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ABSTRACT

The integral moment method for treating interactions between
a laminar boundary layer and an external supersonic flow is applied
to the problem of the hypersonic laminar boundary layer nea‘r sharp
and slightly rounded convex (expansion) corners. The general fea-
tures of this type of interacting flow are established by an analytical
solution of the integral equations using the method of matched asymp-
totic expansions for the case of small interaction parameter. Numer-
ical solutions are obtained for flows for which the interaction param-
eter can no longer be considered small.

An experimental study is carried out in the GALCIT Mach 8
hypefsonic wind tunnel in order to study the two-dimensional laminar
boundary layer expansion. Major emphasis is placed on the acquisi-
tion of detailed data near the corner region. The basic measurements
consist of the model surface pressure distribution and pitot pressure
surveys of the boundary layer and inviscid flow field between the
boundary layer and the leading edge shock wave both upstream and
downstream of the corner region. The surface pressure measure-
ments illustrate the striking departure of the flow field at hypersonic
speeds'from the classical Prandtl-Meyer description.

These data with appropriate assumptions made regarding the
static pressure and temperature fields at points away from the model
surface allow calculation of the distfibutions of profile functions
defined in the integral moment method formulation. These distribu-
tions along with the surface pressure distribution are compared

directly with solutions of the moment equations.
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I. INTRODUCTION

This study is concerned with the laminar boundary layer in a
fluid flowing at supersonic or hypersonic speeds over a sharp expan-
sion corner. Interaction between the viscous boundary layer and the
high speed inviscid outer flow and the subsequent requirement for a
simultaneous solution of the coﬁpled flow fields is always present to
some extent. The degree to which it is present depends strongly on
the Mach number and to a lesser extent on the Reynolds number of the
developing flow. The presence of a local disturbance, in this case an
expansion corner, can ampiify the effect of the interaction by pro-
ducing rapid flow changes in the vicinity of the corner. In the purely
inviscid limit the flow is accelerated by an expansion fan centered at
the corner and the flow properties downstream of the corner can be
calculated with use of the classical Prandtl-Meyer function. At low
supersonic Mach numbers and high Reynolds numbers, this ideali-
zation of the flow field ié adequate. As the Mach number increases
and/or the Reynolds number decreases the boundary layer can thicken
significantly and the viscous-inviscid interaction becomes important
even in the absence of a local disturbance. Furthermore, since a
portion of the fluid in the boundary layer is flowing at subsonic
speeds, the effect of the presence of an expansion corner is distri-
buted over a region of finite extent upstream of the corner as well
as downstream.

It has been observed experimentally that the extent of the
corner interaction region is more limited upstream than downstream

of the corner. The existence of a weakly interacting boundary layer
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upstream of an expansion corner (and the resulting limited inter-
action region) does not guarantee weak interaction throughout the
expansion. In fact, a strongly interacting boundary layer can be
induced downstream of the corner simply by increasing the expansion
angle with an attendant increase in Mach number and corresponding
decrease in Reynolds number. Hence, the physical length scale for
the relaxation of the boundary layer from the corner interaction can
be expected to be larger than that for initiation of the interaction.
Thus, the effects of viscous-inviscid interaction are amplified by
introducing an expansion corner into the flow field and a detailed
knowledge of the boundary layer-expansion wave interaction becomes
important. Furthermore, the understanding of this problem can be
related to other important problems such as the flow over a bluff
based body.

Because of its complexity, various idealizations have been
made in attacking the prdblem theoretically. These range from the
early consideration of linearized equations to numerical integration
of the (nearly) complete Navier-Stokes equations. The early work on
a closely related problem, that of the interaction of a mixed (subsonic
and supersonic) parallel shear flow and a weak disturbance has been
carried out by Howarth,(l) Tsien and Finston,(z) Lighthill, (3, 4) and

(5)

The expansion of a rotational in-

.(6) (7, 8)

viscid supersonic flow has been studied by Pai' ' and Weinbaum.

more recently by Sullivan et al.

Zakkay(g) uses the concept of an inviscid rotational layer bounded by
an inviscid supersonic stream and a viscous sublayer downstream of

the corner adjacent to the wall which originates at the corner. The
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initial profile downstream of the corner is assumed to be given by an

inviscid expansion of the upstream profile. Olsson and Messiter(lo)

use a similar concept in analyzing the boundary layer expansion up-

stream of a sharp corner. Integral methods of solution have been

(11,12) Hunt and Sibulkin, (13) Oosthuizen(l4)

(16)

studied by Curle,
(15)

and

(17)

Sullivan with various approximations. Baum and Tyson

have used finite difference schemes to obtain numerical solutions of
the ”genéralized" boundary layer equations, which include a trans-
verse momentum equation, for this and a related problem. Tyson,
in addition, has examined, numerically, solutions of the moment

(18)

equations of Lees and Reeves

(19, 20)

for the corner expansion problem.
Ko and Kubota have taken advantage of the singular behavior
of the moment equations at a sharp expansion corner in the study of
the finite plate effect for a compression corner. Klineberg(21) has

examined, in detail, the various types of possible viscous-inviscid

interactions for the expénsion corner.

(22)

Experimentally, much less work has been done. Sternberg

at BRL and later Zakkay, Tani, Toba and Kuo 2>’ %)

at PIBAL
carried out experiments in supersonic flow around a sharp convex
corner using a cone-cylinder. Since they were interested primarily
in surface temperatures and heat transfer only a very limited amount
of fluid dynamical data was obtained. The viscous interaction was so
small for these experiments that little detail of the surface pressure
was observed. Murthy and Hammit(zs) performed experiments down-

stream of the corner expansion of a turbulent boundary layer and

carried out a characteristics calculation for the rotational supersonic
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flow ignoring the subsonic portion of the boundary layer. The above
experiments were conducted in the Mach number range 2-4 and
hence at relatively low values of the viscous interaction parameter.

At GALCIT, Puh1(26)

studied the expansion of a laminar boundary
layer around a sharp cone-cylinder juncture at Mach number 8. One
of the more striking features of this work was a very detailed surface
pressure distribution in the vicinity of the corner which well illus-
trated the strong departure of the distribution from an inviscid cal-
culation.

The present study has a two-fold objective: (1) to gain a
clearer understanding of the structure of the laminar flow field for
the expansion corner as the viscous interaction parameter
L )% tends away from zero and to isolate the dominant

oC
driving mechanisms in the flow regions which result, and (2) to pro-

X

oC

Hl

M (C/Re
o0

vide a two-dimensional experimental result to further illustrate the
importance of the boundary layer-expansion wave interaction at hyper-
sonic flow speeds and yield results which can be directly compared

with theory.
(18)

The integral or moment equations of Lees and Reeves and

(21)

Klineberg are chosen for the theoretical part of this study. The

motivation for selecting the integral equations stems from the fact
that, in spite of the misgivings that one may have regarding the
lateral pressure gradients associated with an expanding boundary

layer, a direct comparison of numerical solutions of (i) the moment

(27)

equations and (ii) a more complete representation of the Navier-

(17)

Stokes equations for a particular configuration indicate that the
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lateral pressure gradients are important only in a region close to
the corner. The results of this comparison are shown in Fig. 1.
Qualitatively, a theory with zero lateral pressure gradients appears
to describe the flow field correctly insofar as the pressure distribu-
tion is concerned. Furthermore, if the pressure distribution is not
prescribed a priori but is obtained from the simultaneous solution of
the viscous and inviscid flow fields, a mechanism for the upstream
propagation of a disturbance to the boundary layer exists. Hence
one may expect that the formulation of the problem of hypersonic
corner expansion in a boundary layer framework may yield a repre-
sentative description of the expansion phenomenon. With this in
mind, one can formulate the following problem:

A laminar adiabatic boundary layer is assumed to be weakly
interacting with an external hypersonic flow, i.e. the corner dis-
turbance to the boundary layer is assumed to be located sufficiently
far from the wall leading edge that the flow properties can be accu-
rately represented by a weak interaction expansion of the integral

boundary layer equations. (21,28)

This expansion provides an outer
solutiop for the flow entering the interaction region where x is the
distance from the leading edge normalized with the distance from the
leading edge to the corner location I.. The problem then is to cal-
culate the flow field which results from turning the boundary layer
through an expansion turn defined by a

In Section II, the expansion flow field is separated into re-

gions dominated (i) by inviscid forces, i.e. the pressure gradient,

and (ii) by viscous forces, i.e. the shear at the wall and the viscous
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dissipation. Appropriate asymptotic solutions of the integral equa -
tions are developed for each region from which uniformly valid
composite solutions can be constructed. These serve to illustrate
the structure of the expansion flow field.

Section III contains the results of the experimental study.
Quantities defined by the integral method are calculated from the
measurements and the distributions are compared directly with
numerical solutions of the integral equations since the range of
parameters investigated exceeds the limits for the closed form solu-
tions of Section II to be valid. The comparison between experiment

and theory is presented in Section IV.
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II. THEORETICAL INVESTIGATION

II. 1. Differential Equations

The geometry of the problem is that shown in Fig. 2; x is the
distance from the leading edge and y the distance away from the
surface normal to it. If the radius of curvature of the wall is large
compared with the viscous layer thickness, the differential equations
reduce to the usual boundary layer equations, in which the pressure
gradient normal to the wall is neglected. In the neighborhood of a
sharp expansion, however, the radius of curvature of a streamline
is not large compared with the boundary layer thickness, and conse-
quently the transverse pressure gradient may not be neglected.
Nevertheless, the extent of this region is of the order of the boundary
layer thickness, and outside this region we may use the boundary
layer equations. Thus, for a steady, two-dimensional, compressible

boundary layer expansion, the partial differential equations are:

Continuity
9(pu) 9(pv) _
5x T oy - ©
Momentum
ou ou _ dp ) ou
pua—}z'i‘ pV—a—S—;— —dX+5§7_(u—a_‘y—) (1)
Energy
0H O0H _ 9 , 4 0H o0 ,Pr-1 ou
P PPV Sy T ey (Bray ) Ty CBr MU gy
H = —1— u2+ c T
2
State

p=pRT (perfect gas) .



The boundary conditions are:

- oT _ - -
v‘—O, ka‘f = q, (orT-TW) aty =0

[«
1]

and

[«
L]

ue, H=He aty = 6.
For the case of an adiabatic wall and Pr = 1,
H=H, fory=20

For the sake of simplicity, the analysis will be limited to the adiabatic
case.

In the ordinary boundary layer theory, the presisure distribu-
tion is assumed known. In the present analysis, however, the pres-
sure is determined through the interaction of the boundary layer and
the supersonic inviscid flow and has to be obtained simultaneously
with the developmeﬁt of fhe boundary layer.

