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Abstract

Analog models provide a novel framework for understanding and developing algorithms
for computer vision. This thesis introduces several extensions to well-known resistive net-
work techniques for solving early vision problems. First, constraint bozes are developed as a
general methodology for mapping regularization-based algorithms onto stable analog hard-
ware. These multiterminal resistor systems solve low-level vision problems by minimizing
a global Lyapunov energy. Second, a circuit element called the resistive fuse is introduced
to extend these networks for discontinuity detection. This is the first hardware circuit
that explicitly implements line-process discontinuities. Since resistive fuse networks must
minimize a non-convex energy function that may contain local minima, complex annealing
or continuation methods are necessary for adequate solutions of the problem. Third, the
tiny-tanh network is proposed as a new mechanism for discontinuity detection that is not
plagued by problems with local minima. A piece-wise constant segmentation is performed

through minimization of a convex Lyapunov energy.
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Chapter 1

Introduction

This thesis studies analog models for early vision. These analog models are an active
research topic for two reasons. First, we want to build artificial vision systems for use in
robotics, factory automation, parts inspection, and other industrial applications. These
analog models are useful because they lead toward fast, low-power analog VLSI hardware.
Second, we study these models in order to understand the information processing tasks
necessary for artificial and biological vision systems.

Analog models provide a novel framework for understanding and developing algorithms
for computer vision. This thesis describes examples of analog networks for several early vi-
sion problems such as image and depth segmentation. Many real-world applications become
feasible because of the speed, size, cost, and power consumption of these networks. Besides
these advantages, however, experimentation with continuous-time nonlinear circuits has led
to some fundamental insights relevant to computer vision. Powerful analog algorithms thus
developed may prove useful even if a computer vision researcher is limited to simulating the
analog hardware on a digital computer.

The outline of this thesis is as follows:

e Chapter 1 introduces regularization theory and resistive networks.

e Chapter 2 develops constraint bozes as a general methodology for mapping regulari-



zation based algorithms to stable analog hardware. These systems find a solution by
minimizing a global convex Lyapunov energy. Convexity implies that there are no

other stable points in the energy surface other than a single global minimum.

e Chapter 3 describes an experimental analog VLSI chip for smooth surface interpo-
lation from sparse depth data. Subtraction constraint boxes are used to enforce a
second-order or “thin-plate” smoothness constraint on the data. This algorithm, as

well as most regularization-based approaches, oversmoothes discontinuities.

e Chapter 4 describes the resistive fuse, the first hardware circuit that explicitly im-
plements line process discontinuities. A two-dimensional fuse circuit successfully seg-
ments data which is scanned into the chip. However, resistive fuse networks must
minimize a non-convex energy function that may contain local minima. As in com-
puter vision, complex annealing or continuation methods are necessary for adequate

solutions of the problem.

e Chapter 5 discusses an entirely new way of dealing with discontinuities that is not
plagued by problems with local minima. The tiny-tanh network smoothes and seg-
ments data by minimizing a convex energy functional. The tiny-tanh approach is

demonstrated in analog hardware.

e Chapter 6 speculates on some future directions of this work and summarizes the thesis.

Several subthreshold CMOS circuits are shown and described in this thesis. Rather
than provide an exhaustive tutorial on this subject, the reader is strongly recommended to
review Mead’s excellent textbook on analog VLSI and neural systems [Mead, 1989]. (See
also [Vittoz, 1985]). Furthermore, since the emphasis of this thesis has been the development
of new algorithms, much can be learned by readers totally unfamiliar with analog VLSI. The

ideas developed here have utility independent of any particular implementation technology.



1.1 Analog Models

Analog computation is not a new concept. In the 1950s, electronic analog computers were
widely used to solve many types of mathematical problems, especially ordinary differential
equations and boundary-value problems (for example, see [Karplus, 1958] or [Levine, 1964]).
These analog systems provided a faster and cheaper solution to these problems than the
crude digital systems of the day. Digital computers were required whenever greater accuracy
was needed than the accuracy analog computers could provide.

The idea of using analog circuits for solving vision problems was explicitly stated by
Horn, when he proposed the use of a grid of resistors to find the inverse of the discrete
approximation to the thresholded Laplacian [Horn, 1974]. Later, Knight built an analog
network for convolving an image with a Difference-of-Gaussian filter. Gaussian convolution
was implemented using a resistor-capacitor network [Knight, 1983]. As charge diffused
according to the diffusion equation, the diffusion time determined the width of the Gaussian.

Knight also proposed a MOS switching network that alternately opened switches to share
charge in the horizontal and vertical directions [Knight, 1983]. This network implemented a
binomial approximation to a Gaussian. A similar idea was implemented by Sage in a CCD
process [Sage, 1984] [Sage and Lattes, 1987]. After an image was acquired by an on-chip
imager, it was shifted to a convolver portion of the chip. Charge would then be alternately
shared in the x and y directions until the correct amount of smoothing was performed.
Yang implemented the same binomial approximation by efficiently performing these charge
sharing operations as the image was being shifted out [Yang, 1990].

Poggio and Koch [1985] show how standard regularization algorithms map onto resistive
networks. Exploiting Kirchhoff’s and Ohm’s law, they proved that the minimum of the
regularized, quadratic cost functional is equivalent to the state of least power dissipation in
an appropriate linear resistive network, where the data are given by injecting current into
certain nodes and the solution by the stationary voltage distribution. For an overview of

the use of analog circuits for early vision, see [Koch, 1989] and [Horn, 1988].



The work in this thesis relies upon the pioneering development of subthreshold, analog
CMOS VLSI circuits for various sensory tasks by Carver Mead [Mead, 1989]. Mead is inter-
ested in understanding biological systems, and he and coworkers have developed numerous
silicon models including the retina [Mead and Mahowald, 1988] [Mead, 1989], the cochlea
[Lyon and Mead, 1988], and a circuit for auditory localization [Lazzaro and Mead, 1989].
Since analog VLSI circuits operate under many of the same power and communication re-
strictions imposed upon their biological counterparts, it is hoped that the silicon models

will provide insights into these biological information processing systems.

1.2 Regularization Theory

Numerous problems in early vision are ill-posed [Poggio et al., 1985]. A problem is well-

posed if its solution
1. exists,
2. is unique, and
3. depends continuously on the data.

A problem is ill-posed if it fails at least one of the above criteria. For example, many
edge detection techniques amount to thresholding the magnitude of some sort of derivative
of intensity data. Since derivatives amplify noise in the signal, edge detection is ill-posed
because the result does not depend continuously on the data.

Consider

d= Au (1.1)

where A is a known operator. We must solve the inverse problem of finding u from the
measured data d which is typically ill-posed. Of course, the forward problem of finding d
from w is straightforward and well-posed since A is known. The idea behind regularization

is to use a prioriinformation to constrain the problem in such a way that there is only one



unique solution that depends continuously on the data. Typically, an energy functional is
created that consists of two terms. The data term forces the solution to be close to the
data and the stabilizing term imposes constraints (such as smoothness) upon the solution.

The solution u is the function that minimizes
||Au — d||? + M| Pul]? (1.2)

where the norms are usually quadratic and the stabilizing functional ||Pul| is typically

a smoothness assumption. The regularization parameter A controls the tradeoff between

closeness of the solution to the data versus the degree of regularization. Many early vision

algorithms can be described as examples of regularization even though most of these algo-

rithms were developed before the unifying theory of regularization was applied to vision.

Examples exist in stereo [Marr and Poggio, 1976], surface interpolation [Grimson, 1981]

[Terzopoulos, 1983], optical flow [Horn and Schunck, 1981] [Hildreth, 1984], shape from shad-
ing [Ikeuchi and Horn, 1981], and edge detection [Poggio et al., 1986].

We will use surface interpolation as a problem to study regularization theory and analog
networks. Reconstructing a surface from sparse sensory data is a well-known problem in
computer vision. Early vision modules typically supply sparse depth, orientation, and
discontinuity information. The surface reconstruction module incorporates these sparse
and possibly conflicting measurements of a surface into a consistent, dense depth map.
Suppose sparse and noisy data d; are sampled randomly from a surface u. Since there are
infinitely many surfaces u that could have led to these depth measurements, the problem
is ill-posed. The usual regularizing method is to pick a stabilizing functional that enforces
smoothness. If we use quadratic norms in Equation 1.2, we must minimize the following

energy functional E(u) with respect to all possible functions u:

E(u) = / G(z) (d(z) — u(@))2 dz + A / (') 2dz (1.3)
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Figure 1.1: Resistive network for smoothing or interpolation. Data values d; are supplied by voltage sources
connected to the network with unity conductance resistors. Resistors with conductance A implement the

smoothness assumption. The stationary voltage values u; are the smoothed outputs of the network.

It is assumed throughout this thesis that G(z) = 1. In discrete form, this equation turns
into

E(u) = Z(di —u;)® + A Z(ui+1 — u;)? (1.4)

The first term ensures that the solution will be close to the data while the second term
implements the smoothness constraint. Minimizing this term forces neighboring u; to be
similar. The typical approach in computer vision is to discretize time and repeatedly descend
the gradient of the energy until a solution is found. This procedure is time-consuming even
on the most powerful parallel computers. The next section describes an analog circuit that

provides a continuous-time solution to this problem.

1.3 Resistive Networks

Consider the circuit shown in Figure 1.1. Noisy input data are provided as voltages d; and
the smoothed output values given by the voltages u;. Resistors with conductance A connect

each u; value with its neighbors. The total power dissipated by these resistors in the network



is equal to A " (u;y1 — u;)?, which is identical to the second term of Equation 1.4. Unity
conductance resistors couple u; to d; and the power dissipated by these resistors is identical
to the first term in Equation 1.4. Therefore, the network dissipates exactly the power
given by Equation 1.4. According to Maxwell’s minimum heat theorem [Maxwell, 1891],
the stationary voltage distribution is the solution to the minimization problem. Since all
the resistors are linear, the node voltages are guaranteed to converge to a single unique set
of values that minimize the total power dissipation of the circuit.

Resistor networks of this sort have a long history. Kirchoff [1845] describes what was
probably the first conductive sheet system wusing a thin sheet of copper
[Karplus, 1958]. Later, Kayan built an electrical model of thermal conducting systems
using conducting paper [Kayan, 1945]. These metallic sheet simulations were hampered by
the difficulty of obtaining uniform resistivity throughout the sheet. Evidently, it was dif-
ficult to reduce mismatches to below 10%. Karplus describes systems that use high-grade
paper which reduced variations to below 2%.! Numerous systems have been constructed us-
ing various materials such as metallic screens, conductive fabrics, conductive paint on glass,
graphite and wax models, and even conductive liquids. Later researchers used lumped cir-
cuit elements to approximate the continuous field properties of conductive sheets. Depack
[1947] and Redshaw [1948] present some of the first published reports of successful solutions
of Laplace’s and Poisson’s equation using this technique.

A hexagonal extension of the 1-D network shown in Figure 1.1 has been built in analog
VLSI [Koch et al., 1990b] [Luo et al., 1989]. This 48x48 pixel network successfully performs
interpolation and smoothing of noisy and possibly sparse data. This network used Mead’s
saturating resistor as its resistor element. This device is often called HRES (Horizontal
RESistor) since it was originally designed to model the horizontal cells in the mammalian

retina [Mead, 1989]. The I-V curve of this resistor is linear for small voltage drops and

!Interestingly, because of the high resistivity of paper compared to graphite, equipotential regions could

be specified by drawing pencil lines on the paper.



saturates for large voltage drops. The slope of the linear region, i.e., the conductance for
small voltage drops, can be varied over five orders of magnitude. The measured I-V curve
has the form of a hyperbolic tangent as shown in Figure 1.2B. The next section discusses
the implications of using nonlinear resistors, such as Mead’s saturating resistor, on network

stability and uniqueness.

1.4 Stability

Stability is an important issue to address in these analog models. Wyatt and Standley
show how oscillations may occur when stable elements are coupled together with a resistive
network [Wyatt et al., 1989]. They give criteria for guaranteeing the stable design of such
systems. Since we are constructing devices out of highly nonlinear transistor building blocks,
stability and uniqueness are pertinent issues.

As pointed out by Poggio and Koch [Poggio and Koch, 1984], the notion of minimizing
power in linear networks implementing quadratic “regularized” algorithms must be replaced
by the more general notion of minimizing the total resistor co-content [Millar, 1951] for
nonlinear networks. For a voltage-controlled resistor characterized by I = f(V), the co-

content is defined as

1%
J(V) = /O FVYav! (1.5)

For a linear resistor, I = GV, the co-content is given by %GVz, which is just half the
dissipated power P = GV?2. The co-content for linear and saturating resistors is plotted in
Figure 1.2.

