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ABSTRACT
1. FLUID FLOW IN A PRECESSING SPHERICAL CAVITY
II. ELECTROMAGNETIC RADIATION FROM
AN EXPANDING SPHERE IN A MAGNETIC FIELD
by Giulio Venezian

In Part I the flow of an incompressible fluid inside a precessing
spherical cavity is studied. The precession angle is assumed small and
the equations of moltion are linearized. For the case of large viscosity
an expansion is developed in inverse powers of the viscosity by expand-
ing the velocity field in vector spherical harmonics. The flow obtained
is essentially rigid body motion. The case of low viscosity is also
studied. At low precession rates difficulties arise in the boundary
layer treatment and the inviscid equations. A modified boundary layer
eguation is derived and an approximate solution obtained. The flow con-
sists essentially of rotation about the average axis of rotation. Some
geophysical aspects of the problem, and in particular its relevance to
dynamo theories of the earth's magnetic field are discussed.

Part II deals with the electromagnetic fields about a perfectly
conducting sphere which is placed in a uniform magnetic field. The
radiation fields that result when the radius of the sphere is allowed to
change are investigated. Explicit expressions are obtained for the cases
of a sphere expanding or collapsing at a uniform rate. In the latter case
it is found that wave propagation and energy propagation are in opposite
directions. Constant speed oscillations are also investigated and the
effect of the amplitude on the power radiated is considered. The case

of arbitrary motions of the radius is also discussed.
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I. FLUID FLOW IN A PRECESSING SPHERICAL CAVITY

1. INTRODUCTION

The investigation described here deals with the flow of a vis-
cous fluid inside a precessing spherical container. This problem
arises in the study of the efiect of the earth's precession on its liquid
core, and is of particular significance in connection with the dynamo
theory of the earth's magnetic field. To indicate the position that this
problem occupies in the general geophysical picture, a brief review of
the pertinent aspects relating to the terrestrial field is given in this
chapter. This review includes a description of the earth's magnetic
field and an outline of the evolution of the theories that have been ad-

vanced to explain it.

1.1 The Earth's Magnetic Field[ 1

The earth's magnetic field has been studied through observa-
tions taken outside its surface, principally near the surface itself.
From a detailed knowledge of the field at the surface it is possible to
deduce the field outside it but no information can be obtained as to its
character in the interior. For cxamplc, the cxternal field can rough-
ly be described as that which would exist if the earth had a dipole at

its center; but the same external field would result from a uniformly

[1] This discussion is based on a review article by E. C. Bullard,
"The Interior of the Earth"™ in The Earth as aPlanet, G. P. Kuiper
editor, {(U. of Chicago Press, Chicago 1954) pp. 57 - 137.




magnetized shell.

The earth's field shows spatial irregularities in regions of
small extent on a geographical scale. They can be attributed to local
concentrations of magnetic materials. If these anomalies are smooth-
ed out, the resulting field can be analyzed in spherical harmonics. It
is found that, to the accuracy that the analysis can be carried out
from the observed data, the entire field is due to internal sources.
The only parts of the field of external origin are rapidly varying com-
ponents which are caused by solar or ionospheric disturbances.

A map of the average field shows no obvious correlation with
the presence of land masses or other geological features. This fea-
ture suggests that the field must originate in the deep interior of the
earth rather than in the crust. The earth's core is believed to be
liquid, consisting principally of iron at a temperature of approximate-
ly 5000°K. Since the Curie point of iron is about 700°K, it would fol-
low that ferromagnetic effects can be ruled out as a source of the ter-
restrial field. The only other known sources of magnetism are elec-
tric currents, and modern theories attempt to explain the earth's

field on this basis.

1.2 Theories of Geomagnetism

If the terrestrial magnetic field is due to currents in the core,

it is not clear at the outset that a source is needed to explain their

2 .
presence. It was shown by Lamb[' -], however, that currents in a

[Z] H. Lamb, "On Electrical Motions in a Spherical Conductor,"
Trans. Roy. Soc. (London) 174, 519 (1883).




-3a

conducting sphere would decay with a lifetime of at most UoR?/x?%,
where [, 0 are the permeability and conductivity of the sphere and
R its radius. With values appropriate for the earth the decay time
is approximately 15,000 years. Thus, in the absence of sources for
the currents, the field would diminish by 1% every 150 years. This

rate is not very large, but if the calculation is carried out into the

100, 000

distant past, it would require a field 10 times larger than the

present value, where the age of the earth has been taken as 3 X 107
years. It would thus appear more reasonable to assume that the
energy lost by dissipation is compensated by internal electromotive
forces. Of the various mechanisms which have been proposed to
explain these sources the dynamo theory is of particular interest here.
The first suggestion that the earth's magnetic field might be

caused by dynamo action was made by Larmor in 1919, In a short

note[ 3] in which he discussed the possible origin of the magnetic

fields of the sun, of sunspots, and of the earth, he said:

"In the case of the sun, surface phenomena point to
the existence of a residual internal circulation main-
ly in the meridional planes. Such internal motion
induces an electric field acting on the moving matter:
and if any conducting path around the solar axis hap-
pens to be open, an electric current will flow round
it, which may in turn increase the inducing magnetic
field. In this way it is possible for the internal cyclic
motion to act after the manner of a self-exciting
dynamo, and maintain a permanent magnetic field
from insignificant beginnings, at the expense of some
of the energy of the internal circulation. In any case,

3
l IlJ. Larmor, "How could a Rotating Bedy such as the Sun become
a Magnet?"™ Rep. Brit. Assoc. Advanc. Sci. p. 159 (1919).
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in a celestial body residual circulation would be

extremely permanent, as the large size would

make effects of ordinary viscosity nearly negligible."

Larmor's suggestion was purely qualitative; he did not attempt
to show that a dynamo such as he described was possible. In 1934,
Cowiing;%] formulated the dynamo problem in mathematical form and
obtained a negative result which dealt a severe blow to the dynamo
theories: he established that it is impossible for an axially symmet-
ric field to be self maintained.

Cowling formulated the problem on the basis of the non-
relativistic form of Maxwell's equations, in which the displacement

current is neglected. For a homogeneons medium moving with veloc-

ity v the equations are:

VXB =pJ , (1.1)
VXE=-08B/8t , (1.2)
VB=0 |, (1.3)
T =c(E+vXB) . (1.4)

These equations are easily combined into

VX VXB :’.w[— —85? +VX(JXB)} ,

or

1

35 _ Ve 2
= VX(vXB) + It v‘eB . (1.5)

ot

4] T. G. Cowling, "The Magnetic Field of Sunspots, ' Monthly
Notices Roy. Astron. Soc. 94, 39 (1934).




-5-

Equation (1.5) is known as the induction equation.

While a general statement of the problem should include the
hydrodynamic equations for the motion of the medium, Cowling chose
to regard the velocity field as given. In this case Egs. (l.3) and
(1.5) together with suitable subsidiary conditions are sufficient to
determine the magnetic field that can exist with a particular flow pat-

tern. If \? is given as zero, then Eq. (1.5) becomes
9B 2
‘5‘{ - — v B L (1' 6)

which is the problem considered by Lamb in Ref. 2. In that case no

steady fields exist; the solutions of Eq. (1.6) are of the form

B(r,t) = B(rje % | (1.7)
where E(;) satisfies
VB + ouoB = 0 . (1.8)

It was noted earlier that the smallest valuc of « for a sphere of
radius R is w%/uoR*. This corresponds to the dipole mode. Higher
multipoles decay more rapidly, and this may provide an explanation
as to why planetary fields are essentially of dipole type: it is just the
configuration that is dissipated most slowly and is thus the easiest to
maintain.

Cowling chose to consider the case 3}3/8‘{ = 0, so that

Eqg. (1.5) becomes

YX VX B = poVX{vXxB) . (1.9)
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He was able to show that an axially symmetric magnetic field cannot
be self-sustained. This result is known as Cowling's Theorem. Be-
cause of the importance of this result, and since it influenced all sub-
sequent work, a demonstration of this theorem is given in the next

section.

1.3 Cowling's Theorem

It will be shown in this section that steady axially symmetric
dynamo action is impossible. The proof given will follow the argu-
ments given by Cowling in Ref. 4. These are not entirely free of
objections but they have the virtue of simplicity.

Using cylindrical coordinates (p,¢,z) with the z-axis along
the axis of symmetry, and taking into account that derivatives with
respect to ¢ must be zero, we write Eq. (1.3) as

19 _
=5 (Bt o= =0 (1.3a)

It follows that B and Bz can be derived from a scalar :
p

- _ 1 &y
Bp - 'E '52" 2 BZ hat —p_ TP » (1. 10)

Zmp{r, z} can be interpreted as the total magnetic fluxcrossingacircle

of a radius r drawnon a plane atfixed z, Since

- P ‘ .
Flux:S B.dA = 27 g B, pdp = 2m[Y(p,z) -$(0,2) ]
O

Now, the total flux crossing a closed surface is zero, and if the

fields are supposed to be generated in a finite volume, the flux across
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any surface of infinite extent must be zero. Thus, y(w,z) is constant
and equal to Y(0,z). The constant can be chosen to be zero.

The function ¢ thus defined is zero at the origin p = 0 and at
p =o0. It is also a continuous function, and therefore it is either zero
everywhere, or it must have a maximum or a minimum at some point.

At such a point

oy _ Wy R 0%y
3E_o , = =0 —

£ 0 . (1.11)

If the last condition is not satisfied the point is a saddle point rather
than a maximum or minimum. It will now be shown that at all points
where the firat two conditions are satisfied the third ig vialated.
Since a steady dynamo is being considered, Eq. (l.2) reduces
to
VXE =0
so that 1—55 can be written as the gradient of a scalar, and therefore

E‘P = 0. The ¢ component of Eq. (1.4) is thus

J =o(v.B -v B )
@ z p p z
The quantities J(p’ bp, and BZ can be expressed in terms of
{; this results in
3%y 8%y 1 8y , Oray a
. S = 1 +~[.,,._ +"‘v1, (1.12)
5 2 5972 0 Tp L9z Yz7 8 )

so that
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wherever both first derivatives are zero. It follows that ¢ = 0 every-
where and thus Bp = 0, B =0.

This proof does not state anything about Bgo' Later proofs of
Cowling's Theorem have shown that such a field cannot be self-sustain-
ing. In a paper published in 1957 Cowling[S] demonstrates that steady
dynameo action is impossible for axially symmetric fields, two dimen-
sional fields, and toroidal fields. These proofs are limited to the
case V.v = 0.

The implicit assumption is usually made that the flow field
would have the same symmetry as the magnetic field, and for this
reason Cowling's theorem is often stated in terms of the fluid velocity,
i.e. that an axially symmetric flow cannot support dynamo action.

[6]

Some proofs, however, are in terms of the velocity field: Backus

has shown that toroidal flows cannot maintain a steady dynamo.

1.4 The Possibility of Dynamo Action

After the enunciation of Cowling's theorem, work on the sub-
ject seems to have stopped, partly because of the advent of the war,
and partly because of the implications of the theorem. Cowling him-

self seems to have become discouraged by his result, for in 1945 he

(5] T. G. Cowling, "The Dynamo Maintenance of Steady Magnetic
Fields", Quart.J. of Mech.App. Math. 10, 129 (1957).

rél G. Backus, "A Class of Self-Sustaining Dissipative Spherical
Dynamos'", Ann. of Phys. 4, 372 (1958).
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published a paper[7]in which he re-examined Lamb's result of

Ref. 1, with a view to an alternative explanation of celestial mag-
netic fields. He concluded, though not enthusiastically, that the Sun's
magnetic field might be the relic of a field that existed in the distant
past, but that this would in any case not apply to the earth.

The investigation then fell into the hands of Elsasser, who was
to influence greatly the subsequent work on dynamo theories. Although
hc had at first suggested[S] that the internal currents might be due to
thermoelectric effects, Elsasser devoted a series of papers, the

[9]

first of which appeared in 1946 , to the dynamo effect.

His most significant contribution was to introduce a system-
atic method of attack for the spherical dynamo. He expanded both the
magnetic field and the flow field in vector spherical harmonics. Be-
cause of the :X g term in the induction equation the harmonics are
coupled so that what is finally obtained is an infinite set of coupled
equations involving the radial functions which multiply the harmonics.
He discusscd the conditions under which dynamo action might result,
and those under which it would not. In accordance with Cowling's

theorem he found that "geometrically simple"™ configurations cannot

give rise to steady dynamo action.

[7] T. G. Cowling, "On the Sun's General Magnetic Field", Monthly
Notices Roy. Astron. Soc. 105, 166 (1945).

[8] W. M. Elsasser, "On the Origin of the Earth's Magnetic Field",
Phys. Rev. 55, 489 (1939).

[9] W. M. Elsasser, "Induction Effects in Terrestrial Magnetism?®,
Phys. Rev. 69, 106 (1946).
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Among other approaches tried by Elsasser, he developed a
scheme [or dealing with the steady dynamo which was used by later
workers. He argued that if a given flow configuration ;(;) is
favorable for dynamo action, it does not necessarily produce a steady

dynamo unless the magnitude of the velocity is just right. He there-

fore wrote the induction equation in the form

—

VZB + A\VX (vXB) =0 , (1.13)

where \ plays the role of an eigenvalue. Unfortunately, it cannot

be shown that this equation must have a solution, or that, if a solu-

tion exists, the ei

z that for
purposes of machine computation this form of the equation is con-
venient,

Elsasser also discussed the possible reasons for fluid motion
in the interior of the earth. He emphasized the importance of
Coriolis forces, and suggested that thermal convection coupled with
these forces would probably tend to produce motion of the required
type.

It is difficult to do justice to Elsasser's work in a short re-
view., His papers, published over a period of ten years amount to
several hundred pages. A review of his work was written by him in

19561101

[10] W. M. Elsasser, "The Magnetic Field within the Earth™,
Revs. Modern Phys. 28, 135 (1956).
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Sir Edward Bullard devoted his attention to what he regarded
to be the fundamental problem of dynamo theory: to prove that a
solution to the dynamo equation exists. He first analyzed inductive

[11]

effects in a rotating sphere He was able to obtain the remark-

able result that the induction equation,

%3% CUX(TXB) + ﬁ% ViB (1.5)
remains unchanged when written with reference to a steadily rotating
frame. This result is consistent with the theorem that toroidal ve-
locity fields cannot support steady dynamo action, for rigid body
rotation is a special case of toroidal motion, and the invariance of
the equation implies that only the decaying fields described by Eq. (1. 8)
exist in this case. This result moreover implies that in the case of
the earth it is only the relative motion between the core and mantle
that can be responsible for dynamo action, and the rotation can be
disregarded.

Bullard also studied the interaction of a rotating sphere with
external fields. He found that while a dipole mode produces an in-
ternal field proportional to the angular speed, the higher spherical
harmonics reach a maximum magnitude for the induced field and then
decrease as the rotational speed increases further. This result was

used ingeniously by Herzenberg in a paper to be described later.

[11]E. C. Bullard, "Electromagnetic Induction in a Rotating Sphere",
Proc. Roy. Soc. {London) 199, 413 (1949).




-12-

In an effort to prove the existence of a solution to Eq. (1.13),
Bullard and (jéllman[ 12] decided to attempt to exhibit the solution to
one particular problem. They constructed a rather intricate velocity
field which seemed likely to be complicated enough to lead to dynamo
action, and at the same time might be an adequate model of the mo-
tion inside the earth if thermal convection is the dominating driving
force. They then set up the problem for numerical calculation.

After 240 hours of machine time in one of the fastest elec-
tronic computers available at that time, they obtained a few iterated
values for \, for two slightly different velocity fields. For this
numerical calculation the equations had to be cut off to give a finite
system. A similar calculation was also carried out by Takeuchi and

[13]

Shimazu » Who in addition used a sixth order polynomial for the
radial functions.

These results were regarded by Cowling to be convincing

; [14] [6]

proof of the existence of a homogeneous dynamo , but Backus
severely criticized this stand. A passage from his paper is of
interest:

"Cowling writes that he is convinced of the existence

of self-sustaining dynamos by the numerical compu-

tations carried out by Bullard and Gellman in an
attempt to solve the eigenvalue problem

[12] E. C. Bullard and H. Gellman, "Homogeneous Dynamos and
Terrestrial Magnetism', Trans. Roy.Soc.(London) 247, 213 (1954).

[13]
H. Takeuchi and Y. Shimazu, "On the Self-Exciting Process in
Magneto-Hydrodynamics', J. Geophys. Res. 58, 497 (1953).

[14] T.G. Cowling, Magnetohydrodynamics (Interscience Publishers,
New York, 1957) p. 87.
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VX VX B = WuXB) for the eigenvalue W and the
eigenfunction B, given u. Such a solution would
represent a steady dynamo. Bullard and Gellman .

obtained successive approximations W] to the

true eigenvalue W. Typical values for the WK

i

they obtained for various velocity fields u are

W = 22.06, W not computed, W3 = 67.4. These
1 2

sequences are supposed to converge to the true
values of W; perhaps what Cowling finds con-
vincing about them is that at least they are real.
But as Chandresekhar has pointed out the steady
increase of these approximate values of W as

f increases [# indicates the harmonic at which
the equations are truncated |and the approxima-
tion improves may indicate that in the exact solu-
tion and infinite value of W is required, or in

other words that the particular velocities u
chosen for the calculation cannot maintain a steady

dynamo. "

The question of the steady dynamo thus remained unsettled.
In Ref. 6, Backus was able to show by very involved formal mathe-
matical arguments that unsteady dynamo action is possible. His
demonstration involved fluid motion with sudden starts and stops ar-
ranged in such a way as to satisfy vafious requirements in the steps
of his development. While it proved the existence of such a dynamo,
his discussion was not very tangible physically. Moreover, the real
issue was that of steady dynamos, the existence of which had become
doubtful because of Cowling's theorem.

This question was finally settled in 1958 by Herzenberg[ls],

who was able to devise a rather artificial, but easily visualized

model capable of sustaining steady dynamo action. Herzenberg

[IS]A. Herzenberg, "Homogeneous Dynamos", Trans. Roy. Soc.

(London) 250, 543 (1958).
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envisioned a system consisting of two small spheres A and B, im-
bedded in a lafger sphere C. The three spheres are supposed to
have the same conductivity and to be in perfect electrical contact
with each other. Spheres A and B are assumed to be rotating at
constant angular speeds about skew axes. By straightforward but
lengthy mathematics, Herzenberg was able to show that for certain
relative orientations of the two axes of rotation, sufficiently high
angular speeds, and adequate separation of the small spheres, a
steady field could be maintained. His procedure consisted of expand-
ing the field in spherical harmonics referred to each of the three
spheres. In this way he showed that for example, the internal fields
of A and C produce an external dipole moment when referred to B.
Because of B's rotation this would result in an induced dipole mo-
ment proportional to the rotational speed. This would in turn, when
expressed in harmonics referred to A, provide an external dipole
to generate the internal field of A, completing the regenerative
cycle. Because of the saturation effect of the higher modes, men-
tioned in the discussion of Ref. 11, Herzenberg was able to demon-
strate that in his case he was justified in keeping only the first few
harmonics in these expansions.

The ideas involved in this model are fairly simple, but un-
fortunately the mathematical development is extremely complicaied
because of the inherent complexity of vector spherical harmonics
which becomes almost prohibitive when the origin of the coordinate

system is shifted or the orientation of the axes is changed. This
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work vindicated the suggestion of Larmor, who on defending his stand
against an attack by Cowling wrote the following words, almost as if
foreseeing the enormous efforts that were to follow:

"This description [of the self sustaining dynamo ]

appears to be, on broad lines. so far as I can pre-

sently see, the inevitable conclusion, intricate

enough, but one which mathematics could only
obscure [16]."

1.5 The Question of Stability

Bullard[ 17] pointed out that it iVs not sufficient to establish the
existence of a steady dynamo, but that it would also have to be demon-
strated that it is stable. While this cannol be done with the induction
equation alone since the magnetic field appears linearly throughout so
that one field strength would satisfy the equation as well as any other,
it would be of interest to find out whether the zero field configuration
is stable. If the zero field is stable, it would mean that an initial per-
turbation would disappear, and dynamo action, while possible, would
not occur spontaneously. If on the other hand the zero field situation
is unstable, it would imply that the fluid motion would tend to amplify
any stray field, presumably to a steady configuration, and that thus a
sizable field could start from the "insignificant beginnings"™ as Larmor
suggested.

So far the only work on stability has been on disc dynamos.

[16] J. Larmor, "The Magnetic Field of Sunspots, ' Monthly Notices
Roy. Astron. Soc. 94, 469 (1934).

[17] E. C. Bullard, "The Stability of a Homopolar Dynamo, ' Proc.
Cambridge Phil. Soc. 51, 744 (1955).
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Bullard studied the stability of a single disc, while Rikitake[ 18]and
Lebovitz[ 19] have discussed the stability of a system of dynamos.

It would be desirable to carry out a stability analysis for a
spherical homogeneous dynamo of the type described in the last section.
The complexity of the analysis would be overwhelming, for the time
dependent equations would have to he used, and the steady equations
have proved to be almost impossible to handle. Nevertheless, it is to
be hoped that an analysis of the stability of Herzenberg's dynamo will

someday be carried out.

1.6 The Cause of Fluid Motion

The final aspect of importance in the dynamo theory of geo-
magnetism is to find out why the fluid in the core should be moving at
all, and what motive power maintains this movement which would be
resisted not only by friction, but also by the electromagnetic reaction
which dynamo action would entail.

[20] |

Bullard and Elsasser 10], have suggested thermal convec-

tion, for it is known that there is a thermal gradient into the interior

of the earth. This of course leaves the heat source to be explained.

[18]T. Rikitake, "Oscillations of a System of Disk Dynamos, " Proc.
Cambridge Phil. Soc. _5_4_}’, 89 (1958).

[19] N. R. Lebovitz, "The Equilibrium Stability of a System of Disk
Dynamos," Proc. Cambridge Phil. Soc. _?_é, 154 (1960).