Integrating Equations (1) across the boundary layer to elimi-

nate the y dependence gives:

as” « 1 4 v )
T 88 5 gy (Peup) = g = ten@
e e e
du
d 2 .. % du
ax (P O+ v, T = Mgy) ) @
du .8 2

3 % % 2 e _ ou

dx (peuee )+2(8 -au)peue dx T 2, 0 L"L(ay) dy )



where
dy 6 = S ( - -E >dY
0 peue
_B__ * 6_33_ u?
S “0- ey " L (1-2 ey )
Ye 0 pe e u
e
611 = SO (1 -g)dy

The third equation in (2) is obtained by multiplying the momen-
tum equation by u and integrating across the boundary layer. The
integral quantities, Equations (3), can be written in terms of corre-
sponding incompressible quantities by using the Stewartson trans-

(29)

formation

W'(DW

dY = £ dy (4)
Pao

8

and relating the longitudinal velocities by

a
U = _a_O_C 1 (5)
e
‘as:
a p N
* o Toe ®
§ = a5, 5 [1 +me(1+£()]
b = "0 Foo 0.
aepe i
| > (6)
a p y
p* - 2 g
a_Pq i
a p ,
- _ o¢ o0 *®
611 =% o 61 [1 +me(N-J)] J
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where
) 5.
3 B )
6i = S dy 61 = S (l-ﬁ——)dY
0 0 e
8 5 2
5, = g -g— (L%)dy e;" = S %(u-—‘%)dy (7)
0 e e 0 “e Ue
8. 9:
4 = g‘g J = ;’E
i J

By applying the compressibility transformation, Equations (6),

and using a viscosity law of the form:(3o)
B T
noC ST (8)
oc 00
Equations (2) become
\
£ *
ds. 6. dM l+m
S SRRV Sl =Y. S e . _B e
Fxx* % ax T f1\/[e dx - m,_ l+m tan ©
as’ 5" aM v
ar i * dy i e _ o0 P >
Foaw Py T Mg e TP M R (9)
e w e 61
* £
dé. ) dM Y
i *dJ i e _ oc R
I & P &3 e oM
e e 61 )

where
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ool s
OCPOC
14+m
F = ¥+
m
e
+1 e 3a-1 Mj’l
f = 2+3’——11+ ¥ 2Ly Z (10)
y - m v-1 m (1 +m )
(S3 e (S
5.
2
*[ 9 U *xCorsuU
e - 0[5 (2)] R - 26" [_(_)] av
1[8Y U/ v=0 i Jo [BY \T,
1 Vi U
6 0 e

I1II.1.1. Profile Functions

The profile quantities in Equations (7) and (10) depend on the
velocity distribution through the viscous layer. For the adiabatic
problem at least one parameter is necessary for its definition. Since,
in the integral method, only relations between the integral functions
are required, it is necessary to obtain functional relations of the form
¥=%(a), J =J(a), etc. where a is a profile parameter. One method
for generating these relationships is to assume similar-flow profiles
and use the similarity solutions of Cohen and Reshotko to obtain this
dependence. This procedure was followed by Klineberg and the details
are given in his Ph. D. thesis.(21) The results from the numerical

solutions of the Cohen and Reshotko equations were approximated by

polynomials of a, where

8(U/U)
T AT | vo
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The values of the coefficients are given in Table I. These functions
have been adopted for this study, where applicable.

Alternatively, one can regard ¥ as the parameter rather than
a and write J = J(¥), R = R(;‘M), P = P(¥), etc. since a is an arbitrary
parameter. The unknowns in Equations (9) are then 61*, Me and &

since tan ® can be related to Me'

II. 1. 2. Equations for Super:nnic Flow

By defining the following dimensionless variables, all of which

are O(l):
& o L . . _ M_
_I:— V C :6 H E:Xy M :M (11)
o0 oo

where L is a characteristic length (here taken to be the plate approach

length) and writing the viscous interaction parameter as

2 L 2

) 2 [ e
) M) 5 == () e
o6
Equations (9) become:
~ o ~2
F%+6§¥+3—é————dl\f]e =§rf\f 2’1—21 M tan®
b dx dx M dx T ®
v &y oy LM 8P (12)
dx dx M dx Mé
dx dx M dx M 6
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where
~2
Fo=ow+ 2N
M
2 ~2
£ = [2+2’—+—1— VS P 2 R
LA v L -1 ﬁz(r+ﬁz)
1 (13)
e
o«

2Y-L
2(y-1)
B = r+1l
LHVI ]

Equations (12) can be completed by specifying the relationship
between Me and tan ®. In the manner of Lees and Reeves, (18) if the
expansion is assumed to begin in a region of uniform flow, the stream-
line inclination can be related tothe Mach number by using the Prandtl-

Meyer relation:
e = \)(MOC) - V(Me) + a/W(x) (14)

where aW(E) is the inclination of the local tangent to the surface and

is positive for an expansion turn. The Prandtl-Meyer function v is:

+1 -1 -1 2 -1 2 '
v o= —yx_—l—tan :/%:—H(M -1) -tan”YMe-1 . (15)

Equations (12)-(15) together with the definitions (7) and (10)

£
form the basic differential equations in the three unknowns Me’ 61

and ¥.

II.1.3. Hypersonic Approximation

A convenient form of Equations (12) for analytical study is

obtained by making the approximation Moo >>1 or r << 1. Expanding
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the Prandtl-Meyer function for M >> 1, one obtains

Me
— I_M oo
e oc

<
<
!
<
<
mv
1]
:
=<

and

With the following definition
Syl %) = alx
1 5 Mocozw(x) a(x) | (16)

Equations (12) and (13) become:

(;z[+1)§%+°o' §§+§2’__-1_£(N+1)§i1\:’1_ €=——1—>\[1-17/Ia(§)] (17a)
dx ax 7 M ax Vi
v Ty g L Lo 2 (17b)
dx dx M dx M™ 6
g8y gy 2L B (17¢)
dx dx M dx M™ 6
4N-2

Clearly, the two parameters in Equations (17) are the viscous
interaction parameter ¢ and the expansion angle Mwaw.

II. 2. Solution for Small Interaction Parameter

If the interaction parameter € is small, we expand the solufi~n
in the region where the x-derivatives are of order unity in power

series in €:
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Then, from Equation (17a) we obtain

l-MOa(x):O.

rection 1\711 is determined from Equation (17a) by substituting M

and ’31 are determined from (17b, c).

Namely the Mach number and hence the pressure along the boundary
layer edge are given by the inviscid flow without the boundary layer

effect, and 2[0 and '5‘0 are obtained from Equations (17b, c). The cor-

o ¥o

and '5'0 in the left-hand side, and the corresponding corrections 2[1

In particular, for a flat plate aW(E) = 0, an expansion of the

orm:(ZI’ 28)

~ my
M =1+¢ + -
No
hl
& =NB+€——— +
A X
6

T =65 /x (1+e +oeee)

1
X

serves to describe the boundary layer in this region.

, 2D 7R
5}3:)/2[]3 =/JB:1.72387
B B

w

P_'.':7‘
1l
S
2| 1
I
w td
——
3
e
\
1
e
$
gl o
R
=

o
i
l[\J
YF
iy
i
R
| I
8
+
Sl
S
e
| I
W
S
‘_?‘

Here the sub-

script B refers to Blasius conditions and the constants are given by:
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With this expansion solution the effect of a sharp expansion
corner does not appear in the region upstream of the corner. In the
neighborhood of the corner we expect relatively rapid changes in the
flow and hence the breakdown of the above series. In fact, if appre-
ciable changes occur over a distance of order ¢ from the corner
(x = 1), the left-hand side and the right-hand side of Equation (l17a)
are of the same order. An asymptotic solution valid in this region
is described in the following sections.

II. 2. 1. First Approximation

I1.2.1.1. Inner Soluticns

In the vicinity of the corner the x coordinate is stretched as

follows:

X;l = X fixed as e =0 . (20)

Then, Equations (17) become,

(1) 82 4 T G VL gy £ IM = 5 [1-Fa ()]
dx ax 7 Mdx M
v L vy ewe g—dg[ = e (21)
X d% M X M3 |
J§g+€§% +37 E—Q%::eé%N
dx dx M dx M" 6

Thus, on the scale ;E, the shear at the wall, P, and the viscous dissi-
pation, R, enter the solution to first order in €. It is implied in this

region that [1-Ma(X) ] is O(1).

In this region we expand the solution in the following form:
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Mo &) [1+e My (x) + ]

2
@
"

% Ko +ew )+ (22)

R

®
[0}
0

FEe) = 5, [14e B B + -]

Substituting the above expansion into Equations (21) and collecting

coefficients of likepowers in ¢, we obtain

ds aw T aM N
(Wt )—2 + By—2 + 2L () = —2 = Lo [1-8t, o (%))
d% ax 7 M, dx M,
d% d¥ T aM
Wy — +Fp—2+ @yt 2 —2=0
dx dx h\ 0 dx
ds dJ . dM
JO——Q +'6'O—TO + 37, :9—;—9=0 (23)
dx dx M, d -
dé, dw, 391 dM, i [1-Moa(§)]
(%[O+l) + + 1 (NO-H) = - X 1
dx X Y dx MO 3,0
d¥ dM
A L O - B @Al - e @] 18
§.dx VT M, d% MoE
0 0 0°0
ds, aw dM P ds dM, 7
%o_:%' +_:l+(23/0+1) : =N)\02';L—:?'+L§‘_9!%1
dx  dx dx Mg '50 _60 dx M, &\}J{_j
d6) rary Wy 33 M Ry 9% 3 dMy T gy
oot \w), =t = o s =t = |t
dx 0 d% dx MJT, ﬁO dx M, dx 0
2
d
i (9.%) o ¥, . (24)
d¥®’p d%

The second and third of Equations (23) integrate immediately to give:

e . w3
5y Jo My

const. = C1
(25)

MO =C2 exp
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where

) :N—@‘-J

(26)

>

N/\

=
1

(1-%)7J

The constants C,y and G, are determined by matching with the solution

(18) as x = 1, which can be written as

- m,

M = h (¥ - &') + -

6 = 6BE. + h ) + . ]
Therefore

C,=1, C, =Cp=8,0p

These solutions can be related to the physical plane by substitution

into the first of Equations (21):

ig_(g A [1-Me(x)] -
~ - ~ }\_ ~ A B
dx Mg & DWO)
where
AL (%)
D(¥) = i[ - A ()(14) (27’—% . 5%[-) , (28)

The vanishing of the function T)(%O) gives a unique value of
2(0 Ei&’c in the hypersonic limit. ﬁ[c is larger than ,'&(B and corresponds
to a boundary layer profile accelerated above its zero pressure
gradient solution. Boundary layers for which Ko~ %[C are termed
supercritical. A subcritical boundary layer responds to a down-
stream disturbance with an exponential increase of the disturbance,

whereas a supercritical boundary layer is one for which disturbances
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are exponentially damped. The effect of an external disturbance, in
this case an expansion corner, can be propagated upstream of the
corner if the boundary layer upstream of the disturbance is subcriti-
cal. A complete discussion is given by Klineberg,(ZI)

For an expansion turn, then, if the wall angle, a is suffi-
ciently large, transition of the boundary layer from an initially sub-
critical state to a supercritical state will occur. Smooth transition
from the subcritical state, 5&(0 < QJC, to the supercritical state,%o> KMC,
requires the simultaneous vanishing of [1—M0a(§)] and 5(%0), The

. . . ~J —_— ~r
latter requirement defines a particular value of x = X and correspond-

ing critical angle ozw(;;c) =a_ > 0. As defined, ﬁ(%o) > 0 for ¥

< ¥
wc c

0
< > .
and ﬁ(;’&[o) 0 for 2[0 %z’c
Since the location of ;C is fixed by the requirement that aw>arw
it is possible to examine the behavior of the solution in the vicinity of
the critical point (NC, §C) by linearizing Equétion (27) near this point.

