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ABSTRACT

This thesis discusses the development of a symmetrized hyperspherical coor-
dinate technique for the calculation of accurated differential cross sections in the
reactive collision of an atom with a diatomic molecule in three-dimensional space.
The hyperspherical methodology has the advantage that all regions of configuration
space are treated equivalently; this allows the reduction of the reactive scattering
problem to an equivalent inelastic scattering problem, which is both computation-
ally simpler and more straightforward conceptually.

The hyperspherical methodology is discussed in detail, including the expansion
of the scattering wavefunction in terms of a basis of local hyperspherical surface
functions and the calculation of this basis set. The methods are applied to the
H + H; system (using the LSTH potential energy surface) and used to calculate
scattering matrices and partial wave cross sections for this reaction up to a total
energy of 1.6 eV. The results presented here include the geometric phase effect due
to the conical intersection of the H3 system, along with a set of results which do

not include this effect for comparison with the previous work in the field.
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I. INTRODUCTION

This thesis is composed of a set of four papers, two of which are already in the
literature. The individual papers are meant to stand alone, and may be read more
or less independently. Since each paper will have an introduction discussing the
motivation of and the background for the paper, this material will not be repeated
here; instead, this introduction will give a summary of the intent of each paper and
an overview of the results to establish the unifying theme of the thesis, which is the
calculation from first principles of the differential cross sections for atom-diatom
scattering by hyperspherical coordinate methods.

Chapter two details the calculation of local hyperspherical surface functions
using a variational basis set and symmetrized hyperspherical coordinates. The
formal expansion of the wavefunction in the surface functions is given in order to
determine the matrix functions needed for the eventual scattering matrix and cross
section calculations. The construction of a basis set for expansion of the surface
functions consisting of products of analytic functions and a numerically determined
function is discussed, and the matrix functions are expanded in this basis set. The
formalism is designed to take advantage of permutation symmetry if two or all
three atoms are indistinguishable, in order to reduce the numerical effort required
to solve the surface function problem as well as the subsequent scattering matrix

calculation. A series of surface function contour plots are presented and analyzed.

The third chapter gives the formalism for the calculation of differential and
integral cross sections from the surface function information given by the methods
of chapter 2. The formal expression of the wavefunction in terms of the surface
functions is discussed in more detail, as are the means of solution of the coupled
differential equations which arise from this expansion. The resulting calculated
wavefunction expression is compared with the physical asympotic behavior of the

wavefunction to determine the scattering matrix for the system, which in turn is
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used in the cross section calculation. Finally, we apply the methods to the H + H,
system to examine the behavior of the transition probabilities, scattering resonances
and cross sections; we also introduce corrections for the presence of the H; conical
intersection which alter the expected physical behaviors dramatically.

Chapter four is a reprint of the first publication using the hyperspherical
method with variational surface functions, applied to the J = 0 partial wave of
the H + H; system. Comparison was made to previous independent calculations
and the results were shown to be very similar, thus validating the method. Chapter
five is a reprint of the subsequent paper reporting results for the J = 1 partial wave
of both parities; in this paper, we also reported the existence of a selection rule
for the resonances of the H3 system depending on the permutation symmetry and
parity of the partial wave and explained this rule in terms of a simple model for the

resonant state.
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II. COMPUTATION OF SURFACE FUNCTIONS FOR 3D
ATOM-DIATOM SCATTERING CALCULATIONS USING
SYMMETRIZED HYPERSPHERICAL COORDINATES'

Steven A. Cuccarol and Aron Kuppermann

Arthur Amos Noyes Laboratory of Chemical Physics,
Division of Chemistry and Chemical Engineering,?
California Institute of Technology,
Pasadena, California 91125

(Received )

Abstract
We present a method for calculation of accurate five-dimensional surface func-
tions which may be used to expand the total six-dimensional wavefunction of a three
particle system, yielding a set of coupled equations in the remaining variable. The

results of application of this method to the H+H; system are discussed.
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1. INTRODUCTION

In the last five years there have been great advances in the field of quantum
reactive scattering for atom-diatom systems. Prior to 1986, the only converged
exact three-dimensional calculations that had been performed were done on the
H+H, — H, + H reaction. In 1975, Kuppermann and Schatz!»? reported converged
integral and differential cross sections for a range of energies up to 0.7 eV above
the ground state energy of Hy, using the Porter-Karplus poténtial energy surface
(PK2).? These were the only accurate converged differential cross sections published
until 1989.4~7 Also in 1975, Elkowitz and Wyatt®® published integral cross section
calculations for that reaction which were performed with minor approximations.
These integral cross section calculations were repeated in 1978 by Walker, Stechel
and Light!® on the more accurate LSTH potential energy surface.!’ The long delay
in the production of new results in the field was caused by the difficulty in appli-
cation of the methods used in these early calculations to other systems, for reasons
of increased computational effort associated with the loss of the symmetry of the
three identical atoms; in addition, the methods failed at higher energies for the H
+ H, reaction for the same reason. Beginning in 1986 with the publication by Kup-
permann and Hipes!?:13 of J = 0 partial wave results for the H + H; reaction up to
energies of 1.6 eV above threshold using symmetrized hyperspherical coordinates,
a surge of publications has occurred. There are now converged calculations for the
systems H + Hy and D + H,,*~ 7123 F + H,, F + D; and F + HD,*¢% O +
H;,*4% H + HBr,*" and Cl + HCL.}%48

These calculations are of three basic types: the propagation methods of Kup-
permann et al.,’2715 Pack et al.,16~18:36:37 Schatz,1%4® Linderberg et al.,2° and Lau-
nay and Le Dorneuf,?! all involving some form of hyperspherical coordinates; the
variational methods used by Manolopoulos and Wyatt,4:32:33:42—44 Mijller,5:6,30,31

and the Truhlar and Kouri groups,”:22-29,38—-41,45-47 ;ging Jacobi coordinates; and
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the recent work of Webster and Light34® using a “natural collision coordinate”*®

method related to the methods of the early work!:?:8-10,

Variational methods*~7:22—3%:38-47 were developed based on several scattering
variational principles, which involve expansions of the scattering wavefunction in
terms of basis functions for the reactants and products, expressed in terms of the
Jacobi coordinates of the arrangement channel. The couplings between these basis
sets are evaluated through multi-dimensional exchange integrals,3® which leads to a
system of linear equations that must be solved to obtain the scattering matrix for the
three-particle system. These methods are very powerful but have the disadvantage
that a new set of integrals must be calculated for each new total energy of the

system; furthermore, they are very memory intensive.

The propagation method calculations,12=21:36,37:48 o the other hand, are based
on an expression of the problem in terms of a hyperspherical coordinate system,
which describes the degrees of freedom of the system of particles in terms of a single
distance variable (the hyperradius) and five hyperangles. In these methods the
Schrodinger equation is solved for fixed hyperradius to obtain “surface functions”
in the hyperangles, so called since they are defined on the surface of a hypersphere;
the hyperradius is treated as the generalized collision coordinate for the system.
When these surface functions are substituted back into the Schrédinger equation,
the result is a system of coupled second order linear differential equations in the
hyperradius which may be solved by any of several well known numerical techniques.
The surface functions are independent of the total energy of the system, and thus
if scattering calculations at many energies are desired the time spent in evaluating
the surface functions becomes unimportant. A further advantage of these methods
is that the hyperspherical coordinates are the most practical way to describe the
wavefunctionsin cases where a heavy-light-heavy mass combinationresults in a large
overlap between reactant and product channels®!:52 and for the case of collision-

induced dissociation.53:54
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There is more than one possible set of hyperspherical coordinates which may
be used for these propagation calculations. The coordinates introduced by Delves®®
(currently in use by Schatz!®48) and by Whitten and Smith%® both share the dis-
advantage that certain configurations of the system may be described by more than
one set of internal coordinates (i.e., the coordinates on which the potential de-
pends), so that there is not a 1 to 1 mapping of the configurations of the system
and the description of the system in the coordinates. In addition, the transfor-
mation of the three internal coordinates of the system from a set based on one
arrangement channel to another is not orthogonal. Kuppermann57 developed a set
of symmetrized hyperspherical coordinates (SHC) which does not have this undesir-
able characteristic, and suggested that these coordinates would be an appropriate
system for study of reactive scattering problems;37'3® they are currently in use by
this group!2=15. Other sets of symmetrized hyperspherical coordinates have been
designed so as to treat all three arrangement channels in equivalent ways; these have
been proposed by Johnson®® (based on the Smith~Whitten coordinates), Mead®®
(used by Linderberg et al.2?), and Pack and Parker.16-18:36,37

In this paper and one to follow, we report the results of our work on the H + H,
system. This paper will be concerned with the determination of surface functions
using the SHC system of coordinates and their properties; a subsequent paper will
describe the use of these surface functions in the calculation of scattering matrices
and differential cross sections. Section 2 will describe a general formalism for the
calculation of surface functions from a variational basis set. In section 3, we will
discuss the implementation of the formalism in a computational algorithm, and in

section 4 the results of these calculations will be presented. Section 5 will be a

summary of the main points of this paper.
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2. FORMALISM OF VARIATIONAL SURFACE FUNCTIONS

2.1 Symmetrized Hyperspherical Coordinate System

The symmetrized hyperspherical coordinate (SHC) system that we have chosen to

use for the three-body problem has been described previously,12:13:57,58

so only a
brief description is necessary here. Let A4, A, A, be the atoms of a triatomic
system with masses mqy, mg, m., respectively, defined in the following manner: for
a system of type ABC (three distinguishable atoms) A, = A, Ag = B, and A, = C;
for a system of type AB; (two identical atoms) A, = A, and Ag and A, are each
assigned to one of the two B atoms; and in an Aj; system all are A atoms. In
addition, let A,v,x be an arbitrary cyclic permutation of a,3,7. There are three
sets of body-fixed Jacobi coordinates (R, r}) for this system, where r), is the vector
from atom A, to atom A, and R/, is the vector from the center of mass of {4,, A«}
to the atom A). The index A can be any of the values a, 8 or 4. The body-fixed
z) axis is taken to be in the same direction as the vector R), and the body-fixed
y axis in the direction defined by R) x r). The center of mass of the triatomic
system lies on the vector R, which is specified by its length R} and two spherical
polar angles 65 and ¢ with respect to the space-fixed Z axis. The vector r) is
specified by its length 7} and two body-fixed angles: the angle v (in the range 0 to
7) between R and r), and the angle 95, between the half-plane containing Z and
\ and the half-plane containing R and r), in the range 0 to 27 and measured
counterclockwise from the positive R/ direction from the first to the second of these
half-planes. These relationships are diagrammed in figure 2.1.
The angles 0y, ¢, and ¥ determine the orientation of the triatomic plane
in space and will be referred to as the Euler angles of the system.®! This set of
coordinates is best used to describe the system when the 4, atom is distant from

the diatom A, A., and will therefore be referred to as the A arrangement channel
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coordinates. For a given choice of the A, v and k cyclic permutation, we may
similarly define coordinates (R],r.) and (R.,r) for the v and x arrangement
channels, respectively. The Euler angles in the v or k coordinate system may be
expressed as functions of all 6 variables in the A coordinate system. We will use
the X set of coordinates in the discussion to follow, whenever it is not necessary
to specify a particular arrangement channel; however, since A may stand for any
of the three indices a, B or 7, this choice is general, and the equations in v and &
coordinates may be obtained from those in A coordinates by replacing the indices
{A\,v,k} in each equation by the appropriate cyclic permutation.

The wavefunction ¥ of the system A, A,, A, is the solution, subject to ap-
propriate boundary conditions, of the Schrédinger equation H\¥ = EVY, which we
require to be single-valued, continuous and differentiable (i.e., well-behaved). The

hamiltonian Hj for the system in the ) set of coordinates is

. ___h2 2
HA = V2 - h
zﬂa\,uu A 2pun

Vf_; + V3(RY,m5,72) (2.1.1)

in which the reduced masses are

mA(mu + mn) . mMyMy

vk = — 2.1.2
m¢\+mu+mn, # my + My ( )

Hiwn =

The Born-Oppenheimer potential energy surface Vy depends on the interatomic dis-

tances R) and r and on the angle y) = arccos %"}—3&)—. To simplify the hamiltonian
ATA

(2.1.1), we scale the position vectors as

1

1 1
Hve : ' Hux 3 ]
Ry = (—’) S S (———-) r 2.1.3
L Al L A ( )

,,_—_( ATV T ) .—_( MaTtpTy )2 (2.1.4)

mx +m, +m, Mo + Mg + My

where

wafr

The new lengths of the vectors will be denoted by Rx and rj, respectively; since
mass-scaling of the vectors does not affect their angular coordinates, 8y, ¢, v and

1 are unchanged. In this Delves’ mass-scaled coordinate system,35:%2 y is a single
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reduced mass which is independent of A and common to both Ry and r), and the
hamiltonian takes the form
h2

ﬁ.A 2“ (V + Vlzu) + VA(RAfrAa’YA)- (215)

Their use has the further benefit that the transformation matrix relating the coor-
dinate systems (R, r)) and (R,,r,) is orthogonal.®?

The A SHC for this system are obtained by conversion from the two distance
variables r) and Rj to a (hyper-)radius p and an additional angle wy:57

p=(3+ R wy = 2arctan —

R, O0Swrsw (2.1.6)
A

(The remaining four angles are unchanged.) In this coordinate system the hamilto-

nian is expressed as

Hx = T(p) + ha(ai p) (2.1.7)

where we have defined the quantity () to represent all five hyperangles in the A
SHC: {6x,¢x,%xr,7r,wr}. The hyperradial kinetic energy operator T(p) has the

form

R 9 40 h? 8 s 15K?

M(p) = — 5= = ——p i} 2.1.8
T(p) = A i TR AR vy (2.1.8)

and the surface hamiltonian fz,\(()\;p) is
ha(Crsp) = ,EC") + V(p,wx,7) (2.1.9)

This system has several advantages: the hyperradius p is independent of the ar-
rangement channel in which the SHC are defined; the operators for hyperradius
and hyperangles may be separated, and thus an expansion for the wavefunction in
terms of a basis set made up of products of functions of {x (parameterized by p)
and functions of p may be used; and w, and 4, are functions of w) and 7, only,

making conversion between different arrangement channel SHC relatively easy.
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The generalized or grand canonical angular momentum operator A2 is defined
by
33‘(9)\,95,\,1/’,\,7)\) j§(¢A;7A)

cos?( ) sin®(2) ’

A%(¢)) = Li(wa) + (2.1.10)

where Zi and 73 are the angular momentum operators associated with the vectors

R and ry, respectively, and

5p _
L,\(w,\) " sin wi

—4r? [ 82 ,

[5@ + 1] sinwy (2.1.11)
is a non-physical angular momentum operator associated with the hyperangle w;.
In this system of coordinates, the operator A? has second order poles for wy = 0
(corresponding in physical space to atoms 4, and A, coinciding) and wy = =
(corresponding to A located on the center of mass of the system); in scalar products

involving eigenfunctions of H the effect of these poles is exactly cancelled by the

effect of the wx-dependent factor in the volume element, which in these coordinates

is d = di ,d9}do), with

dd, = -;—psdp; d9} = sinxdOrdprdys; dV¥) = sin’wysinyadwrdys (2.1.12)

Therefore, the presence of the poles will cause no difficulty when determining the

expectation value of this operator. This issue is further discussed in section 2.6.
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2.2 Permutation Symmetry, Angular Momentum and Inversion Parity

To simplify the solution of the problemin cases where some of the atoms A are iden-
tical, we can apply group theory for the permutation symmetry P, of the system.®?
There are three possibilities for three atoms, namely that all three atoms are distin-
guishable (p = 1), that one atom differs from the other two (p = 2), or that all three
are indistinguishable (p = 3). In each of these cases there is a set of permutation
operations which commutes with the hamiltonian. For P;, the only symmetry op-
eration is the identity E, while in the P, case there are two, the identity operation
E and the interchange of the two identical particles A. There are six operations for
P;, corresponding to the identity E, three two-particle interchanges (A, B, C) and
two three-particle interchanges (D, F). Each of these permutations can be described
by transformations R€(E,A,B,C,D,F) which act on the coordinates of the system;
in addition, each R has associated to it an operator O which acts on functions of

the coordinates, such that
OrF(x) = F(R™'x) (2.2.1)

where the inverse of the transformations (E,A,B,C,D,F) are (E,A,B,C,F,D), re-
spectively. The transformations R and the permutations which generate them are
defined in table 2.1. Application of the symmetry operators O to a general func-
tion F(p, () (in a system which has that particular symmetry operation) yields the

following results:

OpF(p,{r) = F(p,{x) (2.2.2)

O4F(p,¢a) = F(p,0a,as™ + Pas™ — Yaswa)
OAF(P,Cﬂ) = F(py 0y, ¢y, T + Yoy, T — Yoy, wy) (2.2.3)
O4F(p,(y) = F(p,95,8p,™ +bg, ™ — 18,wp)
éBF(P’Ca) = F(p, 0, §s T + Py, ™ = Yoy, w4)
OBF(p,(s) = F(p, 03,68, ™ +¥p,™ — 18, ws) (2.2.4)

éBF(PvC‘/) = F(Psea"ﬁayﬂ' + Ya, T "7&;“’0:)
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OcF(p,¢a) = F(p,85,95, ™ + g, ™ — ¥3,ws)
écF(p’ Cﬁ) = F(p7907¢0’7r + "/)a,ﬂ' - 7a,wa) (2.2.5)

éCF(p’C‘Y) = F(p,0.7,¢.7,1r +¢177r - 7‘7aw‘y)

OpF(p,{x) = F(p,{v) (2.2.6)
OrF(p,(x) = F(p,¢x) (2.2.7)

By examination of the group tables®? for the groups Pp, we can see that each of
these permutation symmetry groups is isomorphic with one of the crystallographic
point groups: P; with C;, P; with C,, and P; with C;3,. (This also allows'us to
identify the two-particleinterchange operations with reflections through a symmetry
plane, and the three particle interchanges with rotations by 3 about a symmetry
axis.) Accordingly, we will use the symbols for the irreducible representations (IR)
of these point groups to denote those of the permutation groups. The projection
operators P,I,; for the IR T' of each of these groups are linear combinations of the

symmetry operations for the group, and (in notation slightly modified from that of

Hamermesh®) are given by

BL =25 [dy(Rr)” (2.2.8)

9 &

in which n, is the dimension of the IR labeled by T', g = 3 (n..)? is equal to the
total number of symmetry operations of the group, the indices : and k fall in the
range [1,7n.], and the coefficients di; for each operation R form a unitary matrix
d' given in table 2.1. For irreducible representations which are not degenerate (the
A; and A4, IR in P; and all representations in the P; and P, groups) the matrices
dT(R) are one-dimensional and equal to the character for the operation R and the
IR I'. The two-dimensional representations of the E IR in P; are arbitrary in the
sense that any unitary transformation of these matrices is a valid representation of

E; we have chosen the representation in which one of the F symmetry functions
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(k = 1) is even and the other (k = 2) is odd with respect to interchange of the
atoms Ag and A,.
The projection operators defined above have the following properties when

applied to a general function F(p,():
Fi(p,Cx) = Pi(C)F(py Cn); (2.2.9)
BR(GFE(p,C2) = 6EE FRu(p, (), (2.2.10)

F(P,Cx) = Z zr: Fflc(paCX)’ (2'2'11)

T k=1
(FiulFiw) = 80 (FRIFLL). (2.2.12)

(In (2.2.12) and elsewhere, the bra-ket notation will be used exclusively to denote
integration over {» with volume element d¥}d¥;.) From equation (2.2.11), we find
that F(p,({») is composed solely of the functions F},(p,{1), and from (2.2.10) that
the operators Is,f'k all have the eigenvalue 1. We will not need the operators f’}; with
1 # k for our purposes; as a consequence, the eigenfunctions of }5{ ¢ Will be labeled
T.

The hamiltonian operator (2.1.7) commutes with several other important op-
erators, due to the isotropicity of space. These are the total angular momentum
operator J2, the projection of the total angular momentum onto a space-fixed axis
(such as J, for the Z axis), and the operator T for inversion through the center of
mass. The inversion operator has eigenvalues of 1, while the angular momentum

operators have an infinite number of eigenvalues.
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2.3 Partial Wave Expansion of the 6D Wavefunction

Since the hamiltonian operator (2.1.7) commutes with all the operators of section
2.2, we can expand the wavefunction of the system in terms of eigenfunctions of

these operators, also well-behaved:

nr

oo J 1
¥(p,(a) =Z Z CIM DN Y @My, ¢y) (2.3.1)
J=0 M= T

-J I1=0 k=

[

The partial wave functions ¥7MIT« (5 (,) simultaneously satisfy the equations

Hi(p, () ETMITx(p, (3) = BZTMITx(p,(3) (2.3.2)

T2 (6, 2,92 )T TMI* (p, (3) = BT (T + 1) T7MIx (p, (3) (2.3.3)
Jo(82)T MR (p, () = RMETMITx (p, (3) (2.3.4)

Z(Bx, $2, %2 )T M H (p, (3) = (-1)FFTMITx(p, ¢y (2.3.5)

BE (G )TTMI (p,¢) = 6F 65 TMITA(p, (3) (2.3.6)

which define the quantum numbers J,M and II of the total angular momentum

of the system, its projection on the space-fixed OZ axis, and the inversion parity,

respectively.
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2.4 Expansion of the Partial Waves in Terms of Surface Functions

We now define local hyperspherical surface functions (LHSF) &JMITs {5 be well-
behaved solutions to the Schrédinger equation for the five-dimensional hamiltonian
defined by equation (2.1.9), which resulted from omitting from H the radial kinetic
energy operator (2.1.8). This operator commutes with the same set of operators as
the full six-dimensional hamiltonian operator, and therefore we also define the LHSF
to have the appropriate permutation symmetry behavior and to be simultaneous

eigenfunctions of J2, J, and Z. This yields the set of equations

a(ps ()BT (Grsp) = () @AM (L, p) (2.4.1)

T2(0x, 62, 92) B Mk (5, p) = RET(J +1)@IMITw (¢ o) (2.4.2)
J(62) @M (Ly, p) = RME]MITH (¢, p) (2.4.3)

Z(6, 82, 92)EMT (G, p) = (—1)TE M (¢, p) (2.4.4)

PE (¢)EMT* ((r, p) = 61 8EBIMITH ({3, p) (2.4.5)

The index 7 arises from the quantization of the energies of the LHSF, which follows
from the finite bounds on the values of the 5 hyperangles. The LHSF energies are
shown in appendices B and C to be independent of the quantum number M and
the index k and therefore will not carry these labels.

The five-dimensional LHSF are an excellent basis set for expansion of the six-
dimensional scattering wavefunction ¥/MI's since they contain much of the effect
of the kinetic energy operators and of the potential energy function, and also because
of the separability of the hyperradial part of the hamiltonian from the hyperangular
part. The ¥JMITs are therefore expressed as:

TIMITn (g, (3) = p75 > b3 5)@IMMTH (53 5). (2.4.6)

n

Although n spans a denumerably infinite but discrete set of surface functions, in
practice it must be truncated at a finite number, determined by appropriate conver-

gence criteria on the final scattering matrices; this will be discussed further in the
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second half of this thesis. To solve for these coefficients, the $JMII's are determined
at a set of discrete values of 5. (When we need to distinguish between different val-
ues of g, we will label them as p;, with 2+ = 0 for the smallest value of g and
increasing with p.) Substituting (2.4.6) into the (time-independent) Schrédinger
equation corresponding to the hamiltonian defined by (2.1.7) and using (2.4.1), the
coeflicients are found to satisfy

hz d2 15h2 ﬁ 2 JIIT, - JIT -
{—éz-d—l;é-+8ﬂp2+(;) €n (p)_E}bn (P,P)

. e (2.4.7)
+ ) 63 )T 1R (3 5) = 0

in which the interaction matrix Z'™T, which is a measure of the coupling of the
LHSF functions by the potential, or equivalently of the change in the wavefunction
as a function of p from the values at p = g, is defined by

T ) = (B2 (03i9) | Ppron,maid) | 827 (0ip)). (249)

As is shown in appendices B and C, these matrices are independent of the quantum

number M and index k. The potential of interaction V(p,wax,va;p) is defined as

— A\ 2
Vip,wr,72;8) = V(p,wa, 1) ~ (g) V (P, wa,7a)- (2.4.9)

Since we will expand the six-dimensional wavefunction in terms of a finite
number of LHSF, the expansion (2.4.6) will become inaccurate for sufficiently large
values of |p — j;|, as some of the coupling is with functions excluded from the
truncated LHSF basis. Accordingly, the coefficients b(p;5;) are calculated as a
function of p in a region near p; corresponding to a hyperspherical shell. It is
therefore necessary for determination of the scattering wavefunction at all p to
smoothly match the wave function calculated for each shell across the boundary

p = pi,i+1 of adjacent hyperspherical shells. This is accomplished by imposing the

conditions

5 (piit1; Pig1) = Zbim(pe,iﬂ;ﬁi)[om]ﬁ'(ﬁsﬂ,ﬁi); (2.4.10)

n!
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(=)

ii+1 n’ PPyt
(2.4.11)
in which the overlap matrices O are defined by
(O (Biv1, ) = <‘I’im'((§,\;ﬁi+1) & IMITH (¢, ,p.)> (2.4.12)

These matrices are also independent of M and k. Since all terms in the defining
equations for the coefficients bJ7(p; 5) are independent of M and k, these coeffi-

cients are also independent of M and k and have been labelled accordingly.

2.5 Expansion of LHSF in Analytic Functions - 2D Surface Functions

We calculate the LHSF by expanding the functions in terms of a basis set of func-
tions with the same permutation symmetry and J,M and II quantum numbers.
The basis set which we chose to use for this expansion is derived from an expansion
of the LHSF in terms of analytic functions in four of the five hyperangles, which
yields coupled equations for the coefficients of these expansions, which are functions
of the remaining angle. The numerical solutions of these equations are not easy to
obtain; however, the form of these equations suggests approximate solutions which
can be used in the construction of a basis set for an accurate variational calclulation
of the LHSF.

A set of two-dimensional surface functions ¢i¥,m *(wa,va; P) independent of the
orientation of the system in space are defined by expansion of the LHSF in terms

of Wigner rotation matrices Dj;q(fx,0x,%1):

J
&M ((x;0) = Y DiTa(éa, 02, %2)0 0" * (wr, 72: P)- (2.5.1)
=0

Here we have used a parity-symmetrized Wigner matrix, which is defined as

1
27 +1\?
Diia = (‘gg;r) [Dira + (=1)""™9DF _o]; Q20 (2.5.2)
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this function is even (odd) with respect to inversion of the system through its center
of mass for II = 0(1), and in the case of = 0 is zero when J + II is odd. The

functions DI, form an orthogonal set with normalization

(il 1 thakd rey?
/ Dipa? (#3063, %2) Dita (6, 63,92)d93 = Z670A ™ [1+(-1)7*760] (2.5.3)

This normalization was chosen to simplify the form of the equations to follow.

Replacement of (2.5.3) into (2.4.1) gives

J
ha Z Dita(dx, 03,82 )0 0a " * (wa,72; B)
A= (2.5.4)

J
= Er{HP E D}{lnﬂ(qsz\yekywz\)"pigrh (wly'YA;ﬁ)
1=0

Multiplication of both sides of (2.5.4) by Df}y (éx,6x,%2) and integration over the

three Euler angles yields an equation coupling the 'gb,{gr" in Q:2

RS (w3, 72 B)a * (wa, 723 7) + CIITRE (y3; 5,0 )bioin 21y (@r, 723 ) (255)
. 5.5
+hG (1 B ¥ (@n 1A B) = 05 Q> Dy

a common factor of (1 + (—1)7*762) has been removed, which gives values of

Qmin = 0 for J +II even and 1 for J + II odd. The operators in this equation are

A (w i1p) = 1 i J(J+‘1)—ZQQ+ 15 —( & + cot 0
PR TR = 2up? | cos? sin? vy O7a? € %‘3’)’,\)

K? 02 82 8 .
— t vy — L?
+Sin2 323_ l:sinz x (87A2 + cot va 3’)’)‘ )] + A(WX)}

+V(B,wa,12) - €7(p)

(2.5.6)
and
~ R ¢a(J,0) 9
] .5 — 2 _—
Ri(7a; P wa) = 2017% cos? & [(Q +1)cotyx + a’n} (2.5.7)
with 2 > 0,

CIM? = (1 - 6M)(1 + (1)) (2.5.8)
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and

(i k) = [i(i + 1) — k(k £1))3 (2.5.9)

with 7 > k integers. From equations (2.5.7) through (2.5.9), we see that A = 0
and C7M1% = 0, which restricts the coupling to terms with Q € [0, J].

2.6 Boundary conditions for the ¢Jnr,.

L]

Certain boundary conditions for the 1,& will result from the conditions of

@iMHI‘,..

single-valuedness and differentiability on the These are imposed when

¥» = {0,7}, which correspond to collinear conﬁgurations of the system, and are
PO (wa,ya ={0,7};5) = 0 for Q # 0 and O‘n [1/J‘mr" (WA,7A;/3)] |7A={0,W} =0 for
1 = 0. These conditions derive from the invariance of the LHSF with respect to the
angle 15, which is indeterminate in the collinear configurations. There is a special
case when Ry = 0 (i.e., A) coincides with the center of mass of {4,,4,}) and
wy = 7. For this case, all four angles 8y, ¢, ¥a and v are indeterminate, while
in the v and x SHC coordinate systems only the angles v, and ., respectively,
become indeterminate. For this configuration it is possible for the ¢,{gr" to be
multi-valued and still result in single-valued ®JMIT'x, The form of this behavior
can be determined by comparison of the expansion (2.5.1) with a similar expansion

in a space-fixed hyperspherical coordinate system

1 —1)iHe+HI
i’JIVH-H"‘(CMP) ZZ [ + ) ] ij[M(or,\1¢r,\;9)‘)¢>\)90£;(w)\;i5)

{=0 =0
(2.6.1)

in which the angles 6,, and ¢,, are the spherical polar coordinates of the ry vector
with respect to the space-fixed Z axis and ijtM is the Arthurs-Dalgarno function,?®
for which (—1)#*7 = (~1)! (leading in equation (2.6.1) to the term in square
brackets). The boundary conditions on the function <pirl" which follow from the
well-behavedness of the LHSF are that when wy = 0 (and ry = 0) (pml = 0 unless
_7=0and£=J,andatwkzw(andR;\=0)<p£‘; = 0 unless j = J and £ = 0.
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We will use the relationship?
Di,fgr (st, GA’ O)"an' (7A$ "bA) =

: [ 47!' % .
(-1)y*® (2 5 +1) > C(I5G, — 0, 0V (Bex s 22362, 62)
L

(2.6.2)

where C(Jj£; 9, —,0) is a Clebsch-Gordon coefficient®? and YJ-n (v2,%2) a spher-
ical harmonic. Multiplication of both sides of this equation by C(Jj¢;,—Q,0),
summing over §} and using the orthogonality properties of the Clebsch-Gordon co-

efficients yields

JtM(orM ¢u 30, ¢A) =

<2J+1

3 . 2.6.3
52 ) Z(-l)"“C(sz;n,—Q,O)D;\’m(qs,\,e,‘,¢A)fp§’(cos‘“) ( )
1]

where PJ is a normalized associated Legendre function. Substitution of (2.6.3) into
(2.6.1), multiplication by Dyl and integrating over the Euler angles yields the
relation

Yun * (W, 72;P) =

Z(—l)i—ﬂ (1 + (”1)j+t+n) C(le;ﬂ-—QO)'P?(cos'y)‘)cpgt" (wx; P)

it 2
(2.6.4)
At wy = {0, 7} this reduces to
_ 1 + -1 J+II
T (0,7 p) = (~—-———( 5 ) 5221003 P)
L+ (L1 (2.6.5)

¢,J.gr"(7f,7x;ﬁ)=( WA )PJ(COS'YA)SO,,JO(W p)

From this relationship we can see that at w)y = 7w the ) dependence of the wmr,.
is that of an associated Legendre function if the sum of J and II is even; if this sum

is odd, the function goes to zero.
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2.7 Expansion of LHSF in Analytic Functions - 1D Surface Functions

It is useful to factor the wJIII‘,. further into separate terms in wy and 5. The form

of the operator j3 and the boundary conditions on the wil‘;ﬂ‘,.

make the associated
Legendre functions a good basis set for this factorization. Therefore, we expand

these functions as

Q ﬂ ( A,P)
Yra "(wx,'y,\,p z;l‘P (cosa )———MSIT, (2.7.1)
J...

where the coeflicients ¢n]ﬂ (wx;p) are called one-dimensional surface functions.
Substitution of this expansion into equation (2.5.5), multiplication by 'P;-?'(cos 7a)

and integration over v, leads to the equation satisfied by these functions:

12 ({_4<.3_2.+1>+ [J(J +1) - 20?] +4j(j+1)} T8 (022 )

2pp? 0wl cos? £ sin? wy $nin
h? - )
—cosz {£+(J )6+, 0 )¢'{E¥f+l(“”‘;ﬁ) +¢-(J, Q)f—(]3n)¢7{%t-ll(w)\;p)}>

+Z 2B, wa) o * (w23 ) = e (5)bra * (wa; B)-

(2.7.2)
where the term VQ is given by

ij;(p‘,wx):/ 'P_?(cos7,\)V(ﬁ,wx,7)‘)7’;)(cos7>‘)sin’nd‘y;‘. (2.7.3)
0

The multiplicative factor (sinwy)~! has been introduced into (2.7.1) because of the
form of equation (2.1.11). The presence of this term forces the boundary conditions

il;lg" (wx = {0,7};5) = 0 for equation (2.7.2) in order that the &MIT» pot diverge
at wy = 0, 7; in fact, the condition on the ‘iann to ensure single-valuedness of the

LHSF is that they approach zero as wy — {0,7} as fast or faster than sinw,.

Examination of equation (2.6.5) gives the further conditions

Lm ¢nJﬂ (w)\;p) _ Q;{-‘O

wx—0 smw,\ (2 7.4)
. ¢n]ﬂ ( )\;ﬁ) .

m 20 R g 2y

Wy T smwx
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JIT .
njif

with ! = 0 must be defined to be identically equal to zero when J + II is odd. The

It is important to note that for equation (2.7.2) to be valid, the functions ¢

set of equations (2.5.1), (2.7.1), and (2.7.2) are equivalent to equation (2.4.1).

2.8 Basis Set for Expansion of the LHSF

The variational basis set that we have chosen to use to expand the surface functions
was suggested by the expansion equation (2.7.1) and by equation (2.7.2). We define
functions t7 }n (wa; p) with associated eigenvalues e Jn(P) which satisfy the latter

after the 2 and j coupling is removed:

( 2h2{_¢_9_2__%1_[J(J+1)—292]_J'(J'+1)

pp? | dwi 4 cos? £ sin? wy

} + Vn (p,u.J,\)) tv]ﬂ(w)u; P)

= ev;ﬂ (p)tvjﬂ (wx; P)-
(2.8.1)

These functions are defined to be normalized as
/ dwaty e (waip)tarn(wasp) = 67 (2.8.1a)
0

and are required to satisfy the same boundary conditions as the ¢n sati ty Jn (0; ) =

t; Jn (r;p) = 0. We now define a five-dimensional variational basis set by

F3oit($x;8) = Difa(éa,05,%2) P (cos va) f% (wa; 6), (2.8.2)
where for notational convenience we have introduced the function

5) = 7% (wa; P)
sinwy

v;ﬂ(wl, (283)

We desire this five-dimensional basis set to be continuous and differentiable every-
where. From equation (2.6.5), we know that to satisfy this condition, it is necessary
that fJ2 via = 0 at wx = 0 except when j = 2 = 0 and that it be zero at wy = 7 ex-
cept when J = j = () = 0; for these exceptions either the function or its derivative

with respect to wy must be zero. These conditions are automatically fulfilled in the
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numerical calculation of the tan When the effective potential does not diverge,
i.e., when the potential is finite and j = 0 (for wa = 0)or J =j = Q = 0 (for
wy = ), the fact that a general three-body potential V(p,wx,vx) has local extrema
for collinear configurations, which set includes the configurations with wx = 0 and
7, implies that the effective potential will have zero derivative in the region of the
endpoints; in this local region, the ¢t/ in behave as solutions of a second-order linear
differential equation with constant coefficients, i.e., as C sin Ko xwx + D cos Ko rwx

where

Ko = \[1- 2907 +1) 200 = 2 [V(5,0) - 2 o)

Ko = /1= 22 [Va(o,m) ~ e (o)

With the boundary conditions that tv;ﬂ = 0 when wy = 0,7, we find that near wy =

(2.8.4)

0, tJ vJﬂ behaves as sin Kow) and that near w) = 7 it behaves as sin K,(7 — w,) for
real K; for imaginary K it behaves as sinh | K |wy near wy = 0 and as sinh | K|(m—w)
near wy = 7. From this result, it can be seen that FIx vih will limit to a constant value
with zero derivative when w) = {0,7}. When the effective potential of equation
(2.8.1) diverges at these values of w) due to divergence of the terms depending on
csc? wy and sec? £ it is growing quadratically as wy — 0 or 7, and in these regions
the t" i will go to zero as e—r’ ag w) approaches zero or as e—c(m—wa)? gg wa
approaches m. Consequently, under these conditions the f; Jn will go to zero.

Since this basis set is concentrated in the A arrangement channel region when g
is sufficiently large, accurate representation of the LHSF probability density concen-
trated in the v and x channels may require a large number of terms at such values
of p. In addition, the condition that the 5D basis be single-valued is overly restric-
tive for wy = 7, at which value these criteria are not met by the two-dimensional
surface functions of equation (2.5.1) when J > 0,J +II even. As a result, a more
efficient basis set is constructed by taking the union of the basis sets F{MI FJMII

Avjlr* pvuifl
and F/MI i this basis will then be able to well represent the surface functions in all
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channels. (It should be noted that the functions Fif,‘;’g and F,{f}fg with = 0 and
general J are not forced to zero at wy = , unlike the F{xg functions.) Further-
more, for systems with P, or P; permutation symmetry, the functions in one of a
set of indistinguishable channels can be generated from the functions in another by
application of the permutation operators Or of equation (2.2.1), and accordingly
we can construct symmetrized basis sets which belong to the irreducible represen-

tations of that symmetry group. We will refer to the symmetrized basis sets as

“primitives” to distinguish between them and the unsymmetrized basis sets Ff%g

JMIIT

We define the index 7 in the symmetrized primitives Fovin

to distinguish
between different types of primitives in the P; permutation group. It will denote a
set of indistinguishable arrangement channels, so that for a system with P; permu-
tation symmetry it takes on only one value: A (since all three arrangement channels
have the same asymptotic form of A + A;). As a consequence, there is only one
type of primitive contributing to each irreducible representation, and the 7 label is
not really necessary for the P; group. For the P; group, there is a single IR and
all primitive functions contribute to it, in a direct union of the three arrangement
channel basis sets into a larger basis; as the primitives in each channel form a differ-
ent type of contributing basis set, the 7 values A, B and C give no new information,
corresponding to the arrangement channel labels a, 8 and 4. However, in the P,
group, T takes on one of the two values A and B, corresponding to the A + B,
channel and either of the AB + B channels, respectively; thus there will be two
types of primitives contributing to each of the two IR, the A+B; type (with even
or odd exchange symmetry depending on I') and the appropriate even or odd linear
combination of the unsymmetrized functions from the two AB + B channels, and
the 7 index is needed to distinguish between these sets of primitives. It is the union
of the sets of primitives with different T values that form the complete primitive

basis set for our calculation.

The results of application of the various permutation operations Op to the basis
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functions is given in table 2.2 for each permutation symmetry P,. The factors (—1)
appear in this table since the functions Fy2 MH have certain symmetries with respect
to the changes in the angular variables caused by the two-particle permutations
(2.2.3) through (2.2.5); these derive from the properties of the Wigner rotation

functions and the associated Legendre functions:

Difa(#a, 05, ™ +¥2) = (=1)* Difo (8, 02, 9x) (2.8.5)

P (cos(m — 7)) = (=1)"*7P](cos 12) (2.8.6)

The symmetrized primitives are obtained by taking the appropriate linear combi-
nations of these functions as defined in equation (2.2.8) for the IR T'y; the general

form for the primitives is therefore
Fiomn *(¢sip) = Z X FIMI(CA G 2), (2.8.7)

where ) is fixed and can be chosen to be a arbitrarily, and the constants c (ngen
in table 2.3) are easily determined from the functions of table 2.2 and the dr matrix
elements in table 2.1.

The normalization for the 7 =B coefficients of the P, group and all coefficients
of the P; group has been changed from that which is produced by the projection
operators. This has been done in order to simplify properties of the scattering
formalism to be discussed in the second paper in this series and to remove trivial
dependence of the integral matrices on k; with a different choice, the matrices for
different k would be related by similarity transforms; our choice makes the matrices
identical. As a consequence, we need only use one value of k in our calculations to
obtain all the information necessary for scattering calculations in the E symmetry.

There is a subtlety in the definition of the primitives for the E symmetries of
P; which should be mentioned. Since the E IR matrices are defined to make the
functions generated from the permutation operator either even or odd with respect

to the atoms labelled 8 and +, a basis set generated from an unsymmetrized basis
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function in the a channel coordinates will be incomplete; the a channel function
already has symmetry with respect to this interchange, and consequently there
will be no representation of functions with the opposite symmetry in the basis set
so generated. (This precludes the use of the character table for projecting the E
symmetry part of the unsymmetrized function, as is suggested in Hamermesh®?,
since the character table is independent of arrangement channel and therefore will
not generate the opposite symmetry functions for any choice of initial coordinates.)
The basis set for this case and for the P, case with 7 = B were generated from the
B channel function; the functions generated from the 4 channel are the same except
for an (unimportant) factor of (—1)’ multiplying the primitives.

For certain I' and 7, the coefficients cﬂ are zero for all even j or all odd j, and

i
thus some of the primitive functions as defined by equation (2.8.7) also are zero; it

will therefore be useful to define the rectangular matrix

T, 120’
SRR 289
and express (2.8.7) as
MTIT Xu'j'ﬂ
iv;ﬂ “(CX’P) Z Crh-rvjﬂ Av J'ﬂ'(c)\[gk}’p)’ (2'89)
v’

where the range of values of j is not required to be the same as that of j/, and thus
eliminate these functions.
The five-dimensional LHSF are now expanded in terms of these primitives:
JMITx(¢5;5) = Y aliian(B)Fiem *(x; ) (2.8.10)
rviQ

The primitive basis set is not orthogonal, since the variational basis sets with differ-

ent A overlap; therefore, calculation of the a%m coefficients requires the determi-

nation of overlap integrals for the variational basis set as well as integrals involving

the hamiltonian. The generalized eigenvalue equation which results is

H'™T (5)a"™ (5) = M™ (5)a’™ (5)E'™ (5) (2.8.11)
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in which
[Hm(ﬁ)]:x:n’ = (Floim *($x;P) | Aa | FINGRE (0 P)) (2.8.12)
@™ ()] """ = oI (2.8.13)
M ()| ™ = (FIMIT (0335) | FIMIES (G 2) (2814)
[ETT(5)] 7, = 67 ™ (p) (2.8.15)

The interaction and overlap matrices of equations (2.4.8) and (2.4.12) can also
be expressed in terms of the primitive basis set integrals. Substitution of equation

(2.8.10) into these equations yields
I (p; p) = &7 (5)(Zp) ™ (p; £)a "™ (p) (2.8.16)

O (pit1,5i) = &7 (Pir1)(Op) ™ (Biv1, i)™ (52) (2.8.17)
where
(Zp) )03 ™ (p;.0) = (FIMITH (03 8) | V(pywnsai ) | FIMEEE (G2; 5))
(2.8.18)

[(©p) ™17 28 T (Bit1,8) = (FIMET*(Cas Biv) | FIMTRA (CasBisn))  (2.8.19)
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2.9 Calculation of Surface Functions and Propagation Matrices

The quadrature for the matrices of integrals in equation (2.8.11), (2.8.16) and
(2.8.17) are the most CPU intensive part of the surface function calculation. It has
proven to be most efficient to calculate matrices of integrals of the non-symmetrized
functions FyMI a as if the three particles were distinguishable and use the coefficients
cE’;‘ ; to assemble the desired irreducible representation matrices. The integration is
performed in two parts, of which the first is integration involving a A channel basis

function F{MI .+ with the result of an operation on another A channel basis function

Av'j

F{ﬂfg, which we will refer to as A\ integrals, and the second the integration of a

v channel basis function FJM1 'jig With the result of an operation on the A channel

basis functions F{fgg, which are known as v integrals. (The operations referred

to are the 5D hamiltonian for the H matrix, the potential function V for the T
matrix, and I for the M and O matrices. It is true in general that the matrix of
integrals Av, where the operation is performed on the v channel basis functions, is
the transpose of the v integral matrix, since all these operators are Hermitian and
the integrals are real (see Appendix B), so it is not necessary to explicitly calculate
these integrals; the A\ matrix of integrals is symmetric by the same reasoning.) In
the general case where there is no permutation symmefry, it is necessary to let A
take on all values {a, 3,7} to determine the full set of integrals for the calculation.
When there are indistinguishable channels in the system, it is sufficient to calculate
integrals within and between all distinguishable channels. In the P, case, the vy
integral matrix will be the same as the §3 matrix; in addition, formally expressing
the integral of the functions FIT an and FJ1T ,,“g','n, (which is zero by symmetry)

and the integral of the functions F/1T v‘;“',' and F/TIT=A  in terms of the A\ and

"'B v'j
vA type integrals leads to the result that

(FiﬁglFﬁv J'ﬂ') = ( 1)J+J (Fatuﬂ ’F'yv J’ﬂ’) PP>p € [2’ 3] (2‘9‘1)

therefore, A will need to take on only the two values a and § to fully determine all

necessary integrals. The threefold symmetry of the P; case allows us to generate
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from (2.9.1) the stronger relationships

( Avjifl ‘Fvv J'ﬂ’) = (‘1)j+j (FJ,,JQ |Fi£:IJI:Inr>
Pp,p=3 (2.9.2)

(FAv,an.{%'r'In'> = (1)’ <Fi£‘,‘-§|va )3

thus in this case, a single value of A suffices to determine the full set of integrals.

