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SUMMARY

In Part'I., the equations of equilibrium and expressions for
the strain components are set up, for a thin shell of a general
shape, by the use of the methods of vector analysis. The simplicity
of the vector method of approach to this problem is shown.

In Part II., the theory developed in Part I. is particularized
for the case of a circular cylindrical shell. ZExpressions for force
components are obtained in terms of the deformation components, and
three equations of equilibrium in terms of the three deformation
components are derived.

In Part III., the expression for strain energy for a circular
cylindrical shell is set up, &and, by means of the Principle of
Virtual Work, equilibrium equations and boundary conditions for a
general type of boundary are deduced. The boundary conditions are
then particularized for the cases in which the boundaries are para-
metric curves.

In Part IV., an exact solution of the differential equations
derived in Parts II. and III. is obtained. This solution is applicable
to circular cylindrical shells of the type which occurs in the problem
of the design and construction of barrel roofs.

In Part V., the exact solution of Part IV., is carried out
numerically for two particular cases.

In Part VI., an account of several approximate methods of solu-

tion of this problem is given. A brief summary of some of the



literature on this subject is included. The thesis is concluded
with a rather detailed account of several of the methods by which
the author attempted to obtain short and avproximate solutions of

this problem.



PART I.

In Part I., we shall derive, by the use of the methods of
vector analysis, the equations of equilibrium and formulas for
the strain components for a general shell. Consider any shell
which we shall describe by means of the coordinates of the points
of its middle surface, and its thickness normal to that surface.
The middle surface may be any general surface having no singulari-
ties. We shall assume the thickness to be constant throughout the
shell, although this assumption is not essential to the develop-
ment of the theory.

Under the action of external loads, the shell will deform
slightly. The following basic assumption regarding the deform-
ations will be made; nemely, that lines which are normel to the
middle surface before deformation remain normal to the deformed
middle after deformation, and suffer no extension. It is also
assumed that the deformations are continuous functions of the
coordinates of the middle surface.

We shall take the equation of the undeformed middle surface
to be given in terms of two independent parameters q’andlgﬁ , in
vector form:

r=rx(«,4) (1)
Throughout this thesis, a short line or bar underneath a symbol
will Dbe used to indicate a vector. It will be assumed that the
curves & = const. and/é = const. are lines of curvature of the

undeformed middle surface. The reason for making this assumption



will be referred to later in connection with the determination of
the strain components.

Consider an element of the undeformed shell bounded by the
two faces of the shell and four plane surfaces which are normal to
the middle surface and which intersect the middle surface in the
parametric curves o/ =&, o« =t da,B=45,, andﬂz/dj,,‘.{j.
We shall assume the shell faces to be free of force; however, over
the plane surfaces described above forces due to internal stress
must exist. The element must be held in equilibrium under the
action of these forces and of any external loads which may be
present. The external loads are assumed to act in any direction,
their points of application being in the middle surface. At each
point of the undeformed middle surface consider a tried of
orthogonal axes directed as follows: the x axis tangent to the
curve /3=:const., the y axis tangent to the curve « = const., the
directions being those, respectively, of increasing q’and/§ ; and
the z axis normal to the middle surface. Let the positive direc-
tions of these axes define unit vectors i, j, and k, respectively,
and let the direction of positive z be such that k = i X j. At
each point of the shell there will be, in general, six components
of stress, designated by f, @,”;,Z;i.z}x, and Ty, . The aséumptions
that the shell faces are free of force and that normals to the
middle surface of the shell suffer no extension require that 0; = O.
The forces which act on the four plane surfaces of the element under
consideration will be given by the integrals of these stress componénts

over the area of the corresponding faces of the element. The commonly



accepted sign convention for the stress components, % .... 7, , will
be adhered to; see Timoshenko, "Theory of Elasticity", page 4.

The force and moment components which act on two faces of the
element are shown in Figure 1, the arrows indicating the assumed
positive directions of these components. Let R, and %8 be the
radii of curvature of the middle surface along the curves/£:= const.,
andes’= const., respectively, the shell being in the undeformed state.
Wnen the z coordinate of the center of curvature is positive, we
consider the corresponding radius of curvature to be positive; hence,
for the element shown in Figure 1, we must attach negative signs to
both redii of curvature. Let dx and dy be the arc lengths of the
intersection of the middle surface with the two plane surfaces of
the element on which the forces are shown acting. Then the force N,
is given by the following formula

/r(/~—)/i ; _/( g ) e
where t is the shell thickness, and is assumed to be constant over
the arc length dy. If we redefine N, as the force per unit distance
along the y axis, we may replacejzg? in the above equation by N,.
Using a similar definition for the other force and moment components;
i.e., force or moment per unit length of arc of the parametric
curves, we have the following formulame for these components:

On face o/ = const. On face74?==const.
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The negative signs appearing in the formulae for M, .... Qy are
obtained from consideration of the assumed positive directions of
these components as indicated in Figure 1, and the adopted sign
convéntion for the stresses 6 .... 7, .

In setting up the equations of equilibrium, we will assume
ﬁhese forces and moments to be localized along certain tangents
and normals to the middle surface. Consider an element of middle
surface of dimensions dx and dy corresponding, respectively, to
variations d« and quof the parameters of the surface. Let axes
X,¥,2, as previously described, be set up with origin at the center
of this element. Then ifd =0, and/5 3/2 are the parameters at the
origin, the sides of the element will have the parametersq/=q¢1.é?,
and%9=/4 E %?. At the origin, the forces and moments Nx"'-Qy ect,
being directed along the axes x,y,2; i.e., in the directions of the
unit vectors i, Jj, and k. On the four faces of the element, there
will be acting forces and moments which differ slightly from those
at the origin, and which will be directed in slightly different
directions from the unit vectors at the origin. Thus, for example,
on the face~/=q{-2?; the normal force will have the magnitude
N,dy _?%isﬁﬁ é? and it will have the direction of the x axis set

L=

up at the mid-point of the side &- % ; i.e., the direction of the

2 4y

vector'-(;-;7¥ z/ The other forces and moments will have magnitudes



6.

and directions determined in a similar manner. Under the action of
these forces and moments, together with the applied forces, the
element must be in equilibrium. We now sum the various forces and
moments in the three coordinate directions to obtain the six
equations of equilibrium. However, before proceeding to set up
these equations, it will be necessary to obtain geometrical
properties of the middle surface in order that the variations with
respect to w’anQ/Q of the various quantities involved may be obtained.
Consider the undeformed surfaqe whose vector equation is
r = I(Q’VA?)' In terms of the unit vectors i,j,k, this equation of
the surface is expressed as follows:
_I_'=x(0/,/ﬂ)_i_+y(q/,/ﬁ)_j_+z(a/,/5)_]§ (3)
In this part of the thesis, the subscripts 1 and 2 will be used
exclusively to denote differentiations with respect to q’and/é ,
respectively. Then, by definition, ;,=;%f.;_;z ;;%g.:.gﬂ ='2%3;;

2'r 2'r
L, =’):y_’.>;é ; and I :’;é." *

see Weatherpurn "Differential Geometfy", Chapters 3, 4, and 5.

The following results are easily derived;

-é 4 roxrn

i=E'r 3 j=6"r,; k=7—: d&x=)E dav; dy =)o a8
where E=r ; G=r,; F=x er,; H =E -F (4)
Define: L =keor ; S=ker i P=ker. .

Weatherburn derives the following formulae for the derivatives

of the unit vectors:

L £, S g
= = - —— j - - ~L
Lot EE 4 LR A

S £ £ G
= — k 4+ ~2 3§ =— k - <
4, /e = 2H = L TG T



k, = /—(FS-GL) i+/_—/—,(FL-ES) Jd (5)

[ Je .
k, = »(FP-68) 1 +;/—.‘(FS -E) J

We have made the assumption that the parametric curves are lines
of curvature of the middle surface; they ere therefore orthogonal

also. These assumptions are satisfied by taking F = S = O in the

above formulae. Defining two new quantities A and B by the equations

4* = E and B° = ¢, the formulae (5) may be simplified to read as

follows:
s 1 _ A _Lxle - . -
S AZ ’ .j."ﬂ!.z' 5 AB ’ -Ad“\/’dy—B(}é
where A" =r1’; eand B =r’
=Lty _ A -
i, =ak-F4d i,=74
=2 L. _8
i, =51 i,=5k-%21 (8
Y =L
l{/_ A.].; -}SZ_ 5.&

We now make use of these results to set up the equilibrium

equations. On the faceq/=a4—§?. the following force acts:
[rev- ouan @[y %- e e faraff e @anfEsg]

On the face &=a,+ “Q', the following force acts:
[N, ay+ (T, dy) ][1+1 ‘{*’] [N,_,dy+(1\{ydy) “"][,1»«,1, 2] [Q dy+ (Q,dy) ""1[k+k 4‘*’]

__.—/2

In these two expressions, the bar over a vector is used to

indicate & unit vector in the direction of the vector in question.

A«

Thus 1 + 1 % 1is a unit vector in the direction of the vector i + i,

&Q\



Eipressions of the following tyvve for the unit vectors will be used

to simplify the above two force expressions:

— i 4
e 1 R L2 R e 7% 7) P S
LOTRGEET

where terms of order higher than two in d« are neglected. Adding

the above two force expressions, making use of Equation (7), replacing
dy by B Q/g, and neglecting terms of order higher than two in the
differentials d« and §6 , we obtain the following expression for the

_”_/2(’ and of = 4.‘\’

net force acting on the two faces &« =

{[(N,B), i+ NB i,J | [(N B), J + N, B j,] - [(Q,,B), k +QB gIB axd8

This may be simplified by use of Equations (6) to read:

{[(N,B), + N, + 48, ] [(N B), - ];1 - [(Q,B), -‘AfaNx] 1_:} ax 44 (8)

In & similar manner, it may be shown that the net force acting on
the two facesﬂ:ﬂ-%ﬂ, apd/é =A +{éf is given by the following

expression:
{[(b;xp.)z - B Ny:[ i+ [(N,A)z + BN, +§"qu]1 - [(QJA)Z ZA ,] }d,, 38 (9)

Let the external force acting on an element of area of the middle

surface be given by the expression:
(X1 + ¥j - 2k ) dxdy = (Xi + Yj - Zk) AB dvdd8 (10)

The sum of expressions (8), (9), and (10) must vanish if the element
is in equilibrium. Adding these three expressions, rearranging and

equating to zero the coefficients of the unit vectors, we obtain the



three force equations of equilibrium:

I
(N,B), + (NA), + A4,N, - BN, +57Q, + 4BX =0
(NB), + (N4), - AN, + B N,,+ Q, + ABY = 0 (11)
L8 £A
(Q,B), + (Q4), -55N, -7 N, + 4ABZ =0

We proceed in the same way to obtain the three moment equations
of equilibrium. The various moment components are localized 'in
vectors, the directions of which are given by the well-known right
hand rule. In writing the expressions for moment on the various
faces of the element, we use the vector equation M = rx F where M
is the moment of a force F about the origin of vectors, and r is the
vector from the origin to any point on the line of action of F. The
moment due to forces acting on the face &« = af - 425 is given by the

expression:

[ dy- (Mgdy), [_‘i“]+ [M ay- (id,dy) 1[ 4 2]
+[-i‘g—]x[q,,dy- (Q’xdy)«’ [:7;]

g {- [ o 4y 2'1}
A=

Similarly, the moment due to forces acting on the face a’=af+ a is

given by the expression:

[Mx’dy + (M,jdy), 2'] [1—4-1-71 [M dy+ (M,dy) 4-] [,1+,1/ 2‘/]

+[i E&]x{-[%dw (Q,dy),%"] EE_,?Z—’j}
[ /"] [N dy+ (M dy),% [H%’j
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Combining these two expressions as in the case of forces, and using
the equation i x j = k, we obtain the following expression for the

net moment due to the forces acting on the faces ¥=44-‘§?, and

q"qﬁf-@?/:

{[(M,jB)/ - 4] 5 - [(6,B) + A, - GaB| J +[E0m 4 I}I}B] _lg}do/d (12)

In a similar manner, it may be shown that the net moment due to the
. a4 A o
forces which act on the facesﬂ% _,24 , and 44, + -5’-‘ is given by

the following expression:

oo+ 2 qu]s - [0, - na]a o [0 - 55} as 2)

We assume that the moment of the external forces is zero (or, that

the moment of the external forces is of the order neglected in set-
ting up the above moment expressions). The total moment of all

forces acting on the element of surface is given by the sum of the

two expressions (12) and (13), and this sum must vanish if the element
is in equilibrium. Equating to zero the coefficients of the unit
vectors in this sum, we obtain the three moment equations of equili-

brium:

(,,B), + (M,4), + B MU, - A M - Q4B = 0

(M, B) + (,A), - B M, + &M - Q4B =0 (14)
LB PA

4 My -5 M, + N, 4B - N,AB =0

Equations (11) and (14) are the equations of equilibrium of the
shell element and are based on the assumption that the effect of

deformation of the shell on the equilibrium of the element is
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negligible., The constents A, B, L, and P in these equations are

to be calculated.for the undeformed shell. It is theée ecuations
which will be used later in this thesis for the investigation of

stresses in a cylindrical shell.

We shall now derive equilibrium equations in which the effect
of deformation on the equilibrium of the element is taken into
account. However, before proceeding to se£ up such equations, it
will be necessary to consider the geometry of the deformed middle
surface.

Let the deformation of the middle surface be a vector point
function of the coordinates of the undeformed middle surface, so

that the deformation vector is given by the equation:

_s_=§(°/./6) (15)

where s is assumed to be small enough that squares and products of
s and its derivatives may be neglected. The position vector of a

point on the deformed middle surface is given by the equation:
r'=xr+s (16)

where r is the position vector of the undeformed middle surface glven
by Equations (1) and (3). The parametric curves«’= const. and

/6 = const. of the deformed surface will be no longer orthogonal, but
will meet each other at an angle X which will differ slightly from a
right angle. Let the deformation s be expressed in terms of
components parallel to the axes x,y,z, of the undéformed middle

surfece, as follows:
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.§=u(¥76)1+V(A/7€)J+W(¢%)}g (17)

In terms of the unit vectors i, J, k, we may calculate the deriva-
tives r! , IE » X, » xr), , and r) . In making these calculations,
the derivatives of the unit vectors i, j, and k must be considered.
These derivatives are given by Equations (8). We now define & new
set of unit vectors referred to the deformed middle surface. Let

8 be a unit vector tangent to the curve 4 = const. and directed
according to increasingeo/ ; let b be a unit vector tangent to the
curvea’= const. and directed according to increasin%/ﬁ; end let n
be a unit vector normal to the deformed surface and directed accord-
ing to the vector a x b. Thus the unit vectors i, j, k before

deformation go into the unit vectors a, b, n after deformation.

Having the derivatives of r', we may calculate the following

quantities:
E=a=x"3F=xox i G=B"=r"; EH=E6-F
/ / ' 3
- — b e -4 pr = r, X I
a=z3zr i b=gr ;| n H (18)
L=n.,.r1r" 5 S=n.1'" 3 P=n.r

It is to be noted that all vector quantities involved in
Equations (18) are expressed in terms of the unit vectors i, j, k.
The angle X at which the parametric curves on the deformed surface
intersect will be given by the following expressions, the first of

which will be taken as the definition of the quantity ©:



13.

_ _ _F . o _ H
9_cos)(__a_.._lg-ﬁ. sin X s (19)

Since the angle )( differs only slightly from a right angle, we may
use the approximation sin){: 1; the validity of this approximation
is subject to verification in any particular case, and will be
verified later for the case of the circular cylinder. TUsing

Bquations (18), we may define and calcalate the following quantities:

/
A = 77+(GE, - 2FF, + ¥E,)

I
"

/
7+ (FS - GL)

_../_ /

A = ;(2EF, - BB, - FE,) ; A = Ze (FL - E.S_) (20)
/ /

m =27z(GE,. - FG,) ¢ = 2z (FP - GS)
/ " /

A = (B - FE,) D = 7:(FS - EP)

In terms of these quantities, the derivatives of the unit vectors
a, b, and n may be expressed as follows: (See Weatherburn,

"Differential Geometry", pages 61 =nd 90.)

1}
)\(4

b (21)

il
5>
-
o
+
o
>
o

= ACa + BD b

Let us now define at each point of the surface a new triad of

orthogonal axes x', y', z' directed as follows: the x' axls along
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the unit vector &; the z' axis along the unit vector n; and the y'
axis perpendicular to the x'z' plane, and so directed that the
angle between the positive y' axis and the unit vector b is a
small acute angle. Let unit vectors along the axes x', y', z' Dbe
i', j', k', respectively. Let us define, also, a unit vector ¢
in the x'y' plane which is pervendicular to the unit vector b and
s0 directed that the angle between c and a is a small acute angle.
The following relations are seen to exist between the unit vectors

a, bt c, n, _j;l’ ‘ilg an.d._lf':

a=1i'"; b=cosX i' + sin;( J' F ei' o+ j
p=k ; c=sinX 1 -cosX j ¥ i -oj (22)
cxb =k'; axb =sin) k' £ k'

We now simplify the Equations (21) for the derivatives of the
unit vectors a and n, and also obtain expressions for the derivatives
of b, c and j'. Substituting Equations (22) in the first two of

Equations (21), and making use of Equations (18) and (20), we obtain:

s =1 = £x fi e =1 = Fr oufy @

Substituting Equations (22) in the last two of Equations (21), we

obtain:

(Al + 6BA)L' + BAJ'

(24)

|
X
I

(AC + ©BD)i' + BD j'
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Since a and n are vectors which are everywhere orthogonal, the
equation a + n = 0 must be identically true. Differentiating, we

obtain two further identities, as follows:
a «n +8e¢n =0 en +a8+n =0

Substituting Equations (22), (23), and (24) in these two identities,
and noting that the dot vproduct of two different vectors of the
triad i', Jj', k' vanish due to their orthogonality, we obtain the

following two relations:
- L AP +eBA; - f A + oD " (25)
AT T TR

Differentiating the identity k' x i' = j', we obtain the following

expressions for the derivatives of j':
4y =kpxit o+ k' kil 4, =k, x i o+ K ox i

Suhstituting Equations. (22), (23), (24), and (23) in these expressions,

we obtain:
P U Y 7 U B (26)

The derivatives of b and ¢ may now be obtained by differentiating

Eauations (22) as follows:

6 i' +ei) + j!

(=2
L}
©
for
+
©
frt
+
b

iV -84 -8i, i g = i, -9 ' -8



le.

Substituting Equations (23) and (26) in these expressions, ve obtain

the following equstions:

(6,-28)it + @12 i + (8 -BA)K

b, = (4L + SuZ ] + (82 - BD )k

(27)

Gﬁf i - (%—)f),i‘ + (ﬁ-.- 6B A k!

s . N s
e, =Suz i - (§-4z)3' + (F + OBD k!

We now rewrite the results of Equations (23), (24), (25), (26), and

(27) in the following final form:

il =8, =" - k. i,=8,=154d" - g,l_c'
4} =pk - 11 4 =D X' - p 1!
k' =n,6 =q4d'-pj' k} =n, =q,i' - p.J! (28)
b, =51 +%d" + K LIS 7RUS APUR RS &
e, =ui' Ll + K e, TPl -l thE
where
p, = - BA b, = - BD
9 =-% 9 =-3
Ty = ) ﬁ? ga =//¢ﬁ?

(29)

;fn
]
o)
!
P
R\
1
oD
t
o
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7o = on % = ox,
szd—eqq/ .}-A=85“Gq/é
%:-@p“—qv %:-di-q/

Using these results, we may rewrite the equations of equilibrium,
taking into account the effect of deformation of the surface on the
directions of forces and moments. Previously, all forces and moments
were assumed to be directed according to the vectors i, j, and k.

