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Abstract

e s , . : 4+ O
It 1s proposed that the neutron-proton and w*-w

mass differences are produced by the electromagnetid field.
In order to make the quantum electrodynamic mass correc-
Tions convergent, 1t 1s necessary to cut off the photon
propagation runctlon and the anomalous moment interaction
of’ the neutron and proton for high virtual photon masses.
The cutoff masses reguired to give the observed mass
differences are of the order of the proton mass. These
cutoffs are 1n agreement with the relatively small changes
nucleon moments appear to undergo when nucleons form nuclel,
and with experiments on electron-neutron and electron-
procon scavtering. A classical interpretatlion of the
neutron-proton mass difference 1s discussed. A justifica-
tion of the guantum electrodynamic calculation hased on

e

guantum field theory is also given.
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Introduction

In contemporary theories of nuclear interactions, 1t

is assumed that the neutron and proton are two states of a

]

single particle, the "nucleon," and that the 7%, ¢ are

three states of a single particle, the '"pion." We assign

§

to the nucleon and pion "isotopic spins” of % and 1, re-
spectively, in analogy to ordilnary spin, but, unlike ordinary
spin, 1sotopic spin states are not transformed under a spa-
tial rotation. Ve assume that the interactions among nucle-
ons and pions possess l1sotopic spin symmetry, by which is
meant an invariance under transformations analogous to those
inducéd by spatial rotations in the case of ordinary spin.
‘This hypothesis of isotopic spin symmetry has successfully
explained many nuclear phenomena. Since isotopic spin
symmetry implies charge symmetry, in order to maintain such
a8 hypothesis exactly it is necessary to explain all devi-
ations fromrcharge symmetry in terms of other interactions.
In the case of nuclei, such deviations are successfully
atiributed to the electromagnetic interactions of protons
and the neutron-proton mass difference, There are, however,
deviations from charge symmetry of a more fundamental nature,
since they involve propverties of the individual nucleons and
pionsg themselves. These anomalies are:

1) The charged 7 mesons are about 9 electron masses



heavier than the neutral # meson.

2) The neutron is about 2.5 electron masses heavier

than the proton.

We know that the charged mesons and the proton inter-
act with the electromagnetic field in a manner which differs
from the neutral meson and neutron, respectively. A natural
question to ask 1s whether the requilred mass differences
can ve produced vy the electromagnetic field alone. Accord-
ing to guantum electrodynamics, there 1s a mass cprrection
to any charged particle, of order eg/%c, due to the emission
and reabsorption of a virtual photon. Here we encounter our
first difficulty with present-day theory, for the resulting
integral over all possible virtual photon 4-momenta diverges.
.To remedy this situatiocn, we must use a Lorentz invariant
cutoff which is strong enough to make this integral converge,
yvet negligible in its effects at low moﬁenta and energles,
sc that the successful results of gquantum elecﬁrodynamics
are not affected, within experimental accuracy. Such a
orogram is possible, because guantum electrodynamics is a
"renormalizable”" field theory. By this we mean that if any
observable process is computed in terms of the observed mass
and charge of the particle, using any cutoff method sufficlent
to remove the divergences of the theory and to maintain
Lorentz and gauge invariance, then the result will be insensi-
tive to the cutoff method, in that a unique limit will exist

as the cutoff is weakened to no cutoff.



We can justify such a cutoff either by saying that
guantum electrodynamics 1is wrong for high photon energies,
with thé exact theory providing a natural cutoff, or, that
guantum electrodynamics is correct, but the complex of
virtuval nucleons, pions, and perhaps other partioles‘re-
sulting from the strong nucleon-pion interactions interacts
with the electromagnetic field in such a manner as to cut
off’ the effects of high energy photons. In either case we
obtaln a cutoff whose form 1s highly arbitrary in the light
of our present knowledge of physics. We can hardiy claim
that any arbitrary cutoff will yield a given observed
anomaly, or even yield the correct sign, but merely that
a cutoff of simple analytic form gives the observed résult.

In Treating the electromagnetic mass corrections of
Tthe proton and neutron, another cutoff must be introduced
in connectlon with the anomalous magnetic moments of these
particles. These moments cannot be neglected for two
reasons. In the first place, these moments, after all, do
lmply a coupling to the electromagnetic fileld in addition
to the charge of the proton. In the second place, 1f we
neglect them we obtain a positive mass correction for the
proton, and no mass correction for the neutron, making the
proton heavier than the neutron, contrary to what is ob-
served. For low energies, the coupling of the anomalous
moments to the electromagnetic field can ve represented

by a Paull term in the Dirac equation. For higher energies,



the coupling is not known, but it is reasonable to expect

The coupling to cut off at sufficiently high photon energies,
due to ﬂhe fact that the currents producing the anomalous
moments have a finlte extension in space. Although the pre-
clse form of the cutoff is arbitrary in the light ofiour
present knowledge of physics, its existence is physically
understandable.,

The method used to compute the pilon and nucleon mass
differences 18 a verturvation expansion Qf the cuantum elec-
trodynamic mass correction, computed to order eg/hb, using
the following cutoffs: For the spin zero pilon, we multiply

.x. O R
the photon propagation function, 1/k~, by the factor

JG

2 P2 2.2 , . f e
C(k™) = (N°/A°-k")°. The observed mass difference is ob-
tained for A about .86 proton masses. For the spin %
: 2
nucleon, we multiply the photon propagation function, 1/@?,
factor C(Eg) = - 2/(EQ*A?)- We could have used
, but this would have required more computation
without producing any effects significantly different from

2 2 2 S 2

-A/(k"-A"), and we do not know the correct C(k“) anyway.