The IR integral matrices may be determined from these distinguishable particle

matrices in the following manner: we substitute equation (2.8.9) into equation

(2.8.14) to yield

o' s oy
[Mm"( ) "'”Jf-; = Z Z (Crh)iv;g(crh )i'v Jrnl
Ao Aot 7y (2.9.3)
X (FA'EJQ (Ckip) l FAI o'y (CXI;ﬁ)>

If the distinguishable particle matrices Mxx and M, are joined to form a matrix

(Md) which has a, and v as part of the row and column indices:

Maa Maﬂ Ma-y
Md= | Mg Mgg Mg, (2.9.4)
Mm M7ﬂ M'v'v

this expression may be written in matrix form as
M (5) = &P (Md) T (5)CT» (2.9.5)

Similar expressions may be written for all of the IR integral matrices; an example

for the E symmetry of the P; permutation group is given in Appendix C.
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The M) integrals are relatively simple to calculate, as the integration over the
angles 6, ¢, and va can be done analytically; the results of these integrations
(which are performed explicitly in Appendix B) are

[Mﬂ(ﬁ)}:'%n' = < Avjifl (CMP) I Fkv 3 C,\,P))
7

=587 [+ (1) T4

(2.9.6)

_e'ia
[H){&I(p)] ,,J'Jn <FAvJQ (CA,P) I hA I FAIJ J'ﬂ’(ck,p)>
3| o) (it +
(1-8) / sin? w«\dwﬂ’}?j(ﬁ,wx)f.%(wnﬁ)fﬁ?ln(wx;ﬁ))

h o' . * . 2 2 WX
2#p26: <6ﬂ_1€+(J,Q’)€+(J,Q')A sin® w) sec —é—dwxx

fri?ﬂ' (wa; ﬁ)fﬁ(nun)(wk; P)

+ (60t + (—1)716,20) 6 (,0)¢_ (5,9 / sin? wj, sec? %dw,\x
0

Hinlon 10|
(2.9.7)
Each of the integrals of (2.9.7) is one-dimensional, and the corresponding numerical
quadrature can be performed with a very small amount of computer time when
compared to the two-dimensional numerical quadratures considered below.
For the v\ integration, only the integral over the three Euler angles (81, $x, %)

is analytic, and the integration over wy and v, must be performed numerically. The

equations for the v integral matrices are

[M,{}}]:J;“ "<qun (G[¢a]; ) | FRY J,n:(C,\,P»
://di’%'Pﬂl(COs’YA)P?(cos'y,,[w)‘,’y,‘])x (2.9.8)

fvzl';nl (wa; ﬁ)ft;];;'l [wv(wh'y'\); p_]dél'-[n [Aua(wa, 7))
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[BZR] 25 = (FIME (G IGP) | ha | PN (¢ni )

= / / A9 P} (cos yulwa,1al) Foda (wai B) fofalws (wa, Y2); )X

{pn (COS 7A) [V(P,WA,’YA) + ey )'ﬂ'( ’I‘b) - ‘/]{;(ﬁ, wk)l dél'—ln(AuA[wM’Yk}

k2 sec? 2
- 2.”‘P {é'f'('] Q' )£+(Jvn )Pn +1(COS 7A)d0'+1 n(AuA[wA,‘Y,\
+ f—(J, ﬂ')‘f—(j, ﬂ')Pﬁ'__l(cos ’)Q)d‘r’)?_.]’n(AuA[wA,‘)q])}

(2

where the parity d”’I! matrix is the result of the integration over the Euler ang

/D (¢u, vad’u)DMQ'(qsl,e,\,‘!l’A)d‘l? "‘d(JlI'-IQ(AuA[wA,‘Y,\]) (
2.6
— % (dé‘,ﬂ(Auk[wA)'YA]) + (—1)J+n+n’d{n,,n(A,A[m,“]))

and the df, are as defined by Davydov.®5 A, is the angle (in the 0 to 7 ra
between the R and R, axes which is expressed in wy, v coordinates as?
R, R,
R, Ry
wu(“’ka'?'k) [
2

cos Av)(“’la 'YA) =

= — sec cos 3, cos 92—’5 + sin G, sin % cos 7;\]
(2.9.1
where the angle 8, is dependent only on the masses of the three atoms:
1
2
tanﬂyA — (m&(mA + m,, + m&)) , 0 S ﬂyA S zr__ (2.2
m,my 2

For sufficiently large values of g and for total energies significantly below
system’s dissociation energy into three isolated atoms (which will be the case in
thesis; generalization to higher energies is however possible), the overlap bety
functions in the A channel and the v channel may be taken to be zero, due tc

limited extent in wy and w, of fJ} o and f,;’,‘;-,n,, respectively; thus in these ¢
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the v\ integrals vanish, which greatly reduces the numerical work necessary for the
LHSF calculation. In systems with P; or P, symmetry, the overlap between one
pair of channels may vanish before that of a different pair, and this is taken into

account as well.

JIT
viQn

Once the necessary integrals have been calculated, the a coeflicients are
determined by a generalized eigenvalue-eigenvector procedure. Since our primitive
basis set is not an orthogonal set and is overcomplete®®, the matrix M7IT is formally
nonnegative definite if in (2.8.9) a complete (i.e., infinite) set of F{}, is included
for each A; if these sets are truncated, then MJIT s formally positive definite.
However, with the introduction of errors stemming from the finite accuracy of the
computer operations (including error) and of the numerical algorithms used, it is
possible to obtain negative eigenvalues for this matrix. The standard methods of
solving generalized eigenvalue problems, which assume a positive definite M matrix,
will therefore not be applicable. We have therefore developed a method to find the
eigenvalues of the system when the M matrix is not positive definite, which will be

described in the next section.

The integrals which make up the primitive basis set form of the interaction
and overlap matrices (defined in equations (2.8.18) and (2.8.19), respectively) are
calculated in the same way, i.e., the unsymmetrized A\ and v forms are calculated
and then linearly combined to give the primitive basis set form. The integrals for

the interaction matrix have the form

[(Zp)% (03 B)) :J-’;,n =(FR (6 0) | V(pywa, a3 8) | FMia (Cr; P))

V14 (—1)7+T60
I [ i rdon i (xS (oni )%
0

(13000 () V8 500)

=6

(2.9.13)
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[(Ip);{gx(p,ﬁ)] :;‘;‘;n —<Fuvyﬂ (CV CA ,,0) t V(P,WA,‘)’A,p) l FAv ]’ﬂ’(CA1P)>

//dﬂ'\'Pn (cos 7A)P§ (cos 1w [wa, ¥al) V(9 wa, 723 ) X

Fa (wa B) Fln (wolwa, vali B)dan (Aualwa, 1al)
(2.9.14)

and for the overlap matrix the form

[(Op)35 (Pit1; Pi)] :;{;n' = (F{ME (¢ Biva) | Fanlia (i i)

= -2-53,,“ (1 +(~1)J+n53’)/ sin® wadwx f70 (Wa; Bit1) i ja (wa; Ai)
(2.9.15)

[(Op)il;«l(ﬁi-i-l;ﬁi)] :'j](‘;n _<Fvv_70 (CV[CA ,P:+l) l F)u: J’ﬂ’(ckapl)>

- / / 492 dZ (A ualwr, 1ADPY (cos 1) PP ((cos v [wa, 1a])
x forpar (Wi i) filln (welwa, 7al; Pit1)

(2.9.16)

2.10 Solution of the Generalized Eigenvalue Problem for the LHSF

The matrices in the initial statement of the symmetric generalized eigenvalue prob-
lem (2.8.11) are square matrices of dimension N. We first determine the eigenvalues

and eigenvectors of the real, positive-definite symmetric overlap matrix M:
MX = XA (2.10.1)

The eigenvector matrix X is orthogonal, and the eigenvalue matrix A is diagonal
with positive real diagonal elements ordered such that [A]; > [A]j; for ¢ < j. We

thus have

Ha = XAXTaE. (2.10.2)

If we were to multiply both sides of the equation from the left by XT where X =
XA~3%, and defining the matrix ¢ by ¢ = X~1a, we could recast the equation in

the form

Hc =cE (2.10.3)
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in which
H=XTHX. (2.10.4)

The new hamlitonian matrix H is thus the original H matrix expressed in terms of

a new orthogonal basis set F, related to the original basis F by
|Fj) = Xij| ). (2.10.5)

This new symmetric eigenvalue problem in H, which will have the same eigenvector
matrix E as the original problem, can be solved in the same way as for the M
matrix eigenvalues. Finally, the eigenvector matrix a of the generalized eigenvalue

problem is determined from the eigenvector matrix ¢ of (2.10.3), A and X:

(ST

a=Xc=XA3c (2.10.6)

The method for determination of a and E as described above will fail if the
matrix M has negative or very small positive eigenvalues; since (as noted in section
2.7) M is formally positive definite, a negative eigenvalue is indication that the error
in that eigenvalue is of the same order of magnitude as or larger than the correct
value, and therefore the error in the associated eigenvector is likely to be quite large.
The eigenvectors associated with small positive eigenvalues will also suffer from this
condition. Use of the error-containing eigenvectors in the calculation can result in
obtaining incorrect LHSF energies, since the effect of multiplication of H by the
inverse of the eigenvalues of M is to disproportionately weight the error-containing
terms. This difficulty is resolved by reducing the dimensionality of the calculation:
we remove a sufficient number of eigenvectors of the M matrix with negative or
small positive eigenvalues such that the problem does not occur. This is equivalent
to dropping the corresponding functions from the basis F. This dimensionality
reduction results in a square diagonal matrix A’ which is the N’ by N' upper left
hand corner of A (where N' < N), and in a rectangular matrix X' of dimension N

by N'. These matrices are used as above to define the matrix H', which is the N' by
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N' upper left hand corner of H. The new symmetric eigenvalue problem is solved
to generate the matrices ¢’ and E', and the eigenvector matrix a' is calculated from
a = X'c'.

The fact that an orthogonal basis set derived from the primitives as above is
the basis set actually used to determine the surface functions means that addition
of a function to the primitive basis set does not necessarily improve the quality of
the surface functions generated. A strict variational principle does not apply in this
case, since the orthogonal basis set F' obtained before the new primitive was added
is not usually a subset of the orthogonal basis set obtained after its addition. In
practice, we have found that addition of one function to an N function primitive
basis set which yields a set of N' orthogonal functions will cause all surface function
eigenvalues to decrease as expected if the new set of N + 1 primitives is still made
to yield only N' orthogonal functions, since the resulting N’ function orthogonal
basis set will be a better set for expansion of the surface functions; however, if
the new set is allowed to have N' + 1 orthogonal functions, some surface function
eigenvalues will decrease while others increase. Although the variational principle
does not strictly apply for addition of new primitives, the trend observed as more
primitives are added is for the calculated surface functiéns and their eigenvalues to

converge to their true values, so the method as described remains valid.
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2.11 Characterization and Elimination of Linear Dependence

The success of the method for solution of the generalized eigenvalue problem de-
scribed in section 2.8 depends on the selection of the number of orthogonal basis
functions to be retained. The best value for this parameter is basis-set dependent;
if too many are kept, spurious eigenvalues of the generalized eigenvalue problem
may result, while if too few are used, the resulting eigenvalues and eigenvectors are
not as converged as possible with the basis set chosen. Obviously, the first of these
two possibilities results in more serious errors, and it is better to err by removing
more functions than necessary. For low values of J, calculation of the integrals
which make up the matrices for the generalized eigenvalue problem is much more
CPU-intensive than the diagonalization routines; we therefore save all the matrices
of integrals in the primitive basis set in disc-stored files to allow recalculation of the
LHSF and the matrices involving integrals of the LHSF if the convergence criterion

chosen turns out to be inadequate.

The current choice of convergence criterion is to examine the change in the
eigenvalues of the surface functions with addition of new orthogonal basis set func-
tions F;. An estimate of a reasonable value for this parameter can be obtained
for individual values of p by examination of the behavior of the LHSF eigenvalues
vs. the number of linearly independent functions F; used in their calculation. Up to
a certain number of these functions (ordered by decreasing magnitude of the eigen-
values A;; of the M matrix), the eigenvalues converge towards their correct levels;
after this number is reached, the functions F; subsequently added are composed al-
most entirely of error in the original basis, and spurious eigenvalues are introduced.
This induces error in all the eigenvalues, and the effect is easily visible when the
eigenvalues are plotted against the number of F; used. In figure 2.2, an example
for the J = 3,I = 1 A, symmetry is given. At the left of the figure, the lowest
eigenvalues are already converged, but some of the higher energy eigenvalues are

still converging. As a basis set size of 230 is reached, a rippling pattern begins to
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appear as a spurious eigenvalue enters the plot and proceeds to decrease in energy
as the basis set size increases. At the largest basis set size plotted (which is also
the last basis with only positive eigenvalues) the incorrect eigenvalue is the lowest
in energy, and another spurious eigenvalue has appeared at higher energy.

A time-consuming but failsafe method of insuring the absence of difficulties
due to linear dependence is to generate plots of the LHSF eigenvalues vs. number
of F; of the type of figure 2.2 for all values of p and all symmetries, and choosing by
visual observation of these plots the correct number of orthogonal functions to keep
for each symmetry and p. This also assures that the functions obtained from the
basis set are the best possible, since convergence of the energies towards their true
values becomes obvious. (For the example given, between 220 and 235 functions
would be a good choice for a calculation up to approximately 2.0 eV; a higher energy
calculation may require a larger basis set for the LHSF calculation.)

Alternatively, a method which uses the convergence of the eigenvalues as or-
thogonal basis functions are added may be applied to testing for the presence of
spurious eigenvalues. When using this method, the criterion for convergence must
be strict enough to ensure good surface functions while preventing the presence
of spurious functions. We examine the lowest N, eigenvalues (with N, a program
parameter) for the characteristic feature of a spurious eigenvalue, which is the large
negative change in its magnitude as the basis set size increases. This will cause the

following condition to hold for the set of eigenvalues which it crosses as it decreases:
le(7,n) —e(j,m +1)| > |e(7 — 1,n) — e(4,n + 1)| (2.11.1)

where e(j,n) is the j*® LHSF eigenvalue when a total of n orthonormal basis func-
tions are included in the set. If the eigenvalue that changes falls below more than
one (formerly lower) eigenvalue, the relation in (2.11.1) will hold for a series of
values of j, and the total difference in the changing eigenvalue will be measured
between the largest and smallest j values: Ae = €(Jmin,” + 1) — €(Jmaz,n). Since

some change is to be expected as the LHSF converge towards their true eigenvalues,
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and this change may result in the crossing of states, another program parameter
is set to the maximum change in a single surface function energy attributable to
convergence (usually between 5 and 10% of the value of the function); any larger
change is assumed to be due to error caused by the effects of linear dependence. In
practice, this convergence criterion has sometimes been inadequate at elimination
of the spurious eigenvalue problem, and it has been necessary to recalculate the
LHSF at a few values of p in these cases to obtain good results; however, it yields
good LHSF at most values of p, and with improvement will make plots of the type

of figure 2.2 unnecessary.

A large part of the problems caused by linear dependence are due to “missing”
functions in the basis set, particularly in the regions of configuration space where
the arrangement channels are nearly separated and each primitive function is a good
approximation to a corresponding LHSF. In this case, if a primitive corresponding
to a relatively low-energy LHSF is not in the basis set, a function composed of
small pieces of the other primitives will be formed as a substitute. This composite
function is poorly converged at best; in addition, it is unstable in the sense that
addition to the orthonormal basis set of a function which is mostly error can cause
this eigenvalue to change drastically, falling below the true “missing” eigenvalue
and becoming spurious. In the near-separated channels region, the problem can be
ameliorated by including the primitive which corresponds to the missing LHSF; this
process can be repeated until all functions below an arbitrary selected number or
energy are good. In the interior regions, it is less obvious what primitives correspond
to a particular LHSF, but by the same token there will be a better representation
of the LHSF by the other primitives, so the problem will not be as severe.

In practice, we have been able to obtain accurate surface eigenfunctions and
eigenvalues using a combination of these methods for every case attempted so far
(which has been for the H3 system and partial waves J = 0,1,2, and 3). After some

experience is developed, the procedure is fairly straightforward and workable, since
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the surface functions are independent of the total energy E for which the scattering

calculation is performed.

2.12 Selection of the Primitive Basis Set

The basis set for expansion of the LHSF at each value of g is chosen in the following
fashion. First, a large LHSF calculation is done for a select number of values of .
The primitives for this calculation are not selected in any particularly intelligent
way, but enough are included so that one can reasonably expect that an adequate
number of good surface functions will be present. Linear dependence is eliminated
by examination of the eigenvalue-vs.-number of orthogonal functions plots men-
tioned in section 2.8 and illustrated in figure 2.2, and selecting the proper number

to use. At this point, we evaluate the matrix
a=Xc (2.12.1)

from the matrices X and ¢ determined in the course of calculating the coeflicient
matrix a of equation (2.10.6). The omission of the diagonal weighting function A~ 3
reduces the contribution of primitives which effectively cancel by eliminating the
scaling effect of the inverse square root of the (small) eigenvalue, and therefore per-
mits one to see the unscaled contributions to the surface function. Thisisimportant
since the result of cancellation of a set of primitives can contain a large amount of
error, which is magnified by the A~% weighting. In addition, the & matrix is or-
thogonal, which makes it possible to determine the contribution of each primitive
to the surface function easily. Examination of these coefficient matrices then allows
one to pick the “most important” primitives for the calculation of the LHSF at that
value of 5, and this set of primitives is then used for a range of g about the original
value.

It has also become apparent that certain primitives with most of their probabil-
ity density at large wy do not contribute significantly to the LHSF calculation, but

may be selected by the coefficient checking program when an important primitive
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is missing from the calculation (this occurs most frequently at large values of p,
when the primitives more closely approximate the LHSF). This situation can result
in the introduction of subtle linear dependence difficulties which in the absence of
these primitives would be obviously due to the missing function. These primitives
can be eliminated from the calculation a priori by examination of the probability
density function of the primitives, and coefficient checking on this reduced basis set
will yield more accurate information on the important primitives in the calculation.

A possible choice for a variational basis set for the calculation is to expand the
LHSF in terms of a complete (or nearly complete) set of primitives defined in a
single channel and which are symmetrized in parity only. This basis set would have
the advantage of being orthogonal, and therefore would need no time-consuming
vA integrations as are required by the primitives involving all three arrangement
channels. Unfortunately, as defined above this basis set would not be able to accu-
rately represent the LHSF in the region near w = 7 without a very large number
of functions; a basis set of the type with a Wigner rotation matrix in the A coordi-
nate Euler angles multiplying a function of the other two hyperangles which could
represent the LHSF well in this region would necessarily be multivalued at w = .
In addition, the basis set would not represent the parts of the LHSF in the v and «
channels very well, especially as the channels begin to separate. Tests performed for
H+H; in the J = 0 partial wave, where any difficulties with w = 7 would not occur,
reveal that the large number of basis functions required for this method to begin
to approach the accuracy of the method using primitives in all three arrangement
channels causes the time required for the larger eigenvalue problem to more than
exceed the time saved by avoidance of the v integration. Accordingly, this method

was tried and discarded.
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3. CALCULATION ALGORITHM

3.1 General Discussion

A well-optimized algorithm for the calculation of the LHSF is necessary due to the
large amount of numerical effort needed for the two-dimensionalintegrals. The two-
dimensional quadratures may be performed by any sufficiently efficient means; for
simplicity of programming, we chose to do the integration on n,, evenly spaced grid
points in the angle wy using Simpson’s Rule and using n., point Gauss-Legendre
quadrature in the angle v, (taking advantage of the behavior of the associated Leg-
endre function in the A channel). The terms needed for each integrand are the 1D
primitives ¢ ;ja and associated Legendre polynomials 'PJQ in both the A and v chan-
nels, and the dJI%,(A, ) functions which remain from the integration over the Euler
angles. For the P; symmetry, these functions are sufficient to specify the integrals
involving the symmetrized primitives, since the values for the v) integrations are
the same as those for the kv and Ak integrations by symmetry; if the system does
not have P; symmetry, it will also be necessary to calculate the functions in the x
channel and the values of the d’™ matrix for angles A,y and A, for these latter
integrals. In the A channel, the function t{jn is known at all n, wy points and
the 'PJQ at all n, v points, which is a relatively small number of points; in the v
channel, however, these functions must be known at all w, and v, points, and since
these variables are non-separable functions of wy and «v,, values for these functions
must be stored for all n,n. grid points. In addition, the angle A, depends on both
wx and v, and therefore must also be calculated for the entire grid. To obtain the
values of the thjﬂ functions on all the w, grid points, a cubic spline interpolant at
these points was calculated from the known values on the (evenly-spaced) wj grid.
For the 'Pf," and the dJIL,, either this method or direct calculation of the values at
the grid points could be used. It was found that, in general, direct calculation was
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faster for the ‘PJQ while interpolation from an evenly-spaced A, grid was faster for
the dZ%%,.

If the amount of memory needed by the program were not a constraint, the
most efficient method would be to calculate the p-independent functions Pﬁ'('y,,)
and df'5(A,a) at the beginning of the program for all necessary grid points and
read these values as necessary. Unfortunately, this would use a substantial amount
of memory (for H+H; at the current grid size, greater than (J + 1) Mwords). Our
calculation was programmed initially for a CRAY X-MP /48 on which we had conve-
nient access to 3 MWords of memory. Therefore, these functions were redetermined
in each integration along with the ¢, jar(wv;p). To minimize this duplicated effort,
the algorithm was constructed so as to perform these calculations once per set of
integrals. The primitive basis set was organized so that the outermost loop involved
V' (and thus this value changed least frequently); the succeeding loops were over the
values of j', v', 2, 7 and finally v. (For vectorization, the three primed indices and
the three unprimed indices were combined into one index each, without affecting
the ordering described.) The dfl, are determined each time Q' changes, the 'P;-T

each time either ' or j' changes, and the tJ, j when any of the three primed

parameters change.
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3.2 Integration Algorithm

Having minimized the overhead in this fashion, the calculation of the integrand is
performed so as to maximize the vectorization of the integration. The description
which follows will be for the simplest case, which is the calculation of the M and
O matrices; generalization to the calculation of the H and Z matrices is given
subsequently. The value of J is fixed, while the matrices for both values of II are
calculated simultaneously.

As mentioned above, when the value of Q' changes, the matrix of little d values
is calculated by interpolation from a set of values known on an evenly spaced grid
in Ayx. The interpolation is done for values of ( ranging from —J to J; the result
is a matrix

1tld(iw, g, i0) = dgy s, (Aua (wa(iW), 72 (ig))) (3.2.1)

in which the indices iw, ig and io have ranges
iw € [1,n.], ig€[l,n,], o€ [-J,J] (3.2.2)

(For simplicity of notation, we will not label the matrices with the appropriate
quantum numbers; the values of these indices will be apparent from the construction
of the matrix.) The volume element is included in this matrix since the matrix
changes less frequently than others in the calculation.

sin(wa (iw))

dwt(iw,ig,10) = ltld(iw,ig,i0) * in(wy (i, 3g))

* d(cosva(ig)) * dwa(iw) (3.2.3)

Similarly, whenever the value of either Q' or j' is changed, the values of the associ-

ated Legendre polynomials in the v coordinates is calculated:
pnu(iw,ig) = 'P;f'(cos ¥ (iw,ig)) (3.2.4)

In the (implicit) loop over v’ the tt{’j’!ﬂ’{ term is calculated and multiplied by the

result of the previous step:

prim(iw,ig) = pnu(iw,ig) * t,{,j.mq(wx(iw); p) (3.2.5)
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Finally, a working array involving these functions and the little d functions is formed:
work1(ig,iw,io) = dwt(iw,ig,io0) * prim(iw, ig) (3.2.6)

this array will be referred to as the v primitive matrix, and has implicit dependence
on v', j' and .

The integration over wj, is performed by a matrix times vector subroutine which
is very efficient on the CRAY architecture; the vectoris the A channel primitive ¢ ijlm

and the matrices are the submatrices of the v primitive matrix which has Q' = +Q:
scrl(ig) = Z work1(ig,iw, Q) * t,{jlm(w;\(iw); p) (3.2.7)
<N .. J e\ =
scr2(ig) = Z workl1(ig,iw, —2) * £, (wa(iw); ) (3.2.8)
The integration in v, is completed by taking the dot product of the resulting vector
with the function 'P;-’:
tpos = Z scrl(ig) * ’P_?(cos a(ig)) (3.2.9)
ig
tneg = (—1)° Z scr2(ig) = 'Py(cos 72(ig)) (3.2.10)
ig
The matrix element for J + II even is given by

1
elel = —Z»(tpos + tneg) (3.2.11)

and for J + II odd by
ele2 = —;—(tpos — tneg); (3.2.12)

there is implicit dependence of this final answer on all six indices vjQ and v';'Q’.
Essentially the same algorithm is used in the calculation of the T matrix; the
only difference is the replacement of equation (3.2.3) with a similar equation which
includes the interaction potential function:
sin(wy (iw))

) Sin(wv(iwaig))
* V(p,waliw), va(ig); p)

dwt(iw,ig,i0) =ltld(iw,ig,i0) * * d(cosya(ig)) * dwx(iw)

(3.2.13)
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The H matrix is more difficult. The function in the A channel is operated on by the
hamiltonian, and the integration must be broken up into three pieces to account
for the Q coupling introduced by the action of this operator. The term diagonal in
Q0 is multiplied by a function which contains the potential as well as some terms
dependent on v, j and Q. This integration is therefore broken into two parts. Along
with the matrix of equation (3.2.6), two additional working arrays are needed, one

including the potential energy function and the other a factor of %sec2 2

work2(ig,iw,i0) = work1(ig,iw,io) * V(p,wa(iw),va(ig)) (3.2.14)
work3(ig,iw,io) = work1(ig,iw,i0)/ (1 + coswy(iw)) (3.2.15)

We also define the array
g(lw) - ( vJﬂ(p) JJ (p,w;\(lw))) * tv1|ﬂ((wx(lw)) (3'2'16)

The integrals for ' = £ are determined by summing successive matrix times

vector routine calls, as

scrl(ig) = Z work2(ig,iw, Q) * t;{jml(w;\(iw); p)+ Z work1(ig,iw, Q2) * g(iw)

(3.2.17)
scr2(ig) Z work2(ig,iw, — Q) * tv1|n|(wk(1w)’P) + Z work1(ig,iw, —Q) * g(iw)
(3.2.18)

The Q coupling caused by the hamiltonian requires the following integrals:

scr3(ig) = Z work3(ig,iw, 2 — 1) * tfjm[(w;(iw);ﬁ) (3.2.19)
scrd(ig) = Z work3(ig,iw,1 — Q) * 71 (wa(iw); 5) (3.2.20)
scr5(ig) = Z work3(ig,iw, Q + 1) * tw]m(w,\(xw),p) (3.2.21)

iw

scré(ig) Zwork3 (ig,iw, -2 — 1) * thIﬂI(“”\(lw) p) (3.2.22)

iw
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After weighting by the factors given in equation (2.9.9), a dot product of these arrays
generates the hamiltonian matrix elements equivalent to tpos and tneg above:
tpos = Zscrl(ig) * 'Pjn(cos ya(ig)) + scr3(ig) * 'Pjn"l(cos a(ig))

. (3.2.23)
+ ser5(ig) * 'Pjn+1(COS 71(ig))

tneg = Zsch(ig) * ’Pjn(cos va(ig)) + scrd(ig) * ’Pjn'l(cos a(ig))
s (3.2.24)
+ scré(ig) * Pjn"'l(cos 1(ig))

and the parity matrix elements are generated as in equations (3.2.11) and (3.2.12).

A simple means of reducing the numerical effort in the integration is based
on the limited extent of the tijn in wx. These functions are often very small (less
than 1071% in amplitude) in two ranges of values of wy near the points wy = 0
and w) = w, respectively; the extent of these ranges depends on the values of all
four indices of the function. The grid points with values of wj in these regions
are excluded from the integration including this one-dimensional primitive, as their
contribution to the total integral would be negligible. This can substantially reduce
the size of the integration grid with concommittant savings in computation.

In the asymptotic region, where the v integrals are assumed to be zero, we
may a priori restrict the integration range in wjy; for the primitives to have zero
overlap with functions in the other channels, the f{,fjn (wa; p) must be zero beyond
certain surfaces dividing the asymptotic arrangement channels (for H+H,, the sur-
face dividing the A channel from the v and s channels is determined by symmetry
'to be wy = ¥). At the largest value of p for which the v\ integrals are calculated
explicitly, the maximum value of 7, in the outer region, r**, is defined as the value
of 7» on the dividing surface for this value of 5, and the number of wy points (no)
is set to the number of wy points on the current grid corresponding to r) values
less than this maximum value. The value of 5 which is chosen for this purpose is an
empirical parameter determined by convergence of the resulting scattering matrices.

For all subsequent j;, the range of the wy variable is determined by the value of
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wy corresponding to r7*** for this value of p;; this insures that the range of the A
and the v primitives does not overlap. This procedure results in a wy grid which
changes with g, and accordingly when calculating the overlap between two sets of
surface functions, the f;,]m (wa; P) functions at one value of 5 must be interpolated
onto the grid of the other; this is done by a cubic spline fit. A special routine was
written to handle the calculation of the overlap between LHSF at the transition
between the interior and exterior regions, where the interior functions span the full

range of w) but the exterior functions have a limited range of w) and are calculated

on a different wy grid.
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4. RESULTS AND DISCUSSION

4.1 General Comments

Unless otherwise noted, all results reported here were calculated for the system
H+H; on the LSTH potential energy surface, with a grid of 451 evenly spaced wj
points and 96 Gauss-Legendre quadrature points in the 4, direction. The LHSF
program was run for 51 values of p, evenly spaced by 0.2 bohr, in the inclusive
range [2.0 bohr, 12.0 bohr|. The last inner region value of 5 (where v integrals are
calculated) was chosen to be 6.0 bohr; therefore, 21 values of g were used for the
inner region and 30 for the outer region. Z matrices were calculated at four evenly
spaced values of p for each value of 5, and an O matrix was calculated between
each contiguous pair of § values. The selection of primitives for the calculation of
the J = 0 through 3 LHSF is given in table 4.1; for J = 0 through 2 the choice
of quantum numbers (number of values of j and number of vibrations v for each
value of j) which determine the primitive basis set is independent of g, but for the
J = 3 LHSF calculation these numbers were chosen to be different for different
ranges of g to optimize the resulting basis sets in these regions and thus increase
the efficiency of the calculation. For each »,j combination, there are min(j,J)
functions in the basis set for J + II odd which are associated to quantum numbers
Q € [1,min(j, J)] and min(j, J)+1 functions for J+1II even associated with quantum
numbers Q € [0, min(7, J)]; the total size of the basis set in each case is given in table
4.2. The simplifications implied by the P; symmetry of this system were taken into
account to reduce the computational effort. The calculations were performed on
one processor of various CRAY architecture machines; when times and percentages
of peak speed are reported, they will be in terms of the values of these quantities

when the program is run on a single processor of a CRAY Y-MP /864.
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4.2 Convergence of the LHSF

The convergence of the LHSF must be determined with respect to the following
quantities: the size of the basis set used, the number of orthonormalized basis
functions kept in the calculation, and the number of points in each variable of the
integration grid. The method for determining the convergence of the LHSF is to
test the convergence of the LHSF energies with respect to these quantities since, as
in any eigenvalue problem, the calculated eigenvector is usually accurate to about

half the accurate digits of the calculated eigenvalue.

The first two of these quantities have been discussed in terms of the linear
dependence difficulties (section 2.9). In the coeflicient checking step, a large set
of functions is used in a trial LHSF calculation to determine the subset which will
be used as the primitive basis set in the production calculation; convergence of the
LHSF eigenvalues is assured by comparison of the eigenvalues obtained from this
trial calculation with those obtained from the full set of trial primitives. Similarly,
the convergence of the LHSF with respect to the number of functions kept after
removal of linear dependence can be seen from the plots of the type of figure 2.2

which ensure that there are no remaining linear dependence effects.

Convergence with respect to the integration grid was tested for the system
H+H; on the J = 0 partial wave by choosing a fixed large primitive basis set and
varying the number of wy and v, points in the grid. A generalized eigenvalue prob-
lem was solved for the H and M matrices obtained from each of these calculations,
and the resulting eigenvalues were compared. Naively, one would expect that the
number of grid points necessary for a good calculation of the LHSF would increase
with p, since the range of values of wy and ) which correspond to the configura-
tions where the v and x primitives are important becomes smaller as p increases.
However, testing the integration grid at p = 6.0a, (table 4.3) showed that the LHSF
energies were practically independent of the density of points in the v, grid. This

effect occurs since the v\ integrals at 6.0 bohr are much smaller than the A) inte-
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grals, and the integration over v, is analytic in the latter case. (This also serves as
confirmation that the v integrals can be assumed to be zero when p is greater than
6.0 bohr.) The energies of the calculated LHSF decrease slightly as the number of
wy points decreases. This effect may be explained by the change in the basis set
with the integration grid, since the f;,IJn are calculated by a finite difference method
on the same grid and accordingly are slightly different when the grid changes; there
is no variational principle for this finite difference calculation, and the energies of
the primitives are underestimates of the true energy. As the LHSF energies depend
on these primitive energies through the hamiltonian matrix H, they are also slightly
underestimated; however, this effect will not significantly affect our results due to

its small magnitude.

We therefore chose to perform our convergence testing of the integration grid
at p = 3.2 bohr; this value of 5 was chosen as being near the saddle point of the
LSTH surface, where one would expect the v\ overlaps to be large. In comparing
the LHSF energies for the various integration grids at 3.2 bohr, it proved to be
necessary to take into account the linear dependence effects on the calculation,
since the coarser integration grids resulted in more error in the integration and
therefore worsened the linear dependence effects described in section 2.9; to achieve
results comparable with the finer integration grid calculations, it was necessary to
use a smaller basis set of the orthogonal functions derived from diagonalizing the
M matrix (see section 2.8). When the linear dependence is removed in such a way
as to minimize the deviation between the results for different grids, the results are
as shown in table 4.4, with the number of orthogonal functions removed from the
transformed basis set for each case included in parenthesis. Since the size of the
basis set is effectively reduced by the removal of these functions, the finer grid sizes
should give better converged results; however, the deviation between results for the
different grids is very small, and seems to depend more on the effect of the change

in the calculated f;fjn functions as the wy grid changes than on the integration grid
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itself. Consequently, we conclude that (up to a point) the errors introduced by
coarsening the integration grid can be corrected by appropriate linear dependence
removal techniques, and that integration grids with point density intermediate to
the calculations presented in table 4.4 should give good results.

The result of the previous paragraph was obtained through comparison of the
calculation for several different grids. It is, of course, impractical to do this for all
7 in a large scale calculation. In addition, in the dense 1001x200 grid the effect of
linear dependence is dramatically visible as the occurence of spurious eigenvalues in
plots of the LHSF eigenva.lué vs. the total number of orthogonal functions kept in
the basis set (as is also the case for the 451x96 grid we have used in most calculations
— see figure 2.2), but in the coarse grids the convergence of the LHSF energies with
number of orthogonal basis functions is much slower. As a result, we have chosen a
moderately dense grid for the calculation, namely the 451x96 grid.

In our initial J = 0 calculation, the choice of 96 v, pointsin the Gauss-Legendre
quadrature was dictated by the available routine for calculating the quadrature
points and weights, in which 96 was the maximum number of points available and
the next lower number of points was 80. We have since improved the Gauss-Legendre
routine to be able to calcuate quadrature points and weights for any order integra-
tion. However, by that time most of the production calculations reported in this
paper had been performed with 96 points, although a lower number such as 50 is

acceptable.
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4.3 Timing Data for LHSF Calculation

For J = 0 and a basis set of 152 primitive functions, a total of 1949 seconds of CPU
time was required for the complete run of the LHSF code on a single CPU of the
CRAY Y-MP/864 of the SDSC; the speed for this run was 222.3 Mflops, or about
67% of the rated maximum speed. A breakdown of the time required for each of the
several steps in the calculation of the LHSF and the Z and O matrices is given in
table 4.5. The bulk of the computational effort in calculating the necessary matri-
ces for the propagation is in the two-dimensional integration for the calculation of
the matrices Hyx, M., I, and O,,; these routines, which are only called in the
interior region, account for 1629 seconds, or 84% of the computational effort. These
routines are highly optimized, running at a speed of 247 Mflops (74% of peak). On
average, the calculation of the integrals for the H, and M, matrices required
27.4 seconds (excluding the overhead from the calculation of associated Legendre
polynomials and spline fitting), while each I, matrix required 8.26 seconds and
each O, matrix needed 8.4 seconds. Since the H,, and M, matrices were calcu-
lated at 21 values of g each, the O, matrix at 20 values of 5 plus the additional
overlap between the inner and outer regions, and the I, matrices at 84 values of
P, the total time for integration in the evaluation of these matrices was 1459 sec-
onds; this number is more important than the overhead value, as the time needed
for the overhead will increase only linearly with basis set size, while the number
of integrals increase quadratically. Due to the automatic cutoff of the integration
range depending on the magnitudes of the .,}Ijn in the A channel, the integration
tends to take less time as p increases beyond the saddle point of the surface. Aside
from approximately 100 seconds of overhead, the remaining computational effort
is evenly divided between the one-dimensional A\ integration, the primitive calcu-
lation, calls to the LSTH potential and the solution of the generalized eigenvalue
problem (about 60 seconds total for each).

The time required for a calculation increases approximately as the square of
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the number of primitives used in the calculation, due to the dominance of these
two-dimensional quadratures. (The factor is somewhat larger due to the matrix
diagonalization needed for the LHSF calculation and the various matrix multiplica-
tions in the algorithm, as these algorithms scale as the number of functions cubed.)
However, there is additional effort involved in the LHSF calculation for J > 0 due
to the coupling terms in the H, \ matrix; for example, with J = 3 and 524 primitive
functions (used in the range p > 5.5 bohr), the average time for the calculation of
the H,» and M, matrices taken together is 565.3 seconds, while each Z, matrix
required 88.6 seconds and each O, matrix needed 89.0 seconds on average.

The overall time for the J = 1 LHSF run, which had a basis set of 292 primitive
functions, was 2.47 hours; the time for the J = 2 run was 5.35 hours, and the time

for J = 3 was 12.6 hours.

4.4 Analysis of LHSF Results — LHSF Eigenvalues vs. p

As the LHSF are solutions of the full 6D Schrédinger equation for fixed values of
p, the LHSF energies €]/ (p) are a continuous function of p. We present several
plots of these functions for the LSTH surface in figures 4.1 through 4.3. Although
the eigenvalues of the LHSF are determined in order of energy, information on the
correlation of the eigenfunctions at p; with those at p;4; is contained in the ©
matrices, and this information has been used in order to allow crossing of these
curves. Some features are common to all of these functions. At sufficiently large
p; as the LHSF converge to the diatomic state wavefunctions in each channel, the
;1T converge to the energy of that diatomic state. For values of J > 0, this means
that the ;7" will become degenerate, as the energy of the wavefunction becomes
independent of the orientation of the diatom with respect to the relative motion
direction and thus on the (2 index; this may be seen in figure 4.3. For sufficiently
small p, the ¢J'T all vary as p~2 due to the predominance of the kinetic energy

term of the hamiltonian over the potential energy V.

Near the saddle point of the LSTH surface (at p = 3.270145a,), most of the
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sets of €JIT curves have members with local minima or maxima. This structure

in the /M curves has been shown to lead to resonant behavior for that partial
wave.8? =72 This will be discussed in detail in a subsequent paper; however, we note
that the J = 0 A; symmetry curves and the J = 1,II = 0 4; symmetry curves
have none of this structure, and there is no resonant behavior found in these partial
waves.

A comparison of LHSF energies at selected values of  from the finite element
calculations of Hipes and Kupperrhann and from the present work are presented in
table 4.6. The energies found by the variational LHSF method tend to be lower
than those of the finite element method by up to about 0.01 eV for the n = 20

function, but there is substantial agreement between the results of both methods.

4.5 Analysis of LHSF Results — Propagation Matrix Elements

In a certain sense, the behavior of the LHSF is less important than the behavior of
the interaction matrices I and overlap matrices ©, since these matrices determine
the scattering matrices which are the ultimate goal of the LHSF calculations. The
true test of these matrices is in the scattering calculation; however, a comparison
of the matrices calculated by the variational LHSF method and the finite element
method is possible, and such a comparison was made early in the development of
the present method for the J = 0 partial wave 4; irreducible representation of H
+ H, using the PK2? potential energy surface for interaction matrices at 2.05 bohr
in the 2.0 bohr basis set and at 3.05 bohr in the 3.0 bohr basis set, and for overlap
matrices between basis sets at 2.0 and 2.05 bohr and between those at 3.0 and 3.05
bohr. The results are presented in tables 4.7 and 4.8 for the upper left 5 by 5
submatrices of these matrices. The elements of the overlap matrix are unitless, and
the interaction matrix elements are made so through scaling by the factor ——%é‘—, the
inverse of which appears in the propagation equation (2.4.7).

The variational basis set for this comparison consisted of only 25 functions,

and would not be suitable for a production calculation; nevertheless, the agreement
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between the two calculations is fairly good, particularly for the diagonal elements of
the matrices. The maximum difference for the 2.05 bohr interaction matrix is 0.08
for an element of size 14.2, which is about half a percent of the value of the element;
most of the smaller elements agree to two significant figures. The magnitude of
the elements for the 3.05 bohr interaction matrices is smaller than those at 2.05
bohr, since the potential is changing more slowly in this region and the interaction
potential of equation (2.4.9) is itself smaller. Once again most elements agree to
two digits. Similar agreement exists for the overlap matrix elements.

The interaction matrices are restricted to be symmetric by the P; symmetriza-
tion algorithm, but no such restriction applies to the overlap matrices. In fact, the
range of (wy,vx) configuration space accessible to the nth surface function at the
smaller value of § is larger than that for the nth surface function at the larger 5
value, as with increasing p the potential approaches that of a separated atom and

diatomic molecule. Due to this, the overlap matrix is not symmetric.

4.6 Analysis of LHSF Results — 2D Coefficient Plots

For J = 0, the LHSF, which are calculated for fixed values of p, are independent of
the three Euler angles and therefore are functions of only the two variables wy and
va. Consequently, the behavior of these functions can be examined graphically by
means of contour plots of the LHSF in these two variables. The LHSF for larger
values of J are dependent on all five angles, and so for purposes of display will be

expanded in terms of the parity Wigner functions in the A coordinate system, as

done in equation (2.5.1):

XM ((:0) = 3 Difa(r, 0, alin (@, maip)  (46.1)
Q

in which the sum over  ranges from 0(1) to J for J + II even(odd). We obtain the
expression for these '¢»,‘§F * by equating equations (2.8.10) and (4.6.1), multiplication
of both sides of the resulting equation by Dyt and integrating over the Euler angles
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to yield

JIIT JIT Ty 50 pO' JA )
d)"ﬂ "(wg,’}’;\;p) = E a""jnh’n{c?';jaﬂpj (COS 7)\)fvjﬂ‘(wk7p)
T’

+chr (1 + 68) 7 i (Aua) P (cos7.) fl (w3 p) (4.6.2)

+C£:j(1 + 5?1)—1‘1(%?0([31\&)7)?'(‘:05 7N)f{;];;1'(wn;P)}

For J = 0, the parity Wigner function is a constant equal to 1, and the coeficients
JoT* will be identical to the LHSF.

For convenience in examination of the properties of LHSF calculated at higher
values of J, where the multiplicity of Q values leads to several ¢£r * contributing to
the same LHSF, we will also examine the probability density of the LHSF averaged
over the Euler angles: from equation (4.6.1) and the definition of the D}, we find

that this function @,J‘n {Ta@Cs} pas the form

@F(Pu@rh}(w,\,w‘;p)=///|‘I’}I.Mm“'(cx;ﬁ)}2dﬁi\

-y 14 (=1)7+1)
B 2

. (4.6.3)

ld’,{gr"(wx,‘y,\;ﬁ)
0

The coefficients ¢v,‘{gr * will not in general have the full P; symmetry properties
of the LHSF, i.e., will not transform according to the irreducible representation of
P, since the parity Wigner does not have these properties. However, the parity
Wigner function in A coordinates is an eigenfunction of the vx interchange opera-
tion with eigenvalue (—1)®%, and therefore these coefficients will retain appropriate
symmetry about the plane vy = ¥. For the © functions of equation (4.6.3), aver-
aging over the rotation of the system yields a function with the symmetry of the
direct product I'y ® I'x, which for LHSF belonging to either the 4; or A, irreducible
representation will have A; symmetry. The E type functions, however, will be a
linear combination of functions with 4; and E symmetry. (The direct product

EQFE = A, ® A; ® E in general. However, the E LHSF are defined in terms
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of a plane of symmetry about which the A; functions are odd, and the modulus
squared of such a function must be even about that plane; as a consequence the
coefficient of the A; symmetry term in this case is zero.) From equation (4.6.1) and

the definition of the DJIL | we find that this function © " *®T*} has the form

O WO w} (wy, ya;p) = /,// LA (SOl

_ Z 14 (=1)7+11s%
h 2

) (4.6.3)

‘Ib,{gr"(w»‘n;P)
)

Contour plots may be made of the two-dimensional coefficients of the LHSF in
the two variables wy and . In order to display such plots it is convenient to define

a set of axes OX,Y Z, and associated coordinates by%7

Xy = psinwycosvy; Y = psinwysinyx Zy = pcoswy (4.6.4)
These coordinates define a three-dimensional half-space with ¥ positive. The ¥
axis is independent of the arrangement channel of the SHC and will be depicted
as pointing out of the plane of the paper. The Z, axis (corresponding to wy = 0)
is in the plane of the paper and points upwards and consequently the X, axis is
also in this plane and points to the left. The figures will be a representation of the
surface of a hemisphere with fixed p. The projection used is known as an azimuthal
equidistant projection, which has the property that arc lengths measured from the
pole of the projection (in this case the ¥ axis) to any point equal the linear distance
from the pole to the projection of that point on the map plane (see figure 4.4). The
plane of the plot is tangent to the hemispherical surface at the ¥ axis and as such
is perpendicular to this axis. The azimuthal angle x, about the ¥ axis is the same
on the hemisphere and on the plane of the plot; the angle £ measured from the ¥
axis on the hemisphere becomes proportional to the radius of the plot, which is £p.

