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ABSTRACT

In Part I, a method is derived for determining the induced drag of
a helicopter rotor in forward flight from the distribution of circula-
tion in the wake. Charts of the correction factor to be applied to the
ordinary momentum value of induced drag are presented for ranges of
flight paramebers currently in use.

In Part II, the expression for the instantaneous induced velocity
at a blade is developed by application of the Biot and Savart Law to a
helical wake surface on which the circulation distribution varies both
with radius and with azimuth in a menner corresponding to the actual

1ift distribution on the Dblads.
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I. A SECOND APPROXIMATION TO THE INDUCED DRAG OF A

HELICOPTER ROTOR IN FORVARD FLIGHT

A, SUMMARY

A method is presented for computing the induced drag of a heli-
copter rotor at forward speeds for which the wake may be considered to
form a vorbtex sheet, The method has been used to compute the induced
drag for renges of twist, tip speed ratio, inflow ratio, and thrust coef=-
ficiant/solidity ratio currently in use., The results are presented en
charts as the ratio between the induced drag computed by this method and
the induced déag computed by the momentum eguation. The computed induced
drag ratio varies from 1l.14 to 7,80, with the latter value corresponding

to a highly twisted, lightly loaded rotor at a high tip speed ratic.



B, INTRODUCTIOW

In those methods for estimeting forward flight performance based
on balance of energy, the induced drage--~or induced power--is evaluated
from & momentum equation involving the rotor thrust and the uniform
downward acceleration of the mags of air conteined in a streambube with
diameter equal to that of the rotor. For the case in which the induced
velocity is negligible compared with the forward velocity, the momentum

equation for induced drag is:

p; = _T- (1)
2PAV?

This concept was originally developed for wings and was first applied to

rotors by Glauvert during his study of autogyros. In this paper it is

considered to be the first approximation inferred in the +itle,

That the first approximation is likely to give optimistic results
is apparent upon considering that for wings it applies strictly only to
an elliptical spanwise 1ift distribution which may be shown to be the
case for minimum induced drag, Thus it is to be expected that if a robor
does not correspond o a wing with elliptical 1ift distribubion, the in-
duced drag will be higher then the value computed from the momentum

equation.
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Co SYMBOLS

Rotor disc area, sq ft

Wing aspect ratio

Slope of 1ift curve, CL/%adian = 5,73
Steagy blade flapping angle, radians

Longitudinal angle between a plane normal to the
control axis and the tip path plane, radians

Fourier sine coefflcient of distribution of ¢ in
the remots wake

Wing span, ft=-Number of rotor blades

Coefficient of 1ift = —2
qs r
Coefficient of circulation = A Reab

4 ur

Cp~ Thrust coefficient/solidity ratio = > T

C

Chord of rotor blade, ft

Perpendicular distance between point and vortex element
Induced drag, lbs

Induced drag compubed by momentum equation, lbs

Tip loss function = F(r/R)

Distance between polnt and vortex elemsut

Lift, 1bs

Dynamic pressure, lbs/éq ft-=General velocity, ft/sec
Rotor radius, ft

Radius outboard of which no 1lift is developed, £t
Radius inboard of which no 1ift is developed, £t

Radius to blade element, ft

Wing area, sq £t
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Rotor thrust, lbs

Distance along vortex element, £t

Tangential velocity at blade element, ft/sec
Forward veloelty, rt/sec

Vertical component o1 induced wvelocity, rﬁ/ﬁec

Average vertical component of induced velocity, obtained
from momentum equation, ft/sec

Cartesian coordinstes

Angle of attack of blade element, radians; Angle of
attack of control plane, radians

Negative sbtalling angle of attack for blade elemsnt in
reversed flow region

Circulation, ftz/see
Vortieity, radians/sec

Dj
Induced drag ratio =

DiM

Independent variable across wake (cosm= y/R)
Collective pitch, radians

Rotor blade twist, radians

Inflow ratio

Tip speed ratio

Accumulative wake azimuth angle, radians
Density of air, slugs/bu %

Rotor solidity = %—R..

Rotor blade azimuth position, radians

Rotor angular velocity, radians/sec



Subseripbs:

W

Blade elesment
Wake
Advancing

Retreating

Sub=subscripbs:

¥

R

Wermal flow

Reverse flow



Do ANALYSIS

1., Ths Induced Drag of a Wing:

Before discussing bthe induced drag of a rotor, it will be Ffruitful +o
review some of the factors concerning the induced drag of a wing., A wing
with an arbitrary 1ift distribution is shown in Figure 1l The waks con=
sists of a vortex sheet with a distribubion of circulation corresponding
to the distribution of 1lift on the wing. The entire vorbtex sheet induces
velocities, g, in the air surrounding the wake and the kinetic energy cor=-
responding to these induced velocities is related to the induced drag of
the wing., More specifically, 2%t a point in the remote wake sufficiently
downstream to be unaffected by the bound vorbtex at the wing, the kinetie
snergy=-~in foot pounds~-contained in a cell one foot thiek in the direc=
tion of flight and extending to infinity in the Y and 7 dirsctions is
numerically equal to the induced drag=--in pounds=--of the wing, Thus the

induced drag is:

D; = K.E/ft.== \[ (%ﬁ?z dxdy dz (2)
X=Xy Y=~ g=x -
It may be shown that this triple integral reduces to a single integral over
the span of the wake:
%

b = 5 /f i) T 4y (5)

where w(y) and.f(y) are the vertical component of induced velocity and the



eirculation disbribubtlon respectively at the surface of the vortex sheetse
If f(j? is elliptical, w(y) will be constant and the induced drag will not
only be a minimum, but will be the same as obtained from the momentum egua-
tion, In coefficlent form this case gives the equation familiar to all

serodynamicists:
- C
Cp, = S (4)

