electrical and mechanical systems. We shall describe the effects of
pulses on the torque and angular velocity characteristics of a motor with no load.

When there is no load on the motor, the first-order transfer function in Equation 3.6
describes the angular velocity of the system. We derive the following solution to this

equation (for the low and high periods of the input pulse train) from Equations 3.12 and 3.13:

V, (1 —e oo/ _ -

wiolt) = ﬁ(l—_':?‘/‘;‘e ! ‘“) (3.19)
Vv 1_6_(1“a)tp/7'm —t/r

whi(t) = ﬁ (1— e /7m (3.20)

When there is no load on the motor, the response of the electrical system is described by
Equation 3.1. We can combine this equation with the first-order transfer function for the
mechanical system (Equation 3.6) to derive the following torque-voltage transfer function
for a motor with no load:
kT _TmS$ 1

T-—_.._.
V R Tms+1 7es+1
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We can derive the following approximate solution of this transfer function for a system
presented with an input pulse train with a period large enough that the electrical system

nearly reaches its asymptotic limit:

k o=ty [T

To(t) = [~ (11 —— > et/ g oY } (3.21)
ktV, 1—e d-a)tp/mm) _

() = ;P [( l—et/m )€ W — et/ (3.22)

where Tj, is the torque generated by the motor when the pulse is low, and Tj; is the torque
generated by the motor when the pulse is high.

For pulse trains with periods short enough that the electrical system does not reach its
asymptotic limit, we consider the angular velocity constant and equal to oV, /kp, and the

following equations describe the torque during the low and high parts of the pulse train:

boV, (1= e-otoln

Tio(®) = Rp (1 et © e ’a> (3.23)
kTV 1— e—(l——a)tp/-re i

Tu(®) = —%+ ((1 — o) e e (3.24)

3.5.1 Torque and Velocity Data

In this section, we shall compare theoretical predictions for angular velocity in Equa-
tions 3.19 and 3.20 and for torque in Equations 3.21 and 3.22. We shall show experimental
data and theoretical curves for the input voltage, angular velocity, and torque when the
system is presented with pulse trains in differing frequency regimes. The data are normal-
ized by dividing by V, T, and w by V},, T}, and wy, respectively. We measure the torque
by measuring the voltage drop across an external resistor as described in Section 3.3. We
measure the angular velocity by measuring the tachometer voltage. The system with the
added external resistor has time constants of ¢, = 1.1 -10"4sec and ¢, = 2.3 - 10~2 sec.
When the frequency of the input pulse train is small (f < 1/7,), the mechanical system
dominates the operation of the system and the torque produced by the motor. For very low
frequencies, the angular velocity approximates a square wave (with exponentially rounded
leading edges). At each input pulse edge, the motor produces a broad torque impulse,

which starts or stops the motion of the motor. The magnitude of the torque decreases as
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Figure 3.10: System response to a low-frequency pulse train. The input frequency is
3.125 Hz. The dashed curve represents the input pulse train. The solid curves represent the
experimental torque and speed data, and the dotted curves represent the theoretical torque
and speed. The mechanical time constant dominates the operation in this regime. Thus,

the angular velocity approximates the input pulse train and the torque is a broad impulse.

the angular velocity approaches its asymptotic value. Figure 3.10 shows the response of the
system to a pulse train with a frequency in this range.

For higher frequency pulses, the angular velocity response becomes smoothed by the low-
pass effect of the mechanical system. The torque response remains highly oscillatory. The
effects of the electrical time constant become apparent, and the leading edge of each torque
impulse becomes rounded as the frequency increases. The trailing edge of the torque ripple
becomes flatter as the deviation in the angular velocity response decreases. Figure 3.11
shows the response of the system to a pulse train with a frequency in this range.

As the frequency is increased even farther, the smoothing (low-pass) effect of the me-
chanical system causes the angular velocity to be practically constant. The torque response

in now completely dominated by the effects of the electrical time constant, showing a first-
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Figure 3.11: System response to intermediate-frequency pulse trains. The input frequency
is 62.5 Hz. The dashed curve represents the input pulse train. The solid curves represent
the experimental torque and speed data, and the dotted curves represent the theoretical
torque and speed. The angular velocity is more smoothed than in Figure 3.10, and the

effect of the electrical time constant on the (leading edge of) the torque pulses is apparent.
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Figure 3.12: System response to high-frequency pulse trains. The input frequency is
1250 Hz. The dashed curve represents the input pulse train. The solid curves represent
the experimental torque and speed data, and the dotted curves represent the theoretical
torque and speed. The angular velocity remains almost constant, and the torque response

is dominated by the electrical time constant.

order response each time the pulse train switches. In this regime of operation the torque
can be described by Equations 3.23 and 3.24. Figure 3.12 shows the response of the system
to a pulse train with a frequency in this range. There is an obvious discrepency between
the theory and data in this figure, due to the nonlinear electrical system behavior described
in Section 3.3.

In the limit of very high frequencies (t, < 7.), the low-pass effect of the electrical system
causes the torque to become nearly constant, and the response of the pulse-driven system

approximates the response of the system to a DC input voltage.
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3.5.2 The Relationship Between the Time Constants

In the preceding description of the operation of the motor in differing frequency regimes,
we showed that, since the mechanical time constant is much greater than the electrical time
constant, the angular velocity smooths at much lower frequencies than the torque.

We show that, in response to low-frequency input pulse trains, the motor demonstrates
a significant amount of ripple in the angular velocity. In some applications, it may be
necessary to limit the magnitude of this ripple. By applying Equation 3.15, we can derive
the following equation for the magnitude of angular velocity variation:

B Vp (1 - e—atp/‘r)(l - e—-(l—-a)tp/‘r)
" kg 1—e /T

Aw (3.25)

When we consider the effects of kinetic and static friction in Section 3.6, we shall see
that the benefits of pulses in allowing the motor to overcome friction are lost when the
maximum torque falls below the level necessary to break free of the static friction in the
system. From Equation 3.11, we can derive the following equation for the maximum stall
torque produced by the motor:

bV, 1 — e=ato/m

R 1o il (3.26)

Tm ax —

Thus, we would like to generate pulse trains in frequency regime that allows for both
low amplitude ripple in the angular velocity and large values of the maximum torque. This
concern is especially apparent when driving the system with a pulse train with a small duty
cycle, since the average stall torque is small in this case. Figure 3.13 shows the magnitude
of the angular velocity ripple and the maximum stall torque as functions of the pulse period
tp for a system in which the time constants are separated by two orders of magnitude. From
this figure, we can make a good argument for operating the system in the frequency range
between the two time constants (where the angular velocity is constant, but the torque

remains oscillatory).
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Figure 3.13: Aw and Tinax as a function of ¢,. The curves are for a pulse train with a
duty cycle of 0.1 and time constants separated by two orders of magnitude. The horizontal
axis is normalized by the 7, where 7 = 107, = 0.17y,. The values on the vertical axis are
normalized by wp, and T;,. The region between the two time constants (and especially nearer

to 7m) shows the best combination of small Aw and large Tinax.
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3.6 The Effects of Friction

Up to this point, we have assumed a frictionless system. In most real-world problems,
however, friction must be considered. The existence of friction-limited systems is one of
the primary reasons for choosing a pulse-control paradigm [AH91]. In this section, we shall
consider the effects of both kinetic (sliding) and static friction on the operation of systems

driven by analog voltages and systems driven by pulses.

3.6.1 Kinetic Friction

By definition, kinetic friction on a moving system acts as a force or torque on the system that
opposes motion and has constant magnitude (depending on only the sign of the velocity
of the system) [HR81]. We can add kinetic friction to our motor model by modifying

Equation 3.2 to produce the following equation:

dw )
JE; = ki — sgn(w)T;

where T} is a constant (representing the magnitude of the torque caused by kinetic friction),
and sgn(w) is —1, 1, and 0 for negative, positive, and 0 angular velocity, respectively. We can
combine this equation with Equation 3.1 to derive the transfer function for the system with
kinetic friction included. Since kinetic friction is a discontinuous function of angular velocity,
however, we must place restrictions on the system to determine a closed-form equation. For
example, if we restrict the angular velocity to be positive, the transfer function is

w  1/kp
V—Vi Tms+1

(3.27)

where we define Vi to be a constant voltage offset due to friction, defined by the equation:

R
Vi = —T;
f ka

The DC version of Equation 3.27 is

o= ki(v —v) (3.28)
B
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This equation is valid only when w is positive (V > V;). When V is positive and less than
Vt, w is equal to zero because the torque produced by the motor is smaller than the frictional

torque.

3.6.2 Static Friction

Static friction is the friction on a system at rest, and is generally greater than kinetic
friction. As described previously, when our system (with kinetic friction included) is at rest
(w = 0), we must apply a voltage greater than V; so that the torque generated by the motor
is larger than the frictional torque. Given that static friction is greater than kinetic friction,
however, the generated torque must actually exceed the torque due to static friction (T5)
for the motor to break free of the static friction. Once the system breaks free of the static
friction, the frictional torque immediately decreases (to the level of the kinetic friction).
This effect causes a discontinuity in the motor speed when the system is at rest and the
magnitude of the applied voltage is increased gradually.

We define the voltage necessary to break free of the static friction to be

Vs

R
=T
kr

Starting with a system at rest, if the applied voltage is less than V5, the motor speed is equal
to 0; if the applied voltage is greater than V5, the motor speed is described by Equation 3.28.
Static friction thus limits the minimum speed that can be generated by the application of

a DC voltage to a system at rest. This minimum speed is (Vs — V¢)/ks.

3.6.3 Low-Speed Control of Frictional Systems

The minimum-speed restriction (due to static friction) greatly limits the reliable operation
of DC-driven systems that have significant friction and are required to operate at low speeds.
A DC voltage is unable to control a system at low speed because, if the system begins at
rest, the control voltage must be large enough for the motor to generate a torque capable
of overcoming the static friction. For systems with appreciable static friction, the resulting
discontinuity (in the voltage-speed curve) can be very large.

