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Abstract

This work is divided into two papers. Firstly, we theoretically calculate how
gravity waves are emitted from the neutrally buoyant dry convection in Venus’s middle
atmosphere and investigate whether such waves play a significant role in supporting
the superrotation of Venus’s atmosphere. Secondly, we attempt to explain the radio
scintillations seen in the occultations of many spacecraft, particularly Pioneer Venus,
as caused by convectively generated gravity waves. Below are the abstracts of the two

papers presented in this thesis.

Paper It

We calculate the emission of internal gravity waves from neutrally buoyant
dry convection embedded within a stable atmosphere with static stability and zonal
winds varying in height. We apply this theory to Venus’s middle atmosphere to inves-
tigate whether these waves can help support the superrotation of Venus’s atmosphere.
Furthermore, we model the radio scintillation data obtained for Venus as caused by
such internal gravity waves. The emission mechanism is similar to that suggested for
driving the gravity modes of the Sun. We assume a background atmosphere on which
we have superimposed linear wave propagation. Waves are damped by reabsorption
by the convection, wavebreaking in the stable atmosphere, critical layer absorption,
and by wave radiation to space. Wavebreaking is imposed wherever the waves be-
come convectively unstable. Inertial effects are neglected and plane parallel geometry
is assumed. Propagation of the waves is handled using a second order WKBJ approx-

imation. A complete three dimensional ensemble of waves is retained.

We show that both westward and eastward propagating waves exert strong
accelerations on the mean flow. The westward propagating carry enough momentum

to support the westward superrotation between the convection and the cloud-tops;
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however, the bulk of the wave momentum flux is critically absorbed and deposited
within a kilometer of the convection because most of the waves propagate slowly in
the horizontal. The eastward propagating waves are found to exert large decelerations
above the zonal wind maximum. The decelerations are larger than 20 m s~! day™,

similar to wave drag in the Earth’s mesosphere.

In the course of ev;':tluating our model, we have found that dry convection must
have “penetrative” mixed layers above and below it. This arises from wavebreaking of
gravity waves immediately after their generation. The effect of the penetrative layer
is to filter wave emission and to create a discontinuity in the background temperature

lapse rate d1'/dz. The latter may be observable in atmospheres.

Paper II:

We simulate radio scintillations as they would appear in Pioneer Venus ra-
dio occultation data assuming that the index of refraction fluctuations in Venus’s
atmosphere responsible for the scintillations are directly caused by gravity wave fluc-
tuations. We assume that the gravity waves are created by a global convection layer
between 50 and 55 km altitude in Venus’s atmosphere and propagate vertically. As-
sociated with the gravity waves are density fluctuations which create the index of
refraction variations. We compare the simulated scintillations with data and argue
that this theory for the radio scintillations is preferable to the theory that the scin-

tillations are caused by clear air turbulence in Venus’s atmosphere.

We show that these gravity waves can explain the shape and amplitude of the
radio scintillation variance spectra in frequency. The shape of the simulated radio
scintillation variance spectra in frequency is nearly a direct result of a saturated
spectrum of breaking gravity waves. This saturated spectrum is the spectrum of

breaking gravity waves in the vertical wavenumber. On the other hand, the overall
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amplitude is subject to parameters such as the intensity of the convection, the angle
between the zonal winds and the beam path, and the zonal wind profile at polar
latitudes. Limits can be placed, though, on the intensity of the convection which
generates the waves and on the angle between the radio beam path and the winds in
Venus’s atmosphere. We find that the convection in Venus’s middle atmosphere, even
in polar regions, must transport 1 W/m?® to create gravity waves strong enough to

break. This result is dependent on the amplitude of the zonal winds at polar latitudes.
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Abstract

We calculate the emission of internal gravity waves from neutrally buoyant
dry convection embedded within a stable atmosphere with static stability and zonal
winds varying in height. We apply this theory to Venus’s middle atmosphere to inves-
tigate whether these waves can help support the superrotation of Venus’s atmosphere.
Furthermore, we model the radio scintillation data obtained for Venus as caused by
such internal gravity waves. The emission mechanism is similar to that suggested
for driving the gravity modes of the Sun. We assume a background atmosphere on
which we have superimposed linear wave propagation. Waves are damped by re-
absorption by the convection, wavebreaking in the stable atmosphere, critical layer
absorption, and by wave radiation to space. Wavebreaking is imposed wherever the
waves become convectively unstable. Inertial effects are neglected and plane paral-
lel geometry is assumed. Propagation of the waves is handled using a second order
WXKBJ approximation. A complete three dimensional ensemble of waves is retained.

We show that both westward and eastward propagating waves exert strong
accelerations on the mean flow. The westward propagating carry enough momentum
to support the westward superrotation between the convection and the cloud-tops;
however, the bulk of the wave momentum flux is critically absorbed and deposited
within a kilometer of the convection because most of the waves propagate slowly in
the horizontal. The eastward propagating waves are found to exert large decelerations
above the zonal wind maximum. The decelerations are larger than 20 m s~ day™,
similar to wave drag in the Earth’s mesosphere.

In the course of evaluating our model, we have found that dry convection must
have “penetrative” mixed layers above and below it. This arises from wavebreaking of
gravity waves immediately after their generation. The effect of the pénetrative layer

is to filter wave emission and to create a discontinuity in the background temperature



lapse rate dT'/dz. The latter may be observable in atmospheres.



1. Introduction

In this paper we present a theory of internal gravity wave generation by and
propagation from an infinite horizontal convecting layer embedded in an otherwise
stable atmosphere with shear. Our intent is to investigate how waves generated by
this mechanism may support the rapid rotation of Venus’s atmosphere. In the investi-
gation, we theoretically calculate a spectrum of waves emitted from dry convection. In
an accompanying paper we test our theory against observations by using our gravity
wave spectra in simulating radio scintillation data as if it were obtained by the Pioneer
Venus mission and subsequently compare our simulations to the Pioneer Venus data.
In the course of determining the gravity wave spectrum, we present some insights into
the nature of a fully three dimensional ensemble of waves.

In this introduction we first give a brief description of the state of Venus’s
atmosphere. This includes pointing out specific criteria that any theoretical expla-
nation for the superrotation must satisfy. Secondly, we present an overview of some
models of the dynamical state of its atmosphere in the form of a brief literature re-
view. Thirdly, we present our hypothesis for the support of the Venus superrotation
by gravity waves generated by neutrally buoyant convection. Fourthly, since gravity
waves have been studied considerably in the Earth’s atmosphere, we apply some ob-
servational constraints found in gravity wave spectra in the Earth’s atmosphere to our
theory for gravity wave generation. Finally, we describe our analytic and numerical
calculations.

Features in the clouds in Venus’s atmosphere rotate with a roughly four day
period. Despite early arguments that this feature is only a manifestation of a plan-
etary wave and does not reflect the atmospheric wind speeds (Young 1975), several

atmospheric probes have since found that the atmosphere does indeed rotate with a

roughly four day period (Marov et al. 1973; Marov 1978; Murray, Belton et al. 1974;



Seiff et al. 1980). Because this rotation rate is approximately sixty times the rotation
rate of the solid planet, Venus’s atmosphere is said to superrotate. This contrasts
starkly with the Earth’s atmosphere, which rotates only marginally faster than the
solid planet. There must be some mechanism at work in Venus’s atmosphere which
distinguishes it substantially from the Earth’s and those of most other planets. It has
been suggested recently, however, that Titan’s atmosphere may also be superrotating
because of a large obliquity in its atmosphere apparent during the 28-Sgr occultation
Hubbard et al. 1993).

Venus’s winds are entirely westward, the same direction as the planet’s rota-
tion. The winds increase monotonically with height from the surface to the cloud-tops
(~ 70 km). The winds are slight within the first ten kilometers of the surface, where
convective activity is thought to reduce the shear (Schubert et al. 1980). Between
10 and 50 km the winds increase with height with especially strong shears occurring
in regions of high static stability. Between 50 and 55 km lies a thick cloud layer
which has been observed to convect vigorously. Not only have convective downdrafts
been observed in situ by the VEGA balloons (Sagdeev et al. 1986), but many descent
probes indicate that this layer has a nearly neutral static stability and little wind
shear within it. Above this layer, the atmosphere becomes strongly stable and the
wind shear pronounced. Pioneer Venus orbiter infrared data showed a reversal in the
equator-to-pole temperature difference, which is indicative of a reversal in wind shear
above 70 km altitude. On the other hand, millimeter interferometric experiments
have shown that the atmosphere continues to superrotate near 100 km altitude (Shah
1992), an inconsistency which we do not wish to discuss, but we shall consider in our
work.

In determining the zonal winds globally, time sequences of UV and infrared

images from Mariner 10, Pioneer Venus, and Galileo have been used. In each of these



data sets, it was assumed that the velocities measured were reflective of the winds
somewhere in the 60 to 70 km range. At the time of Mariner 10, the cloud-top winds
were observed to have constant angular momentum per unit mass from the equator
up to about 55° latitude. Poleward of 55°, rotation on spheres was thought to occur
meaning that the angular velocity of the fluid flow around the planet’s spin axis is
only a function of altitude. Early in the Pioneer Venus encounter (1978-1980), the
winds were observed to exhibit more nearly global rotation on spheres (Rossow et
al. 1980). The Galileo project observed winds which had nearly constant velocity
up to 60° latitude (Belton et al. 1991). Thus, the observations show that the zonal
winds vary in time. The behavior common in all of the observations is that the
angular momentum per unit mass of the cloud-top winds is always maximized near
the equator.

Many theories and papers have been published over the past two dozen years
concerning Venus’s atmospheric superrotation. Thus far, four of the theories have
become the most commonly discussed: the “moving flame” hypothesis, atmospheric
tides, equatorward transport of angular momentum by eddies within a Hadley circu-
lation, and vertical transport of momentum by eddies within a Hadley circulation.
We distinguish between mass tides, which involve a solar torque on the atmosphere,
and radiative tides, which involve an internal redistribution of angular momentum.
Radiative tides are generally considered as large scale, dominantly horizontal eddies.
For a discussion of the first three theories, see the review article by Schubert. Gravity
waves have been invoked within the framework of the third and fourth hypotheses,
thus our discussion will only deal with these. Our model of the superrotation fits
within the fourth hypothesis.

Any theory of the superrotation must explain how Venus’s atmosphere can

maintain a maximum in the angular momentum per unit mass at an altitude of



about 70 km above the equator. In a zonally symmetric (no eddies to redistribute
angular momentum over large scales) Hadley circulation, the only source of angular
for the atmosphere is from the surface which exerts a drag on the atmosphere. In
the presence of a finite amount of friction, such an atmosphere cannot have a local
maximum or minimum in the angular momentum per unit mass, because such a point
would imply the presence of an alternate source of angular momentum (Hide 1969 &
1970). Since a maximum in the angular momentum per unit mass does exist at the
cloud-tops near the equator, some nonzonally symmetric disturbance, such as an eddy
or a wave, must be responsible for creating the maximum in the angular momentum
per unit mass at the equatorial cloud-tops.

The Gierasch mechanism (Gierasch 1975) takes advantage of the fact that the
Hadley circulation can explain the global net upward transport of angular momen-
tum. In order that the cloud-top angular momentum be maximized, an eddy flux is
required to transport angular momentum from high latitudes to low latitudes near
the cloud-tops. Gierasch recognized that some eddies can transport angular momen-
tum down an angular velocity gradient in latitude. Such eddies should not transport
heat as efficiently as angular momentum, however, lest the mean Hadley circulation
be destroyed (Kalnay-Rivas 1975). Barotropic eddies do satisfy these requirements
(Rossow and Williams 1979). Indeed, numerical models have shown that a zonal
superrotation can be realized with such a mechanism (Del Genio et al. 1993). Of the
many disturbances seen in UV and near infrared imaging of the atmosphere, none
suggest the appropriate horizontal transport of angular momentum, though (Limaye
and Suomi 1981).

The Gierasch mechanism does not explicitly require barotropic eddies. Waves
observed in the atmosphere may transport eastward momentum to high latitudes and

thus westward momentum to equatorial latitudes. Gierasch (1987) and Schinder et



al. (1990) suggest that waves are generated in the clouds by the vigorous convection
between 50 and 55 km altitude and some of the waves are trapped within ducts above
and below the convection layer. These trapped waves are restricted to horizontal
propagation and will essentially transport eastward angular momentum toward the
poles, thus giving the equatorial middle atmosphere a westward impulse. They sug-
gest that the global horizontal “Y” pattern seen in UV images may be a manifestation
of the trapped gravity waves. This theory for superrotation is supported by the large
static stability of the middle atmosphere, the likelihood that the convection is more
vigorous at the equator than at the poles because of the distribution of solar heating
in latitude, and that gravity waves are nearly ubiquitous in the Earth’s atmosphere.

Other theories of the superrotation rely on a net upward transport of zonal an-
gular momentum near the equator and advection of angular momentum by a Hadley
circulation away toward the poles. If one ignores the effects of eddies, a circulation for
the atmosphere can be found by only imposing a diurnally averaged heating profile.
This type of circulation is called a mean meridional circulation (see Andrews, Holton,
Leovy 1987). Differences between such a flow and the actual flow can be character-
ized by a pattern of angular momentum sources and sinks created by divergences in
the Eliassen-Palm flux (Andrews and Mclntyre 1976). Hou and Goody (1985) have
performed a diagnostic analysis in which they have calculated how waves and eddies
redistribute angular momentum horizontally and vertically in Venus’s atmosphere
given the heating rates of Young and Pollack (1977). Indeed, their results show pat-
terns of wave flux divergences required to sustain different models of the mean flow.
The results tantalizingly imply that both horizontal and vertical transport of angular
momentum within the atmosphere must take place. This analysis required that the
atmosphere be statically stable throughout the regions of interest, and thus the role

of wave transport to or from the neutrally buoyant layer between 50 and 55 km within
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the clouds may be misrepresented. Nevertheless, the pattern of Eliassen-Palm flux
divergences must be explained. Hou and Goody suggest that atmospheric tides may
be responsible for the diagnostic pattern of flux divergence and would be responsible
for supporting strong vertical shears in the zonal wind. Hou and Farrell (1987) have
postulated that small scale gravity waves play an active role in sustaining the strong
shear below the cloud-tops and have calculated the necessary momentum flux spec-
trum in zonal phase speed. That such a spectrum exists has not been demonstrated
observationally nor theoretically. In the end, this diagnostic study is helpful in un-
derstanding the superrotation, but by its nature it cannot determine what waves and
eddies are responsible for driving the superrotation.

Atmospheric tides, which are internal gravity waves characterized by a zonal
phase speed equal to that of the Sun’s apparent motion over the planet’s surface,
have long been thought to help sustain the superrotation. The possibility that at-
mospheric tides may transport a substantial amount of zonal momentum vertically
near the equator was first suggested by Fels and Lindzen (1974). Subsequent work is
described in the review article by Schubert. Recently, Leovy (1991) and Baker and
Leovy (1991) have investigated the role of atmospheric tides in the context of a mean
meridional circulation. They performed numerical integrations in time from several
initial states with mean and semidiurnal heating rates provided by Crisp (1983). With
some horizontal diffusion, the resultant zonal winds were shown to resemble those on
Venus, and the tidal divergence was partly balanced by the meridional transport,
suggesting a significant role for atmospheric tides in supporting equatorial superrota-
tion. It is not clear in their model, however, to what extent the horizontal diffusion is
supporting the superrotation. If the horizontal diffusion is significant, then it is the
Gierasch mechanism that is at work. Furthermore, the instability of thé model for low

static stabilities, however, clouds the picture of how atmospheric tides would interact
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with the mean meridional circulation to support global superrotation. As with Hou
and Goody, unstable layers in the atmosphere cannot be handled when working in
the context of a mean meridional circulation. Nevertheless, Pechman and Ingersoil
(1984) have successfully shown that atmospheric tides are prominent in the Pioneer
Venus Orbiter Infrared data, and thus must play some role in Venus’s atmospheric
dynamics. They also showed that the atmospheric accelerations which result from
the forcing of tides are of the right magnitude to support the zonal winds (Pechman
1983).

We hypothesize that internal gravity waves at cloud levels in Venus’s atmo-
sphere can support the superrotation in a manner similar to tidal theories. These
waves must act to transport net westward momentum upward from their source re-
gion and/or net eastward downward from their source. Vertically propagating waves
eventually interact with the atmosphere by depositing their momentum and energy
only when they are somehow dissipated. Possible damping mechanisms include ra-
diative and viscous decay, but the damping mechanism of prime importance in this
theory is critical layer absorption.

Critical layers refer to altitudes at which individual waves have zero intrinsic
frequency (in the local rest frame of the fluid). Waves which encounter their critical
Jayers are commonly thought to deposit most of their momentum and energy at that
level (Booker and Bretherton 1967). The intrinsic frequency of a wave can be written
as & = ky(c; — 1u(z)) where k, is the horizontal wavenumber in the direction of the
background wind #(z) and ¢, is the horizontal phase speed of an individual wave in
the direction of the wind. We will consider eastward as positive in discussing wind
speeds; thus, since winds are westward in Venus’s lower and middle atmosphere, u(z)
becomes more negative with increasing altitude. The horizontal phase’ speed and the

horizontal wavenumber are constant in altitude z for internal gravity waves. As waves
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propagate vertically, they see the background wind @ vary in height, and thus their
intrinsic frequencies also vary in height. When the wave arrives at an altitude where
¢z = 1, its intrinsic frequency is zero and it encounters its critical layer. We assume
that the wave cannot propagate through its critical layer.

Critical layer absorption provides the correct orientation for the deposition of
momentum by vertically propagating gravity waves. Intuitively, a source of waves
located at an altitude z, will generate gravity waves with horizontal phase speeds c
slightly higher and slightly lower than the wind speed #(z,) at altitude z,. These
waves should propagate upward and downward from the source region. Waves which
propagate upward from the convection with horizontal phase speeds of @(z,) — Ac,
(where Ac, is small and positive) should be critically absorbed by the mean flow be-
cause i(z) becomes more negative with increasing altitude. Since such a wave moves
westward with respect to the flow at the source altitude, it carries westward momen-
tum vertically. Therefore, upon absorption, it will deposit westward momentum in
a mean flow which is more westward than at the source altitude. To conserve mo-
mentum, an eastward impulse should occur at the source altitude by such a wave. A
similar effect should occur below the source altitude, but an eastward impulse should
be given by waves which propagate with phase speeds of 4(z,) + Ac;. Thus, in the
rest frame of the source, waves which propagate westward upward from the source
should give a westward impulse to the westward mean flow above the source, and
waves which propagate eastward downward from the source should give an eastward
impulse to the eastward mean flow below the source.

This hypothesisvdoes not immediately answer what the effect of eastward
(westward) waves propagating above (below) the source should have on the over-
lying (underlying) atmosphere. Firstly, how much the waves would accelerate the

atmosphere remains unknown. These questions must be answered in our theoretical
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analysis. Secondly, we must know how much momentum is critically absorbed at each
altitude above and below the convection. This requires us to theoretically estimate
how much momentum is being carried at different phase speeds Ac;, both positive
and negative. Finally, the pivotal aspect of this theory is identifying an appropriate
source and being able to calculate a spectrum of gravity waves it might emit.

We hypothesize that the source for the waves is a nearly global scale dry
convective layer which lies between 50 and 55 km altitude in Venus’s atmosphere.
Because this source is advected by the mean flow, it should emit a spectrum of waves
with phase speeds c, centered about the local zonal wind speed #, in keeping with our
hypothesis. Secondly, its broad scale guarantees that it is not an isolated source and
should thus affect the atmospheric dynamics on a large scale. Thirdly, this source is
likely to emit a spectrum of waves broad in horizontal phase speed. This is necessary
so that the emitted waves can act to enhance the shear in the atmosphere.

Observational evidence for the existence of substantial gravity wave activity
in the Venus middle atmosphere is good. Internal gravity waves in the stable layers
adjoining the convection are suggested by large horizontal wind fluctuations seen
by the VEGA balloons and by the small scale density inhomogeneities sensed in
radio scintillation analyses. In the VEGA project, two balloons were floated near
an altitude of 54 km in Venus’s atmosphere and traversed a horizontal distance of
over 11,000 km within about 10° of the equator (Sagdeev, Linkin, Blamont, and
Preston 1986). Each balloon typically experienced vertical winds of about 1 m/s but
periodically saw downdrafts as large as 3.5 m/s (Sagdeev, Linkin, Kerzhanovich et
al. 1986). Of the wind and temperature variances encountered, about 15% of the
activity has been identified as gravity wave activity (Ingersoll, Crisp et al. 1987).
Woo and Armstrong (1981) have performed statistical analyses on short time scale

fluctuations seen in radio occultation data taken during the first season of the Pioneer
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Venus mission. Since the phase fluctuations and the intensity of the radio signal are
caused by density variations in the planet’s atmosphere, it is assumed that the short
time scale fluctuations in both are caused by density variations on short spatial scales
in the planet’s atmosphere.

Furthermore, there is indirect evidence that a critical layer absorption mech-
anism might be at work in the Earth’s atmosphere. Gravity wave momentum fluxes
have been measured in the Earth’s atmosphere using HF and MU radars. It was found
that the mean winds filtered the waves and that the momentum fluxes in the meso-
sphere were opposite in sign to the winds below the mesosphere (Reid and Vincent
1987; Tsuda et al. 1990). This can be explained by critical layer absorption acting as
a filtering process. It is assumed that eastward and westward propagating waves are
generated by a source in the troposphere. In the presence of an eastward (westward)
wind, the eastward (westward) propagating gravity waves are critically absorbed in
the troposphere. At the tropopause, the predominant modes are westward (eastward)
propagating modes. It is not known to what extent critically absorbed waves drive
winds in the troposphere, though.

There is also a precedent for suspecting convection as a source of gravity
waves. A convective source of internal gravity waves has been invoked to drive the
quasibiennial oscillation (QBO) in the Earth’s atmosphere. A type of internal gravity
wave, Kelvin waves, has been observed at the Earth’s equator (Wallace and Kousky
1968). Chang (1976) has hypothesized that these waves are created by a convective
source, albeit a moist convective source. The Kelvin waves propagate vertically and
deposit their momentum in such a way that westerly wind regimes descend in altitude
(Holton and Lindzen 1972, Plumb 1977). Given that this theory of the QBO and
our theory for the Venus superrotation use a convective source of gfavity waves as

a momentum source for the overlying atmosphere, we inquire whether there are any
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similarities between the Earth’s equatorial dynamics and Venus’s equatorial dynamics.

Optimally, we would like to use an observationally determined spectrum of
waves generated by convection to tackle our problem; however, an appropriate spec-
trum does not exist. A temporal frequency spectrum of w™3/3 has been observed in
the Earth’s atmosphere (Vinnichenko and Dutton 1969, Beatty et al. 1992), but this
is more likely reflective of a k%3 horizontal wavenumber spectrum of gravity waves
in the presence of strong Doppler shifting by horizontal winds. Information on wave
phase speed is weak. Typically, only a single dominant phase speed can be extracted,
but we are interested in a complete spectrum in phase speed. It is apparent that to
find out how waves can accelerate the mean flow in Venus’s atmosphere we must do
so theoretically.

Even though no gravity wave spectrum has been observed completely enough
to be used for solving our problem, nonetheless a theoretical spectrum of gravity waves
can be constrained by what we know about their vertical spectrum in the Earth’s at-
mosphere. A “saturated” spectrum for internal gravity waves describes the spectrum
of horizontal winds and temperature fluctuations in the vertical coordinate for short
vertical scales. This holds that the kinetic energy density spectrum of wind fluctua-
tions is proportional to k2 where k, is the vertical wavenumber. The same law holds
for the temperature variance spectrum in k,. This spectrum is probably the signature
of breaking gravity waves (Dewan and Good 1986; Smith, Fritts, VanZandt 1987).
Such a spectrum is expected in the neighborhood of critical layers because gravity
waves grow large enough that they break as they approach their critical layers (Hines
and Reddy 1967). In the process of breaking, they deposit all of their momentum
into the mean flow. Since critical layers are central to our theory, wavebreaking and
a k.3 spectrum are required in our theory.

A theoretical study has been applied to the Earth’s atmosphere to examine
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how small scale gravity waves can accelerate the mean flow; however, this theory
can only successfully describe how gravity waves can decelerate or act as a drag
on the atmosphere. Lindzen (1981) gives an expression for the rate of momentum
deposition by gravity waves assuming that they break at the altitude of interest. This
technique takes advantage of the fact that gravity waves tend to break via nonlinear
processes as they propagate vertically. As in critical layer absorption, when waves
break they deposit the momentum they transport into the mean flow. Implicit in
this theory is a foreknowledge of the gravity wave spectrum in order to determine
where breaking takes place. Lindzen points out that the dominant phase speed of
internal gravity waves is given by the motion of their source. This assumption is
a good one when determining wave drag in part of the atmosphere but a bad one
when calculating acceleration by waves of part of the atmosphere. The reason is that
waves having exactly the same speed as their source exert a drag on the atmosphere,
not an acceleration. For example, this technique is capable of demonstrating that
wave drag may be responsible for zonal wind decelerations in the Earth’s mesosphere
(Holton 1982). Thus, we cannot use the Lindzen formulation since we wish to compute
whether convectively generated gravity waves can enhance rather than dampen a
strong shear in Venus’s middle atmosphere.

In our work we present numerical computations of the spectrum of gravity
waves emitted by convection between 50 and 55 km in Venus’s atmosphere and com-
pﬁre these results with more useful analytic approximations. First we use an analytic
theory for the generation of gravity waves by convection developed for helioseismolog-
ical purposes. Then we track a three dimensional ensemble of waves as they propagate
vertically from the convection using a second order WKBJ approximation. Then by
implementing wavebreaking and /or critical layer absorption, we calculate the acceler-

ations these waves exert on the atmosphere as a function of altitude. In the process,
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we develop analytic approximations which are necessary for wavebreaking calculations
and useful for explaining the numerical results.

The method we use to calculate spectra of gravity waves generated by neutrally
buoyant convection is taken from helioseismology (Goldreich and Kumar 1989, GK
hereafter). GK solved the problem of convective generation of gravity waves assuming
the convection is restricted to below a fixed altitude and that the stable layer is
isothermal and has no zonal winds. They have shown that typical periods of waves
are given by the turnover times of the largest eddies in the convection and that typical
horizontal wavelengths are approximately the horizontal correlation length within the
convection. The typical turnover time for eddies in Venus’s convection is on the order
of one hour (Ingersoll, Crisp et al. 1987) and the typical horizontal correlation length
is on the order of 5 km if the eddy aspect ratio is on the order of unity. In applying
the theory to Venus’s atmosphere, we make several generalizations. Ultimately, we
use realistic profiles of zonal wind and static stability. Inclusion of a realistic zonal
wind profile permits the presence of a critical layer absorption mechanism for driving
the mean flow. Also, inclusion of a realistic static stability profile allows us to perform
a detailed calculation of wave emission in Venus’s middle atmosphere. In addition we
assume that the convection is restricted to a 5 km deep layer, which is approximately
- one scaleheight in Venus’s atmosphere. Otherwise, we keep this problem sufficiently
general so that it may be applied to the emission of gravity waves from neutrally
buoyant dry convection in other planetary atmospheres.

The propagation of the waves into the stable atmosphere is done using the
second order WKBJ approximation. This is necessary for two reasons: (1) so that we
may obtain a three dimensional spectrum of temperature fluctuations associated with
the waves required for modeling radio scintillations, and (2) so that we may deter-

mine where waves break and deposit their momentum. We consider the atmosphere
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as plane-parallel with no Coriolis effects. We consider the atmosphere horizontally
infinite because the waves emitted from the convection are much smaller than the
radius of curvature of the atmosphere.

In order to understand how the background atmosphere affects gravity wave
propagation, we look at three models of the atmosphere. The first one assigns the
stable layer a fixed static stability and zero zonal winds. The second model assumes
realistic profiles of static stability and zonal winds with each being continuous in
altitude. The third model also assumes realistic profiles, but the static stability is
made discontinuous at the interface between the convection and the stable layer.
Using the first and second models we show that the discontinuity in static stability
is necessary.

We use the third model to examine where and how the waves accelerate the
atmosphere. We do this by taking the divergence of the gravity wave momentum flux.
Even though wavebreaking is completely responsible for momentum deposition when
it is implemented, we also perform a calculation in which momentum is deposited
only by critical layer absorption. We describe how the zonal wind profile affects the
distribution of accelerations. We also use the third model to calculate model radio
scintillation power spectra. In the accompanying paper, we shall use the third model
to prescribe the spectrum of temperature fluctuations necessary for simulating radio
scintillations in the Pioneer Venus radio science data.

This paper is divided into four parts. The first is this introduction. In the
second we present the analytic theory for the generation and propagation of internal
gravity waves. In the third we present numerical results for each of the three models
and profiles of accelerations provided by the waves. We include order of magnitude
estimates and analytic approximations of some numerical results in the third section

to shed light on the numerical results. Finally, in the fourth we present conclusions
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and a discussion of practical implications.
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2. Analytic solutions

In this section we present the analytic work necessary for the numerical com-
putations. In particular, we present the wave generation equation and how we intend
to solve it, characterize the types of waves which can be emitted from the convection,
mathematically determine how efficiently each wavemode can be forced by the convec-
tion, spectrally quantify the magnitude of the forcing terms, find the momentum flux
associated with each individual wavemode, present our wavebreaking mechanism, give
approximate expressions for the spectrum of emitted waves, and present a simplified

view for understanding the amplitudes of trapped waves.

2.1 The wave generation equation

In deriving the wave generation equation, we follow the method of GK but
with a few exceptions. GK use a simple model atmosphere in which there is no
horizontal wind nor Coriolis force and a semiinfinite neutrally buoyant atmosphere
underlies a semiinfinite isothermal atmosphere, which is strongly stably stratified. We
use the anelastic equations (Ogura and Phillips 1962) in order to omit compressional
effects and to include nonhydrostatic effects. Compressional effects would otherwise
introduce acoustic waves while nonhydrostatic effects are important in atmospheres
with strong shears in the zonal winds. Omitting compressional effects is valid because
we are only concerned with waves which propagate with phase speeds significantly
less than the sound speed in Venus’s middle atmosphere. Unlike GK, we retain terms
in the anelastic equations which account for zonal winds and static stability which
vary in altitude. This added generalization requires us to use approximate methods
to solve our problem. Lastly, we must include the effect of damping by the convection
because we have introduced the possibility that some waves might not otherwise have

a sink of energy.
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The anelastic equations are

%‘t‘. - _%;’_3 (2.1a)

5‘(%’ - ‘%‘3 (2.18)

% _ Zg;S - _%Zi (2.1¢)

—g% + g—: + p'I% (pw) = (2.14)
% =0 (2.1e)

In these equations, ¢ is the Gibbs free energy (“x” in Ogura and Phillips), S is the
specific entropy, ¢ is the gravitational acceleration, p is the mass density, ¢, is the
specific heat at constant pressure, u and v are winds in the horizontal plane, and
w is the vertical wind, and z, y, and z are the corresponding coordinates. The z
coordinate is chosen to represent the direction of the background wind, which we
choose to be purely zonal. The density p is an independently determined function of
z and is considered a background property of the atmosphere. The time derivatives
are fully advective, meaning that d/dt = §/0t + i - V where 4 is the wind field given
by (u,v,w).

Whereas GK invoked a semiinfinite convection layer beneath an isothermal
atmosphere with quantized spatial wavemodes, much as in a “boxed” domain, we
assume a vertically finite convection layer between roughly 50 and 55 km altitude with
an overlying atmosphere of variable background wind and static stability. The stable
layer is considered semiinfinite in extent, and both layers are infinite in horizontal
extent. Within the convective layer, there is no static stability and no shear in the
zonal winds, typical of dry convection. Although we use three different models for
the zonal wind and static stability in the overlying stable layer, we ultimately use
profiles which describe the Venus middle atmosphere. This Venus atmosphere will

have winds which grow steadily more westward with height above the convection up
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to about 66 km. Above 66 km the winds grow more eastward, consistent with Pioneer
Venus OIR data (Taylor et al. 1981). At about 80 km altitude, the zonal wind speed
is the same as that of the convective layer. Above 80 km, the zonal wind is eastward
with respect to the convection.

As in GK, we find the wave generation equation for ¢ by linearizing about a
mean state. Of the dependent variables u, v, w, ¢, and S, only u and S have mean
state components. The mean state component of u is the background zonal wind.
We accomplish the linearization using u = 4(2) + v', v = v/, w = v/, ¢ = ¢/, and
S = S(z) + S'. The barred quantities are the mean state quantities and are constant
in time. The primed quantities are first order fluctuations about the mean state. The
mean state component of S is a consequence of static stability and is realized in the

parameter N2(z), which is defined as

N%(z) = 945 (2.2)

T cpdz
The quantity N2(z) is the square of the Brunt-Vaisila frequency.

When working with atmospheric waves, it is customary to view all of the
“primed” fluctuation terrﬁs as small enough so that the nonlinear terms in the equa-
tions of motion become insignificant. We do the same, but with a twist. For the
waves in the stable layer, we neglect the nonlinear terms associated with the ad-
vective derivatives. Thus, the primed terms represent the fluctuations of the gravity
waves. The nonlinear terms are large in the convection, though, and these are created
by convective motions. We do not wish to solve for the convective motions. Instead,
we assume that the convective motions can be adequately described by the mixing
length hypothesis (Schwarzchild 1958) and they can be described spectrally using the
Kolmogorov spectrum of turbulence. We thus can assume these terms as givens for
our problem. We wish to solve for the primed terms and hence find how the convec-

tive activity can generate internal gravity waves. [In reality, we should expect the
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linear and the nonlinear terms to interact in a manner which would partially organize
the convection, and indeed this is seen in numerical models (Fovell et al. 1992). Since
this organizing effect is extremely difficult to evaluate analytically, we do not concern
ourselves with it.]

