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Abstract 

i) The quantum mechanics of higher order parametric amplifiers is studied. It is shown 

that these devices produce meaningful quantum states; numerical calculations are performed 

that demonstrate the convergence of matrix elements associated with these states. Further, the 

correspondence between the classical and quantum evolution for these devices is studied and 

the differences explained by a kind of "quantum diffusion." Finally, the possibility of pro­

ducing ordinary squeezed light with these devices is noted. 

ii) The generation of squeezed light always involves some scheme that amounts to pumping 

electromagnetic modes at near twice their natural frequency. When the pump is itself treated 

quantum mechanically, extra noise is introduced that ultimately limits the amount of squeez­

ing achievable. Detailed calculations are carried out in this regard for the parametric 

amplifier. It is found that the pump's initial phase noise is responsible for this limit. 

iii) Quantum-mechanical measurements are usually described by applying the standard quan­

tum rules to a measurement model. They can also be described by a formalism that uses 

mathematical objects called Effects and Operations. These two descriptions should be 

equivalent. D'Espagnat has raised a question about the usage of this formalism of Effects and 

Operations for repeated measurements. This question is cleared up, and the source of the 

discrepancy is given a simple interpretation. 

iv) Usually, an inequality that is chained becomes a weaker inequality. Chaining the Bell 

inequality, however, leads to stronger violations by quantum mechanics. Further, a new kind 

of Bell inequality, based on the information obtained in a measurement, is derived. This 

information Bell inequality can be used to formulate tests of local realism in very general cir­

cumstances, e.g., higher spin versions of the EPR experiment. These new inequalities yield 

an interpretation for the size of their violation and lead to the formulation of a hierarchy of 

Bell inequalities for which two-particle Bell inequalities play a special role. 
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CHAPTER 1 

Introduction 
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This thesis is a theoretical investigation whose general theme is the foundations 

of quantum theory - a topic that should and does concern every physicist. The work 

in this thesis consists of four research papers (all with co-authors) and neatly splits 

into two parts, which follow Chapter I: Part one deals with quantum noise, which is 

related to the quantum theory of measurement; and part two, truly at the foundations, 

deals with general measurements and the interpretation of quantum mechanics. 

I chose this ordering for the presentation, i.e., more practical issues followed by 

questions at the foundations of the theory, because I consider it the more logical 

(perhaps because it mirrors the development of my own research interests). After all, 

how can you understand the foundations without first understanding some of the 

implications of the theory? The remainder of this chapter will consist of two separate 

introductions, one for each of the two parts of this thesis. These introductions will 

motivate the works as well as outline the results obtained. 

I.1 INTRODUCTION TO PART I 

The research in part I of this thesis deals with squeezed light or generalizations to 

it. So I shall start by giving a brief tutorial on squeezed states of light. I will describe 

what a squeezed state is, how it is seen, made, and used. Following this tutorial, I 

introduce my own work on squeezing. 

All light fields fluctuate, their amplitudes and phases being subject to various 

kinds of noise. Much of this noise in practical sources is due to environmental 

influences: The random rate of atomic excitation in a light source leads to amplitude 

fluctuations; random motion of the atoms can lead to frequency spreading, and colli­

sions during the emission of quanta can cause fluctuations in the phase of the emitted 

light. Even if all these factors are eliminated by a suitably designed light source, we 
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will still be left with a more fundamental source of noise: noise that is due to quantum 

mechanics and the Heisenberg uncertainty principle. Although this noise is funda­

mental, that doesn't mean that we are prevented from making improvements. One 

practical way of reducing some aspects of this quantum noise is to "squeeze" the 

light. 

1.2 WHAT IS SQUEEZED LIGHT? 

In this section I shall illustrate the main ideas behind the theory of squeezed 

light. To simplify my discussion, I will henceforth be dealing only with the modes of 

the electromagnetic field that make up a nearly plane wave with a single polarization 

(i.e., we will be dealing with the continuum of frequencies that contribute to an elec­

tromagnetic wave with a particular transverse mode structure). The electric field will 

be decomposed into two "quadrature" components that vary in time as cos( root) and 

sin(w0 t ). The electric field is then described by a mixture of these two components. 

The quantum-mechanical operators associated with these components, called quadra­

ture phases, can be shown to be noncommuting Hermitian operators and hence will 

satisfy a Heisenberg uncertainty relation. When these quadrature phases have equal 

and minimum uncertainties ("noise"), they form a "coherent" state. The fact that 

the noises of the two components are equal implies that the electric field itself will 

have time stationary noise. One example of a coherent state is the vacuum state of the 

electric field; even the vacuum electric field has fluctuations! When the noises of the 

quadrature phases are unequal - yet their product is still a minimum - we obtain an 

ideal "squeezed" state of light. One quadrature of the electric field is then found to 

be less noisy than the vacuum, and the other, more noisy. 
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The electric field of the wave we are considering, at a fixed point in space, can be 

decomposed 1 as 

E (t) = E 1 (t )cos( ro0t) + E 2(t )sin( root) , (1.2.1) 

where COo is an optical frequency. The quantities E 1 and E 2, the quadrature phases 

relative to eoo. allow a ''phase space'' description of the electric field. They are analo-

gous to the position and momentum of a hannonic oscillator. If the electric field in 

Eq. (1.2.1) has a small enough bandwidth, and if we choose ro0 to be an optical fre­

quency at the center of this bandwidth, then our decomposition into E 1 (t) and E 2(f) 

has removed the fast optical motion of the field, leaving only slow variations in the 

quadrature phases. 

As quantum-mechanical operators, these quadrature phases satisfy the equal-time 

commutation relation 

brool [£ i(f),E2(f)]=i-- droll, 
cA 'B q 

(l.2.2) 

where B is the bandwidth of the field, Aq serves as the cross-sectional area of the 

beam, and b is a units-dependent constant (e.g., b =47t in cgs Gaussian units). 

Because of this commutation relation, the quadrature phases have to satisfy the 

quantum-mechanical uncertainty relation 

broo II 
M 1M 2 >--l dro-. 

- cAq 'B 2 
(l.2.3) 

The light that produces interference patterns with the best contrast2 is called 

coherent light. Coherent light is a minimum uncertainty state with the uncertainty of 

the two quadrature phases being equal and uncorrelated, 



- 5 -

[ 
b mo " ] 11

2 

(!::,£ )coh = !::,£ 1=!::,£2 = --J. d (J)-
cAq B 2 

(1.2.4) 

In Fig. 1 I plot phase-space diagrams for several states of the electromagnetic field. I 

have given only E 1 a nonzero average field. Fluctuations along the E 1-direction will 

change the amplitude of the field (amplitude fluctuations), and fluctuations perpendic-

ular to this direction will vary the phase (phase fluctuations). The quadratures E 1 and 

E 2 and their uncertainty, for a coherent state, are plotted in Fig. l.(a). In this figure, 

the circle (the "error circle") represents the size of the fluctuations for each quadra-

ture, and the position of the center of the circle represents their average value. Fig. 

l.(b) shows the electric field in the tin1e domain for the coherent state of Fig. l.(a). 

The central line traces the average value for the electric field, and the upper and lower 

lines show the size of the fluctuations. The variance in the electric field can be 

worked out from Eq. (l.2.1) to be 

broo 11 
= -- r d (J)- =(!::,£);oh ' 

cA JB 2 q 

(l.2.5) 

for the coherent state, and is independent of time. Note that the correlation between 

the different quadratures, 

(1.2.6) 

is zero for a coherent state. 

Squeezed light is also a minimum uncertainty state, but the uncertainties are not 

equal. I shall illustrate two choices of such a state where the quadratures are uncorre-

lated (all other possibilities correspond only to a "rotation" of the noise in the phase-
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space picture). Fig. l.(c) shows squeezed light with zero correlation between the 

quadratures and 

lill 1 = G (/ill )coh 

/ill _ (/ill )coh 
2- G , G > 1. (1.2.7) 

The ellipse in this figure (the "error ellipse") indicates the size of fluctuations in the 

quadratures. With this choice of squeezing, and <E 1>:;t:O, we get reduced phase 

noise. Fig. l.(d) shows the electric field for this configiiration in the time domain; the 

variance of the electric field is 

(l.2.8) 

We see that the amplitude fluctuations (occurring at the crests of the electric field) are 

larger than those for the coherent state, while the phase (determined by the crossings 

of the electric field through zero) is more precisely defined. Such light is called 

phase-squeezed. 

In the opposite configuration, 

M2=G(M)coh' G > 1, (l.2.9) 

and 

2 [ cos
2

( root) 2 . 2 l 2 
(/ill) = G 2 + G Slll ( root)J (/ill )coh ' (1.2.10) 
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as shown in Figs. l.(e) and (f), with <E 1>:;e0 the phase fluctuations are larger and 

the amplitude fluctuations are smaller than for a coherent state. This arrangement of 

fluctuations relative to the average field is called amplitude-squeezed. 

1.3 HOW DO WE SEE SQUEEZING? 

How can we make use of this modification of the quantum noise? Well, if we 

had a phase-sensitive detector, then we could pick out that part of the electric field 

which has reduced fluctuations. One such detector is the balanced homodyne detec­

tor. 3 I shall give a brief description of its operation and will tell how the experimental 

signature for squeezing is recognized. 

Fig. 2. shows a balanced homodyne detector. Its operation is simple enough for 

a classical description to suffice at the moment. A signal field Es and a local oscilla-

tor (acting as a phase reference) field ELo are combined at a 50-50 beam splitter. The 

sum and difference of these field amplitudes impinge on two separate photodetectors. 

Photodetectors produce a ''photocurrent'' that is proportional to the square of the 

amplitude of the field incident on them. Thus, the photodetectors shown in Fig. 2 will 

produce a pair of photocurrents I 1 and I 2: 

(l.3.1) 

(l.3.2) 

Next, the difference of these currents is taken: 

(l.3.3) 

The fastest observable variations in this differenced current will be for less than an 
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optical frequency. Suppose we decompose the signal field into its quadratures, 

Es (t) =Es 1 (t) cos( root)+ Es 2(t) sin( Wcf) , (1.3.4) 

and choose the local oscillator's phase so that 

ELo = ELo cos(ffiot -0). (1.3.5) 

Then the difference current averaged over times comparable with several optical 

cycles will be 

lv(t)oc £L0 [Es 1(t)cos(0)+Es 2(t)sin(0)]. (1.3.6) 

By sweeping the phase 0 of the local oscillator, we can pick out either of the quad­

ratures ESI or Es 2 or any linear combination of them. 

In practice, the bandwidth available to ID will be determined by the electronics 

and may be as large as many gigahertz. In this case, we will wish to look at smaller 

sections of the spectrum by putting the differenced current through a spectrum 

analyzer to get the power spectrum of the noise in ID as a function of RF frequency. 

A coherent state (e.g., the vacuum) coming in as a signal has equal :fluctuations 

in the two quadratures [see Eq. (1.2.3)], so its power spectrum will be independent of 

the local oscillator's phase; it will appear as a flat trace if we scan this phase. How­

ever, when a squeezed state is the input signal, the power spectrum will depend on the 

local oscillator's phase. Depending on which quadrature is picked out [via Eq. 

(1.3.6)], the power spectrum (at some fixed RF frequency) will rise above the vacuum 

noise level or drop below it. 

Wu et al4 have seen the biggest reduction below the vacuum level in an optical 

homodyne detector. They found a reduction of 63% below vacuum level, at a RF 
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frequency of 1.8 MHz over a bandwidth of 100 kHz. We show the plot of the nns 

noise voltage versus local oscillator phase from their paper in Fig. 3, i.e., it is a plot of 

the square root of the noise power versus local oscillator phase at the fixed RF fre­

quency of 1.8 MHz. The vacuum level was obtained by blocking the signal port to the 

homodyne detector; this level (which was found to be phase insensitive) is drawn as a 

dashed line. This plot illustrates the two important features of squeezed light: Its 

noise is phase sensitive, and it has a noise level that drops below vacuum. 

I.4 HOW IS LIGHT SQUEEZED? 

We have already seen that one main feature of squeezed light is its phase sensi­

tive noise. In this section, I want to discuss how we can produce such light. Typi­

cally, sources of light we might find produce noise that is phase-insensitive. For 

example, the light produced may be thennal, or coherent. Starting with such a field 

we would need some phase-sensitive device to produce squeezed light. An analogy 

with a forced pendulum will illustrate how this can be done. 

We start by considering a pendulum formed by a bob hanging at the end of a 

string supported by a pivot (for our purposes this might be envisioned as a pulley, 

which will allow us to change the string's length). When the string length is held 

fixed, the pendulum will undergo simple sinusoidal motion - for sufficiently small 

amplitude oscillations. If, while the bob is passing underneath the pivot, we tem­

porarily shorten the string, then we shall manage to speed the bob up - just as a figure 

skater spins faster when pulling in his arms. This will increase the amplitude of the 

oscillation slightly. Now if we repeat this exercise every time the bob passes under­

neath - so we pump the pendulum at twice its natural frequency - then we can 

amplify the amplitude of oscillation. Instead, if we temporarily lower the bob every 
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time it passes beneath the pivot, we will de-amplify the motion. We can see that we 

have made a phase-sensitive amplifier! By changing the phase of our pumping the 

pendulum, we can either amplify or de-amplify its motion. 

The electromagnetic field is analogous to a harmonic oscillator, so our discussion 

of a classical phase-sensitive amplifier gives us the hint as to how we can generate 

squeezed light from light with phase insensitive noise. 

If we somehow pump our signal field at twice its (optical) frequency, then we 

might expect that not only the average amplitude of the field, but also the fluctuations 

of the field themselves, will be affected. Indeed, this happens! The quadrature phases 

represent the different phases of a hannonic oscillator, so such pumping will amplify 

one quadrature and de-amplify the other. This will produce squeezed light. 

Thus, to generate squeezed light, we need to couple our signal modes strongly to 

some oscillation (even another field) at near twice the signal modes' natural frequen­

cies. To be able to have a strong coupling, which will give contributions even at first 

order in a perturbation expansion, we must match energies between the pump at 2ro0 

and the signal at <Oo· One way to achieve this is to have an interaction Hamiltonian 

that is quadratic in the signal and linear in the pump: 

H oc E ~gnal E pump · (1.4.1) 

This is the kind of interaction that occurs in a nonlinear medium with a second-order 

nonlinear susceptibility. The resulting device is called a parametric amplifier. 

Another way to achieve the same result, if the pump frequency is the san1e as the sig­

nal frequency, is to have a Hamiltonian that is quadratic in both the signal and the 

pump modes: 

H oc E ~gnal E ;ump (l.4.2) 
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This interaction requires a third-order, nonlinear susceptibility, and the resulting dev­

ice is called a four-wave mixer. We can go on coupling more and more pump modes 

in, just so long as our energy-matching condition is satisfied (recall that this ensures 

that the modes couple strongly), but at optical frequencies the required higher order 

nonlinearities are typically weaker. So far, the best squeezing results have been 

obtained with a parametric amplifier. 4 

I.5 DIFFICULTIES WITH SQUEEZED LIGHT 

In trying to apply the reduced quantum fluctuations in one of the quadrature 

phases of squeezed light, there are two inherent difficulties. In this section, I will dis­

cuss the cause and implications of these difficulties. The first in importance of these 

difficulties is losses. Any loss in a system carrying squeezed light will by necessity 

allow "vacuum" noise to creep in! This feature is quite general and may be identified 

as the "fluctuation-dissipation" theorem for quantum noise. I will analyze this effect 

by using a high-transmission beam splitter as a model for the losses. The second 

problem enters when we try to "lock on" to the quadrature with reduced noise. Any 

fluctuations in the phase, defining which quadrature we are looking at, can in principle 

cause a small component of the amplified noise to get mixed into our signal. I shall 

illustrate this problem by considering quantum fluctuations in the local oscillator of 

the balanced homodyne detector (Sec.1.3). 

We start with a look at the effect of losses on squeezed fluctuations. In practice, 

these losses can arise from many sources: mode mismatching; photodetector 

inefficiency; mirror transmission; absorption and scattering. For definiteness, how­

ever, we shall model these losses via a simple beam splitter (see Fig. 4) with an ampli­

tude coefficient of transmission of (l -112
) 112. A fraction 11 (11 real) of the amplitude 
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of the incoming signal field Es is reflected and lost. Along with this loss, however, 

comes inevitably some light EN through the ''unused'' port of the beam splitter. The 

resulting field is 

(1.5.1) 

and the variance of either quadrature of this field is 

i = 1, 2' (l.5.2) 

since the signal field Es and the noise field EN are assumed to be uncorrelated. 

If the signal is squeezed as given in Eq. (1.2.7), and the noise field is simply 

vacuum, then the variance of the squeezed quadrature becomes 

(M )2=[(1-1]
2
)+n2l (M)2 

R 2 G 2 •I J coh · (l.5.3) 

Thus, losses introduce phase insensitive fluctuations! These added fluctuations are a 

problem if 11 > l/G; i.e., if the losses are larger than the squeezing. 

One scheme we can use to get around this problem is to ''shine'' squeezed light 

into the "unused" port (with the same quadrature as the signal squeezed), where noise 

had entered before. If, for instance, we match the squeezing between the noise and 

the signal, so that 

(l.5.4) 

then we find 

(M )2 = (M );oh 
R2 G2 , (1.5.5) 
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which has the same small fluctuations as the original signal. Crudely speaking, if the 

losses are small, and the squeezing large, ''shining'' squeezed light at the lossy port 

(squeezed in the correct quadrature) reduces the losses via 

(1.5.6) 

This application of squeezing sounds wonderful. However, its implementation 

involves two problems: 

i) How do we get this squeezed light for the unused port? We can't just use a beam 

splitter on what we have in order to make two beams of squeezed light; we have just 

shown what a beam splitter does to the squeezing. Instead, we must take some 

unsqueezed light and squeeze it for each and every use we have in mind for the 

squeezing. 

ii) Not all losses are quite so easy to control as our beam-splitter model suggests. For 

instance, losses caused by absorption or scattering open up too many and too compli-

cated channels for our "loss squeezing" method to work. In fact, it appears that for 

the best mirrors available today (as used in laser gyroscopes, having energy losses of 

one part in 105), perhaps one-half of these losses are due to absorption and scattering. 5 

It is exactly these uncontrollable losses that limit the utility of squeezed light in exper-

iments requiring their reduced noise. 

The second difficulty with using the reduced noise in squeezed light is the prob-

lem of being able to pick out one specific quadrature - either to look at, or to try to 

squeeze. I shall illustrate the problem through the way it affects our analysis of the 

homodyne detector (Sec. 1.3). We want to see the effects of fluctuations we neglected 

in Eq. (I.3.3 ). To do this really requires quantum mechanics, but we can get a good 

idea from heuristic classical arguments. The main feature I want to include is the 
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fluctuation of the local oscillator - once all other sources of noise are dealt with, we 

are still left with the local oscillator quantum noise. Since the phase of the local oscil-

lator determines which quadrature is picked out [Eq. (l.3.6)], any phase noise in the 

local oscillator will tend to mix in some of the quadrature we are not interested in. 

Suppose we are interested in looking at only the squeezed quadrature Es 2 of 

some signal field [squeezed according to Eq. (l.2.7)]. Ideally, we want 0=7t/2 in Eq. 

(l.3.6), which would give 

and 

However, because of the phase noise (~<j>) of the local oscillator, we find that 

If the local oscillator is in a coherent state, then its phase uncertainty is 

1 
(~<j>)= _,- ' 

2"1N 

(1.5.7) 

(l.5.8) 

(1.5.9) 

(1.5.10) 

where N is the number of photons in the local oscillator within a wave packet whose 

length is detennined by some bandwidth for the system. This makes the contribution 

to the variance of the homodyne detector's difference current 

(l.5.11) 

Thus, when we try to use the homodyne detector to look at the squeezed quadrature, 
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we inevitably get some contributions from the amplified quadrature (clearly, the con-

verse process is not a problem). 

When is this phase noise a problem? Clearly, we can get no further improve-

ment by increased squeezing when the two terms on the right-hand side of Eq. (l.5.11) 

are comparable. For ideal squeezed light we may relate the noises in the two quadra-

ture phases by Eq. (1.2.7). In this case, Eq. (l.5.11) shows that the local oscillator 

phase noise becomes a limiting factor when 

G4 
N<­- 4 (1.5.12) 

The issue I haven't addressed in this analysis yet is: What is the bandwidth that deter-

mines how many quanta are in the local oscillator? For a local oscillator with power 

P and ''bandwidth'' B , the number of quanta is 

(1.5.13) 

Surprisingly, the relevant bandwidth is the bandwidth over which the signal is 

squeezed. If it had been the bandwidth of the vacuum fluctuations around the local 

oscillator, then the phase-noise problem would be arbitrarily large. As I have stated, 

the justification for the choice of this bandwidth requires quantum mechanics. For a 

laser of 1 mW at optical frequencies, being used as the local oscillator for a homodyne 

detector of broad band squeezing having a bandwidth B -1010 sec-1, the number of 

photons is 

N -106
. (1.5.14) 

In this case we couldn't see better than a factor of G 2 -1000 squeezing in noise power 
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in the output of the homodyne detector. This is not a serious limit yet. It should be 

noted that the current best4 attempts at squeezing give G 2 - 3. 

This second problem of defining the phase accurately also occurs when we try to 

make squeezed light. David Crouch and I have studied this problem, when the device 

used to make the squeezed light is a parametric amplifier, as discussed in Chapter III. 

1.6 IMPROVEMENT IN AN INTERFEROMETER 

I now want to give a very brief discussion of the pioneering work of Caves6 on 

the improvement of the sensitivity of an interferometer by using squeezed states of 

light. It is somewhat surprising that the limit of phase sensitivity that is due to count­

ing statistics (shot noise) in an interferometer can be improved by "shining" 

squeezed light into the interferometer's output port! 

Let us consider a very simple Michelson interferometer. The light is incident on 

a 50-50 beam splitter, where it is directed down either of a pair of arms ending with 

perfect reflectors. After the light returns to the beam splitter it is recombined there. 

The 50-50 beam splitter has four ports: two external ones (to the interferometer) 

labeled A and B , which serve as inputs to and outputs from the interferometer, and 

two internal ones, C and D, which lead to and return from the arms of the interferom­

eter. We will label the anns of the interferometer so that external port A (B ) of the 

beam splitter looks straight down (forgetting reflections) arm C (D ). Suppose we 

illuminate port A with a laser (with field EL). We shall be interested in observing the 

interference between the beams of light that travel down the two arms and recombine 

as the output of port B of the beam splitter. 