. . . 2 2 2y . ,
In the case of the pion, -A"/(k"-A) is not a strong enough

cutoff. The moment coupling, (%’p—yhk), 18 multiplied by

—

‘m = .75m,

o

o) ~ ~ -
the factor G(E?) = =X/ -X). For \ less than Vo

Po belng the ancmalous magnetic moment of the proton, in

iy

*
R. P, Feynman, Phys. Rev. 76, 769-789,(1940). Ve use
the notation of this article, except that d k = dktdkxdkydkz,
i-vectors are underlined, and with any l-vector A we can
assoclate the spinor ) = A¥, -A ¥ -A¥ -A 7.
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units of ey/2mc, and m 1ts mass, no value of A gives the
1

observed mass difference. For x>p§2m, however, we can

always find a /\(X ) which will give the cbserved mass

difference. For example, 1f X = 1.5m, then N= 1,5n;

)

£ A= 1.0m, then A= 5.0m, apprcximately. The details of
these computations follow this introduction.

The high cutoff for the anomalous moments implies that
the currents producing these moments are spread over only
a small distance, of the order of the proton Compton wave
length, M/mc. This is in agreement with the relatilvely
small changes nuclecon moments appear to undergo when nucle-
ons form nuclei, and also with experiments on the scatter-
ing of electrons by neutrons and protons. These matters
will be discussed in more detail after the computation of

the neutron-proton mass difference.
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0
The Tfa T Mass Difference

For the spin zero charged W mesons, the electromag-

. . R . D
netic mass correction 1s given, to order e”, by (l)

((p-k)%-m")~1(2p-x). - § -

An= ~e”1(2Fm) /[(2p~k> BT %pp

k=2C(k2)- (2m) -Rakx, (1)

where pp is the 4-momentum of the meson and m is its mass.

2 2
Using the fact that p = m" we can expand (1) as

Am= -egi(gw)“3m_1 [[4m2572(52~99f5)—1 _(E?"QE.EyJ,_EE~23.

o
g

c(x?) gk, (2

We take

[U]
p

c(x?)= (A2/AZ-k2)2. | (-

We can then express Am as
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-2,,.2 2y=1
We can express k “(k"-AT)7 as

Substituting (5) in (4) we get

Substituting (6) in (4) we get

p)/d(A°) + 2m At

An = egm[ﬁ'lg(QJ + (m™eA° ~4»N2'd13(”

o~

p o=

farse)/an0} 7

o} o+,
_2 [AZ 2 - z -1.4
IB(Q) = i(2mw)"- (k"-8) " (k™-2p-k) ™ "d kds. (7)
0

To evaluate Ig(p), we combine denominators, using the
3\

oo
(k°-8) "2 (k®-2p-k)™! = 2 j/ (k°-2p-k + (k°-s)x) 3xax. (8)
0

e substitute (8) in 13(3) and integrate over k-space,

using the formula



s 2
witha=x + 1, A= 38x, p =m , to get

13(‘9) = /f f (ax” zp_-_L_c_—A)'"Bdl*kdsxdx = (8m) ™t
A2

}F (x+1) " (m2+sx (x+1) ) ~Ldsxdx
0

il

(87 1[ 10 (A%/n?)

+ j[iog(x(x+l)+A “ma)-(x+1) 2dx]. ' (10)
0
-2 D 2 2.
Using the fact that log(x{(x+1)+A "m") = log(x+i+(F-A "m")?)

5

+1og(x+%~(%—A—Lm2)é), and the formula
e 2 ]
/_(x+z_)" log(x+a)dx = (1-(1-a) )log(a), (11)
0
we get
~1 =2,7 2, 2

13(9) = (16 m A"[log{A"/m™) -(1- 4A )

log {(:1._(1_4/\~2m2)%)-1(1+(1-u/\~2m2)%f)} ]. (12)

]
Since we anticipate that Mmz/hﬁ:t.l, and we must find
{dIS(Q)/d(Ag)} - in any case, we expand 13(3) in powers

s 2 1 e PR
of m“/A“. The result is

2 2 bk
13(2) = (16m) [2(1 +m /A +2m /A +0 //\ Ylog( /\/m )

w2 -nf /A2 -(10/3)ut A +0 (16 /A8) ]
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N#aI5(p) /a(AP) = (16m) 7 [-2(a?/n% /A 10 (0 /00))

log(A®/m?) +2 +3m7 /A% +(32/3)mt At +0(mC/AC) 1. (13)

Substituting (13) in (7) we get

An = (3/8mMemlA®/m? +10g(A%/m?) +5 +((4/3)1log(A2/m?) -(8/9))-
2 o
m” /A" +0( (m /A /h . _ (14)
If we take m to be 273 electron masses, and 4m to be

9 electron masses,* then (SWVBeQ)Am/h = 37.8. The value of

A reguired to obtain this result is 5.8m = .86 proton

masses.,

*ChanWSk] and Steinberger, Phys. Rev. 93, 586 (1954),
give Am = 8.8 + 0.6 electron masses.
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The Neubtron-Proton Masgs Difference

[yp +(8m) =t (rl Ky ) 6(6%) ]

e
Fig. 1. Peynman dilagram for the proton mass correction

of order eg.

() Yy, (Y )6 ()

e
Fig. 2. PFeynman diagram for the neutron mass correction

2
of order &<,

For the spin % proton, the electromagnetic mass correc-

]
s < t] 5] L . - -
tion of order e arises from the Feynman diagram given in

fig. 1. p is the 4Zmomentum of the proton, m is its mass,



11

k is the L-momentum of the emitted virtual photon, and Mo
is the anomalous magnetic moment of the proton in units
of ehyémé. It is to be noted that if the amplitude for
emission of a photon of 4-momentum k is a(k), then the
amplitude for absorbtion of such a photon is a(—g). ‘In
rig. 1, a(k) = ¥, +(hm) =lu, (Y K00, 6 (K5) ]

The corresponding diagram for the neutron is given
in fig. 2. The mass of the neutron will be btaken as equal
to that of the proton, since the error thus introduced in
the mass correction of the neutron is of the same order of
magnitude as the higher order mass corrections we are neg-
lecting. p is the L-momentum of the neutron, k is the
4-momentum of the emitted virtual photon, and ¥, ig the
ancmalous magnetlc moment of the neutron in units of e}/Cmc.