In the present case, forces and moments on faces o = & T “—;5 of

the shell element are assumed to be directed according to the vectors
b, ¢, and k'; forces and moments on faces/ﬁ =/, z ‘,(zé are assumed
to be directed according to the vectors i', Jj', and k'. We proceed

as before. On the face o = a - ?/ of the element of shell, the follow-

ing force acts:
(3 pZ £
- [may -(N,ay) 4] [ e - g,zz—“j - [ 8,87 -, a7), #][2 - _13,3.2-]
W o
+ [Q,ay -(Qay) 4] [x' -k 7‘7]
Similarly, on the face « = & # ‘féﬂ-’ , the following force acts:

[Nedy +(m,ay) &

V) [e v e %]

v Za
- =/ 2

- [ Ay +(Q,ay) ‘%’] [k' +i Z“/]

Adding these two expressions, considering expressioné similar to

;a/

Equation (7) for the unit vectors ¢ + g, 7 ete., replacing dy by
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B d/g , and neglecting terms of order higher than two in d« and
d% , we obtain the following expression for the net force acting on

the two faceso'=al- /?"/a,nd & = &t "(z—"/ :
{[(N,‘B), c+ N,Bg,] + [(ngB)/ o+ I\T,‘jB}g/] - [(q,}g), X+ Q,Bl_c‘/]} ax 4

By use of Equations (22) and (23), this expression may be rewritten

as follows:

{[(N,‘B)/ +OUB) + BN, + LN, - 0BQ] L
+ [(B) - 6(NB), - £33N, + BN, + n,BQ,] 3" (30)
- [(QxB)/ - (&BNN- LBN:V] _}E‘} def d/

In a similar manner, by assuming the forces to be directed according
to the vectors i', Jj', k', it may be shown that the net force acting
on the two faces 3 =/, - i’zé and/g =4, + ‘-/ZA is given by the

following expression:
o, - s, - g0,] 2+ [0, + s+ 5a0,] 2
- [(Q,A)z + AN, - p/eANy] k! } do dg (31)

Let the external load on the element of middle surface be given by

the expression:
(X142 + Y' ' - 2'k")dxdy = (X'i' + ¥' j' - 2'k') AB do 44 (32)

As Dbefore, we obtain the three force equations of equilibrium by

adding expressions (30), (31), and (32), and equating to zero the
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coefficients of the unit vectors:
(NcB), + (N,A), + G(NVB)/ BN+ BN, - T4AN, - q.BQ, - 9 AQ + ABX'= 0

(NxIB)/ + (NJA) e(N,B), - £BN + ToAN,, + 7w BN L n BQ,* %AQf ABY'= 0 (33)
(QB), + (Q 4), - 4BN,+ 94N, - BN, - D, A, + ABZ'= 0

The moments are treated similarly. The moment of the forces act-
ing on the fdcea(zq:—‘g‘yof the element is given by the following

expression:

-[M,‘jdy -(Mxydy)/‘fz‘{l[c -c ‘-“"] [dey - (M, dy), é’][b -3, ]
[e s -@uon) A[E - B4 [ Hf e - 422 z]}

The moment of the forces acting on the face « =44+‘£—‘( is given by the

following expression:
[,y +(48y) e+ o &) -[iar +00,a) [0 + b %]
Tetiollor sqen HE = mE [ e[ v # [37

Adding these two expressions znd simplifying, as in the case of forces,
bymaking use of Equations (22) and (28), we obtain the following
expression for the net moment of the forces acting on the two faces

o =&y - ‘(Z‘Y and =+ ‘g-"/t
{[(M‘JB)/ - 004,B), + 7y B, - £BY, ] 1! -[(0,3), + 804,B) + £ B, + 7B, - ABQ,,‘] d

+[ABN,‘] +#/By, -&BM,‘] k! } av a4 (34)

In like manner, we obtain an expression for the net moment of the

forces acting on the faces/§’=ﬂ- é!and /=/5‘, + ? , as follows:
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{[(Ivgj,A)z + g, - 4BQ,] 1t [ ), - A - oxBQ] "
# [, - g n, - pm, K } ax ag (35)

We assume, as before, that the moment of the external forces is zero.
Adding expressions (34) and (38), and equating to zero the coefficients
of the unit vectors, we obtain the three moment equations of equi-

librium:

(4, B), + (8,4), -0(\B), + 1,44, - £ BV, + 7B, - ABQ, = 0

d
(4,B), + (,A), +6(4B) + 7 BM, +£BY, - Ty AM, - 4BQ,- O4BQ, =0 (36)
KBN,, - ABN,, - D, did,, - L BM+ 4 BM,, - QA = O

Equations (33) and (36) are equations of equilibrium which teke
into consideration the effect of deformation of the shell on the
equilibrium of the element. The constants appearing in these equa-
tions are to be calculated for the deformed shell.

In writing Equations (33) and (36), we have assumed that the
normal stresses f and @ rotate in direction as the element deforms so
that they are applied always normal to the faces of the element. (See
page 17). A second possible assumption would be that these stresses
act always parallel to the parametric curves; i.e., after deformation
they become inclined to the faces on which they act. The shear
stresses are assumed to act in the faces of the element in both cases.

On the basis of this second assumption, the forces N,, N&, M, , MV’ and
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Qyx acting on the faceso« = const. will be directed according to the
unit vectors a, b, j', ¢, and k', respectively; while the forces

N,

I'N

yxo M, , M,,‘. and QJ which act on the faces/g= const. will be
directed according to the unit vectors b, a, ¢, j', and k', respec-
tively. Proceeding exactly as in the previous case, we could set
up another set of equilibrium equations, applicable under conditions
similar to those under which Equations (33) and (35) are applicable.
Which of these two methods of approximation is nearer the actual
truth is difficult to say. A. E. H. Love gives a set of equilibrium
equations ("Mathematical Theory of Elasticity", Fourth Edition,
page 535) derived on still a third assumption; namely, that all
forces and moments on the faces of the deformed element are directed
according to the unit vectors i', j', and k'. Physically, it seems
that either of the first two assumptions is more reasonable than the
latter; however, it is probable that the results will be in close
agreement regafdless of the particular assumption used in deriving
the equations. As no use will be made of these equations in this
thesis, we shall not attempt to go further into the merits of these
assumptions. Our main purpose has been to demonstrate the ease with
which the equations of equilibrium may be set up, regardless of the
particular assumption used.

In order to solve either Equations (11) and (14) or Equations
(33) and (36), we first express all forces and moments involved in

terms of the deformation components, u, v, w, and their derivatives
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with respect to o/ a,nd/é . In general, the strain at any point is
determined by six quantities & , &, , & .);3 , Yax , and )/,‘7 . The
basic assumption regarding the deformation of the shell, as stated
on page 1, requires that &, )_/,g , and );x shall be zero. Likewise,
as previously noted, the stress /; must vanish. Hooke's law for
isotropic materials then gives the following relations between the

non-vanishing stress and strain components:

/
& = 7 (& -V5) 6 =7 (& +/€)
é}=2/-'({;-/&') p =/—_—£'7:'(6_, + /€ ) (27)
V) E /-
):y = (E+ Txy z;] =/':.7(T)Kf

In order to express the force and moment components in terms of
deformation components, we proceed as follows: The strains &

&

shell thickness, are determined from the geometry of the shell and

, and )éj , as functions of 2z, the coordinate varying over the

suﬁstituted in the above equations of Hooke's law. The resulting
expressions for the stress components, as functions of z, are
substituted in Equations (2) and integrated over the shell thickness,
to give the desired relations between the deformation componénts and
the force and moment components.

As stated aoove, the basic assumption regarding the deformation
of the shell requires that the strain components );3 and );, shall
vanish. This, of course, is inconsistent with the presence of
shearing stresses '@z and Zzx. Actually, strains );Ea.nd );,‘ must exist,

but on the assumption that they are small compared to the other
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strains, they may e neglected. This is equivelent to neglecting
the strain energv due to the strains );g and );u, in comparison to the
strain energy due to the‘other strains. Also, it corresponds to the
usual assumption of elementary beam theory, that "plane sections
remgin plane". When the ratios of shell thickness to radius of
curvature, and shell thickness to arc length of middle surface
between bounderies, are small, this assumption, in all probability,
will give\a good approximation; in any case, the assumption is
subject to experimental verification.

We now turn to the derivation of expressions for ¢, €,, and
Xg.as functions of the coordinate z. Consider, again, the element
of shell described on page 2; this element is shown again in Figure 2.
In this figure, OCD represents the middle surface of the shell and
FGH represents a surface parallel to the middle surface and at
distance z from it. According to our basic assumption, the surface
PGH remains parallel, after deformation, to the deformed middle
surface, and at precisely the same distance z from it. We proceed
to write expressions for the position vectors of the points 0, C,

D, ¥, G, and H, both before and after deformation. The following
notetion will be used: the letter, underlined, which designates a
point will be used to indicate the position vector of that point;

two letters underlined, for example FH, will indicate the vector
directed from the first named point to the second, in the example,
the vector from the point F to the point H; and the subscript o shall

be used to distinguish quantities relating to the undeformed shell
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from the corresponding quantities relating to the deformed shell.

The unit vectors involved have been described previously. The

point O, on the undeformed middle surface will be taken as the

origin of the position vectors of all the points mentioned above.

If s is the deformation vector at the origin, the position vectors

of the various points may be written as follows:

where the sine and cosine are

first order in d« , only, are

D, =R44]
D =Bdfhb+s
F, =2k

f =s+ o2

S, + z (k + k,d«)

expanded in series and terms of the

retained. Similarly:

zk+ (4,1 + 2z k,)d&

where an expression similar to Equation (7) for the unit vector

k + k, dv

is used and only terms of the first degree in de/ are retained.
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Similarly:

o
1]
i
N

=]

1]

C+ z (n+n,dv) +(Aa+2zn,) da+

]

il
N
I

H, =D+ z (k + k,44) + (B,j +zk,) df

[0}
N
s

|

H = D+ z (n+ gzeﬁ) n+(Bb+z2n) §5-+

By subtraction, we obtain the following vectors:

OOCG =A,d0(j-_ 0oDo ='.B,d/<9_j_
o6 =4dea 0D =B dsb
7 (38)
FoGo = (4,1 + 2z k, )dv FoH, = (B, J + 2 152)%
F¢ =(aa+2zn)dw FH =(B_t_>+z§z)<}é

Using these expressions, we may write equations expressing the strain
components as functions of z. It is here that the assumption that
the parametric curves are lines of curvature of the uﬁdeformed middle
surface is of importance. For this is the condition that the faces
OFHD and CFGC, before deformation, be plane and normal to each other.
(See Weatherburn "Differential Geometry", page 66.) When the latter
condition ig falfilled, the strains may be expressed by the following

formulas, where use is made of Equations (38):

& = lE_k_":‘ - IFOGGI =(A§-+ ZE-_/I" lel*‘ 4 K,l
* IF° 4 le_j;'*' ZE,[
€ = |FE| - |FeHo| _|B b+ 2z n,l-1Bj + 2kl (39)

[Fol| (B, + z kj
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Y= (FG) o (FH) _ (Aa+zn,) e (Bb+ zn,)
Xy |FG] |FE| = |Aa+zn| [Bh+zn)]

Similarly, the strain components of the middle surface (z = O) are

ziven by the following equations:

o] = 10.Col & - A,

Xz.o IOOCH! h Ap
‘ = |0D| - [QeD.| B - 3B, 40
ﬂi:o ‘gaDol = B, ( )

In order that the integrals of Equations (2) may be completely
evaluated, it will be necessary to obtain expressions for the curva-
/ /
tures 25 and zz . These curvatures are given by the following

equations: (See Weatherburn "Differential Geometry", page 62.)

L. L. £ (undeformed shell)
T A g T BT undeformed she
& ~ (41)
—'/‘ = -L— —_/_. — .ﬁ.
Le A ! //?5 = Bt (deformed shell)

For the undeformed shell, these quantities are the principal curva-
tures, the parametric curves being lines of curvature. For the
deforﬁed shell, however, the paremetric curves are no longer lines of
curvature, and Equations (41) give the normal cﬁrvatures in the

directions of the parametric curves, not the principal curvatures.
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We now substitute Equations (39) and (41) in Equations (2)
and carry out the integrations with respect to z. There will result
expressions for the force and moment components in terms of the
deformation components of the middle surface, and of their deriva-
tives. These equations are substituted in the equations of equi-
librium (11) and (14) or (33) and (36). The first two of Equations
(14) (or (36)) are solved for Q, and Q, » and these expressions
are then substituted in Equations (11) (or (33)). The latter
equations are thus reduced to three simultaneous partial differential
equations in the three components of deformation, u, v, w, of the

middle surface.
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PART II.

We shall now apply the theory developed in Part I. to set up
the equations for a shell whose middle surface has the form of a
circular cylinder. We shall take as parameters describing a point
which moves on the middle surface, the distance x from the point to
a fixed plane normal to the axis of the c¢ylinder, measured along
the generator through the point, and the angle ¢ between a fixed
axial plane and the axial plane through the point; in the equa-
tions of Part I., we replace « by x an?/ﬁ by 4. It will be shown
later that the parametric curves, so defined, are lines of curva-
ture of the middle surface. (See page 30 .) Let the radius of the
undeformed middle surface be a. Consider a set of fixed, right-
handed, orthogonal axes, X, Y, Z, such that the X axis coincides
with the axis of the cylinder. ILet ¢ be the angle between the XY
plane and a moving axial plane, measured positive about the X axis
according to the right-hand rule. Then if I, J, X, are unit vectors
in the directions of these axes, the equation of the undeformed

middle surface may be written in the following form:
r=xI+acosdJ+asingdKk (42)

As before, we shall denote differentiations with respect to x and
¢ by the subscripts 1 and 2, respectively. Differentiating

Equation (42), we obtain:

-asin g J+ acos g X

H
"
j—
i

(43)

!
(e}
L}

-acos § J - asingXk
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Substituting Equations (43) in Equatione (4) and (6), we may calculate

the following quantities:

J:jzzz-sinﬁgé-coséx_; (44)

fr
]
xS
I
}
~

5

X
k= /H =-cos § J - sin § K

L=Xer =0; S=ker =0; P=ker =a

-—/2 -2z

Since A and B are constants, thelr derivetives vanish, and we have
the following expressions for the derivatives of the unit vectors,

from Equations (6):

=03 J, =03 k, =0 (45)

=O;J=g;§z_-1

From the above results, it is seen that the unit vector k is
normal to the surface and directed inward. It will be convenient to
redefine the vector k so that it is directed outward. The vector j
will be left unchanged; i.e., directed according to increasing ¢.

The vector i, therefore, must be reversed in sense, in order that the
triad of unit vectors i, Jj, k may form a right-hsnded system of
vectors. The only reason for making this change is to make the
results which are to be obtained agree more closely with results
which have been obtained by other writers. It seems to be the usual

practice to take w, the radial component of deformation, as positive
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when it is in the outward direction; in order to adhere to this con-
vention, we direct k outward also. Otherwise, it would be necessary
to change the sign of w throughout all results.

In terms of the new system of unit vectors, defined in the
preceding paragraph, Equations (42) and (45) may be rewritten as

follows:

i=1i =‘1/= _}s/: 0 (46)

1=-k: k,

"
k.

Using these equations to recalculate the quantities of Equations (4)

and (6), we find that:
A=1; B=a; H=a; P=-a; FP=L=S=0 (47)

These are identical with the results of Equation (44), except that P
has changed in sign. It is to be noted that the quantities F and S
are both zero. This is the condition that the parametric curves be
the lines of curvature of the surface.

Using the results of Equations (46) and (47) in Equations (11)
and (14), we obtain the following equilibrium equations, valid on the
assumption that the effect of deformation on the equilibrium of the

element is negligible:
a(N,), + (§,), +ax=0

a(Ny), + (N,), - Q+ ar =0
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a(Q), + (Q, + N4+ az = 0 (48)
a(i), + y), -ady= 0
a(Mx )/ + (MJX)z - B-Q,x = 0

a(Ny - Ngy) + Mg = O

We now consider the deformed surface, and write the deformation

vector of Equation (17):
s=u(xdi + v(xg)i + wixpk (49)

where the unit vectors are those used in Equations (46). Adding the
first of Equations (46) and (49), we obtain the vector equation of the

deformed middle surface, as follows:
/

rz=r+s=(x+uw)i+vj+ (a+wk (50)

Differentiating Equation (50), and making use of Equations (46) for

the derivatives of the unit vectors, we obtain the following results:
/ .
L= L+wi+vj+wmk

r;=wi+ (a+wsv,)i+ (w- vk

r=ui+v,J+wk (51)
/ . .
r=wi+ (V4 Wi+ (w,-v)k

iz ud 4 (- v+ 2w) i+ (8- 2v+ w- WE
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We now proceed to calculate the quantities of Equations (18), (19),
(20), and (29). In making these calculations, it is assumed that
the deformation components, u, v, w, are small quantities, so that
terms of degree higher than one in these quantities and their
derivatives may be neglected. Frequent use, in which advantage is
taken of this approximation, will be made of the binomial theorem.

From Equations (18):

l+2u, ; 4=/E =1+u,

a'l+2%+2%) ; B=/8 =al+5+%)

[*p]
"
I
il

F=r ‘= av
——/'-I:z—ul+ /

H=B6 - F'=a’(1 + 24+ 2%+ 2%)

= Vi , W
H=a(l+q+ 2 +7)

/ :
§=Z'I'l=l+v/i+w/l_c (52)
/ A wy _ v
- — | B— 2 2 e —
b=grl=2i+j+ (F-7)k
/ /
x4 Y Wiy
p=r=owis (T -Flivk
L=g.'£'// =W,
S=n.x =w,-v,
P=noer' =-a(l+25+% %)
=8 .I,="8 aTa~ g
Also: A, =wu,, ;5 B, =v,+w,



From Equations

F
0= = —
cos X B
A
i = =
s1in AB
A
9,: 2{'24- V” H

33.

(19):

A

n
.—I

©

+ vV,

=

s
z PZ2

(53)

The result, sin/X': 1, verifies, for the circular cylinder, the

velidity of the approximation noted on page 13 just below Equation 19).

From Equations

(20):

/
A = ;72(2EF, - EE,- FE) =

/ /
/ = 271(EG’/" FEL) =;(/2 +M)

[ = 78S - GL)

A = HFL - E5)
_i

C =H1(FP - GS)
Z

D = (FS - EP)

From Equations

/
p,= -BA = - 2 (v,
L
qX= - ; = -'”
8
rx=AZ = Yy

- Wy

|

=Ja-Y-
(29):

/
;*(V/ -w,)

A
- (W)

17
a

Wiz
)

=-BD = = Y
p,= - BD = 1+ 2z
q,: -5: vV, - W,

=42
rﬁ'/f,q =Vt W,

(54)

Wiz
=)



- 1= é? f;..ez- = oW,
or,= 0 7¢ = Qr¢= 0

0q = - L( ) %, =p,- 0q = (1 + & M)
B = oW T Y # = B~ "%7 " a
-Opx -q=w, % = —Gp¢— = g—" +w,

(85)

Using the results of Equations (52), (53), (54), and (55), in

Equations (33) and (36), we obtain the following equilibrium equa-

tions which take into consideration the effect of deformation on

the equilibrium of the shell element:

a), 1+ %4+ 4 (8,), (L+w) + (Ny) (ur av,)
+ (M= N (v,+ w,) + (Nr N Ju,+ aw, Q- (v, - %,)Qy
+a(l +u,+ —-+w)X' =0
aly) (1+2+%) + (W), 1 +9) - (V) (a,+ av,)
+ (M B (vor W) - (M- Ny)u- (L4 u+ 5 - %o)q
- (v - b,,)Q,+ a.(1+u+’/‘+%/)Y' =0
a(Q,) (1 + 7 +W) +(Q), (1 +w) + (v,+ wQ+ w,Q,- aw, N,

+ (1 + u/+ " a )N¢+ (}L I&?) (v/ - '/)

a(Mm) (147 2+ *-) + (Mg), 1+ w) - (M) (u,+ av,)

+ (M#x+ Mx¢) (Vz."' w) - (- Me‘)u - a(l +u,+ Zl +W)Q'¢- 0
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alMy ), (1 + E’ +29 4 (), @+ ) + (O, (u+ av)

+ (= M) (v, + W) + (M+ M Ju -~ (u,+ av)Qy
V;
- a(l + u+ +i~v )Q,=0
n, W G _ W
a(l + u,+ 2+ 7 )(Nu- N,) + (1 + u,+ = "Z{)M""
+ aw, M, + (M- M) (v, - w,) =0

Similar equations are easily derived on the basis of any of the
possible assumptions mentioned on page 21.