One solution to the static-friction problem is to guarantee that the system is in motion,
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and then to decrease the speed to the correct value. This approach might be feasible in some
applications, such as when the system is driven unidirectionally and the motor is always
rotating. This solution, however, does not guarantee operation of the system at low speeds.
Even if the system is in motion, low-speed control can be difficult with a DC voltage due to
variations in the kinetic friction. Since the system is moving very slowly, a slight increase in
friction might be sufficient to cause the moving system to stop, at which point the generated
torque will be unable to break free of the static friction. Thus, unless there is very little
variation in kinetic friction, a DC analog voltage will be ineffective at low-speed control.
Another problem with DC-driven frictional system is that angular velocity is not an
increasing function of the input voltage, but rather, the angular velocity is equal to 0 for
voltages near 0. Also, when the system starts at rest, there is a discontinuity in the curve

due to static friction. This discontinuity can result in hysteresis in such systems.

3.7 Pulses and Friction

We shall analyze the effects of friction on a pulse-driven system for two regimes of operation.
The first regime is characterized by the fact that the motor is continuously moving. In this
regime, the angular velocity may have ripple, but cannot decrease to the point where w = 0.
The second regime is characterized by the fact that the motor stops during the low period
of the input pulse train. In this regime, each pulse generates a discrete motion of the motor.
In both regimes, we assume that the pulse width is large enough that we can ignore the
effects of the electrical time constant on the operation of the system.

To test the effects of friction, we shall take data from our system with the addition of
an apparatus that generates friction. Two aluminum plates are mounted to the shaft of the
motor. An asbestos plate is sandwiched between the rotating plates, and is fixed so that
it cannot move. The rotating plates apply a force on the fixed plate. This force can be
varied to change the frictional torque generated by the apparatus. We measure the angular

velocity with the optical encoder, which is also attached to the shaft of the motor.
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Figure 3.14: Continuous motion in a pulse-driven frictional system. Friction affects the
system by decreasing the effective input voltage by a constant amount (V}), thus shifting
the horizontal axis of the plot of input voltage by V;. This shift effectively decreases the

angular velocity at any given point by a constant amount (ws).

3.7.1 Continuous Motion

From the transfer function in Equation 3.27, we see that, in a system with kinetic friction,
the effective input voltage is equal to the applied voltage minus a voltage (V;) representing
the effect of friction. In a pulse-driven system, the friction effectively translates the input
pulse train vertically by —V;, resulting in an effective pulse train with low and high voltages
of =Vt and V,, — V4, respectively.

This translation in input voltage causes a translation in angular velocity by —wy, where

wr is defined by the following equation:

Figure 3.14 shows the effect of the friction on the effective pulse train and on the resulting
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angular velocity when the velocity is always greater than 0. For this angular velocity to
remain positive, the minimum angular velocity generated by the frictionless system must

be greater than wy, and from Equation 3.10:

Vp e—(1-a)tp/Tm _ o—1p/Tm
wf<g 1= o—to/mm

When this inequality is valid, the average angular velocity is described by the equation:

aV, —V;

- (3.29)

Way =

Since the effective DC input voltage V' for a pulse train is equal to aV},, the response of the
system driven by pulses is equivalent to the response of the system driven by a DC voltage
(as defined in Equation 3.28) when the angular velocity remains positive.

Figure 3.15 shows data for a frictional system driven by both DC and pulsed inputs.
We generated two curves from the DC-driven system. One of these curves was taken with
the system initially at rest (the voltage was increased from 0V), and shows the effect of
the static friction. The other DC curve was taken with the system initially in motion (the
voltage was decreased toward 0 V), and shows no static friction effect. For input voltage less
than V4, the angular velocity for the DC-driven system is equal to 0. The angular velocity
for the pulse-driven system is positive in this region.

The pulse data are approximately equal to the DC data for voltages greater than a
particular input voltage. This voltage represents the interface between the continuous-
motion and discrete-motion regimes of operation (¢ = (1 — a)t,). We confirmed this fact
by measuring the angular velocity with an oscilloscope. The point at which the DC and
pulse curves meet is indeed the point at which the minimum angular velocity in the pulse-
driven system was 0. Below this voltage, the motion of the pulse-driven system is no longer
described by Equation 3.29. The motion in this regime will be discussed in the following
section.

For large input voltages, the curves from the DC- and pulse-driven systems are quite
well matched as predicted by Equations 3.28 and 3.29. The curves are not linear in the
region, however, because the friction is not constant over the entire range of motion. We

can measure the friction at a given point by calculating the difference between the angular
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Figure 3.15: Angular velocity versus input voltage for a frictional system. One curve
represents data taken when the system begins at rest and is driven by a DC voltage. This
curve has a discontinuity at the point when the input voltage is large enough to break free
of the static friction (V' > V;). A second curve shows the effects of a DC input voltage
on a previously moving system. This curve is continuous and decreases smoothly to the
horizontal axis at V = V;. The third curve represents data taken from a pulse-driven
system. This curve matches the DC curves for high voltages. At lower voltages this curve
decreases more slowly, such that the angular velocity is positive for positive input voltages.

The final curve shows the response of the system with no friction.
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Figure 3.16: The variation in the friction generated by the system. The curve represents
the angular velocity offset wy due to the friction generated by the mechanical system versus
the angular velocity w generated by the motor in the frictional system. wg is proportional to
the frictional torque Tt; thus, if the friction was constant (independent of angular velocity),

this curve would be a horizontal line.

velocity in the frictionless system and the angular velocity in this frictional system. The
resulting difference is equal to wy. Figure 3.16 shows a plot of this value versus the angular

velocity in the frictional system.

3.7.2 Discrete Motion

If the angular velocity in a pulsed system decreases to 0 during the period that the input is
low, the system no longer reacts in the manner described in the preceding section. When the
motor stops rotating, the frictional torque is no longer generated and the system remains
at rest until the pulse train again goes high. Thus, each pulse produces a discrete motion.
Figure 3.17 shows the response of the system in this regime.

At the beginning of each pulse, the system is at rest (w = 0). During the period in which
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Figure 3.17: Discrete motion in a pulse-driven frictional system. During the low period of
each pulse, the angular velocity of the motor decreases to 0. Thus, the average velocity is
no longer the same as it is in a DC-driven system. We define #; to be the time (into the low

portion of the pulse train) at which the motor stops.
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the pulse train is high, the angular velocity of the system increases toward an asymptotic
value of w, — wr. For a constant value of wy, the behavior is described by the following
equation:

whi(t) = (wp — wp)(1 — e™/™)

The maximum angular velocity wmax occurs at the point when the pulse train goes low, and

is described by the following equation:
Wmax = (wp - wf)(l - e—atp/rm)

During the period in which the pulse train is low, the angular velocity decreases toward

an asymptotic value of —wy, and is described by the following equation:
wio(t) = —wr + (wmax + wf)e—t/Tm

We define t; to be the time (into this interval) when the angular velocity is equal to 0. By
setting w = 0 and ¢ = ¢ in the previous equation, we can derive the following equation for
t:

tf = Tm h’l (w___________max * wf)

wf

We can compute the average angular velocity in this regime of operation by integrating
the velocity over one complete period of the pulse train, and dividing by the pulse period
t,. This integral is the sum of the integrals of the angular velocity during both the low and

the high periods of the pulse train, and is described by the following equation:

1 aty ts
e = = ( [ e+ [ wlomdt)
tp \Jo 0

By integrating and rearranging this equation, we derive the following equation for the

average angular velocity in the regime in which each pulse generates a discrete motion:

1
Way = a(wp — wy) — %iwf (3.30)
P

Since #; is an increasing function of the pulse width atp, the average angular velocity (and

thus the displacement generated by each pulse) is also an increasing function of atp. At
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Figure 3.18: Discrete motion in a frictional system. The curve is the subset of the pulse
data in Figure 3.15 for which the system is operating in the discrete motion regime. The

angular velocity is plotted versus the effective input voltage aV,.

the point at which the system crosses from the regime of continuous motion to the regime
of discrete motion, t; = (1 — a)t,, and this equation is equivalent to Equation 3.29.

Figure 3.18 shows data for the frictional system driven in this regime. The data in this
figure are taken from the region in Figure 3.15 where the curve for the pulse-driven system
deviates from the curve for the DC-driven system. In this region, the duty-cycle of the pulse
train is small and the pulse-driven system is operating in its discrete motion regime. To
generate the data curve, the frequency of the input pulse train was held constant and the
pulse width (and thus the duty cycle) was varied. This curve shows that as the pulse width
decreases the average angular velocity decreases faster than linear; thus, the displacement

generated by each pulse decreases with decreasing pulse width.
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3.7.3 The Electrical Time Constant and Maximum Torque

In our previous analysis, we considered pulse trains with pulse widths large enough that the
electrical time constant could be ignored (the maximum torque was reached during each
pulse). If the pulse width is small (in the range of the electrical time constant), however, we
can no longer ignore the electrical effects in the system. If the pulses become too narrow,
the exponential decay due to the electrical system causes the torque generated by the motor
for an individual pulse not to reach the level needed to overcome the static friction. We
need to consider only the torque generated when the angular velocity is 0 (during the time
that the input pulse is low). The maximum value of the torque (Tinax) in this situation is
described by the following equation:

k _t
Tmax= rIéVp (1—6 ;5>

If the value of Ti,.x exceeds T, the pulse will cause the system to rotate. To guarantee this

motion, we must guarantee a minimum pulse width, such that

RT,
t - 1-
2> Teln < kTVp>

If this minimum pulse-width criterion is met, there is no theoretical limit on the minimum
average speed that the motor can generate.

