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SUMMARY

This thesis is a calculation of the energy shift in
the hyperfine structure of atomic H due to the finite
size of the proton. We use experimental data of
Hofstadter to determine the size of the proton and we
find that the measured value of the hyperfine structure
is in slight disagreement with our predicted value.

Possible reasons for this are investigated.
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Introduction

Measurements of the hyperfine shift (hfs) in atomic hydrogen have

given the splitting as:(l)
AV = 1420, 405,73 t 0,05 kc/sec

This great precision is useless unless a theoretical expression of com-
parable accuracy can be found. The present expression is most

conveniently written as a series of corrections to the Fermi formula:

2 M 2 -3 ]
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where the expression in curly brackets is the Fermi formula, Mp/ Me

is the ratio of the magnetic moments of the proton and electron, b is
the electron moment in Bohr magnetons and By is the proton moment in
nuclear magnetons. The factor (1 + m/M)-3 is a recoil correction which
gives the reduced mass change in (((0) (since we are here assuming
that(?is the wave function for an infinitely heavy, coulofnbic proton,)
The factor (1 + 3/2 (12) is a relativistic correction for the motion of the
electron. It may be derived by assuming that the proton is a fixed pdint
charge plus a static magnetic moment, Mp o-p, and finding the pertur-
bation solution of the single-electron Dirac equatiop. The factor

1 - (5/2-4n2) az}gives electrodynamic corrections to the electron mag-
netic moment; it is not the anomalous moment correction (which is in-

cluded in p) but represents a form factor for the electron-photon



(2)

interaction. The factor R includes the remaining corrections of '
(roughly) this order., These are all proportional to a m/M and mayﬁ
thus be viewed as retardation effects due to the nuclear motion. For

a proton which interacts with photons by means of the Lagrangian:

Lﬁ - YM’L';”E\Z (}{YN-YHV) (@)

%
(o < 1, 79) the factor R has already been calculated to be (3)

R =J)1- 27 13 M (pp-‘l)z{+ % -9 ﬂn_z_]i*ahﬂ(z,)
T Mp " 4\ M w
P

where k is a cut-roff momentum, introduced to get sensible results from
divergent terms in the perturbation series. These divergencies arise
only because of the anomalous term in the interaction, | 2, and pre-
sumably they are not present in a correct theory in which the anomalous
moments are due to meso‘nic clouds around a core., Effectively, the

cut off, k, corresponds to some kind of ""'smearing' of the anomalous
moment, The problem of improving the result, 3, of Newcomb and
Salpeter (NS) is to estimate the correct interaction of a nucleon with the
electromagnetic field, We shall refer to the interaction 2, in which no
cut off is employed, as that of a '"point proton''.

Since all the multiplicative factors in 1, (e, Ry , _“p,é ,;__bl\ﬁ_&);e#‘c‘:iept a
are known to a probable error of about one part in 106 (i)and >
since a is known only to 4 parts in 106, if the small correction R could
be given, the hfs measurements would provide a more precise value

of a. More important, it would be an independent value of a, since the

* We call the reader's attention to the distinction between the anomalous
proton moment, p, and the total proton moment, pp =1 4+



(5)

presently accepted value is weighted heavily in favor of fine
structure measurements in deuterium. These are inherently less
accurate than the atomic beam measurement of the his, since several
data must be combined. However, to this order, there are no theo-
retical uncertainties in the interpretation of the deuterium results
while the effects of proton shape on the hfs are estimated at several p pm.
The object of this thesis is to calculate the factor R by employing
an empirical form factor for the proton which has been found to fit the
Hofstadter experiments on high energy, elastic electron-proton
scattering. The interpretation of Hofstadter's work is discussed
briefly in Appendix I. Since Hofstadter's results are an empirical
function they may be approximated by several analytic forms and the
numerical results must not depend too strongly upon the particular

choice of representation, if they are to have any meaning. The form

we choose is:

- o 2
;p LpL F (k) (4)
2 Y
F (k) = A ;AN = 0,91 (5)
\ (2= N) M

22
where k2 = wz - k7, the "mass' (squared) of the photon. Equation 4

distributes both the charge and the magnetic moment. This is im-

portant since any smearing of the coulomb potential will result in a
change in the value of the wave function at the origin, (? (0). As is

(6) when both

shown by a straight forward, non-relativistic argument,
the charge and moment are distributed the resulting shift is pro-

portional to a convolution of the two form factors, magnetic and electric.



It is not the sum of separate terms describing a spread charge and
point moment and point c}'xarge and spread moment. This can be under-~
stood by imagining the proton to be a point charge and point moment,
separated by some variable distance, both of which move around to

give the "smearing" effect of 'finite size''. The electron wave function
is centered on the point charge as this charge moves around. The

hfs is detvermikned by the value of the wave function at the point moment;
thus the average éeparation distance of charge and moment is the
important quantity; not the distance of the moment from the center-of-
mass of the proton. This is expressed as a correlation of the two
distributions, electric and magnetic and for independent distributions
involves a convolution integral. Since the product of the two form factors
is involved, we may view the process as the exchange of two photons

by the electron and proton. We shall find that relativistically the basic
process is also a two-photon exchange.

In Section II we evaluate the energy shift as two Feynman diagrams.
Section III arrives at the same results by the use of the Bethe Salpeter
equation. Section IV discusses the results and limitations of this
estimate of the hfs corrections.

The material discussed in this thesis has appeared in two

(7)

articles in somewhat more condensed form,



Section II The Covariant Calculation of the Shift in the hf‘s

We shall now evaluate the hfs for a proton with a Hofstadter
form factor (Hff). By this we mean that the transition operator for

the absorbtion of a photon of polarization p and momentum ¥ is given

by: |
f ‘ 2 _ | 2
L;p =G{Y”+4}%i (HYH-YPH)}F(k) _erp(l;()F(k) (6)
2 4
F&™) = A where N = 0.91 and pE 1,79 (7)
(A2 - K52 ™M

The usual electrodynamics of a point proton corresponds to F = 1

but here;
F o= 14+ 2K + === (8)

AZ
Thus there are departures from a point proton for k2~/\2~M2,
As was discussed in Appendix I, although this choice is indicated by
the results of Hofstadter's experiments, it is not unique and it rep-
resents only an empirical fit to the data.

Previous calculations have given all corrections to the hfs up
to and including order a m/M for a point protong?))' We shall compute
the effect of a Hff only to this order, Higher order corrections would
involve much more work and, as we shall see in Section IV, would not
be justified on the basis of present knowledge, Rather than find all
the energy shifts due to L‘H of equation (6), it is more convenient to

find just the difference in the hfs due to the use of the Hff, F, in-

stead of 1. This can be done by writing equation (6) in the form:



L‘u _ er'p, +e["H(F-1) (9)

The work of NS (3) then gives the shift R, of equation (1), due to

the term € ["PL in 9 and we must find the additional effect of the
term € l"; (F - 1)

Since the particles are in a bound state and therefore not on the
mass shell (i.e., EZ - pz;é mz), it is not immediately clear how to
find the shift in energy in terms of the interaction 9. We shall sim-
plify the problem by assuming that the electron and proton are free
particles, almost at rest and thus neglecting the binding effects., As
we shall see, this is possible because the correction term,

e FH (F = 1), has an extremely short range compared to the di-
mensions of the hydrogen atom. Thus the momenta involved are

all so much higher than the Bohr momentum {om):that the neglect of the
binding causes no error to order am/M. For the first term of 9,

Q,[‘“, this would not be a good approximation, however, as we have
noted above, its value is already known for the hfs.,

The calculation of an energy shiﬂ: for free particles is given
by the methods of Feynman,(g) After a long time T, the wave function
is given by*
eiAET

Y(T) = Sy (0) = Y

iAET
e

Wisy = (10)

* The lifetime of the triplet state is so much longer than the inverse

energy difference, (E3s - Els) -1 » that the decay may be neglected

and the state treated as if it were stable.



By developing the S matrix in di.agrams, we obtain the series
expansion of the exponential on the left side of 10,

The lowest order correction is shown in Figure!l}.

® Indicates that f‘” (F-1) acts at a

proton vertex, no dot indicates rp alone.

e ‘ F
Figure 1

Although this graph, without the dot, gives rise to the h{s itself,

it gives nothing in our calculation since the momentum of the photon
can be only of the order of the Bohr momentum, am. For such a

2 2

momentum, F = 1®a m / MZ so that the correction is negligible
compared to the am/M we seek.

Other single photon exchange graphs such as Figure 2 are just

radiative corrections to either the electron (2a) or proton (2b) vertex.

A Figure 2 | B



For all these terms, the difference of such corrections from their
values for a point proton will be of order az mZ/ MZ for photon momenta
~aom, Thus they may be omitted. (Figure 2b is questionable on other
grounds; it represents a vertex correction foir the proton and there-
fore gives a contribution to the anomalous moment. But we have
explicitly used the measured anomalous moment, p, in 6 and thus al-

ready included all orders of vertex corrections).