In the case of both the proton and the neutron, we

obtain the mass correction am from the relation
4~ -1~
am = (G u) (0 Mu), (15)

where u 1is a spinor wave function satlisfying the relation
ﬁh = mu, and M is the spinor matrix arising from the sum of
all relevant Feynman diagrams. In the cases we are consid-

ering, we integrate over all virtual photon 4-momenta.

For the proton, M is given by the following:

o= -dweti [&7@ = () =Ly (pd =K% ) 6 (2) 1 (F-)-m) 20y,



+(lm) T (e, e (7)1 1720 (x7) - (2m) ~Ha, (16)
or
M= &S +ppMe +pgi ],

iy = - (1/473) [rpm_;z_m)“17,1-14‘20(k2)c1“k,

=g

—y
N
I

(/267) [ ORtsem) ™ G -0t
(B-%-m) 17, 120 () -0 (P ) at,
M3 = (1/647m7) f(%r,frpm<rf~%—m)‘1<%);l~>;l}<)~
k202 (k2) ¢ (k2 )atk. ~ (17)
For the neutron, M is given by the following:

M= (1e”p2 /6L 3n7) [(;fyu-rum(yf-}e-mrl(m-rpk)-
k=262 (x2) ¢ (k2 )atk. (18)
Tn the computations that follow, we take

C(x?) = -A/(K7-A%), G(k2) = -N/(x2-22). (19)

ve first consider the electromagnetic mass correction



for the proton. This correction, Am,, is given by the
following:

An

0 [Aml +ppAm2 +pgAm3]:

amy = (¥ u) MR 1), amy = (F w) HE mm),
u). (20)

ang = (T wH (S wu

We simplify the expression Yp(ﬁ—%—m)“lyh by using the

following relations (2):

H = 2%, Yl = b MR, = 2K

Thus

Yp(g-Km) T, = Y (B ) Y (5 -2pkeon”) T = (lme2pfe2)
(k-2p-k) ™ = 2(en-g4K) (k°-2p-k)

Substituting this in (17) we get

My = -(i/2m) J(zm—p@r}f) (®-2p-k) "1 k20 (k7)) aMe. (21)

Using the fact that (Y Au) = (2m) N(% (BX+AF)u) = m 1A p(;
(

and (19), we get



Amy = -(1/271) f(rﬂ+m“1£z-zs.)( 2 2p-k)~Le (-AT)k 2 (kP- 42 ) " Lak.
Substituting (5) in (22) we get
A2 |
amy = (1/273) (mtn~Lp.x) (kP-2p-%) 1 (kP-s)2atkas.  (23)
0

Substituting (8) in (23) we get

ol ?
- e .2 -3
Amy = (i/ﬂs) }[ Jr(m+m 19;5)(&_-2@;~¢(5 -5)x) ‘dukdsxdx.
0Jo '
(24)

We integrate (24) over k-space, using the formulae

ﬂaf_e_@_ gc_nA)‘3d4k = -721(20) 1(3?4.—130)'1,
Jigplax?-2pic-a)-3akc = -?1p5(2a2)-1(pP+aa) L, (25)

2 o

with a'= x+1, 8= s8x, p = m, to ge<

[} | |
Amy = {(m/27) [ (x+1)"1 +(x+1) 2] (0P +sx (x+1 ) ) " dsxdx.
0Jo
(26)
It is clear from (26) that Amy >0. Inte

(26) over s we get

Amy = (m/21r) )/’[(X+l)—2 +(x+1)"3]10g ( 1+m™ A% (x+1 ) ) dx,
]
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| Amy = (m/ﬂﬂ)[EJl(Ag/hg) +J2(A2/ﬁ2)],
J (b) = j[-(x+1)"210g(1+cx(x+1))dx,
0

a0
2)//(x+1)“310g(1+cx(x+1)}dx. | (2
0

o
no
—
e}
It

Jy(z) and J5(c) can be expressed in terms of elemen-

tary functions as follows:

et ©o
-2 -1y | -2.
Jl(c) = log(c) +)/’(x+1) log(x+3+(%-c 1)"‘)dx +)/f(x+1)
0 0

Using (11) and symplifying, we get

. L. ~1.% ~3 -1
Jl(c) = fc-log(ec) +5c(l-be )% log(1+(1-bec™7)2)
(1-(1-4c~1)E) } (2

<< oo
e -1 -
Jr(c) = log(ce) +2//r(x+l) jlog(x-l—%—'r(%—c Y9 )ax +2//kx+1)
- (]

Using the formula

=

3.

/<x—:-1>“31og<x+a>dx = 3[(1-(1-2) " Noz(a) ~(1-a)""1 (29
#0O



and simplifylng, we get

. L2 2 1.1 BRI

Jo(c) = (3e7-c)log(e) +3c™(1-be l)‘log {(14—(1—4(; l)“"‘) e
-1y

(1-(1-4c77)%) | -c,

Jg(c) = ¢[Jy(c) -log(ec) -11. ; (30)

We simplify the expression )’u(}zf—jxf—m)”l(k{{l—m}{')

-(}xf)sf)’u}«f)(p(—}{—m)“l)h by using the following relations (2):

o = b7, WW = b YOh = 2H VY, = haen.