2
[20] E. C. Bullard, "The Magnetic Field within the Earth," Proc.
Roy. Soc. (London) 197, 433 (1949).




-17-

Bullard maintains that radioactive decay inside the earth could be

[21]

responsible for this. Urey in advancing a rival theory argued
that the amount of heat generated by radioactive decay would not be
enough to make up the energy required to maintain the field. It may
well turn out that a large part of the heat generated is by the currents
that give rise to the magnetic field. Urey's theory is that heavier
materials are being deposited continuously on the surface of the
earth and they are slowly sinking into the center, thus producing a
convection current.

In discussing the various alternatives, Bullard mentions a

[22]

paper by Bondi and Lyttleton While the authors were concerned
with the effects of the core on the dynamics of the rotation of the
earth, and do not appear to have had geomagnetism in mind, Bullard
considered precession as a possible source of the motion, but con-
cluded that it would probably be too feeble a force.

The question remains still unsettled; it may well be that all of
these causes conlribule to some extent. It is the object of this work
to analyze more fully the problem suggested by Bondi and Lyttleton,

in the hope that the role played by the precession of the earth will be-

come clearer.

[21 ]H C. Urey, "The Origin and Development of the Earth and other
Terrestrial Planets, " Geochim. Cosmochim. Acta, i, 209 (1951)

[ZZ]H. Bondi and R. A. Lyttleton, "On the Dynamical Theory of
Rotation of the Earlth. II. The Effect of Precession on the Motion of
the Liquid Core," Proc. Cambridge Phil. Soc. _1%2_, 498 (1953).
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2. PRELIMINARY DISCUSSION OF THE PROBLEM

Z2.1 Description of Previous Work

Various problems involving rotating ellipsoidal masses of fluid
have been studied for over a century. Poincaré and Kelvin{ 73] con-
sidered the perturbed motions of an incompressible fluid inside a
cavity of small but non-zero eccentricity. In these studies the fluid
was assumed to be inviscid. These authors concluded that the motion
of such a fluid would be essentially that of a rigid body.

In more recent times, Bondi and Lyttleton devoted their atten-
tion to the part played by the liquid corc of the carth in the dynamice
of its motion. It is known that the earth has slight irregularities in its
rotational motion[24]. There are three important systematic devia-
tions from uniform rotation. First, the length of the day is increasing
by approximately one millisecond per century because of tidal friction.
Secondly, the gravitational action of the sun and moon on the equa-
torial bulge makes the axis of rotation precess about the normal to
the ecliptic plane with a period of about 25,000 years, while main-
taining an inclination of 23.4° to the normal. Finally, the earth

has a "free body'" precession with a period of approximately 400 days

which is due to its oblateness. The precession axis makes an

[23]H. Lamb, Hydrodynamics (Dover Publications, New York, 1945),
sixth edition, Chapter XII.

2 . . . . .

[24] Sir Harold Spencer Jones, "Dimensions and Rotation," in The
Farth as a Planet, edited by G. P. Kuiper (The University of Chicago
Press, Chicago 1954) pp 1 - 39.
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angle of 10—6 radians with the rotation axis.
Bondi and Lyttleton reasoned that these motions would affect
the flow of the liquid core so that, for example, the moments of inertia

of the earth, which are calculated under the assumption of rigid body

[25]

motion, would be in error. Their first paper was devoted to the

secular retardation of the core. They considered the perturbed motion
of an incompressible fluid in a spherical cavity that is undergoing a

slow change in its angular speed. They concluded that the motion of
1
the core would follow that of the shell with a time lag of (a®/wv)?

where v is the kinematic viscosity of the shell, w its angular speed

R T D 2T s AT TE o i dea s oom Tt e - e 2
and a its internal radius. If one uses a value of v of 100 m*</

[ 20

this retardation amounts to one year, but Bullard }has pointed out
that the kinematic viscosity of the core material is probably much
smaller than this. Bullard's estimate agrees with that given by
'Frenkel[ 26] and, since it is not very different from the kinematic

-5

viscosity of molten iron at ordinary pressures, 10 m?/sec, this

latter value will be used here. The time lag then becomes nearly

3000 years. It should be noted that in spite of this disparity the dimen-
sionless parameter which measures the effect of the viscosity,
4

(v/wa?)2, is emall in either casc, since it is 3 X 10°° for

v = 100 m?%/sec and 10-7 for v:10“5 m?/sec.

2
[25] H. Bondi and R. A. Lyttleton, "On the Dynamical Theory of the
Rotation of the Earth I. The Secular Retardation of the Core," Proc.
Cambridge Phil. Soc. _‘_L_‘_l‘, 345 (1948).

2
[26] J. Frenkel, Kinetic Theory of Liquids, (Dover Publications,
New York 1955) p. 208.
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In the problem of the core retardation, the change in angular
velocity is parailel to the angular velocity itself so that an axially
symmetric situation exists. This is no longer true for precession,
since the angular acceleration is at right angles to the angular velocity,
and the axial symmetry is thereby destroyed. From the point of view
of dynamo theory only the second type of motion is a possible source
of dynamo action.

The problem of [low in a precessing cavity was considered by
Bondi and Lyttleton in Ref. 22. They were unable to come to a defi-
nite conclusion, but they provided a clear presentation of what they had
been able to accomplish and of the difficulties they encountered. In
their analysis they deliberately considered a spherical cavity rather
than an ellipsoidal one to isolate the viscous effects from those aris-
ing from the shape of the container. Since in the spherical geometry
the motion of the wall is at all times parallel to the wall, the only
mechanism for transfer of momentum to the fluid is through viscous
forces. In the case of an ideal fluid, the motion of the container would
have no effect whatsoever on the enclosed fluid. Bondi and Lyttleton's
approach to the problem was to consider the equations of motion in a
frame which rotates in space at the precessional speed and to linear-
ize the equations of motion about rigid body rotation, by taking the
precessional speed as small. Their contention was that in this frame
the motion would ultimately be steady, and it was this steady state
that they were concerned with.

They assumed that the motion in the interior would be essential-

ly unaffected by the viscosity so that the problem could be treated by
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a boundary layer approach. In attempting to solve the inviscid fluid
equations for the interior, they found that, if it is required that the
radial velocity vanish at the boundary, it is impossible for the velocity
field to be represented by a function analytic throughout the interior

of the sphere. Difficulties also arose in the boundary layer equations
in that the boundary layer thickness became infinite on two circles at
latitudes 30°N and 30°S. This complication arises in the present work
also and it will be discussed more fully later.

Stewartson and Roberts[ 27] avoided these difficulties by posing
the problem in a different way. They assumed that the container was
initially rotating about a fixed axis, with the fluid rotating as a rigid
body. The axis of rotation was set into a precessional motion about a
given axis. They then asked what the subsequent motion of the fluid
would be. They pointed out that, if the container is spherical, a
frictionless fluid would continue to rotate about the original axis so
that in the frame of reference considered by Bondi and Lyttleton the

fluid velocity would be

— s

U=-2Xr-(QXw)Xr sinQt/Q (2.1)

where §2 is the precessional velocity and w the rotational velocity.

On linearizing this expression for small values of £, u becomes

— e e —

U= -QXr-(RXe)Xrt . (2.2)

[27]K. Stewartson and P. H. Roberts, "On the Motion of a Liquid

Spheroidal Cavity of a Precessing Rigid Body," J. Fluid Mech. 17.
1 (1963). o
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Thisis ananalytic expression that satisfies the linearized equations,
but it is time dépendenL, and moreover it can only be valid for times
which are small compared to the precessional period. It should be
pointed out that this situation arises from the different approach to the
problem used by Stewartson and Roberts, and that their result in no
way precludes the existence of the steady state that was considered by
Bondi and Lyttleton.

As far as the problem posed by Stewartson and Roberts is con-
cerned, the complications just described made it necessary for them
to consider an ellipsoidal container so that both viscous effects and
the direct action of the walls enter into their analysis. Thus, their
approach was to work the problem considered by Poincaré and Kelvin,
but viscous effects were included. They were able to show that the
steady solution obtained by Poincaré and Kelvin would be realized
after a time of order a%/v, and that the flow would be as described
by Poincaré and Kelvin except for a boundary layer flow and a negli-
gible tertiary flow induced in the interior by the boundary layer.

The time required to establish steady flow seems disturbingly
long since for the earth it could be as large as 1010 years, a time
which indicates that the unsteady part of the flow could still exist in
the core. In contrast with this result, it must be pointed out that the
time required to communicate to the fluid a change in angular speed
E

(without a change of axis) is (a’?/vw)? as obtained by Bondi and
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Littleton[ 25 ], and later by Greenspan and Howard[ 28] . In the case
of the earth this amounts to 3000 years. The appearance of two dif-
ferent time scales for phenomena of essentially similar nature is
puzzling, and calls for more detailed study. In this work, however,
only steady state conditions will be considered, so this issue will

remain unresolved.

2.2 Outline of the Present Work

The work presented here follows the spirit of the investiga-
tion carried out by Bondi and Lyttleton. The container is taken to be
a sphere, and steady state motion will be considered. In contrast
with the case examined by these authors, however, the precession
frequency will be allowed to have an arbitrary value., 'T'he angle be-
tween the precession and rotation axes will be taken to be small so
that the equations may be linearized. This linearization appears
necessary to make the analysis tractable. This is a departure from
the original geophysical problem since that angle is 23.4°in the case
of the earth. However, it will be found that there are certain advant-
ages to this approach in that a distinction will become evident between
slow and fast precession. In the latter type of flow it will be found
that the problem can be solved for arbitrary values of the viscosity.

The case of highly viscous flow will be considered first, since

it is the simplest to deal with. Then the problem with low viscosity

28
[ ]H P. Greenspan and L. N. Howard, '"On a Time Dependent
Motion of a Rotating Fluid, " J. Fluid Mech. 17, 385 (1963).
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will be considered and it will be seen that two types of flow arise.
The flow for the rapidly precessing case will be treated for arbitrary
viscosity. Then the flow for the case of slow precession, and low
viscosity will be described. Finally, some conclusions will be drawn
about the original problem posed by Bondi and Lyttleton in which the

precession axis makes a large angle with the rotation axis,
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3. DERIVATION OF THE EQUATIONS OF MOTION

3.1 Linearization of the Equations of Motion

The physical problem to be analyzed is the follcwing: a spheri-

cal container, filled with an incompressible viscous fluid rotates with

—_

an angular velocity wp

to an inertial frame with an angular velocity £2. The vector wp thus

about an axis which is itself rotating relative

generates a cone whose axis is the vector $£2. The projection of “R

—y

on 2 is a fixed vector w while the part of wp

dicular to 5, c: , has a sinusoidal time dependence. The half-angle
1

which is perpen-

—

A
of the cone generated by “R is @ - tan (w /mo). This system will
1
be described in the inertial frame in which the center of the sphere is

at rest. Figure | illustrates the physical situation.

In this frame, the fluid velocity c_{ satisfies the equation of

continuity
Veq=0 |, (3. 1)
and the momentum equation
BCT . = 27 1 2 2
S - dX(VXQ)-v9iq = -Vip/p + 3 %) (3.2)

where p is the pressure, p the density and v the kinematic viscos-
ity of the fluid. It should be noted that these equations are satisfied by
a velocity field that represents rigid body rotation about a fixed axis,
so that if o;l /mo <<1, it would seem appropriate to linearize these
equations about the flow field ‘:o X r which is a solution to the equa-
tions of motion, but fails to satisfy the no-slip boundary conditions

required by the problem under consideration.
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Figure 1. Geometry of the system.
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To carry out the linearization, let

q:wOX;-{-u . (3. 3)

Then Eq. (3.1) becomes

V.au=0 , (3. 4)

where we have used the vector identity

—

v.(wox?) -0

Similarly Eq. (3.2) becomes

—_—

—85‘% —(Sox?+J)XVX($O><?+E)- vv?-(con?Jrf{)

=-Vip/pt 5 ut+ 3 (@ XT)+uele X1)) .  (3.5)

This can be simplified by making use of the following vector identities:

—_—

VX (0 X7) =20
O (o]
Vﬂ(;% X E)=0

and

—

- N - ; ==
(wo><r)>< Zwo Z(rwo - wo(wo r)) .,

i

_ 2.2 _ (.2
_V(uor (wo r}“)

1

- 2
V(wOXr)

Equation (3.5) then becumes
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% (@ X T)X(VXU) + 20 Xa-uX(VXT) - v V2

-~ Vi(plpt 5 ul- ¥ (@ XT)24u-(e XT)) . (3. 6)
To linearize this equation we observe that
T=0 b= L o(@ X7)?
B 7‘ p I} 3

satisfies the equation. If w /mo is sufficiently small, ; will also be
1

—_—

a small quantity since it can be expected to be of the order of w Xr.
1

Similarly, the variable P defined by
- 1= 2
w P =plp- 5 (o Xr)* (3.7)

which is zero when w is zero, can be taken to be proportional to w
1 1

for small enough values of w /wo. Terms which are quadratic in
1 1

may thus be dropped from Eq. (3.6), and in this way the linearized

momentum equation is obtained:

ou

L +V[E.(Z§O><“£)]-(%x?)X(VxJHzZo‘OxE-vvlu":-wOVP . (3.8)

The boundary condition for the problem 1is that the fluid adja-

cent to the container must be at rest with respect to the wall. In terms

—

of u, this requirement is

—

t=wXr at r=a |, (3.9)
1

where a 1is the radius of the container.
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3.2 The Equations of Motion in Spherical Coordinates

To refer these equations to a coordinate system, we choose an
inertial frame with the z-axis along w (and ) and the origin at the
center of the sphere. The x-axis and the time origin are chosen so

that w takes on the form
1

—

©w =w cosfte +wsinQte . (3.10)
1 1 X i Yy

In terms of the spherical coordinates (r, 6, ¢), w then becomes
1

@ = w sin# COS((p—Qt)g +w cos 6 COS(qo—Qt)ge— w sin(go~9t)g . (3.11)
1 1 r 1 1 @

while So is given by

© =w cosfe -w sinfe . (3.12)
o 0 r o} 6

Similarly, we have

w Xr=w rsinf e s
o o ®

and

P S — —

w Xu=-w sinfu e -w cosBu e +w (cos Bu,* sin Bu e
0 o} ¢ r o o 6 o 0 r

By substitution of these relations into Eq. (3.8) the following equations

are obtained:

ou

r

+ 2 (Wwrsing) +o rsin| 2 e 1o
ot or @ O o r sin 5()0 - r Br (ru(p)

. 2 _ or
- Zcoosna 9Ll<a- v(V u)r =-w gz
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8119+1 9 (4w rsin®) -w rsinf —u 9 (sinfu )+ o
ot T 00 ‘u<p ol St o n rsin8 00 n uqo 0o
_ _ 273 _ 1 9P
Zwocosﬂu(p vV u)e =-0 = 5

and

Buw 1 5
B (quwor sin 6) + Zwo(cos 6u6+ sin Qur)

ot + rsin 6

W

2 o oP
- V)T ST B
There is a partial cancellation between the terms arising from
V({;-(SOX ;) ) and those from (80 X ;) X (VX {;), which is the reason
for which the former of these terms was separated from the other
terms involving the gradient of a scalar. With these cancellations,
the equations simplify to

Ju ou

1 T T . v 2N L oP
o T o oo (Via), =~ 5 (3.133)
ou ou
1 e 6 v ooz= __ 1 9P
—0-)-; 55— + rre -2cos Guqo - -g (V U.)9~ =~ 55 (3.13b)
and
1 au(p auq) R ) -
— =+ £ +2 6 i -2 2 = -
) 5t 5 (cos u9+ sin Gur) o (Vv u)(P TSm0 Do
(3.13c)

The boundary conditions to be imposed at r = a, given by Kq. (3.9),

when written out in component form, are

u =0 (3.14a)
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Ug = -aw sin(e- £t) , (3.14b)
: 1

and

= —awl cos(g - Nt)cos 6 . (3.14c¢)

Since the boundary conditions are sinusoidal functions of the variable
¢ - Qt, we shall look for a steady state solution with the same depend-
ence. It is convenient for this purpose to write u and P as the real

part of complex terms as follows:

N

- Rc{awlif(r,e)ei(@"m)} , (3.15)
and

P = Re{azle(r,G)ei(w‘Qt)} . (3.16)

The variables v and Q are mathematical constructs which are used
to simplify the equations. We shall nevertheless call v the velocity
and Q the pressure since those are the quantities that they deter-
mine. When there is a possibility of confusion the terms complex
velocity and complex pressure will be used.

Another simplification is introduced into the equations of
motion by writing them in terms of the dimensionless variables r'

and t' defined by

r' =rfa (3.17)
and
t :wot . (3.18)

Since in most of the subsequent work these new variables will be used,

the primes will be dropped with the understanding that it is the primed
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variables that are being used. Whenever it becomes necessary to
refer to the unscaled variables a specific statement to that effect will
be made.

With the above changes, the momentum equations become

; ' 22y -
-1(w—l)vr—251n 9v¢~e (V V)r = 55 (3.19a)
: 22y - _ L aQ
—1(m—l)v6- 2 cos 9v¢— e“(V V)e- =50 (3.19b)
-i{w-1)v + 2(cos Bv, + sinfv_) - 2(V2y) = - iQ (3.19¢)
® 6 r ® rsin 0 '
where w = ﬂ/wo and €% = v/azwo. The equalion of continuity, in
terms of v is
iv
1 0 2 1 o . @ _
= V) Temr oee 0 T owsme 70 (3. 20)

These equations are subject to the boundary conditions

v =0 , Vezi s Vq):—cose R (3.21)

at r = 1.

In Eq. (3.19) the components of the vector Laplacian
(V2 =V V. - VX VX) have not been written out explicitly to avoid un-
due complications. Because of the substitutions (3.15) and (3. 16) the

differential operator 98/8¢ must be replaced by i in these terms.

3.3 The Equations of Motion in Cylindrical Coordinates

While the geometry of the problem is such that spherical co-
ordinates are best to describe it, the equations of motion are most
easily studied in the cylindrical coordinates (p, ¢, z). With the

same orientation for the axes as before, the vector o becomes
1
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(_).;:(.0 COS(QD-Qt); - W Sln(go—Qt)g ) (3.22)
LI P 1 @

while (:o is simply given by

© zwe . (3.23)

We then obhtain

and

Upon substitution of these relations into Eq. (3. 8) the following equa-

tions are obtained:

1 p v 2.y apP
o e R - - (V) = . (3.24)
o o
ou ou
1 ® @ v 27 L 1 oP
and
ou au
L z z v 27y _ _ op
a;w*w"a;(vu)z* (3. 24c)

With the definitions of v and Q given in Egs. (3.15) and (3.16), the

components of the momentum equation in cylindrical coordinates reduce

to
. . - an .
-i{w-1)v - 2v - €*(V3v) = - s (3. 25a)
P @ p p
Ci(wel)y t2v - e3(Viy) =- 2 (3. 25b)
@ p ' P
and
. 2wz, _ _ 9Q
—1(L&>-l)vZ - €V v, = 5 (3. 25¢)

where w = Q/wo and ¢ = v/azwO as before. In Egs. (3.25a)and
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(3.25b) the components of the vector Laplacian have not been written
out in full. In Eq. (3.25c), however, the z-component of the vector
Laplacian of v is the same as the scalar Laplacian of v, SO it has
been written that way. Equation (3.25) has been written in terms of
the dimensionless variables defined in Eqs. (3.17) and (3. 18).
The corresponding form of the equation of continuity is

1 5 iv@ BVZ
O T T =0

(3.26)

and the boundary conditions are most simply expressed as follows

pv_+zv_=0 zZv - pv_ =1:
P Z o] Z
at pf+z? =1 . (3.27)

3.4 Reduction to a Single Equation

In Egs. (3.4) and (3. 8) the velocity components and the; pres-
sure are coupled. It is possible to combinc thesc cquations and to
eliminate the velocity components. In this way a single scalar equa-
tion of sixth order is obtained for the pressure. Because it is of such
a high order, the equation is not very useful. However, certain points
about the problem can be made clearer by considering this equation

rather than the coupled system.

To eliminate u from these equations we first take the diver-

gence of Eq. (3.8):

e (Ved) + V[ X 1)] - (VX u)20 + (@ X 1)[VX(VXa)]

-20,+(V Xu) -vV2(Veu) = -0 VPP (3.28)
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where the following vector identities have been used:

Ve (AXB) =B (VXA)-A(VXB) ,

and
V.(VZA) = V2 (V.A)
Now
Vew=0 |, (3.4)
so that

—

VZ(E.(wa r) ) - 40« (VX u) - (on r)e(V2y) = - V2P . (3.29)

A further reduction is obtained by making use of the following identities:

VZ(r XA) =1 X (V2A) + 2VX A

V2 (c.A) = ¢ -V2A (C constant)
and

—
— — —_— —_—

A«(B XC) =B-(CXA)

With the above

—

(wo X r).Vu = w (r X Viu)

f1

;‘O.[v‘(?x a) - 2VXu]

!

