Images, Numerical Analysis of

Singularities and Shock Filters

Thesis by

Leonid Iakov Rudin

In Partiél Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1987

(Submitted May 1, 1987)



ii

© 1987
Leonid Iakov Rudin

All Rights Reserved



Acknowledgments

[ would like to thank my advisor James Kajiya for introducing me to
various research areas ranging from Theory of Computation to Image

processing and for his patience and support during my years at Caltech.

I am particularly indebted to Theo Pavlidis for memorable time spent
at Bell Laboratories, Murray Hill and for initiating my search on the role of
singularities in image processing. I[lluminating discussions with him had a

decisive influence on the contents of this thesis.

I would like to thank Tim Kay for his art of programming and help

when I needed it the most.

I am grateful to members of my committee, Al Barr, Derek Fender,
W.A.J. Luxemburg, Carver Mead, and Frederick Thompson, who taught me
various courses and were instrumental in developing ideas for this

dissertation.

I have special thanks to Jeffrey S. Schoenwald of Rockwell
International for arranging my research at Science Center, where the idea of

Shock Filters had crystalized.

I would like to thank Heinz-Otto Kreiss and Sukumar Chakravarthy

for invaluable suggestions on the numerical methods for Shock Filters.

I would like to thank Zinovy Reichshtein for invaluable discussions

on the distributional approach to the analysis of singularities.

I also thank my friends Chris Barrett and Young-Il Choo for many
hours of insightful and stimulating discussions and years of comradeship.

Many thanks to Devendra Kalra for helpful assisting in the jungle of the



iv
Graphics Lab.

Finally, I would like to thank Nancy O’Connor who skillfully and

patiently helped in the preparation of this manuscript.



v

Abstract

This work is concerned primarily with establishing a natural
mathematical framework for the Numerical Analysis of Singularities, a term

which we coined for this new evolving branch of numerical analysis.

The problem of analyzing singular behavior of nonsmooth functions is
implicitly or explicitly ingrained in any successful attempt to extract
information from images. The abundance of papers on the so called Edge

Detection testifies to this statement.

We attempt to make a fresh start by reformulating this old problem
in the rigorous context of the Theory of Generalized Functions of several
variables with stress put on the computational aspects of essential
singularities. We state and prove a variant of the Divergence Theorem for
discontinuous functions which we call Fundamental Theorem of Edge
Detection, for it is the backbone of the advocated here numerical analysis
based on the estimates of contributions furnished by the essential

singularities of functions.

We further extend this analysis to arbitrary order singularities by
utilization of the Miranda’s calculus of tangential derivatives. With this
machinery we are able to explore computationally the internal geometry of
singularities including singuiar, i.e., nonsmooth, singularity boundaries. This
theory gives rise to singularity detection scheme called “rotating thin
masks” which is applicable to arbitrary order n-dimensional essential
singularities. In the particular implementation we combined first-order
detector with derived here various curvature detectors. Preliminary

experimental results are presented. We also derive a new class of nonlinear
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singularity detection schemes based on tensor products of distributions.

Finally, a novel computational approach to the problem of image
enhancement is presented. We call this construction the Shock Filters,
since it is founded on the nonlinear PDE’s whose solutions exhibit formation
of discontinuous profiles, corresponding to shock waves in gas dynamics. An
algorithm for experimental Shock Filter, based on the upwind finite

difference scheme is presented and tested on the one and two dimensional

data.
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Dedicated to my parents

and Ohshima Sensef.

Images, Numerical Analysis of

Singularities and Shock Filters

... for I had an eye

Which in my strongest workings, evermore

Was looking for the shades of difference

As they lie hid in all exterior forms,

Near or remote, minute or vast, an eye

Which from a stone, a tree, a wither’d leaf,

To the broad ocean and azure heavens,

Spangled with kindred multitudes of stars

Could find no surface where its power might sleep...!

'William Wordsworth, Prelude, Book III.



Chapter 1

Singularities of Images and Shock Filters

The visible contours of the objects are the projections of
the bounding surface onto the retina of the eye. By
examining the objects surrounding wus, for instance,
people’s faces, we can study the singularities of visible
contours. !

§1.1. What do singularities of images tell the observer?
1.1.1. /s edge detection well-founded?.

It is customary in the work related to edge detection to begin with
examples where this procedure is applied within the framework of image

analysis. And indeed applications are many!

Observe that rarely a paper on differential equations opens with an
excuse of relevant utilization. Perhaps this last field is a few hundred
years older and is accepted as a well-founded theory. While use should be
the main motivating force, it cannot replace a firm theoretical foundation on
which one can build. Yet, today a whole field of edge detection, and
therefore related Al areas, are in need of mathematical foundation. This
last statement might cause some legitimate protest. After all, literally
hundreds of papers have been published in the last 30 years. With all due
respect to the work done—and indeed a few important experimental results

were accomplished, [Can.], [Hu.] [Na. Bi.J—try to find even the slightest

1Viadimir Arnold in Catastrophe Theory.



reference to this allegedly computing field in any modern text on numerical

analysis. Even such a “cookbook” of computing as [P.F.T.V.] fails to do so.
Or venture into the office of a numerical analyst, and read on his face this

astonishment (and have second thoughts on the topic of one’s thesis).

1.1.2. Edge formation process.

Thus [ start this work with a brief look at the image formation
process and why it is worthwhile at all to pay attention to singularities,
which this process can produce. [ shall also pay close attention to what
kind of singularities arise in the real world pictures. Fortunately the topic
of singularities of projection mappings has been a subject of several serious
papers, such as [K.D.l1.}, whose 1976 paper took even geometers by surprise,
and of earlier works on visual ecology [Gi.] and line drawings interpretation
[KE.]. The last work provides an inventory of singularities evidently
understood even by the cave man, as manifested by antipodal rock and cave
artwork sources. The content of (1.1.3) is of an expository nature. My
real intention is to draw readers’ attention to possible deep connection with

what [ call a Numerical analysis of singularities. This will be the starting

point of the investigation.

Let F(x, y) be gray scale image, i.e., F(x, Yy,) is an absolute light
intensity at the point (xy, ¥,) in the image plane, measured in the direction

of point P on the observed surface as represented on Figure 1.1.



(Fig. 1.1) Diffuse illumination D.

Here E is a surface patch being observed, i is unit normal vector to E, e-
unit vector of the direction towards an observer, k is a unit vector in the
direction of incident illumination, and L is a point light source whose
direction is determined by the vector k. The letters L and D signify flux
densities of the point and diffuse light sources respectively. Then the

measured image intensity is given by

F(x,y) = ek -L ¢ + 9 - ¢ 1.n

under the lambertian assumption, where ¢; is the reflectivity of the surface
patch E. As normal vector n varies on the observed surface, its luminance
will change, thus creating the shading effect. For detail on shape-from-
shading see [Ho.]l, where continuous image intensities are exploited to
determine three-dimensional surface shape. It has been postulated in [P.R.]
that the perceptually important features occur at points where i1 ® k is
small, assuming that the camera and the light source are co-located. The
reason for this is quite transparent, since n @ ¢ = 0 means that ad jacent

points in the image plane may come from the points having nothing in

common on the projecting surface. On the other hand, T ® k¥ = 0 will
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define outlines of the shadow boundary on the surface. Of course, real
pictures will have a combination of extremal boundaries, where the line of

sight is tangent to the observed surface and boundaries caused by shadows.

While (from (1.1)) the outlines in the image will manifest themselves
as discontinuities of the intensity function F(x, y), selfshadows will produce
discontinuity in the first derivatives of F(x, y). Here by a selfshadow we
mean a place on the surface with a smooth transition from full illumination
to partial illumination by the diffuse light. It will be of critical importance
for the treatment of singularities to determine the character of the
luminance profiles across a feature. Simply speaking, I am very much
interested in whether real images furnish the observer with the simple
jump-like discontinuitities of the Heaviside function type, or a more
complicated singular structure is present. Fortunately some experiments
and calculations were performed in [Pe. Ro.] for several lighting models,
including the single-source illumination, the mutual illumination and the

diffuse illumination. Their findings can be summarized in Figure 1.2.

Internal feature Luminance profiles

(Fig. 1.2)
F, *

~nU

Occluding contour



And I would like to add to this an observation that the luminance profile at

the boundary of a cast shadow in general appears as in Figure 1.3.

F ]
3

«U

(Fig. 1.3)

Observe that F,(x, y) is a continuous function, but its first derivative is a

discontinuous entity, while F, and F, are discontinuous functions.

Remark:

One cannot ignore that singularities can also be produced by markings
on the surface, i.e., discontinuous reflectivity function ¢ in (1.1). We can
safely assume that these will be of the simplest kind, i.e., step function.
The art of camouflage is based on introducing this sort of markings for
concealment and deception. Nature has used it to hide an animal in its

environment [Lu.].

Assuming that P is an isolated singularity on the scan line, we may
define one-sided limits of F(x) and its derivatives. Write them as F"(P) and

F™(P) forn =0,1, ... .

We see that in general, the cast shadow will exhibit a “smooth”

behavior across its jump discontinuity in the sense that



FO(P;) = FP(Py) forn =1,2,....

However we have no such luck in the cases of internal features and

occluding contours, i.e.,

FMP,) = F%P,),n =0,1,2,...
and

FO(P) = F™P),n =1,2, ....

Selfshadow behaves much like F, in terms of F®™P) for n = 2, 3, .., i.e.,

higher derivatives.

Remark:

To summarize this observation we conclude that “interesting”
features in the images not only may produce discontinuities, but also that

singularities of a more complicated type than a simple jump can be formed.

1.1.3. Invariarnt properties of the object as seen through the singularities
of projection mapping.

So far we have discussed essentially one-dimensional behavior of' the
image intensity function. We determined that points where this function is
singular carry important information about the scene being observed. In
particular, via geometry of the projection, orientation of the normal to
surface at the occluding boundary can be found by computing the normal to

detected edge which corresponds to this boundary.
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In their pioneering work [Ba. Te.] the authors call features of this
kind intrinsic, since they are not a byproduct of the image formation

process but, in fact, carry information of “what actually is there.”

We know that some singularities in the image function correspond
to the singularities of the visual mapping, which assigns to points of the
surface a manifold of visual directions. The visual mapping is an
orthogonal projection p : R® — R? such that p(x, y, z) = (x, y). If E is the
observed surface, restrict p with P : E — R? Singularities occur if the
gradient of P vanishes, i.e., when P is tangent to E. For example,
singularities of the projection of the sphere onto the plane are the points
of the equator, which form a circle as an occluding boundary. H. Whitney
in [Wh.] was able to classify completely all possible stable singularities of
projections from two-dimensional manifolds (surfaces) to a two-dimensional
manifold. Without going into the details of singularity theory, we say that
a singularity is stable if it does not disappear after the projection or the
surface are slightly perturbed, but the singularity just gets a little
perturbed itself. For example, an occluding boundary does not go away if
we shift around the object by a small amount. However, if a singularity’s
graph has a shape like in Figure 1.4, it may venish under the small

perturbution e.

. Z s (Fig. 1.4)
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Whitney proved that our projection function could have only two types of
singularities, which he calls folds and cusps. The fold corresponds
exactly to an occuding contour and the cusp happens to be a particular kind

of internal feature, as on Figure 1.5.

ﬂ (Fig. 1.5)

It is quite clear that features which vanish under small perturbations are of

no interest at all in seeing them; that is, only generic surfaces shall be
examined. If we allow a case of two surfaces being observed, then there is

one more possibility, that of crossing (Fig. 1.6) or “junction.”

1 (Fig. 1.6)

It turns out that if we change the projecting plane continuously, i.e., if an

observer moves around, then stable singularities can undergo
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metamorphoses from one type to another, e.g., folds to cusps. Or they
may disappear or be created. Concave edges may become convex. There is
a profound relation between these events (called catastrophes) and the
geometry of observed objects. In particular, curvatures of the surface
relate to the curvature of outlines. In general, it can be shown (K. D.]
that the second fundamental form of the surface will determine what
kind of changes can occur in the observed singularities. This is a
wonderful state of affairs. It says that by observing just singularities
of images, geometrical and topological (via junctions), properties of
the object could be determined! In such a way the shape of the object

may be learned.

Figure 1.7 illustrates how rotation of a torus mutates its edges and

simultaneously reveals its shape.

O

(a) (b)

(&> &=

(c) (d)

(Fig. 1.7)
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Note the catastrophic events on (c) and (d). While (a) and (b) could
suggest that a cylinder with a hole is being observed, (c) and (d) destroy
this hypothesis completely, suggesting at the same time that a doughnut is

much more appropriate.

Picture sequence (Pict. 1) demonstrates rotation of the computer
generated torus. Jump singularities are detected via application of the edge
detector developed in the next chapter. The resulting thresholded edge
map is superimposed with the orginal image. Notice that some of the

prominent jump singularities are produced by the highlights.

In 1972 Waltz [{Wa.] used an ad hoc classification of edges in an
attempt to interpret line drawings. He produced a garden variety of labels
which correspond to different types of edges and junctions and employed
them in the Waltz filtering algorithm to converge to a single interpretation
of the line drawings. Only one stationary line drawing was considered, thus
no use of catastrophes. In fact, no attempt has been made as yei, to my
best knowledge, to utilize singularity theory in the actual computation of
shape from motion. All of the research seems to be concentrated on
extracting information where it is least likely to occur, i.e., from smooth
data points. Obviously this is not the way it is done in biological systems,

because of the enormous complexity of the visual world around us.

Remark:

Observe that this use of singularities presupposes that their
extraction from the image flow is a well defined and numerically sound
process. For instance, to detect creation and annihilation of cusps and to

infer changes of elliptic and hyperbolic intrusions, which happen suddenly,
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will demand powerful curvature detectors. These events are related to the
observed surface being negatively or positively curved. Today, the arsenal

of edge detection does not possess such a machinery,

1.1.4. An impossible image.

Finally I should ask a question: what kind of images are not possible?

Paradoxically as it sounds, it will determine the mathematical model which

we shall study here.

The answer will be similar to the response to how many angels can

dance on the point of a needle.

An example of an impossible picture is presented in Figure 1.8.

D NJJ«J/ o4 LJ/ (Fig. 1.8)

How does the image of the surface S appear to the observer near the point
P? Since at P surface S has an infinite number of folds, i.e., an infinite
number of occluding edges, nothing can actually be observed. Similarly one

can produce a picture with an infinite density of cusps. But how about
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image intensity function F(x, y)? What kind of behavior would it exhibit

per scan line? Figure 1.9 depicts this impossible picture.

4 ]

\\

0% 2-T-y-1
(Fig. 1.9)

Does it remind us of anything from an introductory course of mathematical
analysis? Of course, it is something like sin (1/x), a function whose period

converges to zero at x = 0.

Look around you and see if there is anything like it in the real
visual world. Put differently, could we possibly see it, even if it were

there? Conclude the paragraph with the following postulate:

Postulate: Images belong to the space of functions of bounded total

variation.

Moral: It is possible that a myriad of angels may dance on the point of
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the needle, but who will see it?

§1.2. Structure of singularities of functions of bounded total variation.

The decision to narrow down to the space of functions of bounded
total variation allows us to inquire as to the nature of the set of points

where these functions are not smooth.

Generally speaking, images as we see them are the discrete
measurements of the continuum world, which does not have a nice smooth
behavior. Nonetheless, we are perfectly able to make a right judgment
about what is there. In mathematical analysis, the functions which are
equivalent modulo Lebesgue measure zero are not distinguished. If an
image is a function F(x, y), its behavior on any set of 2-dimensional measure
zero is an expendable entity. So why bother about edges? After all,
intuitively they are just lines, whose 2-d measure (i.e., an area) is nil. To

be able to reply, some measure theory should be introduced.

1.2.1. Separation of regular and singular parts.

Let # be a Borel measure on R", then

Definition 1.1.
(i) M = {x € R" | u(x) =< 0} is called a set of pure points of measure 4
(i) wp(A) = > wl{x)) = u(A N M) is called pure point measure of
x€EANM
set A

(iii) W,y = M — MUpp iS @ continuous part of measure 4.

Then the following theorem is given by measure theory:
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Theorem 1.1.

Any Borel measure is uniquely decomposed into the sum of pure point

~and continuous measures, i.e., 4 = Uy, + Ueonte

A few words of explanation. Usually measure takes a set and
produces its “length, area,” etc. If a set consists of just one point, its
measure should be zero. Not so.with a pure point measure; it assigns some

“length” to some points which we call singular points.

Continuous part of the measure can be further decomposed in two

parts:

Definition 1.2.
(i) u is absolutely continuous with respect to Lebesgue measure )\ if
dy = fdA
for some f € L; (R").
loc
(ii) u is called singular continuous with respect to Lebesgue measure A

if there exists set A s.t. u(A) = 0 but A(R"\A) = 0.

Absolutely continuous measures correspond therefore to the
absolutely continuous functions, while singular continuous measure is much
less obvious. The so called Devil’s Staircase or Cantor’s function is an
example of a singular continuous measure. This is a curious case of the
strictly monotonic continuous function whose derivative is equal to zero,

a.e. This description of measure theory culminates with the Lebesgue

decomposition theorem:
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Theorem 1.2.

Any Borel measure 4 can be uniquely decomposed into a sum

M = lpp + Mac T+ Ksing cont - (1.2)

If Fx, y) € Ly, i€y f/ |[F(x, y)| dxdy exists for any compact set
A, then F(x, y) is a Borel meAasute on R? and therefore is decomposable
uniquely into the sum F(x, y) = F(x, ¥) + FalX, ¥) + Faing cont.(X, ¥).
For the time being we shall not worry about F,ng cont (X, y). After all, its
differential vanishes, and it is differentiation we are concerned with. In

what follows, we will be mainly preoccupied with the structure of sets

where singular parts of F are concentrated, i.e., analysis of F,(x, y).

1.2.2. On how many singular points there are.

Historically the first study of points of discontinuity of functions of
several variables was undertaken by Kolmogorov and Verchenko in 1934 [Ve.
Ko.]. Here is a brief summary of their results: Let |[F(P)] < M for all
P € R? i.e., it is uniformly bounded. Let @(P,, o) be a least upper bound of
all fim (F(P)) when P approaches P, along any curve tangent to the direction

o with axis x. See Figure 1.10.

yl\

(Fig. 1.10)
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Similarly defined is the greatest lower bound ¢(Py o). Then in order for

F(x, y) to be continuous in P,, it is necessary and sufficient that
a(PO, o) = Q(Po, a) = F(Po)-

Next, P, is a point of discontinuity of a first kind if F(P) is not

continuous at the point P; and for all angles o.:
#(Py, o) = ¢(Py, ).

Theorem 1.3.

A set of points of discontinuities of the first kind is at most

countable.

Further, P, is a normal point if for all o, both upper and lower

limits are independent of the arcs from which they are approached.
;(PO, Q.) = ;(Po) > F(Po) > Q(Po) = ¢(P09 0'.), (1.3)

Obviously every point of continuity is a normal point. Call normal points

which are not points of continuity points of normal jump.

Theorem 1.4 (Kolmogorov).

A set of non-normal points can be put onto the countable number of
rectifiable curves, and is of measure zero (here is the 2-dimensional

Lebesgue measure).

Clearly, a set of points of normal jump is what we are after.
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However Theorem 1.3 assures us that a set of points of the first kind is
completely harmless, and that a set of non-normal points cannot be infinitely
dense in the domain of F(x, y). These conclusions originate from the single
assumption that the function is uniformly bounded. This condition,
however, is not rich enough to make any judgments on the set of normal
jumps, which corresponds exactly to the intuitive notion of an “edge.” A.
Volpert has continued this line of research in his 1967 paper [Vol.] on spaces
of BV and quasilinear differential equations. He does not make any
reference to [Va. Ko.] since his interest was solution of differential
equations rather than reel analysis of BV functions. His main concern was
with assigning values to functions on the sets on which the singular parts
of measures are concentrated. When nonlinear partial differential equations
are written, it is common to have products and superpositions of
discontinuous functions. Then one is interested in differentiation formulas
for these combinations of functions, just like the conventional calculus
rules. The following example demonstrates that usual calculus fails badly.

Let h be a characteristic function of some set, then since h* = h, we have

h’ = (h?’ = 2hh’ = 4hh’ — 2hh’ = 4h°h’ — 2hh’
2.1)
= (h* —h®) =( — hy =0,
which is obviously wrong, i.e., the rules we used do not apply to the

discontinuous functions.

For the functions of one variable, total variation is defined as

follows:
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Definition ..3.
Let f(x) be defined on [a, b]. It is said to have bounded variation if

there exists such a constant K, that for any partition of [a, bl by points

Xg =8 < X; € X3 ... < Xn = b, the following inequality holds:

n
Var f(x) = Z If(x) — £, )| < K. (1.4)
i=1
The least of such K is called total wvariation of f(x) on [a, bl, sup Var
f(x) = TV({(x)).
Several definitions could be given to extend this property to
functions of several variables. They are associated with the names Vitali,

Hardy, Frechet, Arzela, Pierpont and Tonelli. The most acceptable

definition belongs to Tonelli:

Definition 1.4.

The function is assumed to be defined in the rectangle
a<x<b ¢ <y <d. Denote f,o(y) and f,,(x) following functions of one

variable:

fxo(Y) = f(xq, ¥), fyo(X) = f(x, yo),

and let TVy(xy), TVx(y,) stand for total variations of fx,(y) and fy,(x) on the

intervals [c, d] and [a, b] alone, as defined in Definition 1.3. Then put
d
Vary = TV(f(x, y)) = / TVy(xg) dxo + / TVu(yoldyg- (1.5
c

If Vary < K for some constant K, f(x, y) is called to be of bounded total
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variation in the sense of Tonelli.

It is easy to see the meaning of Definition 1.4 for discrete grid
functions. We simply compute the one-dimensional sum of jumps along each
row and along each column and add them up to get TV(f(x, y)). For

absolutely continuous functions of one variable, one sees that

b
TV((x)) = / If(x)|dx. (1.6)

a
In the case of a continuously differential function of two variables, this

formula could be extended to

bd
TV((x, y) = / |grad f(x, y)| dxdy. 1.7

a'c
Properties of this variation were studied by Kronrod [Kr.] in great detail.
Notice that while formula (1.5) essentially depends on the chosen coordinate
system, formula (1.7) is invariant under coordinate transformations and thus
could be extended to functions defined on arbitrary surfaces. Yet (1.5) has
a nice geometrical interpretation as well, since it yields that surface z =
f(x, y) is of finite area if Var, is bounded. It also has an additional merit
of being a good candidate for a digital approximation of total variation for
the discrete functions. In any case, either definition tries to capture the
notion of the amount which the function f(x, y) fluctuates in the given
rectangle. In such a way we may connect the integral of the modulus of
gradient of an image to its informational content. We show in [Rud. 2] that

this intuition could be made very precise by the so called e¢-entropy
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concept.
Just as a function can be considered to be a measure, so are its

derivatives.

Definition 1.5. [Fe.]

We say f(x) € BV(Q2), where x = (X;, X, ..., Xn) if there exists a

vector-valued set function u, a Borel measure on €2, such that

/grad(so) cfdx = ——/lpu(dx) (1.8)
Q Q

for any infinitely differentiable ¢ of compact support, and if it is locally

integrable in Q& C R".