Thus

P (F4em) T =) - (K- ) (F-em) Ty, =
(p+®-2pken®) 1 [y (F-0em) (=¥ = (=m0
(B-§m) 4,1 = ("-2p1) ™" [H2K g, K5 o+l g - R B
TS AL R A A AR S S S AT 1A
“may K] = (K5-2p-k) T (Bpk -8k% -km +lpex -MC -Bmd) =

S12(k%-2p k) "N (K2 -p - k)
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Substituting this in (17) we get

ity = -(31/4mn) SR -peiem) (62 -2p1) "k 26(6%) -0 (2 e

(31)
Using the fact that (T fu) = (2m) " 1(T (FH+E)u A-E(ﬁ u),
we get
Amy = -(31/4wn) f(k.g—%@_-kc.)‘l-a(f)-C(;_c?)d’*k. (32)
Substituting (19) in (32), and using the facﬁ that
1 A2 N .
(2R (2= (W)Y (12 s)2as, (33)
- |

we get

Amny = -(Bi/@WSM)'AQAQ(AE—AQ)’if4£//kgz-zgyg)“l(g?-s)‘gd”kds.
A2 ,

(34)
Substituting (8) in (34), we get

. ,

An, = -(31/21m) AAZ(N2-A2) j[f"jFQ 2p - k+(k2-8)x) "3
0

qudsxdx. ' (35)

We integrate (35) over k-space, using (9) or (25), to get

. 7% o
A= —(3/uwm>~/\‘3/\‘"(/\2—A2)‘1]ﬁp (1) 7 (mPex (41 ) ) " asxax.
O - .
(36)



RS

It is clear from (36) that Am,<0. Integrating (36)
over s, we get

[=<]

Amp == ‘(3/L4'1rm)./\2A2(/\2"'/\?)~l / [108’(1“171 /\ .z&(!\.!’]))
O

—log(l+m“2A2x(X+l))] (x+1)~%ax,
L]
or, since J(’(x+l)"log(l+cx(x+l))dx = J+(c) from (27),
. 1

Anm, = -(3/4mm) AEA (A7) T (AP ) -3, (A T)T. (37)

1 .
We simplify the expression (K- ) (B-}-m) — (Kop- i)

by using the following relations (2):

KU_P{;D’Q/XUk: —Eﬁzﬂ'

Thus

(¥ ) (F-¥m) MU a0) = (p7 k" ~2p-ton™ ) TH (K85, 1) -
(B-)em) (K o= 400 = (P -2p k) LW n iy, KA, il o iay,
K EF W RS il LY - w M, + a;gfx AR A

R EY - E X e d 0= (P -2p ) T g -y
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-emkc” 2P ~2kPY -bmic? 2y -PxPY bnk? b pi
Py o],

Using the relation Kg¥= -k°F 2p ki we get

(8- 4,) (F-K-m) WP- )= (k7 -2p-k) [ Bp-u¢ -12k7K
“1omk” -4kF +8prkKl= -4 (x°-2p )-1[(3;@_?—’_1@.5);5
A® (Fr3m) 1= UK +P (Fr3mi) (kP-2p

Substituting this in (17) we get

Ma= ~(1/16w5m) f“}fk 2 4(gr3mp) (k2-2p-k) 1] ¢2(k2)-c(k®)aMk
(38)
Taking account of the fact that fyfg“gag(f).c(gg)daka o,

and (¥ gu)= (2m) LA (BH+F)u)= m 1a.p(T u) we get

Amo= - (1/16Tm?) (Umim™Lp-k) (kP -2p k) ~1. 67 2)-C(kp)d4V
3 prk)(k"-2p-k k

(39)
We can express Gg(g?).c(gg) as
A°
I's )_ ~y r o - -
67 (k") -C(K7)= -X'N2" 24 (A7) -(AP-2%) lf,) (k°-s)Pas.  (40)
A=

Substituting (40) irn (39) we get



no

0

7,
Ang= (1/16Tn?) N2 - 94 (Ag)'(/\&?\‘))‘i[

AE

2
(4m+m=1p-k) -

(x2-2p- k)~ (k2-s)-2glkas.

Substituting (8) in (41) we get

Y L. A
amg= (1/8T302) - A%+ 9 (32) . (A2-p2) -1

=
‘ i

"\D

Iy “F

(k%-8)x) -35%kdsxdx. (42)

We integrate (42) over k-space, using (25), bto

ang= (16m) L XA 95 () - (%P 4 (1)~
(m=+sx(x+1) )~ Ldsxdx.

g *
We digress for a moment to prove that am.<{ 0 by

2

- A ,

proving that 94 (A7)- (/\P‘—Ag)“lf . (mZ s (x+1) )~Las { 0.
A= .

Thus, for ADA,

. e o o !
3 (AQ>-</\9~A2)'1["9 (mPrsx(x+1)) "Tas= - (AZ-22)2.

s

(m2+A2X(X+1))-1 +0\2‘RE)—2 (m2+sx(x+1)) ds=

(.

‘Note that she silgn given her

lished by R. P. PFeynman and G.
(1954).

e 1s opposite to that pub-
Speisman, Phys. Rev. 94, 500
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2

- - o0 2 A
(AT T (A (1)) T -(A?*_m“ljp (mrsx(x+1)) 7

ds] o,

A2 R .
since (AQ—A2)~leQ(m2+SX(X+l))-lds "+ Afx(x+1))™1 | For

A<A the reasoning is similar, while for A=A,

2
¥y (A%) (AE_,\E)-lflg(m%x(xﬂ) ) "ras= -x(xt1) (mE ATk (x+1)) T2

and is thus less than zero, completing the prcof,
Returning to the evaluation of4am3, we 1ntegrate

(43) over s to get

0

Amy= (16m)“1-,\4/\2~ ‘9/3 (AE)(/\2~/\2)'1 /C)[LL(>c4-1)'2 +(x+1)”3].

