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ABSTRACT

The integral moment method for treating interactions between
a laminar boundary layer and an external supersonic flow is applied
to the problem of the hypersonic laminar boundary layer nea‘r sharp
and slightly rounded convex (expansion) corners. The general fea-
tures of this type of interacting flow are established by an analytical
solution of the integral equations using the method of matched asymp-
totic expansions for the case of small interaction parameter. Numer-
ical solutions are obtained for flows for which the interaction param-
eter can no longer be considered small.

An experimental study is carried out in the GALCIT Mach 8
hypefsonic wind tunnel in order to study the two-dimensional laminar
boundary layer expansion. Major emphasis is placed on the acquisi-
tion of detailed data near the corner region. The basic measurements
consist of the model surface pressure distribution and pitot pressure
surveys of the boundary layer and inviscid flow field between the
boundary layer and the leading edge shock wave both upstream and
downstream of the corner region. The surface pressure measure-
ments illustrate the striking departure of the flow field at hypersonic
speeds'from the classical Prandtl-Meyer description.

These data with appropriate assumptions made regarding the
static pressure and temperature fields at points away from the model
surface allow calculation of the distfibutions of profile functions
defined in the integral moment method formulation. These distribu-
tions along with the surface pressure distribution are compared

directly with solutions of the moment equations.
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I. INTRODUCTION

This study is concerned with the laminar boundary layer in a
fluid flowing at supersonic or hypersonic speeds over a sharp expan-
sion corner. Interaction between the viscous boundary layer and the
high speed inviscid outer flow and the subsequent requirement for a
simultaneous solution of the coﬁpled flow fields is always present to
some extent. The degree to which it is present depends strongly on
the Mach number and to a lesser extent on the Reynolds number of the
developing flow. The presence of a local disturbance, in this case an
expansion corner, can ampiify the effect of the interaction by pro-
ducing rapid flow changes in the vicinity of the corner. In the purely
inviscid limit the flow is accelerated by an expansion fan centered at
the corner and the flow properties downstream of the corner can be
calculated with use of the classical Prandtl-Meyer function. At low
supersonic Mach numbers and high Reynolds numbers, this ideali-
zation of the flow field ié adequate. As the Mach number increases
and/or the Reynolds number decreases the boundary layer can thicken
significantly and the viscous-inviscid interaction becomes important
even in the absence of a local disturbance. Furthermore, since a
portion of the fluid in the boundary layer is flowing at subsonic
speeds, the effect of the presence of an expansion corner is distri-
buted over a region of finite extent upstream of the corner as well
as downstream.

It has been observed experimentally that the extent of the
corner interaction region is more limited upstream than downstream

of the corner. The existence of a weakly interacting boundary layer
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upstream of an expansion corner (and the resulting limited inter-
action region) does not guarantee weak interaction throughout the
expansion. In fact, a strongly interacting boundary layer can be
induced downstream of the corner simply by increasing the expansion
angle with an attendant increase in Mach number and corresponding
decrease in Reynolds number. Hence, the physical length scale for
the relaxation of the boundary layer from the corner interaction can
be expected to be larger than that for initiation of the interaction.
Thus, the effects of viscous-inviscid interaction are amplified by
introducing an expansion corner into the flow field and a detailed
knowledge of the boundary layer-expansion wave interaction becomes
important. Furthermore, the understanding of this problem can be
related to other important problems such as the flow over a bluff
based body.

Because of its complexity, various idealizations have been
made in attacking the prdblem theoretically. These range from the
early consideration of linearized equations to numerical integration
of the (nearly) complete Navier-Stokes equations. The early work on
a closely related problem, that of the interaction of a mixed (subsonic
and supersonic) parallel shear flow and a weak disturbance has been
carried out by Howarth,(l) Tsien and Finston,(z) Lighthill, (3, 4) and

(5)

The expansion of a rotational in-

.(6) (7, 8)

viscid supersonic flow has been studied by Pai' ' and Weinbaum.

more recently by Sullivan et al.