This definition says that the space of functions of bounded total
variation BV({2) conmsists of L, _ elements, whose partial derivatives are
measures. It says nothing about f(x) being continuous; i.e., discontinuous
functions are also members of BV({2). In what follows, 1 is written ags VI =
grad f, because u is a generalization of the notion of gradient. It may be
shown that if f € BV({2), then f is of bounded Tonelli variation. A typical

example of a discontinuous function of bounded variation is

_J1 if x € A
G = {o if x g A
Then if
TV(xa) = / [V Xal dxdy = P(A) < o, (1.9)
Q

P(A) is called a perimeter of set A and corresponds to the length of the
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boundary of the set A. Thus sets with very unusual boundaries can have a
finite perimeter, which is measured by the total wvariation of its
characteristic function. Similarly, for sets with finite perimeter the
inward and outwqrd normals could be defined, though in a much more
involved way with the point set topology. The points where such a normal
is defined constitute the so called essential boundary of the set A, called

™A [Fe.l. (Actually, the essential boundary has some other points, but

their “length” is zero.)

In a way similar to Kolmogorov’s (1.3) functions ¢ and ¢, Volpert
[Vol.] introduces approximate limits &.(f(x,)) and £&.,(f(x,)) when x, is
approached along curves separated by the hyperplane (X — x, &) > 0, i.e.,
@ being a normal direction of the hyperplane. Then x, is a point of jump

if

La{f{x0)) = -La{f(x0)).

If T(f) is a set of points of jump for f and x, € I'(f), then the normal to
I'(f) at the point x, is uniquely defined for each point of jump x,. The

jump at the point x, is given by

'A'f(Xo) = (lg(f(Xg)) -_ l.a(f(XQ»o (1 9.1)

Further, it is shown that a set of non-normal points not only has “area”
zero but also it has “length” zero, meaning that its contribution to the
length of the sum of lengths of rectifiable curves on which it can be put

(see Theorem 1.4) is zero. In precise terms, its (n — 1) dimensional
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Hausdorff measure is zero. It also becomes possible to define the mean
values for the BV functions, which exist not only up to n-dimensional
measure zero but modulo (n — 1) dimensional measure zero—here is the
essence of why boundaries which are sets of 2-dimensional measure zero
cannot be assigned arbitrary values. The hidden reason for such exclusive
behavior is that values on the boundary are actually determined by the
conduct of the whole surrounding neighborhood of each singular point on
the boundary. (This is not so with isolated singularities or regular

values.) Boundaries then are locations of pure point measures, i.e.,

infinitely concentrated information.

Remark:
For a detailed account of how to assign values on the boundaries,
consult any modern treatment of Traces of BV functions in the theory of

minimal surfaces.

Mean values are produced by means of averaging kernels of the kind

Wn °?

0, for all other x ’ (1.10)

2 (x, a) >0, Ixl <1
z(x)={

i.e.,, an asymmetric spherical function where wp is a volume of the n-

dimension unit sphere.

Definition 1.6.

A set of class K is a Borel set, which is coverable by a finite or

countable number of essential boundaries of sets with finite perimeter.
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The following theorem provides us with an assurance that a set of
jumps of f € BV may be safely confined to the number of rectifiable curves

in its domain, therefore completing Theorem 4 of Kolmogorov.

Theorem 1.5 (Volpert).

Let T(f) be the set of jumps of f(x). Then there exists a set S of

class K such that I'(f) C S U M, where H,_ M) = 0.

For further applications in the edge detection we note that the mean
value at X, is obtained by rotating the averaging kernel and integrating it
with the function at x, until it reaches maximum for the unique vector @.

This vector @ then defines direction of the normal to the set of jumps at

Xo.

Finally, a generalization of Green’s theorem

/f -divgdx = -[<g,Vf>dx + /f"' -g® vy -dH (1.11)
o

where v is a unit normal to 3Q, f € BV(Q2), and f¥ is a trace on the

n
boundary, g; € Ceo and div g = > g%‘

i=1

1.2.3. Synopsis.

In the conclusion of this paragraph these most important points
should be emphasized. They are the issues of vital significance when a
problem of “computing the singularities” is at stake.

(i) Images, as we know them, can be modeled by the space of functions
of locally bounded total variation BV(Q).

(ii) The Lebesgue decomposition theorem yields that the singular parts
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of the functions should be uniquely separable from the smooth parts.

(iii) Performance of a BV function on its singular support (at the
boundary) is indispensable, even though its n-dimensional measure is zero.

(iv) The notion of a jump is a well defined numerical quantity.

(v) A set of points of jump may be overlaid by a finite or countable
number of rectifiable curves (genesis of edges).

(vi) A set of points which are neither jumps or points of continuity is
very small (has length zero H,_(S) = 0).

(vii) Jump points are characterized by the unique vector, normal to
the essential boundary which jump points comprise. At each point this
direction is determinable by the limit of convolutions with the hemispherical
kernel.

(viii) The generalized Green’s theorem is valid.

Practical implications of this synopsis will manifest themselves in the next

chapter.

§1.3. Shock Filters

In this section the notion of the Shock Filter, developed by the

author in [Rud.l), is briefly introduced.

The aim of image enhancement is to preprocess an image into a form
suitable for human or, what is a more important application, for machine
analysis. This implies a redistribution of the original intensity flux into
appropriate representation. As applies in particular to machine analysis, it
is desirable to obtain a piecewise constant (staircase-like) representation for

polyhedral edges or piecewise linear representation for surfaces with mutual
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illumination. In either case, discontinuity is present in the intensity

function or in its derivative.

The computed representation shall contain all the esential information

about the input image and should be free of spurious information.

Linear image filtering is the most common computational approach in
achieving edge enhancement and detection. It can take various forms, such
as spatial domain or spatial f requenéy domain; it can also have a
probabilistic character. One way or another, all these forms can be reduced

to the following equation:
G(x, y) = H(x, y) * F(x, y) 1.12)

where G, H and F are the output image, space invariant filter, and original

image, respectiveiy.

The presence of noise should always be assumed, since even in
apparently noiseless images noise is present in the form of quantization and

numerical effects (e.g., rounding-off error).

For any filter H(x, y), the apriori positivity condition should hold for
G(x, y) and F(x, y), since they are physical images. It is well known to
every worker in the field, however, that this condition is hardly ever met.
The class of filters that satisfies this apriori condition is that of smoothing
filters. But this class is the least interesting for the purposes of feature
extraction—e.g., edge extraction—because the smoothing linear filter by its
very linear nature indiscriminately dissipates information from the image.

Thus, not only is the noise removed, but also edges are blurred.
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In general, the output of a non-smoothing linear filter is always
plagued by the so-called ringing phenomenon, of which the Gibbs
oscillation is a simple case. These spurious oscillations occur in proximity
to edges and other singular features where all pictorial information is
concentrated. Because it is impossible to distinguish these numerical
artifacts from any actual information present in the image, further

semantical processing is almost useless.

In this work, ringing has been rigorously defined in terms of certain
functional behavior in order to capture all possible meanings of this elusive
notion. The definition also implies that if filter is ringing free it always
maintains positivity. Clearly it is natural to require following monotonicity
property, which has been pioneered by A. Harten in his [Hart.] and has been
recently the subject of intense studies in Numerical methods for scalar
conservation laws known under the name TVD—total variation diminishing

finite difference schemes.

Definition 1.3.1

Filter H(x, y) in (1.12) is said to be monotonic if no new local
extrema in G(x, y) are created as compared to processed image F(x, y), and

the local extremas present in F(x, y) are not accentuated.

This information conservation property is captured precisely by

the relation

where G and F are given in (1.12) and TV is defined in (1.7). Following
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[Hart.l, we shall call these class filters—total wariation diminishing

Ffilters.

It may be shown [Rud.2] that

Lemma 1.3.1 [Rud.2]

A linear filter is ringing free, i.e,, TVD, if and only if it is a

smoothing filter.

This lemma states that the linear systems theory is too weak to
handle sophisticated information processing tasks, in particular, edge
enhancement. Similar analysis of histogram modification and thresholding
methods yields the same conclusion. Indeed, here the need appears for

variable thresholding, indicating highly nonlinear algorithms.

Lemma 1.3.1 above is not very surprising either. The necessity for
smart filters has been stressed by few authors [Pavl.l, and some ad hecc
nonlinear algorithms have been designed. Some of the most notable examples
are homomorphic filters, directional filters, and what the author would like

to classify as a class of hybrid filters and functional approximation filters.

Furthermore, Lemma 1.3.1 states more than just the need for
nonlinearity. It pinpoints the exact mathematical nature of the limitation of
linear, or equivalent Fourier transform, methods. Indeed, the mathematical
notion of ringing free or total variation nonincreasing filters guides in the

search for a well-founded nonlinear computational framework.
We proceed with a short description of the Shock Filter construction.

Intuitively, an edge is simply discontinous behavior of the analog

image function and thus should be treated as such in any reasonable
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mathematical analysis of enhancement technique. Instead, all algorithms in
this field are based on the rather vague notion of a digital edge (which is
never rigorously defined) and thus hide the inherent weakness of this

approach.

Hence our requirement is that discontinuity in the desired
representation be analytical singularity rather than some digital version of
it, even though eventually only a numerical approximation is computed.
This is essential because only proper analytical consideration may yield

proper numerical treatment, and not otherwise.

Until now no satisfactory discrete singularities theory has been

developed in the context of multidimensional signal processing.

One can trace this apparent flaw of modern image processing in
erroneous view that the only proper approximation space for digital signals
is space By, of functions with Fourier spectrum concentrated on the interval
[-w, wl. This implied approximation in L, norm. It is the opinion of the
author that progress is to be achieved if distributional approach to
singularities, developed in the next chapter, is applied in order to obtain
Discrete Singularities Theory. In particular, space BV({2) of functions with
bounded total variation should replace B, when digital approximations are

considered.

Our search for appropriate ringing free enhancement filter should be
limited only to operators which preserve non-negativity and locally conserve
information. The intuitive sense of the locality property is to ensure that
information is not globally spread over the image and that it does not leak
across the singularity boundaries (see next chapter for the definition of

this notion).
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Begin with the study of quasi-linear partial differential equation of

the form

alt, ©, u) - uy + b(t, z, u) - ux = c(t, z, u) (1.14)

with two independent variables t > 0, x € R, and coefficients a, b, ¢, being

functions of t and x.

We consider the initial-value problem for (1.14), i.e,, to find a

solution of (1.14) for t > 0 if the given data is

u(x, 0) = up(xz), = € R, (1.19)

The theory of equations of this type states that in general (1.14)
cannot have a smooth solution defined for all ¢ > 0, that is, the solution is
not defined globally. This is true even if uyx) is a smooth initial

waveform.

The simplest example demonstrating this singular behavior is an

equation of unidirectional nonlinear wave motion:

ut + U -+ Ux = 0 (1-16)

The remarkable property of this equation is that it may lead to a
discontinuous solution in finite time if the initial condition is not

monotonically nondecreasing in space variable x, for each t > 0.



31

/ -

(Fig. 1.11)

Geometrically, this property is seen on Figure 1.11 which is
characteristic diagram for the equation (1.16) when the initial condition is
the right facing profile. Its characteristics represent trajectories in the
phase space (x, t) along which information is carried from the initial curve

t = 0.

In the case (1.16) the value of w(x, t) is constant along each of the
characteristic curves. If there are two points z, and z, such that z;, < z,
and u(x,, t) > u(x, t) the characteristic lines meet at some point in t > O.
Points on the initial wave with the larger u convects faster and overtake
points on the wave convecting with the smaller u. At the point of a
characteristic crossing the only reasonable physical counterpart to a
multiple solution or breaking is to introduce a shock across which «
changes discontinuously. In such a way, analytical discontinuity becomes

a reality even for a smooth initial function.

There is much more to shock waves than is possible to discuss here.



32

But the notion of entropy is crucial for the intended application. It turns
out that the solution to (1.16) is not unique precisely because of possible
discontinuity. Then the only solutions not rejected are those that are

physically meaningful.

A sufficient condition for this is the so called entropy criterion:

The characteristics starting on either side of the
discontinuity curve, when continued in the direction of
increasing t, intersect the line of discontinuity.

This shows that information is preserved locally, being compressed towards
the shock point. Another consequence is that information does not cross

the discontinuity point and therefore is not leaked across the boundaries.

Finally, the following condition is satisfied by the solutions of (1.16)

TV(u(ty, x)) < TV(u(t, x)) if t; >ty 1.17)

and positivity is preserved.

Consider linear diffusion equation

Uy = € * Uxx (1.18)

with the initial condition u(x, 0) = uy(x). This physical process dissipates
information across singularity boundaries in the smoothest possible
fashion, i.e., it convolves the initial waveform with Green’s function, which

is a Gaussian. Thus it is a low pass filter (using systems theory jargon).

The simplest interaction of the nonlinear convection and dissipation is

Burger’s equation:
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Uy + U - Ux = € - Uxx (1.19)

It represents a balance between two physical processes: convection
and diffusion. Here convection tends to steepen the gradients of the initial
profile and diffusion does just the opposite. The diffusion is constant ¢
controls the magnitude of the spread. Controlling this parameter an
interesting balance could be act;ieved: the magnitude of u is somewhat
decaying, but right facing profiles get steeper and steeper. Thus any high
frequency signal with small amplitude relative to uo(x) (e.g., noise) and
riding on top of it will be eventually dissipated and concurrently some

of u(x) profiles get arbitrary sharp, while others are smoothed.

It is worthwhile to note that all the desired properties of Lemma 1.3.1

and (1.16) are still valid for (1.19).

However, in using (1.19) as a prototype filter other difficulties need

to be overcome:
(i) First (1.19) is not symmetric in x-space. Indeed, it will spread all
the left facing profiles.
(ii) Second, the solution is not stationary but propagates in space with
different parts of the initial waveform traveling with different velocities.
(iii) Third, (1.19) is a one-dimensional equation, while a two-

dimensional filter is required for image enhancement.

To resolve the first obstacle we modify the equation (1.19) to the

space symmetric form

Uy — luxl - U = eUxx (1.20)
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Solutions of this equation have the property of forming shocks from both

left and right facing profiles, as we will demonstrate numerically.

The unwanted propagation problem is alleviated by further

transforming the equation into the form

uy — f(Ux) . l'U.xl U = €Uxx (1.21)

where coefficient f(ux) is set effectively to control local speed of the wave
propagation in such a way that it monotonically goes ' sero ance some
derivative bound is exceeded. In the digital implementation below its
interpretation is the maximal size of the jump which is allowed to propagate
after it has been formed. Thus it corresponds to the lower bound of the
desired image scale. Every detail, whose size is smaller then this bound
will eventually disappear from the image. Since speed of wave propagation
in the finite difference schemes depends on the ratio number b - ZA% = CFL
where b is velocity coefficient in (1.14), and CFL stands for Courant,
Friedricks and Lewy, who first studied the effect of this ratio omn the
stability of the finite difference schemes. Clearly if we make CFL to

depend locally on w/(x), we may then turn the wave propagation on and off

in the digital implementation. Thus f(ux) is local CFL number.

The third problem, of extending (1.21) to the multidimensional case is
the most difficult from the theoretical and numerical viewpoint. For
example, a straightforward extension to the two dimensional Burger’s

equation

u; + uux + uuy =0 (1.22)
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is unacceptable since application of the rotation transformation

X = (x + y)/2
y = (y — x)/42

(1.23)

the equation (1.22) is transformed into the wunidimensional Burger’s

equation:
u + «ﬁ ‘uu, = 0 (1.24)

which will blur any singularity which is not normal to the axis x’. To put
it differently, we need rotation invariant Shock Filter, as we shall call this

class of function transformations.

This is done by considering differential equation in the form
U, — F(lVul) - 4 = ¢ - Au (1.25)

since the magnitude of the gradient of u is rotation invariant gquantity.

Finally w§ solve (1.25) by the method of fractional steps, when half
of the time the wave is propagating alohg the x-axis and second half along
the y-axis. This scheme is typically applied to multidimensional finite
difference equations. To solve (1.25) we have chosen one of the simple
stable numerical methods available in the rich arsenal of today’s finite
difference methods for nonlinear conservation laws. We have used here a

modified first order upwind Flux Correction Method of [Bor. Book].

This first order upwind scheme as modified by the author intricate

switching mechanism which assures that information in the waveform is not
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propagated across image features, i.e., only in the direction of the wind.
The algorithm is programmed in divergence form, i.e.
um! =y — sign(u?, - u?,) - CFL(", i) - (Flux(u", i + 1) — Flux(u", i)) +

(1.26)
+ K- (uh, — 2w +up)

Where CFL is local Courant number and Flux is a numerical propagation
image flux computed according to the direction of local characteristic speed

w. The numerical flux is computed as in

Fin, w2>0 '
Flux(u, i) = { -1/2 (1.27)
Fi, if w e 0

where w._;,, = -(F, — F_ ) and F, = } - v

The C code of this finite difference Shock Filter is included. When
this scheme was applied to vearious initial wave forms, interesting
enhancement effects were obtained as demonstrated by Plot 1-Plot 7. In
particular, an additive Gaussian white noise on Plot 3 has been successfully
eliminated as well as uniform noise on Plots 4, 5, while the edge was

preserved.

Plots 5 and 6 demonstrate how the Shock Filter continuously
eliminates hierarchy of scales in succession, so that at the end only the

highest scale—the “bump” is preserved.

We also have preliminary results with two-dimensional fractional step
implementation of the above scheme, which is shown as the “Clock 1”7
sequence. Clearly these experiments are to continue with much sharper

TVD methods and truly multidimensional difference schemes.
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However, our computation has proved that it is possible to achieve
edge enhancement and simultaneous smoothing of high frequency

noise.
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APPENDIX::

idefine N 100
#include <stdio.h>
#include <math.h>
#include <strings.h>

/* diffusion constant K = D*dt/dx*#*2<= 1/2%/
/* Courant number= dt/dx < l/max(u) */
double CFL, S:
main(argc,argv)
char **argv;

int argc:;

{

FILE *fp,*fopen() ;
char *s = "\0";
int i,3,1;

double K, u(N], ul([N],flux(),sign(),F(),aver(),diff(),Flux(), aver(),c
printf("\n# iterations: "):;
scanf ("%d4d",&I);
printf("\n diffusion constant K = ");
scanf ("%1f", &K);
printf("\n CFL = ");
scanf("%1f",&CFL) ;
printf("\n S = ");
scanf ("%1£",&S) ;
fp = fopen(argv[1l],"x");
for(i=0;i<N;++1i)
fscanf (fp,"%1£f",&ui}]):
for(j=0;3<I;++3j){
ul[0] = u[o0];
ulfl] = uflj:
ul[N-2] = u(N-2];
ul[N-1] = u[N-1];
for(i=2;i<N=-2;++1i)
ul(i] = ufi]=-sign(u{i-1]=-ufi+1])
* cfl(u,i)*( Flux(u,i+1l)-Flux(u,i) )+K*diff(u,i):
for(i=0;i<N;++1i)
ufi] = ul(ij:

}

fclose(£fp):

fp = fopen(argv(2],"w");

for(i=0;i<N;++1i)
fprintf(£fp,"$£f\n",u(i}]):
fclose(£fp):
strcpy(s,"Plot ")
strcat(s,argv(2])
strcat(s," 100"):
printf("\n %s\n",s);
system(s) ;

~e wo

}

double diff(u,i)
double *u;
int i;

{

}
double sign(x)
double x;

({

return ( (u[i+l1] = 2.0*u[i] + u(i-1]) ):

return( x > 0.0 ? 1.0 :(x < 0.0 ?2 -1.0 : 0.0)):
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}

double F(u,i)
double *u;
int i;

{
double aver(), F:

F = 0.5*u(i]*u(i] - aver(u,i)*uf(i] ;
return(F) ;
}

double aver(u,i)
double *u;
int i;

{
double fabs():
/* if ( fabs(u[i) = u[i-1]) >
return( (u(ij]+u(i-1])/2
else */
return( 0.0)

0.5 )
.0 ) 3

}

double flux(u,i)
double *u;
int 1i;

double w,f, F(),sign():

w = sign(u(i-1]-u{i])*( F(u,i) - F(u,i-1) ) * (u(i] - u(i-11):
if (w < 0.0)
£f = F(u,i);

else
f = F(u,i-1);
return( £ );

}

double Flux(u,i)
double *u;

int i;

{
double flux(), r(), f£,sign(),cfl():
/* if ( r(u,i) > 0.0 && r(u,i-1) < 0.0 ) {
f = 0.5%(flux(u,i+1)+flux(u,i-1) - cfl(u,i)*(ufi]) =-ufi=-1])*(r(u,i)-r(u
return( £ );
y*/
f = flux(u,i):
return( £ );

}

double r(u,i)
double #*u;
int i;

double aver(),sign(), r:
r = sign(ufi-1]=-u(i])*( u(i] - aver(u,i)):
return( r );
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)
double

double
int i;
{

double
double

y=(_
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cfl(u,i)
*u;
y, fabs(), max():

extern S;
CFL/S)*fabs(u[i+1]=-u(i-1]) + CFL;

return ( max(y,0.0) ):
/*return ( fabs(u{i]=u[i-1]) < S 2 CFL : 0.0);*/

)

double max(x,Yy)
double x, y:

{
/* printf("\n CFL = %f cfl() = %f",CFL, ( x>y ? x

return ( x >y ? x 2y ) :

}

Ty )

1*/
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Chapter 2

Surface Distributions and Numerical Analysis of
Singularities

Form, in the narrow sense, is the boundary between one
surface and another: that is its external meaning. But it
has also an internal significance, of varying intensity;
and properly speaking form is the external expression of
inner meaning.?

§2.1. Some chronology of the sub ject.

The purpose of this chapter is to gain an insight into the nature of
operations which will eventually lead to the calculation of singularities.
There is much more to be gained from this calculation then just the “edge
detection,” as we will see. In the previous chapter it was ascertained that
the singular part of a function is mixed with the regular part. So what we
need is a theory which permits us to compute these singular contributions
just as if continuous values are being estimated. The whole power of
mathematical analysis is available at smooth neighborhoods, with its arsenal
of arithmetics, differentiation, integration, series expansions, etc. Only
under exceptional circumstances is it prohibited and useless to apply. Alas,
it takes place at the precise sites of our inquiry—places of nonsmoothness.
Discontinuity of a function is but the simplest kind of nonsmooth conduct
we shall pay attention to. Functions may also possess discontinuous
derivatives, even hidden beneath the jumps of derivatives of the lower
order. The last statement is devoid of sense when the usual notion of

derivative is in use. Indeed, if a function has a jump, how can its

?Wassily Kandinsky in Concerning the Spiritual in Art.
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derivative be defined? Yet Figures 1.2 and 1.3 are just that kind of
phenomenon. Clearly, our interest is not in the point value here, but the
function’s behavior as it approaches the singular site. For this will tell
whether it is a jump point, as defined as in Chapter 1. In such a way jump
points and their respective unique noi‘mal vectors may be computed. This,
in view of the synopsis (1.2.3), will amount to detection of the essential
boundary of the BV({l) function. Observe that the essential boundary
refers only to jump points of a function, while we also would like to
compute singularities of arbitrary order! That is, jumps, jumps under the
jumps, etc. What is the meaning of all that and what sort of machinery is
to be used to solve this novel task? Certainly, not the good old calculus.
Is it possible at all? “Biological vision machines” detect singularities
without any difficulty. Well, maybe some higher intelligence or even

artificial one is responsible?

he snswer was hinted by the British physicist P.A.M. Dirac in the
late 1920’s with an introduction of the celebrated Dirac §-function. It took
another 30 years and the genius of L. Shwartz to show that Dirac’s intuition
was exactly right. He had shown that not only the &-function is
mathematically sound but that the whole calculus is extendible to deal with
singularities. Thus, it became possible to differentiate and to integrate
discontinuous functions with ease, and sometimes even to multiply and
divide. The name is the Theory of Generalized Functions or Distributions

Theory (depending on whether you follow the Russian or French schools).