Defining ¥ = M,-¥_ and % = §-§C and, for simplicity, assuming a cir-

cular arc turn with radius of curvature R such that

Z o

€

a@ = 1-2L M =1

x-1 _ ~
2 MR L =1-%5 x (29)

:
o8
E

we reduce Equation (27) to

ar 5[;:/%;. A 30)

dx

where
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AL (¥ )T
B = - 22 c'Vc >0
M 7-1cl(dﬁ/dm%:%c
y AI(NC)Q
AZ(K[C) c
R /L
C

Equation (30) can be integrated to give
Y ~ ~ >\1 'y A~ o _>\2
[ %/ R [, /R 1 2= c
where )\l and >‘2 are the roots of

A ip PR -8y°R = 0

Since Xlkz =-B 'yzﬁ <0, the origin (=0, = 0) is a saddle point with
two separatrices & = Klﬁ/(yﬁ) and ¥ = KZSE/(}/PPi). Thus, the separatrix
& = ?\1 %/(fy 'ﬁ) ()\l > 0) is the solution for subcritical-supercritical
passage.

If it is assumed that the linearized solution is valid on the

entire curved portion of the wall, the total change in ¥ between points

@ and@ [see Fig. 3] as the radius of curvature tends to zero is:

VR OWVR

A%[@ @~J§“‘~o as R~ 0
fvl[@: 2[@=?(C

Therefore, in the limit of zero radius of curvature, this result sug-

gests computing the flow upstream of the corner separately from the
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flow downstream of the corner and matching the two flows at the cor-
ner. Continuity of B{O at the corner requires continuity of MO and |
hence continuity of '70'0 from Equations (25). For the sharp corner,

then,

_ o for x < 0
aw(g) - Lozw, const. for x> 0

Rewriting Equations (25) and (27) for the two regions, noting

A(R[)

that 1\7[0 -1~ A;(ﬁf )(N ?{ ) near the Blasius point, we obtain
~ ~ 3
897, My = Cq
M, =8 exp{'b'lwo)} . X<0 (31)
D) Ko-Ng
~ B
% C. 0. (¥ on
2 B A (¥p)ig (2{ Hg )
T I M2 = C
000 T~ “B
1’\710 = 1\“71C exp {’dlwo)} >0 (32)
y+l
~ N 1 v-l D(Np) Np-ﬁ[o
X Cp QW +Cy(35) AW )3 @”<az W )
PP P ¢
where .
5 §0 A (%) ax
1 A () ™
‘Nc 2 +1
v | M %//-_IN D) 1
B = S 0 0 D) B 1 v
2 TAN ), W -X
M AZ(%{)JO(NIO—I) 1 B B
s . (33)
% | 8 71 2T B :
'Q3 S 0 D) _(l) P 1 oy
v Lagwrge Mo-n ¢ AER, ”‘”pJ
1’\71C = l/exp{tjl(%[B)}
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and Np is given by

~

é = MC exp {le(?{p)}

The solutions are defined in teris of quadratures which have
%[O as independent variable. The parameter Mocaw appears only in the
downstream part of the solutions. Solutions can be readily tabulated

in the form:

¥ = ;vo(’ES) )

M = MOGE) 0 <x <0

6 = 5,

¥o= M o )

M = MO(N;M a )Y 0<% <+
o W

6 = 5y(x% M a)

However, the downstream solutions for 2[0 and ’50 are not uniformly
valid and will be examined in Section II. 2. 1. 2.

I1.2. 1. 2. Relaxation Solution

In the upstream solution, as ¥ RS

~

YT,

L 1 0"¥p

X-c B, wy)+ : o (5 _ﬁ[)
1 C

B

or
klz P
NO'%B ~ const. e

Hence,
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0 B \
l,
MO -1 g exponentially as X = o0
L
g, - o |

The inner solutions for ‘;‘L( (X) and IVIO(;E) are uniformly valid. A

uniformly valid solution for 'S' = 7 l([55:;6:) can be constructed from
comp. comnp.

the inner and outer expansions:

%Jcomp. = %JO(;;) * 6B [ﬁ— -
(34)

%’ x) + 55 [An.+e§ -1]

The downstream solution for M = I\N/IO&;MOCQW) is uniformly

valid since 1\710 - l/a=M, /M for a particular value of ¥ = ¥_.

+ 00 - o0 P
However,

-kzz %
X -%_ ~ const.e -0
P 0

~

as x = toc; i.e., ¥ monotonically approaches a maximum value
defined by «. Similarly %‘0 - 6p, a minimum value, as X = +w. It
is then necessary to return to the differential equations (17) and
examine the solution for 1 - aM = O(e), namely the solution for a

region in which the boundary layer relaxes, interacting only weakly

with the external flow, to the Blasius solution.

In this relaxation region the following variables are

defined:
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%

1 -aM = O()=e M (x ;6
x -1 = X*
% (35)
) = 8
3%
¥ = ¥
Equations (17) become:
% dsT | kdy”  3y-l §F  amt MY
W) S2g +e g - e @) . o - =5
dx dx l1-eM dx (1-eM )
% * % % A
5k £ ES
WLy W ety S WM _Pe 3
dx dx l-eM dx (L-eM )76
a8 | xay a” 5% aMm™ _ R
J =5 +8 — —%-e3J * ® - O %
dx di  dx l-eM dx (1-eM )8
An outer expansion of the form
k% k& k%
M (x 5e) = Mg (x ) [1+e M (x7) + -+ ]

U

(=) + e M )

£ sk Sk

¥ (x ;e) =ﬁ[5

3 sk ok
6% (xse) = 55 0x ) [1+e 61*(x*) T

is assumed in this region. Substitution of this expansion into Equa-

tion (36) gives

ds oM et
* 1 %% ¥, 0 ¢
(NO +l)—T}<- 3 + 3 = sk
60 dx dx 60
% ES by
« 1 98, v, P,
NO _,y? % + ] sk 2 (37)
& dx dx” 5.
0 0
& £ N
; _l_—déo +(dJ>dNO=R0a
0 % ax™ ‘afbax* 5. %2



% sk * A *
s, a&¥F M, « dé
sk * *
< 1
dx dx 50 6 dx
0
E3
. aMm
# 2L 1) —3
dx
sk %k *
% dél d?{l CY>\ AP s % 1 déO %*
¥o %t T T LRI PP | =
dx dx 8, a0 6, dx
Kk
dM
sk 0 (38)
+(2NO+1)——*
X
sk b3 *
87 sus N N o ar dM,
Jo =%\ —x % w2 L\ F) M TR | 3y
dx “d% 0 dx 8 dx
sk ES

The second two of Equations (37) can be solved simply for the deriva-

. * sk sk Sk
tives d}&[o/dx and d60 /dx

A )
as¥ P ( Ry

< ,-
1 409 T 0hp o Polg- Ry A
% % T % dJ) ’ *2 %* *2
55 dx vy (%) -7, 6, AW 8]
a0
5 * (39)
®y Ko Rp TPy G2
% sk %2
dx AW 8,

As before, if the integration is performed in the phase plane, solu-

tions are

N* /

o P.J./-R
* 00 0 * %
5. = K., exp e A= K. exp Q. %)}
0 1 g v ¥RyT,P, z/§ 1 1 Wo

oy p (40)

I U S L K, = Q. % +K
X F N ) wR.o7D, %0 WWF K, =Q, W) K,
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Substituting Equations (39) into the first of Equations (37) gives the

solution for M;:

) B (ﬂ[ >}<)
M(; == >}<l £ 3 1 ?{: : (41 )
8o Wy) ALB)

where B, (%) = R-J'P-PA; () .
The solutions (40) exhibit no singular behavior for 2{; = 2{C and
no difficulty arises in evaluating the quadratures over the range

b
i[p 2 Xy > Z&[B. Near the Blasius point in the phase space, %[: Ry=JI P

0" 0
and
1, I -B
6:»« const. (5%[8 —NB) !
, g
sk £ 1
My~ g -¥g) =0
where
% P.J/-R
Bl = - 00 0 <1
d
[~ 6gR 74P >]§
#0070 0
* M Hp
The asymptotic forms of Equations (40), as 2[0* = ?{p are given
by
6.0 = 1{1 + f (}l[ ?3/ ) + - }
* Lo w ywrw )+ +x
bie = - . e
aA 2'7p 0 7p 2
or
ES Y o(>\ *

0 l{l+af<%))(x*—K2)+...}

(2]
1]
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where
r ’_
Polo By
fl()‘&(p)— —— | .
¥oRoJ0P0 |x ¥ =y
0 7p
A (ﬁ[*)
_ 170 2
L) =) K,

P ®o
¥y Ro-IoPg %/:=f&(p

3 o ~
If the outer solutions are expressed in terms of the inner variable x,
solutions are, correct to order €

E ) o )
vIE) =M - K 4
0 (% 2

£(¥ )
k- A1 p”
0 ) = Ky {l - @ ) Ky + }

These must be matched to the inner solutions as X = o ,

Em ﬁ[o(x) d Np
- o0
EJl‘l;l’l <So(x)'"’6p
X = ¢
Therefore,
Kl = 6p’ KZ = 0

A uniformly valid composite solution can now be constructed in the
region downstream of the corner by subtracting out the common parts

of the inner solution and outer solution:

x ~ 5k ES
%Co%p;.e) =¥, (x) + [;’MO (x )—?{p]

Eco(rg;;.e) =, @) + [6;<(x*)— 5]
Mcé?‘x)xp = I\(7{065)
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Summary
Summarizing the results of the first approximation gives:
Upstream of the corner, x < 0:

INNER SOLUTION:

Moo = M exp{Q )}

C

(a2 aas B
6 ,) =
0" 0 ~ 3
JOMO N

D) X -

~ o B /70 "B

x@®,) = C_L4Q,%,.) + on

0 B{ 290 AI(NB)JB C—?{B>}

OUTER SOLUTION:

MO(X = 1
3‘O(}<P> = 6B 1+X>‘<
}&(O(x ) = f&[B

Mee) = §,()

K

g(x ;€)

1]

8o + 65 Wit - 1)

Hixse) = ¥R
Downstream of the corner, x> 0:

INNER SOLUTION:

Myw,) = (ISZC exP{ﬁl(%fO)}
TN =
070 J K/'I?)
- O | BT Bw) WK
xWy) = 63{63(’”0) (3) AT %<£[p—ﬁ/L>}
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OUTER SOLUTION:

~ ES 1
M (%{’ ): - sk
62&[0*) Z S"“[o PoTo Ry ad =5 exp (070 )

= exp i - T = ,
0 %o p « ¥ R,-T P, p 1%0

sk
¥ ALK
% * 1 0 1 *2 - ES ES
x Wo) = T&M FR,-T,p, %0 MW =0, W)
o p 0" 0

COMPOSITE SOLUTION:

Ri(x se) = My &)
sk

b sk b
5§ (x :e) _%'O&) + {6O(x ) - 6p}

3k

sk ok 3
- ¥ }
) 1%

%(££)=%(Q+{N?X

0
These solutions are sketched in Fig. 4. The solutions of the
differential equations in this limit show that the pressure drops to
within O(e) of its final downstream value on the scale (x-1)/e¢ while
the relaxation of the profile shape back to a Blasius condition takes
place on the physical scale (x - 1). Furthermore, the upstream
solution is independent of the expansion angle provided the angle ex-
ceeds the critical angle for supercritical flow downstream of the
corner. To the order of this approximation, the critical angle is

given by

M o = ?2—1[1 - eXp{Ql(sz)}] , (42)

Evaluating the quantity exp{?.il WB)} gives

-

eXp{Ql(NB)JL = 0.9804 . (43)

Hence M o =0.0980 for y = 1.4 and for M 5.6, < 1°. The
x WC oQ wcC

critical angle is plotted versus Moo in Fig. 5. It is of interest to
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compute the pressure at the corner which is:
2y
i o} }nly-l 707 44
E; = [exp{Ql(NB) 3 = 0.8 . (44)

This value agrees with the value given by Olsson and Messiter(lo) to
three decimal places. Solutions for the pressure distribution can be

written in the form:

L2 = G, X X< 0

P 1

* (45)
= X>0

G,GEM o )
where the functions G, and G, can be computed once and for all. It
must be emphasized that this result is valid for flows which have very
small values of the interaction parameter.