We used the friction-generating apparatus described previously, and measured values of
angular velocity for a DC-driven system starting at rest and in motion, and for a pulse-
driven system. When the system started at rest, the minimum angular velocity generated
using a DC voltage to overcome the static friction was approximately 7 rad/sec. When
the system started in motion and the input voltage was decreased slowly, we obtained a
minimum angular velocity of approximately 1 rad/sec, due to the variation in the friction
between the two surfaces (aluminum against asbestos). When the system was driven with
pulses, we achieved a minimum angular velocity of approximately 1-10~3 rad/sec (about 2

hours per revolution). We could, however, conceivably decrease this speed further.
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Chapter 4

Pulse-Generating Circuits

In Chapter 3, we explained the effectiveness of pulses in the control of the motion of mechani-
cal systems. In this chapter, we present circuits that generate pulses using the subthreshold
analog VLSI design paradigm. We describe the dual-rail pulse encoding, and discuss its
use in controlling mechanical systems bidirectionally. Finally, we present a circuit that

aggregates a number of inputs and produces a dual-rail pulse encoding at its output.

4.1 The Neuron Circuit

In this section, we present a VLSI circuit that converts analog signals (currents and voltages)
into temporally modulated pulse trains. We describe the operation and functionality of this
circuit, and explain the reasons that is well suited for driving mechanical systems. We also

present two variations of the original circuit.

4.1.1 The Original Neuron Circuit

Mead [Mea89] describes a circuit that converts an analog current into a pulse train. This
neuron circuit takes its name from the biological cells that produce pulses in the nervous
systems of animals. The schematic of this circuit is shown in Figure 4.1. The circuit
consists of a current mirror, an amplifier (two inverters), two capacitors, and two series
transistors. The input current is integrated by the capacitance of the input node, causing
the input voltage to increase. When this voltage reaches the switching voltage of the

amplifier, the output voltage switches high, causing the reset current to be enabled. This
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current discharges the input node until the output switches low. A feedback capacitor
causes hysteresis by capacitively coupling the output node to the input node. If the input
and reset currents are held constant, this circuit produces a constant pulse train at the
output.

We can analyze the quantitative operation of the circuit given a constant input current.
We define ¢t; and t2 to be the periods of time that the output is low and high, respectively.
The magnitude of the charge placed on the input node by the capacitive feedback each time
the output switches is CoV34. The input and reset currents must counteract this charge
before the output will switch again. During the period when the output is low, the reset
pathway is disabled and the current at the input node is equal to 4;,. The integrated charge
during this period is t1%;, and must be equal to CoVyq. When the output is high, the reset
pathway is enabled, and the current is ¢, — 4, (for 4, > 4j,). The integrated charge during
this period is t2(%;, — 7;) and must be equal to —C2Vyq.

In our discussion of driving motors with pulses in Section 3.2, we described two attributes
of pulse trains that are important for the control of motors: duty cycle and minimum pulse
width. We shall now analyze the behavior of the neuron circuit with respect to these
attributes.

Since the duty cycle is the important temporal measure of a pulse train for determining
the drive that a pulse train provides to a motor, we must show that the neuron circuit
performs an acceptable transformation between the input current and the output duty
cycle. By setting the sum of the charges at the input node during a complete pulse period
equal to 0 (because of charge conservation), we can derive the following equation for the
pulse duty cycle:

o tin

= L 4.1
t1 + 19 1p (4.1)

This equation shows that the duty cycle of the pulse train is proportional to the input
current, with a proportionality constant of % Thus, the transfer function of the neuron
circuit (from ¢, to output duty cycle) is constant, and the form of the input signal is
retained at the output. This linearity is valid only when 7, > %;,; the circuit saturates to
a duty cycle of 1 if this condition does not hold. Figure 4.2 shows data for the duty cycle
versus the input current for the neuron circuit.

In Section 3.6, we also discussed why it is important that, for a pulse train to control a
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Vin out

Figure 4.1: The neuron circuit. A current mirror produces a current %;,, which is integrated
by the input capacitance (C = Cj + C3), causing Vi, to increase. When Vi, reaches the
switching threshold of the amplifier (V5 =~ Ygi), the output voltage switches high. This
switching causes charge to be dumped on the input node due to capacitive feedback from
capacitor Cs, increasing Vi, by AV = %ZVdd. The high output also causes the two-transistor
reset pathway to be activated, sinking reset current ¢, off the input node (assuming i, > 4;,)
and decreasing Vi,. When Vj, reaches Vg, the output switches low, capacitively decreasing
Vin (by AV), and deactivating the reset pathway. At this point, the circuit is reset and the

process begins again.
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Figure 4.2: Duty cycle versus input current for the neuron circuit. The duty cycle should

be linear with respect to the input current, with a slope of %
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Figure 4.3: Pulse width versus input current for the neuron circuit. The pulse width is a
function of the input current #,. The pulse width asymptotically approaches CaVyq/i; as

iin approaches 0.

DC motor system effectively, the pulse width not become smaller than some constant value.

For the neuron circuit, the pulse width is described by

GV, LV,
= L2vad 2V

r — %in ir

to

(4.2)

We can see that the pulse width is bounded below by a constant that is independent of the
input current. Thus, we are able to set the minimum pulse width for the circuit that is
consistent with the restriction for a driving DC motor. Figure 4.3 shows the pulse width

versus the input current for the neuron circuit.

4.1.2 Variations on the Neuron Circuit

In our preceding analysis of the neuron circuit, %;, is considered the only variable input

signal (we assume that ¢, is a constant). It may be advantageous, however, to use both
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Figure 4.4: A neuron circuit with symmetric inputs. In this circuit, the positive input
current i; is allowed to flow only when the output is low; the negative input current s is
allowed to flow only when the output is high. This behavior gives the circuit symmetric
outputs, such that, when ¢; and iy are switched, the output pulse train is the inverse of the

pulse train with the currents in their original configuration.

the input and reset currents as input signals. For example, the duty cycle of the circuit
in Figure 4.1 is the ratio of these two currents; thus, the circuit can be used to compute a
division.

The neuron circuit is asymmetric with respect to its two input signals, because the input
current flows continuously, whereas the reset current flows only when the output is high. In
situations where two complementary input signals are generated, a neuron circuit in which
the inputs are symmetric would be useful. Figure 4.4 shows a circuit with an output that
is symmetric with respect to its two input currents (z; and 42). In this circuit, the positive
input current ¢ is allowed to flow only when the output is low; the negative input current
19 is allowed to flow only when the output is high. Thus, the inverse pulse period t; and

the pulse period ¢2 are dependent on only one input current each (4; and 12, respectively).
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Figure 4.5: A neuron circuit with differential-pair input circuitry. The output currents from
a differential pair are mirrored, and are used as input to a symmetric neuron circuit. The
differential input voltage (V1 —V2) sets the duty cycle of the output, and the bias current (i)
sets the time scale, such that, for a given duty cycle, the output frequency is proportional

to the bias current.

We can see the symmetric nature of the circuit if we switch ¢; and 45. In this configuration,
the output pulse train is the inverse of the pulse train with the currents in their original
configuration.

The differential pair is an example of a circuit that can be used to generate complemen-
tary currents. By using current mirrors at the output of the differential pair, we generate
a pair of complementary currents that are the inputs of the symmetric neuron circuit, as
shown in Figure 4.5. The input signals to the differential neuron circuit are the bias current
and the differential voltage of the differential pair. This circuit has the advantage over the
original neuron circuit that the duty cycle and the time scale of the pulse train are set by

independent input signals.
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Figure 4.6: Duty-cycle data from the differential neuron circuit. The duty cycle of the
differential neuron circuit is a sigmoidal function of the differential input voltage saturating

at duty cycles of 0 and 1.
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The duty cycle for the differential neuron circuit is defined by the following equation:

ta 1
t+ty 1+ e(V2-W)

From this equation, we can see that the duty cycle of the circuit is a sigmoidal function
of the differential input voltage and is independent of the input current. Since 2y + i is
constant, there is no factor multiplying the sigmoid. Thus, the asymptotic values to which
the duty cycle saturates are fixed at 0 and 1. Figure 4.6 shows data of duty cycle versus
differential voltage taken from a differential neuron circuit.

The output frequency for the differential neuron circuit is described by the following

equation:
1 .1 1 1

P =1 CQI/dd 1+ CK‘(V2—V1) 1+ eK(Vl—-Vg)

For a given duty cycle (differential input voltage), the frequency of the output pulse train
is proportional to the bias current. Figure 4.7 shows frequency versus bias current data for

this circuit.

4.2 Bidirectional Motion Control

To control many systems, we must be able to drive the system bidirectionally. To control
the motion of a one-dimensional motor system bidirectionally, we must use a signed control
signal. For example, bidirectional control using DC voltages is generally accomplished using
a control signal that can be either positive or negative, depending on the direction of the
intended motion. The use of pulses as control signals, however, presents a problem, due to
the inherently unsigned (unidirectional) character of a pulse train. It is possible, however,
to achieve bidirectional control by using the motor system to subtract two unsigned signals
to generate the equivalent of signed signal. This subtraction is useful if the input to the
motor system is a dual-rail configuration in which two unsigned signals are generated such

that the difference between these signals is the intended control signal for the system.
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Figure 4.7: Frequency data from the differential neuron circuit. For a given duty cycle, the
frequency of the differential neuron circuit is a linear function of the bias current, as shown

here.
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P P Fraction

low low (1—ea1)(1— as9)
high low a1(1 — a9)
low high (1—ay)a
high high o1an

Table 4.1: Overlapping states of two pulse trains.

4.2.1 The Dual-Rail Pulse Encoding

A dual-rail pulse encoding consists of a pair of pulse trains in which the difference between
the duty cycles encodes the control signal. We can configure a DC motor system such that
the two pulse trains independently drive the system in opposite directions. When both of
the pulse trains are active, the input signals affect the system as follows. If one of the pulse
inputs is high and the other is low, the motor system will be driven in the direction in which
the high pulse train drives the system. However, if the inputs are either both high or both
low, the effective control signal will be 0.

To analyze the control quantitatively, we can define two pulse trains P; and P with
duty cycles a; and a9, respectively. The combination of the two pulse trains can occur in
one of four possible states: both low, P; high (P; low), P» high (P} low), or both high. The
fraction of the time (in terms of 1 and as) that the pulse trains are, on average, in each of
these states is shown in Table 4.1. Each fraction is the product of the fraction of the time
that each pulse train is in that particular state (A is low, for example, 1 — a; of the time).
These fractions are true on average, or over a combined period of the two pulse trains (the
least common multiple of the individual periods).