When all terms involving the product of a force or moment
component by a deformation component are neglected, Equations (56)
reduce to Equations (48). It will be seen later that the froce and
moment components are expressible, approximately, as linear functions
of the deformation components and their derivatives. When such
expressions are substituted in the two sets of equilibrium equations,
the terms of degreehigher than one in the deformation components are
neglected, it is seen that Equations (56) again reduce to Equations
(48). The utility of Equations (56) occurs in the solution of
stability problems; however, no further use of these equations will
be made in this thesis.

We now turn to the calculation of the strain components. Substi-
tuting Equations (52) and (54) in the last two of Equations (21), we

obtain the following expressions:
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_ _ 4 a _ W,
EZ—AC_§+BD_§-_(4_+W/Z)E+(1+Z ZZZ)E

Using these results, we obtain the following expressions for the

various vectors which occur in Fquations (39):

z
A2+ zn = (1 +u-zw)a+3(v-w)D

+

2 2 z 4
Bb+ m,m 2 wa v sl + Ba H e 2 S8

- h Vi w & Wi
= “Z(A'I' '/L)g + (a. + Z)(l +Z +A+E-Z.FE)B

Bo j + zk,= (a+ 2)]

Using expressions of the type, lgl =¢/_e_'— , for the absolute value
of a vector, we obtain the following expressions for the absolute
values of the vectors of Equations (39), where, as before, terms of

degree higher than one in the deformation components are neglected:
\A_g + zg/l: 1+u- 2w,
- i W _Z M
lBl) + zgz{_ (a+ 2)(1 t Rt e )
a1 + 2k | =1

[Bo,j-a» ng{=a+ z (57)

V4 LA
(42 + zn) o (Bb + zn,) = u,+ = (a2 + 2) -5(2&1 + z)w,

_ﬂﬁ..f._féiq

- [Z
‘A&*’ zg/“Bl) + z_qzl- (a+ 2)(1 +u- A R PR i e



37.

Substituting Equations (57) in Equations (39), we obtain the

following equations for the strain components:

& =u,- zw,
=, W _ 2, W
€6 = ¥ ai~x ars (58)

2 {a+ B
o= L lda v o) 2T,

Substituting Equations (47) and (52) in Equations (41), we

obtain the following expressions for the curvature of the parametric

curves.:
/ / /
L0 s L--.L 9
r B a (59)
A N
y A fﬂ-a(l o)

It was remarked on page 26, that the quantities /éand /?%5 for the
deformed surface are normal curvatures in the directions of the para-
metric curves. However, it may be shown by calculation of the
principle curvatures (see Weatherburn, "Differential Geometry", page
69) that the latter are equal to the curvatures of Equations (59) to
the degree of approximation used in writing these equations; i.e.,
wvhen terms of degree higher than one in the deformation components
are neglected.

We now calculate the force and moment components which are given
by Equations (2). The stress components are first obtained by

substituting Equations (58) into the second group of Equations (37).
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The resulting expressions for the stress components, together with
the curvature expressions from Equations (59), are then substituted
in Equations (2), quantities of degree higher than one in the
deformation components are neglected, and the integration with
respect to z is carried out. In carrying out the integration, we
make the assumption that t<<a; whence, we may expand the quantity
(1 +§)-/ by the binomial theorem, retaining only the first four

terms of the expansion, thus obtaining the approximate result:

1+Zy 2120 (E) - (2 (60)

a 2

In this way, we obtain the following expression for N,:
¢

* 3
£
NX:/_.—EF (5,(-#1-]5,5)(1 —é)dz =;;}-;[(u,+l/§+1/%)t —/-ZE;M/]

[N

A slightly different notation for derivatives will simplify the writ-
ing of this and similar expressions. We shall denote by a prime the
derivative with respect to x, multiplied by the radius a; and a dot

shall denote the derivative with respect to ¢, thus:
( Y=al) s ) =) (61)

We shall introduce, also, the following notation:

e _ e L _ K _¢
/=y TR0’ T Da' " /zat

D= (862)

Using the notation of Equations (61) and (62), we obtain the follow-

ing expressions for the force and moment components from Equations (2):
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Ly -—(u ‘e/v +Jw - ")

N, =£(u/+ Vv 4y w) -3

N=2(v'+ w +/d) + 500"+ w) =2(v"+ w + V4 i [w'4 w))

I‘{ff(/—;:'"/)(u# V) +:~,(/;2'~/)(V/- 5=4-2 SRICT Y )
I%xzf(/:i"})(u-«-'f) "'as( £ "):f(%—’—/)(u'i- v+ k[w+ w])
=5,(w-u+1/w—1)v) = Dk(w - u'+ /w'=/v") (63)

Mff,(w'% w +/%') = Dk(w"+ w +/w")
M= a‘(l -/)(w'= ¥) = Dk(1 - /) (- V)

e B0 - 8L = Del1 =) -8

The eight Equations (63) together with'the six equilibrium
Equations (48), constitute a system of fourteen simultaneous differ-
ential equations in thirteen dependent variables, the ten force and
moment components and the three deformation components. This
apparent excess of equations over dependent variables is accounted
for by noticing that, if the third, fourth, and last of Equations
(63) are introduced into the last of Equations (48), the result is
an identity. We therefore bave, in reality, only thirteen independ-
ent differential equations, and we take these to be the first five
of Bquations (48) and Equations (63). PFrom these thirteen equations,
we eliminate the ten force and moment components to obtain three

equations in the three deformation components.



We proceed as follows. The fourth and fifth of Equetions (48)
are solved for Q,¢ and Q,, respectively, and these results are sub-
stituted in the first three of Equations (48), giving the following

set of equations:
N, + NS, +8X=0

Njp+ Ny - (hy + Mep) + ¥

]
(@]

(64)
/ ve . .
= (Mg + My, + Mgy + My ) + Ny+ aZ =0

Substituting Equations (53) in Equations (64), we obtain the

following three equations in the deformation components:

Vi /:.‘.} . !.1.‘} /o / /;.‘} . o M _4_" _
u+zu+2v+1/w+k(2u+-?w w)+px-0
12V e 2 ¥y e w'+k('—5—[—/—-£]v”- -/ v o+ ay -o (65)
7 2 z 2 D

/ ] - foo - y/Q v V/AM 144 .. 2
1/u+v+w+k(£z~’/u-u/”~3—2-5/v/+w' +20 +wW + 204w +£2 =0

These are the differential equations of the circular cylindrical shell

in the form in which they will be used in later parts of this thesis.
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PART III.

In this Part, we shall set up the general expression for the
potential energy of strain for the case of the circular cylindrical
shell and, by means of the principle of virtual work, deduce, again,
the differential Equations (65), together with the conditions which
must be satisfied by their solution at the boundery edges of the
shell. The general expression of the principlé of virtual work,

for the case under consideration, may be written as follows:

EJ//[V -(Xiul;c-szz 'Zzw;) ]'(1 +§ )dz add dx —//(}-(éu# T;vzfz;vz)dz ds"}= 0 (66)

where V is the strain energy per unit volume, X,, Y,, Z,, are body

forces per unit volume, and X, Y,

s+ 2,, are edge forces per unit of

area of edge surface, the subscript z being used to emphasize the
fact that the corresponding quantity is a function of 2z as well as

of x and §. The edge surface is assumed to be a developable surface
whose generators are the normels to the middle surface. For the sake

of brevity, we rewrite Equation (66) as follows:
5[//(v-3)(1 +£)dz add dx -/F dz ds'}=0 (67)

In these equations, ds' represents the element of arc length of a
curve, in the edge surface, which is parallel to the arc ds of the
intersection of the edge surface and middle surface, ds and ds',

both being included between the same two neighboring generators of
the edge surface. Let R, be the radius of normal curvature of the

middle surface along its curve of intersection with the boundary



42.

surface. Then ds and ds' are related approximately as follows:

ds' = ds (1 -é (68)

In writing this equation, we make the assumption that the actual
edge surface may be replaced by a series of plane surfaces whose
lines of intersection are the generators of the actual edge surface
at neighboring points of the boundary curve. By the boundary curve
is meant the curve of intersection of the boundary surface and
middle surface.

Consider the triad of moving orthogonal axes x, y, 2z, as
described on page 2, which are related to the undeformed middle
surface. Let ¢’be the angle between the positive x axis and the
outward drawn normal to tﬁe boundary curve, the normal being drawn
in the tangent plane to the middle surface; i.e., in the xy plane.

Then from Euler's thecrem on normal curvature, we have the following

/
expression for —< :
xp 2
E/s = - 7{ cos"t/ (69)

where use is made of Equation (59). Using Equations (68) and (69),
and taking the variation sign under the integrals, Equation (67) may

be rewritten as follows:
//(fv -4B)(1 +2)az adf ax -///F (1 +£cos’y)az ds = 0 (70)
or, more briefly:

I, -I,- I, =0

I, s///fv (1 +2)az adf ax ; I, s///fB (1 +£)dz adf ax  (71)
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I, i//JF (1 +fcosz'¢)dz ds

Let us now consider I;, which may be written out as follows:

I, =//(ie;ué+ Y, )’vé-t- Z, arvs)(l +§cosz¢ Ydz ds (72)

where it is assumed, of course, that the applied forces and stresses
remain constent during the virtual displacement. The quantities u,,
Vz, Wy, may be expressed in terms of the deformation components u, v,
w, of the middle surface in the following manner. From Equation (52),
we have the following expression for the unit normal to the deformed
middle surface:

/ v w
i+ (Z-2)i+k

B=-

A2

where the notation of Equation (61) has been introduced. If s is
the deformation vector of a point of the strained middle surface, as
given by Equation (49), then the deformation vector -3 of the corre-
sponding point at & distance z from the middle surface is given by

the equation:

/ .
, w zZ wi.
s,=s+zm-zk=(u -z;)_i_+[v(l +Z) - ]_,1+w_}§ (73)

where the undeformed position vector, zk, has been subtracted from the
deformed position vector to give the deformation vector. The coefficients
of the unit vectors in Equation (73) are the deformation components Uy,
vz, Wy, of Equations (66) and (72). Introducing Equation (73) into

Equation (72), the latter may be rewritten as follows:



I %}-{E(fu - za;:_vs + Ti,(Jv[l +§]— zg%v') + Zifw}(l +Zcos¢)az ds (74)

We introduce the following definitions of boundary forces and moments:

t

[
- ) 2 z Py
N, =/xz(1 +2 cos ¢)dz Ny

f
H
— Z *
-_f/ T, (1 +Zcos Y)dz
¢

t

‘/@2(1 +Zcosraz  (78)

+ 2

= _ _: g 1
Q,W = 1t/zz(l + 5 cos ¢)dz

-

2

t 1
ﬁx = —t/}-(;z(l +fcos"5ﬂ)dz i¢
z

Substituting these expressions in Equation (74), the latter may be

rewritten as follows:
I =/[ﬁxfu + (ﬁ,; -'gf’))-v - 'Q-“,fw +';—'§‘fw/+%fw"] ds (76)

Where the integration is carried out around the closed boundary curve.
We now re-express the forces and moments appearing in this equation
in terms on forces and moments acting parallel and normal to the
boundary curve.

Consider a small triangular element of area of the middle surface
bounded by an arc ds of the boundary curve and arcs dx and ad¢ of
parametric curves. This surface element, together with the normals
to the middle surface along its boundary, determine a small element
of volume of the shell. As noted on page 42, we assume that the
surface of this element which is part of the boundery surface of the
shell may be approximated by a plane surface. Now the forces and
moments of Equation (75) act on this surface in the directions of
the parametric curves. Let us resolve them in directions parallel

to and normal to the boundary arc ds. Consider a set of moving
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orthogonal axes n, s, 2z, at each point of the boundary curve, and
directed as follows: the z axis coinciding with the z axis of the
set of axes x, ¥, z, described on page 2; the n axis coinciding
with the normal to the boundary curve, positive when directed out-
ward; and the s axis tangent to the boundary curve and so directed
that when the x axis is revolved through the angle Sﬂ about the z
axis, going into the n axis, the y axis goes into the s axis. We
shall denote by n and s unit vectors parallel to the n and s axes,
respectively. Then n and s are related to i and j by the following

equations:

n=4icos¢+ jsiny¢ n cosy/- g sing (77)

15
I}
B

s =-i sing+ J cosy/ J sing + s cos¥

"
1=}

From the definitions of Equations (75), it is seen that the force
and moment vectors acting on the boundary face may be written as

follows:

F=Ni+Nj-Q,k (78)

Li- W

X

M

where the right-hand rule has been used in determining the signs in
the second of the above equations. Substituting Equations (77) in
Equations (78), these vectors may be re-expressed in terms of the

unit vectors n, s, k, as follows:



F=Fn+¥Ns-Qk (79)
M=M¥n-Ms

where
N, = Ny,cos¢/ + ﬁ¢sin</ M, = M,cosy/ + Mysiny (80)
N,= -N, sin¢/+ I—f¢cos¢ ¥, = -}, sing + Nycos W,
ans = _Q«-W

Equations (80) may be inverted to give:
N, = §,cos¢ - N, siny U, = M,cosy - ¥ siny (81)
-ﬁ¢= Esin|ﬁ+ -ﬁJ cos¢ ﬁ,‘: ﬂ,,sins/+ ﬁ;cos;ﬁ
6«# = _Q-:ns

Corresponding to the variations Su and / v of the deformation
components in the directions of the axes x and y, we define varia-
tions Jn and Js of the deformation components in the directions of
the n and s axes. The variation components in the two systems will
be related exactly as the forces, as given by the first two of
Equations (80) and (81). We may thus write the following equations

between the variation components:

/n

Ju cos¢+ v ginyg du =Jn cos/-Js siny (82)

Is

-Ju sing+4 v cos¢/ Jv =dn sin¢d+Js cos ¥
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The directional derivatives of [w in the directions of the n

and s axes may be written as follows:

fw"’)E?E%;K =:2—?57//§ Z??%/fﬂ (Jw’cos¢+ Jw* sing) (83)

)’ {s) /()J-W ’?(fw x ?;Wa/p/ /

=S Tx As * 0 Is 4( Sw'sin¢ + Jw cosy)

and these equations may be inverted to give:
Jw'= al@w” cosf- dw sing) (84)
Sw = a(JwW sing + Iw cosd)

We now substitute Equations (81), (82), and 64) in Equation (76).
Rearranging and collecting terms according to the variation components,

we obtain:

13=/[(ﬁ”- Zgin ¢ M’sinwcos;ﬂ)fn + (¥, - cos ¢-—81n¢ cos¢)ds  (85)
- - ) - (s)
- Q’ns Jw+ M”;w + M‘,fw } ds
The following identity may be written:

Jy
o= M;,;JW =52 (L 5w )—7_"_45 Iw (86)

If Equation (86) is substituted in Equation (85), one of the terms
obtained will be ’2—3' (M Jw)ds , which vanishes when integrated
around the closed boundary curve, on the assumption that the quantity
ﬁ;{ w is single-valued and continuous on the boundary. Thus Equation

(85) may be rewritten as follows:
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I, ='/[(ﬁn-'—;-4—"sinzgﬂ -’%sin% cOS;&)fn + (F, -?coszsﬂ -g’sin;ﬂ cos;ﬁ)&’é (87)

~ M = o
- Q+5F Yw + B, S ]ds

We now return to Equation (71) and consider the integral L. We
have made the assumption that the loads are applied to the shell on
the middle surface only, see page 2. Then in Equations (66) and (71)

X,

Yz, Z,, are to be replaced by X, Y, Z; and hence, at the same
time, u,, v,, W,, may be replaced by u, v, w, the latter quantities
being the deformation components of the middle surface. I, may,

therefore, be rewritten in the following form:

1, =//(xé"u + YJv - zdwmadp ax (88)

Let us now evaluate the integral I . The variation of the
strain energy per unit of volume is given by the following

expressions: (See Timoshenko, "Theory of Elasticity", page 139):

SV

RIE+ s+ Tuy 0 Yug (89)

S

Slats o5 s 50 00)

since, as it has been pointed out on page 22, &, , Yz , and Ygz are
assumed to be zero.

The first of these expressions emphasizes the fact thst, during
the virtual displacement, the stresses are assumed to remain constant,
the strains only undergoing small variations due to the virtual
displacement. We now substitute Equations (58) for the strain

components in the second of Equations (89), multiply both sides of
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the letter by the quantity 1 + -;— , and integrate with respect to z
over the shell thickness. In carrying out the integration, we shall
make frequent use of the assumption of Eouation (60). It will be
convenient to treat the four terms of Equation (89) separately. We
thus obtain the following equations, ;avhere the notation is that of

Equations (61) and (62):

153

£ _ [l E, . o r/* vt ‘u
2(,_,/&)4@‘,} (1 +7)dz =22;[u + k(w' - 2u'w )]
e 4
2(/..l/‘):t/6;; (1 +§ Ydz =‘,—,§; [v'z-t- Wi+ 20w+ k(W + W+ 2w )] (90)
£

¢
£ 7
T g ____e / e / . //- e 1
z(/-:/)__g/é‘f,;(l +a)dz -Idz[uv-l-uw-i-k(ww vw )]
FH
"

£ z 3 A z .2 . iy
2(/-L/‘)ZY,¢(1 +§)dz =§ [u’l+ vie 2w vie k(W e 3v 4+ 4w’ 4+ 2u'w'- 6v’w/)]
i 4

Combining Equations (90) according to Equation (89), we obtain the
following expression for the strain energy of the shell per unit of

area 0of the middle surface:

z
v =2_¢p-‘ W+ v v 4 (L+Xw" + 2/(u'v'+ u'w

+ %l)[(l s0w Q4+ Bv e 20y (91)

kN

.

A v . - o % . ‘o .
+k [w” -ou'w s W 2w 2 J(w - vw’) + /-2—')(4w/ + 20 w- 6v'w ]}

Forming the variation of Equation (91) and integrating over the

middle surface of the shell, we obtain the following expression for I :
I, =£//{l/[\l/+ vIvewdv s Vw4 (1 + k)w dw +J(u Iv + vou+ Wi + wd )

+%) [(l + Kudu+ (1 + )V Iv+ wdv+ v/;u']«t- k{w//fw”- wiou’ (92)
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_ u/;w” + w";w" + w“;w +w ;w" +\/(w"t)—w”+ '//J'w.._ v Jw”- w”ﬂrv')
+ -/-;z—'-/ (4w T w's w'ow + wdw'- " §v'- Sv’fw")]} add dx
Equation (92) is now transformed by means of the following identities:

(a) w' du'= (u’fu)/ -u'du

(v) vive=(vdv) -vdv
(c) w Jv':(wé.v)' -wiy
(d) wdv= (W) -u” Iy

(e) viu'= (vdu) -v"Ju
(£) wou=mwdn) -w'du
(&) wdu= (W) - uw'du
() v/ dv'= (v'dv) - v'dv
1) wdv'= @IV -udv

() viiw= (viu) -v'iu

(k) v dw'= (w'dwY - (W SwY + w’ O (93)
(1) w'du = (W//Gr{l)/ - v
(m) W Jw'= (u’ Sy;)’ - ;w)/ v 0’ S

(n) wWow= (WIR) -~ (wWOow) + wiw
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(o) wiw =(w % - (wiw) +wlw
(p) wdw = (w IR - (v W) + wdw
(a) v/ iw = (w' TR - (v W)+ W w
(r) vidw' = (v §W - W + v W
(s) w' v = (w'dv) -w"dv
(%) wou = (w'iu) - w"du
(w) W Iw = (0 IR - @ w4
(v) w6y = (w' vy - w” v
(w) W w = (w I - (T W W

(w”dwy - (™ dw)Y + v

n

(x) v iw' = (v {ﬁ)/ - (v Iw + v ow

(v/ XV{). - (V/' Jw)/ + v//'gw

]

Equations (93) are now substituted in Equation (92); in making this
substitution both forms of w) and the first form of x) are each used
twice, and the second form of x) is used once. ZEquation (92) is thus

transformed into the following:

I, =d£f/{- [u// + /-;—‘} u + /-:Z—J v Jw's k(/—'ig u'+ ’;z‘jw"‘_ w” )J Su

Voo o . . /- Y
-[/—;—u-e-f—z-'v/-t- v+w+k(3—-—[2 I %—-’jw”))fv

m o 3=y

+[Ju'+ V4w k(/—? R S w)]gw}adys dx
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+dgi//{(u/+ vt Jw - i+ %—yl(u'-!- (1 + 3k)v’- Skw/'J Sv

-k [w”/- LAY Ry ST /—'23) (2w” "+ u” - v")] Sw (94)

+k(w -u +Vw" - Jv')gw/ + x(1 -V)(w"- V) Sw'}adgﬁ dx

+—?//{¢;{(1 + W+ v e kw"]oru + (Vu+ vew-k/w) v

a
- k[,,"u, wae ul e (1 -V - v”)] Sw+ k(w+w+/wdw
+ k(1 - (w"+ %'- %/)fw/} add dx

For the sake of brevity, let the three integrals in this expression

be denoted by 14, I

- and Ie' so that:

I, =I,+ 1,41, (95)

it being assuned that the terms of Equations (94) and (95) are written
in the same order.
By the use of Equations (63) and the fourth and fif th of Equations

(48), the following relations may be verified:

Q= Z/'(MX/‘# + M; ) gdf[w"'-*- w+w - (1 -V)v”}

A /
A (MX

Dk w ” Ry B Y
Z

+M;,) -urw o+t Fu-F V) (96)

O
x
l

Mg Dy - ! e
Ny 4—d(v+w+>/u kvVw')

_Mug_ DY y ‘. s
Ny 'Z'd( Z )[u+(l+3k)v Skw]

Using Equations (63) and (96), the sum of I, and I, may be written

as follows:
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/
Ipo + I, =Z/'//{{Nx 511 + (NX“ -A-;é-")!v - Q, Sw +% éf-w/-b-/‘%" gw'] (97)

* [N,éxgu + (Nﬁ' A’gf)fv - Q¢Xw +4ﬁx 5w’+ /Z-.-d Jw'].}a,dﬁ dx

a

We may transform the double integral of Equation (97) into a
line integral around the boundary curve in the following manner:
Consider the double integral of the function ;g%{ teken over the
area A of the surface of a circular cylinder, A being bounded by a

closed curve S. By carrying out the integration with respect to x,

the following equations may be written:

o h AW / |
'/Xq.? dx adg =/ f]x,(d) adg = / f cos¢ds (98a)

7
where }ﬂ is the angle defined on page 42, x = x,(4) and x = x, (§)

are the equations of the boundary S written as functions of 4, and
the integration is carried out in the positive direction around §,
this direction being defined as the direction of the unit vector s
described on page 45. Similarly, by integrating with respect to ¢,
we may write: .
Xz é(x}
/é;/ﬁif adp dx = ///f f} a dx = d//;f sing ds (98D)
47 , A& s
vhere § = ¢, (x) and ¢ = ¢z (x) are the equations of the boundary S
written as functions of x. Using Equations (98), we may rewrite

Equation (97) in the following form:

a

I + 1, .—./{[Nﬁgu + (NX’,-"Z&") ov - Qx Sw +"Z-" ‘5-"/"'? 5w']cos¢ (99)

+[N»<,,5u v (g - T Ev - apdw P S 4 HJSiw}ds



where the integration is around the closed boundary curve in the posi-
tive sense.