One wonders why it took so long for the “edge detection industry” to
discover it? The answer to the mystery is quite simple. A typical view is,

“The problem of finding edges is involved because of the fuzziness of the
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concept ‘edge;’ in fact, an edge on a digital image is an intuitive concept
more than a formal one” [Lev.l. Such an attitude permeates this research

field today.

There are, however, a few notable exceptions when researchers have
faced the problem. Some tangible experiments have come in [Can.), even
though only one-dimensional singularities were treated and extension to 2-d

is totally ad hoc.

T. Binford in [Bin.] remarks that “Intensity boundaries are extended
two-dimensional step functions, roughly speaking, or delta functions defined
along a curve in the continuous plane.” However, no use of this profound
observation has followed. [Ber.] looked at the accuracy of the so 'called
Laplacian Detectors (which are vthe crust of [Ma. Hi.] “Theory of edge
detection”). The author assumes 2-dimensional discontinuities of the
simplest types and arrives at very interesting estimates. Quite a task
without using the power of the theory of distributions! And finally [Lec.
Zuc.] had understood well the importance of local structure of image
discontinuities in one dimension and the inability of Laplacian detectors to
deal with it, yet no consistent mathematical model was presented, even for 1-

dimensional signals.

Before proceeding further, some statement of the authorship of the
results in the following pages is necessary. Except for the introductory
paragraph on distributions, all results were obtained by the author unless
otherwise stated. Some differentiation formulas of the calculus of
distributions were derived earlier in [Est. Kan. 1, 2] via tensor calculations
(and applied to wave propagation problems) by a method that differs from

mine. My derivations are much more suited to our intended applications.
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Simplification is considerable, since the theorem of integration by parts of
tangential derivatives is applied in place of a heavy use of tensor calculus.
And now, let us proceed with the brief introduction to the theory of

distributions on surfaces.

§2.2. ODistributions on surfaces.

Let 3%, be a space of infinitely differential test functions with
compact support on R". In particular, if ¢ € %, is identically zero outside
some n-dimensional finite region £, we say ¢ is concentrated in 2.

Obviously %, is a linear space, though without the usual metrics.

Before giving an exposition of the further notions, let us convince

ourselves that 36, has more elements than just ¢ = 0. We write

N2
exp ('— ml, for Ixl < N . 2.1.0)

0, otherwise

onx) = {

Figure 2.1 depicts this test function:

/N

(Fig. 2.1.)

Tx10-y-04
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Ixi? = ¥x? and we see that its support is a sphere with radius N. Clearly

pn(x) is an infinitely differentiable function.

We say that a sequence f, f, ..., f,, ... in 36n converges to 0 in 3, iff
all f; are identically zero outside a common finite support and f™ converges
to zero uniformly for any n = 0,1, 2,... . We also say lim f, = f € 36, iff
(f, — f) — 0 in the above sense. Every locally integrable function

f(x) : R” - R gives a rise to the linear continuous functional on .,

<f, ¢> = f f . ¢ M dxl M dX2 Ceea  * an. (2.1.1)
Rn

< > will denote a scalar product of functions.

We shall call 364 a space of all continuous linear functionals on %,
i.e., g € %4 then g : %6n» — R. If g is representable in terms of locally
integrable function as in (2.1.1), it is said to be a regular generalized
function; otherwise it is called a singulor generalized function. For

instance, if we define functional 6(x) by
<6(X)9 ‘P(x)> = ‘0(0)9 (2.1.2)

then &(x) is continuous and linear on 3; and therefore §(x) € %{; however it
does not correspond to any locally integrable function. Two generalized
functions g(x) and f(x) are equal iff <g, > = <f, o> for any ¢ € %,.
Evidently, constant functions correspond to constant generalized functions

and different usual functions correspond to different generalized functions,



if they differ on the set of nonzero measure. 3/ is a linear space on its
own, so operations of addition and multiplication by scalar are defined in the
obvious manner. The operation of differentiation is what makes the whole

construction so useful. Since for usual functions f, @

g—;, 0y = g){ © d% , 2.2)
1 Rn 1
using integration by parts
0 - dp = o
- {f P [x‘__w ffp]dx - [ 5 4% = , 52
Rn-l Rn

since ¢ has bounded support and vanishes on 4+ oo. By (2.2), differentiation
of the regular function f(X) is transformed into the differentiation of the
test function. Clearly, if f(X) were not differentiable at all, still we could
define <f, g——;’:} The usefulness of such formal differentiation is

demonstrated by the examples below.

Let
_ x >0
h(x) —-{0’ x <0 ° 2.3)

Then by (2.2)
<h’(x), @(x)> = -<h(x), @’ (x)> .

We have from (2.1.1)

+o0

[+ ]
= — / e (x) - h(x) dx = — f (x) dx = ©(0), 24.1)

-0
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because @p(0) = 0, w(x) being of finite support.

In view of (2.1.2) it is true that for any ¢ € %,

<h’(x), p(x)> = <6(x), @(x)>,

which yields

h'(x) = &6(x) (2.4.2)

upon application of the equality condition for generalized functions.

In the next example, Lebesgue’s decomposition of the derivative of a
function of a single variable is computed. Let f(x) be an arbitrary

discontinuous function, whose graph is on Figure 2.2.

(Fig. 2.2)

Suppose that f’/(x) is piecewise differentiable and x;, x,, X3 ..., Xm are its

discontinuity points. Now, let us extract singularities from f(x) as follows:
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g(x) = fi(x) — Z Hm - hix — xm), (2.5)
m

where Hn = f'(xn) — f(Xm), i.e., 2 jump in x,. Equation (2.5) shows that
g(x) is a continuous differentiable function and is the “cut and paste”
version of the discontinuous function f(x). It suffices to differentiate g(x)

in (2.5) term by term and use (2.4.2) to obtain

gx) = f'(x) — Z Hm - 8(X — Xm), (2.6)
m

where f’(x) is a generalized derivative of f(x) in the sense of (2.2). We

establish that

£(x) = g'x) + D Hn - 6(x — xu). Q.7

m
Thus Lebesgue’s decomposition of the f‘(x) is concluded as claimed, g‘(x)
representing absolutely continuous contribution and 3 Hm - 8(x — xm)

m
corresponding to the pure point contribution.

Before going into the subject of distributions concentrated on
surfaces, some discussion of local properties éf generalized functions is
worthwhile, for it is relevant to the subject of detecting nonregular parts
of a generalized function. A generalized function is a functional, i.e., it
takes a function and makes a number. So strictly speaking it has no
behavior at the point, nor it has point value g(x,). However, the notion of
locality could extend to the functional via the test function on which it
acts. If it happens that for some point x, and any test function ©xq whose

support is only in the neighborhood of x, <g, Px,> = 0, we say that g(x) is
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zero in the vicinity of X5 We may say that the generalized function g(x)
is equal to zero in the region Q if for any ¢ € %" such that supp(e) C Q,
it follows that <g, > = 0, where supp(®) denotes the set {x | @(x) = 0}.
This is equivalent to stating that g(x) is zero in the neighborhood of each

point inside region 2.

If a functional g(x) is equal to zero everywhere in R" except for some
region £, i.e., supp(g) = €2, then g(x) is said to be concentrated on the set
1. For example, a regular functional f(x) which corresponds to the usual
continuous function f(x) may be nonzero at some X, 8s a generalized
function, while f(x4) = 0 in the usual sense. Another important example is
furnished by the &(x) function, for supp(é(x)) = {0}, i.e., a set consisting of
just one origin point. In such a way two generalized functions can be
compared for equality, if their difference is zero in R" in the above
connotation. In sum, generalized functions which are equal in every
neighborhood are equal. Moreover, all of their generalized desrivatives are
also equal. Now we are ready to state the main result on local structure of

generalized functions.

Theorem 2.1 (Gelfand) [Gel. Shil.l.

For any generalized function g(x), s.t. supp(g(x)) C @ C R", there
exists such number m and regular functions g,(x) that for any test function

(x), concentrated in £, it follows,

<g(x), p(x)> = Z <g, (%), Do(x)> , 2.8)
Ikki<m
ie., gx) = 3 g for some regular functions g,(x). Here,

ki<m
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n

fer
P — 9 Kl = k,
axil axiz ... axn ZI:

This means that any generalized function concentrated on the closed region
1 is just a linear combination of derivatives of some continuous functions,
which wvanish outside arbitrary e-neighborhood of . No matter how
complicated the nature of a generalized function is, it is simply a sum of
the derivatives of usual functions. This allows us to have global

classification of the whole space ¥/ given by the following definition:

Definition 2.1.

g € 3/ has order of singularity m if it can be represented as

<g(x), p(x)> = Z / g - (x) - Po(x)dx , 2.9)

where all g,(x) are usual functions on R, and m is the smallest such number.

Definition 2.1 and Theorem 2.1 imply the following corollary:

Corollary 2.1.
Every generalized function with compact support is of finite

singularity order.

We next introduce a concept of the generalized function concentrated

on the surface in R".
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Definition 2.2.
Generalized function g is said to be concentrated on the surface L
if
<g, > = / g(x) - o(x) d€ , (2.10)
L

where ©(x) € %, is any test function and d€ is a surface area element of
the surface L in R". The dimension of the surface L is less or equal to

(n — 1). This definition could be generalized to the higher orders of

singularity by

n
<g, > = / Z g(x) - Do(x) de , (2.11)
L i=0

which is of n-th singularity order.

Sur face distributions (2.10), (2.11) are the most important concepts
in our study of decomposing functions into the sum of regular and the
singular parts. It can be shown [Gel. Shil.] that any generalized function
concentrated in the point is a linear combination of &-function and its
derivatives 6™, n = 1, 2, ..., see Theorem 2.1 above. Derivatives of &§(x)

are defined by
<6"(x), p(x)> = (-1)" < 8(x), (x> . (2.12)
Hence, by the definition of 8(x), (2.12) can be rewritten in the form

= (-1)" o'"X0),
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i.e.,, n-th derivative of the &(x) is a functional which estimates the n-th

derivative of the test function at the origin.

Similarly, we have for shifted §"-function:
<6 M(x — xXo), (x> = (-1)"p'"(x,) . (2.13)

For distributions of several variables concentrated on surfaces, an
equivalent role is played by the so called layers. The simple layer g(x) -
8, is given by its action on the test functions space %, by (2.10), where g(x)
is called a density of the simple layer over the surface L. The double
layer involves differentiation of the test function in the direction normal

to the surface L, so we have

(L 1) - 6, p) = — / £ - 2 o) - de. @.14)
L

and f(x) is its density.

More generally, k-th order multi-layer with the density f(x) is

produced by the equation

k
(& 116 - 6, p(0) = 1 f f00 - 25 ptx) - de 2.15)
L
k=0,1,2, ...

(3
Parallel with the formula, (2.13) is selfevident. By 58—; we understand k-times

n
differentiation in the direction normal to the surface in each point of the
integration (2.15). Examination of (2.15) shows that the definition of the k-

th layer is independent from the coordinate system in which surface L is
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expressed in R". The alternative approach to the generalized functions on
surfaces was developed by I. Gelfand [Gel. Shil.}, in which equation P(X) = 0
of the surface L is involved explicitly. It is worthwhile to give at least
some definitions of Gelfand’s construction, for it may provide a somewhat

different approach than taken in this work.

Definition 2.3.
Let P(X) = 0 be an equation of the surface L in R", where

X = (X, X5y ..., Xn). Heaviside function H(x) is given by

for all i, x, >0
0, otherwise

H(x) = {1’

and

<H(P), o(x)> = f ©(X) dX.
P(x) >0

Then delta function on the surface P(X) = 0 is set out by
oP) = lim Ly + o — uey . (2.16)
The same is true with its derivatives
89P) = lim L 0P + ) — geep) (2.17)
Functionals 6*(P) then play the same role in the representation of the

singular distribution on the surface P as derivatives §%(x) in the one-

dimensional case of distribution concentrated in the point. However, to see
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the action of #“(P) on the arbitrary test function, we need to introduce a
local coordinate system whose coordinate unit vectors lie in the plane
tangent to the surface P(x) = 0 for each x. This will transform (2.17) into

the following formula:

<§%(P), p(x)> = (-1) / [aua[q, { g_’é {] ]au‘;]ul,o duydus,...dun , (2.18)
P(x)=0

where local coordinates are chosen by u; =P, and u,=x, fori = 2, 3, .., n.
It is always possible to find such a representation if the surface is
nonsingular, i.e., |grad P| < 0 on P(x) = 0, since the normal vector is given
by m = VP/IVPlI and each x, could be thus expressed as a function of
u = (u uy ..., un). Comparing (2.18) and (2.15) we observe then that the k-
th derivative of the #&-function on the surface P(X) = 0, i.e., §%(P),
coarsels; resemblesthe k-th multilayer on the same surface 58—;—,‘ §,, with the
presence of the local coordinates {u} and the Jacobian lg—:—“—ll making some
notable difference. Clearly, change of the original coordinates (X;, Xo, ..., Xn)
should change the representation of the surface P(X) = 0; i.e., expressions
in the equation (2.18) appear to be dependent on the particular coordinate
system (e.g., gﬁ' might change). Thus it looks as if §*(P) is not uniquely
determined by (2.18). Gelfand shows that this is not so [Gel. Shil] (Vol. 1,
Chapter 3), by proving that there exists a unique differential form w of the
(n — 1) order invariantly related to the surface P(X) = 0. Gelfand’s §*(P)

have very nice analytical properties, most significantly the following chain

rule:

_8_ k) —_— §E . +1)
5% §9P) = ox, o 1Y(P) | (2.19)
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Yet, the action of 8*(P) on the test function is not as obvious as the action
of the multilayer (2.15). On the other hand this action will guide the

analysis of the singularity detector and therefore its construction.

While some useful properties of surface distributions have been
established, they remain the most difficult and least developed part of the
theory of generalized functions. In particular, very little is known about
how to multiply surface distributions or how to deal with the distributions
defined on the surfaces with singularities, i.e., |VP(X)] = 0 for some
points of P(X) = 0. These limitations put severe obstacles into the author’s
inquiry about singularity detection, as we shall see. Specifically, analysis
of the “interesting” points on the edge, such as corners, curvature brakes,
etc., demands new theoretical development for the surfaces with
singularities. Similarly it will become of practical importance here to be
able to multiply multilayers by multilayers in order to analyze nonlinear

detection procedures such as the Beaudet corner detector (see {Bea.]) and

others.

§2.3. Fundamental theorem of edge detection.

Practically every stage of image analysis involves edge extracting as
an integral part of the image processing. For example, image segmentation
attempts to subdivide an image into uniform connected subregions and then
identify the subregions with a semantic description, e.g., a type of aircraft,
a geological formulation, a human face, etc. But to find the region, its
boundary must be located first by means of edge detection. The shapes of

edges provide crucial clues about the shapes of objects. The applications
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of edge detection could take hundreds of pages to list. As was concluded
earlier in Chapter 1, such a multitude of applications results from the fact
that singularities and their metamorphoses furnish computational clues about
intrinsic properties of the geometry of the visual world around us. A
great variety of ad hoc edge extraction techniques are used and new ones
are developed. One is almost lost in trying to see a common thread in this
mixed ‘bag of tricks.” Most of these detection algorithms can be expressed
in terms of digital integration with sliding masks of various types (the term
‘convolution’ is usually used, which is not exactly proper, since the mask
need not possess any symmetries). Here are some examples from earlier and

still widely used edge detectors.

Integrating masks are given in their matrix form with the (i, j) indices

corresponding to the x and y coordinates respectively.

Roberts detector is given by two masks:

R -1 0 R 0 -1
"o 1" " |1 o
Sobel edge detector:
0 -1 -1 -2 -1
Svertlcal = 2 0 -2 H Shorizontai = 0 0 0
o -1 1 2 1

Subscripts indicate the direction of maximal response.

Here are some of the rotations of the so-called compass gradient

detector:



64

-1 1 1 -1 -1 -1
Ceast = -1 -2 1 ’ Csouth 1 -2 1
-1 1 1 1 1 1

There are altogether eight masks—for North, Northeast, East, Southeast,

South, Southwest, West and Northwest.

To detect more complicated features, such as lines, Laplacian masks
are applied, which are digitized finite difference approximations to the

Laplacian operator:

o -1 0
Laplacian = -1 4 -1
0 -1 0
And so on and on ... . Some authors derive their masks from the explicit

use of finite differences of various types, some carry out differences on
the averaged, i.e., smoothed out, images and others describe their masks as
means of matching, correlating the detector’s layout with the structure of
the edge. These last are usually classified as detection through fitting [Na.
Bi.J. In yet another example, the entire “theory” of computational vision
has been developed in a number of leading institutions (e.g., MIT, CMU),

based on the notion of zero-crossings, i.e., locating output zeros of

convolutions with miscellaneous Laplacian-like masks [Ma. Hi.].

An essential first step, as a preliminary to the discussion of the
Fundamental Theorem of Edge Detection, is to observe that the design of
the detecting schemes above originates from the vague premise of computing

in some measure the size of the jump of the prospective edge at the site
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where the mask is centered. This is thought to be especially true when the
edge is separating two regions of uniform brightness. A literature review
will reveal that no formal proof that the detector actually computes some
attribute of the edge has ever been given, with the exception of [Ber.]
where only trivial discontinuity models were accounted for by the Laplacian

zero-crossing detector.

It hardly needs to be said that this is an intolerable situation and has
to be dealt with to accomplish any progress in the pursuit of establishing

the foundations for the “Numerical analysis of singularities.”

Fortunately the calculus of generalized functions provides direct
techniques for computing singularity’s contribution to the “melting pot” of
integration with a smooth function. In effect, we shall try to separate the
contribution of the edge from that of smooth gradients in the image, called
low frequency noise [Pavl.]. Essentially, we have already demonstrated
such a technique by decomposing the arbitrary piecewise differentiable
function of one variable in the sum of continuous and step functions in
(2.5), or equivalently separating its generalized derivative into continuous
part plus linear combination of shifted §-functions in (2.7). If f/(x) in (2.7)

is to be integrated with any smooth function ((x), then (2.7) becomes

+00 +o0
<f’(x), p(x)> = [g’(x)-«p(x) -dx +/ [Z Hm - 8(x —Xm)] - p(x) - dx, (2.20)
. o W

-0

by (2.4.1)

= <g(x), o(x)> + Z Hm - 0(%m) .
m
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And so we see that 3, Hn - ©(x,) is the so much desired contribution of the
m

singular points Xm.

Accordingly, the underlying principle of identification of these
discontinuity points is in designing a set of masks ®,(x) in such a way that
the regular part <g’, @> of <f’, > in (2.20) is negligible compared to the
singular term. The grand strategy then is to annihilate smooth contribution

and expose singularities when they react, i.e., precipitate nonzero

contribution into the singular term.

This is easily achieved by the convolution of f/(x) with a simple test
function @(x) defined in (2.1.0), where ¢ > 0 is taken to be a very small
number. Then

+€
<g’, P> = f g’ - -dx = O(e), (2.21)

-€
i.e, it is very small due to the fact that g'(x) and @(x) are both bounded
functions and the interval of integration is shrinking to zero. On the other
hand the singular contribution Hm - @¢(x — xm) is independent of the size of
the supp(®(x)), i.e., it does not change at all when [-¢, +e] — ({0})) and is
only subject to the size of the jump of the function f(x) at the point xp,
namely Hm. Obviously, it is a desired dependency when one is only
interested in finding jumps and their values. Henceforth functions of the
type @e{x) shall be called thin masks, for they are built on a very narrow
support. The above strategy presumably solves the problem of locating
simple discontinuities of the arbitrary piecewise smooth function of one
variable f(x). So, are we ready to write the computer program to implement
such an algorithm? A little reflection on the meaning of (2.20) yields a

negative answer! Observe that (2.20) decomposition deals with the f‘(x), i.e.,
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the derivative of f(x) which does not exist in the usual sense. In fact, f’(x)
is a generalized derivative of f(x). It is therefore a functional on the
space 3G, and generally has no point values which could be inputted into the
computer memory. Consequently, <f’(x), @(x)> of (2.20) appears to be

noncomputable, rendering all considerations above worthless.

By good fortune, the foregoing construction is rescued via
transferring differentiation of f(x) in (2.20) to the differentiating of the test
function (x), since according to (2.2) the following identity holds even for

generalized derivatives:

<f(x), Pe(x)> = -<f(x), Pe(x)> . (2.22)

It is clear now that the computer algorithm can be designed along the lines
suggested previously in the discussion of (2.20) by means of the thin mask
©e. Incidentally, in contrest with f/(x), @c(x) is an ordinary function, whose

point values are easily digested by the computer.

Ignoring such “minor matters” as the presence of noise, digital
sampling and what it can do to the signal, we just have resolved the problem
of detecting discontinuities in one-dimensional waveforms, guided by the
exact knowledge of the contribution made by point singularity to the local

integration with a smooth mask.

But how about singularities of functions of several variables—is it
possible to establish a decomposition formula which is a generalization of
(2.20)? If the answer is positive, then we will have a constructive
understanding of how to interact with singularities, which will lead the way

to the computational analysis of existing edge detectors as well as the
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design and analysis of totally new algorithms.

The starting point is to define the “smoothest” kind of discontinuous
functions of several variables. It is formulated in line with Kolmogorov’s
notion of a set of points with normal jump (section 1.2.2) as well sas

Volpert’s essential boundary in Theorem 1.5.

Definition 2.4.

Function f(x;, X, ..., Xn) € BV(Q) is said to be a smooth function
with an essential singularity, if there exists a set I'(f), which is
coverable by a finite number of essential boundaries of sets with finite
perimeters (see Definition 1.6), such that f(x;, x5, ..., Xn) is Coo everywhere
except for the set I'(f), which comprises its essential boundary or set of
Jumps. If T(f) forms a surface L in £, then we write [f} = lAlf_ for the
jump defined in (1.9.1) of the f(X) across L in the direction of outward

normal, as in the discussion of [Vol.] in (1.2.2).

This lengthy definition is a fancy way to say that f(X) is piecewise
smooth except for some surface I'(f), across which it has a jump
discontinuity. However, the rigorous definition is required to be able to
consider very complicated and nonsmooth boundaries, still treatable as long
as they consist of jump points, modulo set of “length” zero, with their
respective unique normals in the sense defined previously in Chapter 1.
And [f]_ is a jump function defined only on the boundary L and is equal at
each point x, € L to the difference between the outside and the inside

one-sided limits of the function f(X) at x, on the surface L.

In order to avoid possible confusion, we shall distinguish between a

generalized derivative and its regular component.
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Definition 2.5.

For any f(X) € ¥p, symbol a—gf—) will denote a generalized derivative
of f(X) as in (2.2). And symbol a_gg_xi) shall be the regular part of %%—) as
in (2.20).

The ramifications of the following simple theorem to the Numerical
Analysis of Singularities are of such magnitude that I have decided to call

it here the Fundamental Theorem of Edge Detection or FTED. The reader
should judge if it is so.

The proof is based on the application of Green’s theorem to
generalized partial differentiation, which is routinely used in any text on
the Theory of Generalized Functions. Therefore, I shall not attribute it to

any author.

Theorem 2.2 (Fundamental Theorem of Edge Detection).