If we define A to be the signal that drives the system in the positive direction and B
to be the signal that drives the system in the negative direction, then the control signal is
proportional to the difference between the fraction of the time that A is high (and B is low)
and the fraction of the time that B is high (and A is low). From Table 4.1, this difference

is a1(1 — ag) — aa(1l — 1) = @1 — ao, or the difference between the two duty cycles.
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Figure 4.8: H-bridge configuration for bidirectional control. Two transistors, configured as
an inverter, are used to drive each terminal of the motor. When the input pulse train is
high, the signal to the motor will be low; when the input pulse train is low, the signal to the
motor will be high. Thus, the effect of the control signal is inverted. Each transistor has
an accompanying diode that prevents the voltage across the transistor from inverting. In
other words, the diodes restrict the terminal voltages to be within the power-supply voltage

rails.

4.2.2 Bidirectional Driving of a Single Motor

We can control the motion of a single motor using a dual-rail pulse encoding by driving
each terminal of the motor with one of the two pulse trains. If the pulse inputs are either
both high or both low, the voltage across the motor is 0V; if only one pulse input is high,
the voltage across the motor is either positive or negative, depending on which pulse input
is high. Since the drive to the motor is proportional to the voltage across the terminals, this
configuration subtracts the two pulse trains, and the effective control signal is proportional
to the difference of the two duty cycles.

Since we are driving the motor using low-power circuitry, we must use circuitry ex-
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ternal to the chip to amplify the pulse trains before we input them to the motor. The
standard configuration for driving a motor bidirectionally using pulses is called an H-bridge
(Figure 4.8). Each terminal of the motor is driven by an inverter that amplifies the input
signals (and inverts the sign of the control signal). Diodes are used to counteract inductive
effects from the motor by restricting the terminal voltages to be within the power-supply

voltage rails,

4.2.3 Antagonistic Control

It is often advantageous to use multiple actuators to effect motion in a system with only
a single degree of freedom. Biological systems, for example, perform bidirectional control
through the use of antagonistic actuators (muscles) that pull in opposite directions on the
same joint. Because muscles are unidirectional actuators (their only active motion is to
contract), biological systems must use at least two muscles to control a single joint.

Antagonistic control has advantages even when we use actuators (such as motors) that
have the potential for active bidirectional motion. The primary advantage of antagonistic
motor control is that the system can be kept under tension even when the differential
control signal is 0 (and the system is at rest). In a biological motor system, the motor
neurons driving the antagonistic muscles have a background firing rate that causes the
muscles to be under tension at all times [She79]. This tension keeps the system firm so that
it can respond more smoothly to varying loads. The tension also keeps the systems from
experiencing backlash when the direction of motion is changed.

Figure 4.9 shows a diagram of a linear antagonistic mechanical system. In this system,
two motors are used to control the motion of the system. Each motor generates a force
on the load such that the two forces are applied in opposite directions. The total force on
the system is the difference between these two forces. Since each force is a linear function
of the duty cycle of the related pulse train, the total force is proportional to the difference

between the two duty cycles.
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Figure 4.9: Antagonistic configuration for bidirectional control. A pair of motors is driven
by two input pulse trains P; and P>. The pulse trains are amplified using two half H-bridge
circuits. Each motor generates a torque proportional to the duty cycle of the corresponding
pulse train. These torques are converted to forces Fy and Fy that effect bidirectional motion
on a mass m. The total force (in the direction of F}) is F; — Fy. Since F; and F, are linear
functions of the duty cycles P; and P», the combined force is proportional to the differential

duty cycle P, — Ps.
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4.3 Dual-Rail Pulse Generation

We shall now describe circuitry to generate dual-rail pulse encodings for bidirectional motor
control. We have chosen an input scheme that uses the differential pair as the input device.
The sigmoidal functionality of the neuron circuit gives the output of the circuit a smoothly
saturating behavior, rather than the hard saturation that occurs when the system is driven
linearly and the duty cycle reaches 0 or 100 percent. The two output currents from the
differential pair also have the characteristic that, at 0 differential output current, neither
of the currents is 0. This fact makes the neuron circuit an ideal input device to generate
antagonistic motor signals because, when converted to pulses, the currents will generate an

inherent background firing rate in the pulse outputs.

4.3.1 A Single-Input Circuit

The differential neuron (Figure 4.5) is an example of a circuit that can be used to generate a
smoothly saturating dual-rail pulse encoding. The duty cycles of output and the inverse of
the output of this circuit constitute a pair of sigmoidal functions. If we use these two signals
as inputs to the two terminals of a bidirectional motor system, the system will subtract the
two signals. The resulting control signal will be proportional to the hyperbolic tangent of
the differential input voltage, and the system will have a smoothly saturating, bidirectional
behavior.

The use of a pulse train and its inverse (such as that used in the differential neuron
circuit) for bidirectional control is limited because we have no control over the maximum
magnitude of the differential duty cycle. For this control paradigm to work correctly and
be symmetric, the duty cycle must saturate at 0 and 100 percent. The differential neuron
circuit has two input signals that control the duty cycle and the time scale. If we want
to have control over the maximum differential duty cycle and thus the magnitude of the
control signal, we must have a circuit that has a third degree of freedom to control the
magnitude of the output.

In Figure 4.10, we show a circuit that uses two neuron circuits to generate pulse trains
whose duty cycles can be controlled such that they sum to any value between 0 and 100

percent. This circuit has three degrees of freedom that arise from three control signals (the
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Figure 4.10: Dual-rail pulse generation using a differential pair. The circuit consists of
a differential pair (with bias transistor) and two neuron circuits. The circuit has three
input signals (Zp, ¢y, and AV = V] — V3), and thus, three degrees of freedom. The outputs
from the two neuron circuits are symmetric sigmoidal functions of AV, with the maximum
magnitude of the duty cycle defined by the ratio 7,/i;. The time scale of both outputs is

defined by i, and %,.
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Figure 4.11: Duty cycle data from the dual-rail pulse-generating circuit. The outputs
from the circuit are two pulse trains with symmetric sigmoidal duty cycles. The positive
asymptote is defined by the ratio 4, /%;. There is an obvious difference between the positive
asymptotes for the two neuron circuits due to mismatches in the current mirrors and reset

transistors.

differential voltage, the bias current, and the neuron reset current). As in the differential
neuron circuit, the differential voltage controls the sigmoidal response of the circuit. The
time scale of the circuit is controlled by the common mode of the two input currents. In
this circuit, however, we can also control the maximum magnitude of the duty cycle (the
position of the asymptotes) by varying the differential mode (the ratio) of the two currents.
The duty cycles of the outputs are inverse sigmoidal functions with maximum magnitude
equal to the ratio of the bias current to the input current. In Figure 4.11, we show duty-
cycle data taken from this dual-output circuit. The general form of these data is similar to

that of antagonistic motoneuron data taken from biological systems [Bal86].
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4.3.2 Aggregation and Pulse Generation

If we are to develop sensorimotor systems using the analog VLSI design paradigm, we
must develop circuitry that converts a sensory representation into a motor representation.
This circuitry should allow for the aggregation of any number of sensory input signals, and
should produce a dual-rail pulse encoding at the output. In Chapter 2, we presented an
aggregation network of differential-pair circuits (Figure 2.3) that takes an array of input
signals (currents and differential voltages) and produces a pair of output currents. Using
the methods for generating pulses presented in this chapter, we can convert the aggregation
network into a circuit that converts an array of inputs into a dual-rail pulse encoding at its
output. This pulse-output aggregation network is shown in Figure 4.12.

We shall use the pulse-output aggregation circuit as a basis for our development of
sensorimotor systems in the remaining chapters. We shall show how this circuit can be used
to aggregate sensory input information and to control motor systems, resulting in complete

sensorimotor systems consisting of analog VLSI circuitry, actuators, and feedback.
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Figure 4.12: Dual-rail pulse generation using the aggregation network. The inputs to each
differential-pair element are a differential voltage AV,, and a bias current 7,. The output
currents are aggregated onto a pair of wires, and these aggregated currents are used as input
to two neuron circuits. The complete circuit produces a dual-rail pulse encoding in which
the differential duty cycle is set by the aggregated input, and the maximum duty cycle is
equal to the ratio (3 1,)/4;.
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Chapter 5

Circuits for Feedback Control

Technology has strongly influenced the way that engineers think about control systems.
Implementations using relays, operational amplifiers, and microprocessors have individual
requirements that affect their uses. The microcomputer revolution, for example, has had
a major influence on control-system implementations [AW84]. As a consequence, control
theory has developed in new directions, and more advanced control schemes, such as that
of adaptive control, have become practical [AW89].

We have developed controllers impemented using the analog VLSI circuits presented in
Chapter 4 [DNMA90] [DNMA91]. The use of analog VLSI circuits in the implementation
of control systems also affects the type of control that can be accomplished. By using this
paradigm, we can make controllers with a large number of control elements in a small area.
These systems require silicon surface area and power dissipation that is many orders of
magnitude smaller than a conventional system with A/D, CPU, memory, and D/A.

In this chapter, we describe an analog VLSI circuit framework into which traditional con-
trollers can be embedded. We discuss the operation of a proportional-derivative controller
implemented within this framework. We also develop a method of analyzing controllers

containing certain nonlinear elements.

5.1 The Analog VLSI Control Framework

We have chosen a weighted combination of sigmoidally compressed differential inputs as the

generic form for our controller. The control signal u generated by the controller is described
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Figure 5.1: Circuit implementation of the control framework. The framework is a multiple-
input circuit with a dual-rail pulse output. The input elements are differential pairs, and
the output elements are neuron circuits. The input signal 7, — z,, to the nth element in
encoded in the differential-pair input voltage AV,. The gain of the nth element is the ratio

of the bias current 7,, to the neuron reset current z,.

by the following equation:
U= Z k, tanh(r, — z,) (5.1)

where k, is the proportionality constant and r, — z, is the differential input for the nth
stage. This system allows for the implementation of control elements that consist of func-
tional elements multiplied by constants, and have input signals that can be turned into a
differential voltages. This system also allows for simple replication of the individual func-
tional elements.