Up to this point, little has been said about the maximum value
of 5&[0 = Np. ?{p is defined by
A, W)

1 _ p 1~
o - SZ A W) W
B

In general, the value of Np can be expected to exceed the limiting
value of ¥ computed from the similar equations written for adiabatic
flow. This limit corresponds to the pressure gradient parameter, B,
tending to infinity. Previous investigators of problems involving

(

expansion turns 21,31) have assumed that & and hence all other pro-
file quantities remain fixed at values corresponding to this maximum
until ¥ begins to decrease after the expansion is completed. Solutions

of the similar equations which admit a small amount of heat transfer

have been found which allow extension of all of the profile quantities
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beyond this limit. These solutions are the subject of the Appendix.

The subject of Section II. 2.1 has been concerned with flows

for which the interaction parameter tends to zero. It is worthwhile

to obtain the next approximation for ¢ considered small but finite

to see if it is possible to construct solutions which are of practical

interest. This is the subject of Section II. 2. 2.

1I.2.2. Second Approximation

where

II.2.2.1. Inner Solutions

For convenience, Equations (24) are written as follows:

o~ o~ ¥4 r ~
dM, -y dMpld ) ] @My o P1#)
— = - d(g{)N1+’51+ — + X M, -
d% M, d 170 1-aM, T (1 -y
/ ~ -
ol o) WO)N +3 .+ o A M +—-b-—2(%0) (46)
a% ax (9% 1L 1-afi, b3, (1-afiy)
l r v -
%, 1 a8, d; W) | eMy - b, (%)
— T T TIawy A tot —- A Mt 5 o
dx 60 dx 370 ff—aMO 60(1-af O)
~ B. %)
- D®) _ i
G = T : ) = Zm
\ _ 4y-2
v-1
dJ
A, W) = (1-K)J (47)
- dJ
AJW) = -3 AW - (1Y) 5
aJ
B/®W) = R-Pgr-P AW
B,@) = (14%) [(1#)R - -72—1 WR-JP) ]
B, = 22l 1w ®R-P L)+ 37P - (1+20)R
3 y-1 dy
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As before, these equations can be integrated in the phase plane by

choosing Ko as the independent variable.

- 1
d s M)
d,afOL L Ay 7L
d Lo LUV I
dw 1 AZWb) 1

% ~J N)\
a | daWpoMy
v | %1 =

0 L (1-a MO)
~ EOTR AV
dx _ 92%0)%0Mo
&y (1-e §,)

The differential form is

~
A by Wb, ()
Ay ) T - by >
ALB,) b )b, () (48)
3®g) bW )-bs ¥,
A¥5) ~
2%0) T (1 -« Ry )
~ o
=_d2(g/0)601v10 [3‘ _A3(;’&[O) W]
air, |L!TEH L
a M A R®,) ]
0 ~ 1%,
H— | M-
1-a}M, :[[ L AWy T
b, %)
L2 ON } (49)
%’O(l-aMO)
(50)

One restriction that must be placed on solutions of Equations

(48) and (49) is that 2[1 =0 at %[0 = %[C. This is a consequence of

Section II. 2. 1.1, i.e., D®)=

0 defines ¥ which is a pure number,

hence all higher order terms in the expansion for # must be zero at

the critical point. Near ¥y =

has the solution:

const.

[T
1 %O-ﬁ/c

+ @@{C)@{O

i\/c, di(;'&[O) ~ ()%[O-Q{C), hence Equation (49)

_Mc)+o..

Thus, the constant of integration for Equation (49) must be chosen to

be zero. All of the perturbation functions Ml’ ’51 and ?&(1 are then

regular at the critical point.

Analytically matching of the downstream

solution to the upstream solution presents no problems.
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Attention will first be focused on the solution for x < 0. In this
region @ = 1. Turning to the right hand sides of Equations (48) one

finds that the functions can be written:

AR Db @), 0] e 1 By

= = E®)
A, &) 2
2 5, [a,m)]" 3,
A, %) - JA )
2 £ 2 §
0 0
= - 3E®) - G%)
£ E®)
where G¥) = ﬁ) P—’é@—— . The function ¢ is non-singular as
2 50 1-Mg
1\”710 =1 (¥, = ¥p) since ¥ R, = J,P defines ¥ =¥ . Splitting the
function G(}S[O) into a non-singular and a singular part and noting that,

A1 (¥p) . .
near Q(O = WB’ MO -1~ A—ZW];) (}&(O-?{B), we can write solutions of

Equations (48) as

~ A ¥
M, - le = ‘Vl(ﬂfo)+¢1
A3y % Yo s el
5 - w1 T V2%t K m(m) tCy
where {71 (}MO), {?2(2[0) and K1 are defined in Table II. The functions

A\71 and "\72 are regular functions at ;&(0 = %[B. Substituting Equations

(51) into Equation (49) yields:
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where T(‘&[O) is defined in Table II. Equation (52) can be written as

gl i e
0 0 0
LK,  LEg) [AZ(NB)]Z;
—g(ﬁo-l)z (wy-xg)? P1PE
2
- IZWB) {iZng;} 1 2 (53)
1¥BI ] wy-uy)

where I1 (2{0) and IZ(?{O) are defined in Table II. The most singular
part of the right hand side of Equation (53), as ¥ -'?(B, is the last

term which is ~ 1/(%[0—5&[13)2, When integrated and multiplied by

~

Mo—l ~ (7&[0-?{ a constant remains. All other terms vanish with

)
1\7[0-1. Hence the solution of Equation (53) is most conveniently
written as:

M. -1

¥ =—i—§§w)+xw§ (54)
1 T(ﬁ[o) 1Y°0 2 MOaJ‘VB
where §1 (?[O) and KZ are defined in Table IT and tﬁe constant of inte-
gration has been set to zero in accordance with the previous discus-
sion.
Finally, the solution of Equation (50) is:

¥ -
~ _ =g O B
x = CB QZ(NO) + K., n

3 _-—_NC'NB _. (55)

where 62(% and K. are defined in Table II.

O) 3
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This completes the derivation of the first order solution for
%<0 except that the constants C1 and C2 are still unknown. The
solution for X > 0 can be found in a similar manner. In this region

E®))

must be split into a singu-

il

a =1 -Z—é—l— M a . The function
o W

1l-a

0
lar and non-singular part in this region since E(}%[O) does not tend to
zZero as NO ”Np. Otherwise the forms of the solution are the same as

for the upstream solution:

- A ) ~ ¥ -X,
M- mwy ¥ s W) - Ll”"(% -a/ >+ Cs
270 p c
(56)
AL N -y
3 307 - . _p_ﬁ>
1 T Kw,) My o= W) Lz””(% % )t Ca
p ¢
where v"v"lwo), W,®,), L, and L, are defined in Table II. Matching

these solutions at the corner gives:

C, = C ; c,=C

3 1 4 2

In a manner similar to that used to derive the upstream solution for

., the downstream solution is:

19
1-aM RN L T 4
_ 0 0% 5 p 0
¥, T {gz(’“o”% T A VAT ’”Z<zr g )} (57)
0 p 0 p O P c

where gZWO)’ L4 and L5 are defined in Table II. Again, the singular
integral gz WO) tends to infinity more slowly than ﬁ[p ¥y tends to zero;

(1-af\710)§2(gz0) ~0as ¥~ ;'&[p.

Finally, the physical plane solution is:

x = 03{63(”0”1‘6‘7’”(%%)} | | (38)
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where 63(?[ and L6 are defined in Table II.

o)

The results for this section can be summarized as follows:

. AL W,) .
Ml(ﬁfo) -W%{lwo)z Vl(2[O)+C1
AL YA 4
~ 30 oy 0 "B
o Wy - A,W,) M ®g) = Vo®g) + KW(%/_-?J >+ C, (59)
c B
M. -1 P s
- 0 ~ c 0
M Wy = TR, {Slwo) K, T, }

are the phase plane solutions valid for %[B <y S)’%[C. The above phase

0

plane solutions are related to the physical plane by:

. ¥ -
- ot YoMy
* = Cp18,W,) + Ky in (————%C_NB» . (60)

The constants of integration C; and C, remain in the solutions for
i <¥, S,ﬂ[C. These can be obtained by matching the solutions with the

outer solutions (weak interaction expansions).

()
1 W) 5o
M%) - AZ(%[O)NIWO) =W 0 - Ly <N = > O
p C
AL N TN .
S1) - Tk = W) - Lol (g )+ (61)
p C
1-aM N - L N K
: _ 0 fas 0 ¢ 5 p 0
W) = ) {52%)*%% W, T E””‘(Jv X >}
P p 0 pc

are the phase plane solutions valid for ,Q[C < %(O < Np. The phase plane

solutions for NC < ¥y < f&/p are related to the physical plane by

x = Cp {53@’0) T L fn é‘?‘%ﬂ' : (62)
P c
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Evaluation of the constants C1 and C2 completes the derivation
of the inner solution. Recalling that the outer solution, upstream of

the corner, is given by:

em,
Moo= 1+ +
yx
5 =6B)’§—{1+e——+ }
x
1’ll
e = Ngte—+
yx

. . . o — ~V,
one can write, in terms of the inner variable, x-1 = ¢ x

M = l+em +:---
£ —6B{1+e[61+2]+ }
% = ¥gteh +--

correct to order €. The asymptotic forms of the inner solution, as

~
X = -0, are:

B
- exp [X - CL,O, % ]}
4 NB {KSCB » B
M, - ¥ ~V_ ¥,)+C
1 AZ(NB) 1 1B 1
Aylg) N K,

6, - A,0g) My~ Volg) + 7o K, c [x-cpf,wp)l +C,

A ) Ky A,W5) b, (¥y)
%1 - AZ(NB) T(,a./B) ’ WC—WB) A. (3( )[V WB)+C + 6 ]

therefore,



b,Wp)  byWg) Ry (1445) _
My ~ -5 - T3 T TTL TeL. ™
B B B °B
A R)
1~ 3"B
8~ Vo) + 3 [x - Cpl,00p)] - A ) LV 1Wp)tC m 1+C,
The matching requirements are then:
c i - LU
1 - ™ TAWG) LT T1YB
(63)
A,®) C
_ 3B B

1 AZWB)

Determination of the constants C1 and C, completes the inner
solution; the downstream solution is uniquely determined. The
asymptotic forms of the downstream solution can r;ow be determined.
These forms can be used to determine the constants of the outer
solution (x%< > 0) and a uniformly valid composite solution can then
be constructed.

II. 2. 2. 2. Relaxation Solution

The asymptotic forms of the inner solution can now be deter-

mined as X = + o @[Odﬁfp). They are:

N -t~ 01 ) {—gl——F' 3w )1}
p - Mo~ W ¥ eP(g g k- Cpl5H))

which tends to zero exponentially since dl(ﬁ/p) < 0.