[log(1+m2AZx(x+1)) -log(l+m=2A%x(x+1))]dx. (44)
@0
Since J{kx+1 g(l+ex(x+1))dx= Jq(c), and.J/}x+l)_3'
0

ov(i+cx(x+1 dx= 3J,(c) from (27), we have

Ang= ~(32mm) LAY 95(42) - (A2-22)"L[8I1 (A2/n2) 472 (4% /n?)
-831 (AR /) =35(A% /)], (45)

The electromagnetic mass correction for the neutron,

Amp, 1s egpgdmg. Therefore,
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A= -(ePph/30mm) - AMZ. 9 (3F) - (4P-A2) "1 (871 (A% /)
32,2 2,2 2,2
+Jp(2%/m") -8I1{A"/m") -Io(A"/m7)]. (46)
We now compute Amy, 4mo, Am3, Al 5 amy,, andAmn--Am]O
for various values of A and A, using the following experi-
mental values of %c/ég, Pps Pn, and (mn—mp)/mp (3,4,5):
He/e®= (137.0377 +.0016),
Pp= (1.79277 j.OOOO6)-eﬁyémpc,
pp= (-1.91305 i.OOOO9)'e%72mpc,
(mp-mp ) /my= (.0013784 +.000001),
where pp and p, are the anomalous maghetlc moments of the
proton and neutron, respectively, and My, and my are the
masses of the proton and neutron, respectively. The re-

sults of these computations are given in fig. 3-5 and

tables 1-5 on pages 23-30.
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Table 1. The proton and neutron mass corrections as a
function of the moment cuteoff, A , for the photon cutoff,

A s equal to 1,0m.

(eAmy/m)-103= 2.5791

M —eEPPAmg/h ~e2p§Am3/m -4my,/m ~amy/m  (anp-amg)/m
103 .103 103 103 103
0.8 1.4248 L3147 -.8396 .3583  -1.1979
0.9 1.6572 .3912 -.5307 sy - 9761
1.1 2.1168 .5557 .0934 .6328  -,530L
1.2 2.34e2 L6422 L4053 .7313  -.3260
1.3 2.5638  .7305 .7152 8318 -.1166
1.4 2.7812 .8200 1.0221 .9337  .0884
1.5 2.9943 .9103 1.3255 1.0366 .2889
1.6 3.2029 1.0012 1.6250 1.1400 4850
1.8 3.6066 1.1833 2.2108 1.3474 8634
2.0 3.9926 1.3643 2.7778 1.5535  1.2243
2.2 L.3614 1.5432 3.3255 1.7572 1.5683
2.4 4.7140 1.7190 .8539 1.9574 1.8965

N
[O)
\J‘_’

>. 0512 1.8913 .1536 2.2098

= = W
W
(@)
w
I~
)

2.8 5.3741 2.0597 L8547 2.345L . 2,5093




Table

27

2. The proton and neutron mass corrections as a

function of the moment cutoff, A , for the photon cutoff,

A, equal to 1.5m

(e2amy/m)-10°= 3.4248

Am —egppdmg/h ~eepgam3/m —Amp/m -4m_ /i (Amn—Amp)/m
.103 -103 .103 - 103 +103
0.8 2.2047 L4131 ~-.8070 i irdel! -1.2774
0.9 2.5973 L5241 -.3034 5968 =.,9002
1.0 2.9943 LBL40 2135 .7333 ~.5198
1.1 3.3929 771 7395 8784 -.1389
1.2 3.7913 .9053 1.2718 1.0308 L2410
1.3 4,188 1.045 1.808 1.189 .619
1.4 4,581 1,188 2.344 1.353 .991
1.6 5.357 1.486 3.418 1.692 i.726
1.8 6.112 1.793 4,480 2,041 2.439
2.0 6.845 2,105 5.525 2.397 3.128
2.2 7.555 2.420° €.550 2.755 3.795
2.4 8.242 2.734 7.551 3.114 b, 437
2.6 8.905 3.048 8.528 3.470 5.058
2.8 9.546 3.358 9.479 3.824 5.655
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Tavle 3, The proton and neutron mass corrections as s
function of the mement cutoff, A , for the photon cutoff,

A, equal to 2.0m.

(egmy/m)-103= 4,1173

A —egppdmg/m —egpgde/m —Amp/m -4, /m (Amn—Amp)/h
+103 .10° -103 -103 .103
0.8 2.8921 L1780 -.Th72 L5443 -1.2915
0.9  3.4362  .5142 S.0669  .6993  -.7662
1.0 3.9926 L7635 .6388 L8654 -.2306
1.1 4.5574 .9247 1.3648 1.0530 L3118
1.2 5.1273 1.0964 2.1064 1.2484 .8580
1.3 5.6993 1.2771 2.8596 1.4543 1.4083
1.4 6.2729 1.4660 3.6216 1.6693 11,9523
1.5 6.845 1,662 4,390 1.892 2,408
1.6 7.415 1.864 5.162 2.122  3.040
1.8 8.543 2.282 6.708 2.599 4,109
2.2 10.737 3.159 9.779 3.597 6.182
2.4 11.797 3.609 11.289 b 110 7.179
2.6 12.830 4,062 12.775 4,626 8.14¢
2.8 13.835 b 517 14.235 5.143 9.092
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Table 4, The proton and neutron mass corrections as a
function of the moment cutoflf, A » for the phcoton cutoff,

A, eaqual to 3.0m.

