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Abstract

Two kinds of dynamic processes take place in neural networks. One in-
volves the change with time of the activity of each neuron. The other
involves the change in strength of the connections (synapses) between
neurons. When a neural network is learning or developing, both processes
simultaneously take place, and their dynamics interact. This interaction
is particularly important in feedback networks. A Lyapunov function is
developed to help understand the combined activity and synapse dynam-
ics for a class of such adaptive networks. The methods and viewpoint are
illustrated by using them to describe the development of orientation se-
lective cells in cat primary visual cortex. Within this model, orientation
selectivity originates from feedback pathways within an area of cortex,

rather than feedforward pathways between areas.
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Dynamic Properties of Neural Network
Introduction

Neuron network

In our journey to understand the mysteries of nature, perhaps one of the most
mysterious and least understood part is the ability itself to undertake such a journey
— the ability our minds possess. This journey has been slow. For a long period of
time, people did not even know where the mind was. People used to think that the
mind was in the heart instead of the brain. In our daily language, whether Chinese
or English, our hearts still feel and think.

Nature has created wonderful organisms which perform well in a complex envi-
ronment, both physically and mentally. Take a look at a pigeon: one is in awe of how
well it performs a takeoff, a diving and a landing. Humans do not have that ability
themselves, but we have learned from birds the mechanics of flying and built airplanes
to do the task. A pigeon also performs well in mental tasks like recognizing food and
natural predators. Do we understand the underlying pattern recognition mechanics?
Not quite. Can we build a machine to perform a similar task? Not yet. We do not
quite understand and cannot yet build a brain — not even a pigeon’s brain.

Today’s knowledge of biology tells us that the mind is in brain, which can be
viewed as a network of neurons. The state of the mind, in a large extent, can be
viewed as the state of the neuron network, which is described both by the activities
of neurons and the structure of the network. Most of features of thinking, learning and
other mental activities must be represented by the state changes of neuron network.

What the neuron network is doing is a kind of computation. A human mind can
do addition, subtraction, multiplication and division. But here we are talking about
computation in a more general sense: on the left hand of an “equals” sign could be

a huge amount of visual information, like that which our retina receives, and on the
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right hand side of the “equals” sign would be the recognition of certain pattern. This
kind of computation is complicated information processing.

There is often an analogy between brain and computer, neuron and transistor,
since the brain is a network of neurons and the computer is a network of transistors.
This might help to understand the neuron network a little, since both of them are
complex networks built with simple units and both of them, in principle, can do
the same computational task. But the efficiencies of a biological brain and a digital
computer are really different and very dependent on tasks.

The human brain is not even good at the four fundamental arithmetic operations.
A calculator will outperform us easily. A digital computer is not good at doing pattern
recognition, one of the most common tasks for a biological being to survive. The
human brain consists of about 10! neurons. A typical personal computer nowadays
has about 107 transistors. But to do multiplication, it takes a human lsec; it only
takes 10~ "sec for a personal computer. For a task like pattern recognition in a natural
scene, a personal computer is no match to a pigeon with only about 10° neurons. Even
after discounting the device speed, one can still draw the same conclusion. (Hopfield,
1990.)

The abilities of flying and pattern recognition were developed over million of years
by the selection of nature, yet we can understand the structure of the wing and the
dynamics of flying, and as a result we can build airplanes. It is still a challenge
for human beings to further understand the structures and dynamics of the neuron
network and to build more intelligent machines which can perform well on tasks such

as pattern recognition.

Adaptive neuron network dynamics
A brain and a digital computer have very different structures and follow very

different dynamics. For instance, in a personal computer, each transistor connects
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to three or four other transistor and the connections are most feedforward. In the
human, there are many more connections, both feedforward and feedback. For an-
other example, the connections between neurons change during the development of
the brain and during learning or adapting to the environment. One of the most
important features of a neuron network is adaptation.

If we describe the state of a neuron network by two sets of variables, namely
neuron activity and the connections between neurons, adaptation is reflected in the
change of connections, i.e., change of network structure. Generally, this kind of change
is responsible to development and maturation, memorizing, learning and acquiring
motor skills. It is a vital part of the neuron network dynamics. Biology tells that the
connections are learned or developed while the network is functioning, i.e., when the
neurons are active, and furthermore that the synaptic development and modification
depends on neuronal activity. The activities of the two neurons which are connected
by a particular synapse are particularly important for changes in that synapse.

Genetics determine the form and structure of a brain to a considerable extent,
but a lot of neuron connections are formed and/or modified by adapting to the envi-
ronment. For example, a newborn baby can’t even focus. Most of its visual nervous
system, including the visual “front end”, the retina and several stages following that
are developed in the first few weeks. The development is strongly influenced by the
environment. Experiments on monkeys reveal that a monkey raised in an environ-
ment with a bias of more vertical bars than horizontal bars will have more neurons
reponding to vertical stimuli due to the projection pattern of the inter-layer connec-
tions tending to be vertical selective (Hubel, 1988). In some sense, the “operating
system” itself is a result of adaptation or self-organization.

Learning is another feature consequence of adaptation. Researchers have trained

pigeons to do certain pattern recognition tasks which would not occur in a natural
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scene — to pick out photos in which a certain person appears. The pigeons did a
strikingly good job (Herrnstein, Loveland, Cable, 1976). No digital computer with
known algorithm can perform as well. An animal with a brain which does not learn
will have a difficult time to surviving in a changing environment. The fact is that the
brains which are most capable of learning are dominating this world.

The synaptic connection change interacts with neuron activity change, and con-
tributes to the performance of general computation tasks. In case of short term
memory and facilitation, the two dynamics of synapse change and activity change are
in a similar time scale, and it becomes important to consider the two dynamics at
the same time in order to understand how the computation is done.

The main purpose of the research described in this thesis is to study the neuron
network as a dynamic system with both neuron activity change and connection change
while the system is under the influences of environment inputs to the system, i.e., to

study the neuron network with adapting synapses in a changing world.

Outline

Two kinds of dynamic processes take place in neural networks. One is the change
of activity of each neuron. The other is the change of connection between neurons.
When neural network is learning or developing, both of these two processes take place
and interact with each other, which, we believe, is the basic scenario of neural network
dynamics (Dong, 1991).

It is believed in physics that certain general behavior can even emerge from rela-
tively simple model. One of the simple models of neuron networks is Hopfield model
(Hopfield, 1982, 1984). It states that the input to a neuron is linear summation of ac-
tivities of other neurons and environmental input, the input changes with a relaxation
time and the activity of the neuron sigmoid input-output relation to the input. One

of the simplest yet most important adaptation rules is Hebbian rule (Hebb, 1948).



1.5

It states that the connection between two neurons is positive correlated to the cor-
relation of their activities. In Chapter 2, we laid out the theoretical bases of neuron
network dynamics incorporating simultaneously both dynamics as a mechanism both
for developing and learning in a neuron network.

By using the abstracted properties of neuron activation and connection modifi-
cation, some interesting developing or learning features appear. Under certain con-
ditions the network develops connections according to the correlation pattern of the
environment inputs. Under other conditions the network develops connections corre-
sponding to single environment input.

A specific correlation pattern — center-surround environmental correlated inputs
— is used Chapter 3. The network can learn either the center-surround correlation as
the interconnections between neurons, or oriented stripes, depending on the different
parameters in the dynamic equations.

It is useful to study in some detail the structure of a neural network. A real
biological neuronal network has layered structures. One layer of neurons supplies the
primary inputs of another layer; this is so called feedforward connections which con-
tribute to transfer information from one stage to the next. Within each layer (stage),
neurons have massive interconnections which also contribute to the information pro-
cessing. In fact, in any area of the cortex, the majority of synapses come from axons
originating within the same layer. This kind of connection is both feedforward and
feedback.

Given the widespread interest in the mammalian visual system from both the
neuroscience and the computer vision community, we felt that it would be useful
to apply our dynamic model to this particular system. A great amount of biological
data is available, but meanwhile there is great controversy as to the wiring underlying

orientation selectivity in mammalian visual cortex.



1.6

The structures of cat visual system are studied in Chapter 4, 5 and 6, extending
from the retina to the lateral geniculate nucleus and then to the area 17 of the cortex.
These are the early stages of visual information processing. We emphasize the crucial
nature of inhibition from interconnected neurons in shaping orientation selectivity.

In Chapter 7 we discuss the developmental issue of the interconnection in the
mammalian visual system. The questions left in Chapter 3 about the application of
the theory to a biological system will be addressed here. The main developmental
character will remain for a less idealized system with not-quite symmetric connections,
a system driven by action potential signals and a system with separated inhibitory and
excitatory connections. Further, we study the emerging global structure of orientation
columns. Again, we emphasize the crucial role played by the interconnections.

A program is listed in Appendix A to illustrate how the simulation of the network
was done. This program is the one used to simulate the results in Chapter 2. A
simpler model of orientation selectivity is presented in Appendix B which emphasize
the important role of the interconnections to the emerging property of a layered
network. Dynamics of feedforward connections is discussed briefly in Appendix C to
tell the whole story about orientation selectivity.

Overall, the thesis can be divided into two major parts : 1) Chapter 2,3 and 7 are
about the development of orientation selective structures, which can be understood
fairly well without going into details of biology; 2) Chapter 4, 5 and 6 are about
the function of the orientation selective structures, where physics approach is used to
model biology more closely. What appears to us is a clearer picture about one neural
network, a small piece of brain. What excites us is a bit more understanding about

the mystery of mind.
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Dynamic Properties of Neural Networks
with Adapting Synapses

Introduction

Model neural networks, abstractions from neurobiology, are conceived in terms
of two different kinds of variables. One class of variables represents the activity of
the nerve cells, or “units”. The other class of variables describes the synapses, or
connections, between the nerve cells. A complete model of an adaptive neural system
requires two sets of dynamical equations, one for each class of variables, to specify
the evolution and behavior of the neural system.

Most prior research has focussed separately on one or the other of these sets
of equations. For example, work on associative memory and optimization involving
feedback networks has chiefly asked questions about the dynamics of the activity
of neurons with a fixed set of connections (Hopfield, 1982, 1984; Wehmeier, Dong,
Koch, and Van Essen, 1989). Studies of adaptive feedforward networks designed to
imitate the development of connectivity patterns in the visual cortex have ignored all
real dynamics of neural activity, and involve only the dynamics of synapse changes
(Bienenstock, Cooper and Munro, 1982; Linsker, 1986; Miller, 1989).

This research develops aspects of the theory of feedback networks in which both
kinds of dynamics are simultaneously important. It shows that there is a class of
systems which have a Lyapunov or “energy” functions behind the joint dynamics,
which lead to stability of the combination of synapses and activities. These ideas
are then applied, both in mathematics and in simulations, to the problem of the
development of synaptic connections in the visual cortex, which have previously been

studied only with feedforward networks (essentially static) and synapse dynamics.

The dynamical model

The equations describing the dynamics of the activity of the neurons will be
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described as follows, in the notation of Hopfield (1984). A neuron ¢ is described as

an input-output device, with the output V; a function of the input u;. Thus
Vi = gi(w) [2-1]

The typical input-output relation is monotonic and sigmoid, with asymptotes V* and
V=. The strength of the synaptic connection from neuron j to neuron : is Tj;. The

set of equations describing the evolution of the state of activity of the neurons is

ai% =—u;+ Y T;Vi+ 1 [2.2]
J

in which a; is a time constant and I; represents any additional inputs to the ¢th
neuron besides those described by connection matrix 7T;;. For a typical layered neuron
network, the input or external driving force I; represents the influence from neurons
of other layers and/or from the outside world.

If the connections are fixed, the T;; do not depend on time, and this is the
only set of dynamical equations. However, if the synapses adapt, a second set of
equations describes the way the synapses change with time due to neuronal activity.
Many synaptic change rules have been used by others (Minsky, 1969; Kohonen, 1984;
Rumelhart, 1986). Ours is closely linked to the Hebb (1948) idea, but is in detail a
novel variant, and will next be described.

The basic idea described by Hebb was that the change of a connection strength
should be due to correlated activity of the pre- and post-synaptic cells. The two
components of this idea are that learning should be local (the description of synapse
change should involve only the activity of the two neurons adjacent to the synapse),
and that the strength of what we would now term an excitatory synapse should tend to
increase when there is a positive correlation between the activity of its two particular

cells. Thus the strength T;; of a synapse which is capable of change (not all synapses
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need to be adaptable, nor need an adaptable synapse be changeable throughout the
life of an animal) will depend on time through a set of equations which involve the
neuronal activity.

The complete set of variables which describes the state of the network then be-
comes {V;(t), T;;(t)}. Let the connection variable T;; be a bounded, continuous and
monotonic increasing function of the “recent” correlation s;; of the neuron activities
Vi and V}:

Tij = Hij(si;) [2.3]

The following quantity is used as the measure of the recent correlation between

Vi(t) and V;(t):
t z—t

() = g [ B V@) 2.4

|
IS

z
X

i

in which B;; is a time constant and e®i is a weight factor. Because an exponential
kernel is used in Equation 2.4, the integral equation is equivalent to the differential
equation

LY

dsi;
0 = sy + Vi [2.5]

STy

This equation represents Hebbian learning with a decay term. If the time con-
stants B;; = Bjy;, then s;; and s;; are the same for all sufficiently long times; any
initial bias must die out in a time of the order of B. Then s;;(t) = s;;(t). If also
H;;(z) = Hj;(z) (for example, if all input functions H;;(s) have the same form), then
T;;(t) = Tj(t) for all t. This learning rule implies that 7;; will always be symmetric,

an essential point in the following energy analysis.

Lyapunov function analysis
The convergent flow to stable states is a fundamental feature of this system of

joint evolution of the activity and the connections. We will show this by constructing
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a bounded “energy function” which always decreases in time under the equations of
motion of the system.
In a system with a constant symmetric T (i.e., T;; = T};), one can construct an

energy function which is always decreasing in time:
1
E=—Y TV + ¥ [udvi+ T [ Ldv; [2.6]
ij i i

Its time derivative is

dE OFE dV; dv;
@2 - BV g
du, d‘/; . _1, d‘/; 2
“Lag g = ()

i

2.7]

Since the inversed gain function g;*(V;) is a monotonic increasing function and the
time constant a; is a positive number, therefore

iE

dE dv;
dt =

-Et—__o — -Jz-zo for all 7,7 [2.8]

and

This equation and the boundedness of E guarantee that the state flow in the con-
tinuous state space of {V;} terminates in a nearby stable state, i.e., a nearby local
minimum of the energy function.

One useful T;; matrix is constructed as

J

M
T = S VIV [2.9]

in which V™ = £1, and V™ is the mth pattern vector stored by the network. Such
a T matrix is useful for associative memory, and can be generated by a Hebbian
mechanism. But in most of the literature of feedback associative memories, the
“writing” of T;; and the recall of memories are separate events, and their dynamics

is not combined.
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In the model including synapse dynamics, the set of variables {V;(t), Ti;(t)} are
used to describe the state of the network which is undergoing both kinds of dynamic

processes at the same time. The complete set of the dynamic equations is

du;
a;— = u,-l—ZT,JV + I;
V= gi(w) [2.10]
ds,-- ’
Bijd_tJ = —s8;; + ViV;
Ti; = Hij(sij)
Define
1 1
L=—3 STV + 3 [udvi+ L1Vt 5 ¥ [ sdly [2.11]
iy 1 1 i
Elementary differentiations and substitutions yield
du,- oL
Gt =
' dt oV,
g, 0L 1)
Yodt 8T,,
Therefore,
dL _Z L dV; + oL dTi; Z(‘9LdI,-
oV, dt 8T dt |~ 0I; dt
du; dV; ds;; dT3; dI;
_ 1 - B1 ‘l] ‘B] ‘/i-_‘l'
Z ar dt >—; T E [2.13]
-~ Yo (G - S B o PV
When the inputs I; are constant,
dL dT,
:Ez_}:a ZB HZY(=2) [2.14]

The inversed gain functions ¢;'(V;) and Hj;'(T;;) are monotonic increasing func-
tions, and the time constant a; and B;; are positive numbers. Therefore

L <90 and -(E:O — dV_O and -(-i—fl:ﬂ

I S - I o =0 forallz,;j [2.15]
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These equations and the boundedness of L show that L is a Lyapunov function of
the system (Wiggins, 1988). The time evolution of the state in the space of {V;(t),

T;;(t)} leads to attractors which are at local minima of L.

Stable points
Let {V;, T;;} and correspondingly {u;, s;;}, be a time-independent (steady state)
solution of Equation 2.10 (i.e. a fixed point). Consider the motion of a small pertur-

bation {éu;, 8s;;} around that solution.

dbéu;
a,‘-——J:-L— = —bu; + 2 (Tijg;"suj + Hz{jv}ésﬁ)
i [2.16]
d532~j ' ’
B,‘j—c-lt— = “531']’ + V;'gj&u’j + givjéui

in which {V;, T;;} and {g}, H};} take the values of the fixed point. If {éu;, és;;}
approach zero asymptotically, this fixed point is stable.