Equation 3 can be derived by considering conditions at the wing itself as
shown by Von Mises in Reference 1, but by indicating that it can also be
derived from the remote wake without comsidering the agency which produced

the walke, the possibility of applying the method to rotors becomes evidente

2. The Wake ot a Robtor in Forward Flight:

To develop an undsrstanding of the wake of a rotor, it is convenient to
think of a rotor moving through still air and depositing its wake as it flies
past the observer. It will be assumed that the induced velocibty is negligible
compared to the forward velocity so that the wake stays in the plane of the
rotor, A corollary assumption is that the tendency of the remote wake to roll
up into two vortices mey be ignored. For the purposes of this analysis, these
assumptions are thought to be valid at the cruising speed and above of all
current helicopters,

The quantity deposited by each blade element in forming the wake is ecir-
culation and ths strength of the wake at any point is equal to the circulation
on the blade element=-or blade slements--as it passed that point. This blade

elemental circulatbion, [y, is a function of the 1lift of the blade element as



expressed by the equation:

dl =pU [ dr (5).

put dL is related to the angle of atbtack, chord, slope of the 1ift curve,

and tengential veloecity:

di = ”‘g' Urzdo(c dr (6)
Thus:
/;.-.%r ca (7

The tangential velociby is e function of reotor speed, tip speed ratio, and

azimuth such that:

I, = i%§£?(4§ +u Sin 09C¥ (8)

At this point, it is necessary to distinguish between the blade element cir-
culation in normal flow and in reversed flow since for most helicopter flight
conditions, the reversed flow region is stalled negatively and the 1ift is nob
proporticnal to the angle of attack., Sub-subscripts N and R will be used on
["g to distinguish these two regions, For the normel flow region, the angle
of attack of the blade element consists of four types of terms: pitch,
induced angles, products of flapping and rotational speeds, and products of

flapping and forward speeds. Using the notation of Bailey in Reference 2



and neglecting flapping above the first harmonic, Equation 8 expands to:
ARc .
L= !:90“,5+9,{~,§)2+A + (6o + 5 a8 - 59, SV

+(—% bJ~/ud.,)COsw+/aal cosSW + b, Sinwcos w] ®

Note that the use of the inflow ratio, A, in the munner of Reference 2 im-
plies a2 comstant value of induced veleccity across the rotor disc, Accounting
for a variation of induced velocity would constitute & third approximation to
induced drag end will not be attempted in this paper.

In the reversed flow region, it will be assumed thet the angle of attack
is constant and equal to the negative stalling angle of the airfoil going
backward, Thus:

A

=2B Lo )t siny) (10)
Equations 9 and 10 define the instanteneous circulation for any blade
element and the amount of circulation deposited by that blade element in the
wake. Since circulation is a scaler gquantity, the circulation at a point in
the wake which is affected by more than one blade element is simply the alge-
braic sum of the circulaticn of the various blade elements. Figure 2a is a
sketch of the circulation in the wake of a single-bladed rotor for a tip
speed ratio of about .2. This wake differs from that of a wing by possess-
ing a variation in ecirculation in the X direction as well as in the Y direc~
tion, If the same 1lift is shared by two blades, however, the streamwise
variation is smoothed out as shown in Figure 2b. Extending this procedure
to an infinite number of blades completely eliminates the streamwise varia-

tion and produces the wake of Figure 2c¢ which might have been generated by a
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wing. It is for this infinite-bladed rotor that the analysis will be de-
velcéed. Note that because the wake of the infinite-bladed rovor has no
streamwise variation, the inauced wvelocity at tne rotor is steady with time,
apd that this condition is also a basic assuwaption of the momenbum equsabtion
for induced drag. Thus the first and second approzximetions correspond on

this point and difyer only in the type oi circulation distribution used.

3s Determination of the Distribution of Cireculation:

The determination of the distribution of circulation in the wake of an
infinite~bladed rotor will be based on the understanding that the analysis
of a single blade for a complete revolution is esguivalent to the instan=-
tansous analysis of an infinite number of blades. Figure 3 shows the path
of a single blade during one revolution. Each blade element traces out a

cycloid whose parametric equations are:

X =vcos WY — Ry (11)

and

y = rS;n ‘// (12)

The circulation in the wake fur any value of y is equal to vhe blade

elemental circulation along y integrated with respesect ©0 x across the cycloid
from front to rear, and to amccount fur overlapping, divided by the distance
the entire rotor moves during one revolution, 24 R, Since the distribution
with respect to y is desired, Equation 12 may be used to eliminate r from

Bguations 9 and 10, giving:
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2

Y iy
_ A FRca R \F . 2 4
[ZN‘- ? [eosmy f’ih_fg_’*“)\ + 90,14 S+ R 9‘1«- F 4y
+_}% by cot W— _«a, cos Y4 ua, coszw--y/a E,siniﬂcosw} (13)

and

en j~—-~}—/£455n a«’\‘) (14)

-2k (o) F
4 Sj{é‘ma' /

Before performing the integration, it is necessary to discuss tip and
root losses, Two requirsments are involved~--first: +The analysis should
correspond in its treatment of tip loss to previous analyses, such as Refer-
ence 2, which may be used to compute 8, and a3 for actual cases; and secondly,
discontinuities (infinite slopes) in the circulation distribution, which may
be shown to lead to infinite induced drag, must be avoided., The first re-
guirement is satisfied by assuming--as in Reference 2z--that the portion of
the blade outboard of an effective radius, Ry, contributes no 1lift. The
second requirement is automatically satisfied at the edges of the wake by
the "scalloped” effect of ths single-bladed cycloid as shown in Figures 2a
and 33 oe.Ze. even if the circulation is finite at Ry, the integration on x
for y= + R, is for an infinitesimal length and produces zero values for the
elreulation at the edges of the waks of the infinite-bladed rotor. At the
root, the second requirement is not aubtomatically satisfied. BEquations 13
end 14 show that the circulation at y = 0 has one wvalue during the advancing

half-cycle and another value during the retreating half-cycle., Thus the
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integration with respect to x at y = 0 yields two values of circulation--
or a)discontinuity. This discontinuity may easily be removed by assuming
that no circulation is generated by the portiom of tne blade inboard of sn
effective root radius, R,. As may be seen from Figure 3, this has the same
scalloping effect as that which prevented infinite slopes at the edges of
the wake. A survey of current helicopbter rotors shows that the actual air-
foil section begins 7% to 24% of the rotor radius from the center of rota-
tione It is felt that to this should be added the 3% inboard portion of the
airfoil secbtion to allow for the falling off of tne 1ift., On this basis, an
effective root radius may be determined for a given rotor with a valus of
about 10% of +the rotor radius taken as a minimum,