As I have mentioned in Sec. 1.5, a beam splitter allows noise from input port B 

(with field EN) into the apparatus. So our analysis must include both input fields EL 
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and EN to see how using squeezed light might help. Just after these fields enter the 

interferometer from the outside, the field amplitudes at the start of arms C and D will 

be 

(l.6.1) 

After these combined fields have traveled down the arms and returned, but before they 

pass through the beam splitter, they will have acquired a phase difference <I> that is due 

to the path difference in the two arms. We may write this as 

E 1 E E ) -icp12 s=--.12<N-Le . (l.6.2) 

The resulting field amplitude observed at output port B is then 

(1.6.3) 

We see that the laser field has acquired a phase shift of 90° because of its coming out 

of a different port from the one it entered. For small changes in phase around a null 

for the laser at the output port B (i.e.,<\>- 0), we have 

(1.6.4) 

This is almost the entire story for the phase sensitivity of an interferometer. The 

amplitude of the laser <EL> is being used as a large lever arm to magnify the size of 
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the phase changes in the interferometer; this is described by the first term in Eq. 

(I.6.4 ). Thus, any noise that causes fluctuations inphase with the amplitude of the 

laser will limit the sensitivity of the interferometer. As the laser field has acquired a 

90° phase shift relative to the noise field [see Eq. (l.6.4)], this translates into phase 

:fluctuations (relative to the laser's mean-field phase) for the noise field EN. That is, it 

is the "phase" :fluctuations in the noise field that are responsible for the limit to the 

phase sensitivity. If this noise field is in a vacuum state, then the phase sensitivity is 

given by the "shot-noise" limit 

1 
(~<j>)--

-./N' 
(1.6.5) 

which corresponds to counting statistics for N independent photons. If, instead, we 

squeeze the "phase" quadrature of the field entering the unused port of the inter­

ferometer, say according to Eq. (1.2.7), then we find 

(l.6.6) 

Amazingly, this kind of improvement in the sensitivity of an interferometer has 

been achieved experimentally. Xiao et al.7 found that squeezing could be used to pro­

duce a reduction of the noise in an interferometer by 3.0dB below the shot-noise limit. 

I have already discussed in general terms in Sec. 1.5 what can limit the utility of 

squeezed light; the same principles apply for using squeezed light in an interferome-

ter. 
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1.7 QUANTUM VARIABLES 

In this section, I introduce some definitions that shall be used extensively in 

Chapter III. The main concern is to simplify a fully quantum treatment by working 

directly with the mode annihilation and creation operators which are the Fourier com­

ponents of the electromagnetic field. However, since we have found the quadrature 

phases such a useful tool in the time domain, we seek similar objects in the frequency 

domain. We do this by expanding the electric field into mode annihilation and crea­

tion operators and then relating them to the Fourier components of the quadrature 

phases. Fourier components of these quadrature phases are called the quadrature­

phase amplitudes. 

Almost our entire discussion so far has used language that is very well suited to 

thinking of the fields in the time domain, namely, 

E (t )=E 1Ct) cos( root )+Ez(t) sin(<Oot). (l.7.1) 

However, when dealing with quantum systems, it is useful to move to the frequency 

domain and to decompose the resulting fields into annihilation and creation operators, 

i.e., the positive and negative frequency components of the field. That is, we wish to 

decompose the electric field as 

(l.7.2) 

where 

(l.7.3) 

Writing the electric field in terms of the quadrature-phase amplitudes requires 

"demodulating" this field at frequency <Oo, as in Eq. (l.7.1). This causes the spectrum 
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of E 1 and E 2 to be that of the E field but folded over at ro0 (the fold becoming labeled 

zero frequency). A little algebra yields 

These new variables are called the quadrature-phase amplitudes. For small 

bandwidths E « ro0, we may write 

(1.7.6) 

(1.7.7) 

which are frequency components of the quadrature phases directly in terms of annihi-

lation and creation operators. These new variables carry directly the spectral informa-

tion that is seen in the power spectrum of an optical homodyne detector. Except at 

E = 0, these variables are not Hermitian and so are not directly observable. Their real 

and imaginary parts, however, are Hermitian and form the observables seen directly in 

the difference current of a balanced homodyne detector. 

I.8 INTRODUCTION TO CHAPTER II 

In Chapter II, Robert McLachlan and I study the states generated by a general-

ized parametric amplifier. This generalized device produces k-photon correlations by 

pumping a signal mode at k times its natural frequency. Fork= 2, this device will 

generate squeezed light (as argued in Section 1.4). In this case, the pump is in-phase 

with the signal at two points around a phase-space diagram, and so the amplification 
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produces an ellipse [Fig. 1 ( c) and ( e)]. The k -photon parametric amplifiers with k > 2 

are considered to produce a generalization of a squeezed state. Since now the signal 

will be inphase with the pump at k angles around the phase-space diagram, we expect 

the phase-space diagram to look like a k-lobed star. Thus, these generalized squeezed 

states will have at least one important property in common with ordinary squeezed 

light: phase sensitive noise. 

This k-photon parametric amplifier had been considered before by Fisher et al.,8 

who looked at the Taylor series expansion of the vacuum expectation of the evolution 

operator of these devices. They found that this expansion had zero radius of conver­

gence for k > 2, which they interpreted as showing that the model for these devices 

was meaningless. There was no apparent physical reason for this failure of the model, 

so that led to suspicion of their results. 

It is well known that power series that are only asymptotically convergent may 

be expansions of perfectly reasonable functions. This led us to hope that the expan­

sion of the fatal matrix element was an asymptotic series. We tried applying various 

techniques to improve the convergence of this series. Because of the complicated 

nature of the coefficients, we did this numerically. Robert McLachlan got the first 

finite results using the method of Pade approximants,9 which we continued to use for 

all our numerical work on these models. 

We found that the region over which we could obtain convergence was limited 

only by the accuracy to which we could perform the numerical calculations. We also 

showed that every matrix element of these models could be obtained from differentia­

tion of the matrix element studied by Fisher et al.8 We were even able to investigate 

the pole structure of this matrix element, using our numerical methods. We found that 

there appeared to be an accumulation of poles near the origin (along the imaginary 
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"time" axis). As we increased the accuracy of our calculations, more of these poles 

appeared (see Fig. 3 of Chapter II). This strongly indicated that the origin was a 

branch point; this would explain why the Taylor series of the matrix element had a 

zero radius of convergence about this point. We concluded from this that the models 

were almost certainly well defined. 

Strictly speaking, phase space doesn't exist for quantum systems: a point on a 

phase-space diagram defines a point with an exactly specified pair of canonically con­

jugate variables, which would violate the Heisenberg uncertainty principle. It is, how­

ever, possible to define something analogous. For instance, we may take the expecta­

tion value of the quantum density matrix in a harmonic oscillator coherent state. This 

function is a well-defined probability distribution and is called the quantum Q -

function. 10 It measures the probability of the quantum state being found in a coherent 

state of complex amplitude a. Plotting this Q-function as a function of the real and 

imaginary parts of a then gives a diagram that is essentially a "quantum phase space 

picture.'' 

We used our numerical results to plot the Q-function for various times in the 

evolution of the states generated from vacuum for these devices with k = 3 and k = 4 

[see Figs. l.(c)-(f) in Chapter II]. These matched our expectation of k-lobed stars, and 

we compared these to calculations of the corresponding classical models for these 

devices. The major difference between the classical and quantum evolution was an 

extra "quantum diffusion," which prevented the Q-function from developing very 

sharp structures (and hence from violating the Heisenberg uncertainty principle). 

Finally, in an analytic calculation to second order in time, we found that an ini­

tial coherent state displaced from the origin (along one of the axes where a lobe would 

have formed from a vacuum state) develops ordinary squeezing. This result was valid 
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for any of the devices with k '.'.'.: 2 and might be useful in the future for generating ordi­

nary squeezed light (this result had been noted before). 11 

I.8 INTRODUCTION TO CHAPTER III 

In Chapter ID, David Crouch and I consider the limit to squeezing in a 

parametric amplifier with a quantum pump. Prior to this work there had been three 

other calculations 12
-

14 along similar lines with different regions of validity, all on 

slightly different models. Only two of these calculations 12.14 agree with each other; 

however, the regions of validity for these two calculations do not extend to the point 

where their limitation becomes relevant. In all these calculations, results were 

obtained only to 0 (l!N ), where -.JN is the anlplitude for the pump, assumed to be in a 

coherent state. 

We derive results for each of the models to 0 (l!N2
) in order to check the prior 

results, and where necessary we extend the regions of validity to the point where a 

limit directly manifests itself. Because of the disagreement among the many previous 

calculations, we have felt justified in using more than one method. Some of the 

chapter can be neatly separated into parts done solely by one or another of the authors: 

Section 6 (unlabeled sections here refer to sections in Chapter Ill) is David's work, as 

is the argument for obtaining discrete mode equations for a continuum system (which 

appears as part of Section 2); Sections 3, 4 and 5 are, however, my own work. The 

remainder of the chapter should be considered as joint work; the chapter has been left 

intact with the contributions from both authors to preserve its exposition. 

The central model studied in Chapter three is the multimode parametric 

amplifier: many signal modes coupled to a single pump mode. This model can cover 

any of the previous models by fixing the number of signal modes appropriately. 
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In Section 3, we derive the symmetries of the equations of motion of this mul­

tll.node parametric amplifier and, using them, we shorten the list of undetermined 

matrix elements relevant to questions about the squeezing achievable in the model. 

111e first method of calculation (Section 4) involves integrating the Heisenberg 

equations in terms of the quadrature phase variables up to 0 (1/N2
). What is novel 

about the approach here is that we first identify which terms can contribute to the 

domll.1ant effects, and then we proceed to calculate only those terms. We thus derive 

the dominant terms up to 0 (1/N2
). By calculating those terms, we could estiJ.nate the 

tll.ne when the 0 (l!N) correction (the one yielding the Ill.nit to squeezing) breaks 

down. We find that this 0 (l/N ), i.e., semiclassical, correction is valid so long as it is 

much less than one. 

111e second and third methods restrict their efforts to the one- and two-mode 

paramettic amplifiers. 

The second method (Section 5) is numerical, but we are able to obtain analytic 

expressions for the full corrections to 0 (l/N2
), which if performed solely via standard 

analytic methods would have required thousands of terms at the intermediate stages. 

The conversion from numerical to analytic is possible because the general form of the 

corrections was already determined in Section 4. At the heart of the calculation is a 

new algebra, which can be viewed as a semiclassical (or higher-order) approxll.nation 

to the ordinary commutator algebra for annihilation and creation operators. 

Finally, the third method (Section 6, by David Crouch) uses the positive-P distri­

bution 15 to derive Fokker-Planck equations. The positive-P distribution is analogous 

to the Q-function used ll.1 Chapter II and is a generalized quantum phase space distri­

bution. Standard methods of stochastic calculus 16 are then used to derive stochastic 

differential equations. Approxll.nate solutions to these stochastic equations were then 
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obtained by iteration to obtain the 0 (1/N) corrections only. This method is 

equivalent to a direct iteration of the operator Heisenberg equations of motion but in 

the language of stochastic differential equations. 

The basic result of the paper is that the initial phase noise in the pump causes an 

uncertainty in which axes (in a phase-space diagram) will be chosen to be squeezed. 

Whatever axis is picked out on average, there will be a contribution from the orthog­

onal (the amplified) quadrature as the pump's phase fluctuates. When the pump is ini­

tially in a coherent state, this limits the variance of the squeezed quadrature to 

0 (11-Vii ). 

11.1 INTRODUCTION TO PART II 

In part II of this introduction, I will start in Section 2 with a brief description of 

measurements in quantum mechanics. I follow this with an introduction to Chapter 

IV. In Section 3, I review what I consider to be the status of the problem of objec­

tivity in quantum mechanics: Where does the objectivity lie? Section 3 ends with a 

discussion of the work and results of Chapter V. 

Even accepting, without question, the correctness of the Schrodinger equation, 

there are areas of the interpretation and usage of quantum mechanics that are perhaps 

still seen as problematic. Just some of these areas are collapse of the wave function 

and its associated "spooky actions at a distance," and the question of whether objec­

tivity can be consistent with a quantum description. Although these sorts of issues 

seem to be purely interpretational, it is becoming apparent that the foundations of 

quantum mechanics can lead directly to testable propositions. 
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11.2 INTRODUCTION TO CHAPTER IV 

Measurements in quantum mechanics can be described by a "measurement 

model": the system is coupled to a "measuring apparatus;" after the interaction, one 

obtains infonnation about the system by observing some property of the apparatus. It 

is advantageous to formalize this model by the introduction of mathematical objects 

called Effects and Operations. 17 A set of Effects generates from the system state the 

"detector statistics," i.e., the statistics of the possible outcomes. Once a particular 

result has been obtained from the measurement, an Operation maps the system state 

before the measurement to the new (unnormalized) system state after the measure­

ment. These objects are generalizations of elementary concepts: the probability of 

finding a system in some specific quantum state (given by the absolute value squared 

of the inner product between the system state and the state of interest); and the "col­

lapse'' of the wave function when the system is found to be in some specific state. 

Recently, a paper by d'Espagnat18 has brought up questions about the usage of 

this formalism by Barchielli, Lanz, and Prosperi. 19 The latter authors used Effects and 

Operations to develop a formal description of a continuous measurement of position. 

To generate the measurement statistics, they used a simple set of Effects. Further, 

they chose the simplest Operations consistent with their Effects (i.e., their measure­

ment statistics). Even a careful reading of their paper might lead one to believe that 

they are proposing their particular choice of Operations as a fundamental constituent 

in a new theory of measurement. Only in their Appendix B do they make it clear that 

their choice of Operations is not unique; it corresponds to some measurement model 

that they do not specify. 

D'Espagnat18 takes the Operation of Barchielli et al. as part of a new theory, 

which he dubs the "Milano theory." He then compares this theory with standard 
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quantum mechanics by analyzing two consecutive measurements of spin by two dif­

ferent methods. In the first method, he formulates a measurement model and applies 

to it the standard quantum rules for calculating probabilities. In the second method, he 

applies to two measurements of spin an Operation analogous to the one of Barchielli 

et al. Not surprisingly, he finds that the two methods disagree. The Operation of the 

"Milano theory" corresponds to some model for measurements of spin, but it is not 

the measurement model that d'Espagnat has formulated. 

In Chapter IV, Carlton Caves and I explore and explain the discrepancy found by 

d'Espagnat. We start by reviewing briefly the formalism of Effects and Operations 

and show how it arises naturally from applying the standard quantum rules to a meas­

urement model. We study d'Espagnat's model in detail and discuss how it is handled 

within the framework of Effects and Operations. Finally, we consider the Operation 

for a spin measurement from the "Milano theory," and we formulate a measurement 

model, different from d'Espagnat's, that realizes this Operation. This shows explicitly 

that d 'Espagnat was comparing two different models. 

11.3 INTRODUCTION TO CHAPTER V 

What is the problem? 

For those people who think that the wave function is an objective quantity, col­

lapse of the wave function poses a big problem. Why should an objective wave func­

tion change at all when we obtain information? Where does the rest of the wave func­

tion ''go'' when we make a measurement? Perhaps the most logical solution to this 

problem is the "many-worlds" interpretation20 of quantum mechanics. Unfor­

tunately, this interpretation retrieves the rest of the wave function only to proceed to 

place it in other branches of the universe where it remains totally inaccessible forever 
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from our own branch. This interpretation, then, leaves us with an untestable proposi­

tion. 

If, instead, one regards the wave function as a mathematical tool - a repository 

of infonnation - then there is no problem with wave function collapse. The standard 

quantum rules tell us that when the value of some observable is learned, we should 

throw away those parts of the wave function that are inconsistent with our new 

knowledge. This is analogous to a probabilistic description of a classical system in 

which the system has objective properties, but the probability is not itself objective; if 

we learn something about the system, we reduce the probability conditioned on that 

information (this reduction of probabilities is just Bayes' s theorem for conditioned 

probabilities). This simple solution holds, even in a general description of quantum 

measurements - such as the formalism of Effects and Operations (reviewed in Section 

IV). The problem now, however, is whether or not the information stored by the wave 

function is information about objective properties. And further, if these properties 

described by the wave function are objective, why can't we use ordinary probability 

logic for them, instead of being forced to use quantum mechanical amplitude logic? 

I see the deeper problem as this: how we can get objective properties - ''what we 

actually see in experiments'' - when quantum mechanics is manifestly not objective. 

This is sounding like a discussion on quantum theology - ''why do we see the world 

as classical and objective?" I won't attempt to answer this question but instead want 

to show that quantum mechanics - or any theory that agrees with quantum statistics -

caimot be viewed as an objective theory. Such a more complete theory with an objec­

tive interpretation was Einstein's program. 

Let us start by reviewing Bohmand Aharonov's21 version of the Einstein­

Podolsky-Rosen (EPR) paradox.22 For a pair of spin one-half particles21 formed in a 
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spin-singlet state, the EPR argument may be stated thus. Measurements of the com-
~ ~ ~~ 

ponents of the spin cr 1 and cr2 for each particle can be made. If a measurement of cr 1 · b 
~ 

(where b is a unit vector along the orientation of a detector) yields +1, then a subse-
~ ~ 

quent measurement of cr2·b will yield -1. Now if the detectors are separated by a 

great distance so that they cannot communicate (the locality assumption) during these 
~ ~ 

measurements, then the result of cr2·b must be predetermined, since we could have 
~ ~ 

predicted it from a measurement of O"fb. But its being predetermined should not 
~ ~ 

depend on our first measuring O"fb, so it must be a "concrete," objective property of 

particle 2. The properties of objectivity and locality are called local realism. 

~ 

This argument can be repeated for a different direction b ' for particle 2 with the 
~ ~ 

same conclusion; cr2·b' would be a realistic property . Similarly, any sets of directions 

~~ ~~~~ 
a , a , · · · for particle 1 would have predetermined results for cr 1 ·a , cr 1 ·a ', · · · , each 

being realistic properties. 

Now quantum mechanics with its description of the state via a wave function 

does allow predictions for pairs of these spin projections, but it has no notion of more 

than one pair at a time - these properties don't commute, so we can't talk about them 

quantum-mechanically. Thus, this large set of realistic properties leads us to conclude 

that quantum mechanics is an incomplete description of reality - that somehow there 

is much more information stored in the real physical system than quantum mechanics 

allows for. 

Although the EPR argument is at first sight compelling, Be1123 took this concept 

of objectivity and derived an inequality that correlation functions from any realistic 

theory must satisfy - thus making the question of objectivity testable. Various ver-

sions of this inequality are violated by quantum mechanics. These inequalities apply 

to pairs of two-level systems just as in our example of the EPR paradox. We shall 
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present a simple proof of one of these inequalities.24 

If spin components are objective quantities, then we can write down expressions 

for each individual decay. Consider, for instance, the expression 

(11.3.1) 

where cr0 and cr0
1 are the spin projections of particle 1 along axes d and d', respec-

--+ --+ 
tively, and similarly, crb and crb' are the projections of particle 2 along axes b and b'. 

This equality is trivially true for each decay, since each spin projection is ±1, and 

since for each decay the results cr0 , cr0
1 , ab and crb' are all predetermined, and as such 

are well defined. Over many decays these objective properties could, in principle, be 

accumulated to form a grand probability distribution 

(11.3.2) 

In practice, we would measure only pairs of these spin projections for each decay; 

then after we had measured these pairs for all detector "settings" (two for each side), 

we could incorporate what information we had learned into this grand probability. 

This grand probability of Eq. (11.3.2) may now be used to average Eqn. (11.3.1) 

over many decays. This averaging gives the Clauser-Home-Shimony-Holt25 (CHSH) 

Bell inequality. 

--+ --+ --+ --+ 
IC(d,b)+C(a,b')+C(d',b)-C(d',b')I ~2; (11.3.3) 

here the correlation function is just the expectation of the product of the spin projec-

tions 

(11.3.4) 
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A brief review of the experimental status of this inequality may be found in Chapter 

v. 

Carlton Caves and I further investigate the consequences of objectivity in 

Chapter V. We start by introducing the auxiliary concept of chaining the CHSH Bell 

inequality. Although this chaining should apparently lead to a "weaker" condition 

for local realism, these new chained correlation Bell inequalities actually have 

stronger quantum violations (i.e., larger signal-to-noise ratio) over a larger set of 

angles. To compute a signal-to-noise ratio, we took a simple model of an experimen­

tal setup: Counting statistics determine the variances of the measured correlation func­

tions, and a "data flipping error" (i.e., the detector channels - the "±1" - can get 

confused) degrades the ideal quantum-mechanical correlation function. When the 

data error quantity is matched to that of the most recent experiments, 26 we expect a 

20 % improvement in signal-to-noise ratio using our first chained correlation Bell ine­

quality compared to using the CHSH Bell inequality. As this data error increases, the 

advantage of chaining decreases, the more heavily chained inequalities being most 

severely affected. 

Next, we take seriously the idea that systems with objective properties would 

carry more information than their quantum descriptions seem to allow. We do this by 

deriving new constraints on local realism in terms of the average information (analo­

gous to entropy) obtained in making a measurement. These new inequalities, which 

we call information Bell inequalities, are easy to derive and apply to many new situa­

tions, since they rely only on the existence of a grand probability, like that which 

appears in Eqn. (11.3.2), and a locality assumption. As an example, we derived infor­

mation inequalities for higher-spin versions of the EPR experiment. We find that 

these inequalities are violated by quantum mechanics for arbitrarily high values of the 
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spin and further, that the size of the violation increases with increasing spin. The size 

of the violation for information Bell inequalities has a direct interpretation as the 

amount of information by which the quantum description is deficit compared to even 

the most thrifty, locally realistic description. The chaining concept can also be 

applied to these information Bell inequalities, and will yield improvements similar to 

those found for the CHSH correlation Bell inequalities. 

Finally, we note that the generality of the assumptions of the information Bell 

inequalities leads to a natural hierarchy of Bell inequalities for many particle systems. 

Even in this general hierarchy, however, the two-particle Bell inequalities play a spe­

cial role in that they lead to the simplest direct tests of local realism. 
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FIGURE CAPTIONS 

FIG. 1. Plot of the quadrature phases on a phase-space diagram with a nonzero com­

ponent of the average field in E 1' and fluctuations for E 1 and E 2 displayed as a circle 

or ellipse, for (a) a coherent state, (c) a phase-squeezed state, and (e) an amplitude­

squeezed state. The appropriate time domain plot of the electric field is shown for 

each of the cases (a), (c) and (e) in (b), (d) and (f), respectively. [Figure taken from 

Caves6 with permission]. 