In Figure 5.1, we show the circuit implementation for the control design frame. We
implement the design frame using the dual-rail, pulse-output aggregation network described

in Chapter 4. The differential input to the nth element (r, —z,) is encoded as the differential
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input voltage (AV,) of the differential pair. The multiplicative constant &, is set by the
ratio of the bias current at the nth element to the reset current of the neuron circuits. The
control signal u of the circuit is encoded in the differential duty cycle of the output pulse

trains, and is described by the equation

u= Z Z—n tanh (2@:;””) (5.2)

n

which is equivalent in form to Equation 5.1.
In the small-signal regime (AV,, < 2U;/x), we approximate Equation 5.2 by the following

equation:
_ tn AV,
- 2U K

Controllers embedded in this framework and operated in the small-signal regime can be
analyzed using traditional linear control theory.

In the large-signal regime (AV,, > 2U;/k), we approximate Equation 5.2 by the following
equation:

in
u= Z -z—,—r-sgn(AVn)

n

Controllers embedded in this framework and operated in the large-signal regime act as relay

controllers [Tsy84]. We shall develop theory to approximate the operation in this regime.

5.2 A Proportional-Derivative Controller

We have studied the effects of feedback on the control the angular displacement (position)
of a motor. We measured the angle of the motor using a potentiometer connected to the
shaft of the motor. Since the angular position of a rotating system is the integral of the
angular velocity, the transfer function relating the position 8 of a motor to its input voltage
V can be derived from Equation 3.6. This positional transfer function is

6  1/kp

V" s(Tms+1) (5:3)

The intertial load due to the potentiometer and the connecting structure increase the time

constant 7y, of the system.
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We have developed a controller for this system using the traditional proportional-
derivative (P-D) feedback control scheme [FPEN86]. We have analyzed the system op-
erating in the small-signal regime using the standard method for analyzing linear P-D
controllers. We have developed a method for analyzing the system operating in the large-
signal regime. This method approximates the operation of the controller in this regime
and is extendable to other controllers that have piecewise constant inputs. This method is

similar to methods used for analyzing switching power supplies [Mé76].

5.2.1 Proportional-Derivative Feedback

When the control signal in a feedback controller is linearly proportional to the error signal,
the resulting control scheme is called proportional feedback [FPEN86]. Given a system with

voltage input Vi, and voltage output V,;, the form of this feedback is
V= KP(V'in - Vout)

where V is the control voltage generated by the controller and Kp is the proportional gain.

When the control signal in a feedback controller is linearly proportional to the derivative
of the error signal, the resulting control scheme is called derivative or rate feedback [FPENSG].
We have chosen a feedback scheme where the derivative is computed only on the output
(and not on the input) of the system. This variant on rate feedback causes the control signal
to be independent of changes in the input voltage. The control voltage V generated by the

controller is a function of the output voltage Vot as described by the following equation:

dVout

V=To—g

= TD sVout

where Ty is a constant called the derivative time.
Figure 5.2 shows the proportional-derivative feedback control system. The transfer

function of this system is described by the following equation:

Vout _ 1

T _Tm 2 Ip o 1
Vio e+ (R4 pgps)stl

(5.4)
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Figure 5.2: The proportional-derivative feedback system. The system consist of a motor, a
proportional element, and a derivative element. The voltage Vi, sets the set-point position
of the system. The voltage Vot is produced by a potentiometer attached to the shaft of the
motor, and encodes the angular position of the shaft. The proportional element multiplies
the error signal (Vi, —Vout) by the proportional gain (Kp). The derivative element multiplies
the derivative of the V¢ by the derivative time (Tp).
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A standard second-order form for transfer equations [Wil60] is

Vout = 1
Vin 5}532 + %s +1

(5.5)

where wy, is the undamped natural frequency and ( is the damping ratio. At { = 1, the poles
coincide on the negative real axis and the system is critically damped. When ( is less than
1, the poles of this equation are complex and the system reponse is underdamped.

The natural frequency and damping ratio for the system described by Equation 5.4 are

defined by the following equations:

koKp
Tm
14+ kTp
¢ = VakoKpTm

In general, the proportional gain is set to a large value to decrease the DC offset of the
system (by making the closed-loop gain near 1), and the derivative time is set such that the
system is damped sufficiently for the appropriate application [FPENS6].

There are three parameters of interest that are often analyzed for damped oscillations in
control-system applications [FPEN86]. The first of these is the overshoot or peak magnitude,
M. This parameter is defined as the magnitude of the first peak in the oscillation of the
system when presented with an input step of magnitude equal to 1. The second parameter
is the rise time, t;. This parameter is defined as the time that it takes for the the angular
position to go from 10 to 90 percent of the difference between the initial position and the
asymptotic position (set-point). The third parameter is the settling time ts. This parameter
is defined as the time required for the oscillations to decrease to a small value (we use 1
percent) so that the output is almost in steady state. The values for these parmeters in a

linear system (from [FPENS86]) are

M, = e ¢/ V1-¢2
1.8

Wn
4.6

(wn

i, =~

ts =
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5.2.2 Circuit Implementation

We implement the proportional-derivative controller in the control framework as shown in
Figure 5.3. A single differential pair acts as the proportional section of the controller. The
input is the difference between the input voltage and the output voltage. The proportional
gain is set by the ratio of the bias current ip of this circuit divided by the reset current ¢y
of the neuron circuits. The average control voltage generated strictly by the proportional

circuit is described by the following equation:

3 ‘/in — You
Vv = Vp:—; tanh (———-————Y——t)

2Ut/K,

where V}, is the amplitude of the pulse train (as described in Chapter 3). In the small signal

regime, this equation can be approximated by the following equation:

TR 2U /R

(‘/in - V;Jut)

This equation describes a proportional controller with

__w¥

P = m

We implement the derivative section of the controller with a differential pair and a
follower—integrator circuit [Mea89]. The follower-integrator circuit is a low-pass filter with
a time constant (7p) set by the bias current of its transconductance amplifier. The in-
put voltage to the follower—integrator circuit is the output voltage of the system (Vout).
The differential pair subtracts Voyt from the low-passed version of Vo, (the output of the
follower-integrator) to form an approximation to the derivative. The derivative time is set
by the time constant of the follower—integrator multiplied by the ratio of the bias current ip
of this circuit divided by the reset current ig of the neuron circuits. Assuming the follower—
integrator circuit is linear, the average control voltage generated strictly by the derivative

circuit is described by the following equation:

D ™05  Vout
Vav = V,— tanh —_—
sz an (TDS+12Ut/I£)
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Figure 5.3: Proportional-derivative controller circuitry. The proportional section of the
controller consists of a single differential pair, which has input Vi, — Vou and gain (bias)
current i1p. The derivative section consists of a differential pair and a follower-integrator
circuit [Mea85] with time constant 7p. The differential pair subtracts Vg, from the tem-
porally delayed version of Vo that is produced by the follower—integrator. This difference

encodes the derivative of V. The gain of the element is set by the current ip.
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If 7p is set such that Tps is much less than 1, the preceding equation can be approximated
by the following equation:

. Vo
Vv & Vp;—g tanh (’T]}Sﬁ;)

In the small-signal regime, the preceding equation can be approximated by the following

equation:
_w W
- ?:R 2U1;/K,

TD5Vout
The preceding equation describes a derivative controller with

_ V% T
D= iR2U, kP

5.3 Large-Signal Analysis

Differential-pair offset voltages in the P-D controller make it difficult to obtain reliable
operation in the small-signal regime, because the magnitudes of the input signals are in the
same range as the offset voltages. The linear approximation for the transfer function of the
differential pairs in the control framework is not valid in the large-signal regime, however.
Thus, we must analyze the operation of the circuit using a method different from that used
in the analysis of the linear system.

As stated in Section 5.1, we approximate the differential output current of a differential

pair operated in the large-signal regime as
tout = ingn(AVin)

The implementation of this function in our controller causes the outputs of the controller
to be thresholded functions of the inputs. Controllers that exhibit this type of thresholded
behavior are referred to as relay controllers. Researchers have analyzed the behavior of such
systems using many different methods [Tsy84]. We shall present a method for analyzing
the step-response of these systems using the fact that the input to the system (the output
from the controller) is a piecewise constant function whose value changes at each point at

which one of the control elements switches.
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Figure 5.4: The large-signal proportional-derivative control system. In the limit of a large
input voltage range, the system in Figure 5.2 can be approximated by this configuration.
The proportional derivative controllers can be approximated as relays with a constant mag-

nitude (as described by Equations 5.6 and 5.7).

For our analysis, we shall consider the P-D servo implementation presented previously.
Figure 5.4 shows the block diagram of this controller when the threshold approximation is
used in the analysis of the differential pairs (in the large-signal regime). In this system, the
proportional and derivative elements produce outputs that are thresholded functions of the
position and the velocity of the system, respectively.

The equation for the average output voltage from the proportional section of the con-

troller in this system is described by the following equation:
ip
Vav = Vp i_R“Sgn(Vin - out) (56)

The equation for the average output voltage from the derivative section of the controller
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(with 7ps < 1) in this system is described by the following equation:
5))
Vv = Vpasgn(sVout) (5.7)

Since the effects of these two sections of the controller are summed by the control circuitry
(on the current aggregation wires), the average output voltage of the controller is the sum

of the average voltage in these two equations, and is described by the following equation:
'ip iD
Vav = Vp ;’f;sgn(Vin - Vout) + Vp Esgn(svz)ut) (5-8)

In Chapter 3, we discussed the effect of a constant pulse train used as a motor-control signal.
We showed that the average effect of a pulse train on the angular velocity of the motor is
equivalent to the effect of a DC voltage V. In our analysis, we shall assume that the period
of the pulse train is much smaller than the mechanical time constant of the system. Thus,

we can approximate V,, with a DC voltage V.