Let us consider, again, a small triangular element of the type
described on page 44, but not necessarily having one side in the
boundary curve; the side ds may be any small arc on the middle surface.
We shall define the forces and moments acting on the face which passes
through the arc ds exactly as in Equations (75), but we shall
distinguish these quantities from those of Equations (75) by using
two bars. Those quantities designated by two bars are to be considered
as expressed‘in terms of the deformation components by means of
Equations (63) and (96), while those quantities designated by a single
bar are expressed in terms of boundary forces which are assumed to
be known. Now let us write the equations of equilibrium of this
triangular element. On the faces which pass through arcs of para-
metric curves, forces and moments given by Equations (2) act; on the
face which passes through the arc ds we take forces and moments to
be given in the form of Equations (75); loading forces applied to
the middle surface will be infinitesimals of a higher order than
the forces mentioned above, and so may be neglected. Summing the
forces and moments in the directions of the axes x, y, 2z, and taking
into consideration the lengths of the sides of the element of middle

surface, we obtain the following equations of equilibrium:

'ﬁ; = Ny cosy + Ny, sin ¢ ﬁx = M, cosy + My, siny
N = Ny cosy + Ny siny My =My cosy + Mg siny (100)

3X¢= Qx cosy + Q4 sing
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where, as indicated above, the right sides of these equations are
to .be expressed in terms of the deformation components by means of
Equations (63) and (96). Substituting Equations (100) in Equation

(99), and rearranging and combining terms, we obtain:
= 4 ,\; - ﬁ A-’—? -
Ip + I, =/[N,‘ fa+ (§ -Z”)Xv-Q,w Sw + = 5w+ Z-"’Jw]ds (101)

We note that Equations (76) and (10l) are identical in form, one
being expressed in terms of single bar forces while the other is
expressed in terms of double bar forces. However, the two types of
forces must transform, due to a rotation of‘axes, in exactly the
same way. Hence, by the same line of reasoning that Equation (76)
was transformed into Equation (87), we may transform Equation (101)

to the following:
= M, . v, M s 7,
I+ I°=f[(N” - a—”siniﬁ—-d—’sin;ﬂcosﬁ)fn +(N5- 7 cosy -sin¢ cosy) Js (102)
= MM - o )
-(Q, + ’S?s Yow - M, Jw _{ ds

We now combine Equations (87); (88), (94) and (102) according to

Equation (71):
I, -1, - I, =(I,-1,) + (Io,+1I,-1;)=0 (1083)

The term (I, - I,) is a double integral taken over the area of the
middle surface, while the term (Iy + I, - I,) is a line integral
taken around its boundary. In order that Equation (103) may hold
true in general, we must demand that its two terms shall vanish

separately:
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Consider the first of these equations. When I, - I, is written
out in full according to Equations (88) and (94), a double integral
is obtained whose integrand is composed of three terms, each of which
ig itself composed of a coefficient multiplying the variation of one
of the deformation components. The lattef variations are perfectly
arbitrary. Hence the coefficients of the variations must vanish
separately in order that the first of Equations (104) may be valid
in general. We are thus led, again, to the differential Eauations (65).
The second of Equations (104) gives the boundary conditions which
must be satisfied by the solution of Equations (65). Before writing

this equation out in full, let us define the following quantities:

B, =K, - A—Zi’ sing - g‘ sin¢ cos ¢

B Ns‘

1

cos ¢ - /;” sinyg cos ¢ (105)

YN

J
Ql

s =

ﬂ5+

o
o

)

with the quantities f;, fi, and § defined similarly. Forming the
second of Equations (104) by combining Equations (87) and (102) and

making use of the above definitions, we obtain:
0 =/[(i5,, -E)a+ B -5)s - (§- 380w+ (i, - K" ]as  (106)

Since Equation (106) must hold identically, we demand that the four

terms of the integrand vanish separately. The latter may vanish due
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either to the vanishing of coefficient of the variation component
or to the vanishing of the variation component itself. We are led

thus to four boundary conditions, each taking one of two alterna-

tive forms:
either n =0 or i =P,
" s =0 " P =T (107)

E |

]
(@)
wj
]
2]

=i
]

" w% 0 " ¥,

where in the first two of these equations n and s are used to denote
the components of deformation in the directions of the axes of n and
s as described on page 45. The first alternatives, where the deform-
ation components vanish, are the conditions along a boundary which
is perfectly fixed; the second alternatives apply along a boundary
wiich is only partially restrained or free. In the case of a free
edge, the boundary forces E, ....M, are to be taken as zero. The
second set of conditions apply also to the important cases of two
separate shells joined together along a boundary, and of a shell
Joined along a boundary to a stiffening beam. In these cases, we
equate the forces F, ... .IA',, for one shell to edge forces E, ....N,
which must be expressed in terms of forces I—D:, ....ﬁn obtained from
the second shell or from the stiffening beam. Thus the true

boundary conditions are conditions concerning boundary forces rather

than boundary displacements in all cases except that of fixity.
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Frequently, the second alternative conditions of Equations
(107) will all apply along a boundary. In this case, the first two
conditions may be simplified by introducing into the first two, the

last condition. We thus obtain for this special case:

17” —';‘ sing cos¢ = N, - M’sin¢ cos¢

N, - A.j Y = N, /v,"cos @ (108)
S=5

-,

Let us consider the form of the boundary conditions of Equations
(107) and (108) for the particular cases where the boundaries coincide
with parametric curves. For a boundary along which x = const.,

sing = 0 and cos¥=* 1, and the conditions of Equations (107) become:

either u =0 or ﬁ,‘ = N,
n v=0 " By =By (109)
" w=0 no 5, =5,
" w'=0 " ﬁx = M,

For a boundary along which ¢ = const., sin;é: + 1 and cosyﬂ= 0, and

the conditions of Equations (107) become:

]
(@]

either v or Py

"
0

" u=0 " Ny = Nex (110)
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either w=20 or S¢ = §¢

Several of the quantities used in writing Equations (109) and (110)

are defined as follows:

—_ _ M. — — A
£ -, - -3+ ()
_ _ — _ it
P =¥, -2 Sy=Qp + =2

the corresponding double bar quantities being similarly defined. If,
along the boundary ¢ = const., all of the second alternatives of
Equations (110) apply, the latter may be simplified to the following

set of conditions:

== g

S TS S AT T TR P (112)

In obtaining Equation (87) from Equation (86), the integral
JZ;%(QQ Ji)ds was neglected due to the fact that it vanishes when
integrated around the closed boundary curve if the quantity ﬁ;:fw
is single valued and continuous on the boundary. Similarly, in
transforming Equation (101) into Equation (102), the integral

,%EE(EL Sw)ds was neglected. If the conditions under which these
integrals vanish do not hold, the following integral must be added

to the right side of Equation (106):

,;%'Bﬁ; - ES);WJ ds
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We must demand, again, that all terms of the resulting equation
vanish separately. We thus obtain the condition that the above
integral must vanish, as well as the conditions previously obtained.
In the case of & boundary curve which 1s not a continuously
differentiable curve on the cylindrical middle surface, this last
condition leads to the concentrated forces which have been observed
at corners of the boundary curve. As an example, consider the case
where the boundary consists of two generators ¢ = ¢ and § = ¢, ,
and two circular arcs lying in planes normal to the cylinder axis
and having the parameters x = x, and x = Xx,. Carrying out the

integration, we are led to the following condition:

[Ty (xu) - T ) = [Foe ) - s x| Sntxib)
Jf{z»‘i,sx (x, 8, ) - W, (x,8, y - [, (x,8,) - Wy (x,4, >]} Sw(x,$,)
fi (58 - B (58, - [Bep xh) - Tow (x28,)] S(ras,)
ofls 5,8 = T (8 - [y (3,80 - W (5, 80] | Swx,8) = 0

Again, we demand that the terms of this equation vanish separately,
and each may vanish due to the vanishing of either of its two
factors. If the variation of w vanishes at the corners, the non-
vanishing of the curly brackets leads to the observed concentrated
forces at the corners. If the curly brackets vanish, then the
corners of the shell tend to deflect radially. We would arrive, of

course, at similar conclusions for any other type of boundary curve
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which is not a single continuouasly differentiable curve on the
middle surface.

In the remainder of this thesis, we shall be concerned mainly
with the problem of a cylindrical shell supported along two edges
x = const. and perfectly free along two edges ¢ = const.. The
boundary conditions which apply to this problem are those of
Equations (109) and (112), the boundary (single bar) forces vanish-

ing in the latter equations.
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PART IV.

An important field of application of the theory which has been
developed in the preceding parts of this paper is in the design and
construction of barrel type roofs of reinforced concrete. The main
purpose of the investigations set forth herein was to attempt to
obtain approximate methods of solution of the equations of the
cylindrical shell which would be accurate enough to be applicable
to the design of structures of this type, and which would be easier
to apply than the more exact methods. In order to judge the accuracy
of any approximate solution, an exact solution must be known, and we
shall take the solution of the Equations (65) to be the exact solu-
tion of our problem. In even the simplest of practical cases, the
numericel solution of these equations is extremely laborious, the
time factor alone making the use of this theory impractical for
purposes of design. In this part of the thesis, we will set up a
procedure for solving Equations (65) which is applicable to the
problem at hand, and in Part V. we will solve these equations
numerically in two particular cases in order to have the "exact"
solution in these cases for the purpose of comparison with the
results of approximste methods.

Consider a cylindrical shell which is supported along two
voundaries x = const. and either partially restrained or free along
two generators ¢ = const.. It is seen that in most barrel roof

applications, the shell would come into this general classification.
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We consider the solution of Equations (65) having a shell of this
type in mind. This solution has been set up by Dischinger (Beton
und Eisen, Aug. and Sept., 1935) in a form applicable tc any type
of loading. His solution, however, may be considerably simplified
if both the loading and the shell are symmetrical about an axial
plane. As both types of solution are of some importance in roof
design, we will first set up the solution in the form given by
Dischinger, and will then simplify it by considerstion of symmetry.
We are mainly interested in this problem as it applies to
structures of reinforced concrete. As Poisson's ratio is small
for this material, we shall make the simplifying assumption that
>/= 0. That the simplification thereby introduced is considerable
will be obvious upon attempting a similar solution without this
simplification; and this may be considered,at the present time,
as sufficient reason in itself for making the assumption. Placing

>/= 0 in Equations (65) the latter become:

Vi v " b

Lo e VA YR /7 4
u+yu +Zv+1dzu+zw -w ) =-7X
/ 7 /] /7 ve . _3 /3 He 4"
suw v v e k(ZV-Zw ) = -2 Y (113)
. ;e w3 e w e 2 v d"
vewt+k(Zu-u=-2v +% +20+ v +2w+w =-57Z

The obtaining of particular integrals of these equations will pre-
sent little difficulty in most cases; the chief difficulties arise
in the determination of the complementary function and the subseguent

evaluation of the arbitrary constants from the boundary conditions.
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Let us fix definitely the boundaries of the shell under con-
sideration. Let the shell be supported along two edges x = const.
whose values we take to be O and,[; the length of the generators
of the shell is therefore egual to,/. Let the axis of the shell
be placed horizontally and let it coincide with a fixed x axis.

The angle ¢ will be measured from some axial plane of reference,

and will be reckoned positive when clockwise as viewed from looking
from the positive end of the x axis toward the origin. Considering
the moving x, y, z, axes, described on page 2, it is seen that, with
¢ measured as above, the positive direction along the fixed and
moving x axes will be the same, the positive y axis will be directed
according to increasing ¢4, and the positive z axis will be directed
outward. These axes, then, are identical with those defining the
anit vectors used in Equations (46). As always, we reckon the
deformation components as positive when in the positive directions
along the moving axes. The position of the axial plane of reference
for ¢ will vary, depending on whether or not certain conditions of
symmetry exist. If the shell and losding are both symmetrical with
respect to a vertical axial plane, it will be convenient to measure
¢ from this plane; and the two boundery generators will be taken to
correspond to the parameter values ¢ = * §,. If either the shell or
the loading or both are unsymmetrical with respect to the vertical
axial plane, it will be convenient to measure ¢ from one edge; and
we will take the boundary generators to have the parameter values

$ =0and g =4,.
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We shall now obtain particular integrals of Equations (113).
The load components X, Y, Z, will be expressible, under very general
conditions, in double Fourier series valid over the middle surface
of the shell. For the unsymmetrical case, with the boundary gener-
ators having the values specified above, we may write these series

in either of the following forms:

X=Z X,, cos mf cos)f or X:Z X,,sin ug cos/\;{)£
7 nn

Y= 1,sinng sin)f Y=J Y,cos mf sinaZ (114)
rn i

Z = Z,,cos mp sin)% 7=0 z, sin mg sin/\g
nn ! ”n ad

where
m = % i A= ’7—}—4 ; r and n are integers. (115)
(-

Two other sets of possibilities, which are of some practical import-
ance, also exist, in which the functions cos /\;;ﬁ and sin,\f in
Equetions (114) are interchanged. Corresponding to the load series

in these forms, we assume the following series for the deformation

components:

= X = : X
u= g wu,cos mf cosis or u=_ u,,sin m$ cos A2

nn nn

v = Z v, sin mg sin )2 v = v, cos mp sin )2 (116)

7 A T & hn a

wm N
w= 2 w,.,cos mp sin)g w =2 w,sin ng sin )%

#n “n

where, again, we may interchange cos Af_ and sin);’z‘ to obtain series

corresponding to the other two possibilities mentioned above. It is
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to be noted that, in each case, the series to be assumed for the
deformation components u, v, w, have the same form as the series
oy which the load components X, Y, Z, respectively, are expressed.
In the symmetrical case, the boundary generators having the values
of ¢ previously specified, we take the series to have the first of
the alternative forms of Equations (114) and (116); the second
forms do not satisfy the assumed conditions of symmetry.

If any of the corresponding series for the load and deformation
components are substituted in the complete Equations (113), the
latter are reduced to algebraic equations for the determination of
the constants wu,,, v.,, and w,.,. We shall carry out the substitu-
tion using only the first alternatives of Equations (114) and (116).
Substituting the latter into Equations (113), collecting terms accord-
ing t§ the various functions of ¢, and x, and equating to zero the
coefficient of each of these functions, we obtain the following

system of three equations for the determination of the constaents

Upys Vpps Wppt

um[-/\a-%’z(l + k)} + v,,,,[’\—z’i’]+ w,,,,[k) (X- —/;lx)] 2%,

(117)

N
i
!
<
3

M Y ER
u,l.,,{—f-]+ v,,,,[-m -5 (1 + 3K+ w,,,[—m(l + 5 kA)

T

u,,,,[-k/\()t-%a)}+ v [m(l + %kkl)] + W, [1 + k(/\ﬁ- 2)m*+ m - om 4+ l)J= -L3

n D Ty

These equations are eagily solved in any numerical case, and give the
required particular integrals of Equations (113).
Before turning to the complementary function, let us consider

the effect on Equations (117) of neglecting all terms containing k.
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Neglecting these terms in the above equations is equivalent to
neglecting the corresponding terms in k in the differential Egqua-

tions (113). Thus from Equations (117) we obtain:

* * Am *
Uy (<A =Z) 4 v, (F) = -2 %,
A N ):. “z
U, (—zﬁ) + v, (-m -E) + W, (-m) = -5 Y., (118)

2
Vyep(m) + W,., = —5% Z,,

whose solution gives us a particular integral of the equations:

Vi oe /o *
i i _Aa
o+t u+FV = E;X
Lo dv"e Ve W = -5;Y (119)
2 2 )

al
vVyrw=-=-=12
D

Using Equations (63), in which 1/and k have been placed equal to zero,
for the force and moment components, Equations (119) may be written

as follows:

/ .
Nx + Néx = —B.X

Ny, ¢ N; = -aY (120)

Ng =-82

These are the membrance theory equations which, of course, are obtain-
sble directly from Equations (48) by neglecting all moments. Now, in

most practical applications, k will be very small; we shall take
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k =10 d in the examples of Part V.. Hence, the coefficients in
Equations (117) and (118) will differ only slightly, and since the
roots u,,, V.,, W.,, of Equations (117) must be continuous functions
of the coefficients, if the coefficients are themselves continuous,

we see that the roots of Equations (117) and (118) will also differ
only slightly. Thus, in most practical cases, particular integrals of
Equations (119) will be good approximations to particular integrals of
the exact Equations (113). It may be argued, therefore, that solu-
tions of Equations (120) will also be good approximations for particu-
lar integrals of Equations (113). This is important for several
reasons. The particular integrals of Equations (120) are easily
obtained by direct integration of these equations in succession.

This has been carried out quite completely by Dischinger (Proceedings
of the International Association for Bridge and Structural Engineering,
Vol. 4, 1936, page 227.) These integrals may be made to satisfy a
variety of boundary conditions on the support edges x = O and x =//,
conditions which are often hard to fulfill by the series previously
assumed. Particular integrals obtained in this way will have to be
developed in Fourief series in x in order that the boundary condition
equations along the edge generators may be solved. The reason for
this will be apparent from the form in which the complementary func-
tion is set up; see Equations (150) and (159). Whether or not there
will be any considerable saving of time arising out of the use of the
approximate integrals will depend largely on the difficulty of obtain-

ing suck developments. Let us consider the physical basis for taking
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solutions of Equations (120) as particular integrals of Equations
(113). On the basis of the membrane theory alone a stress distri-
bution is obtained which violates certain of the boundary conditions
along the two free generators. These conditions cannot be satisfied
by the membrane stresses alone, but require the presence of bending
moments and normal shears Q. We now superimpose certain stresses on
the membraﬁe stresses, and require that the sums thus obtained shall
satisfy &ll necessary boundary conditions. The stresses to be super-
imposed on the membrane stresses are determined by the solution of
the more exact equations of equilibrium, in which we may now place
all load terms equal to zero. Thus we obtain primary stresses by
solution of Equations (120), and secondary or correction stresses by
solution of the homogeneous Equations (113). Both of these methods
of obtaining particular integrals will be used in Part VI..