These coordinates are expressed in terms of the internal coordinates as

¢ = cos™!(Y/p) X, =tan"1(Xy/Z)) (4.6.5)
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We may use these coordinates to define a cartesian set of axes £ and § with
origin at the center of the plot, where Z increases from left to right and § from

bottom to top. The definitions are given by

T = —psiny, g = p€cosx, (4.6.6)

Finally, for convenience we will define scaled axes ¢ and y as ¢ = Z/p and y = §/p;
this will give ease of comparison when examining LHSF at different 5 values. The
angle wy increases from 0 to m as y decreases from 1 to —1, and the angle v,
increases from 0 to 7 as z increases from —1 to 1.

For purposes of plotting, an evenly spaced grid of 100 points in each of the z
and y directions is generated. The coordinates of these points in terms of an w/~y
grid in each of the three arrangement channels is calculated from the relationships
given above, and the functions of equation (4.6.2) are evaluated on these grids, the
associated Legendre polynomials and Wigner little d functions by direct calculation

and the ijn by cubic spline interpolation from the wy grid of the calculation.

JIIT' s

Finally, matrix multiplication with the coefficients a;, iin

, which were determined
in the course of the LHSF calculation, generates the desired functions on the grid.
The total time for calculation of the grid and the generation of the functions for
J = 0, 152 primitives and all symmetries is on the order of 8 seconds on a CRAY
Y-MP/864; this time depends mainly on the number of primitives and as such is
indirectly dependent on J. The nature of the variational method for determining
LHSF causes small fluctuations in the calculated LHSF, due to the incomplete
cancellation of the basis set in regions with small probability density. This poses
no difficulties in the calculation, but results in some fictitious convoluted nodal
patterns in plots of the I/Jigr *, which for this reason are not explicitly shown. The
correct nodal lines may easily be inferred from the positions of the low amplitude
contours.

We will present plots of the LHSF for three values of 5 which correspond to

characteristic regions in configuration space. These values are as follows: 2.0 bohr,
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which is the beginning value of 5 in our LHSF calculation and typifies the case for
which the interatomic forces are strong between all three atoms; 3.270145 bohr,
which is the saddle point of the LSTH potential energy surface; and 6.0 bohr,
which typifies the behavior of the system when one atom is well separated from
the others. Plots of the potential energy surface projected in the manner described
above at these values of 5 are provided in figure 4.5 to aid the discussion of the

LHSF characteristics.

4.7 Analysis of LHSF Results - J =0

In the case J = 0 (figures 4.6 through 4.15), the LHSF retain full P; symmetry
properties due to their independence from the Euler angles. The threefold symmetry
of the A; and A; LHSF is readily apparent from the plots of figures 4.6 through 4.8
(panel (a) for A; and panel (d) for A;), with the 4, nodal structure along the planes
v = 7 and the symmetry of the A; functions with respect to these planes. There
is freedom to choose any symmetry plane for the two degenerate E functions (one
of which is symmetric to this plane, the other antisymmetric). The plane vy = z
has been chosen for convenience, since reflection through this plane is equivalent to
interchange of the v and x particles, which will give the same symmetry as is found
in the Djf} functions defined in the A SHC. Comparison of these plots with plots
of the J = 0 LHSF calculated by Hipes and Kuppermann on the LSTH surface
(unpublished) show only minor differences in shape or magnitude of the 10 lowest
energy E functions of each of the two calculations; as discussed in section 4.4 and
shown in table 4.6, the energies of the LHSF calculated in each method differ by
less than 1% for each function examined, to 2 maximum of 0.04 eV. Given the large
difference between the methods used to calculate these LHSF, the closeness of the
results validates their correctness and accuracy.

When the energetically accessible part of the potential energy function be-
comes independent of the 4 coordinate in that arrangement channel, the primitive

basis set functions become good approximations to the LHSF; since the w and v
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coordinates are then separable, the associated Legendre functions are the correct
solutions for the v variable part of the Schrédinger equation, and the reference po-
tentials used to calculate the vaJQ become closely related to the radial potentials
(including angular momentum) of the isolated diatom (if wy is sufficiently small
such that psinw) =~ pw) is valid over the range of the function, the f,;IJn become
the radial functions). Accordingly, the v and j quantum numbers of the primitive
basis set become good quantum numbers for the LHSF under these conditions. (For
J > 0, the set of degenerate LHSF for quantum numbers v and j will be linear com-
binations of the set of degenerate primitives having these quantum numbers and
the full range of values of Q2.) The nodal structure in the 4 directions can there-
fore be correlated with the rotational excitation of the diatom, and the structure
in the w directions (corresponding to the diatomic internuclear distance) with the

vibrational excitation.

We will begin by analyzing the p = 6.0 bohr LHSF of figure 4.6, as this value
of p is sufficiently large to show some similarity to the separated particle wave-
functions. The LSTH potential energy surface at a hyperradius of 6.0 bohr shows
minima for ranges of w concentrated about the Z axes of each arrangement chan-
nel, and within this region, the potential is nearly independent of the angle 4. The
reason is that at this hyperradius the effect of the isolated atom on the diatom
is small and can be treated as a perturbation. Accordingly, the structure of the
LHSF at a hyperradius of 6.0 bohr, when examined within a single arrangement
channel, is simply related to the wavefunction of a diatomic molecule. The LHSF
are confined to a small region of configuration space localized about the Z axes of
each arrangement channel due to the large classical barrier between arrangement
channels, which corresponds to configurations with large distances between all three
atoms. The lack of overlap between the localized functions causes the energies of
the E functions which are locally symmetric in regions where they have density to

be nearly degenerate with the A; functions (which are locally symmetric in every
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arrangement channel); accordingly, in figure 4.6 the energy of the A4; function in
panel (a) agrees within four significant figures with the degenerate E symmetry
functions of panels (b) and (c). Similarly, the locally antisymmetric E functions of

panels (e) and (f) have nearly the same energy as the function with 4, symmetry

of panel (d).

The series of excited state E function plots consisting of figures 4.6 (b), 4.6
(e), and panel (c) of figures 4.9 through 4.12 (and the degenerate partner in figures
4.6 (c), 4.6 (f) and panel (f) of 4.9 through 4.12) shows nodal structure in the v
directions which correlates asymptotically to rotational motion of the H; diatomic
molecule (to be precise, to the nodes of the Legendre polynomials 'P;? which describe
the v behavior), and at sufficiently high energies nodal structure in the w directions
correlating to vibrational excitation. Specifically, the n = 1 functions of 4.6 (b) and
(c) correlate tov = 0,5 = 0, the n = 2 states of figure 4.6 () and (f) tov = 0,5 =1,
the n = 3 of figures 4.9 (c) and (f) to v = 0,5 = 2, the n = 4 functions of figures
4.10 (c) and (f) to v = 0,5 = 3, the n = 9 functions in figures 4.11 (c) and (f) to
v = 1,7 = 0 and finally the n = 10 functions of 4.12 (c) and (f) to v = 1,5 = 1.
The presence or absence of probability density in the A channel is determined by
the symmetry requirements of the E function; the functions even with respect to
va = 5 will have no A channel density for functions with odd j, and the functions
odd with respect to yx» = J will have no A channel density for functions with even
-

At the saddle point of the LSTH potential energy surface (p = 3.2701454,), the
minima of the surface are in the collinear configurations (which correspond to the
limiting circles of each plot), and are located symmetrically between each pair of
arrangement channels, in the configuration with one atom on the center of mass of
the system, as can be seen on figure 4.5 panel (b). The ground state wavefunctions
for all symmetries is isolated in regions near the minimum of the potential; however,

the barrier between each of these minima is small and the excited state LHSF
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calculated at this value of p have density over large regions of configuration space.
The density of these functions is not confined to a region clearly belonging to a
single arrangement channel, but is maximal in the regions between the Z axes.
The rotational structure of the diatom may still be seen in the excited state LHSF,
although shifted to a range centered on a value of w larger than that for 6.0 bohr;
however, the distinction between rotation and vibration in terms of v and w nodal
patternsis no longer sharp, and the “rotation” of one pair of atoms overlaps strongly
with the “rotation” of the other two possible pairs in these functions, particularly
for the excited state functions in figures 4.9 through 4.12, panels (b) and (e). In
this region of configuration space, the v and j labels of the primitive basis set are
not good quantum numbers, and the E symmetry LHSF of both symmetries have

density in the A channel.

At a hyperradius of 2.0 bohr, the LSTH potential energy surface of figure 4.5
(a) has a set of minima near the ¥ axis, and accordingly the probability density
of the LHSF at this value of p are concentrated near the center of the plots. The
three atoms interact strongly at this hyperradius, and the nodal behavior shows
that the excited states have mixed rotational and vibrational character. The lowest
energy A; function of figure 4.8 (a) is nodeless, and the lowest energy A, function
(in figure 4.8 (d)) has three nodal planes; therefore, the ground state E function of
figures 4.8 (b) and (c) (with one node) and the first excited state with E symmetry
in figures 4.8 (e) and (f) (with two nodes) are intermediate in energy between these
two functions, since all of these functions span the same regions of the internal

configuration space.

In figures 4.9 through 4.12, the excited state E symmetry functions are given
for the three values of g mentioned above. As expected, the number of nodal lines
increases with increasing LHSF energy for each value of 5. For p = 2 bohr, the
density of the wavefunction is localized near the ¥ axis, and the small dip in the

center of the 4; function in figure 4.8 (a) corresponds to a local maximum in the
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potential shown in figure 4.5 (a). Comparison of the functions at the saddle point
and at p = 6 bohr show the same behavior, and so the flow of probability density
into regions of configuration space characterized by relatively low potential energy
is clearly visible for each set of plots as p changes.

The functions O T8k} of equation (4.6.3) are given in figures 4.13 through
4.15 for the LHSF which were diagrammed in figures 4.6 through 4.8. There is
little information to be gained from these figures for J = 0, as they are simply the
squares of the functions already plotted in the latter figures, but we present them

here for comparison with other values of J.

4.8 Analysis of LHSF Results ~J =1

The J = 1, I = 0 LHSF coefficients for the lowest energy LHSF (figures 4.16
through 4.18) look very much like the corresponding J = 0 LHSF. This occurs
because the value of {1 is restricted to 2 = 1, leaving only one term in the expansion,

and the Wigner function Dx,fll ’H=°(¢,\, 6x,%») has the property

f DAi =0 (s 0a, ¥x ) DAy =0 (63, 02, 2 ) A0 = 1/2 (4.8.1)

for all values of A\, \'. As a consequence, the coefficients for this partial wave also
retain the full P; symmetry. However, the parity Wigner function has 4, symmetry
(Q is odd), and therefore the coeflicient for the A; surface function also has A,
symmetry so that the product is 4;. Similarly, the 4, coefficient has 4; symmetry,
and the coefficient for the E function which is symmetric to the plane yx = ¥ is
antisymmetric to this plane (and vice versa). In accord with the constraints on
the two-dimensional surface functions when J + II is odd, the LHSF are zero in
the collinear configurations (the outermost circle of the plot). Again, for this case
where the LHSF can be expanded in terms of a single Wigner function, the plots of
@ THT»8C4} 1y figures 4.19 through 4.21 give no additional information.

The energies of the J = 1,II = 0 functions are higher than those for the

corresponding J = O functions, in particular for the A4; function, which for this
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partial wave may not have j = 0 character; in particular, at p = 6.0 bohr, the 4,
function of figure 4.16 (a) correlates to the asymptotic state v = 0,7 = 2 (with ¥,
dependence approximately that of the associated Legendre function P}) instead of
the v = 0,7 = 0 correlation displayed by the J = 0 A4, function of figure 4.6 (a).
Similarly, the ground state E function for J = 1,II = 0 more closely resembles the
first excited state E function for J = 0 at p = 6.0 bohr. At this value of p, the
ground state 4, functions are still directly comparable, with the P? v, dependence
of the J = 0 replaced by dependenée on P}; there is an increase in energy with J due
to the energy of rotation of the system, partially compensated by the accessability
of the J = 1,II = 0 function to the minima of the potential. The energies of these
functions at the saddle point bears this out; for p = 3.270145 bohr, the energy of
the J =1,II = 0 A; function of figure 4.17d is significantly lower than that for the
J = 0 A; function of figure 4.7d. The increase in energy due to the higher total
angular momentum is most easily determined from the E functions at p = 2.0 bohr,
where the effect of the Wigner is to make the k = 1 density patternfor J =1,Il = 0
resemble the k = 2 pattern for J = 0 and vice versa (see figures 4.15 and 4.21, panels
(b) and (c), and so there is no net difference in accessibility to the potential; the
increase in energy is about 0.015 eV for this value of p. At the larger values of p, the
J = 1,II = 0 functions are bounded away from the collinear configurations by the
effect of the angular momentum (with = 1), and as a consequence the difference

in energy is much greater.

The J =1, II = 1 LHSF coeflicients consist of two terms with values of @ = 0
and ( = 1. Figures 4.22 through 4.27 display the coefficients for the lowest energy
LHSF for each IR. For these functions, the P, symmetry about v, = 3 is clear;
the (1 = 0 coefficients in panels (a) through (c) preserve the symmetry of the LHSF
about this plane, while the = 1 coefficients in panels (d) through (f) reverse the

LHSF symmetry, due to the symmetry properties of the parity Wigner.

For the LHSF at 6.0 bohr (figures 4.22 and 4.23), the most striking character-
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istic is the resemblance of the n = 1 2 = 0 functions for the A; and 4, symmetries,
in figures 4.22 (a) and 4.23 (a) respectively, to the J = 0 E functions of figures
4.6 (b) (n = 1) and 4.6 (f) (n = 2), and of the n =1 @ = 0 E functions of figure
4.22 (b) and the n = 2 Q@ = 0 E function of figure 4.23 (c) to the J = 0 A; and
A, functions of figures 4.6 (a) and 4.6 (d). The energies of the J = 1,11 = 1 4,
and the n = 1 E functions are slightly higher than those of the similar J = 0
functions, due to the increase in internal energy of the system from the nonzero
angular momentum. However, the energies of the J = 1,I =1 4; andn =2 F
functions are slightly lower than those for the J = 0 case; this is attributable to the
extra degree of freedom present in the system. Figures 4.22 (f) and 4.23 (d) and
(f) show that the 2 = 1 coefficient for these functions is nodeless, and therefore
the full LHSF for J = 1,II = 1 has density in the minimum region of the potential
for these symmetries, while the J = 0 LSHF for these symmetries were required to

have nodes in this region.

At the saddle point, the 4; and E LHSF can be nonzero for wy = w, and
because the LHSF are expanded in terms of the parity Wigners in the A SHC
the expansion coefficients are multivalued at this point, being dependent on v, as
described in equation (2.9.14). This can be seen in figure 4.25, panels (a), (b), (d),
and (e). However, as can be seen in figure 4.29 panels (c) and (d), the square of -
these surface functions integrated over the Euler angles (the @IHTx 84} of equation
(4.4.3) ) has a smooth approach to zero derivative in the limit as w) approaches T,

as must be the case for LHSF which are continuous and differentiable everywhere.

At p = 2.0 bohr, the ground state J = 1,I =1 A; and 4, LHSF are closely
related; in fact, the functions ©; 0 *®'*} derived from these LHSF (figure 4.30
panels (a) and (d)) are nearly equal. The coefficients of these functions, given in
figure 4.26 (a) and (d) for the A; symmetry and figure 4.27 (a) and (d) for 4,
strongly resemble the coefficients for the ground state E LHSF for J = 0 (figure 4.8
(b) and (c)); the change from 4, to 4, symmetry is accomplished by switching the
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coefficients between the 2 = 0 and 2 = 1 Wigner functions and changing the sign of
one. Similarly, the ground state E symmetry functions of figure 4.26 panels (b) and
(e) and 4.27 (b) and (e) contain coefficients which resemble the J = 0 A; symmetry
LHSF, with the other coefficient resembling the ground state J = 0 E function with
k = 2; the @ MI+®Tx} functions associated with the two E symmetry functions
closely resemble the similar function for J = 0 4;, and indeed their energies differ by
only 0.01 eV. The E function with k = 1 has the symmetric piece as the coefficient
for the Wigner with Q = 0, while the k = 2 E has it as the coefficient for the @ =1
Wigner. The n = 2 E function again resembles the J = 0 ground state E and the
n=1J=1,11 =1 A; and A, states; as a consequence, the n = 2 E function is

nearly degenerate with the latter two functions for this partial wave and p.

4.9 Analysis of LHSF Results —J =2 and 3

The coefficients of the lowest energy J = 2 and J = 3 LHSF look very similar to
those of the J = 1, I = 1 LHSF; accordingly, we will give only two examples for
each of these partial waves, which will be chosen to be the LHSF which display
multivalued behavior for the point wy = 7 at the saddle point (p = 3.270143a,).
The full complement of @, *®T*} functions will still be presented.

Figures 4.31 through 4.36 contain the J = 2 QT 8Tr} regults. For I = 1
and p = 6.0 bohr, the energies of the 4; and n = 2 E functions of figure 4.31
are lower than the comparable J = 1,II = 0 results of figure 4.19, once again
due to greater accessiblilty to the low energy regions of the potential; however, the
J =2 =1A4; and n =1 F have approximately the same range in the internal
configuration space as the corresponding J = 1,II = 0 functions and accordingly
are higher in energy due to the increased angular momentum, by about 0.0014 eV.
(The smaller increase in energy from the J = 1 to the J = 2 E state as compared to
the difference between the n =1 J =1, =1 FE functions and then=1J =0 E
functions at p = 2.0 bohr, which was examined previously, is mainly due to the p~—?

factor in the angular momentum terms. The difference in p reduces the effect of the



I1-65

angular momentum terms by a factor of 9.) For p = 3.270145 bohr, we compare
figure 4.32 for the J = 2,II = 1 functions with figure 4.20 for the J = 1,Il = 0
functions. The major difference is for the n = 1 A; function. For the J =1,II =0
case, the Wigner function D}}, has the appropriate A; exchange symmetry, so the
coefficient ;7 42 in the internal coordinate space has 4; symmetry and therefore is
nodeless. For J = 2,II = 1, the Wigner functions do not have A; symmetry, only
having symmetry with respect to the v« interchange; since each term in the sum of
equation (4.6.1) must have 4; symmetry, the coefficients 1,bf},‘4’ must build in the
exchange symmetry. The Q2 = 1 term will therefore have nodes between the A and
v and A and k channels, and the 2 = 2 term will have a node between the v and
x channels. Consequently, the density of the LHSF between the three channels will
be low. Accordingly, the J = 2,11 =1 A, function is significantly higher in energy
than its J = 1,II = 0 counterpart. Similarly, since the J = 1,II = 0 4; coefficients
have A; symmetry and the nodes which result from the antisymmetric exchange,
the J = 2,11 = 1 A; functions, with coefficients which do not have this restriction,
have significantly lower energies. The E functions for these two partial waves have
similar but not identical patterns, with the ¥ = 1 functions for J = 1,II = 0
resembling the k = 2 functions for J = 2,II = 1 and vice versa; the change in the
energies for these functions is small. Finally, the p = 2.0 bohr patterns of figure
4.33 are nearly identical with those for J = 1,II = 1 (figure 4.30), since each of
these cases has an even and odd coefficient and consequently can access the same

regions of internal configuration space; the LHSF energies increase somewhat with

the increase in J.

The density patterns for the J = 2,II = 0 functions at p = 6.0 bohr given in
figure 4.34 are nearly the same as those in figure 4.28 for J = 1,II = 1. The energies
of the A; and n = 1 E functions increases by 0.0018 eV and 0.0016 eV, respectively,
while the A; and n = 2 E function energies increase by only 0.0007 eV and 0.0006
eV, respectively. The additional value of §} accessible for the J = 2 case allows the
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functions to spread over a greater region of total configuration space, and this has a
larger effect on the functions resembling the j = 1 asymptotic functions by lowering
the density of the 2 = 0 coefficient, which has an internal node corresponding to

the associated Legendre function P?.

At p = 3.270145 bohr, the A; and n =1 E functions of figure 4.35 may access
the collinear configurations, while the A; and n = 2 F functions cannot; this is
the opposite of the case in figure 4.29 with J = 1,II = 1. The result is that the
density of the A; function for the J = 2,II = 0 case resembles the density for the
A, function in the J = 1,II = 1 partial wave, and vice versa; the patterns for the
E functions are siﬁilarly exchanged between the k = 1 and k = 2 functions of the
same energy. Accordingly, the 4; and A; energies for the J = 2,II = 0 functions are
more closely related to those of the J = 1,1 =1 4; and A; functions, respectively,
than to those of the same symmetry. The coefficients 1/1;3}“ for the J =2,II =0
A; andn =1,k = 1 E functions are included in figure 4.37; the associated Legendre

function behavior in the region near wy = 7 is evident.

The @ *®*} functions for p = 2.0 bohr are given in figure 4.36; the 4,
and E functions closely resemble their J = 1,II = 1 counterparts in figure 4.30,
while the A; function for the J = 2 case has significantly lower energy than for the
J = 1 case. This is due to the accessibility of the = 2 state, in which the A;
function has most of its density. As might be expected from examination of 4.36a,
the coefficients for = 0 and 2 = 2 are nodeless, and the coefficient for Q = 1,

which has a node for vx interchange, is small compared to the nodeless coefficients.

Figures 4.38 through 4.43 contain the J = 3 @ {'*®T4} £11 ctions. The func-
tions at p = 6.0 bohr in figures 4.38 and 4.41 are essentially the same as those for
the J = 2 case in figures 4.31 and 4.34, respectively. The lowest energy LHSF in
this nearly asymptotic region are associated with j values of 0, 1, and 2, and since
the value of Q is limited by the value of j, the availability of Q@ = 3 makes little
difference in these cases. For p = 3.270145, we see from figures 4.39 for J = 3,1 = 0



I1-67

and 4.32 for J = 2,1 = 1 that the functions for these partial waves are nearly the
same if the A, functions of one partial wave are compared with the 4; of the other,
and similarly if the ¥ = 1 E functions of one set are compared with the k = 2 E
functions of the other. The same holds for the J = 3,II = 1 functions of figure 4.42
and the J = 2,II = 0 functions of figure 4.35. For half of the functions displayed,
there is a small increase in energy with increasing J; however, for the A; andn =1
E functions for the J = 3 partial wave (compared to the 4; and n = 1 E functions
for J = 2) there is a decrease in energy.

The J = 3,1 = 0 p = 2.0 bohr O MI* @k} finctions of figure 4.40 are
essentially equivalent to the J = 2,II = 0 2.0 bohr functions of figure 4.36, again
comparing the 4; function of one set with the A; function of the other and the
k =1 E functions of one with the k = 2 E functions of the other. The J =3, 11 =1

= 2.0 bohr functions of figure 4.41 differ from the other partial waves; the 4; and
A; functions of this set are nearly degenerate, while the E functions are somewhat
higher in energy. The degeneracy of the 4; and A, functions is explained by the
addition of the = 3 terms, which give the A; function sufficient flexibility in
the internal configuration space to access the lower energy regions of the potential.
Comparison with the 2.0 bohr om {T®C4} functions for the lower values of J shows
that the same distinctive pattern occursfor J =04;,J =1, =04,,J =2,1I =0
A1, J =31 =0 4; and J = 3,lI =1 4, and A4;; in addition, the n = 1 E states
for J > 1 have versions of the pattern which do not have perfect A; symmetry. The
factor which connects all of these cases together is the ability of the surface function
to access the potential with minimal interference from the symmetry-enforced nodal

patterns, which comes from the freedom provided by the 2 degeneracy and the nodal

structure in the Euler angles.
Figures 4.44 and 4.45 containthe J =3, =1 42 andn =2,k =2 F w;.I(I)II‘.
functions at p = 3.270145 bohr, respectively. Once again the coefficients near the

point w) = 7 are seen to have the behavior of associated Legendre functions.
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4.10 Possible Modifications to Improve Efficiency

As evidenced by the above discussion, the current methodology and algorithm are
effective in the calculation of surface functions for use in a scattering calculation.
However, there is always room for improvement, and some modifications are already

under consideration which may increase the efficiency of the calculation.

There is no requirement that one use the reference potential chosen in (2.7.3)
for calculation of the primitive basis set. A different set of one-dimensional primi-
tives {gjn may be defined to correspond to the solutions of (2.8.1) with the potential
function replaced by a different reference potential and the five-dimensional func-
tions which result from this choice used to expand the LHSF. This will introduce
additional terms into the equations which define the elements of the hamiltonian
matrix H, since the previous reference potential was designed to include as large
a portion of the surface hamiltonian as possible; however, a reduction in the range
of definition of the primitives (accomplished by letting the reference potential go
to infinity at some wo < 7/2 radians) can compensate for this by reducing the
range of integration and consequently the time needed for each integral. A method
which involves primitives defined in such a truncated wy range has been developed
in our laboratory”™® and results in a factor of 7 increase in speed over the current

method in a code optimized for J = 0; efforts are currently under way to extend

this method to general J.

Another possibility under consideration is a modification in the part of the
basis set dependent on 5. The associated Legendre functions currently in use are
the correct solutions for a potential which is independent of vy, which is only true
when the atom-diatom distance is large (for the H+H, system, this does not occur
for p less than 7 bohr). A better basis set can be derived in a self-consistent man-
ner by determining the one-dimensional wy-dependent t;’jn functions with lowest
energy as above (v = 1 by definition), and then averaging the potential energy

function V(p,wy,va) over these primitives to determine a reference potential in the
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4 variable:

Wl (e 7a) = /0"' [tf;0(@x)] V(p,wa, 72)dws. (4.10.1)

The new <vx-dependent terms in the five-dimensional basis set are defined by the

differential equation

(‘—9—% + cot 7,\53: + Wi, m) — sirngn) T} (cos 1a; p) = EF T (cos 1a; p);

(4.10.2)
this differential equation reduces to that for the associated Legendre functions when
the reference potentials WJ“ are constant. The new variational primitive basis set,
obtained from using this new numerical function in the unsymmetrized basis set
in place of the associated Legendre functions, will more closely correspond to the
features of the potential, and therefore will be a better approximation to the 7,
dependence of the LHSF; as a consequence, the size of the v-basis set needed
for convergence (after removal of linear dependence) should be smaller. The most
important reason to make this change, which adds additional terms to the two-
dimensional integrals and requires numerical solution of the differential equation
(4.10.2) and determination of the derivatives of these solutions, is the possibility
of reduction of the linear dependence problems of the current choice of basis set.
The rationale for assuming that the linear dependence will be decreased is that the
primitives will be better approximations to the LHSF, which themselves are linearly

independent. A program using this basis set is under development.
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5. Summary

We have presented a method for the efficient calculation of local hyperspherical
surface functions, and applied this method to the calculation of these functions on
the LSTH potential energy surface for the system H + H; for partial waves J = 0
through J = 3. The LHSF so calculated were analyzed in terms of their dependence

on the features of the potential and on the effect of increasing angular momentum.



II-71

Appendix A. Application of Hamiltonian to Primitive Basis Set

The result of application of the surface function hamiltonian Ay to an expansion of
the LHSF in terms of Wigner rotation matrices and associated Legendre functions
is given in the main text in section 2.5; since this expansion is used not only in
development of the formalism for the one-dimensional surface functions d)i?g * but
also as an important part of our basis set for expansion, we will derive the results
more explicitly here.

The Wigner rotation matrices have the properties®?
J?(6x, 82,%2) Diga (62,02, %2) = B2I(J + 1)D31q(8a, 02, %5)
Tz(62)Daga(dr,0x,%2) = hMDjq(dx, 05, %) (4.1)
Jes(¥2) Diga (62,05, 92) = hQD310(8x, 05, %2)

and the normalization

2
[ [ [ 49203065, th1,92) D0 (95, thi, ) = (;’;1)6& (4.2)

The normalization of the parity Wigner (2.5.2) follows from this and is given in
(2.5.3). The normalized associated Legendre function is defined as?

2j +1( — )7 a

P?(cosvx)-—‘[Jz 8+{QB'} P}m(cosw){( 2 gzg (4.3)
/sin’y,\d'y,\?ﬁ(cos7;)7’?(cos7;\)=6;:' (A.4)
0

The operator 3§ which appears in the surface hamiltonian is given by?

*-2( ¢)—_h2( & =+ cot 0 + ! 82> (4.5)
JAlTr, ¥ 0712 7 dva  sin?yy 092 .

The rotation matrices Dy, are eigenfunctions of B—g; with eigenvalue 12, and con-

sequently
33X 92) Diza (62,05, ¥2) P (cos 1a) f1 (wa; B) = —R2D3fh(hx, 05, %) X

o? QZ 32
(67A2 ootm 87,\ sin? v, 3¢A> ’P (cos 7")va0 (wa; P)

(A.6)




I1-72

The associated Legendre functions are in turn eigenfunctions of the operators in vx:

( i ty - i 2{ ) (cosya) = —j(7 +1)Pj (cosva)  (4.7)
+ co P (co + ’P cos A.
Y Aoy sin? N ) ==30 A

so the net result is

]A('YA’#,A)F::JQ = hz (-7 + 1)Fv3ﬂ ("48)
The rotation matrices are not eigenfunctions of the Ei operator; however, this
operator may be expressed in terms of a vector sum of the operators 3 » and J,

which in turn may be expressed in terms of raising and lowering angular momentum

operators as?

-~ -~ 2 ~ -~ -~ A~
B =P+ om 0 Gt - I (4.9)
O
for which
JEDiq = he+(J, Q) Do (A.10)
= hﬁ;(j’ﬂ)??m (A4.11)

Using equations (4.1) and (4.9) through (A4.11), we find that
BD3aPs i =
R [J(J +1) +5(j + 1) — 2Q%] D3P fi
= B64(J,9)6+ (5, ) DiraaP; T fij

— R*¢_(J,9)¢-(4,2)Dira_1 Py fin
To determine the effect on the functions which have parity symmetry, we note from

the definition (4.3) that PJ = (-1)%P; . therefore we may write

2J +1
JI pQ _
DyaP; = ( 3072

The parity equation is found by substituting —{Q for Q in equation (4.12) and

(4.12)

) (Dara P + (-1)”“1),{,,,,73;“) (A.13)

summing with the original expression:
22 ‘DMQPQ v;ﬂ -

B [J(J +1)+5( +1) - 20°] DI P fin
— w2 (J, n)f+(.7aQ)DMn+17>n+1 ;7,.‘1?7
— R*¢_(J,Q)¢-(5,9Q)Dygh - 1739 o

(4.14)
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Appendix B. Derivation of the Form of the Integral Matrices

The overlap integral between two A channel functions is given by equation (2.9.6)

M (P27 = (PIME(¢xi ) | F{2 (Cxi ) (B.1)

Substitution of equation (2.8.2) yields

M ()] 2" =
(D3ta(82, 05, ¥2)P5 (cos ) 370 (wa; SYDATa (62, 02, Ya) P (cos va) £ 3 i (wa; £))

(B.2)
The integration over the Euler angles involves only the DJIL; using the definition
of these functions in equation (2.5.2) and the normalization (A.2) of the Dj,,, we
find the result of this integration is as given in equation (2.5.3). Substituting this

equation and the expression for the volume element (2.1.12), we find

_ vljlnl 1 ' n
MTR ()] = 588 (14 (-1)778R)
x
/ sin yadyaPji(cos 72 )P§ (cos 7a) (B.3)
0

/ sin U)AdU)Af ‘ﬂ(wA,p)fv]n(wA}p)
0

The integration over the ) variable is the normalization integral (A.4) for the

normalized associated Legendre functions. Substitution of this equation yields

[MJT ()]:J’n“ -51“ (1 + (—1)7+763) x

. (B.4)
/0 sin? wadw £330 (033 5) £ (w3 9)

Finally, using equations (2.8.1a) and (2.8.2) we have

/ sin® WAdWAf Jﬂ(wk’p)fv]ﬂ(wxip / dw)\tv’Jﬂ(wA)p)tv]n(w)\,p) = 5!7
0
B.5)

~~

and substitution of this gives the result

vy 1 v i
MR vy = 38058 (1+(=1)7*T8)) (B.6)
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The integration for the overlap matrix between primitive basis sets in the A
channel but at different p is the same except for the final step, where equation (B.5)
does not apply. Modification of equation (B.4) to account for the differing values
of p yields

[Opg‘l(ﬁﬂl;ﬁi)] :,-’;:n = (P8 (i Pix1) | P (Cai B3))

_ i 1+(-1)
= &g 5

THISE T, JA JA
/ sin wz\dwkfujn(wA;ﬁi+1)fv'jn(w>\;ﬁi)
0
(B.7)
The A-channel primitive basis set interaction matrices are defined in equation

(2.9.13) as

()R o 2)) o = (F3ME(Cri8) | V(oswn, 12 8) | P2 (Gri5))  (B.8)

The integral over the Euler angles is performed as above, yielding

vr oy 1 '
(@) eso)] o0 =50 (1+(-1)7+78) x

/sin'nd‘m/ sinzw;\dw;'Pg(cos'yA)P?(cos'y)‘)x (B.9)
0 0

V(pywa, 123 8) foryin(wa; P) foin (wa; )

We perform the integration over v, first; by the definition of equation (2.7.3) and
the form of V given in equation (2.4.9), we obtain the result

el ' 14+ (—1 J+H50 x ) _ _
[(Ip)ﬁl(mp)]:fnn 253 ( 2) 0/ sxn2wxdw,\ft{j)h(wx;P)f;I')j'n(wl\;P)x
0

P2 -
(V}?r(l’,w,\) - (;) "}‘}'(P,WA))
(B.10)
The result of application of the surface function hamiltonian &) to a primitive
in the A channel can be derived from the expressions (A4.8) and (A.14); substituting

these expressions into equation (2.1.10) and the result into equation (2.1.9), we find
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7 wIMI
h F)..,jn =
1

EA(GA’¢A7¢A77X) j§(¢A,7A)
{2;1, ( (w )+ cosz(ﬁza) + sinz(%) ) + V(p,w,\,’y)‘)} FAv]n _

PRI e

2up cos? () sin®(w3)

+ V(p1wk77l)}pilnﬂ’p?f;1’1¢l

_RGL066,9) pm pias)
2up? cos? (43) M(Q+1) ,,,n
— R (4, 0)¢- (J’Q)D .P(n 1) pJA
2up? cosz(ﬁz&) M(a-1) viQ

(B.11)
This may be somewhat simplified by using the differential equation for the f; Jn

functions, which is closely related to equation (2.8.1) for the ¢/} s

ENTIRUIIE L

2pp? cos? 92 sin® wy
(B.12)
(p)wk)) vgﬂ(wahp) = evJﬂ(p) ]ﬂ(w)‘ P)
Substitution of (B.12) into (B.11) yields
hkF)‘an -
(evin(p) + V(pswa, M) = Vi}(wa; ) Difa PR £
R (, 2)¢+(5,9) pm PO+ 7 (B.13)
2up? cos?( %) M(a+1) "’n

A% (J,0)_(5,9)
2pp? cos?( )

Q-1
Ditta-nP; i

We multiply this equation by D ,’Pn'f'”‘,n, and integrate; the integral over the
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Euler angles is again given by equation (2.5.3), and we have

= (s )]:?1:39. = (Fiy,gn'(ﬁ;ﬁ) | ha } F{%&(C,\;ﬁ»

1 )
= 5880+ (1718 [ [ a2 (Ba(o) + Vipson,m) - VI (0x30)) x
’P“"P“' S Faa

n+1(1+( 1)7+T g0, )//dﬁxhzfnhuzg;—ciifz—(i,)ﬂ'* 1)

Pn'fl lQIP v](n’ 1)
___53 1(1+( 1)J+1'I50 // 0kh2£ (J,0' +1)6- (]’Q'+1)

2pp? cos?(%)

Pn v](n'-l-l)pn fv ]’n'

(B.14)
Performing the v, integration yields
vif) q 1 +(_1)J+I'I50, x
[H ( )]vJJIQI -—5J'n' 2 Cp’f‘(p) ; sin WAdUJAf i v:Jln;
1+ (—1)7+163, ST ;
+ 511‘}7' ( 2) (1- 5})/0 sin? “’Ad“’xv}? (WA;P)vaj)'\n'va'?'n'

_ g L (Z1)THIS e (g, ane. (J,n)/ in? wydoy 22 Tt 1)
Al 2 2up? A cos? (42 )

J+IIg0 p2 oy Fl
5J'ﬂm11+( 1) b A€ (J, & f+(];ﬂ)/ sin? wydw) '3 vj(ar+1)
2% 2 2up? cos?(%)

(B.15)

Finally, the integration in the first line of equation (B.15) can be performed, the
remaining terms can be reorganized and the primed and unprimed indices inter-
changed to obtain equation (2.9.7).

The expressions for the v integrals are simpler, since most of the integration is
not analytic. The Wigner rotation matrix in the v arrangement channel coordinates
can be related to the matrices in the A channel through a rotation:?

D}{ln(d’vrau”/)u) = Z Di{nl((ﬁk’ BA,T,&A)D‘-J;,Q(G], 02’ 03) (BIG)
nl

where the rotations are done in the order 83 about the z axis, §; about the y axis

and 6, about the z) axis. Since the two sets of coordinates share a common y axis,
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f; = 03 = 0 and 6, is the angle between the z) and z, axes; we may simplify the

equation to

Dira($u:0u,%0) = O Daga: (6,0, %2)dda(A0a) (B.17)
nl

where the angle A, ) is given in equation (2.9.11). Multiplying both sides of (B.17)
by Ditqn(®x,0x,¢x) and performing the analytic integration yields

[ 52 D (83,03, 83)Dhsa( s 1) = (5—’%) oD (B.18)
The function df,q, is real; since the Wigner rotation matrices are the only complex
quantities in our basis, we therefore have that all integrals in our formalism are real.
The determination of the result with the parity Wigner functions is straightforward,
and the result is given in equation (2.9.10).

The form of the vA integrals is simple, as there are no orthogonality relations
to reduce the integration beyond the integral over the Euler angles; the main effect
is to add the function dJR, to the integrals over wy and vy, which are not analytic.

We note that the dependence of the integrals on the quantum number M has
vanished with the integration over the Wigner rotation matrices. This is as expected

from the isotropicity of space.
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Appendix C. Construction of Symmetry Integral Matrices

For illustrative purposes, and to demonstrate the independence of the Z and ©
matrices from the index k, we will give in explicit form the E matrices for P; with
k = 1,2. Substitution of equation (2.8.9) into equation (2.9.3) yields
[MRE ()] " = S Br By (F{ME(Gip) | FIME o (Gid)) ()
AN
We will drop the 7 and 7' terms as they are equal and may take on only the value A.
From the symmetry relations of equation (2.9.2), we can reformulate this equation

as

[MTTE (GY] T3 = (FIMI(Cai5) | FIMB (Cai ) (Z e CA,)

+ (Fgfgg(gﬂ;p) | Fi{,‘?},‘n.(ca;ﬁ» ( ,,, c,\J, + (—1)7t7 C,\, f‘;)

A
(C.2)
Performing these sums yields
_J1 j+ 73" even
Z CAJ CAJ { 0 j+ j' odd (0'3)
E j+5' BY_J)-1 j+ 7' even
;(cy;ch, (~1p* cEreBs ) = {(-1):\/5 Jr e (C.4)
and we have that the M matrix is independent of k:
Lt i ( avyn(Caap) l av Jrnt ga:P» i+ even
JOE /1T V'3 _
[M (p)] ro il - <Fﬂv1n Cﬂ’p) I av! ]’ﬂ’(<a7p)>
\/_( 1)J<Fﬂvjﬂ(cﬁ’p) I Fav J'Q'(Ca7p)> J+Jl odd
(C.5)

The same algebra with the basis set coefficients applies to the H/™I', (Zp)/™T and
(Op)’™' matrices. It follows from the nature of the generalized eigenvalue problem
of equation (2.8.8) that the coefficient matrix a’I'' and the surface function energy
matrix E/TT are also independent of k. This resultsin the Z7™ and ©@'™ matrices

being independent of k and proves the assertion in section 2.4 that the coefficients

b do not depend on k.
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Table 2.1: Operations and irreducible representations for P,

Py
Operation Permutation d4
0 @ A ") 1
F <a B v
P,
Operation Permutation d4 d4s
5 a B v
Og (a 3 7) 1 1
A a B8 ~ _
o | (25 | 2 | 4
Py
Operation Permutation d4: d4: df
- a B « 1 0
oo | ED | ()
A a B ¥ _ 1 0
o @5 ] (YY)
5 1 i
Op @ B v 1 -1 2 2
v B a V3 1
2 2
. a B 5 -1 _\3
Oc¢ (’3 o 7) 1 -1 (‘ z3 l2
2 2
R -1 3
Op (a i g) 1 1 ( 23 2]>
7 T T2
. -1 _¥3
Or a B v 1 1 2 2
5 7o £ ]
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Table 2.2: Results of operations O on functions for P,

Py
= 7 = =
7 G Sar iR OnF T
JMI JMII
E Favjﬂ Fﬁvjﬂ Fiﬁg{l}
P,
R OrFIMI OrFME OrF078
JMI JMII
E Fa.vjﬂ Fﬁvjﬂ Fﬁgg
A (-1YFm (-1YFymi (-1YFfa
P,
R OrFIMI OrFIME OrF1G
JMII JMII
E Favjﬂ Fﬂvjﬂ Fixg
T - :
A (-1YFIR (-1)FI8 (-1)7FiUG
 pJMII j j
B (_1)JF7vjﬂ (_1)JF5%E (—I)JFi%g
7 - -
c (-1)Fi (1) FI05 (-1)PF00R
JMII JMI
D F‘yvjﬂ Favjn Fg%};‘[
JMII J
F Fsoin Flom Fooh
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for P,

Trn
TAJ

Table 2.3: Symmetry coefficients ¢

b

Tri

P,

14+(-1)

1—(-1)

Tre

Al

AII

Py

o~
43
] | pd
=1 TISITIS !
wﬂ24\2qw
- ~ o
™
|
«~
a3
CA N P
Q| TSI+
1.+..\24\2 ©
(o] -t [4]
~
|
13ﬂ./3 ©
(Dl
Ll ™t
S AR
3 I P B
-2 -
g BN AT

&2 = [(=1)* +(-1)7]

e = [1 = (=1)7*¥]
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3 d
g't'o=r




I1-88

Table 4.2: Total number of primitives for each J, II, T and p(%)

J, 1 P r
(bohr) Ay A, E
0,0 2.0-12.0 76 76 152
1,0 2.0-12.0 64 76 140
1,1 2.0-12.0 140 152 292
2,1 2.0-12.0 128 140 268
2,0 2.0-12.0 204 216 420
2.0-2.4 212 208 420
2.6-3.4 295 326 621
3,0 3.6-4.4 281 280 561
4.6-5.4 240 233 473
5.6-12.0 183 198 381
2.0-2.4 289 282 571
2.6-3.4 402 448 850
31 3.6-4.4 383 384 767
4.6-5.4 328 316 644
5.6-12.0 2504 270 524

(a) The numbers are obtained from the formulae
2. n(J, 3, p) [min(j, J) + 1] for J + II even,
> no(Jy 7, p) min(j, J) for J + II odd.




Table 4.3: Convergence tests of M energies (in V) at 5 = 6.0 bohr
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no linear dependence checking; independent of n for n, > 50

n, = 1001
r

n A] A2 E

1 0.26583 0.28097 0.26583
10 1.0699 1.2016 0.78345
20 1.7277 1.8353 1.2017
40 2.5341 2.6658 1.7673

ne = 501
r

n Ay Az E

1 0.26574 0.28085 0.26573
10 1.0695 1.2011 0.78297
20 1.7218 1.8343 1.2015
40 2.5320 2.6627 1.7652

n, = 451
r

n A1 Az E

1 0.26571 0.28080 0.26569
10 1.0694 1.2008 0.78279
20 1.7216 1.8340 1.2014
40 2.5313 2.6617 1.7652

n, = 301
r

n Al Az E

1 0.26550 0.28039 0.26543

10 1.0686 1.1971 0.78133

20 1.7198 1.8310 1.2006

40 2.5269 2.6465 1.7617
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Table 4.4: Convergence tests of ®JMI's energies at 5 = 3.2 bohr

n, = 1001, n, = 200

r
n A,(<5) A2 (—11)° E(-16)°
1 0.59317 0.75999 0.59318
10 1.5624 1.8496 1.2259
20 2.2998 2.7748 1.6998
40 3.7150 4.4059 2.5455
ne = 1001, ny = 50
T
n A1(—2)° A;(—12)° E(-16)°
1 0.59315 0.75999 0.59318
10 1.5623 1.8469 1.2259
20 2.3000 2.7751 1.6996
40 3.7144 4.4060 2.5455
ny, = 301, ny, = 200
- T
n A,(-12)° Ay(—20)° E(-32)°
1 0.59315 0.75995 0.59316
10 1.5592 1.8455 1.2255
20 2.2959 2.7693 1.6985
40 3.7147 4.4202 2.5417
n, = 301, ny = 50
r
n A (—12)° A;(—20)° E(—32)°
1 0.59315 0.75995 0.59316
10 1.5609 1.8455 1.2255
20 2.2957 2.7693 1.6985
40 3.7140 4.4199 2.5417

number of functions lost to linear dependence checks
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Table 4.5: Breakdown of timing of a J = 0 4; symmetry calculation

Description of routine

CPU time needed/sec

v integration for T 694
vA integration for H, S 575
associated Legendre functions (v overhead) 174s
v integration for O 168
calls to potential function 71
solution of Ha = MaE 54
calculation of 1D primitives 53
spline fitting (v overhead) 45
total AX integration 42
other 90
TOTAL 1949
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Table 4.7a: Comparison of T matrices of FE* and V® methods

J =0, A; symmetry; PK2¢ p = 2.0 bohr, p = 2.05 bohr

(upper left 5 by 5 submatrix - elements scaled by —%4})

FE
9.532 2.871 -1.913 0.0194 0.0867
2.871 11.97 2.047 3.327 —1.365
—-1.913 2.047 12.12 —0.0804 2.752
0.0194 3.327 —0.0804 14.52 3.128
0.0867 -1.365 2.752 3.128 14.18
A%
9.533 2.868 -1.913 0.0214 0.0877
2.868 11.97 2.040 3.318 —1.360
-1.913 2.040 12.11 —0.0693 2.749
0.0214 3.318 —0.0693 14.53 3.052
0.0877 —1.360 2.749 3.052 14.26

¢ Finite element surface functions, ref. 12,13.