Zakkay(g) uses the concept of an inviscid rotational layer bounded by
an inviscid supersonic stream and a viscous sublayer downstream of

the corner adjacent to the wall which originates at the corner. The
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initial profile downstream of the corner is assumed to be given by an

inviscid expansion of the upstream profile. Olsson and Messiter(lo)

use a similar concept in analyzing the boundary layer expansion up-

stream of a sharp corner. Integral methods of solution have been

(11,12) Hunt and Sibulkin, (13) Oosthuizen(l4)

(16)

studied by Curle,
(15)

and

(17)

Sullivan with various approximations. Baum and Tyson

have used finite difference schemes to obtain numerical solutions of
the ”genéralized" boundary layer equations, which include a trans-
verse momentum equation, for this and a related problem. Tyson,
in addition, has examined, numerically, solutions of the moment

(18)

equations of Lees and Reeves

(19, 20)

for the corner expansion problem.
Ko and Kubota have taken advantage of the singular behavior
of the moment equations at a sharp expansion corner in the study of
the finite plate effect for a compression corner. Klineberg(21) has

examined, in detail, the various types of possible viscous-inviscid

interactions for the expénsion corner.

(22)

Experimentally, much less work has been done. Sternberg

at BRL and later Zakkay, Tani, Toba and Kuo 2>’ %)

at PIBAL
carried out experiments in supersonic flow around a sharp convex
corner using a cone-cylinder. Since they were interested primarily
in surface temperatures and heat transfer only a very limited amount
of fluid dynamical data was obtained. The viscous interaction was so
small for these experiments that little detail of the surface pressure
was observed. Murthy and Hammit(zs) performed experiments down-

stream of the corner expansion of a turbulent boundary layer and

carried out a characteristics calculation for the rotational supersonic
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flow ignoring the subsonic portion of the boundary layer. The above
experiments were conducted in the Mach number range 2-4 and
hence at relatively low values of the viscous interaction parameter.

At GALCIT, Puh1(26)

studied the expansion of a laminar boundary
layer around a sharp cone-cylinder juncture at Mach number 8. One
of the more striking features of this work was a very detailed surface
pressure distribution in the vicinity of the corner which well illus-
trated the strong departure of the distribution from an inviscid cal-
culation.

The present study has a two-fold objective: (1) to gain a
clearer understanding of the structure of the laminar flow field for
the expansion corner as the viscous interaction parameter
L )% tends away from zero and to isolate the dominant

oC
driving mechanisms in the flow regions which result, and (2) to pro-

X

oC

Hl

M (C/Re
o0

vide a two-dimensional experimental result to further illustrate the
importance of the boundary layer-expansion wave interaction at hyper-
sonic flow speeds and yield results which can be directly compared

with theory.
(18)

The integral or moment equations of Lees and Reeves and

(21)

Klineberg are chosen for the theoretical part of this study. The

motivation for selecting the integral equations stems from the fact
that, in spite of the misgivings that one may have regarding the
lateral pressure gradients associated with an expanding boundary

layer, a direct comparison of numerical solutions of (i) the moment

(27)

equations and (ii) a more complete representation of the Navier-

(17)

Stokes equations for a particular configuration indicate that the
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lateral pressure gradients are important only in a region close to
the corner. The results of this comparison are shown in Fig. 1.
Qualitatively, a theory with zero lateral pressure gradients appears
to describe the flow field correctly insofar as the pressure distribu-
tion is concerned. Furthermore, if the pressure distribution is not
prescribed a priori but is obtained from the simultaneous solution of
the viscous and inviscid flow fields, a mechanism for the upstream
propagation of a disturbance to the boundary layer exists. Hence
one may expect that the formulation of the problem of hypersonic
corner expansion in a boundary layer framework may yield a repre-
sentative description of the expansion phenomenon. With this in
mind, one can formulate the following problem:

A laminar adiabatic boundary layer is assumed to be weakly
interacting with an external hypersonic flow, i.e. the corner dis-
turbance to the boundary layer is assumed to be located sufficiently
far from the wall leading edge that the flow properties can be accu-
rately represented by a weak interaction expansion of the integral

boundary layer equations. (21,28)

This expansion provides an outer
solutiop for the flow entering the interaction region where x is the
distance from the leading edge normalized with the distance from the
leading edge to the corner location I.. The problem then is to cal-
culate the flow field which results from turning the boundary layer
through an expansion turn defined by a

In Section II, the expansion flow field is separated into re-

gions dominated (i) by inviscid forces, i.e. the pressure gradient,

and (ii) by viscous forces, i.e. the shear at the wall and the viscous
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dissipation. Appropriate asymptotic solutions of the integral equa -
tions are developed for each region from which uniformly valid
composite solutions can be constructed. These serve to illustrate
the structure of the expansion flow field.