For purposes of integration, the single~blade cycloid of Figure 3 may
be divided into streamwise zones which are distinguisned by the combination
of normal flow, reversed flow, tip loss, and root loss which they contain,

The zones and their limits are tabulated belov,

Zone Normal Reversed Tip Root Limits
Flow Flow Loss Loss
1 X Ry <y<R
11 X X R, <y< Ry
111 X X X 0<y<R,
Iv X X A -Rg <y< O
AR ~R2
v X X X X “Ro <y< 7R
VI X X X =uR < y<=Rg
VII X X -R, <y <A4R
VIII X -R<y<=Ry
Note: If gﬂ.zz/u , Zomes IV, V, and VI combine into ons.
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The zonss are shown on Figure 3 both on the cycloid corresponding to
fixed axes and on the disc eorresponding to moving axes, Each zone has its
own integration procedure snd limits of integration. In Figure 3, the limits
for two values of y are shown: one on the advancing side where a is used as
a subscript, and one on the retreating side where r is used., The limits oceur
in pairs (for example, da and ea, hy and ip) for which the alphabetical order
has been made to correspond to increasing Y during the rotation of ths blade.
The integration of elemental circulation for constant values of y divided by
the distance the rotor travels in ome revolution, 24 R7? , produces the eircu-
lation in the wake of the infinite=-bladed rotor, [ws For tne various zones,

the integrations are:

Zone 1
n=o (15)
Zone 11
r ea
” (16)
R 2/41?77‘{ dx
Zone III
63 93 7
o 1
r‘,": 2/(}?{“}/;” Ix + /:n X (an
d .
Zons IV d T
- o, {f* -
o 1
= — /7
r:" ZAaRT j'r:?” ox / ey o (18)
-dr 'fr -
Zone V

¥4 r
L= T j/e”dx *[e,, dx — /gﬁ dx + :’ZF c/xj (19)
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Zone VI
e, iy (r
L= ja,dw—[cw —ff;gx (20
dy hr hy
Zone VII
e
m
_ (21)
Fa - 2.4 Ry [CN I
dy
Zone VIII
= 0 (22)

Solving for x as a function of y from the parametric egquations of the

eycloid, Equations 11 and 12, and differenviating gives:

X
dx=~R( '.?n +/o(\) dy (23)

Thus bhe inbegrals of Equations 15 to 22 have the form:

Yo, Yor

x .
/f;dx-:—R//}(g%-z—;ﬂt/a)dw (24)

Xw, Yo

whers [e is given by Equaltion 13 or 14,

The integration is easily carried out with the use of svandard uvables
of integrals. During substitubion of the limits, use is meae of the fact
that the upper and lower limits are symmetrical abouty= 90° or 270°, The
result of the integration is two equatiéns, one for normal flow and one for

reversad flow:
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XWUP

//;Na’x="“ %?:@‘ [[(/\/ubaza).;_(/a 8, —Z/aa) ](%p Vio

X
%o

2 3
etz g+ (aes ol 20 ] £525

. 3 2
cos U, £9£~— *
+”32‘ 91(7’?) Sin3, te (P) sinto, T2 cos Vo
e y e.,y“] 1tcos Yo 25
- Y dg sin U}Lo cos (})10-4-[290/4'? *“é‘(ﬁ’—) lh 1-cos W, ( )
COS WL
= —( D(s M_—[ sin® W: +Z/42 cos Yo
Xw, 4|4 (O_+2 Y | 1+ cos U, (26)
Fad A R| h 1-cos U,

It is of interest %o note that by and ag drop out of the problem upon
substitution of the limits. Since the upper and lower limits of v may be
written as functions of v, Rgs Bos and #« for the various zones, Bquations
15 to 22 may in principle be evaluated to provide the distribution of cireu-
lation in the wake as a function of y. The corresponding distribubtion of
downwash may then be calculated and Equation 3 evaluated for inauced drage
A more convenient computing procedure, however, is outlined in Reference 1
and mekes use of a Fourier sine analysis of the distribubion of circulation.

To use this procedure, a transformation is used:

Y =c (27)
5 oﬁ/n
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This transformation places the advancing tip atm=0, the retreating tip
atm=", and converts an ellipbical distribution into half a sine wave.

The functions of §, and §,, which are required in Equations 25 and 26 are:

w‘a— Wy, = r— 2 sin“j(_ﬁ cosm) (28)
e
_ n (R (29)
wsa._.. U{‘a - 1T 2 Sith (Ro Cosm)
Y —uv =m+2 sin’ (E- COS/V)) (80)
¥ 14 Re
-1
- = in [R cosm (81)
Wg’ (ny T+ 2 sin 6?0 )
v, =™ -2 sin [-cosm (52)
(‘Vl"_" h} = R
(23)
: = R
S = K cosm
n wda R
R h 2 (34)
= [1-[E)\ cos
cos %a \/1 (@) n
. (35)
Sin wfa = % cos m
? 2
cos w"a = [1- (—}i)cosm (36)
sin W, — R cosm (87)
v R,
RY .2
= - 38
cos &de 1 (Re) cos m (38)

Sin Y, = K cosm (39)
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cos Wfr:”/ 3 %)zco;m (40)

sin Y, = — /»Ciq___s_{_n_ (41)
cos W, =— [1+ cos (42)

The various integrals which appear in Egquations 15 to 22 mey noy be
written as functions ofmusing Equation 27 and Equations 28 to 42, After

the nscessary algebra is performed, the resulting integrals are:

7
Jodx = AREca C,+C, cos ™—25i -J(—E- cos )
— | e, dx = > 1+ €, cosom in X M
9
— 2 R 2 2
C C C.cosm 1-1Licosm
—f_ﬁ scosmt (o co ] (/?e)
R 2
R {—[& coOSm .
4+1Cc Cosm+ G coszxn] In 1+ (P*') (43)
L R z 2
1 1..(’_?;) cos'm
9,
R —zsin’ (E c )
/IZNJX=~—”Z a{[c,.sz cosnﬂﬂ’ Z2sih R, osMm
T
z R ‘ ?
*{Ca + ¢ COSm+C,oCoS/)7] f*(‘,g) cosm
2
. _ E_)coszm
+ LC‘ cos-n + C,cosz/n} In 1“:1 (R. (44)

1 —ﬁ— (—%)zcoszm
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S
/F dx —_-Jl_lifc_ag[cﬁcz cos ”J[_W— 2 sin*jf_f?_ cosmﬂ
Cn 2 ; R,
dy
2
+ [63 +C,cosm+C, COSZ/VI] /1— (i;:)coszm
1 +,/1~(—’3—)26057m
4 [56 cosm+C, COSz/r)] In Re (45)
R\ ..z
—{-=) cos
1 (Re) &«

9

? , -4
_//;AI d x =..ﬂ_’§_€.§f[cj+62 Cosm}[—ﬁ— 25Sin T’;: Cosm}

1,
K4
+ [68 + (g cosm +C, coszm] /1 - (L;.;) cosz/r,

4
1+ [1- () cosim
+ [CC cosm + ¢, COSZ/);] In ) (46)
1— 1‘(}; )zcoszﬂw
.
-1
_//; J = 2B ﬂc,—»ca Cosm][ T-25in /-_g/%gm]
N
" %4+ C,, COSY /15
+ [C“ cosm+ CpCO5m+Cys m \/:_C_a;;,_
7
2 |1 3 [{ +cosm
+C,y cOSm | ——= +[C]5+chos/n] 2+.;.a__.
/~cosm
o m
(47)
cosnm
j'fi‘i—;a--

-co5m cosm _ 2
+C,7\/ -2 ﬁ+/« [Cécosmw,cos»ﬂ In

— cos
1 /1+ Gom
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’
Ly

_ AR
__//ngx --—553 ([Cuﬁ cho5/r)} /1 +C/°‘f”'

he

a 1_{_’1 + COos M
+ [Czo cosm +C,, Cosxn} In <X (48)
j__ 1+ COoshn
/ P

2
+/1- (&) cos?
+[C20 COS/n+CZ,coSl/n] In ! () o3

(49)
1 /-( )cosm
where:s

Cy= >\/M+i"_;9_x (50)
C, =m0, —2ua, (51)
Com 2a Brzua Bizo, (8] 6 (B 2o ut (s2)
C,= 446, _f% - 2a, B —_aty, £ (53)
Co= 16, & (54)
Ce= 26, _u (55)
C,= S (56)

3

2
Cg = 2A—%+Eﬂd, %—f—%ej (%)4—60 (%)—l-zeo,aa (57)
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’5924/“91%-26,%—-/azd,_/?: (58)
Co= £ 65 2o (59)
Cpy=2Ar+2.4a, (60)
Cio=4.46— 24, (61)
Ci3= 26, (62)
=% 6, (63)
Cis=—26, ® (64)
Clo= Gy (65)
Cyp=—-ta, (66)
Cig=- 2.4 Fots) (67)
Ci9= 4 () (68)
Coo=-2u[-s) (69)
C24=-% éq%) (70)
Cez= {:‘2/‘(2‘ (—%)2] Ws) (71)

The distribution of/jw as a function ofm mey now be determined using
Equations 15 to 22, 43 to 49, and 50 to 7l. At this point it is convenient
to introduce a non-dimensional coefficisnt of circulation, Crﬁw) » which will

be defined by the equation:
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/:,(m)—“—"%-ﬁ-é C/, (m) (72)
where the multiplier is the product of the multipliers in Equations 16 and
43 and the number of blades, b. Up to this point, ths derivation has made
use of only one blade, but it is clear that in principls any number could
have been used. The coefficient of cireculation consists of sums of the
guantities within the brackets in Equations 43 to 49, TFor any valus of m
the coefficient is a fumetion of 4, A, O, 81, ©1, Re/Rs Ro/Rs and (=o )
or since ©p and a] are functions of 4, A, 81, and Cr/f , the parameters
mey be taken as 4, As Cp/e » 915 Rg/Rs Ro/Rs and (-« ) where the first
three are flight parameters and the last four are physical parameterse.
Since bhe coefflicient of circulation is of a more general nature than the

circulation itself, the Fouriler analysis will bs made on ite

4, Fourier Analysis of the Cosfficient of Circulation:

The Fourier sine series which represents the distribution of CP(/n} is:
[ ]

Cn (m)= ’ B,, S'h mm (73)
m={

An equation for evaluating the Fourler sine coefficients is given by Whitta=-

ker and Robinson in Refersnce 3:

- B . . 5, Sm¥ e i n (-
3,, W [C/.l, Sin P_nﬁﬂ_;_(,,g Sin 2:-1P+ CI"3 Sin 224 C/;-,Sln(: ')mn—] (74)

where n 1s the number of intervals into which the half-period, O toTr, is

divided and Cp. is the value of CF at the upper boundary of each inberval.
1
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The Fourier sine coefficients may now be used to evaluate the ratio
between the induced drag corresponding to the computed circulation distri-
bution and the inauced drag found by the momentum equation. According %o

Reference 1 this ratio is:

QO
2
Di . (14§) = ) B (75)
D > 2.2
on mef

In practice only a finite number of the coefficients can be evaluated, but
unless the circulation distribution contains discontinuities, the contribu-
tions of the higher hermonics become very small and the seriesconverges. If
a discontinuity exists in the distribution, the contributions of the higher
harmonies will not become small and the series will not converge, but will
give a value of induced drag of infinity. It was precisely to avoid this
possibility that root loss was included in the derivation, Without considera-
tion of root loss, the cireulation at the center of rotation will be one value
as the blsade advences and ancther as it retreats, thus producing = discontinu-
ity down the center of the woke,

The Fourier cosfficients represent not only the induced drag, butb the
rotor thrust and the rolling moment as well, The thrust may be obtained from

the same equation which glves the 1ift of a wing:

R
T= ,ov/ R dy (76)

-R
where dy mey be derived from Equation 27 and Fﬁ is given by Equation 72, Com-

bining these equations gives:
r

v Rcab .
T= £ C,lm) sinmdm
Tamr (77)
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If the Fourier series for Cp (m) is substituted into Equation 77, all of

the harmoniecs except the first vanish, leaving:

T=p(AR Rcba B (78)
8

which may be rearranged to:
Bz = BCTﬁ (79)
]

The Fourier coefficient of the second harmonic, By, represents the rolling
moment and should bs zero for steady flight conditions., These two relations
ships for the first and second coefficients are useful for checking the com=

putation of actual cases,
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E, INDUCED DRAG COMPUTATIONS

1. Compubing Program:
The distribution of the circulation coefficient and the corresponding
value of the induced arag ratio, 1 +§ , hes been compubed for a tobtal of

82 cases., The first 8l cesss include all combinations of the following:

81 = 0%, -8%, anda -18°
A= 015’ .25; e 35
CTAT

A =0, =056, =10

i

204, 08, .12

For these cases, RS/R was chosen as .97 %o correspond to Reference 2; RO/R
was chosen as .10, which is the minimum value for current robtor designs:
and -aé was chosen as =89, which is thought to be a reasonabie value for
the negative stalling angle of an airfoil going backward, The 82nd case

was used to investigate the effect of increased root loss. For this case:

Ro/R = .27 8= -8°
R,/R = .97 4 = 425
- = -8° Cofe = 408

A= -,05

whers RO/R is the maximum value for currsnt rotor designs,

The valuss of 8, and aj for use in Equations 50 to 71 wers obtalined
using ths equations and tables of Reference 2. The coefficient of circula=-
tion was evaluated for 48 values of m and consequently 47 Fourier sine co-
efficisnts were obtained for the induced drag series oir Equation 75. The
acbual computing was performed on the Elsctrodata Datatron digital computber

on the campus of the Califormia Institubte of Technology,
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2. Induced Drag Charis:

Figures 4, 5, and 6 are plots of the computed values of induced drag
ratio, 1 +4 , for RQ/Q = ,10, These charts may be used to supplement the
performence charts of Reference 4 to provide a complete performance osti-
mation method. The values of 1 +d plotted on the induced drag charts vary
from a minimum of 1.143 at 87 = O, CTAT = 08, A= =.10, and 4= .35 to a
meximum of 7,898 at 67 = -16°, CTAr = 04,A= 0, andu= .35, It is inter-
esting to note that the value of 1 +d for an untapered wing is less than
1.08 for aspect ratios up to 10 as given by Perkins and Hage in Figure 2-44

of Reference b,

3. Distribution of Circulation Cosfficient:

Some typical disbtributions of the coefilicient of circulation are shown
in Pigures 7 to 10. In these figures, the distribution for 61 = »80,
CTﬁf = 08, A= =,05, and 4 = .25 has been adopted as a standard and the
affect ot changing each of vhe basic variables from this standard i1s snowne.
In sach figure an ideal elliptical distribution based on the first Fourier
coefficient, By, is included for comparison. The distribublons of the
cases of meximum end minimum induced drag ratios computed are shown in
Figure 11. The maximum case represents a highly twisted (81 = -18%),
1ightly loaded (Cp/a~ = .04) rotor at a high tip speed ratio (4= .35) in
the gyrodyne configuration (A= 0). For this case the angle of atbtack at
the advancing tip is =-4°, A study of the convergence of the induced drag
series for this case is summarized in Figure 12 where it may bs seen that
the first 20 terms sccount for 96% of the total for 47 termse

In Figure 13, the distributions for root losses of 10% and 27% are

plottede, In addition, the discontinulty due to neglecting the root loss
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and which results in apn infinite computed induced drag is showne, For the
case chﬁsen for this investigation, the induced drag corresponding to
Ro/R = 27 is 10% higher than for R_/R = .10, This 10% difference does
not seem to warrant the preparation of induced charts for root losses

other than .10 at this time.

4. The First and Second Computed Fourisr Sine Coefficients:

During the derivation of the method, it was pointed oul that the first
and second Pourier cosfficlents represent thrust and rolling moment respec=
tively. In particular B should satisfy Equation 79 and By should be zero,
For the 81 casss with RO/R = 10, the computed value of By actually varied
between 96.5% and 118,1% of the value given by EZquation 79, with the mini-
mum value corresponding to @, = -160, Cmﬁr = ,04, A= 0, and 4= ,25, énd
the meximum to 81 = 0, Cple = 04,A = -.10, and_« = ,35, The variation
is due to the fact that the values of 8, and aj for use in Equations 50 to
71 were computed by the method of Reference 2 in which no allowance is made
for the possibility that the blade elsments in the reversed flow region may
be stalled negatively. For this reason, the method of Reference 2 overesii-
mates the down=load on the reversed flow region for most flight conditions,
and consequently the computsd collective pitch and thrust are slightly highs.
In this paper, the negative 1ift in the reversed flow region has bsen
agsumed to correspond to -8%-a reasonable value for those cases in which
the reversed flow region is actually stalled, such as in the case which
gave 118,.1% of the estimated value of By, but a pessimistic valus for

unstalled cases.
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The second Fourler cosfficient varied from -.,08% of By for €7 = 0,
Cpfr =04, A= =a10,4=.15 to =5.95% of By for 1 = -16%, Cql =.04,A = ~,10,
and4 = .35. The negative sign on By signifies a rolling moment toward the
advapncing bipe Again the primary reason for the non=-zero characiter of B,
is the trsatment of the reversed flow region. In the single case computed
for RQ/R = 427, the reversed flow region lies entirely within the root

loss and By is 97.4% of its estimated value and By is =2.01% of Bye

5o Illustrative Example:
To illustrate the effect of using the second approximation, the sample

performance calculation included in Reference 4 will be used. In this

calculation:s
91 = =8°
A= o300
Copfr= o0515
A= =08

It will be assumed that RO/R = o,10., Using the first approximstion to

induced drag, as Reference 4 does, and applying the performance extimp-

tion method outlined there, a total required rotor power of 371 hp was
obtained of which 32 hp was due to induced drage. For use in the second
approximation, a cross-plot of Figure 5 atwu = ,30 gives a value of 1.50

for 1 +J at CTAF = ,0515 and A= =.08, Thus the second approximation to
induced power 1s 48 hp and the total rotor power is 387 hp, an increase of
about 4.5%. Had the twist been 0° the increase for the same values of STA? s

