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Abstract

A study of processes relevant to the electron-positron pair plasmas thought to
exist in Active Galactic Nuclei is undertaken. The processes considered include:
Compton scattering, pair annihilation, two photon pair production, synchrotron
emission, e-e bremsstrahlung, and Coulomb scattering. Approximations used in
the past to treat these processes in the context of a kinetic code are examined, and
improvements are presented. A two-moment scattering formalism is presented to
allow for important energy dispersion effects in scattering. This improved treat-
ment of microphysical processes is implemented in a time-dependent, kinetic code
incorporating Klein-Nishina effects on both the pair and photon distributions,
relativistic thermal Comptonization, and synchrotron reabsorption.

The effects of pair plasma reprocessing on the emergent radiation spectrum
are examined. Time-varying and stationary spectra are computed. Good quali-
tative agreement with previous calculations is found, except when the differences
are attributable to the improved treatment of the microphysics. These differ-
ences can be substantial, particularly in the “photon-starved” regime where the
effects of Coulomb scattering by suprathermal pairs off thermal pairs significantly
modify the spectra. The spéctral response of the pair plasma to variations in
the particle injection is found to depend sensitively on the plasma parameters.
A transitional spectrum may look very different from the spectra of either the
stationary initial or final states. The highest energies (gamma-rays) are found
to respond most rapidly to changes and should vary more than the X-rays. Pair
plasmas can produce soft X-ray excesses. This happens under conditions inde-
pendently favored by current pair plasma-Compton reflection models of the hard

X-ray spectrum.
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Chapter 1

INTRODUCTION



1. The AGN Phenomenon

The discovery almost 30 years ago (Schmidt 1963) that powerful radio sources,
identified at optical wavelengths with bright blue “quasi-stellar objects,” were at
cosmological distances marked the beginning of one of the more intriguing puz-
zles in astrophysics. From the first, it was clear that these objects (“quasars”)
represented a very unusual class. Their optical spectra looked nothing like that
of any known stars. Superposed on an underlying power-law continuum were
unusually prominent, broad emission lines. The widths of these lines indicated
the presence of matter moving at velocities ~ 10,000 km/s (velocities typical
of supernova ejecta), an indication that these objects were the site of violent
activity. More importantly, their large redshifts, when interpreted as distance
indicators, gave them enormous luminosities 2 10** ergs s~!, making them the

most powerful ob jects known in the universe.

Further study of the radio survey used to discover the quasars (the Cam-
bridge 3C survey) revealed many of the remaining objects to be bright elliptical
galaxies that showed intense emission from an unresolved source in their nuclear
regions. Like the optical enﬁésion from quasars, this emission appeared distinctly
non-stellar and, in fact, shared many of the same spectral characteristics (e.g.,
prominent, broad emission lines). Noting these similarities, the hypothesis was
put forth that quasars were extreme examples of a more common phenomenon
ol nuclear activity in galaxies — more common because it was already known at
the time that other galaxies showed evidence of similar phenomena. In the case
of Seyfert I galaxies, for example, it was known that the nuclear luminosity could
exceed that from the rest of the galaxy. We now know that “Active Galactic Nu-

clei” or AGN (unresolved sources with non-stellar spectra found at the centers
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of galaxies) are in fact relatively common. (Note the emphasis on non-stellar.
We draw a distinction here between AGN and the so-called “starburst galax-
1es” which also show luminous nuclei but whose emission is attributed to stellar
processes.) Even our own galaxy shows evidence of containing an unresolved,

non-stellar source, albeit one that emits at a much lower luminosity.

The fact that Active Galactic Nuclei (AGN) occur in many different types of
galaxies (containing different distributions of gas and stars) was and continues to
be a source of confusion. Each newly discovered object was found to be slightly
different from the previous ones seen (e.g., in the relative prominence of certain
spectral lines). In time-honored astronomical tradition, a rather confusing taxon-
omy of subclasses within subclasses of classes (e.g., Seyfert 1,2, and 1.2’s) quickly
ensued. (For a discussion of this taxonomy, see Weedman 1986.) In some cases,
the confusion was understandable. Seyfert 2 galaxies, for example, were thought
not to exhibit the broad emission lines of Seyfert 1 galaxies. However, recent ob-
servations in polarized optical light (Antonucci & Miller 1985, Miller & Goodrich
1990) showed that Seyfert 2s do indeed emit the same broad emission lines as
Seyfert 1s. This was explained by postulating the existence of an obscuring dust
torus which blocked direct viewing of an otherwise Seyfert 1 nucleus, allowing it
to be seen only in light scattered (and consequently polarized) off matter with
an unblocked line of sight to the nuclear region. As more wavelengths were made
accessible and observations improved, the consensus grew that all AGN phenom-
ena, not just Seyfert 1 and 2 galaxies, are different manifestations of a common
mechanism. The quest for the “Grand Unification” of AGN observations and a
determination of the truly essential parameters that differentiate objects is one

that still continues today, however. (See Lawrence 1987 for a review.)
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While observers continue to catalogue the diversity of these objects, the the-
orist has his own difficult challenge to face. The picture of an AGN that has
gradually emerged from the haze is by no means easy to explain. Unlike a star
which emits most of its luminosity within two octaves of frequency, an AGN emits
roughly equal amounts of power over nine decades of {requency, from meter wave-
lengths to at least 100 MeV gamma-ray energies. (To first order, the emission

spectrum of an AGN is a power law with flux per unit frequency oc v 1.

See
Fig. 1 for an example.) Moreover, the size scales from which this emission comes
range over about 10 decades: to explain the megaparsec (1024 cm)-sized giant
double radio lobes, one must follow them down to their ultimate energy source
in the inner nuclear region, which from measurements of rapid X-ray variability
and light-crossing time arguments, can be < 10 cmn in size (e.g., Tennant et al.

1981). Understanding an AGN thus requires understanding physical processes

over an unprecedented set of size and energy scales.

The physics of the inner emitting region is particularly problematic if one
reflects on the large amount of power it emits and its small size. At optical
wavelengths, a region roughly 10~° the radius of a galaxy can outshine the rest
of the galaxy. At X-ray energies, the problem is even worse. The processes
responsible must therefore be remarkably efficient in their conversion of rest mass
to radiant energy, probably more eflicient than any nuclear or atomic process.
Lynden-Bell (1969) and others have argued that this leaves gravitational release
of energy, probably via a black hole, as the most plausible mechanism. (Because
of dynamical instabilities, it is argued that any alternative to a black hole such
as compact cluster of relativistic stars will inevitably end up as a black hole,
e.g., Begelman & Rees 1978.) This is the main consideration leading to the

elaboration of the “standard” (at least today) black hole model of AGN.
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In this model, gas and matter spiral in from the surrounding galaxy to “feed”
a massive black hole sitting at the center. The gravitational binding energy
released in this process is converted into an intense radiation field which escapes
from the nuclear region. However, probably only a relatively small fraction of
this initial radiation escapes unscathed through the surrounding matter. The
remainder is reprocessed and reappears at different energies, much the way an
energetic cosmic ray hitting a particle detector is transformed into a shower of
low energy pairs and photons. Nevertheless, the black hole is believed to be the
“central engine” which powers AGN over the many wavelengths and length scales

in which they are seen.

Differences between the classes of AGN may then be explained as differences
in the central engine, differences in the reprocessing, or differences in the angle
from which the system is viewed. For example, the masses of the central black
holes would be expected to vary due to differences in their formation or subse-
quent histories (e.g., how much matter they had a chance to swallow). Differences
in mass (i.e., the depth of the gravitational potential) would translate into differ-
ences in maximum luminosity. Observed luminosity differences between classes
might then be attributable fo characteristic black holes masses associated with
those classes. Alternatively, some of the distinctions between AGN might be
attributable simply to variations in the mass accretion rate.. A black hole which
has swept in all of the immediately surrounding gas, for example, will not form
a luminous accretion disk. (Many galaxies could thus be dormant AGN, merely
waiting for a cataclysmic event like a tidal interaction with another galaxy to
trigger them into activity again.) An example of a possible difference in the
reprocessing might be the presence or absence of a molecular dust torus that

completely blocks the outgoing radiation in certain directions and causes it to
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be re-emitted only at much lower infrared energies (e.g., perhaps as in the IRAS
ultra-luminous infrared galaxies). Finally, if the particles in the radio jets move
relativistically, one would expect strong orientation effects due to relativistic

beaming of the radiation in the jet direction.

Corroborative evidence for the presence of a black hole (and this standard
picture) is provided by the stellar velocity dispersion which appears to increase
rapidly towards the center of some galaxies (as the black hole mass presumably
dominates the potential, see Dressler 1989, Kormendy 1988, Tonry 1987). Dy-
namical estimates of the central (black hole) mass derived from this velocity
dispersion cover the same range as the Eddington luminosity estimates discussed
below. Additional evidence is the observation of radio jet axis orientations which
appear to have been constant for periods of at least > 10® years (e.g., see Bridle
& Perley 1984). A rapidly spinning black hole would behave as a gyroscope,
maintaining its orientation (and presumably that of the jet). We stress, though,
that while the black hole picture is compelling, it is currently still a matter of

conjecture and not proven fact.

If one accepts the black hole hypothesis, a lower bound may be placed on the
mass of the central black hole by assuming that it cannot radiate at significantly
more than its Eddington luminosity (the luminosity at which radiation pressure
on an electron balances the gravitational force a proton feels from the black hole).

This may be expressed (e.g., Rees 1984) as

AnGM
Ly = _IT'_;M ~ 1.3 x 1()46Mgergs/sec (1.1)

where Mg is mass measured in units of 108 solar masses. Typical masses obtained

by inserting the observed luminosities are in the range 10% — 109 solar masses.
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Associated with the black hole is also the size scale of its event horizon,

GM
Thole = —3 , (1.2).
C . .
Nothing inside this radius can communicate with the outside world. One there-
fore expects a characteristic minimum timescale for variability given by the light-
crossing time

Thole/ ¢ ~ H00Mgsec. o (1.3)

As noted above, rapid X-ray variability on these timescales has indeed been
observed.

~ One other important element of the standard picture must be mentioned.
This arises from the consideration tha;t.r‘natter falling into the hole must first find
a way to lose its angular momentum. This is thought to occur in an accretion
disk which will extend down to a few Thole- The exact form of thié accretion
disk is a subject of much debate (see Begelman 1985 fér a review of thick vs.
thin disks, stability issues and the like). As a key ingredient in the physics
(an understanding ofkthe effective viscosity in the disk, the a parameter) is still
missing, this debate may coﬁtinue for some tifne. A non-controversial aspect of
accretion disk models, however, is that the disk is an important source of énergy
release (the in gravitational binding enefgy of infalling particles is released as
radiation). See Frank, King, & Raine (1985) for a discussion of how this occurs.
Generally, the rate of release of gravitational energy increases with decreasing
distance from the center. Consequently the emission peak from a particular disk
radius also increases, going (in typical models) from optical frequencies at the
outer edge to soft X-ray (< 0.1 keV) energies at the inner edge. (A general

prediction of this, that variability decreases with increasing frequency, appears
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to be satisfied.) Unfortunately, as knowledge of the disk structure is crucial in
determining the integrated disk spectrum, the topic of disk emission is equally
controversial. Other effects such as the presence of a hot corona (much like
that of the Sun) over the disk’s surface and general relativistic redshifting of
photons from the inner edge may play important roles in determining the overall
spectrum. These problems aside, disk emission is generally considered the most
likely source for the so-called “blue bump” spectral feature (an optical-UV excess
over the overall power law continuum, see Fig. 1) and perhaps the reprocessed

infrared emission seen in many ob jects.

In the context of the pair plasma models discussed below, the accretion disk is
also the source of the seed photons that are Compton upscattered to much higher
X- and gamma-ray enérgies by energetic (non-thermal) electrons and positrohsL
In addition, the disk may intercept and reprocess a significant fraction of the lumi-
nosity emerging from the pair plasma (significantly modifyingithe final spectrum
seen by an observer). Finally, the accretion disk may be cﬁrectly responsible for
eﬁergizing the pair plasma. The material in the disk is likely to be shocked and
significant particle acceleration could occur across these shocks. The disk may
also be threaded by a magnetic field that, by processes perhaps analogous to
those seen in the solar corona (e.g., magnetic reconnection), could also give rise
to strong particle acceleration.

A magnetic field in the disk may also be responsible for channeling some of the
gravitational energy released directly into particle kinetic energy (e.g., Blandford
& Payne 1982), leading to the creation of the powerful radio jets seen to emerge

from many AGN. These jets are among the most dramatic (and maybe puzzling)
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manifestations of AGN activity. Although many ideas have been proposed to ac-
count for them (e.g., see Begelman, Blandford, & Rees 1984), it is not yet clear
how these jets originate (magnetic fields in disks may not be responsible) and how
they remain collimated over the long distances they are seen to span. The most
intriguing observations of jet phenomena are perhaps those obtained by radio
VLBI (Very Long Baseline Interferometry) techniques which can resolve features
in AGN down to the scale of parsecs. The core-jet structures often revealed
(thought to be associated with the jets seen on larger scales) show evidence of
“superluminal expansion” as well as of extremely high brightness temperatures,
> 102K in a few cases. (Superluminal expansion is the apparent increase in sep-
aration of two source features at a rate greater than that of the speed of light. The
brightness temperature at a frequency is oc observed flux/(angular source size) 2
and is an indication of the photon occupation number at that frequency.) Con-
ventional wisdom has it that these are the consequences of non-thermal emission
processes and relativistic fluid velocities in the jet. (See Zensus & Pearson 1987

for discussions of this as well as of the observations.)

2. Radiative Processes in AGN

The best way to test the black hole-accretion disk hypothesis is to analyze the
radiation emitted by AGN. This requires an understanding of the mechanisms
behind the emission. Helping to further this understanding is the primary goal
of this thesis. I consider here the primarily high energy processes associated
with the electron-positron pair plasma thought to surround the central engine of
an AGN. These processes might be termed exotic in that they are not usually
encountered under laboratory conditions. In an astrophysical context, however,

the conditions under which they are important are not all that unusual. For
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example, pair plasmas are probably also found in pulsar magnetospheres (e.g.,
Arons 1981), gamma-ray bursters (e.g., Liang & Petrosian 1986), and the early
universe (e.g., Weinberg 1972). The results and techniques presented here may

thus prove relevant in the study of other (non-AGN) environments.

The application of the theory of elementary radiative processes to an en-
vironment as complex as that of an AGN is difficult. This may be surprising
to some as the underlying microphysical processes (e.g., Compton scattering)
are completely understood and their cross-sections appear in any good quantum
electrodynamics book. However, an understanding of how two particles inter-
act does not necessarily imply knowledge of how an ensemble of such particles
behaves. (Despite having had Newton’s laws for over three centuries, we still
do not understand galactic structure very well.) In the case of AGN, difficulties
arise because of the non-linearity of the relevant kinetic equations, and because
of complications introduced by spatial transport. The latter problem is probably
the more important and troublesome. The central engine of AGN with all its
violent outbursts and shocks probably running across it is not well-approximated
by a spherical volume filled with isotropically moving electrons of uniform den-
sity. This ultimately requires keeping track of the full seven-dimensional particle
phase space (momentum, space, time). Even with today’s supercomputers, the

full problem is not tractable and severe approximations must be made.

The existence of electron-positron pair plasmas in AGN is a hypothesis, like
that of the existence of the central black hole in an AGN. No unambiguous signs,
such as an emission line at .511 MeV (the electron rest mass) have yet been

detected in AGN. (The one possible exception is our Galactic center where such a
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line has been seen, although here the identification is questionable.) Nevertheless,

the theoretical reasons for the existence of pair plasmas are fairly compelling.

As first noted by Jelley (1966) and Herterich (1974), the large X-ray lumi-
nosities of AGN and the small size of the region from which they are inferred
(by variability measurements) to come, imply large number dellsities of energetic
photons — so large that any gamma-ray trying to escape the region would have a
high probability of annihilating with one of them to create an electron-positron
pair. Specifically (see Guilbert, Fabian & Rees 1983, Done & Fabian 1989 for
a more detailed exposition of this argument), one may define a dimensionless
“compactness parameter” |

L o

Emec3

l

where L is the observed X-ray (hv < mec?) luminosity, and R is the character-
istic source size, ~ c¢At where At is the minimum variability timescale. This is
essentially an estimate of the optical depth to photon-photon pair production
for a gamma-ray of energy ~ mec?. Inserting the observed values of L and At,
one obtains values greater than unity for many sources, i.e., the X-ray emitting
regions are optically thick to photo-production of pairs. Consequently, if the
source produced any gamma-rays, it would quickly acquire an electron-positron
pair plasma. Theoretical prejudices about energy generation mechanisms and
the fact that significant gamma-rays luminosities have been observed in a few
AGN lead one to guess that a sufficient number of pairs would be created to
make this plasma optically thick to Thomson scattering.

In this case, reprocessing by the pair plasma would be significant, i.e., the
“output” spectrum that eventually escaped through the electron-positron plasma

would look very different from the original incident spectrum. In particular,
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energetic pairs could upscatter the soft (e.g., IR, UV) end of the spectrum to
X- and gamma-ray energies, while cooler pairs would downscatter gamma-rays
and their annihilation would add an emission feature at hv ~ m ¢c?. In addition,
the plasma would alter the perceived time variability of the source (increasing
the minimum observed variability timescale at keV energies, for example). For a
review of the physical processes that might be important in the context of a pair

plasma and their possible effects, see Svensson (1986).

Early attempts at describing pair plasmas (e.g., Bisnovatyi-Kogan, Zel’dovich
& Sunyaev 1971) made the simplifying assumption that the pairs were in thermal
equilibrium, i.e., that their distribution functions could be characterized by a
(relativistic) Maxwellian of fixed temperature and density. Unfortunately, there
are two problems with this. First, the processes of Compton scattering, pair
production, and pair annihilation change the number and energy of the thermal
pairs. Hence, the pair distribution must be determined self-consistently at the
same time as the radiation field. Second, there is good reason to be believe a
pair plasma is not in thermal equilibrium. Thermalization timescales for mildly
relativistic pairs are typically longer than the Compton cooling time and other
relevant timescales in the problem. Hence, the pair distribution is likely to have
a significant non-thermal tail.

To solve the pair plasma problem, one therefore needs a method for evolving
arbitrary photon and pair distribution functions. Two approaches have been
employed thus far. The first is a Monte Carlo approach where individual particles
are followed as they undergo interactions inside the source. The main advantage
of such a scheme is that it is usually easy to model the radiative transfer well.

However, such a scheme typically suffers from relatively poor photon statistics at
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high frequencies (even when variance-reducing techniques like photon splitting
are used) and does not lend itself to time-dependent calculations. For examples
of the Monte Carlo calculations performed to date, see Stern (1985), Novikov &

Stern (1986), and Stern (1988).

The second approach involves solving the relevant kinetic equatiorlé. Follow-
ing the time evolution of the system in such an approach is s'traightforward and
photon statistics are not an issue. However, these methods have their own prob-
lems. First, the resulting integro-differential equations can be quite cumbersome
and “still” (i.e., there may be widely varying timescales in the problem). Second,
only simple prescriptions for radiative transfer (such as an escape probability for-
malism) can be implemented easily on present-day computers (primarily because
of memory limitations). In practice, these kinetic treatments must throw out all
angular and spatial information and assume the source region to be homogeneous
and isotropic. One then solves for the particle distributions at one point in space
and hopes that they will resemble those in a realistic source. For examples of
kinetic equation treatments see Fabian et al. (1986), Ghisellini (1987a, 1987b),

Lightman & Zdziarski (1987), Svensson (1987), and Done & Fabian (1989).

The work presented here is an extension of this research and makes use of the
kinetic equation approa,ch (together with the same assumptions of a homogeneous
and isotropic source region). It was intended as a general study of pair plasmas,
motivated by, but not strictly tied to, the problem of AGN. A primary goal
was to remove as many approximations as possible from past work to see what
results were artifacts of the approximations and which were true physical effects.
These approximations are discussed and improvements to them are presented in

Chapter 2. In Chapter 3, this improved treatment of the microphysical processes
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is implemented in a kinetic code. The conclusion from this exercise is that results
presented in earlier work generally appear to be qualitatively correct, but can

easily be in error by factors of two.

An exception to this conclusion is the “photon-starved” regime where the
Compton cooling times are long because of a deficit of soft photons in the source.
In this case, usually negligible processes such as Coulomb scattering between
pairs and bremsstrahlung emission can be important. This regime is the focus of
Chapter 4. As expected, the spectra produced including these effects are found
to differ significantly from those presented in previous work. An additional mo-
tivation of this work was to see if these spectra resemble those of “hard” sources
such as gamma-ray bursters and some AGN (e.g., 3C273) which show X-ray
spectral indices ag < 0.5 (where the flux per unit frequency, Fy,, goes as v~ %).
Non-thermal pair plasmas of the type considered here cannot produce spectral
indices < 0.5 unless an X-ray photon experiences multiple Compton upscatter-
ings before escaping, i.e., only in the photon-starved regime. The answer is a
qualified yes, although observations are not yet good enough to make definitive
statements.

A second goal of the study conducted here was to elaborate on the effects a
pair plasma has on the variability of a source. This is described in Chapter 3. The
general conclusion is that a pair plasma can have a significant effect, especially
when its Thomson optical depth exceeds unity. To first order, a pair plasma
acts much like a capacitor, storing up particles and energy, and smearing out
the response of the system to changes in injection. (If a Thomson thick plasma
inhabits a source, estimnates of the source size from variability measurements are

thus overestimates.) The response function to changes in energy injection rates,
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however, depend strongly on energy. Two frequencies, depending on the detailsof
the source changes and the times they are looked at, can show either correlated or
anti-correlated behavior. Spectral variability data such as the relative intensity of
two frequencies is therefore not useful in constraining or ruling out the existence
of a pair plasma. Much more detailed (i.e., broad band) spectral information is
required. In addition, it is pointed out that spectra in transition between two
source states (e.g., high and low) may look nothing like the spectrum at either
of those two states. One should take this into account before drawing too many
conclusions from a single spectrum (snapshot) of a source. A final observation of
this chapter is that the gamma-rays generally respond more rapidly to changes in
particle injection and are relatively immune to the time-smearing effects of a pair
plasma. The gamma-ray emission of AGN should therefore exhibit more rapid
variability than the X-ray emjkssion'. This may have c;)nsequences.for planned
gamma-ray telescopes (e.g., GRO) that have week-long source integration times.
If this variability is not seen at some point, current pair piasrﬁa explanations for

the high energy continuum of AGN will be in serious trouble.

A third goal of the work pfesented was to see if current (very simplified)
pair plasma models can repr(;duce real spectra. In the calculations of Chapter 3,
synchrotron radiation is included to see whether observed AGN infrared spectra
can be produced by the same non-thermal pair plasma inferred to be responsible
for the X-rays. The answer is again a qualified yes. Spectra with approximately
the right slopes can be constructed, but infrared variability similar to that of
X-rays is predicted (and has not been seen). In addition, it appears very difficult
(but not impossible) to create synchrotron self-absorbed slopes with a spectral
index harder than (less than) —2.5 needed to explain the far-infrared end of

the spectrum. Moreover, any inhomogeneities in the magnetic field (which are
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not considered here) would tend to reduce this slope significantly. This appears
difficult to reconcile with indications of recent observations that the spectral

index in the far-infrared may in fact be as large as —3.0 (Chini et al. 1990 ).

A striking observational fact is the clustering of the 2-10 keV X-ray spectral
indices of Seyfert 1 galaxies about the value oz = 0.7 (e.g., Turner & Pounds
1989). The explanation of this fact is one of the major puzzles facing pair plasma
research today. Originally it was hoped that feedback mechanisms in the pair
plasma might create an island of stability in the input parameter space such
that a spectral index ~ 0.7 would be produced over a large range of source
compactness. (While the X-ray spectral indices of Seyfert 1s may be similar,
their luminosities and inferred X-ray compactness parameters can easily vary by
more than a factor two.) However, the results of current studies, including this
one, have been disappointing in this regard. The only preferred spectral index
appears to be az ~ 1 for source compactnesses much greater than unity when
the pair plasma becomes “saturated” (Svensson 1987), and, in general, predicted
values of ag range through the interval [0.5,1] with no particular preference for
oy ~ 0.7. This appears to indicate that an essential ingredient is still missing
in our current understanding of the mechanism of X-ray production in Seyfert
1s. Either some other part of the central engine affects the X-ray spectrum, or
there is an additional (unknown) physical mechanism which always selects out
the right combination of input parameters for the pair plasma.

Indications of a possible answer to this problem have come in the last year
or so with the discovery of variable Ky iron lines (at 6 — 7 keV) in the X-ray
spectra of some AGN. In one case, (NGC 6814, Kunieda et al. 1990) the line

appeared to respond to changes in the continuum with a lag time less than ~ 5
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minutes. Two important inferences follow from these observations (if correct):
(i) there is cold matter (X-ray absorbing matier) very near to the X-ray emitting
region (presumably the pair plasma), (ii) this cold matter probably is intercept-
ing a significant amount of the outgoing X-ray flux. A hard incident radiation
spectrum, like that from a pair plasma, is primarily absorbed and re-emited at
much lower energies when it encounters such a lump of cold (7' < 106 K) matter‘.
A fraction (~ 10%}), however, is “Compton reflected” (see White, Lightman? &
Zdziarski 1988), ending up at X-ray energies typically in the range 5 — 60 keV.
This “reflected” component, when added to the original pair plasma radiation;
appears to be exactly What‘ is needed to bring a 2-10 keV spectral index ~ 1
(the pair saturated, “stable” value) up to ~ .7. A discussion of this mechanism
may be found in Zdziarski et al. (1990) and Chapter 5. Only time and fuvrther

observations will tell whether or not it is a sensible picture.

The final chapter, Chapter 5, addrésses another region of the AGN specti‘um,
the soft X-rays (~ 0.1 — 1 keV in enefgy), where an excess of emission over the
extra,polated‘ 2-10 kéV power law has been seen. It is noted there that ﬁair
plasmas, for a certé,in region of parameter space, can produce steep power law
emission on top of an underlying X-ray power law, i.e., a soft X-ray photon excess.
This is due to Comptonization by cool, thermalized pairs of the soft (UV) “blue
bump” photons. Examples of possible time variability are shown, and it is seen
that pair plasmas can produce behavior consistent with the observations. The
parameter space over which visible soft excesses are produced encompasses that
in which the Compton reflection models discussed above are claimed to work best.
Thus, a prediction of pair plasma-reflection models is that soft X-ray excesses

should be relatively common in AGN.
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Figure 1. A composite AGN spectrum, taken from Sanders et al. , Ap. J., 347,
29 (1990). The spectrum was obtained by averaging spectra of the radio loud and
radio quiet quasars in the PG (Palomar-Green) survey. Note the “blue bump”
at v ~ 1015 Hz thought to originate from the accretion disk of the central black
hole. The spectrum of an object that emitted constant power per decade would
appear as a horizontal line on this diagram. Though not shown on the diagram,

the spectra of AGN can extend to frequencies 2 1029 Hz (MeV energies).
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Abstract

Reaction rates are given for two body processes in an isotropic pair plasma.
The rates are accurate over mildly relativistic energies and are given as functions
of the incident particle energies rather than integrated over a thermal distribu-
tion. The processes considered are as follows: Compton scattering, pair annihila-
tion, two photon pair production, Coulomb scattering, and e-e bremsstrahlung.
For the first three processes, the mean energy of the final states together with
the dispersion in energy about their mean energies are computed. Approximate
expressions are presented where these have proven useful. The results have been

tabulated for use in kinetic equation studies of pair plasmas.
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1. Introduction

The discovery of rapidly variable X-ray and -ray emission from active galac-
tic nuclei (AGN), y-ray bursters, and the Galactic center has prompted investi-
gation of “electron-positron pair plasmas.” [For a general discussion of AGN and
pair plasmas, see Svensson 1986, Zdziarski & Lightman 1987; for y-ray bursters
see Lamb 1988, Zdziarski 1987; for the Galactic center see Ramaty & Lingen-
felter 1987.] Most of the initial attention focused on pair plasmas characterized
by a single temperature. (See, for example, Bisnovatyi-Kogan et al. 1971, Taka-
hara 1980, Zdziarski 1985, Guilbert & Stepney 1985 and references contained
therein.) Unfortunately such plasmas do not easily reproduce observed AGN
spectral features and are unlikely to be produced because of the relatively long

thermalization timescales expected (e.g., Kusunose 1987, Stepney 1983).

