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ABSTRACT

Particulate sulfate air pollutants contribute to visibility
deterioration and are of current public health concern. This study
develops the technical understanding needed for sulfate air quality
control strategy design, Methods which link sulfate air quality
and air quality impacts on visibility to the cost of controlling
sulfur oxides air pollutant emissions are presented., These techniques
are tested by application to the Los Angeles Basin over the years

1972 through 1974.

An air quality simulation model is developed which directly
calculates long~term average sulfate concentrations under unsteady
meteorological conditions. Pollutant concentrations are estimated

from Lagrangian marked-particle statistics based on the time sequence

of historical measured wind speed, wind direction and inversion base
height motion. First order chemical reactions and ground level
pollutant dry deposition are incorporated within a computational

scheme which conserves pollutant mass.

Techniques are demonstrated for performing both mass balance and
energy balance calculations on flows of energy resources containing
sulfur throughout the economy of an air quality control region. The
energy and sulfur balance approach is used to check the consistency
of‘a spatially and temporally resolved air quality modeling emission

inventory for the South Coast Air Basin.



Néxt the air quality model is validated against sulfur oxides
emissions and sulfate air quality patterns observed in the Los Angeles
Basin over each month of the years 1972 through 1974. A seasonal
variation in the rate of 802 oxidation to form sulfates is inferred.
Overall average SO2 oxidation rates of about 67 per hour prevail
during late spring, summer and early fall, while mean SO2 oxidation
rates of between 0.57%7 per hour and 3% per hour prevail from October
through February of our test years. From the model results, it is
concluded that three to five major SOx source classes plus background
sulfates must be considered simultaneously at most monitoring sites
in order to come close to explaining observed sulfate levels. The
implication is that a mixed strategy aimed simultaneously at a number
of specified source types will be needed if substantial sulfate air

quality improvements are to be achieved within this particular airshed.

Techniques are developed for analysis of the long-run impact of
pollutant concentrations on visibility. Existing statistical models
for light scattering by aerosols which use particle chemical compo-
sition as a key to particle size and solubility are modified so that
the relative humidity dependence of light-scattering by hygroscopic
aerosols could be represented in a more physically realistic manner.
Coefficients are fitted to the model based on ten years of air
pollution control agency routine air monitoring data taken at down-
town Los Angeles. Sulfates are found to be the most effective light

scatterers in the Los Angeles atmosphere. It is estimated that the



xi

visibility impact of reducing sulfates to a half or to a quarter of
‘their measured historic values on each past day of record would be
manifested most clearly in a reduction in the number of days per
year of less than three-mile visibility. The number of days of

average visibility less than ten miles would be little affected.

Two retrospective examples are worked to show how the results
of the air quality éimulation models may be used to define a variety
of sulfate air quality control strategy options. It is suggested
‘that a package of technological emissions control measures and
institutional changes (including natural gas price deregulation) may
provide greater improvements in both sulfate air quality and visibility
at less cost than can be obtained from a purely technological solution

to the Los Angeles sulfate problem.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this research 1s to create a policy-responsive
mathematical description of an urban sulfate air pollution problem.
The study i1s placed in the context of the Los Angeles Basin, but methods
of analysis are developed which have general application to air pollu-

tion control strategy design.

The nature and origin of sulfate pollution in an urban airshed
first will be described. Existing air quality and meteorological data
bases will be assembled into an organized picture of the pollution
problem at hand. Sulfur balance and energy balance techniques will
be developed which tie sulfur oxides air pollutant emissions to their
origin in a regional energy economy. Then mathematical models will be
derived and tested which simulate emissions/air quality relationships,
and air quality impacts on local visibility. A technical foundation
thus will be laid for future studies of the impact of alternative

emissions control strategies on sulfate air quality.

1.2 The Importance of Understanding Sulfate Air Quality Management
Options

Control of sulfur oxides air pollutant levels is one of the most
Persistent air quality problems facing industrialized societies. On

8 global basis, combustion and processing of sulfur-bearing fossil



fuels and smelting of sulfur-bearing ores leads to the release of

65 x 166 metric tons of sulfur into the atmosphere yearly (Friend,
1973). While naturally occurring sulfur sources exceed this man-made
pollution burden on a global-average basis, the fuel-burning origin of
man's sulfur oxides emissions often means that pollutants are generated
in close proximity to population centers. When an urban atmosphere
becomes overloaded with sulfur oxides and particulate matter, well
publicized public health disasters occasionally have occurred: the
Muse Valley, Belgium (1930); Donora, Pennsylvania (1948), and London,
England (1952). Other far less dramatic consequences of sulfur oxides
pollution are present on a more or less continuous basis in many urban

areas, as will be discussed shortly.

Most of man's sulfur oxides emissions to the atmosphere are in the
form of sulfur dioxide gas. Sulfur dioxide is known to be a mild
respiratory irritant at elevated concentrations and is capable of
inflicting damage to vegetation (National Research Council, 1975).
Because of the predominance of 502 as the primary pollutant being
emitted, and perhaps because it has been readily measurable for many
years, current National Ambient Air Quality Standards for sulfur oxides
in the United States (and the standards of most other nations) are
stated solely in terms of limits on sulfur dioxide concentrations. As
a result of this attention, extensive progress has been made in design-
ing emissions control strategies aimed at achieving legally mandated

limits on SO2 concentratinns.