Let f(X) € BV(£2) be a smooth function with essential singularity
comprised by the LKJ L¢ of essential boundaries Ly C 2 C R". And let ny be
an outward unit normal to L, and {xi} be an orthnormal basis of R". Then

we may write

af _ of L
= }; n®x -6l -8 - (2.23)
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Proof:

(Fig. 2.3)

xI

Without loss of generality let us depict the surface boundary in Figure 2.3
by the closed surface L. If the essential boundary has a boundary of its
own, the derivation will be still valid since [f],  will simply vanish on the

complement of Ly to any boundaryless surface.

Let ©(X;, Xo, ..., Xn) € Jn be an arbitrary test function. Then by (2.2)

of L\ — _(r. 2Py _ _ .9 . .
% o)y = —(f, 52) = /f S 0% dxp - - dx
Q
_ 9% 4% .9 4%

([ e[ 2e)
Q/2 2z

by the application of Green’s theorem (1.2.8)

T
Q\L Ly

+/a§}%.¢.d§_/f~ga~cos(n[xi)d8,
L Ly

of o dX + f f+ . o . cos(n,"x;) d¢ +



71

then collecting similar terms we get
=/aa—£-<p-dxl'dx2‘...-dxn+/(f+—-f‘)~<ponkoxide,
Q Ly

where d€ is L’s surface differential, and with the (2.10) definition of a

simple layer it is rewritten
g}% @) + <lfl, - n @ x - B, o> .
Next we sum inner products,
= %% + noox - If}, -6, (a).

Hence, using the definition of equality of generalized functions and

observing that (X) was an arbitrary test function, we conclude that

of o _ of
af—-‘a;‘i"‘ﬂk.xi{f]LK‘sLK
which yields the statement of Theorem (2.23) upon induction argument on

the number of disjoint boundaries L's. Q.E.D.

Remark:

Identity (2.23) states the equality of functionals, even though 53;1;— is
i

just a usual function, i.e., a regular functional,

The fundamental point of Theorem 2.2 is in asserting that essential

singularities of the discontinuous function of several variables act as
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simple layers concentrated on the essential boundary, with the density
equal to the size of the jump across the discontinuity. Theorem 2.2 is a
Fundamental Theorem of Edge Detection because it fully describes the
contribution made by the edge-like singularity of the most general nature

into the inner product with an arbitrary smooth mask.

The consequences of (2.23) are so far-reaching that not only we will
be able, for the first time, to make intelligent statements about existing
edge, line, corner, zero-crossings, motion, etc. detectors, but also totally new
concepts will flow out of its application. In fact, it will become clear that
this new branch of Numerical Analysis, which I call Numerical Analysis of
Singularities, awaits to be unfolded. Its methods will be of a mathematical
nature and not the astrology of “edge detection industry” of the past 30

years.

§2.4. Direction of the generalized gradlent in the neighborhood of

singularity.

Numerous popular edge detection schemes explicitly wuse the
assumption that the direction of the gradient of the image (or smoothed
image) is normal to the direction of the potential edge. For example, in
[Har.] “a pixel is marked as an edge pixel if in the pixel’s immediate area
there is a zero-crossing of the second directional derivative in the direction
of the gradient ...” We shall later return to the “second directional
derivative” part. Our specific purpose here is to exploit the “direction of

the gradient” idea. A similar viewpoint on the direction of the gradient

being normal to the edge’s direction is employed in the so-called Non-
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maximum Suppression scheme in [Can.] with distinctly good experimental
results.

To analyze the local behavior of the direction of the gradient near
and at the essential discontinuity point, we employ Theorem 2.2, FTED.
Note that the gradient does not exist in the regular sense at the
discontinuity sites, so we shall use its generalized counterpart. For the
moment we consider only smooth functions f(X) with essential singularity, as
in Definition 2.4. When such a function is integrated with the sliding mask

©(X), the result is expressible in terms of the convolution f(X) * ©(X),

where

f(X) * p(X) = / f(y) - X — ¥) dy (2.24)
Q

and X, ¥ are n-dimensional vector arguments.

Lemma 2.2.1.

Suppose f(x,, X3 .., Xn) to be a smooth function with essential
singularity L, of zero curvature, and let ©(x,, X5 ..., Xn) € ¥on. If supp((X))

is small or if the regular part (see Definition 2.5) of the generalized

gradient

of of of
ergf&_) = [5;,, ‘a—_)(2’ vy 5;';}

is negligent, then the direction of the gradient V(f(X) * ©(X)) (X,) at xg € L

is normal to the essential boundary L.
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[f]
Ye’lx)

(Fig. 2.4)
Without loss of generality, assume that (X) is a familiar cup-shaped @ (X)
of (2.1.0) as in Figure 2.4. The k-th component of the gradient vector at
X, € L is equal to

ai (FX) * p(X)) (Xy) - (2.25)
Xy

Using the formula of differentiation of the convolution, we obtain

__(afx)
== [Bxk * tp(i)] (Xo) .
Then using the formula (2.23) of FTED we obtain the following

_ / ag}((i) . B 4% + / cos(@ %) - If] - (%) - d& .  (2.25.1)
k

Q L

Where to simplify the notation @(X) is introduced and is equal to (X — Xp),

i.e., ©(X) shifted to the point X, on top of the essential boundary L. The
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hypothesis of the Lemma implies that either supp(@(x)) or max lagf)
k

is

small; hence

ME) = oy 4w _ MERE) -
/——a-;:-wp(x)dx— / ak - (%) dx
Q supp(p(X))=B¢
< Max 33“") / @ (%) d% =~ O. (2.26)
I(
Be

Then (2.25) and (2.26) lead to

é—a—- (f x g) (xo) = / cos(fl x,) - [f] - §(X) de.
Xy
L

Since L has zero curvature, cos (1 X,) = const along the portion of the

boundary L within supp() = B¢. So we write
= cos(@l x) - / [f] - (%) de , (2.27)

which yields an expression for the gradient vector at X, upon factoring out

the common constant f [f] - @(X) d€ and writing
grad(f * ) (x0) = [ / [f] - ¢ X dE] {cos (\ x,), cos(@ Xg), ... cos(ﬁhxn)]. (2.28)

But (n e X;,, n @ X,, ..., 1 @ X,) {3 a unit vector normal to the boundary L at
X9, Where {X} is the orthonormal basis of R". Thus grad (f * ¢) is normal to
the essential boundary at X, which completes proof of the Lemma 2.2.1.

Q.E.D.
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Remark 1:

As a consequence of (2.28) we may obtain the formula for the
gradient’s length Igrad (f * g)l at X,. l.e., the value of the derivative of f %

g in the gradient direction at X, is

n

( / [f] - 3 def* (D cos® @x)] (229
L

f

lgrad (f = g) (x)!
i=1

== / [f1 - o(x)de .

Remark 2:

Conversely, if the magnitude of the regular part of the generalized

derivative of namely -a-a}%, is significant, then each component of the
K

ox,’
V(f * g) has to be modified by adding a new term equal to f 88_::{ . @ dX as
in (2.25). Thus, the direction of this gradient vector canBebe arbitrarily
berturbed from the direction of the normal to the edge. By contrast, if
support of the test function B, is lessened in size in such a way that its n-
dimensional volume (i.e., area, if n = 2) is made diminutive but its (n — 1)
dimensional Hausdorff measure (i.e., length, if n = 2) is kept constant, then
the conclusions of Lemma 2.2.1 are still valid even if 58;%-( is large, as is
obviously implied by (2.26). This process of shrinking the support of
©(X) without altering its (n — 1) dimensional measure is an exact analogy to

the “thin masks” defined in §2.3 during the discussion of the strategy for

edge detection in one-dimensional signals.

There is a considerable spectrum of opinions in today’s edge detection
literature as to how big the detector should be. Some researchers reason

that since detection is based on the “differences of averages,” masks with
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wide supports are needed. Others feel that widening the masks will somehow
bring into play effects of nonlocal noise, etc. There is also a recent third
view that information should be derived from the convolutions with
detectors of various widths and then integrated together into the decision
procedure. With regard to the last see, [Wit.] for the development of so

called scale space approach.

While I feel that the ultimate methods of computing singularities are
yet to come, possibly by formulating some specialized free boundary
nonlinear differential or integral equations, perhaps by some clever use of
variational principles, and [ shall formulate a simple variational setting for
an edge detection schema; the analysis and solution estimates of these
equations will come from what is called regularity theory of weak
solutions. We eventually will do away with convolutions, mask detectors,
linear filters, etc., but the linear local analysis developed in this work will
serve as a valuable tool for making theoretical estimates and possibly

accommodating linearization of this future nonlinear framework.

It is therefore clear that the performance analysis of linear detectors

is a worthwhile enterprise.

Here are a few comments on the “proper width” of the edge detector

as seen from the FTED (2.2) and Remark 2 of Lemma 2.2.1.

Intuition of the first group, that the edge detection process is
founded on the “differences of averages,” is exactly right and naturally
corresponds to the notion of generalized differentiation applied to the
discontinuous functions. The principal tool of the distributional approach is
to view the world through the “averaging glass” provided by the space of

smooth functions ¥.. Obviously, all smooth functions ¢ in %, have some
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finite “width,” i.e., n-dimensional Lebesgue measure A(supp (¢)) < 0. Then
the FTED tells that to get a meaningful contribution from jump singularity,
the averaging process is not enocugh—it should be followed by
differentiation, thus resulting in the above “differences of averages.”
Nonetheless, the width of the support of the test function may be
arbitrarily small (but not zero) as long as the singularity lies within. This
brings the point of the second group, mentioned above. Actually, their
premise is fully substantiated by Remark 2 of Lemma 2.2.1. The
contribution of the singularity in (2.25) can be hopelessiy smeared by the
large value of / ETaka - ¢ - dX resulting from the interaction of the test
function with “nonsingular” parts of the function f(X) within B,, possibly
incorporating the contribution of the noise process in the neighborhood Be.
Observe that even though a noise comprises a singular function, it is not at

all the same kind of animal as an _essential singularity of Definition 2.4.

The noise singularities, put together, do not constitute a
surface distribution; therein lies the essence of the distinction
between the “edge” and the noise.

To this end, the use of as narrow as possible masks is strongly
indicated. Of course, in the digital imaging setting, the minimal width is
determined by the sampling resolution of the image as well as by the signal-

to-noise ratios (see [Can.] with regard to the noise estimation for edge
detectors).

At this time I shall withhold any comments as to the scale space

approach of [Vit.l.

We now establish the direction of the generalized gradient for the

edge of nonzero curvature, i.e., the nonstraight edge within the support of
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the detecting mask. We shall see that more assumptions about f(X) and its
behavior on the boundary have to be made in order to get to the
conclusions similar to that of Lemma 2.2.1. In the next Lemma 2.2.2 our
objective is to evaluate the direction of the gradient vector at the corner

point of the edge of Figure 2.5:

Lemma 2.2.2.

Let F(X) and ¢(X) satisfy the same conditions as in Lemma 2.2.1 and
let essential singularity L be a “corner” o of Figure 2.5 and X; be its

vertex. Then V(f(X) * ©(X)) (X,) is in the direction of the bisector of the

corner’s angle a.

(Fig. 2.5)

Proof':

We shall use the fact that the gradient vector shows the direction in

which the function is changing the fastest. In order to prove Lemma 2.2.2

we will compute the directional derivative % (f * ) (X,) in the arbitrary

direction £ and then determine that it is maximal when it is bisecting o, in
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half, for this will imply the statement of Lemma 2.2.2.

Let us choose the direction £ as depicted in Figure 2.6, where @, and
n, are normals to L, and L, correspondingly, and ¢, = nTZ, i=1,2. L, and

L, are segments of the boundary within supp(¢(X)) = Be.

By the FTED and (2.23)

N\ 3g 14

A =R om) = / AR . px) ax + / cos(ie) - (%) d€ . (2.30)
Be L

Recall from the proof of Lemma 2.2.1 that under the above hypothesis on

f(X) and ©(X) we have f g—g - tp dX =~ 0, as was demonstrated by (2.26).
Be
If one ignores the terms which are small, we can continue (2.30) as

follows:

2
- Z / cos(@8) - If] @(X)dE .

i=1 Li

Now suppose [f] is the same on L, and L,, and @(X) is circulary and

symmetric, then

= (cos(p,) + cos(p,)) - / If] ¢(x)d€ .
L,
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Note that ¢, = ®* — (¢ + ¢), then continue (2.30) as

H

(cos(p,) — cos(ac + ®,)) ~f[f] - p(X) de
L

= C . (cos(p,) — cos(a + @) .

Let ¢; be a parameter in the above equation. Then differentiating with

respect to this parameter gives
A’ = 2 sgin (/2) - cos(a/2 + @) = 0, (2.31)

Then since a £ 0, /2 + ¢, = 7/2, from Figure 2.6 we may conclude that
€ bisects angle o in half if A is to reach extremum among all possible
directions of differentiation. A simple differentiation of (2.31) shows that
in fact A” < 0; therefore we have maximum. This completes the proof of

Lemma 2.2.2. Q.E.D.

Remark:

The statement of Lemma 2.2.2 holds true only under additional
assumptions of the symmetric behavior of the jump function [f(X)] with
respect to the sides L, and L, of the “corner” singularity in the vicinity of
its vertex Xy, as well as the circularly symmetric character of the detecting
test function @(X). Observe that if [f] behaves differently on the branches
L, and L,, say, the discontinuity jump on L, is constant and is smaller than
the constant jump across L,, then similarly to the proof given above, it is

shown that the direction of the gradient at X, will have a strong bias
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towards normal n, of L,.

Moreover, we may ask the question of how gradient vector behaves
if the center of the mask is shifted along L, in the neighborhood of the
vertex X;. Supposing again symmetric conduct of [f], it is easy to verify
that as X; is moved along L, towards the vertex and crosses it, the direction
of the gradient at X, continuously rotates from the direction of the normal
n,, to the direction of the normal n;. Thus we see that Lemmas 2.2.1 and
2.2.2 are merely referring to the limiting cases when either only one L, is
within supp((X)), or the vertex of the L/’s coincides with the center of the

supp(e(X)).

Finally, an instance of the boundary of constant, nonxzero curvature

should be considered.

Lemma 2.2.3.

Under the assumptions of Lemma 2.2.2, let L locally be a circular

essential boundary and X; € L. Then V(f(X) * ©(X))X,) is normal to the arc

L at Xg;.



Proof:

(Fig. 2.7)

Let us choose the coordinate system in such a way that the origin lies in
the center of curvature O of the portion of L within supp(¢(X)). (It can be
done since L is locally a circular arc), and the y-axis contains X, denoted by

P on Figure 2.7.

Let r be the local radius of L and @ its polar angle. Then L is locally

given in parametric form

X =r . cos(8), y =r - sin(9),

and its unit normal 1 is given by the formula

F=- & (osd), sin@) . (2.32)
&, 9]

By the FTED (2.23) and discarding the regular contributions accordingly

with our assumptions we have

V(ER) * pRNFo) = / ne - If] - @(X) - dg, / ny, - [f] - (X) - e}, (2.33)
L
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where n = (nx, ny). We replace the line integrals in (2.33) by the definite

integrals with respect to the (r, 8) parameters and apply (2.32) to obtain

8, 8,
=r - [/ cos(9) - [f] - o(X) - do, / sin(@) - [f] - ©(X) - d9] .
8o 8o

where 0, and 0, are as on Fig. 2.7. Because of the symmetry assumptions on
©(X) and [f] and the chosen set-up for the coordinate system and in view of
the fact that cos(f) will change its sign across the point P (Fig. 2.7), it

follows that cos(8) - [f] - ©(X) is an odd function along the arc APB. Thus

we may write

0,
/ cos(@) - [f] - p(X) - d§ = 0. (2.34)
8, ’

Substituting this estimate into (2.33) we get

V(X)) * o(X)) Xo) = (0, C), (2.35)
6,

where constant C = r f sin(@) - [f] - @(X) - d0, which is not zero since
0

(s]
sin(@) is even across point P.

But (2.35) implies that the examined gradient vector is in the
direction of the y-axis which is normal to the arc L at X; by its very

construction. Hence V(f(X) * ¢(X)) (X,) is normal to L. Q.E.D.
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Remark:

Lemma 2.2.3 may be extended to more general curves as long as local

symmetries within supp(p) of the foregoing discussion are preserved.

Finally, a few comments on the usefulness of the above analysis and

a brief summary of what we have learned.

Edge detection schemes of today are bu}ilt to measure certain
quantities in the direction provided by the estimated gradient of the image.
Based on these measurements, higher-order procedures are devised to
accept the point as belonging to the edge or to reject it. Clearly, such a
decision rests on the premise that the gradient is normal to the potential
edge. No analysis to substantiate such a claim has ever been given. The
purpose of this paragraph is to fill the above-mentioned gap and to
demonstrate the analytical power of the quite innocent-looking FTED.
Meanwhile, an insight into the nature of the dependency of the convolution
product’s behavior in the vicinity of jump singularity on the geometry of
this singularity, was acquired. We have learned that intuition can be very
~ misleading in neighborhoods with large curvatures (of the edge) or when the
boundary itself is singular, e.g., corners. We are now in a position to state
and prove the main generic facts about various local feature detectors

commonly employed in the industrial applications of today.

§2.5. First look at how to detect edges and why existing schemes succeed

or fail.

This paragraph is not intended to be a review of the existing edge

detecting techniques. An excellent survey may be found in [Bli.]. Rather,
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we would like to take a look at what actually has been gained by the
introduction of the Fundamental Theorem of Edge Detection. Of course we
have seen how wuseful FTED is in analyzing the local structure of
convolution products when one of the integrands has jump singularities.
Now we shall relate the newly acquired machinery to the actual process of
detecting singularities in images. It should be clear that whenever the word
‘image’ is invoked, it is not confined to the domain of BV({2) functions of
two variables. Obtaining mathematical generality is not our goal either.
However, applications demand a much broader concept of the ‘image.
Specifically, analysis of moving imagery demands consideration of its three-
dimensional nature. Dimension is further increased when stereo motion

sequences are considered. Color spectrum contributes to additional

dimensionality.

The most important consequence of the FTED is that the

contribution of the singularity to the inner product with a smooth function

is

<f, g>

sing

/ cos(m x;) - [f] - G(X) - d¢, (2.36)
L

3G(E) _
where % g(x).

Let us assume that G(X) is circularly symmetric, whose center X, is
right on top of the singularity L. Then one way to increase the singular
contribution in (2.36) is to rotate the direction of differentiation so that
<f, g>4,, reaches its maximum. In order to see the effect of rotation,

assume the portion of the boundary within supp(G(X)) to be a straight

segment. Then
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<f, g>,ng = cos(n x,) - / fl - G&x) - d¢,
L

and according to (2.29)
= cos (' x) - |grad (f * G) (%3)] . (2.37)

Clearly the magnitude of the gradient is independent of the rotation angle
and cos(fi x) is maximal when the direction of differentiation coincides with
the normal n at X;. Then the grand strategy is to maximize the
contribution (2.37) of the jump singularity by rotating the direction of
differentiation until it points exactly parallel to the normal of the edge. If
this contribution is “significant,” X is declared to be the edge point. The
trouble starts with deciding on the magnitude of the threshold—separating
significant contributions from the rest of the measurements. To illustrate

the difficulty we next consider
fe (x, ¥) = Me - \x® + ¥,

where M. is some constant.

Next compute

[V (f¢ * G)| (%0, Yo} = M¢ - // G . dxdy, (2.38)

Be
where B, is a circular support of G. This suggests that by making M,
arbitrarily large, IV(f¢ * G)| can be made to exceed any fized threshold,
since ff G dxdy is bounded. Yet f(x, y) is a smooth function lacking any

I3
singularities. The “narrow masks” strategy is employed here to overcome
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the interference with “smooth noise.”

The circularly supported detector G is replaced by a test function G

with an elongated support supp(G) = B(¢, N) = {x, ¥y | Ixl < ¢, Iyl < N}, and
€ &« N, so that €li_l:n0 / / G dxdy = 0. By choosing sufficiently small
¢, the regular contribu}tai(;;l I\{)2.38) is rendered harmless. However, singular
contribution, if it is present, is still measurable by differentiating the

elongated mask in the direction of its large axis. Figure 2.8 illustrates this

process for two rotated positions of the mask.

(Fig. 2.8)

If the long axis of G is aligned with the singular boundary L as on

Fig. 2.8,

(f, & Go) = IV(f * Go)l Ro)

and from the shape of B(e, N) we get

= [fl1 - G, - d€¢ + O(e) , (2.39)
{-N, NI
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where [-N, N] denotes the segment of the singular boundary within supp(G,).

While for G, we have
(6 52 G = / i, ed - (f]l -G, - de + O, (2.40)
ny
L,

where n, is a unit normal to the larger axis of G, and L, is a segment of L

within supp (G,).

We next observe that if ¢ is small, the line integral in (2.40) yields
insignificant value since both the length of L, and cos(fi, fi) are small. But
the line integral in (2.39) depends only on the length 2N of the larger axis,

i.e., is independent of €.

From (2.39) and (2.40) it also follows that we could measure either the
value of the directed derivative or compute the gradient’s magnitude. If
the mask is perfectly aligned (as G, on Fig. 2.8), both measurements vield
the same value. On the other hand, different values are obtained for the
rest of the rotations. They differ by the presence of the cos (fi, i) term in
(2.40), since |V(f * G,;)| (X,) depends only on the length of L,. Therefore,
the directional derivative measurement reveals some extra

information about the relative location of the singularity.

The above strategy seems to rescue the thresholding technique from
the “smooth noise.” There is a second reason, however, why it is not a

practical solution.

Again, assuming the simplest case of straight edge, we see that the

singular contribution is proportional to / [f1 - d€. According to (1.1) of the
L

edge formation process, the size of the jump [f] is determined by the

reflectivity function and by the luminance of the scene. Hence, under the
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single threshold, measurements from darker regions may be rejected
even if the jump singularity is residing there. We shall return to this

gquestion later in the description of the “simple edge detector.”

Now we take a brief look at several popular edge detectors,

introduced in §2.3.

Roberts’ masks R, and R, compute two-point finite differences in two
mutually perpendicular directim;s given by the diagonals of the mask.
Therefore J—m is a digital approximation of the magnitude of the
gradient. Assuming that the imaging process has introduced some smoothing
of the original picture, we may expect m to be an approximation to
f [f] o(X) - dX, where L. is a segment of the edge within the support of the
l‘h‘fv',moa)thing filter” of the imaging process. This detector is known to be
useful for noise-free images, including “smooth noise.” Thus is not
surprising, since the above integral estimate is valid. However, once the
smoothing assumption is not sound, e.g., when white noise is introduced, the
previous integral estimate is not valid. Not surprisingly, experiments with

the Roberts detector show it to be worthless under noigy conditions.

Analysis of the Sobel’'s and “compass gradient” detectors of §2.3
proceeds in analogous fashion. We observe that Sobel’s vertical mask is a

3 X 3 restriction of the central difference operator Ay applied to the

-~

Svertical = 0 X2 4 X2 0 ’

where x;, are any numbers, and S,.,;ontal iS its rotated version. Thus Sobel’s
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detection is equivalent to convolving with axis symmetric masks §vemca‘ and
§,,O,,-zom, and then differentiating in the horizontal and vertical directions
correspondingly. Hence, it is just an approximation of generalized
differentiation. Similarly the “compass gradient” detector is a “poor man’s”

version of the rotating test function detector described previously.

In both cases the support of approximation is a 3 X 3 square, making

it susceptible to white noise.

The reduction of the noise sensitivity is usually achieved by
widening the mask’s support (see differences of averages in [Ros. Kak.]).
Again, nothing new and exciting here, just an ad hoc approximation of the

generalized differentiation.