More recent theoretical studies of pair plasmas therefore attempt to solve
self-consistently for the particle distributions. Two methods have been followed:
solving the kinetic equations for the electron and photon distribution functions
(e.g., Guilbert 1981, Fabian et al. 1986, Ghisellini 1987a, Svensson 1987, Light-
man & Zdziarski 1987), and direct Monte Carlo simulations (e.g., Novikov &
Stern 1986, Stern 1985). Both approaches are useful, the former when the com-
putation must encompass a large range of energies or time-dependence is relevant,
the latter when complex radiative transfer considerations are needed. The kinetic
equation approaches employed to date, however, have been hampered by the use
of oversimple approximations for interaction rates and scattered /emitted particle

distributions. It is our purpose here to improve on some of these approximations.
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In this paper, we re-examine the kinetic approach and set up a systematic
framework for dealing with the “primary” pair processes of Compton scatter-
ing, pair annihilation, and two photon pair production. For these processes,
we give both exact expressions and useful approximations for interaction rates,
mean scattered energies, and dispersions about these mean energies as func-
tions of the incident particle energies. The incident particle distributions are
assumed isotropic and unpolarized. From these quantities we then construct an
approximation for th¢ energy distribution of the outgoing particles. The result-
ing formalism is designed to improve the computation of pair and high energy
photon yields. Also discussed are the processes of Coulomb scattering and e-e
bremsstrahlung under approximations useful for kinetic calculations. The rate
equations developed lere are used in a time-dependent pair plasma code, Coppi

(1990).
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2. Compton Scattering

2.1. Kinematics

Compton scattering is most conveniently parametrized using two electron (or
positron) rest frame quantities: the scattering angle § between the ingoing and
outgoing photon momenta, and the azimuthal angle ¢. Assume now that the
incoming electron and photon have (lab frame) energies v (= (1 — ﬂ)_l/ 2Ymec?
and w'mec? respectively, and let the outgoing (scattered) photon have energy
wmec?. Using standard kinematic relations (e.g., Rybicki & Lightman 1979), we
obtain

o 0= ) 9B c0sBu— ) + Bsind(1 - p2) Peosgle’ ) )
N 1+ 9(1 —Bp)(l — cosf)w! '

where p is cosine of the (lab frame) angle between the incoming electron and
photon momentum vectors. The relevant scattering cross-section is given by the
polarization-averaged Klein-Nishina cross-section, o gy (e.g., Berestetski et al.
(BLP) 1982, p.356). Ignoring induced scattering effects and assuming homo-
geneous, isotropic distributions, the photon occupation number n(w) will then

evolve according to

dnfw)/dt = ~n(w) [ V()R 7) + [ [ doldrPosed, R )N G)

(2.2)
Here n(w) is the number of photons per unit volume with energies between
w and w + dw, N(v) is the analogous electron energy distribution, R(w,7v) is
the scattering rate between photons of energy w and electrons of energy v, and

P(w;w',7) is the probability that the outgoing photon has energy w given that
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the incoming photon and electron had energies w’ and v respectively. (P(w;w’,v)

is normalized so that [dwP(w;w’,v) =1.)

2.2. Scattering Rate

The angle-averaged scattering rate is given by

+1 4
R(“’a’Y) = C~/;1 —éﬁ(l _ﬁl"')aKN(ﬁawnu’)

3cop  [2V(1+F)w 4 8 1 8 1
SR - dz[(1 — — — —=)In(1 P e S aa—
32y2fw? /27(1—ﬁ)w oAl =g —@llHel+o+g (1+ w)z]
(2.3)
where ¢ = 29(1 — Bp)w. The integration over the variable # may be done

analytically (e.g., Aharonian & Atoyan 1981a, Protheroe 1986), but the resulting

expression which contains a dilogarithm is not very useful. R(w,7) is easily

evaluated numerically.

Standard asymptotic forms for the rate R are:

(i) 8 < 1 and w < 1 (non-relativistic case),

R(w,7) = cop(l — 2qw)

(i) w < 1/(27(1 + B)) (i-e., ¢ < 1),

R(w, 0) = eorll - 2223 4 7))

(i) w > 1/4y and 7 > 1 (extreme relativistic case),

3co
R(w,v) ~ 275 In(4yw).

(2.4)

(2.5)
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In the “mildly relativistic” scattering regime (e.g., 2 < v < 30,00l Sw <

30) a useful interpolation for R is given by

3co . 2 2 1 4 1
— 1— = 2 VIn(1+2 S S
=2 (w)z) AR R 2(1 +27w)2]

(2.6)

R(w,v)~ R =

(w,7) % Rwy) = 2=
This expression is good to within 10% for all energies and becomes exact in the
limits 8 — 0 and yw — 0. A graph comparing the approximate to the exact
values for v = 20 is given in Fig. 1. Note that in (2.6), there is only one indepen-
dent variable, (yw). The step function (Klein-Nishina “cutoff’) approximation

R = opcH(1 —qw) (e.g., Fabian et al. 1986) does not work well in this scattering

regime.

2.3. Scattered Photon Distribution

The scattered photon energy distribution P(w;w’,v) was derived by Jones
(1968). (Unfortunately, the formulas given there appear to contain several mis-
prints — see the appendix.) The most common approximation to P(w;w’,v) is
the “delta-function approximation” P(w;w’,v) =~ §(w — (w)) with (w), the mean
scattered photon energy, approximated by %’yzw'. To avoid negative scattered
electron energies and further simplify the equations, a cutoff approximation to
the rate is also used, i.e., R(w,y) =~ opcH(1 — %w’y). The inadequacy of this

combination of approximations is shown in Fig. 2.

Use of the correct scattering rate and (w) significantly improves accuracy
(e.g., Fig. 2), but reveals another limitation of delta-function approximations.
The neglect of “dispersion” in scattered photon energies about (w) often results

in equilibrium spectra which are too soft at the high energy end (e.g., Fig. 2
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again). This has serious consequences in calculations with significant two photon
pair production (e.g., Fabian et al. 1986 and Lightman & Zdziarski 1987) as it
leads to corresponding errors in the distribution of created pairs and propagates
the errorsin the high energy photon distribution to lower energies. Errors of order
unity at intermediate photon energies (1072 < w < 1) can also be expected in

this case.

To date, most attempts to include some form of dispersion have relied on a
double expansion in w'/y and 72 (e.g., Jones 1968, Blumenthal & Gould 1970,
Aharonian et al. 1981a, 1985, and Zdziarski 1988). Unfortunately, the expansion
fails when the scattered energy w is not much greater than the incident energy w’
and gives quite misleading results when downscattering is important (e.g., Fig.
2). This approximation is also computationally intensive and not well-suited for

calculations where many iterations are required.

We have experimented with several schemes to allow for dispersion in the

scattered photon distribution and found the best approximation to be

1

D7) H P 7) = 1w = (@) (2.7)

P'(w,u',7) =
where H(z) is the Heaviside function, D(w',v) = min|( 3((Aw)?)), ((w) —
Winin), (Wmaz — (@))], and ((Aw)?) is the mean square dispersion about the mean
scattered energy. Here wy,i, and wmay are either the minimum and maximum
photon energies handled by the numerical code under consideration, or 0 and
co in the general case. This procedure always gives the correct value for (w)

and a good approximation for (w2>, the second moment of the scattered photon

distribution.
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The most serious limitations of this scheme arise from the “top hat” shape
assumed for P'(w;w', ). The real scattered distribution is often peaked and may
be quite asymmetric. The electron and photon distributions typically considered
in AGN models (extended power laws) appear broad enough to smooth away
most of the effects of this discrepancy. However, as seen in Fig. 2, there may be

a residual deficit of high energy photons.

Based on several comparisons with results obtained using the exact proba-
bility distribution, errors up to ~ 25% in the photon distribution are found for
values of w < 0.lwmge when pair production is not important. (wmae is the
maximum photon energy for the problem under consideration. When w > w maqqz,
problems due to the inadequate dispersion discussed above set in, and the er-
rors can be significantly larger.) For models with significant pair production,
the maximum deviation seen was of the order of 40% percent, with the typical
error, however, still < 25% (for w < 0.1wmaz). Including dispersion even in this
simplified manner produces significant gains in accuracy over a delta-function
approximation, especially at the highest energies. The resulting scheme is quite

fast and vectorizable.

In closing, we note that the approach described may be easily extended to
thermal Comptonization problems (where the inclusion of dispersion is essential
— omitting it leads to incorrect spectral indices and artificial features in the
stationary spectra). For temperatures 7 = kT./mec? < 0.1, using the top hat
approximation with (w) and (w?) averaged over a Maxwellian electron energy
distribution gives answers accurate to ~ 25%, except at the highest energies
where the spectrum again rolls off prematurely. For 7 2 0.1, the fractional

change in photon energy per scattering becomes large and this method fails. (A
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series of bumps appears in the expected power law spectrum, corresponding to
the distinct steps in the upscattering of a soft photon.) A better scattering kernel
which remedies both this and the premature roll-off problem may be constructed

by doing a Laguerre integration over top hat distributions, i.e., by using

N N

K(w,o!,7) = (> P! (w0, 3R, 7))/ S i (2.8)

i=1 =1
where ¢; = w,;'yi(’yiz - 1)1/2, v; = z;7 + 1, and x; and w; are the zeros and weight
factors for the NP Laguerre polynomial (see Abramowitz & Stegun 1965, p.
923). Here ny is the total number of thermal electrons, and K(w,w’,7) is the
scattering rate of photons with energy w’ into energy w by those electrons. For
N = 6, reasonable agreement (5 30%) with Monte Carlo calculations is obtained
for temperatures up to 7 ~ 10. This kernel proved convenient in our numerical
applications as it used the same tables we had computed to deal with non-thermal
Comptonization. With regards to alternative kernels, we remark that a Gaussian
kernel (with o = ((Aw)?)1/2, e.g., as used in Kusunose & Takahara 1985) works
better than the simple top hat approach at low temperatures (it does not roll off

quite as prematurely) but fails in a similar manner for 7 2 0.1.

2.4. Mean Scattered Photon Energy, (w)

To derive the required quantity (w), it is much easier to work with the angular
probability distribution Py, o(p, o;w’,y) where o = cos(6) than with P(w; W' ).

w) 1s then given by:
is then g b

+1 +1
) = [ [ doa(on, )P o, ) (2.9)
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where
!
T
@ = [y(1 = Bp) +1Ba(n - B)(=),
and
/ da(p,a,w’,fy) '
PM;G(I‘L: a; W 7'7) = C(l - IBIU‘) dox /R(w :7) (210)
with
do(p, a,w', ) 3 LU T 9
dot _§UT(-:I—:) (;74"—:;—14-0& ) (2.11)

z = yw'(1 — Bp) and &' = z/(1 + (1 — a)z) are respectively the incident and

scattered photon energies as viewed in the electron rest frame.

In evaluating this expression, it proves most convenient to perform the first
integral analytically and the second numerically. (The second integration may
be done analytically, however — see the expression for (dvy/dt) in Jones 1965.)
Making the variable change (suggested to us by P. Madau) @ — z', the integrand

becomes an easily integrated polynomial in z’. The end result is

dorcx

<W>(,U,,w’,")’) = 8’wa(w’,fy) l (1 f2$)[a +’)’(il¢ - 2)

—(2y+a)/z — a(Gm"2 + 33}‘3)]

+ —I“(l;; )y ot 3a(e ! +27?)
+ el = pgela 4 a7 4 (o k) 4 20)
+ %(1 - (I‘T_lz“a;‘)g)h tafzt 272 - 2aw~3}

(2.12)
where a = y20w'(p — B). The desired (w) is then fjll é;((.ﬂ(,u,t.u','y). (For scat-
tering off a thermal pair distribution, Barbosa 1982 has derived a somewhat

complicated series expansion for (w) and (w?).)
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Some useful limiting forms for (w) are:
()~ (1+ 47367 - !, B’ < 1, (2.13)

and

(w) = - fyzw', 1< v w'_l. (2.14)

Note the conditions for the validity of this last asymptotic form. In particular,
when there are significant numbers of scatterings with w'y ~ 1 (e.g., Fig. 2), it

may be a very bad approximation to use for (w).

These limits unfortunately do not suggest any approximations valid over a
sufficiently wide range of v and w’. Also, because (w) is a function of two vari-
ables, other standard approximation techniques (e.g., fitting with a polynomial)
do not appear very useful in providing an analytic approximation both simple
and accurate enough for use in a calculation. A good, relatively fast numerical
approximation may always be constructed through the use of an interpolation
table. A table of 20 x 20 entries covering the range 1 < v < 102, 1072 < w' < 102

gives values accurate to ~ 5%.

2.5. Dispersion about (w)

Following the previous section, we write
1 g, [+
(w2>(w’,fy):/1 7”/ 1 dawzpﬂ,a(y,a;w’,fy) (2.15)

where

EZ B ,),2w/2[(,y(1 - ﬂ,u) + f),lga(,u — ﬂ))z -+ 21'52(1 — 042)(1 — #2)]' (2.16)
= [L+9(1 = Bu)(1 - a)o)]?
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The dispersion is then given by ((Aw)?) = (w?) — (w)2. Note that, as above,
the integral over @ may be done analytically. The result is too cumbersome to
include here, however. (w?) has been evaluated numerically and tabulated. We

have found only two useful limiting forms. These are:

14 176 _
((4.’2) ~ —5—’)’460,2(1 — -5-5-’)’(0,), 1 < Y < UJ,

! (2.17)

and

N64ﬂ72w’2
[(67w'(1 + B)(27% + 1) + 672 + 3) In(2yw'(1 + B) + 1)

R(w', 7)(w?)

— (67w (1 = B)(272 + 1) 4+ 67° + 3) In(27w'(1 — 8) 4+ 1)] (218)
9 2123 58y +1 T 2
+3—2(1—ﬁ )y w’-—m‘,—+3—2[27 (1-p%)+1],

wly > 1.

Using (2.5) for R(w',7), one obtains an approximation for (w?) good to within

10% by yw' ~ 40.
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3. Pair Annihilation

3.1. Cross-Section

As in past work (e.g., Aharonian et al. 1981b, 1983b, Ramaty & Mészdros
1981, and Svensson 1982), we assume that the incident electron and positron dis-
tributions are isotropic and unpolarized. The invariant differential cross-section
(e.g., BLP § 88.15) may be integrated to give the total cross-section as a function

of the center-of-mass speed 3’ of the incident particles:

n_ L[ Bop(1-B7)3-p" 148
U(ﬂ)_§/d0_ 527 [ B 111(1_[6,

Note that to avoid double counting in the derivation of the total cross-section,

)-202-8%]. (1)

the cross-section obtained by integrating do must be divided by two since the

two photons produced are identical particles.

3.2. Pair Annihilation Rate

The pair annihilation rate is
+1 du
Rev-v) = [ B inB- B 0o (8-, B4, ) (32)

-1

where

Fuin B Bas i) = /B2 + 0% — B203 (1 — u2) —28_Byp,  (33)
and o(08—, B+, p) is the total cross-section (3.1) with

2 (=1 —pByB-) — 1)
(=1 = pB4B-) + 1)

g

The integral can be performed analytically, e.g., eq. 18, Svensson (1982).
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Useful asymptotic forms for R(y_,v4) are:

(1) B—,B+ < 1 (non-relativistic regime),
3
R(v-,7+) = geor; (3.4)

(ii) B— or B4 < 1 (useful for energetic pairs impinging on a non-relativistic

pair population),

R(y-,7+) = R(B) = cBo(B'); (3.5)

where 8 represents the non-vanishing B_ or B4, o(8') is defined

above,
and (' reduces to (y — 1/y + 1)1/2 with vy = (1 — /82)#1/2-

(iii) y—y4 > 1 (relativistic regime),

col| w

R(v—,7+) = R(y—7+) = georIn(v—v4)/7-7+ (3.6)

One should note that for case (iii), R converges slowly to the limit given. The
difference between the two only decreases from 10% to 4% as y_-4 increases

from 10 to 108.

A simple approximation to the exact R(y—,v4) may be found by interpo-
lating between the limiting cases (i) and (iii). The expression we have found to

work best is:

ROr-,74) % R(e) = 2 4 na)], & = -7+ (3.7)

This expression is accurate to within 14% for all v_,v4+. A graph showing the

exact and approximate pair annihilation rate for y_ = 5 is shown in Fig. 3.
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3.3. Average Photon Energy, (v), and Dispersion about (w)

Energy conservation and the fact that the created photons are identical par-

ticles implies

(w) = Z:%J_i (3.8)

Following the example of Compton scattering,

c +1 +1 o(o
@ = sy | Thenle) [ del G ) 39

where o is the cosine of the center-of-mass scattering angle, and:

do  3op [1+0%2—-0a?) 20'%(1—a?)?

da 16ﬂ’7’2[ (1-p%2)  (1-pa2)? ) )

—2 _ 7,2 149 ! 2 1 _a2 1 2 ¢l 3 2 1
W (Q;M)—m[ +2aBcprcos & + Pl 7 +§COS £(3a” - 1)]],
(3.11)

2 42 2 32 1/2
)BC']I{[ _ (7—'8—- + 7+IB+ + 2’)’+’Y—ﬁ+ﬂ—ﬂ) ’ (312)
T+ + -

cos ¢’ = ﬂgll‘lﬁ’_l(%), (3.13)

and 7' = (1 -4 2)_1/ 2 There do not appear to be any useful analytic approxi-

mations for (w?). ((w?) was calculated numerically and tabulated.)

3.4. Comparison with Exact Results

To demonstrate the accuracy of the prescription just presented, we calcu-
late (numerically) the photon distribution produced by power law “non-thermal”
pairs annihilating on cold pairs. This corresponds to the “cosmic ray” case dis-
cussed in Aharonian et al. (1983b) and Svensson (1982) for which a relatively

simple analytic expression for the annihilation spectrum exists (e.g., Svensson
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1982, eq. 41). This is also the typical situation encountered in codes of the type
described in paper II (Coppi 1990), where cooling (approximately power law)
non-thermal pairé annihilate primarily with cool (T < 0.01mec?) thermal pairs.
As can be seen in Fig. 4, for example, the approximation is adequate, with an
error of less than than 10% over the range 0.8 < w < 35, the range in which most
of the annihilation photons lie. Note, though, that this approximation tends to
overestimate the production rate of low energy photons. In applications of the
type discussed in paper II, however, thése photons may usually be ignored as fhe

photon distribution at such energies is dominated by photons from other sources.
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4. Photon-Photon Pair Production

4.1. Cross-Section

As in previous work (e.g., Gould & Schréder 1967, Aharonian et al. 1983a,
1985, and Zdziarski 1988), we assume that the distribution of incident photons is
unpolarized and isotropic. Photon-photon pair production is the inverse process
to pair annihilation. The cross-section is therefore identical to equation 3.1 except
for a different phase space factor and a factor of 2 due to the fact the electrons

and positrons produced are no longer identical particles, that is (e.g., BLP § 89):
2 2
doyy—see = B doccnyy; Tyy—ee = 26’ Teeyy. (4.1)

The total cross as a function of 3', the center-of-mass speed of the electron and
positron, is thus

3o _ A I
o) = [do =2 i3 gy ~ 282 - p7)]. (a2)

4.2. Pair Production (Photon Annihilation) Rate

The desired rate of conversion of photons into electron-positron pairs by

photon-photon pair production is given by

Mmaz dll;

Rlws,wn) = e [ 770 = potwr,onin) (4.3)

where o (wq,ws; ) is the total cross-section (4.2) with ' = (1 —2/w1w2(1—,u))1/2.

The upper limit of integration ptmgy = max(—1,1 — 2/wjwy) is determined by

the requirement that 8’ remain real. Note that R(wq,wsg) is really a function of
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one variable, # = (wjws). A graph of this function is shown in Fig. 5 (see also

Gould & Schréder 1967).

Two useful asymptotic limits for R(w1,wy) = R(x) are as follows:

(i) # — 1 (threshold ),
R zeor(a — 1%, (4.4)
(ii) > 1 (ultra-relativistic limit),
3
R — anTln(a:)/a:. (4.5)

As in the case of pair annihilation, R approaches the ultra-relativistic limit slowly.

A fairly good approximation may again be constructed by interpolating be-

tween the limiting cases, e.g.,

(x —1)%/2

R(z) =~ cor
(m) CU] $5/2

(%w—l/z + Zln 2)H(z — 1), (4.6)

which has a maximum error of 12%. Aharonian et al. (1983a) have derived a
more complex alternative expression (eq. 6 of their paper) with the same limiting
behavior, but accurate to better than 5% at all energies. A simpler alternative

to either, very accurate near the peak of R(z) (at zpeqr =~ 3.7), is given by

£-‘i-i)ln(atz)ft[(ac —1) (4.7).

R(z) ~ 0.652 cor 3

Over the range 1.3 < = < 10% (which usually dominates in calculations), this

expression is accurate to better than 7% (see Fig. 5).
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4.3. Average Pair Energy, (v), and Dispersion about (y)

From energy conservation and symmetry considerations,

_wptwy

() =—5— (4.8)
while (v2) is given by

c +1 +1 (o
0 = ooy [, wa-m [ el (a9)

where a is the cosine of the center-of-mass angle, and:

1/2

o 3op(w” = 1) [w’2 F (12 —0?) 2w —1)(1- az)"’] (4.10)

2 W' ! ! 2 12 1-a? 1 2 ¢l(q 2
7 (o, ) = —-1———'2-——[1+20éﬂ Pem cos& +Poyu B [——5—+5 cos” £(3a”-1)]],

(L —B&n)
(4.11)
(w? 4 w2 + 2wwop 1/2 ]
Boy = ——2 ) : (4.12)
wq + wy

cos¢ = (wl — wz)(w% + w% + 2w1w2u)_1/2, (4.13)

and w' =4 = (1 - /6'2)_1/2. The dispersion was evaluated numerically.

4.4. Photon Absorption Probability

We comment briefly on an approximation that has been used to estimate the
value of d7yy/ds(w), the absorption probability per unit path length of a pho-
ton due to pair production. In calculations of the type carried out in Svensson
(1987) and Lightman & Zdziarski (1987), the process of pair production is of-

ten quite significant in determining the overall shape of the equilibrium particle
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distributions. Accurately estimating the pair injection spectrum produced by an
annihilating photon spectrum is thus important and requires a correspondingly
accurate estimate of the absorption probability. (The absorption probability
dr/ds(w) is closely related to the pair production rate R(z), and for a general
photon distribution n(w), is given by %fooo dzR(zw)n(z).)
Svensson (1987, Appendix B.2) has shown that for a photon power law ex-

tending from w = 0 to w = oo, dryy/ds is given by the formula

_ n(3)
dryy/ds(w) = n(a)or — (4.14)

(Here o is the index of the power law, and 1 runs between 0.24 for o = 0.5 and
0.12 for @ = 1.0.) A simple approximation can thus be constructed by taking
this result and fixing the value of n at some intermediate value (usually 0.2).
(One might arrive at the same estimate for d7/ds by noting that R(wi,wy) has

a maximum value ~ 0.20c for wg ~ 1/wq. Hence,
1.1 _
dr/ds(wi) ~ 0.20pn(—)(—) (4.15)
w1 w1

where the range of energies over which the integrand is taken to be “large” is
~ 1/wy.) However, as seen in Fig. 6, this approximation can lead to serious errors

of order a factor 2 or more when applied to a realistic photon distribution.

4.5. Accuracy of Present Approximation

To check the validity of the dispersion prescription presented, we have com-
pared the distribution of produced pairs calculated with our method against that
calculated using the exact distribution (see Appendix A.2). A sample calculation

is shown in Fig. 7. The results agree to better than 15% at all energies, with the
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largest errors at the minimum and maximum pair energies. The good agreement
reflects the fact that the exact distribution is always symmetric about (y) and

has a shape often resembling the “top hat” shape assumed for the approximation.

Also shown in Fig. 7 are calculations based on the approximate distribution
presented in eq. 11 of Aharonian et al. (1985) and the delta-function approxi-
mation (where all pairs are produced at the average energy ()). The Aharonian
approximation is similar to the one made in Jones (1968) for Compton scatter-
ing and is valid in the regime w; > max(wy,1) (where w; is the larger of the
incoming photon energies). Use of the approximation works extremely well at
high energies but leads to errors of order unity at energies v ~ 1. (There most of
the pairs come from the annihilation of photons with wy ~ wy ~ 1). As expected,
use of the delta-function al)proximation also leads to errors of order unity, partic-
ula.rly at the highest and lowest pair energies. These disagreements can impact
signiﬁcéntly the equilibrium pair distribution (and hence the equilibrium photon

distribution) calculated by a code such as that of Lightman & Zdziarski (1987).
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5. Coulomb Scattering

Coulomb scattering usually represents only a minor contribution to the over-
all energy balance, although substantial changes in the equilibrium pair and
photon distributions can ensue if it is neglected. For most applications, the ef-
fects of Coulomb scattering may be treated as an energy exchange term between
non-thermal and thermal pairs in the pair kinetic equations. (For a full Fokker-
Planck treatment, see Dermer & Liang 1989). For the non-thermal pairs, this

term takes the form

oo +1 4
”'YZC/l Ol“np(ﬁ)/_1 —Z&fkin(%71;#)(01\7)0:(%71,M) (5.1)

(see Stepney 1983, Baring 1987a,b, Haug 1988). Here, 7 is the rate of change of
energy for an electron or positron of initial energy v scattering off an isotropic

thermal distribution of electron or positrons described by

28 exp(—y1 /T
P(vl)d“rl:NTvlﬁ,HK;(l/:)l/) 1 (5.2)

where 7 = kT /mec?, Ko(z) is a modified Bessel function, and N is the total

number of thermal electrons or positrons. fp;,(7,71,#) is the kinetic factor of

eq. 3.3, and

oamatram) = [ dafT T A 0, m)) (5

where « is the cosine of the center-of-mass scattering angle. For electron-positron
or electron-electron Coulomb scattering, Ay(a,v,71) = %(fyl - 7)1 — a), and
do/do is the differential cross-section for: (i) “Babha scattering” (e.g., BLP
81.20) in the case of an electron scattering off a positron, or (ii) “Moller scatter-

ing” (e.g., BLP 81.10) in the case of an electron (positron) scattering off another
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electron (positron). The usual Coulomb divergence of (5.3) is eliminated by ig-
noring scatterings smaller than some angle 6,,,;,, i.e., setting amaz = cos(bpmin)
where In(1/6,,in) ~ In A, the Coulomb logarithm. For Babha scattering, a ,;n, =
—1, while for Moller scattering (to avoid double counting), amin = 0.
When InA 2 10, (In A is typically ~ 25 under conditions in AGN), (¢ A7)

is well-approximated by

_ 3orm —7)

o A7)a = 64e2
€2 4 p? 2 8¢t — 1 124 +1  8p? (2 4 p?)  2p*
[(4In A+ 41n2)( 7 ) —2( 2 )+ a3 w: + —621—]
(5.4)
in the case of Babha scattering, and
3or(y1 =), &+
(0 AY)o = I( ) (2lnA+1—1n2)+1/2+41n2] (5.5)

32¢2 P2

for Moller scattering. € = (%[l +y71(1 — ,Bﬂlu)])l/z is the center-of-mass energy
of one of the incoming particles, and p = v/e2 — 1. The remaining integrals are
be;st evaluated numerically (although one more integration may be performed
analytically by means of the variable substitution discussed in Haug (1988), eq.
14-15). For 7 < 1, the integration over y; may be done quickly by a Laguerre
integration method. For 7 > 1, however, care must be taken because of the large
negative exponents that can arise if terms are not combined in the right order
(c.g., as in eq. 15 of Haug 1988).

In the limit of relativistic pairs scattering off a cool thermal pair distribution
(r < 1,9 > 1), it follows from (5.4,5) that 7 ~ ——-%O'TCNTIIIA, or 1/7¢e =
/7 = 47rcr%NT'y_1ln A, the result of Gould (1975). As noted there, the rel-

evant value of A to be used is ~ 71/2mec2/hwp, where wp = (47rNTe2/me)1/2
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is the plasma frequency. In calculations where 7 is typically < 0.1 (e.g., Fabian
et al. 1986), this approximation is adequate for energies v > 10. A better ap-
proximation may be constructed by interpolating between various limits given in
Dermer (1985), Frankel et al. (1979), and Haug (1988):

~ SUTCNTG(:E - :130)331/2 1

@1 1) e (5.6)

where

_ A 2 2
@2 41/4), By = eGP
€

)
mecles pg

(5.7)

A =1/2 = In(vV20,3,,) + (

s = ((€+1)/2)'/2, ps = (e = 1)/2)Y%, & = (e = 1)/r, =g = 1+ 7/(1 +7),
p= (ez - 1)1/2, and € is the energy of the non-thermal electron. This expression
is good to within 10% for 2 6xz¢, and to within ~ 25% at = ~ 2z(. The largest
errors occur in the neighborhood of # = ¢ since the fit near 4 = 0 is not very

accurate.

6. e-e Bremsstrahlung

Electron-electron (positron) bremsstrahlung is usually of minor importance
in determining the photon and electron distribution functions. As a first step
towards gauging what effects it may have, we consider two contributions: (i) radi-
ation from a thermal electron-positron plasma and (ii) emission by a non-thermal
electron (positron) plasma interacting with a cold background electron-positron
plasma. Contribution (i) has been dealt with extensively in the literature and
good fits to cooling rates and emmission spectra are available (see Dermer 1984,
1986; Haug 1975a,b, 1985a,b, 1987; Stepney & Guilbert 1983). To estimate con-

tribution (ii), we have taken the cross-sections given in Haug (1975a, 1985a) (cf.
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also Alexanian 1968, Bayer et al. 1968) and numerically computed the cooling
rates for an electron (positron) of energy v as well as the corresponding emis-
sion spectra. Numerical tables (and the subroutines for generating them) are
available. Note that the total radiated luminosity from non-thermal pairs (con-
tribution ii) can be comparable to or exceed that from the thermal pairs alone

(contribution i).
7. Discussion

It has been realized over the past ten years that electron-positron pair plas-
mas are probably present in a variety of astronomical sources, and that they
can be observed, both directly with y-ray telescopes and indirectly through their
influence on lower energy photons. Modelling of pair plasmas has been hindered
by the complexity and strong energy-dependence of the cross sections. A vari-
ety of approximations has been devised to deal with this, many of which have
proven inadequate. In this paper, we have collected and developed a set of rate
coeflicients to deal with relevant elementary processes in the context of a ki-
netic approach to the problem (cf. Paper II). Kinetic approaches are most useful
for dealing with environments where there are large ranges of photon frequency
present and consequently, large ratios of soft photon to y-ray densities. Their
most serious deficiency is that radiative transfer can be easily handled in only
the most primitive manner (but see Kusunose 1987).