FIG. 2. Schematic of a balanced homodyne detector. A signal field Es and local 

oscillator Ew impinge on the 50-50 beam splitter from different directions. The 

summed and differenced amplitudes made in this way are incident on a pair of photo­

detectors. The photodetectors each produce a photocurrent proportional to the square 

of the electric field amplitude falling on them. The difference ID of these currents 

fonns the output of the homodyne detector. [Figure taken from Caves6 with permis­

sion]. 

FIG. 3. Plot of the rms noise voltage - i.e., the square root of the noise power -

versus the local oscillator phase for the fixed RF frequency of 1.8 MHz over a 

bandwidth of 100 kHz, for the experiment of Wu et al.4 The dashed horizontal line is 

the vacuum-noise level. [Figure taken from Wu4 with permission]. 

FIG. 4. A simple beam splitter with which we model losses. A signal Es impinges 

from the left, and a "noise field" EN from below. A nonzero reflection coefficient 

allows most of Es through to the right; however, a portion of EN accompanies it. 
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ABSTRACT 

We consider a generalized form of parametric amplification that produces k -

photon correlations. We show numerically that this process is well-defined quantum 

mechanically, and we explain the quantum phase space structures produced by such 

parametric amplification. 

I. INTRODUCTION 

In this paper, we discuss a generalization of squeezed states. Throughout this 

paper, "squeezing" refers to ordinary squeezing, and the term "generalized squeez­

ing'' shall be used explicitly when referring to our work. 

In experiments where all sources of external noise have been made insignificant, 

there are still limits in measurement precision that are due to the Heisenberg uncer­

tainty principle. This uncertainty in the variables is like a "quantum noise." Now we 

can use an idealized prescription in which a detector is coupled to a harmonic oscilla­

tor. This is quite a general prescription (e.g., the harmonic oscillator's coordinates 

could represent the electric field in light, or the position or momentum in a mass­

spring system), so we shall restrict our attention to such systems. The quantum states 

that most closely describe the classical motion of these systems are harmonic oscilla­

tor coherent states. If we call the canonically conjugate variables for our harmonic 

oscillator system ''position'' x and ''momentum'' p , but choose appropriate dimen­

sionless units for them, then the coherent states have a symmetric uncertainty in x and 

p , with L\x ~ = 1 and L\x = ~ = 1. 

A loose classical description of quantum states can be made in terms of a phase­

space probability distribution. For coherent states, this corresponds to a bivariate 

Gaussian distribution in x and p displaced from the origin and rotating around it with 
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time. The rotation in phase space corresponds to the oscillation of p one quarter cycle 

ahead of x , and the equality of the uncertainties in x and p initially leads to both Ax 

and !lp being independent of time. Thus, the harmonic oscillator coherent state has a 

time-stationary ''noise.'' 

Since the uncertainty principle puts a restriction only on the product Ax !lp , we 

might consider starting with a more precise position, so Ax < 1, and a more uncertain 

momentum, !lp > 1. These states are called squeezed states; 1 the noise has been 

squeezed into one variable at the expense of its conjugate. We see that as this state 

evolves freely in a harmonic oscilJator potential, the precise x rotates in phase space 

to become a precise p in one-quarter cycle, and the uncertainty in p gets rotated into 

that of x . This variation of the uncertainty in these variables gives squeezed states a 

time-dependent noise (or as we shall refer to it in this paper, a phase-dependent noise). 

A simple change in the variable we observe can yield a time-stationary noise for 

squeezed states. Roughly, this change corresponds to measuring either x or p in a 

rotating frame in phase space. This new variable is called the quadrature phase (or 

quadrature amplitude), so squeezed states have a time-stationary quadrature-phase 

noise. In practice, the quadrature phase is measured by interfering the original signal 

with an oscillating reference. This is just a homodyne or heterodyne detection 

scheme. 

Real two-photon devices have been used recently to produce squeezed states of 

light.2
•
3 With the use of these devices comes the promise of improved, high-precision 

interferometers. 4-6 

Any states deserving the name "generalized squeezed states" should have prop­

erties analogous to ordinary squeezed states; they must reduce to ordinary squeezing 

appropriately, and they should be generated from a phenomenologically reasonable 
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model. The first requirement is somewhat vague, so we shall simply take it to mean 

that these new states should at least possess a phase-dependent noise. We concentrate 

on a class of devices that generate states satisfying these criteria. 

In Section II, such devices are modeled by ideal k-photon ''parametric 

amplifiers" (creating or destroying k photons at a time) acting, for simplicity, on a 

single mode of the electromagnetic field. Ordinary squeezing corresponds to k = 2. 

This section also analyzes these devices in a qualitative classical manner and suggests 

why we expect them to generate phase-dependent noise. 

A simple but quantitative way to discuss the noise of these generalized squeezed 

states is tluough the use of a quantum analogue of the joint probability distribution in 

phase space. This analogue is known as the Q-function. We review this quantum 

description in Section ID and derive some analytic properties that the Q-function of 

our k-photon state must satisfy. We find that the analytic properties of the Q -function 

closely follow our qualitative classical prejudices. In this section, we also look at the 

asymptotic behavior, for short time, of the Q-function. For the case k = 3, we find that 

a large-amplitude coherent state is initially squeezed at a rate proportional to its 

amplitude-intrinsically much faster squeezing than that produced by ordinary 

squeezing interactions (k = 2). 

In Section IV, we study this classical-quantum correspondence more closely. 

We start by finding the proper classical Hamiltonian corresponding to these k-photon 

devices. Having set up the classical problem, we find that the classical and quantum 

evolutions differ for k > 1. The classical motion is determined by an unstable fixed 

point at the origin of phase space; the classical evolution is "driven" by this fixed 

point to produce very sharp features in the classical probability distribution. These 

sharp features are destroyed by the quantum corrections, the dominant terms of which 
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coITespond to ordinary diffusion when k > 1. 

Fisher, Nieto, and Sandberg7 have also studied this generalization of squeezing 

via k -photon devices. They concluded that there is something seriously wrong with 

the evolution operator for these devices, after discovering that for k > 2, its vacuum­

to-vacuum matrix element has a divergent Taylor series expansion in time. In Section 

V, we study this matrix element numerically, using Pade approximants. We obtain 

good convergence for this matrix element for all scaled times (the coupling constant 

of the parametric amplifier multiplied by time) less than about 1.2. We also see that 

the divergence problems are due to singular behavior along the imaginary time axis. 

This matrix element and others are used to generate contour plots of the Q -function 

fork= 3 and k =4 at various scaled times. 

Hong and Mandel8 have defined a set of parameters, which they call measures of 

"11th-order squeezing" for even n . When n = 2, this parameter reduces to a measure 

of the uncertainty in the quadrature phase and so corresponds to a measure of ordinary 

squeezing. We calculate the second-order and fourth-order squeezing parameters for 

some of the three-photon and four-photon states we have generated, and we find that 

these states are neither ordinarily squeezed nor squeezed to fourth order. Nonetheless, 

for the reasons already mentioned, we consider our states to be a generalization of 

squeezed states. 

II. MOTIVATION FOR THE MODEL 

One obvious generalization of squeezed states comes from recognizing that 

coherent states and squeezed states can be generated from idealized, one-photon and 

two-photon devices, respectively. 
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We restrict our attention to a single mode of the electromagnetic field, at fre­

quency co, which can be represented by the hannonic oscillator annihilation and crea­

tion operators (a and at, respectively.) In the Schiodinger picture, the Hamiltonians 

for i<leal one-photon and two-photon devices are given by 

(2.1) 

(2.2) 

where 

z 1 (t) = I z I exp[i ( <j>- cot)] , (2.3) 

z2(t)= lz lexp[i(<j>-2cot)], (2.4) 

are time-dependent, complex, coupling constants. Throughout the following, unless 

we write h explicitly we shall use units for which h= 1. We have chosen the time 

dependence of the couplings z 1 and z 2 so that, in the interaction picture, the Hamil­

tonians are independent of time; this corresponds to running the devices at resonance. 

In the interaction picture, the time-evolution operators are 

U 1 =exp[(za t -z•a )t], (2.5) 

(2.6) 

where z = I z I exp(i <I>) is a time-independent coupling constant. The operators U 1 and 

U 2 correspond to the displacement operator and the squeezing operator, respectively. 

U 1 and U 2 are already time-ordered here, since H 1 and H 2 are time-independent in 

this picture. 
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In this paper we study an idealized, degenerate, k-photon parametric amplifier, 

which reduces to Eqs. (2.1) and (2.2) for k = 1 and k =2, respectively. In the 

Schiodinger picture, its Hamiltonian is 

H k = ro a ta + i [ z k ( t )a t k - z k * ( t )a k ] 

-roata +21z lsin(krot-<j))Ek, (2.7) 

where zk (t) = I z I exp[i (<j)-krot )]. The second fonn in Eq. (2.7) requires the 

rotating-wave approximation, and we have taken the electric field operator to be 

E-(at+a). (2.8) 

For the rest of the paper, we shall work in the interaction picture, so the time evolution 

operator corresponding to Eq. (2.7) is 

(2.9) 

where z = I z I exp(i <P ). 

The second form in Eq. (2.7) allows the classical interpretation for the interaction 

as a nonlinear force oscillating at k times the natural frequency of the optical mode to 

which it is coupled. (Fork= 1, this is resonant excitation. Fork =2, this is like kick­

ing on a swing, where we force at twice the fundamental frequency.) This will excite 

the mode where its phase differs by 0, · · · , 2n(k-1)/k radians from the phase of the 

"force" zk(t) and will damp it at the intennediate phases. Thus, fork> 1, we may 

expect this interaction to produce phase-dependent noise. 

Equation (2.7) also suggests a realization of the interaction, for which we make 

use of the macroscopic description for the electromagnetic field with matter; this is 

given by the polarizability 
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(2.10) 

Here, xH) is the first-order susceptibility of the material (which is simply x<1>t,ij for an 

isotropic material), x<n > is the nth-order nonlinear susceptibility, and the subscripts 

correspond to spatial and optical polarization components. The electromagnetic 

energy density is 

-
1-l: [(E; +47tP; )E; + magnetic tenns] , 

87t . 
I 

which from the decomposition in Eq. (2.8) has terms 

(2.11) 

(2.12) 

where Eext is an external "pump" field, and we have ignored all but one spatial com-

ponent and one optical polarization. A comparison with Eq. (2.7) yields 

(2.13) 

where V is the volume factor corresponding to the volume of the nonlinear material. 

(Similar tenns arise from higher-order susceptibilities.) 

This discussion shows how the model interaction in Eq. (2.7) may be formed by 

a kth-order (or higher) susceptibility. Of course, as Eq. (2.7) is only a model for such 

interactions, some details are left out. We have assumed an ideal pump for which 

there is no depletion. We neglect depletion, since we expect only significant non-

linearities for very intense sources. We are also neglecting the dissipation and fluctua-

tions that go with the mode being coupled to a thermal bath. Finally, we are glossing 

over the microscopic nature of the nonlinearity and quantizing directly the 
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macroscopic equations of classical electromagnetism. 

III. ANALYTIC PROPERTIES 

Throughout this paper, we are interested in the properties of the states generated 

from the interactions of Eq. (2.7). To describe these properties, we shall make use of a 

quantum description that is closely linked to the phase space distribution for a classi-

cal system. 

The description we use, called the Q-function, is itself a probability distribution 

whose moments give "antinonnally" ordered expectation values9 

d 2a <a" a tm > str[a" a tm p(t )] = J--a," a*111 Q (a, a*; t), 
7t 

(3.1) 

where d 2asdRe(a)dlm(a), and 

(3.2) 

Here, Uk (t) is the time-evolution operator [Eq. (2.9)] for our k-photon device, and 

p(t) is the density operator for the state that detennines the Q-function via9
•
10 

Q (a, a"'; t )s <al p(t) I a> =tr[p(t)o(a -u)o(a t -a*)], (3.3) 

where I a> is the harmonic oscillator coherent state, a I a> =a I a>. Equation (3 .3) 

may be inverted to give 

J dza ~ t * ~ * p(t)= -u(a -a )u(a -a)Q(a,a ;t). 
7t 

(3.4) 

The expressions with operator-valued Dirac-delta functions may be considered as 

purely formal expressions for repeated Fourier transformations; we may write them as 
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o(a t - ex*)o(a - ex)= J d 2
S, exp[i S,(a t - ex*)]exp[i S,*(a - ex)] , 

7t 

O(a - ex)f>(a t - ex*)= J ~exp[i s*<a - ex)]exp[i S(O t - ex*)] . 
7t 

(3.5) 

The Q-function also represents11 the joint probability distribution for a specially 

set-up and balanced detector making simultaneous measurements of "position" 

at +a and "momentum" i (at -a). Hence, we shall refer to contour plots of Q on 

Im( ex) versus Re(ex) as "phase-space" diagrams. 

Let us define the rotation operator 

(3.6) 

then 

(3.7) 

and 

(3.8) 

Applying this rotation to p(t) is equivalent to taking ex~cxexp(-ie) in Q(ex,ex*;t), 

which corresponds to rotation of the phase-space diagram. Also, R (e) transforms the 

time-evolution operator Uk (t) to 

(3.9) 

i.e., z ~zexp(ike). When the initial state is the vacuum, p(O)= IO><OI, a rotation 

by e= 27tlk maps Q to itself, so that the phase-space plot will have a k-fold sym-

metry. This is familiar fork= 1 and k = 2, the coherent and squeezing cases. 
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For convenience, we shall henceforth restrict the coupling constant z to be real; 

when the initial state is the vacuum, this corresponds simply to a rotation of the 

phase-space diagram. We may now define a scaled time, r = I z It, so that the time-

evolution operator reduces to 

(3.10) 

We now derive the evolution equation for the Q-function. Although this is stan­

dard, 10 we present it for completeness. We start with the equation of motion for the 

density operator in the interaction picture: 

(3.11) 

Using the last expression in Eq. (3.3) and the relations 

(3.12) 

[at, li(a - o:)] ={- :a li(a - o:)} = :a li(a - o:) , (3.13) 

a8(a -a)=a8(a -a), (3.14) 

(3.15) 

we find that the Q -function evolves according to 

()Q =LQ = [ak -[a+ _L] k +a*k -[a*+ i__J kl Q , 
dr ()a* aa (3.16) 
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where L is the Liouvillian. Equation (3.16) has the formal solution 

(3.17) 

where Q (0) is the initial value of the Q-function. 

If we treat this perturbation series for Q (r) as an asymptotic series (Sec. V), then 

it is indeed valid to truncate the series to find the asymptotic behavior for small time. 

For the initial state in the vacuum p(O) = IO> <O I, corresponding to 

Q (O)=exp(-1al 2), we find 

(3.18) 

where a= I a I e -i e. Thus, for r << 1, the Q -function develops k lobes along 

e = 0, 27t/k, · · · , 27t(k-1)/k and dips between these lobes. We shall see later (Section 

V) that this is in agreement with more detailed calculations and even for such short 

times is different from the classical behavior (Section IV). 

Similarly, if we start in an initial coherent state with real amplitude x 0 , so that 

p(O)= lx 0><x0 1 and Q (O)=exp(-1a-x0 1
2
), then to first order in r, 

and for x 0 >> I a-x0 1, 

[ 

[Re(a)-x0 -rkx~ -l ]
2 [Im(a)f ] 2 

Q(r)-exp _ - _ +O(r ) . 
1 +rk(k - l)x~ - 2 1-rk(k -l)x~ - 2 

(3.19) 

Thus, Re( a) and Im( a) have mean values and uncertainties given by 
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1 [ ,. k -2] 2 <JRe(a)- '12. 1+2k(k-l)x0 +O(r ), (3.20) 

(3.21) 

(3.22) 

(3.23) 

for r « 1; the standard deviations crRe(a) and crlm(a) are independent of x 0 only for 

k = 1 and k = 2. For k = 3, a resonant 3-photon parametric amplifier will initially 

squeeze an in-phase coherent state at a rate proportional to its amplitude. Also, there 

would be no ordinary squeezing of the vacuum for any of the k >2 processes. Similar 

results have been obtained by Hillery, Zubairy and W 6 dkiewicz. 12 They have also 

shown that this generalized parametric amplifier produces no ordinary squeezing of 

the vacuum when k > 2, even for large r . 

IV. CLASSICAL DYNAMICS 

It is worthwhile calculating the classical dynamics associated with the interaction 

in Eq. (2.7) in detail, not only to confirm our intuition from Section II, but also to 

compare it to the full quantum dynamics. 

There is not always, however, a unique classical system that one might associate 

with a quantum Hamiltonian. In order to choose a classical Hamiltonian, we start by 

writing the quantum theory in terms of a path integral; the classical Hamiltonian then 

appears as part of the classical action in the path integral. Another route to the classi­

cal Hamiltonian may be found in Milburn. 13 
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In the coherent state representation of Klauder, 14 the full propagator is 

a(t )=at [ t 1 · · j < cx.1 ;t I ex.; ;O> = f, D (ex.( 't)) exp f' d 't[-( ex.ex.* - cx.*cx.)- iH N (ex.* ,cx.;'t)] , (4.1) 
.la(O)=a; .b 2 

where D (CX.('t)) is the path integral measure, and 

is the appropriate classical Hamiltonian, which is just the quantum Hamiltonian in 

normal order form, with a replaced by ex. and a t by ex.*. The Poisson bracket then 

yields the classical equation of motion 

(4.3) 

where Q dis the classical probability distribution in phase space. 

In a rotating frame (analogous to the interaction picture), the classical equation 

(after scaling out the coupling constant I z I ) is therefore 

(4.4) 

It has the asymptotic dynamics 

(4.5) 

for an initial Q cl that corresponds to Q for the vacuum; i.e., Q cl= exp(- I cx.1 2
). The 

lobes of Q cl grow k times faster than the corresponding quantum features [see Eq. 

(3.18)], at least for r << 1. 
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We can make an interesting general observation about these classical equations 

of motion at this point. Writing the quantum equation of motion in terms of H N (a* ,a), 

we have 

(4.6) 

dHN dQ dHN (JQ 
= -:i--- - ---:;--- +(higher derivatives of Q ) , 

oa ()a* da* oa 
(4.7) 

where the derivative d Ida acts to the left. Thus, truncating the full quantum descrip-

tion of Eq. (4.6) to first order in the derivatives of Q leads us to the same classical 

equation we derived from the path integral formulation [Eq. (4.3)]. This truncation 

obviously leads to classical dynamics, and the classical trajectories are given by solv-

ing the characteristic equations for the resulting first-order partial differential equa-

tion. These characteristic equations (classical trajectories) for Eq. (3.16) are 

da k *k-1 --=a ' 
dr 

These classical trajectories conserve 

(4.8) 

(4.9) 

(4.10) 

so the classical trajectories are curves of constant Im( ak ). These curves describe a 

flow in phase space around an unstable fixed point, with k directions of damping and 

k directions of growth. Thus, the Hamiltonian has a k-saddle around the unstable 
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fixed point. This is a generalization of the generic saddle of unstable fixed points. 

Integrating the characteristic equations numerically, fork =3, gives Figs. l(a) 

and l(b); the threefold symmetry and the development oflobe structure are apparent. 

We also see that arbitrarily sharp structure appears as r increases. This sharp struc­

ture is a feature of the classical dynamics of many systems. 15 We do not expect to see 

it in the quantum system, for as it develops, the higher derivatives become significant. 

For instance, the sharp structure develops along the lines 0 = 0, 27t/ k, · · · , 27t(k - 1)/ k ; 

so expanding Eq. (4.4) about 0=0 with 

and 

1 ()Q >> _lQ_ 
lal ()0 C>lal 

(4.11) 

one finds that for any k the term that dominates is the diffusion term, leading to the 

equation 

()Q = _!_k(k-l)lalk -2[-1-C>
2Q] 

dr 4 I al 2 ()02 
(4.12) 

We see that this diffusion term vanishes fork= 1 and is independent of I a I fork= 2. 

For k > 2, it is proportional to I a I k - 2; thus any attempt to squeeze at a faster rate as 

suggested at the end of Section III will have to fight this diffusion. Numerical results 

suggest that even fork =4, this diffusion dominates. 

It is worth noting that this "quantum diffusion" is not the only way quantum 

mechanics may prevent fine structures being fonned by the classical evolution. 
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Milbum 13 has studied a different nonlinear potential, which produces a negative-

definite diffusion term; it prevents the classical structure by forcing recurrences of the 

initial state. 

V. QUANTUM DYNAMICS 

There are at present no analytic techniques for dealing with the full problem. One 

obvious method would be to normal-order the evolution operator Uk [Eq. (3.10)]; 

however, fork > 2, this is an unsolved problem. 16 Fisher, Nieto, and Sandberg7 look 

at the matrix element 

<OIU.(r)IO>=l-!l_r2+ (k!)
2
+<2k)! r 4 

k 2! 4! 

(k!)3 +2k!(2k)!+(2k)!2/k!+(3k)! 6 - ,. 
6! 

+ ... +(-1)" (nk )! C ,.2n + ... 
(2n )! n 

(5.1) 

by expanding it as a Taylor series in r. All the coefficients Cn are positive. They 

point out that this series has a zero radius of convergence; in fact, the coefficients C n 

grow like ~n, where ~(k) is near 1. Thus, the vacuum state is by definition17 a non-

analytic vector with respect to the Hamiltonian Hk. This does not, however, reflect on 

the existence of the Hamiltonian, as they imply, or on the unitarity of Uk. The non-

convergence is, in fact, a mathematical artifact caused by singular behavior on the 

imaginary time axis, since the Taylor series converge only up to the nearest pole. 

(This phenomenon is quite common in parabolic equations; for example, the initial 

value problem for the heat equation has no solution for negative time.) 



- 58 -

There are many methods of analytic continuation available, which obtain useful 

information from the Taylor series outside their radius of convergence. If that radius 

is actually zero, then we can still hope to extract information by deriving an alterna­

tive fonn that does converge, since in this case the Taylor expansion would be an 

asymptotic series about r = 0. One such method is that of Pade approximants, 18•19 in 

which the [NIM] approximant is a rational function Pt::(r2)=PN(r 2)/QM(r 2), where 

P N (QM) is a polynomial of degree N (M ). The coefficients of the polynomials P N 

and QM are chosen so as to match the first M + N + 1 Taylor coefficients of the func­

tion. (QM has leading coefficient 1.) Pade approximants analytically continue well 

because they tend to reproduce the pole structure that limits the Taylor series' conver­

gence. A common application is to fonn a diagonal series from the [NIN] and 

[NIN+l] approximants (these require 2N +1 and 2N +2 coefficients, respectively); 

this often has remarkable convergence properties. We restrict our attention to this 

series. 