In the space of {V;, T};}, suppose the origin, ie., {V; = 0, Ti; = 0}, is a fixed
point (which it is in the special case g(0) = 0 and H(0) = 0). Equation 2.16 then

becomes
déui
ai—(—it— = —5“,'
ds;; [2.17]
By = ~bsi

showing that the origin is stable.

Similarly, suppose a corner in {V;, T;;} space is a steady state solution. (In the
high gain limit, all steady state solutions which are not at the origin are at corners of
the hypercube {V; — g%, T;; — H*}, where g* and H* are the upper (+) and lower

(—) bound of the monotonic increasing function g(u) and H(s).) Again

d&u,-
a,-—-gt— — —-5&,'
d6s;, [2.18]

Bi~g

— —5Sij



2.7
so those corners are also stable.
For an illustrative special case, consider two neurons (V3 and V;) and one sym-

metric connection 7.

du
ad—tl = —u; + TVi
du
a-?l-i-z— = —uy + TV,
V= F(gu) [2.19]
ds
T = F(HS)

in which g and H are constants, and piecewise linear functions are used for the non-

linear functions, defined by

+1, ifz > +1;
Flz)=qz, if-1<2z<+1; [2.20]
-1, if -1 >zx.
Therefore
|% L | % ! V2 L T?
L(‘/l"/%T)z_T‘/l 2+§; 1 +é; 2 +§—ﬁ [221]

In the space of {V;,V;, T}, the origin (0,0,0) is a fixed point and if ¢ > 1 and
H > 1 the corners (1,1,1), (-1,-1,1), (1,-1,-1) and (—1,1,—1) are also time-
independent solutions of Equation 2.19. (Note that out of eight corners only four of
them are fixed points.) All those fixed points are stable points, point attractors for
the motion of the dynamic system. (It can be generally proved only those fixed points
satisfying T;; = sign(V;V;) and the origin are stable points.) Figure 2.1 shows the
function L(V4,V,,T) exhibiting a central minimum and corner minima in a reduced
space (T = F(HVV,)).

The stability of these points should be considered in a context of learning. First,
the origin is the state of unlearned connections with no neuronal activities. It is

stable, ensuring that a small perturbation from a weak signal will not result in learning
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anything. Second, after the network learns a pattern, forming connections which are
the outer product of a memory vector with itself, that corner is stable. The stability
of that corner makes the network disregard other incoming patterns unless they are

very strong, which will be discussed further in the next section.
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Figure 2.1 The Lyapunov function is drawn in {V;, V2} space (along the surface

s = ViV, in {V;, V5, T} space). The constants are chosen g = 2.0, H = 2.0 (what

is not shown here is when g < 1 and H < 1 only the origin is stable point). The

X-axis is Vi, the Y-axis V5, and Z-axis the Lyapunov function. The origin and the

four corner points are local minima.
Behavior during learning

I* defines a set of K input patterns (k=1,2, ... , K). During learning, the time-

dependent input I;(t) is generated by switching sequentially from one input vector
to another. To make the system have a plausible correspondence with developmental

neurobiology, the time duration of each exposure ¢}, is longer than the neural activity

time constant a;, but shorter than the time necessary to change the connections
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appreciably, i.e., t, << Bjj.

During learning, the neural activity arising from the state of activity of the system
produces the synaptic changes. The state of the neuron activity is driven by the
input signals I;(t), but not only by it. After learning has proceeded for a while, the
synaptic connections become appreciable, and the activity becomes influenced both
by the sequence of patterns and by the partially learned connections. The state of
the network changes according to the set of Equation 2.10.

In the following study, the gain functions are
gi(z) = F(gz) [2.22]

Hij(l') = F(HIL‘) [2.23]

in which ¢ and H are constants (gain) and F(z) is defined in Equation 2.20. By a

simple variable transformation, u; — gu; and s;; — Hs;j,

d R
ait = —ui+ g 3 TV + Al
7
; Vi = F(ui) [2.24]
Si4
Bij"gt‘]' = —s;; + HV,V;
Ti; = F(sij)

in which a scale constant A is introduced to the input current I;.

When the input is strong compared to the signals coming by way of the intercon-
nections, the neuron activities V; will be largely determined by current I;. For the
period of time to to ¢y + ¢, when pattern IF presents, V;(¢) is approximately equal to

F(AIF). Since t, << Bjj, the first order approximation will give

T H & k k
sij = — > F(AIf)F(AI}) [2.25]
K k=1
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in which K is the number of input patterns. When A > 1 and H = 1, this will result
in an T}; which is the average over K patterns of the outer product of vectors I* as

shown in Figure 2.2.

-1+

Figure 2.2 The strengths of the developing connections as a function of time
for an 81 neurons network when input signals dominate. (Only the connections
to/from neuron 1 are plotted in the graph.) Six random input (—1,1) vectors
which have correlation (inner product) between them no larger than 3 were pre-
sented to the network. The learning parameters were a; = 1.0, B;; = 300.0 (the
unit along time axis is in 0.1B;;), ¢ = 0.3, and H = 1.0. The input pattern
changes every 15 = 12.0 and loops through all the six memory vectors which have
a large amplitude (A = 30.0). The connections strengths converge to seven val-
ues, 6/6, 4/6, 2/6, 0, —2/6, —4/6 and —6/6, which correspond to the values of
average over the outer product of the input pattern set (T;; = % 2221 I,-’“I;“). The
network memorizes all 6 of the input vectors. The simulation program is listed in
Appendix A.

Figure 2.3 shows the development of connection strengths for parameters such
that the connections can become large. Even when the connections ultimately become
very strong, they are weak at the beginning of learning or development. Thus at the
beginning of learning, the T;;(¢)V; term contributes much less than the input I; in the
neuronal dynamics equation. The neuronal activities will take on a pattern similar

to the input {I;}, and the learning will be very much like the sum of outer product
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method. This case is illustrated in Figure 2.3, where before time step 30 the learning
curves are very similar to those of Figure 2.2.

When the contribution from the interconnections becomes comparable to that
from the input (which happens when the network has partially learned connections
as the summation over outer products), the bias of input I; can no longer dictate the
neuron state. When the connections become much larger, the small input I; can even
be ignored. As pointed out earlier, for this case the origin and some of the corners
are the local minima in the landscape of L, so the flow will be attracted to those
points. The initial learning with the relatively strong input influence will bias the
L landscape, and this bias will determine the choice of broken symmetry solution.
All connections ultimately go to a single magnitude and reflect the choice of a single

corner in the L landscape. Figure 2.3 illustrates this occurrence.

~0.54

~14

Figure 2.3 The strengths of the developing connections as a function of time
in an 81 neuron network when the connections can become dominating. Compare
this figure with Figure 2.2. (The connections to/from the same neuron as in
Figure 2.2 are plotted.) The parameters are the same as in Figure 2.2 except
that the input pattern strengths have been decreased by a factor of 10 (4 = 3.0).
The network here selects one input memory to memorize while the network of
Figure 2.2. memorizes all six input vectors. Since at the very beginning the
connections are small, in the energy F landscape the attractors of the six input
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pattern are not deep and the influence of the interconnections does not contribute
much. The early learned connections are similar to those which are learned with
a high amplitude of input. The symmetry breaking happens at about ¢ = 3B;;.

After the network has selected a pattern, it becomes hard to switch between the
learning patterns. This feature has two effects: the learning process is stable, and
also, the network will be unable to learn any other pattern or to notice the inputs.
The only way to get away from this state is to input a stronger pattern to drive the
network out of the corner. These effects are not necessarily beneficial in a context of

memory, but may be useful in the biological development of connectivity patterns.
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Dynamic Properties of Neural Networks
Dynamics of Connections

Application to a problem of development in the visual system

The ideas and equations presented in last chapter will now be applied to the
development of orientation selectivity by a network of neurons representing the first
stage of cortical visual processing in mammals. This case has been previously in-
vestigated chiefly with feed-forward networks (Linsker, 1986; Miller, 1989), while the
actual neurobiology of visual cortex involves extensive feed-back circuitry (Gilbert
and Wiesel, 1989; see Appendix B also).

The network is a two-dimensional spatial array of processing neurons, chosen
to represent the earliest processing area in mammalian visual cortex. This cortical
area receives primary input from the LGN (lateral geniculate nucleus). The LGN
can for present purposes be also regarded as a two-dimensional array. The “center-
surround” organization of the early visual system results in a pattern of connections
such that in the absence of a visual stimulus, the noise output of an LGN cell is
positively correlated with its nearby neighbors, and negatively correlated with its
more distant neighbors (Hubel and Wiesel, 1961; Cleland, Dubin, and Levick, 1971;
Shapley and Lennie, 1985). An important feature of the developing visual cortex is
thus the fact that it receives a noise input which has a characteristic spatial correlation
function like that of the LGN. The correlation function, in which the inputs to nearby
neurons are correlated and the inputs to further away neurons are anti-correlated, is
shown in Table 3.1. We will examine the effects of this noise on the development
of interconnections between the array of processing neurons, and the effect of the

developed connections on the processing done by this first layer of visual cortex.

Table 3.1 The correlation matrix of the inputs I;. On the center pixel, the
correlation of the same input to itself is scaled to 1.00. The general pattern
is a center-surround structure with a positive correlation center and a negative
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correlation surround. The mean is 0.10 (omiting the central point).

/—0.19 -0.17 -0.11 -0.10 0.01 -0.10 -0.11 -0.17 —-0.19\
-0.17 -0.15 -0.07 -0.05 0.02 -0.05 -0.07 -0.15 -0.17
—-0.11 -0.07 0.01 0.10 023 010 001 -0.07 -0.11
-0.10 —-0.056 0.10 035 054 035 010 -0.05 -0.10
0.01 002 023 054 1.00 054 023 0.02 0.01
—-0.10 -0.05 0.10 035 054 035 010 -0.05 -0.10
-0.11 -0.07 0.01 0.10 0.23 010 0.01 -0.07 -0.11
-0.17 -0.15 -0.07 -0.05 0.02 -0.06 -0.07 -0.15 -0.17
\—0‘19 -0.17 -0.11 -0.10 0.01 -010 -0.11 -0.17 —-0.19/

The connections of one neuron to/from the others are only allowed within a small
rectangular region centered on the neuron. All the connections start with strength
equal to zero. Periodic boundary conditions are used on the horizontal and vertical
boundaries of the 929 array.

The set of variables {V;(t), Ti;(t)} are used to describe the state of the network
which is undergoing the two kinds of dynamic processes at the same time. The set of

the dynamic equations is the same as Equation 2.24.

aiéﬂ =—u; +9) T;V; + Al
7 -
J Vi=Flw) [3.1]
Si4
Bij“at—]' = —s;; + HV.V;
Ti; = F(si))

The input current I; here is generated by weighted summation over an input layer of

random noise (+1 and —1) signal. The weights are shown in the Table 3.2.

Table 3.2 The summation weight matrix. It is center excitatory and surround
inhibitory. The correlation matrix calculated from this is shown in Table 3.1.
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-1 -1 -1 1 1 1 -1 -1 -1
-1 -1 1 1 1 1 1 -1 -1
-1 1 1 1 1 1 1 1 -1
-1 1 1 1 1 1 1 1 -1
-1 1 1 1 1 1 1 1 -1
-1 -1 1 1 1 1 1 -1 -1
-1 -1 -1 1 1 1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1/

Development of a center-surround structure

A center-surround symmetric structure is formed when the input is strong com-
pared to the interconnections. This kind of structure has positive interconnections
with square symmetry to nearby neurons, and negative connections with square sym-
metry to neurons which are further away. The connection pattern is “circularly
symmetric”, i.e, exhibits the highest symmetry possible given the square array ar-
rangement. In this case the neuron activities V; are largely determined by inputs I;.
Thus the correlation function s;; of neuron : and neuron j will resembles the correla-
tion of the inputs to these two neurons. Figure 3.1 and Table 3.3 show the learning
results.

The learning captured the correlation pattern of the input into the connections,
and is organized into a center-surround structure. The connection strength of the
learned center-surround structure and the calculated autocorrelation function of the
input current have in most places the same signs but differ in magnitude, a not sur-

prising consequence of the nonlinearity of the dynamical equations. The comparison

is shown in Table 3.1 and the following Table 3.3.
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Figure 3.1 Each large square, composed of 929 pixels, describes the connections
of one of the 81 neurons to the others. Each pixel has a blackness which describes
the strength and sign of the connection of this particular cell to another cell
in the array. White represents positive connections, black represents negative
connections. In this case, of a relatively large input strength compared to the
interconnections, a square-symmetric center-surround structure of connections is
developed. The parameters used in this simulation are a; = 1.0, B;; = 300.0,
g = 0.3, H = 2.0, and amplitude of the input currents A = 10.0. The values of
the connections (averaged over all neurons) are shown in Table 3.3.

Table 3.3 The learned receptive field when the input is strong A = 10.0. It is a
center-surround structure with excitatory connections in the center and inhibitory
connections in the surround. There is no connection to the neuron itself (on the
center, it is shown as 0.00). The mean is —0.66 The regions of 4+’ and ’-’ are
almost the same as of the input correlation shown in Table 3.1. The patterns
have been averaged over all the 81 neurons.

-0.95 -0.60 -0.26 -0.06 0.01 -0.07 -0.27 -0.60 —-0.95
—-0.57 —-043 -0.12 0.06 0.12 006 -0.13 -045 -0.57
-022 -0.10 014 032 039 033 014 -0.10 -0.23
-0.03 0.10 035 076 091 0.76 0.35 0.10 -0.03
0.03 0.17 043 0.92 0.00 092 043 0.17  0.03
—-0.03 0.10 035 076 091 0.76 0.35 0.10 —-0.03
-0.23 -0.10 0.14 033 039 032 014 -0.10 -—-0.22
-0.57 -045 -0.13 0.06 0.12 006 -0.12 -—-043 -0.57
-0.95 -0.60 -0.27 -0.07 0.01 -0.06 -0.26 -0.60 —0.95)

The influence of the center-surround structure on processing
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After the formation of the center-surround structure, we tested the neuronal activ-
ity dynamics starting from a small random activity. The stable states are patterns of
horizontal or vertical bars, at any translational position. The dynamics starting from
random states exhibited equal probabilities of ending up in a pattern of horizontal or
vertical bars, and at all positions.

The following mathematical analysis indicates why these are the stable patterns.
With the periodic boundary conditions, a two-dimensional Fourier analysis on the
neuronal dynamic equation can be done, with an assumed center-surround connection
G(x,y) as the (initially learned) connection strength for all of the neurons. The

equation for neuronal activities V; is

—d-t; =-u;+g 2 ViTi; 3.2]
ij
In the linear range u; = V; so
dv;
==V +9>_ViTy [3.3]

and in a continuous limit in two-dimensional space becomes

V&Y - v+ [ [6la-aty vV idy  [34)

After the Fourier transformation,

dF (V)
dt

= —F(V) + F(G)F(V) [3.5]

Those modes with F(G) > 1 will exponentially grow; those with F(G) < 1 will
exponentially decay with time. The biggest F(G) mode will dominate at long time.
If there are several modes which have the similar large F'(G), they compete with each

other when nonlinearities become important.
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The form of F(G) are easily illustrated by using a DOG (difference of Gaussian)
as the G(z,y) function. The transformation into the frequency space yields another
DOG but upside down, as shown in Figure 3.2. The peak value is the same along all

possible wave vector directions.

Figure 3.2 On the left is the Fourier transform of ideal DOG (difference of
Gaussian) receptive field: exp(—(z2+y?)/2)—ezp(—(z?+y?)). The DOG receptive
field in z, y space is also shown at the left, with an origin at (4.5,4.5): exp(—((z —
4.5)2 + (y — 4.5)?) % 2) — ezp(—((z — 4.5)% + (y — 4.5)?))/2. It is symmetric for all
orientations. On the right is the Fourier transform of the learned center-surround
connections (Table 3.3). The horizontal and vertical oriented modes have the
biggest values. The wavelength is 9.

For the discrete center-surround structure, the Fourier transformation of the
learned kernel has its biggest F(G) in the vertical and horizontal directions (Fig-
ure 3.2, right). The next biggest ones at 45 degrees are much smaller (5.4/2.7) and
all the others are smaller than 1. F(G) is not isotropic since the chosen geometry of
our system is a cubic structure, but it is identical for the vertical and horizontal di-
rections. For orientation selectivity (which is characteristic of cells in primary visual

cortex) this symmetry must be broken.

Breaking the symmetry
When the amplitude of the input is low, the network develops further. In the early
stage of the learning process, it exhibits features similar to the center-surround case

just described; the neuronal states resemble the input patterns changing with time,
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and the connections from one neuron to the others becomes excitatory for nearby
cells and inhibitory for further away ones. But when the connections grow stronger,
the neuronal state begins to spend more and more time in those patterns resembling
horizontal and vertical bars at various possible positions, with the interconnections
preserving the center-surround structure. Ultimately, when this tendency has grown
strong, because a little more time is spent by chance in a particular one of these
patterns, the connections become slightly biased to that activity state. This state,
as a result of learning, becomes an even deeper attractor and the fluctuation grows.
Finally the neuronal excitation pattern stays in only one of these states, and the
interconnections grow to reflect that single pattern. Figure 3.3 shows two typical

symmetry-breaking results.