If the internal dynamics of the incrementally active resistor circuit are neglected (that
is, if we neglect the fact that our circuits consist of transistors with their own, relatively
fast, temporal behavior), for any voltage input and any initial condition a purely passive
resistive network will not oscillate indefinitely but must eventually settle to some stationary

state (for more general stability results, see [Wyatt et al., 1989]). Purely passive means
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Figure 1.2: Theoretical I-V curves for a linear resistor (A) and a measured I-V curve for Mead’s saturating
resistor (B). Integrating numerically over these curves gives the co-content of the linear resistor (C) and
the saturating resistor (D). Co-content is defined by Equation 1.5 and represents generalized power for
nonlinear systems. The co-content for the linear resistor is equivalent to half the dissipated power, and thus

a quadratic function in AV, while the co-content for the saturating resistor becomes a linear function of AV

as [AV| — oo.
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Figure 1.3: Nonlinear resistive network for smoothing or interpolation. The smoothing resistors in Figure 1.1

have beén replaced by nonlinear resistors.

that each resistor’s I-V curve only passes through the first and third quadrants as well as
the origin. In other words, all resistive elements must dissipate power and no energy can
be created. This conclusion holds even if parasitic (nonlinear but positive) capacitors are
distributed arbitrarily throughout the network, provided there are no inductors. The total

co-content of all resistors will act as a Lyapunov function [Harris et al., 1989].

1.5 Uniqueness

Given that nonlinear resistive networks can be shown to converge to a stable state under
certain conditions, what can be said about the uniqueness of this stable state for arbi-
trary nonlinear resistive networks? It can be shown that a network of arbitrary topology
consisting of strictly incrementally passive resistors (i.e., where dI/dV > 0 for all V) and
ideal voltage and current sources has at most one solution, given by the unique minimum
of the co-content [Harris et al., 1989]. This theorem first appeared in [Duffin, 1947]; see also
[Birkhoff and Diaz, 1956]. A  more recent treatment can be found in

[Hasler and Neirynck, 1986] or [Chua et al., 1987].
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In the network shown in Figure 1.3, each node is connected to exactly two nonlinear re-
sistors and one linear resistor. Suppose the nonlinear resistors are described by an arbitrary

nonlinear function I = f(V). The co-content of the system is given by

T =3 (i~ d)* + Y [ rnav (1.6)

For a network consisting of passive nonlinear resistive elements, a sufficient condition to

guarantee a unique stationary network solution is

02J
—= >0 1.
ou? > (17)
for all w;. This implies:
1+ f(u; — wit1) + f'(ui —uim1) >0 (1.8)

In the worst case, this condition is satisfied if f'(V) > —1/2 for all values of V. For the
2D Cartesian case f'(V) > —1/4 for all values of Av. For sparse data, or an arbitrarily
connected nonlinear resistive network, this condition reduces to requiring the sign of the
derivative of the I-V characteristic to be strictly positive. Because the I-V curve of Mead’s
saturating resistor has the form I = Iptanh(V/V;) [Mead, 1989], its derivative is always
positive. Thus, replacing ideal linear resistors with Mead’s saturating resistors will not
cause additional solutions to appear. This treatment again neglects the possible effect of
the internal dynamics of the saturating resistor on the stability of the network.

We have shown how resistive elements implement the smoothness constraint required
for regularizing ill-posed problems in early vision. The next chapter discusses constraint

boxes that are analog models for implementing more powerful constraints.
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Chapter 2

Constraint Boxes

This chapter introduces constraint bozes—a useful mechanism for solving computational
problems that also provides a direct mapping to stable analog VLSI circuits.! This chapter
introduces a theory of constraint boxes that can be used to implement powerful constraints
that are useful in early vision.

Analog networks that solve most regularizable early vision problems can be designed
with networks consisting solely of linear resistances and batteries [Poggio and Koch, 1985].
Unfortunately, many times these networks contain negative resistances that are troublesome
to implement in analog hardware. Also, battery values may be complex functions (i.e.,
products or quotients) of measurable image quantities. This chapter proposes a new way
of implementing the resulting analog networks using a theory of least-squares constraint
boxes. Using constraint boxes, all nominal resistance values are data-independent and
input voltages are relevant image quantities.

These least-square constraint boxes are contrasted with the “exact” constraint methods

used in constrained optimization problems [Platt, 1990] [Arrow et al., 1958].

!Portions of this chapter have already been published [Harris, 1988] [Harris, 1989).
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Figure 2.1: A generic constraint box enforces a constraint F on its voltage terminals. For the kth voltage
terminal, a current I is generated that tends to push the voltage Vi in the direction which best satisfies the

constraint F. The capacitor is added to provide dynamics to the system.

2.1 Single Constraint Boxes

A constraint box such as the one shown in Figure 2.1 imposes a constraint on the voltages

of its terminals. A general constraint is given by
FW, VW, .. .V,...V,) =0 (2.1)

Vi represents the voltage at the ith terminal. Intuitively, the constraint box senses the
voltages at its terminals and feeds back currents that drive the voltages in the right directions
to satisfy the constraint. The current supplied by the constraint box to the ith voltage
terminal is

dv; oF

li=Cgf =~ 55 FG (2.2)

where G is an arbitrary constant that reflects the “conductance” of the constraint box. C
is the capacitance at each node. We will assume C = 1 without loss of generality. It will be
shown that for this choice of currents given by Equation 2.2 the constraint box minimizes

an energy of

E = %GFz (2.3)
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which is the square error in the constraint equation scaled by the conductance G.

To prove this, take the time derivative of the energy and show that it is always decreasing:

dE 1 .d _»
dF
= GF—Jt— (2.5)
By using the chain rule,
dE OF dV;
= - qrS Z=2:- .
2 - oy 2

= -2y (2.7)

since dV;/dt = —(0F/0V;) FG from Equation 2.2. Thus dE/dt is always negative (or zero)
and therefore F is always decreasing (or stationary). If G is always positive, the energy
E > 0 and therefore is bounded. G and the capacitance at each node determine the speed
of convergence of a single constraint box. We can force a constraint box to obey Kirchhoff’s
current laws by constraining all of the currents into the constraint box to sum to zero, i.e.,

3" I; = 0. This may require adding an extra terminal to the constraint box.2

2.2 Networks of Constraint Boxes

Imagine the arbitrary network of constraint boxes shown in Figure 2.2. The constraint

enforced by the jth constraint can be written as
F;(W,Vo,.. V... V,) =0 (2.8)

Vi represents the voltage at the ¢th terminal of the jth constraint box. The constraint box

current equation gives the current to the ith voltage terminal from the jth constraint box

% Actual constraint box implementations in CMOS will generally require additional connections to power

and ground.
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Figure 2.2: Arbitrary network of constraint boxes. It is shown in the text that any arbitrary collection of

constraint boxes minimizes the sum of the squares of the errors in all of the constraints.
as

OF;
I = _B—V:FjGj (2.9)

The constant G; is the conductance of the jth constraint box. By Kirchhoff’s current law,
the total current supplied to node j equals the sum of all the currents supplied by the

constraint boxes, so

ci_p = oI

dt
J
>
J

OF;
3‘; F;G; (2.10)

The total energy minimized will be the weighted sum of the squares of all of the constraint

equations. Therefore,

1 2
E= 5%:GJ—J!?]. (2.11)
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Taking the time derivative of this energy yields

because of the chain rule.

gives

dFE 1 d
= = 532G (F) (2.12)
J
dF; '
= ZG,-Fj—C-ﬁi (2.13)
J
OF; dV;
= S GiFY L0 (2.14)
- — 3V; dt

Substituting in Equation 2.10 (assuming C=1) and rearranging

dE dv; OF;
@ T 2w 2l
dv;
= '"zi:('(jt") (2.15)

which is always negative or zero. Therefore, a network of constraint boxes minimizes the

weighted sum of the squares of all of the constraint equations utilizing simple gradient

descent.

2.3 Examples of Constraint boxes

2.3.1 The Resistor

One of the simplest constraints to enforce is A = B, where A and B are the voltages of

two nodes in a network. Of course, a simple method for enforcing this constraint exactly

is to hook a wire from A to B, but this method does not generalize for more complicated

constraints and does not degrade gracefully with conflicting constraints. The constraint we

wish to enforce can be rewritten as

F(A,B)=A—B=0 (2.16)
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Applying the constraint box current rule gives

oF
Ia = —GF57=-G(A-DB)
OF
Iy = ~GF3z=G(A-B) (2.17)

Notice that these currents are exactly those that would be supplied by a resistor with
conductance G connecting A to B. Therefore, the resistive networks discussed in Chapter 1

are a special case of these constraint box networks.

2.3.2 The Subtraction Constraint Box

The next chapter discusses a surface interpolation scheme that requires an element that

enforces the constraint that A — B = C' — D, which leads to the following error equation:

F(A,B,C,D)=(A—B)~(C—D)=0 (2.18)

Assuming that G = 1 and applying constraint box theory yields

oF

Iy = -Fgr=-(A=B)+(C-D)
OF

Iy = —F;g—g:(A—B)w(C—D)

Ic = ~F2§=—(A—B)+(C'—D)

Ip = —Fas=(4-B)-(C-D)

where 14, Ip, Ic and Ip represent feedback currents that must be generated by the device.
Figure 2.3 shows a transistor realization of the above equations. As long as the differ-
ences |A — B| and |C' — D| are small, we can assume that the differential pairs are working

in their linear region. In subthreshold operation, the following constraint is implemented:

Vi/(T/0) (4 _ By = /4TI (¢ _ D) (2.19)
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Figure 2.3: CMOS implementation of the subtraction constraint circuit. This device implements the con-
straint that A — B = C — D. V; and V; are bias voltages which control the relative weighting of A — B vs
C—-D.
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Figure 2.4: This resistor network also implements the constraint A—B = C'— D at the expense of constructing

negative resistors.

The bias voltages Vi and V5 allow either side of the equation to be scaled arbitrarily. This
circuit has been implemented in a standard CMOS process and successfully tested. It is
used as a building block for the spline interpolation circuit discussed in Chapter 3.

An alternative implementation using resistors is shown in Figure 2.4. This circuit also
minimizes the same constraint F2 given above. Note, however, that negative resistors are

required. Negative resistors are notoriously difficult to build and control stably.

2.3.3 The Multiplication Constraint Box

Many times a multiplication constraint is necessary. For example, the Tanner motion
chip enforces a multiplication constraint to compute the uniform velocity of an image
[Tanner, 1986] [Tanner and Mead, 1986]. In 1D, the basic constraint necessary is k1 A = ko,

where k1 and ko are arbitrary fixed constants. The constraint equation is

F(A) = k1A — ko (2.20)
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@ A

Pad

ki —> k2

Figure 2.5: The Tanner-like multiplication constraint box implements the constraint that k; A = k; where

ky and k, are input voltages and A is the output voltage.



Figure 2.6: This resistor network also implements the constraint k1A = k; where k; and k; are input voltages
and A is the output voltage. Although the resistor value is non-negative, the resistor and the voltage values

are nontrivial functions of k; and k,.

Now the current equation is

In=—Fr— = —ky(k1A — ky) (2.21)

Figure 2.5 depicts a multiplication constraint box very similar to that used by Tanner.

Various strategies for implementing Figure 2.5 have been investigated. Building a com-
pact four-quadrant multiplier in analog VLSI that is quantitatively accurate is a difficult
task because of transistor mismatches. An alternative circuit using resistors is depicted in
Figure 2.6. The resistor required is data-dependent but always positive. However, a voltage
source is needed whose value is the four-quadrant quotient of two voltages. This design
would also have to contend transistor mismatches.

Hutchinson et al. have proposed a analog network for computing optical flow from
two images [Hutchinson et al., 1988]. The constraint-box methodology has been used to
simplify this proposal to one in which all resistors are positive and data-independent

[Harris et al., 1990b]. Furthermore, all voltage source values are relevant image quantities.
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Dennis studied the use of analog networks to solve optimization problems. He used
diodes to enforce inequality constraints [Dennis, 1959]. More recently, Chua has extended
the approach of Dennis and actually built optimization circuits using discrete op amps

[Chua and Lin, 1984]. In both of these approaches, negative resistors are still necessary.