In practice, one represents the rational function as a continued fraction. Surpris­

ingly, this means that successive Pade approximants can be calculated by generating 

only one additional continued-fraction coefficient. 18 This breaks down if there is a 

zero Taylor coefficient. Hence, we regard Eq. (5.1) as an expansion in r2; i.e., we 

analytically continue in r 2 instead of r. The algorithms tend to be numerically 

sensitive-about half a digit is lost for every extra term required-so we worked in 

high precision throughout ( - 33 significant figures, with checks at even higher accu­

racy). This is not a problem with Pade approximants, but rather a characteristic of the 

numerical treatment of analytic continuation methods in general, which try to predict 

behavior far from the origin from the first few terms of the Taylor series. For instance, 

in this case to perform Borel summability instead of Pade approximation requires the 
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numerical integration of rapidly oscillating functions. 

For k = 1 and k = 2, the series of Pade approximants converges rapidly to the 

known solutions 

(5.2) 

<O I U 2(r) IO>= cosh-112(2r). (5.3) 

Fork= 3, we see convergence out tor - 1.2 [see Fig. 2(a)]. One reason for this is that 

the first 56 continued fraction coefficients are all positive, which gives the relations 18 

PN pN+l pN+l pN 
N+l :::: N+2 :::: N+l :::: N (5.4) 

for 2N + 2 :::= 56; i.e., the odd and even Pade approximants bracket their limit [see Fig. 

2(b)]. 

Pft, in general, has M simple poles, some of which mimic the real poles of the 

function and some of which are spurious. The convergence of the approximants will 

then depend on whether the spurious poles are eventually canceled by zeros in the 

numerator or move off to infinity as N and M ~ oo. In our case, the poles initially lie 

on the negative real axis (corresponding to imaginary r ), clustering close to zero; this 

is the usual behavior on a branch cut. However, coefficients 57, 58, and 168 are nega-

tive, introducing spurious poles. These prevent convergence for larger, unless enough 

tenns are included to move the pole well past r [see Figs. 2(b) and 3]. 

We repeated these calculations for different matrix elements, enabling us to com-

pute the Q -function. For a system initially in the vacuum state, p(O) = I 0 > < 0 I , a 

decomposition in the number state basis yields 

1
.,0 *n 12 

Q(r)=exp(-lal 2
) ~o ~ <n IUk(r)IO> (5.5) 



- 60-

We note the the finiteness of the vacuum-to-vacuum matrix element of Eq. (5 .1) deter-

mines the finiteness of all the other matrix elements in the sum of Eq. (5.5). This is 

because these matrix elements are nonzero only when n is a multiple of k, in which 

case they can be written as sums of derivatives of the vacuum-to-vacuum matrix ele-

ment: 

I d 
<klUk(r)IO>= _r.-:-<OIUk(r)IO>, 

-vk ! dr 

1 [ d
2

] <2k IUk(r)IO>= ~ k!+-
2 

<OIUk(r)IO>, 
(2k)! dr 

(5.6) 

etc. Now I <n I Uk (r) IO> 12 is a probability, so it is bounded above by 1. Thus, the 

sum in Eq. (5.5) converges rapidly; e.g., for a =:;5, we need to include only terms up to 

11 = 74 (this corresponds to only 25 nonzero terms for k = 3) in the sum for each addi-

tional term, to give a contribution of less than one percent. The contour plots of the 

Q-function are shown in Figs. l(c)-l(e) for r =0.05, 0.2, and 1.0. Notice the threefold 

symmetry and the lobe development, which is much slower and wider than in the clas-

sical case (Sections III, IV). Our techniques also work for higher k [see Fig. l(f) for 

k =4], but the numerical problems become more extreme. 

As a final point, we calculated two of Hong and Mandel's8 "higher-order 

squeezing" parameters, <:(&7 01)2" :>, for the quantum states in Figs. l(c)-l(f). 

Here, the colons denote normal ordering, and a 91 =a 9+a~ is the quadrature ampli­

tude defined at an angle eto the Re( a) axis [Eq. (3.8)]. Using the P representation9.Io 

P (a, a*)= tr[p(t)8(a t - a*)8(a - a)] , (5.7) 

which generates the expectation values of normally ordered operators, and the relation 
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for reordering the Dirac-delta functions 

b(a t - u*)8(a - a.)= exp [ az ] 8(a - u)8(a t - u*) ' auau* 

we find 

p (a., u*) =exp[- az ] Q (a., u*) . 
(Ju()u* 

Hence, the normally ordered "squeezing" parameter becomes 

after integration by parts. 

(5.8) 

(5.9) 

(5.10) 

These parameters are trivially positive for classical states, and Hong and Mandel 

call a state squeezed to 2n th order if <:(~ 91)2n :> is negative. In each case 

described in Figs. l(c)-l(f), we calculated this parameter for n = 1 and n =2, with 

fJ=O, rrJk, and found it to be positive in each case; i.e., there is no fourth-order 

squeezing of the kin<l described by Hong and Mandel8
, nor is there any ordinary 

squeezing for these states (ordinary squeezing occurs when their parameter for n = 1 is 

negative). One reason why we might have expected this is that their parameters make 

use of an orthogonal decomposition of phase space into quadrature amplitudes; 

instead, our states have a k-fold symmetry, which will not match this decomposition 

when k > 2. 
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As pointed out by Fisher, Nieto, and Sandberg,7 the self-adjointness and 

Hermiticity of the interaction Hamiltonian H k = i (za f k - z *a k ) are not in question. 

What is questioned is the unitarity of the theory, but the only potential problem we see 

would be if the matrix elements of the time evolution operator Uk (r) did not exist. We 

have demonstrated numerically that they do. 

VI. CONCLUSIONS 

We conclude that this generalization of "one-photon" coherent and "two­

photon" squeezed states to "many-photon" states is possible and that these non­

Gaussian states show quantum features quite different from the classical approxima­

tion. These k -photon interactions for k > 2 initially generate ordinary squeezing at a 

higher rate than the usual k = 2 parametric amplifier when they act resonantly on a 

large amplitude coherent state. This occurs, however, in competition with a quantum 

diffusion that gets stronger for successively larger k . 
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FIGURE CAPTIONS 

FIG. 1. (a) and (b) Contour plots of the classical phase space distribution, Q c1(r ), for 

k =3, at times (a) r =0.05 and (b) r =0.2. (c)-(f) Contour plot of the quantum Q­

function, Q(r), for (c) r =0.05 and k =3; (d) r =0.2 and k =3; (e) r = 1.0 and k =3; 

and (f) r =0.1 fork =4. 

FIG. 2. (a) Plot of the matrix element, <O I Uk= 3(r) IO>, versus scaled timer, 

when calculated with 2N + 1 = 167 and 2N + 2 = 168 Pade coefficients. This shows 

convergence of the matrix element out to r - 1.2. (b) Plot of the value of the matrix 

element, <OI Uk =3(r)IO>, versus N, for various times: r =0.05; r =0.2; r =0.4; 

r =0.7; r = 1.0; r = 1.2; and r = 1.5. PP and PN +IN are plotted separately to show 

how they bracket their "limit" until they reach the spurious pole at 2N +2=58. We 

also see that the spurious pole moves out to higher times as N is increased. 

FIG. 3. Schematic plot of the positions of the poles in the Pade approximant to 

<OIUk=3(r)IO> as a function of r 2
, for (a) 2N+2=40; (b) 2N+2=60; (c) 

2N +2= 120; and 2N +2= 160. This shows the accumulation of poles near the origin 

(for r 2 < 0), which causes the difficultly with convergence of the Taylor series. It also 

shows the motion of the spurious pole, as in Fig. 2(b ). 
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ABSTRACT 

We perfonn discrete mode calculations for a parametric amplifier with a quan-

tum pump, and discuss some of the limitations on calculations of this sort in quantum 

optics. We calculate corrections to the squeezing that is due to pump quantum 

fluctuations to order 11ii2, for a pump initially in a coherent state with average photon 

number N . We find that the limit to the variance of the squeezed quadrature that is 

--112 
due to the quantum nature of the pump goes as N . 

I. INTRODUCTION 

The parametric amplifier1
•
2 (PA) is a basic device in quantum optics and quan­

tum electronics. It couples a pump field at frequency cop to signal modes at frequen­

cies near co= cop 12. In this paper, we are mainly interested in the application of the PA 

for generating squeezed states,3
-

5 i.e. quantum states for which one of a pair of 

canonically conjugate variables has its quantum noise (uncertainty) reduced below the 

vacuum level (zero point noise). The main purpose of this paper is to show that the 

ability of a PA to produce squeezed light is limited by the initial phase noise in the 

pump. 

When the signal modes are initially in vacuum states, only the pump's phase can 

detennine which quadrature will be squeezed. If the pump's phase fluctuates, then the 

quadrature chosen will have a slight admixture6 of its conjugate quadrature - the 

noisy quadrature. This argument is treated more carefully in Section II for the case of 

phase noise in a classical pump. Calculations of the corrections to semiclassical order 

(i.e., to order 1/N in the matrix elements, where N is the average photon number of 

the pump) have been previously performed for both the one-7 and two-mode8 PA. 
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Hillery and Zubairy1 studied the one-mode PA with an interaction Hamiltonian 

(1.1) 

(up to a phase rotation of the variables), where a and ap are the annihilation operators 

for the signal and pump modes, respectively, and K is a coupling constant which is 

proportional to the second order nonlinear susceptibility x<2
> of the medium in which 

the interaction is taking place. They used a path-integral technique9 to obtain correc-

tions at the semiclassical order. They did not claim to get the full semiclassical 

correction, 10 and the dominant terms they obtained for the fluctuation in the squeezed 

quadrature were 

2 e-2u e2u 
<M2 > ::::--+--=' 

4 64N 
(1.2) 

where .f 2 = -i(a -at)/2 is the quadrature (analogous to the position operator), which 

is squeezed by the interaction in Eq. (1.1), and u =N112
Kt is a dimensionless time. 

This yields a minimum variance, and hence a limit to the squeezing, of 

< .2> - 1 M2 min- -112 ' 
8N 

(1.3) 

which is just what the argument of phase noise in the classical pump gives (see Sec-

tion II). 

Scharf and W alls8 studied the two-mode PA, whose interaction Hamiltonian is 

(again up to a rotation of the variables' phases) 

H" ' h ( " f A f A " " A f) int = 1 K a 1 u 2 u P - a 1 a 2u P , (1.4) 

where a 1 and a 2 are the annihilation operators for the two signal modes. They used 
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an asymptotic method developed by Scharf, 11
•
13 and Scharf and Weiss,12 to arrive at 

the dominant correction to the variance of the Hermitian variable 

(1.5) 

as 

2 e-2u e6u 
<Liv 2 >::::--+ _, 

. 4 1920N 
(1.6) 

where a+= (a 1+Ii 2)1...fi.. Scharf and Walls concluded that the minimum variance 

obtainable by the two-mode PA would be 

<Liy2> . :::: 1 
2 nun 6(10N )114 

(1.7) 

How can we compare these calculations? Hone rewrites Eq. (1.4) in terms of the 

variables 

(l.8a) 

(l.8b) 

then the interaction Hamiltonian may be written 14 

H,. . = . hK ( ,. tz;: _ ;: 2 ,. t) _ . hK (;: tz ,. _ ;: 2;: t) 
mt l 

2 
Q + Up U +ap l 

2 
U _ Qp U _Up , (1.9) 

If the pump is now treated classically, then the d + and d _ modes become completely 

independent, each described by the one-mode PA Hamiltonian Eq. (1.1). Thus, we 

might expect the same correction to the squeezing that is due to a quantum pump as 
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found by Hillery and Zubairy [see Eq. (1.2)]. In fact, since the pump is allowed to be 

quantum mechanical, the a+ and a_ modes can interact with each other by modifying 

their common pump. Thus, these modes cannot completely decouple. Even so, 

Scharl and Walls' results of Eqs. (l.6) and (1.7) are surprising; for a pump with 

N = 109, there is a large discrepancy 

< A " 2 > [ -i l/4 u)'z min 4 N 400 
<M

2
2 > . =3 10 3 

nun 

(l.10) 

The purpose of this paper is to resolve the apparent discrepancy between these two 

calculations, first noted by Caves and Crouch.15 We will use three different methods 

to calculate the semiclassical corrections for the one- and two-mode PA. 

This paper is divided into seven sections. Section II justifies our use of discrete 

mode calculations for a traveling-wave device, which, in principle, should be given a 

full continuum treatment, and also reviews the argument for the contribution of phase 

noise in a classical pump. In Section III, we discuss the symmetries of the discretized 

PA system and their use in simplifying our calculations. 

The first method of calculation (Section IV) involves integrating the Heisenberg 

equations for the quadrature-phase amplitudes up to the required order. What is novel 

about the approach presented here is that we first work out the form of all the terms, 

and then we identify the dominant terms, and proceed to calculate only those terms. 

This calculation yields the dominant terms up to 0 (l/N2). By calculating these terms 

we can estimate the time when the semiclassical correction breaks down. We find that 

the semiclassical corrections [for instance, Eq. (1.2)] are valid so long as they are 

much less than one. 
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The second method (Section V) is numerical. However, we are able to obtain 

analytic expressions for the full corrections to 0 (llii2). We can do this since the gen­

eral form of these corrections has already been worked out in Section IV. This calcu-

lation uses a new algebra, which can be viewed as a semiclassical approximation to 

the ordinary commutator algebra for annihilation and creation operators. This algebra 

is used in order to normal-order the annihilation and creation operators of the pump. 

The third method (Section VI) uses the positive-P distribution16 to derive 

Fokker-Planck equations for one- and two-mode parametric amplifiers. Standard 

methods of stochastic calculus 17 are then used to derive Ito stochastic differential 

equations (SDEs) from the Fokker-Planck equations. An approximate solution of the 

SDEs is obtained by iteration, and the full semiclassical correction is then calculated 

analytically. 

These three methods agree with each other. The latter two show that Hillery and 

Zubairy have, in fact, calculated the exact semiclassical corrections to the parametric 

approximation for the one-mode PA, namely, 

-2u 2u 
<MJ > =-e-+ ~[1 +(3-8u)e-2" -(1 +8u -8u 2)e-4u -3e~"]. (l.11) 

4 64N 

Similarly, the exact semiclassical expression for the two-mode PA is found to be 

(1.12) 

where x 2 = -i <a 1 - a I )12 is the quadrature-phase operator tor the squeezed quadra-
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ture, and 

A 2 AAf A "f 
<IM I >=<XX >sym -<X><X > 

=1-<xxt +xtx>-<x><xt> 2 . (1.13) 

The dominant corrections for the one- and two-mode calculations are the same and 

agree with the dominant correction obtained by Caves and Crouch15 from a continuum 

calculation. 

II. DISCUSSION 

The conventional approach to problems in quantum optics typically makes use of 

a mode expansion to describe the electromagnetic field. Using this approach, one can 

derive from an appropriate Hamiltonian temporal differential equations for the modal 

creation and annihilation operators, the spatial dependence being carried by the mode 

functions. Such an approach is suitable for cavity devices in which one has well-

defined standing-wave modes (the eigerunodes of the cavity), but not for a traveling-

wave device in which such modes are nonexistent. One would like to derive spatial 

differential equations governing the evolution of the field operators through the 

medium, in analogy with classical nonlinear optics; the conventional approach is 

clearly unsuited to this purpose. Tucker and Walls 18 and Lane et al. 19 recognized 

these problems with the conventional approach and developed a continuum wave-

packet formalism in an attempt to deal with them. 

In this section, we briefly describe a discrete mode expansion of the electromag-

netic field in terms of wave-packet modes that enable us to derive spatial equations of 

motion for PAs. We assume that the wave packets are short compared to the 
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nonlinear medium through which they propagate, so that they "fit" inside the 

medium, allowing us to ignore boundary effects. Physically, the individual wave 

packet propagates from free space through the entrance boundary on a time scale short 

compared to the time it will spend inside the nonlinear medium; in this way, the 

interaction is ''turned on.'' This method is preferable to the technique often used in 

the conventional approach in which the interaction is suddenly turned on throughout 

all space, either at time t = 0 or at some time in the remote past. We also present a 

heuristic argument for the dominant effect of pump quantum fluctuations on the vari-

ance of the squeezed quadrature in a PA. 

We will give a brief outline of the derivation of the discrete wave-packet mode 

equations of motion for the PA; details will be given elsewhere. The discrete mode 

expansions of the signal and pump magnetic field operators in a dispersionless 

medium are given by 

xf [(t -noi le )-kTs], (2.la) 

(2.1 b) 

where 

(2.2a) 
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(2.2b) 

(2.2c) 

and 

sin1tt ITj 
fj(t)= IT 

1tt j 
j =s,p (2.3) 

is the wave-packet envelope function. Here, n 0 is the index of refraction of the 

dispersionless medium, Q.P = 2.Q is the pump frequency, and cr is a cross-sectional 

area we use to account crudely for the transverse structure of the field. The discrete-

mode expansions described by Eqs. (2.la) and (2.lb) are obtained from a continuum 

description by dividing the signal and pump bandwidths into "bins" of width ~cos 

and ~cop , respectively, with signal center frequency con = Q.+n ~co and pump-center 

frequency Q.P = 20..20 Each signal (pump) bin corresponds to a train of wave packets 

(corresponding to different values of k) in the time domain, each of approximate dura-

tion Ts = 21t/ ~cos (TP = 21t/ ~cop) with envelope given by Eq. (2.3). 

By substituting Eqs. (2.la) and (2.lb) into Maxwell's equations, we obtain the 

spatial equations of motion 

dank (z) 00 m (k 'T -kT ) sin[1t(kTs - k 'Tp )ITP] ,.. t 
---= K 1 '° e P P ' b (z ) a (z ) (2 4a) 

d - "-' (kT -k 1T )IT k' -nk ' . 
,;, k'=-oo 1t s p p 

(2.4b) 
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where the coupling constant K' is given by 

(2.5) 

Here, we have assumed that !l.rop << !l.ros (or TP »Ts) to avoid coupling among 

energy nonconserving modes. By restricting our observations to the region of space-

time near t -noilc =0, we can discard all wave packets (both signal and pump) with 

k :;tO, since fj(kTj )= ok,O With dn 0(z )=an (z) and b0(z )::ap (z ), we find 

dan(Z) f 
---=K'a (z)a (z) dz P -n ' 

(2.6a) 

(2.6b) 

Assuming that the wave packets are narrow compared to the scale of variation set by 

K
1

, we can replace z by ct!n 0 and obtain the temporal equations of motion 

(2.7a) 

(2.7b) 

where K=cK11n 0. Equations (2.7a) and (2.7b) are identical to the Heisenberg equa-

tions of motion that are derived from the multimode Hamiltonian 

H =i "; L [ap(t)ant(t)a!n<f)-aJ(t)an(t)a_n(t)], 
n=-M 

(2.8) 

when the conventional approach is used. 
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The Hamiltonian Eq. (2.8) correctly describes the interaction of a discrete pump 

mode with 2M + 1 discrete signal modes, but it does not provide a completely accu­

rate description of traveling-wave parametric amplification, since it ignores the 

interaction of the pump wave-packet k = 0 with signal wave packets other than k = 0. 

Ignoring as it does interactions with these wave packets, the Hamiltonian cannot 

correctly describe nonlinear effects such as pump depletion; it does, however, 

coITectly describe the effect of the initial pump quantum fluctuations on the signal 

modes. We will show, first by a heuristic argument and then by the results of detailed 

calculations using the Hamiltonian Eq. (2.8), that the initial pump quantum fluctua­

tions are responsible for the dominant coITection to the squeezing that is due to the 

quantum nature of the pump. We also calculate higher-order corrections. By the 

argument just given, the exact form of these coITections cannot be related to the physi­

cal parameters of a traveling-wave PA; these corrections are of physical interest, how­

ever, in showing how nonlinear effects affect the squeezing, and of mathematical 

interest in demonstrating the computational tools we have developed to calculate 

them. 

The wave-packet approach gives us a new and more realistic way to deal with 

traveling-wave problems in quantum optics; it also leads one to realize that the con­

ventional Hamiltonian approach can lead to misleading results when used blindly. We 

will, however, ignore distinctions between the conventional and the wave-packet 

approaches through much of this paper. The point we wish to make is that the wave­

packet modes are an appropriate set of modes for describing the spatial evolution of 

quantized electromagnetic fields in traveling-wave devices without resorting to con­

tinuum calculations. 
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We will now give a heuristic argument for the effect of pump quantum fiuctua-

tions on the squeezing produced by a parametric amplifier. Our treatment of 

parametric amplification has thus far treated the pump quantum mechanically. Under 

certain circumstances, one can treat the pump classically, in what is known as the 

parametric approximation; in this approximation, one replaces the pump operator by a 

c-number, aP =N112 eicpp. The interaction Hamiltonian for a one-mode PA, where we 

ignore all modes in Eq. (2.8) except for n = 0, is 

(2.9) 

where a 0(t) =a (t ); two resulting equations of motion are 

(2.lOa) 

(2.lOb) 

We define two sets of quadrature-phase amplitudes, 14 

(2.lla) 

(2.llb) 

and 

(2.12a) 

f2'(t)= - ~ [a(t)e-icpp12_at(t)e;cpr12], (2.12b) 
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the two sets being identical when <l>p = 0. The two sets of quadrature-phase amplitudes 

are related by the rotation 

x 1(t) =x 11(t) cos( <l>p 12)-x 21(t) sin(<l>p /2) , (2.13a) 

.X 2(t) = x z'(t) cos( <l>p /2) + i {(t) sin( <l>p 12) , (2.13b) 

pictured in Fig. 1 for <l>p/2=~cj>. By substituting Eqs. (2.12a) and (2.12b) in Eqs. 

(2. lOa) and (2. lOb ), we see that the quadrature-phase amplitudes i 1
1(t) and i 2

1(t) 

decouple the equations of motion; 

di {(t) -112 
---=KN x1

1(t) => x{(u )=x 1'(0)e" , 
dt 

d.f z'(t) -112 
---=-KN x2

1(t) => i 2
1(u)=i 2

1(0)e-u, 
dt 

(2.14a) 

(2.14b) 

where u = KN112
t is a dimensionless time. For a vacuum input, one easily finds that 

<M ,2(u )> = _!_ez" 
1 4 ' 

(2.15a) 

(2.15b) 

the x 21 quadrature exhibits maximum squeezing when the pump's phase is <l>p. The 

corresponding noise in the quadrature-phase amplitudes i 1 and x 2, from Eqs. (2.13a), 

(2.13b), (2.15a), and (2.15b) is described by 

(2.16a) 

(2.16b) 
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Suppose we allow the pump's phase to fluctuate. For the quantized pump in a 

-112 -
coherent state IN > with mean photon number N, the phase fluctuations are charac-

terized by 

(2.17) 

since we may choose without loss of generality <<l>p > =0. Because N is large, 

<~<1>}> will be small; we can thus approximate cos2(<l>p/2) by 1, sin2(<l>p/2) by 

<<1>}14> = l/16N, and the variance of the x2 quadrature by 

(2.18) 

The pump can be considered classical and the parametric approximation valid when 

the correction term is small, that is, when 

N >>-1-exp( 4N112tct) , 
16 

(2.19) 

where we have used the definition of u. The second term of Eq. (2.18) is the dom-

inant correction to the variance of the squeezed quadrature that is due to pump quan-

tum fluctuations. Because of the quantum nature of the pump, phase fluctuations are 

unavoidable; Figure 1 illustrates their effect. The solid ellipse represents squeezing 

with a classical pump (i.e., the parametric approximation) with a well-defined phase, 

<l>p =0. When <l>p :;tO, the ellipse is rotated by an angle <l>p/2 as demonstrated by Eqs. 