In sum, the simple detecting algorithm proposed here has all
advantages of the well known schemas, while it does not inherit many of

their shortcomings. For it is formulated on the besis of sclid analysis

provided by the FTED.

At this point the reader may disappointedly ask if this is the
ultimate singularity detection theory? And how about the promise of a
totally mew beginning with such a glorious name—Numerical Analysis of
Singularities. Of course, the FTED is a very useful tool, as was
demonstrated in numerous calculations and lemmas. It helps to explicate
many existing algorithms with mathematical rigor and guides the design of a
much cleaner version. Yes, the proposed scheme is mathematically sound.
But frankly, it is not operationally much different from what is presently
the most successful edge detection algorithm of [Can.], derived without any
use of generalized calculus. In fact, if this were all we were potentially

able to build, the author would not bother with taking so many mathematical
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precautions. And definitely, he would not prophesize the unfolding of any

new field!

And what about all the other kinds of detectors? We cannot ignore
such popular schemes as zero-crossings, line detectors, spot detectors,
corner detectors, motion detectors, etc. [ can almost hear the reader’s

voice,—“Oh no, not FTED again!”’

§2.6. Marr's zero-crossings of Laplacian and Laplacian line detection.

Much has been written on the “Theory of edge detection” of D. Marr
[Mar.]l. The discussion of its merits as a theory of human vision is beyond
the modest task of the author to evaluate Marr’s zero-crossings
performance as a singularity detector. This scheme is a relatively recent

approach, compared to the schemes already considered.

The original idea in [Ma. Hi.l] was “that sudden intensity change will
give rise to a peak or trough in the first derivative or, equivalently, to a
zero-crossing in the second derivative...” While it is never defined what
exactly is meant by the “sudden intensity change” and what kind of “first

derivative” the authors had in mind, the “second derivative” is chosen to

2 2
be the Laplacian V2 = & 4 2,
ox y

Actually, the scheme works by finding zeros of V¥G(x, y) * I(x, y)),
where G(x, y) is a two-dimensional Gaussian and I(x, y) is an image function.

In what follows this expression will be referred to as Marr’s detector.

We immediately observe the explicit presence of the integration with
the smooth function in Marr’s detector. Of course, G(x, y) & %,, since it

does not vanish outside any finite support. However G(x, y) =
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C-exp(-(x* 4+ y?/26% decreases at infinity, together with all its
derivatives, faster than any power of (x> + y?*/?. Then G(x, y) belongs to
the space of so called ‘slow growth’ functions. This spaces occupies the
role almost identical to ¥, in previous considerations. This means that
generalized functions of slow growth, or ‘tempered distributions,’” are
definable in the way analogous to 3}. Throughout this work, A will denote

the Laplacian operator. Consequently, Marr’s detector is written as

A (f(X) * G(X)) (2.41)

It follows that Marr’s detector (2.41) is just a linear functional for each
shift of the G(X), i.e., a tempered distribution. Since in practice only
functions with bounded support are used, without loss of generality we may
assume G(X) to be one of our familiar cup-shaped test functions. But then
(2.41) is a second-order differential operator applied to the distribution in
364

Since we want to evaluate behavior of the Marr’s detector in the
vicinity of singularities, it is crucial to be able to decompose (2.41) in such
a way that the singular contribution of f(X) may be estimated. Clearly, we
want to carry on with Laplacian what was already performed with the first
order partial derivatives in (2.23) of FTED. The brute force method would

proceed by using the rule of differentiating the convolution

A(f(X)) * G(X)) = (A(f(X) * G(X)) , (2.42)

where A is generalized Laplacian, i.e.



3=§_+i_=§_[é5_]+_'25__8_] (2.43)

in the sense of Definition 2.5.

Nevt wa may attem

n
LNTAY W <@ Aty

(2.43) and compute individual 53}?

potential problem—we have no rules yet to compute

xJ"

2 (f, - 6, - (2.44)

What is especially notable about (2.44) is thai rules are needed for
generalized differentiation of the surface distribution, multiplied by the
density function defined only on this surface. The elements of the
distribution theory introduced so far have nothing in their arsenal to
compute (2.44). Actually, the classical distribution theory does not offer
any remedy in (2.44). Eventually we will have to come back to (2.44) and
solve it. However in the case of A we can bypass (2.44) and compute the

generalized Laplacian without resorting to the brute force method.

Lemma 2.6.1.

Let both f(X) € BV(2) and the regular part éa-)% € BV(Q) be piecewise
i

smooth functions with essential boundaries L, and My, correspondingly, and

with the rest of the notation being as in FTED (2.2). Then one has

At = AF + 3 [g?f:L o+ D 2, 6, (2.45)
i i K
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where [g;f;L is a size of the jump of the f’s derivative g——f taken in the
i i

direction of the outer normal to M, on M, and {fl,, as in the previous

convention.

Proof':
We shall apply a well known Green’s identity for the Laplacian

operator (see [Mars. Tr.]), which states that

_ . d% = u __ , 9v] .

[.../(vAu udv) - dX% / ( n u an] dae , (2.46)
(D) L

where X = (Xy, Xy, ..., Xn), closed set D C R", and L is a boundary of 9.

Let us now suppose that ©(X) € %, and f(X) = 0 for x € R/9. We
may further suppose that f‘[" s £ [grt:]q_:t are correspondingly limits of outside

and inside boundary values of f(X) and g—:; on L (i.e., traces of f and [af} on

L).

We now deduce with help of Green’s identity (2.46)

// f(X) - Ap(X) - dX = // Af(X) - o(X) - dx +

&) @) (2.47)

+/f[ -8<gg{)~d8 —/[gﬁ]:-w(i)-de
L

L

And similarly if we set f(X) = 0 for x € 9, then we deduce

// fX) - Ap(X) - dX = /.../Af(f) - o(X) - dX —

RN\D RMD (2.48)

3p(x) Nt . x
—/f+ d8+/[§E]L-¢(x)—d€
L
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Notice different signs for line integrals in (2.47) and (2.48) which result from
taking the same direction of the normal in two opposite applications of
(2.46). Adding (2.47) and (2.48) gives us for f(X) with nonzero values inside

and outside 9,

/...‘/'f(‘}'c') A PpRX) - dX = // Af(X) - o(X) - dX —
Rn Rn

~ / w — o HE f (&) - &)) - o - ae .
L L

Using our notation for jumps gives

=/.../Af(§) < e(X) - dX —
Rn

(2.49)
—/[f}L-a‘gf)-de +/[§§l'<ﬁ(§)-de.
L L
In view of the identity
<Af, o> = <f, Ap> (2.50)

and definition formula (2.14) of double layer, (2.49) is rewritten as follows:
<Af, o> = <A, f, o> + <[% -8, <p> + (G% (fl. - &), <P> . (2.51)

Observe that the sign in front of 58;, (If], - 6) is + because of the (-1)

multiplier in the (2.15) definition of k-th multilayer (k = 1 for double

layer).
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In light of the definition of equality of generalized functions and

observing that ©(X) is an arbitrary test function in (2.51) we have
Af — of! . 9 .
Af = AF + [Bn]L 5.+ 2arl - 60 . (2.52)

Now, we combine boundaries, across which the jump of the normal derivative
{g—:—;L is not identically zero, into the set of essential boundaries M,
Simiiarly, for the set Ly of essential boundaries across which [f], %= 0.
Observe that some boundaries L will fall in both sets, if both f(x) and its
normal derivative have a nonzero jump across L. Also note that it is
possible to have a boundary across which only one of the quantities above
undergoes a jump, e.g., the function f(X) may be essentially discontinuous on
the boundary L but its normal derivative across L is not in the sense that
[g—f‘ = 0. This substantiates remarks made in §2.1 on the possibility of

quite complicated local structure of singularities.

Finally, using the induction argument on the number of boundaries M,

and L; and (2.52), we arrive at the statement (2.45) of Lemma 2.6.1. Q.E.D.

Remark:

When repeating induction in (2.52) one can get the mistaken
impression that summing up regular Af should result in different regular
part of (2.45). It is not so if one follows the step of the proof above where
domain R" is subdivided each time in two disjoint areas. Clearly, the proof
of Lemma 2.6.1 is still valid if boundaries intersect each other. The
essential meaning of the above lemma and (2.45) is stressed below. The

Generalized Laplacian of f(X) is uniquely decomposable into the sum of



three following components:

(i) The regular part, which is just a regular function.

(ii) The sum of single layers with density equal to the variable
size of the jump of normal derivative of f(X) across certain rectifiable

curves.,

(iii) The sum of double layers with density equal to the variable size

of the jump of f(X) across some rectifiable curves.

Looking at formula (2.45), we may easily analyze the performance of

the Marr’s zero-crossing detector.

Corollary 2.6.1 (Genesis of Marr’s detector)

Let f(X) be a smooth function with essential singular boundary L and
let ©(X) € %, be a circularly symmetric test function. Then (2.45) yields

(i) If L is of zero curvature and X, € L, then

A(f(X) * p(X)) (Xg) = 0.

if either supp(¢(X)) or regular part Af(X) is negligently small, and {g-:i = 0.

(i) If L is a “corner” and X; is its vertex, then under similar

assumptions as in (i) one has
A(f(X) x> (X)) (Xp) = 0

(iii) Under the assumptions of (i), and @4(X) € 3, assumed to be just

axis symmetric,
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where @n(X) is ©(X) rotated by angle o as on Fig. 2.9. l.e. the zero-

crossing condition alone does not define normal direction of the

singularity.

Proof:

(i) By (2.45) it follows that (see Fig. 2.4)

Alf * @) (Ro) = f Af - o - d% +/[§{l - p - de —/[ﬂL.gin’.de
supp(p)=Be¢ L L

For small enough B, or vanishing regular Af we have

— 3] . » . a0 — . %
_ / [an] o - de f 1 - 32 . ae.
L L

The identity [g{l = 0 implies that

- —fin.2%.
= [ [f1 - 55 - de. (2.53)
L

However, ©(X) is a circularly symmetric test function, whose center X; is on

[l

the hyperplane L, since L is of zero curvature. Thus we may write %EL
0 and so the result follows from (2.53)

A(f = o) (Xp) = 0 Q.E.D.

Remark:

To satisfy the zero-crossing condition of Marr’s detection procedure,
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a horde of extra conditions had to be imposed on the function f(X). This is
in spite of the simplicity of the singularity L. Armed with an exact
estimate (2.45) of the singular contribution into the Laplacian of convolution
product, we clearly see how poorly the zero-crossing condition of Marr’s
characterizes generic jump singularity. In particular, it is natural to expect
that {gg‘ # 0 for singularities corresponding to occluding contours in
images, as seen on Fig. 1.2. And oniy cast shadows have vanishing size of
the jump of the normal derivative across an edge as on Fig. 1.3. Thus the
zero-crossing detector will entirely miss any nontrivial occluding boundaries,
which are, of course, the most useful kind of singularities, corresponding to
the singularities of the visual mapping in §1.1.3.

(ii) To demonstrate zero-crossing property for the “corner” of Fig. 2.5
we can carry the computation (2.53) on each hyperplane of the corner and

deduce the required identity by observing that g‘—ﬁ[ = 0 on each side L,

since X, is the center of symmetry of ©(X). Q.E.D.
"1

X
R1x)

gy

X

Bo

(Fig. 2.9)

(iii) Let 9n(X) be the elongated test function, rotated by some angle o

with respect to the singular boundary L as on Fig. 2.9.

The proceeding in (2.53) leads to
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A * o) (%) — / ] - %‘g . de . (2.53.1)
L
We shall show that
9O plex. -v) — .9 -
e p(-x, -y) ™ olx, y), 2.54)

where o is an arbitrary direction of differentiation on Fig. 2.9.

Let x = r - cos(8), y = r - sin 0, then

2 ) . 28 - . %
S = cos(a"x) - 3 + cos(a"y) 3y (2.55)
We also have
o 9 _ sin(f) 3¢
e = cos(9) - 31 =T ' 30 (2.56)
o . _dp cos(@) d¢
5y = sin(8) 3r + = 3 .57
Thus we obtain from (2.56) and (2.57)
dp _ _9%®
5)—{ (l‘, 9 + 7") = ax (r; 9)’ (2-58)

since %‘; (r, 8 + ) = %—? (r, 8) by the symmetry of @(X) with respect to the

origin. Similarly, we get

Jp _ 9
§§(r, 0 + 7 = v (r, 8) . (2.59)
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Substituting (2.58) and (2.59) into (2.55) we find
9¢ ) = 9P
3o (r, 8 + 7 = 3o (r, ),
which can be rewritten as (2.54), i.e.,
o _ 9%
é"&' (‘XQ 'Y) = -871 (X, Y) °

Returning to (2.53.1) and replacing the line integral with its definite integral

representation in terms of parameters (r, ) we have
(e ]
_ dp
A(f x o) (X)) = 3n (r, 05) - [f] - dr +

0

o o]

+‘/?a—‘-:(r,60 + 7 -0l - dr,
0

which yields A(f * ¢4) (X;) = 0 upon applying (2.54) and the assumption
that [f] is an even function locally on L with respect to the origin X,.

Q.E.D.

Remark:

Replacing the circularly symmetric mask with the elongated mask in
the Laplacian detector preserves the zero-crossing as long as the stringent
conditions of (iii) are satisfied. Such a replacement is desirable for the
same reason the “thin masks” were introduced in the previous analysis. In
fact, making supp(®(X)) as on Fig. 2.9 greatly relaxes demands on how small

the regular Af should be, for it can make the area of supp(®) arbitrarily
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small without affecting the contributions of singularity. However, the
shrinking support of ¢ does not rescue Marr’s detector from its fundamental
flow brought up in the remark to (i) above. And the important observation
is that contrary to our experience with previous edge detectors, the
elongated =zero-crossing detector alone yields no directional information

about the normal of the edge.

Another useful application of (2.45) is in revealing why the Laplacian
operator has peculiar sensitivity to the pair of jump singularities

positioned alongside of each other, usually designated by the term “lines.”

So far we were occupied with the case of isolated essential boundary
within the support of the test function. However there is no reason why

we cannot extend our analysis and compute interaction of singularities.

So called “lines” in images provide the simplest example of such

interaction.

Corollary 2.6.2 (Genesis of Laplacian line detector)

Let f(X), @(X) be as in Corollary 2.6.1 and L,, L, be two locally e-
congruent essential jump singularities, so that for corresponding points [f‘]-f2
= -[f’]fz, where jumps are taken in the direction provided by the normal n
and Xy is chosen as on Figure 2.10. Then

(i) a—al-/ (f * ) (X;) = 0, where v is arbitrary direction, (2.60)

() A€ * ) (&) = -2 [, - 52 - (2.61)
L

1



(Fig. 2.10)

Proof':
(i) By the FTED and assumption that the regular part of of is small

(or supp(p) is small) we have

8% (f * ) (Xg) = / [f]fl - cos(n"vw) - o) - d& +
L,

+ / [f‘]_,'_‘_2 - cos(n"y) - o(X) - de .
L,

From the symmetries on Fig. 2.10 and a symmetry of the jump conditions we

get as promised
=0 Q.E.D.

Remark:

Relation (i) testifies to the fact that locally parallel pairs of
singularities cannot be detected by the edge detectors based on first-order
generalized differentiation. This includes all the schemas considered so far

with the exception of the Laplacian detectors.
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(ii) The double layer term in (2.45) deceptively appears to be
dependent on the choice of the normal vector n. In fact, it is not—for [f]LK
jump is computed in the direction of chosen ni. So changing the direction of
n will also cause change of the sign [ﬂ'—x‘ In particular, we may take n; and

n, as on Fig. 2.10, which makes
L, =i, = Ifl, = If17?
Proceeding in the same manner as in (2.53) we get

Alf * ) (%) = / ir), - 5 - ag) = 2 f I, - 22 - ae.
1-1 '

Remark:

(2.61) demonstrates that the Laplacian of the convolution product
with a smooth test function aggregates singular contributions of nearby
jump singularities of “line” type, while usual edge detectors annihilate this

contribution. However, the usual Laplacian mask

0 -1 0
-1 4 -
0 -1 0

2 2
is a finite-difference approximation of the [53—5 + 567] operator. If it is
X y
applied to a nonsmoothed image or noisy image the above singular
contribution will be severely perturbed. Corollary 2.6.2 strongly suggests

that the use of directed thin masks in conjunction with the Laplacian
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operator is much more appropriate. Also notice that the width of the mask

©x(X) could be chosen so that Z—‘EL is maximal when the mask and the line
i

are perfectly aligned, so the width of the “line” determines the optimal

width of the detecting mask.

Yet another application of (2.45) is computing second-order
singularities which correspond to the loci of single layers [?%:L Op, in
(2.45). Observe that this is not a new problem. Indeed, we already ;Jroposed
a coarse technique for detection of single layers, called rotating thin masks,
in §2.5. Of course, it was not explicitly referred to as a “single layer
detector,” but a quick look at FTED (2.23), which was the principal
foundation for the scheme, shows that construction of the single layer

detector was attempted.

Simply speaking, the idea of how to detect second-order singularities
is to throw in rotating thin masks in combination with the generalized
Laplacian. One inherent trouble of such a detection scheme is manifested
immediately by (2.45) and (2.61) : second-order singularities, i.e., curves (or
surfaces) across which the derivative of the function undergoes jumps, may

be “aliased” by pairs of first order singularities, i.e., “lines.”

We cannot end this paragraph on Marr’s detector without at least
briefly mentioning other notions basic to the considered zero-crossing
scheme. Realizing that their detector yields no directional information, the
authors of [Ma. Hi.l] introduced the notion of zero-crossing segments and
related to it the notion of the slope of zero-crossing. Again, the intuition
is that direction of the edge is associated with direction of local zero-
crossing segments, which is “proved” to coincide with the direction across

which the slope of this zero-crossing is maximal. While the first of these
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concepts is never made precise, the slope of zero-crossing is just a

directional derivative 8% (A(f % ¢)), where ¢ is any direction of

differentiation. In our notation, the assumption above then may be

rewritten as
8% (Al * ) (X3) < a% (Af * ) (X)) , (2.62)

with X; € L and 1 is normal vector to L. We will show later that when

certain conditions are satisfied, (2.62) is valid.

In order to prove this and other useful local extrema estimates in the
vicinity of the arbitrary singularity, generalization of Taylor’s Theorem

Jor distributions is of the utmost importénce‘

§2.7. Taylor's Theorem for generalized functions.

Definition 2.7.1.

Let 7. be translation operation defined for test functions and for

generalized functions by
(i) Tep(®) = (X + C), p € %n, C € R" (2.63)
(ii) T f(X) for generalized function f(X) € ¥n is given by its action on

the arbitrary test function as follows:
<7 f(X), eXE)> = <f(X), 7¢c PEX)>>
(2.64)

= <f(X), (X — C)> .

Just as for test functions, we shall use notation f(X + C) = 7. {(X),
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remembering, however, that f(X + C) is a functional, not a point-value

function.

Theorem 2.7.1

Let f(X) € %, be an arbitrary generalized function. Then we may

write

1} — il -
(X + H) = f(§)+ZH,§£(§)+% Zﬂi-ﬂja—gfaf;('ﬁ) +
i=1 ' Lim1 o .65
) .

¥f = -
HgHJ‘Hk a‘————'xiaxjaxk (X) 4+ ... -+ Tn(H, X) ’

+
Q]

i,jpk=1

where ||T.(H, 3{')!!/ H" - 0 as IHl - 0 in R", H = (H, H,, ..., Hn) and “bar”

stands for our “usual” generalized differentiation.

Proof:

The proof is remarkably analogous to the proof of Taylor’s formula
for smooth functions. We first introduce a new variable, setting H = t - h,
where t € R and h € R" is a unit vector. We proceed by the rules of

generalized differentiation, translation (2.64), and by the Chain Rule:
4 oz ) %
T <f(X + t - h), X)>

- dit <f(X®), (X — t - h)> . (2.66)

Differentiating the inner product with respect to the parameter we have
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= <f(@). L o= — t .
= <f(X), it (X t - h)>

_ <f(§),-Zn:%(§ — t - h) ‘h;>,
i=1

and transferring differentiation by the integration by parts (2.2)

- <Z af(X) - hy, X — t - h)> .

i=1
Applying Definition 2.64 of translation we obtain
E + of(X +t -h) -
— <Z1 ax, + hy 9(R)).
la:

Observing that ¢©(X) was an arbitrary test function we have

n
d oo _ 5f(% + t- h)
L6® +t-h) = z :h LR (2.67)

i=1

2
On substituting (2.66) into % we find

_d ofx + t- h) 9*f(X + t-h) h)
& orx 4t -4 Z h, _Bxi Z hh, S (2.68)

d i=1 i,j=1

3
Similarly, ;:ld_ts etc. Furthermore,
<f(X + t - h), PX)> = <f(X), (X — t - h)>, (2.69)

and by the Taylor expansion of @(x — t- h) as a smooth function of

parameter t we obtain
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— (t®), i v —t bl ), (2.70)
| = at" oo

where the remainder of the Taylor series is given in its differential form

n+l n+1 _ .
t p(® — ot - h) @2.71)

Tl = ot s,

and 0 < 6 < 1. Then by the definition of translation, similar to (2.66) we

see that (2.69) and (2.70) may continue as

I k
- <Z LT 4 o, o, qp(f)> .
k=0 ot

oo

Substituting (2.67), (2.68) for t = 0 we have

n —_ n 2o
= (f® + a—gg)'t'hiJf%Z%‘é}g'tz'h”h"—F
i=1 ' i,J '

+ .. + Talh - t, ), p@),

where |<Th(h - t, X), lp(§)>l/ t" - 0ast — 0, due to the remainder’s form
(2.71). Finally we observe that @(X) was an arbitrary test function and

(2.65) results. Q.E.D.

Remark:

If f(X) in (2.65) is a surface distribution §_and @(X) is a test function
whose support is concentrated in a small neighborhood of X; € L, then (2.65)
clearly demonstrates that the action of the singularity on a shifted test

function in the vicinity of this singularity depends not only on &, but on
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higher generalized derivatives of §_as well.

It is to be shown that these higher-order generalized derivatives
carry the information about the geometry of singular boundaries of f(X) so

much sought by us.

§2.8 Calculus of tangential derivatives.

The question which lies at the heart of any attgmpt to compute
anything associated with possible essential singularities is: what kind of
analytical tools should we use to establish a firm computational link between
the outer world given by the function values f(X) and the inner world of
the unknown essential singularities formed by the singular behavior of
f(X)*? In other words, singular boundaries lie hidden somewhere in the
extrinsic data obtained by measuﬁng point-values of the function. The only
means available to us is manipulating this extrinsic data in some clever way
so that properties of the intrinsic world, originated by the function’s

singular conduct, may be revealed.

Up to this point we have demonstrated a relation between the first
generalized derivative and the direction of the tangent vector (or normal)
at a point of the singular boundary. And this knowledge was utilized in the
construction of the simple edge detecting scheme of “rotating thin masks.”
In order to establish an intimate relation between the internal geometry of
singular boundaries and the “external tools” of higher-order generalized

differentiation, the so called Calculus of Tangential Derivatives is applied.

The Calculus of Tangential Derivatives was pioneered by M. Miranda
in his 1965 paper [Mir.J. The original purpose of this machinery was an

investigation of the properties of minimal surfaces and related quasi-linear
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elliptic differential equations. Also, it is considered by [Cour. Hilb.] in the
discussion of Characteristic Manifolds of partial differential equations of

the first order.