The fluctuations in the stable layer can attain amplitudes large enough such
that the nonlinearities may become important. Indeed, the real consequence of this is
wavebreaking and possibly scattering. If we were to thoroughly account for breaking
and scattering, we would be required to retain the nonlinear terms associated with
the waves in the stable layer. Since we wish to consider a three dimensional ensemble
of waves and since empirical theories concerning gravity wave breaking already exist
(Dewan and Good 1986; Smith, Fritts and VanZandt 1987), we use these empirical
theories rather than a complex general theory to describe the behavior of the waves
in the stable layer (see Weinstock 1976).

It is necessary that the convection be able to absorb and dissipate wave energy.
We call this process convective reabsorption. We account for convective reabsorption
by imposing a damping time constant which only affects wave amplitudes in the
convecting layer. We envision this damping process as diffusion by convective eddies
which have horizontal sizes similar to the wavemode in question. We discuss how the
damping time constant 7. is computed in the subsection which analyzes the spectrum
of the forcing terms. Mathematically, we essentially replace each partial derivative in
time 8/t with 8/8t + 1/7. only when in the convection. Qualitatively, this means
that the convection will destroy the wave energy density within the convection on a
timescale of 7. In the end, the damping by convective reabsorption serves as the sink
of energy for waves which encounter a reflecting layer at an upper boundary and to
partially inhibit the convective generation of waves at low frequencies.k

The wave fluctuation terms are Fourier transformed using an exp(¢(wt — kzz —
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k,y)) dependence because of separability in the z, y, and ¢ coordinates. We assume
that there is no zonal wind shear (8i/9z=0) and no static stability (N?=0) in the
convecting layer because of vigorous mixing of momentum and entropy by the convec-
tion. We then find a vertical structure equation for the w, k;, k, Fourier component

of the Gibbs free energy fluctuation ¢

0 p0#\ [ PK , 1 )y, L@
9z (Nz—&ﬂ 3z)+ ¥ =5 PO+ FY). (23)
We have used the following definitions:
wp = w — ky(@(z)—a(convection)) (2.4a)
~:y— fwp —1/7. within the convection, and
o(z) = {wD outside the convection (240)
K=k + k2. (2:40)

The quantity wp is the Doppler frequency and the quantity 7. is a time constant
associated with convective reabsorption. Its magnitude is dependent on the horizontal
scale of the waves in a manner laid out later in this section. The nonhomogeneous

wave generation terms are

FO=V.V.(pucuc) (2.54)
9 ﬁgSc)
@__9
F az( . ) (2.50)

In the terms FM) and F®, u, is the convective wind velocity field and S, is the entropy
fluctuation associated with the convection. Both of these terms arise from nonlinear
terms in the anelastic equatibns. Even though the term involving the convective
entropy fluctuation seems to be linear, it nonetheless arises from a combination of
atmospheric heating by radiation and the advection of that heat, a nonlinear effect.
The forcing terms are the same as those found and discussed in GK.

We neglect viscous and radiative damping of the wavelike fluctuations. Lindzen
and Forbes have shown that damping by eddy viscosity when gravity waves break is

sufficient to maintain waves at their saturated amplitude (1983), so we can disregard
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viscous damping so long as wavebreaking is implemented. Crisp (1983) showed that
the radiative damping times for disturbances with vertical scales of 7 km is on the
order of a few Earth days, which would be significantly less efficient than any damping
resulting from wavebreaking.

Our entire problem rests on solving equation 2.3. It can be regarded as a one
dimensional nonhomogeneous differential equation because by transforming only in
the time and horizontal spatial coordinates, we have left the vertical coordinate z as

the only independent coordinate. We interpret the equation in the form
L =F. (2.6)

The operator on the left side of the equation £ operating on the Gibbs’ free energy
fluctuation ¢’ is that which forms the homogeneous internal gravity wave equation
when L£¢' = 0. The right-hand side is composed of nonhomogeneous forcing terms
collected into F' which we consider as nonzero only in the regions of convection for
reasons given above. Given upper and lower boundary conditions, we can analytically
solve for the vertical structure of ¢’ for any choice of w, k;, and k,. We must use an
approximate method, however, because the operator £ is dependent on the vertical

coordinate z.

2.2 The formal solution

Since the convection is a nonlinear random phenomenon, we treat it statisti-
cally as a stationary random process. The consequence is that ¢' cannot be found
explicitly because F' cannot be given explicitly. We can solve for ¢' in a statisti-
cal sense, though, given the statistical properties of F. In mathematical notation,
B¢(w, ks, ky; z), the spectral variance of ¢(z), will be found in terms of Bp(w, ks, ky),
the spectral variance of the forcing. The reason that the spectral variance of the forc-
ing is missing the dependence on z is that at some point we shall have to integrate

in z over the entire forcing region.
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The spectral variance notation is useful for describing properties of random
processes. In general, the quantity B,(a;z) is a variance spectrum of x’ in a as
a function of z. For example, the quantity Br(w;z) dw is the amount of variance
of the temperature fluctuations 7" at altitude z in the spectral interval between w
and w + dw. The result would have the units of degrees squared. All quantities on
the left side of the semicolon within the parentheses are spectral coordinates. The
variance also depends on the coordinates on the right side of the semicolon, but not
in an integral sense. For a more detailed exposition on the mathematics of random
processes, see Ishimaru (1978).

We find the solution to the wave generation equation using a conventional
technique for second order nonhomogeneous differential equations with boundary con-

ditions (Morse and Feshbach, 1953):

_— o GO FE)
¢ ( )v/convection p (N2 - &}2)—1 Wr(g7 h)

Here, F(z) is the Fourier transform in frequency w and horizontal wavenumbers k,

(2.7)

k, of the sum of the two forcing terms F!) and F® as a function of altitude z within
the convection. In the neutrally buoyant convection, N? =0 and &* = (w — i/7.)%
The forcing term F is nonzero only in the convecting layer, which is embedded in the
neutrally buoyant layer. The functions g(z) and h(z) are homogeneous solutions to
the wave equation (£g = Lh = 0) for which g(z) satisfies a boundary condition at
the lower boundary and h(z) at the upper boundary. The Wronskian Wr(g, &) is the

Wronskian of g(z) and k(z) and is given by
dh Jdg
Wr(g, k) = 9(37) = h(37)- (2.8)

It effectively determines the coupling between the functions g(z) and h(z). A remark-
able property of the Wronskian is that the product of it with the quantity p/(N?-&?),

the product being the denominator of the integrand of equation 2.7, is independent
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of height. Thus, it is only necessary to calculate it at one convenient altitude. The
solution of equation 2.7 holds only above the convecting layer.

Ultimately, three different effects will determine the spectrum of emitted waves.
Firstly, the amplitude of the forcing, given simply by F(z) in equation 2.7, directly
effects the amplitude of the emitted waves. Secondly, the propagation characteris-
tics of the individual wavemodes effects the overall spectrum. This is reflected in the
solution to the homogeneous wave equation h(z). Thirdly, the coupling for each wave-
mode between the neutrally stable convection and the stably stratified atmosphere
determines how efficiently the convection can generate waves. This is reflected by the
denominator of equation 2.7, dominated by the Wronskian Wr(g, &).

For reasons of convenience, we write the solution for the variance spectrum of
¢’ as

By(w, kzy ky; 2) = |A(2) 2 M(w, ks, ky). (2.9)
This solution is valid for all altitudes above the convection. In the term |A(z)|?
we have included the effects which vary the amplitude of individual waves as they
propagate vertically. In the term M(w,k,,k,) we have included the amplitude of
the forcing and the effects of coupling the wave between the forcing region and the
overlying stable region. Because M(w, k;,k,) is inherently independent of altitude,
it helps us to discuss quantities which are conserved in altitude, such as the vertical
transport of horizontal momentum and energy. Also, because it is mostly responsible
for describing the amplitude of the emitted waves spectrally, it will prove simple to
discuss trapped waves in terms of M(w, ks, ky).

The spectral forms of the solution to ¢’ is strongly related to the spectral form
of the forcing terms F(!) and (. The forcing terms will contribute most at a frequency
given roughly by the turnover time of the largest eddies. Since the convective wind

speeds are approximately 3 m/s and the depth of the convection is roughly 5 km,
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the dominant frequency of the forcing, and most likely the resultant gravity wave
spectrum, is w ~ (3 m/s)/(5 km) ~ 6 x 107 s~'. Likewise, the dominant horizontal
wavenumber should be approximately the inverse of the horizontal correlation length
within the convection. Thus, k ~ (5 km)~! ~ 2 x 10™* m™

In the following subsections we discuss the different parts of the wave gener-
ation equation (equation 2.7). First we discuss the properties of the homogeneous
solutions g(z) and h(z). Secondly, we discuss the coupling of individual waves to the
convection by evaluating the Wronskian Wr(g, #). Thirdly, we evaluate the projection
of the homogeneous solution g(z) onto the convection by performing the integral over

z. Lastly, we present how we evaluate the amplitudes of the forcing terms.

2.3 Homogeneous solutions

We solve the homogeneous wave equation £Lg = Lh = 0 in order to find the
homogeneous solutions g(z) and kh(z). The classic approximate solution is found in
the WKBJ approximation. This approximation requires that the vertical wavelength
be much smaller than the vertical scale over which it varies. This condition does not
always hold, and therefore the complete theory incorporates connection formulas for
those regions in which the WKBJ conditions does not hold.

We start by writing the linearized homogeneous forms for the anelastic equa-

tions:
0 d ad' .
( = +u%)u +'E, = 2= (2.10a)
AW
(3 +"5;) % | (2100
5} 0 o = ¢ | 9
(at +u5;) a8 (2.10¢)
s +( p) =0 (2.104)
9 -2 LGN =
(8t +”ax)s F2N W =0 (2.10¢)
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The wave terms v/, v’,w’,S’, ¢’ are the zonal wind, meridional wind, vertical wind,
entropy and Gibbs free energy fluctuations associated with the wave. The Gibbs free
energy fluctuation can be determined in terms of other thermodynamic variables by
equating the anelastic and elastic vertical force:

(__86?/ + S,g/c”) anelastic (_%%Z—, B iﬁg_) elastic (2.110)

In the anelastic approximation, the background atmosphere is nearly isentropic, hence

Pz Pz
> =5 (2.11d)
—E_ 8 (2.11¢)

,_ P
= —. 2-12

The WKBJ solution in which the approximation is valid is that of wavelike
solutions with a vertical wavenumber m(z) which is given by the well-known inter-
nal gravity wave dispersion relation (Bretherton 1966). The gravity wave dispersion

relation is

m?(z) = (N (2) 1) k2. (2.13)

70
One will notice that the terms of order the square of the inverse scaleheight are
absent in the second order WKBJ theory because the explicit WKBJ condition is
that mH > 1. We show in appendix A, by comparison to a numerical integration of
the homogeneous wave equation, that neglecting terms of order 1/H? is valid even
when near a turning‘ point. Since the static stability and the zonal wind vary over

vertical scales on the order of a scaleheight, we expect the vertical wavenumber m
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to vary over vertical scales on the order of a scaleheight. The WKBJ solution for

¢immogeneous = GJ” %(cl eiq + c2e—iq) (214)

where the phase of the wave ¢ is defined from some arbitrary altitude z* as

mH>11is

q= /j |m(2)| d2' (2.15)

and c; and c; are general coefficients. [A related WKBJ solution was found for w'’
by Lindzen 1981.] We usually define z* as the altitude of a particular turning point.
Turning points occur where m?(z*) = 0. The coeflicients ¢; and c; are specifically
associated with the turning point at altitude z*.

By requiring that w always be greater than zero, we can guarantee that the
solution with the ' dependence carries energy upward and the horizontal wavevector
k determines the direction of horizontal propagation. Internally propagating gravity
waves have the distinctive property that their vertical group velocity is opposite in
sign to the vertical phase speed. This can be shown by calculating the vertical group
velocity:

~3. 2
(510, = () (219
Since w/m is the opposite of the vertical phase velocity, it is clear that the solution
with the €' dependence transports energy upward.

The approximate solution wherever &2 > N? is related to the approximate
solution given in equation 2.14. The vertical wavenumber squared, m?, becomes
negative and the solutions are exponential growth and decay in the depth ¢:

¢;10mogeneous ~ W lﬂ_l (c3eq + C4e_q) (217)
p .

where g retains the definition of equation 2.15 and m(z’) is imaginary. Once again,

the coefficients c3 and ¢4 are specifically associated with the turning point at altitude
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z*. For every choice of w, k., and k,, both exponential and wavelike regions of
behavior will occur. The WKBJ condition breaks down between regions of sinusoidal
character and exponential character where m? — 0. Connection formulas are used
to tell us the behavior of the homogeneous solutions in such regions. In essence, the
role of the connection formulas is to relate the coefficients ¢;, ¢z in equation 2.14 to
the coefficients cs, ¢4 in equation 2.17. We derive the connection formulas and how
they are used in constructing the homogeneous solutions throughout the stable layer

above the convection in appendix A.

2.3.1 The homogeneous solution A(z)

The general solution described in appendix A is used to mathematically define
the function A(z). Here, however, we wish to only qualitatively describe the nature of
this function and roughly how that nature depends on the spectral coordinates w, &,
and k,. The nature of the waves is critical in determining which waves can generate
large temperature fluctuations and which can efficiently transport momentum and
energy vertically.

The function h(z) gives the vertical structure of an individual wavemode with
its characteristic w, k., and k, above the region of forcing. The major constraint on
h(z) is that it satisfies the correct upper boundary condition. The upper boundary
condition is fundamentally dependent on the type of wave present above the con-
vection. If N? were constant above the convection and there were no shear in the
zonal wind, then all waves would radiate to space provided w? < N2. On the other
hand, the more general case of variable N? and u(z) provides a variety of wave cases.
Given typical profiles of @(z) and N?(z), we can get waves which have only an up-
ward propagating component and thus “radiate” their energy to space (propagating
waves), waves which have equal upward and downward propagating components and

are thus trapped beneath a reflection layer in a one dimensional duct (trapped waves),
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waves which lose all their energy at a critical layer (where wp =0) (another type of
propagating wave), or no waves at all, depending on the choice of w, k., and k.

We define u(z) to be positive in the eastward direction. The winds are param-
eterized in the rest frame of the convection; thus, #=0 in the convection itself. Since
the Venus cloud-top winds are overwhelmingly westward, wind speeds are negative
above the convection. Waves which propagate in the same direction as the winds
above the convection are prograde (w/k,; <0) while those that propagate in the oppo-
site direction are retrograde (w/k; >0). Waves with zero zonal wavenumber (k, =0)
are zonally stationary, although they can propagate meridionally.

We use profiles for N?(z) and %(z) in the same formulation as Schubert and
Walterscheid (1984) with a few adjustments. We have made the entire region between
50 and 55 km neutrally buoyant because of the presence of convection in this layer
in our model. For models with continuous profiles of the static stability, we have
introduced a sharp corner in the profile of N?(z) at 55 km in order to simplify our
model without losing the generality of a variable N? profile. We restrict the pro-
file of @(z) above 55 km such that the Richardson number is never less than 1/4.
Presumably, unless a shear is weak enough such |04/0z| < 2N, a Kelvin-Helmholtz
instability would set in and effectively reduce the shear. We “stabilize” the wind
profile by imposing a stable shear, setting |0@/dz|=2N, wherever the parameterized
profiles of @(z) and N%(z) otherwise might satisfy the Richardson number criterium
for Kelvin-Helmholtz instability. Wherever the shear is otherwise stable, we do not
adjust the value of 0ii/8z. The only place at which the parameterized profiles are
unstable is within 1 km of the top of the convection. The net effect of stabilizing
the wind profile is to alter the zonal wind amplitude by less than 1 m/s above the
convecting layer. We use these particular profiles of N*(z) and ﬁ(z) in the second

model of the section on numerical results.
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Most prograde waves are propagating waves. Prograde waves whose zonal
phase speeds are smaller than the cloud-top wind speed, which is about 60 m/s at
66 km altitude with respect to the convection, will be critically absorbed. Recall
that critical absorption takes place when a wave approaches an altitude where its
Doppler frequency is zero. Zero Doppler frequencies occur when the zonal phase
speed (independent of height) is identically equal to the zonal wind speed (dependent
on height). Since the zonal wind speed varies between 0 m/s just above the convection
to 60 m/s at the cloud-tops (~ 67 km altitude), the prograde waves with zonal phase
speeds between 0 and 60 m/s will encounter critical layers between the top of the
convection and the cloud-tops. Gravity waves cannot transport a significant amount
of momentum or energy through critical layers, and thus they deposit their momentum
and energy near their encounter with a critical layer. We therefore consider waves
which propagate directly into a critical layer as propagating waves because the energy
they carry from the convection never revisits the convection. Even though waves
with prograde zonal phase speeds larger than about 60 m/s do not encounter critical
layers below the cloud-tops, it turns out that such waves have very little energy and
momentum associated with them and thus we do not concern ourselves with them.

For propagating waves, we set the upper boundary condition by setting ¢; =
exp(—nif4) and c; = 0. When used in conjunction with equation 2.14, away from

turning points, the wavemode structure is

h(z) = G)\/_—T; exp(i(q — 7 /4)). (2.18)

While setting ¢; =0 is mandatory for propagating waves, the amplitude and phase of
a is arbitrary. We have chosen this particular amplitude and complex phase for ¢;
so that no numerical coefficients would appear in equation 2.18.

While prograde modes are all propagating, retrograde modes are either prop-

agating or trapped. Retrograde waves are not absorbed between the convection and
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the maximum in the zonal winds (near z~66 km) because & increases with height. If
& grows rapidly enough so that a region of nonpropagation forms (@?* > N?) where the
zonal winds peak, we get a trapped wave as long as a region of propagation (@? < N?%)
remains between 55 and 66 km. We refer to the region of nonpropagation which
forms around 66 km as the upper lid. It is not a physical lid, but an abstract one.
Since the upper lid formation is a consequence of large &, accomplished mostly by
large Doppler shifting, whether retrograde waves are trapped or not is almost solely
dependent on k.. In particular, retrograde waves are trapped when

aximum) 12

o> (2

z A - . 2.1
|t(cloud-tops) — u(convection)| (2.19)

The stability N? attains its maximum of N2 ; .. at 2~ 60 km. The inequality in
equation 2.19 is found by setting m?(z =66 km) $0. We evaluate this expression in
section 3 of this paper.

For waves trapped beneath a thick upper lid, we impose the upper boundary
condition by setting ¢; =—1/2 exp(ni/4) and c;=—1/2 exp(—=i/4) for the turning

point at the base of the upper lid. This makes h(z) approximately

h(z) = LD\/Z:-Z sin(q — 7 /4) (2.20)

where the phase ¢ is defined away from the turning point at the base of the upper lid.
In defining ¢; and ¢, at the upper turning point, it was only necessary that ¢; lead c;
by 7 /2 radians in the comple){ plane so that the wave would decay exponentially with
height within the upper lid. The amplitudes and phases of ¢; and ¢, were chosen so
that no extra coefficient would appear in equation 2.20.

 Itis possible that trapped waves be only marginally trapped. This occurs when
the upper region of nonpropagation is small enough that the wave can “tunnel” some
of its energy through it. When this happens, we expect the wave to be a subtle mix

of a propagating wave and a trapped wave. A downward propagating wave does exist
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but it is not as large as the upward propagating wave. We essentially determine what
happens in this case by evaluating how much of the energy carried by the upward
propagating wave can tunnel through the lid and by deducting this fraction from the
energy carried by the downward propagating wave. Again, a detailed analysis of how
this is done is presented in appendix A. As the lid becomes thicker, it asymptotically
approaches perfect trapping.

Figure 1 illustrates the basic features of the wavemode structure. In this figure
we show how the Doppler frequency wp and the Brunt-Vaiisila frequency together
allow propagating and trapped modes. We have chosen two different modes, one an
example of a propagating/critically absorbed mode and the other an example of a
trapped mode. Turning points occur where w =N? or m?=0. For both wavemodes
shown, a region of nonpropagation lies between the top of the convection at 55 km
and the first turning point above the convection. We refer to nonpropagation regions
which lie directly above the convection as barriers. The thickness of this barrier g3 is
defined as

Zturning point
@ = / |m(z)| dz'. (2.21a)

convection

For the critically absorbed wave of figure 1la, the Doppler frequency falls off
with height because k, is negative (recall that @(z) directly above the convection is
also negative). Because N2=0 just above the convection, the square of the Doppler
frequency is greater than the square of the Brunt-Vaiséla frequency. But since N?
grows rapidly with height, it becomes greater than the square of the Doppler frequency
near 56.5 km. The region between the convection and 56.5 km is the barrier. Above
the barrier, the wave is free to propagate vertically away from its source. At about 62
km altitude, the Doppler frequency goes through zero. This is the point of the critical
level. It is apparent in the third panel that the vertical wavenumber m approaches

infinity near the critical level.
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Figure 1. Different Wave Cases. In these panels we show profiles of the Doppler fre-

quency, the square of the Doppler frequency and the square of the Brunt-Vaisala

frequency, and the square of the vertical wavenumber for (a) a critically absorbed

sl k,=2.74 x 10* m™1, and ky=17.52 x 1074 m~L.

“propagating” wave and (b) a “trapped” wave. For (a) we use w=1.5x10"2s7!,
k,=-3.49x10"* m~!, and k, =4.99 x 103 m~1. For (b) we use w=19.6 x 103

For the trapped wave of figure 1b, the Doppler frequenéy increases with height.

Again, because N? is small just above the convection, the barrier forms. For this wave,

however, the square of the Doppler frequency grows rapidly enough with height so

that it becomes greater than N? near 60.5 km altitude. This is the second turning

point. A region of propagation lies between the first and second turning points which
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we call the “duct.” The total phase within the duct @4 is defined as

turning point 2
Qa4 = / |m(2")| d='. (2.21b)
t

urning point 1
Finally, above 66 km the Doppler frequency decreases with height because the zonal
wind becomes more eastward. Near 73 km a third turning point forms, and we get
a region of nonpropagation on top of the duct called the “lid.” The thickness of this
lid is defined as

turning point 3
Qi = / |m(2")| dz'. (2.21¢)
t

urning point 2

We consider trapped waves with Q;>3 as waves trapped by a thick lid and trapped
waves with Q; <3 as waves trapped by a thin lid.

The barrier thickness can be approximated for many of the emitted gravity
waves. We consider a continuous profile of N?(z) to be linear above the convection
with a; vertical gradient of N2. In this case,

. 20tk
= 3 N?

(2.22a)

which holds true for ¢, < 1. If we approximate NZ as (0.02 s71)?/(5 km), w as
(3 m/s)/(5 km), and k as (5 km)~?, then we can show that g, ~6 x 107* and thus
g» < 1. By this we wish to imply that most often it is appropriate to think of the
barrier above the convection as thin when N? is continuous. On the other hand, with
suitable choices of w, k;, and k, we can find wavemodes with very thick barriers.
This is useful, because from qﬁantum mechanics we already have an intuition for the
behavior of such barriers against which we can check our mathematics.

When the profile of N? is discontinuous at the top of the convection, then only
rarely will a barrier exist. In the third model of the following section, we implement
a discontinuity in N? such that N?=0 within the convection and N*=4 x 10~° 52
immediately above the convection. Even though this value of N? is an order of

magnitude less than that at z = 60 km, nevertheless it is large compared to the square
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of the dominant forcing frequency in the convection, which is on the order of 1073 s~1.
For frequencies smaller than v/4 x 10~% s™!, waves will immediately propagate into
the stable layer because m? > 0 above the convection. In these cases, there is no
barrier, and the barrier thickness is ¢, =0. When the frequency becomes larger than
v/4 x 10-5 571, a barrier will form. The barrier thickness will be approximately given

by
b~3 N2

The quantity m, is the value of m immediately above the convection (notice that

(2.22b)

m? <0 for the large frequencies).
If a barrier does form above the convection, the function h(z) within the barrier
is

2ng|m]|
3

h(z) ~ —i& [(cz exp(mif12) — ¢y exp(—ni/12)) Iy3(q)

(2.23)
+ (c1exp(T71/12) — c; exp(—T7i/12)) I_2/3(q)] .

The phase ¢ is measured away from the turning point at the top of the barrier and

the coefficients ¢, and c; are associated with that turning point. The functions I5/3

and I_,/3 are modified Bessel functions of order 2/3. This form will eventually be

used in evaluating the Wronskian. See appendix A for details on the derivation of

this equation.

2.3.2 The homogeneous solution g(z)

The homogeneous solution g(z) serves two purposes in this problem: it allows
us to project the wavemode onto the forcing mechanism and to calculate the forcing
efficiency for each mode through evaluation of the Wronskian of g(z) with h(z). For
these reasons, we only need to know the functional form of g(z) below z=>55 km. In

this region, we have N2=0 and m%=—k?2. The differential equation for g(z) is

&g  1dpdg _

g4d 2 _
92t 5459, F9=0 (2.24)
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If we treat this portion of the atmosphere as compressible and adiabatic, then the
solutions for g(z) are fractional Bessel functions in z of order (2 — 7v)/(2(y — 1))
multiplied by a power law in z. The quantity v is the adiabatic index given by the
ratio of the specific heats ¢,/c,, where ¢, is the specific heat at constant pressure
and ¢, is the specific heat at constant volume. Because of the difficulties involved in
calculating a fractional Bessel function, especially for k < 1/H, we assume that the
convection is Boussinesq and that this assumption retains the physics relevant to this

problem. In the Boussinesq case, dp/dz=0 and
9(2) = dy exp(k(z — 2t0p)) + d2 exp(—k(2z — ztop))- (2.25)

In this equation, zp refers to the top of the convecting layer.

By imposing a downward radiation condition beneath the convection, we can
find the general constants d; and d; in equation 2.25. When kH >> 1, the only
physically acceptable solution is that of exponential decay with depth. Hence, we
require that d, approaches zero as kH approaches infinity. On the other hand, in
order to describe the behavior of g(z) for kH < 1, we must evaluate the behavior of
g(2) near the bottom portion of the convection. In this case we impose the radiation
condition at the lower boundary, which requires a mix of the growing and decaying
exponentials in equation 2.25. For kH < 1, explicit determination of g(z) at the
bottom of the convecting layer is required.

So that we may evaluate d; and d; at the lower boundary of the convecting
layer for kH < 1, we assume that below the convection the atmosphere is stable with
a Brunt-Vaisila frequency N;. This stability serves to impede convective downdrafts
at the lower boundary of the convection. In order to satisfy the lower boundary
condition, downward radiation below the convection is required of g(z). This makes
the solution g(z) proportional to €'Y where the phase ¢ increases downward away

from the convecting layer. We find g(z) within the convection by imposing continuity
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in the vertical wind fluctuation associated with g(z). We show in appendix A that

continuity in the vertical wind dictates continuity in the function

. —io ¢

V=N—a s (2:20
Imposing this condition on g(z) and the downward radiation condition gives
1 ag . . k2 1 -1 .
;(8_2;) (z_‘zbottom + C) = —Elz_ (1 - ch) X (_zml) (227)

for the solution g(z) within the convection. We use Zpottom t0 denote the altitude of
the bottom of the convecting layer and € to denote an infinitesimal distance. Recall
that the quantity 7. is the damping time constant in the convective region used to
simulate convective reabsorption. For small kH, the damping time is nearly the
turnover time associated with the energy bearing eddies in the convection. Solving

for the coefficients d; and d,, we find that

WT, k.
- — — <bottom 2.
rpp— sinh k(2 — 2bottom) (2.28)

g(z) = cosh k(z— 2zbottom) —
where m; is given by \/m k/w and zbottom refers to the bottom of the convection.
We assume that the depth of the convection is H. This form is valid for those waves
with w< N;, which we anticipate to nearly always be the case for small kH.

At this point, we argue that the only important term in g(z) at small kH is the
hyperbolic cosine. The second term is much smaller than the first for w< N;. In fact,
the two are comparable in amplitude only for unrealistically large phase speeds w/k.
For this reason, we approximate the functional form of g(z) as cosh k(2 — Zbottom) in
order to fully incorporate its expected behavior for all values of k. This essentially
says that the vertical wind associated with wave fluctuations vanishes at the lower
boundary, effectively yielding a rigid lower lid. This certainly is valid for convection

above a solid surface, and it is arguably legitimate for convection resting on a strongly

stable layer. This does not say that emission of gravity waves into the stable lower
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layer will not occur, only that the emission of waves into the lower layer should not
effect the emission of waves into the upper layer, the one with which we are concerned.
If we were instead to have studied the emission of waves into the lower layer, we would
have set the vertical wind at the upper boundary of the convection to zero. Thus, in
our problem we approximate

cosh k(2 — zbottom)

9(z) ~ cosh kH

(2.29)

2.4 The Wronskian Wr(g, k)

Earlier we had mentioned that the denominator of the integrand in equation
2.7 is independent of height. For simplicity, we choose to evaluate the Wronskian
at 2 = Zop — € (Ziop 18 the altitude of the top of the convecting layer and € is some
infinitesimal distance). The Wronskian Wr(g, k) is given by equation 2.8. It utilizes
the boundary conditions in order to describe the response of the waves to forcing. If
g(z) and h(z) were in phase with each other, the Wronskian would be exactly zero
and the waves would respond infinitely well to any forcing; however, in the presence
of damping, this will never be true. Furthermore, evaluation of the Wronskian 1s
prominent in investigating the nature of resonant trapped modes.

In order to evaluate the function h(z) and its derivative at z= 2z, — €, We once
again note that the vertical wind fluctuation and the Gibbs free energy fluctuation
must be continuous for all z. Recall that &=w — i/7. within the convection. When
the profile of N? is continuous, the stability is defined to be zero at the top of the
neutral layer; hence, the continuity condition in w’ would simply reduce to continuity
in &~ 10¢/0z. When the stability profile is considered discontinuous at the top of
the neutral layer, N? will take on a nonzero value for z= 2z + € and the continuity
condition in the vertical wind remains continuity of equation 2.26 for g(z). We account
for convective reabsorption by including the damping time 7.. In evaluating equation

2.8 allowing for continuity of the vertical wind (equation 2.26), we find for both
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continuous and discontinuous profiles of N? that

2

()= 0GR (e €0

We have denoted the stability N? at z=zq, + € as N2. By definition, N2 =0 when

the profile of N? is assumed to be continuous. We assume the functional form for
g(z) given by equation 2.29. We evaluate the Wronskian according to the expression

w2

Wr(g,h) = (1 — c‘T:_—) (————-) h.(z=zp+€) — ktanh kH h(z=2zp+e€). (2.31)

w? — N2
The subscript z denotes a partial derivative with respect to height. Technically, this
is the expression for the Wronskian when evaluated at the top of but still within the
convection. In order to be fully consistent in evaluating the denominator in equation
2.7, the factor of (N? — &?*)7! in the denominator must be —@~2? because NZ = 0
within the convection.

Throughout this calculation it is necessary to compute the derivatives of A(z)
and ¢’ with respect to height. Even though it seems easiest to finite difference the
functions, this actually does not work. A finite diﬁ'efence would actually introduce
third order WKBJ terms even though we only desire second order accuracy. Although
third order terms are small, nonetheless we require certain cancellations to occur at all
orders in the vicinity of turning points. The proper way to find the derivatives of h(z)
and ¢’ with respect to z is to find its second order WKBJ solution independently. We
show how this is done in appendix B. This will be important not only for calculating

the Wronskian but also for calculating temperature fluctuations.

2.5 The forcing
 The nature of the forcing by convection is discussed in GK. Our formulation
is different in two aspects: the vertical extent is limited to a scaleheight H and the

convective zone is Boussinesq. The only effect of limiting the vertical extent of the
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convection is to alter the form of g(z) at low kH. The effect of a Boussinesq convection
zone, however, is unclear. GK showed that anisotropy in the convective layer should
lead to partial cancellation between the two forcing terms. The degree of cancellation
at high kH is uncertain, and an upper limit to the forcing is estimated as the order
of magnitude of the larger of the two terms at a given k£ and w. Here we estimate the
effect of the forcing terms for high and low limits of kH.

Since we desire that the final result of this calculation give a variance spectrum
of a random process, we must keep in mind that the properties of the convection are
known only in a statistical sense and that performing the integral in z of equation
2.7 is meaningless until we take the square of the result. Implicit in this technique is
that we are taking ensemble averages of second order quantities. The proper way to
perform the integral then is to square it first and approximate its result. We see the

integral essentially as

I= / Fw, ke, ky; 2) 9(2) dz (2.32)
convection

in which F(w, ks, ky; z) is the w, ks, k, Fourier component of the two forcing terms.
To find the expected variance of this integral, we square it and take an ensemble

average:

7= / / 9(21)g(z2) F(w, ks, ky; 21) F* (o', kL, k! ; 22) dzy dza. (2.33)
convection

The overbar denotes an ensemble average. This integral is nonzero only for w=u’,
k:=k;, and k, =k (see Ishimaru 1978).

In order to evaluate the integral for 12, we view the convection as a hierarchy of
eddies, each of which is nearly isotropic in dimension. Those eddies which contribute
poWer at horizontal wavenumbers of k have horizontal sizes of 1/k. The assumed
isotropy of these eddies dictates that they are correlated over vertical displacements

of size 1/k. Because F(z1) F*(z;) is nonzero only when z; — z, S1/k, it is appropriate
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to define new coordinates l; = z; — z2 and l; = (21 + 22)/2 over which to perform
the integral. Since the vertical scale of the eddies is limited by the depth of the
convection H, this formulation is valid only for #H > 1. Nonetheless, by inspection
this integral is ~ k=2 0% where 0% is the variance of F. Each forcing term contains
spatial derivatives. These are handled by assuming that variations of a turbulent
tracer at a scale 1/k are given by k times the amplitude of that quantity at scale
1/k. This approach toward solving the integration in z is valid for high kH; however,
another approach is needed for solving the integral when kH is small.