A5 end X would have been 2.5% and for -16° twist, 16.0%.
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Fo EAPRIMuNTAL VERIFICATIUN

There is no known method for directly measuring the induced drag
elther in flight or in a wind twmel, but the distribubion of circulation
can be determined from measurements of flow angularity and velocity in the
wake, Such measurements nave been made in a wind tunnel by the NACA and
are reported by Heyson in Reference t. Figure 14 nas been taken from Fige
ure 52 of that report and shows the measured vorticity distribution in the
wake lmmealately behind the rotor ior a case in which the skew angle of the
wake was 83,9°, a condition which approaches the pasic agsumption ot this
apnalysis--that the wake svays in the plane of the rotor. To obtain the cor-
responding distribution of circulation, the distribution or vorticity is
first integrated with respect to Z to obtain the eguivalent vortex sheete
A running integration from each side then gives the distribution of circu-
lations This integration has been provided by the NACA in an exchange of
correspondence and ispresented in Figure 15 with the distribution computed
by the method of +this papers

It may Dbe seen that the correlation is good in the outboard regions
but is poor in the center, This deiect is thought to be the result of the
difficulty of measuring induced velocities near the center of the wake.
Indeed, Reference 6 claims an accuracy for these velocities of only :.25%
of the momentum valus of induced velocity. Integration of the experi=
mental elrculation distribution to obtain thrust gives a value of 347 1bs.,
whereas the measured thrust was oniy 276 1lbs.--20% less, The computed cir=
culation distribution agrees with the measured thrust since this thrust was

used to obbtain CTAF ror the computation, Considering these points, it is
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felt that the experimental results provide a verirication or the tneory
and that further refinement of the sxpsrimenital technique will provide

avern better correlation.



30

Go CONCLUSIONS

The technique for determining induced drag from the distribution of
eirculation in the wake has been applied to a helicopter and the resulis
compared Lo those obtained using the simple momentum concept. It bas been
shown that the momentum equation can be greatly in error for certein flight

conditions. A partial verification of the analysis has been obtained from

WACA wind bunnel btests of a rotor.
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1l. THE INSTANTANEOUS INDUCED VELOCITY AT THE BLADE

OF A4 FINITE-BLADE ROTOR IN PORWARD FLIGHT

A, SUMMARY

The Biot and Savart Lew has been used to derive the expression for
the instantaneous vertical component of induced velocity at a rotor blade
induced by a family of helical surfaces of vorticity generated by the
individual blades of a rotor. The distribution of circulation on each
helix is assumed to vary both with radius and with azimuth correspond-
ing to the 1lift distribution on the generating bladee. The resulting
expression has the torm of a double integral which must be evaluated
by numerical means, The problem is in the process of being set up for

a high speed digital computer, but at this writing no results are available,
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Be INTRODUCTION

A number of attempts to analytically determine the distribubion of
induced velecclity over a rotor in forward flight have been made in recent
years, but beceuse of the inherent complexity of the problem each attempt
hes been bssed on simplifying assumpbions which throw doubt on the final
results. The two most common assumpbions which have been used are: 1)
the rotor has an infinite number of blades, and; 2) +the circuletion is
constant along the blade and arownd the azimuth, Several authors have
been able to relax one or the other of these assumptions, but never both
simultanecusly. In Section I. De. 2 of this papsr, the distribution of
circulation ag & function of both radius and azimuth in the weke of a sin-
gle bladed rotor was developed and this will be used to derive the expres-

sion for induced velocilty at the blade of a finite-bladed rotor.
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Ce DERIVATION

1, Position of the Rotor Wake:

In the derivation of induced drag in Part I, it was necessary to assume
that the wake remsined in the plane of the rotor in order to treat it as a
vortex sheete, For the derivaticn of the induced velocity distribubion, this
agssumption 1s neither necessary nor desirablee In this case, it will be
assumed thet the wake forms a helical surface which is swept down by the
average vertical induced velocity of the rotor,w , where:

T (80)
ZP AV

w o=

The position of the wake is assumed to be determined by the induced velocity
at the rotor, W, rather then by the induced velocity in the ultimete wake,
2w , on the basis that the wake in the immediate neighborhood of the rotor
is dominant in inducing velocities at the bladess The side and plan views
of the assumed wake are shown in Figure 1l6. Note that the tip path plane

is taken as the X-Y plane with the origin at the cenbter of revoelution when

Wj:Oo

2e Application of the Biot and Savart Law:
The incremental velocity at any point om & rotor blade induced by an
incremental vortex element at any point in the wake may be found from the

Biot and Savart lLaw:
dg= £ 2 dt (81)

where h is the actual distance between the vortex element and the point on

the blade and D is the perpendicular distance. For ths case of circulabtion
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distributed on a surface, the circulation may be resolved into components

perpendicular and parallel to the "wake blade" of Figure 16, Bquation 81
P g g

becomes:
of Jx r
dg= 3% IR D, d1, + 35 %0 D, dt, + I, b, dt, (82)
in h? 47 h? in h*

The first term of Equation 82 corresponds to trailing vortices pro=
ducsd by the spanwise varietion of cireulation, the second to shed vor=-
tices produced by the veriation of circulation around the azimuth, and
the third to the bound vortices of other blades in the case of & multi-

bladed rotor.

The geometric relationships which are needed to evaluate the terms
in Bquation 82 are shown on Figure 17. From this figure, it may be seen

that the vertieal component of dgq is:

o g» ; o d¥ Y
dw= 93 I D, dt; + 33 = Dy d¢, + 0L b od (83)
47 h3 47r P 4w b

where D} and Q; are projections of D, and D} on the X~Y plane.