® Variationally determined surface functions, current work, ref. 14,15.

¢ Porter-Karplus potential energy surface, ref. 3.
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Table 4.7b: Comparison of I matrices of FE® and V® methods
J =0, A; symmetry; PK2¢: 5 = 3.0 bohr, p = 3.05 bohr
(upper left 5 by 5 submatrix - elements scaled by —%’,‘—)

FE
0.8073 —0.5440 0.4775 0.3901 —1.349
—0.5440 0.1741 0.1337 —0.3740 —1.724
0.4775 0.1337 0.2796 0.0910 0.2467
0.3901 —0.3740 0.0910 0.0478 —0.7599
—1.349 —1.724 0.2467 —0.7599 0.5912
\%
0.8075 —0.5437 0.4773 0.3877 —1.349
—0.5437 0.1756 0.1339 —~0.3759 —1.722
0.4773 0.1339 0.2815 0.0920 0.2463
0.3877 —0.3759 0.0920 0.0479 —0.7594
—1.349 ~1.722 0.2462 —0.7594 0.5953

¢ Finite element surface functions, ref. 12,13.
b Variationally determined surface functions, current work, ref. 14,15.

¢ Porter-Karplus potential energy surface, ref. 3.
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Table 4.8a: Comparison of @ matrices of FE® and V® methods
J = 0, A; symmetry; PK2¢ p; = 2.0 bohr, ;41 = 2.05 bohr

FE
0.9966 —0.07656 0.02974 3.44x10°% 7.86x10*
—0.07347 0.9898 - 0.09507 —0.07531 —0.01108
0.03673 —0.09115 0.9935 0.01294 0.05041
2.44 x 1073 0.07448 —2.10 x 1073 0.9914 —0.09485
2.00 x 1073 0.02247 —0.04631 0.09669 0.9831
\%

0.9966 —0.07662 0.02980 3.48x10°% 7.82x10*
—0.07353 0.9898 0.09504 -0.07550 —0.01116
0.03679 —0.09111 0.9935 0.01280 0.05064
2.41 x 1073 0.07468 -1.99 x 1073 0.9915 —0.09332

2.01 x 1073 0.02244 —0.04636 0.09544 0.9827

¢ Finite element surface functions, ref. 12,13.
b Variationally determined surface functions, current work, ref. 14,15.

¢ Porter-Karplus potential energy surface, ref. 3.
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Table 4.8b: Comparison of @ matrices of FE® and V® methods
J =0, A; symmetry; PK2¢ 5; = 3.0 bohr, g;+; = 3.05 bohr

FE
0.9983 —0.03789 0.02290 0.01245 —0.03246
0.03590 0.9961 0.02608 —0.01479 —0.06291
—0.02333 —0.02553 0.9974 3.82x10°3 0.01632
—0.01548 8.32x 1073 —-1.37x1073 —0.9920 —0.1102
0.03590 0.05756 —-0.01577 0.1065 0.9771
v
0.9982 —0.03790 0.02293 0.01242 -0.03252
0.03591 0.9961 0.02613 -0.01493 —0.06294
—0.02336 —0.02558 0.9974 3.90 x 1073 0.01636
—0.01542 849 x1073 -1.46x1073 —0.9921 —-0.1096
0.03598 0.05760 —-0.01581 0.1058 0.9771

¢ Finite element surface functions, ref. 12,13.

b Variationally determined surface functions, current work, ref. 14,15.

¢ Porter-Karplus potential energy surface, ref. 3.
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Figure Captions

Figure 2.1 Relationship between the space-fixed coordinate system (axes X, Y,
Z) and the body-fixed A SHC system (axes X, ¥, z)). The point labelled O is the
center of mass of the three-particle system, while the point G 4, 4, is the center of

mass of the A, and 4, atoms.

Figure 2.2 J = 3,II = 1,4; LHSF eigenvalues €T (p) at g = 3.27 bohr as a
function of the number of orthogonal functions derived from the primitive basis set
in this region of p values (see table 4.1). The eigenvalues are given in eV and are

calculated at all integer values of the orthogonal basis set size.

Figure 4.1 J = 0 surface function eigenvalues €' (p) as a function of p. The
eigenvalues are calculated every 0.2 bohr and the curves drawn by examination of
the overlap matrices © between basis sets at different g values. Panel a is for the

A, irreducible representation, b for the A; IR and c¢ for the E IR.

Figure 4.2 J = 1 II = 0 surface function eigenvalues ¢]'''(p) as a function of p.

See the caption for figure 4.1 for details.

Figure 4.3 J = 1 II = 0 A, surface function eigenvalues €] (p) as a function of

p. See the caption for figure 4.1 for details of the plotting.

Figure 4.4 Diagram of projection of constant p hemisphere in internal coordinate
space onto a mapping plane. The arc length EP on the surface of the hemisphere
is equal to the distance EQ on the mapping plane. The point labelled E (common
to both surfaces) is the pole of projection and is the intersection of the hemisphere

with the y axis.

Figure 4.5 Projection of the LSTH potential energy surface onto the mapping
plane. Panel a is the potential for p = 2.0 bohr, b for p = 3.270145 bohr, and ¢ for
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p = 6.0 bohr. The energies are given in eV and the contours spaced 0.5 eV apart.

Figure 4.8 Projection of the J = 0 surface functions (or equivalently the functions
¢f‘{gr" for J = 0) at p = 6.0 bohr onto the mapping plane. Panel a gives the
result for the ground state A; symmetry function, panel d for the ground state A,
symmetry function, and panels b and c for the degenerate E ground state functions;
in addition, panels e and f give the degenerate F first excited state functions. The
contour interval § defines the spacing of the nodal lines at the values +0.1 + né
with n any integer. The solid lines represent positive function values while the
dashed lines represent negative function value. The functions of panels b and c
transform as row 1 of the E irreducible representation and are even with respect to
vk interchange, while those of panels e and f transform as row 1 of the E irreducible

representation and are odd with vk interchange.
Figure 4.7 Same as figure 4.6 except the value of p is 3.270145 bohr.
Figure 4.8 Same as figure 4.6 except the value of p is 2.0 bohr.

Figure 4.9 J = 0 E surface function amplitudes (or equivalently the functions
P07+ for J = 0) at three values of p for the n = 3 level. Dashed lines indicate
negative values and solid lines indicate positive values. The spacing of the nodal
lines is as in figure 4.6. The left column is the first row of the F representation,
which is symmetric to vk interchange; the right column is the degenerate second
row function of the F representation, which is antisymmetric to vk interchange.
Panels (a) and (d) show the n = 3 degenerate pair at p = 2.0 bohr, panels (b) and
(e) the pair at p = 3.270145 bohr, and panels (c) and (f) the pair at p = 6.0 bohr.

Figure 4.10 Same as figure 4.9 except for n = 4.

Figure 4.11 Same as figure 4.9 except for n = 9.
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Figure 4.12 Same as figure 4.9 except for n = 10.

Figure 4.13 Projection of the functions @84} g0 J = 0, p = 6.0 bohr onto
the mapping plane. For J = 0 these functions are the square of the LHSF function
which appeared in the same panel of figure 4.6. Panel a gives the result for I' = 4,,
n=1,panel d forI' = A3, n =1, panels band cfor I' = E,k =1 and n = 1,2
respectively, and panels e and ffor I' = E,k = 2 and n = 1,2 respectively. See
caption of figure 4.6 for details.

Figure 4.14 Same as figure 4.13 except for p = 3.270145 bohr; these functions are
the squares of the LHSF functions which appeared in the same panel of figure 4.7.

Figure 4.15 Same as figure 4.13 except for p = 2.0 bohr; these functions are the
squares of the LHSF functions which appeared in the same panel of figure 4.8.

Figure 4.16 Projection of the J =1 II = 0 functions 1{1,‘3{1“‘ at p = 6.0 bohr onto
the mapping plane. Panel a gives the result for the ground state 4; symmetry
function, panel d for the ground state A, symmetry function, and panels b and
¢ for the degenerate E ground state functions; in addition, panels e and f give
the degenerate E first excited state functions. The contour interval § defines the
spacing of the nodal lines at the values +0.1 + né with n any integer. The solid
lines represent positive function values while the dashed lines represent negative
function value. The functions of panels b and c, after multiplication by the Wigner
rotation function as in equation (4.6.1), transform as row 1 of the E irreducible
representation and are even with respect to vk interchange, while those of panels e
and f transform as row 1 of the E irreducible representation and are odd with v

interchange.

Figure 4.17 Same as figure 4.16 except for p = 3.270145 bohr.



I1-100

Figure 4.18 Same as figure 4.16 except for p = 2.0 bohr.

Figure 4.19 Projection of the functions @THT#®Ta} for 7 = 1,11 = 0 p = 6.0 bohr
onto the mapping plane. For this partial wave these functions are the square of the
coeflicient function 1/:;3? * which appeared in the same panel of figure 4.16. Panel
a gives the result for I' = Ay, n =1, panel d for I' = A3, n = 1, panels b and c for
I' = E,k =1 and n = 1,2 respectively, and panels e and f for I' = E,k = 2 and

n = 1,2 respectively.

Figure 4.20 Same as figure 4.19 except for p = 3.270145 bohr; these functions are

the squares of the functions which appeared in the same panel of figure 4.17.

Figure 4.21 Same as figure 4.19 except for p = 2.0 bohr; these functions are the

squares of the functions which appeared in the same panel of figure 4.18.

Figure 4.22 Projection of the J =1 II = 1 functions ¢i{r}1r,. at p = 6.0 bohr onto
the mapping plane. The left column gives the @ = 0 coefficient terms, while the
right column contains the 2 = 1 terms. The first row, consisting of panels a and
d, is for the lowest energy A; symmetry surface function; the coefficients for the
ground state E function symmetric with respect to v« interchange are given in the
second row (panels b and e) and for the first excited state E function with this
symmetry in the third row (panels ¢ and f). The contour interval § defines the
spacing of the nodal lines at the values 0.1 + né with n any integer. The solid
lines represent positive function values, while the dashed lines represent negative
function value.

Figure 4.23 Projection of the J = 1 I = 1 functions 1/:,{nm" at p = 6.0 bohr onto
the mapping plane. The left column gives the 8 = 0 coefficient terms, while the
right column contains the @ = 1 terms. The first row, consisting of panels a and

d, is for the lowest energy A; symmetry surface function; the coefficients for the
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ground state E function antisymmetric with respect to vx interchange are given
in the second row (panels b and e) and for the first excited state F function with
this symmetry in the third row (panels ¢ and f). The contour interval § defines the
spacing of the nodal lines at the values £0.1 + né with n any integer. The solid
lines represent positive function values, while the dashed lines represent negative

function value.

Figure 4.24 Same as figure 4.22 except for » = 3.270145 bohr.
Figure 4.25 Same as figure 4.23 except for » = 3.270145 bohr.
Figure 4.26 Same as figure 4.22 except for r = 2.0 bohr.
Figure 4.27 Same as figure 4.23 except for r = 2.0 bohr.

Figure 4.28 Projection of the functions @,{H{P"QF"} for J=1,II=1p = 6.0
bohr onto the mapping plane. Panel a gives the result for I' = 4;, n = 1, panel d
forI' = 43, n = 1, panels b and c for I' = E,k =1 and n = 1,2 respectively, and
panels e and ffor I' = E,k = 2 and n = 1,2 respectively.

Figure 4.29 Same as figure 4.28 except for » = 3.270145 bohr.
Figure 4.30 Same as figure 4.28 except for 7 = 2.0 bohr.

Figure 4.31 Projection of the functions @ {T*®Ts} o0 7 — 2, I=1p=6.0
bohr onto the mapping plane. Panel a gives the result for I' = 4;, n = 1, panel d
for ' = A, n =1, panels b and c for ' = E,k = 1 and n = 1,2 respectively, and
panels e and f for I' = E,k = 2 and n = 1,2 respectively.

Figure 4.32 Same as figure 4.31 except for r = 3.270145 bohr.

Figure 4.33 Same as figure 4.31 except for r = 2.0 bohr.



I1-102

Figure 4.34 Projection of the functions @IS} for J = 2, Il =0p=6.0
bohr onto the mapping plane. Panel a gives the result for I' = 4;, n = 1, panel d
forI' = 43, n =1, panelsband c for I' = E,k = 1 and n = 1,2 respectively, and
panelse and ffor ' = E,k = 2 and n = 1,2 respectively.

Figure 4.35 Same as figure 4.34 except for » = 3.270145 bohr.
Figure 4.36 Same as figure 4.34 except for » = 2.0 bohr.

Figure 4.37 Projection of the J = 2 II = 0 functions 1/),{};[1‘" with T' = A, E (with
n = 1,k = 1) at p = 3.270145 bohr onto the mapping plane. The A; coefficients
are presented with {2 = 0 in panel a, = 1 in panel b and = 2 in panel ¢, and
the E with Q = 0 in panel d, 2 = 1 in panel e and ? = 2 in panel f. The solid
lines represent positive function values, while the dashed lines represent negative

function value.

Figure 4.38 Projection of the functions @ THIweT Y gor J = 3, 1=0p=2¢6.0
bohr onto the mapping plane. Panel a gives the result for I' = 4;, n = 1, panel d
forT' = Ay, n =1, panelsb and c for T' = E,k = 1 and n = 1,2 respectively, and
panels e and f for I' = E,k = 2 and n = 1,2 respectively.

Figure 4.39 Same as figure 4.38 except for » = 3.270145 bohr.
Figure 4.40 Same as figure 4.38 except for r = 2.0 bohr.

Figure 4.41 Projection of the functions @ THT»&8TW} ¢or J = 3, I=1p=26.0
bohr onto the mapping plane. Panel a gives the result for I' = 4;, n = 1, panel d
forI'=A;,n =1, panelsband cfor I' = E,k = 1 and n = 1,2 respectively, and
panels e and f for ' = E,k = 2 and n = 1, 2 respectively.

Figure 4.42 Same as figure 4.41 except for » = 3.270145 bohr.
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Figure 4.43 Same as figure 4.41 except for r = 2.0 bohr.

Figure 4.44 Projection of the J = 3 II = 1 coeflicients 1,bigr" with T' = A4,, at
p = 3.270145 bohr onto the mapping plane. The coeflicients are presented with
2 = 0 in panel a, = 1 in panel b, = 2 in panel ¢, and 2 = 3 in panel d.
The solid lines represent positive function values, while the dashed lines represent

negative function value.

Figure 4.45 Projection of the J = 3 I = 1 coefficients ¢;§F" with T' = E (with
n = 2,k = 2) at p = 3.270145 bohr onto the mapping plane. The coefficients are
presented with 2 = 0 in panel a, = 1 in panel b, £ = 2 in panel ¢, and 2 = 3 in
panel d. The solid lines represent positive function values, while the dashed lines

represent negative function value.
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Abstract

We present a method for calculation of accurate differential and integral cross
sections for reactive atom-diatom scattering, based on the calculation of surface
functions in symmetrized hyperspherical coordinates. Scattering matrices and cross
sections for the J = 0 through 3 partial waves for the H + H; system are presented,
both with and without corrections for the presence of the conical intersection of the

Hj; potential.
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1. INTRODUCTION

In the year 1975, Kuppermann and Schatz!+? reported the first converged calcula-
tion in three dimensions of integral and differential cross sections for the reactive
scattering of an atom by a diatomic molecule; the calculation was performed on
the Porter-Karplus potential (PK2)? for the reaction H + H; — H; + H, and was
converged up to an energy of 0.7 eV above the minimum of the potential. In that
same year, Elkowitz and Wyatt*® published integral cross sections for that reaction
with minor approximations, and in 1978 Walker, Stechel and Light® repeated the
latter calculations on the more accurated LSTH potential energy surface.” No sub-
sequent converged integral cross section results were reported until 1988,%° and not
until 1989 were new converged differential cross section results published.1®~13 The
methods used in these early calculations were difficult to apply to higher energy
calculations and to systems of less symmetry than H + H,, due to the speed and
memory limitations imposed by the computational technology at the time; how-
ever, the development of new techniques and the advances in computational power
over the years have since made these more difficult calculations feasible. Beginning
in 1986 with the publication by Kuppermann and Hipes!*'!® of J = 0 partial wave
results for the H + H; reaction up to energies of 1.6 eV above threshhold using sym-
metrized hyperspherical coordinates, a surge of publications has occurred. There
are now converged calculations for the systems H + H; and D + H,,1:%4-68-36 p

+ Hz, F + D; and F + HD,3"% O + H,,%%4" H + HBr,*® and Cl + HCL.21:4®

These calculations are of three basic types: the propagation methods of Kup-
permann et al.,'*~17 Pack et al.,18-2037,38 Schatz,214% Linderberg et al.,2? and
Launay and Le Dorneuf,® all involving some form of hyperspherical coordinates;
the variational methods of the Truhlar and Kouri groups,*3:23-30,39-42,46-48 7}, 4,5
and Miller,!1:12:31:32 4nd Manolopoulos and Wyatt,10:33:34:43-45 ing Jacobi coor-
dinates; and the recent work of Webster and Light3%:3® using a “natural collision

coordinate”3? method related to the methods of the early work!:2+4-6,
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The variational methods may be further divided according to the variational
principle used in the method. Miller et al. use a Kohn®! variational expression to di-
rectly calculate the scattering matrix5?:*3 S, while Manolopoulos and Wyatt obtain
the logarithmic derivative matrix5* for the wavefunction using a Kohn principle.
Since the variational principle in each of these cases is applied to the matrix of in-
terest rather than to the wavefunction itself, the matrices are obtained to one order
more accuracy than the wavefunction;®® this is computationally advantageous since
the wavefunction is not itself needed for the calculation of scattering cross sections
once the log derivative or scattering matrix has been obtained. Truhlar, Kouri et
al. instead use a generalization of a variational principle due to Newton®® in their
L?*-AD GNVP method, with the variation applied to an amplitude density (the
wavefunction multiplied by a reference potential which asymptotically approaches
zero). In all these methods, the scattering wavefunction is expanded in terms of
basis functions for the reactants and products, expressed in terms of the Jacobi
coordinates of the arrangement channel. The couplings between these basis sets are
evaluated through multi-dimensional exchange integrals,>” which leads to a matrix
system of linear equations that must be solved to obtain the scattering matrix for
the three-particle system. The Kohn principle is simpler to apply, since the matrix
elements are calculated over the hamiltonian H, while in the Newton principle the
calculation is over the Green’s function of a reference hamiltonian; however, the
Newton principle methods have been found to converge more rapidly.>® The major
difficulties in these variational methods are the expense of the calculation of the
large number of exchange integrals, which depend on the total energy of the sys-
tem and so must be recalculated for each energy, and the memory required for a

calculation with a sufficiently large basis set for accurate results.

The propagation method calculations, on the other hand, are based on an ex-
pression of the problem in terms of a hyperspherical coordinate system, which de-

scribes the degrees of freedom of the system of particles in terms of a single distance
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variable (the hyperradius) and five hyperangles. In these methods the Schrodinger
equation is solved for fixed hyperradius to obtain “surface functions” in the hyperan-
gles, so called since they are defined on the surface of a hypersphere; the hyperradius
is treated as the generalized collision coordinate for the system. The definitions of
the surface functions used is different for each hyperspherical coordinate method.
When these surface functions are substituted back into the Schrédinger equation,
the result is a system of coupled second order linear differential equations in the
hyperradius, which as a consequence of the differing surface functions differs from
one method to another. The surface functions are independent of the total en-
ergy of the system, and thus if scattering calculations at many energies are desired
the time spent in evaluating the surface functions becomes unimportant. An im-
portant property of these methods is that the hyperspherical coordinates yield an
effective description of the wavefunctions even for heavy-light-heavy mass combi-
nations which result in large overlaps between reactant and product channels.3?:6°
Finally, for the case of collision-induced dissociation,®!:%? they yield a discretized
representation of the dissociation continuum, which the other methods based on

Jacobi coordinates do not.

There is more than one possible set of hyperspherical coordinates which may
be used for these propagation calculations. The coordinates introduced by Delves®3
(currently used by Schatz?!4?) and by Whitten and Smith®¢ both share the disad-
vantage that certain configurations of the system may be described by more than
one set of internal coordinates (i.e., the coordinates on which the potential de-
pends), so that there is not a 1 to 1 relation between internal configurations of the
system and values of the sets of internal coordinates. In addition, the transforma-
tion of the three internal coordinates from a set based on one arrangement channel
to another is not orthogonal. Kuppermann®® developed a set of symmetrized hy-
perspherical coordinates (SHC) which does not have this undesirable characteristic,

and suggested that these coordinates would be an appropriate system for the study
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of reactive scattering problems;%5#® they are currently in use by this group.!¢~17

Other sets of symmetrized hyperspherical coordinates have been designed so as to
treat all three arrangement channels in equivalent ways; these have been proposed
by Johnson,’” Mead®® (used by Linderberg et al.2?), and Pack and Parker18~20,37:38

(also used by Launay and Le Dorneuf®).

Once the surface functions are calculated, the resulting coupled equations in
the hyperradius must be solved. Kuppermann et al. recast the problem into an
equation for the logarithmic derivative of the wavefunction, which transforms the
problem from a second-order spherical Bessel linear differential matrix equation
into a Ricatti-Bessel equation, which is first-order but nonlinear; the solution for
this equation is then found using a variant®® of Johnson’s logarithmic derivative
program.’* Schatz has preferred to use a sin/cos reference potential method™ to
enable recovery of the scattering wavefunction from the calculation. Launay and Le
Dorneuf have used the De Vogelaere algorithm,” Pack and Parker use the VIVAS

method’?, and Linderberg an implementation of R-matrix theory approach.52/73

In a previous paper (I), we described our method of calculation of surface
functions using symmetrized hyperspherical coordinates, applied it to the H + H,
system, and discussed the properties of these functions. The present paper is con-
cerned with the use of such surface functions in determining the scattering matrices
and differential and integral cross sections, and the application to H + H,. Sec-
tion 2 presents a brief review of the determination of the propagation equation
from the expansion of the wavefunction in terms of surface functions, and describes
the formalism for the propagation for general triatomic systems. In section 3, the
asymptotic boundary conditions are invoked for determination of the R and S ma-
trices of the system, and in section 4 the formalism for determination of the cross
sections from the S matrix is developed. Section 5 is a description of the logarithmic
derivative algorithm used in the calculation of the scattering matrices. In section

6, the results of testing the convergence of our propagation method are presented,
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and the results of our calculations are given in section 7. A summary of the main

points of this paper is provided in section 8.
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2. FORMALISM FOR PROPAGATION

2.1 Surface Function Expansion and Propagation Equation

In a previous paper (I) we derived the expression for the six-dimensional partial
wave wavefunction ¥/MIUT's i terms of five-dimensional local hyperspherical surface
functions (LHSF) ®JMITs. We provide here a brief outline of this derivation to
clarify the discussion to follow.

The Schrodinger equation of the six-dimensional system, expressed in body-

fixed symmetrized hyperspherical coordinates (SHC),14-18:65:66 5

Ha(p,¢2) = F(p) + ha(Caip) (2.1.1)

with the hyperradial kinetic energy operator defined by

, h? 15K
T(p) = ——p~ Py (2.1.2)

5?
2u” 82" T 2pup?
and the surface hamiltonian

A%(¢)
2up?

ha($aip) = + V(p,wa,7a) (2.1.3)

where A? is the grand canonical angular momentum operator. The ¥7MITx gre
eigenfunctions of this hamiltonian with'cnergy E, as well as eigenfunctions of the
square of the total angular momentum operator J?, the operator Jz for the pro-
jection of that angular momentum on the space-fixed Z axis, the operator I for
inversion through the center of mass of the system and the projection operators™
Plfk for the T irreducible representation (IR) of the permutation group™ P, of the
identical atoms of the system (where for three particles p may take on the values 1,
2 or 3): ‘

Hy¥/MITs(p () = BERTMITx(p (5) (2.1.4)

T, x, ¥a, 1) B TMITN (5 ¢3) = K2T(J + 1)8TMITx (5 ¢4) (2.1.5)
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Fo(@a)TTMITk (p, ¢5) = RMETMITx (5 () (2.1.6)
T(OA, ¢A)¢A)‘I’JMHF* (p)C)«) = (_1)H‘I’JMnrh(p)CA) (217)
BE ()M (p, ) = 8F §FETMIT (p,¢5) (2.1.8)

The &/MIT+ are the eigenfunctions of the surface function hamiltonian with eigen-
values €17 (p), as well as of J2, J., T and 13,5‘, with the same eigenvalues as those
of the ¥/MITx(5 (). The index k scans the number of rows (or columns) of the
irreducible representation I'.

We express the ¥/MIT's as an expansion in terms of these surface functions as

MR (p,(3) = p=3 ) BT (03 2) 22 MTTH (2 P)- (2.1.9)

n

The coefficients bJ'T turn out to be independent of M and of k. To solve for these
coefficients, the ®JMITs gre determined at a set of discrete values of 5, labelled
p; with the index i ranging from zero at the smallest value of p in the set and

increasing with 5. The b/ are found to satisfy

2u dp? - 8up?

R & | 15K | /pi\?
{ +(B) e - B {501

. (2.1.10)
+> 6003 5:) [T (o3 i) = O
nl
in which the interaction matrix Z'™F, which is a measure of the coupling of the
LHSF functions by the potential (or equivalently of the change in the wavefunction
as a function of p from the values at p = p;), is defined by

[T (p; ;) = <‘I’iMm"(Cx);ﬁi V(p,wa,va; Pi)

@if‘mr"(éx;ﬁ.-)>. (2.1.11)

(where the bra-ket notation denotes integration over the five hyperangles), with the

interaction potential V(p,wx,vx;p;) defined by

- i\2.,, -
V(owon, i) = Viewrm) = (5) ViEnwam). (2.1.12)
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The details of the calculation of these functions and matrices are not necessary for
understanding what is to follow; they may be found in (I).

The expansion (2.1.9) is exact in the case of an infinite LHSF basis; since the
basis set actually used in the calculation must be finite, the expansion will become
inaccurate for sufficiently large values of |p — g;|, as some of the coupling caused by
the presence of the interaction potential will involve functions excluded from our
finite basis. Accordingly, the coefficients b(p; ;) are calculated as a function of p in
a region near p; corresponding to a hyperspherical shell. It is therefore necessary
for determination of the scattering wavefunction at all p to smoothly match the
wavefunction calculated for each shell across the boundary p = p; i+1 of adjacent

hyperspherical shells. This is accomplished by imposing the conditions

5 (piiv1; Pit1) = 2bﬂn‘(l’i,ﬂﬁﬁi)[omr]:'(ﬁi+laﬁi); (2.1.13)
(abr{HF(P;pi-i-l)) =Z(abﬁn‘(l’;ﬁi)> [Om]n'(ﬁ‘+1 5:);
ap P-—»pg:t.)._l n! ap P—»PS-.-.)(,.l " ' o
(2.1.14)

in which the overlap matrices O'™F are defined by

(O (5i11,5:) = <<I>,J.Mm"(Cx;ﬁi+1)

‘I’Z'Mm"(é'x;ﬁi)>- (2.1.15)
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2.2 Logarithmic Derivative Format

Equation (2.1.10) for the p-dependent part of the wavefunction has as many linearly
independent solutions as there are surface functions in the expansion. Labelling the
coefficients bJI(p; p) of these linearly independent solutions by the superscript n',

we may write (2.1.10) in matrix form as

b7 (p; 5:) = K(p, 5:)b™ (p; ;) (2.2.1)
where
b (p; 57 = T (s ;) (2.2.2)
and
0 _
K(p,7) = 257 (o 53) = k(. 1) (2:2.3)
in which
vimt 20 15k (ﬁ.-)’ )
kK2(p, 57 =56 | E- (2] g5y ). 2.2.4
k*(p, :)In hzn( 807 o) & (P:) ( )

The differentiation in equation (2.2.1) is with respect to p. If we define the loga-

rithmic derivative®? of the b/’ matrix of coefficients to be
_ : - w1
Y (p; 5:) = BT (p, 5;) (™ (p, 5:)) (2.2.5)

we find by differentiation of (2.2.5) and using (2.2.1) that Y satisfies the matrix

Ricatti-Bessel equation
JIT _ mr, - \\?
Y (pipi) =K(p,5:) - (3’ (p;pi)) : (2.2.6)

Similarly, equations (2.1.13) and (2.1.14), which interrelate the wavefunction
and its derivative in the various LHSF basis sets at different 5, may be expressed

in matrix form as

b (p; 5it1) = [Om(ﬁiﬂ,ﬁi)] - b ™ (p, 5:)O T (5.1, i) (2.2.7)
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. -1,
b (03 piss) = O (Biv1,5)| B (0, )0 ™ (Biga, ) (2.2.8)

Therefore, the log derivative matrices in different g basis sets can be seen to be

related in the same way:
Y (pipis1) = [0 iy, 7)Y (0500 (pigr ) (2:29)
For an infinite LHSF expansion the O'™ are unitary and (2.2.9) is equivalent to
Y (03 5ir1) = O (Bis1, 5a) Y™ (03 51) O™ (Biy1, 5:) (2.2.10)

For a finite basis set, (2.2.9) and (2.2.10) are not equivalent and either of them can be

used as different continuity considerations for the truncated basis set approximation.
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3. ASYMPTOTIC ANALYSIS - R AND S MATRICES

3.1 Physical Asymptotic Conditions

To obtain differential and integral cross sections, it is necessary to use an asymp-
totic form which corresponds to the physical conditions of a scattering process.
The wavefunction of physical interest has asymptotically an incident part which is
the product of an incoming plane wave (arbitrarily assigned to be moving in the
space-fixed Z direction) and the wavefunction for the initial state of the diatomic
molecule. The outgoing part of the asymptotic physical wavefunction, correspond-
ing to product particles which are well separated, is a sum over all possible states of
the product diatom multiplied by outgoing spherical waves. These two conditions
can be combined in our time-independent formalism to give the following set of
space-fixed boundary conditions, valid when the total energy of the system is below
the system’s dissociation energy into three atoms:

1 1! -1 [ i1}
\Il% Uyl m;, z Z e’kA'M'A R 5A"UA.’JA’ m’Al
A Ri—bao A”AJA"‘A

A wajama
1.1
el Br] (3.1.1)

IJ ymy,
+ fktuzgr:u A (0 ’¢A)_:_—~ Prvrjama (I‘A)
where {A', 7', x'} is a cyclic permutation of the arrangement channel indices {a, 3,7}
and ) is a fixed but otherwise arbitrary channel index which corresponds to the
asymptotic arrangement channel under examination. The coefficients f,\m;;‘:;'lm*'
are the space-fixed scattering amplitudes and contain the information needed for the

cross section determination. In this equation, the incoming wave is assumed to be in

the A’ channel, which is to say that the incident atom is Ay and the initial diatom

is Ay Aw. The diatomic wavefunction tpi{,A jam, 18 given in space-fixed coordinates
by
Prvyia (T2
‘P'\”A.nmx (r'\) = }’;;u (9!’; s d’r;\)""m_n‘“‘—)‘ (3.1.2)

T
where 6., and ¢, are the polar coordinates of r) with respect to the space-fixed

Z axis. (The finite range in r) of the diatomic wavefunction cpi{x jam, €nsures that
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the terms in the sum over A for which A # X go to zero.) The three quantum
numbers vyjamy specify the state of the asymptotic diatom, with vy labeling the
vibrational levels, 7 the rotational angular momentum (the square of the diatomic
angular momentum is jx(jx + 1)A?) and mj the orientation of the diatom with
respect to the space fixed Z axis (the projection of the diatomic angular momentum
on the Z axis is mh). The quantum numbers vy, jx and m are labeled with the
subscript A to differentiate between the states of distinguishable diatomic molecules.
For notational convenience, we will drop these labels when all such indices in an
expression label functions in the same arrangement channel. The sum over the
diatomic quantum numbers is over all open and closed states for the system. (The
state A'v),j),m), is an open state, since it is the initial state of the diatom.)

An alternate form of the physical asymptotic conditions in the body-fixed he-
licity representation is given by:?2

!

g va A haiat it Bar of

3 BTw® M PR g, me, (EX7)
, kv, iy R 3.1.3)
X'}, 35 m) N 4 (
+Z Z f;\vx?i;a; A'(0A,¢A)T¢vajxnk(rk)
A wajiafla

where the body-fixed expression for the diatomic wavefunction is given by

Pavaia (TA)
T

‘PEf;jAm(PA) =Y (1a,%2) (3.1.4)

and the quantum number Q) labels the orientation of the diatom with respect to the
body-fixed z axis so that the projection of the diatomic angular momentum on the
z) axis is {0y k. (In this representation, the axes of quantization for the initial and
final states of the system are taken to be the directions of the incident and outgoing
wavevectors, respectively; the space-fixed Z axis is chosen to be in the direction of
the incident wavevector for simplicity.) As in the space-fixed representation, the
sums over the vy and j) quantum numbers include both open and closed channels.

In this paper we will be interested in calculating the helicity representation

1.7 < !
A'v,,d5imy,

scattering amplitudes fy %3 "*'(0x,¢2). They can be related to the space-fixed
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ones with the help of the expression relating the spherical harmonics in the two

coordinate systems:78

j
Y[ (6er,0e2) = D Dia(a,63,0) (12, %2) (3.1.5)
Q=-—j
Substitution of (3.1.5) into (3.1.2), substituting the result into the second term of
(3.1.1) and using (3.1.4) to bring it into the same form as (3.1.3) yields the relation

fA.,A;’AJ::Amx'(e,\,QbA) ZD,,,A,,A ¢A,0x,0)f'\”$;16;my(0>‘,¢A) (3.1.6)

The wavefunction of (3.1.3) may also be expanded in terms of functions which

are eigenfunctions of f 2, jgz, and the projection operators for the P, permutation

group:

oo J
1.1 =1 1 [ o [}
\I’; Vardar M } : } : ZE :CJMP;.A'v',‘,j;,m;, \I,XJMI“'A YarIar Myt (3.1.7)
r &

3.2 Formalism for Asymptotic Functions - Body-fixed R and S Matrices

For purposes of comparison of the asymptotic forms with the calculated LHSF, we
need to determine an expression for the asymptotic form in body-fixed coordinates.
In the asymptotic region, the form of these functions is known; since the incident
or ejected atom is no longer interacting with the diatomic species, the wavefunction
consists of a diatomic molecule wavefunction multiplied by the wavefunction of an
atom moving freely in space. We define the asymptotic form for a partial wave
body-fixed solution to the Schrédinger equation for an atom-diatom collision at

energies below dissociation of the diatom to be

m‘-

J m.l
JM,n' ¢X ’I‘A) n
‘IlXM Ry~ 00 Z Z DJAQA (GA,¢A,‘YA,1/J,\) E : "AJA( Givuxﬂ,\ (R’\)

Ia=—Jja=|0.] va=0
(3.2.1)
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where ) is now fixed but arbitrary. As previously mentioned, the X label will be
dropped from the v and jx indices unless more than one arrangement channel is
involved; this applies also to the quantum number §2,.

_ In equation (3.2.1), the function Dfé" is defined as

IM

(2T +1
- 82

)i Dira(#x,0x,92)P5 (cos 7a). (3.2.2)

with Wigner rotation functions’® Dj,;, and normalized? associated Legendre func-
tions P{}. The sums over j and v in (3.2.1) formally include all bound states of
the diatom, but in practice these sums afe truncated to exclude the highest en-
ergy states, which can be assumed to have zero amplitude. The function davi(Ta)
is the radial part of the bound state diatomic wavefunction (3.1.4), which is the

eigenfunction of the diatomic hamiltonian

. K2
h} =—2—V2 +v3(ra) (3.2.3)

with energy ex,;, where v} (‘r,\) is the interaction potential of the atoms A, and
Ay when isolated from Ax. The group of indices Avj which specify the asymptotic
diatom and its state will occur together frequently; to simplify the notation we
define X = {Avaja}, and will use this composite index where appropriate. Due to
the finite range of the functions ¢ 5 in 7, there is no overlap between the functions
in different arrangement channels as p — co; the normalization for these functions
is

L7 brenstra)bre strndars = 83 (3.2.4)

The coefficients G;";"(R,\) are given by?

J
Jn! _ -1 70" Jn' 10" Jn!
Gl (Ra) = |vg| 2 Q,ZJ[S (Ra) Az, +Csn (BA)BLT] (3.2.5)
where the term vy is the channel velocity, defined by
h 2u
vy = ;kx; k;- = F(E —exz); (3.2.6)
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For open states, i.e., those states with E > ey, the resulting wavenumber is real and
positive; for closed states (E < e;) the wavenumber is positive imaginary, so that
the parts of the wavefunction in equation (3.2.1) which are associated to closed
states of the system decay exponentially. The sum over the diatomic quantum
numbers in equation (3.2.1) is over all open and closed states for the system.

The R) dependent parts of G;;;"(RA) have the form (in notation slightly mod-
ified from that of Schatz and Kuppermann?)

S0 (Ry) = (1)

a+a'

kx| Bx Y C(J540",-0",0)C(J54 Q,~Q,0) X (R,)

‘ (3.2.7)
in which the symbol & may stand for either § or C. At this point, one can either
choose to represent the wavefunction in terms of traveling waves (the scattering ma-
trix formalism) or in terms of standing waves (the reactance matrix formalism).52:53
In the scattering matrix formalism, the functions ‘S_';'I(RA) and (f;’t(R)‘) correspond-
ing to the X in the right hand side of (3.2.7) are given by

B —rexp 13(J +j — 2)] hgz)(ka,\) open
SI(R)(S) =

2i4(|k5|Ra) closed

. (3.2.8)
rexp [—13(J + 7 — €)] hy '(kxRa) open

CIH(RA)(S] =
2 co(|kx|RA) closed
where the functions hgl) and hgz) are the spherical Bessel functions of the third
kind and i; and k; are modified spherical Bessel functions of the first and third
kinds, respectively.”” At sufficiently large values of R the modified spherical Bessel
functions reduce to sums of exponentials, and the sums over £ in (3.2.7) and Q" in

(3.2.5) may be performed to yield

,
{e_'(kiR‘—l;'(j+J))A;}: [S]
open

J,n' -1 : - _X(s nl
G (RA)[S] = |vz| 7" 4 — e(kxRa-3G+D) gl [S]} (3.2.9)

{e[k,ﬂRx A;‘;' [S] + e~ ksl Ra B;};"[S]} closed

\
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where [S] denotes that this is the asymptotic form appropriate for generating the

scattering matrix S7. From the matrices of coefficients

A"

v [S1= 4% (sl [BS]L, (8] = BL[S] (3.2.10)

one constructs the square matrices

Al B
A’[S]= | A] B’(S]= | B} (3.2.11)
Al B’

which have contributions from all of the arrangement channels. S7 is found through

use of the formula

s’ = B7[s](A7[s])} (3.2.12)

The scattering matrix is unique, i.e., independent of the particular choice of co-
efficient matrices A[S] and B[S], and the part relating open states (which will be
called the open part °S of the scattering matrix) is unitary and symmetric.5? We will
mainly be interested in the open part of the scattering matrix, since asymptotically

only the open states may be populated.

In the reactance matrix formalism, the functions S:\.{"(RA) and (f}\.’"(R,\) corre-

sponding to the X in the right hand side of (3.2.7) are given by

e je(kzRa)cos [F(T+5—£)] + ne(kzRa)sin [F(J+5—£)] open
Sy (B[R] =
* 2iy(|kz| Rx) closed
(3.2.13)
4Ry (R Je(ksRx)sin [3(J+5—£)] = ne(kzRx) cos [F(J+j—£)] open
Co"(Ry)|R] =
) %”l(‘kim»\) closed

in which j, and 7, are spherical Bessel functions of the first and second kind,
respectively.”” At sufficiently large R, the spherical Bessel functions reduce to

trigonometric functions, and we can write, after performing the sum over £ in (3.2.7)
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and Q" in (3.2.5),

' { sin (kxRa — 57 +3)) A7 [R)
open
G (R)IR] = o] 5 ¢ 4 cos (kXRA — g(J +j)) B;;;"[R]} i
{eu:xm ALYIR)+ e s BBIYR)L closed
\
(3.2.14)

where [R] denotes that this is the asymptotic form appropriate for generating the
reactance matrix R/. From the matrices of coefficients A’[R] and B[R] (con-
structed in the same way as in equation (3.2.11) for the matrices for the scattering

formalism), we obtain R” by using the expression
R’ = B'[R](A7[R])) " (3.2.15)

The reactance matrix is unique, real, and the open part °R is symmetric.5?

We will use the reactance matrix formalism due to the numerical convenience
of performing real arithmetic. Physical quantities are more closely related to the
scattering matrix; however, the °S matrix, which is all that is needed for deter-
mination of the physical properties of the system, is easily obtained from the °R

matrix using the expression®?

°s’ = <I+z°RJ) (I—z°RJ) - (3.2.16)
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3.3 Introduction of Permutation and Inversion Symmetries

to the Formalism

Since the problem of generating LHSF and propagating the solutions of the Schro-
dinger equation in the p variable has been expressed in terms of eigenfunctions
having inversion parity and belonging to irreducible representations (IR) of the
permutation group of the system, it will be convenient to express the asymptotic
wavefunction in these terms as well. This has the further advantage that since
the inversion and projection operators, like the angular momentum operators, are
simultaneously knowable with the hamiltonian, the hamiltonian will not couple
functions with different parity or symmetry, and scattering matrix elements between
these functions will be equal to zero. Therefore, if the index n' includes labels
specifying inversion parity and IR, the matrix of coefficients G can be seen to
be block diagonal in II and T, and we will be able to solve for each symmetry-
parity combination individually. In addition, functions which have symmetry I'; are
orthogonal to functions with symmetry I'y for k # i; thus the coefficient submatrix
for the doubly-degenerate E IR in the P; symmetry is itself block diagonal in the
index . For this particular case, we have shown in (I) that the S matrix generated
by the E functions even with respect to v, = 7 is the same as that generated by
the E functions odd with respect to that angle, and therefore it is only necessary
to propagate one of the two functions determined by the E symmetry projection
operators PL, (i.e., either k = 1 or k = 2 but not both) to obtain all the scattering

information for this IR.

There are three possible permutation groups for three particles, depending on
the number of these particles which are indistinguishable, and the number of oper-
ators needed in each case differs. These three permutation groups are: P;, which
corresponds to a system in which all three particles A, B and C are distinguish-
able, and the only permutation operation under which the hamiltonian is invariant

is the identity; Py, for a system that has two indistinguishable particles (the AB,
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system), and for which the hamiltonian is invariant under the identity and one two-
particle permutation; and Pj;, for a system with three indistinguishable particles
(the A3 system), with six permutations under which the hamiltonian is invariant:
the identity, two three-particle permutations and three two-particle permutations.
To distinguish between the different arrangement channels, we have introduced the
index 7, which takes on the “value” A in the a channel (i.e., the A + BC channel),
B in the § channel (i.e., the B + AC channel) and C in the v channel (i.e., the C
+ AB channel) for an ABC system (P;). In the systems AB; or ABB' with B and
B' indistinguishable (P;) it is limited to the values A (a = A + BC channel) and
B (both 3 =B + AB' and v = B’ + AB channel), and for an A3 or AA’'A" system
with all three atoms indistinguishable (P;), it is limited to just the value A. Thus
7 will label a set of indistinguishable channels, and specific linear combinations of
functions in each member of these sets of channels will be eigenfunctions of the
projection operators P{,‘ and will consequently belong to the I'y IR. The symmetry
between the channels allows us to use the permutation operators for P, (where p
can be 1, 2 or 3) to find the form of the wavefunction in all channels of type 7 in
terms of any one of these channels, using the methods discussed in (I). For the cases
P = 2,3, it also imposes certain conditions on the coefﬁéients of the distinguishable
particle wavefunction to ensure symmetry, and it will be seen that it is only nec-

essary to explicitly consider a single channel out of each set of channels of type 7.

We have
RS 353! TR T LN Ut
' &
where the value of 7 will depend on the asymptotic atom Ax. For the P; group,

the UJMTam’ gre;
q,.]M{F;,:A},n' _ \IliMin'

T=A
gIM{Tn=akn’ _ g M’ | py (3.3.2)
‘I,£=MC{I‘;.=A}»" — \I,#M,n'

The “symmetrized” functions ¥JMTxn' in this case are exactly the same as the

functions defined in each arrangement channel; the notation is given here as it will
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be used in the general formalism. In the case of the P, group, there are two distinct
sets of arrangement channels, and the symmetrized asymptotic wavefunctions may
be classified in terms of each of these two sets by the 7 label. Therefore we have for

equation (3.3.1): IMITma ! A '
e = g
g/M{Te=A" ' _ pa" gIMn’
TJ—I\?{F =A"},n' Y .;!Mn' Py (3.3.3)
‘I’r:B * ' = PA ‘I’ﬁ ’
‘I’;{ng{rth }n — PAH‘Il;M,n

and the inverse expressions are

! JMA'qn' JMA" 0’
1 ! 1 n ]
‘I,;M.n = piMA | g IMATn (3.3.4)
gIMn' _ \I,;MA','*' - ‘I’éMA”’n’
bt

Finally, for the P; group all arrangement channels are indistinguishable, giving

QJM{PA=A1},'I, — pr W;M,ﬂ'

T=A
‘I’f:fA{F,,=A:},n' — }")A,‘I’;M,n' P3 (335)
‘I’:r.A{Ph=Eh},ﬂ' — ﬁkEk‘II;M,ﬂ’

We have operated here on the § channel function (rather than on the a channel

one) for the reasons discussed in (I). The inverse relation is then

‘I’;M,n' — ‘I’iMAl’ﬂ, + ‘PXMAia"’ + Z‘P:{ME'”"' (3-3'6)
’ k

The expressions for ‘I’iM’"'(p,Ca) and ‘I’.{M’”’(p,(},) can be obtained by using the
three-particle (cyclic) permutation operators of the P; group on the ‘P;M’"'(p, ¢s),
the effect of which is to replace the index 8 by a or ¥.