We shall now obtain the complementary function of the Equations
(113). To do this, we assume solutions of the homogeneous equations

in the form of double series of the following alternate types:

myf ¢ X
u= Z E e cosii or u= ) Ee sin)Z
7 n
v = Z F emdsin/\ﬁ v = Z Fe' cos Aa (121)
n n
mé . X X
w= > G e sin)g w= 2 Ge cosri
” led

The complementary function obtained from the first of these assump-
tions will be added to particular integrals in the form of either

of Equations (116), to give the general solution of the differential
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equations; however,.if the second of the above assumptions is used,
the complementary function so obtained must be combined with parti-
cular integrals obtained by the use of either of the other two
possibilities mentioned on page 65 immediately below Equations (116).
The general solutions thus obtained will be in the form of Fourier
series in x but not in §.

In maeking the assuﬁptions of Equations (121) (and likewise, in
assuming particular integrals of the form (116)) the conditions
satisfied by the solution on the boundaries x = 0 and x =,{7become
definitely fixed. Thus, considering the first set of assumptions
(121), it is seen that, at x = O,//; w=v=w=0, whilew, v, and
w’, do not vanish. From the first of Equations (63) we see that
several of these conditions are equivalent to N, = 0. For the second
set of assumptions, u = v/i=w'=0 along the edges x = O,Aﬂ, while
u’, v, and w, do not vanish along these edges. Neither set of condi-
tions represent fully the’conditions of perfect fixity, of perfect
freedom, or of a pin support. We shall now consider solutions
derived from the first of assumptions (121), which, of the two, most
nearly approximate pin-end conditions; mathematically, solutions ob-
tained from the second set of assumptions will differ only in detail.

We now substitute the first of expressions (121) into Equations
(113) in which the right side is set equal to zero. We thus obtain
the following algebraic equations:

F A z 2
E[-A4FQ + 0]+ 5[]+ o [P+ Y )]=0

E [-*—2’—"]+ F[m‘- {(1 + 3k)]+ G [m(l +§k)")] =0 , (122)
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E [- K ()’+)‘2—’"1)J+ 7 [m(l +§k)‘)} + G[l + k(o on® + 1 —2)‘m‘+,\4)] =0

* In order that these equations may be satisfied by values of E, ¥, and
G, not all zero, it is necessary that the determinant of the coeffic-
ients of E, ¥, and G, in these equations shall vanish. Forming this

detenniﬁant and expanding, we obtain the following equation for the

determination of m:
¢
8 4 6 4 2 4 .8
m + m‘(z - 4)1) + m"(l - 8)‘+ 6)) + m(=4) + B~ 4)) + 4N +) *fe\* =0 (123)

For each value of A, corresponding to each interger value of n in
Equation (115), there will exist, in general, eight values of m, the
eight roots of this equation, for each of which the assumed solution,
Equations (121), will actuslly be valid. OQObtaining the roots of this
equation is one of the principal difficulties encountered in the exact
solution of our problem. Dischinger, in the paper cited above (Beton
und Eisen) has obtained curves for these roots. However, in one point
checked by the author, their accuracy is questionable. It is probable
that small errors in the determination of the roots of Equation (123)
will not greatly affect the accuracy of the final solution, although
this has not been definitely shown; if so, the use of Dischinger's
curves will considerably shorten the labor of the exact solution. TUntil
it bas been demonstrated that Dischinger's curves are sufficiently
accurate, it is probably desirable, at least for an "exact" solution,
to compute exactly the needed roots. This is especially true since
the time required to compute these roots is small when compared to the

total time required for carrying out the entire solution of the
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problsm. We will, therefore, set up a procedure for the solution
of Equation (123) which is quite easy to apply if a computing machine
is available. The solution will be formulated without any attempt
being made to justify the various steps or prove the results; refer-
ence is made to Burnside and Panton, "Theory of Egquations", Vol. 1,
Chapter 6, for the latter.

To establish a procedure for the solution of Equation (123), we
note, first, that this equation may be considered to be of the

fourth degree in m°. Substituting x = m~ in Equation (123), the

latter may be rewritten as follows:
<4 3 2
X + 4ax + 6bx + 4cx + 4 =0
. where:

da =2 -4

6b =1 - 8A+ 6N (124)
6 4 2
4c =-4) + 61 - 4)
4
a =aX 4 2

£

Maeking the change in variable x = z - a, we obtain the reduced

quartic:

4 2

Z +pz +49z+1r =20
where:

p =6(b-a®)
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4(c - 3ab + 2a3) (125)

0
]

r=4a- 4ac + 6a°b - 3a”
From this equation we obtain the cubic resolvant:

v o+ 3(%1 +3mv+n=20

where:
2
/=3 P
m =3 (p’~ 4r) (126)
2
n=-q

Making the change of variable v =y fA/: we obtain the reduced cubic

resolvant:
3
y +sy+ t=0
where:

3(m -4) (127)

0
1

n -Qfm + 3/3

o+
]

Let © be defined by the eguation:
3¢

Ry
3(-9)

We may now write the solution of Equation (127) in the following form:

sin 36 (128)

y = -//_;.‘(.s)sin 9 ; Y, = —;/_g(.s)sin(f{- Q) Y=+ ;.(.5) sin(_';'r-l- 8) (129)
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The identity sin 30 = 3 sin & - 4 siﬁ;G will prove useful in deter-
mining sin © from Equation (128). In most cases of practice, sin 0
will be small, so that it may be obtained from this identity by a
method of successive approximations, the first approximation being,
of course, to neglect sin39 in comparison to sin ©. The solution

of the cubic resolvant, Equation (126), is now given by the following:
V/ =Y, -/; v, =7, '[ sy V3 =Y "/ (130)

We now extract the square roots of these quantities, assigning to

each a sign such that the product:

Jv, v, v; =-q (131)

With the signs so determined, let the square roots of these gquantities

be written as:

" = (132

In terms of these roots, we may now write the solution of the reduced

quaftic, Equation (125), in the following form:
2, =3 (/N + /v /%) n =/ - v - /%) (s
22 =2/("/;7 - /-‘_’: + /‘_’;) Zy =§/('ﬁ * /v - /g)

The solution of the given quartic may now be written as:
X, =z, -a ; X,=2, -8 3§ X;=2z,-8 ; X,=17,-8a (134)

The eight roots of Equation (123) are now obtained by extracting the

square roots of these quantities, and attaching a double sign to each.
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In the cases of practice, it will be found that some of the roots

v

7V,

2 Vi will be negative. The quantities z,, Zyy Z3a T4, will,
therefore, be complex and it will be found, moreover, that these
quantities are paired off into two pairs of conjugate complex numbers.
The quantities X, Xg» X3, Xy, will likewise occur as two pairs of

conjugate complex numbers. In extracting their roots, the following

identities are useful:
i'W-é(\Ja.‘ + b +a)+ i)}-zl-(}Ja’" + b - a)} (135)
*{1)2/(%‘ + b +a) - i))z’(xja‘ +b* - a)}

Va + ib
Va - ib

We thus obtain the eight roots of Equation (123) which may be written

in the following form:

m, = -my = X+ 14 my = -m, = &+ %ﬁi (136)

- 14,

For a numerical example in which this method of solution is carried

m, = -m, = &~ i/z my = -mg

through completely, see Table I. in Part V.

For each value of ), and for each value of m as determined from
Equation (123) for that value of A, the Equations (122) will form a
consistent set, and we may use any two of them to solve for the ratios
between the constants E, F, G. Corresponding to the eight values of
m, there will be eight arbitrary constants, which we may take to be
the B's, and eight ratios,éb and}( , relating the E's to the F's and

G's. Thus, let E,, r =1 ...... 8, be the arbitrary constants corre-
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sponding to the roots m,. Then F,. ani G, will be given by edquations

of the type:

£ =¢E ; 6 =X235, (137)

We use the first two of Equations (122) to solve for the ratios 5/,. and

Xr . By the use of determinants or otherwise, they are easily obtained,

giving:
W - B _ —mf[l + k(1 + 2)L)J + 2 Azmi(l + k/\i) (138)
r E, -mf kA+m )+ k)T
4 2 42 ¥
Xz Gr = m(1+ k) -2m ) (1 +k) +A(1 + 3k)
r E, -mf kA+Aml + k)7

Having the roots m, and the ratios %and X,, the solution of the

homogeneous differential Equations (113) may be written in the follow-

ing form:
& mé X g mb X £ m$ X
u =ZZ_ E.e cosAz ;i v =2’Z§éEﬁe sindZz ; w =ZZ XrE,e sin);t (129)
) rel X e/ A el

or, written out more completely:

b =ZCOS)5 3%9‘ (E’ e‘/"¢+ Ez;é%) + e%/(EJG?‘i/-# E‘;‘/Jz#) + e.#p{(E;-;%'d*- Eé, e‘/d;/)
A

_%“(E?él/;i E, e‘/'d‘p)}

+ e
v =Zsin)£{e%¢(}éE/%¢;% E,e-‘/.@j) e g (140)
p)
Zsin)Z{eng()(lE/e%y{-r)(lE;e?‘é%) e e e e e e e e e e e j
b}

w

These solutions involve complex quantities; it will be convenient to

transform them so that they will involve only real numbers.



77.

From the expressions (136) for the roots of the determinental

Equation (123), the following relations are obvious:

— 2 2 3 3

= mz m, = m; m, = -m_,
— 2 k1 3 _ 3
m4 mz = mc mz = -m,
— 2 - 2 3 - 3
mé m3 = m7 m3 = -m7
— L. 3
mg m, = m, m, = -m,

where the

From Equations (138) and (141), the following relations may be

written:

Y, =

We define

bar over a quantity is used to indicate the conjugate.

1}
N

-4 X=X Y
-4 X=K
A X=X

AN
1] i
A

4,
2

"

new constants as follows:

E, + E, A, =

i-(E/ - Ez) A" =
/

E; + Eg A, =

i

1(E; - By Ag

4
m = m}
+ 4
m, =m,
4 +
m, =m,
¢ 4
m, =m,

(141)

(142)

(143)
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with new constants B! and ' being similarly defined in terms of the
01ld constants F and G, respectively. Inverting the two equations
defining A: and A,f , and substituting the results in the two equations

defining B,/ and Bz/ , we obtain the following relations:
/ / / .
B = R(4)4) + 1(4)A] B = -1(£)a] + R(Y )4
In this equation, we use the notation, since §4= 4/,_:

R(se) = ——(’ZL—%—(—/ﬁ— = real part of ;/, (144)

HyY) = Y- b

= imaginary part of s//’
¢

In a similar manner, and making further use of Equations (142), we

may write the following relations between the constants A; , B,./ , C,: :

B = R(UA + (L4, ¢ = R(X/)‘A// + T(X)4,
B, = -1(£)4, + R(¢ )4, C, = -I1(X)A, + R(X)4,
B, = R(4)A; + 1(¢4)as C; = R(X,)A; + I(X;)4)
B, = -I(¢4)4; + R(4)A, C, = -I(X,)a; + ROX)A, (145)

B, —ﬁa(c/,)Ag 1(¥)A,

R(X)As - T(X)A;

&
]

5, = -{1(£)as + R(¥)AL T(X)A + R(X)A/

i
«Q
NN
1

oo
"

td
"

}
J

, -{R(%)A; - I(%)A;} c, = ROG)A, - T(X;)4,
J

; -{I(S@)A; + a(;gm; Cg = I(XJ)A; + R(X,)As
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¥e now rewrite Equations (140) in terms of the new constants

A,: ,B,./ R C,./ . To do this we make use of the following identity:

&dd -im
e + iid

M N e = (M + N) cosmp + i(M - N) sin mg

Using relations of this type, together with the definitions of Equa-

tions (143), in Equations (140), the latter become:
& & /.
u =Zcos)£[e ’J(A//cos/d’;ﬁ + A,_/sin/ﬂlé) + e ¢;(A3/cos/5,g$ + A4slnﬁ_;$)
A
e ~a, .
+ e #(A_;co:s/l;ﬁ + A‘/sin/(i ) + e ’((A;cos/ﬁ;é + A;sm/ﬂ:_ﬁ)} (148)

X] o g v ‘s
v=gsin)4{e (B,cosﬂé-t—stm/ﬂzgS) T }

w =gsin/\3[eq/'¢(cl/cos/5/¢+ cz/sin/il;é) e e e e e e e e e e e }

where the constants are related by Equations (145). Equations
(148) are the general solution in real form of the homogeneous
Equations (113).

It will be convenient to express this solution, Equations (148),
in two alternate forms, their use depending on whether or not symmetry
conditions exist. Consider the case where either the shell or the
loading or both are unsymmetrical with respect to the vertical axial
plane. As previously indicated, we take the boundary generators to
have the parameter values § = O and § = §,, and we define the angle

by the equation:

W=g, - ¢ (147)
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The angle § increases with motion inward from one edge of the shell,
while the angle ) increases with motion inward from the other edge.

We shall define new unprimed constants by the following equations:

-, =
A =6 (4,c0844, + h,sindg,) Al=4,
/ -ajﬁa : / =
Ay = e (4, sm/é,éa - A,_cos/é,d,) A, = A,
, - d, , (148)
A; = e (Ajcos/zéo + A4sin/4¢o) A, =4,
[ = &% (a,0ing 6)  Ag=a
A, = e Ajsnn/é, ), ~ A4cos/4 o g T Ay

the new constents B, and C, being defined by similar equations in
terms of the o0ld constants B! and C! , respectively. We now deter-
mine the relations existing between the constants just defined.
Substituting the expressions for A// , Az/ , B,/ , and B,/ , from Equa-

tions (148) in the first two of Equations (145), we obtain, after

rearranging the terms:

e%{d"(B/ cos/g,é, + B, sin/ﬁ,gS, ) e I:cos/ﬂl b, {R(%)A, - (¢ )Az}
+ sing b, {1()h+ R()a,]]
e"‘"’{“[sin/é ¢, {R(;é)A, - (Y )AJ

-q{ 4 .

%43 sing g, - 3,c0544.)
- cos 8, {1(54)A,+ R(%)A,}]

These two equations are satisfied if:

B = R(¥)A,- (Y4, B,= I(¢4)4, + R(Y)aA,
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Proceeding in a similar manner, the following relations are seen to

hold between the unprimed constants:

B,= R(£)A- I(#)a, C,= R(X)A, - I(X)a,
B,=  I(4)a,+ R(¥)aA, C,= I(X)4, + R(X)4,
B,=  R(4)A,- 1(¢)4, G, = R(X)A; - T(X,)A,
B,=  I(4)A;+ R(4)Ag Co= T(X)A; + R(X)A, (149)
B,:-{R(w,)A,- I(G/,)Aé} C,= R(X)DAs- I(X)A,
B6=-{I(44)A5+ R(%,)Aé} C,= I(X)As, + R(X)a,
B= - {R(Wa, WA, 6= RQA, - (X
By = - {1(%)A7+ R(ws)%} Co= I(X)A, + R(X,)a,

Substituting the first two of Equations (148) into the expression
/

eqﬂ( (4, cosd P + A] sir%é) which appears in the expression for

u of Equations (146), we obtain, after rearranging the terms and

using known trigonometric identities:
« / -4 w .
e /(A, cos/dij + Az/sin/f;d) = e% (A/cos/ﬂlw + ALs1n/4§u))

The remaining terms of Equations (146) involving the constants with
subscripts 1 to 4 may be similarly transformed, and we thus obtain

the solution in tke following form:
W ~af .
u =/\Zcos)§{e-q; (4, cos/4w+ Azsin/éu)) + ™ (A_,cos/{'a) + %smﬁa))
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= 1n2{ (Bcosua—Bsm w)+}
v=Ze %

= ) (C C ) ..............}
;8111{ cosFw + s19é’w+

where the constants are related by Equations (149). It is seen that
this solution has the form of four damped waves, two proceeding
inward from each of the two boundary generators.
In order to set up the boundary condition Equations (110) or
(112), it will be necessary to obtain expressions for the derivatives
of the solutions (150). Differentiations with respect to x present
no difficulties. Let us consider the derivative with respect to ¢
of the first and third terms in the expression for u of Equations (150).
Let £, (4) = 6 ¥ (4 0008w + h,singw); £,(8) = & (a,c0844 + A sing ).

Differentiating these expressions with respect to 4, we obtain:

-, () ) .
vy cos/élu)-r- A, sin/o’»,w) ; £, = -e 5cos/¢+A¢ sm/dé)
) ) N
where: A =aA, %Az where: Y /ﬂAé
v )
4, =/j/’A, +q/A, Ay =dhs vy A

Second differentiations yield the following:

'y ~o ), (2) () 2 —y
£, =e’ (4, cosduw + 4, e.u%w) =(-1) e /(A?}cos/é;é + Aé sn% $)
(2
where: A,)=4{A(,//75/A(;) where : (// /éf,Ac
A(l/ () )
2 =ﬁA Q/A A'6 /dAs +4/A6

In general, the nth derivatives will be given by:
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) -ajw, (1) . ) 7 - _
£ & cos B0 + A(,”}sux/ﬁlw) ; £, =(-1) e Wcos/djé + A(‘”)sm/éjé)

n-
where: -4/ A(” /]/5 A(” K where: -—-Q/ A(” - /JAG " (151)
(u/ (n-1) (ﬂ ~1) (n) - (ﬂ /)
/A +Q; . Ac / (’7 /)

Using expressions of this type, we may write the derivative of u with

respect to ¢ as follows:
. X ~), (1) (7 - 7
u =)Zcos)d{e (&, cosduw+ A, sn%u)) + e A co/du + A sn%w) (152)
~o) () ). - 78
- e¥’£(A5 cos/ﬂ/é + Ai’ s1n/ﬂj¢) - eqj"{(A;’)COs/q,é + A; 51%;5)}

The other derivatives with respect to ¢ of the solutions (1E0) are
written in a similar manner.

We are now in a position to set up the boundary condition Equa-
tions (110) or (112). 1In general, there will be four conditions to
be satisfied on each of the two edges § = O and 4 = §,, leading to
eight equations for the determination of the eight constants A ..... A,
These equations may be broken into two sets of four equations each,
each set involving only four constants, in the following manner. We

note that the constants A, to A, will be multiplied always by factors

~a) w - & W

e or e ', while the constants A, to A, will always be multiplied
by factors e '¢ 4 , When ¢ =0, 6" and & 4 are unity while
- w —w . ) .

e and e will usually bave values quite small by comparison. We

may then, approximately, evaluate the constants A, to A, from the four
boundary conditions at § = O, neglecting all terms in the other

constants due to the presence of the small exponential factors.
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Similarly, the constants A4, to A, may be evaluated approximately
from the conditions which hold at § = 4, . The primary reason for
introducing the unprimed constants of Equations (148), rather than
using the solution in the form of Equations (146), was to be able
to split the eight boundary equations into two sets of four each,
thus avoiding the extremely cumbersome problem of solving eight
simultaneous algebraic equations.

The solution thus obtained is essentially that given by Dischinger
in the paper alresdy cited (Beton und Eisen), and is applicable, of
course, to any shell and loading of the type discussed, whether or not
conditions of symmetry exist. If symmetry of the shell and load exists
with respect to the vertical axial plane, the numerical solution of
the problem may be considerably simplified. We shall now transform
the solution of Equations (146) on the assumption that such symmetry
does exist.