Figure 3

.Graphs such as Figure 3 can contribute to the hfs since both
photons together transfer very small momentum, thus leaving the
final state at rest, but the momentum of each photon is rather large
so that the Hff is appreciably different from 1, We find that the

shift due to 3a is:

Gomy= e’ | g (Gnmpyu (TN {FE) reh -1} an
(27r)*J a?q'2 | |

T LI S ML (12)

p



N}LV = Yp 1 Y‘f (13)

(The notation is that of reference 8 except that d4q = dq, dq‘ dqz dq3
u is a proton spinor and v an electron spinors) The term
{F(qz) F(q'z) - l} arises when 3a is summed over the three possible

combinations of dots,

L ' + +

and is clearly AE (Hff) - AE (point), as required. By comparison
with the work of NS the order of 3a is am/M for a point proton;
therefore the factor {F(qz') F (q‘z) - l} must be of order 1 if we
are to get a similar contribution from 11. This means that

q'zz qz';.-s Mzz /\2. We now note that if we were to include bound-~
state effects, the three-momenta ‘;e and '1'5; would be of the order of
the Bohr momentum, am, and the energies, p4,e and p4$p of the
order of the rest masses. Since we require only the zeroth power
of m/M in an expansion of 11, we may neglect ;e’ m and ’ffp in

12 and 13 and put: pp = M, q' = =wq. Thus the use of free particles,

at rest, is correct to order am/M.

The hfs will be affected only by

(3s|AE| 3s) - (1s| AE| 1s) = 5E (14)

To evaluate this, we introduce projection operators for the

triplet and singlet, positive enevrgy, states,
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p;S = 3 +7' 6o8_ 1+Yt 1+Yt
4 2 2

pl+s = 1 - 5. 1+xt 1+Y,
4 2 2

and sum over all polarizations (three triplet and one singlet), We
use the notation that a superscript bar refers to an operator on the

proton coordinates,

kK, . + -+
u{)v (5 11:‘.\E{P3s - Pls} uv

i §E

.

u, v
polarizations,
energy
4 .4 v
= 4e dgq Fz(qz) - 1} trace)} M 1 +¥
2 2 i :
/g q

2
X Ny, 1+, 88
2 3
Evaluation is simplified by the observation that since the initial and
final three~momenta are zero and since the energy is a scalar under

rotations, §. & may be replaced by 36, g'z T - 3YXXYYX Yy-

We now introduce dimensions such that the proton has unit mass,

i8E = 4o J a*x -8 ¥ - 1)

‘ (2m?% M2 Vv k* k2 2w+ k%)

q = Mk F (k%) = at a = A
T2 2y ™

(a2 - x?) °
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-~
]

2 2..2
-M (2w + k%Y k tr{Mp_v 1+Yt } tr\NM.v 1+Y

i

w2 _Z_kz)- .E( 2k%w + 402 ..)54_
3 2 3

) (15)

’7 has been simplified by replacing quantities like kg by their

spherical averagés "’2 -k . The individual components of the

3

traces are given in Appendix II,

X[2wk® - 2w’ -~ 0k

w]w

The contribution of graph 3b differs only in the order of the
photons along the electron line, to the extent that we may neglect the
electron's mass, it gives exactly the same shift as 3a, (This is
elaborated in Appendix II)» The entire calculation has now been
done for one proton and one electron per unit volume; in the hy=~
drogen atom there are cm.e( )r:)”rom and “Pw)t -elegctrons per unif
voliime at thisproton., Therefore we should multiply by \‘f‘ to find

the atomic energy shift SEA

i§E, = se’ |P]° 'k -89 (FP-1

@er)? M K® &%+ 2w)
==(hfs) (Qm) a9y (#2-1
b M k8 % + 2w) (16)
(hts) = 2¥afp&d [Pl ® (17)
3m M

The dimensionless integral appearing in 16 is evaluated in Appendix II,
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Section III Calculation by the Bethe-Salpeter Equation

We shall now compute the hfs correction by the use of the
BethewSalpeter (BS) equation. This method is more complicated
than that of Section IL however; it explicitly includes bound state
effects and, in principle, gives _a.__lj_lthe corrections to the hfs,
Thus a reduction of this equation is a complete check on our
previous work. NS(3) have already derived equation(]) including
an explicit expression for R in the case of a point proton. We
shall compute the change in equation (1) for a protéh with a Hff,

In other words, we shall compute the difference of the answer that
NS would have gotten for a Hofstadter proton (interaction of
equation (6) } and the answer they obtained for a point proton., Just
as in Part II, the calculation of this difference is very much easier
than either term alone would be. Appendix III gives a brief dis~
cussion of the BS equation and the perturbation formulae which we
shall employ. *

The kernel, G, of the BS equation requires the interaction
operator for the exchange of a photon of momentum k (absorbed by

the proton), According to equation: (6) this is:

Gyl =& ¥, ¥, Yo T8 &) Fed
2w K

where the bars refer to operators for proton coordinates, Using

(18)

* With minor changes, we use the notation of NS; it is the same as that

of Section 1I,
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gauge invariance, NS write this in the form:

C Q D P
G = e2 U ;; - a.a + a A
= e _ 4 4 i % i %1t [(F - 1) + 1] (19)
>l g2 ) 1,2 k% T k2
where
Ay = ox Yy g oYy
4M
- -t
k = (w, K) a =¥°X

and the sum on i is over the two orthogonal spatial . directions, per=-
pendicular to K., The various pieces of the interaction have been
labeled C, Q, D and P in agreefnent with NS,

For reasons which will appear shortly, it is most convenient to
consider that piece ’of the kernel of the BS equation corresponding to
the irreducible diagram of Figure 4. Momentarily, let us forget about
the presence of F and look at the result for a point proton. This is

written:

p't=p" -~k

k =pl-p

k! =p" - pf

p =(€, P)

p' = (g"; P")

¥ o= wl -k tie)

Figure 4 Kkt? = (m‘z -KZ 4 ie")

(20)
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G* =pf ) e” }z 1 a Y 1

2 we 27 i k'% k4 B, W - H(P") +e"-w+ilf
Yiﬁk ’ 1 — - F-k' 21
s ) W - H(P) -€ -w+ifP (=K (21}

where W is the total energy of the bound state, p,=m/{(m + M) and
31-, = M/(m + M) are the reducgd masses, H and H are Dirac single
particle ‘Hamiltonions for electron and proton, respectively. (See
equation (16) ofrappendix III). The pdtation * refers to the crossed
diagram, figure 4. If we break each proton vertex up into the four
terms given in 19 then Gx is a sum of sixteen terms., We 1abé1 these

with two subscripts indicating the nature of the photon involved. Thus

G}({ZD is given by

x 2 2 4
GCD_Zte l' 1 d k E a,

2w ?2) v ) K2kl i=1,2
| 1 1 Y4 .
W - H (P') +€" -w+ 168 EW -H(P)-€-w +i§8  (22)
b4 X “ X p. < X X
The other terms, GQD’ GPD’ GCP’ GQP’ GDD and GPP are

included in Appendix IV. The energy shift due to an interchange of
subscripts is always equal to the unexchanged form, i.e., GécD = GD}E .
Equation (22) and the appropriate G's of Appendix IV have therefore
been multiplied by a factor of 2 to include this and the order of the
subgcripts no longer matters., The terms GCXC’ GC);J and GQ}E). do

not split triplet and singlet states and so are of no interest in this

problems.
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When we calculate the additional energy shift caused by the
(F - 1) in equation (19), each term of the NS calculation is split into
three terms corresponding to this factor at either vertex separately

or at both verticies, .

p . D
p .
c I3
C ¢
P
X > X P © X
e GCD' P " Gc’p' ' G C,'D

G for the interaction 22 *indicates (F - 1)

Figure 5

We use a prime to denote which photon carries the factor (F - 1).
We now find the energy shift due to G by formula 28 of Appendix IT.

For the term GgD' this becomes:

AEC’;), = 2 {,ez : }2 -1 d4p“d4p'd4p ; ' ?‘L(/p)
2 qr 2 21 i k% g2 :
a 1 v 1 ai
W - H'' +e mo+ i8p ;Z,W-I-I'-G-“’ +ifp
2
e [FE) -1} (23)

NS discuss a case similar to this, namely one in which the factor F-1
* - _

is replaced by 1. Then it is permissible to replace Y and Y by 4} and

;[:;_j_, the large components of Y This is possible because we shall

want Y only for {pl~ am and here Y{p) = i +0 (a).

* Reference (3) p 1150 following equation (26) and (27).



Y, (p) = E-E(P) - E(P) ¢.@
[]J,,,W -E (P)+e + iSJ [ﬁrw - E (P) -€+ iS]
(P++(P) i defined in Appendix IV and p = (€, P).
In order to do the integral (23) we insert in the numerator the

energy factor

[Ny + A o] [/-\-Hp‘) FALeyzr e

This energy projection factor (see equatiOn 16 of Appendix III)
splits things up into more terms but enables us to replace the Dirac
Hamiltonian H in the denominator of (23) by a number fE(p) =1 VPZ-I- Mz,
and similiarly for H.