2.4 Exact Constraint Boxes

Least squares constraint boxes are related to ideas from constrained optimization. It is
rare in early vision processing to require constraints to be satisfied exactly. Omnipresent
noise and inaccuracies present in the inputs and processing circuitry make it unlikely that
constraints should be enforced exactly. Suppose, however, that there are hard and soft
constraints in a particular problem. The hard constraints (ﬁ‘,) must be satisfied exactly
while soft constraints (F}) can be approximately fulfilled. In other words we must, minimize

the following energy functional:

1 2
E=g Z;Gij (2.22)

while satisfying F; = 0 for all values of i. One solution would be to implement Fj as a set
of constraint boxes, each with conductance G. This would lead to the following augmented

energy function:

1 A 2 1
E==N"GF2+=-5N"@G,F? 2.2
INLEFIVES (229

The conductance factor G can be increased to obtain arbitrary accuracy in the constraints
F;, provided that the constraints do not conflict. F; will be identically equal to zero in
the limit as G — oo. This technique is called the penalty method in the constrained
optimization literature [Platt, 1990] [Gill et al., 1981]. The penalty method requires solving
a very stiff set of differential equations causing instability problems for both numerical
differential equation solvers and analog hardware [Platt, 1990].

Another method for satisfying constraints exactly is to minimize an absolute-value con-
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straint energy instead of the more familiar quadratic. This would result in
E=sSGl+ 23 G,F? 2.24
- 5 ; l zl + 5 ; ] ( . )

For values of G above a certain finite value, F; will be satisfied exactly [Platt, 1990]
[Gill et al., 1981]. This method will be discussed in more detail in Chapter 3 and actu-
ally used in working hardware in Chapter 5.

Another way to enforce the constraints F; exactly is to use Lagrange multipliers. Under

this formulation, the following energy would be minimized:
7 1 afns 1 2
E= ;)\iFi + 52}01?,- + Ezijij (2.25)

If gradient ascent is performed on A, a small value of G solves the problem [Platt, 1990]

rrow et al., ertsekas, . e 1 3. GF? term is needed to guarantee stability.
A 1., 1958] [Bertsekas, 1976]. The 3 3, GF? ded to g bility
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Chapter 3

Coupled Depth/Slope Network

This chapter discusses a biharmonic surface interpolation chip using constraint boxes.
The coupled/depth slope network minimizes a second-order or “thin-plate” energy of the

surface.!

3.1 Coupled Depth/Slope

Reconstructing a surface from sparse sensory data is a well-known problem in computer
vision. Early vision modules typically supply sparse depth, orientation, and discontinuity
information. The surface reconstruction module incorporates these sparse and possibly
conflicting measurements of a surface into a consistent, dense depth map.

The coupled depth/slope model provides a novel solution to the surface reconstruction
problem [Harris, 1987]. Figure 3.1 depicts a high-level schematic of the circuit. The d;
voltages represent noisy and possibly sparse input data, the u;s are the smooth output
values, and the p;s are the explicitly computed slopes. The vertical data resistors (with unity
conductance) control the confidence in the input data. In the absence of data these resistors
are open circuits. The horizontal chain of smoothness resistors (each with conductance A)

forces the derivative of the data to be smooth. This model is called the coupled depth/slope

! Portions of this chapter have already been published [Harris, 1986] [Harris, 1987] [Harris, 1989)].
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Figure 3.1: The coupled depth/slope model. The data d; are supplied to the network through unity con-

ductance resistors. The subtract constraint boxes compute an explicit representation of the derivatives p;
which are smoothed by resistors with conductance A. The stationary voltage values u; are the final smooth

outputs.
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C

Figure 3.2: Single subtract constraint box. This device enforces the constraint that A — B = C.

model because of the coupling between the depth and slope representations provided by the
subtraction elements. The subtractors explicitly calculate a slope representation of the
surface. Any depth or slope node can be made into a constraint by fixing a voltage source
to the proper location in the network. Intuitively, any sudden change in slope is smoothed
out with the resistor mesh.

The tri-directional subtractor device (developed in the last chapter) is responsible for
the coupling between the depth and slope representations. The subtract constraint box is
shown schematically in Figure 3.2. If nodes A and B are set with ideal voltage sources,
then node C will be forced to A — B by the device. This circuit element is unusual in
that all of its terminals can act as inputs or outputs. If nodes B and C are held constant
with voltage sources, then the A terminal is fixed to B+ C. If A and C are input, then B
becomes A — C. This element can be constructed with the A — B = C — D constraint box
(shown in Figure 2.3) by setting the D terminal to a constant reference voltage that defines
“zero” slope. C can now be positive or negative with respect to the reference voltage. When
further constraints are added, this device minimizes an energy proportional to (A—B—C)2.

The energy minimized by the constraint box is different, in general, from the actual power
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dissipated by its transistor implementation. In the limiting case of a continuous network,

the total energy is
du \? dp\?
= —d)? w_ @
E—/(u d) +G(dm p) +z\(dm) dz (3.1)

The three terms arise from the power dissipated in the subtractors and in the two different
types of resistors. Energy minimization techniques and standard calculus of variations have
been used to formally show that the reconstructed surfaces, u, satisfy the 1D biharmonic
equation between input data points [Harris, 1987]. In the two-dimensional formulation, u
is a solution of

V2v2y =0 (3.2)

This interpolant, therefore, provides the same results as minimizing the energy of a thin
plate, which has been commonly used in surface reconstruction algorithms on digital com-
puters [Grimson, 1981] [Terzopoulos, 1983].

In discrete terms, this energy becomes
E(uw) =) (ui — di)® + G(uiy1 — ui — pi)® + A(pi — pig1)* (3.3)
i

The variable G is a measure of the conductance of the constraint box. As the value of G
increases, the constraint box accuracy becomes more exact. This is an implementation of

the penalty method in constrained optimization [Gill et al., 1981].

3.2 Hardware Implementation

An eight-node 1D network of the form shown in Figure 3.1 was designed and fabricated in
3pm CMOS. Three important components of the model must be mapped to analog VLSI:
the two different types of resistors and the subtractors. The vertical confidence resistors

are built with simple transconductance amplifiers (transamps) connected as followers. The
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Figure 3.3: A negative-resistor solution to the 1D biharmonic equation. This circuit is equivalent to the

network in Figure 3.1 in the limit as the conductance of the constraint boxes (G) goes to infinity.

bias voltage of the transamp follower determines its conductance dnd therefore signifies the
certainty of the data. If there are no data for a given location, the corresponding transamp
follower is turned off. The horizontal smoothness resistors are implemented with Mead’s
saturating resistor [Mead, 1989]. Since conventional CMOS processes lack adequate resistive
elements, we are forced to build resistors out of transistor elements. The bias voltage for
Mead’s resistor allows the effective conductance of these circuit elements to vary over many
orders of magnitude.

The circuit shown in Figure 3.3 computes the same solutions as the coupled depth/slope
network in the limit as G — oco. Interestingly, a 2-D implementation of this idea was
implemented in the 1960s using inductors and capacitors. Proper choice of the frequency
of alternating current allowed the circuit elements to act as pure positive and negative

impedances. Unfortunately, negative resistances are troublesome to implement, especially
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Figure 3.4: Measured data from the second-order chip (solid line) and simulated first-order result (dashed

line). The second-order interpolant is smoother and also extrapolates beyond the data points.

in analog VLSI. Recently, a 2D approximation of this network was constructed in analog
VLSI [White and Abidi, 1989] [Kobayashi et al., 1991]. Their chip dissipates over 2 Watts
of power; presumably much of this is necessary for the negative resistor elements. One of
the big advantages of using constraint boxes to implement early vision algorithms is that
the resulting networks do not require negative resistances.

Figure 3.4 shows a sample output of the circuit. Data (indicated by vertical dashed lines)
were supplied at nodes 2, 5, and 8. As expected, the chip finds a smooth solution (solid
line) that extrapolates beyond the known data points. As discussed in Chapter 1, a single
resistive grid minimizes the first-order or membrane energy of a surface. A disadvantage
of the coupled depth/slope implementation is its sensitivity to transistor offsets due to the
nature of the derivative operation. The first-order resistive network implementation using
Mead’s saturating resistor is guaranteed to have zero voltage offset.

Figure 3.4 also shows the simulated performance of a first-order energy or membrane
energy minimization. Data points are again supplied at nodes 2, 5, and 8. In contrast to

the second-order chip results, the solution (dashed line) is much more jagged and does not
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Figure 3.5: Graphical comparison of 1D analytic Green’s functions for first-order (dashed line), second-order

(dotted line) and Gaussian (solid line).

extrapolate outside of the known data points (for example, see node 1). Interestingly, psy-
chophysics experiments support the smoother interpolant used by the second-order coupled
depth/slope chip [Grimson, 1981]. Unlike the second-order network, the first-order network
is not rigid enough to incorporate either orientation constraints or orientation discontinuities
[Terzopoulos, 1983].

Image smoothing is a special case of surface interpolation where the data are given on
a dense grid. The first-order network is a poor smoothing operator. A comparison of the
analytic Green’s functions of the first- and second-order networks is shown in Figure 3.5
(the first-order shown with a dashed line and the second-order with a solid line). Note
that the analytic Green’s function of the second-order network (solid line) and that of
standard Gaussian convolution (dotted line) are nearly identical. This fact was pointed out
by Poggio, Voorhees, and Yuille [1986], when they suggested the use of the second-order
energy to regularize the edge detection problem. Gaussian convolution has been claimed
by many authors to be the “optimal” smoothing operator and is commonly used as the

first stage of edge detection [Marr and Hildreth, 1980] [Poggio et al., 1986]. Though the
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Figure 3.6: Inaccuracy of the constraint box versus G for simulation of the coupled depth/slope network. The
penalty method (Equation 3.4) is shown with squares and the absolute value penalty method (Equation 3.5)

shown with circles.

second-order network can be used to smooth images, Gaussian convolution cannot be used
to solve the more difficult problem of interpolation between sparse data points.
3.3 Constrained Optimization Approach

The hardware described in this chapter minimizes the following energy functional when all

the devices are operating in the linear range:
E(u) =Y (ui — di)® + G(uit1 — ui — pi)% + A(®i — pi+1)? (3.4)

The variable G is the measure of the conductance of the constraint box. As the value of
G increases, the constraint box computation becomes more exact. An infinite value of G

is necessary for the constraint to be satisfied exactly. An alternative is to use the absolute
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value constraint. This energy becomes

E(u) =) (ui — di)® + Gluip1 — ui — pi| + Mpi — piy1)? (3.5)

i

As discussed in Chapter 1, a small finite value of G will suffice to ensure that the constraint
is fulfilled exactly. Both the quadratic and the absolute value methods were simulated.
Figure 3.6 compares the accuracy of the two methods for various values of G. As expected,
the absolute value method reduces the error in the constraint equation to within machine
precision even for small values of G.

The coupled depth/slope network has a natural generalization that enforces smoothness
constraints to any arbitrary level of derivative of the data. Furthermore, discontinuities
of any order can be detected with resistive fuses on each level of derivative. For example,
discontinuities in the first-derivative, i.e., creases, can be detected. Higher-order smoothing
and discontinuity detection has been demonstrated for edge detection, image segmentation,
and surface interpolation [Liu and Harris, 1989]. Recently, Suter has studied the higher-
order smoothness problem [Suter, 1990a]. His approach uses the exact constraint boxes

proposed by Platt instead of the penalty method [Suter, 1990b].
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Chapter 4

Resistive Fuse

This chapter describes the resistive fuse circuit—the first hardware circuit that explicitly
implements either analog or binary line processes in a controlled fashion. We have suc-
cessfully designed and tested an analog CMOS VLSI circuit that contains a 20x20 network
of resistive fuses implementing piece-wise smooth surface interpolation. The segmentation
ability of this network is demonstrated for various 2-D inputs. Finally extensions of these

ideas are discussed for the detection of outliers and for segmentation of temporal signals.!

4.1 Line Processes

Standard regularization theory provides a basis for solving most early vision problems but
algorithms that depend solely on a smoothness assumption perform badly at discontinuities.
In surface reconstruction, for example, an inflexible surface smoothness constraint either
blurs discontinuities or else causes unrealistic overshoot effects wherever there are breaks in
the surface. Resistors and constraint boxes can map most regularization theory algorithms
onto stable analog hardware, but they must be extended to deal with discontinuities.

Many recent approaches combine discontinuity detection with surface reconstruction by

'Portions of this chapter have already been published [Harris et al., 1989] [Harris and Koch, 1989)

[Harris et al., 1990a}.
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defining an energy function of the surface as a nonconvex energy function that includes
binary line processes. Line processes provide a systematic method of selectively “breaking”
the smoothness constraints imposed by standard regularization theory. Geman and Geman
worked with binary line processes on a Markov field lattice in reconstructing surfaces from
noisy images [Geman and Geman, 1984]. They also used simulated annealing to minimize
the resulting nonconvex energy. Marroquin used two coupled Markov random fields to solve
the surface reconstruction problem——one for analog depth values and the other for binary
line processes [Marroquin, 1987].