In order to determine the symmetry properties of the distinguishable atom
reactance and scattering matrices, we begin by substitution of equation (3.2.5) into
equation (3.2.1). We replace the index n' by the set of indices A'v,55.9%, and

choose the coefficients

J vy, 53,05, - Aoy, 5505, I, 55,95, — IX'v5, 55, -0, (3 3.7)
Avaja Y Avagafty Avaja QY Avy a2y *e
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where W may stand for either R or S. The choice of index —Q), in the W function
will be seen to make the scattering matrices become the identity matrix and the
differential cross sections of section 4 go to zero in the absence of a potential; it stems
from the fact that for the incident wave of the system, Z, which is the projection
axis associated with the quantum number m),, and zys, which is the projection axis
associated with the quantum number Q),, are antiparallel. The corresponding R
or S matrices are called body-fixed helicity representation matrices. The resulting
equation is

m..

J v
IM v, 5, 93(rx
I VD O NCWNERAY Sp=

raR
Qa=-J ja=|0,| va=0 A

J
-1 J.a4 Ao, 5,0, JAv Y T M
|vs] 7 Z (Sxﬂ: (RA)5AVAAJ‘;6’A' Y+ C" (RA) Wyosinat )
Q;’:——J

(3.3.8)
The functions S and C depend on the choice of W, and are given in equation (3.2.8)
for the S matrix and in (3.2.13) for the R matrix. The relationship between (3.2.1)

and (3.3.8) is

JMmn' _ JMA'Y' j'q’
M = N gAY gl (3.3.9)
x'vljlnl

where Ai;::j,n, is the general one of (3.2.1) rather than the particular one of (3.3.7).
The action of the various permutation operators which appear as part of the
projection operator ﬁ{k on a general function was given in (I), as was the result of
applying them to the Dféw . With this information, we can write the corresponding

symmetrized asymptotic wavefunction as

JMT 7' ”1- ] ﬂ, .IM
A e 'Bx—-ao ZZ Z Z ¢ xi, Dira, (02, 62,72, 92) Z X

T A Q.=-Jj.=|0,] v, =0
_l ¢1'(7'A) J 5-”"'*' R 61' !71_,] ,ﬂ‘r, C R JI"'r v,_,J ,—ﬂ:_,
I'U-Fl TARA Z M, ( A) T, j, 00 + ( A) T, 5.0 )

Ql=—J
(3.3.10)
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in which we have used the fact that, since the arrangement channels of type T are all
identical, the form of the functions in these arrangement channels must all be the
same, and therefore we may replace the label A in these functions with the label ~.
The composite index 7 is defined similarly to X, i.e., 7 = {rv,7:}. The coefficients
L& j, are as given in (I); they are defined so that a summation over A will result
in non-zero contributions from all channels of type T and zero contributions from
channels of types 7' # 7, and a summation over both A and 7 will result in a single
term from each arrangement channel. (A fuller justification of the summation over =
is given for the asymptotic form of (3.1.1) in appendix A; the arguments used for the
latter case are completely applicable to (3.3.10) as well.) The X channel coordinates
are considered to be functions of one of the sets of X coordinates, where ) is now
a summation index and takes on the values {a,3,v} and X is an arbitrary but
otherwise fixed value corresponding to the asymptotic arrangement channel, i.e., X
is either a, B8 or 4. For example, if we choose } = B, then the a and 4 coordinates
are considered to be functions of the 3 coordinates, for a given configuration of the
system. At infinite hyperradius the functions in different arrangement channels do
not overlap, and thus wherever any of the A channel functions is non-zero the v and

x functions will be exactly zero if Avk is a cyclic permutation of af8y.

Applying the permutation operators to the function (3.3.8) for each value of )
results in a new function localized in an arrangement channel ", where the ) and
A" channels are of the same type 7 and A may or may not equal \"; comparing
this result with the original functional form (3.3.8) after replacement of A" by )
yields the symmetry properties of the reactance and scattering matrices. In the case

of the P; group, we get from the operator which permutes 8 and v the following

distinguishable atom symmetry properties:



LA 1]
avpiafla
Wa”AjAnA
Bvpipfp
Wﬁvjn
Bvpipfp
YvejB{lB
BvpipNp
avajafla
) ']
avyja )
Wﬁvnia Qs
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Y [
— (_1\ia+7 avyJa 0,
- ( 1) AWavAjAQA

LK1 4 !
— (_1\iB+3s YvpJisilp
- ( 1) BW‘YVBjBnB

. o P [ jl Q'
= (_1)JB+JBWﬁ::J.BBn: o )

[ 1
— (_1\ia+7t Yvpifls
_—( 1‘)JA JBWQI}AJ'AQA

1 o ’
— (_1\iB+J avy JA 0,
= (F1)TAW as

(3.3.11)

By comparison of equations (3.3.8) and (3.3.10) and using the relations of equation

(3.3.11), we may derive the following relations between the irreducible representa-

tion R and S matrices and the corresponding distinguishable particle matrices:

YOCNAA
w Avajalla

PORAN
w AvajaQla

PUCNAN
w Bupjrfls

WA"Av'Aj'Aﬂ'A

Buvgjels

Avajafl

A"Bojsh0h
W AvA J'AnA

A'Bup a0
w Buvpseilp

A”Bv'Bj'B 018
w Bupieils

- { V2
WABuRaNs _ { VZWERRME even
0
_ { V2
0

vaialla & ;

Jja or ji odd
ja and j) odd
Ja or j, even

AR
avajalla

+ nl .
ﬁW;: ;ji:ﬂ; Ja even
Ji odd
1 !
av, FA 0, )
Whonjpna Ja 0dd
Ja even

A ja odd
Bug jp N
Wavf]fﬂ:

ja odd
JA even

_ 1rBvRIs0h i wrYveisfn
= Waueimas + (=1 Wgoninan

— whveiafs _ i v YvBinfs
= Waopinan — (—1) Wg, 2 oax

L) nl R .
{W::"AJA A ja and jj, even

(3.3.12)

(3.3.13)

(3.3.14)
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The inverse of these relations is

WOVAIADL _ prA'AviTA ) + WA Avada )

avajafla AvajaQla Avajafl

Bvpipfn _ 1 WA,B"'leBn’B + WA”B"EJ'QQE

Bveinfls — 9 Buvpjpfls Bupjp{ls

av'ja _ 1 WA AR | g A" AvL 0"

Bvpjipfls — \/5 Buvpjeils Bupjafilp (3.3.15)
WBeia0s _ 1 WA Bvain® n A"Bupjp0p

avajafla \/5 AvajaQla Avpajafla

woveiate _ (FL)™ (1 a'Bobiann  prA"Bebin0l
YvBJB B 2 Bugjpls Bupjsils

Since all three arrangement channels are indistinguishable for the P; permuta-
tion group, 7 may take on only one value, and so it is not necessary to label the P;
IR W matrices of (3.3.10) with 7 and 7'. We can therefore drop the T labels for all
indices. To obtain the P; group relations, we take the results of the P, symmetry
given in equation (3.3.11) and use the symmetry with respect to cyclic permutation
of the three atoms to write?

Avlj'ﬂ' . V”’j'n' _ Nv’j'nl \
kajﬂ - vajﬂ - anjﬂ

Y T v o 70 o o M Tl i o
Wosa® =Wejia = Wi
t 1yt [ FeYi 11
a1 L kv j O __ Av'i'Q
qujn - uvjﬂ - nvjn } P3 (3.3.16)

P U iy Av'§'
Wieia = (=177 Wila

A”Ijlnl _ it Vvljlnl
Wuvjﬂ - (_1)] 7 WAvjﬂ y,

By comparison of equations (3.3.8) and (3.3.10), and using the relations of equation
(3.3.16), we may derive the set of relations between the R and S matrices for the

irreducible representations and those for distinguishable particles:
WA’ _ W;‘\:J{, oL 2W::j§;n' 7 and j' even
vifl 0 j or j' odd
jorjo

LYl L e
WA {w;:jg,“ +2Wyed®  jand j' odd
0

jor j' even (3.3.17)
Vg WA — W i+ even
Wom’ © = ¢ VaWEoA" j even, j' odd

—ﬁW::;{;n’ j odd, j' even
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The inverses of these relations are:

4 ] t 10!
IWA"’ i'a ZWE” ia j and j' even
viQ vjQ
ka'J'ﬂ' J g EJ !
= 1 Agv’ 2 v . )
AvjQd \ sWain j WanJ j anflj odd
{ 0 j+ 3 odd
¢ 1y ALr’s 'a' _1yEYj'Q . .
WvJ}, va J and j' even (3.3.18)
1 Azv'j'Q’ 1 Ev'j'Q’ . .
L sWain sWain 7 and j' odd
AviQ Ev'j'Q) . .
J TWvJﬂJ j even, 7' odd
Ev';'Q’ . .
\ TW”JQ j odd, j' even

We can define the parity wavefunctions ‘II;MHI"”"' by ™4

1
JMT;n' g MO’ JMIITy ' _ 1 5 g, JMTa '
BT =2 e M = (14 (1P R (33.19)

Since the inversion parity operator acts only on the generalized Wigner rotation

function as IDJM = (=1)7DIM  we get from (3.3.10) that
7,—0 g

vmaa

mn-
JMIIT, 7' v,,J rLal, P JMH
‘I’ T Rx—’oc Z Z Z Z T;]-r ir Qs (BA"#A"YA’IL’A Z X

T A n,.:-JJ,_‘n,| ve=0
¢1' TA) I Ja! r'v! 13, Lal, Jl‘rv 11, L=,
| I Z (S?(,) '(R;)&n Ty Q¥ v +c (RA) TV, ],-f;” i )
raRa Qr=—J i
(3.3.20)

where the function 'Dfr],"n is defined by

(ola¢k,73,¢)\) DMQ(¢Xa0A7¢A)’P (COS'YA) (3321)

and the D§}}, are as defined in equation (2.5.2) of (I). The orthonormality properties

of this function are given by

D* 507 T (03, 62,72, %) DY (03, B2, Y2, %) sin 03 d8rdebx sin yadyadia

_1+4+(=1)
N 2

(3.3.22)

J+H60 ] ' T [}
a 5:,’ Sa 6n 5} 53
Since

DM = (—1)7+Ip/MI (3.3.23)
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we can rewrite (3.3.20) with the range of the summation index 2, limited to non-

negative values as:

mﬂ.
JMIIT, T'V'T,j;_,ﬂ ' JMTI
A , Rx—vw Z Z Z Z TA].,.D Jr (0X1¢X17A1¢A)

T A ,=0j.=|0,]
J

¢-r "'A) 1
Z ’I‘ARA 1 + 82 Z

v,=0 ., Q=—J

J0" r'vl,i,0Q, JI"r v, 5., -0,
{ (S-?ﬂ: (R’\)arvfjfﬂ:! +C‘?ﬂ (RA) TU, i 0

" ' In 1} Jr 130t ﬂ
+(—1)7+0 (si;‘_’;,,(m)a;,"; ’,,,, N (RA)W,,,’J",,,,’ )
(3.3.24)

With some straightforward manipulation this can be reorganized into the form

JMIT,r'v., 5, Q' DM
b I ‘RMZZZ Z ¢23s, Dira, (O3 62,72, 92) %

= X f.=0j,=n,|
1
0 \N3 7
Z ¢?(’f‘,\) 1+ 601, Z
0 ’I‘AR,\ 14 5%7 a0

Jo.n! JH'r'v',j',n', JI'II‘T v ,]',—-ﬂ',
(Sm, T(R'\)Erv,.j,.f;’,'f T +C'i"ﬂ (RA) TV+Jr n'7 v i

(3.3.25)

in which both indices 2, and Q! are greater than or equal to zero, and

" " 1+ (_1)H+j"l
X000 (Ry) = (=1)% 97 ks | R
M., ( A) ( ) | ‘F| AZ (1+50 )_;_(l_l_b.o”)%

xC(Jj¢; Q" -Q1,0)C(J34Q,,— Q.,.,O) (R;\)
(3.3.26)
where as in section 3.2 X stands for either S or C, and similarly X stands for either
S or C. In addition,

a’, a,
o+ (17T )

mr.'vr';,j"r,ﬂg, — -r'v.’r‘,j.'r, ( 9]
TUr Jrily TVrIr 0 1 0 L
(1446 ;,)’(1‘*'50,)’

(3.3.27)
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and

Jrr'v:_,j"r,n:_, —1)J+HWJFf'v;,j;,n:_,
WJTII‘T'”-,.-IJ':.;ﬂ',l TYrjr O +( TVrJr —8r (3 3 28)
+Jr Qs = 1 1 ot

T (1+8 )3(1+83,)3

where ' > 0 and > 0. (The terms (1 + 6% ) are needed for the °S"™T matrix to

be unitary.) Furthermore,

(EJII)T"’LIJ':-'Q:-I _ (EJTI)T'V,’,,:JJ,IQ:,:=0 — 1 [1 + (_1)J+H] 61"1:"’,]';,9:_, (3329)

TUrJr =0 v, 5.0, 2 7'"1'.7‘19:.

(WJHF)*'"','J'L:Q',' _

i < L (cayem) (e

TUr jr 1,=0

(3.3.30)

BN N

(er)r'v’,,j',,ﬂ’,,=0 _
TV, jr 0+

[1+4(-1)7H1] (Wﬂﬂ“)f'"'f:i',lﬂ’,,ﬂ

TUr I8l

As a result, the = 0 rows and ' = 0 columns of E/I and WY can be omitted
for J 4+ II odd, which decreases the dimension of these matrices compared with the
J + 10 even case. The WJT matrices have  and Q' ranging from —J to J, while
for the WY matrices these indices range from 0 to J for J + IT even and from 1
to J for J + II odd. The W'T can be expressed in terms of the WY as follows,
with II' and II" defined so that (—1)7 = (-1)T' = —(—1)1";

4 ’_ 1 -1 !
WIIL'T\T ¥ dpi 10| — o -
( )vaj'rlnfl QT - nrl -
|1 o 1
1 JII'T\T ¥,0d 1951 o '
W) Q.0 = 0,0, # O,

(W) T % s [0

(WJI‘)T'”:.Ij.',I n:.l = { T, 3. [0y ]

) 2.09,>0
T, 7+, +(Wm"r)f'v',:j’,, |nf,.r| by
T”Tjrlnf|
(Wmlr)flﬂ;,ji_'lni_'l
79,37 Q0] '
2.9, <0

—(WIETYT T d (]

\ T0,Jr |04}

(3.3.31)
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The general form of the parity wavefunction (3.3.19) is obtained from equation

(3.3.25) through right-multiplication by a coefficient matrix:

I = Y T AT (1 8
Tlv'jlnl
dz(7a o
nx—.ce ZZZZ TXJfoII\ln(eAa¢Aa7A)¢A)Z T( )GJHF ( )\)
T A OQ=0;=0

(3.3.32)
in which, using equations (3.3.25) and (3.2.5), we have defined

J
! -1 " ' " '
Gig ™ (Ra) =ve| % ) [S,{,‘,I»ﬂ (RA)ALGH™ +Cip® (Rx)B,f,I},‘,""] (3.3.33)
Q=0
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3.4 Asymptotic Transformation from Hyperspherical to Jacobi

Coordinates and Determination of the R Matrix

The wavefunction of equation (3.3.32) may be expressed in terms of hyperspherical
coordinate surface functions. The overlap between arrangement channels in the
asymptotic region goes to zero, and the LHSF are simply related to the wavefunction
for an isolated diatom and a free particle. In this region, only the effect of the
symmetry operations links the different channels together, since the magnitude of
the LHSF in the regions between the arrangement channels (corresponding to three
seperated particles) goes to zero. For example, in an AB, system, the LHSF in this
region may be divided into those of type A (A + B;) and those of type B (linear
combinations of the two B + AB channels). Due to the isolation of the arrangement
channels, the primitives of type 7/ # 7 will not contribute to LHSF of type 7; for
our AB; example, the LHSF of type A will have zero contributions from primitives
of type B, and the LHSF of type B will have zero contributions from primitives
of type A. We can therefore define a new numbering index n, to enumerate the
asymptotic LHSF of type T in each symmetry I', such that this index has the same
value as the index n determined by energy ordering of all LHSF with symmetry T

accordingly, there is no n,s index with the same value as an index n, when 7' # 7.

We then have
$JMITs __ o JMIITs (3.4.1)

p—oo - Tilr

where the 7-dependent set of surface functions is defined by

Qin'r h(ci;ﬁ) ZaTVJnﬂ, (p) fuJ (CA’ p) (3'42)
v
and
i (wa; p)
'rv]ﬂ (<X1P) Z E;JD (ex, ¢A,‘YA,¢ )_ws-;;‘:_ (3.4.3)
A
with numerically determined ¢J, ja- The oL iQn, (P) are determined in the process of

calculating the LHSF (see paper I). (This representation of the surface functions in
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terms of 7 is only valid asymptotically; it is possible in the regions where the FTJUT%"
of one channel overlap with those of another arrangement channel of type 7' for the
LHSF to contain contributions from both 7 and 7' basis sets.) The expansion of
the wavefunction in the LHSF which corresponds to equation (3.3.32) is obtained
from equation (2.1.9) by modifying the labeling of the coefficients 5'1T' from n to

T,n, according to equation (3.4.1):
TN (o, €5) e P Z Zb, " (03 P) 2T (55 P) (3.4.4)

We may now solve for the R/IT matrix for each parity and IR. Multiplication
of both sides of (3.4.4) by the function @{f‘,{?""({;; p), (where 7 is defined to be the
type of arrangement channel X), choosing p = p;,... = Pmaez and p = p;_ i, . 41 =

Pmaz, and using the orthonormality of the LHSF, we find that

7' "f (pm“”pm‘“’) - p"‘“' <§£Af{fmh(CX;ﬁmaz)‘\I’;MrH‘hn (Pmaz,C:\)> (3'4'5)

Substitution of equations (3.3.32), (3.4.2) and (3.4.3) into the right hand side
of equation (3.4.5), and noting that the integral of two asymptotic functions in

different arrangement channels is zero, yields

!
b7 (Pmazi Pmaz) = Pas D O 6I0Eqn, (Prmae)|vros|~* el ot
Avit vl 'V

< T (Bx, 62, YA, %)

D (oka¢la7k’¢k)>

r ﬂ .
/tgv J’Q'(“’A)Pmaz)‘(mcm (RA)smwAde

ARA Fvifd
(3.4.6)
where R) and r) are considered to be functions of wjy:
w . W
R) = pmaz cOS 7’\ TA = Pmaz il —= (3.4.7)

. . . . < 11 i'n’ —1)7+0 .
The integral over the D%WH functions is analytic, yielding 5;90 M; this
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reduces (3.4.6) to
(1 + (_1)J+II50 )

-r n,. (pmazypmaz) = Pmaz Z a’rv':ﬂn., (Pma:) > ( rAJ)
Avivid
tJ 130 (wk. ﬁmaz) ¢‘F(rk) Gmr’ﬂ'(Rx) sin WAdLUA
Tv'j ) R 0
(3.4.8)

in which we have without loss of generality simplified the notation by replacement
of ¥ with . At this point we substitute the explicit form of G‘mr'" (Rx) from

equation (3.3.33) into equation (3.4.8) to obtain

JIIT ;' - _ 8 JIIT 1A+ (= —1)7+149)
bf,ﬂr (Pmaz,Pmaz) = Prmaz Z Qrv' jOn., (Pmaz)|v-rl 2 X
Av'viQQ/
JIIT,n' P#(r2) JII a' .
(cﬂ\J) A‘?ﬂ' rv Jﬂ(wk1pm¢z) ,\RA S (Rx)smw)\dw;\
+BJH,,n' / ’ (wX pmaz)¢‘?(r)‘)cm o’ (RA)SlnwAdw,\
0 rv' jO "'ARA

(3.4.9)
We can simplify this equation further by recognizing that the channel label X only
labels the coordinates wy, Ry and 7, and the functions all have the same form in
each channel of type 7. The sum over A therefore includes only the term (cr" )2,

TAj
and this sum equals 1. (This also eliminates the label k from the equation.) We

now have
1 1 _+_ -1 J+H60
bf,l;l,l:’" (Pmaz,Pmaz) = Pmaz Z a.,.,, i0n., (Pmaz)|'v‘?| 4 { (= 2) )X
v o3 Q0!
[A;.],g,r o ft,.,, ja(W; Pmaz) —5+ ;)S.mn (R) sin wdw
B [ 4250003 men) AT B (R)sim i
(3.4.10)
with
R = pynaz cOs d T = Pmaz Si d (3.4.11)

2 2

where we have removed the channel index from the variables, since the integration

may be performed in any arrangement channel coordinate system of type 7. Finally,
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we substitute equation (3.3.26) into equation (3.4.10) to get

. ) 1+ (_1)J+H5%
b{l;l,r m (Pmaz;p—maz) =Pmaz %ry jn, (Pmaz) ( 2
vzljn 1+ 65
a+a’ U 111+ (_1)H+j—£
E — —kz?
" lvﬂl( Y |h ?I [ 1+ 5?1’

xC(Jj¢0,-Q,0)C(J5¢; Q' ,—£',0) / t,{,,.jn(w; Prmaz)P7(T)
x[S7UR)ATT™ + CHR)BIE ™ | cos 2 dw
(3.4.12)

with R and r given by (3.4.11).

The matrix version of equation (3.4.12) has the form

biTII‘ (Pmaz 3 ﬁmaz) = aiTII‘ (pmaz) [sin (pmaz; ﬁmaz)A;{nr ‘+’cin(Pmaz ) ﬁmaz)Binr]

(3.4.13)

in which
[bm] (Pmaz,pma:) ‘rn.,. (Pmaz,Pmaz) (3414)
[azm‘]wﬂ( Pmaz) = a‘-ﬁgx‘)n, (Pmaz) (3.4.15)

v n+a'| U 1+(_1)J+H50
[x;m]”; (Prmasi Pmaz) = 67 phas(-1) |FFrws|? ((1+5?,)(1+5°{3)>

% Z (1 +(_1)H+J—¢)C(Jj£;Q,—Q,O)C’(le;ﬂ',-ﬂ',O)
L

X / Tan(w Pmaz)¢'rv J(T) (R) cos ——dw
(3.4.16)
JIr JIT n' JIr JIIT ,n'
[A }v i Arv' i [B ],, FUL = B.", Jrn: (3417)
where (3.4.11) must be used to perform the integration over w. For a system with

P; symmetry, T takes on only one value, and equation (3.4.13) is the complete

description of the I' IR. As such, we can drop the index T and simply write

Py bm(Pmaz;pmaz) = am(ﬁmaz) sm(Pmaz;P_maz)Am
(3.4.18)
+cJ'II (Pmaz; Pmaz )Bm
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When a lower degree of symmetry exists, it is necessary to consider the set of b/
matrices for the two or three different distinguishable arrangement channels. In
these cases, the index n' spans all the values of T for this system, and the bJ''T',
AT and BJTT matrices are rectangular. The square matrix b7 for the I' IR

coeflicients equivalent to equation (3.4.18) is constructed from the various pieces as

follows:
bJHr a 0 S 0 AJIT
JIIT r=A r=A r=A r=A
Pri b “[bﬂf]“[ 0 m]([ 0 s:EBHAizﬂ
(3.4.19)
C 1} B/
(% )
0 C.iz||BY
b/a, a/l, o 0
b/, 0 0 all
ST, o 0 AT, cZ, 0 0 BT,
o ST o A1+ o ¢l& o B/,
JTI JII JII JII
0 0 s‘r—C A"r=C 0 0 cr—C Br=C
(3.4.20)

In equation (3.4.20), we have dropped the superscript I' since there is only one
irreducible representation. For this equation, replacement of the T labels with the
appropriate channel labels a, 8 or v yields the distinguishable particle representa-
tion of the system, as is proper for a system with no permutation symmetry.

Equations (3.4.18) through (3.4.20) all have the same format, namely that of
(3.4.18):

b/l — /I [smAmr +cmBm] (3.4.21)
with the definition of the matrices in the right hand side given implicitly in those
three equations.

Substituting (3.4.20a) into equation (2.2.5) with p = pmaz and 5; = pmaz, and
using equation (3.2.15), we derive the following expression for the reactance matrix

in terms of the logarithmic derivative at these values of p and j;:

e S amrém)_] (amr5™ - YIRS (3.4.22)
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From our choice of formalism, the matrix R/’ determined from this equation has

elements denoted by [RJIII‘]:”';‘-;' -0 ; 1t is important to note that the ordering of

the row and column indices for this matrix are not the same.
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4. ASYMPTOTIC ANALYSIS - DIFFERENTIAL AND INTEGRAL
CROSS SECTIONS

4.1 Scattering Amplitude Properties

The superscripts of the scattering amplitudes f R denote the initial arrange-

Avajafla
ment channel and state for the system, while the subscripts denote the product and
its state. In the general case where all three atoms are distinguishable, there are
nine different sets of scattering a.thplitudes corresponding to different selections of
initial and final arrangement channels for the system. In the case of a system in
which two or all three of the atoms are identical, irreducible representation scatter-
ing amplitudes may be used instead; however, these IR scattering amplitudes are
related to the distinguishable particle scattering amplitudes by the symmetry oper-
ations of the permutation group, and therefore distinguishable particle amplitudes
may be obtained from the IR amplitudes. Differential and integral cross sections are
obtained from scattering wavefunctions which differ from (3.1.1) and (3.1.3) (if the
three atoms are not distinguishable) in that they must satisfy the Pauli principle,
as discussed later in this paper.

Application of the projection operators for P, to the general space-fixed scatter-
ing form (3.1.1) and the helicity form (3.1.3) generates the irreducible representation
forms

‘I,gh‘r v,lJ ,m Rx_,,, E Z Z r).;,‘P?mf(r")x

T A vejrm,

(4.1.1)
zk ‘R r'v] IJ l"‘,l v J m' ’k’RA
T 151'”7;1‘;1' + -f'erm (01’ ¢X) R

in the space-fixed representation and

Tyt '0,,] ,m
¥ e D D

T A v.j.fl,
. tkfo
kry, i Ra Sf lJ yml, T"’.’,.IJ.:.Im:.I € bf
€ ’ (r")érv:z a, T TV, jr 02 (6x,41) Ry ‘Pm,(rk)

(4.1.2)
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in the helicity representation, where we have again replaced the indices A and X'
with 7 and 7' where possible. (The derivation of these equations is done in appendix
A.) As was mentioned in section 3.3, the coefficients cl;:'\jT cause the summations
over T and A to access each arrangement channel once and once only. In the case
of the P; group, for which the atoms are distinguishable, these equations reduce
to equations (3.1.1) and (3.1.3) with replacement of the channel labels a, 3, and v
with the 7 labels A, B, and C, respectively.

Applying the permutation operators to the functions (3.1.1) and (3.1.3) for
each value of X' results in a new function localized in an arrangement channel \"
of the same type 7, where A' may or may not equal \"; comparing this result
with the original functional form (3.1.1) or (3.1.3) for the A" channel yields the
symmetry properties of the distinguishable particle scattering amplitudes. This
has already been done for the body-fixed helicity reactance and scattering matrices
using equation (3.3.8); proceeding in a similar manner we get the same symmetry
properties for the space-fixed and helicity scattering amplitudes as were found for
the scattering matrices. These properties may be found by replacing in equations
(3.3.11) through (3.3.18) the term W with f and the terms Q and Q' with m and
m'; the results will be presented explicitly below for future reference.

For the P, case, we get from applying the operator which permutes 3 and v

fﬁV'J"m' _ (_1,)j+j,favljlml \

avil vl
foe™ = (F1 fA

™ = (-1 fre A Py (4.1.3)
foh = (17 A
ford™ = (~1)+d o d

with analogous expressions being valid for the space-fixed scattering amplitudes.
(For simplicity of the notation, the channel labels of the v, j, m and  quantum
numbers have been dropped; they are the same as the channel index of the super-
script or subscript in which they appear.) The factors (—1)-""*"" are determined by

comparison of the result of the operation on equation (3.1.3) with the original equa-
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tion; the (—1)7 terms are the result of replacing r with —r in the wavefunction of
the diatomic molecule 4gA,. Due to these relations, there are only 5 independent
scattering amplitude matrices, fg, fﬁ 2, £, and fﬁ the other 4 are related to
these by similarity transformations.

By comparison of the equations (3.1.3) and (4.1.2), and using the relations of
(4.1.3), we may derive the following relations between the helicity scattering ampli-

tudes for the irreducible representations and those for distinguishable particles:

A:v'g;m { :‘:J‘J)m j and j' even
i j or j' odd 414
" ow;m' : and 7' odd ()
A:;"’]m avJﬂ ].an._yo
I j or j' even
A Av'ji'm' _ a:'._‘j;m' j' even
= J
Buif { j' odd
A = { 2fged™  §' odd
J j' even 415
A Bv'j' ﬂv i'm' (4.1.5)
A: k) m' — av;ﬂ ] even
i j odd
et - (R
7 J even
AIB 1 ﬁ L
o S A S VM N (416)
A”B"'j'm ﬁv J m ‘Yv J m' od o
f Bvjf ﬂan - ( l)J Bvifd

Analogous expressions are valid for the space-fixed scattering amplitudes. The
inverse of these relations is

favljlml _fA’Av’j’m' fA“A"’j,m,
avjfil - AvjiQ AvjiQ

fﬂv J ml _ l fA'B”,J.’m' + f "Bv’j'm'
Bvid - 2 Bvjifd BvjQ

fav i’m' _

1
BviN - —\7_—5 (f BvjiQ

A’Av’j’m, f ”Av’j’m'
Bujf (4.1.7)
fﬁvljlml _ A’B”’j’ml ”Bv,j’m,

avil —7—5(1’ avjn t 7 avin )

fﬁ” i'm' (——1)-7 (fA'BV'j'm' _ fAHBvljlml)
2

yvifl - Bvjifd BvjiQd
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with analogous results for the space-fixed quantities.
For the P; group, we can take the results of the P; symmetry given in equation

(4.1.3) and use the symmetry with respect to cyclic permutation of the three atoms

wrtel
to write Av'jim! fw'j’m' _ f:w'j'm' \
f Avi T Jewil T Jxvild
A”’j’m’ _ yvljlml _ K:”’j’m'
fuvjﬂ fm;jn — JAviN
V”’j’m’ _ "”l J-lml _ A‘U,j,m'
fAvJ‘Q — .fyujn —_ fnvjn } P3 (4.1.8)
Avljlml _ i+ .7 Av'j'm'
Fawin . = (1Y% fioia
A [T . o L
fooia ™ = (=17 f50a™

Therefore in the P; permutation group, there are only two independent scattering
amplitude matrices, which may be represented as fy and f¥.

By comparison of equations (4.1.1) and (4.1.2), and using the relations of equa-
tion (4.1.8), we may derive the set of relations between the helicity scattering am-
plitudes for the irreducible representations and those for distinguishable particles,
with analogous expressions being valid for the space-fixed ones:

f:;hv’j'm' — {g;:;f-,’m, + ZfKZ;f;m’ J and.lj' even
j or 7' odd
A im { frud™ +2fyd™  jand j' odd

vifl 0 . o
or j' even
Av'j'm’ vv'j'm’ J .,] (419)
s fxvjn = Iavjn ]+ 3 even
Ev'j'm’ _ vo'j'm' . .
foin = \/§fxvjn j even, j' odd
uv'j'm' ] y
_\/if,\,,_-,-n j odd, j' even
( LU [T
1eA0'i'm' | 2 (Bv'j'm' .
v 3Jvin + 5 foin j and j' even
f'\”-’m = 1¢43v'i'm' | 2 (Ev'ji’m' .
Avj 3fuin + 37050 j a,nc}] odd
0 j+j' odd
\
(1 pA17'5'm' 1 tEv'j'm' . .
slojn — 3Jvin j and j' even (4.1.10)
1¢A30'j'm' 1 (Ev'j'm' . .
fw'j'm' =3 vjQ — 3Jvjn 7 and j' odd
Avjf - 1 ¢Ev'j'm' . .
ng.,jn j even, 7' odd
1 pEv'j'm' . y
\ —%f,,,'n j odd, j' even

Since all three arrangement channels are indistinguishable, 7 may take on only one

value, and so it is not necessary to label the P; scattering amplitudes by 7 and 7'.



I11-40

4.2 Relation Between S-matrix and Scattering Amplitudes

We have determined the helicity scattering matrices S not only for the specific ir-
reducible representation I' but also for a specific total angular momentum J and
parity II. Accordingly, it is necessary to obtain the partial wave expansion of equa-
tion (3.1.3) in order to express the scattering amplitudes in terms of the S/ The
expansion for the plane wave term in terms of total angular momentum quantum

quantum number J is known to be?'™®

'k" nAYm(erA’eri\)n — o0 (zk'R ) Z 5MD.%M(0X’¢A’7A’¢A)X
SV ATY? (4.2.1)
2T+ BT T (e~ brBa = FU4) _ gM gilkeRa=30+30)

Substitution of (4.2.1) and (3.1.4) into (4.1.2) yields, for the incoming plane

wave part of the expression,

Thr' v,,J ,mf, 7F7IJ+J1"+1 2J +1 ¢r'vfr,jfr, (TA)
o (1), ~ § :cr,h L x
v, 5!, A

Ry—oo

Tx

Jm!, k?’v' i —E(J+3L)]
Dy (B0 b2y a)e s

(4.2.2)
(where we have used the definition (3.3.21) for the D functions) and for the outgoing

plane and spherical waves we find that

Tar' V,l l .,.: ¢1-"(TA)

TAjr
JrAv,jy ™A
3 I+ 41,37 1 1 '
T3 Jm_, [ks Ry —E(J+35r) vl 4,
[E( kzR» DJ'fm',,(0""3‘5’\””"“)6t T ? ]51-::,3,
'k?RA JPT 120 [
Z TVrva‘r-rJf MT (0A1¢A) (7A’¢A)
(4.2.3)

The m' and —m' in the superscript and subscript of D in (4.2.2) and the m' in the
corresponding term of (4.2.3) resulted from the §¥ and 6 of (4.2.1).
Let usin (3.1.3) replace A’ by 7' since the latter scans the independent arrange-

ment channels as explained in the paragraph preceding (3.3.1). The partial wave
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. . T,v' J" m
expansion of the resulting ¥ ="'

o0
‘P;Iv:,:j.,,.lm' Z z ZZ CJMI‘;.T o' ,J ,m '\I’JMI‘).T v-r’Jr‘m (42.4)

J=0M=-J T

' corresponding to (3.1.7) can be written as

The expression in the scattering matrix formalism is obtained by replacing the index

m!, with Q":

‘I’];,.r v-.-lJ ,ﬂ_r, — Z CJMI‘;T v’ 'Jr n’,‘I’JMI‘}.T ﬂ,:] :ﬂ (4-2.5)
JM

JMT,r'v’ o'
where ‘Ii wrlv g

™ has the asymptotic form given by equation (3.3.10). Sub-
stitution of the asymptotic forms for the open parts of the S ?Jhn and C;Ihn from

equation (3.2.8) with

JTr'v, 5,0, v, i,
oo [S] = 51-',,3',6, T (4.2.6)
BJI‘T'v:,,j:,ln',l Sl = 51'"’.',1.7'.',:"“;: ré
TU, jr {1y [ ]_ TUr (s (4'2' )
yields
\IIF“T ”.,.IJ In.,.l I CJMF).T'U',J",Q', I's DJM [
5 (= I ) et D, (03, 6,2, %)
JMTk A
¢r'v;,j;,(rx) -1 —alkagr jo Ra—F(J+35)]
_—_lv_r,v, j’ | e iyt
raRx ot
(4.2.8)
Tar' V,.:J,:Q.,: JMTs1'v’ 13, L,
¥y (0)= —ZC D DI DS
¢ ( ) T Anf]-r (4.2-9)
IM 7Ta =3 slksRa—2(J+7r)] [QIT]T rrdpi =0,
nT(0A,¢A77A,1/’A) 2R 1‘0?' € [S ]-rv,j,ﬂ,

(The ST non-parity scattering matrices are related to the parity ones of section 3
by equation (3.3.31).)

Since the asymptotic expressions (4.1.2) involving the scattering amplitudes
and (4.2.5) involving the scattering matrix have the same initial conditions apart
from the axis on which the the projection of the rotational angular momentum is
specified, they can be simply related by

, ' ,
gTar'vl,iml, _ § :Kg:r’ Qrar' v 00, (4.2.10)
!
n'
rad
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Comparison of the equations for the initial wavevector (4.2.2) and (4.2.8) al-
lows us to determine the constant factors in (4.2.10) and also the coefficients

CIMTar'v1i0i 8 in (4.2.5); due to the orthogonality of the D functions, we must

have
= 5—5" (4.2.11)
1
CIMTur' s _ M (’_’M) eI (4.2.12)
l‘kr'v b

We may now equate the outgoing waves of equations (4.2.3) and (4.2.9) us-
ing equation (4.2.10) by substituting the values of the coefficients from equations
(4.2.11) and (4.2.12):

¢ -r'r("'A) v, 5, m! etks Ba
Z CE;‘J} rv: er:;L-I ,’(0’\"#’\) (‘YA,'l/’A)
TAv, 7.1, A
1 .
. o, [P [} (a I OVETETY alra)
== Z CTA].? v k . R r X
JrAv,j 0, 7 f’v’_,]’_, A A
s ke Ram § (T3] (70 _ [ GIT) 7 Vi
DI (63,6312, Ya)e b Ra 32N (1 T mer [T

(4.2.13)
Multiplication of both sides of (4213) by 1’;?'" (7X”7'¢'A” )¢r”v"“j“” (TA") integrat-
ing over yan,¥ar and ry» and replacing double-primed terms by unprimed terms

yields

rs' vf J m,
froniiar '(ax,d’,\)—

Vrig! 1, 3 gdei—ietl ° ol i m (4.2.14)
e 2J +1)DJ, 0 0|7 Ui dps
vT‘Urjf 2k7" IJ 4 ;( + ) n (¢A, A2 ) [T ]T”fanf

where the transition matrix T'T is defined as
TT =1-87T (4.2.15)

and the S’ are given in terms of the calculated parity matrices S’ in equation
(3.3.31). From this point forward, the quantum numbers v, j and 2 will be assumed

to bear the subscript 7 and the quantum numbers v', ;' and m' the subscript 7'.
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4.3 Determination of Helicity Cross Sections

The differential cross section for scattering is defined as the ratio of the outgoing
flux into a particular direction per unit solid scattering angle for a particular final
state of the diatom to the total incident flux. These numbers can be obtained in
irreducible representation format from the scattering amplitudes (4.2.14); however,
the calculation of these functions has been done in mass-scaled coordinates, which
affects the normalization of the wavefunctions. Accordingly, it is necessary to undo
the mass scaling before determining the cross sections. The unscaled formula for the
helicity wavefunction is obtained from (4.1.2) by replacing the scaled coordinates
by unscaled, and noting that the normalization of their associated functions may

change as well. Using primes to denote unscaled quantities, we have:

- I“ ¢ ’I‘ ) ; ) 1ot et
vy MEZE AT [Y"' (Bex, $es )™ v Ba 67,57

1k, R}
R, ]

(4.3.1)
FEra ™ (O3, )Y (12, %)

In terms of these unscaled functions, the helicity irreducible representation differ-

ential cross section is defined by

Tein’ ™ (Ox62) = "”

FIo ™ (02, 6)] (43.2)

T' o! Jl

The relation between mass-scaled and unscaled coordinates is?

1 1
H,vn 2 ] Hux : '
R, = ( ! ) I SN < ) r 4.3.3
L A L A ( )

o = mymy rn = ma(m, + my)
e = —2—=% =
" TR ma +my +m

my, + My

1

AT ) = (i)
mx + my, +m, pRren

where

(4.3.4)

We note that, from the forms of equation (4.3.4), equation (4.3.3) may be rewritten

as

Rx = axR); ry=aj'r) (4.3.5)
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where we have defined

1 1 1
3 2 0
ay = (M) - ( L ) - (M) (4.3.6)
) Hyx Byr

When two or more atoms are identical, the terms a) and ay are equal if the A and

A! arrangement channels are both of type 7; we will therefore use the symbol a, in
the following discussion when appropriate.

The wave vector kiy; in equation (3.2.6) has a magnitude proportional to
the square root of the reduced mass p. The function corresponding to unscaled

coordinates depends on the reduced mass pj .«, and accordingly
k'-,-,,j = a,-k.,.,,_.,- (4.3.7)

Therefore we have

' " )
rvj T T k"'”J Ra

(4.3.8)
kxojR) = kavjRa
Similarly, the channel velocities are proportional to =3 and the unscaled velocities
will be given by

Viy; = a7 Vryj (4.3.9)

The normalization of the function ¢%(r}) is determined from the equations

mas r' mas

/ﬁ |p2(ra)* dra =1 = a]? / ’ |(r3)]? drly (4.3.10)
0 0

and

'MI.

Ta
/ ()" drh =1 (4.3.11)
0
Comparison of these equations leads to the relation
$#(rh) = a2 ¢x(r}) (4.3.12)

Examination of the incoming plane wave parts of equations (4.2.2) and (4.3.1)

after taking into account the above information shows that

g m gl (4.3.13)
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Comparison of the outgoing wave parts then yields

froia 7™ (63, 2) = (a ) Frrsd™ (83, ¢a) (4.3.14)

and we can therefore express the differential cross section in terms of mass-scaled

quantities as

U 0

2
frogim 9,\,¢A)} (4.3.15)

rr'v'j'm' -2 Yryj
Orvj (HA, ¢A) =a. )
T’”'Jl

Substitution of equation (4.2.14) into equation (4.3.15) finally yields

2
roin” T (62) = Ydmea(62) [T77] 0™

o rvjfl

(4.3.16)

an?
k'r ‘v’
These differential cross sections are seen to be independent of ¢,.2

The integral cross section Qf:;:’,:jlm' is obtained by integration of (4.3.16) over
fx and ¢x. The integral over ¢, yields a factor of 27, and the orthonormality of

the d7 functions” can be used to get

1ot

2
I'r'v JI‘ r'v'j'm’
QLred'm' — }:(2J+1)’ [T (4.3.17)
"'”'J J=0
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4.4 Inclusion of Nuclear Spin - Observable Cross Sections

When the three-particle system under consideration has P; or P; permutation sym-
metry, the nuclear spin of the identical particles must be taken into account. The
hamiltonian which was used in the previous sections does not have spin-dependent
terms, and as a result the total nuclear motion wavefunction can be written as
a direct product of the spatial wavefunction which satisfies the spin-independent
(nuclear motion) Schrédinger equation and a nuclear spin wavefunction. This total
wavefunction is required to be either symmetric (for bosons) or antisymmetric (for
fermions) with respect to interchange of the identical nuclei; accordingly, the cal-
culated IR cross sections must be appropriately combined to yield the observable

cross sections.3?

The total nuclear spin wavefunction can be written as a product of three in-
dividual nuclei wavefunctions, each of which is a simultaneous eigenfunction of the
square of the corresponding spin angular momentum §? (with eigenvalue A%s;(s;+1))
and of its projection on the space-fixed Z axis §z; (with eigenvalue im,,). Alter-
nately, we may couple the spin angular momenta of the individual nuclei together;
the result is a simultaneous eigenfunction of the square of the total spin angular
momentum $? (with eigenvalue h?S(S + 1)), of its projection on the space-fixed
Z axis Sz (with eigenvalue hMs), as well as of the 52 and ;7 (with eigenvalues
as above). In addition, the permutation and projection operators of P, act on the
spin wavefunction as well as the spatial wavefunction, and the spin functions can

be chosen as eigenfunctions of the projection operators 15{ k'

For the case of the P, group, there are two identical nuclei with spin s and
another different nucleus; this latter particle is not affected by the permutation
operators and therefore its spin will not enter into the discussion to follow. The
quantum number S associated with the square of the sum of the angular momenta
of the two identical particles is an integer in the range [0,2s], and there are 25 + 1

Ms states for each value of S for a total of (2s + 1)? states. The irreducible
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representation associated with each of the corresponding nuclear spin functions can
be found by examination of the angular momentum coupling by Clebsch-Gordon
coefficients:3! since the spin functions contain a term C(ssS;mim2M,), functions
with S + 2s even will have A’ spin symmetry, while those with S + 2s odd will have
A" symmetry. (A more complete analysis appears in appendix B.) The irreducible
representation of the spin function is independent of the projection of S on the Z
axis.%?

The direct product rules for the P, representations are as follows:
A’ ®Al — A" ®A" — Al AI ®A" — AII®AI — A” (4.4.1)

For fermions, 2s is odd, and we require that the overall space-spin nuclear wavefunc-
tion have symmetry A"; accordingly, an A’ spatial function is paired with a spin
function of even S (symmetry A") and an A" spatial function with a spin function
of odd S (symmetry A'). Since for bosons the quantity 2s is even and the overall
wavefunction must have A' symmetry, the same S-rule (but opposite nuclear spin
symmetry rule) applies in this case as did for fermions: an A’ spatial function is
paired with a spin function of even S (symmetry A') and an A" spatial function
with a spin function of odd S (symmetry A").