Equations (146) may be rearranged in the following form:
u —Zcos) {;:os/éé(A/ &% A",e'w{) + si%ﬁ(Af_ g Aé/e'o‘w)
+ cos/gS(A"" AE™H) sm/M(A/ %7 A;e'“‘“‘)} (153)
v 1n) {co%g‘(B/ o"” 35 €Y s RN }
=Z sin,\f{cos/élé(cllev’¢+ C_:e"ﬁ) e, }
)
We now define a new set of unprimed constants in the following manner:

/ /
A + A A

/ /

A, = 3= A+ A Ay = Ay + A A, = A, + Ay (154)
=4/ -2/ / / / %
A, =4 - A} A, = A] - & A, = A/ - 4] Ag =4/~ 4%
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the unprimed constants B, and C, being defined by similar equations
in terms, respectively, of the primed constants B! and C! . 1If in
the expression for B, we substitute Equations (145), and then make

use of the above expressions for A, and A4,, we obtain:
B =B+ B, = RUI(a) - a%) + IO (4] + A7) = RW)A, + T[4,

In a similar manner, we may obtain the following relations between

the unprimed constants A,., B,, C,.:

B, = R4, + 1(£)4, lc, = R()A, + T(X)4,
B, = R4, + I(¥)a, C, = RQA, + I(x)4,
By = -I(¥)4, + R(¥)4, C, = -I(x)a, + R(x)A,
B, = -I(£)A, + R(¥)A, C, = - L(X)4, + R(x)A, (155)
B, = RW)A, + 1(4)4, C; = RMA; + I(X)A,
B, = R(Aas + I(K4, C, = R4, + 14,
B, = -1(§)A, + R()4, c, = -I(Xx)A, + R(X)4,
B, = -I(4)A, + R(¥)4, Cg = -I(yAs + R(X)A,

If we now invert the Equations (154), to express the primed constants
in terms of the unprimed ones, and use these results, together with

identities of the type:
e? + ¥ é¥= (i + Ncosh wg + (M - N)sinhe g

in Bquations (153), the latter may be rewritten as follows:
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a =Z‘cos)}§{A, E, (§) + 4,0,() + 4,0,(4) + &,E,(§)
A

+ AE, () + 8,0, () + 4,0,(9) + 4,5,(8)] (156)
= i 1 ) . . . . . 3 . . . » . . .
v )Zsm)a {B/E,(ﬁ) + }
w =;§-sin)£ {G,E,(é) o e e e e e e e e e e .}
P

where the functions E,(#) ....Q4(¢) are defined as follows:

E,(¢) = cosh«;§ coS/3/¢ 0, () = sinhq/p cos/él’é
E,(4) = sinhv§ sin/gqs 0,(4) = coshu g sin/ﬁ/é (157)
E,(#) = cosha g cos/e,_é 0,(g) = sinhof cos/é,é
E,($) = sinhog sing 04(8) = coshayd sind¢

the significance of the notation E and O being that the functions so
represented are even and odd functions, respectively, of R

Thus far, the solution is perfectly general; but we now make
use of the assumed conditions of symmetry. If both the load and the
shell are syumetrical with respect to the vertical axial plane, then
it is plain that the deformation components u and w must be even
functions of @, while v must be an odd function. Using these facts

in Equations (156), we see at once that:

It is easily checked that these equations are consistent with the

relations of Equations (155). The solution, Equations (156), may,
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therefore, be rewritten ir the following form, where for convenience

we have changed the subscript numbers of the constants:
X
u =Zcos)2{AlE,(¢) + A, B, (f) + A,E;(4) + A4E4(¢S)}
P

v

S 513 2{B,0,(8) + 5,0,(8) + 3,0, (4) + B,04(4) } (159)
p}

w

; sin,}g{c,ﬁ,(gs) + C,E,(4) + C,E;(4) + C4E4(¢)}

where

B, = R(¥)4, + I1(¥)4, C, = R(X)a, + I(X)4,
B, = -I(¥)4, + R(¢¥)4A, C, = -I();)A, + R(X)4, (160)
B, = R(s{)A3 * I() 4, ¢, = RODA; + 1(HAa,
B, = -I(g4)a, + (YA, C, = -I(X)4, + R(Y)4,

As before, in order to set up the boundary conditions, we require
expressions for the derivatives of solution (159). The following
identities will prove useful in carrying out the differentiations with

respect to #:

E, ($) =%0,(§) -50,($) 0, (8) =E,(8) -4 E,(4)

.

E; (§) =40,(8) +40,(8) 0, (8) =4E,(§) +o/E($) (161)
By () =0;(8) -40,(8) 05 (§) =yE,($) -5, ($)

Ey (8) =40,(8) +470,(4) 0 () =4E, () +ayE ($)
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By means of these relations, all higher derivatives with respect
to ¢ of the functions E,(§) .....Q4(¢) may be expressed in terms of
these functions themselves. Using these relations, we obtain, for

example, derivatives of the function u of Equations (159) as follows:
. @) ¢ C ¢
w'= cos 2 {70, () + 2 0,9 + 4T 0,(8) + 4L 0,(#) (162)
A
. x [ @ (2) (<) (x)
=5 cosdS 15,9 + Y 2,0 + a8V B,9) + 4T m(H) ]
A

where the extension to the nth derivative is obvious. The relations
between the various constants appearing in the successive derivatives

are easily verified to be the following:

(») (n-1) (n-1) (n) (n-7) n-1)

A/ = Q// A/ 1 2 AJ = 2 A3 + %2 A4 (163)
) (1-1) (1-1) (n) (n-1) (n-1)

A, =44, % o 4, 2 =-4 8+ o A

The derivstives with respect to p of v and w may be written in a
similar way. It is to be noted, of cours;, that the successive deriva-
tives of these functions are alternately even and odd functions of g.
In the expression for any of the deformation components or any of

their derivatives the constants having the subscripts 1 and 2 are very
simply related, and the same is true for the constants having the
subscripts 3 and 4. Hence, in carrying out the calculation of these
guantities, it is necessary to calculate only the constants having

subscripts 1 and 3, it being then possible to write by inspection the

other two constants.
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The boundary condition Equations (110) or (112) may now be
set up, and will lead to four eguations, from the conditions hold-
ing at the generator ¢ = g, (say), for the determination of the four
constants A, ... Ag. Due to the assumed conditions of symmetry, the
boundary conditions at the generstor ¢ = -4, will, of course, lead to
the same four equations.

The advantages of the solution in the symmetrical form just
given over that in Dischinger's more general form, are that, firstly,
when the former solution applies, it is possible to place the com-
putations in somewhat more compact tabular forms, and, secondly,
the functions E,(4) .....04(é) are more easily computed than the
corresponding functions of ¢ required by Dischinger's solution.
Further, the solution in the symmetrical form does not involve the
approximation, necessary in the unsymmetrical case, required to
split the boundary condition equations into two sets of four equa-
tions each; this, however, is of small practical importance in most

cases.
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PART V.

We shall now carry out the calculations in detail for a parti-
cular case. We shall assume a symmetrical shell in the form of a
complete half cvlinder and we shall teke the loading to be dead
load. We shall, therefore, be able to use the solution as set up
in the symmetrical form. Let p be the dead weight of the shell
per unit of area of the middle surface, the shell thickness being
everywhere uniform. Measuring ¢ from the vertical plane of

symmetry, the loazding may be expressed by the following relations:
X=0 ; Y=psing ; =p cos p : (164)

Also, the two boundary generators will have the parameter values
¢ = i-g . We shall assume these boundary generators to be entirely
free of force; the boundary conditions to be satisfied along these

edges are therefore (see Equations (112)):

=

¢=ﬁ¢,x ==é: =ﬁ¢=0 (165)

b\

further, the span length.Af , the radius =a, and‘therthickness t must

be assumed; however, rather than making specific assumptions for

these quantities, it will be convenient to assume values of the
quantities D, k, and A, as defined by Equations (62) and (115).

For the numerical case to be worked out, we shall assume, therefore,

A =0.4 and k = 0.00001, and the solution will be expressed in terms
of the quantity D. Taking n to be one in Equation (115), it is seen
that A = 0.4 corresponds to a ratio of span to radius of approximately

8 to 1.
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We first obtain particular integrals. We develop the load
functions, Equations (164), in series according to the first group
of Equations (114), obtaining:

SR /X 4ya E X
X=0 ; Y=—/‘€Z-31n dﬂz/;j'sm)d ; Z=_/(L cos ¢ﬂ%”/‘ simdz  (166)

where use is made of the second of Equations (115). It is to be
noted that Equations (165) contain series in x only; all of the
terms of these series correspond to the single value m = 1, the
terms vanishing for all otherlvalues of m. To obtain the complete
solution of our problem, we must carry out the solution as previously
outlined for each value of A\ corresponding to each odd integer value
of n. However, if the series involved are quickly convergent,

their first terms will give an approximation to the true results.

We shall, therefore, consider only the first terms in the series
(166), and in these terms take A to have the value 0.4. Corre-
sponding to these load terms, the deformation components are given
by the first terms of the series of the first set of Equations (116).
The coefficients of the latter terms are now obtained from Equations
(117). Substituting A = 0.4, m = 1, and k = 0.00001 in these equa-

tions, and using the notation:
3
Loz
S = (167)
2N

We obtain the following equations for the determination of w, ., v, .,

and %,

u, (-.660005) + v, (.2) + v, (-.00000138) = O

u, (.2) + v, (-1.0800024) + w, (-1.0000024) = -2.5 § (168)
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u,, (.00000136) + v, (1.0000024) + w, (1.000003456) = -2.5 S

These equations are easily solved by successive elimination of the

varigbles, giving the following particular integrals:

w, = 78.1221315 S cos § cos .45

v, = 257.803217 S sin ¢ sin .47 (169)

. X
; =-260.303042 S cos g sin .42

It 1s to be noted that, if k had been neglected in writing Equations
(168), the results would have been very close to those giwén above.
We now calculate the complementary function. Substituting

A =0.4 and k = 0,00001 in the determinantal Equation (123), we

obtain:
8 é o« z
m +1.36m- .1264 m - .502784 m~ + 2560.10306 =0 (170)

The solution of this equation is given in Table I. The numbers in
the left column of this table correspond to the equation numbers of
the text of pages 72 and 73. The high degree of accuracy necessary
in carrying out the solution is illustrated by the value of v, in
this table; this quantity is given by the difference of the numbers
. 546667685 and .D46666667. The eight roots of Equation (170) are
given in the last lines of Table I.

We now calculate the ratios ¢ and X,. Substituting the values
of A and k in Equations (138), we obtain the following expressions

for these ratios:



123

124

125

126

127

128

129

130

132

131

133

134

136
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TABLE I.

Calculation of the Roots of the

Determinantal Equation (123)

A =0.4 k = 0.00001

Equation
4
n + 1.36n° - .1264m" - .502784m" + 2560.10306 = O

3
x7 4 4(.38)x + 6(-.0210666667)x" + 4(-.125696)x + 2560.10306 = O
2¥ + (-.82)z" + (-.1024)z + 2560.21931 = O
3 z
v+ 3(-.546666667)v + 3(-3413.40161)v + (-.01048576) = O
3
y + (-10241.1014)y + (-5598.31587) = 0O

sin 30 = .0140342525

sin 6 = .00467822067 cos & = .999889051

y, = -.546667685 ; y, = -100.913765 ; ¥, = 101.460432

v, = -.000001018 ; v, = -100.367098 ; v, = 102.007099

v, = -.00100895986 i ; /v, =10.0183380 i ; v = 10.0998564

fv,v,v, = .102090367 £ -(-.1024) = -q (See Equation 125)

]

z, = 5.0499282 +5.0086645 1 ;

, = -B8.0499282 -5.0096735 i

2z
z, = 5.0499282 -5.0086645 1 ; Zg = -5.0499282 +5.0096735 1

x, = 4.7099282 +5.0086645 i ; xz; = -5.3899282 -

(o)

.0096735 i

91

x, = 4.7099282 -5.0086645 i ; x, = -5.3899282 +5.0096735 i

m, = -me = 2.40678799 + 1.04052882 i

m, = -mg = 2.40678799 - 1.04052882 1
my, = -m, = .992122666 + 2.52472485 i
m, = -mg = .992122666 - 2.52472485 i
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¢ = 320000512 m, - (=1.0000132)m} (171)
» ~ -.000004 mf - .4 m'-.0000001024

X_= 1-00001 nf - (-.3200032)n> -__.025600768
r -.000004 my - .4 mS - .0000001024

It is evident from Equations (160) that we need calculate only the

values of 9?, ¢g, )g, and.k% corresponding to the roots m, and m, .

Substituting the values of these roots from Table I. into Equations

(171), we obtain the following values for the ratios appearing in

Equations (160):

R(§) = -5.73713336 R(X) = 10.9811970
1(¢)) = -2.72284622 I(X) = 12.5161446
R(¥) = -2.37202059 R(X,) = -14.2811919 (172)
I(4) = -6.58614089 I(X)) = 12.5169976

The calculations involved in obtaining these results from Equations
(171) are rather tedious and are most easily carried out by means of
a table, the form of which is obvious from the form of Equations (171).

The following equations will prove useful in raising the complex

roots m, to the powers required by Equations (171):

m =&+ %/3
(x*8") + (2 8)
[«e*8" - pza8)] + i[/sw‘—/) +r o/ (2w8)]

=]
1}

=]
1
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<

nf = [@hah - (2ag |4t [2t ) (2 s )]
Again, the computations here involved are best carried out in
tabular form.

We are now in a position to write the general solution in
terms of the four arbitrary constants A,...A, . It will be con-
venient to write, at the same time, the expressions for the
derivatives required for setting up the boundary condition equa-
tions. To determine which derivatives are required, we proceed as
follows. The general solution is obtained as the sum of the
particular integrals (116) and the solution, Equations (159), of

the homogeneous equation, angmay be expressed in the following form:
u =2 U(cosd2 i v = w(#)sind2 i w =D W()sin) 2 (173)
P ’ A “ A A

where the functions U,V,W, are functions of ¢ only. If these expres-
sions are substituted in Equations (63),(96), and (111), (in which we
take /= 0) and the differentiations with respect to x are carried

out, the following equations may be written:
Y2 . X L4 oo
N, =Z)Zsm)2[v + L+ T + k]

X v .
Wy =2—§-/\Zcos)2[(1 KU AV + KAW]

=
Y
1]

Dk/\Zsin/\g (w+w") (174)

w
<
]

D . X T . cew A P 3 .z
af;sm);[(l-zmw FWTT AU 2]

N, =2 )2 sind2 [N (-0 + kAW]
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of which functions the first four are involved in the boundary
conditions (165). To set up the boundary condition equations, we,
therefore, regquire, beside the functions U,V, and W, the deriva-
tives U°, V', W', ™", and W™". Table II. shows the calculation

of these gquantities in terms of the constants A,. these calcu-

ce By
lations involve the use of Equations (160) and (163). It is to be
noted that the coefficients with subscripts 1 and 3 must be
calculated, and that the coefficients with subscripts 2 and 4 may
then be written by inspection.

We now calculate the boundary functions of Equations (165) and
(174) for the particular case at hand. Substituting A= 0.4 ,

k = 0.00001 in the latter equations, we obtain the first terms of

the series as follows:

. X . ,e
Ny = —§ sin .42 (V' + 1.00001 W + .00001 W)

Nye= £ cos .4%(1.00001 U° + .4 ¥ + .000004 ¥')

My = Dk sin .4%(w+ ) (175)
Dk ) X . .

Sg= =~ sin .47 (68T +W - .2U +.247V)
D . X

Ny = sin .45 (-.4 U + .0000016 W)

The derivatives of Table II. are now combined according to Equations
(175). Again, in meking these calculations, it is only necessary to

compute the first and third coefficients, the other two then being
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written by inspection. In this way, the following expressions are

obtained for the force and moment components of Equations (175):

D
N":Z

sin 4% [(.0063384 A, - .0086569 4,)E, (§)
+ (.0055569 A, + .0063334 A,)E, (¢)

+(-.0063338 A3 - .0072263 AL)E, (4)

+ (.0072263 A, - .0063338 A,)E 4 (§)- 2.499825 S cos ¢ |

Ny = 2 cos .4 [(L11201234 4, - 04843306 4,)0, (§)
+ (.04843306 A, + .11201234 4,)0,(¢4)
+ (.043141268 Ay - .10980081 4,)0;(4)
+ (.10980081 A; + .043141268 A,)0,(4) + 24.999415 S sin H

lig = Dk sin .42 [(.0126769 A, + 126.467419 A,)E, (§)
+ (-126.467419 4, + .0126769 A,)E,(#)
+ (-.0126643 A; - 126.492829 A )E,(§) (176)
+ (126.492829 A; - .0126643 A,)E,(4) ]
S4 = %" sin .42 [(-137.710674 A, + 290.235880 4,)0,(4)
+ (-290.235880 A4, - 137.710674 4,)0,(4)

+ (333.225930 A; - 120.049938 4,)0;(8)

+ (120.049938 A; + 333.225930 A,)0,(f) - 5.799775 S sin 95]
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¥, = 2 sin .4—4’5 [(—.399982430 A, + .0000200258314 4,)E,($)
+ (-.0000200258314 A, - .399982430 4,)E, ()
+ (-.400022850 Az + .0000200271962 A )E;(4)
+ (-.0000200271962 A, ~ .400022850 A )E,(4) - 31.2492691 S cos ¢]

The calculations involved in obtaining the above expressions are most
easily carried out by means of a table, the form of which is obvious
from inspection of Equations (175).

In order to set up the boundary equations, we require vslues of
the functions E,(§)..... Q4(¢) at ¢ ==§ . In order to plot the final
results we will require the values of these functions at points between
0 and g- as well. From Equations (157), by a rather tedious set of
calculations, which, again, is best carried out in tabular form, we
obtain the results shown in Teble III.

The quantities E,(%) ..... Qﬁ(g) are now introduced into the
first four of expressions (176). Introducing also the values

T

gin 5 =1 and cos‘g = 0, we obtain the expressions for the boundary

functions of Equations (165) at ¢ ==§'in terms of the four constants
A ...A,. By Equations (165), these functions must vanish. We thus

obtain the following four boundary condition equations:
.112676028 A, + .146248348 A, - .0013718676 A; + .0227333435 A, =0
.90405381 A, + 2.51946567 A, - .266503143 A, + .090748455 A4= -24.99941¢% S

-2765.51008 A, - 176.202763 A, - 210.810893 A, + 213.164174 A, = O (177)
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TABLE IIT.
(4
1.00000000
1.62914435
3.08779385
2.42385557
1.16066981
-1.39545800
Es(4)
1.00000000
0.28031328
-1.39717976
-1.94271745
-1.94289773
-1.68502094
0.(¢)
0. 00000000
1.38659517
3.04810483
2.41497972
1.15840413
-1.39400683
0s(4)
0.00000000
0.13379170
-1.08626774
-1.67342676
-1.73183590

-1.54206659

Ea(4)
0.00000000
0.84027661
5.47566311

11.4003906
15.6210208
21.8672320

Ea(f)
0.00000000
0.52648830
0.59020036

-0.27566469
-0.93210011
-1.66675245

04(8)
0.00000000
0.98726141
5.54696108

11. 4422908
15.6515734
21.8899958
0s(8)
0.00000000
1.10307043
0.75912776
-0.32002512
-1.04569677

-1.82126557
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-6161.29257 A, - 3419.07688 A, - 732.499393 A; - 421.767914 A, = 5.799775 §

These equations may be solved by successive elimination of the vari-

ables, or otherwise, to give the following results:

A, = 9.79345811 S
A, = -19.8190429 S (178)
Ay = -34.1524917 S
Ay = 76.8985704 S

Using these results in the expressions of Table II. and Ecuations

(176), we obtain finally the following expressions:

u = S cos .4 [9.79345811 E,($) - 19.8190429 E,(§)
- 34.1524917 E,(4) + 76.8985704 E,(4) + 78.1221315 cos ¢]
v = § sin .45 [-2.2221692 0, (4) + 140.370572 0,(§)
-425.454405 0,($) - 407.338114 O_(4) + 257.803217 sin 6] |
w = J sin .4:;‘[-140.514114 E,(#) - 340.213152 E,(§) (179)

+ 1450.27751 E,(¢) - 670.716583 B, (#) - 260.303042 cos ¢]

. X ~ -
N, =23 sin42 (172158327 &, (4) - 071100659 E,(§)

- .339377087 E,(4) - .733856316 E, (#) - 2.499825 cos ¢]



102.

N, = %ysinﬂﬁ [-3.91760806 E,($) + 7.92707282 E,(¢)

+ 13.6633172 E,;(4) - 30.7605013 E (4) - 31.2492691 cos ¢]

N =§f cos4£[2.05688505 0, () - 1.74565023 0, () - 9.91690712 0,(4)

- .43246942 0, (4) + 24.999415 sin ¢]

By introducing the functions of Table III. into these equations, the
first terms of the series for the various force and deformation com-
ponents may be calculated.