Rather than use time-consuming stochastic annealing methods, Koch, Marroquin and
Yuille later showed how the reconstruction problem can be solved using analog networks
where the discontinuities are allowed to vary continuously between 0 and 1 [Koch et al., 1987].
The energy function of this network is minimized using similar updating equations from
Hopfield’s work [Hopfield, 1984]. Koch et al. used a first-order energy model (membrane)
for reconstructing the surface between sparse depth points of simple synthetic images. Blake
and Zisserman used similar energy functions to locate discontinuities in natural images us-
ing the membrane model [Blake and Zisserman, 1987]. They also extended their work using
a plate model to locate discontinuities in synthetic images. They obtain the minimum of
the energy function by an approach they called the GNC (gradient non-convexity) method.
A convex approximation to the problem is first constructed and then the energy landscape
is continuously transformed into its true form.

A number of authors have used deterministic methods to find the (local) minima of
non-convex variational functionals, with next-to-optimal results (e.g., [Koch et al., 1987]
[Terzopoulos, 1986] [Chou and Brown, 1986]). Line processes were extended and modified
to account for discontinuities in depth, texture, optical flow and color [Marroquin, 1987]
[Marroquin et al., 1987] [Hutchinson et al., 1988] [Poggio et al., 1988]
[Zhou and Chellappa, 1988]. The principal drawback of all of these methods is the compu-

tational expense involved in minimizing the associated non-quadratic cost functionals, in
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Figure 4.1: Resistor network with digital switching network, similar to proposal in [Koch et al., 1987).

particular when numerous constraints are incorporated.

Including binary line processes £ into the functional of Equation 1.4 leads to
Bu) =) (di—w)®+ 2 (uig1 —u)’ A=) + > ot (4.1)

where « is an additional free parameter. The second term in this functional has been mod-
ified to implement the constraint that surfaces should vary smoothly for small values of the
surface gradient. If all variables, with the exception of u;, u;t+1, and 4;, in Equation 4.1
were held fixed and A(uit1 — u;)? < @, it would be “cheaper” to pay the price A(uit; — u;)?
and set £; = 0 than to pay the larger price . However, if the difference becomes too
steep, the line process is switched on, i.e. £; = 1, and the “price” « is paid. The func-
tional of Equation 4.1 is non-convex and a large number of both stochastic and determin-
istic methods have been designed to find optimal or nearly optimal solutions for this and
similar functionals [Geman and Geman, 1984] [Marroquin et al., 1987] [Koch et al., 1987]
[Blake and Zisserman, 1987] [Terzopoulos, 1983] [Terzopoulos, 1986].

One straightforward manner to implement line discontinuities is via binary switches,

breaking the resistive connections among neighboring nodes. Figure 4.1 depicts a pro-
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resistive fuse
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Figure 4.2: 1D fuse network.

posal for implementing these line processes in hardware, i.e., see [Koch et al., 1987] and
[Hutchinson et al., 1988]. Switches are added to the resistive network of Figure 1.1. Each
switch has an associated digital processor that controls the opening and closing of the switch
in either a deterministic or in a stochastic fashion, depending on the value of the voltage
across the switch as well as on the states of neighboring switches. Such an analog-digital
implementation is quite difficult to implement within conventional two-dimensional silicon
circuits, due to the high amount of connectivity among nodes and the complexity of inte-
grating the analog and digital processes. This mixed analog-digital circuit can be replaced

by a single analog non-linear resistor, the “resistive fuse” as shown in Figure 4.2.

4.2 Resistive Fuse Theory

The appropriate current-voltage relationship of a binary resistive fuse is illustrated in Fig-
ure 4.3a. As long as the voltage drop across this device is below a threshold, the current
through the nonlinear resistor is linearly related to the voltage across it. Once past the
voltage threshold, the fuse open-circuits (hence the name “fuse”), and the current is zero.

Unlike conventional electrical fuses, however, the resistive fuse can “reconnect” after open-
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Figure 4.3: Simulated I-V curve for a binary fuse (A) and an experimentally measured I-V curve for an
analog resistive fuse (B). Integrating numerically over these curves gives the co-content J for the binary (C)

and the analog fuse (D).
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circuiting as long as the voltage across the fuse drops again below the threshold. This
two-terminal device therefore implements the high-level constraint that surfaces should be
smooth unless their neighboring values differ by more than \/a /), at which point the surface
will break. Figure 4.3c can be interpreted as a plot of the co-content (J(u,£)) as a function
of the depth at locations u; and w;4+1 and as a function of the discontinuity £;. The values
of the surface and of the line discontinuities are assumed to be fixed at all other locations.
As long as A(uijy) — ui)2 < a, the function J is quadratic in the gradient. However, once
|u; — uiy1| exceeds the gradient limit 1/a/X, J remains flat at J = «, independent of the
magnitude of u; — u;4+1 [Blake and Zisserman, 1987].

The measured I-V relationship of the analog fuse is shown in Figure 4.3b. The most
salient difference from the binary fuse is the smooth flanks, where the current decreases
smoothly to zero for increasing values of the voltage gradient (in contrast with the discon-
tinuity in the I-V relationship for the binary fuse). In this region, the slope conductance
dI/dV will be negative (Figure 4.15). The measured I-V curve can be related directly to the
concept of analog line discontinuities of Koch et al.~[1987]. The key idea is that, following
Hopfield and Tank [1985] in their neural network implementation of the Traveling Salesman
Problem , binary discontinuities are mapped onto continuous “neurons,” whose output is
constrained to lie between 0 and 1. The input-output relationship of these “discontinuity
neurons” is governed by the sigmoidal function V' = g(U), where g(U) is a strictly monotonic

function, usually taken to be
1

g(U)= T (4.2)

with the “gain” 5 > 0. The network converges to a stationary solution using a steepest-
descent rule. It is straightforward to derive an analog version of resistive fuses with the
following I-V relationship

I=f(V)= [1 —g(V? - a)] 1% (4.3)

Our measured I-V curve for the fuse (Figure 4.3b) implements a similar function. For
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7 — 00, the function g becomes binary and f(V) of Equation 4.3 approaches the form of
the binary fuse (Figure 4.3a).

The analytical form of the I-V relationship of the resistive fuse element we used in our
simulations (see below) can be rigorously derived using a deterministic Mean Field Ap-
proximation to the underlying stochastic Markov Random Field model of piecewise smooth
surface interpolation [Geiger and Girosi, 1989]. In this approximation, common to statisti-
cal mechanics [Huang, 1963], the interaction among neighboring values of u and £ is replaced
by the interaction among neighboring mean values of v and £. If we re-interpret the results
of Geiger and Girosi within our electrical circuit framework, we arrive at the constitutive

relationship of the analog resistive fuse given in Equation 4.3.

4.3 Hardware Implementation

The circuit schematic for the original analog resistive fuse is shown in Figure 4.4. The
circuitry above the dotted line in the figure is Mead’s saturating resistor with a p-type
pullup transistor that sets the nominal resistance of the fuse. In subthreshold operation,
the current through a transistor varies exponentially with the gate-to-source voltage. Thus,

the voltage Vp produces a current Ig equal to:
Ip = IOeK(VDD'—VB) (4.4)

All voltages are assumed to be normalized by kT'/q. The variable & is a process-dependent
parameter that reflects the inability of the gate to be 100% effective in reducing the barrier
potential [Mead, 1989]. Iy is a constant that includes the width and length of the transistor
as well as process-dependent fabrication parameters. Letting Ir = Ig, the I-V relation of
the resistor can be derived as:

I A
Iryse = —2£- tanh <-——2K> (4.5)
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Figure 4.4: Schematic of the analog fuse circuit. The nonlinear, voltage-controlled resistance is seen across
the Vi and V, terminals. The circuitry above the dotted line is a saturating resistor [Mead, 1989] with Vg
controlling the nominal amount of resistance. The circuit below the dotted line is a saturating absolute-value

circuit that turns off the resistor for large |V — V3|. V4 determines the magnitude of the current drawn by

the absolute-value circuit.
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where AV = V] — V5. For small AV this portion of the circuit operates as a linear resistor

with a resistance of
_ 4kT/q
=

R (4.6)

Because we are working in the subthreshold region, Ir, and thus the resistance, can be
varied over five orders of magnitude. For large AV the resistor saturates and provides a
constant current of Ir/2. A measured I-V curve for this circuit was shown in Figure 1.2B.

The circuit below the dotted line in the figure performs a saturating absolute-value
operation. This portion of the circuit is enabled by the voltage V4, which creates a current
14 equal to:

Iy = Ipe"Va (4.7)

The positive parts of the outputs of a dual-output wide-range transconductance amplifier

are combined to create a current of:

AV
Iaps =IAtanh(Kl| l) (4.8)
By Kirchhoff’s current law, the current Ip is:
Ir = Ip — 1aBs] (4.9)

where the symbols | | are defined as

lz] = 2z if z2>0

Substituting Equation 4.8 and Equation 4.9 into Equation 4.5, gives

1 A
Iryse = 5 [IB — I4tanh (anVl)J tanh (%) (4.10)
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Figure 4.5: Measured I-V curves that show the effect of continuously varying from the saturating charac-
teristic to that of the fuse curve. Vg was set to 4V and V4 was varied from 0V to 2V. When V4 = 0, the

resulting I-V curve is identical to that of Mead’s saturating resistor.

When [AV] is small, the fuse acts as a linear resistor whose nominal resistance is set by Ip.
When |AV| is large, I4 increases above the current supplied by the p-type pull-up, and Vg
is pulled to ground, shutting off the resistor. In between these extremes, the fuse exhibits
a gradual transition.

Figure 4.5 shows a family of curves measured by varying V4 while keeping Vp constant.
By varying V) in this way, the circuit’s I-V characteristic can be continuously and smoothly
changed from that of a saturating resistor to the fuse I-V curve. Setting V4 = 0 gives
Iy =0, disabling the absolute-value circuit, and giving the fuse a saturating I-V relationship
(Figure 1.2B).

Integration of the I-V curves in Figure 4.5 gives the family of co-content curves shown
in Figure 4.6. For small AV the co-content is quadratic and for large AV the co-content
saturates at a constant value. Instead of saturating for large voltage differences, the co-
content of the saturating resistor increases linearly with voltage. From Chapter 1 it is known
that networks of resistors with positively sloped I-V curves are guaranteed to converge to a

unique minimum value of the co-content. By changing the control voltage, we are warping
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Figure 4.6: Co-content functions: each curve was numerically integrated from the family of curves in Fig-

0.5

ure 4.5. Continuously varying the co-content curves in this way performs a useful computation that is

explored further in Figure 4.16 and Figure 4.17.

the energy landscape in a continuous fashion (“continuation method”) from one containing
a unique global minimum to one containing many local minima.

The fuse provides a mechanism for changing the threshold value. If we assume that the
circuit is operating in the linear region of the two hyperbolic tangents, Ipygp becomes twin
parabolas of the form:

I I
Iryse = lTB - R—SﬁlAVIJ AV (4.11)

This linear analysis indicates that the measured curve in Figure 4.3b consists of a parabola

in each of the first and third quadrants. This current in Equation 4.11 is cut to zero for:

Ig kT
AV > Q-fi.-q; (4.12)

Irysk reaches its extrema points at:

Iy kT

AV = Ta an

(4.13)
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Figure 4.7: Measured I-V curves illustrating different line process penalties. V4 was kept constant at 2V

and Vg was varied from 3.9V to 4.1V.

The extrema points can be set by the ratio of Ip to I4. In subthreshold operation, the width
of the saturating tanh curves is about 100mV. The extrema points can then only be varied
from 0 to about £100mV. For gate voltages above the threshold of the bias transistors, the
width of the linear region of the hyperbolic tangent function increases by Vs — Vi, where
Vas is the gate-to-source voltage and Vp is the threshold voltage of the bias transistors.
Thus, by going slightly above threshold, the extremum point can be varied from 0 to about
+500mV. Figure 4.7 shows a family of I-V curves measured by varying Vp and holding V4
constant.