Z‘A‘m‘~ . 4“_ -
v [wo (r Xu)] Zwo (VXu) |

—

Vi [ue(o Xr)] 26« (VX 1) . (3. 30)

Equation (3. 29) then simplifies to
20 (VX 1) = w V2P . (3. 31)
o o
In this equation the velocity appears only as a vorticity term. A second

equation involving only the vorticity is obtained by taking the curl of

Eq. (3.8); in fact, since only the component of VX u parallel to W
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appears in Eq. (3.31), we operate on Eq. (3. 8) with (:o' VX. Thus,

we obtain

'a‘% [6, (VXu)] - @ . {VX[(6_ X T)X(VXa)]}

+20 « [VX (0 Xu)] - vWew. (VXu)] =0 . (3.32)
o (o] (o]

The triple vector product appearing in the second term of Eq. (3.32)

can be expanded as follows:

—

(ZO X 1) X(VXu) :?(J}O.VXE) w0 (reVXu) ,

o
and making use of the identity

VX (gA) = (Vg) XA + gVXA
we get

—
1

SO. {vX [(ZO X )X (VX u)]} = (ZSO X ?).V(ZSO. VX 1)

The third term in Eq. (3. 32) can be simplified by using the identities

—_— s — —

VX (AXB) = A (V+B) -B(V+A) + (B-V)A -(A-V)B
and

V(A*B) = (A« VB +A X(VXB) + (B-V)A+B X (VXA)

from which we obtain

1

W, VX (wo X u) —w e [(wo. Viu]
= —(.oo- v ((,_)O- u )
With these changes, Eq. (3. 32) becomes

O (T X T)aVE 2D V(G D) vt
5 -(wOXr)on -Zc..)o.V(woou) -ywWef =0 (3.33)

where
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f:o_;o- (VXIT)

A new scalar variable, woeu, has appeared in this equation. If we

—_

take the coordinate system described before, with W= wogz’ the new
variable is just w u which appears coupled to P in Eq. (3. 24c).
It can be easily verified that the operator —(;;O X ;)-V when written in

cylindrical coordinates is simply w 8/8¢ so that we can rewrite Egs.
¢

(3.31), (3.33) and (3. 24c¢) in the following form:

2f = wOVZP ) (3. 34)
ou
of of 2 _ 2 Z
and
ou ou
z Z B oP
——5-2—- + (.Oo —W —VVZU.Z = —wo -S-Z . (3. 24(:)

The variables f and u are easily eliminated by repeated differen-

tiations and the f{inal form of the equation for P is

9P

9z2

1 9 .08 v V22V2P+4
wo_gf‘ de

e}

=0 . (3.36)

This equation can also be written in terms of the variable Q defined
in Eq. (3.16). The equation with dimensionless length and time scales

is

2 2
((w-1)+& V2) W2 +4 229 _ o (3.37)
9z2



-38-

3.5 Discussion of the Equations

The equations of motion for the tfluid, as given in sections 3.2
and 3.3 constitute a sixth order system. From Eq. (3.36) it is evident
that the system is elliptic, and thus the three boundary conditions
given on a closed boundary make this a well-defined problem. The
angular dependence and the time dependence can be factored out be-
cause the equations have been linearized, and thus the problem is es-
sentially a two dimensional one. The solution of the problem presents
two kinds of difficulties. First, the geometry is such that the equa-
tions are separable in cylindrical coordinates, as is readily seen from
Eq. (3.36). but they are not separable in spherical coordinates. On
the other hand, the boundaries are not appropriate for a treatment in
cylindrical coordinates. Thus, a solution by the methods of separa-
tion of variables is impossible in this case, except for the approximate
expansion which is the subject of the next chapter. This expansion is
valid for high values of the viscosity and will thus be referred to as
the creeping flow approximation.

The second difficulty in this problem is that the equations are
of such a high order. The alternale method of approximaltion thal can
be employed is valid for small values of the viscosity, since the high-

est derivatives appear in the equations multiplied by powers of the

viscosity. Thus, for sufficiently small values of the viscosity the order
of the equations can be reduced. This is the object of the boundary

layer solution studied in Chapters 5 and 6.
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4. CREEPING FLOW SCLUTIONS

4.1 Expansion in Inverse Powers of the Viscosity

The equations of motion, in terms of the complex velocity v

and the complex pressure (, can be written in the following way:

¢2Viy +i(w-1)v = Av + VQ (4.1)

where A 1is an operator which in spherical coordinates is represented

by the matrix

0 0 -2sin 6
0 0 -2cos 6 , (4. 2)
2s5in 06 2cos 0 0

as can be determined by referring to Eq. (3.19). In addition, the

velocity satisfies the continuity equation
Vev =0 (4. 3)

and the boundary conditions

v. =0

r
vg =1 at r =1 . (3.21)
v _=-cos 6

@

2
It was shown by Lamb[ g]that a solenoidal vector field such as

v can be split in a unique way into the sum of two partial fields, one

derived from a scalar potential T and the other from a scalar potential

2
[ 9] H. Lamb, '"On the Oscillations of a Viscous Spheroid, ! Proc.
London Math. Soc. _1_5, 51 (1881).
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S in the following manner

v=VUX(rT)+VXVX(rS) . (4.4)

Elsasser has called the partial field derived from T a toroidal field
and the one derived from S a poloidal field. Equation (4.4) then says
that a vector whose divergence is zero can be split into a toroidal and

(6]

a poloidal part. It has been demonstrated by Backus that this rep-
resentation is complete in the interior of a sphere provided the flux
of the vector field is zero across the surface of the sphere.

Since the divergence operator commutes with the vector
Laplacian, it follows that if v is soienoidal, then V2 is also sole-
noidal, and therefore must have a toroidal and a poloidal part. It can

—

be shown that if v is given by Eq. (4.4), then

Vig = VX (r V2 T) + VX VX (r V2S) (4.5)

so that the toroidal and poloidal parts of VZ;; are derived from scalar
potentials which are obtained by taking the Laplacian of the correspond-
ing scalar potentials from which v is derived. This fact was discov-
ered by Lamb, who used it in an ingenious way to uncouple the vector
Helmholtz equation into two scalar Helmholtz equations. We shall use
this procedure to obtain a solution to our problem by successive
approximations.

In Eq. (4.1) the left hand side contains only terms proportional
to : and V2 s—;, so that the toroidal and poloidal scalar potentials

are uncoupled. The presence of the term VQ in the right hand side

isnot serious, since this term could be removed by taking the curl of
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Eq. (4.1), in which case the left hand side could still be separated
into two uncoupled parts. The term A:;, however, couples the velocity
components in such a way that the two scalar potentials are intermixed.
This suggests that a fruitful approach to the problem may be to first
neglect this term to obtain an approximate solution for :, and to then
use this (known) value of Vv in the term Av to obtain a second approx-
imation. This procedure is equivalent to an expansion in inverse pow-
ers of €% and this will be pursued here. An alternate choice will be
examined in section 4. 4.

To proceed with this approach, we first expand all the variables

in inverse powers of €2, so that

— —

v+e_4v+... ) (4. 6)
1 z

v=v_ *Te
(]

with similar expansions for T and S. It will be assumed that each of
the ;n satisfies the divergence condition individually, and that \-7;
satisfies the boundary conditions (3.21), while the other ;n are sub-
ject to homogeneous boundary conditions. Since it is not obvious

a priori that v, can satisfy VZVO = 0 and the boundary conditions, al-

though this is in fact the case, the expansion for Q must take the form
Q=e¢>Q +Q +e°Q +... . (4.7)
-1 o 1

If these expansions for v and Q are introduced into
Eq. (4.1) and the coefficient of each power of ¢? is set equal to zero

separately, the following sequence of equations results:

VZy =VQ , (4.8)



vzlfn:i(w-l); tAv._ +VQ , (m=1,2, . ..) . (4.9

n- n-, n-3

Equation (4.9) gives ;n if both ;n and Qn are known, but we

-1 -1

must also be able to determine Qn to have a complete system of
equations so as to proceed to higher iterations. The missing relation

is obtained by taking the divergence of Eq. (4.9), which gives

—

=2(VXv__ Je (4.10)

2
v Qn -

-1
a result which could have been obtained directly from Eq. (3.33). The
problem then reduces to successive solutions of Poisson's equation.
This description 1s, however, deceptively simple, for boundary con-
ditions are not immediately available to determine the unique solu-
tion at each step. The uncertainties in the solution must be carried
until the boundary condition can be applied. Thus, for example, if
;n_l has been found, Eq. (4.10) determines Qn—l within an arbitrary
additive harmonic function. The boundary conditions, however, do
not say anything about Qn—l’ so that the harmonic function must be
carried along until ;n is determined, at which stage the homo-
geneous boundary condition can be applied. The trouble stems from
the fact that, strictly speaking, we are not dealing with iterations
with Poisson's equation but with the inhomogeneous biharmonic equa-
tion. We shall see that, in terms of the scalar potentials, 'I‘n satis-
fies Poisson's equation while S, satisfies an inhomogeneous bi-
harmonic equation.

To proceed to the details of this solution it is necessary to

express the components of v and V%v in spherical coordinates in

terms of T and S. The necessary relations are given by
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ChandraSekha.r[ 30] among others. These relations for v are

\
v o= —l— 1.%S ,
r r
1 02 iT
Vo T T rag ST gmp > (4.11)
_ i 8 ). OO
Vo Tsin® or 7 B9
/

while the components of VZv are obtained by replacing T and S
by VT and V%S respectively. The operator L% which appears
in the first of these relations is the angular part of the Laplacian

operator, sometimes called the Legendrian:

(4.12)
sin?0

It should be remarked that these special forms which apply only to

the case in which the ¢ dependence is given by e'?. The boundary

conditions, expressed in terms of T and S, become

T =sin6 , T =0 (n=0) ,
o n
9S at r=1 . (4.13)

- n _
Sn».O , 5% =0

Thus T satisfies only one condition while S has to satisfy two.
The equations of motion, in terms of T and S are rather com-
plicated, and moreover are not in the most convenient form for

solution of the problem. Instead of writing them in component form

3
[30] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability
(Oxford University Press, London, 1961) pp. 622-626.
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we shall go through the steps required to carry out one iteration,

assuming v is known, or equivalently, T and Sn

n-i n-q -1

The first step is to find Qn by using Eq. (4.10). This
-1

equation can be written in terms of an and Sn_l as follows:
viQ = 2 cos LT - sin 6 o° (rT_ ) + 2iV2s . (4.14)
n-; r n-i 9ro0 n-, n-

Let ~Qn be any particular integral of this equation. Then Qn .
- -

can differ from Qn only by a harmonic function, which we choose
-1

to write as 9(ry_ )/ 8r, so that
I

~ 9
Q. =Rt ) - (4.15)

n-i

The reason for writing the harmonic function in this way is that we

shall want to separate its gradient (which is a solenoidal vector) into
a toroidal and a poloidal vector, and this is most easily done by writ-
{29]. To

ing the harmonic function in this way, as was done by Lamb

show this we first make use of the vector identity
V2(r . V) = r-V(VEY) + 2VEy

from which it follows that if { is harmonic so is &ry)/8r. A second

veclor identily

UX VX () =V +r-V§) - 2 V2

b

establishes that, if { is harmonic, then V8(ry)/dr is a purely
poloidal vector derived from the scalar potential .

With 611-1 a known function, Eq. (4.9) can be written as
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Vev, = sife-l)v, VX VX (ry )+ AV 4 VQ ; (4.16)

1 -1 -1

where Xn is unknown, but is such that
-1

Vix. =0 . (4.17)

Since all the other terms in Eq. (4.16) are solenoidal, the vector

A\‘f;1 + VQn must also be solenoidal and can thus be split into a
-1 -1
toroidal part tn and a poloidal part, S - To effect this separa-
-1 -
tion we use Eq. (4.11). The poloidal part, S is obtained from
-1

the radial component of the vector:

L%  =r[Av. +VQ ] . (4.18)
n-j n-g n-j)

The operator L? is easily inverted if spherical harmonics are used.
Once the poloidal part is known, the toroidal part is obtained from

the O-componcnt of the vector:

2
) - L 2 s 0] . (4.19)

n-j n-;

t o= -1 szn@[ee.(Avn 1+ VQnﬂl

The differential equations for Tn and Sn can then be obtained
directly from Eq. (4.9). They are

2 — 3 -
VT = -ife-1)T 4t , (4. 20)

and

V?‘Sn:—i(w—])sn +s +x . (4.21)

In Eq. (4.21) the harmonic function Xp could be left undeter-
-1
mined until Sn has beenevaluated. Then the two boundary

conditions imposed on Sn would determine both Sn and
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X

n It is possible, however, to determine Xp first. This is ac-
-1

~1

complished by multiplying Eq. (4.21) by X, and integrating over the
-1

volume of the sphere. The result is

2 _ T
g Xn-lv S dv -S [-i(w l)Sn_1 ts o TX Ix. dav

1 n-i n-j

Since szn L 0, aterm SnVZXn can be subtracted from the left
- -

hand integrand without changing its value. Thus,

—

2 _ 2 2 _ . .
S\Xn—lv Sndv N S (Xn—lv Sn-Snv Xn)dv ~S‘ (Xnvsn Snvxn) ds

by Green's theorem. Applying the boundary conditions (4.13) to Sn’

we find that the surface integral is zero, so that

Zd":S'—IS - d ) 4.22
Sx_l\ [i(w )n_1 sn_l]xn_l v ( )

n

Now suppose that Xy is expanded in spherical harmonics,
-1

Xn-, =z aW, (4.23)

where

= o
LPI =r PE (cos 8)
Since the Lpﬂ are orthogonal, substitution into Eq. (4.22)yields

ai 5‘ "’2 dv = a, g [i(w—l)Sn_l—sn_l]L}JﬂdV ,

so that
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S [i(w-1)S__-s__ 14, dv
a - n-g -3

)
quj dv

Thus Xn—; may be determined through Egs. (4. 23) and (4. 24) so that

(4. 24)

the entire right hand side is known in Eq. (4. 21). Sn is then deter-
mined by applying either of the boundary conditions (4.13). In this
way one iteration is complete, and, at least in principle, as many
iterations as are desired can be carried through.

The zeroth order solution that starts the entire process must

now be determined. The pertinent equations are:

viQ =0
1
2 -
v SO = X, ¢
and
vir =0
o
It is clear thal 5 = 0 is a particular integral of the [irst of these.

From (4.24) we obtain x_ =0 and thus SO = 0. Finally, since TO

1
must have a sin 6 angular dependence to satisfy the boundary condi-

tion, we find

T =1 sinf
o

In Appendix A the details of the first iteration are given. The
results of the second iteration are also quoted. The components of

the velocity field thus obtained are



-48-

1 iwr

_ 2_1y2 4:
V.= - _;_4. I70 (r“-1)sin6 cos 8 (4. 25a)
vosir+ = T (y2.1

6 2z 10

€

. .2
- _}4_[%% (7r?-3)cos 20 + 'Il—zﬁ% (512 -9)} (r¢-1) ,

(4. 25b)
and

V(P:~rcose+ _:12.. _1.125_ (r?-1)cos 6

,
+ _1_[2%;_0_ (Tr2-3) + 1_‘;17% (51»2-9)} (r®-1l)cos 6 . (4.25c)

<4

The expression for (Q obtained from two iterations goes only as far

-2 . .
as terms proportional to € . To this accuracy, Q is

_ 2.: 1 iwr? 2_ .
Q= -r“sin6 cos 6 + — Tos (3r“-7) sinfcos 6 . (4. 26)

€ 2

4.2 Discussion

The expressions for the velocity given in Eq. (4. 25) consist,
first of all, of the zeroth order approximation which corresponds to
rigid body motion. This is the exact solution of the equations of
motion for the case of either infinite viscosity (e = o), or, alterna-
tively, for infinitely slow precession (w = 0). The first correction
due to the finite value of ¢ affects only the 6 and ¢ components of
the velocity. It represents a toroidal flow taking place in the body of
the fluid. It is noteworthy that the first poloidal component does not
appear until the second correction to rigid body flow.

The second correction also shows the first appearance of
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terms which are not linear in w. These are due to the term (w~1)\-; in
the equations of motion. Evidently,higher powers will appear in sub-
sequent terms, and, in fact,t can be seen from Eq. (4.9) that « will
appear in the n-th term, \_;n’ raised to powers up to the n-th. Thus,
although the expansion was formulated as one in inverse powers of the
viscosity, it also turns out to have the property that a given power of

w does not appear until the term of the corresponding order. This

suggests that an expansion based on the scheme

vy e Mol oo wve (4.27)
€

might be worth pursuing. This is an expansion in inverse powers of the
viscosity, but with (w-1)/e 2 rather than w, as the second parameter.
This approach is explored in Section 4.4. It has the disadvantage that
the dependence on r is no longer expressed in terms of polynomials.
Nevertheless, it leads to an interesting connection with the boundary
layer solution to be discussed in the next chapter. Before proceeding
to that stage, however, we shall study further some aspects of the solu-

tion just obtained.

4.3 Dynamical Consequences

The results contained in Eqs. (4.25) and (4. 26) cannot be con-
veniently represented in a figure, not only because of the three dimen-
sional character of the flow, but also because there are two para-
meters whose values would have to be assigned. An idea of the be-
havior of the fluid as a whole is obtained from the response of the

liquid sphere to the torques that maintain the precession of the shell.
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Thus, for example, the total angular momentum of the fluid will differ
from that of a similar homogeneous rigid body because the fluid is
undergoing internal motions. Furthermore, these internal motions
result in viscous dissipation of energy so that, if the motion is to
remain steady, the external torques must do work on the fluid. For
this reason, the torque acting on the fluid sphere will not be at right
angles to the angular velocity of the shell, as would be the case for a
rigid sphere undergoing a similar precessional motion. In this section,
we propose to study the dynamical properties of the fluid sphere as a
whole.

The total angular momentum of the fluid sphere about the origin

is

L :pjifxéfdv , (4. 28)

where ;I is the actual fluid velocity in the inertial frame. In Eq. (3. 3),
E; was split into a part which arises from the uniform rotation about a
fixed axis, Z,SO X ;, and a part u due to the precessing component of
the total angular velocity of the shell. The contribution to the angular

momentum due to the first part is simply

L= 1% mpa’s, (4.29)

since 8wpa®/15 is the moment of inertia of a homogeneous rigid
sphere about any axis passing through its center. The remaining part

of the angular momentum we shall call ip’ where

ipszFXJdv . (4. 30)

In these equations the variables that appear are the actual physical
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variables and the lengths are unscaled. In the preceding sections we
have been dealing with dimensionless lengths and the complex velocity

v which was introduced by the equation

;:Re{aw\?el((p_ﬁt)} . (3.15)
1

The angular momentum can similarly be written in terms of a com-

plex angular momentum —Ep defined by the relation

— — __'Qt
L =Refpa’w £ " ) 4. 31
5 {p Ao } ( )
where
£p = S.r Xvdv . (4. 32)

The lengths are now expressed in the dimensionless units defined in
Eq. (3.17) in terms of which thc sphere has unit radius.

The complex angular momentum !p can now be expanded in

-2
powers of e as follows

L =2 +e% 0+ o+, (4. 33)
P o 1 2
where
f = ‘S’Fx; av
n n
= 5‘ [—rvmpeg + rVnQe(p]dV . (4. 34)

To find the first few terms in this expansion we shall require the value
of certain integrals which involve the unit vectors eg and g@. These

integrals are



_52-

“‘__ - i(p _211' -
a aSeecosee dQ—-—-e—— e,

a2 = S'gelgon:—Zwi; )
@ +

and

where

To show how these integrals were obtained we evaluate a . By ex-
1

—

panding eg into its rectangular components, a.1 becomes

s ZTT N . — 3
a = 5‘ cos Osin 6 d0O 5' (eXCOSQCOSfpfeyCOSesinqa—ezsine)elqadqo )
o o

i

™ - -
& cos 0 sin G(Trexcos 6 + i'rrey sin 6)d8
o

2w .=
— (eX+1ey)

The other two integrals are found in a similar manner.

With the help of these integrals, we shall now evaluate 10, L,
1

—

and F First, ﬂo is given by
2

10 = 5‘ (~rvo(pe6 + rvoee‘p) dav

8w —

15 4+

1

(4. 35)

In physical variables this corresponds to an angular momentum
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8 pa5 o
15 1
which is just that of a homogeneous rigid sphere rotating with an
angular velocity (:1' This was to be expected, since ;o is the veloc-
ity field for infinite viscosity, or equivalently, rigid body motion.
The first correction due to the liquid nature of the sphere appears in

I which is
1

— 1
=- =% (a +ia) r*(r?-1)dr
10 9 2
O
Smiw —

At first sight, this term is similar to 10 since it is directed along

—

e+. In the expression for Fo’ however, the coefficient in front of é;
is real, whereas in this instance it is imaginary. If we keep in mind
the relationship between the complex angular momentum and the cor-
responding physical variable,as given by Eq. (4.31), it becomes

evident that factors of -iw are to be interpreted as time derivatives

so that £ corresponds to an actual physical angular momentum of
1

8‘rrpa5 1
525¢2 9, dt

Finally, we evaluate 1 which is given by
2
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f 25(—rv e, -
2 20 6+rv29e¢)dv ,

—_ — | S
_(al +ia3) ?Ebiﬂj ‘S' r3(7r2—3)(r2-—1)dr
o

w? Vs 2 2
+ m . Ir (5]7 -9)(1' 'l)dr B

]

(5 - 355 (437

In translating this result into physical terms, we run into trouble. The

term proportional to w?, which comes from the toroidal velocity,

presumably results from a double application of -iw, and so repre-
sents a second derivative with respect to time. The term proportional
to w, however, lacks the i which would make it a time derivative.
This term arises from the poloidal velocity derived from SZ, the
first non-zero term of this type. To interpret this term we examine

the significance of we | The angular momentum associated with such

a term is, according to Eq. (4. 31)

pa’w 2 [e cos Qt + e sin Qt]
1 @, X y

which is a vector parallel to w . The second correction to the angu-
1

lar momentum is thus

—~
Tpa’ @ o, 13 dfw
2520¢4 J9, 1 5«»02 dt?