AL )

2~
~ 1 1% _1 N
MO ~ = {1 - Azwp) Wp-%o)} =3 {l-const. e

}

N 2
60 ~ 6p {1 + const. e yZX}
3

where 5 = C_ea’ /T
P B P



6, ~ 61p +s, [x - cBQf3(%/p)]

where
A, ) bR )
_27p 1"p & 1,
Yip T KW { s - LW w,)+C, Iy
P p
A3(?J) ~
6lp = ———RAZWP)Nlp + Wz(%(p) + C2
AR ) A
- _2°p a
P 1 W)d
P p
AL ) I\
= _3 P _a
1™ p"p
Thus the expansion, in the inner region is:
b, ®& )
ﬁ(§;€)~ %[hte ——1—6—P— + .{
p -t
T(Xse) ~ 6p[l+e {61P+Sz[x - cB§3(z/p) 13+ ] (64)

2 (x;6) ~ Np +e {%lerSl[x - CBQ3WP) 13+ -

Equations (64) provide the constants to complete the downstream

solution. With this, attention is turned to the outer solution.

Equations (38) are rewritten in the form:
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;% % *2 %
” " b1 Wo) " dl(f&fo) 60 dMO
My +06) = —— ¥, - e X *
b, W ) b, &y) o dx
a’ al b, @)
L O{xM -267 + (M +5,) o
b @) by @) -
+[: 20l 2 _\ } (65)
b (W b, ,) b (?»[ ) 4 (3’&(
as as b W
K * o <
—L- _%——9;:<{)\M5—261+(M;+6:) AL
dx 60 dx b (JV )+b (;'&[O)

sk 7 s
b W)ty ) balg)  dyig) - )

3} 0
The term involving clMOt/clx"< in the first of Equations (65) can be

written with use of Equation (41) as follows:

* *2 5 7 B3 sk
dlwo) 6O dMO % 'bl (NO) N3(NO)—‘ ¥
T % - NZO'&./O)[ e LU L)
bl(‘MO) o dx bl(NO) NZWO) .
where
Aj#) B
N.®) =
W =22 B W)

33
M; can now be eliminated from the second and third of Equations (65)

to give:

sk
d .% N3@[

i 5 O) N*] 7 W*)
ax; L1 Nzwa) 1 1%0
« (67)
. 03 ) e I, 'd N (N ) =3
d sk % % sk sk ES 0 1)
—% EM1 T, )] = T {z, 0507 8- 20 !

B Yo ES 5 . . .
where le(;)’ ZZ(NS) and T (11[;) are defined in Table II. The functions
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b3 sk E3 3 d Sk B3 1 1 sk p
N3@[O)/N2(£[O ), Zl(?;(o), ZZC‘MO) and T ("&[0) are all regular at %[O —?LC.
Hence the quantities Mg;, 6;, X*, Ml*, 61* and 2[1* can be computed
in the range NB < gfg < ﬁfp with no difficulty. Requirements that must

be placed on the solutions are:

sk O
My

Sk

5K

J, B
. % 1 %
It has been shown previously that MO ~ (2{0 - NB) as R[O ?S[B. As

E3

Ny = g, N,W) -0, therefore
s N, ® *) . 5 . B,-2
%[61 el RN
dﬁ[o NZ(NO) -
E 3 3
%k N3(Q[O) ES Q; WB) sk Bl-l
61 - -————*—-;’&(l ~— (;'&[O —%[B) + const
N, &) By-1
.._Sl.._ E3 sk sk sk -(ﬁl'i‘z)
, : g
sk E3 B3 1
)~ e W ) =

. sk B3 ! ES
The function & | Wp)/(B;-1) = -8 ; W) N, W) /[N, ® )]

Mo Hp

therefore
61 ~ const.
and
£

I\/[1 ~ const.

as required. These limiting values guarantee that

*(1+€M*+ N _l_%

Ly
—t{l-e M
a 0 1 o %

M

ES

& ?{O +e}&[1 "NB
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Solutions of Equations (67) are thus:

.
g N,®%n) .
) e
N,®g)
(68)

* 1 k%
¥ = (U ) +2,)
®y)
* % %k . .
where Ul (‘,’&[O ) and U2 (}lfo) are defined in Table II. The constants a;

and a, can be obtained by matching with the inner solution.

*
As ¥, = ¥, the asymptotic forms of Equations (40) are given

0
by
‘2[* = %/ +—9——>\-—— X*+'
0 fW)
a/)
* *
=6{1+ozf@{ }
where
N, )
LX) = &
P > pp‘)
2
£ ) dl(P) 6P
2%p) T B W) )

Therefore, correct to order €, the outer solution is, written in

terms of the inner variable,

A a
N(x,e)~£/p+e{f%[)x+ - }+
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These forms must be matched to Equations (64); this requires:

N
3
71 = %1p - NW “1p |52 NW)S]CQB‘”’
69)

2, T wp)[%lp -8,C Q. w)]

B73"p

With a; and a, determined, a uniformly valid composite
solution can now be constructed in the region downstream of the

corner as in Section II.2.1:
sk %k ok ~
Nco%p,'e) = ¥Ee) + 8 (% ;e) - (Xse)
~ o sk ok Mo
(r)é 5€) = 8(x3e) + 6 (x ;€)-6 (x;¢) (70)

N xie) = FGe) - 6 - M0 M Re))

1I. 3. Summary

The results of Sections II. 2.1 and II. 2. 2 are summarized in
this Section. The quadratures [defined in Table II] are universal
functions of the independent variables noted and can be tabulated
once and for all. The results, in composite form, are written as

follows:
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;{JEX— E§_<O:
€ [

f\i(x e) = O(I&[ {1+6M (NO}+eml

T e =T 0, {1+e%‘1 wb)} " 5B{f1‘+—}? S+ 7]}

(71)
%k ~ o1
¥ (x36) =8, (%) + e¥] W )+h, -
{ L)1+X* ]}
% A -R
X = 5wy =cy[ 8, ) + K5 m(%" i?]
% >0
M(x ;e) = (zro){nef\‘/i ® ) va 0&[0 ‘%‘L]
p
Te) = Byw) {1reT W) + 5w 1re 6. w)) )
" N3(£/p) a,
-5 {1+szx e NP )+ alj}
? (72)

¥(xie) = W)+ er @) + azg‘(x*) + e, (%[(T)

a

-f;v +8S x*+e’ 2
Op 1 T*Wp)}
<7M -

¥y = Cp[@,Wy) + Ly o ﬁ)]:::*(ﬁ) - )

The functions ﬁl’ El and ﬁl have different definitions upstream and

downstream of the corner. They are:
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Ay o) ~
~ ¥ o+ V. &)+ C N_<¥ =¥
o) - a,w, 1t V1o 1 BMo=H,
AW #,
AWy Y1t Wi®o) le<£[  )IC) ¥ 5K 0¥p
p C
fA3(sz) Xy-¥g
mw, Vo) K Q”‘(a/ = A
T W) =
1% (73)
AW ) 5 X
A, Y1t W ) -Lfn (2 )+ M Ho<H,
p C
ﬁ T
LS WK, T W< <K
v, =
1-aM & - L N -
1-aM, 0¥ 5 » Yo
TWR,) LS ® o) v, +2{-a/@”(7¢ -ﬂ)”sz[ow
P p 0 p c

Composites of these solutions are sketched in Fig. 6. The
feature of major interest which arises in these solutions is the relax-
ation region which appears near M = 1/a in the solution for edge Mach
number. The Mach number increéses to within € M:(}&[p)/af of its final
downstream value 1/a on the scale X = x /€ while the final increase
to 1/a takes place on the scale X The requirement that the ratio of
the magnitude of fhis relaxation region to the total inviscid Mach
number rise (1/a -1) be small is representative of the conditions
which must exis‘t for the small parameter solutions to be valid.
Stating this more precisely, asymptotic solutions of the moment
equations can be found which are (i) pressure gradient dominated
and (ii) shear and dissipation dominated provided the ratio

*
M, Wp)/( @) << 1. This ratio is, alternatively,



sk —_
e M, ® ) X
0 p" _ v-1 "o %*
ARV MO(?JP) . (74)
o W

l-a

The function M;;()’&{p) can be written as

(Ply [Rly
o ) o P o P

since P and R differ by a constant for ¥ 2 ¥ see Appendix). Np

AL(

itself is a unique function of o defined by

1+ 0.270 0 2!

“’,1[ =
P 141,946 o0 2]

This expression can be easily derived with the results in the Appendix
and is plotted in Fig. 7. Since the wall shear P (or the viscous dissi-
pation R) is proportional to 1/(1 -Np) and Np =1 for-a = 0, increasing
MocozW (or decreasing @) forces the ratio given by Equation (74) to
increase. If arbitrary values are given this ratio, a limiting curve
can be plotted as ioc vs. Mocaw [see Fig. 8]and a convenient measure
of flow regime can be obtained. For points above a given curve the
ratio of the magnitude of the relaxation region Mach number rise to
the total inviscid Mach number rise is larger than the value for that
curve (and smaller for points below that curve). A practical limit for
which thé closed form solutions may be expected to be valid is taken

to be

X
-1 "o % a
ST o MO (Np) = 0.3 (75)
o W
and a check of the solutions was made for a point on this curve.
For points above the line described by Equation (75), one

must resort to numerical solutions of Equations (12). Solutions of
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this section were obtained for a point on this curve,

M00 = 5,80
M a_=0.75 (¢ = 0.85 for v = 1. 4)
a = 7.4° ® W
w .
yw = 0.1 } e = 0.004,
x
and compared with a numerical integration of Equations (12). The

composites of the asymptotic solutions are shown in Figs. 9-11.

The comparisons with the numerical solutions are shown in Figs.
12-14. For the numerical integration, a finite radius of curvature
was used (R_ =.095 inch; R_/L = . 0475, RC/6* ~5.6) and this may
account for some of the deviation immediately downstream of the
critical point (for subcritical-supercritical transit;on) since the
slopes of solutions increase near the critical point as Rc = 0. A
composite of the pressure ratio p/poC was constructed from the Mach
number solutions since this was the quantity of interest. The com-

posite solutions are:

2y
P v-1 ~ i
oo T [ TN o] - Hpem [ ]
Poo M()(;) 2 Y 4 1+x*
_VT 2y
% PEOHKL 1 Y- 2 ~ 2 I % ok ok
5 0 -[— :} - 2 eMl(xZ]+——”—1 e EAO(x)-MO(N)]

The zeroth order and first order functions which were computed are
plotted in Figs. 15-18.
The ratio in Equation (74) is a measure of the viscous-inviscid

interaction downstream of a sharp corner. A function quite similar

A computer program for numerical solutions was developed by
D. Ko at GALCIT. The pertinent details are given in his Ph. D.
thesis.(20)
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to this can be derived in an intuitive manner. Downstream of an ex-
pansion corner the ratio of the induced flow angle, ®, to the wall
angle, a is a measure of the viscous-inviscid interaction (see Fig.
2). Since, for hypersonic flow @ d5*/dx and when properly non-
dimensionalized, dé*/dx = O(ioo /MOC), the parameter ;{OO/(MOCQW) is

a convenient measure of the flow regime in the expansion problem.