The physically observable cross sections, which must obey the proper spin
statistics, can be derived by weighting the irreducible representation cross sections
by the relative number of states with even S and odd S. The number of states with

even values of S, including the degeneracy of the Ms quantum number, is

Ng = %(23 +1)(2s +1 4 (—1)**) (4.4.2)
while the number with odd S is

N = %(23 +1)(2s 41— (=1)2) (4.4.3)

the sum of these two quantities being (2s+1)2. Thusin the observable cross sections

the A' state will have a weight of z%_%—;, while the A" state will be weighted by
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Pt ot

'v'j'm'

N¢ . . .
@xns- I we denote the spin-weighted (observed) cross sections by o773 ™ , we
find that the appropriate values for these quantities for an AB; system are:
2s+1+(—1)2* _A'Av'j'm’ . .
. G 2,(_H o Avin 7 and j' even
Tavia =40 o jtj'edd
2s+1—(-1)*" A"Av'j'm . '
212:(4-15) g Angl 2 and] odd
2s+14(-1)2* _A'Bev'j'm’ .
a_Bv'j'm’ _ 2(2s+1) 9  Avjn J even (444)
AvjQ - 2.+1_(_1)2a A"Bv'j'm' B
22e+1) ¢  Avj Jj odd
204+14(—1)2" A'Av'ji'm' .
oAvim _ "‘(‘J*)"z 2s+1) 7 Bujl J even
BviQ - 2‘+1_(_1)2¢ AIIAvljlml .
2(2s+1) ¢ Buj 7' odd
Bv'j'm' _ 2s+1+ (_1)2' A'Bv'j'm/! 28+1— (_1)2' A'"Bv'j'm! 4.4.5
OBujn ™ Bujin Bvjin (4.4.5)

2(2s + 1)

2(2s+1)

In the (nonreactive) o4 cross section, it can be seen that the diatomic rotation parity

is preserved. As an example, for the case s = 1/2 (e.g., F + Hj), the observable

cross sections are

1 _A'Av'j'm' . 7]
At 19 Avs0 j and j' even
ahvim = {0 j+3' odd
3 A"Av'j'm' . o
19 awjn Jendj' odd
1 A'Bv'j'm' .
Bv'j'm' _ { 19 Avja J even
Avjl T ) 3 _A"Bv'ji'm' . 4.4.6
1 _A'Av's'm' .y
aAvljlml _ { 1 Bvj0 ] even
BvjQ - 3 _A"Av'i'm'
4 BvjiQ J odd
Bv'j'm' _ l A'Bv'j'm' _3— A"Bv'j'm'
Buj 29 Bojn 27 Bwn

The symmetry properties for the P; group are not as easy to determine. In

this case, there are three identical nuclei of spin s, and the sum of their spin angular

momenta S can have integer values in the range [0, 3s] for integer s, while for half-

odd integer s it can have half-odd integer values in the range 3,

3s]; the total

number of states is (25 + 1)3. The direct product rules for the P; representations
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are.

A1®AI =A@ 4 =4
A2@A1 =A1Q@ A=A,
E®@A =AQE=E (4.4.7)
EQA; =4, E=FE
EQE=A4,0A4;:0F

The number of symmetrized spin states can be determined in the following way. We
start with the set of states |s(1)m,(1))|s(2)m,(2))Is(3)m,(3)), where since the three
particles are identical s(1) = s(2) = s(3) = s. These functions are eigenfunctions of
Sz (with eigenvalue M, = m,(1) + m,(2) + m,(3)) but are not necessarily eigen-
vectors of $2 or of a projection operator. There are 2s + 1 unsymmetrized states
with m,(1) = m,(2) = m,(3), and application of the projection operators shows
that these each transform as 4,; there are 2s(2s + 1) unsymmetrized states with
me(1) = m,(2) # m,(3), which the projection operators couple with the 2s(2s + 1)
m,(1) # m,(2) = m,(3) and 2s(2s + 1) m,(1) = m,(3) # m,(2) states to yield
a total of 2s(2s + 1) A; and 23(2s + 1) (doubly degenerate) E states; and finally
there are 23(2s — 1)(2s + 1) states with all three m, values unequal which are cou-
pled by the projection operators into 2s(2s —1)(2s +1)/6 A; and A, functions and
23(2s—1)(2s+1)/3 E functions. The total number of spin states of each symmetry
is therefore given by

Na, = (25+1)(25+2)(25+3)/6; Na, = 2s(4s*—~1)/6; Ng = 2s5(2s+1)(25+2)/3

(4.4.8)
with N4, + N4, + 2Ng = (25 + 1) as they should. We note here that the IR
decomposition of a member of the original set of states is determined solely by the
number of equal values of m,, and as a consequence there is no correlation between
I' and M, (i.e., the irreducible representation is independent of M,); however, it
will be seen that there is a correlation between I' and S.

From examination of the multiplication table (4.4.7), we see that for bosons
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A; spin symmetry functions must be paired with A, spatial symmetry functions to
generate a total wavefunction with A; permutation symmetry. Similarly, the 4,
spin functions must be paired with A, spatial functions and E spin functions with
E spatial functions to generate the physically acceptable total wavefunctions with
A; symmetry. For fermions, where we require the total wavefunction to have 4,
symmetry, we see that A; spin functions pair with the A, spatial functions, 4, spin
functions with the A4; spatial functions, and E spin functions with the E spatial
functions. The spatial part of the wavefunction for any initial state may be decom-
posed into a sum of 4;, A; and FE irreducible representation spatial wavefunctions
as per equation (3.3.1); however, knowing the initial rotational quantum number j',
we may say with complete generality that the wavefunction will decompose into an
A; and an E part for even j', or into an A, and an E part for odd j', since there
are no A; states with odd j' or A, states with even j'. Therefore, we would like
a more compact quantity representing the total number of 4; or A4, spatial states
available, depending on whether the particles are fermions or bosons and on the
value of j'. Examination of (4.4.8) shows that the individual terms in the products
giving N4, and N4, have a one-to-one correspondence if the number 2 is subtracted
from each term in Ng4,; as a consequence, bosons will always have more 4; spin-
weighted spatial states than A, spin-weighted spatial states, while the opposite is
true for fermions. With this information, we find that the quantity N4, which is
the number of spin states for either the 4, or A, spatial wavefunction, depending

on the value of j' and on the spin statistics of the particles, may be written as
Na=[26+ (—1)J"+2'] [23 +1+ (—1)J"+2'] [23 +2+ (—1)f'+2'] /6 (4.4.9)

and that therefore the total number of spin states corresponding to any initial
condition of the spatial wavefunction of the system is the sum of this number and

Ng, which is found after some algebraic manipulation to be

N,=N4+Ng= %(23 +1)7 25 414 (-1)7 %] (4.4.10)
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The final result®? is then obtained by weighting the I' irreducible representation

cross sections by 1—1:’,11 and summing over I', which yields

126+1+2(~1)** Asv'j'm' | 220+1-(-1)>* Ev'j'm' . -
3T % it T3 (@) % win j and j' even

v'i'm' ) 12e+1-2(—~1)** Ajv'i'm' | 22s+14(~1)* _Ev'j'm' . .
O =8 37 (@it 7 wit T 3T @t 7 vin j and j' odd
_(_1)30+i' [T .
%Eﬁiiﬁg__*_ll)j__ E:ja’" otherwise
(4.4.11)

(The details of the analysis which results in the above equations appears in appendix
B.) The tau labels are the same for each arrangement channel and are therefore
dropped from the notation.

For s =0 (e.g.. 180) there can be only one nuclear spin state, with S = 0; this
state has A; symmetry. Since the overall wavefunction must also have 4; symmetry
in this case, the only allowed spatial symmetry is A;, with weight 1. (Note that
in this case only even values of j are allowed for the diatoms, as is observed in
nature.) For s = 1/2 (e.g. H) there is a quartet spin state for S = 3/2; since the
Ms = 3/2 term transforms as A; by the arguments presented after (4.4.7) and the
IR is independent of Mg, each member of the quartet will transform independently
as A;. This leaves two S = 1/2 doublet states, and each pair of these states with
the same M value transforms as E. There are no A; spin states for s = 1/2, so the
A; spatial symmetry does not contribute to the cross sections. The explicit form

for the observable cross sections in this case is

1 1
crE:J-‘},m 7 and j' even
2 A,vljlml l Evljlml . g
P =1/2: v'i'm' _ 30 vjifd + 30 vjiQ J and] odd 2
3,8 = / ‘g in = [T (4.4.1 )
vj 1 _Ev'im . i odd
] 1
a-E:j}]"' j odd, 7' even

In the case s = 1 (e.g. D), the following spin states exist: for § = 3 there is
a single septuplet state, each member of which transforms as A;; for S = 2 there
are two pentuplet states, and each pair of these functions with the same Mg value

transforms as E; for S = 1 there are three triplet states, and each set which has
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the same Mg transform as A; @ E; and for S = 0 there is a singlet A, state.

5 Alv'j'm' i Evljlml . .
50 in T 39 i j and j' even
1 _Ajv'j'm' 8 Ev'jim' . .
C oim' ) 39 ein T 39 win J and j' odd 4413
P3,3=1.a'vjn — 8 EV‘j,m' . o ( bk )
99 vin j even, j' odd
L) ! .
%a'E:j{]m j odd, 7' even

The discussion above has assumed that the initial nuclei are not spin-selected.
To model the case where the initial total spin of the nuclei is known, it would
be necessary to take into account the available symmetries for that spin and the

number of spin states, and weight the contributions to the cross section accordingly.

4.5 The Hsy Conical Intersection

The above formalism for reactive scattering implicitly assumes that the Born-
Oppenheimer approximation is valid and that the reaction occurs on the ground
state electronic potential energy surface which the approximation provides. Since
the minimum of the first excited electronic state surface is 2.7 eV above the mini-
mum of the ground state surface (which is the bottom of the potential well for the
H; diatom and is our choice for the zero of energy), it would seem to be a very good
approximation for the energy range of our calculation (0-1.6 eV). However, there is
a complication for the H3 case, which is the existence of a conical intersection of the
ground and first excited electronic states for equilateral triangular configurations of
the nuclei (wx = ya = ).227®° If one traces a path in nuclear configuration space
which encloses the line of the conical intersection and returns to the original con-
figuration, the electronic wavefunction if forced to be real changes sign. Since the
total wavefunction including electronic and nuclear parts must be single-valued and
continuous, there must be a compensating sign change in the nuclear wavefunction.
This is known as the molecular Aharonov-Bohm effect®3~%® and is an example of
Berry’s geometric phase.?”

The surface functions which were used in the calculation of the scattering matri-

ces do not have the geometric phase effect built in, and modification of the basis set
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to satisfy the requirements of this effect would be non-trivial. However, such a mod-
ification is not necessary. It has been shown formally in a semiclassical discussion®?
that, under the condition that the wavefunction be negligible in regions of configu-
ration space near the half-plane described in our coordinate system by yx = I and
wx > 7, the only effect of the geometric phase is to reverse the sign of the exchange

scattering amplitudes. This corresponds to a change of the distinguishable particle

matrix from S to S as follows:
Alvljlnl _
N S 5eja A=

Avi@ JmAe'ia’ ,
- [S ]xvjn A#EA

(4.5.1)

The correct IR S matrices may be found by using this expression in equation

(8.3.17); in terms of the calculated IR matrices, they are given by

_% [SJHA1]A""’J.'Q' n % [SJHE] le'j!nl

. o
Avifl Avifl 7 and j' even

_ ANo'i'q!
[SmAl] Xt:i(.;

0 otherwise

_% [SmA’]xvlJ-lnl " 45 [SJHE] Ao’

Avin Avjfl J and j' odd

7

0 : otherwise

100 [ L !
1 JnAIXvJﬂ 2 JunEi1A'v'i’a . o
3 [S ]Aojn + 3 [S ]»\vjﬂ j and 7' even
"JHE A'v'j'ﬂ' _ 1 mA xlvljlnl 2 J]_'IE X'v'j'ﬂ' . .
s ]Avjﬂ =¢3[s ’]Avjﬂ +3[s ]Avjﬂ j and j' odd
A, 1 -lnl .
- [SmE] N v otherwise
\ v
(4.5.2)

Accordingly, the results of the present calculations are valid with trivial modification
if the conditions above hold. A calculation for the J = 0 partial wave of H + H,
with the geometric phase effect included has been performed in order to test the
validity of the condition at energies approaching 2.0 eV;®® the results show that for
the energy range of the present calculation it will suffice to use equation (4.5.2) to

determine the cross sections under the influence of the conical intersection.
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5. LOGARITHMIC DERIVATIVE ALGORITHM

5.1 Solution of the log derivative equation

As has been mentioned previously in (I), the bulk of the computational effort will
be in the propagation of the coupled equations (2.2.6), and as a consequence we
need an efficient method for the propagation. We use a modified version of the log
derivative propagator of Johnson®# In this method, the initial log derivative matrix
is set to correspond to a wavefunction with very small amplitude, and the matrix

is propagated according to the rules
Zy = P+ApY(po) + Vo
Z;=2P+V;+Q[Z;4]7'Q; i=1,N;—-1 (5.1.1)
Y(pn:) = (P + Vi, + Q[Zn,-1]7'Q)/Ap

where there are N steps of size Ap = (pn, — po)/Nr1 between calculations of the
log derivative Y, and the potential terms V; are given by

2ey; i=0,Ng
V; = %EU,- 1=2,4,6,...N; —2 (5.1.2)

8I—-8[I—-4-63-U,-]_1 i=1,3,5,...N;—1

with the matrix U defined as
U=K-K_g (5.1.3)

In the original Johnson propagator, which was used for propagation of the J = 0
and 1 results, the matrices P and Q are both equal to the identity matrix I, which
corresponds to K ¢ = 0; also, for this version the initial log derivative matrix
was set to (103°)I. For the higher J partial waves, the propagator was modified
according to the method of Manolopoulos®® to have a constant (non-zero) reference

potential, which was defined to be

[Kpefln =67 [Ku]2
ref g (5.1.4)
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with K N being the value of K at the center of the interval between calculations of

Y. In view of (2.2.3) and (2.2.4), U is independent of F in the Manolopoulos modi-

fication (but not in the Johnson one). Along with producing a better representation

for the wavefunction due to the potential following characteristic, this modification

has the advantage of making the inversion in equation (5.1.2) energy-independent,

and as the matrix inversion is the most time-consuming part of the calculation,
1

effectively eliminates 3 of the operations and CPU time necessary for the second

and subsequent energies. In this version,

n' _ en' [ Appncoth(App,) p2 >0
[Pl =6, { Ap|pn| cot(Aplpn|) p% <0 (8:1:5)

n' _ ¢n' | Appn/sinh(App,)  p% >0
_s . n 5.1.6
QI =¢, {Ap|pn[/sm(AP|Pn|) P, <0 ( )

A small amount of additional work is necessary to calculate these matrices and
to perform matrix multiplication with Q; however, this extra effort is small com-
pared to the savings from making the V matrix energy-independent. In addi-
tion, the initial log derivative matrix is more accurately estimated by setting
it to the diagonal part of the WKB approximation for the log derivative, i.e.,
V(omin)lz = 67 [K%(pmin)]:. This change in initial condition does not change
the final log derivative significantly if a sufficiently small value of 5 is chosen for the
starting point, but allows one to start the propagation at a larger value of 5 than
the previous version would permit.

The input data to the propagation consists of sets of N by N interaction ma-
trices for each value of 5 and an NV by N overlap matrix between each adjacent pair
of p values, along with an array containing the LHSF energies and the values of p
at which the interaction matrices were calculated. The total number of available
functions N is determined by the smallest number of linearly independent surface
functions for all values of 5. The actual number of functions propagated may be any
positive number less than N, and will be denoted by Np; the amount of time neces-

sary for the propagation is proportional to that for matrix inversion and therefore
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is of order N:.

The formalism for the calculation of the log derivative is invariant when the
transpose of the matrix is substituted in its place, and therefore the log derivative
is strictly symmetric. However, we do not assume symmetry of the log derivative
matrix; the calculated overlap matrices © are not precisely orthogonal, since the
basis sets at each p are not complete for finite N, and the fact that O~ % OT
causes the calculated log derivative to deviate from symmetry. This deviation is
used as one indicator of the accuracy of the calculation.

The majority of the computational effort for the propagation is in matrix in-
version. As a consequence, the time needed for propagation is approximately linear
in the number of energies and propagation steps and cubic in the matrix size. The
algorithm for the log derivative calculation is well suited for the CRAY architec-
ture; using the LAPACK?®?® linear equation solver routines SGETRF and SGETRS
on a CRAY Y-MP/864, we achieve speeds ranging from 150 Mflops for small matrix
sizes up to 225 Mflops for the largest matrix size used (N, = 284). In this latter
case, a 102 step calculation required 51 seconds for each energy. For comparison, a
calculation with Np = 39 but the other propagation parameters equal required 0.20

seconds per energy.
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5.2 Pre-processing of input data — overlap maximization

The efficiency of calculation of the log derivative may be improved by pre-processing
the input data (interaction and overlap matrices) to optimize the propagation. The
individual sector basis sets, as generated by the surface function code, are each
ordered according to increasing LHSF energy for the value of g in that sector. This
leads to overlap matrices which often have large off-diagonal elements due to avoided
crossings in the surface functions as p increases, detectable by examination of the
adiabatic LHSF eigenvalue-vs.-rho curves. When this happens, a poor choice of N,
will result in the inversion of a nearly singular overlap matrix in equation (2.2.9), in
which case either the calculation will stop due to a fatal numerical error or the log
derivative which results from “successful” propagation will have large errors. This
situation can be avoided by careful choice of N,; however, in practice this solution
is unsatisfactory since the result is that a large percentage of possible values of N,
are eliminated from consideration, and convergence tests become both difficult and
more expensive (since a large value of N, must be used to test the accuracy of a
smaller value, and the CPU time necessary for propagation goes as N:).

The formalism for the logarithmic derivative does not specify an ordering
scheme for the LHSF in the basis set; therefore, we may overcome this problem
by reordering the individual p basis sets to satisfy the criterion that the upper left
M by M (where M takes on values from 1 to N) submatrices of the overlap matrix

between every value of g be as close to orthogonal as possible, i.e.,

M M
Z 0% > Eo:‘:‘ka ie{1,..M}ke{M+1,.N} | » Mef1,.N-1} (5.2.1)
=1 i=1

A LHSF basis set is chosen at certain value of p, which we will call s, to be
the standard basis set against which the bases at the remaining values of /5 are
compared, and the energy ordering of the LHSF in that basis set is preserved. This
fixes the row ordering of the overlap matrix between ps and the next smaller g,

and the column ordering of the overlap matrix between ps and the next larger 5.
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The order of the columns or rows corresponding to the basis at § # pgs is then
permuted to satisfy (5.3.1), and the same permutation matrix is applied to both
right and left sides of the interaction matrices associated with this g to convert their
representation to the new ordering of the basis set. This procedure is iterated for
each pair of values of g adjacent to the standardized values until all have been given
the standard ordering. We thus effectively ensure the maximum overlap between
adjacent p basis sets, no matter what number of functions are propagated, and will
therefore refer to this procedure as overlap maximization (OM).

The OM procedure is dependent on fixing the order of the basis set at one
value of p, after which the others may be reordered with respect to this standard
basis set. We have determined that the best basis set to use for this purpose is the
(energy ordered) basis set at the largest value of 5; the reason is that this set must
include all open states of the diatomic molecule if more than the number of open
states is propagated, and due to crossing effects this is not necessarily true for any
other value of p.

The advantages of using OM are twofold: first, a large reduction in the number
of N, values which yield incorrect log derivatives, which makes convergence testing
much easier and can often result in the saving of computation time through the
use of a smaller value of N,; and second, an improvement in the symmetry (and
therefore the quality) of the log derivative matrices obtained from propagation, due
to the better orthogonality of the overlap matrices used to transform between basis

sets at different p.
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6. CONVERGENCE TESTS

6.1 General Considerations

Extensive convergence testing has been performed on the log derivative propagator
to énsure accuracy of the partial wave cross sections obtained. Since the propagator
has no knowledge of the partial wave (J) or symmetry (II,T) of the interaction and
overlap matrices which form its input, the convergence tests could be performed
on a single partial wave and symmetry and the results applied to a general case.
For convenience, the tests were performed using the J = 0 (and therefore II = 0)
partial wave A; symmetry results at a total energy of 1.6eV on the LSTH poten-
tial energy surface, and the final S matrices obtained from the RS analysis were
examined to determine convergence. As usual, the overlap maximization procedure
was performed on the raw data obtained from running the LHSF code to make the
convergence tests easier.

The parameters which are used in the propagation depend on the parameters
used in a given LHSF calculation, during which the Z and © matrices that are the
coeflicients for the coupled equations (2.1.10) were determined. The quality of the
propagation results is of course dependent on the quality of the LHSF basis set
used in the wavefunction expansion. The convergence of the LHSF was discussed
previously in (I), and for these tests we will assume a good LHSF basis set and
correspondingly good I and © matrices.

The distance Apj between successive values of g is fixed in the LHSF calculation,
since the I are determined with a reference potential which depends on the value of
p. In addition, the minimum distance Ap; between successive interaction matrices is
limited by the number of I matrices actually calculated; however, integer multiples
of this quantity may be used in the propagation if not all of the available data is
required. Similarly, there is a limitation on the minimum and maximum values of
p in the propagation depending on the respective values in the LHSF calculation,

and on the maximum value of Np, the number of LHSF used as the basis for
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the expansion (2.1.10) (or equivalently, the number of rows and columns in the
submatrices of T and O used in the propagation). The propagation step size Ap is
restricted in our algorithm to be an even number of steps between different 5, but

is otherwise arbitrary.

The values of p at which the T matrices are calculated are inputs in the LHSF
calculation, since the I are deternﬁned using much the same methodology as the
LHSF; in addition, the value of p for the basis set in which a particular I{(p;p) is
determined is fixed at this time. Two different schemes for the location of the T
were used at different times; the interaction matrices have been calculated in regions
centered about a value of 5 (pii+1 = p‘—*‘,f‘—t—‘-) and in regions extending from one
value of p to another (p;i+1 = Pi+1); from the discussion in section 2.1, we expect
the former method to be more accurate due to the smaller range of the quantity
|p — pi| which results from a centered region. A change in these parameters would

require a new LHSF calculation.

There is one parameter in the LHSF calcuation which will affect the results in
a non-obvious fashion. At a particular sufficiently large value of g, the basis set for
expansion of the LHSF is assumed separable, so that the computationally expensive
two-dimensional integrals needed for the calculation of the LHSF and the T and O
matrices can be taken to be zero. The value of this parameter is determined by the
highest energy surface function needed for the propagation; all LHSF used must have
negligible density between channels for this to be a good approximation. Assuming
that the wavefunction in the A arrangement channel would be zero beyond a value
for 77** of 3.0 bohr, we use the symmetry of the channels to determine that the
point with wy = m/3 and 45 = 0 is equidistant between two arrangement channels
at fixed p, and the relation from (3.4.7) then yields the value 6.0 bohr for this
parameter. The adequacy of this choice was tested through propagation of the
matrices calculated by a J = 0 4; LHSF program run with this parameter set to

7.0 bohr and all other parameters equal; when propagated with the same parmeters
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as the 6.0 bohr case, the resulting scattering matrix elements differ by no more than
0.009 for all moduli and no more than 4° in the phases for transitions between the
11 states lowest in energy (v = 0,5 =0—10;v =1,j = 0 — 8).

We use the unitarity of the ®S matrix as the first criterion for determination
of the acceptability of the results of a propagation. As a unitary matrix, the °S

matrix has the property

oISt =1 (6.1.1)

i
for all columns j; if a calculated scattering matrix has any column sum which
deviates from 1.0 by more than 5%, that scattering matrix is automatically rejected.
In the scattering matrices which fulfill this criterion, the convergence of the matrix
will be determined in terms of all the elements of the matrix and seperately in terms
of the elements with large modulus, as the smaller elements will contribute little to

the desired differential cross sections.

6.2 Basic Limitations on Accuracy - fixed grid, N, variable

The results of the propagation depend strongly on the size of the matrices prop-
agated, which correlates to the number of basis functions N, used to expand the
six-dimensional Schrédinger equation. For small NV, the calculation is unconverged,
but even after convergence is acheived there will be small fluctuations in the cal-
culated log derivative matrix elements and the resulting scattering matrix as N,
increases, due to the addition of terms to the propagation matrices with errors of
varying magnitude and sign; in addition, there must be a balance between the errors
caused by incompleteness of the basis set and the increase in numerical error with
the increasing basis set size of the log derivative calculation.

To determine the limits on the accuracy of the calculation due to the numer-
ical methods, a set of calculations with large Np and small Ap, Ag and Apy was
performed. The values of these parameters were chosen to ensure that the errors

in the resulting °S matrices would not be due to insufficient number of steps in
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the propagation or to an insufficient basis set for the propagation. These accu-
rate calculations were performed with a Ag = 0.025a¢ grid and a propagation
step size Ap = 0.003125a¢, using the logarithmic derivative propagator due to
Manolopoulos.®® The beginning and ending values of g were 2.0 and 12.0 bohr, re-
spectively. Two interaction matrices were calculated at p = g+ —AZE, and another
twoat p=p=% —A—zé; the g basis set was changed at the latter values of p. Various
numbers of LHSF were used in the propagation, ranging from 40 to 59. Exami-
nation of the unitarity of the open part of the S matrices obtained eliminated the
values N, = 42 and 53 from consideration as having unacceptable errors, on the
basis of the 5% deviation from unity criterion of section 6.1 and further on com-
parison of the differences of the moduli resulting from these two calculations with
those of the others. Inspection of the remaining 18 ©S matrices reveals no noticable
trend in the magnitude of their elements, and so we expect that any systematic
error is small. Therefore, we determined the sample mean and standard deviation
of the moduli and phases of the open part of the S matrix for N, in the range
N, € {40,59}, N, # {42,53} to give an estimate of the random error of the calcu-
lation. The results, in terms of the maximum standard deviations from the mean

value, are given for the moduli in table 6.1 and for the phases in table 6.2.

Using this sample of 18 °S matrices, the maximum absolute standard deviation
from the mean for the moduli of the ®S matrix elements (¢I1'®X) was found to be
7.48x107*%, occuring for the transition from (v' = 0,3’ = 10) to (v = 0,5 = 8) which
has a mean value 0.2822. Therefore, assuming a random error distribution and using
Student’s t-distribution, the calculated mean values are all within 1.58x1073 of the
“true” values to a 95% confidence level; most are at least a factor of 2 better. The
maximum percent sample standard deviation from the mean (%ol'8%) is 20.6%,
occuring for the transition from (v’ = 1,j' = 10) to (v = 0,5 = 2) which has
a mean of order 1073, In general, the absolute deviations tend to be worse for

the states with high rotational quantum numbers. If we limit the comparison to
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elements of the S matrix with modulus greater than 0.01 (and thus to probabilities
greater than 10™%), or further to elements with modulus greater than 0.1 (and
probabilities greater than 1072), we see in table 6.1 that %oX8X is reduced to
0.96% and 0.34%, respectively. Therefore, the mean values calculated are accurate
within a 95% confidence level to about £2% for moduli greater than 0.01 and to
£0.7% for moduli greater than 0.1. These mean values of the moduli are assumed

to be the converged results.

For the phases of the S matrix elements, o;"2% was found to be 8.1° if all
elements of the open part of the matrix were considered. Limiting the comparison
to elements with modulus greater than 0.01 reduces this figure to 1.2°, while a
further limitation to elements with modulus greater than 0.1 yields o?8% = 0.23°.
Thus the mean values calculated for the phase are accurate within a 95% confidence
level to £2.4° for elements with modulus greater than 0.01 and to +0.5° for elements
with modulus greater than 0.1. We assume these mean phases to be the converged

results.

We can use these results as a standard to determine the accuracy of the results
of calculations with smaller N, or larger Ap, Ap and Apj; values. For example, a
J = 0 A; symmetry calculation was performed with the parameters Ap = 0.2a,,
Ap = 0.1ag, and N, = 35. The parameter Ap; was set equal to 0.laq, with the
interaction matrices evaluated at g;, p; + 0.1ay, and §;41; the g basis set is changed
at pii+1 = Pi+1. The beginning and ending values of p were 2.0 and 12.0 bohr,
respectively. Comparison of this run and the converged values reveals that the
largest difference for moduli greater than 0.01 is 0.0082; this occurs in an element
corresponding to the transition (v' = 2,5’ = 0) to (v = 2,7 = 2) which has the
converged value 0.1685. If we also limit our examination to the first column of the
S matrix, the largest difference is for the transition (v' = 0,j' = 0) to (v = 1,j = 8);
for this transition, the converged value is 0.2396 and the difference is 0.0019. The

maximum difference between the phases for moduli greater than 0.01 is 3.9° for the
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(v' =2,j' = 6) to (v = 2,7 = 6) transition; for the first column and moduli greater
than 0.01, the maximum difference is 2.4° and occurs in the (v = 0,5' = 0) to
(v =1,j = 2) transition. We can therefore conclude with some confidence that the
results of this run are sufficiently accurate for our purposes, and that these values

of the parameters will yield converged results.

6.3 Convergence tests - N,

A set of calculations with different N, were performed with the fixed parameters
Ap = 0.2a9, Ap = 0.1ay, and Ap; = 0.1ay, with the interaction matrices evaluated
at p, pi +0.1ag, and p;41; the p basis set is changed at p; ;11 = pi+1. The beginning
and ending values of 5 were 2.0 and 12.0 bohr, respectively. We used values of N,
in the range from 17 (the number of open states of the system at 1.6 eV) to 40.
All scattering matrices with N, less than 31 were rejected by the poor unitarity
criterion, as was the matrix for N, = 36. The results of comparison with the mean
values are presented in table 6.1. Comparison of the elements of the remaining
matrices with modulus greater than 0.1 reveals that the largest difference in the
modulus is less than 0.016 and the largest difference in phase is less than 15° in all
cases. There is a clear difference between the values of N, less than 35 and those
equal or above this number; in the case of N, = 35, 38, 39, and 40, the largest
modulus difference is less than 0.009 and the largest phase difference is less than
4°. The calculations with these values of N, have the characteristic that there are
more than 35 functions in the basis set and the worst deviation from unitarity is
less than 1% (which excludes N, = 37). It is therefore seen that the condition of
good unitarity is necessary but not sufficient to insure convergence, as it does not
guarantee that the basis set used is sufficiently complete.

If we compare only the first columns of the scattering matrices, the moduli
differ from those of the mean values discussed above by less than 0.004, and the
phases differ by less than 5.5° (with one exception - the N, = 34 calculation had

one phase difference of 8.2°). If we exclude those elements with mean value of the
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modulus less than 0.1, the moduli differ by less than 0.003 and the phases by less
than 1.6°.

6.4 Minimum and Maximum p

The minimum value of 5, at which the propagation is initiated, is chosen so that
the wavefunction can be assumed to be nearly zero at this hyperradius. This choice
will of course depend on the total energy of the system; however, the lowest LHSF
energy at g = 2 bohr is over 3 eV, and we expect that the wavefunction will be zero
for the entire energy range of our calculation. Our use of p = 2.0 bohr has been
confirmed by the replacement of the initial condition matrix 103°I with the values
determined by the WKB approximation. In either case, the resulting S matrices
are identical to four digits if all other parameters are held fixed.

The maximum value of 5 should be chosen in a region where the potential
coupling has essentially gone to zero; this is characterized by independence of the
potential of the coordinates Ry and 7,, and results in sparse I matrices. The rows
and columns of these matrices are labeled by the index n of the LHSF basis set;
if these labels are replaced by the quantum numbers of the primitive which has
the largest overlap with that LHSF (i.e., the major contributor to the LHSF from
the primitive basis set), the Z matrix will be seen to be block diagonal in j. (The
surface hamiltonian will continue to couple the functions in the £ quantum number
over a longer range, and the dependence of the LHSF on R via the parameter p
causes potential coupling of the hyperspherical functions in v even at large p.) The
convergence of the scattering matrices with respect to this parameter was tested in
a series of propagation runs with N, = 39, Ap = 0.2a9, Ap = Apr = 0.1ag with T
evaluated at p = p+Aprand p = p+2Apy, and the minimum value of g at 2.0 9. A
range of values of 4, from 10.0 to 13.0 bohr was used for these calculations, and a
summary of the results is presented in table 6.2. We have used the pmaz = 13.0 bohr
calculation as the basis for comparison of the other values of pmas. This value for

Pmaz can be justified from the small residual interaction potential between the atom
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and diatom at this value of p; the difference in potential between a linear (v = 0)
and a T-shaped configuration (v = 12"-) for the three values ry = 0.08377a, (rf\"i" in
the LHSF calculation in this region), 1.304 ao (r3?, corresponding to the minimum
value of V(p,wx,va) as a function of wy for p = 13.0ag and v5 = 0), and 3.0 g9
(r7°® in the LHSF calculation) is no greater than 7 x 10~% eV. However, it should
be noted that the numerical errors in the calculation increase as gpq2 increases, and
so a larger value of fmq, does not necessarily mean a more accurate calculation.
It can be seen that the moduli are essentially converged at 10.0 bohr, as the
differences from one calculation to the next are not decreasing in magnitude; how-
ever, the phases show a consistent pattern of convergence as jgm4, increases. The
maximum difference in phase for transitions with |°S;;| greater than 0.1 between
Pmaz = 12.0 bohr and pmez = 13.0 bohr is 2.4°, and if we examine only the first
column of the scattering matrix this difference decreases to 1.3°. Accordingly, we

have chosen to use the value fpmaz = 12.0 bohr in our calculations.
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7. RESULTS OF SCATTERING CALCULATIONS

7.1 J = 0 Transition Probabilities and Partial Wave Cross Sections

For the case J = 0, we will present results of our scattering matrix calculations
in several formats. The first set of results will be for the S matrix as originally
obtained in the irreducible representation formalism of the first part of this paper;
we will analyze the transition probabilities (i.e., the square of the modulus of the
S matrix element) with reference to structure in the different partial waves. Next,
the effect of the geometric phase due to the H; conical intersection on these results
will be examined. Finally, partial wave integral cross sections in the irreducible
representation and spin-weighted formats will be given, both with and without the
geometric phase corrections. In these results, we will describe the initial and final
state diatomic quantum numbers in the format (v,j,2) (or (v,j,m) for the cross
sections) when we include the orientation of the molecule in the description, and
in the format (v,7) when the average over the orientation is taken. The transition
will be denoted by (v',5',9Q') — (v,7,2). In order to provide some comparison with
experiment and with other work in the field, we will concentrate on the transitions

from the v' =0, j' = 0,1, 2 states.
A.J=0T transition probabilities - no conical intersection

The A; IR is not important in the calculation of the cross sections for the H +
H; reaction, since (as was shown in section 4.4) it is forbidden by the spin statistics
for fermions of spin 1/2. However, this will not be true for other systems, so a brief
description of some features of the J = 0 partial wave A; IR scattering results will
be included for completeness. In figure 7.1 we show the J = 0 A; probabilities
for (0,0,0) — (0,7,0), with j = 0,2,4,6. (As was shown previously, the 4; IR
contains no states with odd j or j'; in addition, the orientation quantum number
must be zero for J = 0.) The energy range of the figures is from 0.3 eV to 1.6

eV, and scattering matrices were calculated at 131 energies in this range in evenly
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spaced increments of 0.01 eV. The curves are not plotted to the same scale; the

multiplication factor for each curve is given on the figure.

Examination of figures 7.1 reveals that the probability of rotational excitation
of the product molecule is small for energies near the opening of the j = 2 state
at 0.3142 eV total energy (0.0439 eV translational energy of the initial (0,0) di-
atom), but rapidly increases until the bulk of the products may be found in the
(0,2) state (figure 7.1b) at a total energy of about 0.65 eV (0.38 eV translational).
The probability for this transition then decreases as the particle flus becomes dis-
tributed among other states. As the other states become energetically available,
there is a similar pattern: a threshhold barrier must be passed before the transition

probability rises to a peak value.

Figures 7.2 present the J = 0 4, probabilities for vibrational and rotational ex-
citation of the (0,0,0) state to the state (1,7,0), with j = 0,2,4,6. The curves with
final states (1,0,0) and (1,2,0) (figures 7.2a and 7.2b, respectively) show a sharp
increase in probability at the energy 0.98 eV, which corresponds to a scattering
resonance for the H3 system. (The energies and characterization of the resonances
found in the Hy system will be discussed in more detail in section 7.3.) The os-
cillatory behavior of these curves can also be attributed to the resonances of the
system; since the amplitude of the transitions is smaller than those for the purely
rotational excitation presented in figures 7.1, due to the large energy difference be-
tween the initial and final states (0.516 eV minimum), the effect of the resonances

on the probabilities becomes more apparent.

The A3 IR scattering results, which contains results for odd j and j', are given
in figures 7.3 for the transitions (0,1,0) — (0,7,0), 7 = 1,3,5,7 and in figures 7.4
for the transitions (0,1,0) — (1,7,0), 7 = 1,3,5,7. The smooth behavior of all of
these curves suggests that the scattering resonances do not affect the transition
probabilities in A;, and in fact an analysis of the symmetry effects on the probable

resonance metastable state shows!®® that for J = 0 the A; symmetry should have
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no resonances in this partial wave. The A, transition probabilities for rotational
excitation are smaller than those for the 4; symmetry, due possibly to the lack of
resonant enhancement. The behavior of these curves is similar to that of the A4,
curves in one respect, which is the low probability of transition near threshhold
followed by a maximum.

The E IR scattering results contain transitions between all possible initial and
final states of the system. We present results for transitions (0,0,0) to (0,7,0),
j =0,2,4,6 in figure 7.5 and for transitions (0,0,0) to (1,5,0), s = 0,2,4,6 in figure
7.6. We also include transitions (0,1,0) to (0,5,0), j = 1,3,5,7 in figure 7.7 and
(0,1,0) to (1,57,0), 7 = 1,3,5,7 in figure 7.8. These are the transitions which may be
affected by the conical intersection. We also include here the j + j' odd transitions
which are not affected: the transitions (0,0,0) to (0,5,0), j = 1,3,5,7 in figure 7.9,
(0,0,0) to (1,7,0), s = 1,3,5,7 in figure 7.10, (0,1,0) to (0,7,0), j = 0,2,4,6 in figure
7.11, and (0,1,0) to (1,7,0), j = 0,2,4,6 in figure 7.12.

B. J=0T transition probabilities - conical intersection included

Modification of the S matrices to include the effects of the conical intersection
(as discussed in section 4.5) produces a dramatic effect on the J = 0 probabili-
ties. Plots of these probabilities are also given as figures 7.13 through 7.20; figure
7.13 contains the transitions including the geometric phase corresponding to those
plotted in figure 7.1 with the geometric phase absent, figure 7.14 corresponds with
figure 7.2 and so on. The most prominent effect is in the 4; and 4; symmetries:
when the geometric phase is included in the calculation, the A; symmetry curves
lose the structure due to resonances which previously occurred in these transitions,
and the features appear in the A; symmetry which formerly was smooth. This can
be explained®® by the inclusion of the antisymmetry of the electronic wavefunction
caused by the geometric phase in the symmetry analysis on the resonant metastable

state.

For the E symmetry, the transitions with 7 + j' odd are unaffected by the
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geometric phase. These transitions are effectively reactive transitions, since the
nuclear spin symmetry of the H, diatom restricts the rotational levels to be even for
S = 0 and odd for S = 1, and there are no spin-dependent terms in the hamiltonian;
under these conditions, a change in the diatom rotational parity implies reaction.
In addition, the A; and A; symmetry scattering matrices do not include terms
with j 4 7' odd. Accordingly, there are no interference terms with the non-reactive
transitions or other irreducible representations, and the change in phase of the S

matrix element has no effect on the probability.
C. J = 0 partial wave integral cross sections

From the results of the previous section, it is obvious that the partial wave
integral cross sections obtained without the geometric phase included will be incor-
rect, with the exception of those for transitions with j + j' odd. Because of the
history of cross section calculations which neglect the presence of the conical inter-
section, we will present these incorrect cross sections for purposes of comparison.
For convenience, the transitions which are plotted from calculations which include
the effect of the geometric phase will be referred to as GP transitions.

The J = 0 Pauli antisymmetrized integral cross sections for the transitions
(0,0,0) to (0,5,0), 5 = 0,2 and (0,0,0) to (1,5,0), j = 0,2 are presented in figure 7.21
with the GP effect absent. Figure 7.22 contains the same transitions with the GP
included. Similarly, the J = 0 Pauli antisymmetrized integral cross sections for the
transitions (0,1,0) to (0,7,0), = 1,3 and (0,1,0) to (1,7,0), j = 1,3 are presented
in figure 7.23 with the GP effect absent and figure 7.24 with the GP included. We
see that the elastic cross section (0,0,0) to (0,0,0) in panel (a) of figures 7.21 and
7.22 are almost identical on the scale of the plot; the nonreactive component for
this transition is much larger than the reactive part, and accordingly the oscillation
is the same as would be seen in the distinguishable particle representation of the
calculation; the effect of the GP in reversing the sign of the reactive-nonreactive

interference is small in this case. This s also true of the elastic cross section (0,1,0) to
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(0,1,0), as can be seen in panel (a) of figures 7.23 and 7.24. The inelastic transitions
are much more interesting. Comparison of 7.21 (b) with 7.22 (b) reveals that the
GP cross section for rotational excitation from (0,0,0) to (0,2,0) at the peak value
of 0.65 eV is larger than the cross section calculated without GP by about 33%.
The effect is even more dramatic for the (0,0,0) to (1,0,0) transitions (panel (c) on
each of these figures), where the peak at the resonance energy 0.98 eV is a factor
of 6 larger in the GP cross section. Other energies are also affected, although not
as dramatically; in particular, the peak near 1.15 eV in figure 7.21 (c) is absent
from 7.22 (c), and the trough at 1.41 eV is much deeper in the GP results. The
same qualitative effects may be seen in the (0,0,0) to (1,2,0) transitions; again the
peak associated with the 0.98 eV resonance is a factor of 6 larger in the GP cross
sections. For the transition (0,1,0) to (0,1,3) (panel (b) of figures 7.23 and 7.24), the
GP cross section is a factor of 2 larger at the 0.65 eV peak, and the transition (0,1,0)
to (1,1,0) (panel (c) of these figures) is a factor of 4 larger for the GP cross section
at the 0.98 eV resonance, and the trough associated with the 1.41 eV resonance is
significantly deeper in the GP cross sections. In summary, for the J = 0 partial
wave and the transitions we have examined, the geometric phase enhances the effect
of the resonances, and for the stronger resonances the calculation without geometric
phase has been seen to be in error by as much as a factor of six.

To finish the J = 0 partial wave section, in figure 7.25 we present the J = 0
Pauli antisymmetrized integral cross sections for the transitions (0,0,0) to (0,7,0),
7 =1,3 and (0,0,0) to (1,7,0), = 1,3, and in figure 7.26 the J = 0 Pauli antisym-
metrized integral cross sections for the transitions (0,1,0) to (0,7,0), 7 = 0,2 and
(0,1,0) to (1,5,0), j = 0,2; the transitions on these latter two plots are unaffected
by the GP.
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7.2 Partial Wave Cross Sections for J > 0

The J = 1 Pauli antisymmetrized integral cross sections for the transitions (0,0,0)
to { (1,0,0), (1,2,0), (1,2,1) } are given in figure 7.27 for the case with the GP
effect absent, and the same transitions after accounting for the GP are given in
figure 7.28. In this partial wave, we see that the GP transitions are affected in the
opposite direction; i.e., the peak in the GP cross sections at 0.98 eV is about a factor
of 2.5 smaller than the peak in the corresponding cross sections without the GP
effect. In general, the cross sections are smaller overall after taking account of the
GP effect. The exception is for the (0,0,0) to (1,2,1) transition in figures 7.27(c) and
7.28(c), respectively, where the peak at 1.08 eV is of comparable height in both the
GP and no GP cases. The transition (0,1,0) to (1,1,0) of figures 7.27(d) and 7.28(d),
respectively, shows an even more pronounced effect; the GP cross section away from
resonance decreases in magnitude by about a factor of 2.5, while at the resonance
energy the decrease is by a factor of 8.5. Figures 7.29 and 7.30 contain the transition
(0,1,0) to (1,1,1) as well as the transitions (0,1,1) to (1,1,m) for m = —1,0,1. We
see that the transitions to m = +1 are affected only slightly by the GP, while for
m = 0 the magnitude of the cross sections at the 0.98 eV resonance differs by a

factor of 6, with the GP cross sections smaller.

The J = 2 Pauli antisymmetrized integral cross sections for the transitions
(0,0,0) to { (1,2,0), (1,2,1), (1,2,2) } are given in figure 7.31 for the case with the
GP effect absent, and the same transitions after accounting for the GP are given
in figure 7.32. In this partial wave, we see that the GP cross sections are again
larger than the non-GP cross sections, as was seen for J = 0 but not for J = 1.
This trend also holds for the transition (0,1,0) to (1,1,0) given in figures 7.31(d)
and 7.32(d), and for the transitions (0,1,0) to (1,1,1) and (0,1,1) to (1,1,m) for
m = —1,0,1 of figures 7.33 (without GP) and 7.34 (with GP). We see that in this
case the lower energy cross section with transitions to m = %1 are affected only

slightly by the GP, but at higher energies the effect is more pronounced. The same
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transitions as for the J = 2 case are given in figures 7.35 through 7.38 for the J = 3
partial wave, with figure 7.35 corresponding to figure 7.31 for J = 2 and so on. The
J = 3 results resemble those for J = 1 in that the non-GP cross sections contain
the more prominent resonance effects. For this partial wave, all transitions shown

are substantially changed by addition of the GP.

From the results for these four partial waves with J from 0 to 3, we see that
in the cross sections with GP added, the resonances tend to interfere constructively
with the non-resonant part of the cross sections for even values of J, while for odd
J the interference tends to be destructive. This is the opposite of the effect for
the transitions with no GP, for which the constructive interference is for odd J.
The result of this alternation between constructive and destructive interference is
that the sum over these four partial waves with and without the GP included look
very similar. In figures 7.39 through 7.42, we present figures giving the partial wave
integral cross sections summed from J = 0 to 3, for the same transitions as given for
the J = 2 and J = 3 partial waves; we also give the summed and averaged integral
cross section summed from J = 0 to 3 for the transitions (0,0) to (1,0), (0,0) to
(1,2), (0,1) to (1,1) and (0,1) to (1,0) for the calculations without GP in figure 7.43
and with GP in figure 7.44. We see that the larger transitions with and without the
GP present in the sum over the partial wave cross sections, and as a consequence
all of the summed and averaged cross sections given, have approximately the same

behavior as a function of energy, the major difference being the magnitude of the

cross section.

Of course, four partial waves is insufficient to converge the integral cross section
results, and for these low values of J the partial wave with the largest value of J
will dominate due to the 2J + 1 degeneracy. Accordingly, the summed set of cross
sections which has constructive interference between the resonant and non-resonant
cross sections for this value of J will be larger than the other set; for J = 1 and

3, the non-GP cross sections are smaller than the GP cross section, but for J = 0
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and 2 and presumably for J = 4 as well, the GP cross sections will be larger. It
is therefore not possible to predict the final behavior of the integral cross section
calculated with inclusion of the conical intersection effect from the current data.
However, it can be seen that the difference, if any, will depend on the difference
between the largest contributors to the integral cross sections, as the differences
between the smaller contributors associated with small J tend to cancel out in the

sum over J.