Figure 3.3 The network no longer preserves the center-surround structure.
The symmetry about the orientation is broken. The figure on the left shows a
structure of vertical preference in which each neuron connects to other neurons
with vertical excitatory and inhibitory bands. The figure on the right shows a
structure of horizontal preference with horizontal excitatory and inhibitory bands.
All the parameters are the same as in Figure 3.1 except that the magnitude of
input currents is smaller 4 = 1.2 compared to A = 10.0 in Figure 3.1. Both
structures have a period of 9 as expected from Figure 3.2.

The corresponding time courses for the symmetry breaking results of Figure 3.3
are shown in Figure 3.4. The qualitative explanation for the broken symmetry result

developed to explain Figure 2.3 applies to the more complicated case presented here.
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Figure 3.4 The time courses of connection development with a smaller ampli-
tude of input A = 1.2 (the corresponding symmetry breaking results are shown
in Figure 3.3). All the other parameters except A are the same as in Figure 3.1.
The vertical axle indicates the strength of the connections from one neuron to
the others, s;j, note that T;; = F(s;;). (Only the connections of neuron 1 — the
one at the up-left corner — are plotted.) At the beginning, the connections are
developed very similar to the center-surround structure as shown in Figure 3.1.
At later stage, about t = 6Bij, the symmetry about vertical and horizontal ori-
entations is broken. The network flows to one of the structures with orientation
preference.

Discussion

This kind of dynamical system has the unique feature of learning the correlation
of input vectors under certain conditions and selecting a unique final learning result
under other conditions. It is an example of “symmetry breaking” since there are
several equivalent patterns possible from which it chooses one. When these dynamics
was used to simulate the development of visual cortex connections, it first developed
a center-surround form of connections, which is rotationally symmetric and has no
chosen orientation. At a later stage, the orientation symmetry is broken, and an
interconnection structure of oriented stripes develops.

In a typical neurobiological systems, the axons from one particular neuron usually
form either excitatory or inhibitory connections to other neurons, but usually do not
produce both kinds from a single neuron. Our model has used a single class of neuron

which can form both excitatory and inhibitory connections. However, within the same



3.9

layer of cortex, there are often many interneurons connecting between other neurons.
Our simplified model neuron could be viewed as representing a group of neurons; the
input as the total input to that group and the output as the total output from that
group. Similarly, the model connections can represent the total effect of one group of
neurons on the others, including effects of interneurons. In such a sense, the model
described can have a mathematics in plausible correspondence to neurobiology. This
simplification of a single cell type and synapses of both signs has been much used in
the modeling literature (Cohen and Grossberg, 1983; Hopfield, 1984; Kohonen, 1984;
Rumelhart, 1986).

Studies of the development of early vision pathways with a more biological plau-
sible model will be presented in the following chapters. But the basic feature of the
dynamic as shown in this chapter. are preserved in spite of the addition of a wealth
of observed electrophysiological and biophysical detail. Such a model with realistic
dynamics of neuronal activity and synaptic connections learns the center-surround
input correlation at the beginning of the development; keeps the correlation as the
final learning result as long as the influence of the interconnections between neurons
is not as strong as the inputs; and leads to the selection of an oriented pattern when
the connections become strong enough at some learning stage. Thus by constructing
an energy function based on symmetric connections, tractable mathematics has been
constructed to understand a far more complex situation involving the development

in a feedback network.
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Modeling the Mammalian Visual System
Review

Introduction

Given the widespread interest in the mammalian visual system from both the
neuroscience and the computer vision community, we felt that it would be useful to
apply our dynamic model to this particular system. Accordingly, we will describe
detailed computer simulations of the early visual system in the cat, extending from
the retina to the cortex. We will mainly discuss those biological aspects of the model
that differ from previous chapters.

The principal aim of the work discussed here is to understand the neuronal cir-
cuitry underlying one of the most elementary properties of cells in the visual cortex of
mammals, namely their preference to maximally respond to elongated bars of a cer-
tain orientation (for a review see Ferster and Koch, 1987). Cells can be so selective to
this particular feature that a mere 10° angle displacement off the optimal orientation
can reduce the maximal neuronal response by a factor of 2. The major question that
any model of this phenomenon must address is how the response of cortical neurons
is so critically dependent on the orientation, even though their input fibers, arising
from cells in the lateral geniculate nucleus (LGN), are largely insensitive to orienta-
tion. The first—and most influential—model for orientation selectivity was proposed
over twenty-eight years ago (Hubel and Wiesel 1962). It postulated that orientation
selectivity arises from an appropriate alignment of synaptic input, such that cells
whose receptive fields fall along a row excite the cortical cell (see Figure 4.1a).

Alternative models have invoked the use of inhibition to shape orientation tuning
(Benevento, Creutzfeldt, and Kuhnt, 1972; Bishop, Coombs, and Henry, 1971; Brait-
enberg and Braitenberg, 1979; Morrone, Burr, and Maffei, 1982; Sillito, 1975; Sillito,
Kemp, Milson, and Berardi, 1980; Heggelund, 1981, 1986; Orban, 1984): the cell is
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prevented from firing at nonoptimal orientations by the action of inhibitory cortical
interneurons. Current electrophysiological evidence is ambiguous, since support can

be found for both classes of models.

Figure 4.1 Wiring underlying orientation selectivity. (a) The concentric center-
surround receptive field of geniculate cells contrasts with the elongated receptive
fields of their cortical target cells. (b) The excitatory-only model put forth by
Hubel and Wiesel (1962). A number of geniculate cells whose receptive fields are
located along a given axis monosynaptically excite the cortical cell (open arrows).
Here and in the following, only the excitatory centers of the geniculate cells are
drawn. (c) One instance of an inhibitory-only model. Nonoriented cortical in-
hibitory (dotted lines) interneurons shape the orientation tuning of their target
cell by suppressing its response at nonoptimal orientations. In the example shown,
a horizontal bar will lead to activation of the interneuron, which will inhibit the
vertically oriented cortical cell. (d) Eclectic model combining features of all mod-
els (Koch, 1987; Ferster and Koch, 1987). An excitatory Hubel and Wiesel type
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of presynaptic arrangement is superimposed upon two inhibitory ones: reciprocal
inhibition among similarly oriented cortical cells with spatially nonoverlapping
receptive fields (dotted lines) and cross-orientation inhibition among orthogonal
oriented cells (dashed lines). Due to the massive feedback among the partici-
pating cortical neurons, each cell acquires orientation selectivity via a collective
computation.

These models are all instances of what Sejnowski, Koch, and Churchland (1988)
term simplifying brain model, in that they show how orientation can be computed by
invoking some of the principal structural features of the visual system, for instance
center-surround receptive fields or the columnar organization of cortex. In other
words, these models demonstrate that—given some general anatomical and physio-
logical constraints—orientation can be computed in the manner postulated. However,
in order to answer the question of which of these models is compatible with all of the
relevant anatomical and physiological data, for instance with the large amount of di-
vergence between the lateral geniculate nucleus and visual cortex or with the massive
feedback within cortex, much more detailed simulations have to be attempted.

Since our detailed model of orientation selectivity incorporates a novel idea—
that massive inhibitory cortical feedback can establish orientation selectivity without
the need for nonoriented interneurons—we first evaluated its ability to correctly
compute orientation using a very simplified model of neurons, based on Hopfield’s
elegant (1984) formalism (Appendix B). Given the great simplicity of this model—
compared to our detailed simulations—it allows us to understand quickly some of
the key aspects of the model without a heavy programming burden. For instance,
massive inhibition among cortical cells (Figure 4.1d) establishes orientation selectivity
for all cortical cells and enables the system to work over a large range of stimuli
contrast values (Ferster and Koch, 1987). Questions such as the dynamic behavior
of the system (for instance, the convergence time) cannot be tested on the other
hand, since the Hopfield model does not account for dendritic and axonal propagation

times. Moreover, detailed biophysical modeling directly mimics electrophysiological
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results and can thus lead to new and very specific predictions, a crucial requirement
of any successful theory. The price one pays for the added realism is a substantial
increase in effort on the part of the programmer and the requirement of more powerful
computers. The distinction between these two types of models is strongly reminiscent
of Chomsky’s (1965) distinction between competence and performance models in
language understanding. A competence model mimics the behavior of the system,
i.e., in producing oriented cells. The performance model does the same but in a
manner commensurate with the internal properties of the system, i.e., in agreement
with the anatomy and physiology.

Thus, to reiterate, the aim of the kind of very detailed model discussed in this
chapter and Chapters 5 and 6 is not to demonstrate that any particular circuitry
could lead to cortical orientation selectivity, but to study and gain an intuitive
understanding—based on numerical simulations—of how the existent circuitry is re-

sponsible for establishing orientation tuning.

The Structure of the Model

Instead of modeling the visual system in a generic mammal, we chose to simu-
late the early visual pathway of the adult cat in view of the considerable amount of
anatomical and physiological cat data available in the literature. Thus, unless other-
wise mentioned, all experimental data will refer to the cat. Although the organization
of the visual system of most mammals is similar, compared to say the visual system
of birds, there do exist sufficient differences within mammals (for instance, all cells
in area 17 in cat are orientation-selective while cells in layer IVc in monkey visual
cortex are still of the center-surround type) to make it difficult to generate specific
electrophysiological predictions for a given animal in such a generic model. In keeping
with this approach, we chose to model only a small monocular patch of the visual

system of the cat, instead of attempting to simulate the entire system. Given the limi-
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tation on computing time, we feel that for our type of model a detailed, finely-grained
model of part of the system is superior to a coarser description of the entire system.
Accordingly, we simulate a small monocular patch of the X pathway comprising 2° by
2° of visual angle at approximately 4° eccentricity. This permits modeling a field of
view adequate for the presentation of an effective visual stimulus without representing
the high cone density within the area centralis. Rather than sparsely modeling the
complete field of view, we are thus able to represent the neural circuitry with realistic
cell densities, and at the appropriate scale, to specify individual connections. This 2°
by 2° patch of the visual scene is subsequently traced through each of the anatomical
structures of the early visual system, from retina to the lateral geniculate nucleus,
and subsequently to layer IV of area 17 in visual cortex.

Neurons in the early visual system of mammals have been classified according to
a host of different electrophysiological properties (for a thorough review see Rodieck,
1979; Sherman, 1985; Stone, 1983). The principal classification is in terms of X and
Y cells and is based on the capacity of cells to integrate input linearly throughout
their receptive field (Enroth-Cugell and Robson, 1966). Retinal ganglion cells of
the X type respond in a linear fashion to a sine-grating, have a sustained response
when stimulated in the center of the receptive field, and respond to higher spatial
and lower temporal frequencies as compared to Y cells, which are not capable of
linear summation. The response of Y cells is also much more transient than the
response of X cells, and their receptive field is significantly larger than that of X
cells at the same eccentricity. Finally, the conduction velocity of X cell axons is
roughly half that of Y cells. A popular but overly simplistic view associates the X
system with high-acuity form vision while the Y system is generally linked with the
system relaying temporal information, such as motion, to the cortex. A third, very

inhomogeneous class of cells, called W or non-X, non-Y, contains cells with large
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receptive fields, sluggish responses, and a number of nonlinear properties, such as
direction selectivity (Cleland and Levick, 1974). In the retina, X, Y, and W cells
correspond to very distinct anatomical classes (Boycott and Wassle, 1974). Using
the physiological classification combined with intracellular dye injection, X cells have
been identified with g3 cells, Y with a cells, and W cells with 4 and § cells (Peichl
and Wassle, 1979; Wassle, Boycott, and Illing, 1981; Wassle, Peichl, and Boycott,
1983). In the present model, we constrain our model in that we only implement the
X pathway. Furthermore, for reasons of computational efficiency, we have limited
the retinal population under consideration to only those 8 cells belonging to the
physiological on-center classification, which corresponds to half of the 8 ganglion cells
in the retinal patch. In other words, all retinal neurons described here are excited
if a stimulus falls within their center and are inhibited if the stimulus falls on the
surround. This system then provides input to the lateral geniculate nucleus, acting
as simple relay in our present model, and subsequently to the input layer IV in striate

cortex.
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Figure 4.2 Electrical equivalent circuit of a single geniculate or cortical neu-
ron (see Equation 4.1). Each neuron consists of a single lumped soma with a
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number of excitatory and inhibitory synapses in series with a capacity (C) and
a leakage pathway (gieqx in series with the battery Ej.qi). In the absence of any
synaptic input, the intracellular potential will be stabilized at Ejoqp = —71 mV.
Each synapse is modeled by a time varying conductance g., or g;,s in series with
the synaptic reversal potential E.; or E;,;. For silent or shunting inhibition,
Einn = FElear, while for hyperpolarizing synaptic inputs, E;np < Eleqr. An action
potential is assumed to be initiated if the potential exceeds the threshold Vij,esp.
Subsequent to this event, a time-varying inhibitory synaptic input g4mp, corre-
sponding to the potassium conductance seen during the afterhyperpolarization, is
activated (with Eagp < Eleqr). This will lead to a period during which initiation
of action potentials is more difficult (refractory period).

Single-cell Model

As the purpose of this simulation is to model the time-varying behavior of real
cells, our simulated neurons exhibit realistic responses. Each cell has a set of features
that includes its membrane potential, spiking threshold, level of spontaneous activity,
and its set of synaptic connections. The dynamic behavior of each neuron is described
by the simple electrical circuit in Figure 4.2, and is determined by a first-order,
nonlinear differential equation.

Each cell is modeled by a single compartment with a passive, leak conductance
(9ieak) in parallel with a membrane capacity C. The passive time constant of the cell
is 7 = C/gicak- The contribution of an activated synapse is given by the time-varying
conductance change ¢(t), in series with the synaptic battery E. In contrast with
the computation of continuous valued membrane potentials and conductances, action
potentials are modeled as discrete, binary events. If V() exceeds a fixed threshold,
Vikresh, at any time, an action potential is generated (that is, a binary variable is
set) and relayed, with the appropriate delay times, to all postsynaptic target cells.
Following each action potential, the neuron experiences an afterhyperpolarization and
is inhibited from spiking for a specified interval by increasing a membrane conductance
(9amp) with a reversal potential negative to the cell’s resting potential (E pp =
—90 mV). Functionally, this mimics the activation of the fast potassium currents

(I¢ and/or Ig) seen following action potential generation (Wilson, Bower, 1989).
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The action potential has no other direct effect on the cell’s voltage trajectory. The

equation of motion for the subthreshold voltage response is thus given by:

dVn(t) &

C ok ;gez(t —t;)(Vau(t) — Eez)
:
+ ;ginh(t —t;)(Vau(t) — Einn) [4.1]

+ ganp(t — tspire) (Vi (t) — Eanp)
+ gleak(vm(t) - Eleak)

where k and [ are the total number of excitatory and inhibitory synapses for this
particular cell, ;, the arrival time of its presynaptic action potential to the associated
synapse, gez(t) and gi,x(t), the induced conductance changes which are given by the

function:
t

-
g(t) — {gpeaki;ﬁ'e ‘peak 3 if t > Oa [42]
0, if t <0.

E. and E; are the associated synaptic batteries, and %y, the time at which the
neuron generated an action potential, that is Vigeon < Vin(t), gagp(?) is also given by
the function 4.2. Shunting or silent inhibition is modeled by setting E;,; to the resting
potential of the cell, given by Ejc. in our model (see Table 5.1 in Chapter 5), while
for hyperpolarizing inhibition the battery is set to the reversal potential of potassium,
—90 mV.

All cellular parameters are constant within any given neuronal population with
the exception of the voltage threshold Vjj.esn, which was randomly chosen from a
uniform distribution of values falling between —45 and —35 mV. This introduced
sufficient stochastic elements into our simulation to prevent phase-locking among
neurons. With the exception of a low spontaneous activity introduced in the retinal
B ganglion cells, additional noise is not incorporated into our cells, although this may

be easily accomplished. It can be seen that our model represents an elaboration of the
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simpler integrate-and-fire model, but stops short of a full Hodgkin and Huxley-type
description as in Wilson and Bower (1989). This results in a physiological realistic
behavior of individual neurons without requiring a computationally expensive imple-
mentation of specific channels and dendritic geometries. Once again, the selection
of appropriate scale at which to implement our model determines the computational

feasibility of the simulation.