If, however, 3-( is based on flow conditions at downstream infinity,
3

1
2

i.e. iz = (M,/M_) (Re /Re; ) iw, where MZ/MOO =1/a, itis
o 2
easily shown that
2y-1
— -1 —
X, = (L/a) Y70 X

Hence, the requirement for small viscous-inviscid interaction down-

stream of the corner is

2y-1 o
(57 2 <<
a M «a
L W

The downstream interaction parameter 3(_2 is amplified by a
factor (1 /oz)4' 5 (for v = 1. 4) for the expansion corner and the ratio
(1/01)4’ 5 i /(M _a_) first decreases as a__ is increased, then rapidly

oC © W W
increases (as o = 0). Even for small but finite YOC, a strongly inter-
acting boundary layer can be induced by simply increasing the ex-

pansion angle.
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III. EXPERIMENTAL STUDY

III. 1. Scope

The experimental studies of supersonic flows expanded by a
corner which have been reported in the literature have been concerned
with relatively low Mach numbers (~ 2 to 4) and as a consequence
relatively low values of the viscous interaction parameters YOO. As a
result, detailed measurements of flow quantities in the vicinity of the

)

corner have not been obtained. The experiments of Puhl(26 carried
out for a 10° cone-cylinder expansion have given a beautifully detailed
picture of the pressure distribution near the juncture (cone Mach
number ~ 6), however an axisymmetric experimen’gal result is not
subject to a simple analytical treatment.

The objective of this part of the study was to provide a two-
dimensional experimental study with attention given to measurement
of flow properties in the vicinity of the corner. No exhaustive varia-
tion of parameters was attempted; specifically, the Reynolds number
was varied, to a limited extent, for a fixed expansion angle and the
effect of radius of curvature was briefly examined.

Surface pressure data were obtained for four different
Reynolds numbers and pitof pressure surveys of the boundary iayer
were made at seven locations in the vicinity of the corner for two of
these Reynolds numbers. These data serve to describe the profile
quantities of interest with appropriate assumptions made regarding
the static pressure and temperature fields at points away from the

surface.
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Wind Tunnel, Models and Measurements

The experiments described herein were conducted in 'leg 2"

of the GALCIT hypersonic wind tunnel facility. Leg 2 is a continu-

ously operating, closcd circuit tunnel with a nichrome-wire heater,

a symmetrical, flexible-plate nozzle, a variable second throat and

an after cooler.

Details of the facility can be found in Reference (32).

The nozzle plates were adjusted for a nominal Mach number of

8. With this configuration the test section is approximately 7% inches

square.

To avoid air liquification, the air in the supply section was

heated to 900°F; all tests were conducted at this temperature.

The tests were carried out at four supply pressures ranging

from 264.3 p.s.i.a. to 66.2 p.s.i.a.

conditions were:

@

@

®

More corﬁpletely, the test

@

M 7.93 7.88 7. 85 7.78
p, (p.s.i.a.) | 264.3 198. 2 132.3 66. 2
T, (°F) 900 900 900 . 900
. 5 5 ‘ 5 5
Re (per inch) |1.022x10 . 780x10 . 525x10 . 268x%10

The suﬁply pressure and temperature were controlled within + 0. 05

p.s.i. and £ 3° F, respectively.

The tests were conducted under steady state conditions.

Ade-

quate time was available to establish thermal and dynamic equilibrium

in all cases so that the data reported herein are considered for an

adiabatic model.

Two models were used in the experiments.

the first, Model S-1, are shown in Fig. 19.

No cooling of the model was considered.

The dimensions of

This was a symmetrical
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wedge model with a half angle, a of 5°. The ramp length L. was
long enough to assure a weakly interacting boundary layer before the
corner expansion. The ramp flow, shocked to a pressure well above
tunnel free stream pressure, was expanded back to free stream con-
ditions by a 5° sharp turn to a flat plate. The model did not span the
tunnel but rather was sting mounted. Side plates were mounted on the
model to prevent outflow; the angle of the plates, a , was large enough
to completely enclose the leading edge shock wave. The model and
side plates were made of stainless steel.

In order that accurate inviscid conditions could be calculated
on the approach ramp (these conditions were used as a reference),
two precautions were necessary:

(1) The leading edge had to be sharp. The maximum

Reynolds number based on tunnel free stream con-
ditions and the measured model wedge tip diameter
was 250.

(2) The model had to be aligned at zero incidence with
the tunnel free stream. Static pressure orifices were
located on the upper and lower wedge surfaces well
ahead of the corner interaction region at equal dis-
tances from the leading edge. The angle of incidence
of the model was varied until the pressures at these
two orifices were equal.

With the measured tunnel free stream conditions and wedge half-angle,
the inviscid wedge conditions could then be accurately calculated

using the oblique shock relations.
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The model was instrumented with static pressure orifices
distributed along the model centerline. In the corner region the
orifices were staggered slightly off centerline to obtain a detailed
static pressure distribution very close to the corner. A typical
orifice diameter was 0. 02 inch, approximately 1/5 of the minimum
boundary layer thickness at the corner location. The surface pres-
sures were measured with a multiple-tube silicone oil manometer
board. The pressures were recorded for almost every run and the
total spread in these data is shown in Fig. 20.

Pitot pressure surveys were made at several stations in the
vicinity of the corner from the model surface to the leading edge
shock wave. The pitot measurements were made with a flattened
(0. 04" x 0. 004" outer dimensions; 0. 0286 x 0. 002" inner dimensions)
tip probe. The pitot pressure was measured with a Statham 5-psia
pressure transducer which was calibrated before and after the test
program. The transducer excitation voltage was maintained constant
during each run. The pitot measurements were recorded on the
Y -scale of a Moseley autbgraphq The position of the probe relative
to the model surface was measured by a helipot connected to the
tunnel d;‘ive mechanism and recorded on the X-scale. The attitude
of the probe was maintained parallel to the model surface upstream
and downstream of the corner. All surveys were made normal to the
downstream surface. The zero position (surface of the model) was
located by electrical contact between the probe tip and the model.

The probe position was accurate to + 0. 002 in.
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lModel S-2 was similar in all respects to Model S-l. except
for the following:

(1) The model and side plates were made of brass. The
number of measurements for Model S-2 was not
expected to be the same as for Model S-1, hence a
softer metal was acceptable.

(2) The expansion corner had a finite radius of curvature.
This radius was made equal to the approach ramp
length (L = 4. 100 inches).

II11. 3. Evaluation of the Data

III. 3. 1. Experimental Correlations

According to the solutions of Section II. 2., the physical scale
for the major portion of the pressure drop is x =s/(Le). With the
approach ramp inviscid pressure as a reference, the static pressures
for Model S-1 are plotted as a function of X in Fig. 21. Also shown

26)

are the data of Puhl( for a 10° axisymmetric configuration. The
interaction parameter for an axisymmetric configuration is reduced
by a factor 1/) 3 due to the extra dimensional effect, hence the defi-

nition ¥ = L % _ has been used in reducing these data.

©Axisym. Y3 *2-D
According to the first approximation solution of Section II. 2. 1.,
pe/poo = 1as X = -, the pressure ratio is a universal function of X
for a given Mocozw. Furthermore, the pressure ratio at the corner
location is 0. 871 and the upstream distribution is a universal curve
independent of the expansion angle if the angle is sufficiently large to
o

induce subcritical-supercritical transition (10—2 ). The parameter

M o  centers only the downstream solution. If the pressures of
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Fig. 21 are divided by pIc/poc where P;. is the weak interaction
pressure computed at x = L, the corner location, the upstream
interaction is effectively scaled out of the distribution and a rcasonable
correlation is obtained, Fig. 22. In an attempt to scale out the effect
of expansion angle, the nondimensional pressure PN = [p —pI(-)] /
[pI(—) - pl(+)] +1 was defined and plotted vs. X for the four Reynolds
numbers of these experiments and the two Reynolds numbers of the

.(26)

experiments of Puh pI(—) and pI(+) are the weak interaction
pressure distributions corresponding to the upstream and downstream
flow conditions, respectively, for the same distance x measured from
the leading edge. The results are shown in Fig. 23. The last four
points for each of the two-dimensional experimental distributions are
systematically low. Otherwise the correlation is good. The reduction
in pressure fc;r the last four orifices may be due in part to experi-
mental error since the lowest pressures in the distributions occur at
these orifice locations. Another effect may be that of finite plate

length.

III. 3. 2. Effect of Radius of Curvature

Static pressure distributions were obtained with Model S-2
which had a corner radius of curvature equal to the ramp length for
the same range of Reynolds number as for Model S-1. The ratio of
radius of curvature to the boundary layer thickness at the corner
varied from about 24 to 33. The difference in the distributions when
compared with those for Model S-1 was within the experimental devi-
ation for any one distribution, hence only the data for Model S=1 are

presented.
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III. 3. 3. Boundary Layer Surveys

The distributions of pitot pressure from the model surface to
the leading edge shock wave for the stations surveyed are presented
in Figures 24 to 30. These data were reduced to Mach number pro-
files with the assumption that the static pressure was constant across

the boundary layer. The static temperature distribution was approxi-

mated by
Z—l 2
1+ YPr M
T . 2__ ¢ = 0.725
T vl 2 , Pr=0.
e 1 + YPr > M

in computing the density variation through the boundary layer.

In any experiment in which the interaction of boundary layer
and leading edge shock wave is significant, measu:rements at a loca-
tion well downstreafn of the leading edge are influenced by non-
isentropic effects. The curvature of the leading edge shock wave
introduces an entropy gradient across streamlines entering the
boundary layer downstream of the leading edge. For the present
experiments the total pressure ratio at the edge of the boundary layer
2 /pt' was found to be 0.634 at the first surveyed station upstream
ofethe 1corner interaction region. Here, Py is the ideal total pressure
computed for the configuration in the absenlce of a boundary layer. In
order to examine the effect of the edge total pressure reduction on the
boundary layer profiles, two theoretical calculations were made for a
zero pressure gradient boundary layer using the Sutherland viscosity
law and assuming Pr = 0. 725, For the first of these Py /pt' = 1; for
the second Py /pt‘ = 0.634. The deviation of the non—idZal ;\/Iach

e 1

number profile from the ideal case is shown in Fig. 31. The
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experimental deviation, although qualitatively correct, is larger.
The comparison, in fact, is qualitative since the experimental bound-
ary layer was subject to a finite pressure gradient along the entire
approach ramp. Figs. 32 and 33 show the deviation in the quantities
—E—E—— (1 - —E'—) and & (1 - GIL ) which were used to calculate the form
Pele Ye Pe e
parameter ¥. Again, the experimental deviation is qualitatively

correct but larger for the quantity BPTu—(l - 1—11—) and smaller for the

e e e
quantity £ a - —ul) . Since
Pe e
6i 9] [SIN 8 pu u
c) f g (- gy fpu“'a—)d‘f
PV S | e e . O%ee e
6% 6:'L 9] P u
i [ e Tay (1 - 2)dy
0 e 0 Pe e

the largnr percentage increase in the integrand of the numerator
compared with integrand of the numerator leads to a value of ¥ on
the approach ramp which is high when compared with the theoretical

value. Fig. 34 shows the deviation in the boundary layer mass flux

(1 _P_ll_)°

b u
Pele
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IV. COMPARISON OF THEORY WITH EXPERIMENTAL RESULTS

IV.1. Numerical Solutions

The exiaerimental results for Model S-1 have been compared
with a numerical solution of Equations (12). The lowest experimental
value for the interaction parameter ioo is too large for the series
solutions of Section II to be valid over the entire range of s. For
s < 0, however, excellent agreement with numerical solutions was
obtained for E{w as large as 0.56. The analytical solutions were used
to locate a suitable value for an initial point X from which the numer-
ical integration was started. The details of numerical solutions of

(20) (21) A brief outline

Equations (12) are given by Ko and Klineberg.
for obtaining solutions for the expansion problem 1s as follows:

The quantities Me’ & and 61* are "'kicked off'' from a weak
interaction solution at a suitable x which must be found by trial and
error (solu’cion@ below). A good first approximation to X can be
obtained using the solutions of Section II. The magnitude of the kick
is fixed and x, is varied until a solution close to the one which passes
smoothly through the critical point (subcritical-supercritical transi-
tion) is found. The first critical point is located on the curved portion
of the turn’ (expansion angles of approximately 1°-2° are required to
produce a supercritical boundary layer downstream of the corner).
Then X is fixed and the magnitude of the kick is véried until the solu-
tion is found which passes smoothly through the critical point. Loca-
tion of the first critical point (Mec, NC, 6it , Xc) determines the com-

plete solution. The integration from X to X (solution @below) is a

straightforward procedure. To complete the integral solution
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(solution@ below), the quantities Me’ 61* and ¥ are "kicked off"
from a weak interaction solution at a suitable X, which, again, must
be found by trial and error. The procedure is similar to that for

-solution @ The iteration is continued until Me, & and 61* are

matched at X

A | @

Supercritical

Subcritical |

The flow quantities of interest can be computed from these solutions.