7.3 Resonances in the Partial Wave Results

The effect of scattering resonances in the partial wave results is evident from the
oscillatory structures visible in the various probability and cross section plots. The
variation in the plots is caused by the interference between a direct process and the

resonant process,?0—%4

which occurs through the formation of a metastable three
particle complex in the strong interaction region of the potential.2®! The interfer-
ence caused by the resonant process is over a small range of energy, corresponding
to an energy level of the metastable complex broadened by the short lifetime of the
state; outside of this range the amplitude of the resonant process goes to zero.

To better quantify the resonances, we generate collision lifetime matrices using
the procedure due to Smith®® on the scattering matrices which we have generated.
The procedure was found to be very sensitive to the symmetry of the input S
matrices, and accordingly the °S’! matrices used in the lifetime analysis were

generated from symmetrized °R’™ matrices to reduce the numerical noise in this

calculation. The resulting lifetime matrix, defined as

ast
L=—S 9.
o5 (7.3.1)

is then diagonalized, and the eigenvalues examined as functions of the total energy
of the system. The maxima of these functions, which are by definition at energies
for which the collision complex has a longer lifetime, correspond to the resonances

of the system.
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We have labelled the resonances by a set of quantum numbers, first used for this
purpose by Colton and Schatz®® and Bowman,?” which are those appropriate for a
stable linear triatomic molecule; they are (vl,vlzx‘,'v;;), in which v, is the symmetric
stretch quantum number, v, the bend quantum number with vibrational angular
momentum quantum number K, and v; the antisymmetric stretch quantum num-
ber. K is the projection of the total angular momentum of the system along the
molecular axis, and is called the vibrational angular momentum since it arises from
the linear superposition of the degenerate bending modes of the linear triatomic
system. (We have changed the notation for the angular momentum quantum num-
ber K from the original notation, which used the index Q, to avoid confusion with
our projection of the total angular momentum on the z, axis.) |K| may take on
any of the allowed values of the projection quantum number, i.e., for J + II odd it
may have values from 1 to J and for J + II even it may take on values from 0 to J.

The v; quantum number is restricted to values such that v, — |K| is even.®®

To determine the energies of the resonances, the scattering calculation was
performed every 0.01 eV; this is sufficient to fully converge the resonance lifetimes
for the longer-lived states, as has been shown by comparison!®® in the J = 0 case
with results from a similar calculation using a finer energy grid.!> We have compared
the calculated resonance energies with those found in the latter calculation and with
the resonance energies predicted by Bowman,?” Colton and Schatz,?® Pollak,?® and
Garret and coworkers;!?® we include the table of reference 16b for the J = 0 and 1

partial waves as table 7.1.

The eigenvalues of the lifetime matrix for H + Hy; on the LSTH surface for
the A, irreducible represention and J = 3 are plotted vs. energy in figures 7.45
for II = 0 and 1, without the geometric phase effect; these two plots contain peaks
representing all of the resonances for the H; system which have been found in our
calculations thus far. The results given here are provided as they were calculated,

with no smoothing. An individual lifetime matrix eigenvalue begins with a lifetime



ITI-76

of zero, drops down to a relatively low value, and then begins to increase. For
clarity, the initial decrease in the curves has been deleted where possible; however,
an artifact of the method for calculation of the energy derivative of the S matrix is
that there is sometimes a peak near threshhold in the calculated curves, which for
a finer grid of energies will vanish, and these artifacts are visible at about 1.15 eV
and 1.45 eV for the II = 1 plot and 1.45 eV for the II = 0 plot.

The lifetime analysis gives no information on the correct choice of quantum
numbers for the linear triatomic state which is associated to the various resonance
energies; this choice is made by comparison with the results of other workers, using
methods which provide this information.?® The resonances in the II = 0 graph are
all labelled with odd | K| values, and those in the II = 1 graph all have even |K]|; this
i1s in accord with the selection rule for the resonances in the 4; and A, irreducible
representations (all resonances affect the E irreducible representation) which was

found previously:16®
(—1)H+|K| = Xr I' = {4;,4:} Xr={1,-1} no GP (7.3.2)

This selection rule is explained by a simple model, which assumes that no resonances
can exist in the case where the scattering wavefunction vanishes identically for all
configurations of the system in the vicinity of the saddle point of the potential
energy surface (i.e., at p = 3.270145 bohr and w = ) for which the distances of the
two end atoms to the central atom are equal (which corresponds to configurations
with 4 = 7). The selection rule (7.3.2) follows from the equivalence under these
conditions of the permutation of the two end atoms (an operation with eigenvalue
Xr =1lor —1ifT'is A; or A;, respectively) and the result of consecutive operations
by the inversion operator (eigenvalue (—1)) and an operator which rotates the
system by m about the system’s principle axis of inertia (eigenvalue (—1)¥).
Inclusion of the geometric phase in these calculations is found to reverse this se-

lection rule, with the additional factor of —1 due to the sign change of the electronic
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wavefunction;®® the resulting selection rule in this case is

(-1)HIKl = _ X T'={4;,4,} Xr={1,-1} GP (7.3.3)
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8. SUMMARY

In this paper, we have presented a detailed formalism for the calculation of dif-
ferential and integral cross sections for atom-diatom reactive scattering, using an
expansion of the wavefunction in terms of local hyperspherical surface functions
in symmetrized hyperspherical coordinates. The formalism includes decomposition
into irreducible representations of the permutation symmetry and inversion parity
of the system in order to reduce the computational effort necessary. The results
of application of these techniques to the H + H, system for partial waves J = 0
through 3 has also been given, in the form of transition probabilities and partial
wave integral cross sections. The geometric phase effect due to the Hj conical inter-
section was included a posteriori and shown to have a major effect on the behavior
of individual J partial wave cross sections, but less of an effect after summing these

cross sections over J.
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Table 6.1: Largest modulus and phase differences of ©§7/=%4:

matrix elements from converged values: E = 1.6 eV

IAmaz |°si.‘iHa

N, wU? el":iln“e IOS,'J'| > 0.1¢4 |°S: ¢ |°S;1| > 0.1/
32 0.61% 0.0119 0.0119 0.0021 0.0021
33 0.46% 0.0077 0.0077 0.0023 0.0023
34 0.58% 0.0192 0.0085 0.0026 0.0026
35 0.71% 0.0107 0.0082 0.0027 0.0027
37 2.2% 0.0530 0.0160 0.0025 0.0025
38 0.53% 0.0072 0.0072 0.0025 0.0025
39 0.71% 0.0067 0.0067 0.0021 0.0021
40 0.81% 0.0063 0.0063 0.0020 0.0020
|Amaz°@ij|/degrees?

32 0.61% 78.8 15.2 4.35 1.55
33 0.46% 77.8 15.2 5.44 1.20
34 0.58% 115.3 14.5 8.21 1.09
35 0.71% 108.8 3.93 4.13 1.15
37 2.2% 169.4 7.47 3.67 1.20
38 0.53% 52.3 3.53 2.86 1.26
39 0.71% 28.8 3.42 3.21 1.20
40 0.81% 37.7 2.73 2.99 1.20

o

n

Maximum absolute deviation of [°S;;| with respect to the converged value; i, 7 € [1,17] are row

and column indices, respectively.

Worst Unitarity - deviation of largest or smallest column sum from 1.0.
Largest modulus or phase differences from converged values for all elements of the °S matrix.
Largest modulus or phase differences from converged values for elements of the °S matrix with

modulus greater than or equal to 0.1.

Largest modulus or phase differences from converged values for elements in the first column of

the °S matrix.

Largest modulus or phase differences from converged values for elements in the first column of
the °S matrix with modulus greater than or equal to 0.1.

Maximum absolute deviation of the phase of °S;; with respect to the converged value.




IT1-88

Table 6.2: Convergence of moduli and phases of °S7=%41 with increasing p™3?

comparison with j™* = 13.0aq (WU2=0.65%)

IAmaz |°sij”b

p™e% [, WUse ety |°S;;] > 0.19 |°S;1| > 0.1¢
10.0 0.67% 0.0047 0.0047 0.0026
10.4 0.75% 0.0080 0.0048 0.0012
10.8 0.76% 0.0071 0.0039 0.0009
11.2 0.59% 0.0040 0.0025 0.0025
11.6 0.60% 0.0036 0.0036 0.0031
12.0 0.70% 0.0038 0.0038 0.0028
12.2 0.78% 0.0059 0.0042 0.0019
12.4 0.91% 0.0055 0.0043 0.0017
12.6 0.72% 0.0031 0.0028 0.0012
12.8 0.69% 0.0030 0.0016 0.0009

|Amaz®dij]/degrees?

10.0 0.67% 21.14 10.71 3.27
104 0.75% 50.82 8.02 2.86
10.8 0.76% 41.48 5.96 2.35
11.2 0.59% 31.91 5.73 2.18
11.6 0.60% 20.40 4.64 1.83
12.0 0.70% 32.71 2.41 1.20
12.2 0.78% 23.92 2.01 1.26
12.4 0.91% 21.31 2.12 1.32
12.6 0.72% 41.94 1.49 0.92
12.8 0.69% 22.23 0.57 0.57

Worst Unitarity - deviation of largest or smallest column sum from 1.0.

Maximum absolute deviation of [°8;;| with respect to the value at 5™%® = 13.0 bohr; i, j € (1,17
are row and column indices, respectively.

Largest modulus or phase differences from 5™** = 13.0 values for all elements of |°S|.

Largest modulus or phase differences from values at 72 = 13.0 bohr for elements of [°S| with
modulus greater than or equal to 0.1.

Largest modulus or phase differences from values at 7™** = 13.0 bohr for elements in the first
column of [°S| with modulus greater than or equal to 0.1.

/ Maximum absolute deviation of the phase of |°S¢;| with respect to 7™** = 13.0 bohr values.
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Figure Captions

Figure 7.1 J = 0 A; transition probabilities as a function of total energy for tran-
sitions of the type (0,0,0) — (0,5,0), with j = 0,2,4,6 for H+H; on the LSTH
potential energy surface. Scattering matrices were calculated every 0.01 eV in the
range E € [0.3,1.6]. The lower abscissas in each panel indicates the total system en-
ergy while the upper abscissas indicates the corresponding initial state translational
energy. The arrows pointing to the upper abscissa indicate the threshhold energies
for the opening of the (v,j) states of H;, with the longest arrows pointing to the
opening of the asymptotic states with v = 0, the medium length to the opening of
the states with v = 1 and the shortest corresponding to the opening of the v = 2
states. The scaling factor for the transition is printed on the plot.

Figure 7.2 J = 0 A; transition probabilities as a function of total energy for
transitions of the type (0,0,0) — (1,7,0), with 7 = 0,2,4,6 for H+H; on the LSTH

potential energy surface. See caption of figure 7.1 for additional information.

Figure 7.3 J = 0 A, transition probabilities as a function of total energy for
transitions of the type (0,1,0) — (0,5,0), with 7 = 1,3,5,7 for H+H, on the LSTH

potential energy surface. See caption of figure 7.1 for additional information.

Figure 7.4 J = 0 A, transition probabilities as a function of total energy for
transitions of the type (0,1,0) — (1,7,0), with j = 1,3,5,7 for H+H; on the LSTH

potential energy surface. See caption of figure 7.1 for additional information.

Figure 7.5 J = 0 E transition probabilities as a function of total energy for
transitions of the type (0,0,0) — (0,7,0), with 7 = 0,2,4,6 for H+H; on the LSTH

potential energy surface. See caption of figure 7.1 for additional information.

Figure 7.6 J = 0 E transition probabilities as a function of total energy for
transitions of the type (0,0,0) — (1,7,0), with j = 0,2,4,6 for H+H; on the LSTH

potential energy surface. See caption of figure 7.1 for additional information.
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Figure 7.7 J = 0 FE transition probabilities as a function of total energy for
transitions of the type (0,1,0) — (0,7,0), with j =1,3,5,7 for H+H; on the LSTH

potential energy surface. See caption of figure 7.1 for additional information.

Figure 7.8 J = 0 E transition probabilities as a function of total energy for
transitions of the type (0,1,0) — (1,7,0), with j =1,3,5,7 for H+H; on the LSTH

potential energy surface. See caption of figure 7.1 for additional information.

Figure 7.9 J = 0 E transition probabilities as a function of total energy for
transitions of the type (0,0,0) — (0,7,0), with j = 1,3,5,7 for H+H, on the LSTH

potential energy surface. See caption of figure 7.1 for additional information.

Figure 7.10 J = 0 E transition probabilities as a function of total energy for
transitions of the type (0,0,0) — (1,7,0), with § = 1,3,5,7 for H+H, on the LSTH

potential energy surface. See caption of figure 7.1 for additional information.

Figure 7.11 J = 0 E transition probabilities as a function of total energy for
transitions of the type (0,1,0) — (0,7,0), with j = 0,2,4,6 for H+H; on the LSTH

potential energy surface. See caption of figure 7.1 for additional information.

Figure 7.12 J = 0 E transition probabilities as a function of total energy for
transitions of the type (0,1,0) — (1,7,0), with j = 0,2,4,6 for H+H; on the LSTH

potential energy surface. See caption of figure 7.1 for additional information.

Figure 7.13 Same as figure 7.1, with conical intersection effect included in the

calculation.

Figure 7.14 Same as figure 7.2, with conical intersection effect included in the

calculation.

Figure 7.15 Same as figure 7.3, with conical intersection effect included in the

calculation.

Figure 7.16 Same as figure 7.4, with conical intersection effect included in the
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calculation.

Figure 7.17 Same as figure 7.5, with conical intersection effect included in the

calculation.

Figure 7.18 Same as figure 7.6, with conical intersection effect included in the

calculation.

Figure 7.19 Same as figure 7.7, with conical intersection effect included in the

calculation.

Figure 7.20 Same as figure 7.8, with conical intersection effect included in the

calculation.

Figure 7.21 J = 0 Pauli antisymmetrized integral cross sections for the transitions
(0,0,0) to (0,5,0), 7 = 0,2 and (0,0,0) to (1,5,0), 7 = 0,2. Scattering matrices
were calculated every 0.01 eV in the range E € [0.3,1.6]. The lower abscissas in
each panel indicates the total system energy while the upper abscissas indicates
the corresponding initial state translational energy. The arrows pointing to the
upper abscissa indicate the threshhold energies for the opening of the (v,j) states
of H,, with the longest arrows pointing to the opening of the asymptotic states
with » = 0, the medium length to the opening of the states with v = 1 and the
shortest corresponding to the opening of the v = 2 states. The scaling factor for

each transition is printed on the plot.

Figure 7.22 Same as figure 7.21, with conical intersection effect included in the

calculation.

Figure 7.23 J = 0 Pauli antisymmetrized integral cross sections for the transitions
(0,1,0) to (0,5,0), j = 1,3 and (0,1,0) to (1,5,0), j = 1,3. See caption to figure 7.21

for additional information.

Figure 7.24 Same as figure 7.23, with conical intersection effect included in the

calculation.
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Figure 7.25 J = 0 Pauli antisymmetrized integral cross sections for the transitions
(0,0,0) to (0,5,0), 7 = 1,3 and (0,0,0) to (1,7,0), j = 1,3. See caption to figure 7.21

for additional information.

Figure 7.26 J = 0 Pauli antisymmetrized integral cross sections for the transitions
(0,1,0) to (0,7,0), 7 = 0,2 and (0,1,0) to (1,5,0), j = 0,2. See caption to figure 7.21

for additional information.

Figure 7.27 J = 1 Pauli antisymmetrized integral cross sections for the transitions:
(a) (0,0,0) to (1,0,0); (b) (0,0,0) to (1,2,0); (¢) (0,0,0) to (1,2,1). (d) (0,1,0) to (1,1,0).

See caption to figure 7.21 for additional information.

Figure 7.28 Same as figure 7.27, with conical intersection effect included in the

calculation.

Figure 7.29 J = 1 Pauli antisymmetrized integral cross sections for the transitions:
(a) (0,1,0) to (1,1,1); (b) (0,1,1) to (1,1,-1); (e) (0,1,1) to (1,1,0); (d) (0,1,1) to
(1,1,1). See caption to figure 7.21 for additional information.

Figure 7.30 Same as figure 7.29, with conical intersection effect included in the

calculation.

Figure 7.31 J = 2 Pauli antisymmetrized integral cross sections for the transitions:
(8) (0,0,0) to (1,2,0); (b) (0,0,0) to (1,2,1); (¢) (0,0,0) to (1,2,2). (d) (0,1,0) to (1,1,0).

See caption to figure 7.21 for additional information.

Figure 7.32 Same as figure 7.31, with conical intersection effect included in the

calculation.

Figure 7.33 J = 2 Pauli antisymmetrized integral cross sections for the transitions:
(a) (0,1,0) to (1,1,1); (b) (0,1,1) to (1,1,-1); (c) (0,1,1) to (1,1,0); (d) (0,1,1) to
(1,1,1). See caption to figure 7.21 for additional information.

Figure 7.34 Same as figure 7.33, with conical intersection effect included in the
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calculation.

Figure 7.35 J = 3 Pauli antisymmetrized integral cross sections for the transitions:
(2) (0,0,0) to (1,2,0); (b) (0,0,0) to (1,2,1); (c) (0,0,0) to (1,2,2). (d) (0,1,0) to (1,1,0).

See caption to figure 7.21 for additional information.

Figure 7.36 Same as figure 7.35, with conical intersection effect included in the

calculation.

Figure 7.37 J = 3 Pauli antisymmetrized integral cross sections for the transitions:
(a) (0,1,0) to (1,1,1); (b) (0,1,1) to (1,1,-1); (c) (0,1,1) to (1,1,0); (d) (0,1,1) to
(1,1,1). See caption to figure 7.21 for additional information.

Figure 7.38 Same as figure 7..37, with conical intersection effect included in the

calculation.

Figure 7.39 Pauli antisymmetrized integral cross sections summed over partial
waves J=0 to 3 for the transitions: (a) (0,0,0) to (1,2,0); (b) (0,0,0) to (1,2,1); (c)
(0,0,0) to (1,2,2). (d) (0,1,0) to (1,1,0). See caption to figure 7.21 for additional

informadtion.

Figure 7.40 Same as figure 7.39, with conical intersection effect included in the

calculation.

Figure 7.41 Pauli antisymmetrized integral cross sections summed over partial
waves J=0 to 3 for the transitions: (a) (0,1,0) to (1,1,1); (b) (0,1,1) to (1,1,-1); (c)
(0,1,1) to (1,1,0); (d) (0,1,1) to (1,1,1). See caption to figure 7.21 for additional

information.

Figure 7.42 Same as figure 7.41, with conical intersection effect included in the

calculation.

Figure 7.43 Pauli antisymmetrized integral cross sections summed over partial

waves J = 0 to 3, also summed over final orientation 2 and averaged over initial
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orientation ', for the transitions: (a) (0,0) to (1,0); (b) (0,0) to (1,2); (c) (0,1) to
(1,1); (d) (0,1) to (1,0). See caption to figure 7.21 for additional information.

Figure 7.44 Same as figure 7.43, with conical intersection effect included in the

calculation.

Figure 7.45 Lifetime matrix eigenvalues (in femtoseconds) for the LSTH potential
energy surface of the Hj system in the J = 3 partial wave and A, irreducible
representation as a function of total energy E (in eV), for the cases (a) I = 0
and (b) II = 1. The peaks in the set of curves correspond to resonances of the H;
system, and are labelled according to the convention for linear triatomic molecular

states, as discussed in text.
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H+H2 (LSTH SURFACE) PARTIAL WAVE CRGSS SECTIONS - PAULI ASYMM,
J=2, NO PARITY; (Q, 1, 1) IO (1, L, 1)
PREMULTIPLICATION BY: 200.0
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I11-228

H+*HZ2 (LSTH SURFACE) PARTIAL WAVE CROSS SECTIONS - PAULI ASYMM. - 37
J=2, NO PARITY; (Q, 1, 0) TO (1, 1, 1)

PREMULTIPLICATION BY: 200.0
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111-229

CROSS SECTION / BOHR SQUARED

20.03.29 TR 230V, 18  JB-PI04YT2, 13300 DIAWLA 10.0

Yy 10 1, 1,1

H+H2 (LSTH SURFACE] PARTIAL WAVE CROSS SECTIONS - PAULI ASYMM.
J=2, NO PARITY; (0, 1,

PREMULTIPLICATION BY: S00.0
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I11-230

/ BOHR SQUARED

CROSS SECTION

neti
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0.0
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J=2, NO PARITY; (0, 1, 1) TO (1, 1, O)
PREMULTIPLICATION BY: 200.0
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I11-231

H+H2 (LSTH SURFACE) PARTIAL WAVE CROSS SECTIONS - PAULI ASYMM. - 37
J=2, NO PARITY; (O, 1, 1) T0 (1, 1

CROSS SECTION / BOHR SQUARED

20.03.37 DAR 20 MV, 1000  JOB-PIRAED2, 13500 DISLA 10.0

net

’

1)

12

PREMULTIPLICATION BY: 200.0
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I11-232

1990  J0B-PID790S2, [SSCO 0ISIMA 10.0

22.00.20 THR 29 MOV,

not

CROSS SECTION / BOHR SQUARED

H+H2 (LSTH SURFACE) PARTIAL WAVE CROSS SECTIONS - PAULI ASYMM.
J=3, NO PARITY; (Q, 0, Q) TO (1, 2, O)

PREMULTIPLICARTION BY: 20.0
Eoo/eV
0.0 0.2 04 0.6 0.8 1.0 1.2
j | [ |
1.0 - ‘ { ‘ l I ‘ i
0.8 4
0.6 -
0.4
0.2
0.0 T T
02 04 0.6
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I11-233

CROSS SECTION / BOHR SQUARED

22.00.32 THUR 28 NOV, 1990  J0B-PI079852, (SSCO DI33PLA 10.0

ot o

H+H2 (LSTH SURFACE) PARTIAL WAVE CROSS SECTIONS - PARULI ASYMM,

J=3, NO PARITY; (0, G, 0) TC (1, 2, 1)
PREMULTIPLICATICN BY: 200.0
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I11-234

CROSS SECTION / BOHR SQUARED

22.00.35 THUR 29 MOV, 1960  JOB-PID79053, 13SCO OI3LA 10.0

H+H2 (LSTH SURFACE) PARTIAL WAVE CROSS SECTIONS - PAULI ASYMM.
J=3, NO PARITY; (0, 0, 0) 10 (1, 2, 2)
PREMULTIPLICATION BY: S000.0
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I11-235

motT 1

22.00.43 THUR 28 MOV, 1990 J0B-PI079852, (3SCO DISSPLA 10.0

CROSS SECTION / BOHR SQUARED

H+H2 (LSTH SURFACE} PARTIAL WAVE CROSS SECTIONS - PAULI ASYMM.

J=3, NO PARITY; (G, 1, Q) TO (1, 1, Q)

o oo S
T T

|
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E/eV
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Fig. 7.35d




ITI-236

CROSS SECTION / BOHR SQUARED

22.07.12 THUR 29 MOV, 1990 J0B-PIDB2454, 133C0 O0ISSPLA 10.0

ot

0.0

0.2

H+HZ2 (LSTH SURFACE) PARTIAL WAVE CROSS SECTIONS - PAULI ASYMM. - GP
J=3, NO PARITY; (G, 0, ) TO (1, 2, O)
PREMULTIPLICATION BY: 100.0
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I11-237

ot 1

22.07.12 THUR 29 MOV, 1990 JOB-P 1062454, (3300 DISSPLA 10.0

H+H2 (LSTH SURFACE] PARTIAL WAVE CROSS SECTIONS - PAULI ASYMM.

CROSS SECTION / BOHR SQUARED

J=3, NO PARITY; (Q, 0, Q) TO (1, 2, 1}
PREMULTIPLICATION BY: 200.0
1300/43\7
| [li I l { fﬂ
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0.6 4
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0.2 4
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I11-238

ot |

22.07.14 THUR 29 NOV, 1930  JOB-PI082454, [3SCO OISSPLA 10.0

H+H2 (LSTH SURFARCE) PARTIAL WAVE CROSS SECTIONS - PAULI ASYMM, - GP
J=3, NO PARITY; (0, 0, O3 IO (1, 2, 2}

CROSS SECTION / BOHR SQUARED

NLHIRN LR L
"oz 54 oo oo

Fig. 7.36¢




I11-239

Mot |

1990 JOB-P1DB2454, 133CO DISSPLA 10.0

22.07.16 THUR 29 NOV,

H+H2

CROSS SECTION / BOHR SQUARED

(LSTH SURFACE) PARTIAL WAVE CROSS SECTIONS - PAULI ASYMM.
J=3, NO PARITY; (O, 1, 0) TO (1, I, Q)

PREMULTIPLICATION BY: 50.0
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I11-240

not i

22.00.4¢ THUR 28 NOV, 1990 J0B-[079652, 155C0 DISSPLA 10.0

CROSS SECTION / BOHR SQUARED

H+H2 (LSTH SURFACE) PARTIAL WAVE CROSS SECTIONS - PAULI ASYMM,
J=3, NO PARITY; (0, 1, 0) 10 (1, 1, 1)
PREMULTIPLICATION BY: 100.0
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I1I-241

CROSS SECTION / BOHR SQUARED

22.00.49 THUR 29 NOV, 1990  JOB-PLO79852, [SSCD DISSPLA 10.0

Mot o

H+H2 (LSTH SURFACE) PARTIAL WAVE CROSS SECTIONS - PAULI ASYMM.
J=3, NO PARITY; (O, I, 13 I0 (1, 1,-1)
PREMULTIPLICATION BY: 200.0
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I11-242

CROSS SECTION / BOHR SQUARED

22.00.50 THUR 29 NDV, 1990 JOB-r1079852, 13SC0 DISSPLA 10.0

Aot 1

H+H2 (LSTH SURFACE) PARTIAL WAVE CRQOSS SECTIONS - PRULI ASYMM.
J=3, NO PARITY; (0, 1, 1) T0 (1, 1, Q)
PREMULTIPLICATION BY: 100.0
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I11-243

PLOT

22.00.50 THUR 29 NO¥, 1990 JOB-P10796852, 135CO OI3SPLA 10.0

CROSS SECTION / BOHR SQUARED

H+H2 (LSTH SURFACE) PARTIAL WAVE CROSS SECTIONS - PAULI ASYMM,
J=3, NO PARITY; (O, 1, 1) TO (1, 1, 1}
PREMULTIPLICATION BY: 200.0
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111-244

POt |

22.07.20 THUR 29 NIV, 1990 JOB-P1082454, 135C0 DISSMA 10.0

H+H2 (LSTH SURFACE) PARTIAL WAVE CROSS SECTIONS - PAULI ASYMM.

CROSS SECTION / BOHR SQUARED
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1, 0) T0 (1, 1, 1)

PREMULTIPLICATION BY: 100.0
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IT1-245

Mot

22.07.28 THUR 29 NOV, 1990 JOB-P1D82454, 135C0 DISSPLA 10.0

H+H2 (LSTH SURFACE) PARTIAL WAVE CROSS SECTIONS - PAULI ASYMM. - GP
J=3, NO PARITY; (0, 1, 1) T0 (1, 1,-1)
PREMULTIPLICATION BY: 500.0

CROSS SECTION / BOHR SQUARED
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Fig. 7.38b




ITI-246

H+H2 (LSTH SURFACE) PARTIAL WAVE CROSS SECTIONS - PAULI ASYMM. - GP

J=3, NO PARITY; (Q, 1, 1) TO (1, 1, O)

PREMULTIPLICATION BY: 200.0
Em/eV
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I11-247

mot 1

22.07.32 THUR 29 MOV, 1990  JOB-PIDB2454, 1S5C0 DISSMA (0.0

R

H+H2 (LSTH SURFACE) PARTIAL WAVE CROSS SECTIONS - PAULI ASYMM. - GP

CROSS SECTION / BOHR SQUARED

0.0

J=3, NO PR

RITY; (0, 1, 1) 1O (1, 1, 1)

PREMULTIPLICATION BY: 200.0
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I11-248

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMED IN J - PAULI ASYMM.
JHMAX=-3, NO PARITY; (G, 0, ) TO (1, 2, O)
PREMULTIPLICATION BY: 20.0
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I11-249

07.55.28 MW 3 T, 1990 JD-P 1084567, 133C0 DISILA 10.0

Aot |

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMED IN J - PAULI ASYMM,
JMAX=3, NO PARITY; (0, 0, Q) TO (1, 2, 1)
PREMULTIPLICATION BY: 200.0
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II1-250

07.55.29 nOM 3 DEC, 1990 JOB-PIDSHSE?, [SICO OISYLA 10.0

[V 1H]

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMED IN J - PAULI ASYMM.
JMAX=3, NO PARITY; (0, 0, 0) TO (1, 2, 2)
PREMULTIPLICATION BY: 5000.0
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I11-251

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMED IN J - PAULI ASYMM.
JMAX-3, NO PARITY; (0, 1, 0) TO (1, 1, Q)
PREMULTIPLICATION BY: 5.0
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111-252

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMED IN J - PAULI ASYMM, - GP
JMAX=3, NO PARITY; (0, 0, ) TO (1, 2, Q)

CROSS SECTION / BOHR SQUARED

7.54.08 MON 3 0EC, 1990  JOB-PI094423, 133C0 OISSPLA 10.0

Mot ¢

PREMULTIPLICATION BY: 50.0
Eoo /eV
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II1-253

1930 JOB-P 1094423, 133CC DISSPLA 10.0

07.54.00 nON 3 DEC,

ot i

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMEDS IN J - PAULI ASYMM. - GP
JMAX=3, NO PARITY; (0, 0, 0) TO (1, 2, 1}
PREMULTIPLICATION BY: 200.0
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I11-254

@.S4.07 MON 3 DEC, 1930 JOB-P 1094423, 135C0 DISPLA 10.0

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMED IN J - PAULI ASYMM, - GP
JMAX=3, NO PARITY; (G, G, ) IC (i, 2, 2)
PREMULTIPLICATICN BY: 2000.0

/ BOHR SQUARED

CROSS SECTION

0.0 02 04 %g/ eVO.B 0 i
T T

E/eV

Fig. 7.40c




IT1-255

1990 J0B-P 1094423, 195C0 DISIPLA 10.0

07.5¢.00 MON 3 OEC,

ot |

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMED IN J - PAULI ASYMM. - GP
JMAX=3, NO PARITY; (0, 1, G) TO (i, 1, Q)
PREMULTIPLICATION BY: 5.0

on/eV

WL

00 02 04
|

lill

1.0 1

0.8 -

0.6 1

0.4 1

0.2 -

CROSS SECTION / BOHR SQUARED

O‘O I } I
02 04 06 08 10 12 14 16

E/eV

Fig. 7.40d




I11-256

CROSS SECTION / BOHR SQUARED

07.55.31 %3 DEC, 1990 JOO-P 1091567, 133C0 Di3SHPLA 10.0

Mot i

H+H2 (LSTH SURFACE} CROSS SECTIONS SUMMED IN J - PAULI ASYMM.
JMAX=3, NO PARITY; (0, 1, O0) 1O (1, 1, 1)

PREMULTIPLICATION BY: 100.0
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I11-257

Mot |

07.55.33 NON 3 0EC, 1930  J0B-PI0B45A7, [33C0 OISYLA 10.0

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMED IN J -~ PAULI ASYMM,
JMAX=3, NO PARITY; (0, 1, 1) IO (1, 1,-1)
PREMULTIPLICATION BY: 200.0
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Fig. 7.41b




IT1-258

[V ]

07.55.3 now 3 0EC, 1990 JOB-P 1094567, 133C0 OISIPLA 10.0

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMED IN J - PAULI ASYMM.
JMAX=3, NO PARITY; (0, 1, 1) TO (1, 1, O)
PREMULTIPLICATION BY: 100.0

on/eV
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Fig. 7.41c




ITI-259

ot

07.55.34 MW 3 0T, 1990 JOB-P [094567, 133C0 DISLA 10.0

H+H2 (LSTH SURFACE) CRGOSS SECTIONS SUMMED IN J - PAULI ASYMM.
JMAX=3, NO PARITY; (0, 1, 1) TO (1, 1, 1)
PREMULTIPLICATION BY: 100.0

Eoi /eV
00 02 04 06 08 10 12

~ 1od ]I l l ] l u
=

=

-

&F o8-

=

a

z

< 067

Z

=

7!

7!

0

S

e 0.2+

O

0.0 —

Fig. 7.41d




ITI-260

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMED IN J - PAULI ASYMM. - GP
JMAX=3, NO PARITY; (0, 1, 0) TO (1, 1, 1)

CROSS SECTION / BOHR SQUARED

07.5¢.08 MON 3 OIC,

nor ¢

PREMULTIPLICATION BY:

100.0

T
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IT1-261

[V iN]

07.54.12 MOM 3 OEC, 1990 JOB-P1D94423, 133C0 DISILA 10.0

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMED IN J - PAULI ASYMM. - GP
JMAX=3, NO PARITY; (0, 1, 1} TO (1, 1,-1)

/ BOHR SQUARED

CROSS SECTION

PREMULTIPLICARTION BY: 200.0
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I11-262

07.54.12 MON 3 DEC, 1990 JOB-P (094423, 133CO DISSPLA 10.0

for |

H+H2 (LSTH SURFRCE) CROSS SECTIONS SUMMED IN J - PAULI ASYMM. - GP
JMAX=3, NO PARITY; (0, 1, 1) T0 (1, 1, Q)
PREMULTIPLICATION BY: 200.0
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ITI-263

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMED IN J - PAULI ASYMM. -~ GP
© JMAX=3, NO PARITY; (0, 1, 1)} IO (1, 1, 1)
PREMULTIPLICATION BY: 100.0

CROSS SECTION / BOHR SQUARED
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V1 N}
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Fig. 7.42d




I11-264

MD S EC, 1990 JOB-P 1084895, 13300 DISSLA 10.0

08.44.14

ot

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMED IN J - PAULI ASYMM.
SUMMED AND AVERAGED QVER CMEGAR: JMAX=3, NO PARITY; (0, O) TO (!, C)
PREMULTIPLICATION BY: 20.0
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I11-265

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMED IN J - PAULI ASYMM.

SUMMED AND AVERAGED GQVER GMEGA: JUMAX=3, NO PARITY; (0, 0) TO (1,

PREMULTIPLICATION BY: 20.0
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111-266

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMED IN J - PAULI ASYMM.
SUMMED AND AVERAGED OVER OMEGA: JMAX=3, NO PARITY; (0, 1) TO (1

PREMULTIPLICATION BY: 10.0
on/eV
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I11-267

1990 JOB-PI044855, 1330 OI3SPLA 10.0

18.01.19 nON 3 OEC,

ot 1

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMED IN J - PAULI ASYMM.
SUMMED AND AVERAGED OVER OMEGAR: JMAX=3, NO PARITY; (0, 1) TO (1, Q)
PREMULTIPLICATION BY: 100.0
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I11-268

H+H2 (LSTH SURFACE) CROSS SECTIONS SUMMED IN J - PAULI ASYMM. - GP
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PREMULTIPLICATION BY: 20.0
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Appendix A. Irreducible Representation Asymptotic Forms

Application of the projection operators to equation (3.1.1) yields the following re-
sult:

A, gt m k R vl 58 ,m
At I tkawy iy Ran Ald
Pkk\p Rx--uo Z Z TAA”JA [ 5r\vth1

A vajama AY
e’kA’AJ'A R,yn

+ f x.,,%?.',\m" (Oarrs dar) R O3 sy (FA)
(A.1)
where we will temporarily use 75 to denote the value of 7 associated with the
arrangement channel A\. (We will continue to use T to represent an arbitrary type
of channel.) Since the asymptotic diatom in all channels of type 7\ are the same,
we replace the A label with 75 where appropriate (and likewise A’ with /) to get

the expression

Ay -~ A T
PI‘ \D'_ Ta! JTAI 2! j : : : Ph eszA"TAjTA 'R'A” 6 -rAf JTA[ Tl
kk A RX—-om TX A”.7'? AvTA Jry Mry
A Yra J.-rA My, Al
l l -1 lk.,- vy, jr qu
NELY ;u e TATTAITA sf
+ f;\v,x Jry My (GA” ’ th\") Ry Pra Uy, Jry Tory (r)\")

(A.2)

The final form we want for the result involves a sum over T replacing the sum
over A (followed by replacement of A" by A). For the incoming wave this is simple
to acheive; the sum over X is completed, which replaces all instances of A with X',

and then a sum over 7 is added along with a term 6;*' to yield

]
k- vradry ‘R 5 ardra M
TA A"JTA AVTA J‘rA m'rA -

A VTAJ'A""A An

(4.3)

1

' .
ekrvrir Ran 5TA’”7A, Jry 0 ™ry
-r)w TV, j M,
T ”-r]rm-r Al
The justification for the second term is more difficult, and will be done for each
permutation group seperately.

In the case of P; symmetry (or an ABC system), the terms cl;:,‘,,j“ are zero

unless A" and 7y refer to the same arrangement channel, t.e., A" = a and 7\, = A
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or \' = (3 and 7y = B or A = 4 and 7, = C, in which case the coeflicient term is
1. Therefore, we can write

m'
Jr
ATl
22 X Bt Faons i ™ (B, b )
A ”rAJrAmr;\

tks, v i Ryu
AYTyIT A
€ ATTA Sf

r
Ryn ‘an,x Jra m"'A( A”)

=Y S AT (0,2

A Vry J‘TA LULZ SN

(A.4)

lk.,.A Vriir
€ TA A sf

z; ‘»f’m,A jrymry (T2)

Multiplication of each term in the sum over A on the right side of this equation by

Tx

Criin

and summing over 7 leaves the value of the expression unchanged, due to the

form of these coefficients. This yields

l
i1
Z Z Z TA A”J~u fAv,A;:.;;:,A > (GA” ? ¢)‘” ) X

A ”‘rAJ-rAm-r)‘ Al

e’k’* vryiTy Ryn

2 soifwmu (rx1)
,J-r , tk; Ry of
=> > > f,\.,,,, me (6, 2) =— R PP (ra)
T A vrjrmg
(A.5)
For the P3 symmetry case, all arrangement channels have the same value of ;

consequently, we may write the second term of equation (A4.2) as

I

J-r A
Z Z Z TA A”.7-1-1 fAV-rA J‘rA LAULESY (OA” ’ ¢A" ) X

A Yry JrA My An

etk,A vrydry Ryn

: f
P3 ' .RAN (Pixth'l JTA m-rA (rk,') (A.G)
A ' e'krwj RAII f
—_ Z Z Z rAu Av;f}’. m (0A11,¢A:')_ﬁ;—-¢iv1m(rx:)

A vijm AV

Since the only term that depends on A is the scattering amplitude, we can take that

sum into a new expression; we can also freely add a sum over 7 since it takes only
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one value. We then get

T ,J‘r A
Z Z Z CT:A”J}A fkv,A Jry ey (0)\" ) ¢A” ) X

A Yry j‘FA LULESN An

1k, iv. Ryt
AYTyiT )
€ AT Sf

By Ryn P Vrydra My (l‘xl)

A v'j'm' etkrvi Ran f
- Z Z Z "'A” Av]m (GA" ’ ¢/\”) T(Prvjm(rf\”)

T vim A"

(A.6)

The P, case (for an AB; system) requires a combination of the above arguments

for the P; and P; cases. We begin by seperation into the two different 7 values, by
explicitly substituting the channel indices for A:

jr
Z Z Z TA A"JrA fA”-rA;:'A 'AnITA A’ (GA” ? ¢A” ) X

A Uy ey mey A

tkr. v ;.. Ryn
Av¥ryIT A
€ ATTA Sf

Rn L UryJraMry (I‘x:)

'~ i
TAI 7'xl AI
Z Z CAA"JA avajama (ex' » P ) X

vajama A

sk i Ryt
Py: e S
.RAII SoAvAJAmA A

LN f" '
+ Z ZCBA”JB (‘fﬂ”BJABm; A (GA”7¢A")

vpIBmB A

(A7)

11 .
2A L

ml
+ f,vaJ_AB'm;I Y (0AN,¢AH)) X

tkBopin R
e'FBvpig Al f ( )
Ryr  PBunjnma\FA"

In the first of the terms on the right side, the only nonzero term is for A" = «, and

in the second of these terms, A" = a is the only term which is explicitly zero. If we

define

A, ! J-I
favA;Ar”‘:il AI (HA,,, ¢AH) T = A
AX J A j-r
grv'r],m: A' (GA") ¢A”) = fﬂunl;gm;’ Al (9,\::,(]5;\::)—{- B
T =

A' : lj"’ I [
f-vaJ;m; ™ (OA” ’ ¢A”)
(4.8)
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we can rewrite (A.7) as

J
Z Z E TA A”J"A fA”-rA?:-;:;:rA g (OA” ? ('bx')

A Vra JTA mMry

e‘lkq-A vy ,'fA RAH

sf
RA" Sa‘r,\v,’\ J.,-A m., ( A”)

A J-t m’
T TA'
- Z Z TA”JT TV'rJ'r m-r (gA” ’ ¢A” ) x

T v jrmy A
e’k?Rx” Sf ( )
————————— = rA”

R

P2 : (AQ)

Definitions similar to that of (A.8) may be made in the P; and P; cases, in
which case the overall form of the equation for the I irreducible representation wave-
function, obtained by application of the projection operators to equation (3.1.1),
can be written as

vl 5 m ksR r'v’, 5 ,m ,
AfIat 1Ky ridr
Pkk‘I’ Rx—-»oo Z Z Z fA” [ 57’"1’]?"‘1’

T vjrmye AY

(4.10)

‘lk.yRAIl
A vT, J’_,m
+ gfv‘rJ‘rmf (HA”’¢A”)—-R~———] ¢§£nl (rA”)
AII
By identification of 7y with 7' and use of the symmetry properties for the scattering
amplitudes given in the main text, equation (4.1.1) for the space-fixed representation
may be derived. A brief examination of equation (3.1.3) will show that the same

logic applies to the derivation of (4.1.2) for the helicity amplitudes.
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Appendix B - Derivation of the Spin Statistics Equations

The unsymmetrized spin wavefunction for the nuclei can be represented as a product
of the spin wavefunctions for each nucleus: |s3m1)|s2m3)|s3m3). This wavefunction

is an eigenfunction of the operators 42 and 5z; (1 = 1,2,3):

E?Islml)[szmz)ls;,m;;) = h2s,-(s,- + 1)|s1my)|samyp)|s3ms) (5.1)

Szi|simi)|sama)|s3ms) = Em;|sym,)|sama)|s3ms)

When two or all three of the nuclei are identical (P; or P3 symmetry, respectively),
the indistinguishable nuclei must have the same spin, and symmetrized wavefunc-
tions involving the permutation of the identical nuclei can be generated by applica-

tion of the projection operators for the group.

In the case of P, symmetry, we can define a notation which implicitly takes
account of the identical spins of the two indistinguishable particles (which will be

assumed to be those labelled 2 and 3):
|s1mysmams) = |s3my)|sm2)|sms) (B.2)

where we have set s, = 33 = s. We can also write the wavefunction which is
an eigenfunction of the operators for the total spin angular momentum $2? and
projection of this angular momentum on the space-fixed Z axis Sy for the identical

particles:

|s1m1 S Ms) = |s1m1) Y C(ssS;m, Ms — m, Ms)|sm)|s(Ms —m))  (B.3)

m

where C(ssS;m, Mg — m, Ms) is a Clebsch-Gordon coefficient.®! The functions so
defined are also eigenfunctions of the projection operators for the P, group, since

permutation of the two identical particles either leaves the function unchanged or
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changes its sign:

Py3|symiSMs) = [symy) > C(ssS;m, Ms — m, Ms)|s(Ms — m))|sm)
= (~1)***5|s1m1) Y C(s38; Ms — m,m, Ms)|sMs — m)|sm)
= (—1)**¥|sim1) ) C(ssS;m', Ms — m', Ms)sm')|s(Ms — m'))
(1075 |symy SMs)

(B.4)

in which m' = Ms —m and we have used the Clebsch-Gordon symmetry property®?
C(j1j2ad;mima M) = (=1)2 27 C (4351 J;mam; M) (B.5)

Functions for which 2s + S is even will be symmetric with respect to this permu-
tation and thus will have 4' symmetry, and those for which 2s + S is odd will be
antisymmetric and will have A" symmetry. As noted in the text, the irreducible
representation of the wavefunction is independent of M.

If the two identical nuclei have integer spin (bosons), then the quantity 2s is
even; if they have half-odd inte"ger spin (fermions), this quantity is odd. For bosons,
the total nuclear wavefunction (spatial times spin) must have A' symmetry, and
therefore the A’ spatial wavefunction has only spin states with even S associated
to it (since (—1)5*2* = (—1)% in this case), and the A" spatial wavefunction has
only the odd S states. For fermions, the total nuclear wavefunction must have
A" symmetry; since in this case (—1)?**5 = —(—1)%, the same rules apply as for
bosons.

To determine the numbers of states with even or odd values of S, we will
examine seperately the cases of bosons and fermions. The maximum value of S is
23, and there are 25 + 1 Mg states associated with each value of S, for a total of
(2s + 1)? states. For integer s, the number of states for even and odd S are:

Ng=1454+9+...+4s+1= —;—(23—4—1)(234—2)

1 s integer (B.6)
Ng=3+4+7+11+...+4s—-1= 5(23)(23—{—1)
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while for half-odd integer s the number of states for even and odd S are

1
N§=1+5+9+...+4s—.1=5(23)(23+1)
1 s half — odd integer;
N§=3+7+11+...+4s+1=5(23+1)(2s+2)

(B.7)
Equations (B.6) and (B.7) may be combined into a single statement, using the fact
that the sign of (—1)?* differs between the two, to yield

NS = %(23 +1)(2s +1+(-1)*)
Ng = _;.(23 +1) (28 +1-— ("1)2,)

as given in the text.
For the P3 group, the three identical nuclei must have the same spin, and we

can define the simpler notation
|smymams) = |smy)|sma)|sms) (B.9)

We can define a symmetrized spin wavefunction by application of the projection

operators for the P; group to the above wavefunction:
lsmimams; Tij;) = I:",-rjlsmlmgm;;) = n?r Z d};‘(R)OR|sm1m2m3) (B.10)
R
The results of this are as follows: for m; = my = m3 = m we find that
|lsmmm; A;) = |smmm); |smmm; A;) = |smmm; E;;) =0 (B.11)

and so for each of the 2s + 1 functions of this type a single 4; IR function exists.