When the horizontal scale of the wave exceeds the depth of the convection,
forcing of the wave becomes extremely inefficient. For kH < 1, equation 2.32 must be
solved by integration by parts in order to determine the efficiency with which waves
are generated. Recall that the forcing terms are in fact differentials of properties of
the convection (equations 2.5). In the course of evaluating the integrals over z, we

define two intermediate quantities ?21) as

Ity= (/:{ g(z1) FO(z) dzl) (/_: g(z2) FO(z2) dzz)’k (2.34)

in which =1, 2 depending on the forcing mechanism. When computing this integral,
we expect only the largest, energy bearing eddies to significantly contribute when
kH < 1. For each of these eddies, we guess that the Reynolds stress tensor and
entropy fluctuations are roughly constant over the depth of the convection. It is then
simple to do each integral by parts in order to obtain valid solution for small kH.
For the entropy forcing term, integrating by parts gives us a solution which is
valid not only for high kH, but also for low kH. After integrating I(3) by parts we

get
—_ 2
I, = (_pig_) (Ag)? o2 (2.35a)

@7 \g
where Ag is the difference in the function ¢(z) from the bottom of the convection to

the top, 0%, is the variance of entropy fluctuations, and po is the atmospheric density at
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55 km. The integration by parts yields no boundary terms because the forcing terms
vanish outside the convection. Previously we had argued that limgp_o(dg/dz) = 0 at
the bottom of the convectioﬁ, thus Ag must be at least quadratic in kH. Therefore,
for kH < 1, we expect that I_(22_)o< (kH)*. When kH > 1, however, we expect g(z)
to project entirely onto the forcing, and thus we expect that Ag ~ 1. We use the

approximate equation 2.29 to arrive at
Ag=1 —sech kH. (2.35b)

It is clear that our solution for "f(z;')' when kH > 1 is asymptotically approached by
equation 2.35a. Thus, equations 2.35 are valid for all kH for the entropy forcing term.

For the Reynolds forcing term, integrating by parts also gives a solution which
is valid for both high and low kH. It is a subtle problem to integrate I(;y by parts
for kH < 1. We must treat the convection as incompressible to first order (i.e.,
V - (pu.) ~ 0). The result is that the integral Iy takes the form

Ztop 82
Iy = / pw? 5-2—% dz. (2.36)

bottom
In the above notation we have used w, to describe the vertical component of the con-
vective wind u,. In the limit kH <1, we find an upper limit to /) by approximating
pw? as constant throughout the depth of the convection and integrate 8%¢/d2? to find
that

I2) ~ p} (ktanh kH)? 02, for all kH. (2.37)
At small kH, the quantity tanh kH is proportional to kH. This shows the forcing
of gravity waves by Reynolds stresses scales similarly to the forcing by entropy fluc-
tuations when the horizontal scale of the wave is much larger than the depth of the

convection (kH < 1). Since this solution is valid at large and small kH, we use it for

the entire range of kH.
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We have now presented how the spectrum of Gibbs free energy fluctuations 1s
calculated. We harken back to equation 2.9 in order to present our solution using the
factor M(w, k., k,). Explicitly, we use equations 2.35 and 2.37 in conjunction with
the definition 2.32 and the solution 2.7 to find that

M(w, ks, ky) = [Wr(g, b)|*
N { (ktanh kH)? B,2(w, k=, k,) for Reynolds-type forcing, (2.38)

(Ag)? (¢*/c2) Bs, (w, kz, ky)  for entropy-type forcing.
Recall that Ag is given by equation 2.356 and Wr(g, ) is given by equation 2.31.
All quantities are evaluated numerically. We have yet to specify what we use for

B2 (w, kz, ky) and B (w, ks, ky). For the sake of convenience, we define

(ktanh kH)? B,2(w, k-, k,) for Reynolds-type forcing

Clw, koy ky) = { (Ag)? (¢2/c2) Bs.(w, ks, ky)  for entropy-type forcing. (2:39)

There are two uses of ¢ in this definition. Whenever g is used to denote the wave-
mode projection, it is written as a function of z or as Ag, defined by equation 2.35b.
Whenever ¢ is used to denote the gravitational acceleration, it is unaccompanied by

other characters.

2.6 Variance properties of the turbulence

The two forcing terms are related by mixing length theory, and GK shows
them to have the same order of magnitude for the largest convective eddies. In mixing
length theory, entropy fluctuations are initially created by divergences in the radiation
field. Subsequently, the buoyancy forces resulting from the entropy fluctuations act to
accelerate hot air parcels upward. The amount of work done by an entropy fluctuation
S. after traveling a vertical distance H is roughly the same as the kinetic energy
it releases: gH (S./c,) ~ |uc|?. Using this relation and approximating the vertical
derivative as 8/8z ~ 1/H shows that the two forcing terms are of the same order of

magnitude. We estimate the size of these terms by assuming the vertical wind speeds
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in the convection were measured by the Vega balloons. The largest convective wind
speeds measured by the Vega balloons were on the order of 3-5 m/s. This is in good
agreement with the value obtained by estimating the convective energy flux as pul
(Ingersoll et al., 1987). If the convective energy flux is balanced by the downward
solar flux at 55 km, found to be 30-40 W/m? by the solar flux radiometer aboard the
Pioneer Venus atmospheric probes (Tomasko et al., 1980), we find a typical convective
wind speed of 3-4 m/s given p = 0.9 kg/m?® (Seiff et al., 1980). Thus we can have
some confidence in our estimation of the size of the forcing terms.

We parameterize the variance in the forcing terms at small scales and high
frequencies by connecting the mixing length hypothesis with a Kolmogorov energy
cascade. The Kolmogorov theory of turbulence essentially asumes that motions on the
energy-bearing scales, at which the mixing length hypothesis holds, create turbulence
at smaller scales. The energy lost at the energy-bearing scales cascades through
smaller and smaller scales until it is eventually dissipated by viscosity. The associated
constant of the motion is the energy dissipation rate per unit mass. From the energy
cascade we can estimate the amplitude of motions at high horizontal wavenumbers
and frequencies.

The spectral forms of Bg,(w, ks, k) and Byz(w, ks, k) can be derived from
Kolmogorov principles of turbulence. We assume that entropy mixes like a passive
scalar contaminant within the turbulence. That means that motions on small scales
advect entropy from a state that has a fixed entropy gradient on the large scales.
The advection occurs over a time given by the turnover time of the energy-bearing
eddies. Thus the spatial form for the variance spectrum of the entropy fluctuations
is the same as that for velocities. A two dimensional spectrum of the variance of
the velocity is found by putting together a power of the energy dissipation rate per

unit mass € with a power of the horizontal wavenumber k such that a quantity with
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the dimensions of velocity variance per unit zonal and meridional wavenumber is
found. The correct combination is £2/3k~8/3. Thus we define the variance spectrum
of entropy fluctuations as

1 c WAH?

3 (gH)? (1 + (kH.)?)"*

The quantity H, denotes the horizontal correlation length of the energy bearing ed-

Bsc(kz, ky) ~ (2.40)

dies. We consider the convective eddies to be roughly isotropic, thus H. ~ H. We
use W, as the amplitude of the typical vertical wind fluctuation associated with the
energy-bearing eddies in the convection.

In finding the frequency variance spectrum of convective entropy fluctuations,
we introduce the notion of a timescale of forcing 7 at wavenumber k. It represents a
correlation time constant for eddies of size 1/k. For large horizontal scales it should
reflect the overturn time of the energy-bearing eddies (~ H/W,). At small scales it
should represent the time it takes the energy-bearing eddies to advect features over

a distance 1/k. We assume that 7 takes the form

1wz 2
== (1 + (kH.)?). (2.41)

Tk
For the energy-bearing eddies, the frequency spectrum can be found by calculating
the correct exponents for € and w such that the resultant quantity has the dimensions

of velocity variance per unit frequency. The correct combination is ew~2. Thus, we

use ‘
1 g WAH? Tk
" 3n2 (gH)? (14 (kH.)?)*® 1+ (wre)?

for the spectrum of S.. When this spectrum is integrated over all k, and &y, it will

Bs, (w, ks, ky) (2.42)

have an w~? dependence for w > W,/H,. Likewise, when it is integrated over all
w it will have a k~%/3 dependence for kH, > 1. The leading factor of 1/37* is a
normalization constant such that when the entropy variance spectrum is integrated

over all w, kg, and k,, we would be left with 0%, = cA(W2/gH)>.
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When calculating the spectrum of w? we cannot treat it as a passive scalar
contaminant because the Reynolds stresses play an active role in maintaining the
energy cascade. The technique for determining the spectral dependence on &, ky,
and w is similar to that used for calculating the dependence of B, on k., ky, and w. At
high horizontal wavenumbers we find a k~19/3 dependence, while at high frequencies
we find a w2 dependence. In putting these two dependences together, we define the
variance spectrum of w? to be

i W:Hf Tk
37 (14 (kH)2)™® (1+ (wr)?)*/*

Bz (w, ks, k)= (2.43)

The waves generated by the Reynolds stresses should dominate those gener-
ated by entropy fluctuations for kH, > 1, and both source terms should have the
same effect for kH, < 1; however, the waves generated by entropy fluctuations should
dominate at high w. When both the spectrum of forcing and the effect of integrating
over depth are included, the response of the waves in By(w, ks, ky; z) at high kH is
proportional to k~4/3 for waves generated by Reynolds stresses and proportional to
k=8/3 for waves generated by entropy fluctuations. For low kH, both are propbr—
tional to k%. These proportionalities do not include effects such as the shape of the
function h(z) or the amplitude of the Wronskian, but since those are independent of
the particular forcing used, these proportionalities serve to indicate which forcing is
likely to be more important in generating momentum fluxes and temperature fluctu-
ations. Nonetheless, since Reynolds stress generated waves have an w™3 dependence
for large w and entropy fluctuation generated waves an w™? dependence, it is not clear
which waves will be important in calculations of momentum flux and radio scintilla-
tion models. Presumeably, a spectrum with an w™? dependence may generate more
mdmentum at high phase speeds w/k than a spectrum with an w™3 dependence. For
the above reasons we experiment with both types of forcing.

To this point we have detailed how one goes about calculating the spectrum of
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Gibbs free energy fluctuations associated with gravity waves generated by convection
in a Venus-like atmosphere. This spectrum is required for the model of radio scin-
tillations as caused by gravity waves. We also need to calculate the momentum flux
associated with the gravity waves so that we may determine whether the waves can
drive the atmospheric superrotation. The spectral function M(w, ks, k) of equations

2.9 and 2.38 will prove very useful in finding the momentum flux spectrum.

2.7 Momentum flux

The equation for conservation of zonal momentum can be found by collecting
the second order terms in equation 2.1e¢ and using the mass conservation equation
2.1d. By symmetry in y we do not expect any meridional accelerations. We use primes
to denote the order of ez;ch term. The equation for conservation of zonal momentum
is

g-t-(m + a%(ﬁW) =0 (2.44)
where Ju” [0t is a second order acceleration exerted on the mean flow by divergences
of the momentum flux pu'w’. The overbar denotes an ensemble average. [See Andrews
et al. (1987), sections 3.5 and 4.6, for justification of this conservation law.]

The momentum flux is broken down by wavemode in the same way as the Gibbs
free energy variance, etc. An individual wévemode of frequency w and horizontal
wavenumbers k, and k, will contribute a momentum flux at pu'w'(w, ks, k,). This
quantity is defined such that pu'w'(w, ks, k,) dw dk, dk, is the amount of momentum
flux between the frequencies w and w+dw, zonal wavenumbers k, and k,+dk,, and
meridional wavenumbers k, and k,+dk,.

So far, the only way we can get a divergence of momentum flux is by absorp-
tion at a critical layer. Recall that the critical layer of a gravity wave occurs where
the zonal wind speed equals a wavemode’s zonal phase speed w/k;. For this rea-

son, it is convenient to transform the spectral coordinates of pu'w’ from w, k;, k, to
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Cz, kz, ky. This transformation takes place easily by using our convention for spectral
coordinates:

. P Ow
pu”wl(Cz, k:c, ky) = pu’w’(W, ka:v ky) (a_c;)kmky (2 45)

=k, pu'w'(w, ks, ky)

It appears that a convective source for gravity waves would have a hard time
driving the atmosphere at the cloud-tops by critical layer absorption. From GK we
know that most of the waves will have total phase speeds ¢ approximately given by
W., which is 3-5 m/s. Wind speeds at the cloud-tops are about 60 m/s, so it seems
that few waves will be able to transport their momentum to high altitudes. Some
waves, however, will have large zonal phase speeds ¢; = w/k;, and there exists a
simple geometric method for finding out how much momentum is transported at high
zonal phase speeds.

We take advantage of the fact that the horizontal phase speed does not act
like a vector in order to give an empirical form for momentum fluxes at high phase
speeds. We note that the zonal phase speed ¢, is given by w/k, whereas the total
horizontal phase speed of the wave c is w/k. It is possible to get very large zonal

phase speeds c, for small values of the total phase speed c:

c=cseca (2.46)

Cp =

| =

where « is the angle at which the wave is propagating away from purely zonally.
Thus, waves which have a &~ 90° have zonal phase speeds which are much larger than
the phase speed c. This suggests that even though most gravity waves will have small
total phase speeds, there may be enough which propagate meridionally in order to
transport a significant amount of momentum to high altitudes in the presence of a
strbng wind shear.

If we assume that gravity waves are emitted isotropically from the convection,
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then pu'w!(, c) must be proportional to cos a. In particular, we set
pu'w'(a, ¢) = —— cos (2.47)
c

in which the quantity £(,c) is assumed independent of the angle a. We show later
that £ is actually the gravity wave energy flux. Thus, we use £(a,c) = £(c)/2r. We

bin the momentum flux spectrum by ¢, instead of by « and ¢ by integrating
w/2 Cz
pu'w'(¢cz) = / da/ de pu'w'(a,c) 6(c.—cseca) (2.48)
—-n/2 0
in which we use (. ..) to denote a Dirac delta function. After doing the integral over
a, we find that the momentum flux spectrum in the zonal phase speed c; is
— 1 [ &(c¢)ede
pu'w'(c;) = —< ———————3

With two constraints on &(a,c), this equation tells us that the momentum

(2.49)

flux spectrum in zonal phase speed is proportional to ¢, for large zonal phase speeds
¢;. Firstly, we have already required that the emission be isotropic in the horizontal
plane (i.e., £(a,c) is independent of a). Secondly, the quantity £(c) is expected to
be significant up to some dominant phase speed c¢o and the integral is expected to
be significant only over phase speeds c¢ in the vicinity of ¢o. Lastly, if £(c) cuts off
more rapidly than ¢=2? at high c, then the integral over c in equation 2.49 yields no
dependence on ¢, for ¢, much larger than the dominant phase speed ¢o. Under all of
these conditions, the momentum flux at high zonal phase speeds is proportional to
Eco/c2, where £ is the quantity £(c) integrated over all phase speeds c. In section
3 of this paper, we show that this asymptotic description of the momentum flux at
high zonal phase speeds is true numerically as well.

It is possible to solve for the momentum flux if we know the solution to

By(w, ks, ky). Explicitly, the momentum flux is found by

pulw' = Z—(u'w'* + u"w'). (2.50)
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We caution that on the left side of this equation the winds u’ and w' represent the real
part of the solution while on the right side of the equation the wind fluctuations are
the complex solutions. We wish to relate the quantity on the right to the solution for
B,;. We do this by substituting for 4’ and w’ using the linearized anelastic equations.

We find that

p k;c * ;7

The operator Im{. ..} returns the imaginary part of the quantity in the braces. We use
the definition of M(w, k., k,) given by equation 2.9 along with the formal definitions
of h(z) and its derivative h, given in appendices A and B for propagating waves to
show that

puw'(w, kg, ky) = %—k? M(w, kg, ky). (2.52)

Using the approximate expression in equation 2.18 is actually sufficient for finding
this result. This result only holds for propagating waves. Waves trapped by a thick
lid will not transport any momentum vertically. In addition, we do not account for
the momentum transported vertically by waves trapped by a thin lid since they do
not transport a significant amount of momentum to begin with.

We notice that equation 2.52 has some promising qualities. First of all, this
expression is independent of altitude for any mode. This is consistent with wave—
mean flow interaction theorems which state that waves which propagate freely without
dissipation cannot accelerate the mean flow (Andrews and McIntyre 1976). Secondly,
the factor of k; hints that the convection may be an isotropic emitter of gravity
waves. Within M(w, k,, k,), we have defined the forcing terms to be isotropic, but
we do not know whether the Wronskian will introduce any anisotropies. Finally,
equation 2.52 allows us to predict how much momentum the trapped waves carry out
of the convection before they are reflected by an upper lid. This is done by assuming

that kh(z) takes on its propagating form when evaluating the Wronskian. This will be
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useful later in our discussion of the “finesse” of trapped waves.

There are two other conserved second order quantities associated with prop-
agating internal gravity waves: the wave action flux and the energy flux. The wave
action flux can be defined as the wave potential energy flux divided by the Doppler

frequency wp. We denote the wave action flux for each given mode as
1oyl
A(w, by k) = 2 ‘i}w (2.53)

(e.g., Andrews et al. 1987). Using the linearized anelastic equations 2.1 for «/, w’, and
#' (or equation 3.7 in Booker and Bretherton 1967), we show that the wave action

flux and the zonal momentum flux associated with each mode are related by
A(w, bz, k) = k71 pu'w'(w, ks, ky)- (2.54)

We have yet to show that the wave energy flux is conserved and how it relates
to the other two conserved quantities. The statement of wave energy density evolution
is

g
ot

( (u? + v + w? + N2§'2)) —;(ﬁw’_gé') + pu'w', = 0. (2.55)
The quantity £’ is the vertical displacement of Lagrangian fluid elements and is related
to the vertical wind fluctuation by ¢ = w'/i@. The quantity (p/2) N 2-572— is the
potential energy density associated with the wave. This is not a conservation law
because it is unclear how the second and third terms on the left-hand side interact.
In truth, the formal conservation law for internal gravity wave propagation is the
conservation of wave action:

—8—(5(—“1_2 o 4w+ N )+ (”“"d") 0. (2.56)

ot @ %)

If we use the equation

' = (c; — @) ', (2.57)
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which is the same as equation 3.7 in Booker and Bretherton (1967), we can show that

for each mode the statement of energy conservation is
0 p—= —5 —3 — _
% (ﬁau" + g(u’2 +v? +w?+ N? 5'2)) + %(ﬁu'w’cz) = 0. (2.58)

Since the energy flux is the product of the momentum flux and the zonal phase speed

cz, we see that the energy flux &(w, k;, k,) is given by
E(w, kzy ky) = w Alw, ks, ky) (2.59)

in which we have measured the energy flux at the point of emission from the convec-
tion.

The equation for energy conservation presented above has some interesting
characteristics. Firstly, it requires that secular accelerations of the atmosphere be
considered as part of the kinetic energy. This term is essential because a noncon-
servative wave has the potential to deposit heat and kinetic energy. The deposited
kinetic energy by definition accelerates the mean flow. Secondly, the equation is frame
dependent. Energy conservation will certainly hold true for any frame of reference,
but this equation states that the energy flux of interest is dependent on the frame
of reference. In fact, this must be the case if we allow the wave to transport kinetic
energy. Thirdly, nonconservative waves have the ability to deposit heat and kinetic
energy, but we cannot yet distinguish between the two.

In order to deduce the secondary effects of nonconservative waves, we must
calculate the rate of heat deposition by such waves. The waves add kinetic energy to
the mean flow at a rate of —u 8/8z(pu'w’). The difference between the total energy
lost by the wave and the energy added to the mean flow is (@ — ¢;) 8/0z(pu'w’).
Exactly what happens to this energy remains undetermined, but certainly some of it
can heat the atmosphere through viscous dissipation and some of it may eventually

be reemitted as completely new gravity waves. Notice that this excess energy loss rate
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is independent of the frame of reference. If a wave were to become nonconservative
only at critical levels, where ¢, = 1, all of the energy loss would go toward adding
kinetic energy to the mean flow. This can be understood in an integral sense: for a
critically absorbed wave, 8/9z(pu'w’) = pu'w’ 6(ii(z)—c;) @.. In the end, however,
we shall see that waves will break before they are critically absorbed; thus, breaking
gravity waves have an associated energy deposition which may heat the atmosphere
or be radiated away in gravity waves.

It is possible that other stresses may deposit heat in the atmosphere. Such
stresses can arise from turbulent eddies or molecular viscosity, for example. We
write these stresses as 772 and note that they will apply an additional acceleration of
p~! 0712 /3z to the mean flow. They will heat the atmosphere by doing work against
the shear and do so at the rate of 7,%, (Landau and Lifshitz, pp. 50-51). Including
heating by nonconservative waves, the total dynamic heating rate of the atmosphere
is

PQ" = (= ) () + 7 (2.60)
If in the long run the atmosphere is in a steady state, then the shear stresses must
exactly counteract the momentum transport by the gravity waves. That is, 7., = pu'w’.
If thisis the case, then the rate at which heat is deposited in the atmosphere is given by
—3/0z(pw'¢’). We have used the identity for gravity waves that w'¢’ = (¢, — %) v'w'.
This result for heating by gravity waves is the same result found by others (Lindzen
1981); however, it is important to realize that this formulation of the heating rate is
dependent on the atmosphere being in a steady state.

The amount of gravity wave energy available to the atmosphere is the quantity
E(w, ks, k,) integrated over all modes. In a steady state, no kinetic energy change
occurs and the total heating of the atmosphere by wave and eddy processes is the

same as the gravity wave energy emission rate from the convection. This can be
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understood by integrating 8/0z(pw'd’) over depth. At the top of the atmosphere,
presumably pw'¢’ = 0 and thus the integrated heat deposited in the atmosphere is
puw'¢’ evaluated just above the convection. Since @=0 just above the convection, the
total heat deposited in a steady state atmosphere is just the integral of &(w, k4, ky)

over all modes.

2.8 Wavebreaking

We know from previous work that gravity waves break everywhere in the
Earth’s atmosphere and there is no reason to assume that the same does not happen on
Venus. In fact, gravity waves are known to break before they ever reach their critical
layers (Geller et al. 1975), so we must take into account the process of wavebreaking.

We assume that waves break just enough so that they are only barely stable
against the convective instability condition. Waves can break because of Kelvin-
Helmbholtz instabilities and convective instabilities, but it was shown that the convec-
tive instability dominates for waves in a nonshearing flow (Hodges 1967; Hines 1991).
The convective instability criterion is also sufficient in a shear flow provided that the
background Richardson number is much larger than 1/4. The convective stability
criterion is that the temperature fluctuations associated with the waves cannot ex-
ceed the stability of the atmosphere (given in Kelvins per kilometer) at any vertical

scalesize. Mathematically this is written as
/d m*Br(m) dm ~ I'?. | (2.61)
The quantity I' is approximately the stability of the background atmosphere given by
[' = (dT'/dz) atmosphere — (d1'/d2 )adiabat- (2.62)

We integrate over a unit logarithmic interval dm ~ m because we only desire this

condition to hold at individual scalesizes. The result of this condition is that

1‘\2
Br(m) S —. (2.63a)
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This spectrum is equivalent to the “saturated” spectrum given by Dewan and Good
(1986), which is
N2
B,(m)+B,(m) S —. (2.63b)

m3
This is best understood because the temperature fluctuation 7" is related to the
vertical displacement ¢’ through TV = —¢'T', the vertical displacement is related to
the Gibbs free energy fluctuation through ¢’ ~ md¢'/(N? — w}), and the Gibbs free
energy fluctuation is related to the horizontal wind fluctuations through wpu'~ k; ¢’
and wpv’ ~ k,¢'. Putting this all together, the spectrum of the wave kinetic energy
density in vertical wavenumber is approximately (N?/T'?) Br(m). Thus the two
above equations are consistent. Dewan and Good had assumed that the waves broke
by Kelvin-Helmholtz instability, though. The saturated spectrum has been observed
in the Earth’s atmosphere at vertical scales between 10 meters and a few kilometers.

In our formulation, we must compute whether or not waves break by integrat-
ing over their spectral coordinates and binning by their vertical wavenumbers m. If
the computed spectrum of temperature fluctuations exceeds the universal spectrum
at m, then every wave with that vertical wavenumber is broken by the same factor
until the wave is stable. The vertical wavenumber of each mode is dependent on
altitude, though, so it appears that the spectrum Br(m;z) would have to be com-
puted at every altitude to find the breaking factor fireak(2) for every mode. This
breaking factor would start at unity just above the convection for every wavemode
and monotonically decrease with altitude.

As it turns out, we shall only have to integrate the temperature fluctuation
spectrum over all the spectral coordinates once for each scenario of wave generation.
This is important because such calculations are exceedingly time consuming. Instead,
we can find analytic methods for determining how much each wavemode breaks as a

function of altitude. We shall show how this is done in the third section of this paper
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because we must first understand how gravity waves would behave if no breaking
takes place.

At this point, we have laid out how our problem is solved numerically. Given
background profiles of i(z) and N?(z), we can compute a three dimensional spectrum
of gravity waves. We do so by first calculating the factor M (w, kz, k) for each mode
using equation 2.38. The variance spectra Bs, and B,z are computed using equations
2.42 and 2.43. Momentum and energy fluxes are then computed using equations 2.52

and 2.59. Temperature fluctuation spectrum are calculated using

Th, |2
Br(w, kg, ky; 2) = m’ M(w, kz, ky). (2.64)

This arises from equation 2.9 and the identity 7' = I'¢,/(N? — &?).

2.9 Trapped wave amplitudes

For special situations, relatively simple analytic solutions for gravity wave
spectra can be obtained. Such solutions are helpful in understanding some qualitative
aspects of gravity wave emission from the convection, but they are not essential to
numerically determining momentum and energy flux emission from the convection.
They are necessary, however, for estimating the temperature variance of trapped
waves, even though trapped waves transport no net momentum of energy vertically.
In this subsection we derive some relations which allow us to numerically determine
the amplitude of waves trapped beneath an upper lid.

Included in this subsection is discussion of certain approximations and how
both propagating and trapped waves react under these approximations. Knowing
how propagating waves behave in such situations allows us to better understand how
the convection acts as a source for the trapped waves.

In this subsection we assume that N?(z) can be discontinuous at the top of

the convection. When this is the case, N? remains zero inside the convection but is
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N? just above the convection. We can deduce the behavior of continuous profiles of
N? later by taking the limit N2 — 0. We will be clear about when and where this

discontinuity has been implemented in the following discussion.

2.9.1 The thick barrier approximation

When a thick barrier directly overlies the convection (g, >>1), the wave emis-
sion behaves in the same way as quantum tunneling. The thicker this barrier is, the
more the waves are attenuated. For trapped waves, a thicker barrier will create a
resonant cavity with higher finesse (c.f. subsection “Reflection coefficients, finesse,
and the thin 1id”), but with the same integrated amplitude in gravity waves. This is
best understood because the barrier both separates the cavity from the wave source
(emission) and separates the cavity from the wave sink (reabsorption).

Finding approximate analytic expressions for gravity wave amplitudes at this
stage demands that we compute the Wronskian Wr(g, ). The Wronskian depends
strongly on the upper boundary condition used in determining the wavemode struc-
ture. We compute the Wronskian by evaluating the function g(z) using equation 2.29.
We have yet to evaluate the function A(z) near the top of the convection.

In the high ¢, expansion, we evaluate the function h(z) and its derivative
using equation 2.23. In appendix B we show that in evaluating the derivative of
h(z), derivatives in the leading coeflicient @/,/p in z must be ignored. Evaluating the
modified Bessel functions Iy/3 and I_,/3 is a lengthy task, but when their argument is
large, we can work with their far simpler asymptotic expansions. Their argument in
this case is g;. Essentially, we are no longer in the immediate vicinity of the turning
point (turning point 1 in figure 1), so we can evaluate h(2) using equation 2.17. We
are given ¢; and c; for both propagating and trapped waves, and the coefficients c3

and c4 of equation 2.17 are related to ¢; and ¢; through relations derived in appendix
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A. At the top of the convection (z =z + €) we find that

h=w |—7:—d [(cl exp(7i/4) + coexp(—nif4)) e

0

. (2.65a)
- %(cl exp(wif4) — c;exp(—mi/4)) e_q"]

and

h, = —wlmcl\/—li [(cl exp(wi/4) + cp exp(—ni/4)) e®
po . (2.65b)
+ %(cl exp(ri/4) — cpexp(—ni/4)) e“q"] .

The quantity m, is the value of the vertical wavenumber m immediately above the
convecting layer and po is the density at the top of the convecting layer. When a
barrier occurs at all, such as in this case, m. is imaginary. The terms which are
proportional to e% will dominate the above expressions for k and h, except when
c1 — icy =~ 0. Such a cancellation is essential for getting resonantly trapped waves.

For propagating waves, we find that

h~w me| e® and  h, —wlmch / Imdl et (2.66)
Po Po

where we have used ¢; = exp(—ni/4) and ¢; = 0 for propagating waves. We use

equation 2.31 to show that the Wronskian of g and A becomes

/ k [Ime| , k ?
~ — % —_— —_
Wr(g, h) ~ —wk - e [ A tanh kH + ] (1 c)] (2.67)

in the high g, approximation. With this evaluation of the Wronskian, we can calculate

the factor M(w, k;, k,). For propagating waves in the thick barrier approximation,
the general expression for M(w, k, k,) is lengthy because of the presence of Wr(g, )
in the denominator of equation 2.7; however, if we look at M(w, k., k,) in the limit

of large kH and N2— 0 (no discontinuity in N?), we get

2
- P T -
Ng—-}(l),II?H>1(M(w’ ks ky)) = 1T dwtn? exp(—2q) x C(w, ks, ky). (2.68)
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Recall that the quantity C(w, k., ky) is defined in equation 2.39.

This result for M(w, ks, ky) for propagating waves in the limit of large bar-
rier thickness elucidates much about our problem. The barrier which forms above
the convection and outside the region of wave generation can behave in a quantum
mechanical manner. Even though a barrier is present, internal gravity waves can
“tunnel” through it in much the same way as quantum tunneling. We refer to the
effect of the barrier as attenuation in spite of the absence of energy dissipation associ-
ated with it. Since thick barriers occur only rarely for gravity waves emitted from the
convection, this equation is only important to us in the abstract sense that a barrier
can exist which inhibits wave emission. We show that there are other types of barrier
attenuation in addition to attenuation by a thick barrier.

The nature of trapped waves is fundamentally different than that of propa-
gating waves in the thick barrier limit. The ability of the upward and downward
propagating waves in a duct to constructively or destructively interfere sets up res-
onances. After a gravity wave packet is emitted from the convection and through
the lower barrier, it will continuously reflect from the thick upper lid and the lower
barrier. Depending upon the phase in the duct, the wave amplitude will add con-
structively or destructively. When they add constructively, the amplitude response
becomes large. This is a resonance. The sharpness and height of the resonance curves
is strongly related to the way gravity wave energy is eventually lost. When a thick up-
per lid is present, the only sink of gravity wave energy is convective reabsorption. The
thick lower barrier serves not only to inhibit emission of gravity wave energy from
the convection, but also gravity wave absorption by the convection. Thus, barrier
attenuation has no net effect on the amplitude of trapped waves.

Mathematically, we get constructive interference when the square of the Wron-

skian is minimized. This happens in narrow bands, and thus we expect narrow res-
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onant lineshapes in the function M(w,k;,k,). We find resonances by minimizing
the square of the Wronskian. This happens when the large term, exp(gs), drops
out because of a proper choice of ¢; and c;. The desired cancellation occurs when
¢1 — ¢z ~ 0, which holds true only for specific values of the duct thickness, Q3. In
appendix A, we show that the coefficient of the term proportional to €% on the right

side of equations 2.65 has the following dependence on the duct phase Qg:
c1 exp(wif4) + cz exp(—ni/4) = — cos Qq (2.69)

which is true for trapped waves. This coefficient of e?® is zero for Qg ~ (n + 1/2),
and, in the thick barrier approximation, resonances occur under this condition. This
makes sense when compared to WKBJ trapping theory. For a resonance to occur, an
integral number of half wavelengths is required in the duct plus an additional 7 /2 in -
phase. The extra n/2 radians of phase is introduced by the connection formulas.

In order to find the cumulative response of each trapped wave we compute its
resonant lineshape, linewidth, and amplitude. Most resonant cavities exhibit Lorent-
zian lineshapes. The amount of temperature or Gibbs free energy variance we can
expect from the resonance is proportional to the product of its height and width.
Since we wish to know the amount of temperature variance trapped waves can con-
tribute to the temperature fluctuation spectrum, we do an analytic analysis of the
structure of gravity wave resonances.

We assume that the spectral variables w, k., k, remain nearly constant while
Qq varies rapidly when computing the net effect of resonances. We do this in the
spirit that @, k, and hence m(z) remain roughly constant while @4 varies rapidly in
comparison. This is in fact true when the resonant linewidths are small. We can tell
a priori that the resonant linewidths are dependent on the attenuation factor and
decrease with increasing barrier thickness. The thicker the lower barrier becomes,

the greater the number of times a gravity wave packet traverses the duct before it
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loses its energy. This tightens the constraint of constructive interference and thus the
linewidth narrows. It is thus valid to treat the spectral variables as nearly constant
across a resonance.

We measure the phase §@Q away from the nearest resonant (), where Q. =
(n + 1/2)x for thick barriers. Thus, §Q=Q;— Q. Assuming narrow resonances, we
approximate the coefficients of exp(g;) and exp(—g;) by taking a small 6Q) expansion
of the coefficients of h(z) in equation 2.65 and find that ¢; exp(wi/4)+c; exp(—ni/4) ~
6Q (—1)" and (3/2)[c1 exp(wi/4) — ¢ exp(—ni/4)] =~ (—1)"/2. When we use a discon-

tinuous profile of N2, the square of the Wronskian becomes

213

(Wr(g, B)2 = % tanh kH [(l F2+a+ o) (6Q) ™
a w?T,
1/1 e (2.70)
i —290
+4(a 2+a+w21'3)6 ]
where Q' =0Q — 6Quneshitt,
a = (k/|m.|) coth kH, (2.71a)

and
(a? — 1) w272 + d?
(a +1)% w272 + a?