A similar set of calculations was performed using the values
k = 0.00001 (as before) and A= 4,0. The final results of these and
the previous calculations are collected in Table IV.

In this table, the numbers of the last six columns are to be
multiplied by the factor in the second column to give the first term
of the series for the quantity designated in the first column. The
tabulated numbers represent functions of ¢ (the functions W(g) and
V(4) of Equations (173), and corresponding functions in the case of
the forces) which may be considered as the amplitudes of the first
terms of the Fourier series in x for the various force and deform-
ation components; they therefore give the distribution of these
quantities, as functions of @, at those points where sin,Ag and
cos )ﬁl have the value unity; i.e., at the center of the span in the
case of the sine factor, or at the supports in the case of the cosine

fector. 1In Figures 3 and 4, the tabulated functions of § representing
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TABLE IV.
A=0.4
Factor 00 300 600 750 82.50 900
v S sinAa 1049  -686.8 -4843  -6919 -7704  -8569
v S sin.4% 0 -241.8 1148 2692 3613 4732
N, 2 sin.43 -21.5  -39.1  -21.6 54.7 117.3  207.1
N, 22sin4l -2.667 -2.426 -1.067 -.179 .106 0
Ny, Zlcos. 4l 0 5.912  14.3¢  12.94 8.736 O
A=4.0
w S sin<42 -.307  -.290  -.105  -.656 -1.088  -1.436
v S sin4Z 0 .0347  .0370  .0934 .2025  .3659
N, 22 sin42 -.0302 -.0286 -.0219 -.0543 .0828  .5718
N, 22sin<} -.2492 -.2150 -.1308 -.0665  -.0l76 O
Ny Lcos42 0 L0646  .0975  .1472 1495 0

the force components have been plotted for the two different values
of A. The full lines in (a), (b), and (c) of these figures show these
functions plotted to a convenient scale against values of cos ¢. In
(a) and (b) the dotted lines represent, to the same scale as the full
lines, the distribution of stress calculated by the use of the
elementary beam theory. This theory gives the folloewing formulas

for the axial stresses at the center of the span and the shearing

stresses at the supports, assuming simply supported end conditions:
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X =a‘[:‘:ra] M (7—?‘ cos ) = z;ﬂ-a] )(na;a/‘)(_%_ cos )
=%s(/7fg‘:ﬁ)(§)3(f' cos §) (180)
2

N = srongy V (sin 6 -2 = (oF 8])(’”’” )(sin § -

T afnr®

Ds(m )( ) (sin ¢ -2

where M is the bending moment at the span center and V is the shear
at the support. In (c) the dotted line represents, to the same
scale as the full line, the coefficient of the first term of the
Fourier series in x for the stress Nﬁ calculated according to the
third of Equations (120) of the membrane theory; i.e., it represents
the coefficient of the first term of the following series:

Ny = - pa cos § = -Z5cos ¢Z Fsin) & (181)

7243

In adjusting the scales between the dotted and full lines in these
figures, it was assumed that the quantities of Table IV. represent
the first terms of the series, so that the ratio‘j; was taken as

22 and ﬁL— in calculating the dotted curves from Equations (180)

e
and (181) when ) was equal, respectively, to 0.4 and 4.0. 1In (4},
the difference between the full and dotted curves of figures (c) is
plotted against values of the angle §; these curves may be regarded
as the curves of the correction to be avplied to the membrane stress
Ny to give the true stress N¢. The approximate curves, shown dotted

in these figures, are to be used later in attempting to obtain

approximate methods of solution of this problem.
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Some idea of the quickness of convergence of the series when

a o
7 =a;rfmay be gained from consideration of the results of Table IV.

ot
7‘- ’

When §g= the values of ) for successive terms of the series,
corresponding ton =1,3,5,7,9,11, etc., will be, resvectively,

0.4, 1.2, 2.0, 2.8, 3.6, and 4.4, etc.. It is reasonable to believe
that the solutions are continuous functions of ). Further, it will

be noted that the general shape of the curves for A = 0.4 over the
entire range 0°<¢ < 90° is very similar to the shape of the curves
for A= 4.0 over the range 0°< ¢ < 30¢ (approximately), the magnitudes,
of course, being smaller in the latter case. Expressed otherwise,
having the curves for A = 4.0, the general shape of the curves for

A= 0.4 is indicated approximately by the shape of that part of the
former curves when ¢ takes values between 0° and 30°, where this range
is then magnified so that it corresponds to a variation of 4 from

0e to 90° for the latter case. Then, due to the continuity of the
solution as s function of A , the general shape of the curves for any
other value of ) between 0.4 and 4.0 should be indicated by the

shape of some portion of the curves for A= 4.0, and the magnitudes
should lie between the corresponding magnitudes for A = 0.4 and 4.0;
also, it is reasonable to believe that the curves for A = 4.0 bear
similar relations to the curves for still larger values of A. It is
thus provable that the values obtained for ) = 4.0 closely approximate
the corresponding vslues for A = 3.6 and 4.4, being less than the

former, greater than the latter, and, therefore, that they indicate

approximately the order of magnitude of the fifth or sixth term of
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the series whenf=0'—7rj-&. Considering Table IV. from this point of
view, it is seen that the series for w, v, N,, and N,y , are probably
quite rapidly convergent, while the convergence of the series for Ny
ig much slower. The latter is to be expected, however, since the
Fourier series in x for the membrane theory solution for N4 has
terms of the order of i—, and the corresponding terms of the exact
solution do not differ greatly from these.

It is interesting, and perhaps important, to note that at the
boundary generators, for both cases computed, the deflection is
radially inward and downward. This seems rather surprising, as

physical intuition would seem to indicate that this deflection

should be radially outward, rather than inward, and downward.
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PART VI.

(a) In this Part, we shall consider several approximate methods of
ovtaining solutions of this problem. However, before going into the
methods used by the author, it may be desirazble to give a brief
review of some of the methods used by other writers on this subject.
Finsterwalder has obtained & solution on the assumption that the
moments M,, Mxﬂ, and Mgy and the shear Q4 are negligible, and that
all terms involving k in Equations (63) for N, Ny, N, , and Ny

may be neglected. (See Finsterwalder, Proceedings International
Association for Bridge and Structural Engineering, Vol. I., 1932,
page 127; Schorer, Transactions A.S.C.E., Vol. 62, 1936, page 767;
Fligge, Statik und Dynamik der Schalen, Berlin, J. Springer, page
137.) On the vasis of these assumptions, the forces N,, Ngo Ngxs
Nx¢, and Q¢, and the deformations u, v, and w, are all expressible
in terms of the ring moment My, and a single partial differential
equation of the eighth order in this quantity is obtained. The
solution of this equation involves the solution of an eighth degree
algebraic equation of the same type as Equation (123), and the final
solution is obtained in the form of series of the type of Equations
(150). Although the approximations involved in this solution are
considerable, it is doubtful if the labor is less, to any great extent,
than that of the exact solution. Finsterwalder's solution does not
involve the troublesome computation of the ratiosyé and&X;of Equations
(138) and (172); however, aside from this, the computations involved

are almost identical in the two solutions. Jakobsen (See Jakobsen,
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"Travaux", January, 1938) has placed Finsterwalder's solution in a
somewhat more compact form, but again it is doubtful if any great
saving of labor is invnlved. It is possible to obtain a solution
in the same form as Finsterwalder's in which the moments My, Meg,
and Mgy, are not completely neglected. The latter quantities may
be expressed, approximately, in terms of w only, as will be shown
later; and in & manner similar to that used by Fliigge (See refer-
ence above) the differential Ecustions (64) may be reduced to a
single differential equation of the eighth order in w. Again, the
labor involved is certainly comparable to that of the exact solu-
tion, so this method will not be pursued further in this thesis.

An interesting variation of the solution in the latter form hes
been given by Jakobsen (See Jakobsea, Der Bauingenieur, July 28,
1939, Vol. 20, page 394) in which the exact equations are solved by
a method of iteration; as before, there seems to be no appreciable
shortening of the computations.

(b) Let us consider several approximations which appear possible
from the exact solutions of Part V.. In the formulas of Equations
(63) and (175) for the force components, very small errors would be
introduced by neglecting all terms in k. Let us see the physical
significance of this approximation. In calculating the results of
Equations (63), we retained all powers up to the third of the
quantity fi. Let us recalculate the quantities of Equations (63) in
the following manner. We substitute expressions for the stress

components into Equations (2), in which the factors (1 +£§) of the
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integrands are taken as unity on the assumption that —E- is small

-/
compared to one. In the resulting integrands, we expand (1 +§)
by the binomial theorem and retmin only terms up to the first

power in 5 . Carrying out the integrations, we obtain in this way:

N, f- @ +Vv' +/w) M Dk(w” +/w" +./%)

it
i}

Ny Dk(w™ + w + V") (182)

ﬁ-(v' +w+1/u/) My

. /
Nx¢=1\1¢)‘=f(i'2-‘-/)(u + 7)) Myy = Mgy = Dk(1 - (w’ +‘—2(-'Z' )

It is seen that the first three of these results are given by Equa-
tions (33) when k is neglected. The formulas for My and M,y differ
somewhat from the corresponding results of Equations (63) while the
formulas for My and Mgy are identical in the two sets of equations.
The above expression for M, will be useful because it expresses
this quantity in terms of w only. Concerning the torsion moments
Mx¢ and Mgy, we may, conveniently, either neglect them completely,
as Finsterwalder does, or use the approximation that —zé(u' - v/) is

small compared to w/' and so write:
Myy = Mgy = Dk(1 =)w” (183)

the advantage of the latter equation over the corresponding one of
Equations (182) being that these moments are now expressed in terms
of the single quantity w. Which of these two approximations is the
better cannot be said off-hand, and both will be used later in this

thesis.
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(c) Perhaps the most obvious method by which to attempt an approxi-
mate solution is to assume that the stresses N, and Ny, are given
by the elementary beam theory, see Equations (180). These results
may be used as a first approximation in solving the differential
equations by & method of successive approximations. We start with
the equilibrium equations in the form of Equations (48). Between
the second and third of these, we eliminate first Qg4 and then N¢,
thus obtaining the following two equations, where the notation of

Equations (61) has been introduced:
Ny +Ng=-alz+ 1) - Q) - N (184)
.o /e .
Qg + Qu+ Qy =a(f -2°) + Ney

We shall make the assumption, referred to above, that the torsion
moments Mxgs and My, are small and may be neglected. Then from the

fourth and fifth of BEouations (48) we have:

N

Qu=FMg ¢ Q= FuS (185)

Substituting Equations (185) in Equations (184), we obtain:
Ny o+ Ng=-alz 4 ¥) - Fu - N (186)

/ . .
Sy Uy ) =aly - 20) + Ny (187)

We shall confine our attention to a shell of the type considered in
Part V, the loading being dead load, as given by Equations (164) when

¢ is measured from the vertical axial plane of symmetry. We may
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integrate Eouation (187) with respect to ¢ from ¢ to-g', obtaining:
Z A
2

Z’(M;' + My My ) = _¢/(aY + N4 )af - az (188)

The constant of integration which normally would appear on the left

side of this equation may be shown to vanish as follows. This con-

stant has the form - —~(M. + M, + ¥ ), 7. On the boundary generator
a ‘e é X ‘P 7

Mg =0 1is one of the boundary conditions to be satisfied; whence, the

second term of this constant must vanish. Also, by the third of

Equations (48) and Equation (185):
Mg+ M, = a(Qy + q, ) = -a(Ng4 + az)

Again, boundary conditions require that Ny = 0 along the generator

é ==§:; also, along this generator, Z vanishes for dead load, by
Equations (164). Hence, the sum of the first and third terms of the
constant must vanish also. ZEquations (186) and (188) may also be
obtained by consideration of the equilibrium of an.element of shell
included between two planes x = x, and x = X, + dx nommal to the
cylinder axis, and two axial plsanes, one passing through the boundary

generator ¢ = T, the other having the variable parameter §.

z ’
We now make use of Equations (182) in which, as before, we take
L/= 0. Substituting the fourth and fifth of these relations in

Equations (186) and (188), we obtain:

Ny + Ny =-a(z+7) -‘:—fw"’— N,/ (189)
o
1 o v z
w' s ow +waw =-5“Z[ (aY+Nx;)d¢$+aZ] (190)

(]
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We may now proceed by a method of successive approximations. Assum-
ing the load to be dead load, given by Equations (164), we take the
results of elementary beam theory as a first approximation. Assuming

a simply supported beam, the shearing force is given by:

V=map(5 - x)

£
Z

Using this result in the second of Equations (180) we obtain the
first approximation for Ng4, and Nxy. Placing this in the right side
of Equation (190) and using Equation (164), it is seen that the
right side of Equation (190) becomes an entirely known function of
¢ only. We may now solve this equation by assuming a solution in
the form of a Fourier series in x, w =;W(¢)sin,\£ , and determining
W(4) from the resulting ordinary differential equation. The right
side of Equation (190) must bedeveloped in a corresponding Fourier
series in x. W(#) will involve four arbitrary constants which may be
reduced to two by use of the condition that‘w must be an even function
of 4. The remaining two constants are evaluated from the conditions
that My = Qg = O at the boundary generator ¢ = 7

The solution for w, thus obtained, is now placed, along with the
load Equations (164) and the assumed first approximation for Nxg»
in the right side of Equation (189) which is thus reduced to a known
function of 4. This equation may be solved by assuming a solution

X

2 the right side of the equation being

of the form Ny = ) Ny(g)sin
A

developed in a similar series, and determining the function Ny(4)

from the resulting ordinary differential equation. This solution

introduces two arbitrary constants, one of which is determined by the
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condition that N¢ be an even function of $. It would be supposed
that the second constant could be evaluated from the condition that
Ng =0 at $ = §:; however, on setting up the equation representing
this condition, it is found to be independent of this constant, and,
furthermore, to be identical with the equation previously used express-
ing the condition that My =0 at ¢ = %’ . This constant, as yet not
evaluated, is carried along in the solution, and will be determined
later.

From the second of Equations (182), we may write the following

expression for v:

v =_D£N¢-w (191)

Substituting the solutions just obtained for N¢ and w in this equa-
tion, we may integrate, obtaining v as a Fourier series of the form
v = )Z V(é)sin)tir . This integration introduces one constant which
is determined by the condition that v must be an odd function of 4.
We now substitute the first and third of Equations (182), in

which we take v/= 0, in the first of Equations (48), obtaining:
/
w4+ F =gy (192)

where the load component X is taken as zero in accordance with Equa-
tions (164). Using the solution for v just obtained in the right
member of this equation, we may solve it, obtaining u as a series
of the form u = AZ U(;S)COSA% . This integration introduces two

arbitrary constants, one of which is determined by the condition
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that u must be an even function of ¢. The other constant, together
with the constant remaining from the solution of Equation (189) must
now be evaluated. To do this, we use the conditions that Ngy = Mgy =0
at § = Z Ngyx and My, being given by the third and sixth of Equations
(182) in which L/= 0. The validity of the last condition is somewhat
questionable, as M4, was neglected at the outset of the solution.
However, it seems, physically, to be the most reasonable condition to
use, inasmuch as the usual boundary condition concerning N4 does not
vield an independent equation.

The solutions for u and v thus obtained are now substituted in
the first and third of Equations (182), to give expressions for Ny
and Nyy4 which may be regarded as second approximations to these
stresses. This process of successive solution of the Equations (189)
to (192) may now be repeated using these solutions to obtain third
approximations, and so on; and it is believed that the process should
converge eventually to the true solution. While the labor involved
in this method of obtaining the second approximation is less than
that in the exact solution, it is still considerable; and to obtain a
third approximation in the way described would make the approximate
solution even more difficult than the exact. Thus, for the solution
to be of any practical use, it is necessary that the second approxi-
mation be sufficiently close to the exact solution to be usable.
Judged from this point of view, it will be seen that this method of
approximation is entirely unsatisfactory; for this reason, it is not

considered necessary to give the solution in more detail. Complete



computations using this method were carried out for the case, con-
sidered in Part V., A = 4.0 and k = 0.00001, some of the results of
which are given in Table V. In this table, under first approxima-
tion, are tabulated values of Nx¢ at the support and N, at the span
center, as calculated from Equations (180),assuming simple support.
Under second approximation, are given the first terms of the series
for Nyy and Ny. The numbers tabulated represent amplitudes of the
first terms of the Fourier series in x, and give the values of Nyxg
and N, , at the support and span center, respectively, where the

X
functions cosAZ and sin)“-’-‘_ , respectively, become unity.

TABLE V.

First Approximation

Factor 30° 45° 60°
S
Neg % .1357 .1688 .1625
N 03 03668 01128
. £= . -.0112 .02184
Second Approximation

Neg 23 cos # 2 2.65 11.6 23.8
N, 22 sing X 1030 836 588

Assunming that the series obtained in this way are quickly convergent,
the results given as first and second approximations should be nearly
equal, in order thet the solution may be usable. As this is far from
the case, we are led to conclude that the assumed first approximation

is not sufficiently close to the exact result to produce quick con-
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vergence of the solution by this method of successive approxima-
tions. Due to the extreme difference between first and second
approximations, as shown by Table V., it was not considered worth-
while to carry out the calculations for other cases, although a
comparison of the results of Figures 3a and 4a indicates that the
first approximation would be somewhat nearer the exact solution

for smaller values of A . It is possible that these large differ-
ences may be due in large part to the use of the boundary condition
lgx = 0. This question could possibly be avoided by integrating
the equations in a manner similar to that to be described in
Sections (d) and (f). However, in view of the rather poor results
obtained by the method of the latter sections, it was not considered
worthwhile to recalculate in this way, using beam theory as a first
approximation.

(d) We shall now consider another method of approximation which
gives results that seem more promising, but which still cannot be
considered as satisfactory. We shall assume in this method that
the ring stress Ng is given as a first approximation by the membrane
theory; an examination of Fizures 3c and 4c gives an indication of
the error involved in this assumption. We shall also use the
approximation that particular integrals of the differential equa-
tions are given by the solution of the membrane‘theory equations.
This approximation has been discussed on page 68. We start with
the differential equations of equilibrium in the form of Eaouations

(64), particuler integrals of which we take to be given by solutions



117.

of the membrane theory Equations (120); taese will be called the
orimary solution. TUpon the primary solution we will superimpose
the secondary, or correction solution, obtained from the homo-
geneous Equations (113).

Let us obtain, first, the primary, or membrane theory solu-
tion. As mentioned on page 68, solutions of the membrane equa-
tions, for various conditions at the support, have been given
quite completely by Dischinger. We shall merely state the desired
results, referring the reader to Dischinger's paper for the deriva-
tions. Assuming the conditions of simple support, and dead load,
Equations (164), Dischinger obtains, by successive integration of

the membrane theory equations, the following solution:

Ny = -pa cos é
N,y = p sin p (4 - 2x)
N, = .d’_" cos § (x* ~ {x) (193)

S 3 g3
u —/2pdcos¢(4x e/x" +/%)

<
il

Dél: sin ¢[az(,(x -x%) +2-4i(x4— ijs +/3x)]
v = -[‘%—icos d[—;-q-l- a (fx - x°) + ‘?—;;(x"- 2/ x” +/3x)]

These solutions may be developed in Fourier series in x as follows:
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_ _DS SN |
N, =-22(2 cos "),,%:,.. jrsindg
a y X
u =95 (2 cos ¢)2§1 3 cos A% (194)
=3
o0 2 x
v =8(2 sin¢)Z ZA:/ sinAZ
/)A‘Jn I\
® ¥ i
w =-Scos¢} Ardd v 2 sin )%
7oL /‘

where the notation of Equations (115) and (167) is used. We shall
take Equations (194) as the primary solution of our problem, and we
now seek solutions of the homogeneous Equations (64).