If however only two are equal (so that m; = m' # my = mj; = m) the result is

1
|sm'mm; 4,) = 3 (|sm'mm) + |smm'm) + |smmm'));

lsm'mm; A3) = |sm'mm; Ey1) = |sm'mm; Ez2) = 0

B.12
jsmmm; Eyy) = X (2lem'mm) — [smm'm) — [smmnd)); (8:22)

|sm'mm; Eq,) = (lsmmm') — |smm'm)).

L
V3
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(We have defined the E symmetry functions to be either symmetric or antisymmetric
with respect to permutation of particles 2 and 3.) There are 2s(2s + 1) different
functions of type |sm'mm) (with m' taking on 2s+1 possible values and m restricted
in each case to the 2s remaining). There are also 2s(2s + 1) functions of type
|smm'm) and of type [smmm'); however, the A; functions generated by |sm'mm),
lsmm'm) and |smmm') are identical and the E functions of one of these a linear
combination of the E functions of another, and so there are only 2s(2s + 1) distinct

symmetrized functions of each symmetry. Finally, for all three m; different, we get

|smimams; Ag) -——_-;— (|smimams) + |smamamy) + |smazmym,)
+|smymams) + |smamem,) + |smamims))

smyimams; Az) =% (Jsmimams) + |smemamy) + |smazmime)
—|smymgm,) — |sm3mam,) — |smamyms))

1 1 1
smimamgs; Eypq) =3 |smimams) — —2—|sm2m3m1) - -2-]sm3m1m2)

1 1
+]3m1m3m2) e §|sm3'm2m1) — —2-]sm2m1m3)

1
|smimams; E2;) =m (|smamamy) + |smamym;) — [smamamy) — |smamim,))
1
|smymams; Eqg) =7 (|smamamy) — |smamyms) + |smamamy) — [smamimy))
1 1
|smimamsy; Egp) = |smimams) — —-|sm2m3m1) — —-|sm3m1m2)

—|smymam,) + —2-|3m3m2m1) + %lsm2m1m3)
(B.13)
When all three values of m; differ there are a total of (2s — 1)(2s)(2s + 1) different
unsymmetrized states, each of which can be decomposed into one A4;, one 4; and
two E states. However, any of the six permutations of the m; quantum numbers
in the symmetrized function |sm;m,m3) generates the same 4; and (within a sign
change) 4, symmetrized functions, and results in taking a linear combination of

the E functions generated by a different permutation; therefore the the number of
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distinct symmetrized functions generated from these states is (2’_1)(26’)(2'+1) A

and 4, states and (2'_1)(23’)(2’+1) E states.

The equations (B.10) through (B.12) along with the analysis of the number of
states generated are sufficient to determine the spin weighting for the irreducible
representations of P;. We may also want to determine the spin wavefunctions which
are eigenfunctions of the square of the total spin angular momentum operator for
all three identical particles and the projection of this quantity onto the space-fixed
Z axis; these operators will be called $2 and Sz, but it should be noted that they
are not the same as those so named for the P, case, as they operate on all three
particles and not just two of them. There are three equally valid expressions for
these functions, depending on which two spins are first coupled in the formalism;

these are

|8812; SMg) = Z Z C(s8812;m1mamy2)C(81285;miamsMg)|smimams)

e (B.13a)
|ss13; SMs) = Z Z C(ss813;mimamy3)C(8138S;mizmaMs)|smimam;)

e (B.13b)
|8s23; SMs) = Z Z C(s8823;mymam23)C(82385;ma3my Ms)|smymams)

e (B.13¢)

where s;; is the result of coupling the spins s; and s;. The functions generated by
(B.13a) and those generated by (B.13b) when sy in the first expression and s;3 in
the second are equal are in general not the same; however, each of these expressions
yields a complete basis set for functions with quantum numbers S and Mg if all
possible values of s;; are included in the basis. In keeping with the convention of
equations (B.11) and (B.12), we will use expression (B.13c) which couples spins 2
and 3 first.

Since the operators for the spin angular momentum and the permutation op-

erators commute, the expression for the symmetrized spin function which is an
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eigenfunction of $? and of Sz can be written as
18523; P,’jSMs) = P5|3823; SM5>

= Z Z 0(88323;m2m3m23)0(82385; mgngMs)IE’iE]smlmgmﬂ

m3 mMmas

= Z Z C(sssz3;m2m3m23)C(323sS; m23m1M5)]3m1m2m3; P:’j>
m3 MmMas

(B.14)
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HYPER-SPHERICAL COORDINATE REACTIVE SCATTERING
USING VARIATIONAL SURFACE FUNCTIONS
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An efficient numerical method of calculating surface functions for accurate quantum mechanical three-dimensional reactive
scatlering using symmetrized hyper-spherical coordinates has been developed. This method is at least 20 times faster than the
finite-element method used previously and its accuracy is demonstrated for the H+ H, system.

1. Introduction

Accurate quantum solutions for three-dimensional reactive scattering for triatomic systems were first cal-
culated in the mid 1970s for the system H+H, [1-5]. The difficulty and computational expense of these cal-
culations has, until recently, precluded extension to higher energies and more complex systems; however, the
development of more efficient algorithms coupled with increased access 10 supercomputers has resulted in a
resurgence of activity in this field {6-17]. In particular, the use of symmetrized hyper-spherical coordinates
(SHC) and local hyper-spherical surface functions (LHSF) [18,19] is a very promising approach.

The’first accurate calculations of 3D reactive scattering matrices using a hyper-spherical coordinate method
were recently performed on the total angular momentum J=0 partial wave of the H+H, system {6]. This
method, applied to the PK2 potential energy surface [20], involved the calculation of sets of LHSF using a
two-dimensional finite-element (FE) approach. The FE method is accurate and reliable for this system, and
has been used to extend the range of energies at which the corresponding /=0 partial wave scattering matrices
have been caiculated to 1.6 eV [11]; however, extension to higher values of J and to less symmetric systems
requires an excessive increase in computational effort. As a consequence, there was a need to develop a more
efficient method for calculating these LHSF.

In this paper we present a new variational method for calculating LHSF. The formalism is described in sec-
tion 2. Section 3 discusses the numerical parameters used and section 4 compares the results of LHSF and
scattering calculations for the J=0 partial wave on both the PK2 and LSTH [21,22] potential energy surfaces
with those of previous calculations using a finite-element method [6.11,23] to obtain the surface functions.
In addition, some comparison of the J=1 PK2 scattering results with those of the matching method (3] are
made. A summary is given in section S.

' Work performed in partial fulfiliment of the requirements for the Ph.D. degree 1n Chemustry at the California Insuitute of Technology
* Current address: 216 Synchrotron Laboratory 206-49, Califorma Institute of Technology. Pasadena, CA 91125, USA
> Contnibution No. 7865.
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2. Formalism of variational surface functions

The SHC coordinate system used in this calculation has been described previously {6,11,18,19]. Let A,, A,,
A, be the atoms of a triatomic system and 4, v, x an arbitrary permutation of a, 8, y. The A SHC for this system
are
r;

-arccosR‘—.~ O<sw <rn {
nh= erl » W, 7% ’ ( )

p=(r}+R}'?, w,=2arctan>,
R,

where r, is the mass-scaled [24,25] internuclear vector for the diatom A, A, and R, the position vector of the
atom A, with respect to the center of mass of A,A,. The orientation of the system in space is determined by
the Euler angles 6,, ¢, (the polar angles of R, with respect to a space-fixed OZ axis), and y, (the angle between
the R,r, and R;,0Z half-planes). In this coordinate system the Hamiltonian is expressed as

it 28 A? 15A2

= —pi StV + ==,

HA 2# apzp +2ﬂpz+ (p7w1y741) 8#02 (2)
in which the global reduced mass 4 is defined as [mum,m./(m.+m,+m,)]"/ 2. The generalized or grand ca-
nonical angular momentum operator A? is defined by

I? 3

12_fr2
4 -£A+C°52(iwa) sin(lw,)’

(3)

where {? and j7 are the angular momentum operators associated with the vectors R, and r,, respectively, and

~4kK% [ @2
L . :
E"—si A(a i+l>smw,‘ (1)

is an angular momentum associated with the hyper-angle w;. The term V(p, w,, y,) is the potential energy
function of the electronically adiabatic triatomic system.
The equation that defines the LHSF @/ with associated eigenvalues €77 is

42
(:,_%’; +V(p, s, n))«bi“”f(cl;p)mi”’(p) ML p) (5)
in which {; stands for the set of five hyper-spherical angles (w;, v;, 68,, ., w:). The indices J, M. [1. I are.
respectively, the quantum numbers of the total angular momentum of the system, its projection on the space-
fixed OZ axis, the inversion parity of the triatomic system through its center of mass, and the irreducible rep-
resentation of the surface function in the permutation group of the system (P, for H+ H,). The boundary con-
ditions for eq. (S) are the usual “well-behavedness™ ones (single valuedness., continuity, non-divergence.
differentiability, etc.). The index n denotes a quantum number which, in addition to J, M, [T, I', uniquely labels
the LHSF. A set of two-dimensional surface functions w73 (w,, y,;0) independent of the orientation of the
system in space can be defined by expansion of the LHSF in terms of Wigner rotation matrices

D‘IQ(¢11 0)1 WA) [26]

J
O (Lip)= T P, Oor i) VI (@07200) "

where

G818, ) = Nyg[ Dhea( @, i wa) + (= 1) *779D4, _0(0,.6,.v.))

and N,, is a normalization constant. 747, is even (odd) with respect 10 inversion of the system thraugh (s

156
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center of mass for /7=0 (1), and in the case of 2=0 is zero when J+ /7 is odd. The boundary conditions for
the /2" (w,, y.; p) which result from the “well-behavedness” of the @7 are that

vl (w,, 1,=1{0,%};p) =0 for Q#0

and

Fwg [WJ (@ 75 2) N pamio. s =0 for 2=0.

Furthermore, the potential function ¥(p, w,, ¥,) has in general extrema at y,={0, n} (corresponding to col-
linear configurations of the system). As a result of these considerations, the 72" can be factored as a function
of w, times a normalized {2] associated Legendre function 27 (cosy,) in the vicinity of y,=0 and =. This
makes it both convenient and desirable (because of the presence in eq. (3) of the operator J1) to expand these
w2 according to

i fel Jnr(wbp)
vidi(w, v )= Z 9 (cosy)—*lTa;——, (7)
Yyl

where the coefficients 6774 (w,; p) are called one-dimensional surface functions. Replacement of eqs. (7) and

(6) into eq. (5) leads to the equation satisfied by these functions:

h? {[ 4( 9? ) J(J+1)+j(j+l)—292+ jG+1) ] o

2up? i cos*(hwy) sint(Jay) |07 (@ P)

awl

ﬁz
- m [E. (. Q) EL(, Q) oih s (Wi p)+E_ (1, ) (. ) ¢f.ﬁ5_u(w1;l7)]}
A

+ 3 VU, w) 97 (s p) =27 (p) B (Wi p) - (8)
JmQ

The multiplicative factor (sinw;) "' has been introduced into eq. (7) because of the form of eq. (4). The
presence of this term forces the boundary conditions ¢ (w, ={0, =}; p) =0 for eq. (8). These conditions are
necessary for 23" not to diverge at w, = {0, nt} but may not be sufficient; however, in practice they have indeed
sufficed for H+H,, and we do not anticipate problems with other systems. In eq. (8). {. (v k)=

[i(i+1)=k(k*1)]"? and the term V! is given by
V&p, w)= j?f(cosy;) V(p, wa, 72) 2 (cos y,) siny, dy, . (9)
0

It is important to note that for eq. (8) to be valid, the functions ¢//7f" with 2=0 must be defined to be iden-

tically equal to zero when J+ /7 is odd. The set of equations (6), (7), and (8) are equivalent to eq (3)
The variational basis set is suggested by the expansion equation (7) and by eq. (8). We define functions

13 (wy; p) with associated eigenvalues e7,0(p) which satisfy the latter after the 2 and coupling is removed:

283 3 JU+1)+j(+1)=22%  jG+1) , _
[t R - — +VQ .’A=J /AA (1O

|: upl(awﬁ ! 4cos?(tw;) 4sin?({w;) w |lua=esalie
These functions are required to satisfy the same boundary conditions as the @7/l /3,(0:p) =17, (r pi =0

We now define a five-dimensional variational basis set by

FM0(00p) = 2305, 6i, wi) 28(cosys) fhalwiip) s ()

where for notational convenience we have defined [ [g(w,; p) =tja(w,: p)/sin w;. Since this basis setis con-
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centrated in the A arrangement channel region when p is sufficiently large, accurate representation of the surface
functions concentrated in the » and x channels may require a large number of terms at such values of p. To
overcome this difficulty, a new basis set is constructed which consists of the union of the basis sets F{¥7,
F{MI and FIM{. Furthermore, for systems containing either two or three identical atoms we construct sym-
metrized basis sets which belong to irreducible representations I” of the P, or P, permutation groups, respec-

tively. For the three identical atom case, these symmetrized variational basis sets are given by

FIM(L;p) = Zc F{M2(Gap) (12)

where the sum in A’ is over , v and «, the cf, are easily determined constants, and the sets of angles {, and
{. are considered to be functions of {,. The functions F7%™" will be referred to as primitives to distinguish
them from the unsymmetrized basis functions F{¥Z. The ﬁve-dimensional LHSF are now expanded in terms
of these primitives:

¢.’l'unr(cl;p)= Zﬂa-‘flféf'(p) Fﬁ;‘éﬂf(cl;p) . (13)
o

The primitive basis set is not orthogonal, since the variational basis sets with different 2’ overlap; therefore,
calculation of the a7, coefficients requires the determination of overlap integrals for the variational basis set
as well as integrals involving the Hamiltonian. Integration over the three Euler angles 6;, ¢,, and y, is analyric,
leaving two-dimensional quadratures to be done numerically. These quadratures are the most expensive part
of the entire computation. Any quadrature scheme may be employed; the one we used is discussed in section
3.

Once all of the necessary integrals have been calculated, the a/], coefficients are determined by a generalized
eigenvalue-eigenvector procedure. With sufficienty large basis sets, the overtap matrix between the primitives
becomes nearly singular as a consequence of near linear dependence; for this reason it was necessary to develop
a method for dealing with this situation. The primitive overlap matrix is diagonalized, and eigenvectors cor-
responding to eigenvalues smaller than a tolerance parameter (for the calculations described below, this pa-
rameter was set to zero ) are eliminated from consideration. The remaining set of eigenvectors is used to transform
the Hamiltonian matrix to yield a new eigenvalue prohiem from which the linear dependence effects have been
removed.

From eqs. (6), (12), and (13), the expansxon of the two-dimensional surface functions w22 (w,, 7,.p) in
terms of the one-dimensional functions f /%, can be shown to be

W.’I'gr(w“ yalsp)- Z ua n /Jg[l+( l)l*’-”éQ]?Q (cos YA)fu[Q (w).vp)

+cl,di (4,,) P2 (cosy,) [ (w,; p)+ch (= 1) 2dTh (4u) P2 (cosye) [l (waip) . (14)

The functions d% (d) =dba () + (=1) 72 d% _ o (4), where & is the Wigner little d matrix [24]: they
appear in eq. (14) because of the integration of products of two 27, functions depending on different Euler
angles. The angles 4,, between the vectors R, and R, and 4,, between the vectors R, and R, are functions of
w, and y, only.

The same formalism is used in determining the surface functions at values of p for which the surface function
amplitude is negligible in regions of configuration space in the interstices between the arrangement channel
regions. For such values of p, the overlap between f /4, and /7%, vanishes, making the set of primitive func-
tions be automatically orthogonal; this greatly reduces the numerical work necessary for the LHSF calculation.
because the basis set includes only the 4 basis functions.

The calculations of the six-dimensional scattering wavefunction ¥/*'"/ s done by expanding 1t 1n terms of
the five-dimensional LHSF:
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PMIT(p, L) = Y BT () @IMT({1s ) (15)

The @M1 are determined at a set of discrete values of &, labeled p,. Substituting eq. (15) into the (time-
independent) Schrédinger equation corresponding to the Hamiltonian defined by eq. (2) and using eq. (5),
the coefficients b(p; ;) are found to satisfy

in which the interaction matrix $/7" is defined by
(1N (03 p) = (P (L0 001V (0, @1, 123 PO LRI (L45 90) D
=YL T audi(p) allan p) CFUE (L p) ) V(p, i, vis PV F (L0 ) (17)

vy

-2
+(%) ei”’(;i)—E>6:'bi”’(p:ti)+ Lol (o) £ (p0) =0,  (16)

with P(p, wy, 745 0.) = V(p, @;, 7;) = (8./p)*V(p;, w,, v,). The integrals in the right-most part of eq. (17) are
obtained from linear combinations of related integrals involving the variational basis set (11).

The coefficients b(p; p,) are calculated as a function of p in a region near p, corresponding to a hyper-spher-
ical shell. The smooth matching of the scatiering wavefunction across the boundary g, ., of adjacent hyper-
spherical shells is accomplished by imposing the conditions

b{ynr(p:.:n;P-:ﬂ)= zbinr(pl,m-l;[’-,)[0"”’"]:’(‘;“,“‘;,), N (l8)
3P Pv ) ) < 362 (p; B, )) mrim s~
( L4 p—o{ - ; dp o=l (0715 Grero0) (19)

in which the overlap matrices ¢”" are defined by
(O (P2 )= (P P NO (L5 0) )
=Y 3 ay(pe) allon (D) CFUE (i p NFIHET (L0 (20)

wi vy R

The methodology described above is closely related in spirit 1o the method independently developed by Schatz
[17], which was published after the present work was completed. The major differences are in the selection
of reference potential for calculation of the w;-dependent portion of the basis set and in the method for dealing
with overcompleteness of the basis set. Our reference potential, denoted by the term V2 in eq. (10). 1s the
potential energy surface at fixed p averaged over the diatomic rotation; the choice of this reference potential
naturally follows from the expression for the one-dimensional surface functions ¢/ of eq. (8). We allow for
the large amount of linear dependence which is produced by this reference potential at small values of p by
the method for solution of the generalized eigenvalue problem described above. This does not increase the time
required for the calculation. Schatz, on the other hand, chooses for his reference potential }(p. w,. ;. =
n/2) for p= 3.3 bohr and V(p=3.3 bohr, w,, y;=n/2) for g<3.3 bohr; the change in the reference potential
at small p avoids problems with linear dependence.

3. Numerical parameters
One of the most important parameters in the calculations performed is the number of primitives used to

expand the surface functions. In addition to the indices J, M, IT and I" which label the LHSF, the basis functions
and the primitives formed from them are labelled by indices v, j, and Q2. which asvmptotically correspand re-
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spectively to the diatom vibrational, total rotational and helicity rotational projection quantum numbers [2,3].
The range of (v, j, 2) included in the calculation of a desired set of LHSF is selected by preliminary calculations
at a smal! subset of the values of p to be used in the full calculation. For these initial calculations, the basis
set is deliberately chosen to be larger than necessary for the accuracy and number of surface functions desired.
The number of accurate surface functions obtained by this method is determined by comparison of two such
calculations with different size basis sets at each value of p. Examination of the coefficients of the basis func-
tions contributing to each surface function considered allows selection of a smaller basis set which can be used
with minimal loss of accuracy. This method becomes complicated with larger variational basis sets, due to in-
creasing linear dependence among some of the primitive functions; however, the overall pattern of important
coefTicients is still effective in optimizing the choice of basis sets for succeeding calculations. When this method
of selection is used, the number of good surface functions of each symmetry which are produced is approxi-
mately one half the number of primitives of that symmetry used in the calculation.

To obtain the results presented below, the one-dimensional numerical functions t55(w;; p) from eq. (10)
are calculated on a grid of 450 w; points using a one-dimensional finite element method. Each element is qua-
dratic and uses two Gauss-Legendre points. The reference potential V2 for these functions is determined by
a Gauss-Legendre quadrature with 96 y, points. The grid for the two-dimensional integrals is the direct product
of these two independent quadrature grids. Convergence of the surface function energies with the fineness of
the mesh is to four decimal places. .

For the system H+ H,, the dependence of the basis functions eq. (11) in the v and k coordinates is the same
as that for the 4 channel functions, so it is not necessary to repeat the calculation for t{% and 17%,. In addition,
the integrals between products of functions in the A and v channels equal the integrals between the corre-
sponding functions in the v and x channels, so the integration need onty be done for A,» pairs to obtain the
overlap integrals for all three regions.

LHSF are calculated every 0.2 bohr from p=2.0 to 12.0 bohr, and interaction matrices /7 (see egs. (16)
and (17)) are determined at five evenly spaced values of p for every value of p,. One overlap matrix ¢ (see
egs. (18)-(20)) is calculated between sets of the LHSF at each pair of adjacent p values. For p>6.2 bohr the
variational basis functions in arrangement channel 4 are orthogonal to those in v and x because we set the
maximum value of w, equal to the physically reasonable value 2 arcsin (3.0 bohr/ p), which at p=6.2 bohr equals
57.9°. This value of w, is deep in a classically forbidden region for all y; for the total energies discussed below.
As a result, the time needed for the surface function calculation in this region is smali compared to that for
the p < 6.2 bohr region. The initial value problem described by eq. (16) is solved using a logarithmic derivative
propagator [27] with a step size of Ap=0.025 bohr and a constant-p projection {6,11,28] at 12.2 bohr. These
parameters were chosen to achieve a calculation accuracy about equal to that described previously [6.11].

The five-dimensional basis functions are generated from the functions f 7/, according to eq. (11). For each
of the potential energy surfaces and for J=0, a set of (v, j, 2=0) quantum numbers was chosen to give a
variational basis set of 152 functions. This set has a maximum of 12 vibrational functions for the value y=0,
with monotonically decreasing number of vibrations for each succeeding value of j to the maximum of j=23
for which only one vibrational function is used. Symmetrization of this basis set yielded 76 A, 76 A, and 152
E primitives.

For the LSTH potential energy surface, the scattering resuits were obtained from 36 A,, 35 A, and 69 E
LHSF at each value of p. The calculation of each LHSF (including the evaluation of all the associated overlap
and interaction matrices for the solution of the propagation equation (16)) requires an average of 0.27 s on
a Cray X-MP/48. The timings are very similar for the PK2 potential energy surface.

For /=0. the variational LHSF calculation is about a factor of 20 faster than the finite-clement method one
for equivalent accuracy [6,11]. We estimate that the numerical effort required for the finite-element calcu-
lation of the LHSF will increase with J as (J+1)¢ with 2 <a< 3, whercas for the variational method a=x 2.
therefore, the speed of the variational LHSF calculation with respect to that of the finitc-element one is ex-
pected to increase with increasing J.
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Fig. |. Probabilities (a) and probability differences (b) as a
function of total energy £ (lower abscissa) and initial relative
translational energy Eo (upper abscissa) for the J=0 (0, O,
0) - (0, 0, 0) E symmetry transition in H +H, collisions on the
PK2 potential energy surface. The symbol (v, j, Q) labels an
asymptotic state of the H+ H, system in which v, j and Q are the
quantum numbers of the initial or final H, states as defined in
the text. The vertical arrows on the upper abscissa denote the
energies at which the corresponding H, (v, j) states open up. The
length of those arrows decreases as vspans the values 0, 1, and 2,
and the numbers 0, 5, and 10 associated with the arrows define a
labelling for the value of ;. The square symbois in (a) are the
current vanational surface function results and the solid line are
the FE results {11]. The differences between the former and the
latter are plotted in (b).
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Fig. 2. Same as for fig. | for the LSTH potential energy surface.
The FE results are taken from ref. [22].

As can be seen in table 1, the present variational (V) LHSF energtes consistently fall below those calculated
by the finite-element method (FE) [11,23], with a maximum reduction of about 65 meV for the higher cnerg)
LHSF. As both methods obey a minimum principle, this implies better quality of the LHSF in the current

method.
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Flux is conserved for the PK2 surface to better than 1% for energies less than 1.55 eV for the scattering cal-
culations using FE LHSF [11] and for energies below 1.74 eV for the current calculations. For the LSTH sur-
face, flux is conserved to better than 2% below 1.55 eV for the FE results {23] and, for the current results, to
‘better than 1% below 1.68 eV and to better than 2% between 1.68 and 1.74 eV. Examination of the scattering
matrices produced by each method shows good agreement between the two below the first resonance at 0.97
eV, with a difference which is usually no greater than 2% for probabilities greater than 102, Above this energy
the agreement between the results for the v=0 to v' =0 state transitions remains equally good; however, the
agreement for v=1 to v’ =1 transitions is not as good, with a difference usually no greater than 4% in the prob-
abilities greater than 10~2 for these transitions. On the basis of the lower LHSF energies and the better scat-
tering matrix unitarities of the current method, we believe that the current scattering calculations are more
accurate than the ones using FE LHSF. A comparison of J=0 probability curves generated by the two methods
is plotted in fig. 1 for the PK2 surface and in fig. 2 for the LSTH surface, together with the difference of the
results of the two methods. The relative differences for the probabilities of these figures never exceed 6% for
the PK2 or 2% for the LSTH potential energy surface; the greater maximum relative difference for the former
is due to the smaller minimum value of the probability itself rather than to a greater difference between the
results.

The scattering results calculated from the variational LHSF are converged with respect to number of surface
functions used in the propagation to 2% in the probabiii‘ies greater than 0.1 and 1.5° in the corresponding
scattering matrix element phases. The energies of the LHSF corresponding to asymptoticaily open states are
converged to 0.5% with respect to size of the basis set used in their caiculation, and thus the scattering results
are also well converged with respect to this parameter.

Calculations were also performed for both parities of the /=1 partial wave and are of similar quality. J=1
probabilities in excess of 0.1 generally agree with the matching method ones {3] (which were obtained up to
0.7 eV only) to better than about 3%. In none of these calculations have we encountered the difficulties pre-
viously predicted [10]. A detailed analysis of the J=1 results, up to 1.75 eV, and of the corresponding res-
onances will be the subject of a separate publication.

5. Summary

A new general variational method for calculating local LHSF was described. It is about a factor of 20 more
efficient than the finite-element method for the J=0 partial wave of H+ H;; this relative efficiency is expected
to increase with increasing J. The results of the two methods agree well at the LHSF level, and at the scattering
matrix level agree well for energies below 0.97 ¢V and moderately well for higher energies; the variauonal ones
are believed to be the more accurate ones.
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We have performed accurate quantum mechanical three-dimensional reactive scattering calculations for both parities of the
J=1 partial wave of the H+ H; system up 10 total energies of 1.75 ¢V. The collision lifetime resonance spectra for both /=0 and
J=1 are discussed in terms of the characteristics of the system’s potential energy surface and of a simpie physical model involving

its symmetry properties.

1. Introduction

We have recently developed a new variational
technique [1] for calculating the local hyperspher-
ical surface functions (LHSF) necessary for per-
forming three-dimensional (3D) quantum mechan-
ical reactive scattering calculations by the
symmetrized hyperspherical coordinate method. We
have shown that this technique produces resuits of
similar quality as the finite element (FE) one pre-
viously used [2,3], with significantly less numerical
effort. Using the LHSF generated by this vanational
method, we have performed 3D reactive scattering
caiculations for the H+H, system on the PK2 (4]
and LSTH [5,6] potential energy surfaces for the
J=0 and both parities of the /=1 partial waves. The
calculations are of sufficiently high quality for res-
onance analysis using the collision lifetime matrix
formalism [7]. We briefly describe the parameters
used in the calculation, and follow with a presenta-
tion and analysis of the results. Other recent hyper-
spherical calculations for J=1 H+H, have been
published by Schatz { 8] and by Pack, Parker and co-
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Technology.

¢ Current address: Mail code 206-49, Caiifornia [nstitute of
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workers [9], over a more [imited energy range. In
addition, results using different methods have been
obtained by Mladenovicetal. [10] and by Zang and
Miller [11].

2. Method

The details of the partial wave methodology for
arbitrary J and the parameters used for the /=0 cal-
culation have been presented previously [1]; there-
fore, only a few relevant points will be mentioned
here. The /=0 and /=1 calcuiations use the same
values for many numerical parameters: the choice of
grid is the same, as are the number and location of
the sets of LHSF. The basis set for /=0 is formed
from a choice of quantum numbers (v, 4, £2=0)
[1,12], vielding a total of 152 functions. This basis
is symmetrized according (o the irreducibie repre-
sentations of the P, symmetry group of H+H.. to
give 76 A, 76 A,, and 152 E “primiuve” functions
These are used as a variational basis for calculation
of the LHSF of the corresponding symmetry. The
same set of v and ; quantum numbers is used for the
J= 1 calcufations; in addition, making 2 equal to both
0 and 1 produces a variational basis sct of 292 func-
tions. From these. a primitive basis set 1s generated
consisting of 64 A, 76 A, and 140 E primitives for
the even panty [7T=0 (which for /=1 contains onh

440 0 009-2614/89/% 03.50 © Elsevier Science Publishers H Y
( North-Holland Physics Publishing Division )
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=1 functions) and another with 140 A, 152 A,
and 292 E primitives for the odd parity /[T=1 (con-
taining both Q=0 and 2= functions).

The J=1 scattering results on the PK2 surface were
obtained from 31 A, 31 A,, and 64 E LHSF for [7=0
and 67 A, 62 A,, and 133 E LHSF for IT=1. The
calculation of each J=1 LHSF and all associated
matrices used in the logarithmic derivative propa-
gation [13] required an average of 13.1 s on an SCS-
40 minisupercomputer, as compared to 6.9 s for J=0.
Similarly, the J=1 scattering calculations for the
LSTH surface used 32 A, 32 A; and 64 E LHSF for
IT=0and 74 A,, 70 A,, and 127 E LHSF for IT=1,
with an average time of 12.5 s per LHSF, compared
to 6.6 s for J=0. The corresponding maximum de-
viation from flux conservation is never greater than
1% for the PK2 and 2% for the LSTH surface.

3. Resuits and discussion

From our irreducible representation scattering
matrices we have calculated distinguishable atom
J=1 state-to-state reaction probabilities over the en-
ergy range 0.3 to 1.73 eV for the PK2 potential en-
ergy surface. The coupied channel (CC) resuits pub-
lished by Schatz at 0.5 and 0.6 eV [8] and ours agree
to within 10%, which is reasonable since he used a
much smaller basis set than ours. Schatz also made
calculations based on the coupled states (CS) ap-
proximation using a larger basis set than in this CC
method. These CS probabilities are closer to our
highly converged values than the CC ones, indicat-
ing that the CS approximation for his larger basis set
1s more accurate than the CC results using his smailer
basis set. Our J=1 resuits agree with the LSTH cal-
culations of Zhang and Miller [11] at 1.14 eV t0
about 2% or better.

We performed lifetime matrix analysis [3,7,14] of
each of the matrices § /7 for '=A,, A,, E, [7=0, |,
and J=0, 1. We label the resonances obtained by the
notation appropriate for vibrational states of linear
triatomic molecules, (v,, v¥, v;), where v, v,, and vy
denote respectively the quantum numbers for the
symmetric, bend and asymmetric vibrations and K
is the quantum number of the vibrational angular
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momentum [15]*. For the resonance state, v,, v,
and v, denote approximate constants of the motion;
their values are chosen on the basis of the energy
spacing of the resonances. In the present paper, as
well as in all previous ones using this labeling, it has
been customary to set v, =0 [3,16,17), implying that
such resonances have no asymmetric stretch char-
acter. However, modeling of coliinear H, resonances
{for which only v, and v, are defined) has shown that
they may have significant asymmetric as well as
symmetric stretch character. The vibrationally adi-
abatic model suggests that the lowest collinear H;
resonance be assigned the quantum numbers v, =1,
vr3=0 [18], whereas the hyperspherically adiabatic
model leads to the assignment v, =0, v;=2 [19,20],
corresponding to the second excited state of the
asymmetric stretch and asymptotically correlating to
the v=1 state of the isolated diatom. Therefore, the
nodal structures of the corresponding model wave-
functions are completely different, and neither should
be assumed correct without further comparison with
the accurate resonance wavefunction. The assign-
ment v3=0 used in this paper corresponds to a vi-
brationally adiabatic description, but is.a matter of
notation rather than of physical validity.

Lifetime matrix analyses of the /=0 scattering
matrices for the PK2 surface were previously per-
formed up to 1.6 eV using the FE method for cal-
culating the LHSF {3]. They were recaiculated using
the vanational LHSF approach, and the results are
comparable. The resonant time delays and reso-
nance positions found for scattering matnces gen-
erated from both FE and variational LHSF are listed
in table 1; the lifetime matrix eigenvalues for the cur-
rent variational LHSF calculation are plotted versus
energy in fig. 1. The main difference between the two
calculations is the appearance of two weak reso-

*! In a previous paper [3] we used Q 10 denote the vibrational
angular momentum quantum number, 1n analogy to the nota-
tion of refs. [16,17]. However, we have also used 2 [1 3] to
denote the quantum number for the componecnt of the svs-
tem’s total angular momentum along the direction of the veu-
tor which connects the center of mass of a pair of the syatem s
atoms to the third atom (and asvmptotically correspones o
the helicity rotational quantum number). Since these 1w un
guliar momentum components are in general distinct wo «'l
for clarity use the symbol K in this paper to denote the v one
(1.e. the vibrational angular momentum componcat s anae
continuing to use §2 for the second
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Table |
Resonance characteristics for PK2 ¢! potential energy surface

CHEMICAL PHYSICS LETTERS
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J Assignment Current results FE® RPO

lifetime (fs) E (eV)
E (eV) lifetime (fs) E (eV)

0,1 0,0°0) 0.61 7 0.61 0.655

! 0,1,0) 0.74 6

0,1 0,2°,0) 0.85 3 0.847 0.934

0,1 (1,0°,0) 0.97 41 0.971 42 0.975

1 (0,3,0) 0.97 6

0,1 (0, 4°,0) 1.07 2

1 (L1 1.08 18

0,1 (1,2°0) 1.17 7 1.170 1.175

0,1 (2,0°0) 1.38 46 1.382 50 1.366

1 (2,14,0) 1.47 35

4] ? 1.51 7 1.542

0,1 (2,2°0) 1.56 20 1.56

1 (2,3,0) 1.65 S

© Ref. [4].
®) Finite element results, ref. {3].
¢! Resonant periodic orbit results, ref. {21].

nances at energies of 1.07 and 1.51 eV, which were
not previously reported. The first is assigned the la-
bel (0, 4° 0); however, the resonance at 1.51 eV, in-
dicated by an unlabeled arrow in fig. 1, does not seem
to correspond to the energy of an expected state of
metastable linear H, and as such will remain unla-
beled. The lifetimes of these resonances vary greatly;
the long-lived ones at 0.969, 1.381, and 1.56 eV cor-
respond to Feshbach resonances and have lifetimes
of 41, 46, and 20 fs, respectively, while the weaker
peaks correspond to shape or barrier resonances [21 ]
and have an average lifetime of 6 fs. In both calcu-
lations, the A, and E symmetries show the same res-
onance energies and lifetimes, with more numerical
noise present in the E calculation due to the larger
number of states, and no resonance structure is found
in the A, symmetry.

The J=0 LSTH surface resonance energy and life-
times from the current calculations and the previous
FE calculations are listed in table 2, and the present
lifetime matrix eigenvalues are displayed in fig. 2.
The assignment of these states is the same as for those
found for the PK2 surface. In addition, there is a high
energy resonance at 1.72 eV, which corresponds to
(2, 4° 0); however, the lifetime analysis near this
energy is obscured by numerical noise, so this energy
1s less reliable than the other resonance energies.

442

The energy spacings of each of the v, =0, v,=2 and
v, =4 series of resonances suggest that a resonance
with assignment (1, 4%, 0) should exist, for the LSTH
surface, at the position indicated in fig.-2. So far, this
resonance has not been found. By analogy, an equiv-
alent resonance should exist (but is not found) for
PK2, as indicated in fig. 1. The latter cannot cor-
respond to the unlabeled resonance at .51 eV, be-
cause of the insufficiently large spacing between the
(0, 4° 0) and (2, 4% 0) resonances for the LSTH
surface.

The J=1 partial wave includes resonance states
with K= 1 in addition to K=0. Interestingly, the hfe-
time matrix analysis of the /=1, [T=1, A, symmetry
yields the same resonance energies as those found for
the /=0, A, symmetry for both the PK2 and LSTH
surfaces, with one exception; we therefore interpret
these resonances as K =0 states. The exception is that
there is no visible A, resonance at [.51 eV for either
surface, but it is possible that numencal noise inter-
feres with its detection. The absence of a discernable
energy shift due to the increase in Jis consistent with
the approximate rotational constants for finear H,
{231; estimates of the magnitude of the shift in going
from J=0to J=1 yields a value of about 0 002 eV,
which is small compared with the accuracy to which
we have determined the resonance energies
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Fig. 1. Resonant lifetime as a function of energy for the A, sym-
metry of the /=0 partial wave of H+ H, (PK2 surface). The ab-
cissa E is the total energy and the ordinate represents the reso-
nant eigenvalue of the collision lifetime matrix. The vertical
arrows on the upper abcissa denote the energies of the H, (v, /)
states. The length of these arrows decreases as v spans the values
0 through 3. The numbers 0, 5, and 10 define a labeling for the
value of j. The energy grid used for these lifetime calculations was
0.001 eV in the neighborhood of the two strongest resonances
(1,0°0) and (2,0°0) and 0.01 eV eisewhere. The labeling of
the resonances at the top of the panel is described in the text. The
downward pointing unlabeled vertical arrow at 1.51 eV indicates
an unassigned resonance. The downward pointing arrow labeled
(1,4°0) corresponds 10 a resonance expected on the basis of en-
ergy spacings (see text ) but not found in the present calculations.

Additional resonances appear in the J=1, IT=1,
A, and J=1, [T=0, A, partial waves. For the PK2
surface, they occur at 0.74, 0.97, 1.08, 1.47, and 1.65
eV (fig. 3). The assignments and lifetimes are given
in table 1. The v, and v, assignments are done on the
basis of the energy spacings, and the K assignment
on the basis of the restrictions imposed by the values
of J and v, and the evenness of v, [3,25]. The cor-
responding values for the LSTH surface are listed in
table 2 and displayed in fig. 4; they have energies of
0.77, 1.00, 1.09, 1.22, 1.45, and .63 eV. The strong
resonances (1, 1',0), (2, 1',0) and (2, 3!, 0) were
found previously with approximate models using the
LSTH surface [16,17,23,24]; these results are aiso
given in table 2 for comparison. The remaining peaks
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in the lifetime analysis are weak and have not been
reported before. No resonances were found for the
J=1, [T=0, A, symmetry on either surface. All res-
onances seen in the J=1 A, and A, symmetries with
a particular parity are also seen in the /=1 E sym-
metry of the same parity. Again, the E results are of
lower accuracy because of the larger number of states.

Calculations for collinear triatomic systems have
previously given strong indications {19] that the
characteristics of resonance spectra are closely re-
lated to the geometry of potential energy surfaces in
the strong interaction region of configuration space,
and that it may be possible to infer such geometry
from experimentally observed resonance spectra. We
will now try to obtain such relation with the /=0, 1
resonance at hand. Examination of the energy spac-
ings between consecutive resonances in cach of the
series (0, v%, 0), (1, v%, 0), arnd (2, v¥, 0) shows
them to be nearly constant with respect to v, and 1,
and having global averages of 0.104+0.013 and
0.103+0.015 eV for the LSTH and PK2 surfaces, re-
spectively. This correlates very well with the spac-
ings of 0.11 and 0.12 eV predicted from the corre-
sponding bending force constants [6,26] and a
harmonic model.

Examining the series (v;, 0°, Q) for v, =0, 1, 2 fur-
nishes consecutive resonance energy differences of
0.33and 0.38 eV for LSTH and 0.36 and 0.41 eV for
PK2, whereas a harmonic model based on the sym-
metric stretch force constant predicts constant spac-
ing of 0.26 eV for LSTH and 0.47 eV for PK2. Not
surprisingly, a symmetric stretch static model does
not fit the resonance spectra well.

The energy shift between the (0, 0°, 0) LSTH and
PK2 resonances should depend in part on the dif-
ference of 0.029 eV between the corresponding sad-
dle point energies {4,6]. The observed downward
shift of 0.04 eV can be totally accounted for by the
difference in zero point bend energies and saddle
point heights; this method of accounting does not
seem to be physically reasonable, since the difference
in the symmetric and/or asymmetnc stretching
charactenistics of the potential energy surfaces should
aiso contribute to this shift.

We conclude that bending mode force constants in
the saddle point region of this sysiem can casily be
obtained from the corresponding resonance level
spacings, but that static charactensuics of the sur-

o
.
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Table 2
Resonance characteristics for LSTH *' potential energy surface
J Assignment Current results FE® RPO*! SCSA ¢ CEQB*) csn
lifetime (fs) E (eV) E (eV) E(eV) E (eV)
E (eV) lifetime (fs) E (eV)
0,1 (0,0%0) 0.65 i1 0.65 11
b 0,1,0) 0.77 9
0,1 0,2%0) 0.88 10 0.880 10
0,1 (1,0%0) 0.98 28 0.981 28 0.981 0.98 0.97
1 (0,34,0) 1.00 8
I (1,1,0) 1.09 29 1.085 1.09 1.09 (.10
0,1 (0, 4°,0) 1.10 5
0.1 (1,2°0) 1.19 8 1.191 1.186 1.20 1.20
1 (0.5'.0) 1.22 6
0,1 (2,0°0) 1.36 30 1.364 3 1.374 1.24 1.35
1 (2,1',0) 1.45 38 1.461 1.35
0 ? 1.50 4
0,1 (2,20) [.54 12 1.55+0.03 1.545 1.46
1 (2,3, 0) 1.63 8 1.641
0,1 (2.4%0) 172w 5 1734
*' Refs. (5,6]. °' Ref. [22]
¢} Resonant periodic orbit results, ref. {23].
9 Small curvature semiclassical adiabatic results, ref. {24).
¢! Collinear exact Quantum with adiabatic bend resuits, ref. [17].
) Coupled state results, ref. [16].
' This resonance energy is less accurate than the rest. See text for details.
! H i { 1 : °
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04 06 08 10 12 14 18 Fig. 3. Resonant lifeime as a function of cnergy for the A ssm-
E/eV metry of the /=1, [T=0 parual wave of H+H, (PK2 surtace)

Fig. 2. Same as fig. | but for the LSTH surface; a constant energy
grid of 0.01 eV was used throughout.
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The abcissa and ordinate arc as grven ia fig. 1 the energy grid s
0.01 eV throughout. The downward pointing labeled arrows have
similar meanings to the ones in figs. | and 2.
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Fig. 4. Same as fig. 3 but for the LSTH surface.

Table 3

Empirical resonance selection rules
J 7 X A A, E
0 0 0 yes no - yes
1 0 ! no yes yes
1 i 0 no yes yes
1 1 1 yes no yes

faces are inadequate to understand the stretch mo-
tion fedtures of the resonance spectra.

The presence or absence of resonances in each of
the partial waves examined is summarized in table
3. An empirical selection rule, satisfied by the results
of that table, is that resonances are present in the
I'=E symmetry for all allowed values of K, and in
'=A,, A, when the quantity (~1)7*X equals X,
where Xr=1 (~1) for I'=A, (A;). This resuit can
be derived from a simple model. According to it, no
resonances in the J, I7, I" partial wave can exist if the
scattering wavefunction vanishes identically for all
configurations of the system in the vicinity of the
saddle point for which the distances of the two end
atoms to the central atom are equal. This is physi-
cally reasonable since we expect the resonance scat-
tering wavefunction to have large density for sym-
metric displacements of the system around the saddie
point.
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Let us now show how this model leads to the em-
pirical rule just mentioned. Let ABC be a linear tri-
atom for which atoms A and C are identical. Con-
sider a bent configuration of this system in which the
distances AB and BC are equal. Let X- be the eigen-
value of the operator which permutes A and C, which
is equai to | for '=A, and to -1 for I'=A,. This
permutation is equivalent to the product of the in-
version operator and a rotation by x around the sys-
tem’s principle axis of inertia, and therefore appli-
cation of these operations multiplies the triatom
wavefunction by (—1)7 and (- 1)*, respectively.
Since the wavefunction of the initial symmetric con-
figuration cannot by assumption vanish identically
if a resonance is 0 exist, we must have
Xr=(-1)7*% QED. For a system in which all three
atoms are identical, neither of the two degenerate E
symmetry wavefunctions is necessarily even or odd
with respect to two-atom permutations, and when
one of these wavefunction. is subjected to this per-
mutation the resuit is a linear combination of both;
thus the E symmetry should display the resonances
found in both the A, and A, symmetry results of the
same parity, as we have indeed observed.

The existence of resonances seems also to require
the presence of minima in adiabatic curves as a func-
tion of an approprniate reaction coordinate [18-
20,27-33]. In the particular case of hyperspherical
coordinates, one examines LHSF energies including
adiabatic correction terms as a function of g; these
correction terms are large for the H+ H, system. Plots
of LSHF energies for the /=0, | partial waves of each
parity and symmetry do indeed show minima (even
without corrections) for the symmetry-parity com-
binations which support resonances, but not for those
combinations which have shown no resonances. A
physical interpretation of the resonances depends, in
addition to the symmetry arguments given above, on
an explanauion as to why these particular combina-
tions of irreducible representation and inversion
parity yield adiabatic energy versus g curves with
minima.

4. Summary

Application of the variational method for calcu-
lation of LHSF to the /=1 partial wave of H+ H,

445
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yields resuits of sufficient quality for lifetime matrix
analysis to give accurate resonance energies and life-
times. The dependence of resonance energies on the
bending mode characteristics of the system's poten-
tial energy surface is explained by a simple harmonic
model, and the existence of patterns of resonant be-
havior in terms of the irreducible representations of
the P; permutation group is interpreted using a sim-
ple physical picture.
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