A binary fuse has been built and tested. The measured I-V curve of the binary fuse
(shown in Figure 4.9) has a small incrementally active region. The schematic (shown in
(Figure 4.8) is a minor modification of the analog fuse circuit. Instead of feeding the

absolute-value current back to the resistor bias circuits, current is fed back to a pass gate




I
B 3 Vr
- T =
Ve !
e
I ne _ A
Vl FUS:E T 1 T 1 T T V2

-

Figure 4.8: Modification of the fuse to obtain a binary characteristic. As before, a saturating resistor and
an absolute-value circuit are combined to create a fuse. However, different from the circuit of Figure 4.4,
the absolute-value circuit discharges the gate of a pass transistor that has been added in the resistance path.
This pass gate acts as a binary switch that is opened or closed depending on whether or not the absolute-
value current is greater than the threshold current provided by Vg. Vi provides independent control of the
resistance of the fuse when the binary switch is closed. The parasitic capacitor at the high-gain node has

been added to illustrate that the fuse has non-zero switching times.
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Figure 4.9: Measured I-V curve for the binary fuse circuit. Currents were measured with voltage steps of

5mV.

that acts as a binary switch in the current path. When Ip > I4pg the voltage (Vp) on
the gate of the binary switch is charged to Vpp. On the other hand, when Iy < I4pg, VF
is pulled to ground, effectively open-circuiting the resistor. The resistance of the resistor
is controlled by Vg, which sets the bias current I'g. Notice that the current that controls
the line process penalty is decoupled from the current that sets the resistance of the fuse.

Assuming high-gain elements, the I-V equation for the high-gain fuse is given by:

A
IFUSE = I—R tanh ('—“K) if IA tanh <’€|§V|) < IB (414)

2 2
K|AV]
2

Ippsp =0 if  I4 tanh( ) > 1Ip (4.15)

This implementation of the binary fuse shares an advantage with Mead’s saturating resistor
layout, because only one biasing circuit is needed for each node. This saves many transis-
tors, especially in 2-D layouts. The low-gain fuse requires 33 transistors per connection,
while the high-gain fuse requires only 21 transistors per connection plus 6 transistors per

node. For a hexagonal mesh, each basic cell needs to contain one node plus half of the six



Figure 4.10: Schematic diagram of the 20 by 20 resistive fuse chip. The chip consists of a rectangular mesh
of analog resistive fuse elements (shown in Figure 4.4). The data are given as battery values d;; with the
conductance G connecting the battery to the grid. If no data are available, G = 0. The output is the voltage
u;; at each node. Parasitic capacitances (not shown) provide the dynamics. A zero-slope boundary condition

is assumed along the boundary. Data are read in/out via additional scanning circuitry {not shown).

neighboring conncctions, requiring a total of 69 transistors per cell for the high-gain fuse

and 99 transistors per cell for the low-gain version.

4.4 Segmentation Performance

A 20 by 20 resistive fuse chip has been fabricated and tested. The analog fuse (shown in
Figure 4.4) was used. Figure 4.11 shows experimental data from this chip. The input array
which was scanned into the chip corresponds to a central tower on a flat plane corrupted
by Gaussian noise (Figure 4.11a,d). The middle plots illustrate the resultant voltage dis-

tribution if the “fuses” are set to act as saturating resistors. The tower merges into the
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Figure 4.11: Experimental data from the chip. The scanned input data was a tower (corresponding to
d;; = 3.0 V) rising from a plane (corresponding to 2.0 V) with superimposed Gaussian noise. (a) shows
the input with the variance of the noise set to 0.2 V, (b) the voltage output using the fuse configured as a
saturating resistance, and (c) the output when the I-V curve of the fuse has been varied from the saturating
resistance to that of the analog fuse (following the arrow in Figure 4.5) as well as increasing the conductance
A. (d), (e) and (f) illustrate the same behavior along a horizontal slice across the chip for 0 =04 V. The
smoothing and segmentation abilities of the fuses are obvious. Notice that the amplitude of the noise in the
last case (40% of the amplitude of the voltage step) is so large that a single filtering step on the input (d)
will fail to detect the tower. Cooperativity and hysteresis are required for optimal performance. Notice the

“bad” pixel in the middle of the tower (in ¢) which was due to a chip fabrication error. Its effect is localized

to a single element.

Node Number
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plane, since no discontinuities prevent smoothing from occurring. The resistors around the
perimeter of the tower are saturating but do not provide enough of a segmentation effect
to filter the noise and preserve the step.? Figure 4.11c,f show that changing the I-V curve
from that of a saturating resistor to that of an analog fuse enables the network to clearly
segment the tower from the background. Numerical analysis as well as our empirical stud-
ies have shown that the smoothing abilities of resistive networks are robust to variations
(caused by process variations) in the value of the resistances across the chip. Furthermore,
point defects, such as the one shown in Figure 4.11c, induce line processes to break, thereby
preventing the error from propagating.

The I-V curves of the fuses in this example have been set to the form shown in Fig-
ure 4.3b. In this configuration, the network exhibits a hysteresis property in which two
stable final states are possible. The two stable states correspond to segmenting or smooth-
ing the step edge. The segmented stable state is shown as the solid line in Figure 4.16b. The
smoothed stable state becomes essentially a flat horizontal line. The final state depends on
the temporal history of the network. To ensure that the proper stable state is reached in a
deterministic fashion, V4 is initially set to 0 V and then gradually moved to its final value.

Figure 4.12a shows a figure-eight pattern that was scanned into the chip. The height of
the signal was 0.5V with evenly distributed additive noise of £0.25V. Figure 4.12b shows
the measured voltage values that were scanned off the chip. Finally, a 20x20 piece of the
Lena image (shown in Figure 4.13) was scanned into the fuse chip and processed.® These
results are shown in Figure 4.14. Various levels of segmentation behavior were obtained

from many edges (top left) to no edges (bottom right).

4.5 Annealing Schedules and Continuation Methods

Though the chord resistance (i.e., V/I) of the fuse circuit is always positive, its incre-

*Chapter 5 describes a modification of the saturating resistor that enhances its segmentation ability.

3 As this image has historically been used in vision research, we include it here for comparison.
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Figure 4.12: a) shows a figure-eight pattern that was scanned into the 20x20 resistive fuse chip. The height
of the signal was 0.5V with evenly-distributed additive noise of £0.25V. b) shows the measured voltage

values that were scanned off the chip.
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Figure 4.14: Segmented pieces of Lena image. A 20x20 patch from the image in Figure 4.13 was scanned

into the resistive fuse chip. Various levels of segmentation behavior were obtained from many edges (top

left) to no edges (bottom right).
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Figure 4.15: The I-V curve of the fuse measured in 10mV increments is shown in (A). (B) shows the

numerically computed chord conductance, which is defined as I/AV. Incremental conductance is defined
to be dI/dAV, which is the derivative of the IV curve. (C) shows the incremental conductance computed

using a two-point derivative approximation. Note the two regions of negative incremental conductance in

(©).
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mentally negative resistance regions (see Figure 4.15) raise doubts about the stability of
networks of resistive fuse elements. However, as was discussed in Chapter 1, as long as
the nonlinear resistors are externally passive (i.e., their I-V curves lie in the 1st and 3rd
quadrants of the I-V plane) and if we can neglect the internal dynamics of the incrementally
active resistor circuit, then for any voltage input and any initial condition, the network will
not oscillate indefinitely but must eventually settle to some stationary state. This conclu-
sion holds even if parasitic (positive) capacitances are distributed arbitrarily throughout
the network, provided there are no inductors. This is a rather surprising result in view of
the well-known instability problems with negative incremental resistance circuits.

As was noted in Chapter 1, the notion of minimizing the dissipated power in linear resis-
tive networks must be replaced by the notion of minimizing the co-content (Equation 1.5) in
nonlinear resistive networks. With incrementally active resistors, i.e., with regions of neg-
ative slope such as in the fuse, there will, in general, exist a number of stationary network
solutions for a given input image, and uniqueness is no longer guaranteed.

The hysteresis properties of the network can be better understood through a load-line
analysis of a much simplified circuit (Figure 4.16). The current through the fuse is plotted
as a function of the voltage across the fuse. The simulated voltage source/resistor is also
illustrated as a solid line, with the negative slope of this line given by the conductance G
and the z-intercept given by the value of the voltage source E. A stability analysis reveals
that the system possesses up to three equilibria. In the case illustrated in Figure 4.16A,
the middle equilibrium is unstable and the voltage will tend toward the two stable solutions
P1 and P2. Point P1 corresponds to segmentation, and P3 corresponds to smoothing. By
increasing the value of the voltage source E (Figure 4.16B), only a single stable equilibrium
point remains, corresponding to segmentation. Of course, stability cannot be guaranteed
for negative values of G. The dotted-line curves show the effect of changing V4.

Figure 4.17 shows the computed total co-content from the I-V curves shown in Fig-

ure 4.16. For Figure 4.17A, P1 is the global and P3 is only a local minimum, while P2
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Figure 4.16: Simple load-line analysis shows that there can be up to three equilibrium points for the
fuse/resistor circuit given above. The IV curves for the measured fuse and the simulated voltage
source/resistor are shown as solid lines. For plot A, points P1 and P3 are stable, and P2 is unstable.
Voltages in the neighborhood of P2 will be driven to either P1 or P3. By increasing the value of the voltage
source F, a single stable equilibrium point P1 remains (plot B). The dotted-line curves show the effect of

changing V.
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Figure 4.17: Computed total co-content J from the I-V curves shown in Figure 4.16. In plot A, P1 and

P3 correspond to stable minima while P2 is an unstable maximum. In contrast, Plot B contains a single

equilibrium point P1 that corresponds to a discontinuity. The dotted lines show the effect of increasing V.
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corresponds to an unstable local maximum. In contrast, Figure 4.17B contains a single
equilibrium point, P1, which corresponds to a discontinuity. The dotted lines show the ef-
fect of increasing V4, deforming the energy surface from one with a single equilibrium point
to one with two local minima. By using a continuation method in this fashion, disconti-
nuities are deterministically located. Reasonable performance may be obtained by using a
single setting of the fuse control voltages and keeping the voltages constant over time. This
static approximation of the continuation method will still smooth small step edges while
preserving large steps. However, medium steps, such as those simulated in Figure 4.16, can
be either smoothed or segmented depending upon the temporal history of the network. This
load-line analysis is a simplified version of the true dynamics of networks of fuse elements,
but serves to illustrate the complexity of even a single fuse element circuit.

As seen above, mapping the necessary nonconvex energy minimization to analog VLSI
does not avoid the problem of local minima. Typically, continuation methods are used that
gradually warp the Lyapunov energy of the system from a convex one to the final desired
energy, for example see [Ortega and Rheinboldt, 1970]. Continuation methods rely on the
fact that the unique minima of the convex energy are close to the global minima of the
desired energy.

Blake and Zisserman first explicitly proposed the use of an energy functional for the
problem of surface interpolation and segmentation from which the line process £ is elimi-
nated [Blake and Zisserman, 1987]. Its form is identical to that illustrated in Figure 4.3c.
In order to find the minimum of this non-quadratic functional, Blake and Zisserman use
their GNC algorithm as a continuation method. The idea behind this iterative method
is to map the variational functional J(u,£) to be minimized onto a family of function-
als J*(u,£,t) with t € [0,1], such that J*(u,£,t = 0) is given by some convex functional
and J*(u,4,t = 1) = J(u,£). Instead of directly attempting to minimize the non-convex
functional J*(u, 4, 1), continuation methods involve first finding the unique solution to the

convex functional J*(u, £,0) and then applying some smooth transform (parameterized by
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t) to continuously deform J*. The minimum of the functional J*(u,£,t) is then used as a
starting approximation when attempting to minimize J*(u, £, ¢+ At) until the minimum to
the desired functional J*(f,£,1) = J(u,£) is reached. For the construction of J*, Blake and
Zisserman used a piece-wise polynomial of order two, whose functional dependency (for a
fixed value of t) is similar to our measured co-content in Figure 4.3d.

There are three classes of continuation methods available for the hardware network we
have constructed. The first is to continuously vary the I-V curve of our nonlinear element
from that of a saturating resistor to that of the fuse (as shown in Figure 4.5). Another class
of methods consists of decreasing the breakpoint threshold Vp of the fuse. Initially Vp is
set at a high-value where no discontinuities are detected and then Vp is slowly lowered to
its desired value. This method was used to generate the results shown in Figure 4.14. The
final class of methods involves decreasing the conductance of the vertical confidence resistors.
This method (termed Ay annealing by Lumsdaine et al. [Lumsdaine and Wyatt, 1991]) is
only applicable when there is dense and low-noise input data. Each of these methods is
deterministic and guarantees that there will be one stable state at the start of the procedure.
All three continuation strategies have been explored with the analog hardware and despite
small differences, it does not seem to matter much which annealing strategy is used. The
methods are very dependent on the nature of the problem and the type and amount of
noise that is present. The chip prefers to smooth more than break, that is, when there are
multiple stable states in a given configuration the network tends to jump to the smoother
states but never jumps to a state with more breaks. Intuitively, it seems analog fuses should
be preferred over binary fuses. Our intuition is that the smoother I-V curve of the analog
fuse will provide a smoother energy surface and, therefore, the gradient descent will not
tend to get stuck in bad local minima as easily. This conjecture has yet to be verified,
either analytically or empirically.