The two most serious shortcomings of our work are the immediate assump-

tion that the radiation and the pairs are isotropically distributed and the neglect

of polarisation effects. A small, tangled magnetic field will guarantee electron
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isotropy which will vindicate our assumption for electron-electron and electron-
photon processes. However, under the conditions of small optical depth we en-
counter, pair production and photon-escape are not necessarily well simulated.
Additional complications arise in expanding or highly magnetized sources where
additional preferred directions are introduced into the problem. If the plasma
contains a significant magnetic field, then Faraday rotation can depolarise the
radiation between scatterings at low frequencies (Blandford & Rees 1978). How-
ever, this will not occur at X- and ~-ray energies and as the expected optical
depths are small, large degrees of polarisation might be measurable. This de-

serves further study.
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Appendix

A.1 Exact Energy Distribution of Compton Scattered Photons

Equation 20 of Jones (1968) appears incorrect and should read

d*N _ crgoc [1 -+ y% + 2yobén + 527;2
dtdadz'dy — 2¢4ad(02 4 €2 + 20¢2')1/2 (a + bn)
(a/7)(1 —yo — én)? 1

(1 —B2')(a + bn)? ] (1 —n2)/2(1 - B2')
(A.1.1)

_l_

The subsequent equations (21,24-27) also appear incorrect. Integrating the cor-

rected version of eq. 20 over 77, one obtains (changing notation slightly)

dP ' 3orcw
dz 1674w 2 R(w!,7)(B2 + € + 20ez)1/2(1 — Bz2)

X [zyok — ak? + (a® — b2)7V2[(1 + y?) — 2ayok + ak?]

1 _1/20(2b — a)
k2 kZ d,2 . b2 1/2
T ea gk TR A P
+ (a2 — 07) 7%/ 2a(1 ~ y9)? + 2kb%(1 - o) — ba®k?]]|
(A.1.2)
where € =w'/y, k =v/w,a =1~ Bz~ (1 —yg)/k, b= §/k, and
B (e+B82)(p+ep—1+pz) (A.1.3)

vo = p(B2 + €2 + 2Pez)

B(L = 22)12[0%8% + 2pe(1 — p)(1 — Bz) — (p— L + B2)*]1/2 (A.1.4)

o= p(B? + €2 + 20ez) ’

with p = w/w'. Somewhat time-consuming integrals needed to evaluate this are

as follows:

1 2 9
& T - - 5 Al5
/—1 77(a, + 677)(1 __172)1/2 7r|:b2(a2__b2)1/2 bz]) ( )
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and

a (2b — a) a? ]

1 2
i 1
d == 4+ — _
/-1 e+ P —2) 12 ”[b”b%a—b)(az—b%l/z b(a2 — b2)3/7
(A.1.6)

The required energy distribution of Compton scattered photons is then given by

P(w;w',y) = [7* dz% where

oo =max| — 1,871 — p(d + (d® — 1/742)Y/2)), (4.1.7)

and

2 = min[ + 1,871 — p(d — (d? — 1/4%)1/2)]), (4.1.8)

and d = 1+ €—€ep. The minimum and maximum values of the scattered energy w
may be determined by using Fig. 3 of Jones (1968) and following the accompany-
ing discussion. Although the integral over z may be performed analytically, the
resulting expression is even more complicated and for some parameter regimes,
difficult to evaluate numerically (see again Jones 1968). %Izi, on the other hand,

is relatively well-behaved and easily integrated numerically.
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A.2 Exact Pair Energy Distribution for Photon-Photon Pair Produc-

tion

Aharonian et al. (1983a) contains a derivation for the energy distribution
P(v4;wy,ws) of pairs produced in the annihilation of two photons with energy w1
and wy. Unfortunately the expressions given there appear to contain misprints.
Also, we do not find the logarithmic divergence in the pair energy spectrum
claimed for the case 74+ = wy = wy. An alternate expression may be derived by
following the analysis of Svensson (1982) and making the minor modifications

required for the case of photon-photon pair production. The result is

P(y4;wy,wy) = ° X
TE WL @)= ’)’cm,gcm’)’c,BCR(wl,wz)
+1 d 2T d
", ] o
[ Fa-w [ asr6E - DEO - )25 6),

(A.2.1)
I 2 =1 1 - = (y2, — 1)1/? = 2
where Yem Ewlwz( 1), Bem = (Vém )% [Yem, Ye (w1 + w2)/27em,

Be = (73 - 1)1/2/707 z = ('Y:I: - ’)’cm’)’c)/’ch’)’cﬁcﬂcm, and

do 3orBemy 1 4 1 1
= — ¢ _ 14 — _

B 1 [ 1 + 1 }
278 L(L = Bemaz)? (L + Beme)?

with z = yz+(1—y2)1/2(1——z2)1/2 cos ¢, and y = (w1 —wy)/Pe(wi+ws). R(wy,ws)

is the pair production rate (eq. 4.3), and H(z) is the Heaviside function.

This expression is easily evaluated numerically. We have verified (numeri-
cally) that it gives the correct first and second moments of the pair distribution
(eq. 4.8, 4.9) and is properly normalized to unity ( [ P(y+;wq,wg)dy+ =1). We
also obtain excellent agreement with the Aharonian et al. (1985) approximation

in the region where the approximation is expected to work. The minimum and



52
maximum possible pair energies for a given w1, w9 agree with the limits given in

Aharonian et al. (1983) (see their equation 22 and accompanying discussion).
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Figure Captions

Figure 1. The Compton scattering rate R(w,7y) vs. the approximation
given in eq. 2.6. The electron energy has been fixed at v = 20. Note that R(w,~)

begins to deviate significantly from opc well before wy = 1.

Figure 2. Comparison of the results of using various approximations to the
distribution of Compton scattered photons P(w;w’, ). The electron distribution
used was generated by running a “photon-starved” model (I5/le = 0.03) with
steep (I' = 2.4,Ymaz = 10?) power-law pair injection. (See for example Lightman
and Zdziarski 1987; the model corresponds roughly to their model “h.” [/l is
the ratio of the injected soft photon luminosity to the injected pair luminosity,

I' up to a maximum injection energy Ymaz-)

and the pair injection rate goes as v~
For the calculation shown, the electron distribution was held fixed and the pho-
ton distribution that would be in kinetic equilibrium with it was then determined
by adding up several “orders” of Compton scattering (e.g., see Ghisellini 1987b).
Note that in this calculation, electrons with low v are very important and that
many (~ 10) orders of scattering contribute. The P(w) o< §(w — 4/372wy) scat-
tering approximation employs a Klein-Nishina cutoff for the scattering rate and
is the same as used in Lightman & Zdziarski (1987) and (modulo a factor of
4/3) Fabian et al. (1986). The “corrected” (P(w) o §(w — (w))) delta-function
approximation is the same except that the correct scattering rate and average
scattered energy (w) are used. The “Jones” approximation uses the approxi-
mate scattered distribution derived in Jones (1968) and employed, for example,

in Zdziarski (1988). The “two moment” approximation is the one presented in

this paper, and the “exact” scattered distribution was computed using eq. A.1.2.
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For w < 100, the maximum error of the “corrected” delta-function approxima-
tion is ~ +50%, while the two moment approximation has a maximum error of
~ +25%. The Jones approximation has a maximum deviation of =~ 50% at w ~ 1.
Note the premature roll-off of both the corrected delta-function and two moment

approximations at the high energy end of the photon spectrum.

Figure 3. The exact annihilation rate R(y_,v4) vs. the approximation
given in eq. 3.7. The electron energy has been fixed at v = 5. The maximum

deviation between the two rates is less than 14%.

Figure 4. The annihilation spectrum (in arbitrary units) produced by power
law pairs (N(7) oc v=2, 1.1 < 4 < 103) annihilating on cold (8 = 0) pairs. The
exact spectrum was calculated using eq. 41 of Svensson (1982) while the approx-
imate spectrum was calculated using the two moment approximation presented
here. For 0.8 < w < 35, the maximum deviation between the two is less than

10%, and less than 30% for 0.75 < w < 500.

Figure 5. The pair production rate R(wjwy) vs. the approximation given
in eq. 4.7. Over the range 1.3 < wjwy < 104, the maximum deviation between

the two is less than 7%.

Figure 6. The “optical depth” to photon-photon pair production (see sec.
4.4) calculated for a photon distribution corresponding roughly to that of model
“P” in Lightman & Zdziarski (1987). The approximation 7yy(w) o< 0.2n(1/w)/w
is the one employed in Svensson (1987) and Lightman & Zdziarski (1987). The
other curves were calculated by integrating the photon distribution over the exact
pair production rate R(wjwsg) and the approximation given in eq. 4.7. Using eq.

4.7 gives an answer accurate to better than 2% over the frequency range shown.
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Figure 7. The pair “spectrum” (in arbitrary units) produced by the annihi-
lation of photons in the same distribution as considered for Fig. 6. The “AKV”
approximation uses the approximate distribution presented in Aharonian et al.
(1985). Note that this approximation is not very good for v ~ 1. The “delta-
function” approximation curve is calculated using the exact pair production rate
but assuming that the created pairs all have energy (y) = (w; + wy)/2. The
“two moment” approximation is the oﬁe presented in sec. 4 of the fext, and the
“exact” distribution of pairs was computed using eq. A.2.1. The “¢two moment”

and “exact” results agree to within 15%.
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Exact Compton Scattering Rate vs. Approximation (y=20)
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Comparison of Compton Scattering Approximations
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Exact Annihilation Rale vs. Approximation (y_ =5)
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Annihilation Spectrum (N(y)oxy~2?)
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Exact Pair Production Rate vs. Approximation
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Optical Depth to Photon—Photon Pair Production
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Photon—Photon Pair Production Spectrum

10°

T rrrm

10" |

1072

1078
1077

1078

T T T T 1T T T 7] T T T T TTTT T

AKV Approximation

1 ] 1 1

[ 1 1 1

Two Moment Approximation
Delta—Function Approximation
Exact Distribution

T

LI

(IR

Ll

Pl oo v el 3ol

Lol

10°°

10! 10%

Y

Figure 7



67

Chapter 3

TIME-DEPENDENT MODELS OF MAGNETIZED PAIR PLASMAS

Submitted to Mon. Not. R. astr. Soc.
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Abstract

A numerical code has been developed to study the time evolution of electron-
positron plasmas. The code solves in a self-consistent manner kinetic equations
describing the effects of: Compton scattering, two photon pair production, pair
annihilation, cooling of pairs via Coulomb scattering, e-e bremsstrahlung, and
synchrotron radiation. The kinetic equations are derived under the approxima-
tion of homogeneous and isotropic particle distributions following the discussion
in Coppi & Blandford (1990). Both stationary (equilibrium) and time-varying
output radiation spectra have been computed. Good qualitative agreement with
previous calculations is found, except where the differences are attributable to the
improved treatment of the microphysics. These differences can be substantial.
In magnetized plasmas, the self-absorption turnover frequency is found to vary
weakly with the model input parameters. In particular, for mono-energetic injec-
tion at energy 7inj, the turnover frequency vy is ~ 3 x 1013y 11({3 fyi;;-/ 3 Hz, where
U is the smaller of either the magnetic or photon energy density (measured in
units of 10% ergs/cm®). This may be relevant to the spectra of radio-quiet AGN.
Also, the spectral index of '_che inverse Compton scattered radiation can differ
significantly from the associated synchrotron radiation spectral index. (In fact,
the equilibrium photon and pair distributions are often not well-described by
power laws.) Varying the energy and particle inputs to the pair plasma gives
rise to many different types of spectral variability. The response of the plasma
depends sensitively on both the current state of the plasma and the details of
the changes in particle injection. Using time variability as a diagnostic (e.g., to
determine the relevance of the models considered here) may thus prove difficult.

A possible signature, however, is the response to a significant decrease in the

injection of energetic pairs. If the initial Thomson optical depth is order unity or
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more, the photon spectrum decays from the high energy end downwards (lower
frequencies lag higher frequencies). The decay of the continuum usually uncovers

a prominent, long-lived annihilation feature.
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1. Introduction

As noted by Jelley (1966) and Herterich (1974), significant electron-positron

pair production is likely to occur in a compact energetic source such as the

’ can radically alter the

central engine of an AGN. The resulting “pair plasma’
emergent spectrum of radiation that must pass through it. Energetic pairs in
the plasma can Compton upscatter an initially soft (e.g., IR, UV) spectrum to
X- and gamma-ray energies, while cool pairs can add an annihilation feature at
~ 0.5 MeV (e.g., as seen in the Galactic center). The plasma may also effectively
reprocess gamma-rays into X-rays (see Svensson 1987), disguising the true nature

of the source. Finally, the plasma, with its characteristic (non-zero) response

times, will play a large role in determining the observed source variability.

Early attempts to describe pair plasmas (e.g., Bisnovatyi-Kogan, Zel’dovich
& Sunyaev 1971) made the simplifying assumption that the pairs were in ther-
mal equilibrium, i.e., that their distribution functions could be characterized by
a (relativistic) Maxwellian of fixed temperature. The first detailed investiga-
tions concentrated on understanding the effects of pair-photon Compton scatter-
ing. These culminated in the work by Sunyaev & Titarchuk (1980) who studied
“Comptonisation” in plasmas with low pair temperatures and large Thomson op-
tical depths using the Kompaneets (1957) equation. Their results were verified
in Monte Carlo simulations (e.g., Lorentz 1981, Gérecki & Wilczewski 1984) and

extended to mildly relativistic pair temperatures by Zdziarski (1985).

A more complete description of a pair plasma and photon-pair interactions,
however, must also treat the processes of pair production and annihilation. More-
over, since Compton scattering and these two processes alter the number and

energy of the pairs in the thermal distribution, one cannot realistically assume a
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fixed pair distribution. Much work has thus been devoted to self-consistently de-
termining the combined effects of these processes in a thermal plasma. The most
advanced treatments to date are probably those of Guilbert & Stepney (1985)
and Kusunose (1987) which are based on a time-dependent, kinetic equation
code and attempt to explicitly solve the radiative transfer equations. (For previ-
ous treatments, see Lightman & Band 1981, Araki & Lightman 1983, Svensson
1982 for analytical approaches to the problem, and Guilbert 1981,1983, Zdziarski

1984,1985 for the numerical approaches.)

Unfortunately there is good reason to believe that the pairsin a péir pl'asiﬁa
are not in thermal equilibrium. Assuming, for examplg, that pair énrﬁhilation
balances pair production in a thermal pair plasma leads to a maximum soﬁrce lu-
minosity which appears ‘to be exceeded in observed AGN (e.g., Araki & Lightmaﬁ
1983). Moré inﬁporta.ntly, thermalisation times for mildly relativistic pairs are
likely to be quite long comparéd with other timescales in the problem, sée Step-
ney (1983). The pair distribution is thus likely to have a significant non-thermal
tail. This tail is often approximated by a power law. However, one can show
that a power law does not even satisfy the stationary plasma kinetic equations
which include only Compton scattering, pair annihilation, and pair production.
Significant deviations from power law behavior can be expected, especially if ad-
ditional processes such as synchrotron self-absorption are included. To solve the
pair plasma problem satisfactorily, one therefore needs a method for handling
arbitrary photon and pair distribution functions. In addition, since pair plasmas
are likely to live in variable sources, whatever method is employed should be able

to trace the evolution of the particle distributions in time.
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Two approaches have been employed thus far. The first, using the technique
described in Pozdnyakov et al. (1977), is a Monte Carlo approach where indi-
vidual particles are followed as they undergo interactions inside the source. The
main advantage of such a scheme is that it is usually easy to model the radiative
transfer well. However, such a scheme typically suffers from relatively poor pho-
ton statistics at high frequencies (even when variance-reducing techniques like
photon splitting are used) and does not lend itself to time-dependent calcula-
tions. For examples of the Monte Carlo calculations performed to date, see Stern
(1985), Novikov & Stern (1986), and Stern (1988). The second approach involves
solving the relevant kinetic equations. Following the time evolution of the sys-
tem in such an approach is straightforward and photon statistics are not an issue.
The major problems facing this method are: (i) the resulting integro-differential
equations can be quite cumbersome as well as “stiff”(i.e., there are widely differ-
ing timescales in the problem), (ii) only simple prescriptions for radiative transfer
(such as an escape probability formalism) can be implemented easily on present-
day computers. For examples of kinetic equation treatments see Fabian et al.
(1986) (henceforth referred to as FBGPC), Ghisellini (1987a, 1987b), Lightman
& Zdziarski (1987) (henceforth referred to as LZ), and Svensson (1987).

In this paper, we have chosen to follow the kinetic equation approach. The
code employed for the work presented here is most similar to that of FBGPC.
Like them, we “discretise” the kinetic equations, placing particles in bins of
definite energy. We also make similar assumptions about the isotropy and spatial
uniformity of the pair and photon distributions. Our particular code, however,
is distinguished from previous codes in that we have significantly improved the

treatment of microphysical processes (see Paper I — Coppi & Blandford 1990)
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and added the effects of synchrotron radiation, electron thermalisation (Coulomb

cooling), and e-e bremsstrahlung.

After discussingin section 2 the physical details of the model considered along
with some nunerical “details” of the code, we proceed in section 3 to consider the
case of a stationary pair plasma with no magnetic field, comparing our results
with those obtained in previous work: In section 4, we consider the effects of
adding a magnetic field. Finally, in section b we consider the time behavior of

the system.
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2. Model Description

2.1. Microphysics, Physical Assumptions and Definitions

In the present version of the code, we consider the standard “pair” processes
of Compton scattering (ye — +e), pair annihilation (eTe™ — 77), and pair
production (77 — ete™). To these we add the processes of e-e bremsstrahlung
(ee — eey), Coulomb “cooling” (ee — ee), and synchrotron radiation (eB —
eB7). (See Svensson 1986 for a general discussion of which processes are rele-
vant.) All these processes are described by kinetic equations derived under the
assumption of homogenous and isotropic particle distributions, as well as of
tangled, relatively weak magnetic fields. We present here a discussion of only
those terms not already discussed in paper 1. In what follows, we refer only to
the pair distribution N(vy) since we we assume (as do LZ and FBGPC) that the
electron and positron distributions are identical, i.e., N, (7) = Ng+(7). Also, all
energies will be measured in units of mec?. N(vy) is thus the number density of
pairs with energy ymec?, and n(x) will be the number density of photons with

ENnergy Tme C2 .

Our treatment of synchrotron radiation tries to avoid some of problems inher-
ent in past treatments, e.g., Ghisellini (1987a). For the synchrotron emissivity,
we have taken the relativistic limit averaged over an isotropic pitch angle distri-

bution, i.e.,

9.3 T d co
Ve By —“sma/ di Ky 3(), (2.1)
mec? “ve' Jo 2 v/vesina

pV(V77) =

where v = 213?’)’2(83/777,66). (See Crusius & Schlickeiser 1986 for a more detailed

discussion.) This is a good approximation down to energies y ~ 3 and avoids the
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problems associated with delta-function approximations (e.g., premature cutoffs
in the spectra, artificial “spikey” spectral features — see the discussion in paper
I on Compton scattering). Because a simple cutoff approximation to the syn-
chrotron cooling rate misses many important effects (see Ghisellini 1987b), we
have used the Fokker-Planck formalism of McCray (1969). Note that this treat-
ment of synchrotron radiation is essentially the same as employed in de Kool et
al. (1989) and Ghisellini et al. (1988). Our code, however, makes no assump-
tions about the size of the radiation field energy density (i.e., the importance
of Compton scattering) as the Compton and synchrotron terms appear on the
same footing in the pair kinetic equations. Note also that Ghisellini et al. (1988)
have included non-relativistic corrections to their equations which for certain pa-
rameter regimes can affect the very low energy (y < 2) pair distribution. (The
McCray 1969 equations are strictly valid only in the limit v >> 1.) These correc-
tions, however, do not appear to affect significantly the photon spectra presented
here.

In modeling particle escape, we {ollow LZ and FBGPC. Pairs are assumed to
be trapped (e.g., by a weak magnetic field), and there is no pair escape term in our
kinetic equations. Photon eécape is modeled using a simple escape probability,

i.e., by a term in the photon kinetic equations of the form:

fesc(w) = —Zn(@)[1 + T f()] (2.2)
where
1 for z < 0.1,
flz)={ (1—2)/09 for0.1<z<1; (2.3)
0 for z > 1.
and

g N(0,2) = 2R{og nB)1(0, )N (2.4)
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as in LZ, eq. 2la. Here Ny is the number density of cool, thermal pairs,
(0 g v B)T represents an average over the thermal particle distribution, o g is
the Klein-Nishina cross-section, and R is the source radius. The function f(z)
compensates for the fact that as the photon energy = increases, forward scatter-
ings predominate, reducing the photon escape time. Under this approximation,
photons with energy # > 1 are assumed to free stream out of the source with
a characteristic escape time given by R/c, the light-crossing time. This ap-
proximation appears to reproduce reasonably well the results of Monte Carlo
calculations which deal with the radiative transfer problem correctly (Zdziarski,
private comm).

To deal with particle injection/acceleration, we adopt the simplified descrip-
tion of LZ and FBGPC, i.e., we assume particles are injected uniformly into the
interaction region from some ezternal source(s). Under this assumption, parti-
cle injection can be described by two functions, S(z,t) and Q(~,t), which do
not depend on the pair and photon distributions present in the interaction re-
gion. (Feedback mechanisms such as “pair loading,” see Done & Fabian 1989,
will thus not be considered here.) S(z,t) is the rate of injection (per unit vol-
ume) of photons of energy z at time ¢, and Q(v,t) is the analogous injection
rate of pairs at energy v and time ¢. We will consider here functions of the form
S(z,t) = S(z)fs(t) and Q(7,t) = Q(7)fq(t). Motivated by the desire to model
pair plasmas which might be found in AGN, we take the photon injection func-
tion S(z) to be a black body with temperature 6,9 = k1)gq/mec? ~ 107°) the
sort of spectrum that might be radiated by a black hole accretion disk. The pair
injection function Q(7) is taken to be either mono-energetic at some injection
energy Yinj ~ 1034 (ie., Q(7) o 8(y — Yinj)), or a power law of index T' (i.e.,

Q(7) x v~ T) extending from some Ypmin t0 Ymaz ~ 103~% as might be produced
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in shock particle acceleration. The time behavior of the injection functions con-
sidered here will be mostly discontinuous, i.e., changes in particle injection are
impulsive — the case studied by FBGPC.
Having specified the form of the injection functions, their normalizations

remain to be specified. As discussed in FBGPC, this is most conveniently done

by specifying the dimensionless “compactness parameters” (luminosities) {5 and

le where:
Lo AnR%op /
ls = = S(z)d 2.5
¢ Rmec3 3¢ z5(e)de, (2:5)
and
Leor 8t R%2ap /
lo = = d 2.6
= P 3 » vQ(y)dy (2.6)
Here R is the characteristic size of the interaction region (thought to be ~ 1014 —

10'% cm. in AGN ), Ly = %ER?’mecz Joo #S(z)dz is the injected (soft) photon
luminosity, and Le = §:}r—Rgmec2 floo vQ(7y)d is the total injected pair luminosity.
Note that these definitions do not match exactly the ones given in either FBGPC
or LZ. Like LZ (and unlike FBGPC), we take the interaction region to be spherical
with radius R. Hence the overall factors of % in the definitions. Unlike LZ,
however, we inject pazrs, not just electrons. An extra factor of two is thus
required in our definition of L, and the factor of (y — 1) in the LZ definition
(eq. 2a) must be replaced by 7 since the rest mass of the injected pairs can be
effectively transferred to the radiation field via pair annihilation.

A convenient way of normalizing output spectra is similarly given by using
the escaping luminosity compactness parameter, [(z) = 3% 3 R2opanese(z). When
the computed models reach an equilibrium (stationary) state, the total injected
energy flux must equal the total escaping energy flux. We thus have lioz =

[Zmae I()dz = le+1s5. The quantity zl(z) plotted in the figures is a dimensionless

Tmin
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escaping luminosity per logarithmic energy interval directly proportional to the
more usual vF(v), the flux per logarithmic frequency interval. For use in the

discussion which follows, we also define the diagnostic quantities:

(i) 70 = 2NporR, the optical depth to Thompson scattering, where N is the

number of thermal electron/positrons and R is the source radius;

(ii) 7¢ = 2Rop [{™* N(v)dy, an analogous optical depth for Compton scatter-
ing off non-thermal pairs;

(iii) 0 = kTpqirs/ mec?, the equilibrium temperature of the thermal pair distribu-
tion;

(iv) Tyqy(m) = ~CR— lm/”;” n(x1)Rpp(z,z1)dz, the “optical depth” to photon-photon
pair production, where Rpp(z,2;) is the pair production rate for photons of

energy z annihilating with photons of energy z.

2.2. Numerical Approach

The kinetic equations are solved using a simple first order difference scheme.
We have found this adequate_ except when dealing with synchrotron reabsorption
and the evolution of the pair distribution. For this we have used a second order
monotonicity scheme with upwind differencing (see Norman & Winkler 1986).
The particle distributions are discretised, with a resolution of 20 bins/decade
of energy. The photon bins span 12 decades of energy, from @, = 1079 to
Tmae = 103, while the pair bins span 3 decades of energy, from 7,,in = 1 to
Ymar = 103, The first pair bin contains the thermal pairs with a variable tem-
perature 8. The number (N7) and total energy (E7) of the pairs in this thermal
bin are explicitly followed, with the temperature being derived from these quan-

tities. Since processes other than Compton scattering can exchange energy with
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thermal pairs, this temperature need not be the “Compton” temperature (e.g., as
assumed in LZ) at which Compton heating balances Compton cooling. A useful

approximation for 6 in terms of w = Eq/Nrp is

4 15u—27  (15u—27)2 45 /
T e Gy —7(1—-u))12]- (2.7)

0=

The approximation becomes exact in the limits u — 1, co and is accurate to 5%.

To allow easy vectorization and obtain reasonable execution times, we have
pre-computed and stored in tables as many quantities as possible. Memory con-
straints required the use of approximate final particle energy distributions for the
processes of pair production and annihilation. These “two moment” approxima-
tions have been discussed extensively in paper I. For less complicated runs (e.g.,
those shown in Fig. 1), the exact scattered particle distribution for the process of
non-thermal Compton scattering has been used. Unless explicity stated, though,
it should be assumed that a two moment approximation for Compton scattering
was also used.

The “stiffness” problem referred to in the introduction occurs mainly in the
evolution of the pair distribution. (High energy pairs typically cool on times much
shorter than any other timescale in the problem.) The stiffness is handled by
making the “stationary” approximation used in FBGPC and LZ, i.e., assuming

that
QW) + PO

()

N(v) =

)

where Q(7) is the rate of injection of pairs of energy v by the external source,
P(7v) is the rate at which pairs of energy 7 are created via pair production, and
74 is the cooling rate for pairs at energy v due to Compton scattering, Coulomb

cooling, and synchrotron radiation. Note that for this approximation to be valid



80
at energy v, not only must the cooling time y/¥ be significantly shorter than any
other timescale (e.g., the timescale for the photon distribution to change), but
the evolution of the pair distribution at that energy must be well-described by
the equation %J{—(fy) = ~a‘%/-[f'yN(7)] + P(y) + Q(v)- This will not be the case for
energies 7 where synchrotron self-absorption effects are non-negligible, or where
A~ /7, the fractional change in energy after one Compton scattering, is not much
less than unity (e.g., when most scatterings are in the Klein-Nishina regime).
As pointed out in Blumenthal (1971) and Zdziarski (1988), errors of order unity
can be incurred if the stationary approximation is used in such cases. Our code
contains explicit checks for these conditions and switches the approximation off

when its use becomes inappropriate.

If one is not interested in the time evolution of the system, one can avoid the
stiflness altogether by solving directly for the stationary particle distributions.
For use in problems not involving synchrotron self-absorption, we have modified
one version of our code to converge on the stationary solution iteratively. The
method is similar to that described in LZ and uses the fact that the stationary

equation for a bin N; has the general form
0= —f(Ng) + g(Ni, Niz;) + h(Nizj) + Q(7)

where f,g, h are (usually algebraic) functions describing respectively: the rate
at which particles are scattered/annihilated out of bin ¢, the rate at which par-
ticles in bin ¢ are scattered back into bin 7, and the rate at which particles in
other bins are scattered in bin 7. (t) represents the rate at which particles
are created/injected into bin 7. Taking the bins 7 # j (N;2;) to be fixed, one
can then solve for N;. Inserting the newly found bin values back into the kinetic

equations and solving again, one obtains a mapping N{c — Ni]c‘H which when
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repeated converges to the stationary value of N;. For example, when only Comp-
ton scattering is being considered, this is equivalent to adding up the “orders”
of Compton scattering. The method appears quite stable provided the various
bin valués are solved for in the right order. Our code first does one iteration
on the photon bins assuming the pair distribution is fixed. The code then it-
erates repeatedly on the pair bins until the pair distribution is in equilibrium
with the photon distribution. The entire process is repeated until the fractional
change (|NV ik’+1 - Ni’c |/ Nik) in all photon bins is less than some specified amount.
We note that for synchrotron self-absorption, the functions f,g, and h contain
derivatives of the pair distribution. This leads to numerical instabilities in our

simple implementation of the method described.
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3. Unmagnetized Equilibrium Plasmas

There have been extensive discussions of equilibrium (stationary) pair plas-
mas with no magnetic fields in past work (e.g., LZ, FBGPC, Svensson 1986,1987,
Ghisellini 1987a, 1987b). To ascertain the impact of the “improved” microphysics
employed here, we have repeated these calculations over a wide range of com-
pactness parameters, .01 < lg,l; < 1000. The results obtained are qualitatively
similar and do not alter the most important conclusions of previous work. (Hence
we will not repeat those discussions here.) The quantitative differences, however,
are not so negligible (e.g., see Fig. 1) and are ascribable to the differences in the

microphysics which we now discuss.