Section III contains the results of the experimental study.
Quantities defined by the integral method are calculated from the
measurements and the distributions are compared directly with
numerical solutions of the integral equations since the range of
parameters investigated exceeds the limits for the closed form solu-
tions of Section II to be valid. The comparison between experiment

and theory is presented in Section IV.
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II. THEORETICAL INVESTIGATION

II. 1. Differential Equations

The geometry of the problem is that shown in Fig. 2; x is the
distance from the leading edge and y the distance away from the
surface normal to it. If the radius of curvature of the wall is large
compared with the viscous layer thickness, the differential equations
reduce to the usual boundary layer equations, in which the pressure
gradient normal to the wall is neglected. In the neighborhood of a
sharp expansion, however, the radius of curvature of a streamline
is not large compared with the boundary layer thickness, and conse-
quently the transverse pressure gradient may not be neglected.
Nevertheless, the extent of this region is of the order of the boundary
layer thickness, and outside this region we may use the boundary
layer equations. Thus, for a steady, two-dimensional, compressible

boundary layer expansion, the partial differential equations are:

Continuity
9(pu) 9(pv) _
5x T oy - ©
Momentum
ou ou _ dp ) ou
pua—}z'i‘ pV—a—S—;— —dX+5§7_(u—a_‘y—) (1)
Energy
0H O0H _ 9 , 4 0H o0 ,Pr-1 ou
P PPV Sy T ey (Bray ) Ty CBr MU gy
H = —1— u2+ c T
2
State

p=pRT (perfect gas) .



The boundary conditions are:

- oT _ - -
v‘—O, ka‘f = q, (orT-TW) aty =0

[«
1]

and

[«
L]

ue, H=He aty = 6.
For the case of an adiabatic wall and Pr = 1,
H=H, fory=20

For the sake of simplicity, the analysis will be limited to the adiabatic
case.

In the ordinary boundary layer theory, the presisure distribu-
tion is assumed known. In the present analysis, however, the pres-
sure is determined through the interaction of the boundary layer and
the supersonic inviscid flow and has to be obtained simultaneously
with the developmeﬁt of fhe boundary layer.

Integrating Equations (1) across the boundary layer to elimi-

nate the y dependence gives:

as” « 1 4 v )
T 88 5 gy (Peup) = g = ten@
e e e
du
d 2 .. % du
ax (P O+ v, T = Mgy) ) @
du .8 2

3 % % 2 e _ ou

dx (peuee )+2(8 -au)peue dx T 2, 0 L"L(ay) dy )



where
dy 6 = S ( - -E >dY
0 peue
_B__ * 6_33_ u?
S “0- ey " L (1-2 ey )
Ye 0 pe e u
e
611 = SO (1 -g)dy

The third equation in (2) is obtained by multiplying the momen-
tum equation by u and integrating across the boundary layer. The
integral quantities, Equations (3), can be written in terms of corre-
sponding incompressible quantities by using the Stewartson trans-

(29)

formation

W'(DW

dY = £ dy (4)
Pao

8

and relating the longitudinal velocities by

a
U = _a_O_C 1 (5)
e
‘as:
a p N
* o Toe ®
§ = a5, 5 [1 +me(1+£()]
b = "0 Foo 0.
aepe i
| > (6)
a p y
p* - 2 g
a_Pq i
a p ,
- _ o¢ o0 *®
611 =% o 61 [1 +me(N-J)] J
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where
) 5.
3 B )
6i = S dy 61 = S (l-ﬁ——)dY
0 0 e
8 5 2
5, = g -g— (L%)dy e;" = S %(u-—‘%)dy (7)
0 e e 0 “e Ue
8. 9:
4 = g‘g J = ;’E
i J

By applying the compressibility transformation, Equations (6),

and using a viscosity law of the form:(3o)
B T
noC ST (8)
oc 00
Equations (2) become
\
£ *
ds. 6. dM l+m
S SRRV Sl =Y. S e . _B e
Fxx* % ax T f1\/[e dx - m,_ l+m tan ©
as’ 5" aM v
ar i * dy i e _ o0 P >
Foaw Py T Mg e TP M R (9)
e w e 61
* £
dé. ) dM Y
i *dJ i e _ oc R
I & P &3 e oM
e e 61 )

where
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ool s
OCPOC
14+m
F = ¥+
m
e
+1 e 3a-1 Mj’l
f = 2+3’——11+ ¥ 2Ly Z (10)
y - m v-1 m (1 +m )
(S3 e (S
5.
2
*[ 9 U *xCorsuU
e - 0[5 (2)] R - 26" [_(_)] av
1[8Y U/ v=0 i Jo [BY \T,
1 Vi U
6 0 e