In order to facilitate the reader’s understanding of its applications to
Numerical Analysis of Singularities in the following paragraphs, and because
of the scatteredness of this material in existing literature, a brief account
of this calculus is given below. '‘The results are due to several authors, as

will be indicated in the following exposition.

Definition 2.8.1.

Let E be a bounded open set in R® and 3E its non-empty boundary.

The distance function d(X) is defined by

d(X) = dist(x, 9E) , (2.68)

where dist (X, JE) is a minimal Euclidean distance between point X; € R" and

the set 9E.

Let X; € 3E and n(X;) be a normal vector to 3E at X; € R". We can
choose the local coordinate system by having the X, axis be in the direction
of N(X,) and x; axis for any 1 < i < n — 1 in the direction of principal
curvature eigenvectors corresponding to principal curvatures K;, K,, ..., K,
of the surface 9E at X;. In fact, if surface SE in the neighborhood of Xj is
formed by the function xn = g(x,, Xz ..., X,;), where g is at least twice
differential, then the principal curvatures K,, K,, ..., K,., are eigenvalues of
the Hessian Matrix (D?g) and our chosen coordinate directions are its eigen-

vectors. This coordinate system is called principal.
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If we assume that OE is locally described by the equation G(X) = O,

then with some use of elementary differential geometry (see, e.g., [Car.]) we

establish that

grad (G)/lgrad Gl , (2.69)

3|
I

and that

3 {@.G_) = -K; - Igrad (G) - §;

ax, x;

Li=12..,n—1 (2.70)

o o) = 0

where §;; is a Kronecker symbol.

Definition 2.8.2.

Let K,, K3 .., K,, be the principal curvatures of the surface JE.

Then the mean curvature H(X;) and the Gaussian curvature K(X;) of X, € oE

are defined as follows

-1
1 9 3 (3G 'ElKi
— pr— 1==
HZ) = -—— - Z; o (55/1erad @] () = =L .71)
l==
n-1
K&) =[] % - 2.72)

i=1

Next we define the notion of tangential derivative.



114

Definition 2.8.3.

Let f(X) : R" - R and 1 be a normal vector to the arbitrary smooth

surface JE in R", then the tangential gradient vector 8f is given by

of = grad(f) — n - (grad(f) e n) . (2.73)

If we denote the i-th component of the normal vector by n, and

observe that grad(f) e n = g—fl, (2.73) may be rewritten in terms of its
components as follows
o _ . . of { =
0f = 3%, n oS0 for i 1,2, ..,n. (2.74)

The characteristic property of 6f is that it depends only on the distribution
of the values of f(X) on the surface 3E. It is easily shown by observing
that if two functions f, and f, are equal on 3E, then g(X) = f(X) — f(X) is
equal to zero on OE, i.e.,, OE is a level curve for g(X), consequently
grad (g(i));a = grad(f ‘)x_o — grad(fg)% is normal to OE at each X; € JE.

%, % _3%& . ich yi
Hence §ig = 3% no5 = %, n;, - lgrad(g)l which yields

%8 _ % _ g,

g = 9x,  ox

Thus, 6f, = 6f, on 9E and is independent of the values outside 3E. We

may also write formula (2.74) as

n
6f = Df — n, - n, - Df, (2.75)
J J
=1
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with D; replacing symbol S).  For the further convenience the tensor
3x;

summation notation is employed, so that if the same index is repeated twice
in the same term, then summation with respect to this index is assumed.
For example, (2.75) can be rewritten as

6;f=D;f——n,-nJ~-DJ~f.

It can be shown that the gradient of distance function in (2.68) is equal to

the normal vector 7, i.e.,
= grad(d(X)) . | (2.76)
This implies that n, = Dd, and
0n; = Din; — n; - n, - Dyny 2.77)
= DDd — n, - D,d - D,D;d
= DDd — In, - D(Dd)>
Inserting the identity kgl nZ = Dd - D,d, we continue (2.77) -
= DDd — i n, - D@ = DDd ,

and using the commutativity property of mixed derivative obtain

= DJD,d = 6J‘n| .
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Thus we have established that
6ny =6n, n=1,2 ..,n.
Next, we can apply (2.71) and (2.74) to obtain

6m =D, [—"=] — n - n - Dy n, .

DG
lgrad Gl

With G(X) = 0 being an equation of the surface 9E, it follows that

n
=-(n——1)-H—-—%-nk-Dan?=-(n—1)'H,
i=1

which yields that mean curvature H may be computed as

A little calculation from (2.74) shows that
5i6k = 6’(6’ + 6m(ni M 6k NMm — N - Ginm) . 6m .

Consequently tangential mixed derivatives do not commute.

It is useful to prove for later use two more identities.
definition (2.74)
n

ni‘é‘i=ni~D,—n;~ni~nk~Dk=ni‘Di——E ﬂiz'nk'Dk
i=1

(2.78)

(2.79)

(2.80)

First, by

= 0 (2.81)
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Similarly the validity is derived for

n - &n =0. (2.82)

The notation used in the above calculations assumes that operator ¢ is
applied only to the term immediately after it. We may now state the most
important property of the tangential derivatives, which will be used over
and over again in the following paragraphs. This property will allow us to
derive formulas for arbitrary-order generalized derivatives with great ease

and in almost routine fashion.

It should be stressed here that the following theorem will allow us to
avoid the very unintuitive tensor calculations of [Est. Kan.], who actually
pioneered the informal use of what amounts to tangential derivatives in the
calculus of generalized functions. But the authors of [Est. Kan.] were
apparently unaware of the earlier work of M. Miranda and its subsequent
development in the framework of the theory of minimal surfaces. Thus in
their approach a whole paper [Est. Kan. 1] is dedicated to the calculation of
the higher-order derivatives for simple layers and yet another [Est. Kan.2]
to produce horrendous-looking formulas for just First and Second
derivatives of multilayers; when, in fact, the following theorem will allow

us to compute arbitrary-order derivatives for arbitrary multilayers with

great simplicity.

Theorem 2.8.1 (Morrey [Mor.]).

Let 3E be a smooth boundary surface in R™! and f(X) be some

differentiable functions. Then if H(X) is the mean curvature of the surface
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J3E, one has

/6f~de=—n/f-H~ﬁode, (2.83)
oE

where df is a surface element of 9E.

This crucial formula may be rewritten in the component-wise fashion

as

ka . de = = - / f . H M ni . de ° (2.84)

Now, we are ready to derive the most useful formulas establishing deep
connection between the operation of generalized differentiation and

geometry of singular boundaries.

§2.9 Exploration of the internal geometry of singularity with higher order

generalized derivatives.

One of the most fundamental concepts of modern differential
geometry is that of the covariant derivative of the vector filed with
respect to the other vector field. The intuition behind this notion is to
measure the rate of change of the first field X in the direction provided by
the second field Y. It is denoted by the symbol V X. Clearly, V.X is an
extrinsic quantity, for it depends on the space R" in which fields X and Y
are immersed. Thus in case X is just a scalar point function f : R" - R,
V.f is simply a directional derivative of f in the direction of the vector

field Y at each point in R". It is quite natural to define a surface
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covariant derivative VX which assigns the rate of change of X in the
direction Y as seen from the surface S. Consequently this derivative is
an intrinsic measurement which could be studied entirely within surface S

without regard to the space R"” in which it is embedded.

It can be shown that V$X is uniquely defined and is always equal to
the tangent component of VX on the surface S. Consequently, it is the
projection of the external covariant derivative of the field onto the tangent

plane to the surface S.

With the aid of (2.74) it is seen that our tangential derivative 4f
corresponds to the intrinsic covariant derivative V?(Efﬁ), where X, is a

direction field parallel to the axis X.

It is well known that covariant derivatives satisfy the linearity and
Leibnizian properties. While the linearity is obvious, the rule of
tangentially differentiating a product of scaiar point-functions on a given
surface S would be of great value in our computations. We shall refer to it

as the Leibnizian property of tangential derivatives for obvious reasons.

Lemma 2.9.1. (Leibnizian property)

Let f and g be differentiable functions, then for any smooth surface

JE
6,(f N g) == f * 6,g + g - 6.f . (2-85)

Proceed by the component-wise formula (2.74)

n
=2 (g —m - L2
5(f -8 =2 (f -8 —n kzl mo g (8,
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assuming again the tensor summation notation

I

(B —non 2t (X—nn X

=f .08 +g - 0f.

Q.E.D.

(Fig. 2.11)

T¢s)

It is worthwhile to calculate tangential derivatives dn; for the case
of plane curves, which provide the simplest geometry of singularities. Let
the angle O(s) be the inclination of the tangent vector to the curve T(s) =
(x(s), y(s)) on Figure 2.11. Curve T is parametrized with respect to the arc
length s. Let 7 and £ be correspondingly unit normal and tangent vectors to

T. If such a selection of the parameter is made, we obtain

== (nx, ny) == (‘y(s)) )‘((S))

=l

and

= (&, &) = (x(s), ¥(s)).

|

We also have



x(s)

It follows that

Dxnx =

since by (2.76) and

onx
on
Thus, we have
anx
Similarly,
Syny
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= cos(8(s)), v(s) = sin(8(s)) .

ony

Ony Y e
i cos(0(s)) + 30 cos(n"x) = nyx - X,

identity (2.82)

=n - Di Dx d(f) =n - DxD|d(§)

= nlin‘, - 0 °

= -y - X = -cosX(B(s)) - B(s) .

= %(8) - sin(8(s)) = ¥ - y = -sin?(0(s)) - O(s) .

And upon using the symmetry property (2.78)

Sxny

= &yne = -y - y = -sin(8(s))

. cos(0(s)) - 8(s) .

(2.86)

(2.87)

(2.88)

6(s) has geometric significance, for it is a curvature of T(s), and we write

8(s) = k.

(2.89)
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It is of interest to remark at this point that (2.86)—(2.89) clearly

demonstrate the relation between tangential derivatives of the normal vector

and the intrinsic geometry of curves manifested by its curvature.

In deriving formula (2.45) for the generalized Laplacian we were able
to avoid direct computation of a_gx—, (If] - 6,) by the use of the second
Green's identity. We concluded then that the generalized Laplacian is
uniquely decomposable into the sum of regular part and k-multilayers for k

= 0, 1. This decomposition has guided our analysis of Marr’s zero-crossing

schema as well as the line detection algorithm.

There are many reasons why we need to derive formulas of the type
of (2.45) in a direct manner. What is meant is the possibility of carrying-
out the differentiation process on the terms of FTED decomposition (2.23),
obtaining again some unique decomposition into the sum of multilayers, and
then if necessary do it over again on the new terms, in the fashion similar
to usual differentiation. Of course, the higher the order of differentiation
is, the higher the multilayer order will appear in the decomposition.
Henceforth formulas for differentiation of arbitrary-order multilayers are
required.

The crux of this presentation is application of these formulas to the
process of uncovering various computational aspects of possible
singularities.

In carrying out this program, a differentiation formula of single layer

with arbitrary density is derived.
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2.9.1 Differentiation of single layer.

Let L be an arbitrary smooth surface in R", and o - §_ be a single
layer on L with smooth density o : L — R. For arbitrary test function

© € %, we have by the integration by parts

%0'6L:¢>=‘<0'6L9§_:;

by the definition of the tangential derivative (2.74) we get
poll2] _ dp
=-/a-—f-de—-/a~[6.<p+ni-—a;}-dll. (2.90)

Using Leibnizian property (2.85) we see that
o -6ip =6(c o) —p -6 0. 2.91)

We then continue (2.90) as follows:

=-/5i(0'<P)-d€+/¢-6‘a-d8—-/n.-a-g—(——z.d8.
L L L

The first integral above can be estimated by application of the Morrey’s

formula (2.84)

- dp
=/[("—1)'H'U'ns+5a0]-¢-d€—/ni‘a--§a-d8,
L L

which yields functional identity
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8—8)(7(0'~6|_)=((ﬂ—-1).H'o'-ni+6ic')v6,_+ni.0-.a_aﬁé‘l., (2'92)

The most notable feature of formula (2.92) is the appearance of the single
layer with the quite remarkable density term. One would expect to get a
double layer, when the single layer is differentiated. Yet unless the
surface L is totally trivial, i.e., of zero mean curvature H = 0 and the
density o = const on L, we see that a single layer emerges as well. And
while the density of the double layer carries information only about the
component of the normal vector, the density of the single layer explicitly
depends on the curvaiurc of the surface L and on the rate of change of

the density on the surface.

By applying (2.92) to FTED (2.23) we can obtain a formula for second-
order differentiation. Let f(X) be as in FTED. To simplify the following
calculation we collect all of the singular boundaries in the single symbol L.

Then we have

of . _ B (A 4q.1-4]). (2.93)

Now we proceed by applying FTED again to the regular term and (2.92) to

the singular component

— _of _ [ar] . 3 . .
- axkaxi = M [ax] 6'— + 8xk (nl [f] 6,_) R

The jump of the derivative {gﬂ may be easily shown (see [Est. Kan.1]) to be
i
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of | _ |of} .
{a‘g] — [Sn] n + 6(f], (2.94)

so that (2.93) with the use of (2.85), and collecting single layer terms may

continue as

:axigxi-}—tf._.[[gﬂ.ni-nk+nk.6i[f]+(n_1).H.ni,nk,[ﬂ+

(2.95)

+n - 600+ Sn - 1) +men 001 25

A number of fruitful observations can be concluded from the quite
cumbersome density term of the single layer in (2.95). The most interesting
thing about it is the presence of two terms explicitly depending on the mean
curvature of the surf aée L. We also see that the rate of change of the

Jump along the singularity contributes to the density as well.

2.9.2 Design and analysis of the simple curvature detector.

By exploiting the occurrence of the curvature-dependent terms in
the second mixed derivative we can pursue the design and rigorous analysis
of the curvature-sensitive singularity detectors. It should be stressed again
that the curvature appearing in (2.95) is a curvature of the singular
boundary and is not a curvature of the surface given by the graph of the
image function f(X). This development is the first totally new practical
consequence of the use of generalized derivatives. For it has been
observed earlier that the method of “rotating thin masks” in itself is just a

very clean theoretical version of the previous edge detecting schemas.

A natural way of motivating the use of curvature-sensitive detection
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algorithms is to look at what kind of computational information is conveyed

by curvatures and how it can be utilized for approximation of the singular

surfaces.

Let R(t) be a vector parametric form of the singular boundary L.

Then utilizing Taylor expansion of R(t) we have

AR(t) = R(t + At) — R(t) (2.96)

= R(t) - At + 1 - R”(t) - At? + L . R™(t) - At® + ... .

Expansion (2.96) demonstrates that up to terms of the order O(At), curve L

coincides with its tangent line in the neighborhood of each point, i.e.,

AR(ty) = R’(ty) - At + O(At) .

We also see that up to O(At?), R(t) lies in the plane determined by the
vectors R’(t) and R’(t), known as an osculating plane of curve L.
Therefore, up to O(At?), curve L is locally a parabola in the coordinate

system given by the basis (R’(t), %R"(t)). Indeed, its parametric form is then

x = At and y = At%

Analogously we conclude that up to O(At®), L resides in the 3-dimensional
subspace given by the basis (R(t), } R”(t), : R”/(t)). In this subspace R(t) is

locally described by the third-order curve.

Assuming natural parametrization of the curve L and making use of
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the Frenet formulae, we can rewrite by identity (2.96) as follows,
AR(s) =£-As + ik -T-As® +L1.(-k*-€ +Kk' -7 + k-7-b)-As® +0(Ax%), (2.97)

with {€, 7, b} forming a Frenet trihedron and where k is a curvature of L
and 7T is its torsion. The above consideration implies that tangent,
curvature, torsion and “higher curvatures” provide coordinates in the local

basis associated with each point on the curve and given by
(R'(t), R”(1), ..., R™(L)).

In particular, for planar curves, the curvature corresponds to the second
dimension given by the normal vector, when the first dimension is assigned
to the tangent vector. Thus it is curvature k, which literally “curvés” our
curve L from the would-be straight line in the direction of the tangent.

Similarly, the torsion provides the third dimension, if L is a space curve.

This discussion on the geometrical significance of the first and
higher curvatures furnishes the interpretation of all previously derived
detection schemas as essentially one-dimensional. The precise meaning of
the above statement follows from the Fundamental Theorem of Edge

Detection and subsequent analysis in §2.4 and §2.5.

It has been firmly established there that regardless of the different
appearances of various more or less “successful” edge detectors of today,
they all work on the basis of the same fundamental principle, expressed by
(2.23) of FTED. But singular contribution in (2.23) can only yield the

eStimate of the jump in the direction of the normal to the singular
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boundary, which we are fortunate to discover only under the best of
circumstances analyzed in §2.4. Consequently, it is this direction of the
normal or equivalently the direction of tangent which these detection
schemas are going after. Thus in light of the above discussion on the
curvatures and dimensionality of the curve (surface) all these methods,
including our “rotating masks,” are essentially uni-dimensional detectors.
Now that we know the computational importance of the curvature we see
that even the best schemas of today are bound to fail on any nontrivial,
highly curved singular boundaries. For all these schemas are fundamentally
blind to the “second dimension” of the planar curve boundaries, i.e., to
curvatures, or to higher dimensions such as torsion when the problem of the
singularity detection is considered in R® or higher R". As an application of
(2.95) we can construct and analyze a “simple linear curvature detector” for
planar boundaries. To obtain such a detector we merely replace the first

generalized derivative in the familiar symbolic expression of the first-order

“thin masks” detector <ag(§), <pa> by the second-order generalized

derivative <a-[aj—:—§‘—‘, <pa> where £ and n are two mutually perpendicular
directions of the differentiation in R% ¢y € %, and f : R? — R. Let us
first assume for simplicity that ¢, is a circularly symmetric test function
(2.1.0). We can further simplify assumptions about function f(X) by
supposing that the rate of change of jump [f] within supp(®) and the regular
contribution are both negligible, and the jump of the normal derivative [g—ﬂ
is very small as well. We choose coordinate system so that the pair of orts
(X, ¥) corresponds to the directions (£, fi) of the detector. We shall now

expand the detector under consideration according to (2.95). By the

integration by parts
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<8x8y’ e) = a%%) » (2.98)

and (2.98) reflects the actual way to compute the detector’s action on the
test function and f(X). On the other hand, by (2.95) and simplifying the

assumption about f(X) we have
= (& - nc - ny (0] + Suny - 1D - 6, ) +
-+ <nx c My - [f] an 61_, (P>

where T = (nx, ny) is outer normal to L and k is the variable curvature of
L. We observe that the second-layer term behaves roughly as a first-order
detector since its density depends only on the size of the jump [f] and
directions of differentiation. But the first term exhibits more interesting
behavior. If we assume also that the approximate zero-crossing condition is
actually met by the singularity under consideration, then the second term

vanishes and upon application of identities (2.88) and (2.89) we have
= <-2sin(6(s)) - cos(8(s)) - k - [f] - 6, >

= -/ k - sin(20) - [f] - ¢ - d€ . ‘ (2.99)
L

(See Fig. 2.11). This detector will assume maxima in the direction 7/4 from
the direction of the corresponding first-order detector. Thus taking a

linear combination of both

oy - 83’ 991> + oz - <88 an’ ‘Pz> s (2.100)
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with possibly differently shaped masks, we may obtain some interaction of
the tangential direction with the curvature direction, which gives us a
fairly general way to approximate singular boundaries by the sequence of
linear chord segments. Computational implementation of this detector and a

few computed examples are discussed in the last paragraph of this chapter.

A quick look at the expression for the generalized Laplacian (2.45)
will reveal that Af(X) does not contain any curvature-dependent term, which
is surprising in view of the fact that the generalized Laplacian is a
combination of the second-order generalized derivatives, each of which,
accordingly to (2.95), contains a nonzero, curvature-dependent, simple-layer
term. Of course, we have derived (2.45) in a manner which did not involve
actual computation of the generalized derivatives, yet the result should be
the same no matter how it has been obtained. A simple explicit computation

ox?
how curvature-dependent terms annhilate each other in the generalized

of 2L + :—fz via (2.95) and (2.86), (2.87) alleviates our concern by showing
Y

Laplacian Af(X).

Of much greater interest is to obtain a detector whose curvature
contribution is analogous to the generalized gradient magnitude detector
(2.39), i.e., is independent from the directions of differentiation. In
somewhat mathematically loose fashion we should see that a known Beaudet
corner detector [Bea.]l replaced by its generalized version, in fact, is such
a rotation-invariant curvature detector. Its sensitivity to discontinuities

of the boundary will be also meticulously analyzed in the next paragraph.

In what follows we will need rules for multiplying simple layers
defined on the same surfaces. Disappointingly, the modern theory of

generalized function does not possess such machinery as yet, except for
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very special cases. Having historical precedent in the brave way in which
P. Dirac operated with the very first singular distributions 60 years ago,
distributions will be multiplied here in rather cavalier fashion, based only on
crude intuition borrowed from the sequential approach to the Irregular

operations on distributions by J. Mikusinski [Mik.].

Again, with the previous simplifying assumptions by (2.98) and

expressions for §h; in (2.86)—(2.89) we have

i. - 3 - . . . i 2 . —_—

9 f2 = -k - [f] - cos(20) - §_ + sin“(0) 38 ' (2.101)
_._azf._k. . 20) - 8§, + ¢ 29..._.35 2.102
8y2 [f1 - cos(20) L 0s“(6) 3 L (2.102)

Furthermore, exploiting the fact that reaction of the test function to the
second-order layer is weak, or zero on the boundary (under our
assumptions), we “formally” multiply simple layers in (2.101) and (2.102) and

square simple layer in (2.99) to obtain

(LR L
B(f) axay} o E—k-l-e, (2.103)

where we multiplied simple layers on the surface L by simply multiplying
the density terms. It should also be noticed that (2.103) is only an
approximate equality, since the second-layer terms are actually contributing

to the result of B(f).

Thus we see that the so called Beaudet’s “corner” detector [Bea.] is
nothing else but a rotation-invariant curvature detector. This detector will

assume maxima, when the segment of the high curvature lies within the
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support of the detecting mask. Similar to the previous cases, the

generalized differentiation is transferred via (2.2) as follows:
<B(f), o> = <f, Pu>* — <f, P> - <f, ©yy> , (2.104)

where the subscript is a partial differentiation symbol. The reader will
notice that expression (2.104) is not the inner product of B(f) in (2.103) with
test function ©(X) but is an approximation by the componentwise application
of the multiples in (2.103). We shall return to the curvature-sensitive

functionals in the analysis of singular boundaries.

Another interesting application of the identity (2.92) of the
derivative of a single layer is analysis of the non-maximum suppression
scheme of Canny (see p. 43 [Can.]). In this scheme, the edge at (X,) is

determined upon satisfying the following condition:
2
(& c=® =0, (2.105)
2
where | is an image and G is a smoothing symmetric Gaussian, and aé—z means
n
differentiation in the direction provided by the gradient of the function it
is applied to. The rationale behind this detection algorithm is similar to the
Marr’s zero-crossing scheme, though this time maxima or minima of the

first directed derivative are located in the direction of the gradient,

which is assumed to correspond to the direction of the prospected edge.

This last assumption has been shown to be a gquestionable one,
particularly in the neighborhood of nontrivial singular boundaries (see §2.4).

Now we shall see directly how curvature of the boundary affects condition
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2
(2.105) of the 58—5 operator. First observe that
n

3 - . 9
2t % @) = Z ng (F*p), (2.106)

i

where h; are components of the gradient. Using tensor notation and
assuming that gradient vector is faithful to the direction of the normal of

the singularity of f(X) we have
=[, o +n2-[]~6._]*<p.