In accordance with the requirements of the Clean Air Act (42 U.S.C.



§5 1857 et seq.) in the United States, nearly every state has adopted
an Iﬁplementation Plan containing a sulfur dioxide abatement strategy.
Over the decade 1975 through 1985, it has been projected (Temple,
Barker and Sloan, 1976) that the electric utility industry alone will
incur capital expenditures of 11.6 billion dollars in order to comply
with existing Federal 802 emission control policies. Sulfur dioxide
abatement is thus one of the most expensive large scale environmental
control progfams undertaken in the United States. In view of the large
fixed costs involved, it is important that sulfur oxides control

strategies once adopted continue to serve long-run needs.

Unfortunately, control strategies aimed at reduction of sulfur
dioxide levels alone may not address themselves to some of the most
important consequences of burning sulfur-bearing fuels. Sulfur dioxide
.gas has been shown to undergo atmospheric oxidation to form suspended
particulate sulfates.1 These sulfate particles tend to accumulate in
a size range around 0.5 microns in diameter (Hidy et al., 1975). Parti-
cles of this size are extremely effective scatterers of light (Middleton,
1952) and are also capable of deep penetration into the lung (Task Group
on Lung Dynamics, 1966). In addition, there is a body of toxicological

and epidemiological evidence suggesting that sulfate particulates are

1As used in this study, the definition of "sulfates" is an operational
one: particulate sulfur oxides collected on glass fiber filters by
high volume sampling and measured as SO, ion by wet chemical methods
such as those described later in this study. The term "sulfates" thus
denotes a broad class of particulate sulfur oxides in the atmosphere,
including sulfuric acid mist, ammonium sulfate and bisulfate, and
metallic sulfate salts, to name but a few of the more prominant compo-
nents of this particulate complex.



much more irritating to the respiratory system per unit mass concentra-

tion than an equivalent amount of sulfur present as SO, alone (National

2
Research Council, 1975). Sulfate air pollutants are thought to play

an important role in the acidification of rain water (Committee on
Mineral Resources and the Environment, 1975),and can be associated with

chemical attack on materials and visibility deterioration (Middleton,

et al., 1970).

Concern for these known or anticipated adverse effects of partic-
ulate sulfur oxides has prompted an extensive review of current knowl-
edge in this area by the National Academy of Sciences (National
Research Council, 1975). They note that air pollution control efforts
during the past decade have generally led to a substantial reduction
in urban sulfur dioxide concentrations. In contrast, suspended sulfates
levels have remained largely unchanged in urban areas and may have
inecreased in rural areas. In short, apparently effective strategies

currently employed for reducing SO_ concentrations do not appear to lead

2
to corresponding reductions in sulfate levels.

If one were to accept that both ambient 802 and regionally enriched
sulfate levels have a common source in man's sulfur oxides air pollu-
tant emissions, a paradox would seem to arise from the failure to
control both jointly. One fairly straightforward explanation for this
situation, however, has been offered (National Research Council, 1975)
as follows. In spite of the reduced 502 concentrations in urban areas,
total sulfur oxides eﬁissions from man's activities in the United States

have been increasing at about 4 percent annually over the past decade.



Urban 502 reductions have been achieved by localized use of low sulfur
fuelé énd by separating SO2 emissions spatially from the immediate
vicinity of population centers. Growth in fuel burning for electric
power generation has been shifted to rural areas,and tall stacks have
been used to inject pollutants higher into the atmosphere. Population
exposures to sulfur dioxide associated with close proximity to a

primary emission source thus have been reduced.

Man-made sulfates are largely a decay product of sulfur dioxide
emissions, Sulfates are formed in the atmosphere over intermediate to
long travel distances downwind from a sulfur dioxide emissions source.
Widespread dispersion of pollutants would occur over long travel times
regardless of steps taken to separate initial emissions from local
receptor populations. Therefore the National Research Council study
suggestsithat regional sulfates levels depend on total regional sulfur
oxides emissions more than they depend on close proximity to a given

emission source.

The widespread regional nature of sulfate air pollution problems
is illustrated in Figure 1.1. Two areas of the United States are seen
to be affected: the entire eastern United States, and the South Coast

Air Basin of Southern California which contains metropolitan Los

Angeles,

Large uncertainties presently frustrate formulation of sulfur
oxides emissions control plans which will achieve control over sulfate
levels. 1In a recent position paper, the U.S. Environmental Protection

Agency (1975) stated that a National Ambient Air Quality Standard for
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particulate sulfates would not be proposed for at least three to five
years due to a lack of clear understanding of several fundamental
aspects of the sulfate pollution syndrome. More complete information
is wanted to characterize atmospheric sulfate concentrations, health
and welfare effec;s, chemical transformation/transport interactions,

and emissions control options.