I1II.1.1. Profile Functions

The profile quantities in Equations (7) and (10) depend on the
velocity distribution through the viscous layer. For the adiabatic
problem at least one parameter is necessary for its definition. Since,
in the integral method, only relations between the integral functions
are required, it is necessary to obtain functional relations of the form
¥=%(a), J =J(a), etc. where a is a profile parameter. One method
for generating these relationships is to assume similar-flow profiles
and use the similarity solutions of Cohen and Reshotko to obtain this
dependence. This procedure was followed by Klineberg and the details
are given in his Ph. D. thesis.(21) The results from the numerical

solutions of the Cohen and Reshotko equations were approximated by

polynomials of a, where

8(U/U)
T AT | vo
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The values of the coefficients are given in Table I. These functions
have been adopted for this study, where applicable.

Alternatively, one can regard ¥ as the parameter rather than
a and write J = J(¥), R = R(;‘M), P = P(¥), etc. since a is an arbitrary
parameter. The unknowns in Equations (9) are then 61*, Me and &

since tan ® can be related to Me'

II. 1. 2. Equations for Super:nnic Flow

By defining the following dimensionless variables, all of which

are O(l):
& o L . . _ M_
_I:— V C :6 H E:Xy M :M (11)
o0 oo

where L is a characteristic length (here taken to be the plate approach

length) and writing the viscous interaction parameter as

2 L 2

) 2 [ e
) M) 5 == () e
o6
Equations (9) become:
~ o ~2
F%+6§¥+3—é————dl\f]e =§rf\f 2’1—21 M tan®
b dx dx M dx T ®
v &y oy LM 8P (12)
dx dx M dx Mé
dx dx M dx M 6
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where
~2
Fo=ow+ 2N
M
2 ~2
£ = [2+2’—+—1— VS P 2 R
LA v L -1 ﬁz(r+ﬁz)
1 (13)
e
o«

2Y-L
2(y-1)
B = r+1l
LHVI ]

Equations (12) can be completed by specifying the relationship
between Me and tan ®. In the manner of Lees and Reeves, (18) if the
expansion is assumed to begin in a region of uniform flow, the stream-
line inclination can be related tothe Mach number by using the Prandtl-

Meyer relation:
e = \)(MOC) - V(Me) + a/W(x) (14)

where aW(E) is the inclination of the local tangent to the surface and

is positive for an expansion turn. The Prandtl-Meyer function v is:

+1 -1 -1 2 -1 2 '
v o= —yx_—l—tan :/%:—H(M -1) -tan”YMe-1 . (15)

Equations (12)-(15) together with the definitions (7) and (10)

£
form the basic differential equations in the three unknowns Me’ 61

and ¥.

II.1.3. Hypersonic Approximation

A convenient form of Equations (12) for analytical study is

obtained by making the approximation Moo >>1 or r << 1. Expanding
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the Prandtl-Meyer function for M >> 1, one obtains

Me
— I_M oo
e oc

<
<
!
<
<
mv
1]
:
=<

and

With the following definition
Syl %) = alx
1 5 Mocozw(x) a(x) | (16)

Equations (12) and (13) become:

(;z[+1)§%+°o' §§+§2’__-1_£(N+1)§i1\:’1_ €=——1—>\[1-17/Ia(§)] (17a)
dx ax 7 M ax Vi
v Ty g L Lo 2 (17b)
dx dx M dx M™ 6
g8y gy 2L B (17¢)
dx dx M dx M™ 6
4N-2

Clearly, the two parameters in Equations (17) are the viscous
interaction parameter ¢ and the expansion angle Mwaw.

II. 2. Solution for Small Interaction Parameter

If the interaction parameter € is small, we expand the solufi~n
in the region where the x-derivatives are of order unity in power

series in €:
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Then, from Equation (17a) we obtain

l-MOa(x):O.

rection 1\711 is determined from Equation (17a) by substituting M

and ’31 are determined from (17b, c).