5.3.1 Approximations to System Operation

Since the input to the motor is a piecewise constant function, we can analyze the operation
of the system by analyzing separately the response during each constant section of the input
(similar to the analysis of pulse-driven motors in Chapter 3). When the motor is presented
with a constant control voltage, the angular velocity decays exponentially toward a constant
value (as described in Chapter 3). The equation for this decay is

Vv vV
w(t) = n + (wo - E) et/ mm

where V' is the constant control voltage and wy is the initial angular velocity. If we assume
that the time during which the input to the system is at any particular constant voltage
1s short with respect to 7, we can approximate the effect of the voltage on the system
as generating a constant torque. Making this assumption is equivalent to approximating

the exponential by the first two terms of its Taylor series. Given this approximation, the
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angular velocity of the system can be described by the following equation:

w(t) = wp + (kl;— —wo> z

Tm

The error between this approximate value and the actual value described in the previous
equation is an increasing function of t. The value of the relative error when ¢t = 7, is
approximately 37 percent.

We shall also assume that wp is also small (with respect to V/kg). Given this assumption,

we can simplify the equation for w to the following equation:

|4
w(t) = wo + z t=wo+at (5.9)

"BTm

where @ is a constant angular acceleration generated by input voltage V. This equation
describes a system in which the angular velocity is the integral of a constant torque. In
other words, by making these simplifying assumptions, we have approximated the pole of
the mechanical system (at 1/7,) as being equal to 0.

Since the angular position 6 is the integral of the angular velocity, the following equation

describes the angular position as a function of time:
a2
0(t) = 6y + wot + Et (5.10)
where 6; is the position of the system at time ¢ = 0.

5.3.2 Angular Acceleration Generated by the P-D Controller

From Equations 5.6 and 5.9, we can derive the following equation for the magnitude of the
angular acceleration ap generated by the proportional controller:
Vot
ag = —2F
IRKBTm
The sign of this term is dependent on the the position of the system. Since the controller

operates with negative feedback, the effect of ag is positive when Vi, > V4 and is negative

when Vi, < Vou.
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From Equations 5.7 and 5.9, we can derive the following equation for the magnitude of
the angular acceleration a,, due to the derivative controller:

VpiD T;

A, = -
@ IREBTm J

The term T;/J (the angular acceleration due to kinetic friction) is added to this equation
because the effect of friction is identical to the effect of the derivative feedback in the relay
controller. In both cases, the sign of the effect is dependent on the the sign of the angular
velocity of the system, and the magnitude of the effect is constant. Since both effects act to
slow the system (negative feedback), the effect of a,, is positive when w < 0 and is negative

when w > 0.

5.3.3 Piecewise Analysis of the P-D Controller

Figure 5.5 shows the theoretical response of a the P-D control system to a large step in the
input position voltage (using the theory presented in the following sections). The initial
angular position of the motor is defined as —fy and the set-point is defined as 0, giving
a step magnitude of fy. The initial angular velocity is 0. We separate the analysis of the
system in to discrete time intervals, defined as the intervals in which the voltage produced by
the controller (and, given our previous assumptions, the angular acceleration) is constant.
Since the two terms in the equation for angular acceleration are dependent on the sign of the
angular velocity and the sign of the angular position, the voltage generated by the controller
(and, thus, the angular acceleration) changes at each point where there is a change in the
sign of either the angular velocity or the angular position.

We define the following parameters for the mth discrete time interval: At,, is the length
of time from the beginning to the end of the time interval, w,, is the angular velocity at
the end of the time interval, and 8,, is the angular position at the end of the time interval.
From Equation 5.8, we see that the angular acceleration during each time interval is the
sum *ag =+ a,, with the sign of the two terms dependent on the sign of the angular position
and the angular velocity. From these definitions, we derive the values for the first four time
intervals m = 1 to m = 4 (the cycle repeats every four intervals) as shown in Table 5.1.

We solve for the values of At,, wy,, (m odd), and 6, (m even) for each interval. We set
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Figure 5.5: Definition of parameters in large-signal operation. The response of the system
to a large step in angular position is shown for 6y = 1, ap = 1, and a, = 0.5. In the
large-signal analysis, time is divided into discrete intervals whose endpoints are defined as
the points when either the angular velocity or the angular position is equal to 0. The length
of the mth interval is At,,, and the time at the end of the interval is ¢,,. The extremes
(peaks) of the angular velocity and angular position curves are wy, and 6,,, respectively.
The angular velocity peaks occur when m is odd, and the angular position peaks occur

when m is even.

w(t) Wi 6(t) O

(ap — au)t w1 (ag — aw)-t;- — 6 0

m
1
2 (~ap—a)t+wr 0 (—ap—a.)h +wit 6y
3 (—ap+a)t —wz (—ap+a)e+0 0
4

(ag + au)t — ws 0 (ag + aw)§ — w3t Oy

Table 5.1: w and € in the large-signal analysis.
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t = At,, in the equations for w and 6 for the interval. For each interval, this formulation
gives two equations in two unknowns. The unknowns are At,, and either w,, or 8,,, since
either wp, or 0, is equal to 0 at the end of each interval. We define the following two

parameters to simplify the solutions of the equations:

_ ag — Gy
v = ag + a,
26

11 —_—
Qg — Ay,

From these equations, we can see that ag must be greater than a,, for ¢ and #; to be real, and
for the system to operate as predicted. This restriction corresponds with the assumption
that the angular acceleration during the first interval (m = 1) in the oscillation is positive.

Using the preceding analysis, we derive the following solutions for At,,, wy,, and 8,,:

modd Aty =t T

m—1

Wm = tl(ag — aw)go 2

m+42
m even At,, = t1<p_;—

O = o™

From these equations, we can see that t; is a measure of the frequency of the system, and
is thus conceptually similar to the parameter wy, in linear systems. Also, ¢ is a measure of
the damping of the system, and is thus conceptually similar to (. The natural frequency
is defined as the frequency when the system is undamped. When this system is undamped
(aw = 0), the frequency of the oscillations is ﬁ, which, unlike in the linear system, depends
on the initial position . The damping of the system can be seen in the preceding equation
for 6,,. For ¢ = 1, the magnitudes of all the peaks in the oscillation are the same, and the

system is undamped. As ¢ is decreased toward 0, the damping in the system increases.

5.3.4 The Envelope of the Oscillation

We shall derive an expression for the magnitude of the peak height in the position curve in

terms of the elapsed time. The continous-time version of this function describes the envelope
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that bounds the oscillations in the position of the motor. The time interval between two
adjacent peaks in the position curve is the sum of the lengths of the two subintervals that

make up this interval. This sum is described by the following equation:

2
At + Aty = 30" + 110"

m—2
= t(l+ehe T

To determine t,, (the elapsed time from % to the end of interval m) for m even, we

compute the following summation:

m/2

tm = > ti(1+p?)p¥ !
i=1
mf2—1

= 1+<p Z ga
(pm/2__1

= (14 ¢?
1(1+¢%) o1

We can rearrange the preceding equation to derive the following equation for ™ in terms

2
m <)0_'1 )
="t +1
14 <t1(1+<02)m

of t,,:

We can combine the preceding equation with the equation for the magnitude of the mth

peak (0,,) to derive the following equation for 6,, in terms of t,, for m even:

2
p—1
On =0 | ——————t
0 <t1(1+<ﬂ2) ’""”)

Thus, the envelope 0,y that encloses the oscillations is described by the following equation:

-1 2
Benv (1) = 6o (Eg—_*_(;é—)-t + 1) (5.11)
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5.3.5 Overshoot

The overshoot M}, in the system is the magnitude of the the first peak in the position curve.

We derive the following equation for this magnitude:

ag — Q
M, = 6502 = 6 (EZ_JFf) (5.12)

Figure 5.6 shows the relationship between the overshoot and the values of ay and a,. We
can see that, as a, approaches ag, the overshoot becomes smaller. At the point where
a, = ag, the oscillations become critically damped (no overshoot). In the first interval,
however, the angular acceleration is equal to ag — a,; it is equal to 0 when a,, = ay. This
restriction means that a, must always be less than ay for the system to operate. Thus,
although we can set the parameters such that the overshoot is smaller than any positive

value, we cannot, in the large-signal limit, cause the system to be critically damped.

5.3.6 Rise Time

We use a standard definition for rise time [FPEN86], which defines the rise time as the time
required for the angular position to change from 10 to 90 percent of the difference between
the initial position to the asymptotic position (set-point). In this situation, these values
are —fp and 0, respectively. Thus, we must measure the time required for the position to
change from 6 = —0.96y to # = —0.10y. The equation for this position in this interval is

t2

(a0 - aw)? — 0

By using this equation, we compute the time at the 10- and 90-percent points, and subtract

these two values to derive the following equation for rise time:

t = (V09— V0l
20,

ag — G,

0.63

Q
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Figure 5.6: The magnitude of the overshoot in the large-signal approximation. The magni-
tude of the overshoot M, is plotted versus the ratio of the acceleration terms (a, and ag).
The overshoot is scaled by the magnitude of the initial angular position. The ratio of the

acceleration terms is restricted to be between 0 and 1.
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5.3.7 Settling Time

The settling time (%) is the time required for the transient response of the system to decay
to the point at which the maximum error from the fixed point at any point after that is less
than some given value [FPEN86]. We shall use 1 percent as a reasonable measure of this
error.

We can solve for the settling time by using Equation 5.11, which describes the envelope
of the oscillation. When this envelope decays to the 0.018y, we are guaranteed that the error
after this point will always be less than 1 percent. This point is defined by the following

equation:

p—1 2
O { —————1s + 1) = 0.016
0 (t1(1 + 92 0

We rearrange this equation to derive the following equation for the settling time:

0.9t (14 ¢?)

[/
s 1__(/)

Figure 5.7 shows the settling time of this system versus the ratio of the accelerations
(¢w/ag). The settling time is scaled by the factor /28p/ag (t; for a, = 0), which is a
measure of the period of the oscillations. The figure shows that, for constant values of 6

and ag, the settling time is minimized when a,, =~ 0.56a,.

5.3.8 Experimental Data

We built an experimental apparatus to test the operation of our proportional-derivative
controller. We directly connected a potentiometer to the shaft of a motor. We placed a
differential voltage across the fixed terminals of the potentiometer so that the voltage at
the sliding terminal encoded the angular position of the shaft. We tested the system by
generating a voltage step at the input. The voltage step was made large so that the circuit
would operate in the large-signal regime.