Thi Its in four terms which we label AE>.' , AEXT™  Ap*7*
is results in four terms which we labe cp! ? CD-* cD!

and AE .. For example

CD'® -
2
mioa12 K12 12
¥, (p)z o AN G
i A + /\+
1 v, (p") (26)

(BW-E"M-w+€" 4+ i§ ) (BW-E' -0 -€+i§ )

Again the work of NS shows that if F-1 is replaced by 1
then only the contribution from the region |k|2m: p, p''~ am neéd
be retained to find the energy shift to the required order, (hfs am/M).
In our case, the factor F-1 forces k~ M and therefqre to the same

order, we need retain only
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the zeroth order term of an expansion in powers of m/M, again
taking p,p“ﬁ am, Thus k~p'~M and k¥~ -k. We may therefore,
neglect p and p' in the denominator of (26) and factor the integral
into three separate integrals, For the integrals involving the wave

function, we find

JwH (pe) atp = I(PH Pdp = em?ie,, (0

where $0++ (0) 1is the wave function in coordinate space, evaluated

at the origin, It is sufficiently accurate to replace cf_H_(O) by

Ue up ?; (0); free particle, zero momentum, positive energy,
. . 11
spinors times the non=relativistic Schrodinger wave function at the

origin, Then we find

aEZEY = n(zv) \‘f(o)‘ a*e (Fa1)
2 TT

K2 K2

(Z A (k) /\+ (k) 3,

(er—E(k)-w+iS)(er~'}§(k)-w+i$): (27)

‘where we have written ("7) for the expectation value of the spin

operators in the numerator,,; We replace this expectat’ion value by
its spherical average over K, since the denominator depends only
on K2,

1 fadh <Z Ao h,m&)-5f &

41 | 6E (K) B (K) (28)
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The resulting shift is:

x++ 2|2 3 2 i ™
AE.p, = 2w) l‘{’| 4055 | op, TE T

2m 2 12 M2 'oep

= am (hfs) 0p. Té;; | (29)

TH M
P

where
- 2 2 2
Op'—-[l-Aa] Op, k ={F(k)-1} (30)
d A? k2 . A2 |

——

X+t 2 e (2% A+K+ R‘) (-2— ) /

CD 7
4T 5eE . _\ATED (—L,/-E-wm)
* 5 (}.L\_W - E -~ + i) Kl(k“/‘z) My ( )
31)
Op, Tap =(z 1!2) 2 12 M2 CaZH > (32)
e2 4W 525

We have expressed the result in terms of a dimensionless function

Té(;: in order to simplify subsequent work, Inserting (28) in (31)

and performing the contour integral gives:

x+~l; I w)(a'oll
CD : — - iy
AV R+ (i) VX1 k>
/
~ w\' "M-V L :... a 2 (33
[ﬁ%‘t’x‘%(’w)’“ VX *‘f{"‘w K =V X 4 } |

where a = /\ /M and, as discussed above, we may neglect m/M,

T

ppand put W/M = 1,
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It is now clear how to proceed, By Equation (29) we express
all energy shifts as (am /7 By M) hfs times a dimensionless
integral and by (32) this integral is essentially just the expectation

value of the kernel G . It is convenient to employ the identity

[F k%) - 1] ? - op, K% (35)
N\
Op, = | 1l- /;2_@._._ + N[ \?||r +A* 2_ (36)
©AN? 6 \ N A
x++ x++ x++

Thus for a given term, say AECD‘ + AEC‘D + AEC'D‘ there

is only one term proportional to ( 2 Op‘ + Opz) Té;_;- . We have

anticipated this in Equation (32) and dropped primed subscripts.
We find:

(20p, + Op;) = Op (37)
where Op is defined in Appendix II, Equation (II A:8)The total

energy shift is then given by

X _ X x x X
AE" = om (his) Op{ TCD + TQD + TCP + TQP
M
'n'up
X xX x
| + Top * Tpp * TPP} (38)
where \
b 4 x++ Xt X=-+ Ko
Tep = {TCD *Tep ' Tep * Tep } (39)

Expressions for the expectation values of the Dirac matricies
in the numerators of the Gx's, averaged over the solid angles of K,

will be found in Appendix IV, We also give there all the 'I: e
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which result from combining the various energy projections as in
Equation (39). As comparison with Equation (34) suggests, these
are somewhat simpler than the individual components, Ti;s .

The next term to consider is that corresponding to the exchange
of a single photon. Here, to get the required accuracy, we must
employ the iterated perturbation formula (IIIA:29) of Appendix L.

This formula, in diagrams, looks like two successive exchanges of

a single photon. (This uncrossed diagram is denoted by a superscript O)

I3
P o . M_pﬁ’_ » N
‘\’\cf\/\.« /\/é/\/\a (\/\/\f . ANANANA o
Cc t C
° o o o
Ccn Gc o' Gc'n' Gc o

Figure 6 Diagrams for the iteration perturbation formula

Although the kernel of the B S Equation is made of irreducible graphs,
the actual calcﬁlation of an energy shift introduces the reducible ones
too. Thus the § matrix expansion of Part II and the present use of
the B S Equation are actually only different notations for computing
the same diagrams. The B S Eciuation allows us to estimate bound
state effects because the wave functions appear in the integrands
while the S matrix approach immediately reduces the entire answer
to a few integrals. |

We have labeled the uncrossed diagrams (see Figure 6) by
analogy with the crossed ones. Just as in the crossed case, there

are three terms corresponding to different positions of {F (kz) - 1} .
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For our sample term:

z %
segy = 2 [ \? | dpatoas po {F ot -}

; '
2mTUi 2,{2 szz

1 1 s« T Y(r)

(W - H(P') #€+@+i 60 ) (LW -H(P)-€-w  —+ip) ‘

(402
where k =p' -p, k' = p" ~-p' and i is orthogonal to K, as before.
The factor 2 includes AED?C = AE(?D' . Evaluation of this diagram

proceeds in exactly the same manner as before. We substitute ?++
for ¥ by (24) and insert projection factors in the numerator as we
did in (26). The same regions of the variables contribute as in (26)

so that by analogous reasoning we arrive at:

amSh = - ey’ e® | o 2k {Fue)%}
e \am? 2 2 KZ

{Z «mAHAKD)

(41)
(nW-E te +i§)(AW-E ¢ +4§)

This numerator has the same expectation value as given in (28) so
that in terms of (29) we may write:
. N T /¢ ) -
Op, ng = - M2 K*d'k {F{k) /}
E(RIEM K k[ uW-eris)(aw-E-€+is)

(#2)
This term is equal to Op‘ T(}]{l?) * since by putting the electron into a

(2m) (w i)
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negative energy state, the crossed graph electron denominator
becomes (er ~EK)~w-id8)Z2(E-»w -i§)=-(-E+w+id),
to the order required. But the numerator of Té{5+ is just the

ot++

cp S° that the two terms are equal.

This same symmetry holds for all other uncrossed terms as

negative of that for T

well. The large component reduction of the Dirac operators from the
uncrossed numerators‘ is given in Appendix IV. From here it can be
seen that when the electron mass is neglected, the crossed numerator
for +p (-p) is the negative of the numerator for ~@ (+p) where p = +
and refers to the protonic energy state. But in each casé the de- .
nominators are also opposite in sign since they are the same

denominators as in AE The entire result of the uncrossed terms

CD’
is then a factor of two in the energy shift,
The problem remaining is to show that the answer of this section

is the same as that of Section II. This may be done by writing those results

as (see Equations (16), ITIA:7-11)

AE = (hfs) am OpJ

M
T,

ey
"

A+p‘B+p,zH+p.2£‘ (43)

= [y-2®
¥ % 3 6 (44)
Y. Lt /k"— q_’//ﬁl-f-zw)

3 d'k -
B = 2 L {/~wp k (45)
T j /t"//t‘—-cc‘}/szw} 3{ }

N
1]

3 J L {'ﬁ’—@} (46)
P /L"’ //{z__ a.l)(/l‘w-l.w} 2
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4 2

4= 3 d" k (+ -i—z-) (2w+k2)(2k +u>2) 47y
.HT?‘ k4(k2-=-az) (k2+2w)

We integrate A, B and H by contour integration instead of combining

denominators as in Part II. The logarithmic term £, was already
treated this way in Appendix II. We find: ,
L -] ’ 1 8 a
2 A=Y Y- \/T:_Q_,‘?
A = -4 JX dr ( +

e 18\ rra (W x+ o)

°

+ 5 =\ X'+ |
(2-a-257 )V 7= ')(I-VE»T’)}
‘B=-16 c;xdx{x—/ . |- V X'+ a* |
) s e pra (@ hver )
4 1= V¥
(a2 Jive+r (1~ Vil )’}

" - -12)1141{——}-——-— + VXt + a*
ixa .ZQ‘W(&#-IW)
|- Ve &
(2-c-2VZ )4V +l (1 -V err )

-]

+
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It is now a matter of considerable algebra to show that the inte-

grands are equal:

A X x
— Tep * Topp
B _ X ;X X
S Top ¥ Tep * Tpp
H + 1 _ X x

= Top + Tpp
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Part I_Y Results and Discussion

We give/\ the value 0.91 M and by equations (I1A:16-20)

find a recoil correction of

AE = ’(hfs) am ~13 %6+ 9 P‘Zﬂn /\o} (51)
4

ppr M M
where the uncertainty is that present in Hofstadter's results.

Figure (7) shdws a plot of this correction for various values
of N/M (omitting the cutoff term, fn No/M). While we do not
regard A as variable, it is interesting to see what the A- dependence
is, The curve is fitted quite accurately by the form (constant/N\ ).

The correction, (51), is to be added to the NS correction of

2
(—5 - 9p In /\0} so that we get finally:
4 M

10-® + 6 (52)

R =1 -« 3b5x 3x 107

where R goes into Equation (l). As discussed in the introduction,
aZ is the least accurately known factor so it is best to write (1) in~

cluding experimental results, as:

-2 2 -3 2
0™ = 16cRe ()M (1+m)°(1+3a°)§1-¢ 2}
& P W _,2.__._.> -Z-ﬁn 2)(1 R.
3 AV M,
- !/
ot = {137.0391 T 0.0001] R™
ol = 137.0%67 % 0.0001 (53)
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4 -1
If we use the currently accepted value( ) of a = (from the
fine structure measurements in deuterium)to find an experimental

R then we get:

o1 = 137.0390 1 0.0006
R = 1-1.4x10"% T 9x107° (54)

which disagrees with the calculated value by more than a probable error.
First there is the possibility that the results depend upon the
analytic form of the Hff. We have investigated this by using a

different form factor:

a2
Fp (ah) = AN ' (55)
| N -AL g~ A g - AL
1
N = o.s2M° A, = 2,06 M° :

The mean square radius is the same as that of the original Hff and,

of course, F{0) =1, The result is a shift of

AE = (hfs) am _ |-74 + 9t Mo (56)
— 7
WMPM M

* The anomalous moment of the electron, p,, enters both the hfs
Equation (1) and the Lamb measurements in practically the same
way. (See Reference (9), p. 353, Equation (22-22A). Therefore,
although the numerical values of a from the two methods are both
changed by the recent recalculation of p,, the relative disagreement
remains, In the results given here we have used the new value of the

anomalous moment given in (10).
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This is in extremely close agreement with (51)*°

Next, we look at the structure of the matrix element for the
energy shift given by Equation (11} (and the crossed term}. The
proton pant of this matrix element is

F(a) F (q") {EM') 1 ’:(91) +YE (d) 1 TL(M
16p+¢j-M ¢p+q'-M

which is given in diagrams as

F ¥

This is exactly the Compton scattering of a photon except that the
''photon'' involved has a '""'mass'', i,e., qZ = 0 in the integral 11.