The time derivative terms, of course, have an alternate interpreta-

tion, since
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With the terms written in this way, the angular momentum of the fluid

-4 .
sphere, up to terms of order e , 18

- 5 Q X Qo) o
L = 8"lp5a {wR— R, 1 9R +-1-5-3.n><(xz><wR)
35¢%w 1344¢*w 2
(4. 38)

In this equation wy and w have been eliminated in favor of the total
1

—

angular velocity of the shell, w_,. The combination of terms e%w

R o

which appears in the denominator is, by the definition of €%, the same

as v/a?, so that the presence of w in Eq. (4. 38) is only apparent.
The term arising from the solenoidal velocity, when written in this
form, is seen to be a quadratic function of wp

moment of inertia for the fluid sphere cannot be strictly defined. If

Thus an effective

only the first correction is retained, then the moment of inertia tensor

for the sphere is

p- 8ma® |y o 3t oy (4. 39)
I5 35v ' '
Another dynamical quantity of interest is W, the total work done by

the shell on the fluid per unit time. This is most easily evaluated

from the expression

- 4L

W=oprar

(4. 40)

which states that the power expended is equal to the torque times the

angular velocity about the direction of the torque. Keeping only the

first correction, we find from Eq. (4. 38) that



dl, _ 8mpa® = —~  af = =
d~ -~ TS QX owp - wgm QX (X wp) , (4.41)
so that

(4 .42)

4.4 Another Method of Iteration

In this section we shall follow the approach that was suggest-
ed in Eq. (4.27). Since the procedure for obtaining higher order ap-
proximations is basically the same as that outlined in Section 4.1,
differing from it only in the complexity of the radial dependence, we
shall obtain only the zeroth order approximation. This is equivalent
to neglecting the operator A in the equations of motion. It should be
noted that the term A\‘; represents what in physical variables was a
term ZSO X LT, that is, the Coriolis force. If the term proportional

to A 1is omitted, the equation of motion is
EViy +i(w-1)v =VQ . (4.43)

This equation is easily split into toroidal and poloidal parts, which are
uncoupled. The equations for the scalars T and S are

e?V:T +i(w - 1)T =0 (4. 44)

and
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¢?ViS +i(w-1)S =y , (4. 45)
where

VZXT-O

The boundary conditions on S and its normal derivative are homo-
geneous, so that S =0, x = is the obvious solution to Eq. (4.45).

T must be equal to sinf at r =1, so that setting
T =1(r) sin6 ,

we obtain the following differential equation for f:

2
df+£
r

3

+[i_(..&>:)_l __?l}f:O | (4. 46)

e r?

The non=~singular solution to this equation is a spherical Bessel func-

tion or order 1, so that T becomes
. i (Z/ile-1))
- T T A
Jl<?\/1(w 1) >

It should be mentioned that the zeros of these functions lie along the

sin6 . (4.47)

real axis, so that T is well-behaved.

If € is very large compared Lo Iw—l I% the power series
expansion for the Bessel function can be used and we then recover
part of the solution obtained in Section 4.1. Of more interest, how-
ever, is theyopposite case, when ¢ is much smaller than }m—l j‘%,
for, in that case, the argument of the Bessel functions in Eq. (4.47)
is very large in absolute magnitude. We shall demonstrate that under
these circumstances T 1is negligible except in a small region close

to the surface of the sphere, the extent of this region being



-58-

1
determined by €/ |w-1|2. To take a definite case, we assume that

(w-1) is positive and set

= k?
EZ J
in which case Eq. (4.46) becomes
J_i[rz_d_f)+ K2 - Zlf=0 | (4.48)
I‘Z dr dr I'Z

The complex conjugate of this equation is

T e,

1 d
L2 dr

1‘2

; [ikz +__2_} £ -0 (4.49)

Multiplying the first of these equations by r?f  and the second by

r?f and adding, we obtain

* d( , df d [ ,af *
£ -d?ra}-)+f-a?(r a‘f)'fo 0
Now
d(.d .*\_ xd [, df d [ ,df o df df
e )}’fa?(ra? gt E e mE
so that
2
.aéf 2 _.dé\’:):ZM—l-Zr‘: .j_fr- , (4.50)
where
M = |f]?
Equation (4.50) can be put into the form
P
dM 2 z
=2 S(M-i-rz &£ )dr . (4.51)
T

Since M is by definition, a positive quantity, it follows that



so that M is a non-decreasing function. We shall now show that M
drops sharply as r decreases from 1. To do this, we need the
asymptotic form of the spherical Bessel function for larges values of
its argument. The required expression, taking into account the phase

of the argument, is

(1-i)kr/{2
jokrfi) > S
1 (1+i)kr/ T2

Adjusting the value of f tobe 1 at r =1, the corresponding expres-

sion for f 1is

e—(1~i)k(1—r)/r2

f - ,
r
or
“k(1-7){2
HER
rZ 3

which has an exponential decay away from the boundary with a decay
length of 1/k{J2. Thus the real and imaginary parts of f are oscil-
lating functions which decay away from the boundary. The wavelength
and the decay length are both measured by the ratio e ﬁ/(w—l)%, or,
equivalently, [Zv/a?‘(ﬂ—wo)]%« If we had assumed w-1 to be a nega-
tive quantity the results would have been similar, since the only dif-
ference is that Eq. (4.46) is of the form of Eq. (4.48), thatis, f is
replaced by f* throughout.

These results indicate that if the viscosity is small compared

to the difference between the precession frequency and the projection
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of the rotation frequency parallel to it, the flow is confined to a
small region close to the boundary. The criterion which determines

the smallness of the viscosity in this context is

1
p << -Z_a.zfﬂ —wo



-61-

5. THE CASE OF LOW VISCOSITY

5.1 The Boundary lLayer

The momentum equation was written in the preceding chapter

in the form

Vs ti(w-1)v = Av +VQ (4.1)

and an expansion in powers of % was developed. We shall now in-
vestigate the case in which the viscosity is small compared with the
other dimensions of the system, that is, when ¢<<1. From Eq.(4.1)
it can be seen that in this case the first term of the equation is negli-
gible unless the velocity field undergoes very rapid changes so that the
term VZ:, when compared to the other terms of the equation is of
the order of < . This will mean, if the rapid change is in one dimen-
sion, that the velocity must change significantly in a dimensionless

distance of the order of €. In those parts of the fluid where such

changes are not present, however, the flow should be adequately rep-

resented by the inviscid equation

[i(w-1) ~A] v = VQ . (5.1)

e

This is an algebraic equation for v in terms of MQ, and thus v can
be found as a linear combination of the first derivatives of Q. Since
v must satisfy the equation of continuity, a single second order partial
differential equation can be obtained for Q. This procedure will be

carried out in detail in the next section. For the present, we can

obtain the same equation by setting ¢ = 0 in Eq. (3.37) which gives
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4 8% Q
(«-1)% 822

vViQ - =0 . (5. 2)

Depending on the value of «, this equation is either elliptic or hyper-
bolic. For the elliptic case, at least, we know that to find a unique Q,
one boundary condition must be specified. We have, however, to satisfy
three boundary conditions which are given in Eq. (3.21). Since it could
happen only accidentally that a solution of (5. 2) satisfies all three con-
ditions, we arrive at two conclusions. First, it would appear that
Egs. (5.1 and (5. 2) cannot describe the flow near the boundary, and
second, we do not know what boundary condition to apply to these equa-
tions in the region where they adequately describe
section we shall obtain suitable boundary layer equations for the flow in
the region immediately adjacent to the surface of the cavity.

In Section 3.2, the equations of motion were given in spher-
ical coordinates. We shall approximate Egs. (3.19) and (3. 20) with a
new set valid in the vicinity of r =1 where we expect rapid changes in
the radial direction. A systematic way of arriving at the approximate
equations is to define suitable boundary layer variables, and,after the
equations have been written in terms of these new variables, to set
¢ = 0. The only independent variable that must be redefined is the
radial one, since we expect the radial changes to be rapid, taking place
in a distance of the order of ¢. We thus define a new variable £,
given by

£=(1-r)/e . (5.3)

In terms of £, the radial derivatives become
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0 1 9
F < T T (5. 4)

thus emphasizing their importance.
A consistent set of equations is obtained by further redefining

two of the dependent variables:
vl ev e, (5. 5)
r r
and

al=q/e . (5. 6)

If these new variables are inserted into IEgs. (3.19) and (3. 20), and <

is then set equal to zero, the following equations result:

SZVQ
—i(w-l)vG—ZCOSQV— =0 , (5.7)
o
%y
“i{w - 1)v + 2 cos O v, - ¢ =0 (5.8)
4 9 agz
T
Zsinevqp:— %%_ s (5.9)
and
avrT 1 5 iv(p
- ag + 811’16 m (SlnGVQ) + m :O . (5.10)

The first two of these equations are the 6 and ¢ components of the
momentum equation, the third is the r component, and the last one is
the cquation of continuity. If Eqs. (5.7) and (5.8) are used to solve
for i and V(P, QT can then be obtained from Eq. (5.9), and VI
from Eq. (5.10).

A simple way of solving Eqs. (5.7) and (5. 8) is to define the

combinations



v+ “:v6+1vg0 ,
and {(5.12)
v_=vg - 1v(p

It should be remarked that since 0 and an are themselves complex,
v_ is not the complex conjugate of V- By multiplying Eq. (5.8) by i

and adding or subtracting Eq. (5.7) we obtain the uncoupled equations

9° :
— r 1 — - 2 S =
agz Ve + i (w - 1) i 2 co 0] Ve o . (5.13)

In terms of vy the boundary conditions given by Eq. (3.21) are

v+:i(l~cos(3) ,

v_=1i(l + cos ) , at r=1 (5.14)
v =0,

r

From Eq. (5.13) we thus obtain

¢
v, =i(l - cos B)e ! R

_)\g
v =i(l + cos B e *

where

A= -i[(w- 1) -2 cos 0] ,
x*’-z = -if[(w-1)+2cos 6] ,

and )\1 and )\2 are assumed to have a positive real part so that

Eq. (5.15) represents solutions that decay towards the interior of the
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fluid. The boundary layer thickness is therefore given by the greater
of the quantities e/ i)\ll or e/ f)\z |, and this solution truly repre-
sents a boundary layer provided l)\ll and ’)\Z] do not become as
small as €. It can be seen, however, that in the range of frequencies
such that (w-1)2< 4, there will be one value of 6 at which )‘1 is

actually zero and also one value of 6 at which )\2 is zero. In the
vicinity of these circles, the boundary layer thus appears to become
infinitely thick. This phenomenon was discovered by Bondi and
Lyttleton in Ref. 22 for the case w = 0. We shall discuss these criti-
cal circles more fully in Section 5.3, and proceed here to the evalua-
tion of vrT and QT, with the understanding that the results obtained
will have to be modified near the critical circles for w such that
(oo—l)Z < 4. For what may be termed fast precession, however, that is
for ((...:—l)2 > 4, Lhe solulion is satisfactory on the entire surface.

From Eg. (5.10) and the definitions of v, and v , we obtain

+

oy T
v 1 5 ‘
5E ~ Zsin® [‘VJV‘) t =g [Sm9<v++V_)]J :

= —Z—S—l-;l-l——g— [ (14 cos 9)v+—(1—cos G)V_] + é"é% (v++v_) ,

i AE ME
22-51119(3 1 e )+_Z_§?§(V++V-)

This equation must be integrated subject to the condition that vl =0

at £ = 0. The result of the integration is



—xlg -ng
T . e _ l-e
Ve T o2 sin 6 = N
1 2
-)\1{5, _)\z‘g
t .8% [(l—cos ) (___________1-e>\ ) 4 (14cos 6) (—--———.—-—l‘;z q :
1
-\ € -\ €
=i sin 6 l-e 1 ) l-e * 1
T en Y X ]
1 2
i nE+l)e Mol an i x2g+1)e“2€-1 an
1 1
t > {1-cos 6) = 15 t (l4cos 6) = 0
1 2
Now,
d>\1 - i Sin@
do6 N ’
and
d)\z _ i sin B
a6 N :
2
so that -\ €
T (NE+l)e L1
VI =1 sin 6 {:—-—r——-— - > (1-cos 6) 1 ,
1 N
1
N E
[1-;*5 ooy DuEDe ~1] o
| —— - +cos - .
)\2 z )\3

2

This expression goes to infinity as 1/\ as either of the \'s approach-
5 zZero.
The value of VE, at the edge of the boundary layer is of inter-

est. This is obtained by setting § = w0

VT (0) =isin 6 . i.)Jr ifl-cos®  l4cos® ’
r N N 2 3 -
1 2 N bN

1 2
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sin @ 3 sin 6 3
- w - (1+c089)]— Jow- 2 (1-cos 8] . (5.17)
(e 2 12 ]
1 2

This expression gives us the required boundary condition for the in-
viscid flow problem, since the boundary layer solution at the edge of
the boundary layer must match the inviscid solution at the houndary.

Thus the inviscid solution must satisfy the condition
v_ = el () (5.18)

at r = 1. Of course, there is no guarantee that the solution of the
inviscid equations, subject to this boundary condition, will also satisfy
the additional conditions that Vo and Vq? are zero at the boundary
which are required to match the two solutions completely. Since the
equations of motion are linear, however, it follows that if the invis-
cid solution for v is of the order of € at the boundary, then the
corresponding values of g and Vo will also be of that order, and
the boundary conditions for the whole problem are thus satisfied to
within a correction which is of order € compared with the actual con-
dition. This is entirely consistent with the boundary layer approxima-
tion.

As a final step in this discussion of the boundary layer, we
shall evaluate QT. This is obtained from Eq. (5.9) which states that

g—gj = is8in 6(v+~v ),

so that

. -\ € -\ E
Qr:sine[g_xeef.ﬁ e 1. UtcosO) T ] (5.19)
1 2
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An arbitrary function of 6 can be added to this expression so that
this relation imposes no restrictions on the inviscid solution.

The results obtained so far indicate that there are really two
boundary layers occurring in this problem; thus QT, for example,
has two different decay lengths associated with it. In some regions
one length is more important than the other; if for some value of 6
I)\l '>> l )\2], then the term involving )\1 is important close to the
boundary, while the term involving )\2 would still be of significance
at distances from the boundary at which the other term has already
become negligible. To conform to the usual idea of a boundary layer,
we shall speak of the boundary layer thickncss ac the decay length of
the layer that survives the furthest from the boundary. The thickness
is then given by

€

6(6) = - ) (5.20)
[ [(]w-1i-2]cos6])]]?

For some values of 8 this is the thickness associated with the terms
involving A and for others that associated with terms involving X\ .
1 2

Itis only in v_ and v_ that these two scales are separated.

+
We have seen that for some values of the frequency the bound-
ary layer thickness, as given by Eq. (5.20), may become infinite.

We may distinguish between the rapidly precessing flows character-

ized by the inequality
(w-1)%2 >4 (tast precession)
and the slowly precessing flows for which

(w-1)2< 4 (slow precession)
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It is only in the latter flows that the critical circles occur. The circle

on the surface of the sphere for which cos 6 = -12- (w-1) will be called

C, since it is associated with the boundary layer that goes with Vs

and similarly the circle for which cos 6 = - é— (w-1) will be denoted
by C . These two circles are symmetrically located with respect to

the equator of the sphere.

In Section 5.3 we shall discuss the difficulties that arise in the
boundary layer treatment in the vicinity of the critical circles. We
shall find that they can be dealt with by a more careful method of ap-
proximation. Before proceeding to that step, however, we shall explore
some aspccts of the inviscid flow problem which will bring out a pecu-
liar relationship that exists between the boundary layer problem and

the inviscid flow problem.

5.2 The Inviscid Equations

The equations that are obtained by setting € = 0 are most con-
veniently discussed in cylindrical coordinates rather than in spherical
coordinates. In Section 3.3, the equations of motion were given in
terms of the cylindrical coordinates (p, ¢, z). If we set €= 0, in

Eq. (3.25) we obtain

-1 + 2v = 2=
w )Vp \(p 5 , (5. 21a)

. iQ
{w-1)v - 2v = 22, 5.21b
¢ PP ( )

and

3

i(w—l)vZ

= - (5.21c)



-70-

In addition, we have the equation of continuity

1 9 iv(p avz
—5 "5'6‘ (pvp)+ T + 32 =0 . (3'26)

As was pointed out earlier, the first three equations are a set of linear
algebraic equations for the components of v, and can be easily solved.

From Egs. {5.21a) and (5. 21b) we obtain

v = 9p P , (5.22)
P 4 -(w-1)%
and
_ i a0
V2 TG W (5. 24)

If these expressions are substituted into the equation of continuity, we

obtain a single equation involving Q:

2 2 2,
9Q ﬁa’% ORI Rk ek S B (5. 25)

L
ap? p p? (w-1)2  0z?
which is just Eq. (5.2) written out in terms of cylindrical coordinates.
Equation (5. 25) can be elliptic or hyperbolic depending on
whether (w-1)%-4 is positive or negative. We see that the inviscid
problem also shows a division between fast and slow precession. In
this latter case, when the equation is hyperbolic. the characteristics

are given by

dZZ dpz'—' 0 3
(w-1)?
or
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This equation represents two families of right circular cones with
axes along the z-axis. Althought Bondi and Lyttleton did find these
cones for their case (w=0) it seems to have escaped their notice that
the circles of contact between the two cones that are tangent to the
sphere are the critical circles C+ and C . That this is so is easily

demonstrated. The normal to the sphere through C+ is inclined to

the z-axis by an angle

B = cos ' '&)Zj” s 1
ot [4-(0-1)F?
{(w-1) ?

and so is perpendicular to a cone whose generator is inclined from the

z-axis with a slope

(w-1)

[4-(0-1)?)
which is a cone belonging to one family of characteristics. Similarly
the tangent cone touching C_ belongs to the other family of character-
istics. This geometrical property connecting the characteristics ot
Eq. (5.25) to the critical circles is shown in Fig. 2 for a value of
between 3 and |. If w lies between 1 and -1 the circles C+ and
C  are interchanged since f is then an obtuse angle, Only the tan-
gent cones have been drawn. Since the figure is a meridional cut
through the sphere the critical circles appear as points and the tan-
gent cones as lines. Figure 2 also shows schematically the boundary

layer associated with v For the sake of clarity the boundary layer

3

has been given a thickness which is a considerable fraction of the
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TANGENT CONE

~BOUNDARY

LAYER N,/
CORRESPONDING
TO VvV, SN

TANGENT CONE

Figure 2. Geometry of the characteristic cones.
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sphere's radiusk; this would presumably not be the case in the problem
under consideration. The boundary layer associated with v_ is ob-
tained by interchanging the positive and negative z-directions, while
what we have called the boundary layer thickness 6(6) is obtained by
repeating on the lower hemisphere the pattern that appears on the
upper hemisphere.

Thus far, we have established some remarkable properties con-
necting the inviscid problem to its boundary layer counterpart. First,
when (w-1)2<4 the inviscid equation becomes hyperbolic and the
critical circles appear with the indication that something has gone
wrong in the boundary layer. Secondly, we have the geometric prop-
erty just described connecting the characteristics of the inviscid
problem to the critical circles in the boundary layer. These facts
taken together strongly suggest that there is an intimate connection
between the inviscid problem on the one hand and the associated bound-
ary layer problem on the other. At this point it should be recalled that
the original problem is represented by an elliptic system of cquations
so that it is only in the case in which the character of the equations
changes in going from the viscous problem to the inviscid problem that
difficulties arise in the boundary layer approximation. It would ap-

pear that this behavior is the key to an understanding of the critical
circles.

Unfortunately, the topic of boundary layer approximations to
elliptic equations which acquire real characteristics on dropping the

higher order derivatives seems to have received little attention. An
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[

article by Visik and Lyusternik 31] deals with a problem having these
features. The authors consider an equation having these properties

in a region such that whole sections of the boundary are characteristic
lines of the "inviscid" problem. Their example, however, is not suf-
ficiently similar to our problem to warrant extensive discussion. In
their closing remarks, the authors mention the problem of the inviscid

characteristics becoming tangent to the boundary at a point as a matter

worthy of future consideration.

5.3 Modified Boundary Layer Equations

Tn this section we shall reconsider the assumptions that led to
the boundary layer equations obtained in Section 5.1. To see where
the assumptions may have been inaccurate we return to the equation

that was derived in that section

8%v
+ 2i (cosP+cosb)v =0 , (5.13)
Bt *
where cos P = -;— (w-1). If we consider only vy for the moment, it

is evident that according to this equation

9%

4

=0
8§ 2

on C+, which immediately leads to an infinitely thick boundary layer,

[31JM. I. Viski and L. A. Lyusternik, "Regular Degeneration and
Boundary Layer for Linear Differential Equations with Small Para-
meter, ' American Mathematical Society Translations, Series 2, 20
pp. 239-364 (Cushing-Malloy, Ann Arbor 196Z). The relevant section
starts in p. 301.
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Now, this equation is evidently false; Eq. (5.13) was obtained by drop-
ping certain tefms which were assumed to be small compared to the
ones retained. This assumption breaks down in the vicinity of C+
since the term

(cos B - cos 9)v+

becomes very small there. Therefore, at least near C+, the neg-
lected terms can become as important or more important than the
above term. Similar remarks apply to the equation for v_ in the
vicinity of C . We must therefore rederive Eq. (5.13), paying closer
attention to the terms that may become important. We shall still as-
sume that the flow is confined to the vicinity of r =1, so that radial

changes are more important than angular ones. By this we mean that

9 9
Ir O

but we shall no longer assume that

92 9
2 > >
5p2 EL

€

While €V % may still be replaced by ¢?8%/9r? we shall have to be
more careful about discardingterms from the inviscid part of the
equations of motion.