Equation 83 produces a singularity if h is zero, which it my be if
the point at which the velccity is being calculated is on the surface of
the helical vortex sheete This possibility is avoided by assuming that
the vortex sheet originating on the quarter=-chord is immediately swept
down by'the veloeity normsl to the tip path plane and that the instantane-
ous induced veloelty may then be evaluated at the three-quarter chord line

which lies above the vortex sheet,

Por convenience, Cartesian and polar coordinabtes will be used simule-

taneously to define the geometry of the system. The point on the three-
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quarber chord of the blade at which the induced wvelocity is to be calcula-
ted is (xl; y1s 0)s (r1s W¥,) end the location of the vortex element at the
quarter chord of the wake blade is (%, y, z)s (r, 3). From Figure 17, the
lengths which appear in Equation 83 may be evaluated:

W= K=x) '+ (r=y) 4+ 2° (64)

1

D,'= (x-X,) cos¥ — (y-y,) sin¥ (85)

(86)

D,=D/= —(x-x,)sin¥~ (y-y,)cos¥

To eveluate x, v, and 2z, it is necessary to distinguish between blades
if +the robtor has more than one. Designate the blade at which the induced
velocity is being computed as #1 and number counter clockwise to be. Then
for the m th blade:

(87)

X=rcos3 + uPk [}+(_r_;_-_1) 2#]
b

y=—Frsing¥ (88)

Since the Z axis is taken as perpendicular to the tip path plane, the
z distance for a point on the wake is equal to the veloclty normal to the
tip path plane multiplied by the time since that portion of the wake was

gensrated. Thus:
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z=[(o<+a,)V— w] {W; +(n;_1_) 2w + 1 (89)
N
or z= (A+u a,)R [W, +(’—’;-‘“21r+ 5] (90)

Thus Equations 84-86 bscome:

E 2
hz= I?z % cos§+/4[§+ f’—"‘ii)zﬁ}— X}«((—Ff siné’-—)g?
F R

4
+ {(/\-6-/(4@1) [U/,Jr(ﬂ;—-’)avwsﬂ} ) (91)
R [ (n-4) , )
D, =R (,?-t-({,a[ﬂTzrrJ- %2 cos§+_£:_ 51»3’} (92)
:D’:: — M X N Y
Db s =R A |3+ ; 2| X(sin¥ +~§1_ cos § (93)
4 ®r

The incremental distances, dt, and dt} s haye the form:

dt,= dt,= R aﬁ/(%);(%%);@%)z (54)
S =

which give: dt,=dt, = R JT% (98)
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2 \
and dt;= R /(%)":Z/u —,; Sin S+t 4 (A+aa,)’ d3 (97)

In Part I, expressions for circulation in normal flow and in reversed
flow were derived. For the purposss of compubing induced wveloclby, it will
be assumsed that the reversed flow region has little effect and that the
expression for circulation in normel flow may be used over the entire rotor.
For computing induced drag, the tip and root losses were accounted for by
assuming that no 1ift was generated by those portions of the blade near the
tip and roote Because of the extreme importance of the gradient of circu=-
lation near the blgde tip in computing induced velocities, this simple
approach to tip and root losses must be considered inadequate. To remedy
this situation, the circulation distribution given by Equation 9 will be
multiplied by a tip loss function, ¥, a function of r/R, which is unitby
over most of the blade but falls to zero at Tthe root and tipe. The method
used to determine F will be described later. Correcting Equation 9 by

multiplying by the tip loss factor and replacing ¥ by ¥+ ﬂfia1r gives

/_'L, = J.Lgf.ﬁ [90-,% +0, (%)zi-/\ + (9‘,/«4-—"-%,«9!——-’%(32)5[»7 /%4.’_1‘_"_1 27;)

+ (é b:“‘/ua,) Cos/%«!— '—"-;—1- 2#)4/01315052(%.;&;12w)

. - -1
+ b, Sin(y,+222 2n)cos (v, + -h——b-—--z;)»)] F (98)
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Differentiating Equation 9 with ¥ replaced by -3 gives:

ﬁgz-_J_l_g_QQ [So-lrzej—}—;--—(,aej——a,)sinfi-bjCos §] F
a_
R

2
+[90§+ 6, () +3— (§u+t_«& —La)sing

+(L b~ wa,)cos§ + wa, cos s—ub sincos 3] /"2 (99)

or - %QQ [~(9,,/a+—f;-/u 81-7?"-51) 605§—~(~§ b~a,) Sins
o

~2uQq, cos§siny —_u b, (z2cos’s - 1)] F (100)

Except for F and F',; we now heve all of the terms required by equa-
tion 82 in Equations 91-83, and 96-100., The total induced velocity, w, is
found from the double integration on ¥ and r/R and the summation over the

several blades: (next page)
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A=~(u0,-3,)s5in 5+ b, coss+ o,
A= 20

1

Ay = u (-0, Sin§ —a,C053 — b, Sin§coss +4a,cosF )+ )

As = 4 COS§

Ag= a4 (A+aa,)’

A,==2.« sin§
A8=,M[—Qcm5§~2%casssmj—b,kwx}ﬁ+¢ynﬂ

Ag=—b, sinf+ (a,—«6,) cos 3

/410= — A Sin §
Ay= Cos3
A =—5In§

12

B, = -*1i cosi+2 sing
R R

(102)

(103)

(104)

(108)

(108)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)
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B,= & sin s (115)
53:_%_ (118)
54:-2’%_ (117)
%: % Cos y, - /q(pﬁg% sin ¥, (118)
%=7?” Sin W, - é“cﬁ cos W, (119)

¢, = (u6,-a,) s}n[w,+(ﬂb:2)zﬁ]+ b, cos[%Jr(ﬂ;)zwﬂJreo (120)

. - 1) _
Cs /4{’90 Sln[wﬁ(ﬁr 2”}-— a,cos{L,th(g;_J) 27,,]

~b, sin {Wﬁ(”—g—i)an] cos [l}’,-»(ﬂg-f) 27%]

+a, cos [cy,ﬂ.’lgi)azr] }4— A (121)
I h-1)
C“ = (COS W, + 0 zw] (122)