There is, in our opinion, a danger that if this additional infor-
mation needed to formulate sulfate air quality control strategies is
sought piecemeal, an improved decision-making capability may not result.
Health and welfare effects research may be conducted in geographic
regions for which emissions and air quality information are either
lacking or poorly organized. Emissions control strategy design
might be confined to regions with coal combustion problems that are not
representative of the petroleum dominated fuel use in many of the
nation's coastal population centers. Air quality models may be devel-
oped in the absence of an appreciation that they are needed to clarify
a choice between long-run commitments of resources to possible emission
control alternatives. Perhaps the most fundamental uncertainties in
control strategy development lie in the dilemmas that will arise if
small pieces of the problem analyzed separately fail to integrate into
a2 comprehensive picture of control strategy costs and effects prior to
the time when public pressure to make some costly choices becomes

overwhelming.

For that reason, this research project will concentrate on devel-

oping the tools needed for sulfate air quality control strategy design



within the context of a single well chosen case study. Emphasis is
placed‘wherever possible on development of techniques which utilize

only that information commonly available from air pollution control
agency historic data bases and other existing public records. This is
done in recognition of the fact that a truly useful air quality control
strategy design procedure must not only lead to economically efficient
control strategy options; the design procedure itself must be economical
or it will not be used. Expensive new field measurement programs

needed to acquire specialized data bases are probably beyond the means

of most state and local regulatory agencies.

The need for this approach to an improved understanding of sulfate
alr quality management options is apparent. In the words of the
National Academy of Sciences Committee:

Decisions to be made on sulfur oxide emissions from power
plants will involve tens of billions of dollars in electrical
generation costs in the next decade and massive effeets on
human health and welfare. Greatly expanded efforts should be
made to develop improved models and data for use on a case by
case basis to improve decisionmaking on emission control
strategy alternatives. [National Research Council, 1975].

1.3 The Approach Used in This Work

An air pollution control strategy is a systematic means of
restricting air pollutant emissions in order to achieve a desired
level of ambient air quality or some limited measure of air pollution
damage. Air pollution control strategy development is a design process
in which the objective is to define a variety of possibly acceptable
courses of action. Each alternative should be an efficient one, that

is to say, a set of control possibilities which contains some desirable



properties which cannot be attained at any lower economic cost. From
among fhis large variety of possibly acceptable courses of action,
decision-makers are free to choose with the knowledge that they are not

wasting resources in order to attain the result selected.

Figure 1.2 outlines an approach to sulfate air quality control
strategy design. That process naturally divides into two phases. A
flexible physical description of the air pollution problem first is
constructed, then alternative courses of action may be evaluated by
perturbing the current emissions control strategy and observing the

airshed's response.

' The first of these tasks is chosen as the subject for this thesis.
A policy—responsive mathematical description of an urban sulfate air
pollution problem will be constructed. The most prominent features of
that air quality problem first will be identified by analysis of histor-
ical air monitoring data. Sulfur oxides pollutant emissions next will
be linked to their origin in regional energy use patterns. Then mathe-
matical models will be developed which describe emissions/air quality
relationships and air quality impacts on local visibility. It is impor-
tant to note at the outset that these mathematical models themselves no
more constitute an air pollution control strategy design procedure than
having a hammer constitutes building a chair. Unless a prototype proce-
dure is demonstrated for bringing these tools to bear on a real problem,
the tools' existence is of very superficial importance. For that reason,
the application of analytical tools to the Los Angeles sulfate problem

will form the core around which this discourse is organized.
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| The first step in this air quality control strategy design proce-
dure is to define the nature of the air quality problem at hand. From
gtatistical analysis of existing air quality data one can draw impor-
tant generalizations about the physical processes most directly
influencing sulfate concentration changes. These physical assumptions
will later be used to reduce the complexity of a deterministic emissions

to air quality model to manageable proportions.

At the outset, only a huge mass of disorganized ambient air
quality measurements will be available. An orderly picture of sulfate
air quality behavior will be shown to exist. Spatial gradients in
sulfate air quality are explored to verify an enrichment in atmospheric
sulfate levels above natural background in the Los Angeles area. Day-
to~day fluctuations in sulfate concentrations will be used to show that
sulfate pollutant levels rise and fall in a closely coupled fashion
over a large region of Southern California. The causes of these day-
to-day concentration changes are explored in terms of specific meteoro-
logical and co-pollutant variations. Sulfate concentration changes are
shown to depend on daily mixing depth in the Los Angeles Basin, and on
factors such as relative humidity plus suspended particulate and oxidant
concentrations which would be expected to affect the rate of oxidation
of SO2 to form sulfates. Then a selection is made of the important
features of sulfate air quality behavior in Los Angeles which could be
used to construct and validate a deterministic emissions to air quality

simulation model.
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Existing models relating emissions to long-term average air quality
are re&iewed and found to lack the ability to even approximately model
gseveral of the features most important to Los Angeles sulfate air
quality such as air parcel retention time or strong temporal changes in
emission source strength. A new type of long-run average air quality
model for slowly reacting air pollutants is then developed based on

long-run average Lagrangian marked particle statistics.