Namely the Mach number and hence the pressure along the boundary
layer edge are given by the inviscid flow without the boundary layer

effect, and 2[0 and '5‘0 are obtained from Equations (17b, c). The cor-

o ¥o

and '5'0 in the left-hand side, and the corresponding corrections 2[1

In particular, for a flat plate aW(E) = 0, an expansion of the

orm:(ZI’ 28)

~ my
M =1+¢ + -
No
hl
& =NB+€——— +
A X
6

T =65 /x (1+e +oeee)

1
X

serves to describe the boundary layer in this region.

, 2D 7R
5}3:)/2[]3 =/JB:1.72387
B B

w

P_'.':7‘
1l
S
2| 1
I
w td
——
3
e
\
1
e
$
gl o
R
=

o
i
l[\J
YF
iy
i
R
| I
8
+
Sl
S
e
| I
W
S
‘_?‘

Here the sub-

script B refers to Blasius conditions and the constants are given by:
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With this expansion solution the effect of a sharp expansion
corner does not appear in the region upstream of the corner. In the
neighborhood of the corner we expect relatively rapid changes in the
flow and hence the breakdown of the above series. In fact, if appre-
ciable changes occur over a distance of order ¢ from the corner
(x = 1), the left-hand side and the right-hand side of Equation (l17a)
are of the same order. An asymptotic solution valid in this region
is described in the following sections.

II. 2. 1. First Approximation

I1.2.1.1. Inner Soluticns

In the vicinity of the corner the x coordinate is stretched as

follows:

X;l = X fixed as e =0 . (20)

Then, Equations (17) become,

(1) 82 4 T G VL gy £ IM = 5 [1-Fa ()]
dx ax 7 Mdx M
v L vy ewe g—dg[ = e (21)
X d% M X M3 |
J§g+€§% +37 E—Q%::eé%N
dx dx M dx M" 6

Thus, on the scale ;E, the shear at the wall, P, and the viscous dissi-
pation, R, enter the solution to first order in €. It is implied in this

region that [1-Ma(X) ] is O(1).

In this region we expand the solution in the following form:
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Mo &) [1+e My (x) + ]

2
@
"

% Ko +ew )+ (22)

R

®
[0}
0

FEe) = 5, [14e B B + -]

Substituting the above expansion into Equations (21) and collecting

coefficients of likepowers in ¢, we obtain

ds aw T aM N
(Wt )—2 + By—2 + 2L () = —2 = Lo [1-8t, o (%))
d% ax 7 M, dx M,
d% d¥ T aM
Wy — +Fp—2+ @yt 2 —2=0
dx dx h\ 0 dx
ds dJ . dM
JO——Q +'6'O—TO + 37, :9—;—9=0 (23)
dx dx M, d -
dé, dw, 391 dM, i [1-Moa(§)]
(%[O+l) + + 1 (NO-H) = - X 1
dx X Y dx MO 3,0
d¥ dM
A L O - B @Al - e @] 18
§.dx VT M, d% MoE
0 0 0°0
ds, aw dM P ds dM, 7
%o_:%' +_:l+(23/0+1) : =N)\02';L—:?'+L§‘_9!%1
dx  dx dx Mg '50 _60 dx M, &\}J{_j
d6) rary Wy 33 M Ry 9% 3 dMy T gy
oot \w), =t = o s =t = |t
dx 0 d% dx MJT, ﬁO dx M, dx 0
2
d
i (9.%) o ¥, . (24)
d¥®’p d%

The second and third of Equations (23) integrate immediately to give:

e . w3
5y Jo My

const. = C1
(25)

MO =C2 exp
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where

) :N—@‘-J

(26)

>

N/\

=
1

(1-%)7J

The constants C,y and G, are determined by matching with the solution

(18) as x = 1, which can be written as

- m,

M = h (¥ - &') + -

6 = 6BE. + h ) + . ]
Therefore

C,=1, C, =Cp=8,0p

These solutions can be related to the physical plane by substitution

into the first of Equations (21):

ig_(g A [1-Me(x)] -
~ - ~ }\_ ~ A B
dx Mg & DWO)
where
AL (%)
D(¥) = i[ - A ()(14) (27’—% . 5%[-) , (28)

The vanishing of the function T)(%O) gives a unique value of
2(0 Ei&’c in the hypersonic limit. ﬁ[c is larger than ,'&(B and corresponds
to a boundary layer profile accelerated above its zero pressure
gradient solution. Boundary layers for which Ko~ %[C are termed
supercritical. A subcritical boundary layer responds to a down-
stream disturbance with an exponential increase of the disturbance,

whereas a supercritical boundary layer is one for which disturbances
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are exponentially damped. The effect of an external disturbance, in
this case an expansion corner, can be propagated upstream of the
corner if the boundary layer upstream of the disturbance is subcriti-
cal. A complete discussion is given by Klineberg,(ZI)