Thus what we really want is to replace M,, . (k!‘ k') by the laboratory
S matrix element for the forward, spin-flip, scattering of a virtual

- HE
* The use of {ﬁ (h‘) -'ﬂ = }"1_,\:

h‘b
LI B I 2 _ L _3___(.1.-1—-_...&.—-—“)1 X a®

da* '

where )\1 = Al/M andk2 = l\Z/M enables us to express the shift

from this form factor in terms of an operator times the integral J

which is given by IIA:1l4,
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photon of mass kz. (It should be spin-flip because of the factor-b’z
in 15, involved in the energy difference of singlet and triplet; it is
the matrix element in the laboratory since the initial proton is at
rest and the photon is scattered in the forward direction because the
final proton is at rest,) This is quite reasonable since the electron
""'probes' thercharge distribution with '"hot" (shortwave length) photons,
Only such photons canl”see" the difference between a point and dis-
tributed charge. Such photons lead to large recoil for the electron
and, because its average momentum in H is very low, every time
the electron emits a hot photon almost at once, it must emit another
of opposite momentum. This means that the energy shiﬂ: we seek is
fundamentally a double photon exchange processes. This is in con-
trast to the Hofstadter experiments where the two photon processes
are a small correction (see Appendix I}y, Although the single photon
vertex rnust have the form F (qzé\' r;. (d), the double vertex can have
more complicated forms, This is easily seen from the diagrams of

figure 8a and b.

-
-
»

-

W
A 'w
a b

Figure 8 Meson corrections to the "Compton Vertex'

The meson which links the entire photon exchange process compli~

cates the matrix element. In general, the sum of all such graphs



30

. will not even be expressible as two verticies connected by a
propagator., To the extent that the processes represented by
figure 8 are ''small'', we can regard 16 as giving the correct
value of the hfs but there is no a priori basis for their omission,
Since such diagrams involve strongly interacting particles, we
cannot use perturbation theory reliably. In the following appendix
{Appendix V) we 'give a fairly crude dispersion theoretic estimate
of the hfs shift due to such a diagram, We find that under ""reasonable
assumptions' about the photomeson production cross section for
virtual (massive) photons, that the additionél hfs shift is of the order
of 1-5 ppm and therefore that it is unimportant unless the corrections
are carried to a higher order of accuracy. A more detailed summary
of these results is given there.

We now look at the experimental error given by Lamb. His

(11)

results for the fine structure splitting in deuterium are:

+

AE = 109710 59

D 0,20 Mc/sec

DuMond, Cohen and Crowe(4) take this result but with an uncertainty
of 0.10 Mc/sec. If we use the Lamb value for the uncertainty we

find in place of 54,

R = 1-1.4x10"° 7 18x107°

Thus the disagreement is 34 f 21 ppm, The '"unexplained difference'

of 14 ppm is just at the edge of both theory and experiment.
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The major source of uncertainty is the meson corrections.
There are also higher order electrodynamic and recoil corrections
which could give a few ppm. On the basis of the estimate of the
meson corrections of Appendix V the author feels that although some
corrections to the result of equation (51) are quite probable, it is
rather unlikely that these total ﬁore than about 10 ppm. The re-
maining differenée is then insignificant unless confirmed by highly

accurate measurements.
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Appendix I - The Measurement of the Proton Form Factor by High

Energy Electron-Proton Scattering.,

In perturbation theory the scattering of a high energy electron
by a proton looks like the exchange of one or more photons and

radiative electromagnetic and mesonic corrections to these processes,

N

We concentrate first on single photon exchange but include radiative

corrections at the 'veztices., For the electron the corrections lead

to a '"renormalized vertex' containing the anomalous moment,

e T P S e

= A, = e pL+u(1<)(>(1,€k)’> (1A:1)

These corrections must be included at the energies of the Hofstadter

(12)

) experiments because they give relative effects of about 10%.

For the proton there are corrections of the form,
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The calculation of these is beyond present methods; however, their
net effect is measured with the Stanford accelerator for momentum

transfers up to about 1 Bev/c,

%
All corrections to the vertex must take the form:

2 2
ef (k + p £, (k ¥ - K IA:2
TORER AR R 1 7)) (14:2)
. 2 = 2 22
where f; and fz are real functions of kK = W -k and
£, (0) = f2 (0) = 1. The functions f,‘ and fz are essentially the
Fourier transforms of the charge and anomalous moment disw

tributions. An especially simple form for the distribution is

given by the "exponential model':

itk
f = S = Fourier transform of _‘_&E_ v * { (IA:3)
2 4y o’
ll - (k ar)‘2
12

where a is the rom,s, radius,  With the choice fl = f2 = f,
a=0,8x 10“13 cm,, Hofstadter has been able to fit his experi-
mental data.(lz) Of course, it is also possible to fit the data with
several other analytic functions and examples are given in the

above reference. The m,s, radiust which is 6 times the coefficient
" of kz in a power series expansion of f (kz), turns out to be about

the same, regardless of the form used for f., We shall not place

any great reliance on the form of the f!s and our results are

* The uniqueness of this form follows from gauge and Lorentz
invariance,

t mean square radius
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realistic only if they do not depend too strongly on such details as
the higher moments. It is also possible to obtain a fit using different
radii for the charge and moment terms (f{ and fz);however, we do
not consider this in the absence of data clearly indicating the necessity
of such a choice.

| The remaining corrections which might conceivably complicate
the interpretation of the high energy scattering results of Hofstadter
are due to the exchange of two or more photons between the electron
and proton. The effect that this would have is uncertain since the
intermediate state in a tv;;o-phott)n exchange is virtual. This makes
the form factor for each vertex depend upon the extenf to which the

mass of the intermediate state departs from that of a free proton.

| t— Virfaac fnfcrmea//a,fc
1 State

In other words, for a two-photon exchange, there are more in-
variants available with which to construct a transition matrix
element and therefore we are not limited to anything so simple as

IA:2. In particular, there is no requirerent that the double vertex

should be given by the iteration of two single verticies, at each of
which IA:2 acts, although this may be a useful approximation.

Indeed, the existence of a resonance in photomeson production suggests
that there will be some sort of a resonance in the Compton scattering
for real photons at about 300 Mev laboratory energy and probably for
photons not too far off the mass shell (sz,y, o) there will also be such a

resonance. We shall have to analyze this point later in connection
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(13)

with the hfs corrections (Appendix V). Drell and others have
set an upper limit of about 1% (at laboratory energies up to 1 Bev)
to the effect these corrections would have on the Hofstadter data.

With the present experimental uncertainty, these corrections may

be ignored.
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Appendix II Miscellaneous Detalls of the Covariant Calculation

The components of the traces (dimensionless units, M = 1)

let
1 1+ Y
| BFW B 2 trace{‘Yu ¥ Yy =75 ‘Yxﬂfy} (1181)
= ] - = ;h-nl-a
BHV Oifu=yv Bxy k2
Ik
B = «B B, = i (1142)
py Vi xt k2 Ik
X

Bzv = 0 Bty = ;2-:“
Let

1+
o 1 1]
Ry =2 trace{r;ﬂ-k);z=:~?“:"i f:(k) 5 YXYy} (1143)

= ﬁ (v ¥ - ¥r,) (11ak)

.
#

1 2 2 2
A S L‘w'%[&‘ ""Mk’x*ky);}

R p.z[s-mkz v 20P?) + 202 kD)
2 2 (1185)
A& 2 wf) = -
xt tx 2 L, Y 2
R Ry
A, ®==h s =1 Wk {1+ B(w-2) +
vt ty x[ 2
k™+ 2
n of eguation 15 is given by;
16m
— BBy (1186)
K (k% 20)

The equality of the crossed (*) and uncrossed (°) diagrams when

m and ¢, are neglected,
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+h |
e ' e

° k 1
By * trace Yu)f*rv(l + Y.b)*rx*ry pY

X ©
By = trace Yv(-KQ)Yu(l + ‘rt)vx'ry Buv
Kk

by comparison with equatiéns ITA 2, The operator AW is

unchanged.