5.1

Modeling the Mammalian Visual System
Retina and Lateral Geniculate Nucleus

Retina

As previously described, our simulated retina comprises a two-dimensional distri-
bution of on-center  ganglion cells with circular receptive fields. Wassle et al. (1981)
showed that upon injecting HRP into the lateral geniculate nucleus, all retinal 8 cells
were labeled. In this way they could show that all 3 on-center and off-center cells are
located on two independent lattices. The amount of spatial jitter in the exact posi-
tions of the ganglion cells did not allow Wissle and colleagues to distinguish between
a rectangular and a hexagonal lattice. In the absence of more precise information, we
located all of our retinal ganglion cells on a noisy hexagonal grid. Instead of modeling
a patch of retinal cells around the area centralis with its 8 on-center cell density of
3250 cells/mm?, we located our patch at 1 mm away from the area centralis, where
the on-center 8 density drops to 900 cells/mm? (Peichl and Wassle, 1979). Since
1° is equivalent to 0.226 mm in the cat retina (Bishop, Kozak, and Vakkur, 1962),
1 mm eccentricity corresponds to about 4.5°. The associated intercellular distance
of a hexagonal array is (2/(v/3p))}/? = 36 um ~ 9.5', where p is the cell density and
V3-9.5' = 16.5' is the distance between the cells on the hexagonal grid (Peichl and
Wassle, 1979). Using this spacing, we are modeling a 1 mm by 1 mm patch of cells,
corresponding to about 900 cells. Thus, our model retina subtends about 4.5° by 4.5°
of visual angle (see Figure 5.1 for the retinal layout).

The response of individual ganglion cells is based on extensive physiological ev-
idence that their receptive fields can be readily described by Gaussian sensitivity
profiles for both center and surround (Rodieck, 1965; Enroth-Cugell and Robson,
1966; Linsenmeier, Frishman, Jakiela, and Enroth-Cugell, 1982). The spatial re-

ceptive field is then obtained by subtracting the surround response from the center.
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Thus the name of this filter is “difference of a gaussian” or DOG for short. The center

response is described by

22442
G.(z,y) = K.e ez [5.1]
and the surround response by
2242
Gs(z,y) = K, e ez [5.2]

Using measurements of contrast sensitivity of ganglion cells in response to drifting
gratings, Linsenmeier et al. (1982) obtained four parameters that characterize the
sizes (o0.,0,) and peak sensitivities (K, K.) of the center and surround fields. A
typical X cell receptive field profile is described using o5/, = 3 and K./K, = 17
(Figure 5.2). Peichl and Wassle (1979), measuring the receptive field center size of X
cells using three different methods, found sizes between 20’ and 40’. We choose a value
of 30’ = 0.5°, which corresponds to a o, of 10.6’. Since we only assigned a value to the
ratio of the sensitivities, we have one free parameter in our model, which allows us
to scale the total response of our simulated ganglion cells. We can now compute the
physiological coverage factor, which is given by the area of the excitatory receptive
field (diameter of 30') divided by the area per cell. For the above values, we find a
coverage factor of 9, in good agreement with data (Peichl and Waissle, 1979).

The ratio of the center to the surround signal in response to full-field light stim-
ulation is given by K.02?/(Ks0?) = 0.53. In a perfectly balanced cell, this ratio will
be 1 and no response will be elicited for a full-field stimulus. However, while most
retinal neurons still respond weakly to a full-field stimulus, this number is most likely
an underestimate. o,/0, = 4 should yield a more physiological result (Linsenmeier et
al., 1982). A perfectly balanced receptive field, such as the Laplacian of a Gaussian
filter proposed by Marr and Hildreth (1980), would give a zero response to such a

diffuse light stimulus. However, in order to approximate the Laplacian of a Gaussian
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filter by a DOG, the ratio of o,/o, should be equal to 1.6 (Marr and Hildreth, 1980),

which is clearly not the case.

Figure 5.1 The retinal layout. The upper left panel shows our standard stim-
ulus, a bar of variable contrast, orientation and width. This pattern is now con-
volved with the spatio-temporal kernel of the X ganglion cells (Equations 5.5 and
5.6). The result is displayed in the upper right corner. The spatial part of the
receptive field is shown on the same spatial scale in the left middle panel. The
middle right plot shows a horizontal cross section of the convolved image. This
convolved image is then subsampled on a noisy hexagonal grid, corresponding to
the location of the 900 simulated on-center 8 ganglion cells (lower left-hand cor-
ner) and thresholded. The only difference between the retina and the LGN (lower
right-hand corner) is the four times increased geniculate cell density.
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The temporal response of both the center and the surround response are modeled

by low-pass filters

|
L.=—e7 5.3
~e 53)
and
1 =
Ly=—e7 [5.4]
TS

with 7. = 10 msec and 7, = 20 msec. Richter and Ullman (1982) compared the
temporal response of sustained X-like ganglion cells in the primate retina against this
model and found good qualitative agreement. Equations 5.3 and 5.4 are simplifica-
tions, however. Victor (1987) studied the dynamics of the center of X type cat retinal
ganglion cells and derived a complete—but substantially more complex—description
of their temporal behavior. We introduced a delay ét = 3 msec between the center
and surround response, in agreement with the theoretical prediction of Richter and
Ullman (1982) as well as with the experimental evidence of Enroth-Cugell, Robson,
Schweizer-Tong, and Watson (1983).

Under the assumption that the spatio-temporal receptive field is separable into
a purely spatial and a purely temporal component. (Note: Dawis, Shapley, Kaplan,
and Tranchina (1984) examined this assumption in cat retinal X cells and found that
separability holds for the center response but that the spatial extent of the surround
depends on the temporal frequency of the stimulus and thus separability does not
hold for the surround. However, for our purposes the assumption seems sufficient
to account for cortical properties like orientation selectivity.) We can now compute
the response of the center and surround to a light stimulus I(z,y,t) by the following

convolution integrals

Cleyt) = [ ’/+°° | T G ) L) (2 — 2y — ot — E)dedy'dt [5.5]
2 ? 0J—co oo [ b C bJ ) .



5.5

and
t p+oo p+00
Sty = [ [ [ G L@ -y -yt - )ddy'dt [5.6]
0J~00 J—oo
with the total response of the ganglion cells given by
F(z,y,t) = C(z,y,t) - S(z,y,t — 6t) [5.7]

For reasons of computational economy, the Gaussian kernel G(z,y) is only being
integrated within 20,. For any particular ganglion cell located at z,y, we can then
compute its response F(z,y,t) = F;,(t). Since the output of the retinal ganglion
cells F, ,(t) represents a sort of neuronal excitability, it can never be negative. Thus,
if Fry(t) <0, Fpy(t) is set to zero. If we were to model off-center ganglion cells, their
response would be given by S(z,y,t) — C(z,y,t — 6t).

This continuous neuronal excitability function Fy ,(t) needs to be converted into
discrete, stochastic, all-or-none events corresponding to action potentials. Assuming
that the action potentials have a Poisson distribution, the probability that the gan-
glion cell fires an action potential in the small interval between ¢ and ¢ + At (with
At << 1) is given by

Pry(t) = po- At - Fy (1) [5.8]

where pg is an appropriate normalization constant. This neglects the small probability
of two or more action potentials occurring within ¢ and ¢ + A¢ (an event with a
probability of the order of (po - At)?). We are superimposing onto the neuronal
spiking rate in response to the visual stimulus I(z,y,t) a low, spontaneous spiking
activity of 10 Hz (Bullier and Norton, 1979). Figure 5.2 illustrates the firing rate
of one retinal ganglion cell in response to a vertical bar. We simulate the effect of
varying the contrast of the stimulus I(z,y,t) by modulating the probability of action

potential generation via variation of pg. Equivalently, we could pass the light intensity
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distribution falling onto the retina through a compressive nonlinearity, such as log(I)
or I/(I+ I.), to mimic the gain control properties of the rod and cone pathways in
the retina (for a review see Shapley and Enroth-Cugell 1984), prior to evaluating the
convolution integrals in Equation 5.5 and 5.6. However, we can essentially achieve
the same result using the simple trick of varying pp in Equation 5.8. This technique

has the added advantage that the convolution integrals need only be evaluated once.

180 -

Response (Hz)

Time (ms)

Figure 5.2 Poststimulus time histogram of a single 3 ganglion cell in response
to a vertical, high-contrast bar as computed via Equation 5.7. At 20 msec the bar
(of 0.5° width) is superimposed onto the middle of the receptive field. Following
the initial burst of activity, the response decays to a sustained level as a result of
the delayed activation of the inhibitory surround. This continuous function is then
converted into discrete action potentials used as geniculate inputs via Equation
5.8. The spontaneous firing frequency of the retinal cell is 10 Hz.

It should be noted that a realistic approximation of retinal activity is all that is
needed to investigate the geniculate and cortical activity patterns, and selecting the

correct precision and scale with which to simulate the retina results in considerable
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computational savings. Thus, for our purposes, it appears to be sufficient to model
the retina as a linear system without explicitly modeling photoreceptors, horizontal,
bipolar, and amacrine cells (for an example of this type of approach, see Gremillion,

Mandell, and Travis 1987).

Lateral geniculate nucleus

All retinal ganglion cells project heavily to the lateral geniculate nucleus, or LGN.
With few exceptions, each geniculate cell seems to receive its innervation from a single
or a few retinal ganglion cells of the same class, and the response properties of these
geniculate neurons are essentially the same as those of their retinal counterparts with
closely overlapping receptive fields (Hubel and Wiesel ,1961; Singer and Creutzfeldt,
1970; Cleland, Dubin, and Levick, 1971). Thus, there is no significant receptive
field transformation in the relay of retinal information on its way to cortex, although
the massive corticofugal pathway from layer VI is most likely involved in controlling
the transmission of visual information via its action on geniculate cells (Crick, 1984;
Sherman and Koch, 1986). Retinal X ganglion cells project mainly into the A layers
of the LGN, lamina A receiving input from the contralateral and lamina A1l from the
ipsilateral eye. Of the approximately 450,000 cells in the LGN (Sanderson, 1971),
two-thirds are located in the A and Al laminae and about two-thirds of these are of
the X type. Thus, on the average each retinal X on-center ganglion cell from one eye
innervates three to four geniculate relay cells. In our current model, we neglect the
small degree of convergence seen among LGN cells and assume that each retinal cell
projects onto four neighboring geniculate cells. Thus, the coverage factor increases
to 36.

This projection from 900 retinal ganglion cells to 2,304 geniculate relay cells
(Note: Not every retinal cell from our retina projects to exactly four geniculate cells.)

is strictly topographic and thus preserves the spatial ordering of the original input
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image. The axonal propagation delay between retinal X ganglion cells and their
geniculate target cells varies between 3 and 4 msec (Cleland et al., 1971). The passive
time constant 7 for the geniculate X cells is 10 msec (based on intracellular current
injections; Bloomfield, Hamos, and Sherman, 1987); hence the LGN introduces an
integrating component into the early visual stream. For the other cellular parameters
see Table 5.1.

Since our model geniculate cells derive their input from a single retinal ganglion
cell, they basically share its nonoriented, circular symmetric receptive field. The
stronger inhibitory surround effects reported for geniculate cells (Hubel and Wiesel,
1961; Cleland et al., 1971; Shapley and Lennie, 1985), as well as the orientation
bias seen by Vidyasagar and Heide (1984) in response to moving sine wave grating
of high spatial frequency, could easily be incorporated into our model by explicitly
including inhibitory geniculate interneurons. These interneurons, staining positive
for y-aminobutyric acid (GABA), the principal inhibitory neurotransmitter used in
subcortical and cortical structures, comprise perhaps 20-30% of the neurons in the A
and Al laminae (Fitzpatrick, Penny, and Schmechel, 1984).

Since this interconnection generally will not change the neuronal activity pat-
tern very much and the function of this surrounding inhibition is mostly to enhance
the surround effects, we could simply include this in our simulation of next step by

neglecting them but letting the center-surround signal stronger.

Table 5.1 : Parameters for geniculate and cortical cells
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Symbol Parameter LGN Cortex

o membrane capacitance InF 2nF

Ieak leakage conductance 0.1uS 0.1uS

Eleak leakage reversal potential —~71mV -71.0mV

9on peak excitatory conductance 0.15uS 0.011u4S

E., excitatory synaptic reversal 20mV 20.0mV
potential

i peak inhibitory conductance - 0.055uS

Einn inhibitory synaptic reversal - —71.0mV
potential

TP peak afterhyperpolarization 0.59uS 0.59uS
conductance

tpeak time to peak for all conductance 1.0ms 1.0ms
changes

Vihresh spiking threshold —404+5mV  —40+5mV

corresponding to gpeak = g(t = tpear) in Equation 4.2.
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Modeling the Mammalian Visual System
Visual Cortex

Visual cortex

The primary target for geniculate relay cells is the primary visual cortex (also
called area 17 or V1). While X cells from the geniculate A layers appear to project
only to area 17, geniculate Y cells project to a number of areas in extrastriate cortex
(reviewed in Sherman, 1985). Both X and Y cells project mainly into layer IV and to
a less extent into the upper part of layer VI. The question of whether the projection
from these two cell populations (X and Y) is segregated into a lower and an upper part
of layer IV (confusingly termed layers IVa and IVb by one school and layers IVab and
IVc by another) is still controversial. In the current model, we are assuming that the
X on-center cells in the LGN project to the lower part of layer IV. This layer, which
is devoid of the large neurons seen in the upper part of layer 1V, is approximately
250 pm thick (as compared to the total cortical thickness of ~ 1,600 um; Beaulieu and
Colonnier 1983) and contains on the order of 14,000 neurons per mm? (as compared
to 80,000 neurons per mm? for all layers combined; Beaulieu and Colonnier 1983).

The projection of the visual image onto the surface of cortex is topographic, such
that adjacent points in the visual field map onto adjacent points in the visual cortex.
However, there is a certain degree of scatter superimposed onto this orderly repre-
sentation such that nearby cells (during tangential, i.e., within the cortical plane,
electrode penetrations) have receptive fields whose centers are not adjacent in visual
space. For cells separated by less than 200 pm cortical distance, the fluctuation in
receptive field center appears to be random (Albus, 1975). In other words, the pro-
jection is topographic on a macroscopic, but random on a microscopic scale (for a
fact-filled treatise on the physiology of cat visual cortex, see Orban, 1984). Finally,

the visual field is distorted in a systematic manner when projected onto the cortex,
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such that much more area is devoted to representing the area centralis than the vi-
sual periphery. In fact, this projection can be roughly approximated by a logarithmic
mapping (Fischer, 1973; Tusa, Palmer, and Rosenquist, 1978; Schwartz, 1980). The
cortical magnification factor M specifies how many mm of cortical distance corre-
spond to one degree of visual angle (Albus, 1975; Orban, 1984). For our chosen
eccentricity of 4.5°, M is approximately 0.6 mm per 1° (Albus, 1975). Thus, our 2°

? area of visual cortex, comprising

by 2° visual field projects onto a 1.2 by 1.2 mm
roughly 20,000 cells, of which half are primarily driven by input from one eye.

We will not attempt to model all of these cells but, in accordance with the model
of orientation selectivity postulated by Koch (1987), only the subclass of inhibitory
interneurons. The presence in the mammalian cerebral cortex of the classical in-
hibitory neurotransmitter GABA and its synthesizing enzyme, glutamic acid decar-
boxylase (GAD), has been known for a long time (for more information on the form,
function, and distribution of inhibitory interneurons, see the “Cerebral Cortex” se-
ries by Peters and Jones, 1984). Quantitative assessments in monkey cortex indicate
that approximately 25% of the neuronal population in any cortical area is GABA-
or GAD-immunoreactive (Hendry, Schwark, Jones, and Yan, 1987). Morphologi-
cally, these neurons are nonpyramidal, their dendrites lack significant populations of
dendritic spines, and their axons seem to be intrinsic to the cortex. In the visual
cortex of the cat, these cell types included basket cells, clutch cells, and chandelier
cells or axo-axonic cells (Martin, Somogyi, and Whitteridge, 1983; Kisvarday, Mar-
tin, Whitteridge, and Somogyi, 1985; Jones, Hendry, and DeFelipe, 1987). Electron
microscopic studies of the visual cortex of the cat (Témbol, 1974; Winfield, Gatter,
and Powell, 1980) indicate that about 30% of all cells are small stellate cells, pre-
sumably using GABA as neurotransmitter. All of these inhibitory cells receive direct

excitatory synapses from the cells in the lateral geniculate nucleus (Freund, Martin,
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Somogyi, and Whitteridge, 1985a,b; LeVay, 1987) and make extensive contacts among
each other as well as onto excitatory pyramidal cells. Based on these numbers, we
assumed that 25% of cortical cells are inhibitory, which brings our total cell count
down to 2,300 cells in a 1.44 mm? patch of layer IV in area 17 (see Figure 6.1). We do
not identify these cells with any particular subpopulation of inhibitory interneurons.