3.1. Compton Scattering by Thermal Pairs

As discussed in paper I, the inclusion of dispersion in the scattered photon
distribution is necessary to generate modestly accurate spectra. The scheme em-
ployed here has been checked against published Monte Carlo simulations (e.g.,
Gorecki & Wilczewski 1984) for 0 = kTpq4r/ mec® up to ~ 10 and agrees reason-
ably well. The errors are dominated by the uncertainties in the radiative transfer.
The LZ escape probability employed here attempts to mock up a spherical source
with soft photon injection that varies radially as sin(kr)/kr (see eq. 8 of Sun-
yaev & Titarchuk 1980). In practice, however, the approximation does not quite
succeed and the results obtained generally fall somewhere between those for a
sphere with central injection and those for a sphere with uniform injection. When
the diffusion approximation holds (77 > 1,6 < 1) and the exact escape prob-

ability is known (e.g., Sunyaev & Titarchuk 1980), the results agree to better
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is underestimated (see discussion in paper I). Our results appear consistent with

an alternative diffusive scheme employed by LZ.

3.2. Compton Scattering by Non-Thermal Pairs

The present code also improves upon its predecessors in its treatment of non-
thermal Comptonization. The effects of the various approximations employed in
past work (e.g., not using the Klein-Nishina cross-section, and ignoring “dis-
persion”) have been discussed in paper I. These effects are most noticeable in
“photon starved” (Is < l¢) models where a photon is likely to undergo multi-
ple scatterings Ioff non-thermal pairs. We note that the approximations made
can significantly affect both the photon and pair distributions. In particular, the
use of the cooling approximation (N(y) = ([ @(v)dy)/7) in the photon starved

regime can give poor results (discrepancies of order unity).

3.3. Pair Annihilation

In models without direct pair escape, pair annihilation is the process which
allows the pair distribution to reach equilibrium, converting pairs into photons
which may then escape the source. An accurate treatment of pair annihilation
is therefore crucial to determining the equilibrium pair distribution and thus the
final output photon spectrum. While dealing adequately with the annihilation
of thermal pairs, previous treatments (e.g., LZ, FBGPC) have ignored the pos-
sibility of non-thermal pairs annihilating with themselves or with the thermal
distribution. When Compton cooling is fast (e.g., large I ), the injected pairs are

brought into the thermal distribution in a time much shorter than the timescale
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to annihilate (~ R/ctp) and non-thermal pair annihilation is indeed unimpor-
tant. However, in a photon starved model (small [5), the Compton cooling times
at low v can be quite long, causing pairs to “pile up” there. Including non-
thermal pair annihilation in this case can alter the equilibrium photon spectrum
significantly. A crude parameter for gauging the importance of non-thermal pair
annihilation is given by the value of 77/ls. (When 71/l; < 1, non-thermal pair

annihilation is usually ignorable.)

Figure 2 shows an example of what happens when 77/l is not small. When
non-thermal pair annihilation is turned off, the result is a visibly different output
spectrum. The entire spectrum, not just fhe region around the annihilation liné,
is affected. To gauge the importance of non-thermal annihilation, ﬁote that in the
case without Coulomb cooling, well over half the total annihilationiurninosity
comes from non-thermal pairs annihilating with either thermal pairs or other
non-thermal pairs. Neglecting non-thermal pair annihilation can therefore be
a dangerous assumption. Note, however, that the importance of non-thermal
annjhilatidﬁ can Be considerably lessened by the presence of a significant Coulomb
cooling rate (see below). One should also remember that the usual estimate
for 77 obtained by balancing the total pair injection rate against the thermal
pair annihilation rate breaks down when non-thermal annihilation is important.
Significant numbers of cooling pairs may annihilate before joining the thermal
distribution. Mention should also be made of the treatment of the “annihilation
line” at = ~ 1. As in Fig. 2, it may be quite broad and also asymmetric (if the
contribution from non-thermal pairs is important). Approximating it by a delta-
function (e.g., FBGPC, LZ) is often not justified. (In our code we generate the
thermal annihilation spectrum using the approximation of Svensson 1983 which

appears to be quite good.)
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3.4. Pair Production

As is evident from the series of models shown in Fig. 1, some of the most
visible disagreement with previous results (in particular those of LZ) arise when
the process of pair production becomes significant. As explained in paper I, the
approximation used in Svensson (1987) and LZ can overestimate 7,4 by up to
factors of order two. Also, the fact that it includes no dispersion may lead to
significant errors in the shape of P(v), the energy distribution of “created” pairs.
These two effects can lead to a serious underestimate of the y-ray spectrum and a
distortion of the X-ray spectrum (since the distribution of the non-thermal pairs
which upscatter soft photons depends on P(7)). Note, however, that when the
plasma is pair dominated (74, > 1forz 2 1, P(7) > Q(7)), the pair distribution
and the photon distribution for z < 1 become relatively insensitive to even
large discrepancies in Ty,. (To first order, the equilibrium high energy photon
distribution simply readjusts itself to keep everything else the same.) Hence the
surprisingly good — typically much better than a factor two — agreement with

the results of LZ in quantities such as 7p and the pair yield (e.g., Table I).

3.5. Coulomb Cooling

In the present version of the code, we make use of the treatment of Coulomb
scattering presented in paper [, i.e., we simplily mattiers somewhat by considering
only Coulomb collisions between non-thermal and thermal pairs (a well-justified
approximation as long as _f]?/ dy'N(y") < Np for v < 10 — usually the case in
models considered here) and treating the effects of these collisions as a cooling

term, Yooui[7), for the non-thermal pairs and a heating term, — [ dy¥eou N (7),
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for the thermal pairs. The process of thermalization is mocked up by transferring
cooled pairs and their remaining energy to the thermal bin once they reach an
energy v < 1+486. (The results prove insensitive to the exact details of how this is
done.) The condition that this Coulomb “cooling” be negligible then translates
into the requirement that Y.0u[7] < Yother[7] for all v, where by “other” we
mean cooling by other process such as Compton scattering or synchrotron radia-
tion. For the purpose of making estimates, we may take ¥.,,[7] = 231% In A7 and
Yother = Yeomp ~ F‘:R'yzls. Coulomb cooling should therefore not be neglected for
VTS Ve = (%75 In A{—;—)l/z. (In A is the usual Coulomb logarithm, typically ~ 15—25

for the models considered here.)

As an example of where Coulomb cooling has non-negligible effects, consider
the model of Fig. 2 (for which the test described above gives a y¢ ~ 50). Turning
on Coulomb cooling has two main consequences. First, Coulomb cooling allows
injected pairs to transfer a non-negligible fraction of their injected energy directly
to the thermal pairs (instead of losing all of it via Compton scattering to the ra-
diation field). This tends to raise the equilibrium temperature of the thermal
pair distribution (increasing it a factor 5 in the case of Fig. 2.) Coulomb cooling
also prevents the accumulation of pairs near v = 1 that would otherwise occur
when Jcomp becomes small, sweeping the pairs into the thermal distribution (see
Fig. 2b). As a side effect, this additional cooling, just like a large Compton
cooling rate, prevents a significant amount of annihilation by cooling pairs while
they are in their non-thermal state. To summarize, then, even though Coulomb
scattering conserves total pair number and energy, the pair distributions calcu-
lated with and without Coulomb cooling can be quite different in the region near

v = 1. As seen in Fig. 2a, this difference is also reflected in the equilibrium
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photon distributions, especially in the region # ~ 1. Coulomb cooling should not

be ignored in models with l¢/ls > 1,15 <'1.

3.6. Bremsstrahlung

Our code is also capable of (crudely) dealing w/e-e bremsstrahlung, another
process not considered in previous treatments which could have a significant
impact. (See paper I for a description of the method employed.) In models of the
type considered here, bremsstrahlung serves two functions: (i) as an additional
source of photons, (ii) as aﬁother pair cooling mechanism. Unlike Couiomb
scé,ttering, however, e-e bremsstrahlung really is a “higher order” process and
for most choices of pdrameteré m.a.y indeed be ignored. This is true of the models
presented in the figures. It is not true, however, for extremely photon starved
(Is < 1) models where the thermal pairs may reach a relativistic temperature
@ ~ 1. This case will be examined in more detail elsewhere (see Zdziarski, Coppi,
& Lamb 1990). We note that the contribution to the overall bremsstrahlung
spectrum from non-thermal pairs can be quite significant. Like the contribution

of non-thermal pairs to the annihilation spectrum, it should not be ignored.
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4. Stationary Models with Magnetic Fields

We now consider the effects of adding a magnetic field to our model of a
pair plasma. As discussed in section 2, our treatment of synchrotron radiation
makes the assumptions of isotropic pitch angle and radiated photon distribu-
tions. This requires that the magnetic fields under consideration be relatively
weak and tangled. In view of this, we shall restrict our attention here to field
strengths By < 1000G, values thought to be typical of what is found in AGN
central engines. For such relatively low field strengths, synchrotron radiation
represents another source of soft (IR—UV) photons which can replace or aug-
ment the external soft photon source. Thus, since the cooling rate for energetic
(v > 1) pairs Compton scattering off a soft photon field has (to first order)
the same energy dependence as the cooling rate due to synchrotron emission,
the spectra produced in such models will not differ grossly from those seen in
“unmagnetized” models. (This is in contrast to some of the cases examined by
Ghisellini 1987a, 1987b where the maximum synchrotron photon energy s maz
may exceed unity, and synchrotron radiation provides a source of hard photons

which may pair produce immediately, without intermediate upscatterings.)

It is easiest to begin by examining models with only pair injection and no ex-
ternal photon source (i.e., models with [, = 0) as such models contain most of the
new physics and are easier to analyze. Note that in such models, the equilibrium
radiation field is completely determined by the pair injection function @Q(7y), the
source region radius R, and the magnetic field strength B . (Because of the inclu-
sion of synchrotron self-absorption, R does not scale out of the problem as it does
in “unmagnetised” models.) To help understand the spectra characteristic of such

models, we consider two limiting cases: (i) the “synchrotron-dominated” regime
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where the Compton upscattering of photons can be treated as a perturbation; and
(i1) the “Compton-dominated” regime where synchrotron effects may instead be
treated as a perturbation. These two regimes may be distinguished through the
use of the dimensionless energy “densities” Up = %U 5 and U,yg = %U,ﬂad.
Here Ug = -g;r— is the magnetic energy density, and U,qq = mec? [ zn(z)dz is
the radiation energy density. Expressed in terms of these quantities, the cooling
rate for pairs at energies high enough that synchrotron self-absorbtion may be

neglected is given by

. 4c N N A
Y= gﬁ'YzUB(l + Urad/UB)- (4'1)

Thus, for U,,4/Up > 1, Compton scattering dominates the pair cooling, while for
U,aq/Ug synchrotron emission dominates. Noting that at kinetic equilibrium en-
ergy conservation demands U,.,4 be ~ I, we thus see that “Compton-dominated”
models correspond to models with input parameters such that l¢/Up > 1, while
“synchrotron-dominated” models correspond to models with ¢/ U B < 1. Exam-
ples of the spectra produced in these limiting cases (as well as for some interme-

diate values of l¢/Ug) can be seen in Fig. 3-7.

4.1. “Compton-dominated” Models

For models with le > U B, Compton cooling in fact dominates synchrotron
cooling (and heating via reabsorption) for all pair energies . Thus, the shape of
the equilibrium pair distribution is quite similar to that seen in the unmagnetized
models of the previous section (where the pair distribution is well-described by a
power law at most energies). One would therefore expect to see an upscattered
photon distribution that also resembles those obtained in the unmagnetized case.

In fact, for ¢ 2 @smaz (Ts,maz ~ 772naxB/BC,Bc = 4.4 x 1013G) the output
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spectrum is very close to that produced in an unmagnetized model with the same
le and ls = lyynch, 8., see I'ig. 3. Here lgypcp is a synchrotron “compactness
parameter” analogous to ls, i.e., lgyncp = %”— [ dzztgynen(2), where figy,op(2) is
the rate of synchrotron emission per unit volume of photons of energy «. A crude
estimate shows that (to within factors of order unity) lsycp is ~ Ugp. Compton-
dominated models thus correspond to unmagnetized models with [; < [, and
once lgyncp has been determined accurately, the analysis used to understand
the unmagnetized case carries through essentially unchanged to the Compton-
dominated case. Note an important characteristic of such (Is < le, Ug < l¢)
models, namely the flat X-ray spectrum (agz < .5 with flux F? « v~%) composed
of several “orders” of Compton scattering. (For a discussion of such spectra,
see the case where 7¢ ~ 1 in LZ and Ghisellini 1987b.) This is contrary to
what one might expect from the analysis of Bonometto & Rees (1971) which
would predict @ spectral index ~ 1 (e.g., as in the pair dominated cases in
Fig. 1). Unfortunately, since several orders of Compton scattering contribute
to the photon spectrum, Klein-Nishina corrections cannot be neglected and the
analysis of such models is somewhat complicated. (Hence, constructing a simple
and accurate estimate for lsy.vnch is difficult.)

The differences between Compton-dominated and unmagnetized spectra re-
flect the different origins of the soft photons in the models (non-thermal vs. as-
sumed thermal). As the synchrotron spectrum radiated by power law electrons
does not much resemble a Planck distribution, the agreement between the models
is not very good for energies © < &5 maz- In particular, the photon distribution
due to synchrotron radiation is typically much broader than the corresponding
blackbody distribution, a fact which is also reflected in the upscattered photon

distributions. (In general, when dealing with synchrotron emission, the finite
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width of the emitted photon distribution can never be neglected.) Note also that
the synchrotron portion of a spectrum in the Compton-dominated case does not
look much like the “conventional” spectrum obtained from radiating power-law
electrons. The effects of thermal upscattering and multiple (non-thermal) Comp-
ton scattering (important in the ls, lyyncp, < le regimes) can significantly modify
the part of the spectrum due to optically thin synchrotron emission, i.e., the
result will not be a simple power law of index (p —1)/2 where p is the power law
index of the pairs. Also, while the strongly self-absorbed part of the spectrum
is well-described by the usual power law of index 2.5, there is typically no sharp
self-absorption “break” (turnover) marking the changeover from optically thin

to optically thick synchrotron emission. (It is smeared away.)

4.2. “Synchrotron-dominated” Models

In contrast to the Compton-dominated case, a synchrotron-dominated model
cannot be conveniently related to an unmagnetized model with similar equilib-
rium pair and photon distributions. The reasons for this can be found by ex-
amining the (now non-negligible) effects of synchrotron emission/reabsorption
on the equilibrium pair distribution. The most important of these is the “sup-
pression” of the non-thermal pair distribution. At energies high enough that
self-absorption effects can be neglected, the addition of a large synchrotron cool-
ing rate to the usual Compton cooling rate means that N(y) at such energies is
always smaller in the synchrotron-dominated model than in a pure Compton (un-
magnetized) model with Is = lgy,.p, and the same le. This suppression has several
consequences. With fewer non-thermal pairs to upscatter soft photons, the high
energy (X- and 7-ray) end of the photon distribution is correspondingly sup-

pressed. (Note for example Fig. 4,5 where more and more of the emitted power
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is shifted to the synchrotron emission peak as Ug/l increases.) With fewer high
energy photons present, pair production is also suppressed, and the pair yields
obtained in synchrotron-dominated models can be much lower than would be ex-
pected from the corresponding pure Compton models. Synchrotron-dominated
models therefore tend to have low values of 7 and weak, if not invisible, annihila-
tion lines. The suppression of the non-thermal pair distribution also means that
typical values of 7 (the optical depth to non-thermal Compton scattering) are
much less than unity and secondary Compton scattering is consequently unim-
portant. Thus, unlike the Compton-dominated case, the part of the soft photon
distribution due to optically thin synchrotron emission is well-described by the
conventional power law of index (p — 1)/2. (For these models, p ~ I'/2 where
the pair injection function Q(vy) o ,Y-I‘_) To first order, the upscattered photon
distribution is also described by a power law of the same index. Note, how-
ever, that the non-negligible width of the soft (synchrotron) photon distribution
often causes the upscattered photon distribution to deviate from the predicted
power law well before the maximum upscattered frequency (~ 4/ 3772na$m3’mam)

is reached.

At the low energy end of the pair distribution, synchrotron self-absorption
effects become important and the deviations from what might be expected in the
pure Compton case are even more marked. As noted by Rees (1967a) and McCray
(1969), a power law distribution is in general not a stable equilibrium solution
when the process of synchrotron radiation dominates the evolution of the pair
distribution. In particular, there will be some energy -y¢ for which heating from
the reabsorption of photons becomes important, and for v < ~¢, this heating will

actually dominate (slightly) over the cooling (e.g., see de Kool et al. 1989). The
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energy 7t is of order (Swt/élwo)l/z where g = B/Be, ©¢ = hv/mec?, and vy is the
frequency where self-absorption becomes important — see below. This causes the
formation of a Maxwellian-like distribution (e.g., see Fig. 5b) at energies lower
than 7 ~ 7; and is referred to as the “synchrotron boiler” effect in Ghisellini et

al. (1988).

As can Be seen in Fig. 5b, however, Compton cooliﬁg 6ﬁ‘ the synchrotfbn
photons suppresses this tendency of low energy pairs to fofm a Maxwellian.
As Urad/Up increases, the peak of fhe Maxwellian-ﬁke éhape gets .pvﬁshed to
lower and lower energies. In Fig. 5b, not much of a Ma)gwellian remains by
le = 10. Consequently, we would argue that the synchrotron boiler is not a
widely applicable method for creating thermal distributions with § > L Rather,
it will only be of interest in the limited parameter space l¢ < 1. Note also in Fig.
5b that Coulomb cooling tends to destroy the Maxwellian shape, primarily at
the low energy end. One might not expect this since 7 in these models is quite
small, and the corresponding Coulomb cooling rates are also small. However, as
noted above, for 7 < ¢, heating from reabsorption almost exactly can‘cels the
cooling from emission. A small additional cooling rate (Compton or Coulomb)
can therefore have a very important effect. As a final observation, note the
“disjointed” power law shape taken on by the pair distribution as U .4 increases.

This appears to be in accord with the predictions of de Kool et al. (1989).

The possibly large deviation from power law behavior at energies v < vy is
also reflected in the photon distribution. An “excess” of pairs at these ener-
gies should produce a corresponding excess of (upscattered) photons at energies

Tsmar S T S 4/37,52:vs,mam. This can be clearly seen in Fig. 5a. A non-power
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law pair distribution at energies v < ¢ (i.e., for which self-absorption is impor-
tant) will also give a strongly self-absorbed part of the photon spectrum that
has a spectral index different from the usual value of 2.5 obtained with a power
law pair distribution. In fact, as Up beomes much greater than le and the pair
distribution becomes more and more a Maxwellian, the spectral index (for fre-
quencies v < vi) approaches a limiting value of 2.0 (F} o v2), the value for
a strongly self-absorbed photon distribution in equilibrium with a thermal pair
distribution. The spectral index thus varies continuously with Ug/le, going from
2.5 (Up < l¢) to 2.0 (Ug > l¢). The detailed dependence on Ug/le appears to
be quite complicated, and we have not found an easy way of extricating the ef-
fects of Compton scattering from those of synchrotron emission/absorption. We
remind the reader that discontinuites in the pair distribution (e.g., as seen in
Fig. 5b) may give rise to spectral indices (over a limited range of energies) that
exceed 2.5. See de Kool & Begelman (1989) for some detailed examples of this.

In contrast to Compton-dominated models, synchrotron-dominated models
tend to show a fairly sharp break in their spectra at v¢, the frequency at which
Ray, ~ 1 and the synchrotron absorption of photons becomes important. (o, is
the synchrotron absorption coefficient.) One can often make a simple estimate
for this “turnover” frequency, v¢. In the simplest case of mono-energetic pair in-
jection, taking N(y > ) = — [ Q(v)dvy/7 (with ¥ as givenin eq. 4.1) and using

the approximation for the absorption coefficient discussed in McCray (1969), we

have:
ve ~ 3.2 % 1013(-UBYrad_y1/3 PR} Hz, (4.2)
UB + Urad |

where again U,.,q ~ Z%r'le' This estimate should be valid even in the transition

regime lo ~ Up and appears to work reasonably well as can be seen by examining
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the spectra shown in Fig. 1 and 2. Note the form this expression takes when
U,ad/Up is very small and U,,4 and Up are used instead of U,,q and Up):

1/3 —-1/3
v~ 3 x 10805 03, (4.3)

T

where U, is measured in units of 10%ergs/ cm®. The magnetic field and radius
of the source drop out completely. (An interesting result if U,,q scales as M,
the mass of the central black hole.) The important observation to draw from
these expressions (and the models shown) is that the turnover frequency is rela-
tively insensitive to the input model parameters. Thus, if the models discussed
prove relevant to real AGN, one might expect to find a turnover always in the

neighborhood of ~ 1013 H 2.

4.3. Models with External Soft Photon Injection

Nothing very remarkable happens when an external photon source is added
(e.g., asin Fig. 7,9a,10a). Although the detailed variation of equilibrium spectra
with the injection parameter /s is hard to estimate analytically, the limiting case
of s > Up is clear. In this limit, [, is also > lsynch and pairs cool primarily
by Compton scattering off the soft externally-injected photons rather than by
synchrotron emission or Compton scattering off synchrotron photons. The equi-
librium pair distribution is thus independent of U g and for ¢ > x5, one obtains
spectra identical to those obtained with an unmagnetized model with the same
le and ls. The synchrotron part of the spectrum (z < zs) may then be treated
as a perturbation, determined by considering the spectrum radiated by a fixed

pair distribution. As above, note that although they originate from the same
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pair distributions, the X-ray and optically thin synchrotron portions of the spec-
trum are not identical in shape. In particular, the spectral indices may be rather

different.

One particular model with differing indices that may be of interest is obtained
by taking ls ~ Up, By < 1000G and injecting pairs in a steep power law of
index I' ~ 2.4. As noted in Zdziarski (1986), the resulting spectrum (e.g., Fig
7) often resembles the canonical (radio quiet) AGN spectrum with ajp ~ 1.1,
ag ~ 0.7, and a sharp break/turnover at ~ 1013 Hz. ‘(Here,aIR and ag are
the near infrared and X-ray spectral indices.) The “blue bump” is provided by
externally injected photons (ev.g., from an accretion disk corona), and the infrared
is synchrotron emission from pairs. Note one “feature” of this model: varying
the minimum injection energy ymin causes the infrared spectral index to vary
(and can make it less than unity) Without'perfurbing the X-ray portion of the
spectrum very much. (See for example Iig. 7 and the values of oy in Table II.)
One could thus have a “universal” power law injection index, ~ 2.4, for the pairs
and explain observed variations in ajp/agz as variations in 7, Such models
also need not predict a strong correlation between ag and ayg. The non-thermal
(synchrotron) hypothesis for the origin of the infrared continuum should therefore

not be dismissed out of hand.

* Unfortunately, the sort of model just discussed may have several difficulties
matching observations. These mainly reflect the fact that the infrared and X-ray
photons originate from the same pairs (source region). Based on limited experi-
mentation, it may not be possible to obtain the correct ratios of the luminosities
in the IR, UV, and X-ray (2-10 kev) bands and still have reasonable valus of a1

and az. More importantly, one would expect variations in pair injection to show
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up both in the infrared and the X-rays, i.e., infrared and X-ray time variabil-
ity should be about the same. This is typically not observed (but see the next

section).

5. Time-Variation

In this section, we investigate the time-response of the model pair plasma
system to impulsive (step-function) changes in the particle injection rates — such
as might occur in a bursting compact source. Such variations reveal most of the
dynamical effects at work in a pair plasma and are the easiest to understand.
(This is also the case examined in FBGPC.) We will not perform any specific
spectral analyses as in Done & Fabian (1989) since the detailed answers are likely

to be quite sensitive to the model assumptions.

5.1. Relaxation Timescales

We begin by examining the various relaxation timescales for the particle
distributions in our model. The more complex, “collective” time behavior seen

in the following section may be understood as the interplay of these timescales.

Consider first the non-thermal pair distribution. When pair injection is
changed, the relevant timescale for the pair distribution (at energy 7) to re-
spond is the cooling time, t,,,; = —7v/%. Typically, this cooling time is much
shorter than any other timescale in the problem, and as a rule of thumb, the
non-thermal pair distribution “equilibrates” much faster than the photon distri-
bution. (Hence the validity of the stationary approximation discussed in §2.2.)
Exceptions to this rule may occur, however, in “photon-starved” models with

ls < le (Compton cooling is slow at low 7) or synchrotron-dominated models
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at energies where the emitted synchrotron radiation is strongly self-absorbed.
When only photon injection is changed, variations in the pair distribution will
be slower and occur on the timescales for the cooling and pair production rates
(i.e., the soft photon distribution) to change. Note one semantic point. After the
initial rapid response to a change in pair injection, the non-thermal pair distri-
bution is essentially “locked” onto the more slowly varying photon distribution.
Thus the timescale for the non-thermal pair distribution to approach its final,

stationary value is really the longer photon-response timescale.

The thermal pair distribution and the corresponding annihilation line (whose
luminosity is oc T%) generally vary much more slowly than the non-thermal dis-
tribution and can often be the most sluggish components of the pair plasma.
Consider first the response to an increase in particle injection. Exactly how long
the thermal distribution takes to build up depends on the total pair injection rate
(external injection -+ pair production). When the stationary value of 77 predicted
from the new injection parameters is less than unity (e.g., for le,ls < 10), the
total pair injection rate is small. The number of thermal pairs along with the
annihilation line intensity can thus take many light-crossing times, t¢ross = R/c,
to build up to their stationary value. When, on the other hand, the production
rate of pairs is large and the predicted value of 7 exceeds unity, the number of
thermal pairs can build up quite fast, on a time ~ t¢poss. In either case, note that
there will always be a lag with respect to the rest of the photon spectrum (in
particular the gamma-rays) as the photon distribution must first build up before

pair production can increase significantly.

Consider now the response (relaxation) time when particle injection is re-

duced. If only (soft) photon injection is reduced, nothing significant happens
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until the soft photon distribution has had time to decrease, i.e., only after a time
~ tesc (computed using the initial value of 77) has passed. The thermal pairs
will then approach equilibrium on the same timescale as for the soft photon dis-
tribution (fesc computed using the final value of 77.) If pair injection is reduced,
however, the response can be much more dramatic. Typically, the number of
high energy photons drops rapidly (see below), causing a corresponding decrease
in the total pair production rate. With the number of incoming (cooled) pairs
signficantly reduced, the thermal pair distribution is then free to annihilate away
on the timescale tann ~ 1/7p (the time required for half the pairs to annihilate).
An initial 70 > 1 can therefore disappear in a time < R/c. Note, though, that
once 77 drops below unity, tgnn increases and the annihilation line becomes a
persistent feature, still visible, in the case where particle injection is completely
turned off, long after all other photons have escaped the source. (This behavior
is to be contrasted with that in models with pair escape. There the annihilation

line and thermal pairs will be gone in a few characteristic pair escape times.) -

The relaxation times of the photon distribution remain to be discussed. In
the simplest case where the old and new injection parameters are such that 7o
is always less than unity, the photon distribution behaves in a uniform manner,
building up or decaying at all energies on a timescale ~ tcposs (the escape time
for photons in this case). Whenever 77 starts out or becomes greater than
unity, however, one must make a distinction between high (¢ 2 1) and low
(z < 1) energy photons. Low energy photons are “trapped” in the source by the
thermal pairs and respond on the longer timescale tesc ~ (1 + 7¢/3)tcross (the
characteristic soft photon escape time). Note that the value of 77 may change

significantly during the evolution of the soft photon distribution. The soft photon
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distribution relaxes to its new stationary value after a few tese, computed using

the final value of 7 (see FBGPC).

Because of Klein-Nishina effects, high energy photons are not trapped signif-
icantly by thermal pairs and in principle should always respond on the timescale
teross- High energy photons, however, do feel the effects of downscattering by the
thermal pairs (which effectively acts as an absorption term) as well as of annihi-
lation off soft photons (a true absorption) and a varying injection (upscattering)
rate due to changes in the non-thermal pair and soft photon distributions. This
has two consequences. When soft photon injection is varied or pair injection is
increased, the high energy photon distribution, like the non-thermal pair distribu-
tion, becomnes (after some initial transient behavior) “locked” onto the soft pho-
ton distribution and follows its evolution. The “relevant” relaxation timescale is
then the soft photon timescale tesc. When pair injection is significantly decreased,
however, the high energy end of the non-thermal pair distribution drops rapidly
in response as does the corresponding upscattering rate of high energy photons.
The high energy photon distribution can then decay away on the (often) much
shorter timescale tp; ~ teross/[1 + T x(¢) + Tyy(z)]. Note that p;(z) in general
decreases with increasing photon energy z. Consequently, higher energies tend
to lead lower energies in responding to a decrease in pair injection.