IV. 2. S’urfavce Pressure and Profile Quantities

The surface pressure distribution [ on the physical scale
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X = s/(Le)] is compared with the theoretical result in Fig. 35. The
radius of curvature used in the theoretical calculation was Rc = 0. 05
inch. The integral functions ¥, R, J, P, etc. were allowed to exceed
their adiabatic maximums with use of the extended integr.al functions
for the theoretical calculation. The agreement is fairly good over
the complete range of data.

Fig. 36 shows a comparison of the compressible displacement
thickness [on the physical scale x = s /L] with the theoretical result.
The displacement thickness was normalized with the theoretical, zero
pressure gradient displacement thickness computed at the corner

location x = 1,

J.

5 = 1.7239L JC /JRey [l +m_ (I.3841) 1.
C ¢ oC
The theoretical curve was calculated from the moment method solu-

tion as follows:

_y+l
l+m_ >2(-)/-1)

ES
6 = <1+m
-

The experimental points are consistently low, however the slopes of

X
6i [l-l—me(l-l-?s[)] .

the distributions upstream and downstream of the corner are in good
a;greement. The theoretical curve for the incompressible displace-
ment thi;:kness 61* )'—EZE; /(LY C) =6 is shown in Fig. 37.

The distribution of ¥ is compared with the theoretical predic-
tion in Fig. 38. The agreement is fairly good except for the points
upstream of the corner. This is due in part to the effect discussed
in Section III. 3. 3. (pt /pt- = 1 for the theoretical calculation). The
experimental results For 61>'< and ¥ are, in addition, subject to the in-

accuracy of measurements close to the model surface.
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V. CONCLUSIONS

The moment method equations have been used to study the
corner expansion of a hypersonic boundary layer. Asymptotic solu-
tions of these equations can be constructed as the viscous interaction
parameter YOC tends to zero. These solutions illustrate two distinct
physiéal length scales for the expansion problem. The pressure
gradient dominates the interaction on the scale X = s/(Le¢) and the wall
shear and dissipation do not influence the solutions to a first approxi-
mation. The first approximation solution for the pressure distribu-
tion is uniformly valid on this scale. Relaxation solutions for the
incompressible displacement thickness § and form parameter ¥ can
be obtained on the scale x = s/L’Which allow construction of uniform-
ly valid composite solutions for the entire interaction region. The
pressure gradient is absent to a first approximation on the scale %
and the wall shear and dissipation dominate the interaction in this
region.

Higher order solutions in each region show that the pressure
drops to within O(€) on the physical scale X and gradually decays to
the final downstream value on the scale x*. The second term of the
expansion for Mach number in the relaxation region increases rapidly
with increasing expansion angle in the matching region (x>Z< = 0), indi-
cating an amplification of the interaction effect even for small values
of ;{oc' This amplification is consistent with a simple examination of
the relationship between the viscous interaction parameters based on

inviscid conditions upstream and downstream of the corner. The

amplification is proportional to (1 /a)e where the exponent, e, is 4.5
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for ¥ = 1.4. Since o decreases for increasing a the effect of ex-
panding the flow is to induce a strongly interacting boundary layer
downstream of the corner. The range of parameters for which the
asymptotic solutions may be used has been well defined.

Two-dimensional experimental results have been obtained for
a range of parameters which illustrate thek nature of the corner inter-
action both upstream and downstream of the corner for a hypersonic
flow. The distributions of displacement thickness 6* and form param-
eter ¥ have been calcul‘ated from the data and compared with numerical
solutions of the integral equations. The experimental results are in
reasonably good agreement with the theoretical predictions. The
measured surface pressure distribution has been compared with the
moment method solution and the results show good agreement over the
entire interaction region.

The integral theory has been modified to allow the profile
functions to exceed their limiting values predicted for large pressure
gradients and adiabatic flow. Solutions of the Cohen-Reshotko similar
flow equations which admit small but finite wall heat transfer have
been found which allow this extension.

The effect of transverse pressure gradient near the sharp
‘corner has not been included in the present theoretical study and
awaits future investigation. Also, in the course of present study it
became apparent that the effect of the entropy jump caused by strong
interaction between the boundary layer and the shock wave near the
leading edge is important even in the weak interaction region, which

mervrits a further investigation.
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TABLE II

QUADRATURES, FUNCTIONS AND CONSTANTS FOR SECTION II. 2.2.
V) = JNO E8)
¥ 1-M
c 0

G A,05)
["‘o G ) B 2¥B
-3V ) - [ +WN)'AW)]‘W

I @) f/ :
0 1 0 TE) B
5, W) = j: _ WK, 1 %(‘[C_NB)dzz
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C C
J.w {IZ(N) I,®%;) [AZ(NB)]Z}W
-1) (2/—£(B)2 A )
A¥)
2% B
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1 B " A Wg)
KZ =1 (2/ )[A (%[ ) 3( ?f
d, W)
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B
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TABLE II (Continued)
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TABLE II (Continued)
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APPENDIX

EXTENSION OF THE PROFILE FUNCTIONS
BEYOND THE ADIABATIC LIMIT

The self-similar flows of compressible boundary layers for

Prandtl number Pr = 1 and constant wall enthalpy are given by the

system of ordinary equations: (21, 33, 34)
3 2
3 ”dg’Lﬁ 1-S- (d):|=o
dn dn n
2 (A.1)
d S + fgg = 0
d’n n
subject to the boundary conditions
_df
£(0) = () = 0
df _
an c) = 1
(A. 2)
S(0) = SW
Se) = 0

The quantities in Equations (A. 1) and (A. 2) are:

a - U
an Ye
s =1-§-
_%
l+m
1= v o]
U o~ X
e
a_ p a
ax = Cc-2_Sdx;dy == L gy
- Ta_ P a_ p

o] oC o0 oC
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and B is the pressure gradient parameter defined by

_ 2m
B m+l

As B - o, a limiting solution of the adiabatic form (SW = 0) of Equa-

tions (A.1l) and (A. 2) can be found analytically.(ZI’ 35) This solution

allows definition of a limiting maximum for the integral quantity ¥/;

the result is:

o= NAL = 0.4785

Correspondingly, maximum values of J, R, P and dJ/d¥ are:

JWAL) = 0.7891
R(R(AL) = 0.9609
P(;’S[AL) = 0.8908

dJ _
WWAL) = 2.0556

The quantity f&[p is defined by

Lo ([P 2o @)

a - °FP . A0

. B

i i = 0. . < 0.

and 1f£[p is taken to be NAL’ N9 0. 962 Hence, for a < 0.962,
% will exceed its adiabatic limit. The integral functions ¥, J, R, P,
etc. can be extended beyond their respective limits, however, by

allowing a non-zero value of Sw and considering the limit:
B-ow,S ~0;8 VP = §W fixed.

Solutions of Equations (A. 1) and (A. 2) subject to this limit are derived
in the following two sections. The third section deals with higher

order solutions of the adiabatic equations.
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A.1l. Limiting Solutions for Sw # 0,

A.1.1. Outer Solutions

Series of the form:

1 1
fniB) =m+ —_ £,(n) + B-fz(ﬂ)Jr...
g (A. 3)
S B) = — L
S(n; B) = = S;(n)+ B S,(m) +

are assumed to be valid in the region n = O(1). Substituting Equations
(A. 3) into (A. 1) and collecting coefficients of like powers of 1/B gives,

to order 1/ VP :

af,
2q7 * S =0
a’s,  ds, . (A. 4)
> + 1M = 0
dn dn

The boundary conditions, Equations (A.2), which must be satisfied

by the outer solutions are:

df1

'a'ﬁ"(w) =0

SI(O) = SW (A. 5)
Sl(oc) = 0

Solutions of Equations (A. 4) and (A. 5) can be readily obtained

and are:
S,(m) =% erfc (1)
1 W ),-?:-
’Sw g
qm = [ erfe (2)ag
df; 3 (A. 6)
o W l .
ul(n) dn - 5 erfc ( )
ul(n) rz
= 14+ g
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A.1l.2. Inner Solutions

The solutions obtained in Section A.1l.1. do not satisfy the
df
dn
variables f and 1 are expanded by VP :

boundary conditions £(0) = (0) = 0, hence, in the inner region, the

¢ = VB n
F(C)= VB £f(n)

The corresponding differential equations (A. 1) and boundary conditions

(A.2) are:
3
d°F 2
aF , L gdF S - ( = 0
dg3 B 2 l: dC ]
a%s L1 pds
F <2 0
QZ B ¢
F(0) =%§(0) 0 (A.7)
u, (0)
g( e) = 1+ +ooes
yB
S(0) = S(w) = Sw

The functions F and S can now be expanded in the form:

F(CiB) = Fo(C) + = F (C) +-
(A. 8)
S(GB) = —= 8y(C) + 5 O (C) + -+

Substituting the series, Equations (A. 8) into Equations (A. 7) and

collecting coefficients of like powers of 1/B gives, to order
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3 2
d°F dF
‘—1" 3?’5'1 - (——-CQ> = 0
yg o dc
d2®0
_—_...2— - O
dg
dF
0
Fo0) = 7(0) = 0 (A. 9)
dF
0
——d—g——(w) = 1
8,(0) = Byx) = §W
3
1 dFl_zdFO dF e
B dg3 dc dc 0
d2®1
— = 0
dg
dF
_ 1 _
F (0) = _E'if(o) = 0 (A.10)
dF,
-E(OC) = “1(0)
8,(0) = & (c) = 0

The solutions for @O(Q) and ®l (€) can be written immediately
as @O = gw’ @1 = 0. If one multiplies the equation for Foby dZFO/dQZ,
its integral is easily obtained and the solution for U0 = dFO/dg is

Uylc) = 3 tanh® (—Q— N tanh'V% ) 2. (A.11)

yz~

The solution for Ul(g) = dFl/dg can now be obtained from

dZU1 -

—_— -2 U, U, =S

dCZ 071 w
UI(O) = 0 (A.12)
Upleo) = u;(0)
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Differentiating the equation for UO(Q) once more gives

dZ (dUO> - <dU0> - o

a2 \aT o\"a
and hence by putting U, = T(C) du, /dC Equations (A.12) become
4 (_ij_(dUOf:] ) dUO
ac |ac \d¢ w dc
T(0) = 0 (A.13)
du 5