What is the divergence and the convergence associated with the geniculo-cortical
pathway? When HRP was injected intracellularly into physiologically identified genic-
ulate X cells, their axons terminate within a single continuous clump of surface area
between 0.6 and 0.9 mm?, with an average of 0.72 mm? (Humphrey, Sur, Uhlrich, and
Sherman, 1985), with anywhere between 300 and 3,000 synaptic contacts. In other
words, since the cell population in a 0.72 mm? patch of layer IVb is about 10,000, the
potential coverage factor is very large. Using a sophisticated double staining method,
Freund et al. (1985a, b) revealed that the maximum number of synapses made be-
tween one geniculate axon and a single postsynaptic cell in cortex was 8, although in
many cases it was only 1. Thus, with an average of 4 synaptic contacts per cell, an X
cell afferent could in principle contact anywhere between 70 and 700 cells. Since we
are only concerned with the 25% inhibitory interneurons, the divergence in our model,
that is the number of cortical cells postsynaptic for a single geniculate cell, is roughly
220. This can be easily seen in Figure 6.1a. (Note: Given this large divergence over
a relatively large area (relative to the size of our cortex), only the central 2° by 2°
patch of geniculate cells projects completely to the cortex. This subfield is outlined
in Figure 6.1 by a small white rectangle superimposed onto the LGN.) The axonal
propagation delay of the geniculate-cortex pathway is set to 2 msec with some small
random variations from cell to cell (Lee, Cleland, and Creutzfeldt, 1977; Hoffman,

Stone, and Sherman, 1972).
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Figure 6.1 Structural features of the simulated cat visual cortex. The 48 by 48
array of cells in the lateral geniculate nucleus is illustrated in the left part of each
of the four panels and the 48 by 48 array of cells in layer IVc of striate cortex on
the right side. (a) Each geniculate cell projects to a large number (about 220) of
cortical cells. (b) A typical cortical interneuron inhibits a large number of other
cortical neurons. The cortex module measures 1.2mm on each side, about the
dimension of a hypercolumn in the cat. Cells are grouped into four orientation
columns. The receptive field of two such cells is plotted in (c¢) and (d). They
correspond to simple cells with a 1: 3 to 1 : 4 aspect ratio and a width of about
0.5°.

The most dramatic difference between geniculate and cortical receptive fields is
their organization and shape. One population of cortical cells, the simple cells, is
distinguished by the discrete subregions that can be found in their receptive fields
(see Figure 4.1a in Chapter 4 and also Figure 6.1). These cells, which are found
throughout layer IV and the upper part of layer VI, have regions that resemble the
centers of the receptive fields of on-center and off-center neurons in the LGN in that
light increment in an ON region or light decrement in an OFF region excites the cell.
In contrast to geniculate cells, however, cortical cells have elongated receptive fields,
their width being similar to the diameter of the receptive field centers of neurons in
the LGN (Stone and Dreher, 1973; Shermann, 1985). Simple receptive fields vary

in the number of subregions observed, in the elongation of each subunit, and in the
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overall elongation of the field. The aspect ratio of these subfields, i.e., the ratio of
width to length, varies with the type and the layer of the neuron. Observed values
for simple cells range from 0.2 (1:5 elongation) to 0.92 (nearly round), although cells
in layer IV tend to have aspect ratios between 0.5 and 0.66 (Watkins and Berkley,
1974; Gilbert, 1977; Jones, Stepnoski, and Palmer, 1987). Note that the aspect ratio
directly determines the amount of orientation tuning in the feedforward Hubel and
Wiesel type model (a smaller aspect ratio increases the tuning), while it is one among
many factors shaping orientation tuning in the mixed models.

For our current simulations, we wired simple cells with an aspect ratio varying
between 1:2.5 and 1:4. The appropriate receptive fields can be visualized by retracing
all the geniculate afferents to any particular cortical cells. The result is illustrated in
Figure 6.1c and 6.1d. Note that these cells currently do not contain any OFF subunits.
The convergence of the geniculo-cortical pathway can be visualized by retracing all
geniculate afferents to these cells (marked in red in Figure 6.1c and 6.1d). On the
average, simple cells receive input from 20 to 30 cells whose centers are aligned along
a Tow in visual space, as postulated by Hubel and Wiesel’s original model (1962).
These numbers are in rough agreement with the convergence ratio obtained from
cross-correlation studies (Tanaka 1983).

We construct the receptive fields of our simple cells as follows. For a cell within a
given orientation column, we first decide where the receptive field should be located.
To do this, we backproject the cell into the LGN (e.g., a cell in the upper left corner
is projected back into the upper left corner of the LGN). Take a vertical orientation
cell as an example. A rectangle of a given size is centered (for instance, 3° by 4°)
around this geniculate cell and divided into a number of vertical strips (eight 3° by
0.5° strips). The size of this rectangle depends on the extent of the geniculo-cortical

arborization (in our case 0.72 mm?). Each of the geniculate cells within this rectangle
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could then, in principle, make a synapse with the simple cell under consideration. We
then randomly choose one of these strips. In a final step, we again choose randomly
from all cells within this strip (assuming a uniform probability distribution) those
cells that actually project to the simple cell. This procedure (1) leads to jitter in the
exact receptive field position but preserves the overall topography, and (2) generates
oriented simple cells using the scheme proposed by Hubel and Wiesel (1962). Note
that this scheme explicitly computes the afferent projection into cortex (Figure 6.1c
and 6.1d) but only implicitly the efferent projection from the LGN (Figure 6.1a).

In our current version of the model, two separate inhibitory, intracortical path-
ways are implemented. One system corresponds to long-range inhibition among cells
with approximately overlapping receptive fields but different preferred orientations.
This pathway represents an anatomical substrate of cross-orientation inhibition, for
which both physiological and pharmacological evidence exists (Bishop et al., 1971;
Sillito, 1975; Morrone et al., 1982; Ramoa, Shadlen, Skottun, and Freeman, 1986;
however, see also Ferster, 1986, 1988). In our model, each cell projects into the three
neighboring orientation columns and has a given and fixed probability of forming
inhibitory synapses onto these cells. Both pre- and postsynaptic cells have spatially
overlapping receptive fields but different preferred orientations (Figure 6.1). We usu-
ally assume that each cortical neuron inhibits 40 cells out of a 12 by 12 patch of
cells in the orientation column orthogonal to its own orientation and a somewhat
smaller number of neurons in the two directly adjacent orientation columns (see Fig-
ure 6.1b). A second inhibitory projection is assumed to exist between neurons with
similar preferred orientations but spatially offset receptive fields. Intracellular record-
ings support the existence of such a system (Ferster 1986). The pattern of this local
inhibition varies and depends on the preferred orientation of the column. Given the

spatial jitter in the receptive field locations of neighboring cells, this inhibition can, in
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principle, suppress firing activity among cells with identical receptive fields (in terms
of their orientation and location) and could therefore act to dampen the response of
the entire population. In the next chapter, we will show how such inhibitory synapses
could be selectively removed and pruned away during development.

Both inhibitory pathways take account of the propagation times of action poten-
tials, which are computed on the basis of the distance between the pre- and post-
synaptic cell and the conduction velocity of the particular axonal process (usually
assumed to vary between 1-2 m/sec). The high degree of divergence witnessed in the
inhibitory projections leads to a very large number of intracortical synapses (2,300

cells each of which makes about 100 synapses or a total of 250,000 synapses).

Simulation results

The model was implemented on SUN workstations in C using the techniques
described by Wilson (1989). Some results are illustrated in color in Figure 6.3, for
the case of a cortex where all inhibitory cortical interactions have been blocked and
only a Hubel and Wiesel (1962) type of geniculo-cortical arrangement is assumed (see
Figure 4.1b in Chapter 4). The selectivity of the system can be monitored by the
action potential count displayed above each orientation column. This is simply the
total number of spikes occurring in any cell within that particular orientation column.

Stimulus conditions were as follows. Initially, the “cat” sees a blank screen. Un-
der these conditions, the spontaneous spiking activity (10 Hz) in the optic nerve can
be seen to activate geniculate cells and depolarize cortical cells. At 20 msec a vertical,
0.5° wide and elongated light bar is projected onto the retina (Figures 5.1 and 5.2
in Chapter 5). The response in the LGN reflects this stimulus (Figure 6.3a). The
nonexcited regions in the LGN correspond to the perceptual phenomena of Mach
bands, caused by inhibitory interactions mediated by the inhibitory surround mech-

anism of retinal ganglion cells. Spontaneous activity is actually suppressed, as can
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be seen by comparison with the outside regions next to the geniculate boundary. In
cortex, neurons in the vertical orientation column respond vigorously to the vertical
bar, while simple cells in the neighboring orientation columns fail to generate action
potentials; they are, however, nonetheless depolarized to some degree (between 5 and
20 mV from rest as can be seen in the intracellular potential plots of two cortical
cells; Figure 6.3). This is a natural consequence of the finite aspect ratio of the recep-
tive fields. If we had used aspect ratios of 1:1.5 to 1:2.5, which is more in tune with
experimentally observed values (Watkins and Berkley, 1974; Gilbert, 1977; Jones et
al., 1987; Jones and Palmer, 1987), the selectivity of the model would degrade. Since
such excitatory postsynaptic potentials at nonoptimal orientations are not observed
during intracellular recordings (Ferster, 1986, 1988), inhibitory mechanisms must be
introduced in order to block or shunt these EPSPs. At 150 msec the bar is rotated
into the horizontal position and cells in the geniculate start responding to this new
stimulus. Note that, different from most conventional neural networks where a new
stimulus requires the reinitialization of the network (usually resetting the activity
state of all neurons to zero or some other median value), traces of the old stimulus
are still visible, in form of the intracellular potential, at the cellular level in both the
LGN and in cortex. Cells in the horizontal orientation column now respond to the
horizontal bar (Figure 6.3b).

Now, unlike before, intracortical inhibition among cells with different orientations
is now included in the simulation, as specified in Figure 6.1b. While the cell is as
responsive to a properly aligned stimulus as before, its response to nonoptimal stimuli
is significantly reduced. Individual EPSPs, caused by the geniculate afferents, are
still visible, as well as fast steep reductions in the intracellular potential caused by
the action of intracortical inhibition, which is assumed to reverse around the resting

potential of the cell (silent or shunting inhibition). Under these conditions, IPSPs
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should never be visible, except when the cell is depolarized by current injections (e.g.,
Ferster, 1986, 1988). The intracellular potential will have a smoother time course if

a larger divergence is used for the intracortical inhibition.
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Figure 6.2 On the left is shown the sensitivity of the Hubel and Wiesel model
to visual contrast. The total number of action potentials within one orientation
column during a 500 msec presentation of a bar of varying orientation (at 10°
increments) is shown (normalized to peak response) at three different contrast
values. The retinal activity in the three curves is multiplied by 1.0, 0.75, and 0.5,
via variation of py in Equation 5.8 in the last chapter. At the lowest contrast
value, cortical cells are barely excited, reflecting the lack of gain control of the
straightforward Hubel and Wiesel wiring scheme. On the right is shown the
sensitivity of a mixed excitation and inhibition model to visual contrast. The
presence of cross-orientation inhibition superimposed onto a Hubel and Wiesel
synaptic arrangement leads to a much improved gain control. While the response
of the cortex decreases with decreasing stimulus contrast, the bandwidth remains
virtually unchanged, in agreement with experimental data (Skottun et al. 1987).

While the color graphic display (Figure 6.3a and 6.3b) of the intracellular potential
of all cortical neurons greatly facilitates understanding the working of the model,
detailed quantitative measures must be used to assess the validity of the different

models of orientation selectivity. Here, the modeler is in a somewhat similar situation
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to the experimentalist using multielectrode recordings, facing an embarrassing wealth
of data. The main quantitative measure we use is spike counts for individual cells or
for large cell populations.

If the contrast of the visual stimulus is decreased, retinal and geniculate cells will
be less excited. Ultimately, in the straightforward excitation-only Hubel and Wiesel
model, cortical cells will stop responding to the bar, since not enough geniculate-
induced EPSPs will be present to carry the somatic voltage in the cortical cell above
threshold (left in Figure 6.2). In other words, this model lacks gain control properties.
If, however, cortical inhibition is superimposed onto a Hubel and Wiesel type of
synaptic arrangement, a smaller contrast stimulus results in less geniculo-cortical
excitation, but consequently also in less intracortical inhibition. Thus, the range of
contrast values for which the eclectic model still responds is significantly higher, as
borne out on the right in Figure 6.2. Experimentally, the orientation tuning of area 17
simple cells changes little when varying the contrast between 2% and 80% (Skottun,
Bradley, Sclar, Ohzawa, and Freeman, 1987).

Discussion
We have shown the role of the intracortical connections in shaping the orientation
selectivity. In next chapter, the formation of the orientation columns will be discussed.

Again the intracortical connections play a very important role.
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Figure 6.3a The response of the visual cortex model to different stimuli. Cor-
tical inhibition has been inactivated during this run. Thus, cortical cells acquire
orientation selectivity via a Hubel and Wiesel type of feedforward circuit. The
color of each cell indicates its membrane potential (see the scale bar, action poten-
tials are in white). Insets show the intracellular potential of two cortical neurins
in the vertical and horizontal orientation columns. (a) The response of the
model to a vertical bar, which is projected onto the retina at 20msec,
is illustrated in the figure. Both the geniculate and the vertical orien-
tation column in cortex respond vigorously.
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Figure 6.3b The response of the visual cortex model to different stimuli. Cor-
tical inhibition has been inactivated during this run. Thus, cortical cells acquire
orientation selectivity via a Hubel and Wiesel type of feedforward circuit. The
color of each cell indicates its membrane potential (see the scale bar, action poten-
tials are in white). Insets show the intracellular potential of two cortical neurins
in the vertical and horizontal orientation columns. (b) at 150msec the verti-
cal bar, which is projected onto the retina at 20msec, is switched to a
horizontal bar. The horizontal orientation column in cortex responds
vigorously.
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Modeling the Mammalian Visual System
Development of the Interconnections

Introduction

Several developmental schemes have been proposed for the octal and orienta-
tion selectivity (Bienenstock, Cooper, and Munro, 1982; Linsker, 1986; Miller 1989).
Linsker’s work which outlined a frame work about development of feedforward path-
ways in an featureless environment actually stimulated our research on the develop-
ment. His model has several layers. The development follows an inward path. In
the first several layers, analog to cone and rod to ganglion and to LGN paths, the
network developed center-surround feedforward connections. In the later layer, the
random input pattern becomes kind of sinusoidal and consequently the forward pro-
jection becomes orientation selective. Interconnection within a single layer is included
in his work at cortical level to develop the orientation columns. But these intralayer
connections are unchanged during the development.

Our early work (Wehmeier, Dong, Koch, and Van Essen, 1989) in the functionality
of the intralayer interconnections leads us to believe that the feedback pathway plays
a very important role in shaping the orientation selectivity. Therefore, we further
explore the role this pathway plays in the development while self organizing using the
Hebbian rule. Our model distinguishes from others (like Linsker’s) by its emphasis
on the feedback pathway of the interconnection within the cortex. As we pointed out
in Chapters 2 and 3, the dynamic is quite different, because it integrates the synaptic
change and neuron activity change closely. Our network develops interconnection
patterns which are important in shaping the orientation selectivity or in producing
such selectivity, and important also in shaping the form of the feedforward pathway.

In the work of others (Bienenstock and et al., 1982; Linsker, 1987; Miller, 1989),

the interaction between cortical neurons is assumed to play a weak role, i.e., 1) the
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interconnections are not developing in their model, 2) to get a columnar organization,
interconnections with a center-surround structure which itself lacks the columnar
feature are used, and 3) they suggest the cortical interconnections structure may
develop into columnized fashion after the development of the feedforward pathway. In
our model, the network is developed in a time course just opposite to their model. The
network first develops the columnar interconnections which guide the development of
feedforward pathway. It is in accordance with an inside-out developmental rule of
the visual pathway. We propose that the development of the interconnections is a
complement to the development of feedforward pathway and in some sense an a prior:

requirement of that development.

The framework

The anatomical structure of the visual cortex area 17 has both inhibitory and
excitatory interconnections. Excitatory cells send excitatory axons to other excitatory
cells and to inhibitory cells. Inhibitory cells send inhibitory axons to other inhibitory
cells and to excitatory cells. The range of the excitatory axons is about 204 within
which the excitatory is strong. There is about a region of range about 200y within
which both inhibitory and excitatory intralayer connection occur together. Outside
that region is inhibitory interaction with range of about 500x. The LGN inputs
excitation to both the inhibitory and excitatory cells. The spread of LGN input from
one LGN cell to cortex is about 400u. (Lowel, S., Freeman, B., Singer, W., 1987;
Gilbert, Wiesel, 1989; see Chapters 4 to 6 also.)

The next two sections show that for a more biological plausible system, one will get
results similar to those in Chapter 3. The system has different neuron and synapse
models from Chapter 3. The neuron model is more like a biological neuron with
output dynamic range between zero and maximum frequency and a firing threshold

for input. The synaptic change will follow the Hebbian rule but confined by biological
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constrain so that excitatory connections will change between a positive value and zero
and inhibitory connections will change between a negative value and zero. No sign
change is allowed. Between two neurons, both positive and negative connections
are allowed (through some supposed interneurons being excitatory and inhibitory
respectively). The interconnections are not automatically symmetric. Initially, the
synapse connections are grown out from one neuron with a probability of forming

contact with other neurons.

The center-surround structure

We postulate that the initial projections of both excitatory and inhibitory con-
nections are Gaussian distributed, i.e., the number of connections in unit area are
proportional to e="/2°” in which r is the distance between source and target cells
and o is the corresponding range of those kind of connections. The initial connection
strengths for all the connections take a nonsaturated value. The LGN activity are
treated as simple noise patterns to excite the network from one state to another using
dynamic Equation 3.1 in Chapter 3.