(e”amy /m)+103= 5.2089

A —egppamg/m —egpgnm3/m ~Alyp,/m ~Amp/m o (amp-amg ) /m
.10° .103 103 103 -103
0.8 4.0330 .5551 -.6208 .6321 ~1.2529
0.9 4,8428 L7237 .3576 8241 RIS
1.0 5.6835 .9123 1.3869 1.0388 .3481
1.1 6.5488 1.1195 2.4594 1.2748 1.1846
1.2 7.4336 1.3441 3.5688 1.5305 2.0383
1.3 8.3337 1.5845 4.7093 1.8042 2.9051
1.4 9.2453 1.8396 5.8760 2.0947 3.7813
1.5 10,1654 2,1080 7.0654 2.4003 4.6642
1.6 11.0914  2.3886 8.2711 2.7199  5.5512
1.8 12.9523  2.9821 10.7255  3.3956 7.3299
2.0 14,814 3.612 13.217 4,113 9.104
2.2 16.666 4,271 15.728 4.863 10.865
2.4 18.502 L, 954 18.247 5.641 12.606
2.6 20.315 5.655 20,761 6.439 14.322
.8 22.103 6.370 23,264 7.254 | 16.010
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Table 5. The proton and neutron mags corrections as a

function of the moment cutoff, A , for the photon cutoffl,

A, equal to 4.0m.

(egAml/m)‘lO3= 6.0519

Am —egppamg/m —e2p§4m3/m -am,/m -Omy/m (4my-amy ) /m
+103 .10° +103 103 109

0.8 4.5hs55 5975 -.5089 .6804 ~1.1893
0.9 5.9770 .'7853 L7104 8942 ~.1838
1.0 7.0579 L9977 2.0037 1.1360 8677
1.1 8.1804 1.2335 3.3620 1.4046 1.9574
1.2 9.3380 1.4916 hoTTTT 1.6985 3.0792
1.3 10.5250  1.7708 6.2439 2.0164 L 2275
1.4 11.7367 2.0698 7. 7546 2.3568 5.3978
1.5 12,9686  2.3873 9.3040 2.7184 6.5856
1.6 14,2171 2.7223 10.8875  3.0998 7.7877
1.8 16.7517  3.4396 14,1394 3.,9167 | 10.2227
2.0 19.316 4.213 17.480 ko797 12.683
2.2 21.903 5.035 20.886 5.733 15.153
2.4 24,490 5.898 24,336 6.715 17.620
2.6 27.072 6.796 27.816 7.738 20.078
2.8 29.641 7.723 31.312 8.794 | 22,518
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From fig. 3-5 or tables 1-5 it is seen that, as the
photon cutoff, A s lncreases, the value of the moment cut-
of' I, A , that 1s required to give the observed mass dif-
ference between the neutron and the proton decreases. As
N approaches infinity, however, A does no%b approach‘zero,
but instead 1t approaches a finite positive value. This
can be seen by considering the dominant asymptotic behavior
of amqy, Amo, Arg, and 4am, ~Am

The dominant asymptotic behavior of 4m)is (3m/ﬂn)
log(A%/m?), while that of ams is -(3A°/lmn)log (A" /m?)

Am3 approcaches a limit as A approaches infinity, 80 that
Am3 and 4m,, can be neglected in considering the domihgnt

asymptotic behavior of Anm, -am The dominant asymptotic

<

\ , . C o -0y _

behavior of Amngﬂmp is thus (3e“m/L4w) (1 -m ?fﬁp)logb\g/mg).

Therefore, as A approaches infinity, (A/m) approaches
1 .

p5?= L7465, For ( Mm) less than this value, we cannot

chtain the observed mass difference between the neutron

anéd the proton.
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Discussion

e

Classical Interpretation. It i1s of some interest to

look for a classical Interpretation of the neutron-proton
mass difference, and to compare 1t to the guantum mechanical
result. The first interpretation attempted was proposed by
K. Huang and V. F. Weisskopf* in an unpublished communica-
tion to R. P. PFeynman and myself. This communication was
also received by M. Gell-Mann and M. L, Goldberger.%*

K. Huang and V. ', Weisskopf considered the proton
as formed from charge and current elements assembled {rom
infinity. They insisted that the currents involved bé
kept constant during the assembly process by some external
means, such as batteries. This 1s necessary, since, when
two parallel current loops approach each other, the flux
of one loop through the other increases and induceé an
e. m. I, in the direction opposite to the current. The

current loops attract each other, the work done beilng

wal

- -1 2 .- . ..
equal to -(8w) “fH djx, while the energy stored in the
IS U, -1 233 .
magnetic fleld is given by (8m) H=d”x. The work done
; s 5 -1 2.3 ) . _ .
by the batteries is (4w) H"d~x, as reguired by conser-
vation of energy. The assembled proton is required to
have the observed magnetic moment and charge. The reason-

ing for the neutron 1s similar, except that there are no

*
K. Huang and V. F. ileisskopf are at the Massachusetts
Institute of Technology.
**M, Gell-Mann and M. L. Goldberger are at the University
of Chicago.



)

(
W)

charges involved. K. Huang and V. F. Weisskopf concluded
that the proton mass correction has a positive contribution
from assémbling the charges and a positive contribution
from assembling the currents. The reason the quantum
mechanical calculation gives a negative magnetic contribu-
tion is that the batteries have not been includéd, and the
calculation is therefore incomplete. They believed the
bare masses of the neutron and proton were indeed equal,
in accordance with the isotopic spin hypothesis, but that
the masses appearing in the guantum mechanical equations
already included a correction produced by the batteries,
and were not necessarily equal.