O Qineshife = (%) exp(—2qs). (2.710)

The center of the resonance is located at Qg = Qr + 6Qiineshife- Because of the factor
of exp(—2¢s), the lineshift §Qyneshie is a small quantity. It is already apparent that
the resonant lineshape is Lorentzian and the halfwidth 6@z is

awT,

" (a+1)2 w22 +a? exp(—2gs). (2.71c)

6QL

The important aspect of this linewidth is that it is directly proportional to the square
of the attenuation factor exp(—gs) which is a small quantity. Also notice that the
linewidth and shift are similar in magnitude.

We evaluate M(w, k, k,) in order to demonstrate the effect of resonances.

When we use the expression for the square of the Wronskian found above, we find
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that M(w, k., ky) is given by

5
M(w, kg, b)) o 20 2T 22

w2k3 tanh kH (6Q7 + 6Q%) Cw, kzs ky). (2.72)

The lineshape of the resonance is clearly Lorentzian with halfwidth 6Qr. The factor
C(w, ks, ky) is given by equation 2.39.

By integrating over a resonance, we can show that a “continuum” spectrum
of trapped waves can be found. We can integrate over the resonance in any of the
spectral variables. In the course of integrating, only the Lorentzian factor will vary
substantially. This factor will yield a factor of 7 after integrating. In fact, no factors
pertaining to the halfwidth remain after integrating. This suggests that the integrated
effect of trapped waves is independent of the structure of the resonances. We use
this fact to compute a smooth “continuum” spectrum of trapped waves. Since the
resonances are separated by 7 radians in the duct phase Qq, the 7 resulting from the
integral over the resonance is cancelled when the integrated amplitude is spread over

the interval between resonances. The resultant continuum spectrum is

P WT,
M(continuuln)(wa kz) ky) = wz(])c3 tanh LH C(U), kz, ky) (273)

The concept of a continuum spectrum is powerful. It essentially states that
we need not resolve the structure of resonances in order to calculate the temperature
variance trapped waves contribute. This is important because resonances can become
extremely narrow and highly dense spectrally. Furthermore, in physical reality we
cannot know exactly where resonances lie spectrally, so it is good to know what
amplitude they give independent of their precise positions. Even though we have
onlyv shown that a continuum spectrum of trapped waves exists for thick barriers,
thisv continuum spectrum holds true for all types of lower barriers. We emphasize
that the continuum spectrum of equation 2.73 holds only when the upper lid above

the duct is thick.
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2.9.2 The thin barrier approximation

Attenuation by a thick barrier is commonly known about in the context of
“tunneling” in quantum mechanics; however, we find that thin barriers also have the
ability to attenuate. In order to investigate how thin barriers (gp < 1) effect trapped
waves, we shall once again evaluate M(w, k;, k,) for propagating and trapped waves.
Before continuing with a description of thin barriers, we note that when N?(z) is
continuous most waves encounter thin barriers; however, when N?(z) is discontinuous,
most waves encounter no barrier at all (g, =0) but nonetheless do experience some
attenuation.

When evaluating the Wronskian for thin barriers, we use expressions for so-
lutions near turning points given in appendix A. In particular, we must look at the
small phase expansion of these turning point solutions when on the nonpropagation
side of the turning point (m? <0). We note that h(z) within the barrier is given by
equation 2.23. When solving for h(z) at z= ziop+€, we use small argument expansions
for I5/3(¢) and I_3/3(q). In appendix A, when finding the turning point solutions, we
considered the m?2(z) profile to be linear in the neighborhood of the turning point. We
do the same here when approximating h(z) for small g5. At 2=z, + €, We consider

m?2=—m?. The leading order solution at the top of the convecting layer is

. [2m|m| _ . . 3¢*/3
h(z) & ._3/3_ % 1/6 [(c2 exp(7i/12) — ¢ exp(—ﬂz/12))m

+ (c1exp(77t/12) — c; eXP(—77fi/12))f\2_:1—)]

where g, is the barrier thickness as defined in equation 2.21a, ¢ is the phase measured

(2.74)

from the lowermost turning point, and the I'’s are gamma functions. It is apparent
that the amplitude of h(z) at the convection is almost solely determined by the
second term in the brackets whereas its derivative is determined by the first term in

the brackets.
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We use the form of h(z) in equation 2.74 to evaluate the Wronskian as defined
in equation 2.31. Below the turning point, we note from equation 2.15 that dg/dz=
—|m|. We find that

Wr(g, h) ~ — iw|m,] 2mjme| (tanh kH)'/? x
3p0
2/3_~-1/2
[(cl exp(Trif12) — c; exp(—T71/12)) —2—11(%—— q;1/6 (2.75)
3
i ) ) 21/3a1/2 1/6
+ (1 — ch) (cz exp(mi/12) — c; exp(—ni/12)) F(%) 0 ]

where we have again used a=(k/|m.|) cothkH.

The factor of a is omnipresent for thin barrier cases. We wish to know whether
it is a large or a small number and whether that makes the factor aq;/ % a large or
a small number. This is important because we wish to know which term dominates

in equation 2.75. The first term in the brackets is proportional to (aq;/ 3-1/2

and
the second term is proportional to (aq;/ 3)1/ 2. Firstly, for a wave to encounter a
lower b’arrier at all, it is necessary that w > N,. Otherwise, a region of propagation
would directly overlie the convecting layer. Secondly, the largest waves are forced
at frequencies smaller than N,. The peak in the forcing spectrum occurs for waves
with w S W, /H. In the section on numerical results we find a value for N, when the
stability profile is continuous. This value for N, turns out to be large enough such
that most waves have w < N.. Therefore, those modes which do encounter a lower
barrier contribute the bulk of their amplitude when wX N,. In this neighborhood, it
is possible to have aq;/ 3 either very large or small. This is significant, because then
either of the two terms in the Wronskian can dominate the other. We emphasize that
so far we have only approximated ¢, < 1.

For propagating waves, the analytic solution is rather lengthy; however, a

few results are apparent. The thin barrier attenuates the wave depending in which

regime of aq; /® the mode falls. If aq;/ 3 is much less than unity, which is always the
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approximation Qn QL 8Qineshitt /6QL
1 a wr. exp(—2¢s) 1(a? 1) w?r? + a?
%>1 (nt (a+1)? w272 + a? 2 awTe
1 31/2 1(1/3) ag)’®
1 aot!? L b
%<1, a1 | (n+3)7 973 T(2/3) wr, e
1/3 2 2728 wr T(2/3) , 1/3\s _
6K 1) agqy >1 (n’ + 3)7‘(’ 14+ w27-c2 I‘(1/3) (aqb ) WTe
1 -1
@=0 (n+ Z)r a (we) +wTe

Table 1. Resonance properties. We show the different resonant conditions, linewidths,
and lineshifts depending on the limit of the barrier thickness g;. The quantity a is
defined by equation 2.71a in the text.

case for thin barriers and continuous N? profiles (because then a =1), then the barrier

/3 is much greater than

attenuation factor is proportional to aq;/ 3. Conversely, if aq;
unity, then the barrier attenuation factor is proportional to (aq;/ 3)'1. Therefore, thin
barriers can attenuate gravity wave emission.

We must treat trapped waves differently depending on the size of aqb1 /3 Asbe-
fore for thick barriers, resonances occur where the Wronskian is minimized. When the

3. . . .
/3 is small, resonances must occur where its coefficient, ¢; exp(77i/12) —

parameter aq;
cz exp(—Tni/12), is small. Using relations in appendix A for ¢; and c; at the lower
turning point for a trapped mode, we find that the coefficient is zero when the duct
phase Qg ~ (n + 1/3)x. When the parameter aq;/ % is large, resonances occur near
the locus of c; exp(7i/12) — ¢; exp(—71/12) = 0, which occurs when the duct phase
Qi~(n+2/3)x.

As noted above, the continuum spectrum of trapped waves holds true for each
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of these cases. The resonance conditions and linewidths are different, though. In
table 1, we show the results for resonance conditions, linewidths, and line shifts for
all types of trapped waves.

We remark here that even though the cases of thick and thin barriers show
interesting behavior, when the profile of N? is discontinuous, neither of these cases
contribute significantly to the amplitude and momentum flux of the emitted gravity
waves. In general, w < N, and no barrier at all is present. We refer to this case
mathematically as g5 =0. Even though no barrier is present, an attenuation factor
does exist. For most waves, a is a small quantity, and it is the attenuation factor for
barrierless waves. This is understood by setting the function h(z) = &+/m/p sin(q —
7/4) and evaluating the Wronskian using equation 2.31. The phase ¢ is measured

away from the top of the convecting layer.

2.10 Reflection coefficients, finesse, and the thin lid

Using some transformation rules in appendix A for calculating the coefficients
¢; and ¢z, we can calculate the response of wavemodes trapped by a thin upper lid,
but we have not found the continuum spectrum for these modes as we have for waves
trapped beneath a thick upper lid (equation 2.73). Recall that the upper lid refers to
the abstract barrier that forms at the top of a duct while a barrier refers to the region
of nonpropagation which may form immediately above the convecting layer. Here we
present an alternate way to look at trapped modes which ena,bles us to calculate
the continuum spectrum of waves trapped beneath thick and thin upper lids. We
shall show that such a calculation requires no knowledge of lower barrier attenuation
for waves trapped by a thick upper lid, but that knowledge of barrier attenuation is
required to calculate the amplitude of waves trapped by thin upper lids.

The presence of a thin lid rather than a thick lid for trapped waves suggests

that there is a sink of energy in addition to reabsorption by the convection, namely
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radiation of energy to space. Consequently, for these waves there are two mechanisms
which limit the size of the wave in the duct. A detailed analysis of such waves is
terrifically laborious and not necessarily instructive. Instead, we can view the two
sinks of energy as competing with each other to limit the size of the wave. This
gives rise to the view of the gravity wave duct as a resonant cavity with a finesse.
The finesse of a duct is roughly the number of times a wave packet reflects from the
boundaries of the duct before it is dissipated.

We conceptualize the duct for trapped waves as a resonant cavity with upper
and lower lids which leak only a little energy. The fraction of gravity wave energy
which is retained by a wave packet after traversing the duct upwards and downwards
once is r, the total reflection coefficient. The energy lost by the wave packet is done so
upon transmission through the lower barrier or through the upper lid. We call r, the
fraction of energy retained after reflection from the lower barrier through which some
of the energy is lost to convective reabsorption, and we call r; the fraction retained
after reflection from the upper lid where the energy is lost by tunneling and radiation
to space. When the upper lid is thick, r;=1. The total reflection coefficient r is the
product of r. and r;.

Simple cavity resonance theory and knowledge of the behavior of propagating
modes tells us what the continuum spectra must be (Born and Wolf 1980). We invent a
function M(,ropagating)(w, k=, ky) Which is the function M(w, k., k,) for a mode with the
same w, k;, k, as the trapped mode in question but with radiation to space imposed
as an upper boundary condition. This quantity essentially tells us the amount of
gravity wave energy the convection is providing to the middle atmosphere at a given
frequency and wavelength. In addition, we view trapped waves as a manifestation
of wave packets repeatedly reflected from the upper and lower reflection points with

the wave amplitude constructively or destructively adding depending on the amount
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of phase in the duct. For any resonant cavity, the amount of energy density which

accumulates in the duct is

2M propagating) (2.76)

M(continuum) = 1—r ’
where M conginuum) is the continuum version of M. When the upper lid is thick,
M continuum) 15 given by equation 2.73. For example, this relation can be found for the
energy density within a laser cavity of adjustable length in which M(propagating) Tepre-
sents the power provided to the cavity divided by the speed of light and M continuum)
represents the energy density within the cavity. The factor 1/(1 —r) is the cavity’s
finesse divided by n. The factor of 2 which appears in the numerator is a result of
the upward and downward propagating waves being incoherently phased on average.

This last equation contains some new information for us. Primarily, it tells us
what the reflection coefficient of the lower barrier is. We already have an expression
for the continuum spectrum of waves trapped by a thick upper lid (equation 2.73)
and an expression for the spectrum of propagating waves (equation 2.68 for g;>>1—
found numerically otherwise). We can thus solve for r, (because r;=1). If r. is a
reflection coefficient from the lower barrier, then 1 — r. is a transmission coefficient
through the lower barrier. We now see the convection as “trying” to emit a certain
amount of energy into the stable layer but that some attenuation mechanism which
forms at the interface between the stable layer and the neutral layer prevents much
of this emission. The fraction which gets through this barrier is just the transmission
coefficient 1 — r,, which is generally a small number for thick or thin barriers.

If we are to find the continuum spectrum of waves trapped beneath a thin
upper lid, we must next calculate the quantity r;, the coefficient of a reflection from
the upper lid. We find r; by using the transformation rules across regions of non-
propagation laid out in appendix A. We let an incoming wave encounter a nonprop-

agation barrier of thickness (J; and calculate how much of its energy propagates
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through the barrier. We allow only outward propagation on the transmission side of
the barrier. We find in appendix A that if the solution for the transmitted wave is
©+/m/p exp(i(q — w/4)) on the emission side, then the solution on the incident side
is

o L - Q L iy, i(g—n/4) L 20,y —i(q—n/a)

Oy ] — % (—1e*) [(—1 + e He'l + (14 7¢ HNe™ " ] (2.77)

p

The second term represents the incident wave and the first term represents the re-
flected wave. By taking the ratio of the square of the coeflicients of these two terms,

we find that the reflection coefficient associated with the barrier is

2

1 — L2
£ | vl e (2.78)

r= "——1 n i_e—ZQ;

We use the expression r; =1 — exp(—2@);) in our calculations. We note that the trans-
mission coefficient is exp(—2Q)), thus implying that gravity wave energy is conserved
because the sum of the transmission and reflection coefficients is unity.

In summary, we can calculate the continuum spectrum for modes trapped by

a thin lid. We first find r. by

2M ropagatin,
ro =1 — - (propogating) (2.79)
M (continuum, thick lid)
in which Mpropagating 15 calculated numerically assuming solely upward propagation
and Mconﬁnuumz thick 1ia 1S calculated using equation 2.73. We then define r = r.r.

Finally,
M propagating) (2.80)

M continuum, thin lid) = 1 rory
This has the desired property that the function M ontinuum, thin 1a for waves trapped
by a thin lid approaches that for waves trapped by a thick lid as the lid thickness
approaches infinity. Furthermore, as the lid phase approaches zero, the function
M ontinuum, thin id approaches that for purely propagating waves.

A problem does arise in this description. A discontinuity in M(w, k;, k) arises

as the upper lid thickness approaches zero. The energy carried vertically by a wave
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trapped under a lid of zero thickness is just one half that of a wave which encounters
no lid at all. This discontinuity is a consequence of using equations 2.77 and 2.78 for
all thin lids despite their invalidity for @}; < 1. This problem remains unaddressed.
Nonetheless, we content ourselves with the knowledge that this is only a very small
correction to an order of magnitude analysis. Few of the emitted gravity waves
encounter upper lids with thicknesses less than 3. Also, waves trapped by thin upper
lids hardly contribute any momentum in the spectrum of momentum flux of gravity

waves emitted from convection.
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3. Numerical computations

In describing the manifestation of gravity waves generated by convection in
the overlying atmosphere, it is useful for us to refer to three different models. The
first and simplest model consists of a stable layer with constant N? and no wind shear
overlying a convective layer with thickness H. This is similar to the model of GK
but with a finite depth to the convection and varying temperature in the stable layer.
We use N2 =4 x 10~% 572 in the stable layer. The second model has variable zonal
wind and a variable static stability in the stable layer. Both profiles are continuous
and are intended to mimic the background profiles of zonal wind and static stability
of the Venus middle atmosphere. This model is the most general for characterizing
the properties of gravity waves generated by dry, neutrally buoyant convection. The
third model is similar to the second, except the static stability profile above the
convection has been neutralized up to where N?2=4 x 103 s™2. At that point, the
profile is discontinuous. This simulates a discontinuity in the temperature gradient

of the background atmosphere. These three models are summarized by figure 2.

3.1 Model I

In this model the stability is fixed at N2=4.0x10~* and the wind is zero above
the convecting layer. As in all three models, the background temperature profile is
taken from the parameterization of Schubert and Walterscheid (1984). Even though
the Brunt-Vaisila frequency is determined directly from the temperature profile, it
is not invalid in this case to define the two profiles independently. When the static
stability and the temperature structure are considered independent, it is the static
stability that is more relevant to the propagation characteristics of the waves. The
temperature structure only serves to modify the absolute amplitude of the tempera-
ture variance spectra. It would not modify the momentum or energy flux spectra of

the waves. Therefore, we can appropriately use the background profile of tempera-
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Figure 2. Model wind and stability profiles. For models I, Il, and Il we show the static

stability, or Brunt-Vaisala frequency N2, and the zonal wind @ as functions of
altitude. The extent of the convecting layer is indicated.
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ture and fix the static stability at a constant. The pressure and density profiles are
determined using the hydrostatic law in conjunction with the temperature profile.

The only type of wave possible in the first model is propagating. An upper lid
cannot form because of the absence of shear and variability in N2. So long as waves
have w<0.02 s~! (periods greater than 6 minutes), waves propagate freely out of the
convection without encountering a barrier and radiate their energy to space. In figure
3 we present a sample propagating mode. Both the real and imaginary parts of ¢’
are presented. When the exp(iwt) is taken into account, those waves which have an
imaginary part lagging the real part by = /2 radians with increasing height will have
a downward phase velocity and hence an upward group velocity.

For the first model we present spectra of temperature fluctuations, momentum
fluxes, and energy fluxes for entropy- and Reynolds-type forcing. We use a convective
wind speed of W,=3 m/s and a horizontal correlation length of H.=25 km for each
type of forcing. Temperature variance spectra in vertical wavenumber are computed
from Br(w, ks, k,) by integrating over two of the spectral parameters and choosing
the other so that m is fixed. Because m is a function of altitude in general, we choose
an individual altitude at which to evaluate the temperature variance spectra in m.
In this first model, though, the vertical wavenumber is constant in altitude because u
and N? are independent of altitude above the convecting layer; thus, a temperature
variance spectrum in m evaluated at one altitude is representative of all altitudes
in this model. The momentum and energy fluxes are evaluated as described in the
previous section from the function M(w, k., k).

The most important phenomenon to appear in figure 4 is the growth of the tem-
perature variance with increasing vertical wavenumber m for the “unbroken” waves.
This is a manifestation of a strong singularity in the spectrum of gravity waves at

low frequency. The singularity arises from the factors of w in the denominator of
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Figure 3. Model | wavemode. This is a wavemode typical of model | waves. The light solid
line is the real part and the light dashed line is the imaginary part. The bold line

shows the envelope of the wave. We have used c =3 m/sand k =2 x 1074 m~1.
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Model | temperature variance spectra for w.=3 m/s
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Figure 4. Model | temperature variance spectra. We have plotted the temperature
variance spectra in the log of the vertical wavenumber at 60 km altitude. Both
types of forcing are represented for both unbroken waves and broken waves. We

have taken W.=3 m/s and H.=2 X 10~* m~! for the forcing. Also present as
the bold dashed line is the saturated spectrum as it is defined at 60 km.

the right side of equation 2.3. This is reflected at high vertical wavenumbers m in
these spectra because m and w are inversely proportional (see equation 2.13). Since a
divergent spectrum is physically unrealistic, we assume that the waves break as soon
as they are emitted from the convection.

In order to calculate which modes break and by how much, we develop an ap-
proximate theory for the temperature variance spectrum in the vertical wavenumber.
First, we approximate the Gibbs free energy variance spectrum in w. We start with

equation 2.9 and use the expression for M(w, k;, k) provided by equation 2.38. The
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Wronskian given by equation 2.31 is dominated by the second term on the right at
low frequencies, and thus Wr~ h(zyp)/H. The forcing terms are given by equations
2.42 and 2.43. We integrate over k;,k, assuming that they and their integrating
intervals dk,,dk, are all roughly given by 1/H. The hyperbolic tangent of equation
2.38 is approximated as of order unity. The frequency w is considered negligible in
comparison to the Brunt-Vaisald frequency N because we are interested in the low
frequency limit. Retaining the frequency dependence, we find that the Gibbs free

energy variance spectrum is

H

W;) (3.1)

By(w) ~ % W2 (

where the trailing factor of H/W, is approximately the correlation time constant
of the eddies in the convection. Thus, the Gibbs free energy variance spectrum is
roughly independent of w.

In converting the variance spectrum of ¢’ into a temperature variance spec-
trum, which is defined by equation 2.64, we note that the only substantial difference
between the variance of ¢’ and the variance of T” is the derivative of h(z) in the
leading term of equation 2.64. At low frequencies, we assume that the derivative
contributes an extra factor of the vertical wavenumber m. We convert from a spec-
trum in frequency to a spectrum in vertical wavenumber by multiplying by dw/dm

at constant kg, ky:

Ow '
Br(ks, ky,m; z) = (%) L, Brloko k) (3.2a)
where
Ow Nk
(8—m) kedy | M2 (3.20)
in which we approximate k as 1/H. The result is that
NT?
mBr(m; z) & 2 m W3 (3.3)

p(z) g°
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in which mBr(m; z) is the temperature variance spectrum in the log of the vertical
wavenumber, which we have found for the sake of comparison with figure 4. The
temperature variance spectrum at high vertical wavenumbers is proportional to m.
The temperature variance spectrum is not integrable as m approaches infinity. Since
large vertical wavenumbers correspond to small phase speeds and small frequency, we
call in the low frequency, or low phase speed, singularity. It is unphysical, and we
expect the waves to break.

Since the temperature variance spectrum is divergent everywhere above the
convection, we must assume that the wavebreaking takes place immediately above the
convection. Furthermore, we assume that after the waves break, they never exceed
the “saturated” spectrum Br(m)=T?%/m® The waves then each have an associated
breaking factor fureaking Which tells how much of the energy of each mode is retained
after breaking. Since waves do tend to grow with height because of the inverse square
root of density growth law, the waves are expected to break throughout the stable
atmosphere. Therefore, the breaking factor is a function of height. Nonetheless, we
start by finding the breaking factor immediately above the convection.

By our assumptions, the breaking factor at the top of the convection is given
by the quotient of the saturated spectrum and the divergent spectrum of equation 3.3.
The quotient is fureaking= (N/mW,)® at high vertical wavenumbers. At the top of the
convection, N = N., and using the small phase speed approximation of the dispersion
relation (equation 2.13) m~ N/c, the breaking factor becomes foreaking = (¢/ W,)3.

The temperature variance spectrum of equation 3.3 does not exceed the sat-
urated spectrum at small wavenumbers, though. In fact, the point of intersection of
the saturated spectrum and the temperature variance spectrum occurs at a critical

wavenumber mgiticat Which is given by

(PN N
Meritical = ( 0o ) Wco (34:(1)
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We then formulate wavebreaking in model I by constructing a function proportional
to m ™3 for m > Meritical but does not attenuate for m < mergica. We define this function

to be

3
~ M critical
fbreaking(z) _ (m2 + m2 " 31)3/2 (3.4b)

This breaking factor describes breaking upon emission from the convection when
Z=2z0p and hence p= pq.

A special feature of this breaking factor is its independence from characteristics
of the overlying atmosphere. Immediately above the convection the density depen-
dence in the breaking factor falls out. Recall that we arrived at the breaking factor
by not permitting waves to exceed the saturated spectrum. It was by no means guar-
anteed that small nondimensional factors would be introduced. (The only possible
nondimensional factor in this model is W,/NH.) Nevertheless, no nondimensional
factors entered. Had such factors become involved, we would have to anticipate a
coupling mechanism between the convection and the stable atmosphere in the course
of wavebreaking. Instead, the breaking process is solely dependent on the intensity
of the convection.

At this point we characterize the process of breaking upon emission. We have
seen that in the absence of wavebreaking, the convection would emit an unstable
amount of gravity waves. For physical relevance, the waves are required to remain
stable everywhere above the convection. This means that at some point between
the convection and the stable atmosphere, the waves must loée a significant amount
of their energy. The energy is lost by wavebreaking at the interface between the
convection and the stable atmosphere. The process of breaking immediately upon
emission from the convection is breaking upon emission. Because a large amount of
wave energy is expected to be lost immediately after emission from the convection,

a significant layer of energy dissipation develops immediately above the convection.
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We call this layer the breaking layer because this is where waves which break upon
emission deposit their energy. Since the amount of energy dissipation within this
layer is independent of the properties of the overlying atmosphere, the dynamics of
the breaking layer is characteristic of the convection alone.

This is not the only breaking process necessary, because the waves can grow
and become unstable well above this interface. In the breaking factor above, we
have incorporated both breaking upon emission and breaking throughout the stable
atmosphere. The factor associated with breaking immediately upon emission is found
by setting p = po and breaking throughout the rest of the overlying atmosphere is
found by letting p vary with altitude.

In figure 4 we have included the temperature variance spectra resulting from
breaking upon emission and the saturated spectrum. In comparison with the sat-
urated spectrum, the broken spectra are smaller by factors of 0.33 for the case of
Reynolds-type forcing and 0.049 for the case of entropy-type forcing. This happens
because we only use an approximate theory to derive the breaking factor of equation
3.4b. If equation 3.4b were a precise equation, certain numerical coefficients would
have entered which would have made the broken spectra fall directly upon the satu-
rated spectrum at high vertical wavenumbers. We do not worry about this problem,
mostly because the theory of a saturated spectrum itself is an approximate theory
with numerical coefficients involved. For an order of magnitude study, our approach
should be sufficient.

We note that the Reynolds-type forcing spectrum falls off more rapidly than
the entropy-type forcing spectrum at low m. This is a reflection of the high frequency
tail of the forcing functions B,z and Bs,: Reynolds-type forcing falls off more rapidly
at high frequency than the entropy-type forcing by a factor of w'. Recall that high

" frequencies w imply low vertical wavenumbers m.
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Figure 5. Model | momentum and energy fluxes. In the top figure we show the momentum
flux spectrum in zonal phase speed, pu‘w(c;), for Reynolds-type and entropy-type
forcing and for waves unbroken and broken upon emission. In the lower figure we
do the same but for the energy flux spectra in zonal phase speed £(c,).
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For the first model we show “available” momentum and energy fluxes for W.=3
m/s in figure 5. The vertical transport of zonal momentum carried by gravity waves
generated by the convection is considered the available momentum flux: since gravity
waves do not affect the mean state atmosphere until they are either broken, damped,
or critically absorbed, their momentum flux is available to the entire overlying stable
atmosphere should they choose to attenuate in any way. The available fluxes are
those carried by waves at the point of emission from the convecting layer after they
have been broken upon emission.

We consider Reynolds-type and entropy-type forcing for both unbroken emis-
sion and broken upon emission in figure 5. The difference between the momentum
flux and energy flux spectra is a factor of ¢, (see equations 2.54 and 2.59). In the
unbroken spectra, the amount of energy in internal gravity waves generated by the
convection is finite despite the amount of prograde/retrograde momentum generated
being infinite. The infinity in the momentum flux spectra is another manifestation of
the low frequency/high vertical wavenumber singularity. Wavebreaking upon emission
rids the momentum flux spectra of the low phase speed singularity. After breaking
upon emission, the waves deposit a finite amount of energy. This is the energy which
is dissipated in the breaking layer.

The dashed curves in figure 5 are the spectra of momentum and energy flux
after breaking upon emission. In the “Analytic solutions” section of this paper we
had shown by a geometric argument that the ﬁomentum flux spectrum would fall
off as ¢;® at large ¢, provided that the wave response falls off rapidly enough with
frequency and that the wave emission is isotropic. By the symmetries set up in this
model, we already know that the wave emission is isotropic. Because the ¢;* does
hold at high zonal phase speed, though, we know that the wave response to convective

forcing at high frequencies is weak.
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So that we may find an expression for the overall amplitude of the momentum
flux spectrum pu’'w'(c,), we first approximate the total momentum flux pulw’. We
find an approximate expression for the Gibbs free energy fluctuation using equation
2.7. The dominant modes have k¥ ~ 1/H and w ~ W,/H. We also approximate
F ~ poW2/H?. The quantity N?>—&? is evaluated within the convection where N 2=0.
Lastly, the Wronskian is approximated using equation 2.31 and is approximately h/H.
Putting this together tells us that the typical Gibbs free energy fluctuation is ¢’ ~ W2
at the top of the convection. Using u’' ~ ¢//c, and w' = (om/N?) ¢', we find the

integrated momentum flux to be approximately

pulw’ = %—MH—Q. (3.5)
Given this scaling for the momentum flux and that it falls off as ¢ above the
dominant phase speed W,, then the momentum flux spectrum in zonal phase speed
is

S pW?2 3
pu'w'(c;) = b % (I—;V—C) for ¢, > W.. (3.6)

The parameter b is a numerical constant which can be found by fitting this spectrum
to the one found in figure 5. We find that b= 0.14 for Reynolds-type forcing. We
have used H=>5 km, N=0.02 s™!, and po=0.9 kg m™3.

We note that GK found that the gravity wave energy flux is approximately
given by the product of the convective energy flux and the Mach number of the con-
vective motions, i.e., poW2/c, in which ¢, is the speed of sound. They had assumed
that the stable atmosphere was isothermal, for which the speed of sound is approx-
imately NH. Since the dominant phase speed of convectively generated waves is
about W,, our expression for the momentum flux emitted in equation 3.6 from the
convection is consistent with the estimates of GK.

A prominent feature of model I is that waves generated by entropy-type forcing

are about one fifth as large as those generated by Reynolds-type forcing. It turns out
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Forcing and Projection for W.=3 m/s, H.=5 km

1 T T l T T 1 l 1 i 1 I I I T | T 1 1 I

Nl 3
5 | Reynolds—type forcing 'E
-lf‘ - .
) - N
e 4D .
I - N
o _ i
A 3 [ —
+ L -
~ - 1
& F .
2 -
o - -
X - -
(3 N . N
1+ entropy—type forcing —
ol L ]
— l 1 | i l 1 | 1 l 1 ] 1 l 1 | 1 l 1 1 1 | b

0 .0002 .0004 .0006 .0008 .001

k (m™")

Figure 6. The forcing efficiencies. We plot C(k, c) for both Reynolds-type and entropy-
type forcing. The phase speed c is set to 2 m/s. For the forcing, W, is set to 3
m/s and H. is set to 5 km.

that even though the integrated spectra of (¢H/c;)? Bs, and B,z are the same, the
gravity wave response to forcing is maximized where C(w, kz, ky) for Reynolds-type
forcing is five times greater than C(w, k., k,) for entropy-type forcing (C(w, ks, k)
is given by equation 2.39). In figure 6 we show slices of the temperature variance
spectrum at a fixed angle of horizontal propagation a. The model I spectrum is
independent of o because zonal winds are absent. Numerically, the greatest gravity
wave response occurs near k ~ 2 x 107* m™! and ¢~ 2 m/s. In figure 6 we plot
C(k,c = 2 m/s) for both types of forcing. Clearly, C is about five times greater

for Reynolds-type forcing near k~ 0.2 km™" than for entropy-type forcing. This is
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the reason Reynolds-type forcing tends to overwhelm entropy-type forcing in these
calculations. Beyond k£ ~ 2 x 107* m™! entropy-type forcing appears much weaker
than the Reynolds-type forcing because of the factor of k? in the Reynolds-type
forcing term of equation 2.39.

The three main points of this model are that we expect waves to break upon
emission from the convection because of a low frequency singularity in the wave
response to forcing, the momentum flux spectrum is approximately given by equation
3.6 for large zonal phase speeds, and that Reynolds-type forcing generated larger
gravity waves than entropy-type forcing. The next step is to examine what happens

when variable winds and stability are included.

3.2 Model II

In the second model, realistic profiles of the zonal wind and Brunt-Vaisila
frequency are used. The Brunt-Vaisala frequency is continuous in altitude and thus
N2=0.

In this model we demonstrate the nature of the singular response of the waves
in a general situation. Whereas in the first model it was possible for a temperature
variance spectrum in vertical wavenumber at one altitude to represent such a spectrum
at any altitude, evaluating the temperature variance spectrum at just one altitude
will not suffice in the second model. Recall that the vertical wavenumber is a function
of altitude because both N? and & are now functions of altitude. For this reason,
the second model is complicated because the binning of temperature fluctuations by
vertical wavenumber is strongly dependent on altitude. Nonetheless, the momentum
and energy flux spectra remain easily calculable.

The introduction of the wind shear provides us with a variety of wave cases. We
have explained in the section on analytic solutions that all prograde (westward) waves

are propagating. Retrograde (eastward) waves are either propagating or trapped. For
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Figure 7. Retrograde wave cases. We plot wave cases as a function of ¢ and k when
a =0 (which means ¢, =c and k, =k). Region A contains propagating waves,

region B contains waves trapped by a thin lid, region C contains waves trapped by
a thick lid, regions D and E contain no waves.

some selections of w and k., emission is impossible for retrograde waves. We show in
figure 7 where the different wave cases fall in ¢, k, space. We have taken c, positive
so that we only see the retrograde waves. Whether a wave is trapped or propagating
is independent of k,; however, whether a trapped wave is trapped by a thin or a
thick lid is dependent on k,. In general, the thickness of the upper lid is directly
proportional to k, the amplitude of the horizontal wavevector. Thus, larger values of
k, make the upper lid thicker.

We briefly describe why wave cases fall where they do in figure 7. The waves
in region A are propagating because the Doppler shifting is so slight (k; is small)
that the Doppler frequency wp never exceeds the Brunt-Vaisala frequency above the

lowermost turning point. When k, is increased, however, a lid is formed because
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Doppler shifting of wp is now large enough that a lid forms near 67 km altitude. At
first, the lid is thin; thus waves in region B are trapped by a thin lid. As k; grows,
the lid becomes thicker. When the lid thickness Q; exceeds 3, we categorize the lid as
thick; thus, the waves in region C are trapped beneath a thick lid. Eventually, when
¢; and k; become large enough, no region of propagation exists below 67 km because
the Doppler frequency wp is so large that it exceeds the Brunt-Vaisila frequency
everywhere below 67 km altitude. This is the case for regions D and E.