During the development, the distribution functions G.(z,y) and G,(z,y) and the
projections will not change while the strength of each synapse changes. Figure 7.1
shows a center-surround structure. Initially, the influence of interconnections are
comparable to the influence of LGN inputs, such that the neuronal activities are able
to change from one state to another and meanwhile the inputs from LGN cannot
dominate. Since the approximate symmetry of the interconnections about different
orientations, the neuronal activities go through states approximately symmetric about
different orientations. Thus, the center-surround structure remains initially; only the
strengths of each connection change.

When these connections grow big enough, the cortical state will be more and more

influenced by intercortical connections. With a center-surround connection structure,
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the neuronal activity tends to flow into periodic grating pattern. When symmetry
breaking happens, the network will have periodic intercortical connections in some

orientation.
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Figure 7.1 The simulated results of a sparsely interconnected network in which
the projection follows a symmetric probability (Gaussian) distribution. On the left
connections from cell 1270 to other cells are plotted. On the right connections from
other cells to cell 1270 are plotted. The large rectangle in each plot outlines the
area of cortex simulated. (See Chapters 4 to 6.) The small rectangle in each plot
indicates the position of cell 1270. The initial learning keeps the center-surround
structure. The correlation takes a form of a center region positive and surround
region negative and only depends on the distance (i.e. isotropic). The excitatory
connections (filled circles) in the center region tend to increase to its maximum,
inhibitory ones tend to decrease to zero. In the surround region, the strength of
excitatory connections tends to decrease to zero and inhibitory strength (blank
circle) tends to increase to its maximum. The effective strength from a neuron to
it surrounding ones is approximately a difference of Gaussian.

The symmetry breaking
The Figure 3.2 in Chapter 3 shows that for a symmetric kernel, the grating of
any orientation will have equal Fourier transform components which are maximized

at a single wavelength. Suppose the initial intercortical connections (as shown in the
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last section) are a form of difference of Gaussian with center
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Figure 7.2 The initial stage of center-surround structure (see Figure 7.1). and
final strip-like pattern are evident as same as symmetrically interconnected net-
works (see Chapter 3). The same as in Figure 7.1, on the left are the connections
to the neuron and on the right are the connections from the neuron. Again the
connections formed have an unsymmetric nature; most of neuron pairs which are
connected have only a single connection, not bidirectional connections. But con-
nections between groups of neurons, i.e., connections from neurons in one small
region to neurons in another small region are roughly symmetric.

One important restriction is imposed on the extent that one cortical neuron can
directly affect another part of the cortex. Both of the inhibitory and excitatory projec-
tion functions (that is, the number of possible connections in unit area) have limited
effective regions. In our model, they are assumed to be Gaussian, and effectively zero
outside several o of the corresponding Gaussian. The arguments about symmetry
breaking in Chpaters 2 and 3 apply here as well. The symmetry breaking global state

is achieved by the locally effective intercortical connections (Figure 7.2).

The symmetry breaking of larger networks

The symmetry breaking demonstrated in Chapter 3 and in the last two sections
deals only with a small section of the cortex. It exhibits the basic feature of the
excitatory and inhibitory bands. To see the emerging of a strip-like intercortical
connection structure, one needs to have a larger network. Hereafter, we will make
use of the similarity in behavior of the network in Chapter 3 and the one in the
last two sections, and use the simplified (symmetrically connected) network model
of Chapter 3 for simulation of a larger size. The connections of one neuron to/from
other neurons are shown in Figure 7.3a.

The symmetry breaking results in locally parallel strips and strips with different
orientations are represented at different locations. It is columnar structure itself.
Figure 7.3b shows the cortex neural activity state of one learning result. The cortex
connections of the same learning results are shown in Figure 7.4. An excitatory

connection between two neurons becomes +1 if the activities of the two neurons



7.9
are correlated (both +1 or both —1 in the learned strip-like state), an inhibitory
connection between two neurons becomes —1 if the activities of the two neurons are

anticorrelated (one +1 the other —1). Otherwise the connections becomes zero.

03 04 03

03 03

04 +08 O 09 04

03 03

02 02

03 04 03

Figure 7.3 On the left is figure a: the intercortex connections of one neuron
(blank circle) to/from other neurons. There are only 24 connections for each
neuron. Excitatory connections are marked by “+” and inhibitory connections
are marked by “~”. The numbers represent the strengths of the initially learned
center-surround connections. On the right is figure b: the symmetry breaking
state of cortical neuronal activities (black represents —1). The strip-like pattern
has a characteristic wave length of 10 but the directions are different at different
position. See Figure 7.4 for the corresponding cortex connections pattern.

The feedforward pathways will be formed accordingly (Appendix C). The orien-
tation of receptive field shifts with the same characteristic spatial frequency as the
intercortical strips. As Linsker pointed out, similar orientation bands will tend to
close to each other.

For our model, substitute K, = K, and o, = 100, into Equation 7.5 the result is
Amaz = 27 [kmar = 4.005

For o, = 3004, the characteristic wavelength of the grating A,., = 1.2mm. A com-

parison can be made with biological experiment. Lowel etc. studied the topographic
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organization of the orientation column system in cat visual cortex by a 2-deoxyglucose
experiment in which the characteristic periods of the band structure were 1.1mm
(Lowel, Freeman and Singer, 1987; Gilbert, Wiesel, 1989). Our model predicts very

well.
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Figure 7.4 In the figure is a part of cortex of 48 by 48 neurons, each neuron
connects to 5 by 5 other neurons (Figure 7.3a shows the connections of each
neuron to/from other neurons, in which the values are the initially learned center-
surround ones; after the symmetry breaking the values changed and different for
each neurons as shown in here by gray scale: white represents +1, gray represents
0, and black represents —1). The symmetry breaking results in a stripelike pattern
which has different orientation at different locations. The characteristic period of
the locally parallel bands is 10 about the same size as the connections region, or
twice the radii of anticorrelated region.
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Discussion

Symmetric connections have been used for our theoretical analysis and for some
of the simulations (Chapters 2 and 3). For the more biologically plausible network,
the connections are not symmetric in a microscopic view, i.e., it is often happening
that one neuron connects to the other but not vice versa. But macroscopic symmetric
connections are sufficient to produce these general results, as was the case in previous
sections where the projection function itself is symmetric. The interconnections we
have been using in this modeling are a representation of the macroscopic interaction
within cortex. In a microscopic view, the feedback loop is completed by going through
several layers of visual cortex area 17 not just layer 4b. The several layers from 1 to 6,
should be viewed as an integrated unit over depth, and units on the two-dimensional
cortical surface interact with each other by the macroscopic interconnection we are
using (Gilbert and Weisel, 1983, 1989).

Another difference between the modeling and neurobiology is the fact that a real
neuron network works with action potentials which are discrete in nature. But ac-
tion potentials, while they may be necessary for a truly quantitative comparison with
experiments, are not necessary to generate or to understand the nature of the sym-
metry breaking. It is demonstrated in Chapters 4 to 6 that this accounts for more
quantitative comparison of the simulation with biology experiments. It has been
demonstrated that a simplified Hopfield kind of network without involving action po-
tentials can achieve the same functionality qualitatively as orientation selectivity goes
(Appendix B). As for the organization of the intercortical connections, it is sufficient
to use the simplified model to get the results. A more biologically plausible, ac-
tion potential driving network can be easily simulated to get more detailed prediction
about the organization. But since there are not much data from biological experiment

about this issue, it is not attempted in this research. The dynamic about symmetry
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breaking about different orientations holds for inputs which are discrete pulses and

whose strengths are described by time intervals between pulses (Figure 7.5).

Figure 7.5 The simulated results of a interconnected network which is driven
by pulsed inputs. The network will learn center-surround structure when the
time interval between pulses is short corresponding to high frequency of action
potentials, i.e., strong input. The symmetry breaking takes place when the inputs
is weak corresponding to longer time intervals between input pulses.

There is evidence about Hebbian type synaptic developmental rule. NMDA is an
often cited one (Cooper, Liberman, Oja, 1979; Miller, 1989). But that is basically an
excitatory synaptic rule. There is little evidence about inhibitory Hebbian type de-
velopmental rules. Our model is not necessary to include the inhibitory Hebbian rule
to get the symmetry breaking. The total effect from one cortex area to another is re-
flected by the summation of all inhibitory and excitatory connections. An increase of
an inhibitory connection strength is equivalent to a decrease of an excitatory connec-
tion strength and vice versa. Suppose that the inhibitory connections are determined
by genetic means and isotropic about different orientations and only the excitatory
connections change according to Hebbian rules; similar results of symmetry breaking

happens — but only the excitatory connections form the strip-like pattern.

Conclusion
Both intercortical connection structure and LGN to cortex connection structure

break the symmetry about different orientations of the environmental inputs. The
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functions of those structures have been compared in some detail with biological reality
in Chapter 6. There are more biological details which can be incorporated into our
model, but the main feature of orientation selective structure should be the same.
What matters is the underling dynamics having the same properties, such as breaking

up symmetry of input correlations and being stablized at those structures.
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Example Program for Simulation
Appendix A

/*

This is the program used to simulate the dynamics discussed in Chapter 2.
The draw_ routines are used to do interactive graphics, which are not
listed in here.

*/

#include <stdio.h>
#include <math.h>
#include "cdraw.h"

#ifndef TRUE

#define TRUE 1

#define FALSE O

#endif

#ifndef max

#define max (x,y) ((x) > (y) 2?2 (x) : (y))
#define min(x,y) ((x) < (y) 2?2 (x) : (y))
#endif

#define MAXLONG 21474836471

#define frandom(l,h) ({((float)random()/MAXLONG)* ((h)—-(1))+ (1))
#define sign (x) ((x)<0?-1:1)

tdefine short mode (xX (short) ((x)*32767.0))
#define float mode (xX ((float) (x))/32767.0)
#define randsign() ((random()&01)*2-1)

int CORTEX CONNNUM = 81;
int CORTEX FIELD = 4;
int CELLNUM = 81;

int CELL_EDGE = 9;

float voltage([81]; /* u in equation 24 */
float current([€l]; /* I in equation 24 */
float Connect([81](81]; /* s in equation 24 */

/*
curve array is used to save the developing connections of neuron 1
to/from other neurons as a function of time.

*/

char curve[81][1000];
#define CURVE_AMP&3

#define CURVE_UNIC
#define CURVE_FREDOO

int seed;
int step;
float gain=0.30; /* g in equation 24 */



float Hebb=1.00;
float ampl=30.0;
float Ampl=3.0;
float size=0.3;
float Tize=0.001;
int freqg=40;
char show flag;
char flow flag;

char menu{20][25] = {

" initiate",

" refresh",

" Flow_flag",

" Show_flag",

w Read",

" Writev,

w quit"};

float field[7][81];

main(argc, argv)
int argc;
char *argvl[];
{
long time0;
FILE *fp;
if (argc !'=1) {
seed =0;
sscanf (argv[1l
} else {
time (&time0);

] , ll%d",

A2

/* H in equation 24 */
/* A in equation 24 */

/* step size over a */
/* step size over B */
/* duration for each input */

&seed);

seed = (int) (time0%65535);

}
fp = stdout;
fprintf (fp, " (*
fprintf (fp, " (*
fprintf (fp, " (*
fprintf (fp, " (*
fprintf (fp, " (*
fprintf (fp, "“(*
fprintf (fp, "“(*
fprintf (fp, "“(*
fprintf (fp, "(*
draw_init();
initiate ();
refresh{();

/*

seed
gain
Hebb
size
Tize
ampl
Ampl
freg
step

LI I TR

/* to store input patterns */

%d *)\n", seed);

%.3f
.3
.3
.3f
.3t
.3f

o0 dP oP d° I

*)\nu’
*)\n",
*)\n",
*)\nn’
*)\n",
*)\nu,

gain);
Hebb) ;
size);
Tize);
ampl);
Anmpl);

$5d *)\n", freq);
$5d *)\n", step);

draw_loop() calls main_proc() when there is an input event
(key stroke andnouse motion), otherwise calls main_step(}.

*/
draw_loop{);
}

/*

main_proc{) interactively controls the flow of the programm
by changing different flag and parameters.

*/
main_proc()

{

if ((t.up == 1 && t.x < 100)

initiate ();

} else 1f ((t.up
refresh();

} else 1f ((t.up

== 1 && t.x < 200)

== 1 && t.x < 300)

bho(t.

flow flag = (flow_flag+l)%3;

up == 0 && t.key == "1’) ) {
|1 (t.up == 0 && t.key == r’) )

[l (t.up == O && t.key == 'F’) )

{
{
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if (flow_flag == 0 ) printf("flow : none\n");
else if (flow flag == 1) printf("flow : voltage\n");
else 1f (flow _flag == 2 ) printf("flow : all\n");
} else 1f ((t.up == 1 && t.X < 400} || (t.up == 0 && t.key == ’35')
show_flag = (show_flag+l)%3;
if (show_flag == 0 ) printf("show : none\n");
else if (show_flag == 1 ) printf("show : voltage\n");
else if (show flag == 2 ) printf("show : all\n");

} else 1f ((t.up == 1 && £.x < 500) || (t.up == 0 && t.key == 'R’)
read connect();

} else 1f ((t.up == 1 && t£.x < 600) || (t.up == 0 && t.key == W)
write_connect ();

} else 1f ((t.up == 1 && t.x < 700) [] (t.up == 0 && t.key == "q’)
quit();

} else if ( (t.up

= 1 && t.x > 800)

|| ({(t.up == 0 && t.key >= "0’ && t.key <= "’6")) ) {
rand voltage((t.up == 0)2(t.key-"07): ((£.y=-20)/100));

} else 1f ((t.up == 1 && t.y < 200) |} (t.up == 0 && t.Key == "g’)
printf (*gain = %f\n", gain);
scanf ("$£f", &gain);

} else if ((t.up == 1 && t.y < 250) || (t.up == 0 && t.key == "H')
printf (*Hebb = %$f\n", Hebb);
scanf ("$f", &Hebb);

} else 1if ((t.up == 1 && t.y < 300) || (t.up
printf (*ampl = $f\n", ampl);
scanf ("sf", &ampl);

} else 1f ((t.up == 1 && t.y < 350) || (t.up
printf ("Ampl = %f\n", Ampl);
scanf ("$f", &Ampl);

} else 1f (({t.up == 1 && t.y < 400) || (t.up
printf("size = %f\n", size);
scanf ("%f", &size);

} else if ((t.up == 1 && t.y < 450) || (t.up
printf("Tize = %$f\n", Tize);
scanf ("$f", &Tize);

} else 1f ((t.up == 1 && t.y < 500) || (t.up =
printf("freq = %d\n", freq);
scanf ("%d", &freq);

} else if (t.up == 2) {
plot cell();

i
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&& t.key == "'a’)

I
i
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I
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i
L]
9]

[
H
o

&£& t.key == "'T")

i
(=]

&& t.key == "f’)

/*
main_step() is where the simulation is done.
*
/
main_step()
{
int i;
char stmp[256];
float outer();
if (flow _flag >=1) {
draw batch on();
draw color (0);
draw_area(O, 0, 350, 40);
draw_color(1l);
sprintf(stmp, "%5d", step);
for (i=1;i<7;1i++)
sprintf (stmp+(5*1), "%5d", (int)outer(voltage, field[il]))’;
draw text (20,20, stmp);
if (show _flag >= 1) show_voltage_ right();
/*
if flow flag >= 2, update connectlions according to Hebbian rule.
Otherwise, only update voltage as a Hopfield network.
*
/
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if (flow_flag >= 2) {

update input pattern after every freq number of steps

*/

/*

1f (step%freq == 0) ({
rand_current();
if (show_flag >= 2) show_current();

}
if (show_flag >= 2) show_Connect{);
step_Connect();

}
step voltage();
draw_batch_off ()

save the current connections to/from neuron 1 after every
CURVE_FREQ steps.

*/

/*

if (step%CURVE FREQ == () save_curve();
step += 1;
}

print out connections to/from cell pointed by mouse.