Figure 5.8 shows theoretical and experimental angular-velocity and angular-position
curves that represent the response of the system to this voltage step. We fit the experimental
data by measuring t; and 63, and by calculating a,, and ey from these values. We generated

the theoretical curves using these values of a, and ag. The angular position curve fits
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Figure 5.7: Settling time for the large-signal approximation. The horizontal axis is given in

terms of the ratio of the accelerations a,, and ay. The vertical axis (settling time) is scaled

by the term 4/26y/ag, which is a measure of the period of the oscillations.
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Figure 5.8: Data and theory for the proportional-derivative feedback system. The curves
represent the angular velocity and angular position of the system when presented with a
large step in angular position. The solid lines represent the experimental data, and the
dotted lines represent the theoretical approximation. The values of w and # are scaled by

their maximum values, which occur at w; and 8y, respectively.

the theory quite well. The slopes of the sections of the angular velocity curve fit the
piecewise-linear theory fairly well, although the effects of the the linear approximation to
the exponential and the unsaturated region of the hyperbolic tangent can be seen.

We also measured the overshoot as a function of the initial position (fy). From Equa-
tion 5.12, we see that the overshoot should be proportional to the initial position. Figure 5.9
shows the expermental data for this measurement. The data fit a line (that passes through
the origin) fairly well. The ratio of the overshoot to the initial position decreases slightly
over the range of input. This decrease can be explained by the increased inaccuracy in
the linear approximation to the exponential for larger values of t;, which increases as 6

Increases.
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Figure 5.9: Experimental data for overshoot versus initial position. The data points rep-
resent the overshoot for a number of different initial positions. The best-fit line passing

through the origin is also shown.
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Chapter 6

Stimulus Tracking

In this chapter, we present circuitry that converts a spatially encoded sensory image into a
dual-rail pulse-encoded output. These output pulses can, in turn, be used to control bidi-
rectionally the motion of a one-dimensional motor system. The basic circuitry is presented
as a framework that facilitates the tracking of a stimulus such that an electromechanical
system can move to cause the stimulus to be in the center of the sensory field. We describe
an implementation of this framework that uses visual intensity as its input signal. We
incorporated this circuitry into mechanical systems that track a bright visual stimulus (a
bright spot of light) on a darker background.

This type of circuitry has analogs in the sensory systems of many animals. The ocu-
lomotor system in mammals is one example. The smooth pursuit system in these animals
reacts to moving stimuli by following or tracking the stimulus. Also, the superior colliculus
region of the mammalian brain contains circuitry (similar in function to the circuits pre-
sented here) that controls saccadic eye motion (fast point-to-point motions) [Spa83]. The
circuit concepts presented in this chapter possibly could be used to implement engineering

analogs of these biological systems.

6.1 The Tracking Framework

The basic task that we consider in this chapter is the tracking of a sensory stimulus by a
motor system. A block diagram of the circuitry used to accomplish this task is shown in Fig-

ure 6.1. The circuitry consists of four functional layers: the input layer, the normalization
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Figure 6.1: A block diagram of the tracking framework. The circuitry is divided into four
layers: sensory input, normalization, aggregation, and motor output. Each layer processes

its input and passes its output to the subsequent layer.

layer, the aggregation layer, and the output layer. An image is presented to the input layer,
which generates a one-dimensional array of currents. The normalization circuitry scales
these input currents so that variations in global signal magnitude do not affect the subse-
quent processing. The circuitry in the aggregation layer computes a weighted combination
of the input signals, resulting in a pair of complementary output currents, thus reducing
the one-dimensional sensory representation into a scalar motor representation. Finally, the
output circuitry converts these two currents into pulse trains that can be used to control
the bidirectional motion of a one-dimensional motor system.

The aggregation and output layers compute the transformation from the one-dimensional
sensory representation to the scalar motor representation. The circuitry accomplishes this
task by encoding the position of the individual elements in the array, and by using this
position information to redirect each input current to a pair of output wires. We implement

this circuitry with a modified version of the pulse-output aggregation network described in
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Section 4.3.2. We augment this circuit by adding position encoding in the form of a resis-
tive voltage divider, as described in Section 2.2.1. The combined aggregation and output
circuitry is shown in Figure 6.2. This circuit computes an error signal in the form of a

dual-rail pulse encoding.

6.2 Sensory Input

The input layer generates a one-dimensional, spatially encoded sensory image. There is
a wide range of possible sensory-input types and circuit functionality at this level. The
circuitry for this layer consists of input devices combined with local and global processing.
The only restriction placed on this layer is that the resulting output consist of a spatially
encoded array of currents. The source of the input signals may be derived from sensors
that respond to many different types of input, including visual, tactile, auditory, sonar, and
magnetic inputs. This layer can include a variety of types of processing circuitry combined
with the sensory imaging.

Given inherently spatially encoded inputs (such as visual images), the function of this
circuitry can range from merely passing the input signals to the next layer to complex
spatiotemporal processing. Circuitry that computes spatial derivatives (such as that found
in the silicon retina [MM88]) can be used to preprocess the image locally, giving the chip the
behavior of tracking an edge or discontinuity in the image. Optical-flow circuitry [Tan86] in
the input layer could be used in a system that tracks moving objects. Input-layer circuitry
that computes the focus of expansion of a visual image could be used to guide a vehicle
through a tunnel, or to position a mechanical robot head such that it points in the direction
of motion of the robot’s body.

Images that are not initially encoded spatially (such as auditory signals) require pro-
cessing to generate a positionally encoded output. One example of circuitry that performs
this conversion is circuitry to compute the binaural time disparity from a pair of auditory
inputs [LM89]. This circuitry generates an array of output signals. These signals encode
the spatial positions of auditory stimuli. By using these signals as input to the tracking

circuitry, we can design a system that tracks a moving sound source.
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Figure 6.2: Pulse-output aggregation network with position encoding. This circuit combines

aggregation, position encoding, and dual-rail pulse generation. The voltage V,, encodes the

position of element n with respect to Vi, which effectively sets the origin of the array. The

current i, is the input signal for the nth element. The input currents are divided (according

to their positions) and are aggregated onto two wires by the differential-pair circuits. These

aggregated currents are the inputs to the neuron circuits. The currents near the ends of

the array are directed primarily to one neuron circuit or to the other, whereas those in the

middle are divided evenly between the two wires. The differential duty cycle of the pulse

trains encodes an error signal between the first moment of the input currents and the origin

of the array.
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6.3 Signal Normalization

The input to the aggregation layer and the signals produced by the input layer are both
spatially encoded arrays of currents. Thus, we could conceivably implement the tracking
framework by connecting the input layer directly to the aggregation layer. This solution
does not work correctly for many types of input signals, however. Sensory input (such
as light intensity) can often vary over many orders of magnitude. Unless the input-layer
circuitry compensates for this variation, the currents produced by the input layer can also
vary greatly. Since the aggregation network merely routes its input currents to the neuron
circuits, the input variation would have a direct effect on the magnitude of the drive to the
motor system. Without intervening circuitry to modify the current levels, global changes in
the input signals would cause unacceptable changes in velocity of the mechanical system.

To counteract this global input variation, we insert normalization circuitry between the
input layer and the aggregation layer. This normalization layer must guarantee that, inde-
pendent of the variation of its input signals, its total output current will remain constant.
Thus, the normalization (gain-control) circuit must scale the currents generated by the in-
put layer such that the sum of the currents input to the aggregation and output layers is
fixed and is independent of the input signals. By defining normalization to restrict only the
sum of the output currents, but not the relative scaling of different input currents, we allow
a variety of possible functionalities at this layer,

Figure 6.3 shows a representation of the generic normalization circuit. Since the inputs
and outputs to this circuitry are each arrays of currents, the circuitry can be implemented
by an array of circuit elements with each element having one input current and one output
current. The individual circuit elements are all connected by a single wire that performs
global communication for the circuit by distributing a voltage to and summing a current
from each element. The circuitry in each element is restricted such that the output current
(%out, ) is equal to the current that that element passes to the global wire. Thus, by Kirchoff’s
current law on the global wire, the sum of the output currents must be equal to the bias

current (i) that is sunk from the global wire:

7:b = Zioutn (61)
n
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Figure 6.3: The generic normalization circuit. A global wire sums a current from each
element and distributes a voltage V to all of the elements. Each element consists of circuitry
(in the dotted boxes) that has the restriction that the output current 7.y, must be equal
to the current that the element sources onto the global wire. This restriction guarantees,
by Kirchoff’s current law, that the sum of the output currents is equal to the constant bias

current .
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Figure 6.4: A linear normalization circuit. Each element takes an input current (4;,,) and
produces an output current (iout, ) that is proportional to its corresponding input, with the

restriction that the sum of all output currents is equal to 7y,.

The sum of the output currents is set directly by the bias current. Thus, the sum of
the output currents will be constant independent of the input currents. In the following
sections, we shall present two examples of normalization circuits that use this basic design

and perform different functions.

6.3.1 A Linear Normalization Circuit

The circuit in Figure 6.4 [Gil84] is a one example of a normalizing circuit. Each circuit
element consists of two transistors configured as a current mirror modified such that the
source of the output transistor is connected to the global wire. The output current for each
element flows into the drain of the output transistor, guaranteeing that the output current
is equal to the current flowing from the element onto the global wire.

If we assume that the two transistors in the nth element are saturated, the equations
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for the nth input current (zj,,) and the nth output current (ioys, ) are

iinn = 'i()eKV"
ioutn = 2.Oeﬁ‘/n——v
We can combine and rearrange these two equations to derive the following relationship:

Tout, — €  ling

If we take the sum over all the inputs for both sides of this equation and set the sum of the

outputs equal to 4, (by Equation 6.1), we can derive the following equation for eV

-V _ ib

ZTL iinn

We can combine the two previous equations and derive the following equation for ioyt,:

inn (6.2)

out, = Tb * p
" En ,Linn

The circuit in Figure 6.4 performs linear normalization, or normalization in which all
input currents are scaled by the same constant. Since all the currents are scaled equally and
the sum of the output currents is constant, the scaling constant must be the ratio of the
total output current to the total input current. Given a particular image, this circuitry will
eliminate the effects of changing global signal levels (such as overall illumination), while
retaining at the output the relative relationships (ratios) between the input signals. We
present data for a two-element version of this circuit in Figure 6.5. This figure shows that,

as the two input currents vary, the output currents respond by varying linearly.