With figure 7 we check the trapping condition of equation 2.19. In this model,
the stability N2 is 3.63 x 10~* s~2 at its maximum. The maximum wind speed with

respect to the convection is 58.0 m s™'.

This means that the zonal wavenumber
k, must be greater than 3.3 x 10™* m™! for trapping to occur. This wavenumber
corresponds to a horizontal wavelength of 19 km. In figure 7 we see that the transition
between propagating and trapped waves occurs near k; = 3.6 X 10~* m~1. This agrees
well with equation 2.19.

Even though the range of k; is limited for trapped waves, the zonal phase speed
¢, is nearly unlimited. We mentioned in finding equation 2.19 that Doppler shifting of
wp is more important than the frequency w in determining whether trapping occurs.
This is seen in examining wp = k;(c; — ©(z)). Since the phase speeds c; of the
dominant wavemodes have ¢, < % where the zonal wind speed is large, the term
—k,u will overwhelm k. c, in evaluating wp. Thus, the zonal wavenumber k, is the
constrained quantity in determining whether a retrograde wavemode is trapped or
propagating.

In figure 8 we plot the “available” momentum and energy flux spectra for
model 2. Trapped waves contribute no net available momentum or energy flux because

their upward and downward components have the same amplitude. In essence, the

convection is both the source and the sink of momentum and energy for trapped
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Model II Momentum and Energy Fluxes, W.=3 m/s
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Figure 8. Model Il momentum and energy fluxes. We plot the available momentum fluxes
in the top figure and the energy fluxes in the bottom figure for the second model.

We use both Reynolds-type and entropy-type forcing with W, set to 3 m/s and
H, set to 5 km.

waves. Since trapped waves propagate eastward and contribute no momentum or
energy flux, there is less retrograde (¢, > 0) than prograde momentum and energy flux.
In addition, we do not include wavebreaking upon emission because the derivation of
equation 3.4b, in which m citica = N/W;, does not hold for continuous profiles of the
Brunt-Vaisala frequency.

Even though the energy flux spectrum of this model behaves differently at low
phase speeds than the one for model 1, the low frequency singularity still exists. The
different behavior at low phase speeds is a consequence of introducing barriers in this

model. Recall that a lower barrier forms because the Doppler frequency wp is greater
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than the Brunt-Viisila frequency N in a small region above the convection, and
thus a region of nonpropagation forms (see figure 1). Nevertheless, since the energy
and momentum spectra differ only by a factor of ¢, it is clear that the momentum
flux speétrum is nonintegrable because the energy flux does not approach zero as c,
approaches zero. The nonintegrability of the momentum flux spectrum is the result
of the same low frequency singularity of the first model.

The low frequency singularity is complicated in this model by the nature of
the vertical wavenumber profiles. Because the stability profile is continuous, every
wavemode has a lower barrier, most of which are thin. As the frequency tends to zero,
the barrier grows thinner and vertical wavenumbers just a,bové the barrier in the region
of propagation grow infinitely large. Whereas for discontinuous stability profiles it is
possible to associate each individual wavemode with a vertical wavenumber above the
convection (e.g., for the first model), for continuous static stability profiles it is not
possible because vertical wavenumbers above the convection vary rapidly over short
vertical scales. For any breaking mechanism within the context of a linear theory, we
must know a vertical wavenumber for a wavemode at a particular altitude in order to
determine by how much it should break. Since we cannot determine a single vertical
wavenumber for wavemodes above the convection, determining how waves break upon
emission is impossible in this model.

Because the singularity does exist, some wave energy is expected to dissipate
in the immediate vicinity of the convecting layer. The turbulence which results mixes
the entropy of the background state and filters the emission of waves. The mixing
of entropy neutralizes the background stability in a thin layer above the convection.
We associate this layer with convective penetration. At the top of the layer the static
stability should have a nonzero value. Effectively the discontinuity iﬁ the stability

creates a buffer against vertical motions associated with the convective and breaking
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activity.

We estimate the thickness of the layer by estimating the height to which a
parcel with vertical velocity W, can rise before stability impedes its motion. We
assume that the stability profile would otherwise be linear with a slope of N? and
that a penetrative parcel would stop once its potential energy becomes as large as
its initial kinetic energy. The potential energy per unit mass is approximately N2(®
where ( is the height of penetration into the stable atmosphere. We approximate
the initial kinetic energy per unit mass as W2. Equating N2(®> and W2 gives an

expression for the depth of the penetrative layer:

¢~ (ng)” ? (3.7)

We approximate N2 as N?/H with H representing a scaleheight. With N2~4 x 1074,
H ~5km, and W, ~3 m/s, we find that the penetrative layer rises to the point at
which N =4 x 10~° s~2. This is the value assigned to N?, the square of the Brunt-
Viisala frequency above the neutrally stratified (N? =0) layer. Since the frequency
associated with the dominant gravity waves is w~ W,/ H.~6x107* s7!, the dominant

waves will have w < N,.

3.3 Model II1

In this model, we anticipate the effects of convective penetration described
above. We use N?~4x10~° s~2 and raise the neutral layer to the point in the general
profile where N2= N2. In this scenario, the temperature profile remains continuous,
but its derivative with height becomes discontinuous. Whereas previously we placed

the top of the neutral layer at 55 km altitude, it is now at roughly 55.6 km.

3.3.1 The penetrative layer
The penetrative layer has two roles. Its first role is to mix background entropy

sufficiently that the stability profile is discontinuous at its upper boundary. The
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energy required for the mixing is derived from the convection itself and can be viewed
either as penetrative convection or as breaking gravity waves. The second role of
the penetrative layer is to filter the emission of the gravity waves. In effect, the
penetrative layer contributes a breaking function fireaking Which we have found in the
first model. As we expect for any breaking mechanism, it dissipates the waves just
enough so that the temperature variance spectrum just above the penetrative layer
is approximately given by the saturated spectrum.

The fraction of gravity wave energy lost to dissipation in the penetrative layer
is a property of the convection alone—it does not depend on the characteristics of the
overlying stable atmosphere. Even though the factor of I' in the saturated spectrum
indicates that the breaking factor might have some dependence on the stable layer,
this factor is actually cancelled by the factor of I' required to generate temperature
variance spectra (equation 2.64). The breaking factor is dependent only on the wave
phase speed in relation to the convective intensity parameter W, (the typical velocity
fluctuation within the convecting layer). The breaking-upon-emission factor is defined

as

c3

(2 + W2)3/2'
This is the same factor as that in equation 3.4b with p=pe and m~N,/c.

= (3.8)

f breaking—upon—emission

It is plausible that some wave generation and reabsorption occurs in the pen-
etrative layer, but such effects are small. If the penetrative layer is to generate any
waves, it must do so in a narrow layer characterized by eddy motions and neutral
static stability. As such the penetrative layer is indistinguishable from the convecting
layer, and in computing the integral of equation 2.7, we assume the limits include the
convecting layer and the penetrative layer. Also, we assume that the damping time
constant 7. extends into the penetrative layer. The presence of the penetrative layer

does imply breaking upon emission, and thus the breaking factor is used.
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3.3.2 Replacement algorithm for trapped waves

Trapped waves also require breaking upon emission, but this does not affect
the reflection coefficient off of the lower‘boundary of the trapping duct. For trapped
waves, we expect the breaking factor to be part of the propagating wave incident on
the duct, the amplitude of which is described by M(propagating) i equation 2.76. So
that trapped waves do not go unstable at the point of emission, we also multiply the
continuum trapping spectrum of equation 2.73 by the above breaking factor. Thus,
the reflection coefficient from the lower turning point r., defined by equation 2.79, is
independent of the breaking factor.

When computing spectra of trapped waves, we calculate both “coarse” spec-
tra and continuum spectra. The coarse spectra consist of determining gravity wave
amplitudes using equation 2.38. The spectrum is coarse because many resonances
are undersampled on the a,c,k grid. We determine when this happens by using
our knowledge of resonant positions, widths, and amplitudes as described in table 1.
When a resonance is undersampled, we account for the full resonant amplitude by
substituting

T
AQ
at the expected resonance position. The quantity AQ); is the change in the duct phase

M(replacement)(wy k:l:y ky) = < ) M(continuum)(w, k:z:’ ky) (39)

from one grid point in a,c, k space to the next. For continuum spectra of trapped
waves, we use M(continuum)(W, Kz, ky)-

So that we may illustrate the effect of the continuum spectra of trapped waves,
we display in figure 9 both coarse and continuum sﬁectra of retrograde waves at a
fixed angle of propagation a. We include the effects of breaking upon emission, as
we do for all cases in this model. We show curves of M(w, k., k,) for both coarse
and continuum spectra of trapped waves. We have fixed the angle of horizontal

propagation o at 60° and the horizontal wavenumber & at 1072 m™'. This makes



96

Model lll: a=60deg, k=10"> m™"

: l ] 1 1 I [ 1 1 | 1 i T I 1 I 1 | 1 i I I j

12— ” , Trapped Modes —

~ "coarse” spectrum .

~ 10| ]
i - -

7]

‘e N i
g 8 B
S sf- -
2t )
3 4b .
3 N i
= n _
2+ —_

ol ]

= l 1 1 I I | i1 I 1 | | I 1 | i l -

-
o

2 4 6 8
phase speed (m/s)

Figure 9. Resonances in the wave response. We show M(w, k;, k,) of equation 2.9 and

M(w, k,, k,) of equation 2.73. Both k and « are held fixed at 1073 m~! and 60°
while ¢ is varied.

k,=5x10"* m™, k,=8.66 x 107* m~!, and w=kc. The forcing is Reynolds-type
with W.=3 m/s and H.=4 km. In the coarse spectrum, the n = 0 resonance occurs
at ¢=6 m/s, the n=1 resonance at ¢c=3.5 m/s, etc., where n counts the number of
nodes in A(z).

Because of the density of resonances at low phase speeds, the continuum spec-
trum of trapped waves must be used in order to fully account for all of the tempera-
ture variance they contribute. In figure 9, resonances become tightly packed as ¢— 0.
This is understood by examining the profiles of m?(z) for this modei. The vertical

wavenumber becomes very large near the bottom of the duct and an infinite amount
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of phase accumulates in @Q; (see equations 2.13 and 2.21b. In fact, an infinity of reso-
nances occur as ¢— 0. Because the resonances become densely packed, it is impossible
to numerically sample the frequency finely enough to account for all of the amplitude
of the trapped waves. For this reason, using continuum spectra is mandatory.
Figure 9 demonstrates how continuum spectra work. Continuum spectra in-
tegrate over each resonance and spread the calculated amplitude over the spacing
between resonances. It is all done implicitly in equation 2.73. The continuum spec-
trum shows that the amplitude of the trapped waves falls to zero as the zonal phase
speed becomes small. Not only does integration over the infinity of modes at small
phase speeds become feasible, but these modes have minimal amplitude associated

with them.

3.3.3 Temperature variance spectra and critical layer breaking

In figure 10 we show the temperature variance spectrum at the top of the
penetrative layer. Spectra are shown for both types of forcing. These spectra are
similar to those shown for the first model with one exception: the presence of trapped
waves. The trapped waves contribute amplitude at all vertical wavenumbers at 55.6
km altitude. Even though Doppler shifting is chiefly responsible for trapping waves
when a strong shear is present, the shear plays no role in determining the vertical
wavenumber at 55.6 km. This means that whether or not trapping occurs cannot be
determined from the vertical wavenumber at 55.6 km altitude. For this reason, the
amplitude of trapped modes is spread out over all vertical wavenumbers when the
spectrum is calculated at 55.6 km. In this plot we have used the continuum spectrum
of trapped waves. The cutoff at high vertical wavenumber m is the result of breaking
upoh emission.

The temperature variance spectra above the neutral layer and below the cloud-

tops exhibit substantially different behavior. A typical temperature variance spec-
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Model Il Temperature Variance Spectrum, Reynolds—type Forcing, W.=3 m/s
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Figure 10. Temperature variance spectrum at emission. We show Br(logm) at the
point of emission (z =55.6 km) for both Reynolds-type and entropy-type forcing
with W, =3 m/s. The dashed line indicates the saturated spectrum, which has
I'=1.87 K/km at this altitude.

trum of waves broken upon emission but nowhere else is presented in figure 11. The
critical layers in this region will cause many modes to have unboundedly large values
for the vertical wavenumber, and these modes will contribute a nonintegrable amount
of temperature variance. Since modes must break near critical layers, we must find
the breaking factor associated with approach to critical layers for these waves.

Since the unbroken temperature variance spectrum varies as a functioh of alti-
tude, the factor by which waves break depends upon altitude. In order to determine
the breaking factor for each wave as a function of altitude, we develop an approximate

theory for the unbroken temperature variance spectrum. We start with equation 2.64
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Figure 11. Temperature variance spectrum at 58 km. We show the temperature variance
spectrum in the log of the vertical wavenumber. Both spectra are broken upon
emission. One of the spectra is unbroken near critical layers and the other is broken
near critical layers. We use Reynolds-type forcing with W, set to 3 m/s.

and transform to the coordinates w, k, m? using the identity

Br(w, k,m?2) = (_a_a_) Br(w, k, a)
6"77,2 w,k
4 (3.10)
fo 2m3kyﬁ k BT(w, kx, ky).
We find that
2 2
Br(w,k,m?%z) = Nk Lh, l M(w, k., ky). (3.11a)

© 2m3k,u | N2 — &2
Since the waves are unbounded at high m, we know that @ ~0 and the large waves
are those near their critical layers. Thus, & can be neglected when compared to N

and k% can be neglected when compared with m?. Otherwise, we substitute kN/m
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for each appearance of ©. Next we evaluate h,:

h, ~ Nk, /-';_3. (3.11b)

Next we assume that M(w, ks, k,) is independent of the horizontal angle of propa-
~ gation a, and thus M(w, ks, k,) ~ M(w,k)/(2rk). The last approximation is that
W, < u(z) and therefore k, < k for waves near their critical layers. This implies that

k,~k. In putting these approximations together, we find that

1 N3T?
2.\ -2 2
Br(w,k,m?;z) ~ mm g k*M(w, k) (3.12)
in which g is the gravitational acceleration. Integrating this last equation over w and

k and transforming from the temperature variance from m? to m gives

N3T? A
. ~ -1
Br(m;z) ~m 5] ng? (3.13q)
where
k2

The quantity Au is the difference in @(z) between the convecting layer and altitude
z. The quantity A is the integrated wave action flux (see equations 2.54 and 2.52).
Wavebreaking is accomplished by ensuring that the saturated spectrum is not
exceeded anywhere in the stable layer. In addition to breaking upon emission, we
extend the breaking function fpreaking S0 that it is a function of altitude for each
wavemode. In equation 3.13, we find that the spectrum of temperature variance in

the log of the vertical wavenumber is flat at large m, as in figure 11. We write this as
T%(z) = lim mBr(m;z). (3.14)

In order to find the new breaking factor, we find the vertical wavenumber at which
T?(z) = I'?/m?, in which the latter quantity is the saturated spectrum of temperature

variance in the log of the vertical wavenumber. The intersection occurs at

_ T
eritica.l =p |Aul N (]) (315(1)
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and the breaking function is then

f _ m<2:1'itica.l (3 15b)
P Mo+ M) |

for each wave. Since the wavebreaking takes plé,ce because gravity waves become
unstable as they approach their critical layers, we call the new breaking factor fa,
in which “clb” stands for “critical layer breaking.”

This formulation of wavebreaking gives a prediction for the dependence of
the “knee” in the saturated spectrum on altitude. Even though 7%(z) has a strong
dependence on the total wave action flux A4, only the quantities dependent on height
tell us the dependence of Mmeptical On height. The total wave action flux needs to be
determined only once by calculating Br(m; z) at one altitude. We find that A/x for
Reynolds-type forcing at W, =1 m/s is 58.1 kg s™2, 75.9 kg s™2 at W, =3 m/s, and
279 kg s~% at W, =5 m/s. For entropy-type forcing at W,=3 m/s, A/ is 17.3 kg s>
Given A, we can then figure out absolutely what the critical wavenumber mitical 1s as
a function of height. It depends on the mean state quantities p(z), #(z), and N?(z).

We constrain fq, to be a monotonically decreasing function of altitude for
each mode since we have no mechanism for waves to gain energy as they propagate
vertically. Thus, wherever the breaking function might tend to grow with height, we
instead hold it constant until it returns to this constant value. The major result of
this constraint is that this attenuation factor becomes useless above the peak in the
zonal winds. This makes determining the breaking factor everywhere above this point
exceedingly difficult. This is unfortunate because we do expect waves to break above
80 km where the zonal wind is eastward with respect to the convection. Above 80 km,
many of the eastward vertically propagating waves will encounter critical layers and
break. We shall address this point later in connection with momentum deposition.

At this point we present some two dimensional segments out of the full three

dimensional spectrum of temperature fluctuations. The coordinates are the horizontal
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Figure 12. Temperature variance spectrum at constant phase speed. We show the quantity
Br(a,c, k)/k, which is the same as BT(c ks, ky). The horizontal axis is k, and
the vertlcal axis is ky. The phase speed c is held constant at 3 m/s and the altitude
is set at 58 km. The forcing is Reynolds-type at W, =3 m/s. Both breaking upon
emission and breaking near critical layers is lmplemented Contours up to only
10% of the maximum value of the range of this plot are shown.
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wavenumber k, the total phase speed c, and the direction of propagation a measured
away from the zonal wind direction. The grid point spacing is even in «, ¢, and k.
Such spectra are useful in identifying cloud features seen in Mariner 10 and Pioneer
Venus UV images. We chose the above coordinates because all are calculable by
analysis of images. Because the phase speed c is the most difﬁcult to measure for lack
of a well known rest frame, we show a slice in the three dimensional spectrum with
phase speed held constant at 3 m/s which will show the largest wave amplitudes. The
forcing is Reynolds-type. The result is figure 12.

The dominant feature in the contour plot in figure 12 is the rapid wave growth
near critical levels. Recall that critical levels occur when @ = 0. When written
according to an a, ¢, k coordinate system, critical levels occur when c=1(z) cosa.
Since c is chosen as a constant, for each altitude a unique direction of propagation o
is shared by the modes absorbed at altitude z. In figure 12, we have chosen z =58
km at which % =—16.4 m/s and thus all prograde waves propagating within 80° of
the zonal winds are absorbed below 58 km. This explains the absence of temperature
fluctuations in that domain.

The secondary features of figure 12 are the resonances. The dominant reso-
nance in this figure is the n =1 resonance near k; ~ 5 X 107* m™1. As ky increa.ses
the amplitude decreases because the forcing diminishes at higher w and k. At higher
k, the resonant peaks become sharper and indeed unresolved. The other resonance
apparent is the n = 2 resonance. The n =1 and n = 2 resonances are dominant in
the cut with ¢=3 m/s. The n =0 resonance is insignificant by comparison because
it occurs at higher k, where the forcing is significantly weaker. Furthermore, we see
that all resonances are going to have horizontal wavelengths shorter than 21 km. This
is subject to both the background profiles of wind and stratification through equa-

tion 2.19. This maximum wavelength would be increased by weaker stability and/or
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stronger zonal winds (see equation 2.19).

Concerning temperature fluctuations, we use figures 13 and 14 to demonstrate
on a two dimensional surface the validity of a continuum spectrum of trapped waves.
In figure 13 is a two dimensional slice of the a,c, k spectrum with o held constant
at 60°. In a negative shear, no critical levels will develop above the convection for
this direction of propagation . On the other hand, many resonances are apparent.
Since we are plotting temperature fluctuations at a given altitude in this figure, it
is possible that some wavemodes will have a node in the vertical structure at this
fixed altitude. This manifests itself as a zero that can run through the middle of the
trapped waves in the contour plot. Indeed, a node in the vertical structure of the
trapped waves falls on a curve in figures 13 and 14 that runs from k~1.1 x 1072 m™*
at c=0to k~6x10"* m™! at ¢ =10 m/s. It is this node which cuts through
the n = 2 resonance near k ~ 107> m™' and ¢~ 2 m/s. A replacement scheme is
responsible for resonant peaks of the n =0 resonance above c~8 m/s; otherwise, the
other resonances are sufficiently resolved by the grid spacing. The transition between
propagating and trapped waves falls on a nearly vertical curve at k~6 x 107* m™".
Figure 14 shows the same slice of the temperature fluctuation spectrum but with a
continuum spectrum of trapped waves. There are no resonant peaks, but the node in
the vertical structure and the transition between propagating and trapped waves is
still obvious.

Above and to the right of each contour plot are spectra integrated over c
and k at a =60°, respectively. The Br(a =60°, k) spectra above each contour plot
demonstrate by their agreement the validity of the continuum trapping spectrum.
Even though they account for the same integrated amplitude, the Br(a = 60°,c)

spectra show different natures. The continuum spectrum shows a single peak in

temperature fluctuations near ¢~ 2 m/s whereas the other shows two peaks at ¢~
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Figure 13. Coarse temperature variance contour plot. We show the coarse temperature
variance spectra Br(a, ¢, k) at a=60°. At the right of the contour plot is the
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We use Reynolds-type forcing at W, =3 m/s and both breaking upon emission
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Model lll: W.=3 m/s, H=5 km
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Figure 15. Temperature variance vs. altitude. We show the total temperature variance as
a function of altitude 2. The contributions from trapped waves and propagating
waves are shown. We use Reynolds-type forcing at W, =3 m/s and H. =5 km.
Both breaking upon emission and critical layer breaking are implemented.

1 m/s and at ¢~3 m/s. This split peak is a direct consequence of the intersection
of the node in the vertical structure with the n = 2 resonance. It is this kind of
redistribution of wave amplitude for which the continuum spectrum cannot account.
Nevertheless, the continuum spectrum does accurately represent how trapped waves
will respond to convective forcing.

In figure 15 we show the temperature variance as a function of height. We
break it down by propagating and trapped waves. We find the variance by integrat-
ing the temperature variance spectrum Br(kz, ky,m; 2) up to 10/H in the horizon-

tal wavenumbers k, k, and between 10~° and 10 m™ in the vertical wavenumber.
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Clearly the temperature variance profile is dominated by the propagating waves. In
particular, those propagating modes with critical layers nearby contribute the greatest
variance. Overall, the temperature variance contributed by the propagating modes
increases with height, even above the peak in zonal winds, largely because of the
inverse density growth law. The temperature variance associated with the trapped
modes falls off with altitude because the duct lies below 67 km. The only noticeable
effect of the trapped waves in the total variance is that it creates a local maximum

at about 58 km altitude. This would correspond with the middle of the duct.

3.3.4 Momentum and energy deposition

Finally, we compute the accelerations of the mean flow, energy dissipation
rates, and stresses created by convectively generated gravity waves. For this calcu-
lation it is necessary to perform the same calculation as was done for figure 5 in the
first model but with a domain in ¢, that ranges from —60 m/s to +60 m/s.

We take advantage of our approximate theories in conjunction with numerical
calculations to devise an empirical form for the available momentum flux in gravity
waves. For phase speeds smaller than the convective wind speed W,, the momentum
flux spectrum is determined largely by the wavebreaking upon emission phenomenon.
Because the unbroken momentum spectrum of the first model is proportional to c;?
and because the breaking upon emission factor is proportional to ¢3 at low phase
speeds, the momentum flux emitted is proportional to c2 with constant factors de-
termined by the intensity of the forcing. Also, by a geometric theory, we have shown
that for large zonal phase speeds the momentum flux is proportional to ¢;3, again
with constant factors determined by the intensity of the forcing. Thus, in an empiri-
cal spectrum of the momentum flux, the amplitude is proportional to ¢ for small ¢,
and proportional to c;? for large c;.

We determine constant factors in an empirical momentum flux spectrum by
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matching the total prograde momentum flux and the point of transition between low
and high phase speeds in the empirical spectrum to those in the numerical spectrum.
In particular, the empirical momentum flux spectrum is

Furol(c,) = sign(c,) 2.85804265 (%)

pW2 (312Wc2 2c3 l) -1

NH |

s (3.16)

in which we have defined [ such that the maximum of this spectrum occurs where
¢, =IW,. The numerical constant 2.85804265 is a normalization constant such that
the total integrated prograde momentum flux is a (poW2/N.H). The normalization
constant is found by integrating equation 3.16 over ¢, (Handbook of Chemistry and
Physics, eq. 614) and is given analytically by 5 - (24)*/% sin(37/5)/x.

The constants a and | are computed by performing complete numerical in-
tegrations. The total prograde integrated momentum flux is 1.10 x 1073 N m~? for
W,=1m/s and 2.17 x 10~2 N m™? for W, = 3 m/s. Using po = 0.9 kg m™> and
N2=4x107%, we find that a in equation 2.49 is approximately 0.33. Since the max-
imum momentum flux occurred at ¢, =0.8 m/s for W, =1 m/s and at ¢, =2.6 m/s
for W.=3 m/s, we estimate that the constant [ of equation 2.49 is 0.83.

The waves accelerate the atmosphere by breaking according to the attenuation
factor of equations 3.15. We show acceleration profiles for Reynolds-type forcing at
W,.=3 and 5 m/s in figures 16 and 17. Since the approximations we make in deriving
the breaking factor fu, (see equation 3.15b) are valid only between the convection
and the peak in the zonal winds at 67 km, we do not expect.the acceleration profile
above 67 km to be realistic. This is permissible if we were concerned only with how
waves can exert a prograde impulse to the mean winds; however, our wavebreaking
theory near critical layers is impractical in computing how convectively generated
waves can exert a drag on the mean winds. Thus, the strength of our wavebreaking
theory is in predicting the wave-driving of the mean flow. Nonetheless, we can address

wave-dragging of the mean flow also.
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Figure 16. Momentum deposition as a function of altitude for W, =3 m/s. We show
the momentum deposition rate per unit volume, the momentum deposition rate
per unit mass, and the zonal wind profile as function of altitude for Reynolds-type
forcing at W, =3 m/s. The solid lines refer to deposition by wavebreaking and
the dotted lines refer to deposition by critical layer absorption.
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Figure 17. Momentum deposition as a function of altitude for W.=5 m/s. This is the
same as figure 16 but for W,=5 m/s.
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In figures 16 and 17 we see that the waves accelerate the zonal winds between
the convection and the zonal wind maximum. For W, =3 m/s, the total prograde
momentum carried and deposited by the waves is 2.17 x 1072 N m™? and the to-
tal retrograde momentum is 1.02 x 1072 N m™2. For W,=5 m/s, the total prograde
momentum carried and deposited by the waves is 7.44 x 1072 N m™? and the total ret-
rograde momentum is 3.65 x 1072 N m™2. The acceleration does fall off with altitude
strongly because of the ¢;3 tail in the momentum flux spectrum. The distribution of
the accelerations is strongly skewed toward the bottom of the stable layer, just outside
the convection. For W, =3 m/s, the largest prograde acceleration is 2.95 m s™* day™*
just above the convection. The acceleration falls off to 1072 m s™* day™! at 67 km.
For W, =5 m/s, the prograde acceleration just above the convection is 8 m s™* day™?
and the acceleration falls off to 0.1 m s day™' at 67 km. In that interval, the mo-
mentum deposition rate falls off by a factor of 103, but the density falls off by a factor
of 4. The falloff of momentum deposition with height is only slightly offset by the
falloff of density with height. The accelerations above 67 km, especially those near 80
km, are to be disregarded because our wavebreaking mechanism is invalid above the
point at which the wind shear changes direction (recall that miica(z) of equation
3.15a can only be determined for monotonically increasing or decreasing winds).

The acceleration profiles obtained by critical layer absorption alone mirrors
that of wavebreaking below 67 km. The reason for this is that waves break and
deposit their momentum in the immediate vicinity of their critical layers. If each
wave deposited all of its momentum exactly at its critical level and not in a small
extended area below it, the atmospheric acceleration would be

" -~
Ju i,

() = o5 A ee=i(2)) (3.17)

(e.g., Hou and Farrell 1987). Because critical layer absorption gives atmospheric ac-

celeration profiles nearly identical to those for wavebreaking in a uniform shear, we
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assume that critical layer absorption accurately predicts the acceleration profile ev-
erywhere. Thus, the accelerations by critical layer absorption above 67 km accurately
depict the effects of waves generated by convection on the given background winds.
The effect is wave drag.

The wave drag decelerations appear so much larger than accelerations between
55 and 60 km because of the density falloff with height. The integrated retrograde
momentum deposition above 67 km is 1.02 x 1072 N m~? for W, = 3 m/s and is
3.65 x 1072 N m™? for W.=5 m/s. Recall that there is less retrograde momentum in
gravity waves because some retrograde waves are trapped by a Doppler-created lid.
The maximum deceleration is 86 m s~ day™* for W, =3 m/s and 200 m s~ day™"
for W.=5 m/s.

Given some evidence that the zonal winds do not decay with height above
70 km, we compute what accelerations might occur if we maintain a constant wind
above 70 km. The results are presented in figure 18. In this calculation, the westward
acceleration profile is the same as that in figure 16, but the high altitude deceleration
profile is different. Because the winds do not decay with height, there are no critical
layers for the eastward propagating modes. Instead, their momentum is deposited
more uniformly and at higher altitudes, because the waves eventually break due to
the inverse square-root growth law for vertically propagating waves. At 120 km
altitude, where the background density is 1.7 x 10~® kg m™>, the deceleration reaches
about 17 m s~ day™!. The deceleration amplitude grows with height above this point
because more eastward propagating modes begin to break. In fact, where densities
fall to about 1073 kg m™2, decelerations asymptote to about 5 m/ s’. Tt is unlikely
that the superrotation continues into the Venus thermosphere, but nonetheless, it is
worth noting by how much gravity waves might drag the mean flow.

This concludes our computations. We have laid out our calculations of temper-
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Figure 18. Momentum deposition with high altitude superrotation. This plot is similar
to the previous two plots except that the zonal winds do not decay with height
above 70 km. The convective wind speed W, is set to 3 m/s. Only accelerations
by wavebreaking are presented.
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ature fluctuations and momentum fluxes resulting from convectively generated gravity
waves. We have found the necessity of two types of wavebreaking, both of which result
from supercritical waves. The first type is breaking upon emission. This gives rise
to penetrative convection and discontinuous profiles of static stability. The second
type is wavebreaking upon approach to a critical layer. This wavebreaking leads to
accelerations of the background atmosphere. Furthermore, we have estimated the
accelerations applied to the atmosphere by the breaking waves. Finally, we note that
we have determined a three dimensional spectrum of convectively generated gravity
waves which will be useful in testing whether they are responsible for the scintillation

phenomenon seen in many spacecraft occultation data in Venus’s middle atmosphere.
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4. Summary and Discussion

We have developed a theory to describe the generation of gravity waves by
neutrally buoyant dry convection. This theory is applied to the convection layer
in Venus’s atmosphere between 50 and 55 km altitude. We have tracked a three
dimensional ensemble of these waves as they propagate upward in the adjoining stably
stratified atmosphere. The stable layer has realistic background stability and zonal
wind profiles. We calculated where the waves would lose their zonal momentum and
determined an acceleration profile with respect to height. In this section we first
summarize the results of the previous sections and then comment on the implications

of our results.

4.1 Summary of results

Three model atmospheres were used in order to understand how the emission
and propagation of waves depend on the nature of the stable atmosphere. Goldreich
and Kumar found a simple relation for the amount of energy carried by gravity
waves from the convection which depends on the Mach number of the convective
motions. It was unclear to us a priort how the emission might behave when the
static stability profile is treated as continuous in altitude. Thus, we started with a
model atmosphere as in Goldreich and Kumar, with convection one scaleheight deep,
an overlying semiinfinite layer with uniform static stability, and background wind
uniform in altitude. The second model contained continuous profiles of static stability
and zonal wind intended to resemble typical conditions in Venus at midlatitudes. The
third model is the same as the second except that a discontinuity in the static stability
is placed at the boundary between the convection and the stable layer.

The first model gives a gravity wave momentum flux consistent with the esti-
mate of Goldreich and Kumar. In finding the energy flux as a function of zonal phase

speed, we found that a finite amount of energy is emitted as the zonal phase speed
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approaches zero. This was problematic because it implied infinitely large temperature
fluctuations in the stable layer for waves with small horizontal phase speeds. Because
this is not physically realistic, we imposed wavebreaking immediately at the point
of emission so that the waves would not be subject to a convective instability. We
refer to this process of breaking as breaking upon emission. Breaking upon emission
requires a discontinuity in the static stability profile at the point of breaking. This
discontinuity is a part of the first model by definition of the mean state.

We have shown in our analytic work that the momentum flux spectrum of
gravity waves in zonal phase speed is proportional to ¢ for large zonal phase speeds
¢z, and this spectrum is borne out in our numerical results for the first model. The
analytic result is purely geometrical and has only two requirements: (1) that the
emission of waves be nearly isotropic in the horizontal plane, and (2) that the source
emit a momentum flux spectrum in frequency w with a cutoff steeper than w=3. This
result is expected to be valid at zonal phase speeds larger than the dominant wave
phase speed, which is approximately given by W, the wind speed associated with the
dominant eddies in the convection for this theory of gravity wave generation. The c;?
tail of the momentum flux spectrum for the first model was demonstrated numerically
and shown in figure 5. Isotropy of emission is essentially imposed in the first model;
however, a strong cutoff in frequency was not imposed and has been found to be true.

The second model consists of a more realistic Venus middle atmosphere with
a convection layer between 50 and 55 km altitude. The static stability profile was
considered continuous with N?=0 in the convecting layer, increasing monotonically
to about 3.6 x 107* s72 at 60 km altitude, and then remaining constant above 60 km.
The zonal winds were considered constant within the convection with a westward
shear between 55 and 67 km altitude, an eastward shear above 67 km where the zonal

wind speed at 80 km altitude matched the zonal wind speed of the convecting layer.
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In the second model we have verified that the low phase speed singularity of the
first model applies to a more realistic atmosphere, and we argue that breaking upon
emission cannot be calculated. Despite the continuity of the static stability in altitude,
there remains a nonzero energy flux of gravity waves at zero phase speed. Thus a
singularity exists in the momentum flux at low horizontal phase speeds. Calculating
a realistic breaking mechanism for such waves is beyond our scope because vertical
wavenumbers of the singular waves vary rapidly with height at their point of emission.
This rapid variation arises because the Brunt-Vaisila frequency approaches zero just
above the convection.