The evaluation of the integrallin equation 16

We write
2
2.2 k
F (") =1 =0p —p—s
| P k-az
where
By VL6 3}
2 - aYd aa
=] =) - — - peanm—— :

Jdl%%‘F‘ll - o3
k- (k%+ 2w)

J e duk )
J kh(kﬁﬁ-&ﬁ) (k§~a2)

Now write v as

2
nefar W/ - (s wie]ad ¢ G e s k) G

1 2,0 2
“"('§'§“”)T§ 20 + k°)

IIAT

IIA8

1129

ITAl0

24_@.2)
3

I1a11
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In IIA11 the last term is odd in o and so gives zero. The first

two terms are done in section A of the appendix of reference 8.

a (w;1) L | e [-a D), 2a )]

22 ) 2 (- D)0 20) O Y (1 =) 4 ax

(11A12)
The third term in ITA1l is integrated first by residues on e and

then over solid angles giving;

' Ay
2
ale (B2 .+ 9 K34+ -xb
(2ﬂ)§ Kt (k2 - azs Bia2 a K® + a° a°
2
-3k (11813)

V K§+ a2

 Since the finel integral in ITAL3 is logarithmically infinite, we
heve cut it off in momentum space at «ggm. The reason that such
an infinity appears is that the interaction of NS (F =1) is
divergent while ours (F = Hff) is not., The difference beiween the
two, SEA, must then be divergent but when this correction is added
to that of NS the result will be finite, since the effective
interaction will then be that of equation 6. In order to make the
cancellation uﬁambiguous, we have employed the same type of a cut-
off which NS do, namely, integration up to a definite value of the
three-momentun in the center-of-mass Lorentz frame.

When we combine a2l) these results, we get; (primes indicate

differentiation with respect to ag)
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}

2 2 2
20(1 +x) -C{1 =x°) dx 17 . 90.2N
Jt%{.l X.l,__ X +%[:E+EQB—A—-]}

(1 ~x)2+ a?x
| 1{2 2 2 aa()
= 3 1-C 4(2p + 20 -a c)na - 20D -C) + (2 4a°)(D +C = S7) 1
2
17 9y 2 (I1A1))
» |

2 &
-0p J = %‘{cc + LD OpI + 2(p + C){-fna + %l - I"']

2 8 8, 2 2
| I8 g (a%e2) I 9. 20he. 9
=0 [%-ah - & 3‘12») ] -%[*l— Qn-ﬁw-&nﬂn&}}
(11826)
where 3 ,
= I(aa) - 2 tan"l"..‘é.;;- = 2/a cas’l(g)
\[haz» - gt 2 ' - a2
| (II817)
2 h 2 PRI 6
o =228 +1)6a° =264 =140 +1202° -36a” +ha
Op I o0 -a2)3 + s - 2)3 1 (I1a18)
1 = 3 (2 532) + af‘h 02&2 }:12 I (11219)
(La®-2™) (ha®~ 2™)
1010w 2128l +lha-60  + 6a° ~36al' +108s° -120 I (11420)

(lae? -a*) | (1@3 a3
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Appendix III The Bethe-Salpeter Equation

Since thé BS equation may not be familiar to the reader, we
include in this appendix an elementary discussion of its properties
and the perturbation formulae we shall use, Most of this material
will be found in articles by Bethe and Salpeter. (14, 15)

First, consider the Dirac equation for a central field

' 3

Y@ = 1 fV(K) ¢(P-K) d’K (LITIA: 1)
aP = Am-W

The terms may be given the interpretation

Amplititude to find momentum P present = § '
all possible K

Amplititude to propagate as a free particle, momentum P

X Amplititude to find momentum K in the potential

X Amplititudé to find momentum P-K in the wave function
(Actually, in a bound state of energy W< m, the propagator is not
free.) In other words, one more scattering in the potential does
not alter the wave function.

If we were considering the scattering of a free particle by the
potential we would have the same equation, with an inhomogeneous
term, representing the possvibility of no scattering.

g= ¢ 1 jV(K) f(P-K) °K  (II1A:2)
a* P + B(m-1€)-W

where W 2 m and ¥, is the incident wave., For a bound state,

this term is not present because, after a long time, the unscattered
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waves spread out in space and ''diffuse away" while the scattered
waves are held in, near the origin. Graphically, each equation
represents the ladder diagrams Figure 9, for, when we solve by

iteration with ¢(O) = ?i, we get just such a series.

-s
113
+
<+

¢;

Figure'9 The first term is not present for a bound state.

In the presence of a quantized electromagnetic field, we know that
the scattering by an external potential is correctly given by a sum

over diagrams as follows

PN

Figure 10 Scattering with radiative corrections

Thus we expect that the integral equation which the final state wave

function satisfies is:

¢ = ¢+ 1 JI (K, P, W) P(P-K) ¢°K (II1A:3)
P+ B(m - i%) - W

where I is some kernel, which, when (IILA:3) is iterated, will

generate the entire series of diagrams of Figure 10.. The correct
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choice for I is then the sum of the 'irreducible graphs' because,
upon iteration, the term [o, P4 B(m-i € ) - W ] -1 will become
the propagator in all diagrams with two or more parts connected by
a bare electron line. Clearly, iteration will not provide anything but
such reducible diagrams. By analogy with the central potential
problem of equations (IITA:1 and 2), the bound state equation simply
omits the (Pi in (IILIA:3) and puts W = m - E (binding).

The interaction I is constructed according to the usual rules(g)°

For the following diagrams we have:

X L V(K)

H

x*
T
|y
n
(0]
(38
%
>
<
ot
=
2
[a—
-
o))
o

§» I

+
[§8]
i
o
™~
>
-
[a
N
o8
1
[
3

S Zli’ and pz W Y - ¥p
¥

We generalize this to two particles by analogy, the wave function
satisfies a scattering equation without the inhomogeneous term.
1 - = = 4 4
= 2 . £ B .
W fe I i) I(p,B,: psB)) i, 5,) d'p,d'p,  (IA4)
($, - m) (B, - M)

The bar refers to the heavy particle operators and ¥ is a sixteen
component wave function of the eight variables P‘lp, "}3‘2“. I is

again a sum over irreducible diagrams.,
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(IIIA:5)

(II1A:6)

Id Pa
e g 2 =1
Iy = ¢ r; (p3 - P)) YM
2
t, 7, (py - P3)
where r k) = X + W (-]ZY - Y ¥) is the proton vertex
B K M M B
operator.
fa PL
R P :"""
¥ L = et | [N 1 | )
2 M % ]T{' M V
b - -
- y 1 y at x
93 : ?‘1 v 3 - - N P"
134_ = k' -k + SZ
Pl = k! -k + p3

We confine ourselves to the Lorentz frame where

p+p = P = (W, 000)

W = m+ M - E(binding)

and we define:

(IIIA:7)

(IIIA: 8)

(II1A:9)

(IIIA: 10)
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Omitting the trivial exp (i W t1 + tz) in the wave function, we find
2

that (IIIA:4) may be written:

WP, q) = -1/e i)
(WP +d-m+i8) ((P-F-M+if)

4
SG (P, q, q') Yla-4q') dg (IIIA:11)
where G=I(wP+q WP-q; pP+a-q, BP-q+q) (IIA:12)
(14)

This is the bound state equation first given by Bethe and Salpeter.
A formal derivation is due to Gell-Mann and Low, glé)
In general, the BS equation is difficult to solve since the kernel
is an infinite sum of singular terms. Even if the kernel is approxi-
mated by the first few terms, as is usually done, it is still a non-
linear function of the eigenvalue, W, so that some sort of a per-
turbation method must be used. Another difficulty is that since
complete covariance has been kept, we have a ''relative energy"
variable of the two particles and its conjugate, the relative time.
Because classical, covariant, two body problems are not well under-
stood, we are unable to attach any obvious physical meaning to this

variable., What we think of as the usual wave function is the covariant

i
wave function taken at zero relative time. This clearly corresponds to:

* We now change notation and use W for total energy momentum and
p = (€, P)for the relative energy momentum. This will cause no con-
fusion since from now on, all our four vectors will refer to the relative

coordinate and we imagine the total energy momentum as fixed at W.
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¢ = fz;b (P, €) de (IIIA: 13)

Both of these difficulties may be sidestepped in practical problems

by splitting G into two parts.

G =G+ GA . (I1IIA: 14)
2 -

G, = BB (IIIA: 15)
QZ

The instantaneous part do is a function of only the three-momentum
transfer and the remainder GA is the additional terms that we are
using to approximate the sum over all irreducible diagrams. GO,
being the coulomb potential, gives most of the binding and a rather
good approximation to the wave function. G, may then be included
as a perturbation.

We develop now the perturbation methods, applicable to the hfs
problem. For the fine structure or other problems, there are diffi-
culties \Which require other techniques as discussed by Salpeter,
especially Section IV of reference 15.

First we introduce some definitions:

H(P) = aP +pm H(P) =-aP+pM
E(P) = \V P? + m® E (P) = P® + M (IIIA: 16)

2 E(P) x 2 E(P)

{/\+‘P) * ’\.(P)} iMP) 4 I\‘(P)} -1

The A 's are projection operators, by using them we may replace

/\*'('P) = EP I yrp) NP = E(@P) t HP)

H (P) by ¥ E (P) and likewise for H (P). Now let us multiply
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equation (IIIA:11) (for the case GA = 0) by B B and abbreviate it

as follows:

W= -1/(211'1[ 60 W (IIIA: 17)

F(W,P, €)

using gas a symbol for the integral operator and

F = (WW-H(P) -€+i§p RW-H(P)+€ +igf) (IIIA: 18)
2 4 H i !
O\Y = e jd q Y (q-q') (I11A: 19)
Qr?