For an expansion turn, then, if the wall angle, a is suffi-
ciently large, transition of the boundary layer from an initially sub-
critical state to a supercritical state will occur. Smooth transition
from the subcritical state, 5&(0 < QJC, to the supercritical state,%o> KMC,
requires the simultaneous vanishing of [1—M0a(§)] and 5(%0), The

. . . ~J —_— ~r
latter requirement defines a particular value of x = X and correspond-

ing critical angle ozw(;;c) =a_ > 0. As defined, ﬁ(%o) > 0 for ¥

< ¥
wc c

0
< > .
and ﬁ(;’&[o) 0 for 2[0 %z’c
Since the location of ;C is fixed by the requirement that aw>arw
it is possible to examine the behavior of the solution in the vicinity of
the critical point (NC, §C) by linearizing Equétion (27) near this point.

Defining ¥ = M,-¥_ and % = §-§C and, for simplicity, assuming a cir-

cular arc turn with radius of curvature R such that

Z o

€

a@ = 1-2L M =1

x-1 _ ~
2 MR L =1-%5 x (29)

:
o8
E

we reduce Equation (27) to

ar 5[;:/%;. A 30)

dx

where
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AL (¥ )T
B = - 22 c'Vc >0
M 7-1cl(dﬁ/dm%:%c
y AI(NC)Q
AZ(K[C) c
R /L
C

Equation (30) can be integrated to give
Y ~ ~ >\1 'y A~ o _>\2
[ %/ R [, /R 1 2= c
where )\l and >‘2 are the roots of

A ip PR -8y°R = 0

Since Xlkz =-B 'yzﬁ <0, the origin (=0, = 0) is a saddle point with
two separatrices & = Klﬁ/(yﬁ) and ¥ = KZSE/(}/PPi). Thus, the separatrix
& = ?\1 %/(fy 'ﬁ) ()\l > 0) is the solution for subcritical-supercritical
passage.

If it is assumed that the linearized solution is valid on the

entire curved portion of the wall, the total change in ¥ between points

@ and@ [see Fig. 3] as the radius of curvature tends to zero is:

VR OWVR

A%[@ @~J§“‘~o as R~ 0
fvl[@: 2[@=?(C

Therefore, in the limit of zero radius of curvature, this result sug-

gests computing the flow upstream of the corner separately from the
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flow downstream of the corner and matching the two flows at the cor-
ner. Continuity of B{O at the corner requires continuity of MO and |
hence continuity of '70'0 from Equations (25). For the sharp corner,

then,

_ o for x < 0
aw(g) - Lozw, const. for x> 0

Rewriting Equations (25) and (27) for the two regions, noting

A(R[)

that 1\7[0 -1~ A;(ﬁf )(N ?{ ) near the Blasius point, we obtain
~ ~ 3
897, My = Cq
M, =8 exp{'b'lwo)} . X<0 (31)
D) Ko-Ng
~ B
% C. 0. (¥ on
2 B A (¥p)ig (2{ Hg )
T I M2 = C
000 T~ “B
1’\710 = 1\“71C exp {’dlwo)} >0 (32)
y+l
~ N 1 v-l D(Np) Np-ﬁ[o
X Cp QW +Cy(35) AW )3 @”<az W )
PP P ¢
where .
5 §0 A (%) ax
1 A () ™
‘Nc 2 +1
v | M %//-_IN D) 1
B = S 0 0 D) B 1 v
2 TAN ), W -X
M AZ(%{)JO(NIO—I) 1 B B
s . (33)
% | 8 71 2T B :
'Q3 S 0 D) _(l) P 1 oy
v Lagwrge Mo-n ¢ AER, ”‘”pJ
1’\71C = l/exp{tjl(%[B)}
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and Np is given by

~

é = MC exp {le(?{p)}

The solutions are defined in teris of quadratures which have
%[O as independent variable. The parameter Mocaw appears only in the
downstream part of the solutions. Solutions can be readily tabulated

in the form:

¥ = ;vo(’ES) )

M = MOGE) 0 <x <0

6 = 5,

¥o= M o )

M = MO(N;M a )Y 0<% <+
o W

6 = 5y(x% M a)

However, the downstream solutions for 2[0 and ’50 are not uniformly
valid and will be examined in Section II. 2. 1. 2.