The preceeding discussion has ignored the fact that in a “real” source, changes
in particle injection cannot take place simultaneously across the source, but will
be spread out over a time 2 fcross (€.g., imagine a shock wave propagating
across the source that accelerates pairs behind it). The evolution of features
on times < tcposs seen in some of the output spectra discussed below is there-

fore artificial and reflects the crude radiative transfer employed here and in past
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treatments. For example, although locally 77 (and the annihilation line luminos-
ity) may drop significantly in a time much less than tcross, this cannot happen
globally in a time less than t¢poss. Effects such as the sudden release of trapped
photons (see FBGPC and below) which depends critically on the Thomson opac-
ity disappearing in less than tcposs may then be much less dramatic (or not seen
at all) and may vary with the particular source geometry (i.e., the details of
radiative transfer). The observed time behavior of a source will be given by the
local (since every region of the source is taken to be identical) responses of the
model system considered here, convolved with a light- crossing time R/c. (The
use of a photon escape probability with minimum escape time ¢ ¢ross does do this
to some extent.) Strictly speaking, then, the results of the present code are valid
only when injection changes are slow enough (i.e., take place over times >> tcross)
that the system has time to keep itself “homogenized.” Regardless of the exact
details, however, it is clear that the presence of a pair plasma can greatly alter
the observed time variability of a source, especially when the value of 7 exceeds
unity. A pair plasma acts like a capacitor, storing up particles and energy, and

smearing out the response of the system to changes in injection.

5.2. Sample Results

We now turn to some specific examples. Consider first the “easiest” case to
understand (Iig. 8a), one where the value of 74 is always much less than unity.
Following the arguments above, tesc will always be ~ t¢ross and the photon dis-
tribution, except the annihilation line, should relax to its equilibrium value on a
timescale {cross. The (normalized) escaping luminosity in the various wavebands

shown should then go as I(t) ~ 1 — et for 0 < ¢ < 12 (injection on) and as
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I(t) = e (=12) for 12 < ¢ < oo (injection turned off). The exception is the
annihilation line intensity, which because the total pair creation/injection rate
is relatively small and 77 < 1, should take many tcross to build up and decay
away. Comparing with Fig. 8a, this does not appear a bad first approximation.
(Indeed it works very well for the UV luminosity since the only processes sig-
nificantly affecting the soft photon distribution are photon escape and external
photon injection.) However, the escaping y-ray luminosity always leads the UV
luminosity slightly, while the X-ray luminosity significantly lags the UV lumi-
nosity. The annihilation line intensity also continues to increase even after all
particle injection is turned off. The explanation for this behavior is more subtle

than one might have at first guessed.

Consider, for example, the fast rise of the y—ray luminosity relative to the
UV luminosity. Since the 2-10 MeV gamma-rays tracked in Fig. 8a are primarily
upscattered soft photons, the “injection” rate of y—rays goes approximately as
the number of soft photons times the number of high energy pairs. Assume
now that the pair distribution is fixed. The injection of y—rays then will not
turn on until the soft photon number has had time to build up, i.e., one might
expect the rise in the y—rays to lag slightly the rise in soft (UV) photons. The
pair distribution is definitely not fixed in time, however. At early times (<
leross) when when U, .4 is still small, the cooling times are long and the high
energy pair distribution is significantly enhanced over its stationary value. In
the example shown, this larger number of higher pairs more than compensates
for the initially small number of soft photons available to upscattered. In fact, the

y-ray luminosity actually overshoots its equilibrium value (very) slightly. (The
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decrease in the number of high energy pairs with increasing U .4 eventually wins

out over the partially compensating increase in soft photon number.)

Given that the X-rays are also primarily upscattered soft photons, one might
expect them to show the same behvior. However, the pairs responsible for up-
scattering soft (UV) photons to X-ray (2-10 keV) energies are ~ 30 times lower
in energy than those responsible for the y—rays. Their cooling times are sign-
ficantly longer (4 o 72), and at early times when U,,q is small, they. can be a
non-negligible fraction of the photon response timescale ~ ¢gc. Consequently, the
“turn on” of the X-rays is delayed by about .2 — .3t¢poss until sufﬁcient numbers
of injectved pairs have cooled down to build up the pair distribqtion at v ~ 10.
Also, although the maximum value of 77 is < 1, the effects of pair production
on this medium energy (y ~ 10 — 30) range of the pair distribution cannot be
neglected. The additional source of pairs represented by pair production leads
to an enhancement by a factor ~ 3 in the number of kthese éairs and the ﬁpscat—
tering rate :of photons to X-ray energies. Pair production does not turn on fully,
however,‘until the v and hard X-ray distributions have had time to build up, i.e.,
only after a few tesc. (This is reflected in the annihilation line intensity, a useful
indicator of how the total pair production rate is behaving.) This then is the

main cause of the observed X-ray to UV “lag” when injection is turned on.

The fact that pair production dominates external injection at pair energies
responsible for the upscattered X-rays also explains the X-ray to UV lag when
all particle injection is cut. Significant pair production ceases only when most
gamma-rays have escaped the source region. For this model where 77 < 1 and
Tyy < 1 for = < 300, this happens on a timescale ~ tcross. (Note though, that,

the effects of pair production on the «-rays are not completely negligible and
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cause the y—ray luminosity to decrease slightly faster than the UV luminosity.)
Thus, the pair distribution at these energies is maintained by pair production for
a few tcross. This and the fact that soft photon number decays on a timescale also
~ teross mean that the injection (upscattering) of X-rays does not stop completely
until after a few f;poss. Hence the “slow” decay of the X-ray luminosity. A
significant pair production rate after all particle injection is stopped also explains
the behavior of the annihilation line. Only when the total pair production rate
drops below the annihilation rate (oc T%) does its intensity begin to decrease.
Note, then, that even in a model which is neither pair saturated nor Thomson
thick, the process of pair production can have a non-negligible effect on the time
evolution.

Turn now to the case (Fig. 8b) where the injection parameters are boosted
to values which do put the pair plasma in a pair saturated and Thomson thick
(77 = 12) regime. In contrast to the previous case, the “transient” time behavior
here is quite dramatic. One noticeable feature is the burst of gamma-ray lumi-
nosity that occurs just after injection is increased. For ~ {¢ppss, until increasing
downscattering by thermal p_a.irs and annihilation off lower energy photons (pair
production) can catch up, the spectrum looks much harder than one might pre-
dict from the stationary states before and after the increase in injection. The
rapid increase in the number of gamma-rays causes a corresponding jump in the
total pair production rate. Note how rapidly (compared to Fig. 8a) the annihi-
lation line builds up. Also note that the X-ray luminosity actually leads the UV
luminosity in building up. Here there is no significant wait for pair production
to turn on and all pair cooling times are < tcposs (hence no wait for injected

pairs to cool and build up the pair distribution in response to the increase in

injection).
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The burst in pair production and rapid rise in 77 have another interest-
ing consequence. For about 0.5R/c after injection is increased, the escaping
X-ray and UV luminosity remain approximately constant. This is an example of
the sudden “trapping/release” effect (anti-corrélation of X-ray luminosity with
changes in injection) discussed in FBGPC that occurs whenever 77 can be made
to change on a timescale faster than the photon response timescale ~ tesc. An-
other example is the outburst of X-ray and UV lwminosity that occurs when
particle injection is cut. Because of the large value of Tyy at most gamma-ray
energies; the gamma-ray distribution quickly collapses, causing significant pair
production to stop in < tcposs. The value of 74 then drops to unity on the anni-
hilation timescale tgnn ~ 1/77 (also < tcross), allowing the previously trapped
UV /X-ray photons to stream out of the source. (The escaping X-ray luminosity
is not enhanced by quite the same factor as the UV luminosity due to down-
scattering by the relatively cold thermal pairs.) Note that in contrast to what
appears to be implied in FBGPC, however, there is nothing special about the
X-rays. Lower photon energies (e.g., UV) will show the same (temporary) “anti-
correlation” with changes in injection. Also, this anti-correlation of escaping
X-ray (UV) luminosity is no‘t a universal behavior of pair plasmas. Rather ex-
treme changes in injection, from or to states with high l. and l;, are required
to obtain it. For mono-energetic pair injection at 7;p; ~ 103 and lg,ls always
< 300, no such effects are seen in the models considered here. (LZ and Svensson
1987 suggest that typical AGN compactness parameters are in the range 1 — 30.)
Moreover, in a real source, the value of 7 cannot be made to rapidly build up or
drop throughout the source in less than a crossing time (see above). This gives
the photon distribution time to respond to the changes in the escape rate and

any trapping/release effects may be significantly reduced.
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The last example we consider is the response of an “AGN-like” model of
§4.3 to changes in the pair injection rate (see Fig. 9,10). Here the boost in
pair injection at t=11 takes the pair plasma to a state where pair production is
relatively important (more so than in the first case examined). However, because
the maximum value of 7 &~ 0.8 < 1, one expects behavior on timescales similar
to those in the first case, where the annihilation line builds up and decays slowly
(over several tcross ) and the normalized escaping luminosities in other bands goes
roughly as: I(t) =1 — (1 — l/f)e“(t"to) for injection boosted by a factor f at
t=1tg,and (1) =1/f —(1/f — l)e"(t“to) for injection reduced by a factor f at
t = tg. (The factor f is of course energy dependent.) It is interesting to note
that an appreciable magnetic field such as in the Fig. 9 model does not cause
major qualitative changes in the time behavior (except of course at the strongly
self-absorbed frequencies). Besides adding a soft photon source, the main effect
of synchrotron radiation in these models is simply to shorten further the pair
cooling times. As above, however, it will still prove instructive to examine the
deviations from the “predicted” I(t) behavior evident in Fig. 9b.

Consider first the escaping X-ray luminosity. For much the same reasons as
discussed above for Fig. 8a, the X-ray luminosity always lags behind [(¢). When
injection is increased, the injection rate of X-rays again does not build up to
its full value until after a ~ tcposs. This is the time required for the gamma-
ray distribution to build up (and the pair production rate to increase — note
the behavior of the annihilation line) as well as for the (IR-optical) synchrotron
photon distribution to build up. The importance of pair production and the
presence of synchrotron photons (which are upscattered to X-ray energies) may
be gauged by noting that the X-ray luminosity increases by a factor ~ 16 instead

of the factor 10 one might have first guessed. Similarly, when injection is reduced,
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the injection rate of X-rays does not drop off significantly until after a time ~
tcross has passed (and the X-ray injection rate falls). However, because Tyy ~ 1,
the gamma-rays (and pair production) cut off faster and the effect is not as
pronounced as in Fig. 8a. An additional, though minor, factor contributing
to deviations from I(t¢) behavior is the non-negligible Thomson optical depth at
t 2 14R/c, which traps the X-rays slightly, increasing the soft photon escape

tilne to ~ 1.2tcr053.

Because it is mostly optically thin synchrotron emission from relatively high
energy (v = 50) pairs (for which “injection” of pairs by pair production is not
important), the IR luminosity behaves quite differently. Since the injection rate
of IR photons goes crudely as le/U,4q4, i-€., as the number of high energy pairs,
the TR injection rate initially jumps by a factor 10 when le is increased but
then quickly drops as U,.qq builds up in response (on a time ~ tcross). The IR
luminosity thus appears to shoot up rapidly at first and then abruptly level off
(as Upqq reaches a stationary value). Also, because of the dropping injection
rate (the final rate is only a factor 6, not 10, higher), the IR luminosity finds
itsell close to its stationa,ry; value much sooner than the luminosity at other
frequencies (see Fig. 9b). At later times (¢ 2 14R/c), the luminosity at IR and
lower energies drops slightly because of “trapping” by thermal pairs, even though
T < 1. (77 > FHlesc(z)[n(z)/n(z)], the escaping luminosity will decrease, even
if n(z) > 0. By the time thermal pairs start building up, n(z < IR) is small,
especially at the strongly self-absorbed frequencies.) The x~ 20% increase in tes¢
due to 7p &~ .8 causes a corresponding 20% drop in the escaping IR and far-IR
luminosity. When pair injection is reduced at ¢ = 22R/c, the IR response is much

more straightforward. The high energy pair distribution (the IR injection rate)
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quickly drops to its new stationary value and the time-response is well-described
by ().

For le = 30, the optical emission is also dominated by synchrotron radiation.
The optical luminosity should thus respond in much the same manner as the
IR luminosity. The differences seen in Fig. 9b can be accounted for by noting
two facts. First, at ¢ = 11R/c, the injection rate of optical luminosity from the
external source is significantly larger than from optical synchrotron emission.
Hence, the optical luminosity does not vary as much as the IR luminosity in
response to the changes in pair injection (a factor 4 vs. a factor 6). Second,
the presence of significant numbers of lower energy (IR) photons which can be
Compton upscattered to optical energies partially compensates for the decrease
in synchrotron luminosity that accompanies the increase in U ,,q. This causes the
optical luminosity to level off later than the IR luminosity and prevents the analog
of the IR “overshoot” (at ¢ 2 14R/c). Also, when pair injection is reduced, the
upscattering of IR photons does not stop right away and this causes the optical

luminosity to lag I(t) slightly (though not as much as the X-ray luminosity).

In contrast, the escaping-gamma—ray luminosity does not deviate much from
an I(t) curve with f = 10, at least when injection is increased. In this case,
the decrease in number of high energy pairs (roughly o< 1/U ,,4) is (more) than
compensated by the increase in the number of the soft photons (o< U,4q4) that can
be upscattered. The good agreement with [(t) is actually somewhat fortuitous.
The “overcompensation” is just balanced by an increased photon-photon annihi-
lation rate. This need not always occur, e.g., as in Fig. 8b where the increased
photon-photon annihilation rate more than wins out. When pair injection is de-

creased, the effects of the non-negligible photon-photon annihilation (7,4 ~ 1)
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cause the gamma-ray luminosity to drop off on the timescale tp; < tcross. The
accompanying rapid drop in the total pair production rate prevents the overshoot

in annihilation line intensity seen in Fig. 8a.

It is worth remarking on one characteristic of models where the IR is pre-
dominantly synchrotron radiation, namely that the IR emission always shows less
variability than the X-ray emission. In Fig. 9+10, for example, the IR luminosity
varies by only a factor 6 in response to a factor 10 change in pair injection while
the X-ray luminosity varies by a factor 16. The reasons for this behavior (see
above) may be crudely summarized as follows: when pair injection is changed by
some factor N, the change in number of high energy non-thermal pairs and the
synchrotron (IR) luminosity goes roughly as N, while the change in number of IR
photons upscattered to X-ray energies goes as N 2. The fact that pair production
can increase the number of pairs responsible for upscattering photons to X-ray
energies while it does not appreciably change the number of pairs emitting at
IR energies only makes the difference in IR vs. X-ray variability larger. Also,
since the strongly synchrotron self-absorbed (far IR) tail is relatively insensitive
to changes in input parameters, it will tend to show even less variability (e.g.,
see I'ig. 9, 10).

As a practical consequence of this, non-thermal models of IR and X-ray
emission from the same source region (e.g., as for AGN) are not necessarily
doomed if the X-rays show variability that exceeds some threshold factor (say 2)
and the IR does not. To illustrate this, we have carried out one simulation along
the lines of Done & Fabian (1989). The run was started from an equilibrium
model of the type shown in Fig. 9, 10, but with [ = 20 and [; = 6. (Bg is

again 300G.) The pair injection (l¢) was then varied up and down by a factor
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two following the prescription of Done & Fabian (1989). The emergent X-ray
and IR luminosities, normalized by their I, = 20 equilibrium values, are then
plotted against lo in Fig. 11. As expected, the IR varies significantly less in
amplitude than the X-rays. Also as predicted from above, the IR tends to lead
the X-rays in responding to the changesin l.. Note, though, that neither the IR
or X-ray luminosity track l very faithfully. The large excursions in X-ray flux
seen in Done & Fabian (1989) are not seen here because the model parameters
are not such that the model can hop back and forth between pair dominated and

non-pair dominated states.

For completeness, we have also included a figure (Fig. 10c) showing the
luminosity response when pair injection is ramped down over 4fcposs instead
of being abruptly cut. (This presumably avoids the problems with radiative
transfer/light-crossing time effects mentioned above.) As one might expect, the
time behavior is qualitatively quite similar to that of Fig. 10b. Note that the
gamma-rays, because they respond on the shorter timescale tp; < tcross, follow
the pair injection most closely. Also, since the gamma-rays and the pair produc-
tion rate take longer fall off, the X-rays lag the other frequencies even more and

the annihilation line continues to build even after injection is reduced.

5.3. (General Remarks

The examples presented are only an illustrative subset of the wide variety
of responses possible for a pair plasma. Because of this variety, predicting the
response requires a detailed knowledge of the initial state of the plasma and
the changes in injection. Alternatively, determining whether an observed varia-

tion is consistent with a pair plasma or inverting the variation to constrain the
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changes injection requires (at the least) detailed knowledge of the photon distri-
bution throughout the time on which the variation occurred. Observationally,
this translates into having simultaneous multi-band observations over extended
periods of time. If one has only a few snapshots of the plasma or continuous time
information in only one or two bands, one can run into trouble (i.e., there will

not be enough information to pose a well-constrained problem).

Consider again, for example, the problem of determining whether IR and
X-ray emission are due to pairs in the same source region. One might look
for correlations in IR and X-ray luminosity. However, depending on when one
observes the model in Fig. 9410, for example, one can see a positive correlation
(11R/c 2 t 2 12R/c), almost no correlation (12R/c 2 t 2 14R/c), or a negative
correlation (¢ 2 14R/c). Also if l¢ is held constant and [ is increased (a case not
shown), the IR luminosity actually drops (since U4 is increased) while the X-ray
luminosity increases or stays about the same. Thus, unless one has additional
information, e.g., that the UV luminosity (I;) did not vary appreciably, it is not
all clear what to expect. Similarly, if one were looking at an outburst resembling
that of Fig. 8b and noticed the outburst only ~ 2tcress after it really began, one
should not be dismayed to find that the gamma-rays show no variability while
the X-rays are constantly increasing in intensity. This does not imply that the

X-rays and the gamma-rays come from causally distinct regions.

One should also be careful about drawing too many conclusions from hardness
ratios (e.g., L /Ly) or spectral indices. For known changes in particle injection,
definite predictions can be made about how their stationary values should change.
Increasing the input luminosity keeping l¢/ls; constant, for example, generally

results in more secondary pair production and gives softer (lower L /L) spectra.
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Increasing l¢/ls, on the other hand, increases the number of non-thermal pairs
and tends to give harder spectra. Thus, if one does not know how the injection
changed, knowing L~ /Ly before and after does not necessarily provide any useful
constraint. Making use of the time-varying hardness ratios is also somewhat
tricky. Hardness ratios do not always interpolate monotonically between the
initial and final stationary values. (See Fig. 8b where the spectrum is initially
very hard and Fig. 10b where thg spectrum becomes and remains softer than
final and initial states for ~ Ttcross.) Also, to the ¢xtent l(t) describes the
evolution of the frequencies being looked at (usually the case for X-ray and lower
energies, 77 < 1), quantities like hardness ratios and spectral indices will not vary
significantly from their initial values until exp —(t—to) 1 J(f—1).If the réduction
in injection, f, is large, the‘sha.pg of the spectrum may then look unchanged‘for
several (many) fcross, with all the spectral changes occurring in the last féw
teross. In short, then, a non-stationary spectrum may look nothing like the state
it finally asymptotes to. The observation of a very steep (soft) spectrum, for
example, does not automatically imply a steep pair injection‘ functioﬁ Q('y) if the
source luminosity turns out to be varying appreciably. One should be careful not

to misinterpret a time-varying spectrum as if it were a stationary one.

Yet another way of extracting information from time variability is to cross-
correlate in time the measured intensity at two different frequencies.k In a non-
relativistic thermal pair plasma of fixed temperature and density where photons
are injected at low energies, photons must “walk” their way up to higher (X-
ray) energies via multiple Compton scatterings. Reaching a higher energy on
average takes more scatterings and more time. One can thus make a definite
prediction: whenever the source luminosity increases, higher frequencies should

always lag lower frequencies. However, if one allows the temperature and optical



113
depth to vary self-consistently and admits the possibility of a non-thermal tail,
the situation is no longer so clear. In the first case (fixed temperature, density)
it is relatively straightforward to write down a Green’s function for the evolution
in time (which may then be Fourier transformed, etc.). In the second case,
however, the “transfer function” itself varies with time in a non-trivial manner.
Again, then, unless one knows exactly what parameter regime is being observed,
“lead/lag” information may not be very useful. Just looking at Fig. 8-10, it is
possible to come up with examples where one frequency can either lead or lag

another depending on the initial state of the plasma.

A relatively unexplored area that might prove useful to look at is the time
variability of the hard (> 511KeV) gamma-rays (preferably alongside simulta-
neous measurements at some lower energy). Because it has the shortest response
timescale and (at least in the models considered here) is due to a portion of the
pair distribution not directly affected by pair production, the gamma-ray end of
the spectrum is probably the best indicator of changes in the “first order” pair
injection spectrum Q(v). (Knowing the gamma-ray spectrum when the source is
stationary is even more useful as it seriously constrains the possibilities for Q(7)
—e.g., see LZ.) If the gamma;ray spectrum shows marked steepening or softening
on a timescale ~ fcposs, one can be fairly sure a change in pair injection is in-
volved — an important piece of information. (A change in soft photon injection
typically results in a much more sluggish response, especially if 7 > 1. See §5.1.)
The gamma-ray response to a decrease in pair injection also has the signature
that higher energies drop off faster, i.e., higher frequencies lead lower frequencies.
(Exactly how much they lead is of course a measure of 7,y (z). ) This behavior is
hard to mimic by changes in soft photon injection. Observation of gamma-rays

during a sizeable drop in pair injection can also lead to a rather unambiguous
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indication of pairs in a source. In the models considered, a relatively long-lived
annihilation feature almost always emerges from the decaying continuum (e.g.,
Fig. 10a). Needless to say, finding no significant variability on timescales shorter
than (or at least as short as) the shortest observed X-ray timescales would place

current models in severe difficulty.

Unfortunately, the details of the time behaviors discussed here (e.g., the IR
overshoot in Fig. 10b, the release of trapped X-rays in Fig. 8b) often depend
sensitively on the relative values of the various relaxation timescales. Different
microphysics (i.e., approximations) or assumptions about the geometry of the
system can lead to different values for these timescales, and consequently, quite
different behavior. This should not be forgotten when interpreting the results of
numerical calculations. Although it does not contradict the qualitative results
presented in FBGPC, for example, the code discussed here does not reproduce
well the detailed time behavior presented in their figures (even accounting for
differences in the definitions of I, ls, etc.). This is not surprising considéring the
different treatments of the microphysics, e.g., the use of different escape prob-
abilities. Similarly, the results presented here are based on a radiative transfer
scheme which does not a,llovx; for variations in geometry, anisotropies in particle
distributions, or spatial inhomogeneities. They should not be considered “defini-

tive.”
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6. Discussion and Conclusion

Past studies of pair plasmas have suffered from two potentially serious short-
comings: i) unsophisticated treatments of the radiative transfer, and ii) overly
simple approximations of the basic microphysical processes. We have concen-
trated on the second of these problems, trying to separate the real physical
effects from the artifacts of approximations. The code described here can cor-
rectly handle Klein-Nishina scatterings where the photon and electron energies
are of the same order. It can also solve self-consistently for the pair and photon

distributions over a large range of values of U,..4/Up.

Two general conclusions follow from the work presented here. First, approx-
imations used in earlier work are reliable only in restricted parameter regimes.
The Compton scattering approximation of LZ, for éxample, works well énly when
a féW orders of Compton scattering are iﬁlportant and 6,.,4Ymaz < 1. Errors of
order unity occur when this is not the case. Someiof the approximations er
handling pair production have’analogous limitations. Contrary to earliér as-
sumptions, Coulomb scattering can indeed be important for non-thermal pairs.
In the synchroton-dominated case even a small Coulomb cooling rate will modify
significantly the low energy pair distribution. Moreover, interesting parameter
regimes (e.g., s < l¢) exist where the Coulomb energy exchange times are simi-
lar to the other cooling timescales. The thermal component of pair distribution
can then be quite hot (kT/mec2 ~ 1) since not all the energy of the injected
pairs is lost to the radiation field. In general, achieving more than order of
magnitude accuracy appears to require a careful numerical treatment. Analytic

approximations, though convenient, have limited validity and accuracy.
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The second conclusion is that pair plasma models can reproduce a wide va-
riety of spectral shapes and variability (see the figures in this paper). When
the calculation is done self-consistently and details such as the presence of cool
pairs are taken into account, the deviations from canonical spectral shapes (e.g.,
Bonometto & Rees 1971, Rees 1967b) can be quite significant. This should not be
forgotten when comparing observations to theory. Power law pair injection with
index I, for example, does not automatically imply a synchrotron or X-ray power
law index of I'/2. The portions of the spectrum due to optically thin synchrotron
emission and Compton upscattering of soft photons (e.g., the IR and X-rays) can
have different spectral indices and still arise from the same pair distribution, and
a portion of the spectrum which is strongly synchrotron self-absorbed need not
have a spectral index of 2.5. In considering variability, it is also worth remem-
bering that a pair plasma acts essentially as a low pass filter, damping out rapid
variations. A source size derived from variability measurements may well be an
overestimate. More importantly, because the plasma’s response function is en-
ergy dependent, luminosities measured at different frequencies can vary in rather
different manners (and still originate from the source). Finally, a plasma in a
non-stationary state can havé an emergent radiation spectrum which looks differ-
ent from that of any stationary state and apparently violates constraints derived
from stationary models. In sum, it appears that models based on pair plasmas
are sufficiently versatile to accomodate existing observations of the continua of
AGN. Until the arrival of detailed (and simultaneous) multi-band observations,

it 1s difficult to see how such models can be convincingly confirmed or ruled out.
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Figure Captions

Figure 1. Comparison of results with those of the Lightman & Zdziarski

(1987) code.

Figure 2. Effects of including Coulomb cooling and non-thermal pair an-
nihilation in a photon-starved (I; < l¢) model. The pair distribution shown in

Fig. 2b is the sum of the thermal and non-thermal components.

Figure 3. A “Compton-Dominated” (I¢ > Up) model and its corresponding

unmagnetized model. Note the similarity of the two spectra.

Figure 4. SSC (synchrotron self-Compton) spectra - constant pair injec-
tion luminosity, varying magnetic energy density. Pairs were injected mono-

energetically at 7;,; = 103.

Figure 5. SSC spectra (Fig. 5a) - constant magnetic energy density, varying
pair injection luminosity. Pairs were injected mono-energetically at ;,; = 103.
Fig. 5b shows the corresponding pair distributions. Note the effects of Coulomb

cooling on the low energy pair distribution.

Figure 6. SSC spectra showing the results of varying the power law injection

index T' (Q(T) < v~ T).

Figure 7. Model with both external photon injection and a magnetic field.
Note the variation of the near IR (infrared) slope with decreasing minimum pair

injection energy Ymin-

Figure 8. Luminosity response of unmagnetized models to impulsive changes

in pair injection. Fig. 8a. shows a case where the injection parameters are such
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that 7 < 1 at all times. Fig. 8b shows the opposite case where the increase in
particle injection causes 77 to significantly exceed unity. The various frequency
bands referred to in this and the following figures are defined as follows: (IR):
90,0004 - 30,0004; (Opt): 9,0004 - 3,0004; (UV): 9004 - 3004; (X-Ray): 2 keV
- 10 keV; (Gamma-Ray): 2 MeV - 10 MeV; and (Annihilation Line): the total
annihilation luminosity, If" = 4n Ror [ fignn(z)dz, including the contribution

from non-thermal pairs.

Figure 9. Spectral (Fig. 9a) and luminosity (Fig. 9b) response of a magne-
tized model of the type in Fig. 7 to an impulsive increase in injection. Pair injec-

tion is power law with index I' = 2.4, extending from 7,3, = 100 to Ymaee = 103.

Figure 10. Spectral (Fig. 10a) and luminosity (Fig. 10b) response of a
magnetized model of the type in Fig. 7 to an impulsive decrease in injection.
Pair injection is power law with index I' = 2.4, extending from v,,;, = 100
to Ymaz = 10%. Fig. 10c shows the response when pair injection is decreased

gradually over 4 light crossing times.

Figure 11. Luminosity response of the IR and X-ray bands to random
variations of up to a factor 2 in the pair injection rate [ about a median value of
20 (see text). The solid curve is the time-varying value of le. The dashed curve is
the X-ray luminosity, and the dotted curve is the IR luminosity. Asin Fig. 9-10,
the pair injection is power law with index I' = 2.4, extending from 7,,;, = 100
t0 Ymaz = 103. The magnetic field has strength By = 300G. The source region
had radius R = 10!% c¢m, and external photon injection was a blackbody at

s = 3 x 107° with constant luminosity Is = 4.
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TABLE 1

Comparison with Models of Lightman & Zdziarski (1987)
(le/ls = 1/2.5)

*

le PY T z TC 6 as_10
1 1.7x1073% 047 1000. 1.1x10"% 7.9x10"%  .637
L&Z: 2.0x10~% 062 1000. 1.0x1073 1.0x10-2  .655
10 023 502 632 T.0x107% 57x10"% 863
L&7Z: 025 574 389 69x107% 6.0x107%  1.03
100 .087 334 45 11x107?2 22x107% 979
L&Z: .099 355 3.7 11x1072 25x1073 1.14
1000 12 124 14  62x1073 62x10"% 142
L&Z: 14 134 87 51x107% 53x107% 1.61

All models were computed assuming monoenergetic pair injection at 7y;n; =

103 and blackbody soft photon injection at 6,54 = 1.07 x 10~°. The exact energy

distribution of Compton scattered photons was used in our calculations.