Equation (5.13) was obtained by combining the equations

<2(V3V) g = -2i cos By, - 2cos O+ %. %Q , (3.19b)

and

2 vz““ - 7 . . 2 + 1.Q a
= ( V)(P icos BV(P+ 281n9wr+ cos Qve Tein 0 - (2.19¢)



-76-

These equations can be approximated by

BZV6 90
2 .
€ = -2icos Bv,-2cos v + s
— Bvg ot 9
8% i0
et kd = -2icosPBv +2s8inbv_+ 2cos Ov,+ —
9p2 @ r o sin

The linear combinations which previously led to uncoupled equations

for v, and v now give

+
o%v

2 T o .. 8Q Q

€ - = -2i{cos B-cos O)v, + 2isin Ov_ + - , (5.27a)
Br + r 00 sin

and

9%v

% 2— = -2i(cos B +cos ) v_-2i sin Gvr + %% + _é'l_ﬁ%" .(5.27b)
or

To eliminate V. and Q, we have recourse to the r-component of the

momentum equation and the equation of continuity. These are:
ez(sz:s = -2icos Bv_ - 28in8v + 6 , {3.19a)
r r @ or ‘
iv
1 8 2 1 8 - @ . .
R (vt omrag Sn0V o =0 - (3.20)

Since V. = 0 at r =1, it can be assumed to be small compared to the

tangential velocities, and so these equations may be approximated by

. oQ
2 sin GV(P: F ol (5.28)
and
8vr 1 5 ivqo
5 " sme we GO0Vt gy 0 - (5.29)

The variables Vo and Q can then be eliminated from Eq. (5.27a) by
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differentiating with respect to r:

.2 8’y v,
+ 2i(cos B~ cos 0) ——
81‘3 or
v, 92Q 1 8Q
pund Zi Sin 9 +

9T 8r98  SinBO Or °

— .8% (sinBvy) + 2y + 2 g’g (sinOv) - 2v,

-2 73% (sin 0 v,) . (5.30)

An equation for v_ is obtained in a similar manner from Eq. (5.27b):

9%y v 5
+ 2i(cos B + cos 0) —a—r—— = 2i 5T (sinfv ) . (5.31)

€ 2

or>
Equations (5. 30) and (5. 31) replace Eq. (5.13). It should be noticed
that Eq. (5.31) is transformed into Eq. (5.30) if 6 is replaced by

m- 0. Moreover, the boundary conditions

il

v, i{l - cos 6)

at r=1 |, (5.14)

it

v i(1 + cos 6)

also transform into each other under this change of variables. It

follows that

v (r,8) = v+(r,-rr~9) . (5.32)

We can therefore deal with a single equation since once one of these
variables is found the other can be obtained directly from it.

It is convenient to deal not with v, or v_ but with a variable
v defined by
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43 v+sin ]
v = s (5.33)

1

(w-1)[4-(w-1)2]?

in terms of which Eq. (5. 30) becomes

<? 8 v ov ov o

or3 + 2i(cos B - cos 0) 57 + 2isin 0 59 ) (5. 34)

subject to the boundary condition

N 4 sin G(I-COSIQ) (5. 35)

(w+1)[4-(w-1)%]2

at r = 1. The numerical factors have been chosen to make v =1 on

Since so many approximations have been made already, it
would be highly desirable to solve Eq. (5.34) as it stands. Unfortunate-
ly, we were not able to do this, and even after further mutilation of
this equation we found that we had to be content with an approximate
solution. Before proceeding to that stage, however, certain interest-
ing properties of Eq. {5.34) should be pointed out.

First of all, if the last term is dropped, we are back at

Eq. (5.17) and the expressions for v, and v _ that result from it. By

1
diffcrentiating them with respect to 6, we can justify the neglect of
that term for regions sufficiently removed from the critical circles.
As the critical circles are approached, the second term in Eq. (5. 34)
hecomes smaller, but the third term survives so that E)Zv/arZ does
not become zero. Another interesting property of Eq. (5.34) is that

the inviscid equation associated with it has real characteristics. The

inviscid equation is obtained by setting ¢ = 0:
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ov sin 6 ov

o7 ¥ osPcosT BO
The characteristics of this equation have a slope

This slope is zero on 6 = B, so that the characteristic tangent to the
sphere touches the sphere on C+, as before.

The characteristics given by Eq. (5.36) are not the same as
those of the original problem. This is due to the distortion in the co-
ordinates that was introduced into the derivation of Eq. (5.34). In the
approximation used the curvature of the geometry was neglected by set-
ting r =1 wherever it appeared as a multiplicative factor. This fault
is minor, and could be corrected. What matters is that characteristics
appear, and that the line of tangency is the critical circle.

Since the new boundary layer equation represents an improve-
ment over the old principally in the vicinity of C+, it would appear
worthwhile to examine the equation near 6 = B = cos”l 9—5—1— . To this

end we stretch the region of interest by defining a new set of variables

1-
£ = ;; ,
o Ae (5. 37)
0-p
n= ,
Bev

where U and v are assumed positive but are left otherwise undeter-
mined, and A and B are constants of order 1 which will also be

fixed later. Keeping only the lowest order terms in ¢, we have
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cos 6 = cos B - Be'sin Pn

8 _ 1 b
3T NI
. ] sin B te]
sin 6 = -,
KL Bev on
so that Eq. (5. 34) becomes
2=3H 3 : .
€ o’ v 2iB - o) 2i -y dv
+ 2= sinp "My & 2 ginpe Y 2¥ =0 . (5.38)

It is convenient to choose A and B in such a way that

2A%B sinf =1

and
2A%sinp
B "
that is
~ 15
A = (4 sin?p) v ;
B = 2 sinp(4 sin2p)"/®
With this change, £q. (5.38) becomes
3
v g utv-2 By B2 %‘i =0 . (5.39)
o &3 n

The relative importance of the terms in this equation can be enhanced

or diminished by suitable choice of Y and v. Thus, setting
2+ v-2=0, 3u-v-22>0, andthen letting ¢ =0, we arrive at the

equation

with the solution
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ijf:i—ﬁ, (5.40)

vV = e

which corresponds to Eq. (5.15). This expression cannot be valid near
11 = 0 since it has an infinite derivative with respect to n there, con-
tradicting the assumption that permitted us to drop the last term. It
would be desirable, however, to obtain an expression for v that has
this behavior for large values of 7, so that it can be matched to the
solutions previously obtained. This dictates the choice of | and v

to be such that all the terms in Eq. (5.39) survive, that is

2+ v-2=0 ,
3w-v-2=0 |,
or

w=45 , v=25 . (5.41)
With these values of p and v, Eq. (5.39) takes the torm

o v ov . Ov

— i -1 e
8@3 n'a'é' on

=0 . (5.42)

An equation equivalent to this one was obtained by Stewartson and
Roberts[ 32]in connection with the Maclaurin spheroid by applying the
substitutions given in Eq. (5.37) directly to the equations of motion.
In Ref.[27] they pointed out that the same equation was applicable to
the critical circles in the problem of the precessing spheroid. They

limited themselves, however, to giving the asymptotic solution of

32
L ]P. Roberts and K. Stewartson, "On the Stability of a Maclaurin
Spheroid of Small Viscosity, ! Astrophys. J. 137, 777 (1963).
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Eq. (5.40) and inferring, from the method by which Eq. (5.39) was
derived, that the boundary layer for the neighborhood of the critical
circle given by

0=p+ 0(62/5)

has a thickness

4f5

6 =0O(e’ )

in contrast with a thickness of the order of ¢ which applies to the
rest of the boundary layer.

While we were not able to solve Iq. (5.42) exactly, in the next
section we shall obtain an approximate solution which strongly supports

the above conclusion.

5.4 Approximate Treatment of the Critical Circles

The boundary layer problem in the vicinity of the critical circles

has been reduced to the equation

LA
3&3 HSE‘

o _o (5.42)
n

subject to the conditions:

v =1 on E=0 ,

v = e 8 s n |~ e

)
v >0 as & — o

The first condition is just the normalization of + at the critical circle.
The second one is imposed to make v match the solutions far from

the critical circles; in it the square root in the exponentialis interpreted
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as having a positive real part. The third condition is required to make
v have a boundary layer character.
The most successful approach that we found for the solution of

this problem is to make the substitution

v=e? |, (5.43)
so that
v o? A
= %
v :69”“89”)3 v3 & Yo __839”]
8g3 _5'5‘ E—g_ 8&2 agS

The next step is to neglect the terms in 8°v/8&> involving second and
third derivatives of ¢ . This approximation is easier to accept if we

leave the equation for v in the form

v . 2utv-2  dv . 3u-v-2 8v
—— 1€ - 1€ = s 5. 39
o 3 o (5.39)
and use the substitution
v = e(p/E
Then Eq. (5.39) becomes
By \? by 8% ; & 2
% . 22Uty e . 3u-v O¢
5 ) + 3e —_ e — tie - ie =0
13 B p2 v N BE Tn

If we now set 4 and v both equal to zero, and then take the limit as
€ goes to zero, the higher derivatives of ¢ drop out. Itis probably
preferable to drop these terms without going through this process so

as not to lose sight of the approximation involved. With the omission
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of these terms, the equation for ¢ is

(%ngin%%-i?%:o . (5. 44)

Since this equation does not contain § explicitly, a complete integral

(involving two arbitrary constants) is obtained by setting

d¢ _
E "

which substituted into Eq. (5.44) gives

O¢
an

3

=ia’ + an

Combining these two expressions, the result is

<p:a§—ia3n+-12-ar]?‘+b . (5. 45)

To obtain a general integral (involving one arbitrary function) we employ
Jacobi's method which consists of setting b = f(a) and then determin-
ing a by requiring that 8¢/8a = 0.
Thus, we obtain:
1 2

f'(a) = 3ia2n - £ - =M R
(5.46)

¢ = af - ia311+ -lzan?‘-l- f(a)

The first of these expressions defines a function a(§,n) implicitly in
terms of an arbitrary function f(a). Once a(f,n) is known, the second
expression gives ¢(&,n). That this expression satisfies the differen-
tial equation is easily verified by substitution.

Our problem is to find a suitable function f(a). The process
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here is one of guesswork since we do not know which of the conditions
on v to apply. One condition is that at § =0, v should equal 1, or

@ = 0. If we apply this requirement, we have

f(a) = ia3n— —é— anz s

1
f'(a) = Biajn— > nz ;

where, since a =a(0,n), n can be regarded as a function of a. Dif-
ferentiating the first of these expressions, we obtain

f'(a) = 3ia’n- 5 nP+(ia’-an) cul

It tollows that

ia s

3
i1

and hence

1
fla) = - » a® . (5.47)
Putting this back into Eq. (5.46) we obtain

”52 a*+ 3ia2n-(g + 32 na) =0

which is fortunately a quadratic equation for a®. The roots are
1
L2 3. 2, 4 213 .
a® = —S-ln:t[—gg - Zgn] . (5.48;

With suitably chosen branches of the square roots involved, we finally

obtain

qp:ag—l-—‘lz—anz-iajn— —%a‘g' . (5.49)

We must now determine whether the branches of the square roots in
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Eq. (5.48) can be chosen in such a way that ¢ will have the correct

behavior as ]n ] approaches infinity:

vt UE L o e

o=-§ U for o

This dictates the form of a: Eq. (5.48) can be written as

1
, 3. 2 . 5¢ | *?
2
a“=- &+ inx & in|l- == )
5 5 [ an}
if the minus sign is chosen, then for n?*>>§, a? will be given ap-

proximately by

2> ig
a-—1+T,
1 n

so that ¢ becomes approximately

wza[g+-lzn2-in(-in+ 32%)- }Z(-in+ %%) ZJ :ag[l + i—;}

To achieve the required form for ¢, we must now take a as that

2

square root of a“ that has a negative real part. Thus we must have

- 13
. 2
a:—<\l/.;)—§-n+én(1-zgz) ) (n>0)
n
or 1
17
. 2
a%_ugngn(lgé_z.) S (q<0)  (5.50)
T]

Equations (5.49) and (5.50) then give expressions for ¢ which
satisfy both the boundary condition and the asymptotic requirements
for large ]'q } - We would now like to find out what information this

& .
gives us regarding ¢ near n =0, since this is the region where the
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previous expressions failed. Keeping track of the branch of the

square root involved, we get, for n°< é. £

2o 2an -2 gf(l- %) ,

[SIE

while a 1is still that square root which has a negative real part.

For n%<<§,

1
2 3 . 2 2 2 n
FETE +(§~§) S5,
2
5 ¢)
while
1
2 4 3i !
a=-[5 £ |1- 15—

5 ¢

5
From these expressions we obtain

2 5/4 4 !
ox-2(5 ) |1- 3 —Y
2
|5 ¢)
If we now express £ and n in terms of r, 68, and ¢ we obtain
21\%4 (1.1)74 R 33 0-8
vV & exp -Z(~5-) — (2sinp)* |1 - 10 T T (5.51)
2

(1-1)%(2 sin B)

where this expression holds for
(6-B)2 << 1-1

This rcsult shows that the boundary layer near the critical circles
dies off in a distance of the order of %5 »  which is greater than the
decay length of the order of ¢ which occurs in the rest of the bound-

ary layer.
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5.5 Validity of the Approximation

The approximation obtained in the preceding section fails if

029 /0% or 0’¢/0&’ become large. Unfortunately, this does happen,

2 . P .
for along the parabola § = 5 n? these derivatives are infinite. This

is easily established, since

8¢ _
3E -

so that
%9 _ da
gz 05
and
Po _ d%a
Y 0E?
Now,

1
2 3. 2 . 5 |
a“ = - &= in - 11‘{1 - s
5 E) 207
2
so that both 8a/8f and ala/agz are infinite along the curve § = 5 nz,
where the square root term is zero. Thus, whereas we were previous-

ly in difficulties because 08v/8n became infinite along n = 0, we have

now removed that trouble only to have a new one arise in the £ deriv-

atives along the parabola § = -;- n?. Since this parabola lies in the
region of the £ - m plane which is of interest to us, this difficulty can-
not be ignored. Indeed, one may question whether Eq. (5.49), which
gives ¢ in terms of £, n and a, is valid on both sides of this curve
and can be extended across it by merely interpreting the square roots

in a consistent manner. If this procedure is valid, it would be desir-

able to find a connection formula to join these two solutions smoothly.
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We shall now give an argument, which although admittedly weak, sug-
gests that this procedure is probably acceptable.

The equation for v 1is

9% . ov .
2+ i - i =0 . 5.42
8§3 R 9% on ( )

Let us look for a solution of the form

Then g(n) satisfies

d .
T =l - i)
so that
192 .13
g = Cez kT] ik n .
We might therefore attempt to represent v by a superposition of such

solutions:

v = S F(k) exp [kg +oknf - ik 4 ;f(k)] dk (5. 52)
where the arbitrary function of k has been written as F(k) exp f(k).
We can require that f(k) include any exponential behavior so that F(k)
is no worse than some power of k. The integral is of course taken

over some contour, which we are unable to determine.

Equation (5.52) is of the form

v :.S ka)e¢(§,niﬂdk

If it were desired to evaluate this integral by the method of steepest

descents, we would set
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9p
o =0

2

and thus obtain a function k(§,n). The approximate expression for v

would then be

vE ———— e e (5.53)
‘ az(p 2
| 8k?|
2
where o = arg 9 (i In this equation, k is a function of £ and .,
ok

implicitly given by 09¢/08k = 0.

This form of the method of steepest descents fails if 8¢/ 0k
and 8%¢/8k? are both zero simultaneously. One then has to go back
to the original integral and expand ¢ in a power series up to the first
non-vanishing term in k, and then carry out the approximation.

The point of this discussion is that if one were to choose f(k)
in Eq. (5.52) equal to - 32 k®, then Eq. (5.53) would be remarkably
similar to what was obtained in the preceding section, since v would

¢

essentially be given by e”, with ¢ given by the same expression as

before. Furthermore, setting
o a 1 .«
k‘]’]L - lk;’r] - Vi k’ 3

we have that

1 .

o 6+ g - K- K
2

%% - bikn - 1063

ok?

so that 8¢/8k and 82¢/d8k? are both zero when £ = _fZ; n®. These

considerations suggest that the expressions for ¢ obtained in
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Section 5.4 are asymptotic forms of an integral like the one given in
Eq. (5.52) with f(k) = - —é— k®>. Since neither F(k) or the countour are
known, there is not much point in carrying this argument further. The
inference, however, is that a connection formula probably exists.
While we are quite aware that qualitative evidence is not admissible

in mathematical arguments, we have presented this discussion as sup-
porting the plausibility of the approximate solution for v obtained is

an accurate representation of the actual v.

5.6 The Interior Flow

In Section 5. 2 the equations for the inviscid flow were solved to
give the velocity components in terms of the variable Q, and a dif-
ferential equation was obtained for Q. With a slight change of nota-

tion to simplify the expressions involved, the equation for Q is

2 2
9°Q 199 —9— + tanh? ——-—-——a Q

=0 , (5.54)
apZ P pZ aZZ

where a variable « has been defined such that
cosha = —— . (5.55)

This definition is suitable for w >3, since « is then real. In
Section 5. 2 a real variable B was defined for -1 <w < 3 by the rela-
tion

w-1

cosB:——Z—

The two relations are connected by

o =1if
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Rather than define a third real variable for w < -1, we shall use «
throughout the eiliptic range of Eq. (5.54) and B for the hyperbolic
range.

The velocity components can also be expressed in terms of o.
Of particular interest is the radial velocity, which is obtained from

Egs. (5.22) and (5.24) and is given by

rv pvp + zv,_

= .12. sech cosechza’[coshzap %% - cosh aQ+sinh?a z %%]
(5.56)
The boundary condition that applies to the inviscid problem is
vr(inviscid) = vr(oo) s (5.57)

at r =1, where vr(oo) is the value of V. at the edge of the boundary
layer. Thus (Q is required to satisfy Eq. (5.54) subject to the bound-
ary condition (5.57).

In the elliptic range, Eq. (5.54) can be transformed into
Laplace's equation by simply substituting

1

1

p p sinhe ,

(5.59)

z' =z cosha
This transformation maps the sphere into a prolate ellipsoid, and the
problem of finding Q reduces to the solution of Laplace's equation
subject to a boundary condition involving Q and its derivatives. The
problem can thus be solved, in principle, by expanding Q in solid

harmonics.
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In a recent paper, which appeared while this thesis was in
preparation, Greenspan[ 33] has demonstrated that the equation for Q
can be solved by separation of variables in prolate ellipsoidal co-
ordinates. The procedure is to transform from the coordinates
(p',2') to prolate ellipsoidal coordinates (\,{) in such a way that the

surface of the sphere transforms into a surface of constant \. The

required transformation is

o' =J(\E-1)(1-p?)

z' = N

(5.60)

The surface of the sphere is then given by \ = cosha, while y be-
comes equal to cos 0. Interms of A and u the derivatives involved
in Eq. (5.56) are:
9 (\NE-1)(1-p?) 2 . 8
Y ‘5‘5 = ——)—\"Z—T‘ N N I3 ) ,

R ¥
Bz N2 -

0 o
- [u(xz-l) o T MI-p®) ‘gﬁ] ;

so that the radial velocity is given by

: 2
rv_ = 1secha/2coszech o [)\(Xz—l)(coshza-uz) %%
2(\-u*)
2\/3 2 2 o0
~u(l-pe)N“-cosh®a) o

-cosh a()\z—uz)Q}

It can be seen that on the boundary the coefficient of 8Q/8u is zero,

[33] H. P. Greenspan, "On the Transient Motion of a Contained Rota-
ting Fluid," J. Fluid Mech. _2_9, 673 (1964).
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so that the boundary condition involves only Q and 0Q/0\. This
feature makes the problem separable, since in terms of X\ and ©

the boundary condition becomes:

%% - cosech?a Q = -2iv_(w) (5.61)

at N = cosho.

The non-singular separated solutions to Laplace's equation in

[34],

prolate ellipsoidal coordinates are
1 1
PLOVP! (1)

so that Q can be expanded into a sum
_ 1 1
Q -Z AnPn()\)Pn () . (5.62)

Similarly vr(oo) can be expanded into

I

v _{o0) =Z BnPIi(cos 6)

= > B PNy |, (5.63)

/
Loonon

since WU = cos § on the surface. The coefficients An can then be

found in terms of the Bn

dP;(COSh @) Pé(cosh a)
A - - 2
n| “d{cosh @) coohZal 1B (5. 64)

[34']Morse and Feshbach, Methods of Theoretical Physics (McGraw
Hill, New York, 1953), p. 1285,
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The function

which appears as the coefficient of An in Eq. (5.64) can be rewrit-

ten (with a change in notation from Greenspan's article) in the form

Fox) = T -A{P;(X)}
n I-x dx| T-x

Since all the zeros of P;(x) arein -1 <x <1, the zeros of F_(x)
will similarly be in this interval, and thus the coefficient of An does
not vanish provided (w-1)?>1. In the hyperbolic range of Eq. (5.54),
however, the transformation equations from (p,z) to (\,i) map the
surface of the sphere into the surface N\ = cos 3, so that for each n
there are several roots P of Fn(cos B). These frequencies are
resonances in the true sense of the word, since the corresponding An
then become infinite. Moreover, they represent inviscid modes of
fluid motion in which the radial velocity is identically zero. The
existence of these modes makes it impossible to satisfy the inviscid
flow equations subject to a specified radial velocity on the boundary.
The only remedy to the situation is to change the boundary conditions
of the boundary layer equations in such a way that the radial velocity

at the edge of the boundary layer becomes zero. This can be done by

adding to the interior flow resonant solutions of order 1. Thus the

interior flow at the resonant frequencies is of order 1 while it is only

of order ¢ at other frequencies,
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5.7 The Case w=3

The frequency w=3 is one of the dividing points between rapid-
ly and slowly precessing flows. The equations of motion are particu-
larly simple at this frequency and they will be considered here. The
expressions for the velocity components in terms of Q given in
Section 5. 2 fail at this frequency and it is thus necessary to return to
the original equations of motion for the inviscid fluid. Substituting

w=3 in Eq. (5.21) we obtain

: . 9Q
Zle + ZV(P = EE 3 (5. 658,)
2v - ziy =- 2 | (5. 65b)
¢ p
- i 9Q
VZ = - -2~ "'8—27 . (5. 65C)
From the first two equations it follows that
v - 1V ool 1 ?.._Q.
P e 2 9p
. LQ
2 ’
so that
Q = pf(z) (5.66)
where f is an arbitrary function of =z.
In terms of f,
- ip oo
v, = - —%- fY{z) (5.67)
and
. i
v o-iv_=- = f(z) . (5. 68)
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To find Vp and Vo we use the equation of continuity,

avp + _Z_V_P. = i[pf”(z) - -.]3... f(z)] (5.69)
“Sp P 2z p ' '

The solution regular at p =0 is

i
V. TE [p2f'(z) + 2f(z)] . (5.71)
Finally, to find f(z) we use the condition
Cpv _* zv, = vr(oo)

at r = 1. Interms of f(z), and taking into account that, at r =1,

1
p can be replaced by (1-z?)?, this condition becomes

1
(1-2z2)f'"(z)-42f'(z)-2f(z) = - 8i(1-2z%) 2 vr(oo)
This equation can also be written in the form

dZ 21
e [(1-22)f(z)] = -8i(1-22) 2Vr(00) ) (5.72)
Z

which makes the integration very simple.
The variable vr(oo) can be obtained by setting w=3 in Eq.
(5.17). The result is

1

- (ltcos 6)%] ,

nofes

H

5 (1-i)c[(1-cos 6)

v .{e)

1
z

i

= (L-i)e[(l-z) S (14)%] (5.73)
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The two integrations required to find f(z) are easily carried out,
and it is possible to choose the constants of integration in such a way
as to make f(z) finite at z =4 1. The final form of f(z) is

4e(l+i)

: [(1-2)%2 - (1+2)¥2+ 232 5] . (5.74)

f(z) =

1-=z
The velocity components can then be obtained through Eqs. (5.67),
(5.70) and (5.71).
It is interesting to note that the interior flow is proportional
to e. The singularities in the velocity components at z =+ 1 are
only apparent since at those values of z, p = 0, and the derivatives

11111 1

of [{z) appear multiplied by powers of p.
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6. DISCUSSION

6.1 Summary of the Results Obtained

In this work we have discussed the problem of small angle
precession both for very high and very low viscosity. Physically, the
case of high viscosity is characterized by rapid adjustment of the fluid
to the instantaneous axis of rotation so that the motion is essentially
that of a rigid body. In Chapter 4 the problem for a highly viscous
fluid is treated by a series expansion in inverse powers of the viscosity.
This approach appears to be very successful, and in principle could be
carried to any desired accuracy. The answer obtained is not a singular
perturbation but rather a legitimate series expansion so that it could
presumably be used for the case of low viscosity as well, except that
it would then be hindered by slow convergence. The increasing dif-
ficulty in obtaining successive terms in the expansion would make it
impractical to use that expansion except for very large values of the
viscosity.