Observe that > 'n? = 1. Combining this result with the formula for the
i
derivative of a single layer (2.92) we have

(f:% f, p) = <aa [n af] +2 ([f] 80, @) . (2.107)

If we neglect the regular contributions and jumps of the higher derivatives

of f across L, application of (2.106) leads to

~ (@ a6, 0 - )
= o, 2 -0

Substituting for the % derivative its expression in terms of the tangential
i

and normal components as in (2.74), we have

- , 3p
i1 - 8, S(ny - @) + 250
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Application of the Leibnizian property of tangential derivatives and formula

(2.79) for the mean curvature yields

=-<[f]’6l-’ 6ini‘¢+ﬂi‘63"9+g—:‘: .

Using identity (2.81) we obtain
—{f1 -6, ta—1-H p+22
Ls en
Substituting expression for the double layer (2.14) we get
- 3
—((n-z).H.tf1-6L+§;ls,_,go).

Finally, if we account for the contributions of the regular term and jump of

the derivative, the expression for the nonmaximum suppression becomes

_of _ 2t . |for _ el - 2

s = 3 — 8L [[Sn] 4+ —DH [f]] s+ 1125, @lo8)

where H is mean curvature of the singularity surface L. It is clear from

(2.108) that if curvature H is zero, the nonmaximum suppression is almost

equivalent to the zero-crossings of the Laplacian given by zeros of Af in
2

(2.45), except for directed regular normal derivative g—g instead of the
n

regular Laplacian Af. This difference will be negligible when a narrow mask

is used in (2.107).

In the same vein we should note that the zero-crossing condition

(2.107) is severely perturbed by the nonzero curvature contribution in
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(2.108), making this scheme extremely inaccurate in the vicinity of the

curved edges.

Further analysis of higher curvatures of the boundaries as well as
analysis of the generalized functions’ extremal behavior on the singularity
boundaries can be only achieved with methods operating on the third-order
generalized derivatives. To evaluate these higher-order distributional

derivatives, we need to be able to differentiate double layers.

2.9.3. Differentiation of the double layer.

Let L be an arbitrary smooth surface in R" and ¢ : L - R be a

smooth density function of the double layer on L.

Our interest is in deriving formula for the generalized derivative of

3 .
the double layer [0' " 3n GL]. We consider

((% (o 5871 5} @) = (o - éaﬁ 8L, g—g-i) . (2.109)

Then by definition (2.14) of the double layer we have in tensor summation

=<c’6L)nk'a%_§xi>!

or changing order of the differentiation we have

=<a'6unk'§a§i[aa—':(]>:

by (2.74) and the Leibnizian property
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— 3 o o
—<0"6ué;i[ﬂk S—Xk] — &in, &:>,
by the definition of the normal derivative we write

— (o -5, %) _sq . 2¢
= (v 0 5 3] — o 5% (2.110)

Separate (2.110) into the difference of two terms
= A — B,

where A = <cr - 8, 5‘1— g-g) and B = <0' - 8, dn, - 'aa—xe> Carrying out
i k

density term to the right and applying Leibnizian property and (2.74) we get

A=(uo (622 +n- Z%’D, 2.111)

by the Leibnizian property

P

=<6L-6i[°“%§]—6‘o'a—‘-:+a'ni an?

We may now apply Morrey’s theorem (2.83)

2
=<6L,—(n—1)'a.ni.H,aip___6ia.a(p+o. .Z—(g,
n

on - M

transferring generalized differentiation back to the left as in (2.15) we get

= -0 -H o n+s0) Boton La, ).
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Similarly we have

B = (s, dn (60 —n 2L (2.112)
=<6L,c-6ink-6k<,0 - '6ink'nk%(_:>'

Using identity (2.82) and the Leibnizian property we write
= (8, 8o - 8nc - 9) — @ - B0 - 6mY) .
Application of the Morrey’s theorem (2.83) implies
=<6L,(n-—l)-H-a N -é,nk-w—Jk(a'Jink)-QD).
Upon application of the identity (2.82) we write
= (o - 68n + 89 - 6n) - 5, @) .

Finally, collecting (2.111) and (2.112) we obtain a formula for the derivative

of the double layer:

a% (o - a% §) = (o - 8,8, + 8,0 - 6n) - 8, +
(2.113)
82

(n — .H. .o  n o) . 8 O -
+ ((n 1) H: o n 4+ 6o) an6,_+a n; an26,_.

Formula (2.113) demonstrates the appearance of the higher curvature term

6,0in,, which in the case of the three-dimensional surface L will carry
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information about the torsion coefficient of L and thus could be utilized in

the detection of singularity surfaces with torsion.

In order to obtain formulae for the third-order differentiation of the

nonsmooth function f(X), we combine (2.113) and (2.92) to get

(6. 6) =2 (K, -6 +K,- 2 5) (2.114)
azxi L 8Xi 1 L 2 an L7 s .

where Ky = (60 + H - o - n),H, = (n — 1) - H and K, = n; - o, then

combine (2.114)
= 6K +H K om) -6 +m K28 +§’—xi[1<2-5%6L]
= (6; K, + H, - Ky - ny + 6m K, - 6iim + K - dmbinm) - 6, +
2 \
+(n"K1+n|’H1'K2+65K2)"§'6L+U'1‘6L, (2.115)
on an®

which can be further unfolded substituting expressions for the coefficients

K, and K, and use of the Leibnizian property and simplifying identities

Nmby = 0, Nyénm = 0 and H = 6mnim .

Corollary (2.61) gave an answer to the question of why Marr’s zero
crossing of Laplacian scheme works for simple singularity boundaries. It has
been concluded there that even the elongated zero-crossing detector yields
no directional information about the normal of the boundary. The notion of

the direction of the zero-crossing is used in [Ma. Hi.l] to alleviate the
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above problem. The resulting criterion of the maximal slope of zero-
crossing has been rewritten as inequality (2.62), which we have promised to
prove. The next lemma demonstrates that only under very simplifying

assumptions will Marr’s criteria work.

Lemma 2.9.2. (On direction of zero-crossing).

Let L be a circular essential boundary, and supp(®(X)) small enough to

on

to the essential boundary L.

2 _
assume [f]=const, {§]=const and [g—%]=const, then grad (A u * ) is normal
n

Proof.

Taking into account our assumptions, we write out the expression for
the singular part of 5?—{— (Af) based on the formulae (2.115), (2.95), (2.92):

i(f\f)=[[§%}—C2-[f1]'ni~5L+[{%]+Hl.[f]].ni-a%‘51_+

82
+[f]'n|'é‘;l—26]_.

where C? = &nm - dynm is the sum of the squares of the principal
curvatures of the L. The symmetry of the ®(X) and circular assumption
about L imply that g—:—f , k = 0,1, ... is symmetric across the point P on
Figure 2.7. Hence substituting (2.116) into (2.33) and proceeding according to

the subsequent proof in Lemma 2.2.3, we arrive at the conclusion that V(Af

* @) is normal to L. Q.E.D.
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§2.10. Computing singular singularities.

All differentiation formulas of generalized calculus considered so far
can be characterized as calculus of “smooth” singularities. It sounds almost
contradictory. Indeed, how can a singularity be smooth? If we look back to
the definition of k-th multilayer (2.15), we may ask a question of what
happens if the density term of the multilayer is not a smooth function
or if the surface L on which multilaye'r is concentrated is not a

smooth surface.

For example, the last possibility is manifested by the intersecting
surfaces of discontinuity (or generally, surfaces of nonsmoothness) of the
reguilar function f(X) in (2.23) of FTED. It may also depend on the
viewpoint of the observer, whether to consider the density term to be
discontinuous or instead to subdivide the boundaries into nonsmooth pieces
with smooth corresponding density terms. This possibility is given by the

intensity function of the two-dimensional checker board.

Breaks in the smoothness of singular boundaries have great practical
implications in various applications of image analysis. It is common in the
literature on Shape Analysis (see [Pavl.] to refer to certain “singular”
features of geometric shapes such as “corners” or “smooth joins.” For the
purposes of identification and pattern recognition, various singular sites of
the outlines may be first determined and then the shape can be
approximated by passing a spline through these points. This approach tries
to eliminate the complete reliance on the output of the usual edge detector;
for as we know by now, one cannot trust in its measurements with today’s
state of the art in edge detection. Besides, the noise problem further

complicates the shape recognition. However, if some prominent boundary
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feature is present, additional possibilities arise.

In [Asa. Bra.] Marr’'s zero-crossing detection scheme has been
extended to the task of finding significant curvature changes along jump-
singular boundaries in images. First, edge is detected by the Canny’s
scheme [Can.] which is basically similar to our narrow masks approach
without curvature correction terms and without explicit analytical form for
the detector’s test function it is interesting to note ([Can.] derives his 1-
dimensional mask from the stochastic optimization process). Then direction
of the normal is estimated as a function of the natural parameter, i.e., arc
length. The resulting l-dimensional function is probed via zero-crossing
method for the presence of various combinations of two basic types of
nonsmooth behavior of the edge. A “corner” is a point where direction of
the tangent (or equivalently the normal) changes in discontinuous fashion.
And smooth join—a point across which curvature (i.e., derivative of the
tangent vector function) undergoes a jump. These two types of behavior
could be then compounded into the “end,” “crank,” “bump,” etc. Finally,
points of the significant response are matched across several scales and
curvature primitives are identified. As we noted already, important
applications vary from object recognition to the industrial quality control
automated visual inspection. A further advantage of the nonsmooth singular
boundaries is taken inlthe so called structure from motion approach. It is
observed there that tracking “interesting points” from frame to frame, the
correspondence problem and computation of the optical flow may be
achieved. For example, time varying corners [Sha. Jai.] allow us to
circumvent difficulties associated with the aperture problem of motion

detection, which manifests itself in the impossibility to compute tangential
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component of optical velocity on the smooth boundaries.

I would like to claim that these applications of singular boundaries
are just the tip of the iceberg. In particular, numerical analysis of the
arbitrary time-space developing singularities, which are submanifolds of the
singularity boundaries (3-dimensional surfaces) is of great interest if one is
to succeed in the meaningful information extraction from the time wvarying

imagery.

Unlike the case of edge detection, only handful of the ad hoc
methods exist today to solve the simplest of this circle of problems.
Namely, aside from algorithms built on top of the usual edge detection as in
the above [Asa. Bra.], few corner detectors were proposed. Moreover, [Sha.
Jai.] have shown that all of them are essentially equivalent to the already
encountered here Beaudet corner detector [Bea.]. However, it has been
demonstrated in (2.103) that generalized Beaudet scheme is just a

curvature sensitive functional, i.e., a curvature detector.

Consequently, we may ask a question: why does a curvature detector
also react strongly with corners, which correspond to the points where
boundary normal undergoes sudden jump? Having answered this question, we
will be able to indicate a more general approach to the direct detection of
the singular submanifolds of the singularity surfaces. By a direct
detection we mean a method based on the direct interaction with the image
intensity function, without intermediate use of the edge detection scheme,
for determination of the curvature behavior cannot rely on the accuracy of
today’s uni-dimensional detecting algorithms. Besides, direct methods are

much less computationally expensive.

Just as in the case of singularity boundaries, the difficulties can be
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surmounted by associating certain distributions with singularities of the
boundaries in such a way that characteristic singular contributions may be

calculated.

Let us first consider an elementary example of the nonsmooth

boundary given by the Heaviside function.

LLx >0y >0

H(x, y) = {
0, otherwise

Then we see that
3 dp
<—8Yé§ (H(x, y)), <P> = -<6L2, 8_37

where L, is positive y-axis, and by the fundamental theorem of calculus and

boundness of the supp(®) we have

= ¢(0,0)

Hence we can conclude that

3H

3xdy = 5(0, 0) s

i.e., a two-dimensional point delta function.

In fact we can see that if £ is direction tangential to the two-
dimensional boundary L with end points P, and P, and ¢ is a test function
then generalized derivative in the tangential direction of the line-delta

function
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/3 _ 3
(& oo ) = / 57 4e (2.117)
L

and if L is parametrically given by the L(t) = (x(t), y(t)), then

5 5 ,
é%=’—£—,%t—)—'~§(§andd€=ﬂ,l-dt,

consequently we may continue (2.117)

3]
- d (o) - dt = -] o)
=) @' =l
to
Hence if P, and P, are the end points of the singular boundary L the

following is true

a% 8, = 6, — b5, (2.118)

where GPi are point two-dimensional distributions.

Already we have touched on the subject of detection of line and
surface distributions. The point distributions are no different. To detect
them we can simply use small circular masks, whose support area is
vanishing, yet the contributions of the point singularities as in (2.118) are

preserved.

If we try to derive (2.118) through the use of Miranda’s tangential

derivatives the essential new construct would have to be added to it.

In order to eliminate difficulties presented by the discontinuous
functions, the regular calculus had to be extended to the calculus of

generalized functions. Similarly, to overcome limitations of the calculus of
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tangential derivatives when boundaries with singularities are encountered,
we can go one step further and introduce generalized tangential
derivatives. To my knowledge, there has been no development of this kind
in mathematical literature with the exception of a few brief remarks on

p. 483 of [Est. Kan.2].

If the principal coordinate system of §2.8 is introduced locally near
the n-dimensional surface of singularity L, then for functions given on this
surface the divergence theorem is still valid when applied with respect to
the differentiation in the tangent plane, i.e., covariant derivative. Then it
is not surprising that formulas similar to (2.23) of FTED is obtainable for

discontinuous functions given on surface L. Following [Est. Kan.2] we then

write

0f = 6g + m - [g] - &g (2.119)

where “bar” stands for the generalized tangential derivative of g : L — R,
[g] is a jump function of g across submanifold S C L, and 65 is our usual
delta function, concentrated on submanifold S, with m; being 2 component of

the tangential normal to S in the direction X.

Substituting (2.119) into the differentiation formula (2.92) for smooth

simple layer we formally obtain

éé—x(g'sL)=((n”1)'H‘g‘ni+6ig+mi‘[g]'6s)-5,_+
(2.120)

+n1'g'aa—n§L
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Consequently, we encounter here the product of the two simple layers,
namely m; - [g] - 8¢ - 6_. But the formal expression (2.92) has a precise
computational meaning as a functional which acts according to rules (2.15) on
the space of fest functions. Yet formal expression o - §g - §_ in (2.120) has

never been given rigorous meaning.

It follows from the tangential FTED (2.119) that the product of the
two simple layers is a simple layer concentrated on their

intersection. Since in our case S C L, it follows
o -8g -0 =0 0 (2.121)

Observe that formula (2.118) can now be derived in the direct fashion by
noticing that the density term of §_ in (2.117) is a discontinuous function
equal to one on the boundary L and jumping to zero across its end points.
Thus (2.118) follows from multiplication of end-points delta functions on §_

according to rule (2.121).

A more illuminating example, given by the three dimensional singu-
larity surface S with a density term which undergoes jump across some line

£ CS.

(Fig. 2.12)
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A proof of (2.121) is greatly simplified by the introduction of the principal

coordinates (u, v) on Fig. 2.12.

We now examine expression

% —[E.,.
o 65,‘P>—/§-{1'(ﬂ ds
S

which can be rewritten as a double integral in curvalinear coordinates (u, v)

with area element dS = lGI”z, obtained from the first fundamental matrix G:

—ff3 ., . 4.
= // 3 @ - IGI du - dv
S

then according to FTED (2.119)

=//§-§-cp-|G|“2dudv+/mu-<p-[g]-|G|“2-de
S 2

% 5 _ % Cm -
Thus 3u 65 = 3u 65 + [8] Mmy 68 (2.122)

If we assume that g is constant inside and outside 2 on Fig. 2.12 and
undergoes unit jump across its boundary €, we have from (2.122) verification

of the general rule (2.121).
o - 6,_ . 63 = g - 6L

where density o0 = m, - [g] and m, is the projection of the tangential

normal m onto the u-direction.
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Clearly, the above calculations do not represent the proof of more
general identity (2.121). The rigorous theory should be extended even
further to be able to multiply arbitrary order multilayers, for taking higher
order generalized tangential derivatives, in the manner similar to derivatives
of §2.9 in combination with tangential FTED (2.119), will run into this
multiplication problem. However, we see already that conceptually,
differentiation of the generalized functions with singular boundaries is no
different than differentiation of distributions concentrated on smooth

surfaces in the earlier considerations.

In view of the fundamental identity (2.121), the direct methods of the
numerical interaction with singularities of the boundaries may be developed.
Examination of the formulas for higher order derivatives in §2.9 shows that
the same mathematical procedure which looks for breaks of the density term
will be applicable to both finding breaks in the smoothness of the boundary
as well as computing breaks in the smoothness of the jump function (and

jumps of arbitrary order normal derviatives) along the boundary.

For example, if one is interested in finding points where curvature of
the edge changes discontinuously, while the direction of the tangent is
continuous function, generalized derivatives of at least third order should
be combined accordingly to the kind of response desired. The reason can be
seen from examination of formula (2.115). The term which carries

information of the rule of change of the curvature there is §ménm.

3
In particular, in case 82f is calculated and the boundary is planar,

9x“9y
the contribution of the above term is

Smbnm = [f] - cos(8) (k - sin(@) — klcos(8) + sin(6)))
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Hence in view of (2.121) and (2.115) if the curvature k undergoes jump (k]

on P €L, i.e.
k=%k + [k1 - 65,

where 68 is regular tangential derivative in the direction of the tangent of

3
L at P, (do not confuse it with the line delta function 6‘2) then 882;
X oy
contains term -[k] - cos(8) (cos(8) + sin 6) - 6, - 6  which is a point
~3p
distribution of the form [k] - o - §p. Similarly, contribution in aaafz may
Xoy

~3g ~3¢
be computed and C] f2 + 821‘ is shown to have a term equal to -[f] - [k]
9x0y ox“9oy
- 6. We can now detect such a point P by first convolving f(X), with as
small supported as possible, circular test function and then computing the
above combination of generalized derivatives. Clearly, there are other
choices for the curvature jump detector which would have to be tested
experimentally. In particular, generalized gradient of the Beaudet operator,

analyzed in (2.103) may happen to be even more effective. Its form is given

as follows

¥ B(O)| = \J[%f{”]z + [Eg—;—f-)]z (2.122.1)

The above methods are just as valid and applicable in analysis and
detection of any singular behavior of k-dimensional submanifolds of the n

dimensional singularity surfaces (k < n).

Thus to detect moving corners, which introduce tangential breakdown
on the surface formed by the moving edge in (x, y, t) coordinate system,

narrow cylindrically shaped test functions would have to be used in
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conjunction with second order time-space differentiation. In general, if we
want to study higher dimensional singular surfaces, for instance in
applications to motion detection, all of the above theory is applicable since

it is developed for singular surfaces of the arbitrary dimension.

Finally a comment about why Beaudet operator [Bea.] analyzed in
(2.103) is useful in extracting corners in images. We have concluded in §2.9
that B(f) is just a curvature sensitive functional, though it is known
primarily as a “corner detector.” But, in fact, it has already been
experimentally noticed by [Bea.] that “SAD operator has been able to
differentiate curved edges from straight edges,” where SAD stands for

nongeneralized use of B(f), i.e., simply computing f%, — fux - fyy.

If formula for the second order generalized derivative (2.95) is
modified according to (2.119) and substitution is made in (2.95) replacing all
tangential operators §; by their generalized version 6_J-, then in case
boundary is not continuous a term &, - [f] - §_ in (2.95) will contribute

component in the form

g - [n;] . 6p . 6|_ = T - [ﬂ;] . 6p (2.122.2)

where [n] is a jump of the component of the normal vector at P and o is
proportional to the jump [f]. Hence it is not surprising at all that B(f)
reacts strongly to the jumps of the normal of the singularity boundary,

referred commonly to as “corners.”

In the conclusion we remark that this paragraph is not meant to be an
exhaustive study of the numerical analysis of the boundaries with

singularities. On the contrary, it is just a starting point, an indication how
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truly powerful is apparatus of generalized functions in capturing essence of
the whole spectrum of questions arising in the Numerical Analysis of

Singularities.

§2.11. Tensor products of singularity detectors.

As a result of the foregoing theoretical development, a genuinely
novel concept of the products of singularity detectors is briefly

introduced here.

Before the rigorous description is presented, a somewhat more

intuitive discussion is useful.

The study of the preceding sections had inevitably culminated time
after time with a singularity contribution estimate in the generic form
/ ¢ ¥ . . )

a_nK oo 5;—(? - dé, with density component o possibly dependent on the
L
jumps of the various higher order features, such as tangential and
curvature discontinuities considered in §2.10 etc. Particularly simple form
is taken by the singular contribution in the FTED (2.23), it is proportional
to the / [f]l - ¢ - d¢. Henceforth we shall call contribution in this form as

L

linear contribution for it depends linearly on the jump of the examined

function f(X).

Whenever detection schema is built on the basis of the linear
singular contribution, which includes all of the schemas considered so far,
very unpleasant “side effects” come into existence. Thus fixing the length
of the detecting “thin mask,” will allow to have parasitic nonzero singular
contribution when the mask is centered on the extension of the actual edge,
i.e., outside of the singularity. Similarly if the jump function [f] changes

sign across some point, as in the case of the vertices of the checker board
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pattern, the linear singular contribution might turn zero even though an
edge is obviously present. We may also want to combine the outputs of
singularity detectors of different nature, for example a corner detector and
motion detector in the manner that their interaction does not introduce
erroneous effects. Another serious problem which plagues all known
detection schemas is breaking up of the continuous singular boundaries, or
so called streaking problem. It therefore can be seen that on the one
hand linear singularity detectors are not local enough, as in the vicinity of
the edge end, but on the other hand these schemas are too local and are
blind to anything that happens outside of the support of the detecting mask,

hence streaking, checker board effect, etc.

Even more important is to observe that if the support of the
detection mask matches ezactly the local shape of the singularity, the
linear contribution will be maximal. In this case, of course, the detection
will give more precise measurements. However, it is generally true that
singularity boundaries are not piecewise linear submanifolds, for they have
nonzero curvatures. Hence it seems as if we cannot possibly guess a local
shape of the singularity without actually detecting it. But, in fact, in what

follows we will attempt to do just that.

To start answering the above questions, the arsenal of the concepts
borrowed here from the distributions theory needs to be extended. In the
following definitions convolution and tensor product of generalized

functions are presented.

Definition 2.11.1.

Let f(X) and g(V) be generalized functions so that f(X) € 3. and g(x)
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€ %, then the unique distribution f(X) ® g(¥) € ¥hi«m is defined by the

rule

<f(X) ® g¥), ¥(x, ¥)> = <f(X), <g(¥), ¥(X, y)> (2.123)

Clearly, tensor product of two regular functions is simply their
regular product. In addition, (2.123) implies that if ©(X, ¥) = ©,(X) - ©¥),

then

<f ® g, o> = <f, ;> - <g, P> (2.124)

Furthermore, it is shown in the theory of generalized functions, that
tensor product is a commutative and associative operation. And the

following identity holds

DAf(X) @ g(¥)) = D«Af(X)) @ g¥) (2.125)

where Dy« is any linear differential operator. Similarly multiplication by the

test function ©(X) € %, can be carried inside the tensor product:

p(x) - (X)) ® f(¥) = »X) - {(X)) ® &¥) (2.126)

Tensor product construction is utilized in the extending usual operation of

the convolution to distributions.
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Definition 2.11.2.