The third model is like the second model in that it consists of a realistic model
of the Venus middle atmosphere, but it includes a mechanism to break the waves
so that there is no low phase singularity as in the previous two models. The waves
are anticipated to break immediately upon emission from the convection because
wave fluctuations were found to be convectively unstable even directly on top of
the convection. We have assumed that vertical mixing resulting from the breaking
upon emission would create an adiabatic breaking layer above the convection which is
indistinguishable from the convection. This breaking layer would penetrate into the
stable layer as far as the stability profile would permit. This created a discontinuity
in the stability profile N?(z) at the top of the breaking layer.

The breaking layer served to break the waves upon emission. The factor by
which the waves were broken was determined so that they would be stable to con-
vective and shear instabilities just above the neutral layer. The breaking factor was
found to be =~ (c/W.)® where cis the horizontal phase speed and W, is the wind speed
associated with the largest convective eddies. This result is important because of its
independence from any properties of the overlying stable layer. We are permitted to

think of the convection and the breaking layer as a coupled process independent of the
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surrounding stable atmosphere for generating internal gravity waves which propagate
into the stable atmosphere.

In the context of the third model we have demonstrated the usefulness of a
continuum spectrum of trapped waves. Trapped modes were possible in this model
because of the presence of strongly shearing zonal winds. We assumed that absorption
by the convection served as the major sink of wave energy for trapped waves. When
integrating trapped wave temperature variances spectrally, many resonances were
found to be narrower than the integration interval. We showed that an analytic
theory of trapped wave amplitudes could accurately reproduce the numerical results
for trapped wave amplitudes. Not only could we implement the analytic work to
“smooth over” the resonances (figure 9), we could use an analytic theory to insert
resonance amplitudes where resonances were otherwise unresolved (figures 13 and 14).

In addition, the shearing zonal winds created critical layers at which wave-
breaking is required. Waves became unstable as they approached their critical layers,
and thus they were required to break. Because we chose to break waves according
to their vertical wavenumbers, we found a function which attenuated each individual
mode as it propagated vertically. The attenuation function was found to be approxi-
mately (Meriticat/™)? for vertical wavenufnbers m greater than a critical wavenumber
Meritical, Which itself was found as a function of height. When waves break, they
deposit their momentum into the mean flow, thereby accelerating it. We called this
wavebreaking process critical layer breaking.

The primary cause for momentum deposition is critical layer absorption. We
have required that every wave lose all of its momentum and energy at its critical
layer. Since the location of critical layers is determined by where the zonal phase
speed ¢, is equal to the zonal wind speed #(z), it was most convenient to determine

the available momentum flux as a function of the zonal phase speed.
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As mentioned above, we were able to calculate the gravity wave emission to
the stable atmosphere from the neutral region as if it acted as an independent gravity
wave “engine.” In an empirical spectrum we showed that the available momentum
flux spectrum in zonal phase speed is roughly poc2/N.H at low zonal phase speeds c,
where py and N, are the density and the Brunt-Vaisila frequency at the top of the
convecting layer, and 1/ H is the horizontal wavenumber of the dominant waves. This
form is valid for ¢, S W., where W, is the phase speed of the dominant waves and is
apprximately 3-5 m/s. For ¢, & W, the available momentum flux spectrum falls off
proportional to ¢;3. This empirical spectrum was fit to our numerical results.

We calculated profiles of the divergence of the gravity wave momentum flux
caused by wavebreaking alone and critical absorption alone. Since our formulation
for wavebreaking was valid only as long as the zonal wind monotonically increased
or decreased, the profile of momentum flux divergences by wavebreaking above the
peak in zonal winds at about 67 km altitude was infeasible. Since the pattern of
momentum flux divergences by critical layer absorption was nearly identical to that for
wavebreaking below the peak in zonal winds, we assumed that momentum deposition
by critical layer absorption accurately determined the effects of the gravity waves on
the mean state atmosphere.

The prograde acceleration exerted by the waves was greatest immediately
above the convection and decreases with increasing altitude. Because the phase speed
of the dominant waves is about 3-5 m/s, most of the wave momentum flux was ab-
sorbed in a layer which had zonal winds varying by 3-5 m/s above the convection.
Such a layer was less than 1 km thick. For W.=3 m/s, the prograde acceleration was
about 3 m s~! day~! just above the convection and fell off to about 1072 m s~} day™*
near 67 km altitude.

The waves were far more effective at dragging the mean winds above the zonal
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wind maximum. Where the wind speed matched that of the convecting layer, the
retrograde propagating modes deposited their momentum near their critical layers.
This occurred at about 80 km altitude. The total integrated momentum flux of
the retrograde waves was less than that of the prograde waves because many of
the retrograde waves were trapped beneath a Doppler-created duct. Nonetheless,
because the background density of the atmosphere was much less at 80 km than
near the convecting layer, the retrograde waves accelerated the winds in the eastward
direction at 80 km much more than the prograde waves accelerated the wind in
the westward direction just above the convection. Because the wind was westward
above the convection, we refer to the accelerations at 80 km as the wave drag on the

atmosphere. This wave drag reached about 86 m s~ day™' for W,=3 m/s.

4.2 Discussion

In this discussion we describe what our results mean for Venus’s atmosphere.
The centerpoint of the discussion will be the effect of the momentum deposition by
these waves on the dynamics of Venus’s atmosphere.

A simple critical layer absorption model for driving the zonal wind shear in the
neighborhood of the convecting layer in Venus’s middle atmosphere does not qualita-
tively behave as desired if it were the sole mechanism responsible for the superrotation.
Presumeably, in a steady state the gravity wave momentum flux divergence would
offset some other atmospheric forcing. This other atmospheric forcing would be an
atmospheric drag because it must act opposite to the direction of the zonal wind. If
this drag is frictional in nature, then it would act most vigorously near the maximum
in the zonal winds and be distributed over roughly a scaleheight. Since we have found
the momentum flux divergence to be proportional to @~ for large zonal phase speeds,
there is little acceleration a few kilometers above the convection, much less near the

maximum in the zonal winds. In fact, most of the acceleration takes place near the
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convection, where we would not expect much drag with respect to the convecting
layer.

Even though the prograde accelerations are weak near the zonal wind maxi-
mum, it is possible that the eddy drag is also weak near the wind maximum, especially
if the eddy viscosity responsible for the drag is caused by the breaking waves. In the
analysis section of this paper, we have shown how to compute the energy deposited
by the waves which would create local eddies. In order to compute an eddy viscosity
which would result from such energy deposition, we would divide by the background
atmospheric density and divide by either the square of the local wind shear %, or the
local Brunt-Vaisila frequency squared N2, Which one to use would only be obvi-
ous if the Richardson number were of order unity, in which case they would be the
same. Nonetheless, because the energy dissipation rate would decrease as a function
of height, namely because most of the wave energy is lost near the convection, it is
possible that the decrease in the prograde accelerations by the waves is balanced by
decreasing eddy drags with height. We suspect, however, that such a situation should
only occur when the Richardson number of the mean state is approximately 1/4. In
our profiles, the Richardson number is on the order of 10.

The most pronounced effect these waves would have in Venus’s atmosphere
is in dragging the flow above the zonal wind maximum. Even for moderate forcing

! near the

amplitudes (W, = 3 m/s), the decelerations reach about 90 m s™* day™
altitude at which the zonal wind is the same as at the convecting layer. Coincidentally,
this is the same order of magnitude effect gravity waves are thought to have in the
Earth’s mesosphere (Leovy 1964, Holton 1982).

The profile of the zonal wind would indeed effect the amplitude of the de-

celerations above the zonal wind maximum. In fact, whether the wind actually does

decrease dramatically enough with height to have the same speed as at the convecting
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layer is uncertain. Even if this were the case, it is uncertain where it might happen in
altitude or the horizontal dimension. Nonetheless, even if the winds did not decrease
substantially with height so that critical layers for the retrograde waves would not
be present, then the waves would eventually break at a high altitude and deposit
a net retrograde momentum (Alexander 1992). For this reason we have estimated
what deceleration would result if the zonal winds continued to superrotate above the
cloud-tops. We found that at 120 km altitude, the eastward propagating waves broke
enough to exert a deceleration on the mean flow on the order of 17 m s~! day™'. The
deceleration increased with height and asymptoted at approximately 5 m/ s* where
the mean state density fell to 1072 kg m®. This calculation tells us what kind of
decelerations we might expect from convectively generated gravity waves if the su-
perrotation extends above the cloud-tops.

The nature of the prograde accelerations does not change substantially for
differing forcing amplitudes or zonal wind profiles. The prograde accelerations jilst
above the convection would change in amplitude but not in shape. The shape of the
prograde acceleration profile is governed by the ¢;® component of the momentum
flux spectrum because the typical zonal wind variations are much larger than any
reasonable value of the typical convective wind fluctuation W.. The largest waves
will break and deposit their momentum within roughly 1 km of the convecting layer.
Increases in W, will increase the total prograde momentum flux roughly proportionally
to W3. If the shear %, were stronger just above the convection, waves would break
more rapidly. Thus, the accelerations above the convection would be greater but more
confined in altitude. On the whole, though, the profile of prograde accelerations would
be dominated by a falloff with height up to the zonal wind maximum.

On the other hand, it may be possible for waves to transmit some momen-

tum flux through their critical layers. This may occur because of self-acceleration
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(Grimshaw 1974, Fritts and Dunkerton 1984) or scattering. For this reason we es-
timate the prograde acceleration exerted in the two scaleheight region between the
convection and the zonal wind maximum as 0.4 m s~ day™* for moderate forcing am-
plitudes. This corresponds to a force per unit volume of roughly 4.3 x 107° N m™3.
This compares well with Hou and Goody (1985), who showed that the average pro-
grade acceleration required is about 5 x 107 N m™>.

The drag resulting from the broken waves may balance the momentum depo-
sition by the breaking and absorption of the waves. The waves which break between
the convection and the zonal wind maximum would create eddies with associated
eddy diffusion effects. This eddy diffusion itself might act as a drag on the atmo-
spheric shear. If the eddy drag were to somehow balance the prograde accelerations
exerted by the wave momentum deposition, we would get a series of steady state
critical layers. Lamb and Pierrehumbert (1993) showed that a steady state critical
layer is possible for a single gravity wave mode. How a three dimensional ensemble
of steady state critical layers might work is unknown. Nonetheless, a steady state is
attained only for small values of the background Richardson number. For Venus, we
can envision an initially weak shear being strengthened by the absorption of waves
until the Richardson number of the mean flow falls below unity.

The hypothesis of steady state critical layers driving the mean flow above the
convection can be checked first by examining the Richardson number of the mean
flow. The best simultaneous measurements of zonal winds and temperature structure
come from the Pioneer Venus descent probes (Seiff et al. 1980). It is difficult, however,
to estimate the Richardson number of the mean flow on large scales because of the
presence of fluctuations in the temperature profiles. The profiles as fit by Schubert

and Walterscheid show Richardson numbers in the range of 5 to 10. While these are

an order of magnitude too high for steady state critical layers to exist, it does not
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eliminate the possibility that steady state critical layers may exist somewhere in the

region between the convection and the cloud-tops.

4.3 Generalizations and predictions

In this subsection we describe how our analytic work can be generalized to
apply to different atmospheres and what specific predictions can be made. We discuss
the applicability of the empirical momentum flux spectrum, the observability of such
a spectrum, the finesse of trapped gravity wavés, and a prediction for the “knee” in
the saturated spectrum of breaking gravity waves.

The ¢;3 tail in the momentum flux spectrum is a simple geometric result of
our work. This tail holds under certain restrictions on the gravity wave emission. The
restrictions are that the emission is isotropic in the horizontal direction of propagation
and that the emission has a cutoff at high frequency stronger than w™3. Both of
these conditions are met in our theory of generation of waves by dry convection.
We suggest that the process of generation of waves by moist convection, such as
happens in the tropical troposphere of the Earth’s atmosphere, may also satisfy the
above two conditions, and thus have a high phase speed tail in the momentum flux
spectrum proportional to ¢;3. This may apply to the generation of gravity waves by
the breakdown of a strong jet, but the condition of isotropic emission might break
down because of the presence of a shearing zonal wind. Thus, if nearly isotropic
emission of gravity waves is significant in planetary atmospheres, a momentum flux
distribution proportional to c¢;3 at high phase speeds might be present on global
scales.

Optimally, we would like to compare our predicted momentum flux spectrum
with observations or a numerical integration; however, a momentum flux spectrum in
zonal phase speed is difficult to observe. The only direct way of evaluating the validity

of our geometric analysis is through the results of high resolution numerical modeling.
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Hauf and Clarke (1989) have modeled dry convection and found nearly isotropic wave
emission. They were not able to obtain a spectrum in phase speed, though, because of
secular variation in the background state of the atmosphere. Nevertheless, we would
need greater anisotropy than this to avoid a strong falloff in momentum flux at high
zonal phase speeds.

In the Earth’s atmosphere, it is thought that internal gravity waves might help
drive the quasibiennial oscillation (QBO), but it is unlikely that a similar oscillation
is present in Venus’s atmosphere because of the different nature of the gravity waves.
The quasibiennial oscillation refers to a process in the Earth’s tropical stratosphere
in which the zonal winds alternate direction with a period of about 25-27 months.
The oscillation takes place by the descent of wind regimes: winds moving in a certain
direction descend in altitude to replace the winds moving in the opposite regime.
The most widespread theory for this process is a gravity wave absorption mechanism
similar to ours for sustaining the superrotation in Venus’s atmosphere (Holton and
Lindzen 1972). Wallace and Kousky (1968) found that Kelvin waves, a type of gravity
wave which is restricted to equatorial latitudes and propagates eastward, contribute
a large momentum flux at phase speeds of approximately 30 m/s and greater. Yanai
and Maruyama (1966) found equatorially trapped Rossby waves which propagate
westward with slightly slower phase speeds. It is most likely that these waves are
driving the QBO in the Earth’s atmosphere. Convectively generated gravity waves
in Venus’s atmosphere could not drive a quasi-oscillation such as the QBO because
such gravity waves move too slowly. It takes 30-40 m/s phase speeds in the Earth’s
atmosphere to drive a QBO with an amplitude of 30 m/s, but the gravity waves we
have described in Venus’s atmosphere move at about 5 m/s and the wind maximum
is nearly 60 m/s faster than the source region.

We can offer some new insight into the nature of trapped gravity waves. The
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duct in which a gravity wave is trapped is analogous to an optical cavity in that they
both have a finesse. The finesse essentially counts the number of reflections a gravity
wave packet undergoes before it escapes from the duct. The finesse is useful because it
allows simple calculations of the amplitudes of trapped gravity waves. In particular,
the energy density of trapped gravity waves, in a continuum sense, is roughly the
product of the finesse of the duct and the energy density a vertically propagating
gravity wave would have had. Furthermore, the widths of the resonances of trapped
gravity waves is proportional to the product of (8Qa/ 0x)7! and the inverse of the
finesse, where 8Qq/0x measures the derivate of the integrated phase in the duct in
some spectral quantity x (x can be w, ks, ky, or any combination of them such as c).
Thus, the finesse of trapped gravity waves offers an alternative method to calculating
their amplitudes.

Lastly, our theory predicts a “knee” in the saturated spectrum of gravity waves.
The saturated spectrum predicts that the gravity wave energy density spectrum in
vertical wavenumber is approximately N2/ m® above a critical wavenumber m itical-
The knee in the spectrum would occur at the critical wavenumber. In our theory
we found an expression for the critical wavenumber given as equation 3.15a. The
assumptions of this prediction is that the source of the waves is isotropic in the
horizontal plane and that the zonal winds monotonically increase or decrease in height.
The critical wavenumber is found to depend on the mean state density p(z), the
difference in zonal wind A% between the source and altitude 2z, the Brunt-Vaisala

frequency N, and the intensity of the wave source given by the wave action flux A.



128




129

PAPER 11

Radio Scintillations in Venus’s Atmosphere:
Application of a Theory of Gravity Wave Generation



130

Radio Scintillations in Venus’s Atmosphere:

Application of a Theory of Gravity Wave Generation

Stephen S. Leroy

and

Andrew P. Ingersoll

Division of Geological and Planetary Sciences
California Institute of Technology
Pasadena, California 91125

To be submitted to: J. Atmos. Sci



131

Abstract

We simulate radio scintillations as they would appear in Pioneer Venus ra-
dio occultation data assuming that the index of refraction fluctuations in Venus’s
atmosphere responsible for the scintillations are directly caused by gravity wave fluc-
tuations. We assume that the gravity waves are created by a global convection layer
between 50 and 55 km altitude in Venus’s atmosphere and propagate vertically. As-
sociated with the gravity waves are density fluctuations which create the index of
refraction variations. We compare the simulated scintillations with data and argue
that this theory for the radio scintillations is preferable to the theory that the scin-
tillations are caused by clear air turbulence in Venus’s atmosphere.

We show that these gravity waves can explain the shape and amplitude of the
radio scintillation variance spectra in frequency. The shape of the simulated radio
scintillation variance specf;ra, in frequency is nearly a direct result of a saturated
spectrum of breaking gravity waves. This saturated spectrum is the spectrum of
breaking gravity waves in the vertical wavenumber. On the other hand, the overall
amplitude is subject to parameters such as the intensity of the convection, the angle
between the zonal winds and the beam path, and the zonal wind profile at polar
latitudes. Limits can be placed, though, on the intensity of the convection which
generates the waves and on the angle between the radio beam path and the winds
in Venus’s atmosphere. We find that the convection in Venus’s middle atmosphere,
even in polar regions, must transport 1 W/ m’ to create gravity waves strong enough
to break. This result is dependent on the amplitude of the zonal winds at polar

latitudes.
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1. Introduction

We implement a spectrum of gravity waves generated by convection in Venus’s
middle atmosphere in simulations of radio scintillations in order to explain the scin-
tillations seen in the radio science data obtained by Pioneer Venus. In this introduc-
tion, we first explain what radio scintillations are and what causes them. Secondly,
we present our hypothesis that convectively generated gravity waves in Venus’s mid-
dle atmosphere are responsible for the scintillations. Finally we briefly describe the
organization of this paper.

Radio scintillations are a phenomenon which occurs during radio occultation
experiments. In our case, a radio occultation occurs when the beam path of the
Pioneer Venus radio signal passes through the Venus atmosphere on its course to Earth
(Kliore and Patel 1980). During the occultation, the Pioneer Venus spacecraft appears
to be moving in the Venus atmoNSphere from the point of view of an observer on Earth.
The data the observer obtains is the amplitude and phase (in the form of frequency
shifts) of the radio signal as a function of time during the occultation. Contained
in this data is precise information on the index of refraction at radio wavelengths
in the atmosphere. Because the density of the atmosphere is the primary source of
index of refraction variations, the data can be directly inverted to give profiles of
temperature in altitude of the atmosphere, but only at vertical resolutions greater
than the width of the radio beam as it appears in the Venus atmosphere (Fjeldbo et
al. 1971). Variations on scales smaller than the beam width, however, can lead to
variations in the signal amplitude and phase as observed at Earth (Tatarskii 1961).
It is these variations in amplitude and phase which are radio scintillations.

The beam width is what separates the geometric optics physics of the exper-
iment from the diffraction physics of the experiment. The beam width is defined as

the cross-sectional area over which the radio signal constructively adds to create the
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signal as it appears at Earth. Another term for this area is the first Fresnel zone
(Born and Wolf 1980), defined approximately as \//\_R/—n‘ where A is the wavelength
of the radio signal in a vacuum and R is roughly the shorter of the distances from the
spacecraft (Pioneer Venus) to the target (Venus’s atmosphere) or from the target to
the observer (Earth). The wavelength we use is 13 c¢m (S band) and the spacecraft
to Venus distance was roughly 4000 km; thus, the beam width at Venus’s atmosphere
was approximately 200 meters. If variations in the Venus atmosphere are larger than
200 meters, then the experiment is one of geometric ray propagation because fluc-
tuations of the signal phase on small scales are unimportant. Any variations in the
index of refraction on scales smaller than 200 meters will cause a diffraction pattern to
develop. This diffraction pattern creates the scintillations seen in the Pioneer Venus
radio science experiment.

The Fresnel zone/beam width is smaller in the vertical than in the horizontal
because of the refractive effects on the beam. Young (1976) pointed out that when
a radio beam is refracted by a planetary atmosphere, its beam width is compressed
in the vertical direction in the planet’s atmosphere. When the overall beam width
is smaller than the atmospheric scaleheight, then the compression factor is roughly
the differential refraction factor ¢ of the radio beam. The square of the differential
refraction factor is the reduction in intensity of the radio beam at the Earth during
the occultation compared to its intensity when the atmosphere does not occult the
beam. At 60 km altitude in Venus’s atmosphere, the signal intensity reduction at
60 km was roughly ¢>~10 (Woo and Armstrong 1980, WA hereafter), and thus the
vertical beam width was roughly 63 m.

The diffraction (scintillation) effects can be separated from the refraction (ray
propagation) effects in the phase and amplitude data by filtering the data in time.

Since ray propagation effects are caused by variations of the index of refraction in
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Venus’s atmosphere on scales greater than the beam width, variations in the phase
and amplitude which occur on timescales longer than it takes for the spacecraft to
apparently traverse a beam width in the Venus atmosphere are attributed to ray
propagation effects. When the log-amplitude is spectrally analyzed, the power for
timescales shorter than the beam-crossing timescale is attributed to diffraction effects.

The index of refraction fluctuations responsible for the diffraction are caused
primarily by density variations on small spatial scales in Venus’s atmosphere (Fjeldbo
et al. 1971). Where there is a local density increase, the index of refraction increases
and the radio beam tends to slow. When the beam slows, a local phase build-up
occurs. The diffraction pattern results from net inhomogeneities of the accumulated
phase across a plane transverse to the beam path. If the diffraction is large enough so
that significant focusing and defocusing of the beam occurs on small scales, then the
scintillations are said to be strong (e.g., Narayan and Hubbard 1988). If no significant
focusing or defocusing occurs, the scintillations are weak. Strong scintillations and
weak scintillations can be distinguished by the amplitude of the fluctuations in the
radio signal amplitude and phase at Earth. The Pioneer Venus radio scintillations are
weak because the variance in the log of the amplitude of the signal () is less than
unity.

It is impossible to invert scintillation information to obtain three dimensional
spatial spectra of the density fluctuations, and thus modelers typically assume a spec-
trum of density fluctuations in the atmosphere associated with a particular physical
mechanism and simulate how the radio scintillations would appear. One cannot di-
rectly invert the scintillations for a three dimensional spectrum of density fluctuations
in the atmosphere for two reasons. Firstly, any component of the density fluctuation
spectrum which has variations along the beam path does not contribute to the scin-

tillations because no net phase accumulates along the beam path for these modes
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(Ishimaru 1978). Secondly, the scintillation data is a one dimensional data set, that
dimension being time during the occultation; hence, the remaining two dimensions
to which scintillations are sensitive are reduced to just one in the data. Since the
scintillations cannot be inverted to find spatial density fluctuation spectra in the at-
mosphere, it is simplest to deduce information on the density pattern responsible for
the scintillations by numerically simulating the scintillations given physically reason-
able patterns of density fluctuations.

Dynamically, the small scale density inhomogeneities vary in time as well as
in space; however, each occultation advances rapidly enough that the processes which
generate the inhomogeneities do not have time to substantially alter the density field.
For instance, the enhanced scintillations seen at 60 km are apparent primarily in
a window of about 10 seconds in the occultation data, but the assumed timescale
for motions on small scales in several minutes (the inverse of the Brunt-Vaisala fre-
quency). Thus we use the “frozen-in” hypothesis, namely that the density variations
appear to be frozen in the atmosphere and exist only as a function of space where
the occultation experiment is concerned. A time series of scintillations is obtained
not because the density variations are changing in time, but because the spacecraft
appears to be moving through the atmosphere and passes behind the frozen-in density
fluctuations.

We use the analogy of sunlight at the bottom of a pool to illustrate how the
scintillations work. The sun in this case serves the role of the source, the radio
transmitter aboard the spacecraft. The waves on the surface of the pool represent
the dynamical motions which refract the sunlight. The observer at Earth would be
at the bottom of the pool and see a pattern of rapidly occurring intensity maxima
and minima. There are some slight differences between radio scintillations and the

sunlight at the bottom of a wavy pool. First of all, the motion of the spacecraft with
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respect to the atmosphere is so rapid that the dynamical motions in the atmosphere
which cause the scintillations appear to be stationary. Secondly, the scintillations at
the bottom of the pool are strong scintillations because refraction at the surface of
the pool is much more dramatic than in the Venus atmosphere. The scintillations
would be weak, and thus more analogous to the Pioneer Venus radio data, if the
pool waves were small and frozen on the surface with a sun racing over the top. At
any given point on the bottom of the pool, an observer can obtain a time history of
intensity maxima and minima. This best represents the scintillation phenomenon in
the Pioneer Venus radio data.

Prominent radio scintillations which occur near 45 km altitude and 60 km alti-
tude in Venus’s atmosphere have been analyzed by WA. Essentially, they subtracted
the background signal, created by refraction, and were left with only the scintillations.
Then WA Fourier analyzed the scintillations and calculated log-amplitude (x) and
phase (S) variance spectra in variance spectra in frequency, which is the conjugate
to the time elapsed during an occultation. The log-amplitude variance spectra could
indicate a power law with an index anywhere between about —2.3 to —3.7. Further-
more, WA estimated that the temperature variance at 60 km required to generate
the scintillations is roughly 1 K2. Finally, they estimated that the density inhomo-
geneities were elongated by a factor of about 20 in the horizontal direction compared
to the vertical.

WA subsequently used a theory for radio scintillations in order to ‘show how
small scale turbulent phenomena might be responsible for the data they analyzed.
The scintillation theory WA implemented was developed by several authors (Tatarski
1961; Ishimaru 1973; Woo and Ishimaru 1974; Haugstad 1979) and can be used to
generate model radio scintillation time series in log-amplitude or phase given a pattern

of index of refraction fluctuations in the atmosphere. The index of refraction fluctu-
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ations are directly proportional to density fluctuations in the atmosphere through a
constant which is determined by the chemical composition of the atmosphere (Essen
and Froome 1951, Kliore et al. 1980). WA assumed a random pattern of density fluc-
tuations in the Venus atmosphere with a variance spectrum proportional to a power
law of -11/3 in the spatial wavenumbers. Such a power law in the density variance
spectrum is consistent with a Kolmogorov spectrum of three dimensional dissipative
turbulence. In addition they assumed that the fluctuations were anisotropic—highly
flattened out in the horizontal direction. This is not the conventional form of fully
developed dissipative turbulence, but a modified form because the motions involved
are embedded in a stably stratified atmosphere, which strongly resists vertical motion
(Houghton 1986). Under these assumptions, they used the weak scintillation theory
to simulate scintillation power spectra. In the end they found good agreement be-
tween their model and the data with the requirement that the outer vertical scalesize
of the density structures was larger than the Fresnel size. This is somewhat incon-
sistent with turbulence properties in the Earth’s stratosphere, in which turbulence is
known to be confined to individual pockets on the order of only a few tens of meters
thick. Even then, the agreement does not exclude the possibility of power law indices
other than -11/3 or altogether different spectra of the density inhomogeneities.

We use the same numerical technique for simulating radio scintillations but
we assume that the density inhomogeneities are the fluctuations of internal gravity
waves generated by convection in Venus’s middle atmosphere. We choose this as the
most probable source for the density variations because the convection in Venus’s
atmosphere is nearly global in scale and is situated in a 5 km thick layer between the
stable layers at 45 and 60 km altitude. The source is required to be global in scale
because the scintillations in the Pioneer Venus radio science were found to be global in

scale. Scintillations were also seen near 60 km by Mariner 5 (Woo et al. 1974), Mariner
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10 (Woo 1975), and Venera 9 (Timofeeva et al. 1978). We choose gravity waves in
particular because they can have structure which extends over vertical scales which
are easily larger than the beam width. With such criteria, therefore, we presume that
gravity waves generated by the middle atmosphere convection in Venus’s atmosphere
are a probable creator of the scintillations in Pioneer Venus radio science data.

The vertical resolution of the scintillations may obscure the presence of gravity
waves in the scintillations data. The scintillations are sensitive to density variations
in the Venus atmosphere with vertical scales comparable to the beam width, which is
approximately 63 meters. On scales this small in the Earth’s atmosphere, the most
significant phenomenon is dissipative turbulence (Sato and Woodman 1982, Barat
1982). On the other hand, because turbulence tends to create isentropic patches in
small pockets in the atmosphere, it is not clear how turbulence can generate density
contrasts which would cause scintillations (Schubert 1983, p. 755). Nevertheless, it
would be optimal to search for gravity waves in the resolved refractive data where
turbulence effect are presumed to be minimal, but we adamantly pursue the possibility
that gravity waves are seen in the scintillation data.

In the first paper we have calculated a temperature variance spectrum associ-
ated with the gravity waves generated by the convection in the middle atmosphere.
The convecting layer was placed between 50 and 55 km altitude. Just above the
convection, the atmosphere is statically stable with the square of the Brunt-Vaisala
frequency given by N2=4 x 1075 s=2. The stability increases with altitude to about
N?2=3.6 x 107* 572 at 60 km altitude. The atmosphere is statically stable below the
convection as well, but we restrict ourselves to analysis of the overlying stable atmo-
sphere. The winds are westward and increase by about 60 m/s between the convection
and 67 km altitude. There is no shear nor static stability within the convection itself.

Prominent in the results of the first paper were two types of wavebreaking:
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breaking upon emission from the convection and critical layer breaking near critical
layers. Immediately upon emission from the convection, low frequency, and hence
low phase speed, waves were found to be convectively unstable; thus, we required
that they break. Wave amplitude was decreased according to their local vertical
wavenumber just above the convection to the point where the saturated spectrum
of gravity waves was not exceeded (Dewan and Good 1986, Smith et ol 1987). In
addition, the presence of a shearing zonal wind created critical layers, near which
gravity waves become unstable via both Kelvin-Helmholtz and convective instabilities
(Geller et al. 1975). Again, waves were attenuated according to their local vertical
wavenumber such that the saturated spectrum of gravity waves was never exceeded.

The first section of this paper is the introduction. In the second section we
describe how we implement a spectrum of gravity waves generated by dry convection
in the weak scintillation theory so that we may simulate scintillations. In the third
section of this paper we present our simulations of radio scintillations assuming that
gravity waves density fluctuations are responsible for the radio scintillations. In the
fourth section we summarize our results and discuss what implications they might
have for Venus’s atmosphere. Finally, the weak scintillation theory derived by pre-
vious authors is suitable for implementing gravity waves; however, certain details of
weak scintillation theory which are important in the context of gravity waves are

specifically addressed in appendix C.
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2. Implementing Gravity Waves
The equation which we use to simulate radio scintillations is derived in ap-

pendix C and is repeated here as

21.2 / ' / ) R 12 m?
W, (v) = 4a?k*L [ dk, dm B,, (k;=0,k;,m) sin [ﬁ(ky + _2)]
q

(2.1)
X (6(27r1/—k;ya—méa) + 5(27r1/+k;g]a+méa))

in which v is the frequency, W, (v) is the simulated log-amplitude variance spectrum
of the radio scintillations in frequency, k is the free-space wavenumber of the radio
signal, k. and k| are the horizontal wavenumber in Venus’s atmosphere tangent to
the radio beam path and the horizontal wavenumber transverse to the beam path,
m is the vertical wavenumber, B, (k},k,,m) is the variance spectrum of index of
refraction fluctuations in the spatial wavenumbers ki, k,,m, and y, and z, are the
apparent spacecraft motio.ns in the horizontal and vertical directions. The defocusing
factor ¢ is the factor by which the radio signal strength is attenuated by refraction
effects in Venus’s atmosphere. The §’s are Dirac delta functions. The log-amplitude
scintillation spectrum W, (v) is defined such that W,(v) dv is the amount of log-
amplitude variance between the frequencies v and v + dv. The index of refraction
variance spectrum is defined such that B, (k.,k;,m) dk_dk,dm is the amount of
index of refraction variance in the spectral volume dk,dk;dm centered at k;, k;, m.

We implement gravity waves in the scintillation simulation equation by in-
troducing polar coordinates in the plane transverse to the beam path in Venus’s
atmosphere. The motivation behind this is to permit any combination of y, and z,
in the simulations. We invent polar coordinates such that % = k;z + m? and the
angle § measures the angle away from the vertical in which the wave propagates. In
particular,

k, = ksinf

(2.2)

m = kcos @



141

where k is the amplitude of the wavevector in the y’, 2’ plane. For consistency, we
rewrite the apparent spacecraft velocity yq, 2, in polar coordinates:
Yo = Vg SIN
(2.3)
24 = U, COS @
where v, is the apparent velocity of the spacecraft through the atmosphere and «

is the angle at which the spacecraft appears to travel in the atmosphere away from
purely vertically. Inserting the above expressions into equation 2.1 gives
W, (v) = 472k L / & d& df B, (k, =0, k,=£sinf,m =« cos0)
2 29
X sin’ [Iz—’Z(sin2 6+ coqs2 )] (2.4)
X (6(27r1/ — kv cos(0—a)) + 6(2rv+ kv, cos(H—-a))).