The trouble with the preceding model arises when
we try to make a correspondence to guantum mechanics. The
transltion to quantum mechanics is made by converting clas-
sical canonical variables into operators satisfying certain
commutation or anticommutation relations among:themselves.
What keeping the currents constant corresponds to in guantum
mechanics is not known. What we do know, howéver, is the
gquantum mechanical analogue of the total angular momentum
of a system, and we also know the angular momentum operator
of a particle. This suggests that we assemble our current
loops in such a manner as to apply no external torques to
the current loops, thus keeping the angular momentum of
the system constant. For examople, two parallel current
loops can be brought together in such a manner that the

force on one due to the other is colinear with the force
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charges lnvolved., K. Huang and V. F. Weisskopf concluded
that the proton mass correction has a positive contribution
from assémbling the charges and a positive contribution
from assembling the currents. The reason the guantum
mechanical calculation gives a negative magnetic contribu-
tion is that the batterles have not been included, and the
calculation 1s therefore incomplete. They believed the
bare masses of the neutron and proton were indeed equal,
in accordance with the isotopic spin hypothesis, but that
the masses appearing in the guantum mechanical equations
already included a correction produced by the batteries,
and were not necessarily equal.
The trouble with the preceding model arises when

we try to make a correspondence to guantum mechanics. The
transition to gquantum mechanics 1s made by converting clas-
sical canonical variables into operators satisfying certain
commutation or anticommutation relations among themselves.
Mhat keeping the currents constant corresponds to in gquantu
mechanics 1is not known. What we do know,; however, is the
guantum mechanical analogue of the total angular momentum
of a system, and we also know the angular momentum operator

f a particle. This suggests that we assemble our current
loops in such a manner as to apply no extérnal torques to
the current loops, thus keeping the angular momentum of
the system constant. For example, two parallel current
.

loops can be brought together in such a manner that the

force on one due to the other is colinear with the force
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constraining them to an adiabatic motion. In this case, we
doe not want te change the currents by external means, be-
cause, ih general, we would apply torgues to the systen.
The magnetic contribution 1s now negative, and agrees in
sign with the guantum mechanical calculation. Isotopic
spin symmetry is satlsfied by reguiring that the proton and
neutron have equal angular momenta as well as egual bare
masses.,

M. Gell-Mann and M. L, Goldberger, in their reply to
K, Huang and V., F, Weisskopf, stressed the difficﬁlty in
obtaining a quantum mechanical analogue of the latters!
classical interpretation, and proposed the alternative de-
scribed in the preceding paragraph. They presented the
following simplified example to i1llustrate the two inter-
pretations: The neutron and proton are represented by fly-
wheels spinning with constant angular velocity. The fly-
wheels are assumed to bhe of identical construction, except
that the one representing the proton 1s charged. The
Lagrangian of the flywheel representing the proton may be
written as L=J%Ié2 +eé_jf€'Kd3x Vo ouloms —(8"?“1-‘]ﬁ2d3x,
Wwhere I is the moment of inertia of the flywheel, €is its
angular position, and the current density, 3; aquals c67.
In this example the neutron has no electromagnetic proper-

11

‘,,!o

-

ties, but it is st nstructive to compare the two inter-
pretations. The Lagrangian of the flywheel representing

& won 1s L1670

the neutron is 16~

According to the first interpretation, the proton and
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1
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neutron have equal angular velocities, 6. The energles of
+(SF)"

2.3 - )
}(H“d«x and %L@Q, spectively. The proton-neutron energy

the proton and neutron are then 1I67 Ve oulomb
difference is thus V + "1[ 243

ffer s thus Vooulomp +(8T) H=d°x.

According to the second interpretation, we Lirst trans -~

form to canonical varlables. For the proton, the momentum
conjugate %o € is Pp = Ié +e‘f6*ﬁdgx, while the Hamiltonian
is H= (21)7'(p, _e[s.Kcﬁx)Z A +(877)"1‘fH2d33c.
For the neutron, the corresponding guantities are Dy = Ié
and H= (21)“1%3. Tne proton and neutron are assuﬁed to have
equal angular momenta, Dy - The proton-neutron energy dif-

ference is then Vooyuiomb +(8n)'1‘J(H2d3x _eé/%.KaBX ~(e?/21).
( E‘XﬁBX)E. This can be simplified by using I Maxwell's
egquations with J equal to eéE} The result is Voouloms
: oy =L 2.3 2 e 2 - .
-(8m) ‘/fﬂidjx —(e‘/éi)(}rc AQJ’) , and has a negative mag-
netic contribution to the energy.

Although we have found a classical interpretation of
the neutron-proton mass difference that agrees in sign with
the guantum mechanical result, the agreement is only guali-
tative. Classically, the proton mass correction is of the

() ) . L] il . L] Fa
form Ae< —B(1+pp)d, where l+p, is the total magnetic moment

fod

of the proton in units of eh}?mpc. This that the

ratio of the coefficlent of pp in the mass correctlon to the
coeiflicient of pg should be two. In the quantum mechanical

computation, this ratio ranged from five to fiftcen.

Justification Based on “uantum Field Theory. Some oOb-

Jectlions might be raised as to the validity of our results
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for the following reason: In our guantum electrodynamic
caleculation of the neutron-protcn mass difference, we have
tacltly assumed the electromagnetic interaction with the
neutron and proton is linear in the electromagnetic fieslds.
The second order mass corrections then result from tfeating
this interaction in second order perturbation. I there
were present an interaction gquadratic in the electromagnetic
fields, however, we would obtalin additional second order
mass correctlons from treating this interaction in first
order perturbation. Such an interaction could furnish the
batteries of the Huang-Welsskonf classical interpretation.
We will now show, however, that no such term exists. Ve
wlll show, in fact, that the electromagnetic interaction
with the neutron and proton is linear 1n the electromag-
netic fields, assuming that the non-electromagnetic inter-
actions among the elementary particles possess isotopilc
spin symmetry and can be represented by a Hamiitonian. We
will consider interactions, such as the neutrino-electron-
nucleon interaction, which are not electromagnetic and do
not possess isotople spin symmefry as negligible in com-
parison to the electromagnetic interaction.