A spatially resolved inventory of sulfur oxides emissions is
agsembled for each month of three test years, 1972 through 1974. This
inventory is actually constructed in the form of a fuel switching
simulation model such that emissions may be projected to future years
in which natural gas curtailment will have altered the spatial distri-
bution of sulfur-bearing fuel oil combustion. The emissions generation
model is linked to the air quality model, and predicted sulfate air
quality for the test years 1972 through 1974 is compared to actual

historical measurements.

One tangible benefit from lowered future sulfate levels would be
an improvement in visibility in the Los Angeles Basin. A statistical
model is formulated which explains the long~term distribution of pre-
vailing visibilities at Los Angeles in terms of changes in pollutant
levels and relative humidity. The model is tested against a decade of
atmospheric observations at Los Angeles, then projections are made of
the future distribution of visibilities which would be expected if

sulfate concentrations in the Los Angeles Basin were significantly

reduced,
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1.4 Relationship of This Research to Future Work

Tﬁe analytical techniques developed in this thesis are designed
to be applied to a public policy analysis of sulfate control strategy
options in the central portion of the South Coast Air Basin of Califor-
nia, as outlined in Figure 1.2. That control strategy study will be

completed during the year following publication of this thesis.

Emissions. projections for the year 1980 will be made on the
basis of anticipated natural gas curtailment and electric generatiom
levels in that year. The effect of sulfuric acid mist emissions from
cataylst-equipped cars will be introduced into the model. Then air
quality levels resulting from this 1980 emissions pattern will be

projected using the previously validated air quality model.

An emissions control study then will be conducted to establish
the cost of altering future sulfur oxides emissions levels. Specific
options within three general classes of emissions control techniques
are to be explored: purchased naturally occurring low sulfur fuels,
fuel desulfurization, and stack gas cleaning. Costs imposed on an
acceptable emissions control program by institutional barriers, such as
Federal Power Commission gas price regulation, will be discussed. Then
the least-~cost means of achieving a variety of altered future sulfate

air quality patterns is to be established.

An estimate will be made of the impact of each sulfate control
8trategy on visibility at downtown Los Angeles. Benefits to visibility
will be arrayed against the air quality levels and the cost of each

control strategy option. Decision-makers then will have a tool for
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selecting an air quality control strategy from a set of options, each
of which is an economically efficient means of attaining the air

quality levels and distribution of control costs described.

1.5 Relationship of This Thesis to Previous Work and Ongoing Research

The only previous sulfate air quality control strategy study for
a multiple source urban setting was conducted by Trijonis et al. (1975).
The present study provides the foundation for improving upon such pre-
vious efforts by statistically exploring the underlying physical
causes of sulfate air quality fluctuations in order to improve modeling
capability, by developing a unique deterministic spatially resolved
diffusion model to suit this application, by illustrating the importance
of both mass balance and energy balance calculations when dealing with
a sulfur oxides pollution problem, and by examining benefits to
visibility from sulfate air quality control. Sulfate air quality
control strategies in the comprehensive economic and technical sense
used here have also been approached by the previously mentioned
National Research Council (1975) committee, but only for hypothetical
cases most directly related to siting of single coal-fired power plants

in the eastern United States.

Other sulfate air quality modeling or control strategy studies are
underway at the present time. The Sulfate Regional Experiment (SURE)
Project is proceeding under sponsorship by the Electric Power Research
Institute. The Multi-State Atmospheric Power Production Pollution
Study (MAP3S) is being conducted by the U.S. Energy Research and Devel-

Opment Administration. Both of these projects have as an objective the
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" identification of the‘contribution of the electric utility industry
to sﬁlfate levels observed in the Northeastern United States. The
Midwest Interstate Sulfur Transformation and Transport (MISTT) project
| is being conducted by the U.S. Environmental Protection Agency to
determine sulfate formation mechanisms in sufficient detail that they
may be incorporated explicitly within air quality simulation models.
Economic evaluation of sulfate air quality control strategies involving
the electric utility industry is being pursued by the U.S. Envirommental
Protection Agency and Teknekron Inc. as part of the Integrated Tech-—
nologyVAssessment of Electric Utility Energy Systems project. The Long
Range Transport of Air Pollutants (LRTAP) study is being conducted by
the Organization for Ecoﬁomic Cooperation and Development (OECD) to
determine the relationship between sulfur oxides emissions and sulfate

 deposition in Western Europe.