We assume that when the term QA is added, W undergoes a small

shift and becomes W + § and y/becomes {y+ R. Thus®

v+ R o= -1/pxi) (9, + C)’A) (¥ + R) (IIIA:20)
F(W+5, P,€)

Now let us mutliply by the projection operators of IIIA:16 and inte-

grate out the relative energyIG .

jw + Rde =% +r¢ = -1 j {/\JLJ\_K; /\¢R,+ [\-7\-}

| 2w i F
(Cgo *'%A\S, (W+R) de
- (V/\*IT*- A-A2 Cxo(‘hr)—' 1 de ngA (i + R) (I11A:21)

5 +W - H (P) - H(P) 2% i F

*In this appendix we have explicitly shown § and §€ which serve to define
the contour. In the usual way we want the limit as g ,€—> 0. Of course
these quantities have no connection with the perturbation energy shift, §,
or the fourth component of p,€ . Elsewhere (section III and appendix IV)
we omit the subscript ~ since § appears only as a ''contour fixer'.
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where we use IIIA:13 and S R dé =Y. The poles are such that

for an instantaneous 'kernel, cyo, only the A+/\+ and /\- N,

projections are non-zero in the three dimensional wave function .
That is: :
P - (/\+ +- A- ‘) CX @ - {ITIIA:22)
(W ~-H - H)

~

By comparisdn ‘with IIIA:19 we see that the dependence of i) on €

is trivial:

yo= - _1 1 crcp (IL1A: 23)
2Wi F (W, P,e )

Now let us multiply IIIA:21 by (P* (6 +W - H - H) (A{,j+ - l\_;\—_)
and integrate over P. The. normalization condition is:
Scf* ( I\‘_l‘\'f “AAYP = * (ITIA: 24)
Thus:
S“P* (5+W—H-ﬁ)(A+I.\+-,A_"{.,)(¢+r)
* (AN + AR T ! * (5+W-H-H
f‘f (AN, + AA) QO(Q 9 - L [af )
(NN - A A.) de g’A (¥ + R) (IIIA:25)

r—

F
Now since the operators in IIIA:22 are hermitian, for any function, ©
(¢ ov-m-m (AR -ARDZ - X‘P*(;yf (1114:26)
clearly (N ;\ A K,)Q = @ |

Then 5 [p* (A A ~AK ) (¢4

= = 1
2Wi
de¢

’ ¥

(/\+K+=/\_l.\_)(6+W—H—}E)

+
¢
g, A WHR) (111A:2'7)
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We now neglect quantities of the "second order of smallness' in
IIIA:27. Thus S on the right side and § in F are dropped, . We shall
retain R however. On the left side we neglect r since it gives

only a small change in normalization., Using IIIA:26 then gives:

5 -1 * d e (1{/+R)
o )0 Ge 2 G

and by IIIA:23 we get

~
d = &gb g’A (1 + R) (IIIA:28)
~/ .
Where 3 is defined as the transpose of IIIA:23 with @ replaced by

¢ #* and no other terms complex conjugated. If we take the iteration

of IIIA:20 as an approximation to R we get
o = JLP Q/A -_lﬁﬁ_ll (9/0+9,A) Y (II11A:29)
F

This is our perturbation formula, It is really a 'first order" formula
in spite of the retention of the term R. This is because the kernel of
g/A is usually highly singular, Such behavior modifies the high-
momentum components of the wave function which, in turn, give the
major contribution to the integral IIIA:28. ' Thus R is retained in
IITA:28 however smaller terms such as dr and 52 may be dropped
because they depend less critically on the high~-momentum 'tail" of

the wave function.,
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Apoendix IV  Details of the BS Method

The G operators for a point proton. Momenta are the same as in Section
111, equation‘ 22. 1 and j run over the two mutually orthogonal directicns

which are normal to K and K! respectively.

e 181( 1 K (x*)
mw ~ L HW? 4+ e e w+ 1858)

{ 1 =
ﬁ‘p{a‘ﬁu ~-Weg+i8F

o z 1 ( . ) g (k1) {...}Ki(k)
o 2ik K12 z
ngg[”’. [ o ::., Zd () dj&’j {} 4

“J 21‘!’1
ox = , 1 2 ( ) o { Ki(k)
bp L ) Qﬂik k' *) 3 &
_ »
= o e 2 S ( (k') } (k)
PP 2ni k:"};ﬁ

The expectation values for the Dirac operators between rest spinors,
averaged over solid angles of the vector K. We have defined (ses

Appendix III);

YCER-CRI CE RSN FOPS ORI BPE

25(P) | 2 E(p)

VWhere i s7)» are + or - , Our notation is * is crossed and ° is wecrossed,



52

Ierm %ra‘bcr Reduced Operator

\ ' s A L
- (Fe? Ayt A ) M R

- 2

% _ - : =
w (T A N5, b s Gu(KE(K)
no° (Zc{ /\ (x) /\ (K) O( ) lE(K) -§m)(E(K) =" ml

i | 6E(K)E(K)

x ; = B®) <t E(x) ~nu)
DD <2°‘f’< /\( K) /\(K)c( =H) a5 pormTe

o A = N Ao o) MO K2 (m(k) -yu)§
QD m(;dgi_ i( ) /\{ ) B ) - SEEEE)

o 2R /\t<~x) K{Wﬁ‘@ pog ¥ (5x) -7t
au 2 6E(KJE(K)

L <Z %R /\ (x) A (K)> ~p o5 § PEx) +qu +mw)

M 6E(X) B(K)
o* (E E/\gé-»K)/\(K) %y  ~pod € KEK) +qu + 7o)
LM 6E(K)E(K)
-C .2 -
p° “&”) . c:oo’@Kl“»ME ﬂvﬂ(ﬁ-w&)
(ZM <Z ﬁ/\m }\(K)tsm K) (am p=

o ( y;“{? A (-x) /\(m oK) (l-‘-) o3¢ Kz(w +mE a)(E-y )

o L (S«z N 5 -
T <§df(ig A{K) Aai(K}“:}“Q fﬁf‘ %Eg (B <§m)(E -y u)(w+nE 1)
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Continued
Term : %rator Reduced Operator

m* L ( /\<-K>I\<K>o< "‘ ”(E- n)(E-H)@ +9F + 1)

(-—Y(Zo(fc ¥ /\§(K) [ (K23 }‘) (2 ) &8 (g m)(E—‘qﬁ)(“‘*’)E + )2

93 (gm fu)(B=qU)(@+qE + 1)

2M 6EE
Where we have used; '
E = E(K) =V Fa- mE E=EK))= -\/?4» mg
Expressions for ™ @
= A 2. .2 a,h »
a =g b»a»z- )u = Fp~1~1.79

TXCD= 2¢LJ X(lx ~f (a ab) JX
VTR (O 8) (X)) (0 BT

+ 2 dx
,f (%) (x 4 Vo)

B T o S j" [9- ) dx
@ 2 cp 2 ) (X”‘"b’“)()(i—'r_—"xﬁ-()

j pax dx .,,Jm (,__ ax* )
(CHIVTE (Vo o) b Ve (X V)

CP GD
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Ao /M

dx
™ =y — 1/&’“] X
® K @ A (X + o) Vir o

* o= j X L) KX
DD Y (X+ x7_+“,_)(x‘).+bo.) +2_j; Xl*b‘»
+'Lf°° (1-«'7') 7((11
T ) Tor)Veer (x+vere)

IXDPg 2"TXDD

. A!/m‘ .
Tpp = P - K JCU((—’E- - ——L———}

o R S o
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APPENDIX V

The Meson Corrections to the his

This appendix describes a rough calculation of the effect of
meson corrections on the energy shift found in part IV, It estimates
the extent to which the two-photon form factor differs from the product
of two single-photon form factors,

We write the unitarity relation on the S matrix as:
. oy b _ .
(elsl1) = &,; + 8'(p, - »,)(s{Mf1)
#
Gl ) + (g]ule) = - = (afule) (nlMli)@h(nni) (VA.1)
n

Let us suppose, for the moment, that we know all the (n\M\i) and
(Q‘M\f). Then, by performing the sum in VA,1, we obtain (f]M% + M‘i},
This is essentially the "absorptive part” of (f\M‘i), (For example, in

& photon scattering problem, if we write (f\M‘i) = if{w)e+2' where e and
e' are the initial and final polarization vectors for the photon, then
the left hand side of VA,1l is just\_égrg’ Im f{e).) We now assume that

f{w) satisfies some kind of a dispersion relation:

1/2mi Idm',/wmm' flo') =0 (va.2)

C C= 74

et)

That is,hf(m) iz analytic in the complex « plane and vanishes fast enough
at o so that only the portion of the contour along the real axis need
be retained, Then, knowing Im f(w) for 2ll real w, we may use VA.2 to

find f{w) and hence (fMi),
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Co
flw) = 1/n J [ént Im f(m'ﬁ/ o=’ =1 € (VA.3)

0
In parts II and IV we found that the energy shift was given by
the M-matrix element for i as one virtual photon and one real proton and
£ the same particles, after they had scattered elastically. Actually, it
was sufficient to know only the forward direction, spin flip scattering
in the labratory frame (proton at rest), We approximated this by
(f(M{E)'i) Fg(ka) where M(2> is the Born approximstion (point proton)
to Compton scattering and F is the Hff, We restate our final result:
E = { am/mu M)(hfs) 31/32@{2 jd”k/kh’ (A{D: va 8% (vA.k)
P wv uy pv
where o denotes "uncrossed” and x crossed and where:

O

x _(2)
A+ A Y = [omeM /i) trace /M oo {14y )i VA4
( RARN [ [ i/ t /) ;;_’1/( ) ‘\r;ryj ( )

o o
A~ and B are given in appendix 1T, M(?) is the M matrix element for
uv B pv
Compton scattering of a wvirtual photon by the proton and M? is the proton
mess, introduced so as to meke A dimensionless, Although in sectlon II we
simply regarded M(g) ag the sum of the two diagrams of figure 11, we can

also understand M(2) as coming from formulae VA,l and VA,3 if we take the

state n as a single proton {or as a photon and a proton).

v v

Ball indicateg HIT

Figure L1
[es &

The effective diagrsm is shown in figure 12a and the detalls are gilven

in section C of this appendix and in reference 17.
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Figure 12

The process 1s unphysical since no real photon can ever be absorbed by a
real proton, however by formally including it and other "forbidden” proc-
esseg, we get the pefturbation series result, Of course, the proton does
not exist in the isolated atmosphere of a self-consistent and self-con-
tained electrodynamics, Thus with a photon and & proton, we can make a
meson {fig. 12b§ and clearly this should be included in the sum over in-
termediate states in VA,1l, B8So far we have completely neglected most of
the dynémic effects of this intermediate state and (by the aédition of
the HEf and anomélous moment) taken into account only ihe‘term in VA,1
where n is a real proton, If perturbation theory worked, we would simply
include another diagram. such as figure 13; however, since the coupling is
too strong for this, we shall try to use dispersion methods to introduce

experimental results for figure 12b and thus guess the value of figure 13.