The proof proceeds as follows: In the Schroedinger
representation, the Hamilfonian coperator of a relativistic
charged field of spin 0, %, or 1 in an external electro-
magnetic field can be written as H +J[jp(§)Ap(i,t)d3x,
where H is the Hamiltonian operator of the free fleld,

A (X,t) is the external electromagnetic field, and jP(E)

v



are the l-current density operators ror the charged field
and are independent of Ap(ﬁ,t). Dirac (spin %) fields have
a Hamilfonian of this form in the usual fornulation, while
[Zelds of spin O or 1 have such a Hamiltonian when formu-
lated in terms of Kemmer-Duffin matrices (6). We will not
concern ourselves with charged flelds of spin greater than
1, since no elementary charged particle whose spin is known
has a spin greater than 1,

Neglecting all non-electromagnetic interact i ng which
toplec spin symmetry, we can write the
Hamiltonian operator for the comblned elementary fields
as Hp +Hy +Hpo + IJP_(E)‘AP(:E)d?x, where Hy 1s the Hamiltonian
cperator of the free photon field, H+: is the sum of the free
Hamiltonian operators of all the other elementary particle
fields, H, 1s the Hamiltonlan operator which represents the
non-electromagnesic interactions, JP(E) are the total 4-
current density operators, and AP(E) are the eiectromagnetic
field operators. H, and AP(g) commute with Hy, H,, and
JP(E’), and Hy, Hy, and H possess lsotopic spin symmetry

Since HO comnutes with Hl +H0, they can be simultane—
ously diagonallzed. The resulting elgenstates and eigen-
values possess isotopic spln symmetry. In particular, the
masses of the neutron and proton are equal. The Hamiltonian

¥

operator in the interaction representation of these states

*What we are doing 1s letting Y= O_!(H0+H1+H2)t'¢ in the

uchroedLnfer equation, 1345t 9“(H +H]ﬂHO+ Jp(X)an (X)a3x) Y,
to get 19/} t-p= [JP(>x,t)-AP( 9 ] P



wnere Jy, (%, 6)= eiﬁ‘iﬁHg)’G-J}l(sz)-e-i(Hlﬂ"Heﬁ, By (%,8) =
eiHOt-AP(E)‘e'iHOt.

It is to be noted that AP(E}t) are the free photon
field operators In the Heisenberg representation, and com-
mute with JP(EW,t’). What we have done in our calculation
1s to approximate the matrix elements of JP(E,t) between
single particle proton and neutron states with nuclear
(non-electromagnetic) interactions, by the matrix elements
cf charge and Paull operators between free single particle
states of the same L-momentum, and then introduced cutoffs.

With or without this approximation, the only process that

produces electromagnetic mass corrvections to the proton or

no

neutron of order e“/Mc is the emission, propagation, and
reapsorption of one virtual photon.

Cutoffs. Finally, we consider the cutoffs we have ob-
tained in computing the neutron-proton mass difference. That

these cutoffs are of the order of the proton mass is, at first
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sight, rather puzzling from a theoretical standpoint. It

i1s more reasonable to expect cutoffs of the order of the

pion mass. On the other hand, the relatively small changes
nucleon moments appear o undergo when nucleons form nuclel

is consistent with high cutoffs. The experiments on electron-
neutron and electron-proton scattering are also consistent
with cutoffs of the order of the proton mass, and will now

be considered in some detail.

Recent experiments on low energy electron-neutron
scattering (7) indicate the results are almost entirely
accounted for by the magnetic moment of the neutron, Ve
use the convention of expressing the scattering in terms of
the depth, VO, of the sqguare well potential of range ez/mec2
(the classical electron radius) which gives the same scat-
tering matrix at low energles as does the actual interaction.
The experimental value of Vg is (3860 4370) ev. The contri-
bution of the magnetic moment to the scattering is 4080 ev
(8). This leaves a residual well depth of (-220 +370) ev.
Such an infteraction can arise from the fact that the neutron
has & charge distribution. For example, let us take as a
model of the neutron a pcint charge e surrounded by a con-
centric shell of charge -e, uniformly distributed, and of
radius aez/ﬂecg. This model is a crude analogue of a proton
surrounded by a meson cloud of charge -e. The value of VO
we then obtain i1s %mcgag. 1f the radius of the shell is b
times the proton Compton wave length, K/mec, then Vg is

1400.v" ev. The range of the neutron charge distribution
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is thus eXceedingly small, being even less than the proton
Compton wave length in our crude model. If the range of
the current distribution is of the same order as that of
the charge distribution, then a moment cutoff of order
W/me 1s indicated.
%

Experiments on high energy electron-proton scattering
yield cross sections which are less than those predicted
for a proton consisting of a point charge and a point

anomalous magnetic moment, If this latter cross section

!K_)

18 denoted by Ob, then the observed cross section is

( —6"1r2q2)20b, where r= (0.7 +0.25)-10"13cn= (3.3 +1.2)-
m“l, and ¢ 1is the mcomentum transfer Iin the center of mass
system (M=c=1). We can relate the experimental result to
cutof'fs on the photon propagation function and the anomalous
moment interaction. For sim mplicity, we neglect the cutoff

3

on the anomalous moment. Since 1%s inclusion would tend

to lower the cross sectlon, the resulting photon cutoflr
will be somewhat low. The argument now proceeds as follows:
In computing 0., the lowest order Feynman diagram involves
the emission and reabsorptlion of one virtual photon for

~

\ 2 2 . . .
which k™= -~g™, while higher order dlagrams gilve small cor

l,_h

rections which we neglect. The point charge, point moment

scattering amplitude is thus multiplied by the photon cut-

gl O /.) ] 2 .
of T, -A“/(Eﬁ-ﬁ?). The scattering cross section is thus

¥ . o . .

Reported at the 1955 Rochester Conference on High
Energy Panysics. The experiments were performed at Stanford
University.
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(A“542+qc) 0p. We now compare 042A4“+qa)8 with (1 -6 1r£q2)£
L

6 %pr= (1.3 jO.E)'m"l. This value

for small ¢ and obbtain A=
cutoff

of A is of order m and ig Zhus consistent with She

values needed to give the neutron-proton mass difference.
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