I1.2. 1. 2. Relaxation Solution

In the upstream solution, as ¥ RS

~

YT,

L 1 0"¥p

X-c B, wy)+ : o (5 _ﬁ[)
1 C

B

or
klz P
NO'%B ~ const. e

Hence,
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0 B \
l,
MO -1 g exponentially as X = o0
L
g, - o |

The inner solutions for ‘;‘L( (X) and IVIO(;E) are uniformly valid. A

uniformly valid solution for 'S' = 7 l([55:;6:) can be constructed from
comp. comnp.

the inner and outer expansions:

%Jcomp. = %JO(;;) * 6B [ﬁ— -
(34)

%’ x) + 55 [An.+e§ -1]

The downstream solution for M = I\N/IO&;MOCQW) is uniformly

valid since 1\710 - l/a=M, /M for a particular value of ¥ = ¥_.

+ 00 - o0 P
However,

-kzz %
X -%_ ~ const.e -0
P 0

~

as x = toc; i.e., ¥ monotonically approaches a maximum value
defined by «. Similarly %‘0 - 6p, a minimum value, as X = +w. It
is then necessary to return to the differential equations (17) and
examine the solution for 1 - aM = O(e), namely the solution for a

region in which the boundary layer relaxes, interacting only weakly

with the external flow, to the Blasius solution.

In this relaxation region the following variables are

defined:
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%

1 -aM = O()=e M (x ;6
x -1 = X*
% (35)
) = 8
3%
¥ = ¥
Equations (17) become:
% dsT | kdy”  3y-l §F  amt MY
W) S2g +e g - e @) . o - =5
dx dx l1-eM dx (1-eM )
% * % % A
5k £ ES
WLy W ety S WM _Pe 3
dx dx l-eM dx (L-eM )76
a8 | xay a” 5% aMm™ _ R
J =5 +8 — —%-e3J * ® - O %
dx di  dx l-eM dx (1-eM )8
An outer expansion of the form
k% k& k%
M (x 5e) = Mg (x ) [1+e M (x7) + -+ ]

U

(=) + e M )

£ sk Sk

¥ (x ;e) =ﬁ[5

3 sk ok
6% (xse) = 55 0x ) [1+e 61*(x*) T

is assumed in this region. Substitution of this expansion into Equa-

tion (36) gives

ds oM et
* 1 %% ¥, 0 ¢
(NO +l)—T}<- 3 + 3 = sk
60 dx dx 60
% ES by
« 1 98, v, P,
NO _,y? % + ] sk 2 (37)
& dx dx” 5.
0 0
& £ N
; _l_—déo +(dJ>dNO=R0a
0 % ax™ ‘afbax* 5. %2



% sk * A *
s, a&¥F M, « dé
sk * *
< 1
dx dx 50 6 dx
0
E3
. aMm
# 2L 1) —3
dx
sk %k *
% dél d?{l CY>\ AP s % 1 déO %*
¥o %t T T LRI PP | =
dx dx 8, a0 6, dx
Kk
dM
sk 0 (38)
+(2NO+1)——*
X
sk b3 *
87 sus N N o ar dM,
Jo =%\ —x % w2 L\ F) M TR | 3y
dx “d% 0 dx 8 dx
sk ES

The second two of Equations (37) can be solved simply for the deriva-

. * sk sk Sk
tives d}&[o/dx and d60 /dx

A )
as¥ P ( Ry

< ,-
1 409 T 0hp o Polg- Ry A
% % T % dJ) ’ *2 %* *2
55 dx vy (%) -7, 6, AW 8]
a0
5 * (39)
®y Ko Rp TPy G2
% sk %2
dx AW 8,

As before, if the integration is performed in the phase plane, solu-

tions are

N* /

o P.J./-R
* 00 0 * %
5. = K., exp e A= K. exp Q. %)}
0 1 g v ¥RyT,P, z/§ 1 1 Wo

oy p (40)

I U S L K, = Q. % +K
X F N ) wR.o7D, %0 WWF K, =Q, W) K,
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Substituting Equations (39) into the first of Equations (37) gives the

solution for M;:

) B (ﬂ[ >}<)
M(; == >}<l £ 3 1 ?{: : (41 )
8o Wy) ALB)

where B, (%) = R-J'P-PA; () .
The solutions (40) exhibit no singular behavior for 2{; = 2{C and
no difficulty arises in evaluating the quadratures over the range

b
i[p 2 Xy > Z&[B. Near the Blasius point in the phase space, %[: Ry=JI P

0" 0
and
1, I -B
6:»« const. (5%[8 —NB) !
, g
sk £ 1
My~ g -¥g) =0
where
% P.J/-R
Bl = - 00 0 <1
d
[~ 6gR 74P >]§
#0070 0
* M Hp
The asymptotic forms of Equations (40), as 2[0* = ?{p are given
by
6.0 = 1{1 + f (}l[ ?3/ ) + - }
* Lo w ywrw )+ +x
bie = - . e
aA 2'7p 0 7p 2
or
ES Y o(>\ *

0 l{l+af<%))(x*—K2)+...}

(2]
1]
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where
r ’_
Polo By
fl()‘&(p)— —— | .
¥oRoJ0P0 |x ¥ =y
0 7p
A (ﬁ[*)
_ 170 2
L) =) K,

P ®o
¥y Ro-IoPg %/:=f&(p

3 o ~
If the outer solutions are expressed in terms of the inner variable x,
solutions are, correct to order €

E ) o )
vIE) =M - K 4
0 (% 2

£(¥ )
k- A1 p”
0 ) = Ky {l - @ ) Ky + }

These must be matched to the inner solutions as X = o ,

Em ﬁ[o(x) d Np
- o0
EJl‘l;l’l <So(x)'"’6p
X = ¢
Therefore,
Kl = 6p’ KZ = 0

A uniformly valid composite solution can now be constructed in the
region downstream of the corner by subtracting out the common parts

of the inner solution and outer solution:

x ~ 5k ES
%Co%p;.e) =¥, (x) + [;’MO (x )—?{p]

Eco(rg;;.e) =, @) + [6;<(x*)— 5]
Mcé?‘x)xp = I\(7{065)
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Summary
Summarizing the results of the first approximation gives:
Upstream of the corner, x < 0:

INNER SOLUTION:

Moo = M exp{Q )}

C

(a2 aas B
6 ,) =
0" 0 ~ 3
JOMO N

D) X -

~ o B /70 "B

x@®,) = C_L4Q,%,.) + on

0 B{ 290 AI(NB)JB C—?{B>}

OUTER SOLUTION:

MO(X = 1
3‘O(}<P> = 6B 1+X>‘<
}&(O(x ) = f&[B

Mee) = §,()

K

g(x ;€)

1]

8o + 65 Wit - 1)

Hixse) = ¥R
Downstream of the corner, x> 0:

INNER SOLUTION:

Myw,) = (ISZC exP{ﬁl(%fO)}
TN =
070 J K/'I?)
- O | BT Bw) WK
xWy) = 63{63(’”0) (3) AT %<£[p—ﬁ/L>}
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OUTER SOLUTION:

~ ES 1
M (%{’ ): - sk
62&[0*) Z S"“[o PoTo Ry ad =5 exp (070 )

= exp i - T = ,
0 %o p « ¥ R,-T P, p 1%0

sk
¥ ALK
% * 1 0 1 *2 - ES ES
x Wo) = T&M FR,-T,p, %0 MW =0, W)
o p 0" 0

COMPOSITE SOLUTION:

Ri(x se) = My &)
sk

b sk b
5§ (x :e) _%'O&) + {6O(x ) - 6p}

3k

sk ok 3
- ¥ }
) 1%

%(££)=%(Q+{N?X

0
These solutions are sketched in Fig. 4. The solutions of the
differential equations in this limit show that the pressure drops to
within O(e) of its final downstream value on the scale (x-1)/e¢ while
the relaxation of the profile shape back to a Blasius condition takes
place on the physical scale (x - 1). Furthermore, the upstream
solution is independent of the expansion angle provided the angle ex-
ceeds the critical angle for supercritical flow downstream of the
corner. To the order of this approximation, the critical angle is

given by

M o = ?2—1[1 - eXp{Ql(sz)}] , (42)

Evaluating the quantity exp{?.il WB)} gives

-

eXp{Ql(NB)JL = 0.9804 . (43)

Hence M o =0.0980 for y = 1.4 and for M 5.6, < 1°. The
x WC oQ wcC

critical angle is plotted versus Moo i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>