(2.13a,b). Pump phase fluctuations cause the orientation of the ellipse to fluctuate 

about <l>p =0, with the characteristic angle ~<I>= <<1>}t4> = l/4N112
, as represented by 

the dotted ellipse in Fig. 1, feeding noise from the amplified quadrature into the 

squeezed quadrature. One also sees why amplitude fluctuations are unimportant. 
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Amplitude fluctuations merely produce fluctuations in the gain (or rate of squeezing); 

they do not couple noise in the amplified quadrature into the squeezed quadrature. 

The above argument is for a one-mode PA, but it is easily extended to any 

number of modes; the same argument has been given for a continuum-mode PA, 15 

yielding the same dominant correction as given by Eq. (2.18), but with a bandwidth 

determined by phase mismatching that allows one to relate N to the pump power. In 

the parametric approximation, the signal modes interact in pairs at frequencies 

n+n .1ro and n-n .1ro; there are no interactions among different pairs in this approxi­

mation, and each pair can thus be considered separately. The correction that we have 

been discussing is due to fluctuations in the initial state of the pump and has nothing 

to do with back-action from the signal modes-pump depletion being one example of 

such back action - which would depend on the number of signal modes. The initial 

fluctuations act on each pair of modes in the same manner as described in Eq. (2.18) 

for the one-mode PA, yielding for each pair of modes a correction identical to that of 

Eq. (2.18). This correction is then independent of the number of signal modes, justify­

ing our one-mode treatment. 

The arguments given above are not rigorous; we have cited quantum mechanics 

as the ultimate source of pump phase fluctuations, yet we have treated their effect on 

squeezing classically. What we have given is a plausibility argument for and a physi­

cal picture of the dominant effect that is due to such fluctuations. The validity of our 

arguments will be confirmed by our detailed calculations, showing the correction 

tenns in Eq. (2.18) to be the dominant effect of pump quantum fluctuations on the 

squeezing, independent of the number of signal modes. 
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III. SYMMETRIES OF THE MULTIMODE PA 

We shall begin our analysis by studying the synunetries of the multimode PA, 

with the pump in a coherent state and all signal modes initially in vacuum states. This 

will allow us to concentrate on the few matrix elements that are not constrained by 

symmetry. Since the multimode PA combines the one- and two-mode P As as subsys-

tems, we will be able to study the symmetries of these subsystems along with those of 

the larger system. 

From Eqs. (2.7a) and (2.7b), the Heisenberg equations of motion in the interac-

tion picture are 

(3.1) 

da 1C M 
_P=-- l:aa 

dt 2 n =-M n -n . 
(3.2) 

The quantities that are measured by a balanced homodyne detector are the variances 

of the quadrature-phase amplitudes, 14 

(3.3a) 

(3.3b) 

Inverting these definitions gives 

(3.4a) 

(3.4b) 
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and similar definitions for the pump yield 

(3.5) 

where the coherent amplitude cx.c, of the pump has been written explicitly ( cx.c, is chosen 

real for convenience). It is worth noting that 

A At 
X(n)i =X(-n)i • (3.6) 

and that P; and X (O)i are both Hermitian. The equations of motion [Eqs. (2.7)] in 

these new variables are 

dX (n )1 " 1 " " " " 
=X (n)l + -(X (n)lp 1 +X (n)Zp z) • 

du cx.c, 
(3.7a) 

(3.7b) 

dP 1 1 M A A t A " t 
-d = - -

2
- L (X (n )lX (n )1 - X (n )2X (n )2 ) , 

u CX.C, n=-M 

(3.7c) 

dP 2 1 M A A t " " t 
= - -

2
- L (X(,,)1X(n)2 +X(n)2X(n)l), 

du Uc> n=-M 
(3.7d) 

where u = KCX.C,t • 

We are interested in symmetries of the time evolved matrix elements. Tims, we 

want symmetries that preserve both the equations of motion and the initial state of the 

system. TI1e coherent part of the pump has been subtracted out in our choice of vari­

ables [see Eq. (3.5)]; in terms of the pump quadrature-phase amplitudes P 1 and P 2, 

the effective initial state of the pump is vacuum. As any phase shift, reflection, or rota-

tion of the quadratures leaves the vacuum invariant, we seek such transformations 
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which leave the equations of motion [Eq. (3.7)] invariant. 

The symmetries may now be classed as follows. 

i) Time-reversal: 

(3.8a) 

(3.8b) 

u~-u. (3.8c) 

One consequence of this symmetry is that the squeezed quadrature is simply the time-

reversed amplified quadrature: 

(3.9) 

ii) Reflection: 

(3.lOa) 

(3.lOb) 

which tells us that 

(3.11) 

Hence, the pump's phase does not drift, and the signal modes do not acquire a 

coherent piece. A similar symmetry for the pump amplitude P 1 is absent because the 

pump may, for example, become depleted. Another consequence of this symmetry is 

that the conjugate quadratures remain uncorrelated; e.g., 

(3.12) 
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iii) Time stationary noise: 14 

n *O, (3.13a) 

A i9 A 

X (n )2(u )~e "X (n )2(u) , (3.13b) 

We cannot apply this symmetry to the one-mode PA (corresponding ton =0), since 

the quadratures X(O)l and X(0)2 are Hermitian [see Eqs. (3.3)]. But we can say that 

..... .I'\ .I'\ .... ..... t 
matrix elements, like <X(n)i(u)X(n')j(u)> and <X(n)i(u)X(n')j(u)X(m)k(u)> are 

identically zero for n * 0. With a combination of the above symmetries we may deter-

mine all quadrntic matrix elements given only 

A 2 A At 
< I !iX (n )2 I > = <X (n )2X (n )2 > sym · (3.14) 

At this point it is worth asking how the quantity <D..Y:f > [Eq. (1.6)] calculated 

by Scharf and W alls8 is related to the quadrature-phase amplitudes. They considered 

the two-mode PA and the quantity 

A 1 A At 
y 2 = ...J2 (X ( 1)2 + X (1)2 ) (3.15) 

[Eqs. (1.5), (1.8), and (3.3)]. When the time stationary noise and reflection sym-

metries are used, one finds 

(3.16) 

which is just the variance of the squeezed quadrature-phase amplitude. 
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IV. DOMINANT TERMS FOR THE MULTIMODE PA 

In this section, we shall determine the dominant time behavior of the squeezed 

quadrature-phase amplitude that is due to the quantum nature of the pump. As in Sec­

tion III, we study the multimode PA, extracting the one- and two-mode results at the 

end. 

The clear way to proceed in obtaining an expansion in <XQ1 is to take the Heisen-

berg equations [Eq. (3.7)] and iterate them. It is easier first to write them as integral 

equations: 

x\n )l(u) = e "x (n )1(0) + ~ 1: du I e-" '[x (n )l(u ')P 1(U ') + x (n )2(u ')P 2(U ')] '(4.1 a) 

By substituting the quadrature-phase amplitudes correct to 0 (1/aQ) into Eq. (4.1), we 

will obtain expressions for them correct to 0 (1/o.Q+1). Although this procedure is 

easy up to 0 (l!N) [i.e., 0 (llcxJ)], it becomes prohibitive in obtaining even the 

0 (1/N2
) correction, this correction requiring around 1000 terms. Instead of keeping 

every tenn we shall detemline which terms can yield a dominant contribution and 

then calculate them. 

Our objective is to determine the time dependence of the various terms that 

appear at each order in the expansion. Thus, we start by keeping only information 
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about time dependence in the integral equations (4.1). This leaves us with the "equa-

tions'' 

(4.2a) 

(4.2b) 

P 1(u)=l+ ~J;du'[X 1(u')X 1(u')+X2(u')X2(u')], (4.2c) 

(4.2d) 

where we have thrown away numerical coefficients and sums over different modes. 

We shall even treat these equations as c-number equations. Next, we define the sym-

bol 

f1 n :u" +u"-1+ ... +u + 1 (4.3) 

to represent an arbitrary polynomial of order n in the scaled time with all its 

coefficients suppressed. With these simplifications, Eqs. (4.2) become easy to iterate. 

The information we are left with is the form of solution at each order in the expansion; 

for instance, the squeezed quadrature-phase amplitude has the form 

(4.4) 
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to 0 (llaj"). Squaring this expression gives us the form of the variance: 

+ ~2 (e4u +u 2e2" + u 3 +u 4e-2u + u 2e-4u +e-6u )+ . . . . (4.5) 
N 

The terms multiplied by an odd power of <XO" 1 contain an odd number of quadrature 

operators and thus vanish by the reflection symmetry. The dominant terms at each 

order in l/N are pure exponentials. Thus, when we calculate the dominant terms for 

the squeezed quadrature, we may throw away any polynomial times an exponential, if 

the polynomial is nontrivial. 

We now use these simplifications to iterate Eq. (4.1), retaining only the dominant 

te1m at each order: 

A -U A eU A I\ 

X (n >2(u):::: e X (n >2(0) + -X (n )l (O)P 2(0) 
2<Xo 

e3u " M " "t " 
- --3 X (n )1 (0) r, X (m )l (O)X (m )l (O)P 2(0) 

16CXQ m=-M 

+O(llaJ), (4.6b) 

(4.6c) 

(4.6d) 
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/\ 

This gives the variance for the quadrature X (n )2 as 

e 2
" " "t "2 

+-=-<X(n)l(O)X(n)l (O)> sym <P 2 (O)> 
4N 

" "t "t " 
+ LX (n )1 (O)X (n )1 (O)X (n )1 (O)X (n )1 (0)> 

m 

(4.7) 

Restricting this calculation to one mode (M = O; n = 0,, only) gives 

2 e-2u e2" 3e4" 
<M2 (u)>=--+---=- _ , 

4 64N 1024N2 
(4.8) 

and for two modes (n =±1, only) 

" 2 e -2u e 2u 4e 4u 
<IM2(u)I >=--+---=- _ . 

4 64N 1024N2 
(4.9) 

When M ~ 0, the full M -mode calculation gives 

" 2 - e-2u e2" (3 +4M)e4" < IM<n>2(u)I >---+---=- - 2 , 
4 64N 1024N 

(4.10) 

which confirms our argument that the dominant semiclassical correction is 
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independent of the number of signal modes. 

For the M -mode PA the dominant term at 0 ( 1/ N2
) (and higher orders) is small 

compared to the 0 (1/N) term when 

e2u << _16_N_ 
3+4M 

(4.11) 

This is similar to the restrictions for the one-mode PA (i.e., M =0) calculations done 

by Hillery and Zubairy,7 except that they need the added restriction on their results 

that u _$1. 

Our result shows that so long as the condition in Eq. (4.11) holds, the semiclassi-

cal approximation is sufficient to detennine the limit to the squeezing, and thus the 

squeezing is limited by the pump phase-noise. If the condition of Eq. (4.11) does not 

hold, the semiclassical approximation breaks down, and only a full quantum treatment 

to all orders can be relied upon. 

V. SEMI-NUMERICAL METHOD 

The central theme of this paper is to determine the behavior of the squeezed 

quadrature's variance < I AX 2 12 > as a function of the scaled time u . Looking at Eq. 

(4.5), we can see that we have already derived the form of this variance to 0 (1/N2
), 

and in Eqs. (4.8) to ( 4.10) we have also calculated the coefficients of the dominant 

tenns to this order. It is nonetheless worth calculating the coefficients for the sub-

dominant terms appearing in Eq. (4.5), since this allows us to check directly whether 

or not these terms have coefficients large enough to overcome their smaller relative 

growth at times when the phase noise begins to dominate. Further, we shall show that 

it is relatively simple to derive the exact expression for < I AX 2 1
2> to 0 (1/N2

) (or 
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higher), using a new algebra and some numerical assistance. We hope that exposition 

of this new technique will be an adequate motivation for presenting the exact form of 

<IM 21 2> to 0 cvii2) for the one- and two-mode PA. In Section II we showed how 

to discretize a continuum mode calculation. Clearly, the fineness of this discretization 

should not appear in any physical quantities relevant to the continuum system. We 

find, as we argued in Section II, that all but the dominant correction at 0 (1/N) do 

depend in detail on the discretization prescription. If ever these terms become impor-

tant, then the discrete mode equations no longer model accurately the continuum sys-

tem. 

Let us see how we might proceed in finding the unknown coefficients in Eq. 

-o -1 -2 
(4.5). To 0 (N ), there is one coefficient; to 0 (l!N ), there are seven; and to 0 (l!N ) 

there are seventeen. We can calculate the first terms in a power series expansion of 

<IM 212> in the scaled time u; similarly, we can do a power-series expansion of 

the form given in Eq. (4.5) with a set of unknown coeffients. By equating the 

coefficients of u and N in these expansions, we can obtain sufficient simultaneous 

equations to solve for the unknown coefficients of Eq. (4.5). 

Since at 0 (ltiii2) we must find seventeen unknown coefficients, we will need an 

expansion of <IM212>=<1X212> to 0(u 16). To avoid repetition, we shall 

describe the calculation only for the one-mode PA with interaction Hamiltonian 

H iJJt = i K(a t 2b - a 2b t)/2; the variance of the evolving quadrature-phase amplitude 
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may be written 

2 " 2 " <O;exo l.f 2 (u) I O;exo> = <O;exo I exp(iuH mlKCXo)f2 exp(-iuH mlKCXo) I O;exo> 

+ · · · IO;exo>, (5.1) 

where the scaled time is u = KCXof, and I O;exo> = I O>®I exo> is the initial state 

(vacuum for the signal mode and coherent state for the pump mode). The signal and 

pump mode annihilation operators are a and b , respectively. Since the signal mode is 

in vacuum its annihilation and creation operators may be treated directly as ladder 

operators on a number state. For the pump mode, we need to normal-order its annihi-

lation and creation operators. 

Our first simplification comes from needing only the next to semiclassical 

approximation; i.e., 0 (llf:i2), for the calculation. Thus, when we are nonnal-ordering 

the pump mode operators, we may throw away all terms generated by more than two 

applications of the commutation relation [b, b t] = 1. This can be done automatically 

by using a new algebra, which we now present. For simplicity, we start with a 

description of this algebra good up to semiclassical order [i.e., 0 (1/N )]. 

Let us start with more general considerations: Many calculations in quantum 

optics require the expectation value of a product of creation and annihilation operators 

in a coherent state; e.g., 

(5.2) 

If we are interested only in calculating this to semi.classical order, then we need only 
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keep the terms up to 0(1/I~1 2) times the dominant ("classical") term. The dominant 

tenn is given by replacing the operators b and b t with the c-nwnbers ~ and ~*, 

respectively. For the semiclassical correction, we need only perform the first of a 

series of commutation relations - never performing more than one for each term 

[since we are interested only in terms to order h or equivalently 0(111~1 2) times the 

classical piece]. To do this, we make use of the commutation relation 

(5.3) 

and the notation 

B O = b f n b m + (j b f n -1 b m -1 . 
n,111- ' (5.4) 

the creation and annihilation operators are written as 

B 0 -bt 
1,0 - ' (5.5a) 

(5.5b) 

To semiclassical order in the amplitude I~ I , the following relation allows us to 

normal-order any expansion: 

(5.6) 

Clearly, 111 x n' is just the number of times the commutation relation is required in 

order to pass 111 annihilation operators from Bn~m past the n' creation operators in 

B11~:m'. As an example, the evaluation of the matrix element in Eq. (5.2) can be 
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worked out to semiclassical order in the coherent state of complex amplitude j3: 

For calculations at next to semiclassical order, we simply extend the algebra to 

be good up to 0 (l/N2
). In this case, we modify the notation so 

(5.8) 

0 

B o -bt 
1,0 - ' (5.9a) 

0 

B8,1 =b . (5.9b) 

After some calculation we find 

't 't' 't+'t'+ocr'+cr(m -l)n'+cr'm(n'-l)+(m,n') 
cr cr' cr+o' +mn' 

Bn,m Bn',m' =Bn +n',m +m' (5.10) 

where 

(m , n ) = m (m - l)n (n - 1 )/2 . (5.11) 

This extended algebra allows us, for example, to determine the 0(Ij31 2) term in Eq. 

(5.7) to be 8j3*3j34. 

In calculating <x J >, rather than proceeding precisely as suggested by Eq. 

(.5.1), we used this "B-algebra" to obtain, instead, the time evolved state of the sys-
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{2 0 
exp[u (a t 2b-a 2b t)/2] I O;exo> = IO;exo> +-u B8 1 I 2;exo> 2 , 

2 0 0 

+ us (--14!B 8.2 I 4;exo> -2B ?,1 I O;exo>) 

+ .... (5.12) 

Here, In ;ao> = In >®1 exo> is the outer product of a number state for the signal with 

the pump's initial coherent state. Equation (5.12) shows us the first terms in a power-

series expansion in u, although we actually retained the first 17 terms. To get 

<x J >, we need only wedge the operator i J between pairs of the time-evolved 

states given by Eq. (5.12). 

Even after these simplifications, the calculation would still be very tedious to do 

by hand, so we calculated Eq. (5.12) on a computer. The evolved state was 

represented by a multidimensional array, and numbers were calculated with limited 

accuracy. This allowed us to generate the power series expansion of <i J > and 

hence, the coefficients of Eq. (4.5) up to the accuracy used in the computations. 

The final step comes in estimating the accuracy necessary to reproduce the 

rational coefficients that should appear in Eq. (4.5). That they are indeed rational can 

be seen by looking at how they would arise if we were to iterate the Heisenberg equa-

tions [Eq. (4.1)] in full. This also allows us to estimate an upper bound on the 

numerators and denominators for each fraction. In the worst case, to 0 (l/N ), the 

numerator could come from all of the sixteen tenns that appear at that order, and the 

denominator from the factors of two in the definition of the quadrature phase 
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amplitudes and from factors that are due to the time integrations. An unambiguous 

calculation of this worst case rational number requires only about four significant 

figures in the final answer. Similarly, at 0 (llii2), we need to keep ten significant 

figures in the final coefficients. 

For the one-mode PA, we find at next to semiclassical order that 

<Mf > = [Eq.(1.11)] -
1 

_
2 

[3e 4" -(19/4-24u +32u 2)e 2
" +60-112u 

1024N 

-(80+58u -48u 2 -128u 3/3+32u 4)e-2" 

+(33+48u +96u 2)e-4u -45e-6u /4] .(5.13) 

For the two-mode PA the same technique yields a next to semiclassical result 

<ILU 2 12>= [Eq.(1.12)]- 1 _
2

[4e 4"-(5-28u+40u 2)e2u+96-160u 
1024N 

+(28+32u +128u 2)e-4u -18e-6uJ . (5.14) 

VI. STOCHASTIC DIFFERENTIAL EQUATIONS 
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A. The one-mode PA 

The dynamic evolution of a one-mode PA is described by von Neumann's equa-

tion in the interaction picture 

(6.1) 

where the interaction Hamiltonian H int(t) is given by Eq. (1.1). All operators are now 

in the interaction picture. We will assume that initially the signal mode is in the 

vacuum state, and the pump is in a coherent state of real amplitude exo: 

(6.2) 

To solve Eq. (6.1), it is convenient to project the density operator p1 (t) onto a 

suitable set of basis states. The positive-P representation16 is an off-diagonal 

representation obtained from an expansion on a coherent state basis: 

(6.3) 

where the operator A is given by 

(6.4) 

By substituting Eqs. (1.1), (6.3), and (6.4) into Eq. (6.1) and integrating by parts, we 
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find the Fokker-Planck equation 

(6.5) 

In its present form, Eq. (6.5) is a complex, eight-dimensional Fokker-Planck 

equation. The analyticity of A= A( cx.,cx.P .~.~P ), however, allows us some freedom of 

choice in interpreting the derivatives. 21 By properly interpreting the derivatives in Eq. 

(6.5), we obtain a real Fokker-Planck equation with positive-semidefinite diffusion. 

Using the standard methods of stochastic calculus, 17 this eight-dimensional Fokker-

Planck equation yields a set of eight real, first-order Ito stochastic differential equa-

tions (SDE's). When written in complex notation, the resulting SDE's are 

where, in the Ito calculus, 

dW 2 -dW2 -d 1- 2- 't. 

The Wiener increments dW 1 and dW 2 are real and independent. 

(6.6a) 

(6.6b) 

(6.6c) 

(6.6d) 

(6.6e) 
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Although we cannot solve Eqs. (6.6) analytically, an approximate solution is pos-

sible for a nearly classical pump. We assume that the stochastic pump mode variables 

ap and ~P consist of a mean amplitude <Xe> (chosen to be real) plus fluctuations ~a and 

(6.7a) 

(6.7b) 

We define new variables x 1, p 1, x2, and p 2 by 

(6.8a) 

(6.8b) 

It is convenient to change variables once again. We define the variables z 1 and z 2 by 

(6.9a) 

Zz=Xzeu ' (6.9b) 

where u =~.ft. The resulting SDE's are 

[ 

. ] V2 ] P 1-lpz 
+ 1+ dV 2 , 

~ 
(6.lOa) 
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(6.lOb) 

dp - 1 (-2e-2u _2e2")du 
1 - 2a.u ..: 2 - ..: 1 ' (6.lOc) 

(6. lOd) 

where dV 1 = -.../ O'.o dW 1 and dV 2 =-.../ O'.o dW 2. 

We use an iterative procedure to obtain an approximate solution of Eqs. (6.10). 