Let f, g € %7 and ¢ € %, then convolution product f * g is given by
<f %g, 0> = <f @ g, (X + ¥)> (2.127)
It is also shown that generalized convolution satisfies the very same
properties of the usual convolution fxg(X) = ff(?{' — 1) - g(®) - dt such as
Rm
commutativity, associativity and differentiation property. As a consequence

of the definition formula (2.127), convolution of the generalized function

f(X) with smooth test function ¢(X) takes particularly simple form:
fxp(X) = <f(t), X — t)> (2.128)

and is called regularization of f(X) by ©(X) since f * ¢ € C®, i.e., smooth

To obtain quadratic nonlinear edge detection schema, consider

expressions in the form
QUf)X) = <Dif ® D, @\(x, y) - @y, t)> (2.129)

where DY is some linear differential operator with respect to the variable &.

Particularly if ¢, and ®, have form @€, ) = (¢ — M), (2.129) may

be transformed according to the regularization formula (2.128)

= <Dyf @ Duf, 0i(x — y) - @y — t)>
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= <§01(X - y) . Dyf, th * @g(Y)>

or by the multiplication property (2.126) we have

= (Dyf ® (D.f * ‘Pz)) * @1(32) (2.130)

Now, let us assume that D, above is just partial differentiation

operator ga; and that f(X) is a regular function satisfying conditions of the
i

FTED. We further set test functions ¢, in (2.129) to be narrow supported,
so that regular contribution of any generalized function convolved with ¢,
is negligible compared to the singular contribution (see (2.23)). Then with

use of the FTED, (2.129) is reduced to
QX)) = <X — 9) - n - If] - &, (ny - [f] - 6)) * (¥)>  (2.131)

where L, signifies that singularity lies in the y¥-coordinate plane.

Upon using regularization property (2.128) and definition of the simple

layer from §2.2 we obtain

- /901(?: -9 o -0 [/ Oy — 1) - - [f] - de) - dey, (2.132)
L L

If we replace @,(£) by its symmetric reflection ¥(£) with respect to

the origin, i.e. ¥(§) = (-£), we get
Q(f) == <D,f . wl’ D,f O w2> (2.133)

where %, and P, are sliding integration masks encountered in the earlier
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considerations and symbol (O denotes sliding integration, to distinguish it

from the convolution.

From this last equation we can interpret result in (2.132) as a scheme
whose singular contribution at the point is equal to the usual linear
contribution with the density modified by the singular linear contribution of
each point within the support of (¥ — X). To rephrase the above

statement differently, detection schema built on (2.133) detects submanifolds

along which linear detector has significant output on the average.

It is worthwhile to notice that (2.133) is not commutative with respect
to ¥’s. Thus if ¥, and ¥, are two narrow test functions rotated by the
equal amount and assuming supp(®,) be shorter then supp(®,) then for ¥,

centered at X; in the vicinity of the “corner” singularity L on Fig. 2.13.

Ra

(Fig. 2.13)

Q(f) will not give faulty measurements as would be the case if only “long”
mask ¥, were used. The reason for this “smart” behavior is seen in (2.132),
where P, measurement is multiplied by the local jump [f] within supp(®,)

which is zero outside L. On the contrary, if extension of the singularity is
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sought as in the striking problem, longer ¥, is chosen so that contributions
picked by %, from far away points are integrated according to (2.132).
Observe also that checker board problem, mentioned above, is also handled
properly by the quadratic scheme (2.133). Since linear contributions do not
vanish if mask is moved off the black-white vertex, our detector will simply

disregard a single zero measurement and will integrate the rest according to

(2.132).

The next task is to derive computational form of the simplest
quadratic detector (2.133). By this is meant transformation of the
Functional form of Q(f) into the form when all terms resulting may be
computed by the computer. To this end, we simply apply integration by

parts several times to obtain expression.
AN = (# O O B - D), =% O - € O Bhd  (2134)

where subscript is partial differentiation symbol and (¢ stands for the
process of sliding integration. It is to be noted that Q(f) in (2.134) can be
~ now numerically estimated with the use of numerical integration and
differentiation. It would also be legitimate to take another, computationally -
more expensive form of Q(f), whose significance is in the new interpretation

assigned to quadratic schemas. We may also write
Q(f) = -f O (wl - (f O wz)xi)xi (2.135)

which can be thought as familiar linear detection with modified mask

¥, - (f O ¥;) whose shape changes from point to point, according to the
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measurements of the first pass detection f O ¥,.

Thus (2.135) represents space variant nonlinear filtering, correlating
singular part of the actual generalized derivative of f(X) with measurements
of the detecting mechanism on the previous pass. This observation yields

an iterative detection schema

Qi) = -f O (¥, - Qulf)x (2.135.1)

Such a schema amounts to the molding “custom made” detection mask, which
fits local shape and size of the singularity within its support.
Normalization of each successive Qn(f) would be necessary to prevent

numerical blowup.

A further improvement of this schema is made by observing that
differential operators D in the definition (2.129) of the quadratic detector
need not be just first generalized derivatives and need not be the same.
Specifically, this generalized differential operator may be linear combination
given by (2.100) of the first order detector and curvature detector
developed in §2.9. Thus if x and y are directions of differentiation in
(2.100) we may derive similarly to the (2.134), via integration by parts,

computational form of the second order quadratic detector

Q(Z)(f) = (wl O(G - f — Gy . f))x + (wl O (f * (ny - Gx)) + (2.136)
+ (wl @ (G * f))xy - (wg Q (Gx * f))y

where G = (f O ¥,)x + N - (f O ¥y)xy is familiar edge-curvature detector.

Looking at quite cumbersome expression (2.136) one may find

satisfaction in the fact that no intuition would produce it without the heip
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from the calculus of generalized functions. Thus one more time under-

scoring its significance in the numerical analysis of singularities.

It is worthwhile to note that taking third order and higher tensor
products, whose computational form may be derived just as easily as for
quadratic detector (2.129), information from more and more distant singular
neighborhoods will be integrated by the locally fixed detector. In such a
way, global singularity detection can be set up. Another important
observation is that the whole detection schema may be fashioned so that
the mask correction term in (2.135) comes not from the directional
measurement provided by the integration with the single directed mask %, on
the previous iteration, but from the compound procedure which combines all
directional outputs from the preceding iteration. Such a procedure is
described briefly in the next paragraph, containing some preliminary

experimental results.

§2.12. A simple edge detector.

Before proceeding with the business of the description of the
experiments with “narrow rotating masks” algorithm, formulated in this
work, the following disclaimer is called for by the emerging view of the

nature of Numerical Analysis of Singularities:

The author of this work does not believe that this new
numerical discipline should focus primarily on the “detection” of
singularities, i.e., just finding loci of the singularity boundaries.
But numerical wmethods should be developed whose purpose is

computation of the essential singularities.

And what is there to compute besides the coordinates of the
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singularity boundaries? All these internal numerical quantities, which come
into being only on the surfaces of singularities. That such quantities
actually exist have been assured, I hope, by the preceding calculations based

on the theory of generalized functions.

On the whole, it looks that to solve the singularity location (i.e.
detection) problem which today’s Al applications seem to demand, some inner
characteristics of this singularity (curvatures, for example) will have to be
computed as well. Iﬁ this sense, the so called Fitting approach pioneered by
M. Hueckel [Hu.] and continued recently in [Na. Bi.] is much closer to the
spirit of this work. However, from the point of view of the richness of the
computational structure of the essential singularity, only primitive first
order approximation has ever been attempted there. It hardly needs to be
said, therefore, that efforts in this field should be refocused from the
“detecting” attitude which has been a dead end for 30 yeavrs, to the

numerical analytic orientation.

The remainder of this chapter is devoted to the discussion of the
experimental edge detector (notice by FTED edge is a particular kind of
singularity), which combines first order detector and three different
curvature detectors with the method of rotating thin masks described
previously. These measurements are then combined into the compound edge
map of wvariable intensity through the wvariant of nonmaximal suppression
scheme, and then image is further nonmaximally suppressed in the estimated

gradient direction.

The author has critical reservations about the very nature of this
passage from the local measurements to the global singularity description.

But until less ad hoc methods are developed, this is state of the art which
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is adapted as well as we could to the particulars of the rotating thin masks
detector. While resulting edge detecting appears superior in many respects
to the previously published experimental data (of course the author does
not have information if any classified data of better quality exists), we
have used the final edge extraction just to illustrate that even this faulty
approach (i.e., nonmaximal suppression) can be improved significantly by
incorporating more sensible local singularity measurements. Unfortunately
experimentation has been limited for the lack of high speed interactive

imaging facilities usually available in today’s Al oriented laboratories.

The first step of our detection scheme is to choose appropriate scale
according to the scale of the detail sought and to the estimated noise level.
This is accomplished by computing smooth test functions, or mollifiers as

they are called in functional analysis, in the form

exp[-ﬁ_f"l_"’_xz] . exp[NT-M_z—-v—-—z] if Ixl <M and Iyl <N

Pmlx, ¥) = {
0, otherwise

M, N are integers which determine “length” and “width” of @(x, y).

Clearly ©(x, y) is a smooth function with compact support akin to the
test function defined in (2.1.0). If we set the step of the digital grid to be

a unit, then supp(®) is @M 4+ 1) - 2N + 1) digital rectangle.

Next, the angular resolution K is chosen and the function ¢(x, y) is
rotated K times through the angle o« = =/K. After each rotation, the
digital version @ .o(X, y) is recomputed by simply rotating every grid point

(x, ¥) in supp(p,.o) backward using transformation formulae
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X =cos(m - -a) -x + sinlm - a) - y
(2.138)
Y’ = -sin{lm - ) - X + cos(m - a) -y

and then recomputing corresponding function value from the original test

function in (2.137), i.e.

Pr.alxs ¥) = oun(X’, Y) (2.139)

Thus by having explicit form of the test function we avoid interpolation

problems associated with rotation of the digital masks.

Picture 2 shows resulting test functions, where the intensity of the
pixel correspond to the value of the function at this point. The angular
resolution on (Pict. 2) is 15°. Each row of the masks has a scale associated
with it. Thus in the first row M = 2, N = 4, so the masks are 2 pixel
wide and 8 pixels long, and in the last row we have 8 X 8 pixels masks (i.e.,
M = N = 4). Hence from row to row we have transition from strongily

directed masks to less directed.

The next step of the algorithm is digital integration of the given
image with the sequence of sliding masks of fixed scale and fixed angular
resolution. Which means that for each oriented function ©,.q(x, y) and

image f(x, y) a new function f ., is derived according to

Be
where B¢ is support of the shifted ¢,., and double integral in (2.139) is
numerically evaluated by your favorite quadrature method. This process

makes K differently blurred versions of the original image, where #/K is
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angular resolution.

We now choose central finite differences to approxiamte digital

derivatives:
Axfi“j == %(fhl_,j - fi-l,j) (2.140)
Derivative in the direction £ = ma is computed according to formula
Ae = cos(m - a) - Ax + sin(m - o) - Ay (2.141)

Approximation to the second derivatives in the direction £ is obtained by

simply iterating operator AB twice, i.e.,

gz—e’; — AL 8,0 = A} (2.142)

and similarly for mixed derivatives

2r

30 = AeAn(f) (2.143)
where n, £ are some directions of differentiation. Let n be the direction-
associated with positive direction of the short axis of the masks on (Pict. 2)

and £ is direction of its long axis as on Fig. 2.14.

(Fig. 2.14)
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Then for each f,.,, we proceed to apply three following finite difference

operators:
Dl(fm‘(l) = An fm‘a + >\ . AnAe fm.a_ (2.144)
Dof,.o) = |An f .0l + N - 'Afz fo.ol (2.145)
Ds(fm.a) = An fro + N - 1(An By Tr.0)* — (A) frq) - (B] T.00)] (2.146)

The reader, of course, will recognize these as a mixture of the first order
detector with various forms of the curvature detectors described in §2.9.
Constant A\ determines the weight ascribed to the curvature of the

singularity.

We demonstrate this process thoroughly for the 256 X 256 “clock”
image on (Pict. 3), which was chosen for its great deal of small details,
including easily perturbed numerals on the “clock’s” face. It will give us
some idea how well the schemes extract singular information. The other
reason for such detailed picture exposition is our effort to avoid
unfortunate practice in the literature on edge detection, when only a few
pictures of very gquestionable informational content are given, usually
the ones which authors consider “the best presentable” and most’

publishable.

In all images therein, integration was performed with the masks of the
first row of (Pict. 2) whose size is 2 X 8 pixels and o« = %/12. Picture 4
(i) depicts on the left the result of the integration with mask #3 and on the
right, corresponding D,(f,.q) of (2.144) is evaluated and mapped as an

intensity function. Furthermore (Pict. 4) (ii) does the same for mask #7.

Similarly, (Pict. 5)—(Pict. 6) demonstrate this process for the digital
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differential operators D, and D, of (2.145), (2.146).

As a result we have K processed images fé/t.m, m=20,1,.,K —1
for each differential operator D, in (2.144)—(2.146). This completes stage of

the local detection.

For each (i, j)} point and fixed v, the max (f,’,{.a (i, j)) is computed, say
it is f&o(i, j) on Fig. 2.14. We interpolate values fao(Ma) of the intersection
points with the local grid lines in the mask’s direction n. First order

interpolation has been used here. Then condition

forglis 3 > Foug(Mjuy 2 (2.147)

is checked. If (2.147) is true then we put F, (i, j) = f&o(i, Bv =12 3.
If inequality is not satisfied then sorting continues for the rest of f gm and
the maximal remaining element is checked for (2.147) again, etc., until we

exhaust all possibilities and then set F (i, j) = 0.

Images F,, i = 1, 2, 3 are shown on (Pict. 7) (i), (i), (iii),
correspondingly. Curvature weight A\ = 1 has been used there. We call
this variable intensity edge map a “pencil drawing,” for its obvious

resemblance.

Some noted differences among F, can be observed. For example, F,
has the best “clock” outline and most of the numerals are easily discernible,
while F, and F; seem to get better such highly curved characters as
numeral “6.” Smaller values of A\ have been tested with inevitable “erosion”
of all curved edges. Clearly, thresholding is not a clever thing to apply to
the informationally reach image F,, and some other global methods should

be used to extract bilevel edge map (for example a variational approach).
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Nonetheless, we perform direct thresholding of F,’s on the same level just
for the sake of comparison. Again we see how well curvature is captured

by D, operator. See (Pict. 8) for these thresholds.

We can further improve this ad hoc suppression scheme by “thinning”
the lines in F, to 1 pixel wide. For each f (i, j) the direction of the

gradient vector is estimated by computing at each point (i, j)
grad(F (i, j)) = (AF F G, 3, A F G, §) (2.148)

where A' is forward difference operator. Then the same interpolation
procedure as above is performed and (i, y) is checked for maxima condition.
If successful, the value is preserved. If not, the value is suppressed, i.e.,
- turned zero. The results are shown on (Pict. 9), and corresponding equal

thresholds on (Pict. 10).

It is worthwhile to see the same detection process for the quite noisy
512 X 512 image of the Tank (Pict. 11.1). On the whole, D, operator seems
to have the best performance, which is depicted on the sequence Pict. 11.
Again we see that every minute detail of the “tank” image shows up in the
“pencil drawing” image, including tiny treads. We also see how
indiscriminately thresholding destroys singularity information, so pain-

stakingly obtained with the use of directional integration.

Finally we present 512 X 512 computer generated “Robot” image (Pict.

The interesting observation about this image is the presence of
bright and dark regions containing singular boundaries. According to the

FTED and subsequent curvature calculations, the singular contribution,
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which we are observing as an intensity of the obtained “pencil drawing”
image, is proportional to the size of the jump. Since this quantity is small
in dark regions relative to the jump measurements of bright regions, we may
lose these “dark” singularities.

To overcome this problem we modify each fg.a(x, y) by dividing it
by the local directed energy estimate E = |If o(x, y)Hz, where for each

point (i, j) = (X0, Yo)

E(xq, ¥o) = / f (Pn.o - £)? - dx - dy (2.149)
Be

where B¢ is support of the ¢, .o centered on (xq, Yo).

Using this local energy equalization with the developed above scheme,
we obtain sequence of images depicted on Pict. 12. Observe how well it
performs in detecting almost invisible features from the original image (Pict.

12.1).

These numerical experiments shall continue with a variety of other
more sophisticated local detection shemas, described in this work. of
courée, it will include 3-dimensional singularity surfaces with torsion,
produced by motion sequences with possible rotations. On the
theoretical side, construction of these schemas is not that different, since
the same theory developed here is applicable. However, this will require
much more powerful interactive computing facility than available to the

author at the moment.
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(Pict. 11(ii) )
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§2.13. Remarks on the consequences of discrete sampling.

The distributional approach developed in this work represents only

the beginning fragment of the Numerical Analysis of Singularities.

With few exceptions, the generalized functions, whose essential
singularities we examined, were assumed to be given by continuum
description. However in the formulation of the “narrow rotating masks”
algorithm of §2.12 we have switched to the discrete numerical implementation
manifested in the discrete sampling of the image, discrete integration
procedure, finite-difference approximations and finally non-maximum
suppression based on discrete interpolation of the computed generalized

derivatives.

Each of these steps introduces an approximation error. Theoretical
estimation of the committed error and its influence on the resulting
singularity detection is of great interest. Another source of errors is a
noisy input data, whose effect is known to destroy outputs of many edge
detecting schemes. For example, well performing in the absence of noise
Sobel, Compass‘ and Roberts edge detectors are unstable even with high

signal to noise ratios, e.g., SNR = 10 [Pral.

The effect of noise on the localizing ability of a one-dimensional
linear edge detector was considered in [Can.]. First, it has been shown there
that there exists an optimally shaped edge detector with respect to the
signal to noise performance as well as localization property. This optimal
one-dimensional shape is derived through the numerical optimization,
resulting in the waveform looking very much like first derivatives of the
test functions <pN(x) defined here in (2.1.0), which we use as a building block

of the “rotating masks” algorithm. It is interesting to note that in the final
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detection scheme [Can.] approximates his optimal waveform, derived with the
use of statistical estimation, with first derivative of a Gaussian. The two
dimensional detector in [Can.] is simply a two-dimensional extension of this

ad hoc approximation.

The most important conclusion of the above work is a rigorous
demonstration for the need of wmultiple widths of the edge detectors
depending on the local estimate of the noise energy, and proof that signal to

noise ratio may be significantly improved if directional operators are

used.

It is very amusing that we come here to the same conclusions just on
the basis of deterministic model provided by the FTED (2.23). Of course,
our considerations are of much more general (applied to the arbitrary order

singularities) and geometrical nature.

It should be of fundamental importance to carry statistical analysis
of [Can.] in the framework of Numerical Analysis of Singularities. In
particular, the stochastic extension of the FTED should be stated and
proved in order to bring probabilistic realm into the computing of
singularities. However affinity of our deterministic conclusions with those
of [Can.] gives us confidence that the scheme of the “rotating thin mask” is

naturally adapted to handle random noise perturbations.

Next we shall briefly account for the fact that realistic image is

obtained by the finite sampling in the physical imaging system.

The effects of the sampling procedure are well known. They include
errors due to undersampling, finite sampling pulse effects, errors of the

imperfect reconstruction—collectively known as Aliasing effects.
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Ideally we would like to have theory of discrete approximation and
accuracy analysis when the essential singularity itself is an object of
numerical computation. Specifically the following question should be
answered first: given n-dimensional surface distribution, what is its “proper”
discrete version, and what is the norm to measure the fit of this numerical
approximation? While a few ad hoc attempts to answer this question were
made in effect by trying to define “digital edge” (e.g. see [Har.l), nobody
has asked it in the framework of generalized functions of several variables,
which seems to be naturally amenable to such discretization. This and
further discrete singularity theory is yet to be developed. We shall here
only illustrate that inspite of the band limited character of the realistic

digital image, the Fundamental Theorem of Edge Detection is still applicable.

Let f(x, y) be an ideal image intensity function. In any realistic
imaging system, the actual image function is obtained by first sampling
f(x, y) with the finite pulse width sampling array, whose sampling rate is
chosen to overcome effects of spectral overlap, caused by high frequency
components of f(x, y). Clearly, if f(x, y) has essential singularities its

Fourier spectrum is of infinite extent.

The final samples of the image are estimated by a spatial integration
of the interpolated sampled image over discrete grid cells. By making
some simple transformations, we obtain the form of this sampled image as

follows

F(x, y) = f(x, y) * H(x, y) (2.151)

where filter H(x, y) absorbs sampling and interpolation procedures.
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Let Ax, Ay be sampling grid sizes. The corresponding sampling

Nyquist rates then are

Ax = L Ay = L (2.152)
The resulting F(x, y) is said to be spectrum limited with
supp{¥F(F(x, y))} = Qx X Q, (2.153)

The bandlimited interpolation to the sampled function is not the only
possible. For example, nonbandlimited interpolation is achieved via
inscribing linear segments which can be shown to be equivalent to

convolving in (2.151) with triangular filter of compact support, i.e:

/ax

N

-aXx AX

(Fig. 2.15)

Since H(x, y) in (2.151) is always a smoothing filter, the essential
singularities in the ideal image f(x, y) are generally destroyed. Hence one
may ask how possibly theory developed here is of any use if singularities

are gone? However, a similar situation can be observed in our “rotating
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masks” algorithm in §2.12 after the first stage of integrating (convolving)

image with a sliding smooth mask.

In fact, FTED computes singular contribution after the integration
stage. Thus, we may use associativity property of convolution and replace

the test function ¢(x, y) in the proof of (2.23) by the new test function
pix, y) = o(x, y) * H(x, y) (2.154)

where H(x, y) is the imaging system’s smoothing filter. In practice H(x, y) is
either of small compact support as on Figure 2.15, or it is a rapidly
decaying function such as a Gaussian. In either case, the effect of changing
test function in (2.154) simply widens the support of the detecting mask.
However, the whole theory developed here is still applicable without any
modifications, except the introduction of the fundamental limit on the

minimal size of the support of the test function.

As we observed in (2.152) the finite size of the discrete grid imposes
Nyquist bounds

. = K
Qx Ax and Qy v

If we use Bernstein’s inequality, which establishes fundamental limit on the

size of the derivative of bandlimited function of several variables,

am+nf(x, y)

8Xmayn < Max(f) - QY - Qy s (2.155)

the upper bound on the regular contribution in the (2.23) may be obtained.
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This estimate gives us an upper bound on the error introduced by the

sampling and subsequent interpolation of the imaging system.

For example, since the minimal width is one pixel-wide, for the test

function ©,(x, y) we have

g;f;, ©, roq < Kr}—c - Max(f) //<p1(x, y) dxdy (2.156)

The use of finite difference operators as in (2.140)—(2.146) can be also
rigorously justified since we have Taylor’s Theorem for generalized
functions (see Theorem 2.7.1). Just as usual Taylor series expansion is used
to calculate finite difference approximations to derivatives and evaluate the
accuracy of the resulting approximation, the Qeneralz’zed Taylor expansion
(2.65) will serve similarly to indicate accuracy of the generalized finite

differences, which (2.140)—(2.146) in effect are.

Finally, we will remark that the formulas for various discontinuous
vector field quantities are derivable in the manner similar to the FTED.
Among them the most important for the application to the analysis of

discontinuous motion flow are the following identities [Est. Kan.2]:

curl(E) = curl(E) + 1 X [E] - &, (2.157)

div(E) = div(E) + 1 e [E] - &, (2.158)

Observe that (2.157)—(2.158) may be perfectly incorporated into our
“rotating thin masks” scheme with scalar masks used in (2.157) and vector
masks in (2.158). The first of these identities will be useful when

expanding singularities are observed in the image, while the second formula
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should find application in finding boundaries of the rotating bodies in the

image.
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