1.6 An Introduction to Los Angeles Sulfur Oxides Air Pollution

When the smog problem in the Los Angeles Basin was first investi-
gated, attention was focused on sulfur oxides emissions from industrial
sources. Most of these emissions to the atmosphere were in the form
of sulfur dioxide gas. Additional atmospheric measurements also
identified particulate sulfur compounds, often referred to in the
early literature as sulfuric acid mist or its gaseous precursor, sulfur
trioxide. These particulate sulfur compounds were initially believed
to be responsible for "thirty to sixty percent of the total reduction
in visibility" at Los Angeles (Los Angeles Air Pollution Control
District, 1950). 1It was also soon recognized that there was something

uUnusual about Los Angeles sulfate air quality. The Los Angeles
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atmosphere exhibited sulfate‘concentrations comparable to those of
cities.in the industrial northeastern United States despite the fact
that sulfur dioxide emissions in Southern California were modest by
comparison. At the conclusion of an extensive aerometric survey of
the Los Angeles area (Renzetti, et al., 1955), the question was posed,
"Why are the sulfate and nitrate concentrations in the particulate
loading in smog higher in Los Angeles than in other cities?" Twenty

years later that question is only partially answered.

As the sulfur dioxide emission control program succeeded in
reducing ambient 802 concentrations, and as the extremely complex
chemical nature of photochemical smog became better understood, public
attention was directed at the control of emissions from the automobile
whichldominated other aspects of local air quality. Recently, two
things have happened which suggest that current control strategies for

sulfur oxides should be reviewed.

The first of these is a rekindling of scientific interest in the
role of particulate sulfates in the Los Angeles atmosphere. In 1969
an academically organized study of aerosol behavior (Whitby et al.,
1971; Hidy et al., 1972) noted that man's contribution to the
aerosol loading in Los Angeles was concentrated in submicron particles
which were easily respirable. Many of these submicron aerosols were
found to be the result of gas to particle conversion processes occurring
in the atmosphere. Sulfates were identified as a major fraction of
this "secondary" particulate burden. A large-scale Aerosol Character-

ization Study sponsored by the California Air Resources Board followed
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'~ (Hidy, et al.,\1975). This study concluded, as had early investigation
in the 1950's, that sulfates were largely responsible for the well-
known visibility deterioration at downtown Los Angeles. A concurrent
study by Roberts (1975) examined Los Angeles sulfate air quality and
measured the rate of conversion of SO2 to form sulfates in the atmos-
phere. Translation of these findings into design of an improved sulfur
oxides air pollution control strategy for Los Angeles remains to be

accomplished.r

A second compelling reason for focusing on Los Angeles is a poten—
tial increase 1in basin-wide sulfur dioxide emissions due to curtail-
ment of natural gas deliveries to Southern California. Figure 1.3
shows the Pacific Lighting Corporation's (1974) estimated gas supplies
from‘existing sources in contrast to projected requests for service
at current prices. It had been estimated by the Los Angeles Air
Pollution Control District (1975a) that substitution of sulfur-bearing
fuel oil for natural gas combustion over the next few years could
increase SO2 emissions in Los Angeles County from a low of 257
tons per day in 1970 to a level of about 470 tons per day by 1979 in the
absence of any further emission controls beyond those existing ip
1974. On the same basis, the California Air Resources Board
estimated that 502 emissions in the entire South Coast Air Basin (which
contains Los Angeles County) could increase from a 1973 level of 515
tons per day to a level of between 720 and 920 tons per day by 1983
(California Air Resources Board, 1975). Control of the impact of this
potential dincrease 1in sulfur oxides emissions is a matter of current

public policy importance.
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Prompted by the impending emissions increase, the local findings
concerning visibility, and the previously mentioned national debate
over the health consequences of sulfate air quality, the California
Air Resources Board recently adopted an air quality goal for total
suspehded particulate sulfates. A 24-hour average sulfate concentra-
tion of 25 micrograms per cubic meter is not to be exceeded.2 Some
{nitial steps also have been taken to blunt the expected SOx emissions
increase by deéreasing the sulfur content of fuel burned in the Los
Angeles Basin. As yet, no comprehensive emission control straﬁggy has
been adopted for meeting the state sulfate air quality goal in Los
Angeles over the long term. If such actions are proposed, they
undoubtedly will be quite expensive. Substantial savings might be
achieved by better understanding the options available for managing
sulfate air quality in this particular air basin in an economically

efficient manner.

 1.6.1 Sulfur Dioxide Emission Trends

| A brief historical account (Los Angeles Air Pollution Control
District, 1975b) of past sulfur oxides management policy in the Los
Angeles area will help put many of these issues into perspective. When
the nature of the Los Angeles smog problem was first investigated in
the late 1940's, considerable atiention was focused on the need for
sulfur dioxide emission controls. 1In 1947, prior to the imposition

of any discharge limitations, sulfur dioxide emissions in Los Angeles

In recent years, that sulfate air quality standard would have been
exceeded about one seventh of the time in Los Angeles.
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County totaled about 680 tons per day, distributed among source

categories as shewn in Table 1.1 (Lemke, et al., 1969).

In 1947, the Los Angeles Air Pollution Control District (LAAPCD)
adopted Rule 53 which limited sulfur compounds in exhaust gases from
any source to 0.2.percent by volume {(calculated as SOZ)' By 1958,
enforcement of this regulation had resulted in a lowering of total 802
emissions within the County to a level of 453 tons per day. The bulk
of this initial reduction was achieved by removal of hydrogen sulfide
from refinery gases prior to their combustion. Other refinery process
operations were also affected. As shown in Figure 1.4, non-fuel-burning
refinery process SO2 emissions dropped sharply in 1957 and remained
relatively unchanged thereafter over the next eighteen years.3

Changes in sulfur dioxide emissions from refinery fuel burning are

reflected in the "other" category of Figure 1.5.