The square roots are expanded in a Taylor series: 

(6.11) 

Substituting Eq. (6.11) into Eqs. (6.10) and integrating formally, we find 
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1 l" P2(u)=pz(O)-- z 1(x)z 2(x)dx. 
~o 

Here, we have defined two new independent Wiener increments 

dV 1(x) +dV 2(x) 
dV (x )---~~--- -fi ' 

dV 1(x )-dV 2(x) 
dW(x)= -fi 

(6.12c) 

(6.12d) 

(6.13a) 

(6.13b) 

The new Wiener increments defined in Eqs. (6.13) correspond to a rotation of the old 

Wiener increments, dV 1 anddV 2, and hence retain the same correlation matrix. 17 

We can ignore the initial values z 1(0)=x 1(0), z2(0)=x2(0), p 1(0) and p 2(0) in 

subsequent calculations, because all moments involving these quantities are zero. To 

see this, we observe that the P-function gives normally ordered averages for all 

moments a" and ~n , and all normally ordered averages are initially zero for the case 

studied here. By extension, all moments involving the initial values x 1 (0), x 2(0), 

p 1(0), and p 2(0) are zero. 

The formal solution [Eqs. (6.12)] yields an approximate solution, valid for short 

interaction times and large pump amplitude, when the stochastic variables are 

expanded in a perturbation series in the reciprocal of the pump amplitude: 

00 

0= l: ao" e<n>. (6.14) 
n=O 

By substituting the expansion Eq. (6.14) into the formal solution Eqs. (6.12) and 

equating equal powers of a()", we obtain an approximate solution to the set of SDE's: 
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(i) to zeroth order, 

z (0) (u) = _1_ f" e-x dV 
1 -{2,Jo ' (6.15a) 

(6.15b) 

(6.15c) 

(ii) to first order, 

(6.16a) 

(6.16b) 

(6.16c) 

and (iii) to second order, 

z j2> (u) = J~' [z jO> (.x )p j1> (x) + z i0> (x )pi1> (x )e-2x] dx 

+-1- f" e-xfp (l)(x)dV +ip (l)(x)dW] 
2.../2 Jo 1 2 ' 

(6.17a) 

- ~ f" exfp (l)(x)dW +ip (l)(x)dV] 
2..../2 Jo 1 2 ' 

(6.17b) 

p i2> (u )=pf) (u )=0. (6.l 7c) 

The SDE's corresponding to the zeroth order solutions z j0> (u) and zi0
> (u) are 
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d- (0) - 1 -u dV 
,;1 -'12.e , (6.18a) 

(6.18b) 

We define the new variables 

(6.19a) 

(6.19b) 

with the resulting SDE's 

(6.20a) 

(6.20b) 

Equations (6.20) describe two independent Omstein-Uhlenbeck processes, each with 

zero mean. Thus, z ~O) (u) and z i0> (u ), apart from the exponential factors e u and e-u, 

respectively, are themselves Omstein-Uhlenbeck processes. They are Gaussian vari-

ables; all higher-order moments can be expressed in terms of second order moments. 

With this in mind, we can formulate a pair of rules to guide us through the remaining 

calculations: (i) a rule for quadratic moments, 

(6.21a) 

(6.2lb) 

<z }0
> (u )zi0

> (w )> av=O, (6.21c) 



- 106 -

and (ii) a rule for quartic moments, 

<z {0) (u )z fO) (v )z f0) (w )z f0) (z )>av= <z fO) (u )z fO) (v )>av <z fO) (w )z f0) (z )>av 

+ <z (O) (u )"' (O) (w )> <z (O) (v )z (O) (z )> 1 "'1 av 1 1 av 

+ <z (O) (u )z (O) (z )> <z (O) (v )z (O) (w )> 
1 1 av 1 1 av' 

(6.22a) 

+ <- (O) (u )z (O) (z )> <z <0 > (v )z <0> (w )> ,,;, 2 2 av 2 2 av' 

(6.22b) 

where < >av denotes an average in the positive-P representation. 

The squeezing in the signal mode is easily calculated by the repeated application 

of (i) and (ii). The signal-mode quadrature-phase amplitudes are defined by Eqs. 

(2.11), and the pump-mode quadrature-phase amplitudes are defined by Eq. (3.5), or 

more explicitly by 

" i " t P 2 = --(a -a ) 2 p p 
(6.23) 

The expectation values of the signal-mode quadrature-phase amplitudes x 1 and x 2 are 

zero when the signal is initially vacuum, as shown by Eq. (3.11). We then find that 

the uncertainties in x 1 and x 2 are 

(6.24a) 
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<M}>= ! +<x}(u)>av= ! +<z}(u)>ave-2
". (6.24b) 

We see from Eqs (6.24) that x 1 and x 2 are the c-number equivalents of the 

quadrature-phase amplitudes x 1 and f 2, respectively. To second order in c:xQ1, the 

uncertainties are 

<M 2 > = _!_ + <z (0) 2(u )> e2u + - 1-<2- (O) (u )z <2) (u )> e2u (6.25a) 
1 4 1 av aJ "' 1 1 · av ' 

<M 2 > = _!_ + <z (O) 2(u )> e-2u + - 1-<2z (O) (u )z 2(
2) (u )> e-2u (6.25b) 

2 4 2 av 2 2 av · 
~ 

Application of (i) yields the ideal squeezing: 

<M 2 > 1 < (0)2( )> 2u 1 2u 
1 ideal= 4 + z 1 u av e = 4 e ' (6.26a) 

< A.<"2 > 1 < (0)2 )> -211 1 -2u 
Ll..A 2 ideal = - + z 2 ( u av e = - e . 

4 4 
(6.26b) 

Repeated applications of (i) and (ii) yield the quadrature variances correct to semiclas­

sical order ~2=&-1 : 

<M 2 > = _!_ e2" + 1 _ [u2e2u +u (e2u + 1) 
1 4 SN 

(6.27a) 
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(6.27b) 

which are exactly the results obtained by Hillery and Zubairy.7 Equation (6.27a) also 

agrees to 0 (N-1
), with the result calculated via the seminumerical method [Eq. (5.8)]. 

The variance of the squeezed quadrature, including the dominant correction for at best 

moderate squeezing only, is 

(6.28) 

which agrees with Eq. (2.18), validating our heuristic picture of the effects of pump 

fluctuations on squeezing. 

B. The two-mode PA 

The analysis of the two-mode PA is similar to that of the one-mode PA. The 

equation of motion is again von Neumann's equation in the interaction representation, 

Eq. (6.1), with the two-mode interaction Hamiltonian ii int(t) given by Eq. (1.4). Ini-

tially, we assume that the signal modes are in vacuum states, and that the pump mode 

is in a coherent state: 

p(O)=P1(0)= IO;O;exo><O;O;exol . (6.29) 

By substituting the two-mode versions of Eqs. (6.3) and (6.4) into Eq. (6.1) and 



- 109 -

integrating by parts, we find the Fokker-Planck equation for the two-mode PA: 

Proceeding as in the one-mode case, we can derive a set of Ito SDE's from the 

Fokker-Planck equation, Eq. (6.30): 

(6.31a) 

(6.31b) 

(6.3lc) 

(6.31d) 

(6.31e) 

(6.31f) 

The complex Wiener increments dW 1 and dW 2 are defined by 

dW lx +idW ly 

dW 1 = "'2 ' (6.32a) 

dWzx +idWzv 
dWz= 12 - (6.32b) 

where dW lx, dW ly, dW zx, and dW Zy are independent, real Wiener increments, and, 
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in the Ito calculus, 

s =x,y. (6.32c) 

The complex pump amplitudes ~ and ~P are again assumed to consist of a 

large, real mean value Clo plus small fluctuations, as in Eqs. (6.7). We define the new 

variables X 1, Y 1, X 2, Y 2, P 1, and P 2 by 

It is convenient to change variables one more time: 

Z -Y " 2- 2e ' 

where u = Clo't. The resulting SDE's are 

[ 
p _ iP ] 112 "'] + 1+ 1 2 dV 

2 ' Clo 

(6.33a) 

(6.33b) 

(6.33c) 

(6.34a) 

(6.34b) 

(6.35a) 
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(6.35b) 

[ 
p -iP ] 

11
2 J 1 1 2 dV"' - + 2 ' 

~ 
(6.35c) 

[ 
p -iP ] 

112 
] - 1+ I 2 dV2 ' 

~ 
(6.35d) 

(6.35e) 

(6.35f) 

where dV 1 =-/~dW 1 anddV2 =-/c:xudW 2. 

We can obtain an approximate solution to Eqs. (6.35), just as we did in the one­

mode case; we formally integrate Eqs. (6.35), expand the square roots, and substitute 

the expansion Eq. (6.14) . We have found the approximate solution up to second 

order in cx.Q1: (i) to zeroth order, 

U i0) (u) = _!_ (" e-x (dS 1 + idS 2) , 
2 Jo 

(6.36a) 
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Z }0l (u) = U f0>"' (u) , (6.36b) 

(6.36c) 

(6.36d) 

(6.36e) 

(ii) to first order, 

(6.37a) 

(6.37b) 

(6.37c) 

(6.37d) 

and (iii) to second order, 

U f> (u )= ,C [U f0> (x)P p> (x )+ U i0
> (x )Pp> (x )e-2.x] dx 

(6.38a) 

(6.38b) 
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+ ~ f: ex [P fl) (x )(dS 3 - idS 4) + P ?) (x )(dS 1+idS2)] , 

_ l_ f" ex [P i1) (x )(dS 3 + idS 4)-P p> (x )(dS 1-idS2)] , 
4 Jo 

(6.38c) 

(6.38d) 

(6.38e) 

Notice that in Eqs. (6.36) and Eqs. (6.38) we have replaced the complex noise incre­

ments by the real Wiener increments dS 1, dS 2, dS 3, and dS 4, where, using Eqs. (6.32), 

dW lx +dW 2x dW ly -dW 2y 
dS 1 = .../2 , dS 2 = .../2 , (6.39a) 

(6.39b) 

Also note that, as in the one-mode case, we have dropped all contributions arising 

from the initial conditions. 

By comparing Eqs. (6.36) with Eqs. (6.15), we see that the zeroth-order solutions 

U }0
> (u ), Z }0> (u ), U i0

> (u ), and zi0) (u) have real and imaginary parts that are Gaus-

sian variables. Let 

(6.40a) 

(6.40b) 

where Q 1 (u ), Q 2(u ), Q 3(u ), and Q 4(u ) are independent Gaussian variables with zero 
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mean. We can use Eqs. (6.40) to generalize the one-mode rules [Eqs. (6.21) and Eqs. 

(6.22)] to the two-mode case: (i) a rule for quadratic moments, 

(6.41a) 

(6.41b) 

(6.41c) 

and (ii) a rule for quartic moments, 

+ <Q 1(U )Q 1(W )>av <Q 1(V )Q 1(Z )>av 

(6.42b) 

+ <Q3(U )Q3(W )> av<Q3(V )Q3(z )>av 

<Q 4(U )Q 4(V )Q 4(W )Q 4(Z )>av= <Q3(U )Q 3(V )Q 3(W )Q 3(Z )>av· (6.42d) 

We can calculate the two-mode squeezing by repeated application of (i) and (ii). 

The two-mode quadrature-phase amplitudes are defined by 

,. 1 ,. t 
xi= -(a i +a2), 

2 

,. i ,. t x 2 = - -(a i -a z ) , 
2 

(6.43a) 
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,.. i t P2=--<a -a) 2 p p . (6.43b) 

The two-mode signal quadrature-phase amplitudes are not Hermitian operators. In 

tenns of the stochastic c-nwnbers, the mean-square uncertainties in the two-mode 

quadrature-phase amplitudes are given by 

,.. 2 1 
< IM 1 I > = 4 + <X 1Y1 >av - <X 1>av<Y1 >av , (6.44a) 

(6.44b) 

From Eq. (1.13) and Eqs. (6.44), we see that X 1 and Y 1 are the c-number equivalents 

of the operators X 1 and its Hermitian conjugate X [,respectively, and X 2 and Y 2 are 

the c-number equivalents of the operators X 2 and its Hermitian conjugate X J. Substi-

toting Eq. (6.14), Eqs. (6.36), Eqs. (6.37), and Eqs. (6.38) into Eqs. (6.44), we have to 

second order in a.() 1 

< I M 12 > = _!_ + < U (O) (u )Z (O) (u ) > e 2" 1 4 1 1 av 

+ < U f0> (u )Z f2> (u) + U f2> (u )Z 1°> (u )>ave 2u , (6.45a) 

+ ~<U iO) (u )Zi2) (u )+ U i 2) (u )ZiO) (u )>av e-2u , (6.45b) 
~ 

since the expectation values of X 1, Y 1, X 2, and Y 2 are zero. 
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Repeated application of the two-mode rules (i) and (ii) yields the mean-squared 

uncertainties correct to semi classical order cxo2 = &-1
: 

(4 inh2 5 ) inh u 3 inh2 l 
- S U + 2 S U e - 2 S UJ , (6.46a) 

(6.46b) 

which is slightly different from the one-mode result, Eqs. (6.27), and agrees to 

0 (N-1
) with the result calculated via the seminumerical method [Eq. (5.9)]. When the 

dominant correction only is kept, the uncertainty in the squeezed quadrature is 

(6.47) 

which is the same as the dominant correction found for the one-mode case, Eq.(6.28), 

in contrast to the result obtained by Scharf and Walls. 8 

VII. CONCLUSION 

We have calculated, for the one- and two-mode PA, the explicit corrections for 

squeezing to order l/N2
, that are due to a quantum pump in a coherent state with an 

average photon number N. We found that the pump's phase noise is responsible for 

the dominant contribution to the limitations on squeezing for any number of signal 
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modes. We also briefly discuss under what conditions traveling-wave calculations can 

be treated by Hamiltonian methods in the most direct way. This was done by discre­

tizing the continuum problem. Finally, the limitation to squeezing in the discrete­

mode calculations that we performed were shown to be insensitive to the details of our 

discretization process. 
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FIGURE CAPTIONS 

FIG. 1. The effect of pump phase fluctuations on squeezing. The ellipse with solid 

lines represents ideal squeezing, in which the pump has a well-defined phase. Phase 

fluctuations in the pump cause the orientation of the ellipse to fluctuate about <l>p = 0, 

with the characteristic angle, ~<I>= l/(4N112
), feeding noise from the amplified quadra­

ture into the squeezed quadrature. 
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ABSTRACT 

We review the formalism of Effects and Operations in order to demonstrate that 

this formalism is equivalent to the standard rules of quantum mechanics. D'Espagnat5 

has studied an example where he finds a discrepancy between an analysis based on the 

standard quantum rule for calculating probabilities and an analysis that uses a particu­

lar Operation taken from the work of Barchielli and his collaborators.4 We use the 

fonnalism of Effects and Operations to explore and explain this discrepancy. 

1. INTRODUCTION 

Measurements in quantum mechanics are usually described in the following way: 

the system to be measured is coupled to a ''measuring apparatus''; after the interac­

tion, one obtains information about the system by observing some property of the 

apparatus. We shall refer to such a description as a "measurement model." 

Quantum-mechanical measurements can also be described by a formalism that 

uses mathematical objects called Effects and Operations. 1- 3 The formalism of Effects 

and Operations is equivalent to a description in terms of a measurement model. 

Recently, however, there has been some question about the usage of this formalism. 4
•
5 

The purpose of this brief note is to clear up this question. 

The formalism of Effects and Operations can be obtained by applying the stan­

dard rules of quantum mechanics to the observation of the apparatus in a measurement 

model. What the formalism does is to provide a very convenient, compact notation 

for describing a measurement directly in terms of the system state (density operator). 

The properties of a particular model-i.e., the type of apparatus and its quantum state 

and the type of interaction with the system-are incorporated in the Effects and 

Operations. 
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A set of Effects generates from the system state the statistics of the possible out­

comes. Given a particular result, an Operation maps the system state before the meas­

urement to a new (unnormalized) system state after the measurement. Thus, one 

obtains a complete quantum-mechanical description of the measurement. Different 

models can give rise to the same measurement statistics, yet lead to different system 

states after the measurement. Thus, one says that an Effect can have more than one 

Operation. The difference between two such models shows up in the statistics of a 

second measurement. 

Barchielli, Lanz, and Prosperi4 have used Effects and Operations to develop an 

elegant formal description of a continuous measurement of position. To generate the 

measurement statistics, they use a simple set of Effects. More importantly, they adopt 

the simplest Operations that are consistent with their Effects. In particular, they use 

Operations, called pure Operations, that map pure system states to pure system states, 

though even within the class of pure Operations their choice is special. 

Barchielli et al .4 do not give a measurement model that realizes their choice of 

Effects and Operations (the reader can find such a model in Ref. 6), although there is a 

theorem that any consistent set of Effects and Operations can be realized. 1 Even a 

careful reading of their paper might lead one to believe that they are proposing their 

particular choice of Operations as a fundamental constituent in a new theory of meas­

urement. Only in their Appendix B do they make it clear that their choice of Opera­

tions is not unique; it corresponds to some measurement model that they do not 

specify. 

In a recent paper, d'Espagnat5 takes the pure Operation of Barchielli et al. as 

part of a new theory, which he dubs the "Milano theory." Seeking to compare this 

theory with standard quantum mechanics, he analyzes two consecutive measurements 
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of spin by two different methods. In the first method, he formulates a model for meas-

urements of spin and applies to the model the standard quantum rule for calculating 

probabilities. In the second method he applies to two measurements of spin a pure 

Operation analogous to the pure Operation for position measurements of Barchielli et 

al. He finds that the two methods do not agree and concludes that the ''Milano 

theory" is different from standard quantum theory. In view of the above discussion, 

however, the discrepancy he finds is not at all surprising. The pure Operation of the 

' 'Milano theory'' corresponds to some model for measurements of spin, but it is not 

the measurement model that d'Espagnat has formulated. D'Espagnat knocks down a 

straw man-the ''Milano theory''. The formalism of Effects and Operations remains 

untouched. 

In this note we explore and explain the discrepancy found by d 'Espagnat. In 

Section 2, we review briefly the formalism of Effects and Operations, showing how it 

arises naturally from applying the standard quantum rules to a measurement model. 

In Section 3, we study d'Espagnat's model in detail and discuss how it is handled 

within the framework of Effects and Operations. In Section 4, we consider the pure 

Operation for a spin measurement (the "Milano theory"), and we formulate a meas­

urement model, different from d 'Espagnat 's, that realizes this pure Operation. 

2. REVIEW OF EFFECTS AND OPERATIONS 

Consider a measurement model in which the system, initially with density opera­

tor p, interacts with a measuring apparatus, initially with density operator p A. The 

interaction leaves the system and the apparatus with joint density operator 

(2.1) 
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I\ 

where U is the joint evolution operator including the interaction. 

After the interaction, one observes the apparatus in order to learn something 

about the system. Suppose, for example, that one measures an apparatus observable 

B , which has eigenvalues B . Let PB be the projector onto the space spanned by the 

eigenvectors with eigenvalue B. (An eigenvalue B can be degenerate, in which case 

PB projects into a multidimensional subspace of the apparatus Hilbert space.) The 

standard quantum rule for calculating probabilities gives the probability to obtain 

result B: 

P (B )=tr (PB Ptot) =tr s(F B p) , (2.2) 

where 

(2.3) 

Here tr sand trAdenote traces over system and apparatus variables, respectively, and tr 

denotes a trace over both sets of variables. The system operators F B are called 

Effects; 1- 3 they provide a compact notation for generating measurement statistics 

from the system density operator. 

Suppose now that the measurement yields the particular result B . The standard 

quantum rule for state reduction gives the system density operator p8 after the meas-

urement: project the joint density operator into the subspace corresponding to eigen-

value B, trace out the apparatus, and normalize. The resulting state is 

J=Bp 
P(B) 

where f=B is a linear mapping on system density operators, defined by 

(2.4) 
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(2.5) 

The map Fs is called an Operation; 1.3 it maps the system density operator before the 

measurement into the (unnormalized) system density operator after the measurement. 

An immediate consequence of the above is that 

tr s( Fs p) =tr s(F B p) = P (B ) . (2.6) 

We emphasize again that Effects and Operations arise from applying the stan-

dard quantum rules to a measurement model-i.e., from applying projection operators 

to the measuring apparatus. Indeed, Operations generalize the usual state reduction to 

"indirect measurements," where a projection operator is applied to the apparatus 

rather than directly to the system. 

An .important special case arises when the apparatus is initially in a pure state 

p A= I Y> <YI , and the projection operator PB = I B > <B I projects into a one-

dimensional subspace of the apparatus Hilbert space. Then, defining a system opera-

..... ..... ..... /\ t"' ..... .... I'\ ..... t . 
tor YB = <B I U I Y>, one finds that F B =YB YB and Fs p =YB p YB. In thIS case, the 

Operation maps pure states to (unnonnalized) pure states, and it is called a pure 

Operation. 3 Still more special is the case where YB is Hermitian, so that 

Fs p = f if 2pf112
• 

An Operation determines the corresponding Effect via Eq. (2.6), but the reverse 

is not true. Many Operations lead to the same Effect. Physically, we would say that 

many measurement models yield the san1e measurement statistics for a single meas­

urement, even though their internal workings are different. The Effect f B is con-

. . I h Op . F" 112 " F" 112 b h 0 . d s1stent wit 1 t e pure eration B p B , ut many ot er perattons -pure an 

impure-produce the same Effect. 
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How could one distinguish between different Operations that lead to the same 

Effect? [Not by the statistics of a single measurement, because Effects determine 

those statistics.] One looks, instead, at the statistics of two or more successive meas-

urements. Different Operations-Le., different measurement models-lead to dif­

ferent post-measurement system states and thus, in general, to different statistics for a 

second measurement. 

B h. ll' L d P ·4 I 0 . FJI 112 
JI FJI 112 . h . c al arc 1e 1, anz, an rospen use t 1e pure peratton B p B m t err iorm 

description of continuous position measurements. This choice corresponds to a partic­

ular measurement model,6 which they do not specify. D'Espagnat5 dubs this choice 

the "Milano theory" and seeks to compare it with standard quantum mechanics. He 

formulates a model for measurements of spin and shows that the "Milano theory" 

yields different statistics for two consecutive measurements of spin than he obtains 

when he applies to his model the standard quantum rule for calculating probabilities. 

The discrepancy he finds, while correct, has a simple explanation: The pure Operation 

JI 112 JI JI 112 
F B p F B corresponds to a different measurement model than the model d'Espagnat 

has formulated. 

We proceed in Section 3 to show how d'Espagnat's model is treated in terms of 

Effects and Operations. 

3. D'ESPAGNAT'S MODEL 

In this section, we consider the measurement model discussed by d'Espagnat,5 

with attention paid to its description in terms of Effects and Operations. The model 

also makes explicit the general formalism sketched in Section 2. 