In this last equation, we take full advantage of the integrating properties of
Dirac delta functions and integrate over k. When we do this integration, we find that

we only get contributions for

27y

k==

sec(f — ) (2.5)

Ua

for each value of §. Thus, in integrating equation 2.4 we find that the log-amplitude

power spectrum becomes

a+tr/2
W (v) = 822k7 L 2% / d sec*(0—a)

2
Vg

—7f2
2722 R cos® @
.2 2 .2
X sin [ Fo? sec*(6—a)(sin” 6 + o )] (2.6)
2
X {Bn1 (k; =0,k, = i sec(d—a)sind,m= 2y sec(f—a) cos 0)
, ' 2wy . 2rv
+ B, (kz=0, k,=— sec(f—a)sinf,m=— sec(f — ) cos (9) .
a va

The power spectrum in this equation is the same as that in equation 2.1 except

that the three Fourier components of the index refraction spectrum ki, k,,m are
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determined by the frequency v, the apparent spacecraft velocity v,, the apparent
spacecraft entry angle «, and the angle of integration 8.

As mentioned earlier, the index of refraction fluctuations n; are related to the
wavelike fluctuations in the atmosphere. It is primarily the density variations which
create the index of refraction fluctuations. We can compute the density variations
caused by the waves despite not having explicitly noted them in the first paper. We
use equations 2.11¢ and 2.12 of the first paper to show that

¢ 5

= . 2.
BT o (2.7a)

4
F;

In order to compare the two terms on the right-hand side of this equation, we solve
for S’ in terms of ¢’ using the following combination of equations 2.10c and 2.10e of
the first paper:

gt N0 (2.76)

- ; N2 —-&? 0z
When the WKBJ approximation is valid, mH > 1, and the second term dominates
the first term on the right in equation 2.7a. Using the above expression for the entropy

fluctuation, the density fluctuation p’ can be written as a function of ¢

(o _Pz) N* of

This is how we evaluate the density fluctuation numerically.
Several authors have calculated the coeflicient relating density fluctuations and
index of refraction fluctuations for Venus’s atmosphere (Essen and Froome 1951, Woo

1975). We are content to use the value given by WA, which is
ny = (1.35 x 107 K/Pa) R p’ (2.9)

in which R is the gas constant for Venus’s atmosphere, B = 189.0 J kg™' K™ (Seiff

et al. 1980).
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With the use of equation 2.38 of the first paper, we can write the power

spectrum of index of refraction fluctuations as

0 2
Bnl(kx,ky,m) = (255 X 10_4 m3 kg"l)2 (%)

Oh
0z

, (2.10)

4
N M(kmkyam)

X (N2 — 0‘32)2

where we use the continuum M as determined by equation 2.73 in the first paper for
trapped waves and the derivative 0h/0z as described in appendix B.

We have shown how to calculate the modulation factor M(w, k;, k), and it is
not difficult to transform the coordinates. In particular, since the modulation factor

is similar to a power spectral density, we can find M(k;, k,,m) by

M(ka, by, m) = |22

~ {om

M(w, ks, k). (2.11)

Kz ky
It remains for us to determine the relationship between kg, k, and k!, k,. It should
be a rotation through an angle A which we derive next.

The angle A is the angle between the radio beam at closest approach to the
planet and the eastward direction at that point. We define a coordinate system
z’,y’, 2z’ in which 2’ is the north rotation axis, y’ is perpendicular to the 2’ axis and is
directed to Venus’s east limb as viewed from Earth, and 2’ is orthogonal to the 2z’ and
y' axes and roughly points toward the Earth. Next we define the coordinate system
z,y, z such that z is directed along the Venus-Earth line, y is the same axis as y’, and
the z axis is the orthogonal axis to the z and y axes and directed roughly upward.
The two coordinate systems are related by a rotation through an angle B about the
y/y' axis. The rotation angle B is the obliquity of Venus to Earth.

We find the angle between the radio beam path and circles of constant latitude
on Venus by noting that its cosine is the inner product of the vector (1,0,0) in the

primed coordinate system and the vector (1,0,0) in the unprimed coordinate system

with a location constrained to the limb of Venus as viewed from Earth. The set of
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points on the planet which lie on the limb as viewed from Earth are found by setting

z = 0. These points are described by
cos Bcosgcos A +sin Bsing =0 (2.12)

where ) is the longitude measured away from the sub-Earth longitude and ¢ is the

latitude. Simultaneously, the vector (1,0,0) in the primed system is given by

1 9 a:) —cos Bsin A 213
—lyv]= cos A 2.13
cos ¢ A \ sin Bsin A

in the unprimed system. The cosine of A is found by taking the inner product of this

last vector with (1,0,0) and eliminating A using equation 2.12. After some algebra,

we find that

(2.14)

This equation tells us that given the latitude of the occultation ¢ and the obliquity of
the planet at the time of the occultation B, we can find the angle between the beam
path and the eastward direction at the beam’s closest approach. The limiting cases
make complete sense: for an occultation at the equator, the obliquity is the same as
the beam path-eastward angle; for an occultation directly on top of the planet as
viewed from Earth (¢ = 90° — B), the beam path is oriented directly northward at
closest approach (A =90°).

As mentioned previously, the transformation between k;,k, and ki, k, is a
rotation through the angle A. In particular, the transformation is

k. = kycos A — k,sin A

(2.15q)
k; =kysin A+ kycos A

along with the inverse
ke =k, cos A+ k,sin A
(2.15b)
ky = —k; sin A 4 k; cos A,
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We use these transformations in finding B, (k;, &, m) of equations 2.1 and 2.6 from
equation 2.10.

Even though we have taken care to maintain the correct sign of A, upon careful
inspection one can see that the power should not depend on the sign of A. If one
changes the sign of A in equations 2.15b, noting that &', remains zero, both k. and &,
will change sign. The gravity wave power spectrum is independent of the sign of k,.
Furthermore, symmetry in k, enters because of the sum of the gravity wave power
spectra in the large braces in equation 2.6. Thus, the scintillation power spectrum is
independent of the sign of A.

Here we conclude the section on how one simulates log-amplitude radio scin-
tillation spectra given a gravity wave spectrum. The simulation equation is 2.6. We
implement convectively generated gravity waves through equations 2.10, 2.11, and
2.1‘5b, where A is given by equation 2.14. The factor M(w, k,, k,) is calculated using
equation 2.38 of the first paper and dh/3Jz is calculated as described in appendix B.

Values for the parameters v,, a, ¢%, and A are different for each occultation.



146

3. Scintillation Simulations

In this section we present numerical results for log-amplitude scintillation
power spectra given the gravity wave spectrum derived in this thesis. The main
intention of this section is to simulate log-amplitude radio scintillation power spec-
tra assuming they are a consequence of convectively generated internal gravity waves
which have propagated into adjoining stable layers. First we reproduce the data as
presented in WA. Then we calculate the different parameters involved in the simula-
tions. Third we present the simulations themselves. Lastly, we look at how changes

in the background atmosphere might alter the simulations.

3.1 Scintillation data

For the sake of comparison, we reproduce the power spectrum of log-amplitude
fluctuations at 60 km altitude in the S-band originally calculated by WA (oral permis-
sion obtained from Armstrong, May 5, 1994). A quadrature fit has been subtracted
from the log-amplitude data by WA. First we have manually digitized the data of
figure 4 in WA. Over the course of the 6.62 second interval we have obtained 941
individual points. This data is shown in our figure 1. Subsequently we have Fourier
transformed it using a fast Fourier transform, squared each coefficient and multiplied
them by 2 x 6.62s. The factor of 2 enters because we fold the negative frequencies in
with the positive frequencies as already discussed. We trust the power spectrum out
to about 150 Hz at which point we run into sampling problems. We essentially use
the definition

(o0}

W, (v) =2 / AL X () X T A) cos 2rvAt (3.1)

—00

given in appendix C. The resulting power spectrum is shown in figure 2. The total
variance is found by integrating the power spectrum over frequency. We find that
0,2 ~ 0.044 in agreement with WA, and thus the scintillations can be considered

weak. Upon close comparison with the power spectrum in figure 4 of WA, we see that
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Figure 1. S-band Scintillation Data. This is a reproduction of the S-band radio scintillation
data-presented by WA. It is taken from the radio occultation data of orbit 18, day
of year 356, 1978 from Pioneer Venus. This segment roughly samples 60 km
altitude in Venus's atmosphere.

.
«ad

1 lllllll 1 ] lllllll 1 ] lllll|| ] |

.01
.001

o
o
o
purd

&

&

_ e
o O

W,(v) (Hz™)

-
o O
& L

H lllllll 1 1 lllllll 1 1 lllllll 1l

1 10 100
Frequency v (Hz)

-
(o]

Figure 2. S-band Scintillation Power Spectrum. This is the power spectrum of the data
presented in figure 1. The integral over positive frequencies of this curve gives the
total variance of the log-amplitude fluctuations of the data.
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WA have not folded negative frequencies in with the positive frequencies. Despite the
factor of 2 difference between WA and us, our results are consistent with each other

except that we use different conventions concerning the range of frequencies.

3.2 Simulation parameters

Many parameters are explicitly determined by the geometry of the occultation
in question. For example, WA have presented simulated power spectra given the
geometry of the orbit 18 occultation 1978 DOY 356 of Pioneer Venus. The spacecraft
trajectory determines g, and z,. WA give v, = 7.7 km/s and we have measured
the spacecraft trajectory to be about 35° away from the vertical before it entered
the atmosphere from figure 1 of Kliore and Patel 1980. Thus, y, = 4.42 km/s and
z, = —6.31 km/s. Analysis of the background occultation gives us ¢* as a function
of altitude. For this particular orbit WA have used and we use ¢* = 10. Then
using equation 2.3 and the transformation in appendix C which gives y,, 2, in terms
of §,,2,, we can determine v, and a. We find that o ~ 82° and v, ~ 4.46 km/s.
Other parameters which are determined are the spacecraft to limb distance (R; =
3819 km) and the Venus-Earth distance (R; = 69.9 x 10% km). Because R; < Ry,
then R =~ 3819 km (the quantity R is defined in appendix C). Also, we use the S-
band occultation data; thus the carrier frequency is k = 48.2 m™!. We define the
Fresnel size to be ay = \/W and thus the Fresnel size is 200 meters. Finally, we
approximate the beam pathlength through the atmosphere as L ~ V8 Rvenus H Where
RVenus is the radius of Venus and H is a scaleheight in the atmosphere (see figure 7 in
Woo et al. 1974). Using 6050 km as the radius of Venus and 5 km as the scaleheight,
we find L ~ 540 km. This is consistent with WA.

The most sensitive parameter in our problem turns out to be the angle A.
Given that Venus has no annual cycle and that its orbital plane is nearly the same as

the Earth’s, its obliquity to the Earth B ~ 0°. If this were the case, then the angle A
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would be 0° for every occultation. In reality, though, B = —2.23755° at the time of
the occultation in question (Nicholson, personal communication). The trouble enters
because the early entry occultations, including the one in question, took place at very
high latitudes. In our case, the latitude ¢ = 86.6° north. When these values are used
in equation 2.14, we find that A = —41.2°. Clearly the angle A can vary wildly at
high latitudes for even slightly nonzero values of the obliquity B. The problem is
compounded by the fact that we do not know that the background winds are exactly
zonal at high latitudes. We do know that meridional winds increase as one moves
away from the equator to as much as 10 m/s, but we have no measurements of the
winds in the polar regions of Venus’s atmosphere. For these reasons, we experiment
with many different values of the angle A between the radio beam path and the
background winds.

First of all, the simulated radio scintillation power spectra roughly tell us
about the nature of the vertical wavenumber spectrum of temperature fluctuations
in the atmosphere. In the integrand of equation 2.1, we compare the terms k,'y, and
mz,. In order to find out which term is larger, we must assume typical values for
k,' and m. For k,’, we choose the dominant horizontal scale of the forcing, 1/H..
For m, we choose m > 1/(63 m) because the beam width is approximately 63 meters
in the vertical direction (given by the Fresnel size divided by the defocusing factor
q). Using equations 2.3, the .mz'a term is much greater than the k,'y, term when
tan o < 80. This implies that for most values of the entry angle o, a given frequency

v corresponds to a single vertical wavenumber m.

3.3 Simulations
In order to understand the behavior of the simulated radio scintillation spectra,
we first fix the entry angle a at zero so the occultation is purely vertical. The

parameters v, and ¢? remain 7.7 km/s and 10. The Fresnel size a; is still 200 meters.
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Figure 3. Simulated scintillations. Gravity waves are assumed responsible for the index
of refraction fluctuations. The ordinate is the power spectrum of log-amplitude

fluctuations. The gravity wave spectrum has W, =1 m/s and H,=5 km. The
entry angle is set to 0°. For (a), the angle A is set to 0° (bold curve), 2°, and
20° in succession. For (b), the angle A varies from 0.0° to 0.3° in steps of 0.05°.
In figure (a) we include a dotted line with a slope of -5.
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In figure 3(a) we set the convective wind speed at W, = 1 m/s, implement the
complete breaking of waves as described in section 2 of the first paper, and vary A
from 0° to 40°. The spectra were determined at 60 km altitude. Recall that A = 0°
corresponds to sampling waves which are exactly transverse to the zonal winds. Such
waves experience no Doppler shifting because k, is always zero. As A is increased,
Doppler shifting does occur and critical layers enter into the scintillation integral. For
large values of A, much of the wave amplitude is lost through critical layer absorption
below 60 km altitude.

The effect of introducing Doppler shifting by increasing A away from zero can
be seen in figure 3(b). All the parameters except A remain the same as in the previous
figure. For A = 0°, there are two factors which determine the slope of the tail of the
spectrum. Since k, =0 for these waves, waves with large vertical wavenumbers at 60
km altitude will also have large vertical wavenumbers at the point of emission from
the convection. Initially, such waves with large vertical wavenumbers will be broken
by a m™3 law upon emission from the convection (see section 3.1). When A =0°,
the waves with k. = 0 see no effects of horizontal anisotropy because these waves
are not Doppler shifted. Thus, the temperature variance spectrum of the slice where
k. =0 will appear the same as the integrated spectrum over k[, k;, of an atmosphere
without winds, but an additional breaking factor of m~2 must be included because
other waves with large m which have nearby critical layers will also break the waves
with large m but not near critical layers. Thus, the tail of the scintillation spectrum
for A =0° reflects a m~5 spectrum of gravity waves. In figure 3b, the simulated radio
scintillation spectrum for A& 0° does indeed approach a v=° power law as it should
since m and v are roughly related by a constant factor.

As the angle A increases, Doppler shifting becomes more important. The high

frequencies in the scintillation spectrum correspond to high vertical wavenumbers at
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60 km altitude. For nonzero A, waves with high vertical wavenumbers at 60 km will
not have high vertical wavenumbers at their point of emission. This is especially
true when k,% ~w. The waves are broken while propagating up to 60 km because
of the presence of critical layers, but they are not significantly broken upon emis-
sion from the convection. The net effect is that the integrated temperature variance
spectrum in vertical wavenumber is proportional to m~3. The simulated scintillation
spectrum is not exactly proportional to v~% at high frequencies though because all
waves with a fixed m at 60 km altitude are not emitted horizontally isotropically from
the convection. Consequently, the slope of log of the simulated scintillation spectrum
versus the log of the frequency is somewhere between -2 and -3 (see figure 3(b)).
Since k, ~ (1/H) sin A and w ~ W,/H, the spectrum attains a slope of m™> when
sin A ~ W_/u where @ is the difference in the zonal wind speed between 55 and 60
km altitude.

As A is increased even more, the simulated scintillation spectra retain the same
dependence on v but the overall amplitude falls. Most of the energy bearing waves
are critically absorbed before they reach 60 km altitude and cannot contribute to the
spectrum at 60 km. Only those waves with very large phase speeds can contribute,
and thus the overall amplitude will fall as A is increased. This effect is obvious in
figure 3(a).

Our next step is to use a realistic entry angle for the occultation. As remarked
earlier, we have measured the entry angle for the occultation in question to be 35°
before entry into the atmosphere. When defocusing is taken into account, the appar-
ent entry angle becomes 81.9°. The frequency v still corresponds to roughly constant
m since (tan 81.9°) « 250. In figure 4, we show simulated radio scintillation power
spectra for an entry angle of 81.9°. We also show the log-amplitude power spectrum

we have computed from digitized data. We retain v, = 7.7 km/s and ¢*> =10. First
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Figure 4. Simulated spectra. The actual entry angle is 35°; the apparent entry angle is
81.9°. The convective wind speed is set to 1 m/s and H.=5 km. The angle A is
set to 5°, 10°, and 20°. The deemphasized curve is the data.
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Figure 5. Simulated spectra. The actual entry angle is 35°; the apparent entry angle is
81.9°. The convective wind speed is set to 3 m/s and H.=5 km. The angle A is
set to 5°, 10°, 20°, and 40°. The deemphasized curve is the data.
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we use W, =1 m/s and H, =5 km. We show the results for A = 5°,10° and 20°
because these bracket the data nicely. The shape of the simulations matches the data
well; however, the overall amplitude for the simulated spectra is highly dependent on
loosely constrained parameters such as A. Because the overall amplitude of the tail
beyond 10 Hz is controlled by the amplitude parameter I in bthe saturated spectrum
and the angle A, we can only claim a plausible match between the data and our
model if the slopes of the spectra are similar. This indeed seems to be the case.
Since the saturated spectrum of waves seems to govern the scintillation simu-
lations, we expect that varying the forcing parameter W, would not affect the overall
amplitude of the scintillations. We vary W, to check this idea. We retain all the
parameters that went into making figure 4 and only change W, to 3 m/s. Again we
vary the angle A. The result is figure 5. The simulated power spectra are evidently
the same shape as in the previous simulations, but the overall amplitude is larger.
The shape can only be preserved if the saturated spectrum is valid throughout the
range of vertical wavenumbers represented in the simulations. This is the case as
can be seen in figure 11 of the first paper. In that figure, it is apparent that the
universal spectrum applies for all wavenumbers greater than ~ 27 /(1 km) for W,=3
m/s. Since we are sensitive to vertical wavelengths less than 63 meters (the beam
width in the vertical) in these simulations, it is obvious that we shall only see the tail
of the saturated spectrum. Because the scintillation spectrum is nearly proportional
to v~2, the saturated spectrum of gravity waves somewhat dictates the scintillation
spectrum. The overall amplitude of the scintillation simulations is thus independent
of the intensity of the convective motions. We suggest that the amplitude in figure 5
is larger than those of figure 4 because the phase speeds of the dominant gravity waves
has increased. An increase in the phase speed means that more waves éan propagate

to higher altitudes. Thus, even though the integrated temperature variance spectrum
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Figure 6. Simulation with resolved fringes. In this simulated log-amplitude variance
spectrum in frequency, we sample in v more finely at high frequencies so that all
of the fringes are resolved. We have set the entry angle to 81.9°, W, to 3 m/s,
H_ to 5 km, and the angle between the radio beam path and the winds A to 40°.
The deemphasized curve is the data.

in vertical wavenumber remains the same, the simulations are sensitive to more waves
in the slice kL, =0 when W, is increased.

The occasional dips which occur in the simulated scintillation spectra are the
familiar fringes associated with Fresnel diffraction patterns. In weak scintillation
theory for gravity waves, the fringes occur when the Fresnel filter function sin?[.. ]
in equation 2.1 is nearly zero. Because m?>>kZ, k2 for gravity waves, the fringes are

located at

m2a%
= - nw (3.2a)

where n is a positive integer. We note that 27y = mz, and that z; = q*z, to show

that the sequence of frequencies v,, at which there are fringes is
v, = 2.813 Hz +/n. (3.25)

We have used an entry angle of 35° and a spacecraft velocity of v;=7.7 km/s.
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In most of the preceding scintillation simulations, the fringes are unresolved
at higher frequencies. In figure 6 we show a simulation in which all of the fringes
between 0.5 and 50 Hz are resolved. We have used the realistic entry angle, W.=3
m/s, H.=5 km, and only A=40°. In general, this simulation shows a higher quality
fit to the scintillation data.

We have established that the amplitude of the simulated log-amplitude power
spectra is dependent on the phase speeds of the dominant gravity waves W, angle
between the radio beam path and the zonal wind A, and the static stability N? of
the atmosphere even though the shape of the spectra remains insensitive to changing
any of these parameters. The data and the simulations agree well in shape. The
parameters W, and A are only loosely constrained, and thus so is the overall amplitude
of the simulated spectra. Nevertheless, we can place some limits on the range of
permissible values for W, and A.

We take advantage of the fact that the overall amplitude of the simulated
spectra is maximized for a certain value of A and increases with increasing W,. The
static stability is presumably determined by the reduction of the radio occultation
data. Since there is a maximum amplitude in the simulated spectra for a given gravity
wave forcing intensity, we can put a lower limit on the dominant wave phase speed
if we match the simulations to the data at high frequencies. In our model for the
forcing of gravity waves, we make a strong connection between the intensity of the
forcing and the phase speeds of the dominant gravity waves. Therefore, we can put
a lower limit on the intensity of the local wave forcing.

In order to determine the lower limit on W,, we would perform a series of runs
varying W, and A. For each value of W, we choose, we vary A in order to find the
maximum attainable amplitude. We already know that simulated spectra for W.=1

m/s give overall amplitudes which are too large. Thus, the lower limit on W, must
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be lower than 1 m/s. In truth, it is extremely difficult to proceed for more than
a few values of W, because for each value of W, we must compute the integrated
wave action flux A (see equations 3.13 of the first paper) so that we can perform
complete wave breaking calculations by using equations 3.15b and 3.15a of the first
paper. Calculating A requires computing Br(m; z) for several different altitudes z.
We only perform this task for W.=0.2 m/s and 0.7 m/s in addition to 3 m/s and 1
m /s which we have already presented.

The scintillation simulations for W, =0.2 m/s yield significantly different re-
sults than for larger values of W,. The simulations are shown in figure 7. Obviously,
these curves are nearly flat in comparison with the previous simulations. The ex-
planation for this is quite simple. The forcing is so much weaker than it was before
that the universal spectrum for breaking gravity waves does not set in until very high
vertical wavenumbers. For wavenumbers associated with frequencies on the order of
a few Hz, the waves are not large enough to break. This is not characteristic of the
power spectrum of the log-amplitude scintillation data, so we know that the forcing
must be more intense than W.=0.2 m/s. For this reason, we perform simulations for
an intermediate value of W,.

In figure 8 we show simulations for W, =0.7 m/s. In these curves the effects of
weak forcing are apparent. This would imply that for this value of W, the waves are
not saturated in the relevant portion of the vertical wavenumber spectrum. Obviously,
for a valid fit to the data, we need the gravity waves to be saturated according to
the universal spectrum for vertical wavenumbers on the order of (63 m)~'. We know
that the simulations show saturation for W, = 1 m s™!, and thus we require that
W.21ms™ L.

For W.=1 m/s, we found that we could obtain maximum overéll amplitudes

easily larger than the data exhibit. This means that we can also place a lower limit
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Figure 8. Simulated scintillations. The actual entry angle is 35°; the apparent entry angle
is 81.9°. The convective wind speed is set to 0.7 m/s and H.=5 km. The angle
A is set to 0°, 1°, 2°, and 5°. The deemphasized curve is the data.



159

on the angle A since the amplitude falls off with increasing A. For W.=1 m/s, we
found good fits to the data for A between 10° and 20°. This would imply a lower
limit for A because in order to maintain a good fit as W, is increased, we would have

to increase A as well.

3.4 Varying the background atmosphere

Finally, we present how the simulated log-amplitude spectra might vary with
the stability profile N2. For this purpose we introduce a new profile for the Brunt-
Viisala frequency in which we have only decreased the peak value of N? by a factor
of two. The new profile is shown in figure 9. The slopes in the zonal wind profile
have been adjusted so that Kelvin-Helmholtz instabilities are avoided (the Richardson
number is always greater than 1/4). The net effect is only a 3 m/s westward shift to
the winds above the convection. We have again set W,=3 m/s and we vary A.

The simulated scintillation spectra in figure 10 bear a strong resemblance to
the previously computed spectra. Once again the slope above 10 Hz matches the slope
of the power spectrum of the data. Also, the overall amplitude falls with increasing
A, but the overall amplitude does reach a maximum for A= 5°. The problem remains
that a good match at frequencies greater than 10 Hz gives amplitudes which are too
small at frequencies less than 10 Hz in the simulated spectra. On the other hand,
it is clear that when the static stability is reduced, the amplitude of the simulated
spectra is also reduced. This agrees with the concept that the simulated spectra are
largely a reflection of the saturated spectrum of breaking gravity waves. When the
stability is reduced, so does the amplitude of the saturated spectrum (see equation
2.63a in the first paper; I' and N? are directly proportional to each other).

Because the occultation from which the scintillation data is extracted occurred
at 86.6° north latitude, it is extremely likely that the appropriate zonal winds are

much smaller than those we have used in the previous simulations. For this reason,
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Figure 9. Modified background stability. This is a modified version of the background
atmosphere used in model 3. The peak static stability has been decreased by a
factor of 2. The zonal wind has been modified so that the Richardson number
nowhere exceeds 1/4. Also, the top of the convection was raised because the

stable layer is less resilient to vertical motion.
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Figure 10. Modified stability simulations. These simulations utilized the reduced static
stability profile displayed above. The actual entry angle is 35°; the apparent entry
angle is 81.9°. The convective wind speed is set to 3 m/s and H. =5 km. The
angle A is set to 10°, 20°, and 40°. The deemphasized curve is the data.
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Figure 11. Modified zonal winds. We plot the square of the Brunt-Vaisala frequency and
the zonal wind versus altitude we use with which we test the effect of changing the
wind profile on the scintillation simulations. Compared to previous profiles of the
winds, the shear above the convecting layer in this model has been reduced by a
factor of 2. The background stability remains the same as in previous simulations.
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Figure 12. Modified wind simulations. We plot simulated log-amplitude variance simu-
lations in which the entry angle is set to 81.9°, the convective wind W, is set to
3 m/s, H. to 5 km, and the angle A is set to 10°, 20°, and 40°. We have used
the background profiles of stability and zonal wind illustrated in figure 11. The
deemphasized curve is the data.
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we perform simulations in which we use a zonal wind profile in which the shear is
reduced by a factor of 2. Whereas in the previous modeling the zonal wind differed
by 55 m/s between the convecting layer and the zonal wind maximum, in an altered
profile we use for sensitivity testing, the zonal wind differs by 28 m/s between the
convecting layer and the zonal wind maximum. Above the zonal wind maximum, the
shear was also reduced by a factor of 2 so that the winds would still pass through
zero at about 80 km altitude. The profiles of N2(z) and @(z) we use are plotted in
figure 11.

In figure 12 we show simulations of the log-amplitude variance spectra in fre-
quency. We use W.=3 m/s, H.=5 km, an apparent entry angle of 81.9°, and we set
the wind/beam path angle to 10°, 20°, and 40°. In general, the shape of the simu-
lated spectra remains unchanged compared to previous spectra. This indicates that
for W, =3 m/s the saturated spectrum of gravity waves still manifests itself in the
scintillation spectra. Decreasing the zonal wind shear increases the overall amplitude
of the simulated spectra. This is consistent with our previous interpretation that the
amplitude of simulated spectra when A= 0° is determined by the saturated spectrum
of gravity waves and the number of waves which propagate to 60 km altitude. When
the zonal wind is decreased, fewer modes are critically absorbed below 60 km altitude
and thus the simulated scintillation spectra are larger. We discuss the implications

of this sensitivity study in the next section.
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4. Summary and Discussion

We have simulated radio scintillation power spectra assuming that convec-
tively generated gravity waves in Venus’s atmosphere are the prime source of the
density fluctuations in Venus’s atmosphere which cause the scintillations. We have
compared these simulations to a sample radio scintillation power spectrum computed
from Pioneer Venus radio data. Then we suggest that our model of the scintillations
is more viable than the turbulence model suggested by Woo and Ishimaru 1981 (WI
hereafter). Finally, we make a prediction concerning radio scintillations caused by

convectively generated gravity waves based on our work.

4.1 Summary

We have shown how index of refraction variations in the atmosphere can lead
to the radio scintillations and in particular how a spectrum of gravity waves would
appear in the scintillations. This derivation has been done before, but we use some
slightly different conventions which are better suited to implementing gravity waves.
In particular, we follow Ishimaru (1978) so that we may implement a general spectrum
of a random process. We then implement convectively generated gravity waves as that
random process. With the spectrum of gravity waves, we can compute simulated radio
scintillation power spectra with the intention of comparing them to the power spectra
of the data.

We find that the simulations are highly sensitive to the geometry of the occul-
tation to which it is being compared. In order to compute realistic simulations, we use
the same geometry as occurred for the occultation in question. In particular, we must
know the spacecraft to limb distance, the beam pathlength through the atmosphere,
the net defocusing of the radio beam, the spacecraft velocity as viewed from Earth,
and the angle A between the radio beam path and the zonal winds. The first four of

these parameters can be known a prior:; however, the angle between the winds and
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the beam path is difficult to figure out. If the background winds were purely zonal,
then we have found an expression which gives this angle as a function of the latitude
of the occultation and the inclination of the planet to the Earth (both of which are
known). We do not know that the orientation of the winds is purely zonal, especially
at high latitudes where evidence points toward an increasingly vigorous meridional
circulation. Thus, we cannot know the angle between the radio beam path and the
background winds with good accuracy and we treat it as a free parameter.

In truth, other free parameters do enter, most of which are used in generating
the gravity wave spectrum. These parameters would be the intensity of the convection
which generates the waves, the horizontal phase speed W, of the dominant gravity
wave modes, the static stability structure N%(z), and the zonal wind profile %(z). The
convective intensity and the dominant horizontal phase speed are of course related
through the mixing length hypothesis. Presumeably, the static stability profile can be
extracted from the background occultation data, and so we use data consistent with
the stability given by WA. Again, the zonal winds remain an unknown, especially at
86.6° latitude, where the occultation in question took place.

Despite the presence of several somewhat free parameters in our problem, we
show that the simulations of the radio scintillations are dependent on only a few
parameters. Most importantly, we have found the shape of the simulated spectra to
be nearly identical for most values of the above listed parameters. The reason for this
is that the spectra are nearly recreations of the temperature variance spectra of the
gravity waves in the vertical wavenumber, Br(m; z), where only waves with vertical
wavelengths smaller than the radio beam width (about 63 meters) are counted. These
spectra are completely described by the saturated spectrum of gravity waves for
sufficiently large m. It turns out that for reasonable values for the forcing intensity,

all waves with m > (63 m)™! obey the power law tail of the saturated spectrum.
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Hence the shapes of the spectra are almost all the same.

Exceptional shapes do occur for specific values of certain parameters, though.
When the angle A is near zero, the slopes of the simulated scintillation power spectra
becomes markedly greater. Recall that A~0 means that the simulated scintillations
are only sensitive to waves which propagate transversely to the mean flow. Most of
the time (when A is not close to zero), the only breaking process relevant to the sim-
ulated scintillation spectra is that which takes place in the presence of critical layers.
This breaking process forces the vertical wavenumber spectrum to be the saturated
spectrum for breaking waves. In the presence of the critical layers, wavebreaking takes
place for all waves dependent only on the value of their local vertical wavenumber.
Thus, waves do not need to have critical layers nearby in order to be broken. The
other breaking process relevant to this problem is that of breaking upon emission.
This only breaks the waves with large vertical wavenumbers at the point of emission
from the convection at about 55 km altitude. When substantial Doppler shifting of
the frequency is significant (A #0), waves with large vertical wavenumbers at 60 km
do not have large vertical wavenumbers at 55 km. Thus, these waves do not expe-
rience breaking upon emission. When A is near zero, however, no Doppler shifting
takes place. This means that waves with large vertical wavenumbers at 60 km also
have large vertical wavenumbers at 55 km. These waves do experience breaking upon
emission in addition to the breaking that all other waves do because of the presence
of critical layers. For this reason, the slope of the simulated scintillation spectra for
A near zero is much steeper in log-log plots than for A not near zero. Since breaking
upon emission is effectively proportional to m™3, the slope for A near zero is steeper
than the others by 3 in log-log plots.

We have repeatedly used the nebulous term “near zero” when talking about

the angle A, but we can quantify this. The key to the discussion above is whether or
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not Doppler shifting of the wave frequency is important during vertical propagation.
We have shown that Doppler shifting is only important when sin A & W, /|| where
W. is the horizontal phase speed of the dominant wavemodes and # is the difference
in zonal wind speed between the convection and the altitude of observation, which is
60 km for the spectra presented.

The shape of the simulated scintillation power spectra is also significantly
different for small values of the forcing. In particular, it is possible to make the forcing
weak enough so that waves do not break in the vertical wavenumber regime relevant
to the scintillation power spectra. When this happens, the scintillation power spectra
become flat the same way that temperature variance spectra in vertical wavenumber
do. We have shown that this happens for W,=0.2 m/s. Even for W, =0.7 m/s, the
effects of nonsaturation are apparent in the vertical wavenumber regime relevant to
the scintillation data. Since it is clear that the radio scintillation spectra from the
data bear no resemblance to the simulations for such small values of W,, we conclude
that the gravity waves must at least be large enough to break for values of (63 m)~*
for the vertical wavenumber. In our model, this means that the typical convective
wind velocity must be at least 0.7 m/s.

Aside from the unusual circumstances listed above, the simulated scintillation
power spectra have the same shape; however, their amplitude is affected by certain
parameters. Since most spectra are a direct consequence of the saturated spectrum, it
is natural to assume that changing the stability N? would change the overall amplitude
of the spectra since it governs the amplitude of the saturated spectrum. This turns out
to be the case. Nevertheless, we do not consider the static stability a free parameter
since it can be determined by the large scale radio occultation data. We use a value of
N? which is consistent with that given by WA. The overall amplitude is also affected

by the angle A. For a given W,, the overall amplitude is maximized when A is
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around 2°. For larger A the amplitude decreases monotonically. Also, the overall
amplitude is increased for larger values of W,. We suspect that these two phenomena
are related. As A is increased, fewer wavemodes can propagate to high altitudes. This
also happens when the dominant phase speed W, is reduced or the zonal wind shear
is increased. When fewer modes reach 60 km, we see a portion of the temperature
fluctuation spectrum which has a smaller amplitude, even though the spectrum is
still the saturated spectrum when integrated over all A.