In order for a fully automated system to implement any of these annealing strategies,

elaborate clocking circuitry would be necessary to vary an on-chip voltage through a range
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of values. Furthermore, since our analog technology naturally implements continuous-time
systems with on-chip photoreceptors, it would be awkward to resort to a sampled-time
system. This problem is especially evident when we try to recover the optical flow in the
presence of motion discontinuities. Motion already contains a natural time scale that we
would have to ensure is much longer than the time scale of our continuation methods. One
alternative is to maintain a constant setting of the fuse circuit. The resulting network
would still have local minima problems but would segment for large edges. Small moving
edges in the input would tend to get stuck in one place in the output. Alternatively,
the gradient of the original data could be used to set the resistance of the fuses. This
network would perform well if one could guarantee that no noise point was farther away
from its neighboring values than the minimum detectable edge strength. This continuous
time network would have limited usefulness and would not extend to sparse depth and
motion segmentation problems. Chapter 5 discusses a different segmentation network that

operates in continuous time without requiring annealing methods of any kind.

4.6 Alternate Hardware Implementations

Since the fuse circuits described above were developed, there have been a number of
different approaches and technologies used to build a better hardware implementation.
Barman has designed a novel nonlinear externally-controlled switched-capacitor element
[Barman, 1990]. Using this architecture, a network of resistors with any arbitrary I-V char-
acteristic could be simulated. Workers at MIT have successfully fabricated a four-transistor
resistive fuse using zero-threshold n-channel and zero-threshold p-channel CMOS transistors
[Decker et al., 1991]. A resistive fuse that has regions in which it becomes a true negative
resistor is useful for edge enhancement. An analog CMOS version of this negative fuse has
been demonstrated [Liu and Harris, 1991].

Independently, Perona and Malik simulated diffusion networks of fuse-like resistors for

segmentation of images [Perona and Malik, 1990]. The effective conductance of the resistors
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Figure 4.18: Bump fuse circuit.

is made to vary inversely with the square of the voltage drop. Each node voltage is initialized
to the value of the noisy input data corresponding to that pixel. Ultimately, the network
voltages converge to a single constant voltage. However, a human operator can stop the
network at a certain point and, by running a simple postprocessing step, create a very
impressive edge map. A hardware implementation of this method would be challenging
because of the timing mechanisms and human control that would be required. Nordstrém
has further refined these anisotropic diffusion methods by simulating diffusion networks
with resistive constraint terms [Nordstrém, 1990]. His method, called biased anisotropic
diffusion, is essentially a resistive fuse network.

Probably the most compact adjustable fuse design implemented so far is based on
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Figure 4.19: Measured I-V curve from bump-fuse circuit shown in Figure 4.18, for values of Vg = 0.80V,

0.85V, 0.90V, and 0.95V.

the “bump” circuit. The bump circuit, developed by Tobi Delbriick at Caltech, outputs
a current that is inversely dependent on the magnitude of the input voltage difference.
[Delbrick, 1991a] [Delbriick, 1991b]. Figure 4.18 shows an analog fuse schematic which
uses the bump circuit to generate a bias current for Mead’s saturating resistor. A fuse-like
I-V characteristic is measured between the V; and V5 terminals. In subthreshold operation

Ipymp is described by:

Ip/4

Ipymp = 4.16
cosh2( s(i—Va) V‘; V2 ) ( )

which reaches a maximum of Ip/4 when V; = V5 and decays to zero as |V} — V5| increases.
It is remarkable that a symmetric function can be created with such an asymmetric cir-
cuit. The effective width of the bump curve can be increased by running the circuit above

threshold.* This current is mirrored and used as the bias current for Mead’s saturating

*The symmetric above-threshold version of this circuit requires two additional transistors.
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resistor. The bump-fuse I-V characteristic is therefore:

Ig/8

7 i—V
FUSE =
coshQ(J————'C V12— VQ))

tanh(T) (4.17)

The resulting I-V curves are shown in Figure 4.19. The width of the linear region of the
bump fuse can be increased by driving the circuit above threshold. A binary fuse can be
constructed by using a thresholded bump circuit to control a pass gate in a similar manner

to the binary fuse shown in Figure 4.8.

4.7 Constraint Fuses

A natural generalization of this thesis arises when we consider that constraint boxes are
generalized resistors and that resistive fuses are resistors that break. Why not allow con-
straint boxes to break? This section discusses this idea of “constraint fuses”. A special case
of the constraint fuse has resulted in a network which discards outliers in noisy and possibly
sparse data [Harris et al., 1991]. A resistive fuse is used as the data constraint term in a
resistive grid network. This effectively isolates an input point from the rest of the network
when the input point differs significantly from the neighborhood average. This idea has
many similarities to the field of robust statistics [Huber, 1981] except that the algorithm
presented here has a simple elegant embodiment in analog real-time VLSI hardware.

The need for robust estimation techniques in early vision processing has been clearly
stated [Schunck, 1989]. The assumption of an additive Gaussian noise model leads to least
squares methods which are frequently employed in regularization type networks. Outliers
occur more often in real-world situations than the pure Gaussian noise model allows. For
example, false stereo correspondence matches produce spurious depth estimates which can
be eliminated through the use of robust statistical methods. Without outlier elimination,
least squares surface reconstruction algorithms could potentially produce wildly inaccurate

solutions. The recent workshop on robust methods in computer vision included papers on
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Figure 4.20: Standard regularization solution. Solid circles show the input data. Line is solution for A = 80.
robust methods for stereo, motion, surface interpolation, edge detection and shape from
shading.

Robust estimation was pioneered and formalized by Huber [Huber, 1981], however, out-
lier rejection techniques have been used in an ad hoc fashion by many in the past centuries.’
Perhaps, one of the first was Daniel Bernoulli in 1769 [Hampel et al., 1986]. Statistical
methods fail when prior assumptions about a situation are incorrect. Huber defines robust
methods as “insensitivity to small deviations from the assumptions.” Figure 4.20 shows an
example of noisy outlier data. The data consists of two rounded segments separated by
a step jump of one unit. Gaussian distributed noise with 0 = .1 was added and 10% of
the data points were replaced by outlier points, evenly distributed between -0.5 and 1.5.

A standard regularization network with A = 80 was simulated on the data. The shape of

*These ideas are also related to theories of outliers in networks for approximation and learning

[Girosi et al., 1990].
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resulting curve in Figure 4.20 clearly reflects the presence of the outliers as well as the step
discontinuity.

To deal with outliers and discontinuities, we minimize:

E(u,tm) =3 [(di —u)2(1 = my) 4 Muipt — w21 = £) + o4; + ﬁ2mi} (4.18)
i

where A sets the length constant of the network, o? is the cost of breaking a line discontinu-
ity, and 2 is the cost of breaking an outlier. The first térm forces the surface u to be close
to the measured data d. The second term enforces the piecewise smoothness constraint.
Assuming that m; = 0 everywhere reduces Equation 4.18 to the familiar line process energy
given in Equation 4.1. If all variables, with the exception of w;, u;y1, and 4;, are held fixed
and Muiy1 — u;)? < o2, then it is cost effective to pay the price AMuipr — u;)? and to set

2. If the gradient becomes too steep, 4 = 1,

£; = 0 instead of paying the larger price «
and the surface is segmented at that location. £; represents the line process variable in the
functional above. When £; = 1 a discontinuity has been detected at the ith pixel (¢; = O
otherwise).

The novel contribution of this algorithm is to provide the m; terms which allow for
rejection of outliers. Suppose (u; — d;)? < B2. It is “cheaper” to pay the price (u; — d;)2
and to set m; = 0 then to pay the larger price 82. If on the other hand (u; — d;)2 > 2 then
it will be cheaper to pay the price 52 and set m; = 1. When this occurs, d; is isolated from
the network and plays no part in the final solution.

We solve the nonlinear energy minimization problem given above by mapping the func-
tional onto the resistive network shown in Figure 4.21. A voltage source of d; is applied to
every node and the stationary voltage is the solution u;. The nominal conductance between
the voltage source and the grid is assumed to be 1. In the absence of any discontinuities
(all £; = 0) or outliers (all m; = 0), smoothness is implemented via a conductance of value

A connecting neighboring grid points; that is, the nonlinear resistors in Figure 4.21 can

simply be considered linear resistors. The cost functional E can then be interpreted as the
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Figure 4.21: Nonlinear resistor network for outlier detection.

power dissipated by the circuit. If parasitic capacitances are added to the circuit, E acts as
a Lyapunov function of the system and the stationary voltage distribution corresponds to
the smooth surface. Intuitively, the idea is to break one of the horizontal resistors (¢; = 1)
wherever a discontinuity occurs and to break one of the vertical resistors (m; = 1) wher-
ever an outlier occurs. The linear resistors are replaced by the resistive fuse, to implement
piecewise smoothness and outlier detection. A simulation of this network on noisy outlier
data is shown in Figure 4.22.

Images collected from man-made sensors like imaging arrays, millimeter wave radar and
laser radar suffer from problems such as “glint” and missing data points. This algorithm
has been successfully demonstrated on laser radar images for segmentation and outlier
detection [Harris et al., 1991]. Alternative noise reduction methods would require either
averaging over multiple frames or substantial spatial smoothing. Temporal integration

results in blurring of moving targets and spatial smoothing techniques result in blurring of
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Figure 4.23: Standard follower-integrator circuit from [Mead, 1989].

edges.

Robust statistical methods are useful in computer vision but they are extremely com-
putational intensive. We have demonstrated a network that incorporates robustness in its
computation but can potentially converge to a solution in a very small time constant. The
network is a modification of a resistive network to provide for detection and removal of
outliers in image segmentation. We expect this method to extend to most other vision
problems which can be solved using a resistive network such as surface interpolation and

Horn and Schunck’s [Horn and Schunck, 1981] motion computation.

4.8 Time Fuse

This section discusses a nonlinear follower-integrator circuit for segmenting temporal se-
quences in time. This is useful for smoothing the noise at a given pixel over time without
reducing the spatial resolution of an image by smoothing in space. This can be accomplished
somewhat with the standard follower-integrator circuit shown in Figure 4.23 [Mead, 1989)].
The voltage Vp sets the conductance of the amplifier. When the follower is in its linear

region of operation, the follower integrator operates as a simple RC circuit. The differential
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Figure 4.24: Measured follower-integrator results. Bottom plot shows step input with added high frequency
sinusoid. Bottom shows output of the follower integrator for Vg = 0.6V, 0.65V, 0.7V, and 0.75V. No single

setting of Vi satisfies the conflicting constraints of smoothing the sinusoid while preserving the step edge.

equation for node Vpopyr is:

dVou
C—%—T’ = G(Vin = Vour) (4.19)

If we assume Viny = h for t < 0 and Viy = 0 for ¢t > 0 the output is a simple exponential
decay:

Vouvr = he /T (4.20)

where 7 = C/G.

This circuit integrates the the voltage input signal in time and can successfully filter
out noise in the signal by the setting the 7 of the circuit to be large. A problem arises,
however, when either the camera or objects in the image are moving. In this case, instead
of blurring the quickly changing input by integrating with a large time constant, we would

rather follow the input signal very closely. Suppose we are presented with the signal shown
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Figure 4.25: The time-fuse circuit. The follower integrator circuit is modified such that the conductance of

the follower is proportional to |Vour — Vin|.

in Figure 4.24. The input is a high frequency sinusoid superimposed on a step input. The
goal is to smooth out the noise (i.e, the high frequency sinusoid) while preserving the step
edge. This is similar to the segmentation problem discussed in this thesis, except that the
signal is a function of time instead of space. As shown in Figure 4.24, no setting of G for
the follower integrator is satisfactory and we have to trade off between smoothing the step
versus keeping some of the noise in the output.

An alternative approach is to use a nonlinear follower-integrator called the “time fuse”.
The circuit shown in Figure 4.26 uses a follower whose conductance is proportional to the
absolute-value of the voltage drop across it. In other words, the conductance of the amplifier
is

V; —
G = g, Vv — Vour| (4.21)
Vo

where Go/Vp is the constant of proportionality. The conductance change is in the op-
posite direction of the change needed for the standard spatial fuse implementation. The
conductance of the spatial fuse must decreases as a function of voltage drop across it. The

absolute-value circuit used is essentially identical to the design used in Chapter 4 but instead




70

1.0

Vour

Follower Integrator

Time Fuse

0.0

time (t/7)

Figure 4.26: Plot of the step response of the follower integrator (Equation 4.20) and the time fuse (Equa-
tion 4.23).
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of subtracting from the bias current, the absolute-value circuit supplies the bias current.