. 0 W

llm T(C) —J(T— = ul(o) = - -—2—
o0 °

From the solution of Equations (A.13), we obtain

:/2 2+U
U Q) = _—g‘-’ 2 (1-U ) on /%0
(Y3+)2)1-U,

(A. 14)

Finally, one can write the velocity in the inner region, using

Equations (A.11) and (A. 14), as:

Uy€) + :I;UI(QH--- . (A.15)
/B

A uniformly valid composite velocity ratio can be written by sub-

u.
inner

tracting out the common parts of Equation (A. 15) and the last of

Equatioﬁs (A. 6) and is:
[ 1 .
U't:onrlposite - [l ¥ )}‘—g—‘ul () + :l [_U €+ — )IB— v (Q) B ]

—[1+Y%_u1(0)+-"]

or

1
=U,(c)+— ﬂ>+ [[I (c)- -, 0)}+ . (A.16)
00N g e

u .
composite
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A.2. Profile Functions

The solutions of interest are the profile quantities & J, R, P,

etc. which are defined by

‘-2
A
J = e
= %
A
o, o 2 (A.17)
R = 28" [ (52) an
o 9N
ou
p = A¥ <_a )
A
where
[o6]
= f (1-u
0
{o'e]
0 = Iuc(l-u )dn
0
% o0 2
o = fo sl (A.18)
Ye T U'composi’ce - U/Ue
14+m
Y v X
oC

Substitution of Equation (A. 16) into Equations (A. 18) gives:

N ;%-[(IlegWV)wLO(y-é:)]

o = )7;:[(12+§WV)+O()%—)]

@ia=g—_é—_ [(I_jrs V)+ol()rL)] (A.19)
fo‘anq)d“ B 1+ 050 ]

(?gﬂﬁ)_ f‘—-—+o )]

3
I



where

v

The latter

i

forms for I1 -I

0

" g0 [1-ug)lac= /3 j

RS
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1U0 (1+U )dU
) [1-U4 (€)1dc=y/ 3 f

oc ,dU

I (50) -

1

y2

[
'JO

The values of Il —14 are:

I

/gf

1

erfc t dt = —

2w

and the expressions for & = A((S ),

¥

Y6 (Y3 -)y2 )
2
I, (—=— -1
()
4
I, =51
Q- U+§
145
W
4/5 +28
1+S
A%
8.2
g11(1+S )
3—1ﬂ1+é‘)
y3 o,
a7 Py _ 6/
d ¥ = 2-Q

Lo

0

1

etc.,

UO) 72+UO dUo

can be written as

(A. 20)

4 can be obtained using Equation (A.11).

(A.21)
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where ~
2 SWV
Q = — and 5, T

31, W 1

Thus a family of similarity solutions exists described by the
parameter §W =’SW YB which allows an extension of the integral
functions beyond their adiabatic limits. The parameter gw(or SW)
can be eliminated by writing ?\ = ﬁW(B[), say, and this family can be

written simply as a function of ¥. This form is most convenient and

is written as:

4/5 + 2(1-Q) 6/5
J = ) + ) &
8 .2 ,2-0
R =g I (157)
2 2-
P o= 21 (155)
Y3
dJ _ 6/5
& 20 (A. 22)
dR _ R
T 1-%
dp _ P
d/ 1-%
(Q-1)+S
T —_——
1+8

These solutions are plotted in Figs. (A.1l) and (A. 2) along with the

} . . <
curve fits of the numerical solutions for NB < NAL'

One difficulty encountered with use of the extended functions
is that dJ/d¥ is discontinuous at NAL' This means that the functions
D), A4 *), A3(3(), Bl(af) and B3W) defined in the text are also dis-

continuous at NAL' As B = o with SW = 0, solutions are of the form,
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[see Section (A. 3) ],
1

I, +=(Q -ZQ)
v oo 2 511
I 'gQ

s +3(Q1-3Q3)
1
1,-5 Q

If the restriction on SW is relaxed such that B = cc, Sw = 0 with SW)’B—

fixed, solutions are of the form

%“I+§V)+O)7_§_)
)

(I +3 V)+O(

i
I, +8 V)I+O(=
;- ( )+ (),‘3-—)
(1, +5_V)+O( Ly
B
Hence,

I,/1, +1) - (Q /Q )
aJ _dJ/dp _ U )
P 7 I v s o 7o) T 2056

S =0 S =0

W W
a7 i dJ/d§W ) (I5/1;)-1 _ 5 3218
W ey d,’%{/d§J T m)-r -

Se0 8°0%

w
and the two limits are not equivalent.

A.3. Higher Order Solutions for SW =0

This section deals with higher order solutions of the equations
of Section A.1.2. Equations (A.7) are repeated below with the

restriction that SW = 0



3 2 2
aF 1 _d%F dF
—= 4+ = F—5 +|1 - (5=) = 0
F(0) = g—gw) =0 (A. 23)
aF
‘&E()—l

Since solutions for B = o are of interest, F is assumed to be

1 1
F(C;ﬁ)=F0(€)+y€—F1(C)+E FolC) - (A. 24)

Substitution of the series, Equation (A.24), into Equations (A.23) and

collection of coefficients of like powers of 1/p gives, to order

d3F

1 0 dFO 2
35 3 tl- ( ac =0
g dg
dFO
dF
0
'@— (00) 1
d3F dF, dF
1 1,570 1
R L
(A. 26)
dFl dFl
F,(0) = W(O) = 7:1‘(;—‘(00) =0
3
1 d FZ , dFO dF2 (dFl>2 - dZFO
B dg3 d¢ dc¢ dcC ) —
dg
dFZ dFZ (A. 27)
F,(0) = ‘E‘(O) =ac () = O
etc. Equations (A. 25) have the solution found in Section A. 1. 2,

Equation (A.11):
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dF
U, = ‘dg—o = 3 tanh’ (-C— + tanh ! -i- )-2
yz

With U1 = dFl/dQ , Equations (A.26) become
dZUl
—(;C? -2 UOUI = 0
N (A. 28)
= 0

UI(O) = Ul(ec)
Hence U1 = const. dUO/dQ is a solution of the differential equation
which satisfies the boundary condition U1 () = 0. However, UI(O)
= const., therefore U1 = 0 is a solution of Equation (A. 28). The form
U1 = A(C) dUO/dg is assumed to see if there exists a non-trivial

solution of Equations (A. 28) with

dU . \2
d [ dx 0 _
ac a‘:<—dg—> :l 0
A(0) = O (A. 29)
lim (1-Ug) A(C) = O .
= e
Now, dUO/dQ = y27/3 (l-UO) y2+U0 , therefore
ao_ S
dUy (dUO/dg)3

where Cli is a constant. Near U0 =1 (€ = o)
C
Ao~ , * C
(1-Ug)

2

and (1-U,)A ~ Cl/(l-UO) unless C., = 0. C2 must be zero to satisfy

0 1

MO) = 0; therefore

U, =0 (A. 30)
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is the only possible solution of Equations (A. 28).

With U, = 0, Equations (A.27) simplify to:

a°u, au,,
—£ - 2UU, = -F, —
i’ oYz 0 dc
(A. 31)
U,00) = U,lx)= 0
After letting U, = A (Uj) dUO/dg ,
d [dx <dUo>3] .o Y%
au, Lauy \ac 0 7ag
NO) = 0 (A. 32)
im (1-U MU, = 0
U, 1

To obtain a solution of Equations (A. 32) fo:i‘ MUO) is a formi-
dable task since the right hand side of the first equation must be inte-
grated twice. However, a complete solution is not required; in fact,
only d)\/dUo is required to define the profile quantities and the task is

reduced to a relatively simple one. Since the velocity is

W= U/U, = Ug0)+ 5 UpC) 4

* ¢
the functions A, ® and ® can be written:

(>3
*
<)
1
o]
-

i
| =
@)
[ae—

+

OVp = 12+%(Q1-2Q2)+ (A. 33)
eyp = I3+%(Q1-3Q3)+--v

where
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O
0

o0
1 fo U,(€)dC

O
0

oc
, jo U, (C)U,(C)dg

O
w
i

% 2
jo U, (€U

With use of the differential equations, Equations (A.27) and (A. 31),
the integral Ql can be written as a function of Q3 and QZ can be eval-

uated directly. The results are

21 2 83
I, 5 T I
L ! (A. 34)
Q
2 _ 1
-i_l— = 5 [(Q-1)-D]
where D = 4/(311) (d?\/dUO)U0=O , and Q3 is
Q3 1. 1T 38 NEx:
1 0 Yo Yo
Thus only one integral of Equations (A.32) is required and is
: 2
. U, U
o == 5 3'2{F *F(tz”ﬁUoE“ZQ“‘ég:l
0 y2 (I-U ) (2+U Y/
3/2
+ ks, [(2+U0) (3-UO)-6 Y’Z‘]-(kl+k2)+cl} (A. 36)

where
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5
1 2 1
F(t) = t—s—[pfnt-%] -)’_3—t4 [fmt-%] + 5t3[f2mt - -3—]-3 Y3t [@zt-i ]
t, = y3 - )’2+U0
t, = Y§_+-YZ+UO
kl = F(Y3 -)Y2) (A.37)
k, = F(Y3 +V2)
2 -1 /2
k3 = - '5— [)IT - tanh ‘ g ]
C, = arbitrary constant of integration

The constant Cl can be determined from the boundary condition

lim (l—UO)X(UO) =0. As U, -1,

0
U,
a1 1
i~ 3{Fzy— y’3"+6k (3 = YZ)-(k, +k,)+C
0 Y__lU)
MWl-U) o«
0 2
+ a + + o
1 T, 1o,

therefore, the boundary condition is satisfied if the bracketed term

is required to vanish since then

2 .
A~ By [@n(l-UO)] +szﬁm(1-U0)
and (1-UO)“>‘ (UO) = 0. Hence C1 is
C, = k_+k —[F(Z)’—Zv—)+%)’§_+6k()’_3——)'—2—)] : (A. 38)
1 2 3

Now the value of D = 4/(3I,)(dA/dU,).. _, is simply C,/I. and the
1 0 UO—O 1'71
integral Q, is easily determined. The solution for d\ /dUo is com-

plete and Q3 can be determined.

If we return to the original objective of writing the functions
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%, J, R, P, etc. as series in 1/B, it is now possible to evaluate

00 2 Q .
du - 4 Logs 3y,
fo(a—g-)dg_gxl[1+ﬁ(15ll)+ ]
__ (A. 39)
(%—Q‘i) =2 [1+%(1-2~11D)+ ]
€=0 y3
With the use of Equations (A. 33) and (A. 39), one can write the
profile functions as series in 1/B:
T e U T
M= Hytg e =MaL Mt
- 1 cee = L
J—JO-!-B-JZ-%- _JAL+{3J2+ (A. 40)
etc.

where the zeroth order functions are those previously determined

and the second order functions are:

Nz = 1+D-Q (%4—?%)
J2 = %(%‘8%})

Ra =35_2112(;_0“?1—3)
P, = 13[13-@(%-'%)]

The quantities D and (.)3/11 were determined numerically and the

values are:

D . 0958

it

s
Il

. 1694

These solutions, Equations (A.40), are compared with the numerical

solutions obtained by Klineberg in Figures (A. 3) and (A. 4).
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