We shall now make use of the assumption, previously stated,
that, as a first approximation, the true stress N¢ is given by the
membrane theory without any correction. Then in the third of
Equations (64), we may take N¢ equal to zero. Taking, also, the
load terms equal to zero, these equations for the determination of

the correction stresses become:

/ .
NX + N¢X = 0

» / .'
Nx; +Ng4 Z(M,s + Mx/y; ) (195)

+

e e "
My + Mg + Mg + M, =0

We now express the force and moment components appearing in these
equations by means of the first five of Equations (182) and Egqua-
tion (183), thus introducing the assumptions involved in writing
the latter equations into our solution. ZEquations (195)may thus be

rewritten in the following form:
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V4 ] ee N

u o+ Z U +zV = 0

/ /* / . . ace . He

Zu E’V” +v =-w +k(w +w+w ) (196)
4 e /Al w

v 4w + 2w + W =0

We assume solutions of these equations in the form of Fourier series

as follows:

u=/U($) cosh i v =) T(4) sind] 5 w=WE) sin)d (197)
A A P

the functions U, V, and W, being functions of § only. Substituting
Equations (197) in Equations (196), we obtain the following ordinary

differential eguations for the determination of U, V, and W:

_U"_ AZU+2’&vv=O

A . ) ov_ . e . 2

~FU-SV+T =W k(W + W [1-)]) (198)

o

v ew(1-22) + 0 w=0

Equations (198) are easily solved in succession. We first solve the
third equation. Making use of the condition that W must be an even
function of ¢4, the solution of this equation may be written in the

following form:

W=AE($) + 3B E,($) (199)

where A and B are arbitrary constants, and E,(¢) and E () are defined

as follows:
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1rA<f: E, () = cos o ¢ where °(=))’ZL‘A2+])Z/"/\Z
/ 2 / 2
E(f) = cos 54 Where/’)}E -2 'l)z - (200)

1£A>%: E,(4)

I}

cos ; cosh o § where «' = )z-;f
E,() = sin 229 sinh & ¢
It will be convenient, here, to define o0dd functions as follows:

/
sinad I£)>F i 0,(f) = cos £ sinhag (201)

1 A<z : 0, (4)

]
It

sin g cosha' ¢

0,(4)

sinﬁé 0.(4)

it

the gquantities op and/zg of Equations (201) being defined exactly as in
Equations (200) for the corresponding cases. Substituting the solution
given by Equation (199) in the right member of the second of Equations
(198), the first two of the latter equations may be solved simultan-
eously for U and V. These solutions are easily obtained and may be
shown to have the following form, where account is taken of the fact

that U must be an even function of § and V an odd function:

(]
"

M E, ($) + NE,(F) + £ (H+ 40)E;(4) + I B(4) (202)

Y
A

<
i

=P 0,($) +QO0,(8) + 5(H+ ) 0,(8) +J 0($)

H and J are arbitrary constants, and the remaining quantities, as yet

undefined, are given by the following equations:

"

E,(#) = cosh ) g 0,(¢) = sinh) § (203)

i

¢ coshi g

E,(4) = ¢ sinn) g 0,($)
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and the constants M, N, P, and Q, are given in terms of the arbi-

trary constants A and B by the following sets of equations:

If A< #:
M (o= 2)) +&AP =0 (204a)
XA+ P (- 2o7-)0) = 2Aq/[1 - k(/!‘+ X)]
N (-4 2X) *+B)Q =0
AAT+q (- 2870 = 2a [1 - k(e )]

where & and 4 are defined in Equ;tion (200) for the case A< ¥ .

If)>f:
- (2274 1) + 24N + 20)dP +)Q =0 (204b)
2o¢ M -N(E2XM+1) =)AP + 24XQ =0

~2a A M = AN 4 2P(X- 1) + 44Q = -4 [Aw+ B(F - k)]
AM - 2&) N - 40P + 2 Q( M- 1) = -4[3«- alf - k/\‘)]
where o« is defined by Equation (200) for the case ) > f .

By combining the solutimns (199) and (202) in the series of Eguations
(197), we obtain the solution of Equations (196). These may be
differentiated and comoined according to Equations (182) and (183) to

give the force and moment components. To the secondary, or correction,
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solution thus obtained we add the membrane theory solution, Equations

(194), to give the final results which are as follows:

Wy=2 Foind 1 {7 5(6) + 6 B,(6) + (E+ 20) £5(8) + )T £ (9) - T oos 4
NW:z-f—Zcos)i{ 0($) + A0, () +2(H + 3J) 05(4) + 2)d 0 (§) +/\= sin gs}

N, = -_ZsmA ﬁm: (8) + AN E,(8) + (H + 43) E (#) + )7 E($) + 2 cos ¢}(205>

u =Jcosd2fi B,(8) + N B,(§) +5(H+ 40) 5,(8) + 7 5,(8) +Zcos 4}

A% cin ¢§
A.s

v =2€sin)§{% 0,($) +Q 0,(4) + ; I

v =Jeim i B, (§) + B E,(§) - 5 AT 200 6}

In these equations, all summations are over values of A corresponding
to all odd integer values of n, and the constants F, G, ", and A, are

defined in terms of the previously given constants as follows:

If)<é:
F=oP+ A [ =)P -xM
G=48Q+3 A=)Q-ﬁN
If > f:
(206)
F=a(P+23+A P=°(M+%/+/\P‘
G=e«Q-§+B A =oX =%+ g

o/ and/é being defined in these equations exactly as in Eouation (200)

for the corresponding cases.



The arbitrary constants A, B, H, and J, are now determined by
the conditions of Bquations (165) at the bouncary ¢ ==§g. Using the

definitions of Equations (182) and (183) in Equations (111) and (185),
we obtain:

#°
= 25 (207)

ae . /e
S¢-— A (W +w + 2w )

Substituting the last of Equetions (205) in the expressions for My and

S, , and placing ¢ = ‘7{ , we obtain the following equations for A and B:

/
£A<z:

A (=) B(F) +B (540 5,() =0

4]
A B0,(%) +Ba0,(F) =-45 U/\:

If )> % . (208)

a0, (5 aB ()] +8[vE,(F) + W+ f)m(E)] =0

2+

A[a(o/(zlr) + %Oz(g)]— B[-ZZO,(';) -°(O,_(§)J = -48 G

o/ and/é of Equations (208) being defined as in Equation (200) for
the corresponding cases. Placing ¢ = _}r in the first two of Equations

(205) and equating to zerc, we obtain the following equations for H and J:

H Ej(%') + J[z E, (%) +)E4(’f)] =-F B, (F) -6 E,(F) (209)

28 0,(3) + 2J[303(7§r) +30,(F)]=-To (5) -n0,(%) - ‘12_5';
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We thus have the complete solution on the basis of the stated
assumptions, and it is seen to be in a form making numerical com-
putations relatively easy. We miggt consider the solution (205) as
a second epproximation to be used in resolving the equations to
obtain & third approximation, and so on. However, after the second
approximation, the computations betome too complicated to be of
practical use. Therefore, as before, we must compare the solution
in the form of Equations (205) with the exact solution, and with
the first approximation, to judge its usefulness.

The solution (205) was computed numerically for the two cases
discussed in Part V. of this thesis,(k = 0.00001, ) = 0.4 and 4.0).
The results of these calculations for the stresses Ny and N, are
shown in Table VI. This table is arranged exactly as Table IV.,

see page 103.

TABLE VI.
A =0.4
Factor 0o 300 600 750 82. 50 900
Ny ZSein.¢Z  -183.85  -10.69  -3.70  -.84 -.08 0
N, Zsin42 -l69.1 -109.8 60.0  179.6 246.5 317.4
A =40
DS . X
Ny Lsin4Z  -.2480 -.2098 -.0946 -.0192  .0066 0
N, Zsin4l  -.0329 -.0314  -.0191  .0309  .1049  .2581

In Figures 5 and 6, these results have been plotted in full lines
against values of cos § Also, the exact results of Table IV., and
the assumed distribution of N¢ according to the membrane theory are

shown by dotted lines.
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It is evident from these figures that the approximate curves
cannot be considered satisfactory for design purposes. The extreme
sensitiveness of the solution of this problem is illustrated by
these curves. ForAs= 4,0, the assumed and exact distributions of
Ng are very close over the range 0 < ¢ < 75°; while the deviation
in the range 75° < ¢ < 90° is much greater, especially if this
deviation is considered in terms of the ratio of the assumed to the
actual distribution. The resulting second approximation stresses
agree feirly well with the exact over the somewhat smaller range
0 < ¢ <60°, the deviations becoming serious between 60° and 90°.
For A= 0.4, the agreement between assumed and actual values of Ny
would seem, at first sight, to be satisfactory, at least for
¢ < 45°. However, the error in the computed second approximation
is seen to be very large for almost all values of 4. Fuarthermore,
the family resemblances between the second approximation curves for
the two values of A are by no means as marked as they are in the
case of tne exact curves.

(e) This method of approximation, especially as it applies to
relatively short spans (corresponding to large values of A ) seems

to be the quite promising; and several atte:.pts were made to devise
metnods of correcting the computed second approximation. However,
one essential requirement of any method of correction must be that

it Dbe quite easy to apply; else, the approximate solution will become
comparable in difficulty to the exact, defeating its own purpose.

It was assumed originally in setting up the approximate solution,
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that the correction to the membrane stress Ng could be taken as zero.
Instead of this, we may assume various types of expressions for this
correction. One possible method is to assume it to be given by a
Fourier series in ¢; however, there seems to be no easy way of
evaluating the constants in such o series. From the shape of the
curves of Figures 34 and 44, it is evident that the larger terms of
the series will not be the first terms. Assuming one or two terms
of a Fouorier series led to no better results. In the first place,
there seems to be no definite way of foretelling which terms to
assume, and, secondly, having assumed any such term, the problem of
evaluating the necessary constant becomes quite troublesome.

Another method of correction which cannot be considered practical
but which leads to some improvement in the results will be briefly
described. The curves of Figures 3d and 44 are seen to be similar in
form to damped waves. It was found that the first arch near 90° of
the curve of Figure 44 could be closely approximated by a function of

the type:

(-8

-76 - ) .
Ade sin 14(x-06) + e sin 14 9}

where © is the angle measured inward from one of the boundary generators,
and is related to the coordinate § by the equation © ='§-+ ¢. A is an
amplitude factor which must be determined by the subsequent solution.
Using a correction of this type, second approximation curves were
computed for the case ) = 4.0 and some of the results are shown in

Table VII. This table is arranged exactly as Table IV, see page 103.
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TABLE VII.
A=4.0
Factor 0o 300 60° 750 _82.5° 90¢
Ny ZsingZ -.2703  -.2474 -.1547 -.0587 -.0113 o
N Zsindl -.0257 -.0273 -.0449  .0042  .1259  .4255

These results, along with the exact results for comparison, are
plotted in Figure 7 against vaiues of cos §. The agreement is seen

to be mach improved but for several reasons this method cannot be
considered satisfactory. Firstly, this type of correction is rather
difficult to apply, the computations being about double the amount
involved in the solution given by Equations (205). Secondly, the
varameter A is difficult to determine, the author being forced to

use a trial and error method which depends on the previous knowledge
of the exact solution. Thirdly, in the general case, the constants

7 and 14 appearing in the correction expression used would have to

be revlaced by variable parameters, their values being determined by
the subsequent solution, or otherwise; and there seems to be no
definite and easy way to determine these parameters without some fore-
knowledge of the exact solution. Due to the second and third points
Just mentioned, the accuracy of the solution carried out in this
manner will always be doubtful unless checked by other means.

(f) A slight variation of the method of Section (d) leads to slightly
better results. The methods are identical except for the way in

which the loads are brought into the analysis. Instead of taking



128.

particular integrals according to Dischinger's theory, we proceed
as follows. According to the membrane theory, the ring stress is
given by the following formula:
Ng = -va cos § = -%-gcos 955 /‘Lsin)%
s
As a first approximation, we will assume Ny to be given, not by this

formula, but by the following slightly different one:

Ng = -'-Z;cos ¢SZ —g: sinAf (210)

neg3
wvhere the values of the constants ¢ depend on the value of ) , and
are to be determined later in the solution. 7Thus, this method is
practically equivalent to assuming a correction to the membrane
stress Ny given by the first term of a Fourier series, as discussed
in the first paragraph of Section (e). We now consider the complete
Equations (64) and substitute Equation (210) in the third of these
equations, thus obtaining for dead load:

N/

 + N5 =0 (211)

/ . [yrpe . . . s .
Ney + Ny = (Mg + M,f¢ ) -pa sin ¢ =;€1(M¢ +ML,) -‘%?51n 67 /T/'s1n/\z

73

Mg + Mgy + Mgy + My = -aN, -pa’ cos § = -DS cos $> “Lsinij

e A

We now solve Equations (211) in a manner similar to that in which
Zquations (195) were solved. The complementary functions of Equa-
tions (211) will te identical in form with the complementary functions
of Equations (195). We then need to solve Equations (211) only for

particuler integrals arising from the two series sppesring in the
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second and third equations. Proceeding as before, by assuming solu-
tions in the form of Eguations (157), we obtain the following equa-

tions corresponding to Equations (198):

./. . 2 ./_\_ .
_A_ ° Az "—_ ] vae - 2 S . \
~FU- V4V =¥ + k(W +W[l-)])-x51n¢ (212)

L ad “ TS
W+ W(L-20)+ )% ==-52cos
( 2X) + ) A p
where we have introduced the notation:

T =1-0 (212)

We now solve the third equation, place this solution in the second
equation, and then solve the first two equations simultanecusly. 1In

this way, we obtain the following results:
N¢=f2sin,\£{3’ Z,(4) + GE,(F) + (H+ 27) B,(§) +)J E(B) + C coe ¢}
=D7§_cos)§{r'o,(¢) + A0, (8) +2(H + 3J) 0,(8) +2\J 0 (§) *(/%%1 sin ¢s}
= .fzsimggm,(gs) +ANE,(§) + (E + 47) E,($) + A7 E(¢) +(7%-T)7cos ¢,}
u =) cos) {v E, () + 5 E,(8) +{(H+ 47) E,() +J B (§) +(/ ﬁco ¢} (214)
v =) sin}ifp 0,(8) + R 0,(8) +{(E+9) 0,(8) + I 0,(4) J;;j;g:'" sin ¢}

w=Jsindf(a B, () + B B,(6) - EAeoycos 4 ]

In these equations, we have introduced the following notation:
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= 1 +2}\" T (l+k/\l)(l+2/\1) _1}
¢ AL+ ) ¥ B3+ 2) 1+ 3" (215)

T = 5{1+r(1+k)\‘) }

A KX(N + 2)
T has been defined in Equation (213) above, and the remaining nota-
tion of Equations (214) is defined exactly as in Eouations (200),
(201), (203), (204), and (2068). The boundary condition equation are
slightly different from Equations (208) and (209). The equations

for the determination of A and B are as follows:

If/\<2/:
2 g 2 T
A L-«)E(2) +3 (1-87)8,(z) =0 (216a)
A/:’O/(%) +Ba0,(7) =-/€%%—§;2)
1£ 0> 4

aO%HE, (D ~wE (F) ]+ 3[xE, (F) + (A%;’)sz(g)]:o (21€D)

a0 (B) +fou(D)]-Bk0,(B) ~a0, (D)) = - AEL

The equations for the determination of H and J are as follows:
™ T ™ T
BE(Z) +3[22,(5) + AB(F)]=-F 5,(5) -0 5,(]) (217)

3
Iy =-To,(5) -a0,(F) - 24T

. iy r
3H03(2)+2J[303(3)+)q(2 5ok

By means of these equations, all quantities will be determined in terms

of the constant T . We may now evaluate = by making the expression
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for N4 of Equation (214) agree at some particular value of ¢ with
the assumed value of Ny as given by Equation (210). The best
particular value of ¢ to use is a matter of judgment, or, knowing
the exact solution, a trial and error method may be used to make
the calculated and exact solutions as nearly alike as possible. If
the assumed and calculated values of Ng are made to agree for the
particular value ¢ = O, ve obtain the following ecuation from which

T may be determined:
F E,(0) + G E,(0) + (H + 2J) E,(0) +)J E,(0) + SC = -/;_? S

With the value of T obtained from this equation, the values of the
constants may be completely determined.

The author has computed the first term of this solution for the
values of A end k previocusly used, and some of the results are

tabulated in Teble VIII., which is arranged exactly as Table IV., see

pege 103.
TABLE VIIL.
A=0.4
Factor Qe 300 60° 75¢ 82.59 909
v, Zsin.#F  -2.500  -1.767  -.2643 .1936  .2029 0
N, 2%sin.#Z 5173  -33.59  18.3¢ 54.94 75.40  97.08
A =40
Ny Lsingi  -.2401  -.2l4l -.1047 -.0267 0029 0
N, Zsin4F  -.0815 -.0303  -.0280 .0267  .1089 . 2878
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In Figures 8 and 9, these results are shown by full lines, plotted
against values of cos #. Also, the exact results, the assumed
distribution of Ny , and N, calculated from elementery beam theory,
Equation (180), for X = 0.4,are shown by dotted lines for comparison.

It is evident from these figures that the approximate curves
cannot be considered as satisfactory. However, it may be noted that
the ratio of the values of N, at the free edges given by the exact
solution, Table IV., to that given by the above approximate solution
is very close to 2 for both values of ) used. The calculated curves
err on the side of safety from the exact curves at most critical
pointsiexcept along the free edges. It may De possible, therefore,
to use this method of calculation, later revising the results by
multiplying the stress N, at the free edges by 2,(or some constant)
and then sketching by eye the distribution of N, in the region of
the free edges. However, before such a semi-empirical method could
be used with safety, it would be necessary to cerry through the
exact solution for other values of A and k.

It will be noted that the solutions of Sections (d) and (f) are
in close agreement for A = 4.0, while the disagreement is consider-
able for A= 0.4. TFor both values of A , the two methods meke use
of almost identical assumptions for the distribution of Ng: yet the
results computed by the two methods differ considerably for the
smaller value of A . This is probably due to the following reaeons.
In the solution of this Section, givenby Equations (214), the parti-

cular integrals satisfy the first set of boundary conditions at the
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supporting edges which were discqssed on page 70. Dischinger's
particular integrals satisfy somewhat different conditions at the
supporting edges, as an inspection of Equations (193) shows. From
these expressions, it is seen that for x = 0, 4 we have Ny =v =0,
but w does not vanish; while the particular integrals included in
Equations (214) satisfy the conditions Ny, =v =w =0 at x = 0, /4.
It is probvable that for short deep spans (corresponding to large
values of ) the effect of radial deformations at the supports is
small, while this effect is much more important for the longer
spans (corresponding to small values of ) ). It should be noted
that the particular integrals contained in Equations (214) are
exact, while those in Equations (205) are approximate. It may be .
that the approximation introduced in this way is much better for
the larger values of ) . quever, it is believed that the
discrepancy between the solutions for A = 0.4 obtained by the two
approximate methods is due principally to the incorrectness of the
initial assumptions for the distribution of Ng4 rather than to the
approximations introduced by the use of Dischinger's particular
integrals.

It is interesting to note that both approximate methods lead
to an almost linear distribution of W, for the value of A = 0.4.
See Figures 5 and 8. Also, the distribution of N, obtained by the
method of this Section is in very close agreement with the results

of the elementary beam theory, Equation (180).
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(g) The only type of problem investigated in this work has been
that of a shell in the form of a complete half cylinder, loaded
with dead load, and completely free along the boundary generators.
Another problem of a similar nature which is of considerable
importance in roof design, is that of two or more shells supported
at the ends as in the examples considered herein, and joined
together rigidly along the boundary generators. In the paper by
Finsterwalder previously cited, (Proceedings International
Association for Bridge and Structural Engineering, Vol. I, 1932,
vage 127) an example of this type has been computed quite
completely using Finsterwalder's approximate method. An exemin-
ation of Finsterwalder's results shows that the computed ring stress
N¢ is very nearly linear if considered as a function of cos 4. It
is possible, therefore, that a solution by the methods of Sections
(4) and (f) would give more satisfactory results when applied to a
shell of the type considered by Finsterwalder; due to lack of time,
it was impossible for the author to pursue this possibility further.
The investigations described in Part VI. of this thesis have
not led to the discovery of any entirely satisfactory avproximate
metrod, and one is led to conclude that the best method, so far
availacle, for the calculation of cylindrical shells of the type
considered is the exact method. It is hoped that a perusal of
these pages may help future investigators in this field to avoid a

large amount of fruitless computation through a knowledge of the
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devices described in this thesis, or that it may suggest to the
reader some possible method of attack on the problem which has
been overlooked by the author. If either possibility occurs, the

main purpose of this somewhat detailed report will have been

fulfilled.