In 1958, Rule 62 was adopted by the LAAPCD. The regulation
prohibited the burning of any solid or liquid fuel containing over 0.5
percent sulfur by weight from May through November of the year, provided
that natural gas was otherwise available. Rule 62 first went into
effect in the summer of 1959, Referring to Figure 1.5, we note a

steady drop in SO, emissions from fuel burning following adoption of

2
Rule 62, reaching a relative minimum in about 1963.

3Data on emission trends and projections used in Figures 1.4 through
1.7 were obtained from the Los Angeles Air Pollution Control District
(197%), and reflect historic records and forecasts through the close
of 1974, Missing data were estimated by linear interpolation.
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TABLE 1.1

Sulfur Dioxide Emissions in Los Angeles County for 1947
(Prior to Initial Emission Control Regulations)

- 80, Emission Rate
Source Class (Tons/Day)

(1) Combustion of Fuels
' Including: utility boilers
refinery fuel

industrial fuel 575
(2) Refinery Processes Operations 30
- (3) Motor Vehicles 40

(4) Remaining Sources
Including: chemical plants
other stationary sources 35

TOTAL 680

Note: Emission values are taken from a graph presented by
Lemke, et al. (1969). This graph could be read no
more closely than *5 tons/day.
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.. In spite of continued restrictions on the sulfur content of fuel,
expansion of electric generating capacity in the Basin caused an
i{ncrease in total SO2 emissions beginning in about 1963. In January
of 1964, Rule 62 was amended (by adoption of Rule 62.1) to make the
sulfur content of fuel provisions applicable year-round. A limited
supply of natural gas during the winter months rendered that change
ineffective atrslowing the growth in total emissions. These increasing
emissions from stationary source fuel burning were eventually reversed
in the late 1960's by importation of low sulfur fuel oil from Indonesia
and southern Alaska, and by increased deliveries of natural gas. By
October of 1968, Rule 62 was again amended to prohibit the burning of
high sulfur fuel oil, irrespective of natural gas supply conditions.
Shoffly thereafter, natural gas deliveries began to diminish, with
attendant substitution of low sulfur fuel oil leading to the upward

trend in SO, emissions from fuel burning projected for Los Angeles

2
County in the decade of the 1970's in Figure 1.5.

As a result of concern over increased sulfur oxides emissions from
fuel burning activities, a further tightening of the sulfur content
of fuel o0il limitations became effective in early 1977. A fuel pil
sulfur content of 0.25% by weight is not to be exceeded provided that
such low sulfur oils are sufficiently available. That regulation is
being reviewed at the present time, and may be modified within the next
yYear. Fuel oil sulfur content limitations are in such a state of flux
at the present time that this thesis will not attempt to anticipate the

exact course of future events. The 0.5% sulfur content of fuel oil
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1imitation prevailing over the past two decades will be viewed as
the baéeline for our study, and further tightening of that standard

will be considered to be a proper subject for control strategy analysis.

Another long-term feature of the 802 emission inventory for Los
Angeles County is the emergence and subsequent control of substantial
pollutant emissions from chemical process industries. 1In order to
reduce emissions from refinery operations, sulfur-bearing refinery
gases and acid sludge often were transported to adjacent plants which
recovered elemental sulfur or sulfuric acid from the refinery effluent.
These sulfur recovery operations were not one hundred percent efficient,
and in time became major SO2 sources in their own right. By 1970,
Figure 1.6 shows that chemical processes accounted for 115 tons per
day 6f SO

emissions, or nearly half of the total SO, emission inventory

2 2
at that time. In 1971, Rule 53 was amended (effective 1973) to repeal
certain exemptions previously granted to scavenger plants and to limit
effluent streams from these plants to not more than 500 ppm of sulfur

compounds calculated as SOZ‘ A maximum emission rate of not more than
200 pounds per hour of sulfur-bearing gases calculated as 502 was also

imposed at that time. Figure 1.6 clearly shows the effect of these

regulations on 1974 and subsequent SO2 emission rates.