. (n-14
Dy =~ X sin {wﬁ”—b-) 27‘7“] (124)
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3¢ Tip Loss Function:

In the determination of the induced veloeity, w, a very important fac-
tor is the value of the radial component of the circulation gradient, %%
near the root and tip. This quintity, in turn, is primerily a function
of the assumed tip loss function which specifies the manver in which the
circulation goes to zero at the root end tip. Two possible approaches
for determining the tip loss function present themselves. In the first,
the tip loss function for a hovering rotor (and by assumpbion, for & rotor
in forward flight) may be determined theoretically using Goldstein's Modi-
fied Vortex lMethod as outlined by Nikolsky in Secbticn 2.3 of Rgference 7.
Since the Goldstein Method is strictly applicable only to a propeller with
a certain combinetion of taper and twist, it is not certain that it will
give good results for an untapered rotor blade with arbitrary twist. For
this reason, the second approach, a semi-empirical method based on measured
lift distributions is recommended. Using this method, a tip loss factor
based on a measured 1ift distribution given by Fallabella and Meyer in

Reference 8 has been determired. In detail, the steps which have been

taken ares

le The 1ift distribution for a single-bladed rotor at W=0°
was taken from Figure 256 of Reference 8. (The tip loss
funetion for § =0° was assumed to apply to all values of
v.)

2. The measured 1if't distribution was divided by r/R to give
(PALR)I and the result was plotted on Figure 18a,

3e Equation 9 was written for V=09, 81 =0 with the value of

8os bys 4 2y, and 8 from Table I of Reference 8 to give:

= ﬂ-_gf.d. [.17977§+.0298+>\] (125)
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The experimental value of A st =0%s & function of radius
wﬁs taken from Figure 27 of Reference 8 and plotted om
Figure 18b,

To avoid a double aceounbing feor tip less, the eurve for

A on Figure 18b was modified outboard of r/R = .65 to
obtain an estimated value of A without tip effect.

Using the modified value of A, the bracketed term of Equa-
tion 125 was evaluated to give Gggzgﬂf’ as a function of r/R.
The theoretical distribublon eftzftﬁ/’ from step 6 was made
to match the measured distribution of (paRr)/from step 2 at
r/ﬁ = .65 by multiplying by a2 consbtant, which in this case
was 6.06.

The distribution of 6.06 (h——;-z—a)/’ was then plotted on Fige
ure 18a bto provide a comparison between the theoretical and
experimental cireulation distributions,

Since no experimental points were available outboard of

r/R = .96, the experimental cireulation at the extreme

tip was assumed %o have the form:
I'd Is
[o= % [I"R& (12

where k is a consbtant which makes r/ﬁ = .96 a match polnt
and in this case is 1l.435.

The tip loss fumetion, F, was obbained by dividing the experi-

menbal eirculation disbribubion by the theoretical distribution,

and the result was plotted on Figure 19,



11, At the root, r = ry, 2 mirror image of the tip loss fune~

tion was plotted to represent root loss,

The experimental 1ift distribubion used to determine the tip loss func-
tion in this example was for a robtor with a blade aspect ratio of 10, Since
experimental lift distributions for other aspect ratios are not readily
available, 1t 1s suggested that Tthe tip loss funetion for aspect ratio of
10 mey be generally used if the tip loss is assumed to start 3.5 chord
lengths from the tip and the horizontal scale modified accordingly.

At this time the sensitivity of the calculation of induced velocity
to the exact shaps of the tip loss function is not known. It is hoped

that caleulations now underway will provide an answer to this question.
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D. NUMBRICAL EXAMPLE

The numerical integration of Equation 101 has been programmed for
the Datatron Digital Compubsr on bthe campus of the Califormia Institube
of Techneology., The integral is evaluated at 15 points along the blade
and for every 20° of ¥ . The flight and physioal parameters for the test
of the one-bladed robtor presented in Refeience B have been used in an
attempt to check the theory against experiment, but unfortunately, re-
cently discovered coding errors have made 1t necessary to throw out all
nunerical results obtained‘up to the time of this writing. The project
is to be conbinued, however, and The resulbts will be reported when

obtained,.



CONCLUS IONS

A method for computing the vertical componsnt of the instentansous
induced velocity at a rotor blade due to the wake of a finite bladed rotor
has been developed, The method requires numerical integration such as is
most convenlently done with a high speed digital computer. A computing
program has been writben for the Datatron Compuber, but at this time no

numeriecal results can be reported.
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Figure Za.- Distribution of Circulation in Wake of One~Bladed Rotor

Figure 2be= Distribution of Circulation in Wake of Two~Bladed Rotor

Figure Zes—= Distribution of Circulation in Wake of Infinite-Bladed Rotor
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Figure 4.~ Induced Drag Ratioc, 1+§, for 0° Twist
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Figure b.= Induced Drag Ratio, 1§, for -8° Twist
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Figure 6.- Induced Drag Ratic, 1+§, for =16° Twist
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Figure 7.- Bffect of Twist, ©1, on

Distribution of Circulation Coefficient, C,.1

Cr/o" ‘—‘—‘.08

A=— OF .20

%’-=.IO
O,=-16°, 1+§=1.7¢3
©,=-8, |+§=1.287
8,= O, 14+8=1.177

IDEAL

DISTRIBUTION.

xl<

02
RETREATIN¢ ADVANCING
TiP TIP



85

Figure 8.,- Effect of Tip Speed Ratio, 4, on

Distribution of Circulation Coefficient, Cr
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Figure 9,= Effect of Thrust/Solidity Ratio, CvlaA' » On

Distribution of Cireculation Coefficlent, Cp
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Figure 10.-~ Effect of Inflow Ratio,», on

Distribubion of Circulstion Coefficient, C,1
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Figure lle.= Circulation Coefficient Distributions
for laximum and Minimum Values of (1+§)

Obtained During Computing Program
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Figure 13.= Effect of Root Loss on Distribution

of Circulation Coefficient, Ch
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Figure 15¢= Experimentel and Calculated Distribution

of Circulation,l’
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Figure 17.- Wake Geometry
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Figure 19.- Tip Loss Function