The system is a spin-1h particle, whose free-evolution is described by a Hamil­

tonian ii 0; the corresponding free evolution operator is U 0(t) = exp(-iH of). The 
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measuring apparatus is a one-dimensional quantum system; its position x serves as a 

pointer that provides information about the z -component of the particle's spin. The 

apparatus is coupled to the particle strongly for a short time; we idealize the interac-

tion as a ~-function in time. Thus, the total Hamiltonian is 

(3.1) 

where t 1 is the time when the apparatus is coupled to the particle, a> 0 is a coupling 

constant, Oz is the z-component of the particle's spin (in units of 'hh), and p is the 

momentum conjugate to the pointer position x. We assume that the apparatus has 

large enough mass that its free evolution can be neglected. 

Let I 4>1 > and I 4>2> be the eigenstates of Oz, corresponding to spin-up and 

spin-down, respectively: 

~ '+1 
cr z I <I> j > = (-1 }' I <I> j > , j = 1,2 . (3.2) 

Suppose that at t = 0 the particle is in a pure state I 'If o>, and that the apparatus is 

prepared in a state with wave function g (x ). Then, just after the interaction, the joint 

state of the particle and apparatus becomes 

I,g (x-aj) I <l>i > <<l>j 1 '1'1> , 
j 

(3.3) 

where I 'If 1 > = U 0(t 1) I 'l'o> is the particle's state just before the interaction at time t 1 

and 

a j = ( -1 ); + 1 a , j = 1,2 . (3.4) 

The interaction displaces the pointer a distance a-to the right if the particle's z -spin 

is up, to the left if the particle's z -spin is down. The probability density to find the 
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pointer at position x is 

P(x)=l: lg(x -aj)l 2 1 <<l>j l\lf1> 12 

j 

(3.5) 

Suppose now that at time t 2 the particle interacts in the same way with a second, 

identical apparatus, whose position is labeled by y. Just after the second interaction, 

the joint state of the system and the two apparatuses is 

l:g(y-a;)g(x-aj)l<I>;> <<1>; IU 21 1<\>j> <<1>j 1'1'1>, 
i ,j 

(3.6) 

where 0 21 =U 0(t2 - t 1). The joint probability density for the two-pointer positions is 

P(x,y)= L lg(v-a;)l 2g*(x-ak)g(x-aj) 
i ,j ,k 

D'Espagnat considers the case where one asks only whether the pointer lies to 

the right of the origin or to the left of the origin. This corresponds to measuring an 

apparatus observable P (+)-P (-)' which has eigenvalues ±1; the projection operators 

P (+land PH are defined by 

P1 =1 dx Ix> <x I , (3.8) 

where I can be either the interval(+)= (0, 00 ) or the interval(-)= (-co, 0). If the initial 

apparatus wave function is centered at the origin, and if the interaction displaces the 

pointer a distance somewhat larger than the width of the wave function, then knowing 
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on which side of the origin the pointer lies gives a good indication of whether the 

particle's z -spin is up or down. 

The probability that the first pointer lies in the interval I is 

P(I)= J dx P(x)=trsCF1 p1). (3.9) 

Here, p 1 = I 'I' 1 > <'If 1 I is the particle's density operator just before the interaction at 

time t 1, and 

F1=~l<l>j>[Jdx lg(x-aj)l
2
] <<l>jl 

J 

(3.10) 

is an Effect [cf. Eq. (3.5)]. Similarly, the joint probability that the first pointer lies in 

the interval I 1, and the second lies in the interval I 2 is 

The probabilities (3.9) and (3.11) come directly from the standard quantum rule for 

calculating probabilities; in particular, to obtain P (/ 1,J 2), there is no need to invoke 

state reduction after the first measurement. 

How would the same two measurements be described, using Effects and Opera-

tions? Equation (3.9) gives the probability for the first measurement in terms of an 

Effect F1 . If the first pointer is found to lie in the interval I, then the state of the parti-

de just after the first measurement is 
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where the Operation Fj is defined by 

Fjp1=L,Jdx g(x-aj)g"'(x-ak)l<j>j> <<1>j lp1 1<1>k> <<l>k I. 
j,k 

(3.12) 

(3.13) 

Notice that, in general, p1 is a mixed state. Physically, this is because one throws 

away information when one asks only on which side of the origin the pointer lies. 

Formally, it is because P (+) and PH are not one-dimensional projectors. 

The second measurement is identical to the first. Thus, the conditional probabil-

ity that the second pointer lies in the interval I 2, given that the first lay in I 1, is 

(3.14) 

The joint probability for the two measurements can now be derived as 

(3.15) 

One can easily see that Eq. (3.15) gives the same joint probability as Eq. (3.11). 

The quantum rule for calculating probabilities goes directly to this joint probability. 

The formalism of Effects and Operations proceeds more indirectly: a probability for 

the first measurement, followed by a state reduction described by an Operation, then a 

conditional probability for the second measurement, and, finally, the joint probability 

for the two measurements. Direct or indirect, the results are the same, because they 

are constructed to be the same. 

After fonnulati.ng and analyzing his model, d 'Espagnat goes on to analyze two 

consecutive measurements of spin using the special pure Operation F/12 p f/'2
, which 

he takes from Barchielli et al. and which he calls the "Milano theory." We now 
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proceed in Section 4 to consider this pure Operation and to formulate a measurement 

model that corresponds to it. 

4. THE PURE OPERATION AND A MODEL FOR IT 

Consider now the special pure Operation /(] discussed in Section 2: 

K,p" _ f 112 p" f' 112 
'/ 1= I 1 I 

(4.1) 

This pure Operation clearly reproduces the Effect (3.10) for a single measurement in 

d'Espagnat's model-i.e., trs(~ p1)=trs(F1p1); thus, it leads to the same measure-

ment statistics for a single measurement. It should be compared and contrasted, how-

ever, with the actual Operation Fj [Eq. (3 .13)] for the model. 

Suppose that one uses the pure Operation ~ in place of the actual Operation Fj 

to analyze two consecutive measurements of spin. Using~ to generate a new system 

state after the first measurement, one finds a joint probability for two measurements, 

= L [ l dx I g (x -a;) 12
) 

• • I. If 2 
t ,) ·" 
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[cf. Eq. (3.15)]. As d'Espagnat points out, the joint probability (4.2) is different in 

general from the joint probability (3 .11 ), which comes directly from applying the st an-

dard quantum rules to his model. D'Espagnat concludes that the "Milano theory" is 

different from standard quantum mechanics. Having learned about Effects and Opera-

tions, we can reach a different conclusion: The "Milano theory" is a straw man, 

because the pure Operation I<] is not meant to apply to all measurement models for 

spin; it is only one of many Operations that correspond to the Effect F1 , and it is not 

the Operation that applies to d 'Espagnat 's model. 

The two descriptions coincide when the initial apparatus state and the coupling 

constant are chosen so that the measurements are "ideal" -i.e., when g (x ) = 0 for 

Ix I > a. In this case, knowing the pointer lies to the right (left) of the origin tells one 

unambiguously that the particle's z-spin is up (down). The Effect F1 reduces to a pro­

jection operator-ft(+)= 14>1> <4>1 1 and F H= 14>2> <4>2 1-and the corresponding 

Operations f} = I<] project onto 14> 1 > and 14>2 >. 

More generally, it is interesting to inquire what measurement model does realize 

the pure Operation !<]. Since the Operations /(+) and Kc-) take a pure state 

p1 = I 'Jl1 > <'1'1 1 to (unnormalized) pure states /(+) p1 and Kc-) Pi. it is convenient to 

represent their action in terms of state vectors instead of density operators: 

(4.3a) 

(4.3b) 

where 

[ 

00 J 112 
A = Jo dx I g (x - a) 12 

, (4.4a) 
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( 

00 ) 112 
B = J

0 
dx I g (x +ex.) 12 

. (4.4b) 

The only condition on A and B is that they be between zero and one inclusive. (An 

' 'ideal' ' measurement would correspond to the case A = 1 and B = 0.) 

The form (4.3) makes easy the search for a model yielding the Operation l<J. 

Since the Operation is pure and since there are only two distinguished configurations 

for the apparatus, we can model the apparatus as another spin-1h system. We choose 

an interaction Hamiltonian 

(4.5) 

where ~ > 0 is a coupling constant, cr z is again the z -component of the particle's spin, 

and SY is they-component of the apparatus's spin (in units of 1hlt). The interaction 

causes the apparatus spin to precess about the y-axis-in the positive sense if the 

particle's z -spin is up, in the negative sense if the particle's z -spin is down. 

The evolution operator corresponding to Hint is 

(4.6) 

Let the initial apparatus wave function be 

[ c~sel ; sm0 
(4.7) 

here we use matrix notation in the basis where the apparatus z-spin Sz is diagonal. 

Just after the interaction, the joint state of the particle and the apparatus becomes 

(4.8) 
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where 

(4.9) 

If the apparatus is observed to have spin up in the z -direction, then the particle's 

state changes according to 

(4.lOa) 

Similarly, if the apparatus is observed to have spin down in the z -direction, then the 

particle's state changes according to 

(4.lOb) 

These changes represent the same pure Operation as Eqs. (4.3), with the 

identifications A= cos(0+~) and B = cos(0-~ ). 

Just as in d'Espagnat's model, we can obtain an "ideal" measurement by choos­

ing the initial apparatus state and the coupling strength appropriately. Choose the 

angle 0=-7t/4 so that the apparatus spin is initially oriented along the negative x-axis, 

and choose the coupling angle ~=n:/4 so that the apparatus spin rotates by an angle 

rt/2. Then, after the interaction, the apparatus z-spin is up (down) if the particle's z -

spin was up (down), and the Operations represented by Eqs. (4.10) project onto the 

states I cp1 > and I c1>2>. 
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ABSTRACT 

i) Usually an inequality that is chained becomes a weaker inequality. We show 

that chaining the Bell 1 inequality can actually lead to stronger violations by quantum 

mechanics. ii) By using the notion of the information gained in a measurement, we 

are able to derive a new Bell like inequality. This information theoretic Bell inequal­

ity automatically applies to more general situations than the standard Bell inequality 

(for instance, higher-spin versions of the EPR experiment), and further, it is violated 

when noise-free measurements yield less information (on average) than logic based on 

local realism would predict. iii) We point out that the Bell inequality fits naturally 

into a hierarchy of inequalities predictable from local realism. 

I. INTRODUCTION 

Local realism implies constraints on the statistics of two widely separated physi­

cal systems. These constraints, collectively known as Bell 1-3 inequalities, can be 

violated by quantum mechanics. The Clauser-Home-Shimony-Holt4 (CHSH) Bell 

inequality applies to a pair of two-state systems and constrains the value of a certain 

linear combination of four correlation functions between the two systems. Quantum 

mechanics violates the CHSH inequality; the violation has been confirmed experimen­

tally. 5-7 

This chapter introduces a new kind of Bell inequality in terms of information 

theoretic quantities. The general formulation of this inequality allows it to be applied 

to many situations immediately and further leads to the realization that a hierarchy of 

Bell inequalities exists for multiparticle systems, for which the two-particle Bell ine­

qualities seem to play a special role. 
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In Section II, we introduce the auxiliary concept of chaining the standard 

(CHSH) correlation Bell inequality, and we show how stronger violations can be 

obtained in this way. We motivate our approach of writing down information 

theoretic quantities in Section III; for this purpose information theory is briefly 

reviewed there. In Section IV, we give the derivation of the information Bell inequal­

ity and apply it to higher-spin versions of the EPR8 experiment. Chaining of these 

new inequalities shows how there are violations for arbitrarily high spins even at large 

angles. Finally, in Section V, we discuss our thoughts on the Bell inequality. 

We start with a brief review of the current experimental status of tests of quan­

tum theory versus local realism. A set of experiments performed in the midseventies 

have been reviewed by Clauser and Shin1ony3
. These experiments involved various 

kinds of sources for the pair of correlated particles: atomic cascade-producing pairs of 

photons, annihilation of positronium, and proton-proton scattering. However, all of 

these experiments were substantially improved upon in new atomic cascade experi­

ments by Aspect and various coworkers5- 7 in the early eighties. The major improve­

ments in their experiments are worth mentioning. They started5 with a high-efficiency 

source of low-energy pairs of photons emitted in an atomic-cascade of calcium. This 

gave them good statistics in short runs and allowed them to have large source­

polarizer separations (up to 6.5 m). The stability of their source reduced problems 

from drifts in the source intensity between runs with the polarizers set at different 

orientations. Next6 they included two-channel polarizers, which allowed them to 

measure directly the polarization correlations without resorting to the assumption that 

photons not detected behind the polarizer were in the opposite polarization from the 

analyzer's setting. Subsequently,7 they included acoustic switches in front of the 

polarization analyzers, which could choose the orientation of the polarization analyzer 
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while the photons were in flight from their source, thus ruling out any information 

transfer between the photons. The results of these final experiments agree with quan­

tum mechanics and violate the CHSH inequality by five standard deviations, showing 

empirically that a local realistic description of two-photon decays is not possible. 

It is worth mentioning two known caveats to these experiments. Since the photo-

detectors have a low efficiency, only a small fraction of all photon pairs are actually 

detected. It follows that there is an extra assumption needed: that the pairs observed 

actually make an unbiased sample of all pairs. It has been suggested3 that some 

unknown systematic error could conceivably "enhance" the correlations in such a 

way as to mock quantum mechanics. The second objection9 questions whether local­

ity has been strictly enforced with even the largest source-polarizer separations used 

so far. It turns out that in the experiments performed, at least one of the photons 

comes from an atomic level with a lifetime exceeding 40nsec - which is longer than it 

takes light to travel the maximum separations used - so subluminal information 

exchanges are not entirely ruled out. 

II. CHAINING THE CHSH BELL INEQUALITY 

In this section we chain the CHSH Bell inequality [En. (11.3.3) of Chapter I] to 

derive a "weaker" condition for local realism. Interestingly enough, this new ine-

quality has violations that occur over a larger set of angles than in the original form of 

the inequality, and further, can lead to stronger violations. 

In the formulation of the EPR 10 paradox for a pair of photons formed from a 

decay, moving back to back in a spin-singlet state (as in the Aspect et al. experi-

ments), measurements can be made of the polarizations of the photons along the axes 
~ 

d and b (for the left and right moving photons, respectively). For notational 
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convenience, we write these polarizations as cra and ab respectively. For a left­

moving photon O"a =+ 1, if the photon is polarized along a, and O"a =-1, if it is polar­

ized perpendicular to a; O"b is defined similarly for the right moving photons. 

As is shown in Chapter I, objectivity and locality - a combination called local 

realism - enforce the CHSH Bell inequality 

-+ -+ -+ -+ 
- 2 ~ c <a', b) + c <b ,a)+ c (a, b ') - c <a', b ') ~ 2 . (11. l) 

-+ 
Here, a' and b' are new axes for the left- and right-moving photons, respectively, with 

-+ 
corresponding polarizations O"a' and ab'· The correlation function C (d, b) is defined 

as the expectation value of the product of the polarizations cr a and ab: 

(11.2) 

We will now proceed to derive the chained Bell inequality. To simplify our 

argument, we start by writing out the right and left hand sides of inequality (II. I) 

separately, 

-+ -+ -+ -+ -+ -+ -+ -+ 
B (a', b) + B (b, a) + B (a , b ') ~ B (a', b ') , (11.3) 

-+ -+ -+ -+ -+ -+ -+ -+ 
D (a',b) +D(b ,a) +D(a ,b') ~D (a ',b'), (11.4) 

where 

(11.5) 

Each of these expressions [Eqns. (11.3) and (11.4)] has a correlation on the right and a 

sum of similar correlations at "interpolated" detector settings on the left. Thus, each 
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of these expressions can be iterated by splitting the correlations on the left into further 

interpolations. This gives in general 

(11.6) 

(11.7) 

where N is even [the case N =4 is just the standard CHSH inequality of Eqn (11.1)]. In 
-t -t -t -t -t -t 

our notation, the vectors a 1, b 2, a 3, b 4, · · · , aN-l • bN represent orientations for the 

polarization analyzers of the left- and right-moving photons in runs where these set-

tings are taken pairwise, as in Eqns. (11.6) and (11.7). Further, the polarizations at 

these settings are labeled cr1, cr2, cr3, cr4, · · · , crN-l• O'N, respectively. 

Expressions (11.6) and (11.7) are the chained Bell inequalities. It may be worth 

noting that they can be easily derived directly from the assumption of local realism 

without resorting to chaining. To do this, we shall follow an argument (given in 

Chapter I, Section 11.3) similar to one used by Peres11 for the CHSH inequality [Eqn. 

(11.1) ]. Under the assumption of realism (objectivity), every one of these polarizations 

is an objective property for each decay - independent of their observation. Given 

this, it is sensible to write expressions for these properties of a single decay, for 

instance, 

(11.8) 

(N is even). This inequality is indeed true for each and every decay, as we see in the 

following way: Each polarization O'; will be ±1, so that each bracketed term is at most 

zero. We have two cases: (i) cr1 and O'N have the same sign, so that expression (11.8) 

is trivially true; (ii) cr 1 and crN have opposite signs, in which case the right-hand side 

is -2, but since N is even, at least one of the pairs (cri. 0'2), (cr2. 0'3), · · ·, (O'N-1' crN) 
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must also have opposite signs, so the left-hand-side is no bigger than -2. We make 

use of realism once more to convert expression (II.8) into one involving measurable 

correlation functions. Since for each decay all the polarizations are objective, over 

many decays the statistics of these objective properties must form a grand probability 

distribution, 

(II.9) 

We don't claim to be able to know the values cr1, · · ·, O'N for each decay, being able 

only to detennine a pair of them in any single experimental run. However, we may 

use this distribution to average (11.8) over many decays. This averaging gives exactly 

inequality (II.6). We can derive inequality (11.7) in the same way if, instead, we start 

with the expression 

(II.10) 

which also holds good for every single decay if realism is true. For convenience, we 

can combine the inequalities (II.6) and (11.7) into one expression, 

(II.11) 

To be able to compare the correlation functions that appear in Eqn. (11.11) in a com-

pelling way to measured correlations, we need to assume that the measurement of a 

polarization at one end of the apparatus doesn't disturb the measurement of the dis-

tantly separated photon. The assumption of locality allows this. Thus, the objectivity 

(realism) embodied in Eqn. (II.11) becomes a rigorous expression for measured corre-

lations under the assumption of ''local realism.'' 
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This chained Bell inequality [Eqn. (Il.11)] has been derived in the literature 

before, 12 but very little comment has been made about it. Only one theorem exists,2 

which states that any Bell inequality that is of the form of a linear combination of the 

correlation functions can be derived from linear combinations of the CHSH inequal­

ity. Our reasons for presenting the chained Bell inequality again are to point out some 

interesting experimental consequences of it, and to illustrate how the assumption of 

realism must be used at two points: to give an expression that is valid for individual 

decays, and to be able to average over this expression to obtain an inequality in tenns 

of measurable quantities. The existence of the grand probability as being a conse­

quence of realism is usually underplayed, but we will find it crucial in deriving our 

information Bell inequalities. We are not the only researchers to point out the 

significance of the existence of these grand probabilities. 13 

We still have to show that these chained inequalities are violated by quantum 

mechanics. The ideal quantum mechanical prediction for the photonic spin-singlet 

state is 

-+ -+ 
C(a, b )=:C (0)=-cos 20, (II.12) 

-+ 
where 0 is the angle between d and b . The best geometry to choose is where succes-

-+ -+ -+ -+ 
sive vectors in the list di. b 2, 713, b 4, · · ·, aN-1' bN are separated by angle 0/(N -1) 

(see Fig. 1 for this geometry). With this geometry, Eqn. (Il.11) shows that we get a 

violation when the quantity - the signal for violation -

SN= I (N - l)C (0/(N - l))-C(0) I -(N -2) (II.13) 

is positive. For a small angle<\>, Eqn. (II.12) predicts 

c (<I>) - - 1 - 2<j>2 
' (II.14) 
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so when the pair of detectors is closely aligned, the outputs from the detectors are 

nearly exactly anticorrelated. Taking the limit of large N, at fixed 0, one finds that the 

signal for violation is 

SN~ 1 +C (0)= 1-cos(20), (II.15) 

which shows a violation at every angle except multiples of 1t, since perfect anticorre-

lation occurs only when t11e detectors are perfectly aligned. We see that the violation 

occurs because quantum mechanics is more tightly correlated than local realism 

allows. The more we take smaller '' slicings'' of settings between fixed outer vectors 
--+ 

d 1 and bN , the less the effect of the combined quantum correlations summed over the 

"slices." This is analogous to the quantum Zeno paradox, 14 where it is found that 

repeated measurements of a system at closer and closer tin1es ''stops'' the quantum 

evolution of the state. 

Looking at the expression (II.15) for SN, one might think that the violations are 

somewhat larger (for N = oo) than for the CHSH inequality (i.e., for N = 4). How-

ever, to compare the magnitude of violations meaningfully, we need to ask how many 

standard deviations a violation corresponds to; that is, we must say something about 

the size of the "experin1ental" error bars that will appear in the signal. 

To estin1ate this signal to noise, we shall assume that the only noise is the statisti-

cal noise that comes from trying to estin1ate the correlation functions from a finite 

number of counts. To be able to keep all runs within a tin1e over which the two-

photon source is stable, we want to keep the total running tin1e as short as possible. 

Suppose we restrict ourselves to a run time that yields on average N counts. For the 

chained Bell inequality given by the expression (II.11), we need to measure N correla-

tion functions; we must split up the total running tin1e suitably to measure them all. 
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Now the correlation function for a given pair of polarizer settings can be written as 

C(0)=P ++(0)+P __ (0)-P +-(0)-P _+(0), (11.16) 

where P +-(0) is the probability of obtaining a+ 1 polarization for the left-moving pho-

ton and a -1 for the right-moving one, etc. Experimentally, each probability P; 

(i = ++,--,etc) is estimated to be the frequency g; =RJM, where R; is the number of 

counts for the pair of results specified by i , and M = R 1 + R 2 + R 3 + R 4 is the total 

number of counts for this pair of settings. Given these estimated probabilities, one 

estimates the correlation function to be 

C exp(0) = g ++(0) + g __ (0)- g +-(0)- g -+ (0) 

(11.17) 

For a fixed total number of counts M , the numbers of counts R; for two channels 

are distributed according to the multinomial distribution 

(R R R R IM)- M ! pR1pR2pR3pR4 
P l• 2• 3, 4 - R IR IR IR 1 1 2 3 4 · 

1 · 2· 3• 4· 
(Il.18) 

To detennine the noise associated with C exp(0), we need the covariance matrix 

of the frequencies of occurrence of each channel (which are the estimates for the P; ). 