Key to symbols:

PY is the “pair yield” = [dyP(y)/ [vQ(7)dy (eg. see LZ). P(vy) is the

creation rate of pairs of energy v by two-photon pair production; Q(v) is the

external pair injection rate.

z* 1s the photon energy = where 7, (z) = 1.

ag_10 is the best-fit spectral index (Fy o< v~?) to the 2-10 keV x-ray band.

le, 77, 7c, and 6 are as defined in the text (see §2.1).
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Comparison with Previous Calculations
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Figure 1



Luminosity per Logarithmic Energy Interval, x1(x)
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Effects of Coulomb Cooling and Non—Thermal Pair Annihilation
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Effects of Coulomb Cooling and Non—Thermal Pair Annihilation
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ESCAPING LUMINOSITY
Frequency v (Hz.)
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Luminosity per Logarithmic Energy Interval, xl(x)
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ESCAPING LUMINOSITY
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Luminosity per Logarithmic Energy Interval, xI(x)
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Corresponding Equilibrium Pair Distributions
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Particle Injection Turned On at T = 0; Turned Off at T = 12
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Luminosity per Logarithmic Energy Interval, x1(x)
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Pair Injection Reduced Impulsively by Factor 10
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Pair Injection Reduced by Factor 10 over 4 R/c
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Response to Randomly Varying Pair Injection
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Chapter 4

PHYSICAL PROCESSES IN PHOTON-STARVED
NONTHERMAL PAIR PLASMAS

in collaboration with

Andrzej A. Zdziarski,
Space Telescope Science Institute

Don Q. Lamb,
University of Chicago

Originally appeared in Astrophysical Journal (1990), 357, 149.
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Abstract

We study Compton spectra produced by relativistic unmagnetized nonther-
mal electron-positron pairs injected into “photon-starved” plasmas, i.e., plasmas
where the luminosity in soft photons is much less than the power in the nonther-
mal pair injection. The main physical processes in photon-starved plasmas are
as follows: the repeated Compton scattering of individual photons before they
escape the source, production of electron-positron pairs in photon-photon colli-
sions, the cooling of pairs to an equilibrium temperature and the formation of the
thermal plasma component, and the transfer of energy from the nonthermal pairs
to thermal ones via Coulomb collisions. We find the equilibrium temperature is
often relativistic and increases with the decreasing compactness parameter L/ R,
where Le and R are the luminosity in injected electron pairs and radius, respec-
tively. Coulomb interactions are important in such plasmas and may transfer
a large fraction of the injected nonthermal power directly to the thermal com-
ponent, which keeps the Thomson optical depth of the nonthermal component
small. For small enough soft photon luminosities, bremsstrahlung emission by
the thermal and nonthermal electrons becomes important.

When the compactness in pairs is low, the X-ray photon spectrum is due
mostly to moderately Comptonized thermal bremsstrahlung from the semi-rela-
tivistic plasma; when the compactness is high, it is due to repeated Compton
upscattering of soft photons on a cool, optically thick thermal plasma. The
overall spectra are very hard in the X-ray range, peak near 0.1-1 MeV, and are
cut off at higher energies with power law tails following the cutoffs. Such spectra
are relevant to theoretical models of gamma ray bursts, active galactic nuclei,

and the cosmic X-ray and gamma ray backgrounds.
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I. Introduction

We study here nonthermal unmagnetized relativistic plasmas in pair equilib-
rium. The assumptions adopted in this work are similar to those of Zdziarski
and Lightman (1985), Zdziarski and Lamb (1986; hereafter ZL86), Fabian et al.
(1986), Svensson (1987), Lightman and Zdziarski (1987; hereafter LZ8T7), and
Done and Fabian (1989). The basic assumption of those papers as well as of
the present work is that a fraction of the available energy is supplied to the iso-
tropic and homogeneous plasma in the form of a flux of relativistic electrons or
pairs (nonthermal injection). These injected relativistic pairs lose their energy
mostly via Compton scattering of soft photons. The resulting radiation spec-
trum extends above the threshold for production of ete™ pairs, 511 keV. The
produced pairs Compton can scatter as well, giving rise to an e Te™ pair cascade.
In steady state, the pair production rate equals the sum of the pair annihilation
and pair escape rates (pair equilibrium). For reviews of such pair plasmas and a
comparison of their emitted photon spectra to those of cosmic compact objects,
see Svensson (1986), Zdziarski and Lightman (1987), and Svensson and Zdziarski
(1989).

The work presented here concentrates on the case of photon-starved or photon-
deficient plasmas. We will define such plasmas as those where the luminosity
in any sources of soft (hv < mec?) photons, L, is much less than the power
injected in the primary relativistic electrons, Le — so much that the power ra-
diated away by the photons after a single scattering off the cooled nonthermal
electron distribution is also much less than the injected power in primary elec-
trons (cf. eq. [2] in § II). Since the escaping photon luminosity must balance the

total injected luminosity in a steady state, it follows that repeated scatterings of
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photons by either thermal or nonthermal electrons have to be important in such
cases. Moreover, the spectra of photon-starved plasmas will be hard (i.e., most
photons emerge with significantly higher energies than they were injected with)
since the luminosity injected in pairs must make its way to the photon distribu-
tion (via repeated Compton upscattering). Because of this deficit of soft photons,
the Compton cooling times for injected pairs are not necessarily much shorter
than other timescales relevant to the problem. Slower processes such as Coulomb
cooling and electron-electron bremsstrahlung can then have a significant impact
on the equilibrium particle distributions.

There are several effects specific to photon-starved plasmas. First, higher
order Compton scatterings are important by the definition above. A typical
primary photon will get upscattered several times before leaving the source.

Second, the relativistic electrons cool on the upscattered spectrum rather
than on the (deficient) primary soft photons. Typically, the upscattered spec-
trum extends to high energies. Many Compton scatterings are in the Klein-
Nishina regime (ey > 1, where  is the electron Lorentz factor and € is the pho-
ton energy in units of the electron rest mass, ¢ = hv/mec?) and Klein-Nishina
corrections can no longer be'ignored. In particular, the use of a Klein-Nishina
cutoff for the scattering rate (e.g., as in LZ87) becomes inappropriate (see Coppi
and Blandford 1990, hereafter CB90). Also, the evolution of the pair distribu-
tion will no longer be well-described by the continuous cooling approximation,
dN(y)/dt = —(d/dy)[YN(v)]. Here ¥ is the cooling rate, and N is the nonther-
mal pair distribution function. In the Klein-Nishina regime, pairs lose energy in
large, discrete steps (Blumenthal and Gould 1970; Zdziarski 1988).

Third, the equilibrium temperature, ®, to which the relativistic electrons

cool will be high (© < 1), and the associated Compton parameter y will be
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large (> 1). Here © = kT /mec? is the dimensionless electron temperature. The
Compton parameter, determining the efficiency of Comptonization by thermal
electrons, is given by equation (16) below.

We study here plasmas with negligible magnetic fields. The injected particles
are taken to be et e~ pairs. We consider only steady (stationary) plasmas where
the sum of the injection rate and the rate of pair production by photons equals
the sum of the rate of eTe™ pair annihilation and the rate of escape of pairs
from the plasma. For the process of Compton scattering, we assume that some
contribution to the cooling rate is from Compton scattering in the classical,
Thomson, regime. (Cf. studies of pair cascades in the regime where the injection
occurs in the extreme Klein-Nishina regime, e.g., Zdziarski 1988).

Photon-deficient plasmas without magnetic fields were studied before by
ZL86, LZ87, and Done and Fabian (1989). In contrast to those papers, we
include the process of Coulomb energy loss of the relativistic electrons to the
background thermal plasmas. We find the process to be important over a wide
range of plasma parameters (see also de Kool and Begelman 1989). Its impor-
tance increases with decreasing compactness in the electron injection, £, and de-
creasing £s/£e, the ratio of thé soft photon and electron injection compactnesses.
Here £ is the compactness parameter, £ = Lo /Rmec®, determining the impor-
tance of eTe™ pair production and Compton losses in a source. The subscript
e corresponds to the primary electron (or pair) injection, while s corresponds to
the primary soft photons.

Our results differ somewhat from ZL86 as far as the y-ray spectra from
photon-deficient sources are concerned. ZL86 found that a typical spectrum was
a broken power law with a low energy spectral index ay < 1 at ¢ < 1 and a

high energy spectral index a, > az at € 2 1. Here, the energy spectral index
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is defined as Fy, o« v~%. We find that Coulomb losses at low compactnesses and
Compton losses at large compactnesses cause the optical depth of the nonthermal
part of the electron distribution to be always < 1. This results in a diminished
role of scattering by the nonthermal electrons and a spectral turnover at € >
1. Beyond the turnover, the amplitude of the high energy, v-ray part of the
spectrum is reduced. Also, the effects of Compton up and down scattering by
the thermal plasma and pair annihilation at £ > 1 result in additional structure
in the spectrum at € < 1. These effects were not discussed in ZL86.

In the classification scheme of Svensson (1987), nonthermal electron-positron
cascades of the type considered by ZL86, LZ87, and the present work fall into
his type III. Those cascades are fully nonlinear, by which it is meant that both
eTe™ cooling and pair production occur on photons previously upscattered by
the injected relativistic electrons.

One example of a physical situation where the soft photon luminosity, L,
may be much less than the luminosity injected in relativistic electrons, L¢, may
occur is acceleration of electrons in a region which lies several stellar radii above
a (weakly magnetized) neutron star. Then only a small fraction of L inter-
cepts the stellar surface and is re-emitted as blackbody radiation L, providing
a source of soft photons in a self-consistent way (see ZL86). Another example is
a source (in the vicinity of either a neutron star or a black hole) in which soft
photons are produced by synchrotron emission in a magnetic field that is below
the equipartition strength, or a source in which bremsstrahlung is the only source
of photons.

We compare our theoretical spectra to the spectra of y-ray bursts and active
galactic nuclei (see § V). Some of the theoretical spectra resemble the spectra of

some “classical” 7y-ray bursts, and some resemble those of “soft y-ray repeaters.”
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They may also be relevant to the X-ray and -ray spectra of active galactic nuclei.
In particular, photon-starved sources may be responsible for the ~ 1 MeV peak
observed in several AGN and the cosmic y-ray background (e.g., Bassani et al.
1985). Photon-starved plasmas may also explain the spectral indices less than
0.5 observed in certain AGN (e.g., Mushotzky 1984) and in the cosmic X-ray

background (e.g., Marshall et al. 1980).

II. Model of the Physical Processes

The treatment of the physical processes we use here is for the most part
described in CB90. The method of solving nonlinear pair cascades is analogous
to that of Coppi (1990; hereafter C90). For the present work, the main advan-
tages of the method of CB90 and C90 compared to that of LZ87 are as follows:
(1) the exact Klein-Nishina Compton scattering rates are used; (ii) the electron
kinetic equations are solved directly without relying on the continuity equation
(see LZ87); and (iii) the method for treating thermal Comptonization works at
relativistic temperatures. The processes we study here are Compton scattering,
thermal and nonthermal pair annihilation, two photon pair production, thermal
and nonthermal bremsstrahlung, and Coulomb scattering. LZ87 did not include
the effects of Coulomb collisions, bremsstrahlung, and nonthermal pair annihila-
tion.

We assume that eTe™ pairs are continuously injected at a rate Q(7) particles
per unit time per unit volume per unit energy, with yin < 7 < Ymax. (This
contrasts with ZL86 and LZ87, who took the injected particles to be electrons.)

We assume that the injection occurs uniformly throughout a spherical volume
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of radius R. The total power L put into the primary pairs is measured by the

dimensionless “pair compactness parameter,”
)

Leo 4 g R2  [TYmax
fo= et _ Amor / 1Q(7) d, (1a)
Y

~ Rmec® 3 ¢ i
which is roughly proportional to the optical depth to eTe™ pair production in
photon-photon collisions. Here o is the Thomson cross section, and me is the
electron mass. The injected pairs eventually annihilate and contribute their rest
mass-energy to the radiated photon spectrum. We therefore include their rest-
mass energy in our definition of the power L¢ (cf. eq. [2a] of LZ87). The form of
the injection function () is taken to be a power law of index I' extending from
energies Ymin t0 Ymax-

One source of soft photons that is always present in a plasma is bremsstrah-
lung from both thermal and nonthermal electrons. In addition, we assume for
some models an injection of blackbody photons with dimensionless temperature
Opp, (= kTy/mec?) at the rate g photons per unit time per unit volume per
unit energy e. We will take O, = 10~4-1073 in our numerical models. We

assume OppYmax < 1, so that for any pair a nonzero part of the photon spectrum

is in the Thomson limit. The “soft photon compactness” is

Lsor  4mopR? /°°
= = — ’ de. 1b
b Rmec3 3 ¢ 0 o) de (16)

The numerical value of the constant op/mec® in equations (1a) and (1b) is

1/(3.7 x 10?8 ergs—1 cm=2). The photon injection is assumed uniform and iso-

tropic throughout the source.

An approximate condition for a plasma to be photon-starved valid at low

values of fe and ' < 2 is,

es/ﬁe < ’)’maxs/z@—l/z ) (2)
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(Done and Fabian 1989).

We divide the pair distribution into a thermal and a nonthermal population
(Some quantities related to those populations will have superscripts th and nth,
respectively). Let n(e) and N(y) be the number densities per unit energy of
photons and nonthermal pairs, respectively, at a representative interior point of
the emission region. The equation governing the nonthermal pair distribution,

N, is then,

P(y) +Q(v) + /lvm NHYCH  7)dy =
3)
NG) [ T Oy )+ AMR() %MB o) N

Here P(7v) is the rate of pair creation per unit volume per unit energy, Q(y)
is the rate of injection of primary pairs per unit volume per unit energy, and
C(v',7v) is the Compton transition rate for scattering from Lorentz factor v/ to
7, which depends on the photon spectrum, n. The A™! is the rate of nonthermal
annihilation (see CB90), which includes the contributions from both the thermal
pairs and the other nonthermal pairs. The 4p and oy are the cooling rates
due to ete® bremsstrahlungu and Coulomb cooling, respectively. See CB90 for
a more detailed discussion of these terms. As their cooling time is less than
R/c at £ 2 1, pairs cannot leave the sources before cooling completely. Hence
we do not include an escape term for the nonthermal pairs. Upon reaching the
thermal range of energies, the nonthermal pairs are transferred to the thermal
distribution (see discussion after eq. [16] below).

The thermal (Maxwell-Boltzmann) distribution has a dimensionless temper-
ature ©® and a Thomson optical depth "rr_t[b = (N4 + N_)opR. Here Ny, N_ are

the densities of thermal positrons and electrons, respectively. We determine ©
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and TTl from energy balance and pair balance, respectively (see egs. [15], [13]
below).

The photon kinetic equation is,
ig(e) -+ AER() + AL () + AE(e) + A (e) + Al () +al(e) =

th -1 (4)
() 6) + ()] + —n<>[1+ g >] .

Here, ng, 4, np, and ng are the rates of production of photons at energy e
by soft photon injection, pair annihilation, bremsstrahlung, Compton scattering
off nonthermal electrons, and Compton scattering off thermal electrons, respec-
tively. We treat pair annihilation, bremsstrahlung and scattering by thermal and
nonthermal electrons separately (see CB90). Photons are removed from energy
e by Compton scattering with nonthermal electrons, having Compton optical
depth ’rgth (calculated using the Klein-Nishina cross section and depending on
the electron distribution N), and by pair creation, having optical depth 7,y. The
removal of photons due to Compton scattering with thermal electrons is included
in ng‘ The last term, corresponding to diffusive photon escape, has the same
form as in LZ87. The function f accounts for the effect of relativistic forward
scattering, which reduces the amount of photon diffusion inside the source, and
is given by equation (21b) in LZ87.

We treat Coulomb losses in the same way as in CB90. At relativistic energies
7 > 1 and nonrelativistic pair temperatures (® < 1), the Coulomb loss rate

takes the form (e.g., Gould 1975),

(5a)
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where €, is the dimensionless plasma frequency,

1/2
3 (th
Ep = ( aOTr ) 5 (5b)

2R

and ag = 5.29 x 10~ cin is the Bohr radius. The factor In E;l for T,%h = 1 equals
174 for R = 107cm and 25.4 for R = 104 cm. At higher temperatures, the
Coulomb cooling rate yqo, for energies v > © is reduced by a factor ~ 1/(20)
(see CB90 and references therein) relative to equation (5a).

We can compare the magnitude of Compton and Coulomb losses of an elec-
tron with the Lorentz factor 4. In a photon-starved plasma, £5 < £, Coulomb

losses dominate below a ¢, given by,

A
7cr2 2 10—£le— In 6;1 . (6a)

At Le < 102, T,}.h o< Le (e.g., Svensson 1987), and

Yor? ~Ineyt, (6b)

and at £e > 102, T&.h o Kel/z, and
Yer? ~ (100/66)1/2 In e;l : (6¢)

We define the pair yield as the ratio of the power injected in the form of pair
rest mass by the creation of eTe™ pairs to the power injected in the primary
pairs (cf. Guilbert, Fabian, and Rees 1983; Svensson 1987; LZ87),

. fl')/max Pd,),
- pmeyQdy

Ymin

} (7a)
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One may define an analogous quantity, Y, for the primary pairs which represents

the fraction of their injected energy contained in pair rest mass. For power-law

pair injection, Q(vy) = QO’)/_F for Ymin <7 < Ymax, Yq is

r-2 minl_r“ maxl_r
oo Py e T
Q= j"'Ymax —-F—I—ldry 7min—1—’Ymax_1 -9 ( )

In Ymax/Ymin

The dimensionless luminosity, Eg}}m, in pair annihilation from thermal pairs is

then related to both pair yields from the primary and secondary pairs,

dw opR? [ .
fihy = T [T cntbe)de = (¥ + Yoe, ®)

C

where vy, is the average Lorentz factor in the Maxwell-Boltzmann distribution,

Ky(1/9)

7y(1/6) )

Tth =30 +

and K, is the modified Bessel function of the second kind of order n.

We will also introduce here the dimensionless power in secondary pairs,

4 opR? [ Tmax
Epair = 3 ’lc A 7P(7)d77 (10)

This power is not directly radiated, and equals the fraction of the power in
photons produced inside the source that is absorbed in photon-photon pair pro-
duction. This quantity will be important for assessing the importance of the
Coulomb process (see eqs. [17], [19]).

The escape of thermal pairs is treated as in Zdziarski (1985), by the means of
a phenomenological parameter fegc defined as the ratio of the travel time across

the source to the escape time scale. The escape rate (at Ny = N_) is then

stc = —2Besc(¢/R)Ny . (11)
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We neglect here escape of nonthermal pairs (see the paragraph after eq. [3] above),
which can be important under some circumstances.

We determine the Thomson optical depth of the thermal pairs by balancing
pair annihilation of thermal pairs with both thermal and nonthermal pairs and
pair escape with pair production. As the effect of annihilation with the non-
thermal pairs is small in most cases, we neglect it in the equations (12)-(13)

below,

3 Ymax )
AN N_goregs - 2N fecc/R+ [ [Q0)+ P@IdY =0, (12)
Here g 4(©) is the relativistic correction to the thermal pair annihilation rate (eq.
[68] of Svensson 1982). As Ny = N_ for pure pair injection, equation (12) yields

an estimate of the Thomson optical depth of the thermal pairs as

80esc \2 4 1/2 80
T{PER "“) +7rgA(Y+YQ)£e] - === (13)

394 394

(The effect of nonthermal pair annihilation on pair equilibrium 4s included in our
numerical treatment.) The pair escape term in equation (12) becomes equal to
the pair annihilation term when ‘T,:t[‘h = 8fesc/3g 4. Pair escape is then negligible
at ’n‘ih larger than that value. Using the linear dependence between the pair yield
and compactness at low £ (e.g., Svensson 1987), and using equation (13), we find

that pair escape is negligible compared to the pair annihilation at
e 2 10%Besc . (14)

The thermal pairs are produced by thermalization of both the primary and
secondary pairs, and removed by pair annihilation and escape from the source.

They cool and heat through Compton interactions with the photon field n(e)
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and through Coulomb interactions with the nonthermal electrons, and cool via
thermal bremsstrahlung. The energy balance equation for the thermal pairs is

thus

o0 [o,¢] o0
—/O n%lede—/o h%lede—‘/0 nj‘"“thede+7thN§26+

7max 7max (15)
I, /1 (P +Q)dy — /1 Y goulV dy = 0.

A negative term in equation (15) corresponds to removal and a positive one to
production of thermal energy, respectively. The factor hf,f’nth includes annihila-

tion of thermal pairs with both thermal and nonthermal pairs. The integral over

. th,nth
n

n gives the rate at which annihilation removes energy from a unit volume of

the source, i.e., the integrated annihilation emissivity, and thus the annihilation
compactness (see eq. [9]). We use the fit given by Svensson (1982, eq. [70]) for
the integrated thermal annihilation emissivity.

The term vy, [(P + Q)dy gives the rate at which energy is injected into the
emission region in the form of nonthermal pairs that cool and become thermal.
Since the probability of annihilation increases with decreasing energy, pairs with
energies lower than -y, predominantly annihilate. Thus the sum of the third,
fourth, and fifth, terms in equation (15) is positive and annihilation heats the
thermal plasma. The heating rate due to annihilation can be comparable to
the cooling rate due to bremsstrahlung, the second term in equation (15); for
example, both rates are approximately equal at © — 1.

The thermal pairs up and down scatter photons present in the source. Low
energy photons are predominantly upscattered repeatedly by the thermal pairs.
The Compton parameter y is a convenient measure of the efficiency of the thermal

upscattering, with e; = e¥¢;, where the indices 7 and f indicate photon before
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and after scattering, respectively, and e; < ©. The nonrelativistic form of the
parameter is given, e.g., by equation (7.41a) in Rybicki and Lightman (1979).

An approximate general expression valid at any temperature is

th
y ~In(1 4 40 + 1602)7iP (1 + %T—) , (16)

which reduces to the nonrelativistic form at ® <« 1. (Note that eq. [7.41b]
in Rybicki and Lightman 1979 for the extreme relativistic Compton parameter
appears to have no physical interpretation and is inconsistent with the definition
of y by the relation €5 = eVe;.)

In our numerical treatment, we assume that the injected nonthermal pairs
cool until they reach energy ), /nth = 1+40 at which point they are transferred
(along with their energy) to the thermal pair distribution. The results do not
depend sensitively on the exact value of the numerical constant in front of the
factor O.

For low temperatures (© < 0.1), oyl is roughly constant over a wide of range
of pair energies (see eq. [5]). We can obtain an order-of-magnitude estimate of
the dimensionless Coulomb cooling rate of the nonthermal pairs (above v,y /nth)’

Looul, by bringing J ooy outside the integrand and evaluating the integral at

v=1
47 O'TRZ Ymax )
Loou = T3 . / YooudV () dv (17a)
h Yth/nth
~ ZWTr}hTrilwth In 61;1 , (17b)

where equation (17a) defines £, and Tj’_lth is the Thomson optical depth of the

nonthermal electrons and positrons,

Ymax
" / N(y)dy . (18)
Y

th/nth
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The energy input from the Coulomb process to the thermal pairs (the last term in
eq. [15]) also includes the contribution from nonthermal pairs with v < 7 th/nth-
Assuming the nonthermal pairs with v < 7y /nth thermalize immediately (via

Coulomb scattering), the additional energy input is given by

A o R? Yth/nth Ymax
'51;[/ 7@+PWWMmmg/ (Q + P)dy
L Yth/nth (19)

-ﬁmA%WQ+PMﬂ-

Note that the term (19) can in principle be either negative or positive, depending
on the form of P + Q. In all numerical cases we have considered (see § III), the
term (19) is positive and much less than £g,, of equation (17a).

To assess the relative importance of Coulomb heating of the thermal distribu-
tion, one should use the quantity £¢oy1/fe. This quantity gives the fraction of the
injected power that is transferred to the thermal distribution through Coulomb
interactions. On the other hand, the relative importance of Coulomb cooling of
pairs of the nonthermal distribution is determined by the fraction of the non-
thermal power in both the primary and secondary pairs that is transferred via
Coulomb interactions to the ‘therma,l component, which is approximately given
by to use Loou1/(Le + £pair). (The £y, is defined by eq. [10], and Table 1 in § TIT
lists the values of £ogy)/Le and Lpgir/Le.)

Thermal bremsstrahlung in a pair plasma has contributions from e Te* and
ete™ interactions. The nonthermal electrons emit bremsstrahlung while inter-
acting with the thermal plasma and with themselves. As 'T,%h > T,Ill‘th, the latter
contribution is much less than the former. We treat bremsstrahlung in the way

described in CB90. The Appendix describes a simple treatment of nonthermal

bremsstrahlung at v > 1.
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The thermal bremsstrahlung self-absorption frequency € 54, defined by 754 (€54 )
=1, can be written as

ET'L%(TTR2

€sq = T = 5~

th ) 3mag 1
8 RO

1/2
"

where o f is the fine-structure constant. The dimensionless factor in brackets

(T,%‘h)zcaf

is a function of € and © only, and is of the order of unity at mildly relativistic
temperatures. For R = 107 cm, €54 ~ 1078, Since the self-absorbed part of
the spectrum contains very little energy compared to the optically thin part,
we assume nng = 0 below €g44. Self-absorption by nonthermal electrons can be

neglected compared to that by the thermal ones (see Appendix).

III. Results

In this section, our numerical results are discussed and interpreted. We will
discuss mostly those features in the spectra that are specific to photon-deficient
plasmas. We refer the reader to LZ87 for discussion of spectra from nonthermal
pair equilibrium plasmas with abundant soft photons.

We consider power-law pair injection, Q(7) = Qo7 T for Ymin < 7 < Ymax.
The dimensionless parameters that specify a model are £, £5, O, ', Ymin, Tmax,
and fesc. In most models, we set Besc = 0. There is also a weak dependence
on R through the Coulomb cooling rate (egs. [5]-[6]), and the bremsstrahlung
self-absorption energy (eq. [20]). We assume R = 1014 cm and eg5q = 1077,

I'he main input and output quantities for the models presented in this section
are given in Table 1. The quantities y, Trrfwth, Laoul, and Ly, are defined in equa-
tions (16), (18), (17a), and (10), respectively. The quantities €5_1¢ and ay_1g

are the 2-10 keV compactness and average energy spectral index, respectively.

The dimensionless energy ey corresponds to 7yy(€ex) = 1. The model numbers
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in Table 1 correspond to the cases presented in Figures 1-7 below, and 1, 1,
correspond to the solid, dotted, and dashed curves, respectively.

Figures la, b, ¢ present spectra from sources with power law electrons injected
with the index I' = 2.5. The compactnesses in the pair injection are (a) £e =1,
(b) £e = 103, and (c) £e = 30. Solid curves in Figures la, b, ¢ correspond to
the only source of photons being bremsstrahlung. Bremsstrahlung radiation is
emitted by both the thermal and nonthermal pairs. The dotted and dashed
curves correspond to the addition of black body sources of soft photons with
Oy = 10724, and £g = Le, respectively (see eq. [2]).

At Le =1 and €5 = 0 (solid curve in Fig. 1a), the equilibrium temperature
is relativistic, @ ~ 0.9 as un-Comptonized nonrelativistic bremsstrahlung would
radiate only £ < 1 (e.g., Svensson 1986). There is little production of secondary
pairs. The equilibrium Thomson optical depth of the thermal pairs is relatively
small, T.th ~ 0.9, and is due mostly to cooled primary pairs. The spectrum con-
sists of three components: thermal bremsstrahlung, exponentially cutoff at € > ©;
a pair annihilation spectrum (mostly thermal) peaked at € ~ 1 4 (3/2-3)©, (the
factor in parentheses times © represents the average thermal kinetic energy);
nonthermal bremsstrahlung, extending up to € ~ ymax. The bremsstrahlung
components are shown in Figure 2. Comptonization has a relatively minor effect
on the spectrum. The X-ray spectral index of oz ~ 0 is typical for bremsstrah-
lung. The optical depth of the nonthermal electrons is Tr’fth ~ 1072 <« 1, and
the amplitude of the nonthermal bremsstrahlung is much less than that of the
thermal one. The thermal electrons are heated by both Compton and Coulomb

interactions. Coulomb interactions dominate and transfer about one third of the

injected power to the thermal electrons.
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The dotted curve in Figure la gives the spectrum corresponding to an ad-
ditional source of blackbody photons at ®p, = 10~% with a compactness, £,
one hundredth the electron compactness, le. The € < 1 spectrum is doiminated
by the blackbody photons singly scattered by the nonthermal pairs and repeat-
edly Compton upscattered by the thermal pairs. The 2-10 keV spectral index is
ag_19 = 0.5. The equilibrium temperature is now lower, ® ~ 0.5. There is an an-
nihilation feature, which is mostly due to annihilation of pairs from the primary
injection, @, after they have thermalized. At € > 1, the spectrum consists of
both nonthermal bremsstrahlung emission and upscattered blackbody and X-ray
power law photons.