The physical situation is entirely different in the case of low
viscosity. The division of the flow into slowly precessing and rapidly
precessing does not depend on the viscosity; it is merely a matter of
the relative magnitudes of the precession and rotation speeds. Yet the
viscosity is still important in determining the flow, since, if the
viscosity were exactly zero, the fluid could be undergoing any motion
consistent with the equations of motion and the boundary condition on
the radial flow. The fluid motion would not have to have the same time

dependence as the boundary and would in fact be quite independent of
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the motion of the boundary.

The viscosity affects the interior flow by an exchange of fluid
between the boundary layer and the interior. In the discussion of the
boundary layer it was found that vr(oo) is not zero so that the boundary
layer draws fluid from the interior flow at some points and returns
fluid to it at others. In this way the boundary layer provides the driv-
ing force that moves the interior. In the case of the resonant modes
described by Greenspan, the boundary layer drives the interior motion
in such a way as to produce resonance.

The role of the critical circles is not too clear. The results
obtained indicate that at these circles there is an enhanced exchange of
fluid between the boundary layer and the interior since vr(oa) is much
larger there. Our success in dealing with this part of the problem was
limited. The method which was used to find an approximate solution to
the flow near the circles has certain interesting features. Itis rem-
iniscent of the W.K.B. approximation used in wave propagation prob-
lems. The relationehip that scems to cxist between the approximation
and the asymptotic expansion of a contour integral is intriguing, and
again there are similarities with the connection formulas used to join
two W.K.B. solutions across a turning point. Further work on this
part of the problem is required; an exact solution to the modified bound-
ary layer equations would be extremely valuable. It is needed to clarify

the physical role of the critical circles and to explain their presence.

6.2 Application to the Bondi-Lyttleton Problem

The problem we have discussed differs from the precession
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problem posed by Bondi and Lyttleton in that we have taken the pre-
cession angle td be small, while those authors linearized the problem
with respect to the precession frequency. In Appendix B the equations
of motion appropriate to the Bondi-Lyttleton problem are derived, and
it is shown that this problem is a more adequate model of the pre-
cessional effect on the internal motions of the earth's core, since of
the two precessional motions that the earth undergoes it is the one of
its axis of rotation about the normal to the ecliptic that is more
important.

Comparing Eqgs. (B.11) and (B.12) with the equations obtained
by setting w=0 in Eqgs. (3.19) and (3. 20), we see that the two problems
are essentially the same. The equations in Appendix B are inhomo-
geneous, but the velocity is subject to homogeneous boundary conditions.

It is possible to make the equations homogeneous by substituting

v_ =ir sin 6 cos 6 + v! ,

T r
vg = -ir sin29+v'9 s (6.1)
v =v'

2 @

in which case v' has to satisfy the boundary conditions

-i sinfcos b ,

v =

r

Vb:isinzﬂ ) at =1 . (6.2)
vi =0

@

Thus, the two problems differ only in the boundary conditions.

The expansion for high viscosity can be carried out in the same
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manner as before. Only the first correction to rigid body motion was

calculated, with the results:

v.=0

T

o = - 1 {3 _ 4 2y

Vo S T \6. 5)
20¢
i

v = (r®-r)cos 6

¢ 20¢?

This correction represents a purely toroidal velocity field.

The case of low viscosity presents two kinds of difficulties.
The boundary layer solution contains the critical circles, but these can
be dealt with in the manner described in Chapter 5. The need for a
more precise treatment of the critical circles is again evident. The
second difficulty arises in the inviscid problem and was not present in
the case of small angle precession. If we consider, as Bondi and
Lyttleton did, the inviscid equations for \7‘, it can be shown that no
solution exists for (), regular throughout the interior of the sphere

and satisfying the condition given in Eq. 6.2

v! = -isinf cos 6

= - .-13. iPY(cos 6) , (6.4)
2

at r = 1. The proof given by Bondi and Lyttleton is rather involved,
but it is possible to use the methods discussed in Section 5. 6 to demon-
strate this theorem in a relatively simple manner.

It is desired to find a Q such that at the boundary V. is

given by Eq. (6.4). We are dealing with the case w=0, or cosp= ——12— .
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Using the results of Section 5.6, and assuming Q is regular inside

the sphere, we can set

Q = AP;(E,)P;(T]) ) (6.4)
. 1 . oy .
the boundary being given by £ = - - . The condition on Q is
dp! p! 1
Al %2 % 2 - - 1
dx I—XZ L 3
X= -3

The term in brackets is zero, so there is no solution of the type sought.
The purely inviscid problem can only be solved by admitting solutions

of the type
Q = [AP)E) + BQUE]P () (6.5)

which are singular on the line p=0, or discouatinuous solutions which
take the form (6.4) in some regions and the form (6.5) in others.
Whether such a solution would satisfy all the other physical require-
ments has not been determined. Another possibility is that a radically
different type of boundary layer solution may be needed, which makes
v‘r(oo) equal to zero. Both approaches warrant further investigation,

and it is our intention to pursue this subhject further in suhsequent work.
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APPENDIX A

A.1 Tteration in Inverse Powers of the Viscosity

In Section 4.1 the procedure [or carrying out the iterations for
- -2
the expansion of v and Q in powers of ¢ is discussed. It consists
of repeated application of a sequence of formulas which yield Tn, Sn’
and Q from a knowledge of T , S , and Q . The process
n n-jy n-i n-j
starts with a knowledge of TO and SO:

TO:rsinO , (A1)
S,=0 . ' (A.2)

The first step is to find 50 by making use of Eq. (4.14):

Z - Z Z . 62 .
VQO—? cos 8 L Tomsmem (rTO) +2150 ,

= -g- [cos 68(2r sinH) - sin@(2r cos 6)] + 0

=0

A particular solution of this equation is, of course,

D =0 . (A. 3)
(o]

The components of v, are found from TD and SO by means of

Eq. (4.11): )
Vor © o
=i (A .4)
Vo0 v
= -r cos 6
o

This information enables us to evaluate the right hand side of Eq.(4.18)
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and hence to find 5, As an intermediate step to this end, we evaluate

—

thc components of Avo:

<AVO)1‘ = 2r cos B sin @
(Av ), = 2r cos?8 (A.5)
(A\_; ) = 2ir cos 6

O o

Equation (4. 18) then becomes

B
2
L°s r(AVo)r +r 5 ’

o

11

2r%cos 6 sin 6

i

2
3

1

ré P; (cos O)

Since
sz;(cos 6y = 2(8 + 1)p; {cos 6)

this equation is easily inverted into

s, = -é— re P: (cos 6) . (A.6)

All the information is now available to obtain t, from Eq. (4.19)

t i'eAA)+185° L _#°
o = -1 sin (VOQ _?W—?m(rso) )

1

-i sin 6 2r cos®0- r cos 20] , (A7)

= -ir sin 6

T can now be obtained from Eq. (4.20), which is
1
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ViT

—1((.0—1)’1‘0 + to ,

~i{w-1)r sin 6 -~ ir sin 6 ,

1

H

-iwr sin 8 . (A.8)

This equation must be solved subject to the boundary condition T =0
1
at r =1 as given in Eq. (4.13).

Equation (A.8) is of the general form

V2F = rnPl

I(COS 6 . (A.9)

Since all the equations encountered in the iteration that follow from
Eqgs. (4.14), (4.20) and (4.21) are of this form, we digress momentar-

ily to obtain the solution of this equation. Writing F in the form

F = 1i(r) Pll {(cos 6) ,

Eq. (A.9) becomes

2
d?f 2 df LU+ _ n (A.10)

dr? r?

2
It is clear that a particular solution is cnrn+ , Where c must be

evaluated by direct substitution into Eq. (A.10):
cn[(n+2)(n+1) +2(nt2) - £ (£+1)] =1 ,

or,

1
‘u’ mrmE) - IE T

In addition, the homogeneous solution to (A.10) is crz (we discard the

(2+1

singular solution r )), so that
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rn%—z ’ 1
" :[(n+2)(n+3) T D }Pl(cos 6)

Applying this to Eq. (A.9), we immediately obtain

co3

iwr . .
T =~ sin6 + cr sin6
1 10

and making use of the condition that T =0 at r =1, we get
1

_ _ dwr 2 _ .
Tl— T (r 1) sin 6

(A.12)

The next step is to find Xq by using Eqs. (4.23) and (4.24). The term

appearing in the integral in the numerator of (4. 24) is

. - ]. z 1
1(w—1)SO -8, - g T Pz(cos 8) |,

so that, because of the orthogonality of the associated Legendre poly-

nomials, the only term in the expansion of X, is ar?P' (cos6).
2 2

Using Eq. (4. 24) we find a,2 to be

SS - -é— rZPZl (cos 8) (rZP;(cos 8)) sin 6 d6 r?dr

a - )
zZ
§S(r2P;(cos 0) )2 sin 6 d6r2dr
. 1
= 3 ,
so that
X =- % r’P!(cos 6
o T 5 cos )

and it then follows from Eq. (4.15) that

1
Qo =- 3 rZP;(cos 6)

The first iteration is completed with the evaluation of

S,

(A.13)

(A.14)

which
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according to Eq. (4.21) is given by

2 YN
VSl— i(w I)SO+SO+XO )
S0+ 4 2p! (cos 6) - 1 réP!(cos 6)
9 2 9 2 ,
=0
S is subject to the condition S =0 at r =1, so that the solution is

1 1

S =0 . (A.15)
1

~ Subsequent iterations are found by following exactly the same
procedure. The steps become more involved because more harmon-
ics appear at the various stages of the integration. Without going

through the details of the next iteration, the results are listed below:

iwr?

Q1 = To5- (3r?-7) sin 6 cos 6 (A.17)

T = .1_;20_3 (5v%-9)(r?-1) sinf (A.18)
S

SZ— %%O (r® -1)%5in 6 cos 6 . (A.19)

To the accuracy of this approximation the velocity components

are found to be:

V.= - --L —;;2% (rz— 1)2 sinf cos 6 (A. 20a)
4
. €
V. o=ir 4 1 wr 2
6~ T — 1o (r°-1)
€
1 iwr 2 , iwPr 2 2
-, 7520 (7r® -3) cos 29+-1-m (5r%-9) (r%1) . (A 20b)

and
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v =-rcos 6+ L der (r?-1) cos 6
@ ‘ e 2
s L e gy 9T (52 gy (r21)cos 6 . (A 200)
= 2520 1400 - A
-2
The complex pressure Q, to order e is
co2

Q=-12sin6 cos 0+ — 197 (3:2 7 5in 0 cos 6 . (A.21)

62 0
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APPENDIX B

B.1 Equations of Motion for Slow Precession

The equations of motion for the case of slow precession
(Q—* 0) are most easily derived in the precessing frame, that is in a
frame of reference which is rotating with an angular velocity Q . This
is the frame that was used by Bondi and Lyttleton[ 22], although their

derivation contained several mistakes which were later corrected by

[27],

Stewartson and Roberts The errors that appear in Ref. 22 were

such that the final equations were substantially correct and the results
obtained by Bondi and Lyttleton were unaffected by these errors.

The momentum equation for an incompressible fluid in a
rotating reference frame is

%‘% - g X (VX §)+29x€-vv2€:-‘\'7(p/p+~lzq2) ; (B.1)

—

where q and p are the velocity and pressure relative to the rotating
frame, and {2 1is its angular velocity. The continuity equation remains
unchanged,

Veq =0 . (B. 2)

In the rotating reference frame, the angular velocity of the

shell, w_ is transformed into a constant vector W where

{JS:JR—ﬁ . (B. 3)

The motion of the boundary is thus described by

q:wer ,

and following Bondi and Lyttleton, we set

q=w Xr+u (B.4)
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and substitute into Eq. (B.1). The procedure parallels that described
in Section 3.1, since Eq. (B.l) differs from Eq. (3. 2) only by the
presence of the term 20 X c_;: in the left hand side of Eq. (B.1). In

terms of the velocity relative to the boundary, J, this term is
20 X(Jsx r) + 22X u
so that, borrowing the results of Section 3.1 we may write

—

du

5t -(wSXr)X (VXu)+ZwSXu~uX(VXu)

P

+ 20X u+ 2Q X (0, X 1) - vV 2u
=~V plp+ 3 ui- 3 (o, X D)% +u-(@, X 1)] . (B.5)

Since u = 0 is a solution to the equations of motion when Q= 0, it
can be assumed that for sufficiently small values of £, u is a linear
function of Q. Equation (B.5) can thus be linearized to first order

terms in £

ou

= -(SSXF)X(VXJHZJSxJ_vaJ

:-25><(<I?S><F)-v[p'/p+J.(JS><F)] ,
where
[ 1 . 2
P'=p - 5 plog Xr)

It is convenient to split the Coriolis term in the following way

. I R I A I (@ « Q) .

, - ol 1 -

QX (o Xx) o | Q- 5 -y 2 V(e X )P,
(2%} w

S S
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so that the linearized equation finally becomes

ou - = - - - - — -
5t +V[u-(ws><r)]-(wSXr)X(VXu)+2ws Xu
—VVZJ:;—wSVP , (B.6)
where
R Y CPE D TIPS B
a = 2w S S -Qe.r ,
S 2
w
s
and
2.8
; 2
wSP :p'/p-— ((:.)SXI')
w
s

Except for the forcing term a, Fq. (B.6) is the same as
Eq. (3.8) with c:o replaced by ;;S. It is therefore convenient to take
the z-axis of the coordinate system along Js' We shall also assume

© lies in the x-z plane so that

2 =Qsing eX-I-Qcosaez s

—_—

in which case a 1is given by

a = -2w_Qsina xe_ . (B.7)

s Z
It should be noted that since ; is the driving term in the equations of
motion, it is R sine, rather than £, which determines the fluid
velocity. In the case of the earth, the forced precession has a period
of 26,000 years and the angle o is 23.4°, while the free precession
has a period of 300 days with an angle « of about 10—6 radians, so
12 -1

that © sine has a value of 3 X 10~ sec = for the forced precession,

and of 3X 107 sec™ for the free precession. It follows that the
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26,000 year precession is more important in this case.
Returning to the equations of motion, the components of the
momentum equation for the present problem can be written directly by

referring to Eq. (3.13):

1 Bur aur y -
. 2
?5: W+W —251n6u(p- Z);- (v u)r
& 20 o . 8
=- 5= - Qsina r sin 0 cos O cos ¢ (B. 8a)
du du
1 6 6 4 27
o, B T Tme T fcoslu,m o (Vulg
1 oP 5 . a2 8
= - T 59 + 282 sina r sin®fOcos ¢ (B.8v)
1 3qu Buqo _ v N
= o * W+ 2(cos Bugy + sinfu ) - — (V u)(P
s s
. 1 9P
= TsmE % (B.8c)
Upon substituting
u = Re{20 a sinaf\T(r, G)el(p} , (B.9)
P = Re{2n2a®sina Q(r, 8)e’?} , (B.10)

into Eq. (B.8), and expressing all lengths as a fraction of the radius,

we obtain

. . - oQ .
1vr-281n9v¢-eZ(V2v)r =- 37 - r sin OBcos 8 (B.11a)
ivg - 2 cos 9v¢-ez(V2\7)9=- }f %—% + rsin®6 (B.11b)
. - 10

lV(P I 2{cos 0v6+ binﬁvr)—ez(vzv)gﬁ:——r—giiﬁ——g—» , (B.llcg)
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where €= v‘/azws. The complex velocity ':; must also satisfy the

equation of continuity
1 9 2 1 ) . Vo oo o
= o UV Teme g GO0Vt oy 0

(B.12)

and is subject to the condition v = 0 at the boundary.
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II. ELECTROMAGNETIC RADIATION FROM AN
EXPANDING SPHERE IN A MAGNETIC FIELD

1. INTRODUCTION

The work presented in the pages that follow arose out of an
attempt to clarify certain aspects of the interaction between an
electromagnetic field and a material object moving in it. In particu-
lar, it was desired to study in detail the role of the field energy in
such a situation. It was felt that an understanding of the energy
balance in a process in which a field interacts with a material
medium would Be useful in formulating magnetohydrodynamic prob-
lems from the point of view of energy conservation.

Specifically, the magnetohydrodynamic problem we were
interested in was that of the adiabatic expansion of a cloud of con-
ducting gas in a uniform magnetic field. This problem proved to
be of extreme complexity, and on exploring possible approaches that
would simplify the problem, we attempted to formulate it in terms
of overall energy conservation. It was hoped that some information
about the shape of the expanding cloud would be obtained by using the
condition that the sum of the kinetic and internal energies of the gas
and the energy in the field has to be constant. In setting up the prob-
lem in this way we found that a distinction must be made between the
energy stored in the field that is available as work and what is
ordinarily called the field energy.

To understand this distinction fully we undertook to study in
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detail the following problem: a perfectly conducting sphere is
placed in a uniform magnetic field and by some external means the
radius of the sphere is changed. An energy balance was then made
which showed what happens to the ene rgy between the time the
original static field is disturbed and the time the transients have
disappeared and the field is again static, Some periodic motions
of the radius were also considered. The results of this study were

[1]

reported in a paper by the author' !, and are given here with minor
changes. In a second paper by M. S. Plesset and the author[ 2] the
torque on a permeable ellipsoid in a uniform magnetic field was
calculated by energy methods. In Ref. 2 only the initial and final
states were considered without a detailed consideration of the flow of
energy in the interval of time during which the field changes from

its initial to its final configuration. The results obtained in that
paper apply to the interaction of a uniform field with a material
medium of finite extent but of arbitrary geometry. Because of the
more general scope of this problem, it is impossible to analyze the
transients. Moreover, only slow changes are considered, in con-
trast with the problem studied in Ref. 1, where the effects of the

speed of the boundary are fully taken into account. Only the work

that appears in Ref. 1 is reported here.

[1] G. Venezian, "Radiation due to the Radial Motion of a Canducting
Sphere in a Magnetic Field, " Report No. 85-25, Div. of Eng. and
App. Sci., California Institute of Technology (June, 1963)

[2] M. S. Plesset and G. Venezian, "Free Energy in Magnetostatic
or Electrostatic Fields, " Am. J. Phys. 32, 860 (1965).
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2. FORMULATION OF THE PROBLEM

2.1 Field Equations

The problem we are considering is to find the electromagnetic
fields outside a spherical region of varying radius. It is assumed
that in this region there are no sources, so that the fields obey

[3]

Maxwell's equations for a vacuum ,

VXE = - %E, (2.1)
Vxﬁzgg, (2. 2)
V-B=0, (2.3).
VD=0, (2. 4)
where
B =¢E and B =p H

(M. K. S. units will be used throughout.)
Since there are no charges, it is possible to derive these

fields from a vector potential A by putting

B =VXA, (2. 5)
then by Eq. (2.1)

- 5A

Fo=- s (2. 6)

[3] W. Panofsky and M. Phillips, Classical Electricity and Mag-
netism (Addison-Wesley, Reading, Pa. 1956), p. 143.
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and from Eq, (2.4) we obtain that
0 e
'é-{ (V * A) =0 .

which implies that V- A is a function of the space coordinates only.