\"\;\"‘w,"

Figure 13
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We shall choose an empirical (uMi) for the process ¥ + p —»n + T and find
the resulting (fMi) by assuming a dispersion integral., We may then com-
pute the additional shift in H by VA.k,

There are several rather weak points in this method which must
be mentioned, First, the experiments are only over a limited range and
we shall extrapolate them outside this region., In fact, photons of non-

(18)

zero rest mass are produced experimentally by the scattering of high

H

energy electrons (see fig, 14) and thus are "space-like," We require

time-like masses in VA,4{and space-like ones). P
/

Figure 14

Panofsky's Pion Production by Virtual Photons

Second, a photon with enough energy cen create much more than a single 7,
yet we shall omit such processes in the sum VA,1, We shall consider only
the(3/2,3/2) resonance since it is well-measured and dominates the low-

and middle-energy cross sections, At high energles this will clearly be
wrongj; however, as we shall argue later, it is not unreasonable that these
” corrections are small for the hfs problem, The last difficulty is the
number and value of possible "subtractions.,” On the basis of various
examples, it has been cqnjectured thet a scattering amplititude, flw),

may not satisfy VA,3) but that /flw) - f(@l7 or 4%(@} - £{o) - mf‘(gl7
does, If we spply VA.3 to the first expression we find in place of

VA3,
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flw) = £{o) + u/n j'ﬁ(w')dérﬂ/(m‘ﬂé)(m—w'-ié) (VA.5)
This is a "subtracted” diépersion relation, We know of no way, at
present, of fixing the‘form of the dispersion relation or the values of
their constants, f(o), etc., We therefore compute the energy shift in
two cases, with and without a subtraction, and note that the results are
the same for our puﬁposes. This disposes of the problem in a very crude
way and our answer is not to be regarded as more than an estimate.

In spite of the fact that we talk of "dispersion relations,"”
it would prcbably be fairer to regard this calculation as a perturbation
estimate of the contribution of an "isobar graph," containing a 3/2, 3/2
particle (fig, 15), rather than as an application of dispersion relatioms,
We have used the languasge of dispersion relations because we believe it
is simpler than the formalism of spin-3/2 particles,

This calculation is divided into several parts and follows very

closely This outline,

P
i

Pt
P

Figure 15

\ The Isobar Model

A, The Expression for (nMi)

At first,; we shall assume only real photons are involved and

(19)

later remove this restriction, Gell-Mann and Watson have fitted the
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total cross section for(s/z, 3/2) photoproduction by the expression:
2 2 P2
o = 31/K r:r %wmg) +f /bf} (va,6)

where K is the photon momentum, W the total energy in the center of
mass and W, % 1239 Mev, We shall neglect the width, r‘, of this cross

sectién and put
o = EnF /K2 PY B(W-¥_) (VA7)

We take '-; as constani and egual to O,L Mev, Assuming that all the
(3/2, 3/2) production is due to the absorption of ML radiation, the form
of M must be:

(nMi) =[2[I<fxe~§ + iL&(Kxe)x_@"/'k £(wW)/ || fal (va,8)
where e is the photon polarization vector and § the meson momentun,
Wow the cross sectlion is related to M by:

o= (enf e/ B L l)l%s(0-1) = 420’ 85 a el el ® va.9)
1 n i 12

El and E2 are initial and final nucleon energiles; qo, the meson energy
Thus:

\f(w)[ 2 ={wa/qQ Q E1E§(3/16ﬂ) F’Y 5(w_wo)/x‘? (VA.10)

‘Both electric quadrupole and longitudinal quadrupole (for virtual photons)
_can also lead to the (3/2,3/2 state; we ignore the first possibility be-
fcause the static-theory coefficient of the ML term, (gp - gn), is nmuch
larger then that of the E2 (pair) term, and we neglect the second because
no reliable measurements are available, We shall now apply VA.8 and 10

to virtual photons by multiplying by a HIT,
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2 2
Pk | W S(W-W
(nMi) = mim){aﬁxw ¥ io-KKxe)x_@.?'} Py oig) 3
Ikl]al qQQF.E, K 2 16m  (vA.11)

Multiplication by F is certainly . correct for the so called "bound

state term" in photoproduction (see reference 20) but it is not reguired
as a factor in the entire matrix element, The experiments of Panofsky

(18)

and “Alton on high energy electro-plon production in the neighbor-
hood of the G/Q,S/E)resonance can be fitted rather well by such a

factor, We shall alsc investigate the effect of omitting the ure, ¥

*
B. The Expression for (fMi) + (iMf)

We choose

- . . 2-—>.~—> e e ; .

//(L‘M\i) = 1 AW, k%) (ep e') + B(W,k™) lgongeim7' (va,12)

where e and gi are the transverse parts of the polarization vectors,
This choice of invariants will turn out to be sufficient since we re-

quire only the forward scattering and we are limiting ourselves to ML

production {which is clearly transverse), Using VA,1l and

*% M, Gell-Mann has suggested the following appreoach as a nmeans
of including relativistic retardation effects in the determination of
(nMi), First, compute the lowest order Born spproximation to pion pro-
duction in the straight ¥, theory., Then expand this in the center of
mass. in angular momentum &nd isotopic spin eigenstates, Take the
M1:3/2,3/2 term and give it an empirical resonance coefficient which
matches the experimental cross section or at least fits the data
near the resonance, The nucleon propagation demoninator from the Born
© approximation will give the retardation, On the other hand, the
expansion in Legendre polynomials, which is required in order to
separate the Ml 3[2 piece, does not converge in the neighborhood of
the pole (where the propagator vanishes), The coefficients in the
expansion tyurn out to be multiple-valued for complex w, Although
recent work 21) indicates that dispersion relations may be possible
for a given state of angular momentum such as this, we shall not
use them,
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z: 4 >
n-1) =lglq B /W a&u AL 1
n 6 (n la 4o 2! g spins of n (VA.13)

in VA,l we find

Im B = F° 3/8 W/E, [r, 5(W-H_)7/K* = 1/2 In A (VA.1L)

This answer is clearly independent of the unknown phase of VA,LL be-
cause of the structure of VA,l, We understand in VA,l4 that all quanw.
tities are expressed in terms of W and k2 as implied by VA,12, We
wish to apply & dispersion relation to find the real parts of A and

B; however we know their imaginary parts only in the C.,M. Dispersion
relations have been postulated to hold in the laboratory and we shall
employ them in this frawe. The transformation of the scattering am-
plitude, VA,1L, to the laboratory frame is immediate because all that
is required is a relative translation along the direction of K, BSince
e, and e are orthogonal to K, they are the same in both systems.
Clearly 151. X ey »g? selects that component of spin parallel to K,

Spin in the direction of motion is unchanged by a Lorentz transforma-

tion (in the same divection). Thus

—3 s -
B %% g, = Buxd g

and we then find:

PR . B 2 e i -
(Mi)y,. = 1(8, 8 A, (o ,K5) = [ &) B (o k7)) (VA.L5
- lab L
Tm Bwi."b = ¢ Im ﬁcm
. . (vA,16)
Tm A, =t Tm A
m ilab im cm
t(osL,kg) = 8, %™ / Moy (VA,17)
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Let us take WO as the cm resonance energy, W%J» as the total energy-

momentum of the system and w. as the frequency of the photon in the

L
laboratory system., We now express everything in terms of o and kgy
the invariant photon mass,
| 2 2
W ='Jz¢o M+ M + k (va,18)
cm L
12) .
= L 3y
o (mLM AN (VA.19)
cm 7 . 2 oy EY
B, = (mLMﬂq )/wcm (VA,20)
o z 2 202 2
s lab = mﬁ{f.M %fp:m = ((’OL -k }W’/wcm

We shall apply dispersion relations to mL‘B and not to B directly
since we wish to remove the singularity in the M-matrix at o = O which
is due to the normallzation of the wave functicn, Using VA,14% and VA,16-

20 we get:

. P *
1
. - (o ®) o Dcm
Im o B, = 3/86 F R(, 6\‘@1‘”‘%3 ¥ =
. zcm (va,21)
4 W" V2o MMEHRT (oo MkS)
2 * o X,
= 3/8 F l; 6(%—%“3 5 L 5 5
' M M (m]%nk )

where wL ig the laboratory freguency corresponding to resonance in the

Cill,

* s o)
F o wp (%) m(wodmmgwk%pgm (vA.22)

We have made use of

4

Ay
(W wo}

£ *
- s /A = - W /M
55(@L mL) [acaL, QWL}%] 5(<DL CDL) W/
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3 . . . s
We do not understand elther the meaning of the pole at K%

= 0 in VA,2%
5 .

or the dependence on kg and w- for k2 { 0., 8ince the entire factor

i - L2 N . S ;
depends only weakly on k7 and o, away from the singularity, we shall

L.’
p * ~y
put it equal to 1ts value at resonance, w = o, for real photons, K= = 0,
This simpliifies VA,21 to:
e * N o
Tm{en B = 3 F - Y

B = 3/4 f;wi/MQ(wOQ-ME) o5 x 1078

The smallness of the dimensionless constant 8 is due to the narrowness

- 2 ° %{“
of the width, F%J when measured in units of wcm(a).