Spectra with parameters similar to those corresponding to the dotted curve
were discussed by ZL86. They predicted the spectra to be of the broken power
law form with an az < 1 power law joining onto a steeper ay > 1 power law
at € ~ 1. In contrast, our results give a sharp drop of a factor of ~ 10 in the
spectrum beyond the annihilation spectrum. The amplitude of the y-ray power
law is reduced by that factor. This is due to the effect of efficient Coulomb cooling
(Looul = 0.3€e) that affects mostly mildly relativistic nonthermal electrons and
reduces their Thomson optical depths to T,il‘th < 1.

The dashed curve corresponds to a large amplitude of the blackbody photons,
Ly = Le. The resulting spectrum is a “classical” one, with an X-ray and y-ray
power law corresponding to the first order Compton scattering by the nonther-
mal electrons (see, e.g., LZ87, Svensson 1987). There is also a relatively small
component due to Compton upscattering of the blackbody photons by the ther-
mal component, directly following the blackbody spectrum. There is a distinct

annihilation feature due to annihilation of the pairs of the primary injection (Q).
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Figure 1b shows three cases with the same ratios £5/f., but with a large
£e = 10%. The equilibrium optical depths of the thermal pairs are large, which
has rather dramatic effects on the spectra. The equilibrium temperatures are
now much smaller due to the effect of large T,%_h (A large 'r,%h causes a diffusive
enhancement of the density of soft photons as well as a softening of their distribu-
tion and thus increases the cooling rate of pairs.) The solid curve corresponding
to £s = 0 gives heavily thermally Comptonized bremsstrahlung spectrum with
a Wien peak at € ~ 30 ~ 0.2. The Wien peak is followed by an annihilation
feature and a low-amplitude nonthermal bremsstrahlung spectrum. As some
blackbody photons are added to the source (dotted curve), the equilibrium tem-
perature decreases and the Wien peak shifts to lower energies. It is now followed
by a dip due to Compton downscattering by the thermal electrons. Note that
those spectra also differ from those of ZL86, mostly due to the effect of thermal
Comptonization, which was not included in that analysis. When £ = £, (dashed
curve) the Wien peak disappears and there is a nonthermal X-ray power law
followed by the downscattering dip (cf., e.g., LZ87).

Figure 1c shows cases intermediate between those of Figures 1a and 1b, with
an electron compactness of £ = 30. The Wien peak in the solid curve (£5 = 0)
coincides with the annihilation feature. The Wien peak at ¢; = 0.01£, (dotted
curve) and the downscattering dip at £s = €. (dashed curve) are much weaker
than at £, = 103.

Note that the dotted spectrum is approximately a broken power law, with a
break around 100 keV (e ~ 0.2). There is a weak annihilation feature superim-
posed on the y-ray power law. This spectrum resembles some y-ray burst spectra

(see § IV and, e.g., Figs. 1la, b in Zdziarski 1987).
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Figure 3 shows the same cases as Figure 1c, but with I' = 1.5. The changed
I' has little effect on the € < 1 spectra at £s = 0 (solid curve) and £5 = 0.014,
(dotted curve), with repeated Compton scattering by thermal pairs dominating.
In this case, the € 2 1 spectra are much harder than for I' = 2.5, reflecting
the hardened distributions of the injected nonthermal electrons. Again, the £ =
0.01£e spectrum resembles the classical y-ray burst spectra (see § IV). The £, = £
spectrum is dominated by the first order Compton scattering by nonthermal
electrons (see, e.g., LZ8T7).

Figure 4 shows the effect of changing I' in an {3 < £, case. The spectrum
up to the annihilation peak remains unaffected, as it is mostly thermal. Only
the shape of the high energy 7-ray spectrum changes. It becomes steeper and of
lower amplitude as I" increases. Changing I' in the £ = £, case has a much more
pronounced effect, as can be seen in Figures 1c and 3 above, and in, e.g., LZ87.
In that case, the overall slope of the spectrum steepens with increasing I' (see,
e.g., LZ87). The downscattering dip becomes more pronounced with increasing
I', as 'rri‘h increases as well.

Figure 5 shows the effect of changing ymax at £s = 0.01£¢ and £ = 100. The
€ 5 1 spectrum remains unchanged with changing vy max, which is a consequence of
the dominance of the thermal component. Only the cutoff in the v-ray spectrum
moves, with emax ™~ Ymax.

Figure 6 shows the effect of escape of thermal pairs at low compactness,
le = 1, and €y < L. The equilibrium optical depth of the thermal pairs is
reduced by a large factor as escape is a faster process than pair annihilation.
As the escaping pairs carry away a large fraction of the injected energy, in both

kinetic and rest mass form, the luminosity in photons is reduced by a factor of a
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few. At larger compactnesses, pair escape has no effect as then pair annihilation
is faster (see eq. [14]).

Figure 7 shows the effect of changing the value of the low energy cutoff,
Ymin, 10 the injected distribution in the case of steep injection, I' = 2.5. As an
increase of i, at constant £ = gives more nonthermal pairs at high energies, the
amplitude of the y-ray spectrum increases as well. Additionally, the total number
of injected pairs decreases with increasing 7y, which causes a reduction in the
equilibrium Thomson optical depth of the thermal plasma and a corresponding
reduction in the cooling rate of the nonthermal electrons. Note that at v,,;, = 5-
10 the spectrum is of an approximate broken power law form, similar to the
spectra of classical y-ray bursts (see § V). (In models with the first order Compton
scattering dominating, £5 2 {¢, changing i, results in a changing break in the
spectrum at ~ 7pin2©).

Figure 8 shows examples of the steady state nonthermal pair distributions.
The distributions correspond to the photon spectra shown in Figure 1c, with £, =
30. The distributions are cut off at ), /nth @8 discussed in § II. The distributions
in the two photon-starved cases (solid and dotted line, with £5/£e = 0 and 10~2,
respectively) have slopes a,pp-roximately given by p ~ I' + az, where N(v) oc y7P
and oy is the X-ray power law index. This is due to electron cooling dominated
by the upscattered X-ray and UV photons, see, e.g., ZL86. Note that most of the
scatterings are in the Thomson (ey < 1) regime. The dashed line corresponds to
the case with abundant soft photons, in which p >~ I' 4+ 1 (see, e.g., Blumenthal
and Gould 1970).

Finally, Figure 9 plots some of the dependences of the source parameters
0, mth ’T;%th, y, Y, and {ogy1/fe on the soft photon ratio, £5/le, for the input

parameters corresponding to Figures 1c and 8 (£ = 30, I' = 2.5, v,;n = 1.6).
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The plasma temperature (crosses), and the Compton parameter (open cirles)
decline quickly with increasing £5/£¢ due to increasing cooling on the soft photons.
A corresponding decline in the pair yield (filled circles) is due to the general
softening of the spectrum with much fewer photons above the threshold for pair
production for large £ /{c (see Fig. 1c). The thermal optical depth (open squares)
is almost constant, as the bulk of thermal pairs are primary ones from the steep
primary injection with low vy, (see eqgs. [8], [13]). The low value of y;, and
I' > 2 is also responsible for the relatively large £cgy1/fe (triangles) even at
Ls/€e = 1. Most of the nonthermal power is injected at vy, = 1.6, where the
Coulomb losses are large compared to the Compton ones. Effective Compton
and Coulomb cooling is responsible for the low values of T,:I[I‘th (filled squares).

Analysis of the values of £ogy)/fe and £y,5 /£e in Table 1 shows that Coulomb
process is important for heating the thermal pairs and cooling nonthermal ones
in a wide range of parameters. (The relative importance of Coulomb heating of
the thermal distribution is given by £cgoyu1/fe, and the importance of Coulomb
cooling of the nonthermal distribution, by £coyl/(fe + £pair), see § II1.) The
Coulomb process is always important when £5/fe < 1, even at large £, although
the values of £gqy1/fe and Logyl/(Le +£pair) diminish with increasing £e. Coulomb
interactions are negligible in most cases for £5/fe 2 1 (cf. eq. [6]). The case when

it <s important for £5/fe = 1 is for low £e and I' > 2 (model 1aiii).

TV. Discussion and Conclusions

We have studied relativistic plasmas where energy is supplied in the form of
relativistic nonthermal electron-positron pairs and soft photons. The plasma in
steady state consists of the thermalized pairs and the nonthermal pairs in the

process of cooling. We have considered situations where the power injected in the
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soft photons is much less than that in the relativistic pairs, i.e., photon-starved
plasmas. Our main conclusions can be summarized as follows:

(i) The overall form of the spectra from nonthermal pair-starved plasmas
consists of: a rising (vFy) spectrum‘at low energies with az ~ 0, a single or
double peak in the 0.1-1 MeV énergy raﬁge, a cutoff above tllile peak, and a ’y—ray‘
tail with a varying slope depending on thé plasma pararﬁeters. o

(ii) The low energy power law 1s rﬁostly due to the primary soft photons
being repeatedly upscattered by the hot therﬁal electrons. The equilibriufn
temperature of the thermal elect:ons we have found is in the © ~0.02-1 (10 keV
to 0.5 MeV) range (see Table 1 except the photon abundant £5/fe = 1 cases). The
temperature increases with decreasing £ and €s/fe. The relatively narrow range
of temperature is due to the efficiency of Comptonization increasing greatly at
relativistic energies (see, e.g., Rybicki and Lightman 1979) and the rapid increase
of the pair production rate at relativistic temperatures (pair thermostat, see, e.g.,
Svensson 1984). The Comptonization parameter y is > 1 (see Table 1), which
results in hard spectra followed by Wien peaks. This peak is either followed or
amplified by the one due to annihilation photons, at 0.5-1 MeV photon energies.
The low energy power laws followed by the Wien peaks have largely therﬁlal
character and resemble those from thermal plasmas in pair equilibrium (see, e.g.,
Zdziarski 1984, 1985).

(iii) The v-ray tail is due to Compton scattering by the nonthermal elec-
trons and nonthermal bremsstrahlung. As the optical depth of the nonthermal
electrons is much less than unity due to Coulomb (see [v] below) and Compton

cooling, the amplitude of the tail is much below that of the spectrum at lower
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energies. This results in a characteristic cutoff around 1 MeV. At large £, ab-
sorption in pair-producing photon-photon collisions further attenuates the -y-ray
spectrum.

(iv) Bremsstrahlung is a source of soft photons always present in plasmas. In
the absence of external (or synchrotron) soft photons and at small compactnesses,
the emitted spectra consist of thermal bremsstrahlung dominating at low ener-
gies, a pair annihilation feature at € ~ 1 4+ 30, and nonthermal bremsstrahlung
dominating at high energies. At large compactnesses, the spectrum is mostly due
to Comptonized thermal bremsstrahlung. The nonthermal bremsstrahlung emis-
sion is largely downscattered by the optically thick thermal pairs and absorbed
in the process of photon-photon pair production.

(v) Coulomb interactions are important in transferring energy from the non-
thermal pairs to the thermal component of the plasma. The importance of this
process increases with decreasing pair compactness, £, decreasing external soft
photon input, £, and increasing power law injection index, I' (see Table 1). The
relative importance of the Coulomb energy loss for an electron increases with de-
creasing y. Coulomb interactions can transfer as much as one half of the power
injected in primary nonthermal pairs to the thermal plasma. A consequence of
the importance of Coulomb energy transfer is the small nonthermal Thomson

depth (T;}‘.th < 1) in photon-starved plasmas.

V. Comparison with Observations of Compact Objects

Some of the spectra from photon-starved plasmas resemble the spectra of
classical y-ray bursts. The continuum energy spectrum of those y-ray bursts is
roughly a broken power law F'g oc E~%  with an X-ray spectral index az ~ 0

and a y-ray spectral index a, varying from ~ 0.5-2 (Epstein 1986; Zdziarski
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1987). The transition between the two regimes occurs between 100 keV and 1
MeV, suggesting some link between the shape of y-ray burst spectra and the rest
mass-energy of the electron. The Solar Maximum Mission data, which extend
to ~ 5-10 MeV or more, show no clear high energy cut-offs (Matz et al. 1985).
The spectra shown in dotted curve in Figure 1c, and dotted and dashed curves
in Figure 7 do show the broken power law form.

On the other hand, the X-ray and y-ray spectral indices for those spectra
(ag ~ 0.4, ay ~ 1) are perhaps slightly larger than those of typical bursts (Ep-
stein 1986; Zdziarski 1987). Also, spectra from photon-starved plasmas require
fine-tuning in order to reproduce the classical y-ray burst spectra above a few
hundred keV. Typical X-ray spectra from photon-starved plasmas do reproduce
the az ~ 0 X-ray power laws of y-ray bursts, but those are then followed by
spectral cutoffs by an order of magnitude at ~ 1 MeV (see § III). This is not
seen in the spectra of classical y-ray bursts.

The so called “soft y-ray repeaters” (SGRs) have spectra much softer than
those of the classical y-ray bursts. Those bursts include SGR 0526-66, the source
of the 1979 March 5 event (Mazets et al. 1979, Cline et al. 1980), SGR1900+14
(Mazets et al. 1982), and SGR 1806-20, the source of the 1979 January 7 event
(Laros et al. 1986, Atteia et al. 1987, Laros et al. 1987, Kouveliotou et al. 1987).
The bursts from these sources typically have color temperatures ~ 50 keV, much
less than that of other y-ray bursts. Some of the spectra from photon-starved
plasmas with large compactness may resemble those of soft y-ray repeaters (see,
e.g., the dotted curve in Fig. 1b).

Spectra from photon-starved plasmas are different from the typical X-ray
spectra of active galactic nuclei, which have az ~ 0.7 (e.g., Mushotzky 1984).

However, the few AGN observed in soft y-rays exhibit characteristic peaks at ~ 1
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MeV. It is possible that such peaks are typical of most of AGN, as it does not
violate the constraints imposed by the cosmic y-ray background (e.g., Bassani
et al. 1985). In fact, a similar MeV peak followed by a steep power law is seen
in the isotropic cosmic background. Sich peaks are characteristic of photon-
starved plasmas and could come from AGN source components different than

those responsible for the X-ray continua.
On the other hand, photon-starved plasmas can also explain spectra of AGN
that are harder than az = 0.5 (e.g., Mushotzky 1984). Such spectra cannot be
explained by either the nonthermal synchrotron model or first order Compton

cooling models (see, e.g., Svensson and Zdziarski 1989).
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Appendix

Relativistic Nonthermal Bremsstrahlung
We use the bremsstrahlung cross section in the relativistic limit, v > 1. It
applies in the same form to e*p, eTe* and ete~ interactions. Here p denotes
protons. In the laboratory frame,

dop 3oy deqy' (4 4 2 27y 1
_ ey (1,7 _2) () _ =
de o 1 ¢ 7\ + vy 3 P 2)"’ (41)

Here, 7' denotes the electron Lorentz factor after the photon emission, v/ = y—e.
In the case of eTe* and eTe™ interactions, this cross section gives the radiation
from the fast electron only.

In treating the interactions of nonthermal pairs with themselves, we follow
the approach of Zdziarski (1980). Using the fact that relativistic electrons emit

radiation predominantly in the forward direction, we obtain

. nth,self 1, Ymax don de Ymax 1
g (€) = §2°/ Nm)~ B—did’h N(vz)dy2 [ pdp.
max(Yen,€e+1) €L @€ Vth 0
| (A42)

Here, €5, and € are the laboratory frame and the plasma frame photon energies,
respectively, u = (1 — cos¥)/2, ¥ is the collision angle, and do g is a function of
7L = 2p7172. Photons at energy e are radiated by electrons at 1. The factors
(1/2) and 2 above account for the double counting of identical particles and the
fact that both colliding particles radiate photons, respectively. The colinearity
of the radiation emitted by relativistic pairs leads to the relation, e /v = €/71.

Except for the logarithmic term, the cross section (A1) is a function of the factor

€/7, which is invariant. Only the factor 7 in the argument of the logarithm is not
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invariant. Taking into account that Iny7 = In-y; + Inys 4 In2y, and neglecting

the weak dependence on collision angle, we obtain the approximate relationship,
do(vp) = do(y1) + do(ys), (A3)

The photon production rate (A2) then simplifies to,

Ymax
/ da B (44)

max(yen,e+1)

nth self th ¢
= 27 n
(¢) = =

In treating the interactions of nonthermal pairs with the thermal pairs, we
take the thermal particles to be at rest, and integrate the cross section (A1)
over the distribution N(y). Using equation (A4), we can write the nonther-
mal bremsstrahlung emissivity from both self-interactions and interactions with

thermal pairs in the compact form,

W = it o) [ )Ty (a5)
max(Yen,e+1)

The fact that bremsstrahlung from relativistic electrons interacting with them-
selves is twice as large as that from relativistic electrons interacting with non-
relativistic particles having the same density was noted earlier in the particular
case of relativistic thermal plasmas (see, e.g., Haug 1975; Zdziarski 1980). Here
we see that it also applies to relativistic nonthermal plasmas. The origin of this
general property is the logarithmic dependence on vy of the cross section (A1),
which leads to the relationship (A3).

We obtain the bremsstrahlung cooling rate by integrating the cross section

(A1) (e.g., Blumenthal and Gould 1970), and taking into account the result (A5),

3(’Yf ¢ th nth 1
Y = 2y — = | . A6
1B =Ty R( + 27 ) In2y =3 (46)
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The self-absorption frequency for nonthermal bremsstrahlung is given by a
formula analogous to equation (20), but with 'Tr}xh replaced by (T%hT.%th)l/z and
© replaced by the factor ~ v (~ 1), appropriate to the lowest energy nonther-
mal electrons which dominate the nonthermal bremsstrahlung emission. S:iIl.CG
thermal bremsstrahlung emission typically dominates over the nonthermal brems-

strahlung at € < 1, so does thermal bremsstrahlung self-absorption.



172

References

Atteia, J.-L., et al., 1987. Astrophys. J. (Letters), 320, L105.

Bassani, L., Dean, A.J., Di Cocco, G., & Perotti, F., 1985. In: Active Galactic

Nucler, p. 252, ed Dyson, J., Manchester University Press, Manchester.
Blumenthal, G.R. & Gould, R.J., 1970. Rev. Mod. Phys., 42, 237.
Cline, T.L., et al., 1980. Astrophys. J. (Letters), 237, L1.

Coppi, P.S.;1990. Caltech Theoretical Astrophysics Preprint GRP-209, submit-
ted to Mon. Not. R. astr. Soc.

Coppi, P.S. & Blandford, R.D., 1990. Mon. Not. R. astr. Soc., 245, 453.
de Kool, M. & Begelman, M.C., 1989. Astrophys. J., 345, 135.
Done, C. & Fabian, A.C.; 1989. Mon. Not. R. astr. Soc., 240, 81.

Epstein, R.I., 1986. In: Radiation Hydrodynamics in Stars and Compact Objects,
TAU Coll. No. 89, p. 305, eds Mihalas, D. & Winkler, K.-H. A.| Springer-

Verlag, Berlin.

Fabian, A.C., Blandford, R.D., Guilbert, P.W., Phinney, E.S., & Cuellar, L.,
1986. Mon. Not. R. astr. Soc., 221, 931.

Gould, R.J., 1975. Astrophys. J., 196, 689.

Guilbert, P.W.| Fabian, A.C., & Rees, M., 1983. Mon. Not. R. astr. Soc., 205,

593.
Haug, E., 1975. Naturforsch, 30a, 1546.
Kouveliotou, C., et al., 1987. Astrophys. J. (Letters), 322, L21.
Laros, J.G., et al., 1986. Nature, 322, 152.

Laros, J.G., et al, 1987. Astrophys. J. (Letters), 320, L111.



173
Lightman, A.P. & Zdziarski, A.A., 1987. Astrophys. J., 319, 643.

Marshall, H., et al., 1980. Astrophys. J., 235, 4.

Matz, S.M., Forrest, D.J., Vestrand, W.T., Chupp, E.L., Share, G.H., & Rieger,
E., 1985. Astrophys. J. (Letters), 288, L37.

Mazets, E.P., Golenetskii, S.V., Gur’yan, Yu.A., & Il’inskii, V.N., 1982. Astro-
phys. Space Sci., 84, 173..

Mazets, E.P., Golenetskii, 5.V., I'inskii, V.N., Aptekar’, R.L., & Guryan, Yu.A.,
1979. Nature, 282, b8T.

Mushotzky, R.F., 1984. Adv. Space Res., 3, Nos. 10-12, p. 157.

Rybicki, G. & Lightman, A.P., 1979. Radiative Processes in Astrophysics, John

Wiley & Sons, New York.
Svensson, R., 1982. Astrophys. J., 258, 321.
Svensson, R., 1984. Mon. Not. R. astr. Soc., 209, 175.

Svensson, R., 1986. In: Radiation Hydrodynamics in Stars and Compact Objects,
IAU Coll. No. 89, p. 325, eds Mihalas, D. & Winkler, K.-H. A., Springer-

Verlag, Berlin.
Svensson, R., 1987. Mon. Not. R. astr. Soc., 227, 403.

Svensson, R. & Zdziarski, A.A., 1989. In: STScl-GSFC Workshop on Ultra-Hot
Plasmas and Electron-Positron Pairs in Astrophysics, p. 1, eds Zdziarski,
A.A. & Kazanas, D., STScl Publ., Baltimore.

Zdziarski, A.A., 1980, N. Copernicus Astronomical Center No. 115, preprint.

Zdziarski, A.A., 1984. Astrophys. J., 283, 842.

Zdziarski, A.A., 1985. Astrophys. J., 289, 514.



174
Zdziarski, A.A., 1987. In: Proceedings of the 18th Tezas Symposium on Relativis-

tic Astrophysics, p. 553, ed Ulmer, M., World Scientific Press, Singapore.
Zdziarski, A.A., 1988. Astrophys. J., 335, 786.

Zdziarski, A.A. & Lamb, D.Q., 1986. Astrophys. J. (Letters), 309, L79.
Zdziarski, A.A. & Lamb, D.Q., 1986b. Adv. Space Res., 6, No. 4, 85.
Zdziarski, A.A. & Lightman, A.P., 1985. Astrophys. J. (Letters), 294, LT9.

Zdziarski, A.A. & Lightman, A.P., 1987. In: Proceedings of Workshop on Vari-
ability in Galactic and Extragalactic X-ray Sources, p. 121, ed Treves, A., Asso-

ciazione per I’Avanzamento dell’Astronomia, Milan.



175

Figure Captions

Figure 1. Effect of varying external soft photon injection for steep pair
injection, I' = 2.5. The solid curves has no external soft photon injection, i.e., all
photons come from bremsstrahlung. The dotted curves have £ = 10"‘2£e, while
the dashed curves have {5 = fe. Models in a) have £, = 1; models in b) have
le = 10°; and models in c) have £ = 30. The other input and output model
parameters are given in Table 1 (models 1a, b, c; i, ii, iii).

Figure 2. The thermal (dotted curve) and nonthermal (dashed curve)
bremsstrahlung contribution to the spectrum of the solid curve in Fig. 1a.

Figure 3. The effect of varying external soft photon injection for flat pair
injection, I' = 1.5. The solid, dotted, and dashed curves correspond to £5/le = 0,
1072, and 1, respectively. The input and output parameters are given in Table
1, models 3i, ii, iii.

Figure 4. The effect of varying I' in an £5 = 1034, case. The solid, dotted,
and dashed curves correspond to I' = 1, 2, 3, respectively. See Table 1, models
4i, 1, i1 for the parameters. |

Figure 5. The effect of varying ymax in an £; = 10~2¢, case. The solid,
dotted, and dashed curves correspond to ymax = 10, 102, 103, respectively. See

Table 1, models 5i, ii, iii for the parameters.

Figure 6. The effect of pair escape in a low compactness, £, = 1, case. The
solid curve corresponds to escape of thermal pairs with fesc = 0.3 whereas the

dotted curve is for the same parameters but Gesc = 0. See Table 1, models 61,

laii for the parameters.
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Figure 7. The effect of varying v, in an £5 = 1072 case. The solid,
dotted, and dashed curves correspond t0 Ymin = 1.6, 5, 10, respectively. Se¢

Figure 8. The steady state pair distributions corresponding to the photon
spectra shown in Fig. 1c.

Figure 9. Dependence of © (crosses), T,%h (open squares), T.%th (filled squares),
the Compton parameter y (open cirles), the pair yield Y (filled cifcles), and
Looul/le (triangles) on £/l fovr £e = 30. Other plasma parameters correspond

to the cases given in Figures lc and 8.
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Chapter 5

VARIABLE SOFT X-RAY EXCESSES IN AGN
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Abstract

We study the formation of soft X-ray excesses, similar to those observed be-
low ~ 1 keV from AGN, in nonthermal electron-positron pair cascade models.
The soft X-ray excesses appear in those models due to Comptonization of soft
photons of the UV bump by the pairs decelerated by the cascade process and
thermalized to a nonrelativistic equilibrium temperature. We derive the condi-
tions on parameters of the nonthermal pair source needed for the appearance of
the excesses as well as simple formulae for the parameter y governing the thermal
Comptonization and for the spectral form of the excesses. The major spectral
effect is the formation of a steep power law superimposed on both the tail of the
UV bump and on the flat nonthermal power law.

We study time variability of the soft excesses. We find that the time vari-
ability patterns of the soft and hard X-rays may be distinctly different (as often
seen in AGN), in spite of their common origin in the nonthermal source. This is
because the form and the amplitude of the soft excesses strongly depend on the
luminosity in the soft UV photons. On the other hand, the hard X-ray emission
is roughly independent on the UV luminosity. We classify the soft vs. hard X-ray
variability patterns as a function of the relative variability of the UV luminosity
and the power supplied to the relativistic electrons.

Finally, we find that the parameters of the nonthermal pair cascade sources
required for the appearance of the soft X-ray excesses nearly coincide with those
determined in a recently developed unified model for the UV and X-ray radiation
from the central engines of AGN. In that model, a nonthermal pair cascade
takes place in the vicinity of cold optically thick matter, which implies that the

spectrum from the EUV through «y-rays is the sum of the direct cascade radiation
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and direct and reprocessed radiation emitted by the cold matter. Thus, the
presence of soft excesses in AGN can be understood as an (indirect) consequence

of the presence of both cold matter and nonthermal sources in the central engines

of AGN.
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I. Introduction

The picture of X-ray spectra of AGN that has emerged in recent years is that
of a hard X-ray spectrum in the ~ 1-20 keV range with the canonical average
energy spectral index of a ~ 0.7 (Rothschild et al. 1983; Turner and Pounds 1989)
and a variety of spectral forms below ~ 1 keV (Elvis, Wilkes, and Tananbaum
1985; Wilkes and Elvis 1987; Elvis et al. 1987; Turner and Pounds 1989; Urry et
al. 1989). In particular, 2 50-70% of AGN exhibit strong soft excesses below the
energy of ~ 1 keV above the extrapolation of the hard X-ray power law (Wilkes
and Elvis 1987; Turner and Pounds 1989; Urry et al. 1989). Due to poor spectral
resolution of both the Einstein and Ezosat soft X-ray detectors, the form of the
soft excesses has not been well established yet; they have been fitted by either
steep power law, bremsstrahlung or blackbody spectra (e.g., Urry et al. 1989).
The excesses sometimes extend to 1 keV or more; characteristic energies of the
fits to the soft excess spectra in Urry et al. (1989) are from a few tens to a few
hundred eV. Hopefully, the spectral form of the excesses will be determined with
future data from Rosat.

The time variability of the soft excesses exhibits a large variety of patterns.
In some cases, the soft excesses and the hard X-rays appear correlated to a
certain degree (e.g., Arnaud et al. 1985; Pounds, Turner, and Warwick 1986). In
other cases, the soft excesses vary much more than the hard X-rays (e.g., Piro
et al. 1988). For example, declines by factors of 10 and 2 in the soft and hard
X-rays, respectively, have been observed in QSO 18214643 (Warwick, Barstow,
and Yaqoob 1989). In QSO MR, 2251-178, the normalizations of both the hard
and soft components and the power law index of soft component were required

to vary in order to fit the variability data (Pan, Steward, and Pounds 1990).
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In a few cases the soft fluxes remained constant with varying hard X-rays (e.g.,
Turner and Pounds 1988). Finally, a pivot point at ~ 2 keV has been observed
in the variable X-ray spectrum of 3C120 (Maraschi et al. 1990), implying an
anticorrelation of the soft and hard X-ray bands.

The origin of these soft excesses has thus far been a major puzzle in the study
of AGN. As recently reviewed by Begelman (1990), the explanations proposed
so far are in doubt as either unlikely to account for the relatively high energies
of the excesses (intrinsic radiation of an accretion disk, e.g., Arnaud et al. 1985),
or as requiring fine tuning of their parameters (the warm absorber model, e.g.,
Halpern 1984; Yaqoob, Warwick and Pounds 1989; Pan, Steward and Pounds
1990).

These explanations, however, have largely ignored another source of “warm”
matter that is likely to exist in the interior of AGN and that could account
for at least part of (if not all of) the observed soft excesses. As noted, for
example, in Fabian et al. 1986, constraints on the size of the X-ray emitting
region obtained from the rapid X-ray variability observed in many AGN lead
to the conclusion that this source region is “compact,” i.e., that it would be
optically thick to any gamma-rays trying to escape through it. Because AGN are
among the most energetic sources known and gamma-rays have been observed to
come from them, it is therefore probable that the X-ray emitting regions contain
a suflicient number of electron-positron pairs (produced in the annihilation of
gamma-rays with lower energy x-rays) to have a Thomson optical depth across
the source of order unity. Such a “pair plasma” could not be ignored as it would
reprocess and significantly modify the spectrum of any radiation passing through

it. In particular, it could add or subtract a significant amount of luminosity in
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the range of the soft x-ray excess energies — a complication that any model of
the soft excess should be prepared to confront.