We have already seen that W, must be greater than 0.7 m/s so that the
shape of the simulated spectra match that of the data. When we consider this in
conjunction with largest amplitude obtainable by varying A at W.=1 m/s, we find
that we essentially must place a lower limit on the angle A. We have eliminated all
possibilities of W, less than 0.7 m/s for reasons described above. We have emphasized
the curve on which a model must lie for good agreement between model and data.
Two branches of the curve yield good agreement, but one is preferable to the other.
One of the branches falls in only a 2° bin of A while the other lies in a broad range
of A. Encountering values for A in only a bin of 2° is improbable, and thus we favor
the other branch. By choosing the other branch, we essentially place a lower limit on
A, the angle between the background winds and the radio beam path. When we use
1 m/s for W,, a good fit is obtained for A somewhere between 5° and 10°. For larger

values of W, we would have to increase A to maintain a good fit.

4.2 Discussion

The limit on W, has important consequences for Venus’s atmosphere. Recall
that the occultation data from which the scintillations in question were extracted
comes from 86.6° north latitude. The minimum value for W, really represents a lower
limit on the strength of the convection which generates the waves. The implication is

that there is substantial dry convective activity in Venus’s middle atmosphere even
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at polar latitudes. To date, there has been little effort placed in understanding polar
atmospheric dynamics in Venus’s atmosphere. That there is enough heat made avail-
able in the polar lower atmosphere of Venus so that middle atmospheric convection
remains substantial is important. This could imply that the transport of heat in
the lower atmosphere could extend to extremely high latitudes. This would not be
possible if there were an isolated polar vortex, as is the case for the Earth’s southern
winter. Thus, we suggest that there is considerable meridional mixing in Venus’s
lower atmosphere clear up to the north pole.

Such an implication is dependent on our choice of a background wind profile
suitable for polar latitudes. For many of our simulations, we had used a background
zonal wind profile more appropriate for equatorial conditions, but we did show that
wind profiles with decreased shear would increase the amplitude of the simulated
scintillations. Because winds are likely to be less vigorous near the pole than near
the equator, it is likely that our estimate for the angle between the beam path and
the winds is too small for given values of W,. It is difficult to conclude anything
more quantitative since the polar winds are unknown. In the future, we hope to work
with individual occultations from equatorial latitudes, where we have a much better
knowledge of the zonal wind profiles.

Also, the above conclusion is strongly dependent upon our model for gravity
wave generation in Venus’s middle atmosphere being the correct one. We offer some
support that this is indeed the case. We know that waves with vertical wavelengths of
27 x (63 m) and smaller are breaking at 60 km altitude. Because the breaking occurs
at high vertical wavenumbers throughout a layer at least 10 km thick, this suggests
that the waves are encountering their critical layers. Presumeably, in a strongly
shearing atmosphere such as that of Venus, critically absorbed waves muét have a local

source because gravity waves should not have horizontal phase speeds substantially
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different than that of their source. Convection in the middle atmosphere is already
suggested in the radio occultation data because the scintillations are suppressed at
about 55 km altitude (temperature fluctuations are difficult to create in an isentropic
portion of the atmosphere). The convection is an obvious source for the waves. There
is little latent heat associated with the convection as is implied by the nearly adiabatic
gradient in the temperature structure. If critical layers truly do exist throughout a
ten kilometer layer above the convection, then the source of the waves must be a
continuum source because critical layers for waves must exist throughout. All of this

points toward our model for the generation of the gravity waves.

4.3 Gravity waves or turbulence?

The debate remains on whether it is more appropriate to interpret radio scin-
tillations as the result of clear air turbulence or vertically propagating internal gravity
waves. Because scintillations are sensitive to density fluctuations on vertical scales of
63 meters and less, it seems most likely that turbulence may be the more appropriate
choice. On the other hand, turbulent motions are not likely to create density con-
trasts in the atmosphere because turbulence mixes so effectively that local isentropic
patches develop. It is difficult for a vertically displaced air parcel to create a density
fluctuation in an isentropic region of the atmosphere.

Any turbulence would probably be the result of breaking gravity waves, which
is a major component of our theory of gravity wave spectra in Venus’s middle at-
mosphere. It has been demonstrated in the Earth’s upper troposphere that clear
air turbulence is concentrated where the lapse rate at short vertical scales becomes
convectively unstable (Barat and Bertin 1984). By the above arguments, we do not
expect to see any density contrasts associated with the subsequent turbulent motions;
however, the effect of breaking on the waves should be significant in radio scintilla-

tions. Effectively, the signature of wavebreaking is included in our determination
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of the wave spectrum by implementing the saturated spectrum for breaking gravity
waves.

Nonetheless, even if it is possible for turbulence to generate density variations
and hence radio scintillations, we argue that their required amplitudes are unrea-
sonably large based on energetics requirements. Thus, we briefly outline the work
of WA and then show why some of the estimates of WI preclude turbulence as an
explanation for the scintillations.

WA calculated radio scintillation simulations, but with a Kolmogorov law for
the spectrum of temperature fluctuations in the atmosphere. WA anticipated a non-
linear nonisotropic process to be responsible for the density fluctuations in the atmo-
sphere, so they used a model which mimicked nonisotropic fully developed turbulence
where there was significant elongation in the horizontal direction. In essence, they

used the following spectrum for atmospheric temperature fluctuations:

2 .2
BT(k) = IB s -11/6 (41)
(B2(k2 + k2) + k2 + L2)

where k is a three dimensional spatial wavenumber, cr is the structure constant

of the temperature fluctuations, 3 is the aspect ratio of the turbulence, and L, is
the outer vertical scale of the turbulence. The structure constant is fundamental to
describing the intensity of the spectrum at small spatial scales. WA found good fits
for L, 21 km, cr ~ 0.15 K m™/3, and 8 2 10.

WI suggest that dissipaﬁve atmospheric turbulence is responsible for the den-
sity inhomogeneities in the atmosphere. Using parameters determined from their best
fits, they then proceeded to describe the intensity of the turbulence. The parameter
most commonly used to describe the vigor of turbulence is the energy dissipation rate
e, which is the mechanical power per unit mass dissipated. They find values for &
which are consistent with mild conditions in the Earth’s atmosphere; however, we

find that this is not true, largely because of an error made in their estimation of €.
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Here we intend to give an intuitive view of the turbulence in the stably strati-
fied medium and how one can relate the parameter cr to the energy dissipation rate
€. We view this turbulence similarly to fully developed turbulence in that there are
large eddies which eventually lose their energy to smaller eddies in an energy cas-
cade. This turbulence is different than fully developed turbulence, though, in that
the size and lifetime of the largest eddies are constrained by the atmospheric stability.
The Brunt-Vaisala frequency approximates in the inverse of the turnover time of the
largest eddies because vertical motions in a stably stratified atmosphere occur on such
timescales. Thus, the typical velocity in the turbulence must be approximately NL,.
We assume that the turnover timescale of the largest eddies also approximates their

lifetime and thus

e~ N3 L2 (4.2)

Thus, given an energy dissipation rate ¢, one can determine the vertical length scale
of the turbulence.

The vertical length scale alone is not sufficient for us to connect the param-
eter cr to the energy dissipation rate; however, L, can tell us about the size of the
temperature fluctuations. We assume that motions over the course of a turnover
time are adiabatic. If a parcel moves vertically and adiabatically over a length L., it
will exhibit a temperature contrast against the background atmosphere. We assume
that the square of this temperature contrast approximates the temperature variance

associated with the turbulence:

o2 ~T? L2 (4.3)

where T' = (dT/d2)atmosphere — (d1'/dz)adiabatic and 0% is the temperature variance.
We can calculate the temperature variance by integrating the temperature variance

spectrum, though. This will let us fully relate the above equations to the parameters
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determined by WA:
ok~ & I3, (4.4)

After eliminating L, and ¢% from the above three equations, we find that

£~ (NFCT>3. ‘ (4.5)

Thus we have found a relation between the intensity of the turbulence ¢ and the
amplitude of the high frequency portion of the temperature variance spectrum.

This formulation agrees with that of WI (equation 6 with Ri=1/4):

b 106\2
2 ___" {Z= 2/3
T=3N? (az) ¢ (46)

where b ~ 2.8 is a nondimensional constant (Monin and Yaglom 1975), provided
that 80/0z=T. Unlike kinetic temperature T', the potential temperature 6 is only a
relatively defined quantity which is ordinarily calculated by integrating

e ;—((’3 47)
It is apparent that for all of the above equations to be consistent, the potential
temperature must be defined relative to the local temperature, i.e., 6 =T.

WI used a potential temperature profile which used a reference temperature

defined at Venus’s surface. They calculated the gradient of the potential temperature

(80/9z)w by finite differencing an integrated potential temperature profile. Thus,

(o= (43)

in which the subscript W’s denote the values used by WI. Substituting for T' in

equation 4.5 gives

0

€= (?W)S EwW (4.9)

where ew is the value of the energy dissipation rate calculated by Woo et al. (1982).

They used the following parameters in their calculafions: T =260 K, N2 =1.7 x
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104 52, and (80/8z)w=16 K/km. Using 8.80 m/s® for gravity, we find that '=>5.0
K/km and 6w =814 K. Woo et al. (1982) calculated ew =20 cm®/s®, and thus the
true energy dissipation rate is €=610 cm?/s%.

The increase in the estimate of the energy dissipation rate may dismiss dissi-
pative turbulence as an alternative explanation of the radio scintillation data. Firstly,
the value of the diffusion coefficient estimated by WI is consistent with an indepen-
dent estimation of the eddy diffusion coefficient by cloud-particle distribution studies;
however, the value of the diffusion coefficient estimated by WI is small by a factor
of 30 like the energy dissipation rate (see equation 8 in WI). Secondly, the intensity
of turbulence as indicated by the energy dissipation rate occurs only rarely in the
Earth’s atmosphere. Turbulence studies have been done in the Earth’s stratosphere
where the shear environment is similar to that of Venus at 60 km. In the Earth’s
atmosphere, Crane (1980) used shears of du/dz = 1072 s7! and found that typical
energy dissipation rates were on the order of 0.1 to 1.0 cm?/s® at 10 km altitude. The
shear at 60 km in Venus’s atmosphere is about 2.6 x 10=2 s~! and the intensity of the
scintillations is nearly global on Venus. Thirdly, the energy available for dissipation
is greater in the Earth’s atmosphere than in Venus’s. For daytime conditions in the
Earth’s atmosphere, on the order of 400 W/ m? can be transported vertically at mid-
latitudes. At 60 km in Venus’s atmosphere, though, only ~ 40 W /m2 is available for
vertical transport (Tomasko et al. 1980). For the above reasons, it is unlikely that

dissipative turbulence is the source of the radio scintillations.

4.4 Prediction

Of course, the source of gravity waves need not be the middle atmospheric
convection as has been suggested here. Nonetheless, this theory does make a specific
prediction which would be unique to this mechanism of gravity wave generation. Re-

call that when the angle between the radio beam path and the background winds is
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near zero, damping at the point of emission manifests itself by strongly attenuating
high frequencies in the radio scintillations. Thus, this signature should be apparent in
a few of the occultation profiles. Because of the apparent poleward meridional circu-
lation in Venus’s clouds, they would most likely be found in the southern hemisphere

when Venus’s north pole is slightly inclined toward the Earth.
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Tabulating the function A(z)
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In this appendix we lay out the explicit formulation for the function A(2). We
have already shown that in general a variety of types of waves exists when in the
presence of strong zonal wind shear and static stability varying in altitude. For each
type of wave, we intend to show how the amplitude can be computed as a function
of height everywhere above the convection. Because waves encounter regions where
they propagate and regions where they cannot propagate, we must determine how
to connect these different types of wave behavior. Connecting regions of propagation
to regions of nonpropagation requires connection formulas. Thus, this appendix uses

connection formulas to show how A(z) is computed.

We review the general solution to the homogeneous wave equation Lh=0 for
regions of propagation and regions of nonpropagation. For regions of propagation, the

square of the vertical wavenumber is greater than zero and

h(z) = @y / ql;nl (cleiq + cze'iq). (Ala)

For regions of nonpropagation, the square of the vertical wavenumber is less than zero

and

~ qiml q —q
h(z) = 0|1 (C3e + ™). (A1b)

We note that the dispersion relation m? and the phase ¢ are defined by equations

2.13 and 2.15 of the first paper.

The importance of both of these solutions is apparent in figure 1 of the first
paper. We know that a propagating wave must have ¢, =0 in its solution in the region
of propagation above the lowermost turning point. Many propagating waves, though,
exhibit a region of nonpropagation between the convection and the turning point.
Before propagating waves can reach the region of propagation, they must somehow
penetrate through this region of nonpropagation which we call the barrier. This same

barrier also forms above the convection for trapped waves. For trapped waves, a
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region of propagation lies between turning points 1 and 2. Between turning points 2
and 3 another region of nonpropagation forms. We call this the upper lid. We must
describe each region of propagation by specifying ¢; and c;, and we must describe each
region of nonpropagation by specifying cs and c¢4. Sets of coeflicients ¢;, cg, 3, ¢4 are
associated with each turning point for a given wavemode. Because of uniqueness, there
are relationships between the sets of coefficients for a given wavemode. In addition,
since the equation which A(z) solves is a second order partial differential equation,
only two coefficients are necessary and thus we can find ¢1,¢; in terms of ¢3,¢4 and

vice versa for each turning point.

We find the relationship between the sets of coefficients by modeling the be-
havior of the solution between regions of propagation and regions of nonpropagation.
We do this in much the same manner as has been done for the Schroedinger equation.
The major difference between finding connection formulas for the Schroedinger eqﬁa—
tion and those for gravity waves is that the zero of the vertical wavenumber occurs
in the numerator of the undifferentiated term for the Schroedinger equation versﬁs in
the denominator of the differentiated term for gravity waves. This difference leads to

slightly different solutions.

In finding the connection formulas, we assume that m? is continuous, approx-
imate m? = a®>2 and account for the @ and p dependence with a factor &/,/p. The

remaining equation is

ﬁ(__l___a_(ﬁh)) + l/&_;h =0. (A2)

0z\m29z\ &

The solution to this equation is

ﬁh' _ 3a3)1/2z AJ2/3(§(az)3/2) + BJ_2/3(%(az)3/2) for z>0, m?>0 (A3)
o 8 ALys(2lazP/?) + BI_g3(3laz’?)  for 2<0, m*<0.

The functions Jy/3 and J_;/3 are Bessel functions of the 2 /3 order. The functions I5/3

and I_,/3 are modified Bessel functions of the 2/3 order. The coefficients A, B are
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general. The phase ¢ is defined from z=0 so that ¢=(2/3) |az|3/%

In order to verify our approximation that the background density can be con-
sidered as constant near a turning point, we perform a numerical integration of the
homogeneous internal gravity wave equation. We keep & constant but define the
background density as a p = 1 — (z/H). After nondimensionalizing the homogeneous
portion of equation 2.3 of the first paper, we are left with only one nondimensional
number, namely aH where a is defined above. In figure 1 we show a comparison
between a numerical integration of the wave equation and our approximate connec-
tion formulas. In computing the numerical solutions, we use the approximate solution
for the initial condition at az = —1. We show the functions Jy/3, J_z/3, and their
derivatives. The approximate derivatives are calculated using the rules proscribed in
appendix B. We set a H =10, which is typical for turning points just above the con-
vection. Clearly, the derivative of the approximate solution compares well with >thye
numerical integration. The only approximate function which deviates slightly from
the corresponding numerical integration is that for J_;/3. Despite this slight devia-
tion, it does not cause any significant error in the derivative of the solution. We use
this comparison to justify neglecting terms of order 1/H? in the dispersion relation
2.13 of the first paper, which may have otherwise seemed invalid when near turning
points.

We wish to find out how equation A3 relates to the usual WKBJ solutions.
To do so, we examine the asymptotic expansions of the Bessel functions (asymptotic
expansions to these Bessel functions can be found in Abramowitz and Stegun, p. 365
and pp. 377-378). We require a solution proportional to y/m in the far field and

substitute m? = a®z. We find that

h(z) = a\/g (A cos(q — %) + Beos(q + % ) (A4)

in the asymptotic expansion. Therefore, for some substantial value of the phase ¢ from
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Figure 1. Turning point solution. In this figure we compare a numerical integration of
the homogeneous internal gravity wave equation with the solutions used in con-
nection formulas near a turning point. The derivatives are calculated as described

in a
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a turning point, the connection formulas accurately reproduce the general WKBJ
solutions. With some algebra, one can find the relationship between A, B and ¢, c,.

This relationship is

= L —Tme /12 exp(71/12
c \/12—”(/1 exp(—7ri/12) + Bexp(xi/12)) 9
c2 = 7-2_7-;(A exp(77i/12) + B exp(—mi/12))
in which g is positive and defined from the turning point (m?=0).
In comparing the solution for m%<0 to the solution in the WKBJ approxima-
tion, we notice that even though the asymptotic form for both I5/3(¢) and I_/3(g)

is a growing exponential, the asymptotic form for I/3(q) — I_/3(q) is a decaying

exponential. For this reason we find the asymptotic form of the general solution for

h(z) = @y % ((A+B)eq - %—g(A—B)e“q). (46)

Like the solution for m? >0, the asymptotic form of the connection formula for m? <0

m? < 0 to be

matches the WKBJ approximate solution in character for sufficiently large g. This

enables us to relate A, B and cs, ¢4:

1
C3 = 'E(A-{—B)

¢t = -\/g(A - B).

Eliminating A, B from equations A5 and AT gives the following relationships between

(A7)

¢1,¢e and c3, ¢4t

: 1 :
c1 = exp(—7i/4) (§C3 + icq)
1 (%)
c2 = exp(wif4) (—2—c3 — 1cyq)
and the inverse
c3 = ¢ exp(7if4) + cy exp(—7if4)
i . (A9)
c4 = —§(c1 exp(7i/4) — ¢y exp(—7i/4)).

Thus we have computed how ¢y, ¢; are related to cs, ¢4 across a turning point.
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We note that a set of coefficients A, B, ¢, c3, c3, ¢4 is anchored to a particular
turning point and the phase is measured from that turning point. A difficulty then
arises for trapped waves because more than one turning point then exists. Given a
set of coefficients tied with the third turning point in figure 1(b), we need to know
what the coefficient sets are for the lower two turning points. This is done by way of

transformations.

We derive a transformation across a region of nonpropagation so that we can
relate the cs,cy4 pair associated with the second turning point for trapped waves
to the cs,cs pair associated with the third turning point. We define ¢, to be the
phase measured into the lid from the second turning point and g3 to be the phase
measured into the lid from the third turning point. We note that ¢; + g3 =) where
Q; is the thickness of the lid defined by equation 2.21c of the first paper. We find
the relationship between the coefficient pairs by matching the the general WKBJ

solutions defined from each turning point. The equality is

@, /% (cg2)eq'*’ + c,(f)e_'“) >0, /%— (c:(f)e"3 + 623)6_‘13). (A10)

We solve for c3, ¢4 in terms of ¢y, ¢a:
2 3
o = e exp(-Qu)

o = oY exp(Q)).

(Al1)

The coeflicients c;(f), c,(f’) are associated with the third turning point and the coefficients
c:(f) , c‘(f) are associated with the second turning point. This formula will prove helpful

for finding the function k(z) for trapped waves.

Next we derive a transformation across a region of propagation so that we may
relate the coefficient sets of the second turning point to the coefficient sets of the first
turning point. We define ¢; measured away from the first turning point. Notice that

q1 + g2=Q4 where @, is the total phase in the duct defined by equation 2.21b. By a
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similar procedure we show that

cgl) = cgz) exp(—:1Qa)

¢ = &” exp(iQu).
This, too, will be helpful in finding k(z) for trapped waves. We now have the tools

(A12)

necessary to properly evaluate h(z) everywhere above the convection.

For propagating waves, including those absorbed into critical layers, the upper
boundary condition is simple. To satisfy the radiation to space boundary condition,

we set cgl) = exp(—nt/4) and cgl) = 0. This makes the general WKBJ solution for

h(z) ~ @, /% ¢ila=m/4) (A13q)

above the turning point. Below the turning point, we do not know whether the asymp-

propagating waves

totic expansion holds, so we just write

27 |m|qy

h(z) ~ & 35 (exp(wi/6) In/3(q1) + exp(—i/6) I_2/3(q1)) (A13b)

for propagating waves.

The function h(z) is more complicated for trapped waves. The coeflicients
associated with the first turning point are dependent on the duct phase )4 and the
lid thickness @;. We first assume that the upper lid is thick, i.e., @;>1. In this case
we expect h(z) to exponentially decay with height within the lid so that the upper

boundary condition is satisfied. Thus we set c:(f) =0 and c‘(f) =—1/2. This makes the

h(z) = u”)\/? sin(gz — 7 /4).

We can then use the transformation of equation Al2 to find the coeflicients ¢, ¢,

solution within the duct

associated with the first turning point. It turns out that

27"|mIQ1

h(z) ~& 3

(—sin(Qa +7/3) I2/3(q1) +sin(Qa — 7/3) I_zy3(q1))  (Al4)
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below the first turning point. We have also used the relation of equation A9.

The function k(z) is most complex for a wave trapped beneath a thin upper
lid. In this case, the upper boundary condition becomes the radiation condition above

the third turning point. Thus, we set

cff’) =0
. (A15)
c§3) = (1/2) e~ emi/4,
We carry out the transformation of equation All and use equation A8 to find that
the ¢, ¢y pair for the second turning point are
) 1

& = %exp(—m'/ti) (1-7¢7%)

. (A16)

&) = —%exp(wi /4) 1+ ie_m‘).
We wish to bring out two points about this ¢;,c; pair. Firstly, it approaches the
c§2), cg2) pair for waves trapped beneath a thick lid as @; — oo. Secondly, the upward
and downward propagating waves carry slightly different amounts of energy. Appro-
priately, the upward propagating wave carries a little more energy (recall that the
phase is measured downward away from the second turning point into the duct). To

find the coefficients associated with the first turning point, one only needs to carry

out the transformation of equation A12.

We note in passing that we have implicitly assumed that @;>>1 in deriving
h(z) for waves trapped beneath a thin upper lid. In fact, this is inappropriate by
definition of a thin upper lid. Nevertheless, we assume that this adequately describes
the behavior of the thin upper lid case. A problem does arise, though, as ¢; — 0. In
this case, the downward propagating wave still exists. This gives rise to a spectral
discontinuity of the gravity wave response to forcing. We discuss this in the main

text.

In general, the most consequential waves will have ¢, =0. For these cases, no

barrier will be present between the neutral layer and the stable layer. Even though
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at no point does m2=0, we nevertheless associate a set of coefficients with the point
at which N? is discontinuous. Furthermore, regardless of the value of ¢ away from
this turning point, we always use the asymptotic form of the solution. Thus, we have
defined h(z) to be &1/m/p exp[i(g— 7 /4)] above the convecting layer for propagating

waves with ¢,=0.
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APPENDIX B

The derivative of h(z)
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In this appendix we investigate the derivative of the homogeneous solution to
Lh =0. It was mentioned in the text that simply taking a finite difference of h(z)
is incorrect because it would introduce third order terms. We instead wish to find a

correct second order WKBJ solution for 0h/0z.

We start by taking the derivative of Lh with respect to z after multiplying it
by ©?/p. After defining n=p/(N? — &?) Oh/0z, we get

) (az a_n) L (=)

The solution for A is given in appendix A by equation A3. The asymptotic expansion
of this solution gave exactly the general WKBJ solutions (equations A4 through A6).

In the same spirit, we find the connection formulas for 7 and in solving for dh/dz we

Qbi = Lml CJis3(q) + DJ_1y3(q) for m?>0, and (B2)
0z p | Chys(q) + DI () for m®<0.

This is the correct second order WKBJ solution for the derivative of h(z) with respect

get

to height.

Near a turning point, an explicit derivative of equation A3 agrees with the
derivative in equation B2 above provided that the coefficient &//p is held constant.
Near a turning point we can validly approximate m?=a3z and thus ¢=(2/3) |az]*/>

We account for the altitude dependence through the phase ¢ and find that

_ § 3 llﬁi 2/3 AJ2/3(‘1)+BJ—2/3(Q) for m?>0,
h(Z) - (2(1 ) \/ﬁ q AI2/3(q) + BI_2/3(q) ‘fOI' m2<0. (B3)

We can take a derivative in z of this expression by recognizing that dz=dq/m. The

0 . [gmP® f AJ_1/3(q) — BJiss(q) for m?>0,
g(h(z)) =w P { Al_y5(q) — Bl j3(q) for m2<0. (B4)

We hold @ and p constant near the turning point. This solution is the same as the

result 1s

solution of equation B2 when we equate the coefficients A, B to the coefficients C, D.
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With some simple algebra, we find that

C = —|m|B

(BS)

D = |m|A.
Thus, in order to properly take the derivative of h(z) near a turning point, we must
hold the leading coeflicient &//p constant while finite differencing k(z). In the end,
this is is the correction to the WKBJ approximation required when near a turning
point.

Finally, we note that our rule for taking derivatives of h(z) holds even when
far from a turning point. We show this by comparing the derivative of the asymptotic
solution for h(z) to the asymptotic expansion of the derivative solution of equation
B2. We implement the relationships between c;,¢; and A, B given by equations AS5.

The asymptotic solution of equation A3 is given by equation A4 for m? > 0. Its

derivative 1s

oh 3 : 7 . . d
3 = o1 (imlsin(q - 33) + bm|Bsin(a + 1)) siea(5D. (B0

We have held the leading coefficient &+/|m|/p constant. The asymptotic solution of

equation B2 is

oh . [|m] 57 s . ,dq
5 = @4/ 5 (Ccos(q - 12) + D cos(g — 5 ) mgn(E) (BM

for m? > 0 where we have held &\/Tm—l/g constant. This is just the same as the
previous equation given the relationships of equations B5. Even though it appears
we have broken our rule of only holding &/,/p constant, there is no problem because
holding an extra factor of m constant is valid under the WKBJ approximation, and
by definition the WKBJ approximation is valid when the solution can be given by

the asymptotic solutions.

In conclusion, the derivative of the function h(z) is found numerically by finite
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differencing h(z) holding the leading factor of &/1/p constant:

V2 h(z)

0z \/i/:)gz—(w ) (BS)
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APPENDIX C

Weak Scintillation Theory
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We use a method for simulating scintillations which has been used frequently
in the past for modeling scintillations under the hypothesis that they are caused
by turbulence in the atmosphere. We use the same theory but with some minor
details added so that a spectrum of gravity waves can be implemented instead. In
this appendix, we start with an expression for the log-amplitude of the scintillation
as a function of time and proceed with a derivation of weak scintillation of the log-
amplitude spectrum in frequency keeping careful track of how gravity wave modes

are sampled.

The theory of radio scintillations in its current form was pioneered by Tatarskii
(1961) and the notation we use is that of Ishimaru (1973, 1978). The derivation of
the frequency spectrum for log-amplitude scintillations is given in Woo and Ishimaru
(1973). Subsequently, improvements involving the effects of the flattening of the Fres-
nel zone were implemented (Young 1976, Haugstad 1979). We start with equa,tibns
given in Ishimaru (1978) with corrections due to flattening of the Fresnel zone, explain
them briefly, and find the equation for log-amplitude variance spectra in frequency
required for our simulations. Whenever we refer to Ishimaru, we are referring to his

1978 book.

In figure 1 we show the geometry of the occultation. We use z’ to denote
the line-of-sight coordinate along the beam path, y',2' to denote the coordinates
transverse to the beam path in the Venus’s atmosphere, ys, z; to denote the spacecraft
coordinates as projected onto a plane perpendicular to the beam path, y, z to denote
transverse coordinates at the Earth with the observer at z = y = 0, R; to denote the
distance from the spacecraft to Venus’s atmosphere, and R; to denote the distance
from Venus’s atmosphere to the Earth. The position of the spacecraft as it appears

in Venus’s atmosphere to the observer is given by y,, z, in

_ ys(t)RZ + le

wn(t) = LS (Cla)
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z, z z
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S/IC R, > X ’ R, | >
Earth
Venus

Figure 1. Occultation geometry. The spacecraft position is at “S/C” and the observer

position is at “Earth.” The coordinates with the subscript “s” describe the space-
craft position, the primed coordinates describe positions in Venus's atmosphere,
and the unprimed, unsubscripted coordinates describe the observer's position. The
x coordinates represent distance along the beam path.

and
Zs(t)Rg + ZRl

Clb
R, + R, ( )

za(t) =

(c.f. equations 17-27 in Ishimaru).
The expression for the log-amplitude fluctuation as a function of time is given
by
Y=k d / d kl R i(mza-l-k;ya) . _1_-2_ k12 _Tn’_2 Cz
x(t) =k [ da’ [ duky, miz')e sin 567 + 75) (C2a)
where the quantity dv(k;,m;z') is the Fourier component of the index of refraction

fluctuation ny(2',y’, 2):
n(r') = /ei(mz’+k;yl) dv(k,, m; ') (C2b)

(c.f. equation A-17 in Ishimaru). The index of refraction fluctuation is written this
way because we expect it to be a random process. The quantities k;, and m are the
Fourier conjugates to the coordinates y’ and 2’ in Venus’s atmosphere. The quantity

q* is the defocusing factor: the Fresnel zone is flattened by a factor of ¢2 in the vertical
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compared to the horizontal. The distance R is defined by

R=(z+7)" C2
=z *% (C2¢)
and is nearly the same as the spacecraft to planet distance R;. The quantity k& is the

free space wavevector of the radio signal.

Equations C.2 describe a Fresnel diffraction pattern of a random process. It
is derived under the Rytov approximation, which allows a calculation of the log-
amplitude and phase of the radio signal under the approximation that scintillations
are weak. It is essentially the same as the Born approximation except that one solves
for different quantities. The index of refraction in equation C.2 is written differentially
in the space of Venus’s atmosphere so that a spatial spectrum of gravity waves can
eventually be implemented. The factor sin|...] is referred to as the Fresnel factor.
It essentially filters out components of the index of refraction fluctuation spectrum
which have spatial scales greater than the radio beam width. Lastly, the integral over
z' essentially integrates the accumulated phase delay along the beam path through

the atmosphere.

The time dependence is found by accounting for the spacecraft motion. We do

this by making the apparent spacecraft position y,, z, time dependent:

Ya(t + At) = ya(t) + g At
(C3)
2a(t + At) = 2,(t) + 2. At

where 9., 2z, give the apparent velocity of the spacecraft through the atmosphere.
Finding the correct expression for the apparent velocity of the spacecraft is a tricky
proposition. Simply taking derivatives of equations C.1 is not sufficient because the
Ys, 25 coordinate system itself is dependent on time because of the refractive effect. In
reality, the apparent velocity can be found from the spacecraft velocity in the ys, 25

plane by
Jo = gs(ﬁ) and  z, = 32-(£> (C4)
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The quantities y;, 2, give the actual spacecraft motion transverse to the beam axis.

Using the time dependence we find the correlation function of x in time:

WX ED = [ [ G i) G

X exp (z((k; — K)o + (m — m')za)) e~ i(kyiatm'sa) At (C5)
12

% sin [ﬁ(kf + %)] sin [ﬁ(k;ﬂ + n;2 )]

2k 2k
This somewhat daunting equation can be simplified by using an identity for random

processes. Namely, the correlation of the Fourier coefficients can be rewritten as

dv(ky,m;z') dv*(k,,m'; 2") = By, (k;,, m) Corry, (z' — ")
(C6)
x 6(k, — k) 6(m —m')
(equation 17-43 in Ishimaru; discussed in appendix A in Ishimaru). Once again, B,,
is a spectral representation of the index of refraction variation n;. In addition, we
have a correlation function in z’ — 2 written as Corr,, (¢’ — z"). This correlation
function is identically unity when 2’ — =" = 0. The other terms in this equation are

Dirac delta functions. Inserting this identity into equation C5 and integrating over

k;, m', and z’' — z" gives

x(t) x(t + At) = 27rk2/d:c'/dk; dm By, (k; =0,k ,m;z’)

C7)
(K o s R m? (

—i(klgatmig) At 214V g2 TL
x e~ HkyYatmia) sin [Qk(ky + 7 )]
in which the power spectrum of index of refraction fluctuations is three dimensional,
but only the k] =0 component is of interest. The component k., is the Fourier conju-
gate of 2'. We take the Fourier transform of this last equation in order to find a log-

amplitude power spectra. Ishimaru gives the following formula for the log-amplitude

power spectrum:

W, (v) = 2/—00 dAt x(t) x(t + At) cos 2rvAt (C8)

[e o]
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where v is the frequency conjugate to elapsed time during the occultation. This is the
same as equation A-12 in Ishimaru. Using this definition in conjunction with equation
C7 gives

| R m?
212 / _ / 2 12
WX(V) = 47k L/dky dm Bn1 (k;—O, ky,m) sin [ﬁ(ky + —q—2—)] (Cg)

X (5(27ru—k;3)a—mz'a) + 6(27r1/+k;3)a+m23a))
where L is the radio beam’s pathlength through Venus’s atmosphere. The quantity W,
is the most common term in the literature for the power spectrum of log-amplitude
fluctuations. Two Dirac delta functions arise because the index of refraction fluctua-
tions in the atmosphere are real quantities as opposed to imaginary quantities. This

makes sense because one cannot tell whether a sinusoidal wave in the data has a

positive or a negative frequency. In fact it has both.

Equation C9 is consistent with the work of Haugstad (1979) (c.f., equation
2.5) and Woo, Ishimaru and Yang (1980) (c.f., equation 8). The major difference |
is that we have two Dirac delta functions in our formulation. When implementing
turbulence, only one delta function is necessary, as long as an extra factor of 2 is
included, because of symmetry of k;, k, in the spectrum of turbulence. For gravity
wave spectra, similar symmetries are not expected; thus we must retain both delta

functions.