*/

plot_cell()
{

short x1, x2, x0;
short y1, y2, yO0;
short cell, conn;
FILE *fp;

float func();

}

fp = stdout;
cell = (({(t.y-50)/3 - CORTEX FIELD)/(2*CORTEX FIELD+2))*CELL EDGE
+ (CELL_EDGE-1)/2; - - B
1f (cell <0 || cell > CELLNUM-1 ) return;
fprintf(fp, "cell = %d \n", cell);
fprintf (fp, "ListPlot3D[{\n{");
for( conn=0; conn<CORTEX CONNNUM; conn++) ({
fprintf (fp, "$5.2f"%,
func (Connect[cell] [ (conn+cell+ (CORTEX CONNNUM-1)/2+1)%811]));
if (conn%9 == 8 && conn != 80) fprintf (fp,"},\n{");
else 1f (conn != 80) fprintf(fp,",");
}
fprintf(fp,"I\n}l1"™);
fprintf (fp, "\n cell = %d \n", cell);

show_Connect ()

{

int cell, conn;
short x0, y0;
short x1, yil;
short x2, y2:
float mean[81];
float allmean;
float func();

for( conn=0; conn<CORTEX CONNNUM; conn++) {
mean[conn] = 0.0;
}
for( cell=0; cell<CELLNUM; cell++) {
x1 = cell%CELL_EDGE;
yl = cell/CELL EDGE;
for( conn=0; conn<CORTEX CONNNUM; conn++) ({
x0 = 400 + 3*( (2*CORTEX FIELD+2)*x1
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+ CORTEX FIELD );
y0 = 50+3* ( (2*CORTEX FIELD+2)*yl
+ CORTEX FIELD );
if {(conn != cell) {
x2 = (conn) $CELL EDGE;
y2 = {(conn)/CELL EDGE;
1f (x2-x1 > CORTEX FIELD) {
X0 += 3* (x2-x1-CELL _EDGE);
} else 1f (x2-x1 < -CORTEX FIELD) {
X0 += 3*(x2-x1+CELL EDGE);
} else {
%0 += 3*(x2-x1);

}

if (y2-yl > CORTEX FIELD) {
y0 += 3* (y2-y1-CELL EDGE);

} else if (y2-yl < -CORTEX FIELD) {
y0 += 3*(y2-y1+CELL EDGE);

} else {
yo += 3% (y2-yl);

if (draw_depth == 1) {
draw_color (Connect [cell] [conn]>021:0);
} else {
draw_color ((int) (8+7*func(Connect([cell] [connl)));
}
} else {
draw_color(0);
}
draw_area(x0, y0, x0+2, y0+2);
}

}
show_voltage left()
{

int cell;
short x0, y0;
short x1, yl1;
float func();
for( cell=0; cell<CELLNUM; cell++) {

x1 = cell%CELL EDGE;

yl = cell/CELL EDGE;

X0 = 50+ 3*( (2*CORTEX FIELD+2)*x1
+ CORTEX FIELD )7

y0 = 350+3* ( (2*CORTEX FIELD+2)*yl

+ CORTEX FIELD );
if (draw_depth == 1§
draw_color(veltage[cell]l>021:0);
} else {
draw_color ((int) (8+7*func (voltage[celll))):
}
draw_area (x0-CORTEX FIELD*3, y0~CORTEX FIELD*3,
" xXO0+CORTEX_FIELD*3, y0+CORTEX FIELD*3);

}
show_voltage_right ()
{

int cell;
short x0, y0;
short x1, yl;
float func();
for( cell=0; cell<CELLNUM; cell++) {
x1 cell%CELL EDGE;
yl = cell/CELL EDGE;

(I}
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X0 = 400+ 3*( (2*CORTEX FIELD+2)*x1
+ CORTEX_FIELD );
y0 = 350+3*( (2*CORTEX FIELD+2)*yl

+ CORTEX_FIELD );
if (draw_depth == 1) {
draw_color (voltage(cell]>021:0);
} else {
draw_color((int)(8+7*func(voltage[cell])));
}

draw_area (x0-CORTEX FIELD*3, y0-CORTEX FIELD*3,
x0+CORTEX FIELD*3, yO0+CORTEX | FIELD*3);

}

show_current ()
{
int cell;
short x0, yO0;
short x1, y1;
float func();
for( cell=0; cell<CELLNUM; cell++) {

x1 = cell%CELL EDGE;

yl = cell/CELL EDGE;

x0 = 50+3* ( (2;CORTEX_FIELD+2)*X1
+ CORTEX FIELD );

y0 = 50+3*( (2*CORTEX_FIELD+2) *yl

+ CORTEX FIELD );
if (draw_depth == 1}
draw_color(current[cell]>021:0);
} else {
draw_color{(int) (8+7*func (current{cell])});
}
draw_area (x0-CORTEX FIELD*3, yO-CORTEX FIELD*3,
x0+CORTEX FIELD*3, yO+CORTEX_FIELD*3);

}

show_vector_at(myvo, myxo, myyo)
float myvo(l;
short myxo;
short myyo;
{
int cell;
short x0, yO0;
short x1, yl;
float func();
for( cell=0; cell<CELLNUM; cell++) ({

x1 = cell%CELL EDGE;

yl = cell/CELL EDGE;

x0 = myxo+ ( (2*CORTEX_FIELD+2)*x1
+ CORTEX_FIELD );

y0 = myyo+ ( (2*CORTEX FIELD+2)*yl

+ CORTEX_FIELD });

if (draw_depth == 1) {

draw_color (myvo[cell]}>021:0);
} else {

draw_color ((int) (8+7*func (myvolcell]))};
}
draw_area (x0-CORTEX FIELD, y0-CORTEX FIELD,

x0+CORTEX FIELD, yO+CORTEX_FIELD);

/*
change current to next input pattern
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rand current ()
{
int cell,conn;
static short ff;
ff = (££+1)%6;
for{ cell=0; cell<CELLNUM; cell++) {
current{cell] = ampl* (field[ff+1] (cell]);

}

/*

chage voltage to a test state
*/
rand_voltage (wp)

int wp;

{
int cell;
int f£;
draw_batch on{();
if (Wwp < 0) {
ff = random()%7;
} else {
ff = wp;

}
if (ff == 0) {
for( cell=0; cell<CELLNUM; cell++) {
current[cell] = Ampl*(field[1l] [cell]+field[2] [celll);
voltage[cell] = randsign();

} else {
for( cell=0; cell<CELLNUM; cell++) ({
current{cell] = Ampl* (field[ff]([celll);
voltage[cell] = randsign(};
}
}
show_current ();
show_voltage_ left ();
draw_batch_off();

/*
generate six lnput patterns with inner products between them
no larger than 3
*x/
init_current()
{
int cell;
float outer();
for(cell=0;cell<CELLNUM;cell++) fileld[l][cell]=randsign();
do {
for(cell=0;cell<CELLNUM;cell++) field[2][cell]l=randsign{();
} while (fabs (outer(field[l], field[2])) > 4
)i
do {
for(cell=0;cell<CELLNUM;cell++) field[3][celll=randsign(};
} while (fabs (outer(field([2], field(3])) > 4
|| fabs(outer(field([1l], field[3])) > 4
)
do {
for(cell=0;cell<CELLNUM;cell++) field[4][cell]l=randsign{();
} while (fabs(outer{(field[3], field[4])) > 4
|| fabs (outer(field([2], field([4])) > 4
|| fabs(outer(field(1l], field[4])) > 4
)i
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do {
for(cell=0;cell<CELLNUM;cell++) field[5][celll=randsign{();

} while (fabs(outer(field{4], field[5]1)) > 4
|| fabs(outer(field[3], field[5])
|| fabs(outer(field([2]}, field[5])
|| fabs(outer(field[1l], field[5])

)i
do {
for(cell=0;cell<CELLNUM;cell++) field[6] [cell]=randsign();

} while (fabs{outer(field[5], fileld[6])) > 4

) > 4
Yy > 4
y > 4

|| fabs(outer(field[4], field[6])) > 4
|| fabs(outer(field([3], field[6])) > 4
|| fabs(outer(field[2], field[6])) > 4
|| fabs (outer(field[1l], field[®6])) > 4

)
}

init_voltage ()
{
int cell;
for( cell=0; cell<CELLNUM; cell++) {
voltagefcell] = 0.0;
}
}

init_Connect ()
{
int cell;
int conn;
int memo;
for( cell=0; cell<CELLNUM; cell++) {
Connectcell] [cell] = 0.0;
for( conn=cell+l; conn<CORTEX CONNNUM; conn+t++) {
Connect[cell] [conn] = 0.0;
Connect{conn] [cell] = Connecticell] [conn];

}
}

step _voltage ()
{
register float tmp;
int cell;
int conn;
float y([(81];
float func();
for( cell=0; cell<CELLNUM; cell++) ¢{
tmp = 0.0;
for( conn=0; conn<CORTEX CONNNUM; connt+) {
tmp += func(Connect[cell] [conn])*func(voltage{conn]);

}
ylcell]l=voltage[cell]l+size* (gain*tmp+current(celll-voltage[cell]);
}

for( cell=0; cell<CELLNUM; cell++) {
voltage[cell] = y[cell];
}
}

step Connect ()
{
int cell;
int conn;
fleoat func();
for{ cell=0; cell<CELLNUM; cell++) {
for( conn=cell+l; conn<CORTEX CONNNUM; conn++) {



}

A9

Connect[cell] [conn] +=

Tize* (Hebb*func(voltage{cell])*func(voltage{connl])

-Connect[cell] [conn});
Connect{conn] [cell] = Connectcell] [conn};
}

initiate()

{

}

show_flag = 0;
flow_flag = 2;
step = 0 ;

srandom{ (int) (seed));

init _current();

init voltage();

init Connect();
putchar((char)7);

printf (*Done. initiate.\n");

refresh{()

{

int i;

char stmp([80];
int cell;

int conn;
float tmp;

int memo;
float func();
float outer():;

printf ("Energy: “);
for (memo=0;memo<7;memot++) {
tmp = 0,0;
for( cell=0; cell<CELLNUM; cell++) {
for( conn=cell+l; conn<CORTEX CONNNUM; conn++)
tmp +=
func(field[memo] [celll])
*func (Connect[cell] [conn])
*func(field[memo] [conn]);
}

}
printf ("$7.1f", 2.0*tmp);

}

printf ("\n");

draw_batch _on{();

draw_color(3);

draw_clear();

show _current();

show_voltage_left();

show_Connect ();

show _voltage right(};

draw color{1):

for (i=0; i<7; i++) {
draw_rect (1*100,670, (1+1)*100,700);
draw_text (i*100,690,menuli]);

}

sprintf (menu{l0], "seed

sprintf (menullll, "gain

sprintf (menu(l12], "“Hebb

sprintf (menu{l13], "size

sprintf (menu(l14], "Tize

%$5d", seed);

%.3f", gain);
%.3f", Hebb);
%.3f", size);
%.3f", Tize);

LI T T | A [

sprintf (menu(l5], "ampl = %.3f", ampl);
sprintf (menul[l6], “"Ampl %.3f", Ampl);
sprintf (menull7], "freq = %5d4d", freq);

{
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sprintf(menul18), "step = %5d", step);
for (1=0; 1<9; 1i++) {
draw_text (700,100+i*50, menu[i+10]);
}
for (1=0; 1<16; i++){
draw_color(i);
draw_area (i*30, 640, 1*30+27, 670);
}
draw color(l);
draw_rect (0, 640, 480, 670);
printf (*Outer : ");
for (1=0; i<7; i++){
show _vector_at(field([i], 850, 20+1*100);
printf("%7.1f", outer(current, field[i]));
}
printf ("\n");
draw _batch off(};
putchar{ (char)7);
printf ("Done. refresh.\n");

read_connect()

{

int cell;
int conn;
int tt=0;
FILE *fp;
1f ( (fp=fopen("develop.conn™,"r")) == NULL ) {

}

fscanf (fp, " (* seed
fscanf (fp, "(* gain
fscanf (fp, " (* Hebb
fscanf (fp, "(* size
fscanf (fp, "(* Tize
fscanf (fp, " (* ampl
fscanf (fp, " (* Ampl
fscanf (fp, "(* freg
fscanf (fp, "(* step

printf ("can not open file develop.conn!\n");

return;

%d *)\n", &seed);
%f *)\n", &gain);
$f *)\n", &Hebb);
%f *)\n", &size);
%f *)\n", &Tize);
%f *)\n", &ampl);
%f *)\n", &Ampl);
%d *)\n", &freq);
%d *)\n", &step):;

fscanf (fp, "ListPlot3D[{\n");
for( cell=0; cell<CELLNUM=-1; cell++) {

}

fscanf (fp, "{");
for( conn=0; conn<CORTEX CONNNUM-1; conn++} ({
if (conn%l2 == 0) fscanf (fp,"\n");
fscanf (fp, "%f, ", &Connect[cell] [connl);
}
for ( conn=CORTEX CONNNUM-1; conn<CORTEX CONNNUM; conn++) {
if (conn%12 == 0) fscanf (fp,"\n");
fscanf (fp, "$f", &Connect[cell][conn]);
}
fscanf (fp, "},\n");

for( cell=CELLNUM-1; cell<CELLNUM; cell++) {

}

fscanf (fp, "{"):
for( conn=0; conn<CORTEX CONNNUM-1; conn++) ({
if (conn%12 == 0) fscanf (fp,"\n");
fscanf (fp, "%f,", &Connect|cell] {conn});
}
for( conn=CORTEX CONNNUM-1; conn<CORTEX_ CONNNUM; conn++) {
if (conn%12 == Q) fscanf (fp,"\n");
fscanf (fp, "$f", &Connectlcell]{conn]);

}
fscanf (fp, "}\n");



A1l

fscanf (fp, "}I\n");

fclose (fp):

putchar ((char)7);

printf ("Done. read.\n");
}

write connect ()
{
int cell;
int conn;
int tt=0;
FILE *fp;
if ( (fp=fopen("develop.conn®,"w")) == NULL ) {
printf ("can not open file develop.conn!\n");
return;
}
fprintf (fp, "(* seed
fprintf (fp, "“(* gain
fprintf (fp, "{* Hebb
fprintf (fp, "“(* size
fprintf (fp, "“(* Tize
fprintf (fp, "(* ampl
fprintf (fp, "(* Ampl
fprintf (fp, "(* freq $5d *)\n", freq);
fprintf(fp, " (* step = %$5d *)\n", step);
fprintf(fp, “ListPlot3D[{\n");
for( cell=0; cell<CELLNUM-1; cell++) {
fprintf (fp, “{"“);
for( conn=0; conn<CORTEX CONNNUM-1; conn++) ({
1f (conn%l12 == 0) fprintf (fp, "\n");
fprintf (fp, "%5.2f,", Connect[cell] [connl});

%$5d *)\n", seed);

%.3f *)\n", gain);
%.3f *)\n", Hebb);
%.3f *)\n", size);
%$.3f *)\n", Tize);
%.3f *)\n", ampl);
%.3f *)\n", Ampl);

| T 1 I

}
for ( conn=CORTEX_ CCNNNUM-1; conn<CORTEX CONNNUM; conn++) {

if (conn%l2 == 0) fprintf (fp,"\n%);
fprintf (fp, "$5.2f", Connectcelll][connl};
}
fprintf(fp, "},\n");
}
for( cell=CELLNUM~1; cell<CELLNUM; cell++) {
fprintf(fp, "{");
for( conn=0; conn<CORTEX CONNNUM-1; conn++) {
if (conn%12 == 0) fprintf(fp,"\n");
fprintf (fp,"%5.2f, ", Connectlcell] [conn]);
}
for ( conn=CORTEX_ CONNNUM-1; conn<CORTEX CONNNUM; conn++) {
if (conn%l12 == 0) fprintf(fp,"\n");
fprintf (fp, "$5.2£f", Connect(cell]{conn]);
}
fprintf(fp, "}\n");

}

fprintf (fp, "}]1\n");

fclose (fp);

putchar((char)7);

write curve();

printf ("Done. write.\n");
}

save_curve ()
{
short 1;
short posi;
posi = step/CURVE_FREQ;
for (1=0;1<CORTEX CONNNUM;i++) {

curve [i] {posi] = (char) (Connect [CURVE_UNIT] [i]*CURVE_AMPL) ;
}
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}
write curve ()

short i, j;
short num;
FILE *fp;
if ( (fp = fopen(“"develop.curv™,"w")) == NULL ) {
printf ("can not open develop.curv!i\n®);
return;
}
fprintf(fp, "(* seed
fprintf (fp, “(* gain
fprintf (fp, " (* Hebb
fprintf (fp, "(* size
fprintf (fp, "(* Tize
fprintf (fp, " (* ampl
fprintf (fp, " (* Ampl
fprintf(fp, “(* freq = %5d *)\n", freq);
fprintf(fp, " (* step = %5d *)\n", step):;
fprintf(fp, “(* CURVE_FREQ %5d *)\n", CURVE_FREQ);
fprintf(fp, “(* CURVE_UNIT $5d *)\n", CURVE UNIT);
fprintf (fp, "ListPlot{{\n");
num = (short) (step/CURVE_FREQ) ;
for (i=0;i<CORTEX_ CONNNUM;i++) ({
fprintf(fp, "{0.0, 0.0},\n");
for (j=0;j<num;j++) {
fprintf (fp, "{%.1f, %.2f},",
(float) (3), (float) (curve([i]([j])/CURVE AMPL);
if (3%5 == 4) fprintf(fp, "\n");

$d *)\n", seed);

.3f *)\n", gain);
.3f *)\n", Hebb);
.3f *)\n", size);
.3f *)\n%, Tize);
.3f *)\n", ampl);
.3f *)\n", Ampl);

9P o0 P IR I I°
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}
fprintf(fp, "{%.1£,0.0},\n", (float) (num-1));

}
fprintf (fp, "{0.0, 0.0}\n");
fprintf (fp, "}, PlotJoilned -> True, PlotStyle -> {Thickness[.001]}]\n");
fclose (fp)
}

quit{)
{

write_ connect ();
exit();
}

/* The function F in equation 24 */
float func(y)
float y;
{
y = y>121:1y<=~12-1:y;
return (y);
}

/* The outer product */
float outer(x,y)
float x[];
float y[1:
{
int i;
float tmp;
tmp = 0.0;
for (1=0;1i<81;1++) {
tmp += func(x[i])*func(y[i]);

return (tmp);

}
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Simple Model of Orientation Selectivity
Appendix B

Introduction

There is great controversy as to the wiring underlying orientation selectivity in
mammalian visual cortex. Various experiments show the crucial nature of inhibition
in shaping orientation selectivity. We propose a network model to explain how orien-
tation selectivity arises from inhibition between cells of visual cortex. We implement
this model as a Hopfield network (Hopfield, 1984). The results show that all the
cortical cells can have proper orientation selectivity.