The differential equation for Voyr for the time fuse is:

dV Vin — V¢
C—2+ = G(Viy - Vour) Y2y — Vour] (4.22)
1 Vo
Integrating this equation gives:
h
Vour = 5—— (4.23)
% 1

Since this is a nonlinear circuit, the shape of the step response depends on the magnitude
of the step input. The step responses of the two circuits are compared in Figure 4.26. For
large Voyr, i.e. significant changes, the output follows with a fast time constant. For small
Vour, presumably high frequency noise, a long integration time results. The same input
given to the standard follower-integrator in Figure 4.24 was given to the time fuse circuit.
The results, presented in Figure 4.27, show that the time fuse can preserve temporal edges
while suppressing noise better than the follower-integrator circuit. Note that the saturation
of the amplifier limits the segmentation performance. For the spatial resistive fuse, on the

other hand, saturating devices enhance the segmentation properties.
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Figure 4.27: Results of processing the noisy step input with the time-fuse circuit. The risetime of the step

and the level of noise reduction are both better than that of the follower integrator.
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Chapter 5

The Tiny Tanh Network

This chapter introduces the tiny-tanh network, a continuous-time network that performs
piece-wise constant segmentation. A convex Lyapunov energy is utilized so that the system
does not get stuck in local minima. No annealing algorithms of any kind are necessary—
gradient descent finds the unique minimum energy solution. The relationship of the tiny-
tanh network co-content with constrained optimization methods is discussed. Finally, the
coupled depth/slope and tiny-tanh networks are combined to perform piece-wise linear

segmentation?

5.1 Convex Energy for Segmentation

Rather than deal with networks that have many possible stable states, a network that has

a single unique stable state will be used. Consider a network that minimizes

B(u) = —;—Z(di w4 AY g — i (5.1)

i

where ) is a free parameter. The absolute-value function is used for the smoothness penalty

instead of the more familiar quadratic. These two functions are compared in Figure 5.1.

! Portions of this chapter have already been published [Harris, 1991].
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Figure 5.1: Comparison of the absolute-value and the square function.

There are two reasons why the absolute value penalty is better than the quadratic penalty
for piece-wise constant segmentation. First, for the large values of |u; —u;11], the penalty is
not as severe, which means that edges will not be smoothed as much. Second, small values
of |u; — uiy1| are penalized more than they are in the quadratic case, resulting in a flatter
surface between edges.

This method is very similar to the absolute-value constrained minimization methods
discussed in Chapter 1. With this interpretation, we are minimizing (d; — u;)? with the
constraint that u; 11 = u;. If X is set to a large enough finite value, the constraints will be
satisfied exactly and a flat surface will result. Unlike constrained optimization, however, we
want the constraint to fail at discontinuities, so A must be chosen carefully.

To build this network, take a derivative of Equation 5.1 to yield Kirchoff’s current

equation at that node
(ui — d;) + Asgn(u; — wip1) + Asgn(u; —ui—1) =0 (5.2)

where the sgn function is defined as
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sgn(z) = +1 if >0

The nonlinear resistor I-V characteristic should have a sharp step function between negative
and positive saturating currents. Of course a zero transition region is impossible to realize
in any real physical device. Instead, we choose to implement a tanh function with an
extremely narrow linear region. For this reason, this element is called the tiny-tanh resistor.
This saturating resistor is used as the smoothing resistor in the nonlinear resistive network

(i.e., the one shown in Figure 1.3). Its I-V characteristic is
I = Atanh(V/$) (5.3)

where the linear region of the tanh functions can be made arbitrarily small as § goes to
zero. If we take the limit as § goes to zero, the tanh becomes the sgn curve. The co-content

of this network is

1 . )2 R anh(v v
5 S =+ |7 tannoe)a (5.4)

The co-content becomes the absolute-value cost function in Equation 5.1 in the limiting
case as & — 0.

We can generalize Equation 5.3 by adding an extra factor:
I = A1+ 6) tanh(V/6) (5.5)

In the limit, a linear resistor of conductance A results as § — oo. One equation describes
a linear resistor, Mead’s saturating resistor, and the tiny-tanh resistor. The value of §
continuously varies the I-V curve between the three different forms.

As was discussed in Chapter 1, any circuit made of independent voltage sources and
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Figure 5.2: The desired saturating I-V characteristic is shown as a dotted line. Its piece-wise linear ap-
proximation (solid line) was used for simulation and analysis. The slope of the linear region () and the

saturation threshold (4) are adjustable parameters.

two-terminal resistors with strictly increasing I-V characteristics has a single unique stable
state. Since the tiny-tanh element has a strictly increasing slope, a convex co-content energy
is being minimized, and gradient descent algorithms are guaranteed to find this solution.
Figure 5.2 shows a plot of our proposed element’s I-V characteristic, a simple hyperbolic
tangent relationship with an adjustable width and slope. The slope in the linear region is
defined to be A/ 5; and the curve saturates for voltage drops greater than §. The piece-wise

linear approximation of this curve was used in simulations and analysis.

5.2 Simulation

To evaluate how this saturating resistor performs, a fourth-order Runge-Kutta simulation
was developed for a two-dimensional network of saturating resistors. A unit step edge was
generated for a 20 x 20 pixel image, and Gaussian noise with ¢ = .2 was added. The filled
circles in Figure 5.3 represent a 1-D cross section through this array. Figure 5.3a shows the
typical segmentation result for the saturating resistor, § = .1 and A = 0.4. As Mead has
observed, a network of saturating resistors performs an edge enhancement. Unfortunately,

the noise is still evident in the output, and the curves on either side of the step have started
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to slope toward one another. As A is increased to smooth out the noise, the two sides of the
step will blend together into one homogeneous region. These same results are observed with
hardware resistive networks using Mead’s saturating resistor. These saturating resistors
cannot segment data into regions of roughly uniform voltage. The width of the linear
region of the saturating resistor (100mV for subthreshold circuits) is too large and cannot
be easily decreased.?

The new idea is that the saturating resistor can be run in a very different region of
operation where network segmentation properties are greatly enhanced. If we decrease
the width of the linear region significantly (6 = .005) while simultaneously increasing the
conductance (A = 1), the result shown in Figure 5.3b is produced. The height of the
detected step is 200 times larger than 6. If the signal height was 100mV, for example, a
resistor with a linear region with a total width of 1mV would be required to provide the
same performance. Mead’s saturating resistor has a minimum linear region width of about
100mV. Figure 5.4 shows a simulation of the tiny-tanh network segmenting the famous
mandrill image for various values of §. The network segments the image into blocks of
approximately uniform brightness with A and § determining the scale of the computation.
No continuation method or annealing strategy of any sort was necessary to produce these
simulation results.

The network does not recover the exact heights of input edges. Rather it subtracts a
constant from the height of each input. This effect is noticeable in Figure 5.3 where the
unit step input has decreased slightly in magnitude. In two dimensions, this effect becomes
more interesting. This can be understood by considering an input tower of n x n pixels at
height h and computing the height of the result. It is assumed that the background is very
large in area and grounded and that as § — 0, the correct segmentation of the network is

computed. Using the 2-D equivalent of Equation 5.1 and assuming that the network returns

*Shulman and Hervé also use the equivalent of a saturating resistor network for segmenting the optical

flow field [Shulman and Hervé, 1989].
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Figure 5.3: A 20x20 pixel unit step edge was generated, and Gaussian noise with o = .2 was added. The
filled circles indicate a 1-D cross section through this input array. (a) Shows the segmentation result for
the saturating resistor in the usual setting, § = .1 and A = 0.4. For these parameter settings, the noise is
still visible in the output and the curves on either side of the step have started to slope toward one another.
(b) The enhanced region of operation (§ = .005 and A = 1) segments the input into two distinct uniform

regions.
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Figure 5.4: Simulations of tiny-tanh network on the mandrill image. Top left is the original, top right

6 = 0.0064, bottom left § = 0.0128 and bottom right § = 0.0512. A\/§ = 32 for the three processed images.
The original image consisted of 256x256 8-bit pixels. Each pixel ranged in value from 0 to 255. The network

segmented the image into blocks of approximately uniform brightness with A and § determining the scale of

the computation.
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a tower of height x, the co-content at the unique stationary point of the system is
1 2 2
E(z) = 3" (z — h)* + 4n|z| (5.6)

since the first term was nonzero over the area of the tower (n? pixels) and the second term
was nonzero over the perimeter (4n pixels). Assuming that = > 0, find the stable point by

differentiating Equation 5.6 and setting it equal to zero:
n?(z — h) +4nA =0 (5.7)

Solving for x, the recovered height of the step:

A
=h-— .
T = ym (5.8)
or more generally
imet
o= [h— 3 perime erJ (5.9)
area

The |z] function ensures that z never be pulled below 0. Important features with large
area/perimeter ratios will remain very close to their original height h. Noise points have
small area/perimeter ratios and therefore will be pulled towards the background. Thus, this
network will reduce the height of noise points that are larger or smaller than the background
value.

Typically, the exact values of the heights are less important than the location of the
discontinuities. Furthermore, it would not be difficult to construct a two-stage network to
recover the exact values of the step heights if desired. In this scheme a tiny-tanh network
would control the switches on a second fuse network. Unlike typical line-process energy
minimization algorithms, the whole segmentation computation is accomplished without
defining a binary threshold for edges. The height of the output steps encode a continuous

function of the original step height and the perimeter/area ratio.



Figure 5.5: The two 128x128 images used in the experiments. The slight shift between the two images is

apparent by studying the circle on the box on the right side of each image.

In retrospect, we have changed the nonlinear line-process computation to a simpler
problem that can be solved by minimizing a convex energy. Notice that the network does
not have an explicit representation of discontinuities. It merely subtracts a fixed voltage

from the height of input step edges.

5.3 An Application to Stereo

We have simulated the performance of a correlation-based stereo algorithm with a tiny-
tanh postprocessing step. The two images shown in Figure 5.5 were taken sequentially with
a single camera which was translated horizontally.® Using an extremely simple matching
method, we generated the noisy motion estimates given in Figure 5.6a. A patch of 5x5
pixels was correlated with 5x5 windows in the second image. The shift with the minimum
sum of absolute value differences was marked as the winner. Disparities of up to 12 pixels
were searched. The algorithm is a simplified version of that used by [Little et al., 1988].
The noisy data in Figure 5.6a was passed through a simulated tiny-tanh network to

produce the segmented image shown in Figure 5.6b. In the simulation, A was set to 25 and

3These images were supplied by Larry Mathies at CMU.




Figure 5.6: Left image is the motion correlation output. Right shows the smoothed and segmented motion

output using the tiny-tanh network.

6 was set to 0.01. The network effectively segmented the image into three objects: the left

and right boxes and the background.

5.4 Step Response

In order to better understand tiny-tanh segmentation, we will study the response of the 1D
network to an ideal step edge.
Linear Case

First, consider the linear case. A 1D linear resistive network is shown in Figure 5.7a.
The inputs to the left half of the network are grounded and the right half inputs are set to
a voltage h. Rather than solve for the full step response, we will derive the voltage drop
across the central resistor Vg — V. If we assume that A > 1, we can replace the two semi-
infinite networks on either side of the step with their approximate equivalent networks.
[Mead, 1989], shown in Figure 5.7b. This continuum limit approximation for a discrete

network becomes exact as A — oo. Solving this equivalent network gives:

A

Vi = h—m "t
L A+VA+1
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Figure 5.7: (a) shows a step input of voltage h to a linear resistor network. (b) shows the equivalent network

using the continuum limit approximation.
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Vi — h/\+\/X+1
2>\;_\/X+1
A+1
Ve -V = h—tre— 5.10
= A+ VA+1 (5.10)
For large A,
h
Ve -V —= (5.11)

2Vx

This is the maximum voltage drop across any resistor in the network as a function of k and
A. Equation 5.11 is useful for setting the threshold for breaking in resistive fuse networks.
Saturating Case

We can perform a similar analysis for the nonlinear case. A step is input to the saturating
resistor network in Figure 5.8a. If the form of the saturating resistors is: I = A tanh(V/§),
the network cannot be solved in closed form. We therefore assume a piece-wise linear

approximation to the I-V curve of:

A ifV>6
IV)=q \V/§ if-6<V <6 (5.12)
-\ ifV<-6

Since all resistors except the center one are guaranteed to be operating in the linear region
of operation, we can replace them by linear resistors of conductance A/§. Replacing the left
and right sides of the network by their equivalents leads to the equivalent network shown
in Figure 5.8b.