For the number of counts in each channel, we find 

(11.19) 

(11.20) 

where the barred quantities denote a statistical average. In terms of the measured 
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frequencies g;, averaged over the total number of counts M, we find the covariance 

matrix to be 

-m C·· =g·g· = - (P·'f> .. -P·P·) 1) - I J M I I) I J • (11.21) 

The average of the experimentally estimated correlation function is the quantum 

mechanical prediction; i.e., 

C exp(0) = C (0) , (11.22) 

and the variance of C exp(0) is 

= [ ~] [1-C
2
(9)). (11.23) 

We notice that this is strongly dependent on angle; near 0=0, we have an almost per-

feet anticorrelation of which we are very certain. 

The signal for a violation of expression (II.11) will be when 

(11.24) 

is greater than zero. The experimental estimate of this signal is 

(11.25) 

with mean 
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SN,exp=SN =I (N - l)C (0/(N - l))-C(0) I -(N -2). (ll.26) 

(The absolute value causes a problem in taking the mean as the absolute value 

approaches zero; this is a region, however, where no violation occurs and so is of no 

interest, so we ignore this problem.) 

We have available a total time yielding on average N counts, and we can appor-

tion this time among the measurements of the various correlation functions as we 

please. Suppose we use a fraction f of the time to measure C (0) [we take M = f Nin 

Eqn. (11.23) and approximate 1/M by 1/M], leaving the remaining time to measure the 

N -1 functions C (0/(N -1)) at the various settings [for these we take 

M = (1- f )N!(N -1)]. The variance of the estimated signal Eqn. (11.25) will tell us 

the size of the ' 'noise' ': 

= (N - l)~C ;xp (0/(N -1)) + ~C ;xp (0) 

(11.27) 

Minimizing this noise with respect to the division of time will maximize the signal to 

noise; the minimum occurs with f specified by 

f ~ 112 _ 1-C2(0) 

I - [ l 112 [ l 112 
(N - 1) l-C 2(0/(N - l))J + 1-C2(0)J 

(11.28) 

In this case, the noise becomes 

(11.29) 
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We shall now include one systematic effect: the loss of correlation through ''data 

flipping error,'' whereby the + 1 and -1 channels get crossed. This loss can be 

modeled by 

C (0) =-fl cos(20) 

Tl = (1 - 2q )
2 

' 

(11.30) 

(11.31) 

where q is the probability to flip from± to+ for each photon, and where -cos(20) is 

just the ideal quantum-mechanical prediction for the correlation function. The quan­

tity 1 -Tt represents the data-flipping error. This model of the data error is exactly 

what Aspect et al.6 use. They included two contributions to fl: imperfections in the 

polarization analyzers, and detectors with a finite solid angle, which might accept 

coincidences from decays with the wrong helicity. In Ref. 6, Aspect et al. achieved 

Tt-0.955. 

To see the effect of the data error on the procedure of chaining, let us examine 

what happens to Eqns. (Il.26) and (II.29) for large N. When N is large, the signal 

becomes 

s N -[l -flCOS(20)] - N (1 -Tt) ' 0 « 2rcN. (11.32) 

To get violations for large N, we rely on the nearly perfect anticorrelation for small 

angles between the polarization analyzers [see Eqn. (II.14)]. Thus, if fl :;t: 1, the signal 

is degraded increasingly as N increases. When fl= 1, however, we recover Eqn. 

(11.14). 

For large N, the noise can be split into two cases: 

i) fl= 1, for which large N yields: 
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(11.33) 

The noise, in this case, has cusps at 0 = 0° and 90°. Further, the signal to noise 

becomes: 

SN = {fV 2sin20 
NN lsin(20)1 +2101 ' 

0 << 2rr.N , 

which has a maximum value of 211t - 0.6366 at 0 = 90°. 

ii) Tl'# 1. For large N, the noise now talces the form: 

"1-T}2 
0<< 2rr.N 

Tl 

This shows us that the noise increases as we increase the data error 1 -Tl. 

(11.34) 

(11.35) 

From Eqns. (11.26) and (11.27), we can define a signal-to-noise for a single count 

(SIN) N= 1' in terms of which the signal-to-noise for an experiment with a total of N 

counts becomes 

[ ~] =w[.§...] 
NN N- N N=l. 

(11.36) 

The single count signal-to-noise ratio (SIN) N= 1 gives the size of the violation in units 

of statistical noise. In Fig. 2(a)-(c) we have plotted (SIN) N= 1 for the cases N =4, 6, 8 

and 20, when (a) Tl= 1.0, (b) Tl =0.98, and (c) Tl =0.955. For Tl= 1 [Fig. 2(a)], the size 

of the pealc violation increases for increasing N, there is a noticeable cusp at 0 = 90° 

that comes from the cusp in the noise for Tl= 1 [see Eqn. (11.33)]. In practice, we can-

not go on increasing N forever. Even before we get to the point where we can no 

longer measure the angles accurately, other sources of noise will become a problem. 
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For instance, once we introduce some data error, it is no longer advantageous to keep 

increasing N without bound. This is because the signal grows like -N(l-Tt) [see 

Eqn. (Il.32)], because of the imperfect anticorrelation at 0=0°, which kills any viola­

tion. At fl=0.955, which is an achievable6 data error, we see from Fig. 2(c) that a 

better signal-to-noise ratio could be achieved if either the N = 6 or N = 8 versions of 

the chained Bell inequality were tested instead of the CHSH inequality (for which 

N =4). In fact, there is a 20% improvement in the signal-to-noise ratio for using the 

N = 6 scheme over a test required to show violations of the CHSH Bell inequality. 

III. INFORMATION THEORY AND REALISM 

Our motivation for introducing information theory follows a very simple line of 

reasoning. If objectivity is true, then each particle must carry with it the details of the 

results of any particular measurement that might be made on it. All these details 

would constitute a lot of information - much more than the quantum system seems to 

carry. We will show in Section IV that in even the most thrifty realistic theory, each 

particle carries (on average) more information than in quantum theory, for EPR type 

experiments, and that this notion can be made precise through an "information Bell 

inequality.'' 

We shall devote the rest of this Section to a review of information theory. 15 

Consider two measurable quantities (observables) A and B , and label the (discrete) 

possible values of A and B by a and b . (Throughout we shall denote an observable 

by a capital letter and label its possible values by the corresponding lower-case letter.) 

Based on one's knowledge about A and B, one assigns a joint probability p (a, b) for 

values a and b. Bayes's theorem, 

p (a, b) = p (a I b )p (b) = p (b I a )p (a) , (III.1) 
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relates the joint probability to conditional probabilities. 

The information obtained when one discovers values a and b for A and B is 

I (a, b) =-logp (a, b). (llI.2) 

The base of the logarithm determines the units of the information (base 2 for bits, base 

e for nats). In the same way, 

l(b )=.-logp(b) (llI.3) 

is the information obtained when one discovers value b for B , and 

!(a I b)=.-logp(a I b) (111.4) 

is the further information obtained when one discovers value a for A , provided one 

already knows the value b for B. Bayes's theorem, rewritten in terms of information, 

becomes 

!(a ,b )=!(a I b )+l(b )=l(b I a )+!(a). (IIl.5) 

A crucial role is played by the mean information obtained when finds values for 

A andB: 

H(A,B)= °LP(a,b)l(a,b). (IIl.6) 
a,b 

This mean information is the entropy of the probability p (a, b ). It can also be 

thought of as the total information carried by the quantities A and B , defined relative 

to one's knowledge about A and B incorporated in the probability p (a, b ). In the 

same way, 



H(B )= 2:.p(b )/(b) 
b 

is the information carried by B , and 

H(A I b)='J:.p(a I b)l(a I b) 
a 
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(111.7) 

(111.8) 

is the information carried by A , given the value b of B . It is useful to average 

H (A I b ) over B to obtain a conditional information carried by A , 

H (A I B ) =LP (b )H (A I b) = L p (a , b )I (a I b) . (111.9) 
b a,b 

An immediate consequence of Bayes's theorem is the relation 

H (A , B ) = H (A I B ) + H (B ) = H (B I A ) + H (A ) . (111.10) 

We require one more ingredient, the mutual information 

l(a;b):l(a)-l(a I b)=/(b)-/(b I a)=l(b;a). (111.11) 

This mutual information can be either positive or negative, but its mean, 

H(A;B)= 'J:.p(a,b)l(a;b)='J:.p(b)['J:.p(a I b)logp(a 
1 
b)] :::o, 

a,b b a p(a) 
(111.12) 

is nonnegative. The mean mutual infonnation, 

H(A ;B )=H(A )-H(A I B )=H(B )-H(B I A )=H(B ;A), (111.13) 

is the infonnation carried in common (mutually) by A and B. 
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The results we need from information theory are the two inequalities 

H(A I B) ~H(A) ~H(A ,B). (llI.14) 

The left-hand inequality, a consequence of the nonnegativity of H (A ;B ), means that 

removing a condition never decreases the information carried by a quantity. The 

right-hand inequality, a consequence of Eqn. (111.10), means that two quantities never 

carry less information than each quantity carries separately. 

IV. INFORMATION BELL INEQUALITY 

To derive a Bell inequality for information, we must start with a statement that 

embodies "classical logic" (i.e., realism). Since realism demands that the photons' 

polarizations must be objective quantities, we may, as a consequence, write clown a 

grand probability distribution for the polarization at every angle. For the standard 

Bell type experiment with two settings for each detector, this reduces to the assump­

tion that the probability 

(IV.1) 

exists; this probability was also necessary for the correlation Bell inequality as in Eqn. 

(II. l ). Our reason for introducing this grand probability is to be able to quantify the 

amount of information learned from a measurement. 

We shall use A , A ', B , and B ' to label the observables for the polarizations that 

talce the values cra, cra'• crb, and crb'• respectively. An obvious generalization of the 
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right-hand inequality (llI.14) yields 

H (A 'B ) "S_H (A 'BI' A I' B ) 

= H (A I B I' A I' B ) + H (B I I A I' B ) + H (A I I B ) + H (B ) ' (IV.2) 

where we use Eqn. (111.10) to expand out the right-hand side. The right-hand side 

involves probabilities of noncommuting observables and hence would not be defined 

in quantum mechanics. We can, however, use a slight generalization of the left-hand 

side of inequality (111.14) to eliminate conditions: 

H(A I B',A',B)"S_H(A I B') 

H(B'I A',B)"S_H(B'I A'). 

(IV.3) 

(IV.4) 

Subtracting H (B) from both sides of Eqn. (IV.2), we obtain the information Bell ine­

quality 

H (A I B) "S_H (A I B ') + H (BI I A')+ H (A I I B) . (IV.4) 

The four pieces of conditional information in this Bell inequality involve pair proba­

bilities that are defined in quantum mechanics; they can be determined from the statis­

tics of the four types of experimental runs. Note the very similar form of this inequal­

ity with that of the CHSH inequality [see Eqns. (11.1), (11.3) and (11.4)]. 

In Eqn. (IV.1), we made use of the assumption of reality. Where does the 

assumption of locality come in? [In the same way it did for the correlation Bell ine­

qualities of Section II.] In order to relate the two-particle probabilities p (cra, ab) and 

p (cra I crb) to actual measured quantities, we must be able to assume that the detection 

of one photon's polarization doesn't affect the detection of the other's. The locality 
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assumption is coming m only to allow us to make an unambiguous connection 

between the expressions determined by classical logic and experiment. 

What does quantum mechanics predict? Again, it turns out that the geometry of 

Fig. 1 (with N =4) gives the largest violations. By spherical symmetry, we can res­

trict our attention to the quantity 

H(0) = 3 H(0/3)-H(0). (IV.5) 

There will be a violation of the information Bell inequality Eqn. (IV.4), whenever 

H(0) is negative. When this occurs, it is because there is a deficit of information at 

small angles, compared with what local realism predicts. The size of this deficit is 

H(0) and is measured in bits. 

For the case of the photonic spin-singlet EPR experiment we have been analyz­

ing, the quantum-mechanical probabilities are 

P ( cr a= + 1, cr b = + 1) = p ( cr a= -1, cr b = -1) = ~ sin20 , 

p ( cr a = + 1, cr b = -1) = p ( cr a= -1, cr b = + 1) = ~ cos20 , 

which from Eqn. (111.9) gives 

H ( 0) = - sin20 log sin20 - cos20 log cos20 . 

(IV.6) 

(IV.7) 

We have plotted H(0) [see Eqn. (IV.5)] in Fig. 3 for the spin one-half case discussed 

below. We can translate this figure into the relevant one for the photonic case by 

reading half the value of the angle on the abscissa of the plot. We see from this plot 

that a violation of Eqn. (IV.4) is predicted for the range of angles 0 < 0 < 43°, with a 

maximum infonnation deficit of 0.24 bits at e = 26.6°. 
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Since information is such a general concept, we can apply our information Bell 

inequality to many situations (the variables A, B, etc, will, instead of labeling dif-

ferent polarizations, label more general variables of interest). Thus, we may irnmedi-

ately apply our new inequality, expression (IV.4), to, for instance, higher-spin ver­

sions16 of the EPR experiment. 

We shall consider a spin-singlet state breaking into two pieces, each of spins (in 

units of h ). Each piece has its spin projection measured when the two are separated 

by a great distance. The spin projections now take on the 2 s + 1 values - s , · · · , s . 

To see that this inequality [Eqn. (IV.4)] is actually violated by quantum mechanics, 

we choose the geometry as in Fig. 1 and calculate the probability of finding particle A 

in the projection cr0 = m0 (along the z-axis) for a detector at angle 0, and particle B 

with ab = mb at zero angle: 

I d111a ,-mb (0) 12 
=------

2s+1 
(IV.8) 

Here, the two-particle, spin zero state is given by16 

1 s 
10,0>= 

112 
L (-l)s-111 1s,m>A®ls,-m>a. 

(2 S + 1) 111=-s 

(IV.9) 

R A(0) rotates the state of particle A by an angle 0 around the y-axis, and d111 , 111
1(0) is 

one of the matrix elements of this rotation operator between spin projections m and 

m '. From Eqns. (111.8) and (IV.8), we may calculate the average information 

Id (0)1 2 

H (0) = - ~ 111
' -m lo Id (0) I 2 . 

kl 2 s + 1 g Ill -111 
(IV.10) 

Ill 
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We have calculated the information difference H(0) [see Eqn. (IV.5)] from the aver­

age information for the s = 1/2, 1, 2, 5, and 25, and plotted them on Fig. 3. We can 

see from Fig. 3 that the size of the violation (in terms of the information deficit) 

increases with increasing spin. 

In the first part of this paper, we discussed how the standard Bell inequality could 

be chained to give stronger violations. Well, our information inequality has the same 

form: The information you can learn from the detectors set at some angle is bounded 

from above by what you could learn from a bunch of intermediate measurements. If 

we chain our information inequality, we get 

H(A 1IB2) +H(B 2 IA3) + · · · +H(AN-1 IBN) ~H(A 1 IBN), (IV.11) 

for N even, with A 1, B 2, etc. being the observables for the two-particle system. This 

chaining increases the size of the violation over the original version of our infonnation 

inequality. Finally, we note that this chained information inequality can be derived 

directly from the existence of the grand probability distribution, 

(IV.12) 

without resorting to chaining, by using an obvious extension of the argument that led 

to Eqn. (IV.4). 

V. FOR WHOM THE BELL INEQUALITY TOLLS 

It seems worthwhile to try to tie down the role of the Bell inequality. Although 

objective properties seem to be what is being tested, there exist simpler yet compel­

ling arguments against them. For instance, Feynman 17 has considered a two-slit 

experiment in which electrons form an interference pattern. He showed that no 
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probabilities 

prob (that the electron arrives at x on the screen I that it passed through slit 1) 

(V.1) 

and 

prob (that the electron arrives at x on the screen I that it passed through slit 2) 

(V.2) 

are consistent with getting an interference pattern; i.e., there are no objective paths. 

Similarly, there can be no way for the electron to carry with it a property telling it 

where it will end up on the screen, for if this were the case, we could go to the plane 

of the slits and there would be a property that told the electron which slit it had gone 

through, which is what was initially argued to be impossible. 

So what's so special about the Bell inequalities? Well, the probabilities [Eqns. 

(V.l) and (V.2)] assumed by Feynman are of noncommuting quantities and so cannot 

exist in quantum mechanics (more importantly, they can't be measured), so it seems 

not unreasonable that the approaches of quantum theory and objectivity should give 

different answers. In fact, one might have expected this always to be the case: that 

objectivity postulates probabilities that don't even make sense in quantum mechanics, 

and so they can never be directly tested. That is, we are saying that Feynman's argu­

ment is an indirect test of objectivity, since the probabilities of Eqns. (V.l) and (V.2) 

are never directly measured - only talked about. 
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The problem is that if we wish to measure probabilities like those of Eqns. (V.l) 

and (V.2) (say by blocking either one slit or the other), we must modify the experi­

mental apparatus at the slits so drastically that we disturb evolution of the wave packet 

leading to the interference pattern. Thus, we can never be absolutely certain that the 

inconsistency that Feynman pointed out isn't due to our having disturbed the 

electron's final position on the screen through our measurement of which slit it went 

through. 

It is surprising that the standard Bell inequalities lead to a test of objectivity that 

involves only pairs of commuting observables. Thus, the Bell inequalities allow a 

direct test of the probabilities involved, while the Feynman argument does so only 

indirectly. It is perhaps worth considering this contrast between the Feynman argu­

ment and Bell inequalities in more detail. Information Bell inequalities provide a 

natural vehicle for such a consideration. 

Bell inequalities come from assuming the existence of some grand probability 

for a set of quantities that do not commute in quantum mechanics. One derives from 

the grand probability - using classical probability logic - an inequality (for correla­

tion functions, information, etc.) and shows that for some quantum state, the inequal­

ity is violated. Thus, strictly speaking, what all Bell inequalities test is whether some 

aspect of the quantum statistics can be derived from a grand probability. This is very 

close to the point of view promoted by Garg and Mermin,13 who start with some mar­

ginal probabilities predicted by quantum mechanics and show that they cannot be 

derived from higher-order probabilities (they call this the Clauser-Home problem). 

The advantage of the information Bell inequalities is that they provide a straight­

forward, yet general, framework for addressing these questions. An information Bell 

inequality can be derived in a straightforward way for any system. In contrast, a 
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correlation Bell inequality (such as the CHSH inequality) requires a separate deriva­

tion for each new quantum system. Of course, information Bell inequalities do not 

ferret out all the weird quantum behavior. To do that, the most general approach is 

the Garg-Mermin approach. Information Bell inequalities are, nonetheless, useful, 

because they are mathematically quite straightforward compared to a Garg-Mermin 

test. 

One would like to think that the Bell inequalities test something more cosmic 

than just the existence of some grand probability. Thus, one tries to attach an 

interpretation to the Bell inequalities. The first part of the interpretation is objectivity 

(or realism). If the quantities dealt with are objective, then they have definite values, 

independent of observation. We do not know these actual values, but what knowledge 

we do have is incorporated in a probability - the grand probability. Thus, the 

existence of the grand probability is interpreted as a test of objectivity. 

If this were the whole story, then all Bell inequalities would be on the same foot­

ing. One must make further assumptions, however, to relate the grand probability to 

statistics of actual measurements. One can imagine that measurements of one or more 

of the quantities so disturb the system that the statistics of remaining quantities are no 

longer those that would be inferred from the grand probability. Indeed, this is how 

objectivity is maintained in a naive interpretation of quantum mechanics that goes 

back to Heisenberg's original discussion of the uncertainty principle. How compel­

ling the further assumptions are determines how convincing the Bell inequality is as a 

test of objectivity. 

Consider a single particle and two measurable quantities (observables) A and A ' 

(which do not commute in quantum mechanics). The trivial one-particle information 

Bell inequality, 
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H (A ) ?_ H (A I A ') (V.3) 

[Eqn. (III.14 )], comes from assuming a joint probability p (a, a'). Examples include 

(i) the two-slit experiment with A'= (position at screen with slits) = ± 1 and A = 
(discretized position at the detecting screen) and (ii) a spin-112 system with A '= (y -

spin) and A = (z-spin). Feynman claims that the two-slit experiment contains the 

essence of quantum mechanics, so one might think that this Bell inequality is enough. 

Nonetheless, as we have argued, there is a serious objection to this: Any attempt at 

measuring the probabilities needed in Eqn. (V.3) by necessity involves disturbing the 

system before all the probabilities can be measured. In this case, the premises for ine­

quality (V .3) do not hold. 

To overcome this objection, one needs a Bell inequality where all the probabili­

ties that appear are defined in quantum mechanics - i.e., they are probabilities for 

commuting quantities - without having to specify a measuring procedure that might 

''disturb'' the system. If one tries to modify Eqn. (V.3) by including an apparatus that 

measures A', then one finds that Eqn. (V.3) is always satisfied because the joint proba­

bility does exist in quantum mechanics. Indeed, as discussed above, one might have 

thought that in any case where all the probabilities are defined in quantum mechanics, 

there could be no violation of an inequality derived using classical probability theory. 

The significance of the two-system Bell inequalities is precisely that they do lead to 

such a violation. 

The one-system Bell inequalities are not compelling because of the necessity of 

disturbing the system before all the information can be obtained to check them. The 

two-system Bell inequalities do not need to suffer from this problem, because they can 

be phrased solely in terms of commuting quantities. But why stop here? Surely there 

are three-system (and higher) Bell inequalities. We could, in principle, consider three 
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body decays for which the various properties of each particle would be assumed to be 

objective. The existence of a suitable grand probability would follow just as the one 

in Eqn. (Il.9) did. We could even include the assumption of locality and perhaps use 

our information Bell inequality techniques to find an appropriate inequality. At the 

moment, this generalization would appear to lead to a complicated mess (especially 

experimentally), with no obvious gain over tests of the two-particle Bell inequalities -

though it is not inconceivable that some special correlated many-body states could in 

the future yield a simplified test of local realism. Thus, although we recognize that 

there will be a whole hierarchy of Bell inequalities for many-particle systems, at the 

moment it appears that those for two-particles yield the simplest and most compelling 

tests of local realism. 
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FIGURE CAPTIONS 

FIG. 1. Plot of the geometry leading to maximal violation for the chained Bell ine­
-t -t 

quality, with angles 0/(N -1) between the successive vectors (di. b 2), (b 2, d3), etc 

-t -t 
and angle 0 between the outermost pair (a 1, bN ). 

FIG. 2. Plot of the "single-count signal to noise" (S/N)N=l versus angle, to show 

the violation of the chained correlation Bell inequality of Eqn. (II.11), with chainings 

N =4, 6, 8 and 20 for the cases: (a) 11= 1.0, (b) rt =0.98, and (c) rt=0.955. 

FIG. 3. Plot of the information difference H(0) (in bits) versus angle, for the spins 

s = 1/2, 1, 2, 5 and 25. A violation of the information Bell inequality Eqn. (IV.4) 

occurs whenever H(0) is negative. 



- 169 -

Figure 1 
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