In this research, we emphasize the important role the interconnections play to
the emerging property of a layered network. Various research has been concentrated
on the projection of axons from one layer of neurons to another layer in which the
interconnections within the same layer of neurons are either ignored or play a side
role. But it is observed in the cortex that the majority of synaptic connections in
most cortex areas are the interconnections originated and running though the same
layer. This kind of connection plays an important role in shaping up the functionality
of the neurons in that layer.

Orientation selectivity in cat visual cortex was first observed in the post synaptic
targets of afferent fibers to the striate cortex (V1) originating in the lateral geniculate
nucleus (LGN). These cells respond optimally to a bar at their preferred orientation
and similar oriented cells form columns. Hubel and Wiesel proposed the first detailed

model to explain this (Figure 1).
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In their model cortical cells in V1 are excited by a number of cells in LGN which
are arranged in a row. (In vertical oriented column, v5 excited by 2, 5 and 8 in LGN.
In horizontal oriented column h5 excited by 4, 5 and 6 in LGN.) By setting proper
threshold the cortical cell will fire when and only when the summation of LGN cells in
the row exceed a fixed value. This is an ”excitatory” model in which the orientation
selectivity arises from the anisotropic excitatory connections from LGN to cortical
cells (Malsburg, Cowan 1982; Ferster, 1986).

But a strong evidence in favor of inhibition comes from experiments in which
the presumed GABAergic cortical inhibition is blocked by GABA antagonists (Sil-
lito, 1975; 1980). When these drugs are applied to the cortex, cells lose orientation
selectivity and their receptive field become circularly symmetrical and equal to that
expected from one or few overlapping LGN cells.

Many people believe that inhibition is important and proposed various models of

orientation selectivity depending on cortical inhibitory interneurons (Bishop, 1971;
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Benevento, 1972; Heggelund, 1981, 1983; Nielsen, 1983; Gilbert, 1977). However,

these models always assume the existence of non-oriented inhibitory interneurons
which receive input from the LGN and inhibit the orientation selective cell at non-
optimal orientations. But as Gilbert pointed out, no significant population of non-

oriented cells has been reported in cat striate cortex.

90°optimal -, o - 45°0ptimal

0°optimal

(Figure 2)

We believe that inhibition between cortical cells plays an important role in ori-
entation selectivity in cat visual cortex and have postulated inhibition model of ori-
entation selectivity as illustrated in Figure 2 and Figure 4. In this model the input
connection from excitatory LGN cells to each cortical cell is isotropic. The orientation
selectivity arises from the interaction between cortical cells and all of the cortical cells

have orientation selectivity.

The inhibitory network model
In our model the excitatory LGN input connections to cortex are isotropic. To

simplify our simulation, the cortical cells which corresponding to the same spacial
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location but in different orientation columns receive the same excitatory input from

one LGN cell. (v5 and h5 only receive input from LGN cell 5, v4 and h4 only receive

input from LGN cell 4 , etc.) We simulate four columns.

Within same column, cortical cells are inhibited by all their neighbors except the

cells in the preferring orientation. (h5 is inhibited by h1l, h2, h3, h7, h8 and h9).

Between different columns, each cell (v5) receives inhibition from the cell at the same

spacial location of other column (h5) and its neighbors in the optimal orientation (h4

and h6). Figure 2 shows the inhibition version of our model, which consists entirely

of inhibitory cortical cells. (All the inhibitory connections to the cell in the center of

90°

column are shown).

We can drive the dynamic equation:

d n,
Zaz]klvkl - = Z Vil — T_ > (A —oh)Vir [B.1]
Ts k d m#£n € klm#n

1u + I [B.2]

Ty 4 )

in which
1

Ve = [B.3]

i T T ex(u-)
a — amplification
6 — threshold
I;; — output of the LGN cell at location (z, j)
u?, — input of the cell at location (¢, ) in orientation column n

Vi* — output of the cell at location (¢, ) in orientation column n

Ok = bikr165m10 + 6ik-16;m21 o + 6i ki 1m0 + 6ik651-170 1 [BA4]
+6i k416502107 1 F6i k10504107 1 F6ikg165,001m7 1 Hoi k165020074 [B.5]

The matrix n™ is shown in Figure 3,
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90° optimal 45° optimal

0° optimal N, b Y —45° optimal

(Figure 3) 1 1 1 1 1 0

On the right side of the dynamic equation, the first term represents the inhibition
within the same column, the second and the third terms represent the inhibition
between different columns, the fourth term is the decay term and the fifth term is
the input from the LGN layer. For each term there is a corresponding time constant.
Those time constants are parameters in our simulation.

One should choose:

and

1
to1r. 1 ¢ (B.7]

Since 74 > 7, and 7. > 7, one cell alone in one column cannot strongly inhibit a cell

1,01 ;
o T s large

in another column which is excited by the input from LGN. Since -

enough, the two cells excited in the preferred column can strongly inhibit cells at

corresponding locations in other columns.
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We use the set of parameter
7, = 1.000 74 = 2.500 7, = 6.000 7, = 3.000 [B.8]

a=64 =0.100 7, =0.187 [B.9]

It works very well. The simulation results are shown in Figures 5 through 8. The

network always goes to the stable states within the order of ten total time constant

(12).

90°optimal 45°optimal
0°optimal < _45°0ptimal
(Figure 4)

The inhibitory and excitatory model

Figure 4 shows another possible structure. Cortical cells are excited by neighbor
cells in preferred direction and inhibited by other neighbor cells. Optionally, one
can add in inhibition between different orientation columns. (excitatory connections,
solid lines, are only drawn in for 90° cells).

It is easy to derive the dynamic equation

du’ 1 1 1
iy n n m n n
ke _—Ts 1%1 Okl Vit — -—Td %ﬁn: [’ij + ——Te Zk 1:(1 - Uijkz) Vil [B.10]
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1 1

——u 4 =1 B.11
iRl [B.11]

in which the third term represents the excitation within the same column.

One should choose:

—< =, —<-—= [B.12]

and

1
1,1.°8 [B.13]

T Tg T
One should choose Tl—g not too large in order that the LGN excitation alone will only
excite cortical cells near to threshold. One should choose Tl—e not too large, otherwise
the excitation between two neighbor cells will be too strong and it will excite the
neighbor cell above threshold. One should choose Tle + % large enough, so that if the
stimulus line is in the preferred direction of the column, the neighbor cells on the line
will excite each other and then jump above the threshold. If the stimulus line is not
in the preferred direction, the neighbor cells on the line will inhibit each other and
will stay below the threshold.

We use the set of parameter
T, = 1.000 74 =12.00 7, =2.300 7. = 2.700

a=64 §=0200 7, =0.166

The results are very similar to what we have showed for section 2.

Conclusion

The simulation shows our model works. As mentioned before the orientation
selectivity arises from the interaction between cortical cells and each cortical cell
has orientation selectivity. Thus this kind of orientation selectivity is a population

property. At cross-point of two presenting lines, which one of the corresponding cells
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in the two orientation columns will fire may depend on their previous state. All other
cells, no matter what their previous state is, fire for the correct spacial locations and
within the correct orientation columns. Like other inhibitory models, when inhibition
is blocked (set corresponding time constants to infinite), the orientation selectivity
disappears (as in GABA experiment), cells in all columns will fire if stimulus fall on

their spacial locations. (See Figure 10 and Figure 12.)

Discussion

The inhibitory model presented in this paper works qualitatively. In order to
compare the model quantitatively with neuronal data (for example, different responses
to different contrasts), we have implemented the model in a more biological plausible
way which confirmed the qualitative result. The detail is beyond the scope of this
chapter.

From the analysis of section 2, one can find out that the inhibition within the
same column is not necessary at all for the model shown in Figure 2, i.e., cross
inhibition between different columns alone is enough. See Figure 9, in which we used

the following parameters:
7, =1.000 7, =2.500 7, = 1le*'® 7, =3.000

a=64 0=0100 7, =0.230

On the other hand the model shown in Figure 4 can work without cross inhibition

between different columns. See Figure 11, in which we used the following parameters:
7, =1.000 7, =1e*'® 7, =2.300 7, = 2.700

a=64 6§=0.200 7 =0.173

It is also possible that the network assumes a combinative form of the two models.

But two points are clear: all cortical cells can have orientation selectivity which arises
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from the interaction between cortical cells, and inhibition plays an important role in
the orientation selectivity.

The biological structure of orientation selectivity could be a combinatione of both
feedforward structure from LGN to cortex and feedback structures within cortex. In
Chapters 4 to 6, we study the neuronal network in a more plausible way by con-
structing the network in parallel with the real visual pathway and by using anatomic
parameters. The result is qualitatively agreed with results here. Some quantitative

results is derived and can be compared with experimental results.

Figures 5, 6, 7, and 8: The figures above and below show a sequence of
simulation results. There are five checkerboards in each figure. The top one
represents the state of LGN , the other four represent the states of four cortical
columns with different orientation selectivity. 10x10 squares represent 10x10 cells
and the number of dots in each square is proportional to the activity, i.e., I;; for
LGN and V7 for cortex.
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Figures 9 and 10: 9 — with inhibition and 10 — without inhibition. The
figures above show the role of inhibition in the model illustrated in Figure 2.
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Figures 11 and 12: 11 — with inhibition and 12 — without inhibition. The
figures above show the role of inhibition in the model illustrated in Figure 4.
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Development of Feedforward Connections
Appendix C

Dynamics of feed forward connections

Consider a network of neurons which are assigned onto a 2-dimensional plane. All
the neurons feed forward to a neuron in another layer (output neuron). The neuron
activities are center-surround correlated, i.e., the activities of nearby neurons are cor-
related and the activities of further away neurons are anti-correlated (see Table C.1).
A Hebbian type of developmental rule can be applied to the development of the feed
forward connections (Linsker, 1986; Miller, 1989). By using the dynamic equation de-
rived from the Hebbian rule, the network can learn an oriented stripe structure of the
feed forward connections. Again, a symmetry breaking happens in the development.

A brief derivation of the dynamic equation is as follow.

(-6 —6 —6 —6 —6 —6 —6)

\-6 -6 —6 —6 —6 —6 —6)

Table C.1 The correlation of the neuron activities. On the center, the corre-
lation of the same neuron to itself is scaled to 40. It is center-surround structure
with positive correlation of center and negative correlation of surround.

The set of variables {V;(¢), P;(t)} are used to describe the state of the network, in
which {V(t)} are neuron activities and {P;(t)} are forward connections. The output

neuron activity is V*(t).



C.2

The the dynamic equations is as follow :

dve
= -V PV
a— + Z Vi
dsi [C.1]
j—— = —; *Vi
B; 7 s$;+V
P; = H(s:)

In the following study, the gain functions are
H(z) = L(Hxz) [C.2]
in which H is constants (gain) and
+1, ifz > +1;
Liz)=<z, if-1<z<+1; [C.3]

-1, if -1>z.

The learning time constants B; are much longer than the neuron dynamic time

constant a. One can approximate that:

Ve(t) =Y PV [C.4]
So that
B,'%-Sti = -—-S,'+ViZPjV;' [0.5]
J

Suppose that V;(t) changes in a fast time scale comparing to B; and one can substitute
Vi(t)V;(t) by its average value

B,‘% = —3S8; + Z C,'jpj [06]
J

in which Cj; is the center-surround correlation matrix.

(-1 -1 1 1 1 -1 -1\
-1 -1 111 -1 -1
-1 -1 111 =1 =1
-1 -1 111 =1 =1
-1 -1 111 -1 =1
-1 -1 111 -1 -1
\-1 -1 1 1 1 -1 -1/



C.3

Table C.2 A vertical strip like feed forward connection P; pattern is developed.
This pattern is corresponding to a state of energy minimum. Similar horizontal,
45° and —45° strips are also energy minimum.

It is obvious that C;; is a symmetric matrix and one can derive a similar energy
function for the differential equation. The P; states corresponding to the energy
minima are strip patterns as shown in Table C.2. Here we skip the discussion about
the symmetry breaking which has been discussed in detail in others work (Linsker,

1986; Kamman, 1989; Mackay, Miller, 1990).

Formation of columns
The development of LGN projections (receptive field) will follow the similar rule as
Linsker proposed which is discussed briefly in the last section. Without intracortical

connections, the development of LGN cell ¢ to cortex cell a connection P?:

ds; o o
ar +zj:Ciij

P = L(Hs])

[C.7]

Since the correlation matrix C;; is independent of cortex cell, the projections to
different cortex cells are developed independently. All the learned structures are
orientation selective as shown on the left of Figure C.2, but their orientations are not
correlated.

To get the equation including the intracortical effect, we approximate the activity
V@ of cortical neuron «a as follow,

Ve(t) =Y TV + 3 P2V, [C.8]
Ié] i

in which T*# is the interconnection between cortex cells. This approximation is valid
in the case when the LGN inputs to cortex are strong, i.e., effect of 3_; P*V; are
stronger than intracortical effect "5 T**V¥#. Thus

Ve@) =3 DY PPV, [C.9]
8 i
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in which D = (I = T)™%. So

El;—i = -8+ ZDaﬁC;J’Pjﬁ [C.10]
¢ i

Each cortex cell receives inputs from LGN cells, the spatial arrangement of those
input connections are shown in Figure C.1a. The correlations between different LGN
cells are calculated by a DOG functions (only a function of the distance between
cells) as shown in Figure C.1b. Now the interconnections developed in Chapter 3 and

Chapter 7 can be used in the development of feedforward connections.

O Q
e </ 3 > §
X &
- Q
J 2 O
2 I
O @ IR » @

Q &q o SN
(X < X
e Y

= 2,
S @,

Figure C.1  On the left is figure a: the spatial arrangement of feedforward
connections from LGN to one cortex neuron. The activity correlation between
those LGN cells has been shown in Table C.1. The reason to use this kind of
spatial arrangement is to make it symmetric about different orientations (at least
about 0, 45, 90, and 135 degrees). On the right is figure b: a plot of the correlation
function been used, i.e., 2 *ezp(—r?/2.0) — exp(—r?/4.0). Table C.1 is calculated
from this function and all the correlation terms needed in the simulation are
calculated from this function as well. Note: in these two figures, the spatial scale
is in LGN unit (In our simulation, 6 LGN units equal to 10 cortex units).
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Figure C.2 The formation of LGN to cortex connections. On the left, the
receptive fields of each cortical cells are randomly oriented strips when developing
without intracortical connections. On the right with the intracortical connection
structure as in Figure 3.3, the orientations are organized into columns.

The orientation of the symmetry breaking of the LGN to cortex projection should
be coordinated by the learned intercortical connections which is itself symmetry
breaking strip. As pointed out before, we suppose that the intracortical connec-
tions developed first and did not change during the development of LGN to cortex
connections. A development result under the influence of a vertical strip of intracorti-
cal connection structure is shown on the right of Figure C.2. The positive connections
along the vertical direction tend to keep the receptive fields along a vertical line to
have the same orientation. Along the horizontal direction the intracortical connec-
tions are partial positive and partial negative, thus the cells’ receptive fields change
orientation gradually. Cooper and etc., 1982, have shown the same result in a one
dimensional case with a postulated intracortical connection structure as the horizon-
tal one in our model. Figure C.3 shows the result of feedforward development for the

larger network discussed in Chapter 7.
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Figure C.3 In the figure is a 48 by 48 cortex, each neuron receives inputs from
LGN cells (the spatial arrangement is shown in Figure C.1a). The intracortex
connections are the symmetry breaking results as in Figure 7.3. The feedforward
connections develop after the formation of intracortex connections. The feedfor-
ward connections for each cell form specific orientation selective structure (white
for +1, black for —1, and gray scale in between). Cells with similar orientation
selectivities are close to each other. The period of orientation change from 0
to 180 is about the same as the period of the strip-like pattern of intracortical
connections.

Discussion
There are only excitatory projections from LGN to cortex. It is mathematically

equal to have on-center and off-center connections as Linsker (1986) and Miller (1989)

proposed. The mathematics about the development of the feedforward pathway has
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been worked out by various authors (Bienenstock, et al., 1982; Linsker, 1986; Kam-

man, Yuille, 1989; Miller, 1989), it is not the main concern of our current model.
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