Assuming Vg — V| < 6,

Vi = h A
2)/6 + /A6 + 1
Ve = h,\/5+\/W+1
206+ /AJ6+ 1
V-V, = nYMi+1 (5.13)
206+ /2[5 + 1
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Figure 5.8: (a) shows a step input of voltage h to a saturating resistor network. (b) shows the equivalent

network using the continuum limit approximation.
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For large A/é, Equation 5.13 can be approximated by:

h
Vy -V & ——— 5.14
n= Vi G (5.14)

Equation 5.14 is true when all of the resistors are operating in their linear region, in other
words: |Vg — V| > 6. Substituting this relation into Equation 5.14 gives the condition
that: h < 2v/6X.

For (Vg — Vi| > &, the resistor is saturated and can be replaced by a constant current

source. Solving for Vi and Vi, gives:

A

Vi = ———— 5.15
L 1+ +/A/8 (5.15)

A
Vg = h— —— 5.16
" 14 /A/6 (5.16)

2
Vg -V, = h— —e 5.17
= Vi Evr (517)
(5.18)

For large A/6,

Vi — Vi~ h—2Vé\ (5.19)

which is true when h > 2v/8).

In summary, the full range of the step response of the saturating resistor network is:

h .
- if h < 2v6X
Vi —Vpa{ 2VA (5.20)

h—2V6X\ if h > 26\

A plot of these results is shown in Figure 5.9. In the limiting case, as § = 0, Viy — V = h

and the full step height is preserved.

5.5 Hardware Implementation
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Figure §.9: Plot of Vi and VL (defined in Figure 5.8) versus the input step height . For h < V8X, Vg = V;,

and the step is smoothed out. For h > 2v/6X, Vg and Vi diverge and the step is preserved, although reduced
in height by VA,
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Figure 5.10: Old saturating resistor circuit. The resistance is seen between nodes Vi and Vs.
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Figure 5.11: Simple gain stage.

There are numerous difficulties with building a resistor that saturates in a few millivolts. A
circuit such as Mead’s saturating resistor saturates when the voltage difference is a few kt/q
(about 50mV). There is no obvious way of shrinking this linear region short of reducing
kT/q by cooling the circuitry. The tiny-tanh element builds on the “old” version of the
saturating resistor shown in Figure 5.10 [Sivilotti et al., 1987]. This resistor also saturates
at about 50mV below threshold. Mead’s new saturating resistor with its guaranteed zero
offset voltage and small size has made the old resistor obsolete. However, the old resistor
has the advantage that additional circuitry can decrease the width of the linear region of
its I-V characteristic.

The simple gain stage shown in Figure 5.11 is used. In subthreshold operation, this
amplifier can easily have a gain of several hundred. This gain is reduced as the amplifier is
driven above threshold.

The combination of the old resistor (Figure 5.10) and the gain-stage (Figure 5.11) gives
the tiny-tanh circuit element shown in Figure 5.12. A measured I-V curve from the tiny-
tanh circuit for Vg = 1.2V and Vi = 1.5V is shown in Figure 5.13. The linear region in

the figure is approximately 4mV with a 1mV offset. Careful design reduced the offsets to
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Figure 5.12: Tiny tanh circuit.
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Figure 5.13: Measured I-V curve from the tiny-tanh circuit.

low values.

5.6 Segmentation Results

A 1D tiny-tanh network was successfully designed, fabricated and tested. Figure 5.14 shows
the segmentation which resulted when a large step (about 1V) was scanned into the chip.
The segmented step has been reduced to about 0.5V. Figure 5.15 shows the same experiment
for a for a much smaller step (about 40mV), Note that the small step which is recovered
is within the linear region of Mead’s saturating resistor (50mV). Since the support of the
outlier point is small, it is not detected as a separate object but is smoothed into neighboring
values. In both experiments, Vg = 1V and Vg = 0.7V. The transconductance amplifier
bias (providing the inputs to the network) varied between 0.65V (left plot in each figure)
and 0.50V (right plot). This had the effect of varying A without changing the width of
linear region of the tanh curve. No special annealing methods were necessary because a
convex energy is being minimized.

Since the tiny-tanh implementation depends on matched transistors, the network, in

general, does not obey Kirchhoff’s current law. The circuit suffers from both voltage and
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Figure 5.14: Measured segmentation performance of the tiny-tanh network for a large step. The input shown

on the left is about a 1V step. The output shown on the right is a segmented step about 0.5V in height.
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Figuare 5.15: Measured segmentation performance of tiny-tanh network for a small step. The input waveform
shown on the left is about 40mV in height. The output on the right is the segmented step, also about 40mV

in height. The ripple in the output waveform reflects the current and voltage offsets of the tiny-tanh circuit.
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current offsets. The voltage offsets can be noticed by the small ripple on either side of the
segmented step in Figure 5.15. A network using Mead’s saturating resistor, on the other

hand, is guaranteed to have zero voltage offset.

5.7 Piece-wise Linear Segmentation

So far only piece-wise constant segmentation has been considered. This work is easily
extended to piece-wise linear segmentation using the coupled depth/slope network from
Chapter 3. The smoothing resistors in the model (in Figure 3.1) are replaced by tiny-tanh
resistors causing segmentation to occur on the derivative and not on the signal itself.* The

energy minimized is therefore

B(u) =Y (ui— d)* + Guit1 — wi — pi)? + A|pi — pit1]? (5.21)

i

As before, the variable G is a measure of the conductance of the subtract constraint box.
The input data is d; and the output and its derivative are u; and p; respectively. As the
value of G increases, the constraint box accuracy improves.

A triangular pulse of height 1V with additive Gaussian noise of ¢ = 0.05 was used
as input to the simulated network. Gradient descent was performed on the energy given
by Equation 5.21. The results are shown in Figure 5.16 were computed with G = 10*
and A = 20. Figure 5.16a shows the noisy input data (d;) with the segmented result
(u;). Figure 5.16b shows the derivative of the original input along with the network’s
representation of the derivative of the segmented output (p;). As before, the tiny tanh does
not recover the exact heights and slopes of the line segments. A resistive fuse solution,
however, would recover the exact least squares fit of each line segment at the expense of

the addition of complex continuation methods [Liu and Harris, 1989].

*Previously, resistive fuses and the coupled model have been used in a similar fashion to demonstrate

smoothing and discontinuity detection of any arbitrary level of derivative [Liu and Harris, 1989].
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Figure 5.16: Piece-wise linear segmentation of a triangular pulse using the coupled depth/slope methods and
the tiny-tanh. a) shows the noisy input data d; (thin line) with the segmented result u; (bold line). b) shows
the derivative of the original input (thin line) along with the network’s representation of the derivative of

the segmented output p; (bold line).
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Chapter 6

Conclusions

This thesis has introduced three algorithm/circuit innovations:

Constraint Boxes were introduced as a general methodology for mapping regularization
based algorithms to stable analog hardware. Other attempts at mapping these algo-
rithms to hardware required data-dependent and possibly negative resistors as well
as voltage sources with values that are complex functions of the data. The constraint
box requires only simple voltage sources and positive, data-independent resistors. A

biharmonic surface interpolation chip using these principles was discussed.

The Resistive Fuse was shown to be the first hardware circuit that explicitly implements
line process discontinuities. A 20x20 pixel fuse network chip was demonstrated. Re-
sistive fuse networks minimize a non-convex energy function that may contain local
minima. As in computer vision, complex annealing or continuation methods are nec-

essary for adequate solutions of the problem.

The Tiny-Tanh network smoothes and segments data by minimizing a convex energy
functional. It deals with discontinuities in a different way that is not plagued by
problems with local minima. Simulations show that this network can perform im-
age and depth segmentation. An experimental 1D hardware circuit was successfully

designed and tested.




95

6.1 Why Analog Models?

1. Solving Difficult Problems

There are many difficult vision problems that are far from being solved satisfactorily.
One example is autonomous vehicle navigation. The first demonstration of cross-country
navigation was done with the DARPA Autonomous Land Vehicle (ALV) in 1987 by Hughes
Aircraft [Daily et al., 1988b] [Daily et al., 1988a]. The ALV successfully avoided ravines,
bushes, steep slopes, and rock outcrops, sometimes traversing inclines that rolled and
pitched the vehicle up to 15 degrees. As impressive as this feat was, this 10-ton vehicle
stocked full of digital computers (and connected via a radio link to more computers in a
lab) could only move at about 1 mile/hour through the treacherous terrain. An active laser
range sensor was used to produce depth images. A frame was processed every seven sec-
onds. In between frames, the vehicle traveled blind. Vision was not used because processing
would have been too “slow.”

At present, analog hardware systems are still too primitive to be of much use for some-
thing like the ALV. However, it is a good bet that fast, low-power analog hardware will be
useful and economical for this and other applications in the coming years. It has already
been demonstrated that these analog chips are inherently robust and accurate enough to
allow for simple navigation tasks such as following edges or tracking moving light sources
when mounted onto small, highly mobile toy cars operating in a laboratory environment
[Koch et al., 1990a)].

2. Raw Speed of Computation

The raw speed of computation allows for many more experiments, leading towards
more intuition and understanding. There are many good stereo algorithms but they re-
quire so long to compute that experimentation with them is impossible. Cochran de-
scribes one of the best stereo algorithms but it take eight hours to run on a single frame
[Cochran and Medioni, 1989].

Continuous-time circuits avoid discrete-time convergence problems. This is especially
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evident when simulating nonlinear dynamical systems. The tiny-tanh network simulations
require hours of processing time on conventional digital machines. The underlying differen-
tial equations are very stiff and extremely small time steps are needed to avoid numerical
instabilities. Oscillations which might result would be mere artifacts of the discrete nature
of the simulation.
3. Dealing with Time

This new computational medium gives us the ability to deal with time explicitly and
rapidly prototype nonlinear systems. The resistive fuse network is a highly nonlinear sys-
tem that has forced us to think explicitly about dealing with time in our solution strate-
gies. Simulated annealing and other continuation methods are awkward to implement in a
continuous-time fashion; alternative methods are desirable. Experimentation with analog
hardware has led to the tiny-tanh model which runs in continuous time without the need
for any annealing or continuation methods.
4. Thinking Differently

Finally, there are fundamental reasons for studying analog models even if they cannot
outperform digital computers. In his 1959 PhD thesis, Dennis wrestled with these same

issues [Dennis, 1959]:

“What then is the value of investigating these electrical models? The answer
lies in the fundamental difference in approach of the operations analyst with
regard to an optimization problem and the electrical scientist studying a circuit.
The analyst nearly always speaks in terms of minimization or maximization
subject to constraints. The electrical scientist, however, is merely looking for a
distribution of currents and voltages which satisfies the conditions imposed by
the circuit—he rarely thinks in terms of minimization, and may not even know

that an appropriate extremum principle exists.”

There is value in this alternate point of view, that is thinking in terms of local currents and

voltages as opposed to global energy minimization. The three major innovations in this
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thesis-the constraint box, resistive fuse, and tiny-tanh-were all developed through think-
ing in the current/voltage domain. It was later that power (or co-content) minimization
was brought into the picture. Thinking in the current/voltage domain led to these cir-
cuit/algorithm innovations. Afterwards, energy minimization provided further justification

and intuition for these methods.

6.2 Future Directions

The goals set out in this thesis are far from complete. The use of analog models and
hardware to study and develop computer vision algorithms is still in its infancy. There is
much more to be done, more than just optimizing the few existing circuits, or packing more
pixels per chip, or making a prettier picture on a screen.

Some future topics we must understand include:

Fusion of multiple sources: Much research is going into the fusion of multiple cues, for
example see [Clark and Yuille, 1990] and [Aloimonos and Shulman, 1989]. It is clear
that robust, reliable systems must rely on multiple sources of information. Constraints
such as forcing depth or motion discontinuities to coincide with intensity edges have
proven to be very powerful [Gamble and Poggio, 1987]. This does not mean, however,
that we must combine every single sensor output into a single coherent representation
of the world. This fusion of information can occur at the sensor level as well as at the

behavior level [Brooks, 1986] [Payton, 1986].

Robust Parameter Estimation: Many of the early vision systems researchers are study-
ing are very fragile when is comes to choosing parameters. Robust methods need to
be invented for setting values of thresholds, space constants, and time constants.
Local adaptation is needed in these networks to make them less brittle. Methods
from Bayesian analysis are being studied to set some free parameters for standard

regularization-based methods [Szeliski, 1989] [MacKay, 1991].
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Transcending pixel-based processing: It is easy to imagine architectures for process-
ing images on a pixel-by-pixel basis. We must move on to high-level vision problems,
i.e., recognition or learning. Several architectures that can segment features in a scene
based upon intensity or depth have been described in this thesis.. This is just the
first step in breaking an image into multiple, labeled objects and subsequently dealing

with them in an intelligent fashion.

Analog circuits provide an interesting and powerful computational medium for develop-
ing early vision algorithms. As these small, inexpensive, low-power chips become common,
researchers will possess real-time prototyping capabilities to address these fundamental is-

sues.
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