Automotive exhaust contains sulfur oxides derived from trace
amounts of sulfur initially present in gasoline. California gasolines
have traditionally been higher in sulfur content than the national
average (Bureau of Mines, 1972 through 1975). As shown in Figure 1.7,

502 emissions from automobiles totaled about 35 tons per day in Los
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Angeles County iﬁ the mid 1950's. Increased sophistication of refining
operations permitted a decline in the sulfur content of local gasolines
. 4in the following decade. In spite of progressive increases in vehicle
miles traveled yearly, automotive 802 emissions in Los Angeles County
declined, reaching a minimum of 23 tons per day in 1965. By the early
1970's, increased gasoline consumption had returned sulfur dioxide
emissions from automobiles to the vicinity of 30 tons per day. Although
automotive SO2 emissions represent only about 10 percent of the total

80, emission inventory, they are important to an understanding of Los

2
Angeles sulfur oxides air quality for at least two reasons. First,
automotive emissions occur at ground level where atmospheric dispersion
is least effective at diluting the effluent prior to reaching receptor
populations (and local air monitoring stations). Secondly, as automobile
exhaust is passed over an oxidizing catalyst intended for hydrocarbon

and carbon monoxide control, a fraction of the exhaust 802 is converted
to sulfuric acid mist. The basin-wide air quality impact of incremental
increaseé in primary sulfate emissions from automobiles is poorly
quantified at present and can only be placed in perspective if viewed

in the context of the local sulfate air quality problems arising from

other sources.

Emissions from miscellaneoug mobile and stationary sources in
Los Angeles County are also shown in Figure 1.7. Miscellaneous
stationary source SOx emissions are presently dominated by calcining
of petroleum coke produced by local refineries. Non-automotive mobile
8ource emissions are dominated by highway use of diesel fuel and by

combustion of high sulfur fuel oil by ships.
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6.2 Sulfur Dioxide Air Quality Trends

Sulfur dioxide emissions undergo atmospheric transport, dilution,
and removal processes resulting in the SO2 concentrations measured at
receptor air monitoring stations. TFigure 1.8 displays the seasonal
trends in 502 measurements over the past two decades at two such LAAPCD
monitoring stations, Long Beach and downtown Los Angeles. Long Beach
is chosen because it represents a location in the vicinity of major
802 sources in the harbor area. On the other hand, downtown Los
Angeles is a commercial center located about 15 miles inland from the
major coastal point sources of 502.

These ambient air quality graphs were generated by passing the
time sequence of the LAAPCD's 24-hour average 802 readings over the

4 The effect of

period of interest through a linear digital filter.
this processing is to reveal long-term air quality trends by smoothing
out fluctuations with frequency greater than four cycles per year,

leaving the seasonal variations intact.

Referring to Figure 1.8, the following observations can be drawn.
SO2 air quality has improved since the mid 1950's at both Los Angeles
and Long Beach. A sharp drop in SO2 concentration occurred at both
locations in 1959, at about the same time as the imposition of the

initial controls on the sulfur content of fuel oil. From 1959 to 1963,

The filter's characteristics are such that it returns the low frequency
signal with unit gain, half power cutoff set to remove disturbances
with period shorter than three months, and roll-off at the half power
point of 20 db per octave. For a discussion of digital filtering
methods, see Bendat and Piersol (1971), Chapter 9.2.
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‘air quality improved slightly at both locations, reaching a relative
miniﬁum in 1963 at the same time as the 1963 relative minimum in SD2
emissions. 802 levels then rose, accompanying the subsequent late
1960's emission increases from chemical plants and automobiles. Since
1970, SO2 concentrations at downtown Los Angeles have remained
relatively constant, while at Long Beach a declining trend is apparent
over the period 1972 through 1974 as nearby chemical plants installed
new emission control equipment. Sulfur dioxide air quality is thus

known to respond to changes in emission control regulations in a fairly

predictable manner.

Successful past sulfur dioxide air quality control policies can
be seen to have resulted from a sequential decision-making process.
Growthlin emissions from a single source class was observed. Emission
control measures capable of containing the most pressing single problem
at the moment were devised. Rapid feedback from atmospheric measure-

ments confirmed that control strategies were working.

In the case of sulfate air quality, it would be hard to proceed
with any degree of confidence to manage air resources by this tradi-
tional approach. The relative importance of various source classes to
observed sulfate concentrations is a complex function of source
location, meteorological conditions, atmospheric chemical reactions and
long distance pollutant transport. Air monitoring data sufficient to
deduce sulfate source-receptor relationships on the basis of response
to past sulfur oxides control strategy changes probably do not exist.
Analytical methods needed for an alternate approach to sulfate air

Quality management will be developed by this research.
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CHAPTER 2

BASELINE ATR QUALITY CHARACTERIZATION:
SULFATE AIR QUALITY IN THE SOUTH COAST AIR BASIN

2.1 Introduction

In preparation for an air quality control strategy study, we wish
to characterize the readily observable features of sulfate air quality
in the Los Angeles area. Design of a practical sulfate air quality
modeling procedure requires that informed physical assumptions be made
about the nature of the problem at hand. From this characterization,
we hope to choose a modeling region which provides maximum opportunity
to compare model calculations to historic observed air quality. The
sulfate concentrations in air entering that modeling region will be
specified, and an averaging time for the air quality model calculations
will be selected. From spatial and temporal gradients in pollutant
concentrations within the study region, generalizations will be drawn
which impact the spatial and temporal resolution required of meteoro-
logical inputs to the modeling process. The evidence for chemical
transformation of sulfur oxides within the Los Angeles atmosphere will
be explored, and an approach to modeling the chemical conversion of

sulfur dioxide to form sulfate will be selected.