6.3.2 A Winner-Take-All Normalization Circuit

Figure 6.6 shows a variant of the winner-take-all circuit [LRMMS89] that obeys the nor-
malization criterion. This circuit has a highly nonlinear functionality, and thus differs
functionally from the linear normalization circuit.

Each circuit element consists of two transistors, and, as in the linear normalization
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Figure 6.5: Data from a two-element linear normalization circuit. The two input currents
(tin, and %ip,) were swept such that their sum remained constant at 10nA. The bias current
(i) was set at 1nA. The two curves represent the output currents tout; and oy, versus
the difference (4in, — %in,) between the input currents. The data demonstrate the linear

relationship between the output currents and the input currents.
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Figure 6.6: A winner-take-all normalization circuit. Since all the input transistors share a
common gate voltage V, if all of the input currents are equal, then V,, will be the same for
all the nodes and the output current from all the nodes will be equal. If the input current
at node n is increased, V' will increase to allow %;,, to be sunk. The increase in V will cause
the local voltages at the other nodes to decrease to force the input transistors at these nodes
out of saturation (Vg small) so that these transistors properly sink their input currents.
This voltage decrease effectively forces the gate voltages of the output transistors in these
nodes toward ground, causing the output currents of these nodes to decrease greatly. For

the bias current ¢}, to be sourced, V;, must increase, which makes iy, = .



136

0.6 +

0.5+

ioutl 7i0ut2 (nA)

0.3

0.2 +

-10 -8 —6 —4 -2 0 2 4 6 8 10

tin; — %in, (RA)

Figure 6.7: Data from a two-element winner-take-all normalization circuit. The two input
currents (%in, and j,,) were swept such that their sum remained constant at 10nA. The
bias current (7,) was set at 1nA. The two curves represent the output currents Tout, and
tout, versus the difference (4in, — %in,) between the input currents. The data demonstrate

the highly nonlinear relationship between the output currents and the input currents.

circuit, passes its output current directly onto the global wire. The transistors are connected
such that the output currents have a highly nonlinear response as a function of the input
currents. If one element has an input current higher than that of the others, this element
will produce an output current approximately equal to the bias current, and all the other
output currents will be approximately equal to 0. If more than one element shares equal
input currents that are greater than the input currents of the other elements, the output
currents at the elements with maximum input current will be equal.

In Figure 6.7, we present data from a two-element version of this circuit. This figure
shows the highly nonlinear response at the outputs of the circuit to variation in the input
currents. Because of this nonlinearity, multiple output currents rarely occur in a multiple-

element circuit except when the winner (the element with the largest input current) is
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changing. Thus, the circuit functions as a winner-take-all in which the winner takes all the
output current. When used in the tracking framework, the winner-take-all circuit has the
distinct advantage over the linear normalization circuit in that it produces only one output,
and thus has a response that is more resistant to background sensory levels. The linear
normalization circuit averages over multiple pixels, however, and thus allows for increased

resolution to make the localization of a stimulus more accurate.

6.4 Framework Implementation and Functionality

We implemented the tracking framework using the circuits presented in the preceding sec-
tions. We generated a sensory image using a one-dimensional array of phototransistors
(with no additional circuitry). These devices were bipolar phototransistors incorporated
directly onto the silicon surface with the processing circuitry of the subsequent layers. A
lens is used to focus a visual image onto this array. The output from this layer is an array
of photocurrents, each of which is proportional to the intensity of the light at the respective
photosensor. The normalization layer was a winner-take-all normalization circuit. Although
this circuit reduces the effective resolution of the system, it is much more independent of
background illumination than is the linear normalization circuit. We implemented the ag-
gregation and output layers with the circuitry shown in Figure 6.2.

We can analyze the functionality of the complete system under the intended operating
conditions. The chip localizes the largest intensity in the visual field, and generates a pair
of output signals that encodes this location in a representation that is suitable for driving
motors.

Figure 6.8 shows the duty cycles of the output signals versus the position of the stimulus
on the array. We present a stimulus to the chip in the form of a bright source of light. As
we move a stimulus across the array of phototransistors, the duty cycles of the output
pulse trains change. As a result of the operation of the differential pairs in the aggregation
network, the resulting duty cycles are approximately sigmoidal. The width of the sigmoid is
controlled by the differential voltage across the resistive divider. The maximum duty cycle
(the upper asymptote) is the ratio of the bias current in the aggregation network to the

reset current of the neuron circuit.
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Figure 6.8: Duty cycle versus position for the tracking imager. The curves represent the
duty cycles of the two output pulse trains with respect to the position of a bright stimulus
on the photosensors. The solid lines represent data taken with the voltage across the
resistive divider equal to 0.5V. The dotted lines represent data taken with the voltage
across the resistive divider equal to 2.0 V. The curves are approximately sigmoidal due to
the functionality of the differential pairs, with the width being controlled by the voltage
across the resistive divider. The maximum duty cycle (the upper asymptote) is the ratio of

the bias current in the aggregation network to the reset current of the neuron circuit.
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Figure 6.9: Output independence from stimulus intensity. The data represent the maximum
duty cycle of the output pulse-train versus the contrast ratio (5). The intensity of the
stimulus was varied while the background intensity was held constant. Because of the
winner-take-all normalization, the duty cycle is independent of the stimulus and background
intensities when the maximum intensity at an individual pixel is generated by the stimulus

(8 > 1). In this experiment, the duty cycle varied by less than +2 percent.
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Figure 6.9 shows the effects of varying the stimulus intensity while holding the back-
ground intensity constant. The winner-take-all normalization circuit generates a single
current output at the element with the largest input current, independent of the intensity
of the stimulus and background. Thus, the pulse outputs from the system are independent
of ratio of the background intensity to the stimulus intensity, as long as the background

intensity at all pixels is less than the maximum stimulus intensity.

6.5 Feedback System Examples

We have implemented two complete sensorimotor tracking systems by combining the chip
described in the preceding section with mechanical systems that move the chip such that,
when the chip is presented with a visual stimulus, the origin of the array is moved toward

the stimulus.

6.5.1 The Planar Eye Model

One mechanical system that we have implemented is a model of a planar eye and two ocular
muscles. Figure 6.10 shows a diagram of this mechanical system. We model the eye with a
turntable that rotates at its center. The chip and lens are placed on the turntable, such that
rotation of the turntable changes the field of view of the chip. We model each ocular muscle
with a motor and cable that apply a torque to the eye. The two motors are placed in an
antagonistic configuration such that they produce torque on the eye in opposite directions.
Each pulse output generated by the chip controls one of the motors.

If the chip is stimulated with a bright spot of light that is not at the center of the
photoreceptor array, the motors will produce a differential torque that rotates the turntable
to direct the center of the chip toward the stimulus. Because of the background firing rates
of the neuron circuits, the motors will produce nonzero (equal and opposite) torques when

the stimulus is centered, keeping a constant torque on the system.

6.5.2 The Tracking Vehicle

Figure 6.11 shows a two-wheeled vehicle that we have designed and built. The chip and a

lens are mounted on the vehicle such that the image of the area in front of the vehicle is



141

~
~
~
~
-~
~
~
~
~

Figure 6.10: A mechanical planar eye model. The tracking chip is placed at the center of a
turnatable that is free to rotate on its axis. A lens is positioned to focus the image of the
region in front of the chip onto the sensory surface. The chip generates a two pulse trains,
each of which is amplified by a half H-bridge circuit. The amplified pulse trains drive the
two motors, which are configured in an antagonistic format such that they apply torque to
the turntable in opposite directions. A visual stimulus is placed in the field of view of the

chip, and the system rotates the turntable such that the stimulus is centered on the chip.
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Figure 6.11: A vehicle that follows a stimulus. A lens focuses the image of the area in front
of the vehicle onto the chip. Each output pulse train generated by the chip is amplified
by a half H-bridge circuit, and is used to drive a motor that rotates one of the wheels. A
stimulus positioned away from the center of the chip produces a differential drive that turns
the vehicle toward the stimulus. The vehicle will move toward a bright stimulus at a speed

set by the background firing rate (the common mode) of the pulse trains.

focused onto the chip. Each wheel is directly connected to a motor that is unidirectionally
driven by one of the pulse trains generated by the chip. When a bright stimulus is within
the field of view of the chip, the vehicle will move toward the stimulus at (a rate set by the
background firing rate of the pulse trains). The vehicle will turn, when necessary, such that

the motion is in the direction of the stimulus.

6.6 Summary

In this chapter, we presented a circuit framework that converts a sensory image in the form

of a positionally encoded array of currents into a dual-rail pulse encoding for driving a motor
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system bidirectionally. The framework circuitry, in conjunction with a motor system, tracks
a stimulus that is defined by the sensory input to the system. The framework consists of
sensory-input circuitry that provides the system with a positionally encoded image, circuitry
to normalize the output from the sensory circuits, and aggregation and pulse-generating
circuitry to convert the image into two pulse trains. We discussed methods for implementing
these different circuit layers.

We discussed the design and implementation of a version of this circuitry that uses pho-
toreceptors at its input and normalizes their output with the winner-take-all normalization
circuit. We have used mechanical hardware to close the loop around the circuitry, and have
implemented feedback systems that track a bright visual stimulus. The mechanical systems
are driven by negative feedback from the chip, and move such that the stimulus remains
centered on the photosensor array. We described how we tested the circuitry by incorpo-
rating it into a mechanical model of a planar eye (with associated eye muscles) that rotates
to face a stimulus. We also explained how we incorporated the circuitry onto a vehicle that

moves toward a stimulus.
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