C. The Dispersiocn Integrals

Our dispersion inbtegrals are supposed to hold for fixed k2
and variable @y - (Since we shall work entirely in the laboratory sys-
tem from now on, we shall drop the subscripts L and cm, ) We shall

apply the following two relations to wB.

7

In{w'B G o
““é”‘“% do' no subtraction (VA,24)

[}
Re{wB) = 2w/m PJ

@'
[}
-~ i 1
Re{wB) = wC + 20 /1 P In{e B) dw'  subtracted  (VA,25)
A o' o -n'")

The subtracted case has been given s constant, C, equal to zero, This

gmplies that for low energles, the scattering is given by the Born
approximstion, The integrals have been expressed over the range o to
@ on w, the symmetry implied for the Re{wB) under the crossing sub-
stitution @ - ~» is Re/Tw B(-w,k?)7 = -Re/ Blw,k?)7. This follows

from the invarisnce of the M-matrix under crossing and sgrees with

the Born approximetion, Using VA,23 in VA.24 and 25 we get:
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Re(wB) s(ZwBFQ/K)l/m2~m%2 No subtraction (VA.26)
Re(wB) =(2m3§F2/ﬁ)[iﬁm*(kei72 1/a® -2 subtracted (va,27)
where B 1s defined in VA,23 and o = m*(kz) in VA,22, The denominator,
02 2 ig Just —Zﬁgg ~(M-0) @ —KE7 ZQ;Q -(M4e0)2 ~K§7/4M2 and corresponds
to the combination of two propagators for an iscbar of mass WO which

o

we would get from the diagrams of Tigure 15, For comparison, if we
allow only the intermediate state n = proton, then the diagram 1Pa gives
an lmaginary part proyoftional to 8w + kE/EM) and the dispersion in-

tegrals give the propagators:

1 . (2m)®
@ & (2Mw-k2) (2Mwtk?)2

With the correct proportiocnality constant for the imaginary part,

i,e, {nMi) = ee(ﬁﬁlf‘ Flu.} and subtractions, this does indeed give

M i

the lowest Born approximation to forward scattering for the interaction
2 r‘ ; NS . . 2 *2 e

e UF. We therefore argue that the poles in o -w ~ are to be taken

in the sense of the poles in the Born approximation, W - W-.€ , when
the amplitudes VA,26 and 27 are used in VA,4, As has been discussed

(17,22) . s -

elsewhere , these Feynman amplitudes no longer obey a dispersion
relation based on VA,2 since they have poles in the upper half plane,
This simply corresponds to a different anmalytic continuation of the
scattering amplitude and seems clearly indicated, since if there really
were an isobar, it would come into VA4 (in perturbation theory) with
"Feynman poles.,"” The dispersion integral then generates the real part
from-an-"incorrvect” igaginary part which we modify later, The other

pole imﬁVA.QT wetomit by evaluating it at k2 = 0, Thus:
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205 BF 1
Re(«@E) = 7 02) : > =D subtracted (VAQQF{"}
o= =M )
2M

This ignores more kinematics but, since the integrals are being cut
of f by the propagation denominator this suppressed factor effectively

does little more than modify the HEf,FZ,

D. Expression for the Energy Shift

Suppose that the entire (virtual photon) Compton scattering

matrix element is M, To order oLEywe write:

M= M2 M (VA,28)
(2)

where M is the scattering given by assuming only the graphs of
figure 11 and Mﬁ ig the additional part of M arising from the izobar
graphs of figure 15, Similarly, we suppress the subscripts p,? and

write AH" of equation VA.4 as

A= A(Z) + Aﬂ {(vA,29)

Using VA,4' we have:
(2)0 , ,(2)xy , 2WM, — "
= : A . . (
B= (504 AT b ‘trage{[_ g, x5, +g/ (v vy} (va.30)

The factor (1+Vt}/2 Just insures positive energies; we have already
tdken this into account by considering only such matrix elements.
Since the proton is always &t rest we may take the trace of Zgbxﬁf97

directly. We get:

Trace {Z.?Z xe,] -g7lyxyy} ey " LK /K5 €(u,v ,z) (Va.31)
e =
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where €(ijk) is the antisymmetric 3 x 3 tensor and y and¥ run from
1 to 3, Because Blii (‘see equation VA.A and Appendix II) is a gauge
invariant, the time component need not be considered in 2 purely trans-
verse matrix element such as VA3l and VA;& is then the contraction of

p,¥ over space indices alone, Thus:

e 2 2
. 3egF i MpB
E, (0 ° + 4 %X)B 2 = ._wg(ng + 32; 2 (va.32)
Ly . uv py ool k(k<+20) 3k 1o

When subs%itutedkinto VA.&,-the firet term gives the energy shift due
to M(Q} which we have already evaluated in part IV, The second term
is an additive correction giving meson changes in the double vertex,
in addition to those aslready included in ME by the use of the HIf,

We find an additional energy shift of:

dl*;q 1 (ZMEMpB)
k' K2 o

&E}ni\; (hfs) 1/7°

.

(VA.33)
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Measuring the energy shift in units of (gcm/mpM)(hfs) and using

VA.27' gives: {using A€ for the shift in these units)

b ppEl o o
KO e m?g’g) @l @

AE = i/n?

. 4 3
43 i 1d'k 2 w .
T oa(”g) 72 jkg F oty (VA.34)

We have again changed to a dimensionless momentum, k, such that the

mass of the proton is unity., This means:

20 (K°) = 20 = (wo/"M)g J1-k?

(VA.35)
(o) = (W /M1
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Using VA,26 we find that in the case of no subtractions:

A€ /2 J‘ Mk 20872 21 o
k6 gL @By 2
. (VA,36)
o hpi at © g2
- X Egmh © o

This integral ié logarithmically divergent because of the strong singu-
larity’at’kz = 0! If we had retained the electron rest mass, this singu-
1arity would be absent because the electron propagator, (k2+2wm/M}“l
woﬁld replace one of the kmg in VA,36., We therefore evaluate the no

subtraction case as:

AE - 21 f,dl*k w2 |2 L1 } (vA.37)

eV xt ogra | KPe2mM o kKC+em/M o

We may remark that the device of using the electron rest mass is a
rather unphysical convenience, It means that although the meson ef-
fects are strong a{ low frequencies {as opposed to the one subtraction
case), the ?résence of an electron rest mass will make them finite,
Intuitively, it seems clear that at low energies the Hff should char-
acterize the proton completely and additional meson corrections should
be gquite gmall, Thus the divergence of VA,36 is pérhaps an indication
that one subtraction is necessary. Nevertheless, we shell consider
V&,37 as one estimate of the meson corrections to the resulis of sec-
tion IV, This result is probably far too large because of excessive

low energy contributions,

., The Resultis

We have placed upper bounds on the energy shifts VA,3L4 and
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VA,37 as follows. iBy inspection of the singularities in the integrands,
it is readily shown that the path of integration in the w-plane may be
rotated 90° to integration along iw (fig. 16). Then the Hff is always
less than or equal to 1 so that if we set it equal to 1 we obtain an
upper bound on the energy shift. The integration corresponding to VA, 34
without Fg is straightforward, VA,37 is more difficult when done anal-
‘ytically because various terms tend to cancel, We have therefore esti-
mated it numerically. Our results ara:*

No Subtraction \A&lE 2.6

Subtracted Al 2 1/2
where the units are (dﬂm/ﬂgpM).hfs, As shown in part D of this appendix
these éhifts are 0 be added to the shift of 73 (same units) found in
section IV, Hence these additional meson corrections may be safely
ignored because our evaluation of the integrals of part III was accurate
to only about 1%,

We now summarize our conclusions on the validity of this whole
calculation, The energy shift of part II equation 16 is the most im~
portant term, The result obtained for the energy shift, from this fterm,
does not depend appreciably on the approximate analytic form we have
chosen for the Hff, except in so far as it is experimentally determined,
We need only assume that the singularities of the true structure factor
lie as shown in figure 16, For then, instead of evaluating the integral
for AE (equation 16, part II) by integrating along the real o axis,
we can rotate the path of integration through 90 degrees in the complex

w plane so as to integrate along iw, When this is done, the resulting

% VWe have not been able to find an independent check on the sign
of the energy shift and therefore state only the magnitude,
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metric is positive definite, the structure factor is needed now only
for negative k2 and over 90% of the contribution to the integral comes
from values of -k2 in the range zero to 0,6 M? where F(kz) is directly
measured,

The other gquestion is what to do about higher mass intermedi-
ate states, There are two possibilities, If we postulate that all
amplitudes for photoproduction by a virtual photon contain a factor
F(ke) then we are justified in neglecting these higher-mass diagrams,
The same rotation will be possible and the corrections will come from
low-mass, low-energy photons, The contributions in this range are then
correctly given by the low-mass intermediate states, BEven the contri-
bution of the(3/2, 3/2)resonance is small compared with that of the
bare proton, Higher states are expected to be further damped. On
the other hand, virtual photons may not act through F(ke) in all proc-
esses, In this appendix we have calculated the case of a single meson,
single nucleon intermediate state, without using a HIT and found that
even so, these corrections change our answer by only about 1%, We can-
not rule out the unlikely possibility that higher mass diagrams do con-

tribute a significant amount to the energy shift,

B
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Figure 16

Assumed location of singulerities in true structure factor