We will concentrate here on the possibility that the pair plasma is directly
responsible for most of the soft x-ray excess. Steep soft X-ray power laws joining
onto flatter hard X-ray power laws (qualitatively similar to those seen in ob-
served spectra) have been obtained in nonthermal ete™ pair cascade models for
some combinations of parameters (Fabian et al. 1986; Svensson 1987, hereafter
587, Lightman and Zdziarski 1987, hereafter LZ87). Those models have been
proposed to account for the canonical hard X-ray spectra of AGN, with a ~ 0.7.
In those models, relativistic pairs with large Lorentz factor are injected within
a compact region. The relativistic pairs Compton-upscatter soft photons of the
AGN UV bump to the X-ray and y-ray energies. Photon-photon collisions con-
vert some of the y-rays into secondary eTe™ pairs, which in turn produce new
X-rays and y-rays. The pairs lose energy and finally thermalize at an equilibrium
Compton temperature T (typically kT > 1 keV), at which Compton losses of
the thermal pairs are balanced by Compton energy gains. The thermal pairs
Comptonize the UV photons, which gives rise to a steep power law spectral com-
ponent superimposed on the flatter (nonthermal) hard X-ray power law. The
steep component may well account for the observed soft X-ray excesses.

This possibility that AGN soft X-ray excesses come from nonthermal pair
cascade sources has already been pointed out in Ghisellini et al. (1989). How-
ever, 1t has in general not received much attention in either the theoretical or
observational literature. In this work, we examine the mechanism in more detail
and investigate the constraints on the parameters of the pair cascade sources
required for the formation of the excesses, the spectral form of the excesses, and

their variability patterns.
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What follows will be divided into two main sections. The first focuses on
understanding the response of the soft excess to changes in pair plasma’s energy
inputs. Some analytic approximations are given as guides to help visualize the
behavior. From these, general constraints on the plasma input parameters are
derived such that an observable soft excess be produced by the pair cascade.
The second section presents numerical calculations of a more realistic model
which further illustrate the behavior discussed in the first section. The model
is essentially that of Zdziarski et al. (1990) (hereafter Z90) and includes the
effect of Compton reflection and reprocessing of x-rays by cold matter located
near the pair plasma. We chose this model as it currently appears the most
promusing in simultaneously accounting for: the canonical average hard (2-10
keV) X-ray spectral index of .7, the presence of a K, iron line and the short
lag in its response to continuum changes, the hardening of the X-ray spectrum
above ~ 10 keV, and constraints from the y-ray background (see Z90). We note
that the allowed parameter space for this model roughly coincides with that for
formation of a soft excess. The model may thus also explain why most AGN

appear to show soft X-ray excesses.

I1. Constraints on Soft Excesses from Cascade Sources

We study here the conditions on the parameters of nonthermal pair cascade
sources required for the appearance of observable soft X-ray excesses in their
spectra. We will constrain our analysis to pair cascades from monoenergetic (or
flat) pair injection, assumed in most pair cascade models of AGN (e.g., LZ87,
587, 790). This is the simplest case to understand and has the fewest adjustable
parameters. The analysis for more complicated models such as those involving

steep injection (o T T > 2 e.g., LZ8T; Zdziarski, Coppi, and Lamb 1990,
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hereafter ZCL90) or pair loading (e.g., Done, Ghisellini, and Fabian 1990) is
similar and the conclusions drawn here are not significantly affected. In the case
of pair loading, for example, the Thomson optical depth for a given set of input
parameters is lower and soft excesses consequently appear only at higher rates
of energetic pair injection. The shape and origin of the excesses is the same,
however, and the overall parameter space in which they are visible is the same

to within a factor ~ 2.

a) The Spectral Form of Soft Excesses

The main parameter governing formation of the soft excesses is the thermal
Comptonization parameter y (e.g., Rybicki and Lightman 1979). For the model
presented here (where the thermal pairs are almost always non-relativistic), the

relevant form of y is given
y=40¢ TT+—3— . (2.1)

Here, ©¢c = kT /mec? is the dimensionless Compton temperature, me is the
electron mass, 7 is the Thomson optical depth of the thermal pairs, and the
factor in parentheses is the average number of scatterings in the source. The
y-parameter is determined mainly by the dimensionless compactness parameters

of the nonthermal source:

Lo Lsor
ly = == by = —— 2.2
h Rmec?’ s Rmec® (2:2)

where Lj,, Ls, R, and o, are the X-y-ray luminosity, the part of the UV luminos-
ity that is intercepted by the nonthermal source, the characteristic source size,
and the Thomson cross section, respectively. The photon energy up to which

the soft excess thermal power law dominates the hard X-ray nonthermal power
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law depends in turn on the typical energy of the soft photons in the part of the
UV bump that is produced close to the nonthermal source. We will approximate
those UV photons as a blackbody with a temperature T and the correspond-
ing dimensionless temperature © 3 = kT /mecz. The most important of these
parameters in a pair cascade source is probably the compactness £,

The optical depth of the thermal pairs, 7, is related to £}, and the pair yield
Y,

mr = [(4/m)Y )2, (22)
(Guilbert, Fabian and Rees 1983; S87). At low compactnesses, £}, < 25,Y < 0.1,
and consequently 77 < 1. Thermal Comptonization is effective at such low
optical depths only if the pair temperature is relativistic, which occurs only for
ls < Ly, However, soft excesses do not appear in this case, as the amplitude of
the blackbody peak does not exceed the amplitude of the power law spectrum
from the nonthermal Compton scattering (see below; ZCL90). Thus, we will
consider here only the range of £;, > 25.

In the absence of therinal Comptonization, a pair cascade spectrum has an
approximate power law form. The power law joins at low energies onto the soft
photon input spectrum. At high energies, the spectrum steepens gradually, which
reflects high energy breaks in the pair distribution at the maximum energies of
pairs from the subsequent pair generations (S87). Above 511 keV, the spectrum
also breaks due to pair absorption.

The optically thick thermal pairs modify this spectrum in three ways. First,
the thermal pairs downscatter the hard radiation. This causes a steepening in

the spectrum above the “break”energy

€p > 3/7’%, (2.4)
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where ¢ = E/mec? denotes a dimensionless photon energy. At energy € ~ €, the
spectral index o increases by 0.5-1 (see Sunyaev and Titarchuk, hereafter ST80;
S87). The form of the steepening is independent of the pair Compton tempera-
ture, ©¢, provided @¢ < ¢,. Second, the input soft photons are upscattered by
the thermal pairs and form a power law tail superimposed on the blackbody and
the nonthermal power law spectra. Third, the nonthermal power law is upscat-
tered as well, which results in an increase of its amplitude. The latter two effects
strongly depend on the pair temperature, as well as on the optical depth 7p. We
will present a formalism describing their effect on pair cascade spectra below.

The pair yield saturates at very high £, reaching the values of < 0.2 (S87;
LZ87). In the range of 25 < £;, < 1000, which we will consider here, the pair
yield slowly increases with £5. A fit to our numerical results (see § III) using
the method of LZ87 (with inclusion of Coulomb cooling, see ZCL90) accurate to
~ 20% is

Y ~0.1(¢,/100)/% 25 <0, <1000. (2.5)

Then, the optical depth, equation (2.3), becomes,
T~ 3.6(0,/100)%/8 25 < £, < 1000. (2.6)

In order to calculate the interior equilibrium Compton temperature (e.g.,
Krolik, McIKee & Tarter 1981), we will approximate the interior spectrum as a
blackbody followed by the nonthermal power law cut off at €,. The luminosity
in the cut off power law is taken to be (},/2, which roughly agrees with our
numerical results. As we consider here saturated cascades, the index of the

nonthermal power law will be oo ~ 1 (S87). Then, the Compton temperature,
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O¢, becomes,

Oty + Le[81n(Le/5044;,)]
B Cs+£,/2 7

constant
~— for ©4¢ 1 2.8
WY or Ol < 1, (28)

25 < £, < 1000 (2.7)

O¢

Here, 505 approximately equals the minimum power law energy, £. is the lumi-
nosity at which the cutoff energy €, = 1, and the pair yield, Y, was assumed here
to be a constant related to £c. (Inclusion of the slow increase of Y with £, eq.
[2.5], turned out not to improve the accuracy of eq. [2.7].) We have found that
£c = 50 provides a good fit to the numerical results in the parameter range of
interest here. The maximum deviation of the Compton temperature (2.7) from
that found numerically is ~ 25% for the cases presented in § III. Note that © »
of equation (2.7) decreases slowly with £, at £, ~ £; = constant. The term O 44,
in the numerator is always negligible for AGN. When it is negligible, the thermal
pairs only lose (but do not gain) energy in Compton scatterings with the ther-
mal bump. Then, the Compton temperature is independent of the blackbody
temperature.

The Compton parameter, equation (2.1), with 77 and ©¢ of equations (2.6)-
(2.7) differs at most by ~ 20% from that obtained using the values of 71 and O
calculated numerically, for the cases presented in § III. We note that for £;, 2 25,
when 77 2 2, the term 7‘,]2:\/3 in equation (2.1) dominates. Then, the Compton
parameter can be expressed as,

Y X constant
~ T T 2.9
Y )y +1/27 (2.9)

Substituting the fit of equation (2.5) for 7, we obtain,

0.25(£;,/100) /4
Es/ﬁh ‘I‘ ]./2 ’

25 < £;, < 1000, (2.10)
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where the constant gives a good fit to our numerical results. This approximation,
in fact, appears to work better than the original one obtained using equations
(2.6), (2.7).
The parameter y is the main parameter governing thermal Comptonization.
A narrow initial spectrum acquires a high-energy power law tail with the index

8,

9 4\Y2 3
s~ (242} _2 2.11

(Shapiro, Lightman, and Eardley 1976). The thermal spectral index § has the
values 5, 2.8, 1.7, 1, for y equal 0.1, 0.25, 0.5, and 1, respectively. Using equation
(16) of ST80, we may obtain an approximate for the spectrum from Comptoniza-

tion of a blackbody spectrum at € > Oy :

de 45 158T(8 + 4)¢(5 + 3) <_e_> -5
ClE th,bb - @s 71'4(25 + 3) @3 ’

(2.12)

(compare ST80). Here I' is the Gamma function, and ((z) is the Riemann zeta
function, which approaches rapidly unity for = larger than a few (e.g., ([4] ~
1.08). An example of how well this approximation works is shown in Fig. 1. To
compute the value of §, we made use of approximation (2.10) which appears to
work better overall than the combination of equations (2.6) and (2.7). We note,
though, that care should always be used in the determination of §. A relatively
small error in a power law index can lead to much larger errors in the actual
spectrum.

The nonthermal power law gets thermally Comptonized as well. A power law
spectrum with the index o extending from e, to ¢, (d/de)(e) = Ae™®, becomes

(using equation 16 of ST80 again)

de| AS(S 3™ AS(S +3)e M ed
de [ ih,pl T 6(643) — a(a+3) (26 +3)(6 —a)

€< Og, (2.13)
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(the first term above is given in ST80).

We see that for § > «, the original spectral index o is approximately pre-
served but its normalization increases as shown by the first factor in equation
(2.13). This effect may be clearly seen in Fig. 1. The normalization constant
of the nonthermal power law for saturated pair cascades with o = 1 and the

compactness £}, /2 is,
£p

~ 2.14
4 21n(10/0©s4,)’ (2.14)

consistent with the approximations used for deriving equation (2.7).

b) The Condition for Observable Soft X-Ray Ezcesses

We can now specify conditions on the parameters of the plasma necessary for
the appearance of soft excesses. We note first that y of equation (2.10) reaches
the maximum for a given £}, y ~ 0.5(£;,/100)*/4, when £s5/0;, becomes small.
This corresponds to the Compton heating and cooling on the nonthermal power
law only. In this case y reaches the maximum of unity for £;, ~ 103, For larger £ s
y no longer increases significantly as the pair yield, Y, saturates. In order for an
excess to be visible, the thermal power law must be steeper than the nonthermal
one (with a ~ 1), i.e., y must be < 1. For the case £; < 4}, then, a condition

for the appearance of a soft excess is thus
¢, < 1000. (2.15)

For £5 = £}, the y parameter will be reduced relative to the case £; < £}, (see
equation [2.10]) and one might expect a visible excess at higher values of (},.
This is indeed the case. However, another limiting effect sets in when £ ~ £, >
1. Although the pair yield ¥ saturates, the Thomson optical depth continues

to grow as E,ll/ 2, and eventually the break energy ¢, (due to thermal Compton
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downscattering) moves into the keV energy range giving spectra that are almost
certainly ruled out by observations. This happens for £; 2 1500 (see [2.4,2.6]).
The constraint £ < 1500 therefore seems to be a general one for all pair cascade
models.

At a low £s/€}, the peak of the blackbody spectrum is just at the level of
the nonthermal power law. We find that the peak of the blackbody spectrum is
above the nonthermal power law for,

Ls 3 1

0, 200(10/6,6,) " 5 (2.16)

This is a necessary condition for the thermal Comptonization power law tail,
equation (2.12), to be visible when superimposed on the nonthermal power law.
(Note that when £s/{}, becomes much smaller than the ratio given by eq. [2.14],
the source becomes photon-starved, other physical effects become important, and
its spectrum is no longer of the form assumed for deriving eq. [2.8], see ZCL90.)

On the other hand, when £5/£}, becomes large, y of equation (2.10) becomes
small, and the thermal power law tail becomes steep and invisible when super-
umposed on the sum of the blackbody and nonthermal power law spectra again.
For y to be larger than some y,, the compactness ratio must satisfy,

1/4
L 025 ﬁ‘— L (2.17)

For y« = 0.25, corresponding to § ~ 3, the conditions (2.16) and (2.17) become
mutually exclusive for ¢, < 25.

We can also derive the condition for the thermal power law to dominate over
the (thermally Comptonized) nonthermal power law below a given energy, €.
This will put constraints on the temperature of the soft photons. This can be

done by equating the spectral luminosities (2.13) and (2.12) at €4, with A and §
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specified by equations (2.14) and (2.10)-(2.11), respectively. This equality defines
a 2-D surface in the 3-D space of {5, £, and Ts. As the allowed range for £5/£),
is relatively narrow (eqgs. [2.16]-[2.17]), we can set, e.g., £5/€;, = 1/3 and get a
constraint in the Ts—{; plane. Carrying out this procedure for energies €4 ~ .1
keV leads to the rough condition Ts 2 5-10 eV.
Summarizing the results of this section, we find the constraints for a soft

excess to be produced are 25 < £, < 1500, €5 ~ £, and Ts 2 5-10 V.

c¢) Time Variability of Soft Excesses

With the above results, we can now make predictions regarding time variabil-
ity of the soft excesses. First, we consider £;, = constant and decreasing £5. At
ls > f},, the parameter y < 1, and there is no observable thermal Comptoniza-
tion. With decreasing {5, an increasingly flatter thermal Comptonization tail
develops. The tail originates near the blackbody peak, which decreases. Also,
the normalization of the nonthermal power law increases (eq. [2.13]). Thus, at
low enough £s, the power law tail from thermal Comptonization of blackbody
photons disappears again, being negligible compared to the Comptonized non-
thermal power law. This range of behavior is shown in Fig. 2. Note that as
y increases with decreasing £, there is an anticorrelation between the soft and
hard X-ray fluxes.

When £, is constant and £}, increases, the source exhibits a similar behavior.
As before, the soft excess power law is negligible at £5/£€, > 1 and < 1, and it is
observable in an intermediate interval of £;,. The quantitative differences are that
now y increases faster with decreasing £,/(;, than before, as implied by equation

(2.10). Also, the amplitude of the nonthermal power law increases somewhat

faster than proportional to £; (eq. [2.14]).
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When both £s and £, increase proportionally, there is only a slow increase of
y with £;, (eq. [2.10]), and the increase of the amplitude of the nonthermal power
law according to equation (2.13). The appearance of a soft excess power law will
depend on the specific values of £; and £}, Some illustrative examples of this and

the other types of behavior discussed are presented below in § 3.

ITII. Model Calculations

In this section, we will present numerical examples illustrating the results
of § Il in the context of what currently appears to be the pair model with the
best chance of meeting observational constraints. The model is essentially that of
290, which is distinguished from previous models by the inclusion of a component
made up of the intrinsic pair plasma radiation Compton-reflected off some nearby
distribution of cold matter. The motivation for this type of model stems from
the growing body of evidence that the AGN hard X-ray spectra contain a large
contribution from reflection of a nonthermal power law from cold matter and are
not consistent with single power laws (Pounds et al. 1989, 1990; Nandra, Pounds
and Steward 1990; Matsuoka et al. 1990; Piro, Yamauchi, and Matsuoka 1990;
Turner et al. 1990; Pounds 1990).

790 have found that in order for the composite spectrum to have the average
2-20 keV index of a ~ 0.7 and the y-ray spectrum not to exceed the constraint
imposed by the cosmic y-ray background (e.g., Bignami et al. 1979) the hard
compactness (£5,) of the nonthermal pair source must be in the range 30 < £, <
300. This finding has resolved previous difficulties with the pair cascade model, in
which the requirement of a ~ 0.7 lead to a y-ray excess above the constraint from
the y-ray background (Bignami et al. 1979). In the sample calculations presented

here, we will therefore also restrict ourselves to this region of parameter space.
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We note that this is a subset of the parameter space described above in which we
would expect to find an observable soft excess. (The reflected component does
not directly affect the soft excesses, as a Compton-reflected spectrum appears
only above a few keV, see Lightman and White 1988. Hence the discussion
presented above goes through unchanged.) Compton reflection models of the
type described in Z90 therefore seem to predict that a soft x-ray excess should
appear in the spectra of “average” AGN to which the model applies — as indeed
seems to be the case observationally.

We will consider here an idealized geometry with a compact nonthermal
source of the radius, I, located close above the surface of a slab (poésibly'an
accretion ‘disk), as shown in Iigure 3. The power L, is supplied to ete™ pairs
in the nonthermal source and radiated as X-rays and y-rays. A half of L, is
intercepted by the slab, i.e., the covering factor of the nonthermal source by the
slab'is 0.5. This and the assumption made below that the covering factor of the
slab by the source is also 0.5 are motivated by the observations of a short lag
time between variations of the fluorescence iron K, line in the X-ray-reflected
spectrum and the incident continuum (Kunieda et al. 1990). This suggests that
the nonthermal source is in close proximity to the cold matter, and that the area
of the cold matter that reprocesses the nonthermal radiation is comparable to
the area of the nonthermal source.

Of the Lj;,/2 of luminosity that is the hitting the slab, a fraction a ~ 0.1-
0.15 (typical values for the integrated albedo) is Compton-reflected by the slab
(White, Lightman, and Zdziarski 1988; Lightman and White 1988; 790). The
remainder is absorbed and reemitted in the form of blackbody radiation. This
contributes to the total thermal luminosity of the slab, some of which will be

re-intercepted by the pair plasma. The cold matter thus provides a means of
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self-consistently generating soft photons. As noted, we assume here that the
covering factor of the irradiated part of the slab by the nonthermal source is also
0.5. Then, the blackbody luminosity of the irradiated area equals 2L, as Ly is
the soft photon luminosity incident on the nonthermal source. The luminosity
L is isotropically reemitted by the nonthermal source, and a half of it returns to
the slab. Thus, from energy balance, Ls 2 Ly, /3, where the equality corresponds
to no energy generation intrinsic to the disk. Thermal energy may, of course, be
internally generated in the slab and radiated (as is the case, e.g., in an accretion
disk). Z90 assumed rough equipartition between this internal energy generation
and the input of energy to the pair plasma in the form of energetic pairs, i.e.,
considered the case Ls ~ Lj. Here we will allow the internal energy generation
(and hence Lj) to be varied as free parameter.

We will take the observer to be at an angle so that he/she sees both the
nonthermal source and the reflecting portion of the slab. The total flux seen by
the observer corresponds then to the sum of the luminosities emitted into the 2w
solid angle, (Ls + Lp)/2 + aLy/2 + 2Ls. The three factors here correspond to
the direct emission of the nonthermal source, to Compton reflection, and to the
thermal emission of the slab, respectively.

The luminosity 2L is emitted by an area somewhat larger than the projection
of the nonthermal source onto the slab. We will here take this area to be 2w R2.
Then, the blackbody temperature of this region is,

1/4 ~1/4
kTy ~ 10 <—€—f—> (—]j—> ev. (3.1)

102 10" ¢cm

We have performed steady state pair cascade calculations as described in
L7Z87 and ZCL90, with the compactnesses {5 and £}, the blackbody temperature

Ts given by equation (3.1), and monoenergetic pairs injected at ymax = 2 X 103
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(the X-ray spectra are weakly dependent on the choice of ymax). We have com-
pared the results with those of the time-dependent code of Coppi (1990) and
Coppi and Blandford (1990). We found that if £; and £;, are changed on time
scales 2 2R/c, then the time evolution of the pair source follows approximately a
sequence of steady states, for the range of £;, < 300 considered here. To describe
the response of the spectra it therefore suffices to present only the steady state
spectra for the initial and asymptotic final states. For example, if a comparison
of the initial and final states showed that the hard X-rays softened, an examina-
tion of the corresponding time sequence would show a steadily (monotonically)
softening hard X-ray spectrum.

Using these steady state spectra, the spectra reflected from the slab were
then calculated using the method of Lightman and White (1988), White, Light-
man, and Zdziarski (1988), and cosmic abundances of Morrison and McCammon
(1983) (see analogous calculations in Z90). We remark that this step is not en-
tirely self-consistent as the slab was assumed to be cold, i.e., its ionization state
was not self-consistently calculated taking into account the (non-negligible) in-
coming flux of hard radiation. The final composite spectra presented below were
then constructed by the dire;:t pair radiation, the reflected component, and the
thermal emission of the slab, as discussed above.

As pointed out in Z90, addition of the reflected spectra hardens the composite
spectra. For 30 < £, < 300, the 2-20 keV spectral indices of the composite
spectra are then 0.6 < o < 0.85 (a very desirable feature of this model). A
further consequence of this hardening of the spectrum from the underlying oo ~ 1
to a ~ .7 is to enhance the amount of the perceived soft excess (determined
by subtracting off from the observed flux a power law extrapolated from the 2-

10 kev range). Decomposition of total spectra into the direct and the reflected
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components is given in Z90. The various features that appear in the direct pair
spectra have been extensively discussed elsewhere, e.g., in LZ87, and will not
be reanalyzed here as we are interested only in the behavior of the soft excesses
relative to the hard X-rays.

We present in I'ig. 4 some representative examples of the composite spectra
we computed. Depending on the variability pattern of the input £; and £, we
can observe distinct variability patterns of the soft and hard X-rays. The spectra
presented illustrate three possible types of variability which correspond to the
three characteristic AGN variability patterns discussed in § I:

1. Variable I5, constant . Figure 4a shows two spectra for £;, = 100 and
varying {5 = 100, 300. It can be seen that the spectrum above 1 keV only slightly
softens while dramatic variations occur in the spectrum and flux below ~ 0.5 keV
(see Table 1). This is because the hard X-rays are mostly due to emission of the
nonthermal pairs, which for I < ls is roughly independent of the blackbody
temperature and luminosity (Zdziarski and Lightman 1985). Note that for £; <
L5 and for large enough £}, the hard flux becomes even anticorrelated with the
soft flux, as illustrated in Figure 4b. This is due to the effect of upscattering by
the thermalized pairs of the nonthermal power law, which is an effect increasing
with increasing £, and decreasing {5 (see, e.g., ZCL90).

2. Proportional variations of the powers released in both the nonthermal
source and the disk. Figure 4c shows the case with £; = 30, 100 and a propor-
tional increase in the power generated inside the disk. In that case, both the soft
and hard X-ray fluxes are approximately correlated, with the hard X-ray spectra
softening with increasing compactness, which is a general feature of pair models

(e.g., S87; LZ87). The energies to which the soft X-ray excesses extend increase

with the compactness.
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3. Constant power released in the disk and variable £;. In this case, one
can obtain the soft X-ray spectra approximately constant while the hard X-ray
fluxes vary provided Ls > Ly, for which the increase of Ls due to reemission
of Lj, can be néglected‘ This is illustrated in Figure 4d. Again, the hard X-ray

spectra harden with the increasing compactness £ h-

IV. Discussion and Conclusions

Current explanations of the hard X-ray spectrum in AGN rely on the exis-
tence of a pair plasma in their interiors. In this mechanism, energetic pairs up-
scatter soft photons to x-ray energies, quickly losing most of their energy in the
process. From both simple order of magnitude estimates based on observed X-ray
luminosities and variability timescales (e.g., Guilbert, Fabian & Rees 1983) and
the best guesses from more sdphisticated (albeit still rather crude) pair plasma
models, one suspects that enough of these cooled pairs accumulate to form a
Thomson thick thermal plasma. ‘This plasma can have rather significant .eﬂ'ects
on the observed source spectrum, addiﬁg, for example, a annilﬁlatio11 feature at
D MeV. Of interest to us, if these pairs have a témperature of order‘ a few keV,
we have seen that they will produce an excess of emission at ~ .05 —1 keV on top
of the pre-existing hard X-ray power law. This will complement any other source
of soft x-ray emission one might envision such as the inner edge of an accretion
disk. In this regard, we note that a cloud of warm pairs plays a role identical
to (and probably is precisely) the “hot corona” referred to in some accretion

disk models (e.g., Uzerny & Elvis 1987) as a way of extending disk emission and

producing a soft excess.
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One possible argument against having the soft excess come from the same
source as the hard X-rays is that the two components do not always show corre-
lated time variability. When a pair plasma is involved, however, different energy
bands may respond in quite different manners to changes in the pair plasma
inputs (e.g., see Coppi 1990). As shown above, the soft excess vs. hard X-ray
behavior is such a case. It appears possible to construct scenarios that reproduce
all the types of currently observed variability behavior (variable soft X-rays and
constant hard X-rays, constant soft X-rays and variable hard X-rays, and an
overall correlation between the soft and hard X-rays). Unfortunately, this means
that pair models of the soft excess currently have little predictive power with re-
spect to variability. While the soft excess produced by a pair plasma. varies in a
very definite manner in response to changes in the incident soft photon spectrum
or energelic pair injection (see § II), current observations are not sufficient for
determining what exactly these changes were. (Simultaneous observations in a
wide range of energy bands would be needed.)

Another test for or constraint on pair plasma-based models of the soft excess
come from the detailed shape and amplitude of the excess. Again, however,
current observations are not of high enough quality to address this issue (although
ROSAT may soon change the situation). An important question that needs to be
(somehow) answered is that of the shape of the underlying soft photon continuum.
It would be important to know what the source looked like in a low or quiescent
state. Alternatively, one could search for an envelope to the variations. (The
contribution to the soft photon luminosity £; due to internal energy generation
in a disk might vary on a significantly longer timescale than the pair injection

luminosity £,.)
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Finally we note that if the reflection model discussed in § III proves to be
qualitatively correct and the compactness £;, falls in the range discussed, it is a
prediction of the pair plasma picture that soft excesses should be a fairly common
occurrence. (The reflection model requires Is ~ £, 30 < £, < 300, which is a
parameter range consistent with that derived for the production of an observable
excess, {s < £y, 30 < 1500.) This is to be contrasted with the accretion disk
picture where current models (without hot coronas) typically need to be viewed
almost face-on to give excess luminosities extending to sufficiently high energies,

i.e., where soft excesses would be relatively rare.
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Figure Captions

Figure 1. Decomposition of spectrum illustrating the effects of thermal
Comptonization discussed in § II. The spectrum was computed using the code of
Coppi (1990) and does not include Compton reflection effects. The model used
assumed monoenergetic pair injection at ymgez = 10% and had input parameters
€s = 70, £, = 200,05 = 1 x 10~°. The thermal pairs had a numerically com-
puted Thomson optical depth of 7 = 5.52 and temperature 6o = 6 x 1073,
giving a Compton y parameter of 0.376. The solid curve is the total computed
spectrum. The long dashed curved is the contribution of the Comptonized black-
body to that spectrum. The short dashed curve shows the equilibrium spectrum
computed omitting thermal Comptonization (but including the effects of an in-
creased photon escape time due to 7 > 1), i.e., the underlying non-Comptonized
non-thermal power law and blackbody. Note the dramatic “amplification” of the
non-thermal power law by thermal Comptonization. The dot-dashed and dotted

curves are respectively the spectra of eqn. 2.10 and 2.11 computed using the

approximations of § II.

Figure 2. Spectra computed in the same manner as for Fig. 1 but with
input parameters s = 200 and £; = 40 (dotted curve; y < 1, negligible
thermal Comptonization), £, = 200 (solid curve; prominent soft excess), [h =
1000 (short dashed curve; significant thermal Comptonization, “amplified” non-

thermal powerlaw dominates). The long dashed curve shows the un-Comptonized

Figure 3. A schematic representation of the source region used in the model

of § III.
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Figure 4. Composite spectra from pair cascade sources located above a
slab of cold material. The parameters of different models are given in Table 1.
The solid and dotted curves in Figs. 4a, b, ¢, d correspond to models a, b, c, d
numbered 1 and 2 in Table 1, respectively. See § III for discussion. The K q ‘iron
line at 6.4 keV is not included. The hormalization of theispectra correspond té

emission of the nonthermal source on one side of the slab of cold matter.
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