A function can be incorporated into A in such a way that
V:'A=0, (2.7)

By putting Egs. (2. 5) and (2, 6) into (2. 2) we obtain the wave

equation
o = 1 9%A
VXVXA)+ = ——=0, (2.8)
2 2
c ot

Equation (2. 7) shows that only two components of A are
independent. To solve a problem with cylindrical symmetry, il is

convenient to write A 1in terms of two scalar functions u and v,

instead of in component form, as follows:
Al(r,0,t) = ”é’¢u(r, 0,t) +V xé’q)v(r, 0,1t) (2.9)

where (r,0,¢) are the spherical polar coordinates of the field point
and ae:g is the unit vector in the ¢ direction. Here we have
explicitly shown that A is not a function of the angle ¢, and is thus
cylindrically symmetric. When A is written in this form, V - A
is zero; the divergence of the first term is zero because it does not
depend on ¢, and the second term has zero divergence because it

is the curl of a vector.
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From Eq. (2.9)

——’-_-’_..._}L_.._.—.é_ . _-—» 1_@—
VXA =e ——==p 89(5311r1611) e@?&)r(ru)
o|T 5.2 286(sin686 sin V)’ y
T r
and
VX(VXE)= -2 —2 2 ,1_._3,%_( ) 4L _@_( L8 (ging
T T Crrain® B0 T oop? e 2 0 —7—p Hg \sin v))
+o. 12 -@E—(rv)+l_§_( L 2 (in ov)
01 dr | 5 2 r 90 \'sin 0 80 V)
—-é—; }-i(ru)ﬁ-—l—mm@-—(m.lm "§-(Sin9u) (2.11)
¢ T 5.2 r2 80 \sin 6 060 . .

It follows that both u and v must satisfy

82
81'2

2
1 9 1 9 , . 1 8% _
(ru) * 556 sino g SR OW) -5 o =0 (2.12)

1
T

In Appendix A it is shown that the solution of this equation satisfying

the radiation condition of outgoing waves at infinity is

u = Z Lpn(r,t)PL(cos 0), (2.13)

where

r

n f (t-r/c)
Y (r,t) = r [-1; -%} Jlm-f—m,\ (2.14)

and fu(t - r/c) is an arbitrary function, which must be determined

from the boundary and initial conditions of the problem.
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The components of the field vectors can be expressed in terms
of u and v by making use of Egs. (2.5), (2.6), (2.10) and (2. 11).

The resulting expressions are:

1 9,
T “rsinewgé(sul Ou) ,

N Lo (1 9 ..
B¢~ \:r 81‘Z (rv) + 289(sin9 96 (31n9v))] ?

We shall need these formulas only for the special case v =0,

u = F(r,t) sin 8. In this case the field components become

Br: —IZ-_Fcos 6, (2.15)
B, = p - agl;F) sin 6 , (2.16)
B,= E, = By =0, (2.17)
E, = - 2o sin 0. (2.18)

Also, since sin 0 = Pi(cos 0), from Eqs. (2.14) and (2.15) it follows

that F(r,t) must be of the form
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f(t - r/c) + Lt - r/c)
Fr,t) = - > c . (2.19)
r

Note that a termm Kr may be added to F since r sin 6 1is also a
solution to Eq. (2.12). The expression sin 6’/1'2 is also a solution,

but this can be included in f by adding a constant to it.

2.2 Boundary Conditions

To solve Maxwell's equations we must know the conditions
that the field vectors satisfy at physical boundaries and at infinity.
At a stationary interface between two media the field vectors satisfy

the conditions

nX(El-EZ):O
n - (Bl-BZ):O

where n is the normal to the boundary. If medium 2 is a perfect
conductor, -1?52 =0 and V X EZ = 0. Therefore, by Eq. (1.1) the
time rate of change of EZ is zero, and if we assume gz was equal

to zero initially, the boundary conditions for a stationary conducting

surface become

nXE =0

=R

0. (2. 20)

o

TFor time varying fields, only onc of these conditions is indcpendent,
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i

-
since E and B are connected through Maxwell's equations.
The boundary conditions are changed if the surface is moving.

[ 4]

For a boundary moving with velocity _{;, the correct conditions are
7 X(E +v XB)=0
n-B=0, (2. 21)

Again, only one of these is independent for time varying fields, In
our case there will be no static electric fields so that it will be con-
venient to use the condition n -+ B = 0 since it applies to both
stationary and moving surfaces., We shall see that when this condition
is applied, the tangential electric field will be zero if the surface is
stationary or -1 X (_;; X —g) if it is moving.

We must also impose the condition that at infinity the magnetic

field should reduce to Bo;z’ with components

B
r

1]

B cos 8,
o

B

g =" B081n 6. (2. 22)

The corresponding vector potential has only one component,

1 .
A(p =5 Bor sin 6 . (2. 23)

[4] R. Tolman, Relativity Thermodynamics and Cosmology (Oxford,
1934), p. 112
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3. UNIFORMLY EXPANDING SPHERE

3.1 Fields

In this section we consider the problem of a sphere that
starts from zero radius at t = 0 in a uniform field Bo-gz’ and
expands at a uniform speed v until it reaches a radius a. The
sphere then stops expanding.

In Fig. 1 the motion of the surface of the sphere is shown in
the r-t plane as the line OPN. This line, and the characteristics
PQ and OR divide the plane into four regions. In region I the
motion of the sphere has not yet been felt, and the field is the uniform
field that existed at t = 0. In region II the signal generated by the
expanding sphere affects the fields. Similarly in region III the fact
that the sphere has ceased to expand is felt. Region IV is the
interior of the sphere. We must now solve the field equations in
regions II and IIl, From the axial symmetry of the problem it is
evident that the magnetic field can have no ¢ component. Thus v
in Eq. (2.9) is zero and the vector potential will only have a ¢

component, In region I the vector potential is

n _ 1 -
A‘P =5 Bor sin 0 (3.1)

which gives rise to a uniform field Bogz‘ In region II, according

to Eq. (2.13) we can write

A§(02) = Sj Pil(cos G)U,Jn(r,t) .
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Figure 1. r-ct plane for the expanding sphere.
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Since the line r = ct, which is the boundary between I and II,
is not a physical surface, the field components must be continuous

there. It follows that A and its derivatives are continuous. This
(1)
@
angle 6. Therefore

requires that A and A;Z) have the same dependence on the

(2) £(n) + = £'(n)
A =K |r - sinf, m=t-r/c (3.2)
@ L2

as in Eq. (2.19). We have added the term Kr to account for the
applied field.

At r = ct, A(l) = Ag(p2)’ and therefore K = i BO and

@ 2
£(0) = £(0) = 0 , (3. 3)
To find f(n) we apply the boundary conditions at the surface
of the sphere, r = vt. On this line n=t(1-8) and r = Ben/(l - B),

where B =v/c. Since m = t(l-p), Br = 0 on this line, and using

Eq. (3.2) we obtain

f(n) +Z£'(n)

r - 5 =0
r
at
r= (3073/(1 - 6) )
or
1-p 1 g 2
f'(n) + — f(n) = 5> N (3. 4)
B (1-p)
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This is a linear first order differential equation and can thus be

integrated to give

1 (1+p)/B <>p°

Carrying out the integration, and applying the condition £(0) =0

from Eq. (3.3) we obtain

333
c B

- p)2( +2p)

which also satisfies the second condition f'(0) = 0. It can be verified
that this form of £(n) also satisfies the condition 'E¢ = —VB9 as
required.

The arguments used in obtaining the form of Afpz) apply to
A((p3), Moreover it is clear that in this case too the coefficient of

r sin 6 is 1 B . Therefore
20

(m) + = g'(n)
A‘”:%Bo[r—gn an}sin@. (3. 6)

@ 2

To find g(n) we apply the boundary condition B.= 0 at r = a. This
gives

g'tn) + £ g = ca’

which can be solved to give

g(n)=a3+Mexp [- 53—] )
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where M is a constant of integration. This constant can be evalu-
ated by making’ A¢ continuous across the boundary between
regions IT and TII. The equation of this boundary is 1 = 21-p .
Ag(DZ) - AS)

Putting on this line we get the pair of equations

M [ LB - a’(1- p)

B 1+28 ?
Mowp [- 58] 3a%p
*P B )T TTFzp

both of which must hold in order that the previous equation be
satisfied for all r on the boundary line. Both expressions lead to

the same solution,

3
- gy 152

so that

a

gn) =ad | 1- 38 exp[l—:g@——ﬂ} . (3.7)

We can now write down expressions for the components of E
and B by making use of Kqs. (3.1) - (3.4) and the expressions for
f(n) and g(n) which we have just obtained.

For region II, % l—é—é- >n>0
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v
]

33 2 2
: _Kn'c?  3Kn"c
Bocose{l r3 rz J \

o
f

3 3 2 2
1 . Kn'c 3Kn"¢ 6Knc
o > B sin 0 [2 + 3 + 2 = (3.8)

=
I

22
—?ZKB csin@{nc .;_E_D_EZI
@ 2 o)

3
where K= g and n=t- r/c .
(1-p)"(Q+2p)

In region III,

(3.9)

The fields evaluated at the surface of the sphere are:



-129-

B -0
I
3 . 1+
By = - 5 Bo sin 6 i _(5)(1‘2 35) (3.10)
= 38 sin Bl + p)
Eo = 280 s O+ 2p)

for 0< t<a/v, and

B =0
T
=-2 S l-E.E]
By ZBo sin 0 |1 1‘*‘2[‘36Xp[:[3 - (3.11)
E =0
¢

for t> a/v. It is interesting to note that while the sphere is ex-
panding the fields at the surface remain constant, and also that the
electric field Erp is not zero but, as required by Eq., (2.2l), equal

to —vBe.

3.2 Energy Balance

It is of interest to determine the amount of work that must be
done to make the sphere expand to its final radius, and in what way
this energy is expended. To do this we calculate the radiated energy,
the energy stored in the field, and the mechanical work requircd for
the expansion, It will be found that energy is actually removed from
the field and transformed into radiation. In addition, the work per-

formed against the surface stresses will also appear in the radiation
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field.

(a) Radiated Energy. To achieve a thorough understanding
of the physical principles involved, we evaluate the total flux of
energy through the surface of a sphere of radius R, R > a. From
Fqgs. (3.8) and (3. 9) the radial component of the Poynting vector

'—S’=§><ﬁ is

| 2 2 33 2 2
(2 _ 3c stinzexz(” c +2nc)l:_2_+n ¢, 3n +6’qc} ’
r 4 o] 2 T K 3 2 T
(e} r T r
(3.12)
(3) _ 3¢ L2 .2 B a a
Sr = 40B sin 91+2{3?(1 —1:) X
(Z+.e£)e 1P cn]. 38 2 1_§+§E_)ex [20:8). zen
e xp[: g a 1+2 r( ro 2 P p a]'
(3.13)

The total flux of energy through the surface of a sphere of

radius R is

0 0] 21 LI
W:f = S‘ dtS de § R“ sin 6] Sr] r=RdH . (3.14)
o o) o)

Since S is given by the two expressions (3.12) and (3.13), Wf
splils into lwou inlegrals, W§2) and WJ(E'3)’ which we now evaluate.,
In both cases the angular dependence of Sr is sinZO, and thus the

integration over angles gives

2 T
g dgog sin> d6 = %1-’. (3.15)
o] (o]



-131-

A further simplification results if we change the variable of integration

from t to m =t - R/c., With this change,

5 BZ 2 2 al-p
(2)_ TTOKCR gc B@()d
Wf - P‘O . o 2 T] T] 3
where
55 44 .33 ' 2 2 2
&_(n) = < $5nc” plante” oMy, 2(1-B)~(1+2B) 7 m"c
2 5 e R2 [ B3 ] RE
N 40-9)%0+28) ne
3 R °
p
so that
(2) é“Bi R 1 3 2 22
wi?) - 22 [ £ da-p’ + Ppa-p)? +30%6%0-p)
Po  (1-p)(1+2p)

b o ap® + 20-pRaip)
+2p0-p)(1+2p) | (3.16)

where @=a/R. Also

2
2mB [o'e}
3) _ ° R2af1-on-B 1-p
W(f = ™ cR7a(1 0!)1_,_26 exp[ ‘3]5‘ . <I>3d1'],
g

ol

where

®, = (2+ Cﬂ3)eXP[‘ %ﬂ} *-1%%5 o(l- a+ &Z)eXP [L—E- —Z'C'ﬂ] ,
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so that
2

2B 2 : 2
o a Rp 3, 3 ol-ata”)

3) _
W

By adding Wgz) and W:(E3) we obtain the total flux:
2.3
T a 2 A3
W= Lo [(,4 +126+29ﬁ BY) 4 o3 } . (3.18)
Yo L @+zp®C-p)
Wf thus contains two terms, one independent of R which is the total

radiated energy Wr and a second term which varies as 1/R3, but is
independent of B, and which can be interpreted as representing the
field energy which is pushed out from one region in space to another,
In other words, only part of the flux through a sphere of radius R
represents radiation, the remaining part of the flux is energy which
is removed from the field inside this sphere to be stored in the field
outside it. This interpretation will be verified in the calculation of
the field energy.

By putting @ =0 in (3.18) we obtain the true radiated energy

23 9,2 1 .3
TrBOa l+3[3+-45 —ZB

W ==
T

: — 5 : (3.19)
o (L+2p)7(1 - p)
(b) Energy Extracted from the I'ield. The field components

at t=0 are

B =B cos 8
o)

B,.,=~-B sin .
o
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We can obtain their values at t = c0o from Eq. (3.9) by putting n = oo,
They correspond to the fields surrounding a perfectly conducting sphere

of radius a in a uniform field at infinity:

to
1

Bocos (1 - as/r3) ,
(3. 20)

. 3,3
By = - B_sin 6(L +2a’/r”)

The field =nergy density is given by —2% (Bi + BS), and
although the total field energy for the above fiefds is infinite, the
change in the total field energy can be calculated. Since we want to
verify that the second term in Eq. (3.17) is actually a transfer of
energy from one region to another, we find the change in field energy

inside a sphere of radius R,
2T i R
1 . 2 2 2
AW = '?TII; L de §051n 0 40 go r° dr {Bﬁnal- Binitial} .

Since Bfinal is mero inside the conducting sphere, this splits

into two integrals, one for r > a, and one for r < a, The second

integral is L BS multiplied by the volume of the sphere, % Tra3.,

Zp.o
Hence

i

B2 R 3 , N
AW §sin9d9§ {:9—3(2 cos“0 + sin” 6)

Mo 0 a R
6 > 1 2 '2 ZTra3Bi
+3—é(cos 6+Zsin 9)}1‘ dr-————-‘:,)—-———- ,
R Mo
Tra3Bé najBi 063
- - ] , (3. 21)

3tk Po



-134-

where O= a/R as before. Thus we see that the net change in field
energy is negative and given by

1ra3]3 2
o]

AWt = - -"—"g;;—- (3. 22)

while the second term in (3. 21) exactly balances the second term in
the expression for the energy flux,
(c) Mechanical Work. The mechanical work done in expanding

the sphere WW can be calculated by conservation of energy:

w
W

1

W_+ AW, ,

r t
3,2

_ Ta Bo (1_”3)3 3. 23)

M 2 )

o (1+2p)%0-p)

It should be noted that the same answer would result from a more
local conservation of energy, namely

W = W.+AW,
w i

Since electrodynamic problems usually do not involve moving
boundaries on which the surface stresses may do work, it is instruc-
tive to calculate the mechanical work directly, This is most easily
done by considering the surface stresses in the proper frame of the
conductor. In this frame the Poynting vector is zero at the surface
of the sphere, and the only force on the surface arises from the
Maxwell stress tensor, there being no radiation reaction.

Consider an element of surface on which we attach a local
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Cartesian system of coordinates with the (x',y',z') axes along the

(r, 0, ¢) directions respectively. In this frame the electric field is

zero, and the magnetic field has only one component, B' which is
1

equal to BO outside the conductor and zero inside. The stress

tensor will thus have different values inside and outside the conductor.

The net force on the surface element is

— 1 1 !

dF =T .+ dS - T  ds
out in
12
=e (T -0)dS=-e =X d5
X' TxXX X 2|J.o

and the pressure on it is

Zpo

- 1 !
Now pressure is a four-scalar, while BY and EZ transform as

follows:
B = v(B_ +vE /CZ)
vy v z
1 ‘ )
E, =vy(E, + VBy)
where »
2.-1/2
v=1(- vz/c ) /
l -
But Ez‘ = 0 and therefore Ez = - vBy as we saw previously. Thus

2

1 v
B = [B —-——-—B]:B ,
y YLy T 27y Y/y
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and
2
B
-1 Ty _ 1 2,1 _ Q2
p=p'=5——% = 5—B 1-p).
o v o]

Thus, while the sphere is expanding, the pressure on its surface is

2
9Bo 1+ {3)3‘
8o (1 - B+ 2p)°

sin~ 0,

where we have made use of the expression obtained for the field at

the surface, Fq. (3.10).

The work done in expanding is thus

2
A% 2m T a 9B 3
W =§ pdvzg dgoS‘ sin9d9§ rzdr8 © 4in26 (1+B) .
" ° ° o %o (1-B)1+2p)

O

3,2
Ta BO (1+13)3

bo  1-p)+2p)’

I

¥

as before. In Fig. 2 the work done is plotted as a function of §.

Some interesting points have appeared in this energy balance.
One important point is that in spite of the fact that the presence of a
sphere in the field decreases the field energy, work must still be done
to put the sphere there., This is true even in the case of expansion at
infinitely small speeds, and appears in the non-relativistic treatment
given in Ref, 2. Another result which should be noticed is that the
work done ‘and the amount of energy radiated increase rapidly with

the speed of expansion.



WORK / MIN. WORK

-137-

0O - 02 04 06 0.8
B

Figure 2. Work done by sphere in the expans;mn
as a function of speed. '

1.0



-138-

4., UNIFORMLY COLLAPSING SPHERE

4,1 Some Paradoxes

If one tries to apply the results of the previous section to a
collapsing sphere, the conclusions are perplexing. The calculation
of the field energy is certainly valid when applied to the problem of
a sphere which starting from a radius a shrinks to zero radius. So
that if in the previous case the energy decreased, in this case it must
increase by the same amount. Furthermore, the Maxwell stresses are
still acting to push the sphere inward, and, since in this case the walls
yield, work is done on the sphere. The radiation condition still requires
outgoing waves, to satisfy causality. Where then is all this energy
coming from?

The resolution of this paradox illustrates another unusual
situation in electrodynamics. We shall find that whereas waves are
in fact travelling outwards, energy is travelling in. This is possible
because the field contains an inexhaustible supply of energy, so that
the waves in their outward motion constitute an outward rush to
borrow energy, a debt which is repaid as the wave borrows energy
from more and more remote regions. 'This cascading borrowing ends
when the bill is collected at infinity, presumably as work done by the
currents which maintain the uniform field.

Another gquestion arises from this cxplanation. Wec have scen

that in expansion energy is radiated, and anticipating the results that
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follow, we know that during collapse energy is drawn in from

infinity. By e};panding slowly, the radiated energy is minimized,
although it cannot be made zero. Is it not possible then, that at

some speed of collapse, (say by collapsing rapidly), the energy drawn
in will be greater than that required to expand the sphere to its
original radius? And by repeating this process, could we not remove
all the energy from the field?

It will be seen in the sections that follow that the answer to
both questions is in the negative., The amount of work doné on the
sphere decreases with the speed of collapse, and thus an oscillating
sphere would radiate rather than extract energy from the magnetic

field.

4,2 Fields

The problem considered in this section is that of a sphere of
radius a which starting at t = 0 collapses at a uniform speed
v = Bc until its radius is zero. In Fig. 3 the path described by the
surface of the sphere is shown in the r - t plane as the line MN,
As in the previous case, the characteristics NQ and MP, together
with the line MN, divide the plane into four regions. In region I the
static field which was present initially is unaffected. The character-
istic NQ carries the information that the sphere is collapsing, and
the fields in region II reflect this fact., Similarly the characteristic
MP carries the information that it has stopped contracting (in fact,
that the sphere has disappeared). The fields present after this news

has arrived are those in region IIL
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Figure 3.

r - ct plane for the collapsing sphere.
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In region I the vector potential is

1 . 3,3
AS) = > Bor sin 6(1 - a~/r”) (4. 1)

which gives rise to the fields given in Eq. (3.20). In region II, as

discus sed previously, A‘P will be of the form

2

B f(n) += £'(n)
A;Z)::—Z—E)[r—-—————g—————JsinE), (4. 2)
T

where 1 is now defined by n =t - r(r—a)/c, which differs slightly
from the previous definition,

The two expressions for Aq) must match along the boundary
between regions I and II, which is not a physical surface. This is

the line ct=r -a or m =0, Therefore

£0) = a>, £(0)=0. (4. 3)

These will be the initial conditions required to determine f(n) from
the differential equation,

This differential equation is obtained by applying the boundary
condition Br = 0 at the surface of the sphere, t = (a-r)/v. This

requires that

£(n) += £'(n)
C _ _ __Bcn
r - 1-2 =0 at r=a ———————-—1+ﬁ

or
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1 1 3
f(n>+—j—_;§-%gf(n>-c [2-£5] - (4.4)

ol

We can see that the two conditions (4. 3) are consistent with this
equation, for, if we put m =0, and replace £f(0) by a3 and £'(0)
by 0, Eq. (4.4) becomes an identity., This guarantees that if the

3 holds, the second condition will be satisfied

initial condition £(0) = a
automatically.

The solution of the equation is

-1 -1
3
t = < exp - {[2- F] o) \(exo [[2- 5] an)[ 2 - B an
3 3 (1+8)/B
_ c (1+B) n 3 n
= T2 v [ )
where N 1is a constant of integration, From Eq. (4.3),
(1-2p)/B
B_|c
N==- 135 (Z)
so that
3 a  pn 3 e (1+B)/B
=g | e[S e[ dgE] | @
In region III, A¢ must be of the form
r 1
3) 1 gn) + cg'tn) ]
A¢ =5 BO [ rZC sin 0, (4. 6)

where we again take =t - (r-a)/c. Since Arp must be continuous

across the boundary between regions II and IIl, we must have
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1}

AEDZ) = Aéf) on the line t=a/v+r/c or n=a(l+f)/Bc. On this line

f{(n) = 0 and f'(n) = 0 so that

g (a(gﬁ) - g (i%r_@_)) -0 . (4. 7)

The further requirement that the fields remain finite at r = 0 makes
g(n) = 0 and thus

3 1 .
A((p): -Z—Bor sin 0 , (4. 8)

which means that the fields are B = Bozz, E=0 throughout
region III. This is a rather surprising result, for it might have been
expected that, as in the problem of expansion, the fields would decay
to this final value. We see instead that they reach this value im-
mediately upon arrival at the signal carrying the information that the
sphere has disappeared. This means that the information that the
sphere was going to disappear was carried in the signals emanating
from the surface throughout the period of collapse. Had the con-
traction not been carried to completion, however, we would again
have obtained decaying fields in region III, for in this case the
information that the sphere was collapsing would suddenly have had
to be corrected to say that the collapse was incomplete.

The only time dependent fields in this problem are those in
region II. From the expression (4. 5) for f(n) we can derive the field
components for this region. These are rather lengthy expressions,

so we shall write them in terms of f(n) and its derivatives, and

list these below:



-144-

B =B cose{l_&l_f'(n)]
r 0

3 2
I r C
__1 . f(n) . £'(n) , £"(n)
By = 2B0s1n 9{z+ 3 + 3 + > , (4.9)
I cr cC T .

E = 1’-B sin@(f'(n) + f"(n)}
270

] rZ rc

where
3 (1-2p)/p
£(n) = 1_c2ﬁ !: L+p)r> - 38 (_3) ,,.(Hﬁ)/ﬁ}
83 [ 1-2p)
f!(n) = 13_2Cﬁ {"TZ + (%) ﬁ/ﬁ 71/ﬁ] (4.10)
3 (1-2p)/B
Moy — 3 1-
£ = T2 AT [2‘3”‘ -] & WB}
and

It should be noted that the expressions given for the field
components in Eq. (4.9) are valid for all problems in which A¢ is

of the form (4. 2).

4.3 Energy Balance

With these expressions for the field quantities we are now in
a position to calculate the radiated energy and work done. Since we

did these calculations in detail in the previous problem, there is
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nothing to be gained in going over the procedure a second time. We

shall therefore limit ourselves to giving the results.

As discussed previously, the radiated energy is negative:

3,2 9 .2 1 .3
4Tfa BO 2+3ﬁ"~zﬁ +-—2'f3

W = - o (4,11)
r 3k (1+p)%(2-p)

The change in field energy is the same as in the case of expansion,

only opposite in sign:

3,2
Ta Bo
AWt = “gﬁ‘(’)"—" o (4:.12)

The total mechanical work is the sum of these

S
1

Wr + AWZ

3.2
_ T By gop)zt+5p- 8%

Fo 1+p)%(2-p)

1]

. (4.13)

This result is plotted in Fig. 4, from which it can be seen that
the work done on the sphere is a maximum when ( =0 and decreases
to zero as P increases towards 1. The energy extracted from the
field at B = 0 is cqual to thc work that is done by an expanding
sphere at that speed. Thus we can conclude that a cyclic process will
result in a net loss of energy through radiation unless it is performed
at an infinitely slow speed. The amount radiated will increase
rapidly with the speed of the process. In the next section the fields

due to a cyclic expansion and contraction of a sphere are derived.
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Fxgure 4. Work done on the collapsing sphere
as a function of speed.
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5. OSCILLATING SPHERE

5.1 Fields

We shall now consider the problem of a sphere which
oscillates between two radii a and b by successive expansions
and contractions done at a constant speed v = Bc. We shall assume
that the process is repeated periodically and that all transients have
died out; that is,we seek a periodic solution to the problem,

The motion of the surface is shown in Fig. 5. The sphere
expands from radius a to radius b along the line PQ, and returns
to its original radius along QR, at which time a new cycle begins.
The condition of periodicity requires that the conditions that exist
along the characteristic PL must be duplicated exactly along RN,
Thus the r~t plane is divided into three basic regivns. Region lis
adjacent to the path that the surface follows on expansion, region II
to the path it follows on contraction, and region III represents the
interior of the sphere. Region II is followed by a rcgion which is
identical to region I, just as region I follows one that is identical to IL

As before, we can put

f(n) += £'(n)
AL Z 12-130 [r - ¢ ] sin 0 , (5.1)

® r2

and

> (5.2)

g(n) +< g’(n)"J
sin 0 ,
T

(2) _ 1
AQD —-—zBo{r"

where m =1t - (r-a)/c. The differential equations for f(n) and g(n)
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Figure 5. r - ct plane for the oscillating sphere.
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are obtained by applying the conditions B_=0 on PQ and QR. The

functions are then determined uniquely by putting Afpl) = A;Z) along

QM and requiring that Ag) along PL Dby the same as A;Z) along RN,
This leads to the following system of equations:
£'(n) +-Cl: f(n) = cr? along r=at -1@—_9;-31— , (5. 3)
g'(n) +-:: g(n) = cr? along r=a +T1:FB[ Z(b-a)-pcn] i (5.4)
subject to the conditions
(b-a)(1-p)\ _ . ({b-2)(-B)
f =g s (5.5)
Bec Pc
- 2(b-a)
£(0) = g ( e (5. 6)

The solutions to Eqs. (5.3) and (5. 4) are

£(n) =(K1 [a + f’-c—n] "BV 1p [a +§5—’1]3), (5.7)

1-B T T 1-RB
and : /
1+6)/8  ,_ 3
g(n) =(K2 (=" - £ + 15 [a - B ) (5.8)
where

a'=a * 2(b-a)/(11+B) .

The constants of integration K1 and KZ must be evaluated

by applying conditions (5.5) and (5. 6). These give rise to the

equations
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-(1-)/B L 1-B 3 _ (1+p)/B , 148 .3
Kb P +—1-£-Bb = Kb + 155 b

and

-{1-B) 1- 3 1+ 1+ 3
K 1-/E LB 3,00 1P

b4

from which we obtain

L-(1-2p)/B _ -(1-2p)/B

__ 68
1T 1-4p2 2"2/B _ -2/B : (5.9)
, (1+2p)/p _ _(1+2B)/P
68 b - a
K, = . (5.10)
2 1-4p° IR

The field components can then be obtained from Eq. (4. 9)’

5.2 Radiation

It is of interest to find the amount of energy radiated per cycle

by the oscillating sphere. From Eq. (4.9) the radial component of the

Poynting vector is, in terms of £(n),

BZ 1 2 .
CPe 2 (a1 g \ 214"
S. 7 I Sm@[cr +"Z( 3+2f)+ 2 3
(o] r C cC T
H
+ "'1'2 (f'z +ff")+ﬁg—-] . (5.11)
cr iy

In computing the radiated energy the terms which go to zero faster
than 1/r2 drop out. In addition since the combined functions f and
g are periodic, terms such as f' or f" integrate outto zero when

the integral extends over a full period. Thus we obtain for the energy
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radiated in one period, after making use of Eq, (3.15)

onp2 (P-a)1-p)/Be 2(b-a)/Bc

W= — [§ £"2(n) dn ¥ g"%(n) dn | . (5.12)
Zpoc LYo (b-2){1-B)/pe

Making the substitution x = a + Bcn/(1-f) in the first integral,

(b-a)(1-B)/Bc

L=\ f%m)d ,
“o

2
g gb[ 624 122K1 X—l/mﬁx-zum)/s}dx,

B Ju a+2p) RE(1+2P) B

3 3 12K
_pc 12 3.3, _ 1 -1-g)/B _ _-(1-B)/B
- 1—f3 [(1+2ﬁ)2 (b”-a7) ﬁ(1+26)(1'p) [b & ]

)
) ! [b—(2+ﬁ)/ﬁ - a'(z*‘ﬁ)/ﬁ} . (5.13)
82(2+p)

Similarly the substitution on x = a'-Ben/(1+p) transforms the

second integral into

2(b-a)/pc

I, = g"%(m) dan ,
2 g(b—a)(l—m/ﬁc

2
33 pb 12K K
e [ 362, 2 /B, "2 XZ(l—ﬁ)/ﬁ] dx |

T o laem? T pPa-en g*

33 12K
_p | 12 .33 2 (1+p)/p _ _(+P)/p
= T {(1_26)2 [v-2] + grzm [P "8 ]

) .
. *2 [b(Z-B)/B _ 2(2—6)/6]} ) (5.14)

8> (2-p)
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These expressions can be written in a simpler form if we put

b=R({+e€) , a=R( - €) (5.15)
and define
D(x) = (1 +e)* - (1 - g)X ) (5.16)

Then

L= RECRL o
a-pia+2e)®

(5.17)

3 3.3
I'Z - __EE_.C__.B._Z F(-B, €)
(1+p)(1-2p)

where

6 D(2-1/6)D(1-1/B)
(1-B)1-2p) D(-2/p)

F(p, €) = D(3) -

) 3 D*(2-1/p)DU-2/p) (5. 18)
B(1L-2p) 2 (2+p) p%(-2/p)

The energy radiated per unit tiine is

2.2
2rB"R%c 4 _
P —9 %[———-——-—-1———-——2-]5‘(5, €) + —-——-—-—1~—-——-2F(-ﬁ, 6)]. (5.19)
Po (1-p)(1+2p) (1+p)(1-2p)

In Fig. 6 this is plotted as a function of B with € as a parameter.

The power is divided by

o 22
Po = ZTTBOR C/p.o (5. 20)
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Figure 6. Radiated power as a function of speed
for various amplitudes.
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to make it dimensionless.

An intel;esting special case is obtained by assuming that the
oscillations are small, about a mean radius R. This limit must be
taken carefully, since the result will depend on whether other variables
go to zero together with €. We shall take the limit letting both € and
B go to zero together in such a way that the frequency remains
constant.

The frequency of the oscillations is

_ uPc

W= S5oF (5. 21)
and ‘
_ 2wR
Ble= <5 -

We thus have to expand D(x) for € and P approaching zero while
B/e stays constant,

Since

Me _ M

(1+e)™ = = e™ + O(e) ,

we obtain

D(n+\/€) = 2 sinh \ ,

Making use of this approximation and the definition of w we obtain

48BZ°R> e
P= —% 7 < tanh 2R
BT C
‘ 3

T 20R 2 mwe 5. 22
3po,[ wc:] €” tanh -0 . (5.22)
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The value of P/PO&'2 is plotted in Fig. 7 as a function of B/e. It is
also plotted for oscillations of finite amplitude. The figure shows
that the effect of larger amplitudes is to increase the radiated power
at any given frequency of oscillation, the effect being more pro-
nounced at higher frequencies,

Other limiting values of the radiated power may be of interest.
If we let the amplitude € approach zero, keeping P constant, we

obtain

P = —= . (5. 23)

This represents the curve labelled € = 0 in Fig. 6.
If, on the other hand, we let B approach zero with € constant,

the limiting value of P is
3 2
P =3P _B(L + 3¢ )/ e . (5. 24)

Equation (5. 24) in the limit of small € agrees with Eq. (5.22)
only if « is assumed to be small, because this assumption was made
in obtaining Eq. (5.24). In the next section the solution to the
linearized problem will be obtained. By comparing the results that
we have just obtained with those that follow, one must bear in mind
that the linearized solution is carried out for finite values of the

frequency. Thus Eq. (5.22) is the relevant one for this comparison.
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5.3 Small Amplitude Oscillations

If the bdundary conditions are linearized, it is possible to
obtain a solution for small amplitinde sinusoidal oscillations of a
sphere of radius R, By Fourier analysis this solution can be
used to obtain the fields due to arbitrary small amplitude motions
of the surface. In the next section we will also obtain a first order
correction to the fields due to a sinusoidal oscillation. The cor-
rection, however, will apply only to the case worked out, and can
only be used as an indication of the error involved in using small
amplitude analysis.

‘I'he vector potential can be split into a steady and a time

dependent part:

f(n) += £'(n)
A :A(°)+3-Bsin9[ c ] (5. 25)
e @ 2 0 rZ
where
=t - (r - R)/c
and
(o) _ 1 . 53,3
A(p =5 Bor‘sn'x@ (1 -R7/7) (5. 26)

is the static [ield outside a sphere of radius R.

The boundary condition B_ =0 applied to Eq. (5.25) gives

£(n) + L 1'(n) = rR3 - 3. (5.27)

Let the surface of the sphere move according to the equation

r = R(1 - € cos wt)
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then to first order in €, Eq. (5. 27) becomes

£(t) + ? £1(t) = 3¢R°> cos wt (5. 28)
so that
3¢R>
f(t) = — (cos wt + kR sin wt) (5. 29)
1+k™R
where
k = w/c.

To calculate the radiated energy, we make use of Eq. (5.11).
Since [ is a perivdic function, only one terin contributes to the

integral, and the energy radiated per cycle is

2nBl c2m/o 6TrZB§€2k3R6
Wr = 3 \g‘ f" (t) dt - 2 2 2
3pLOc o p.o(l +k“R7)
and the energy radiated per unit time is
3wBick4R6€2
P = . (5. 30)

b (1+K°R?)

To compare this with the answer obtained in the previous
section, we must find the power radiated by a sphere whose surface
moves in a triangular, instead of a sinusoidal wave. The motion of

the surface is described by the equation

(o 0]
r=R - _8_%3_ Z cos[(Znn;l)wﬂ
(2n+1)

m n=0
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From Eq. (5.29)

Q0
_ 24eR> N cos[ (2ot)wt] + (204)kR sin[ (2n+)wt]
i) = #5— )

Zon +(2n+1)%k%R?] (2n+1)2

and from Eq., (5.30)

§k4C€ZR6 X

N 1
)
1r3p L_:/ 1+ (2nt1) 1?R2
) n=

1928

P =

This expression can be simplified by making use of the expansion

x®
tan TX o Ax Z 1
2 o 2 2 ’
noo X +{(2n+1)
which changes P into
48B2WR€” .
P= === tanh 30%
BT ©

as in Eq. (5. 22).

5.4 Effect of Finite Amplitudes

To find the modifications that occur due to the finite size of
the oscillations, we expand Eq. (5.27) to a second order in €. To
do this we must find r in terms of 1 to second order in €.

Since
n=t+ SER- cos wt ,
cos wt = cos (wN- €kR cos wt) ,

= cos {(ekR cos wt) cos wn+sin (€kR cos wt) sin wn .
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To first order in € this is

cos wt = cos wn tekR cos wn sin wn + O(EZ) ,
so that
_ 2, .2 . 3
r=R-eR cos wn- € kR” cos wn sin wn + O(€7) .

Equation (5. 25) becomes

£(n) +-§-(1 ~€cos en)f'(n) = RI[1-(1- cos wn-€2kR cos wn sin wn)°]

= 3¢R> cos wn [l + €kR sin wn - € cos wnj .

This can be solved to the required order in € by putting
f(n) = £ (n) +€f(n) .

Then fo obeys Eq. (5.28) and is thus given by Eq. (5. 29) while f1

satisfies

fl('n) +—I§ f1' (n) = %}cos wn f(; (n) +3€R3 cos wn{kR sin wn - cos wn)

k3RBSin wn - COS N

:3€R3cosum 5 3
1 +k"R

s

from which we obtain that

€ R3 {1 + (1+2k4R4)cos 2wn *kR(2 - kZRZ)sin 2wh }
1 + 4k%R?
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Since the sine and cosine terms are orthogonal when integrated

over one period, there will be no cross terms between fo and f in

1
the integral of £12 . Thus we can compute the additional power
radiated:

1217132 4 6 4(1 +4k R2+k6R6+4k8R )
Py = 22,2 ’

HO(1+kR)(1+4kR)

so that the total power radiated is

3B 2k4R6ce2

2 2 6,6
b - [1+4€(1+4kR HiCR +4kR)

11 ] (5. 31)
1 +k“R“)(1+4k R )

p 0+ k%R

From which we see that the correction term is small if €kR <<1,
This requirement implies that the speed of the surface must be
small compared to c. This is in agreement with the results sum-

marized in Fig. 7.
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6. CONCLUSIONS

The three examples of spherical motion considered in the
preceding pages bring out some interesting points regarding the
energy present in a uniform field and the energy balance in processes
involving the deformation of a body placed in a magnetic field. The
results found are consequences of the fact that the applied field con-
sidered here does not die off at infinity, so that there is an infinite
amount of energy stored in the field. This energy is available to do
work and the field can thus become an energy reservoir from which
eunergy can be extracted or borrowed temporarily.

In the example of an expanding sphere, the sphere does work
on the field, and the field energy decreases. The sum of these
energies is radiated and eventually absorbed by the sources which
maintain the field., The work done on the field, and thus the contri-
bution to the radiated energy from it, increases with the speed of
expansion.

The contracting sphere gives rise to more curious phenomena.
In this case the sphere extracts work from the field, the amount ot
work decreasing with the speed of contraction. The field energy also
increases and thus energy is extracted from the sources at infinity.
This extraction process canuot be instantaneous, however, because
of the finite speed of propagation of the electromagnetic disturbance.
The energy balance is maintained by an outward wave which borrows

energy from the infinite energy present in the field and eventually
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recovers it from the sources. Thus, in this instance, the direction
of energy travel is opposite to that of propagation of the disturbance.
Another interesting result is obtained when the contraction is carried
out to its foreseeable end, that is, until the sphere disappears. The
fields then settle to their final values at the retarded time that cor-
responds to this end condition. It is only when an unpredictable change
occurs in the motion of the sphere that the fields decay exponentially.
The oscillating sphere radiates energy upon expansion and
recovers some of it on contraction, but the net effect is to radiate
some energy in each cycle. The results obtained were useful in
evaluating the accuracy of the linearized analysis, since the exact
answer was found to the non-linear problem. Although some error
was present, the correct behavior was obtained for the radiated
power as a function of frequency. This would indicate that the
linearized approximation may be used with confidence even for large
amplitude oscillations in problems of this sort. The error made
would be outweighed by the advantages of linear analysis, such as
superposition of mqtions of the boundary. It should be kept in
mind, however, that the motions considered in this study are highly
symmetrical and this may have some bearing on the accuracy of the

linearized approximation,
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APPENDIX A

A.1 Solution of the Wave F.quation for the Scalar Potentials

The scalar functions introduced in Eq. (1.12) satisfy the

partial differential equation

2 2

L18rg) , 1L 6 7 L B _ 1 8% _

T o2 555 L5 0 5g (sin 09) | - = =% =0.  (A.])
¥ r c” ot

The eigenfunctions of the operator

0 1 9 .
EL) I:sinQ é*é(sm'e)]

are the associated Legendre polynomials of order 1, P;(cos 8),

since

Q.

) '%( St a9 | o O Pyleos fﬂ) = n(H)P) (cos 0) . (A.2)

Therefore if we put

T

0= ) b(r.t) Plicos 0), (a.3)

¢ will be a solution of the above equation provided Lpn salislics

2
R
c2 81:2

n o, 2 aLl"n _n(ntl) o
5 r Or 2 n
T T

=0, (A. 4)

It will now be shown how the q;n can be generated. The result is

similar to the recursion formula for spherical Bessel functions.
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We first show that if L{Jn is a solution of (A.4), then

aLLJn n
llJnﬂ “%r T T \IJn (A.5)
is also a solution of that equation, with n replaced by ntl. To do
this we operate on Eq. (A.4) with 8/8r - n/4. The result is
83y 82y Ay | )
n n-2 n _ (ntl)(n+2) n, n(ntl){(n+2) 1 Lpnﬂ _
n-¢ | o BARTUNTE) L =0 .
3 r 2 2 or 2 n 2 2
or or r c 0ot
(A. 6)
8% 2 @
If we also operate on Fq. (A.5) with — * < 37 and combine with
or
Eq. (A.6) we obtain
2 2
T 2 M @iz, 1 % tan A7)
5p2 r Or 2 n+tl 2 2 °
r C ot

which is the same as Eq. (A.4) with n replaéed by n+tl throughout.

We now look for the solution which starts the chain,

LLJO. This
function must satisfy the equation
2 2
Y oy oy
St L ey 5= O (4.8)
dr 9T et bt

we find that X obeys the one-dimensional wave equation,



2 2
-‘:’——-?,f - —-1—2- 3X - g (A.9)
or c Btz

which has the solutions
X = fl(t -r/c), fz(t +r/c)

the first corresponding to the retarded potential, the second to the

advanced. If we limit ourselves to retarded solution,

] :w . (A.lO)

o} r

An expression for Lj.:n can be obtained by rewriting (A.5) as follows:
SN
Vo1 =T 37 [ Lbn] (A.11)
which after n applications yields
o_.nfl 0o f(t - r/c)
b= [?‘a‘? - ) (A.12)

This is the desired result,
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APPENDIX B

B.1 The Problem of Arbitrary Motion of the Surface

Except in the case of small amplitude oscillations, we
restricted our analysis to a patchwork of uniform motions of the
surface. In this section we examine the general aspects of the
solution of the problem when the motion is not limited to constant
speed. The solution obtained in this case will be in the form of
quadratures, which in general could only be used as the basis for a
numerical calculation.

We assume that the radius of the sphere is specified as a
function of time. Let this function be R(t). Only speeds less than c

are allowed, so

IR| < <. (B.1)
Define
n=t - R(t)/c (B.2)
and let the inverse relation be
t=S(n). (B.3)

The condition (B.1) ensures the existence of this function.
Applying the boundary condition Br =0 at r = R we obtain

the differential equation
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£'(n) + Ff(n) = cR® (B.4)

which has appeared several times before.
But

R =c(t - n) =C(S5(n) - n)
so that (B, 4) becomes
£'(n) + gy £ = (st - . (B.5)

The solution of this equation is only a question of quadratures. In

general the solution will be of the form

f(n) =exp [ g dn/(S~n)] ) c3(S-n)v2 exp [S‘ dn/(S—n)] dn .

(B.6)

The main difficulty is therefore in finding S(n). In the case
of motions at a uniform speed this task is easy, and in addition the
quadratures that appear in (B. 6) are also simple. For other types of
motion, it is difficult or impossible to find analytical expressions
for S(n), and the quadratures are correspondingly more complicated.
One way in which other motions could be considered is to start
with a function S(n) for which all the quadratures can be done, and
the only numerical work would then be to find R(t). This will not be
pursued any further in this paper, since it is doubtful that the functions

R(t) would be less artificial than the ones employed.

",