Since historic sulfate and sulfur dioxide air quality data must
be acquired and processed in order to address these issues, these data
will be organized in passing so that they may be easily compared to

future model calculations. Quality control checks will be applied to
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the ambient data, and confidence intervals will be estimated for

1mpbftant parameters of the atmospheric measurements.

A rather comprehensive survey of the observed behavior of sulfur
oxide air quality in the Los Angeles Basin thus will be undertaken.
The objective is to select the bounds within which an air quality
model relating sulfur oxides emissions to long-term average sulfate
air quality might be specified with a reasonable chance for verifying

its predictions.

2.2 Sulfate Air Quality in the South Coast Air Basin

2.2.1 Estimation of Sulfate Background Air Quality

" On a global basis, over seventy percent of the emissions of
sulfur cémpounds to the atmosphere arise from natural sources (Friend,
1973). These natural sources include sulfates from windblown sea
salt, reduced sulfur compounds from biological decay, and emissions
from volcaﬁic activity. As a result of these natural sulfur sources,
Plus enrichment from man-made emissions, the global atmosphere contains
low level "background" concentrations of sulfates, even at sites remote

from major pollution sources.

The air entering the South Coast Air Basin thus contains non-zero
levels of sulfate particulates which are not subject to further
reduction by installation of controls on local emission sources. We
wish to estimate these background concentrations so that they may be

taken into account in our modeling exercise. The problem of estimating
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gouth Coast Air Basin sulfate background levels has been treated by
Hidy, et al., (1975) and by Trijonis, et al., (1975). Our discussion

i{s built on much of the data used by these previous investigators.

The prevailing winds along the Southern California coast indicate
that most new air masses entering the South Coast Air Basin are of
marine origin. Early studies by Junge (1957) indicate that mid-Pacific
marine air masses contain sulfate concentrations of the order of one
microgram per cubic meter. "Giant particles" of a radius greater than
0.8u were shown to contain the bulk of the sulfates at sea level in the
Hawaiian Islands. Most of the sulfur content of these marine aerosols
was traced back to the sulfate content of sea salt, although some
ammonium sulfate of non-marine origin was also present. Sulfate
concentrations due to sea salt were shown to decrease substantially
with distance inland from the shore and with increasing altitude. More
recent samples taken by Gillette and Blifford (1971) at a location about
250 km west of Santa Barbara, California showed particulate sulfur
concentrations equivalent to about 0.72 ugm/m3 of sulfate near the

ocean's surface. A declining concentration with increasing altitude

was also noted.

Moving closer to the South Coast Air Basin, there are indications
that sulfate concentrations incréase above the levels present in
mid-ocean. Holzworth (1959) measured rather high total suspended
particulate as well as sulfate concentrations at San Nicolas Island,
the most remote of the Channel Islands off the Southern California

toast (see Figure 2.1 or 2.3). More recent studies by Hidy, et al.,
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(1974), also measured air quality at San Nicolas Island but found
sulfate concentrations more in line with what one would expect on the

basis of the mid-ocean studies.

Hidy's group took thirteen sulfate samples on San Nicolas Island
at an elevation of 200 meters above sea level. 1In Figure 2.2, the
data of Hidy, et al., (1974) are plotted on log-probability paper
along with all of the sulfate data of record taken by the Los Angeles
'Air Pollution Control District (LAAPCD) at downtown Los Angeles during
the same time period, late July through early October 1970, A
comparison of the statistics of these two data sets are given in Table
2.1. Methods used to estimate the parameters and confidence intervals

shown in Table 2.1 are outlined in Appendix B4.

Geometric mean sulfate concentrations in incoming marine air
averaged about a factor of four lower than those observed at downtown
Los Angeles during the same season of 1970. The geometric standard
deviation of the San Nicolas Island data is about the same as that
of the inland observations. Thus while the air over the Channel
Islands is noticeably less polluted than that at Los Angeles, extrapo-
lation of the San Nicolas Island data would indicate that sulfate
concentrations at remote locations exceeding the current California
24-hour average sulfate standar& of 25 ugm/m3 might be expected roughly
one half of one percent of the time during the summer and fall seasons.
In the absence of any more extensive marine air monitoring data, our

modgling study will use the description of San Nicolas Island sulfate
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air quality as given in Table 2.1 as one basis for estimation of

sulfate concentrations in air entering the South Coast Air Basin.

while most new air masses entering the South Coast Air Basin
are of marine origin, it is reassuring to note that even under desert
breeze conditions, sulfate background concentrations will not deviate
greatly from the background levels at San Nicolas Island. A number of
monitoring programs have examined air quality in the Mojave Desert.
The LAAPCD routine air monitoring station at Lancaster reported
arithmetic mean sulfate levels of 3.1 ugm/m3 for the last half of 1973
and 3.2 ugm/m3 for calendar year 1974 (MacPhee and Wadley, 1975a,
1975b). At greater distances from the South Coast Air Basin, Gillette
and Blifford (1971) measured particulate sulfur concentrations in Death

Valley equivalent to about one microgram per cubic meter of sulfate.

The picture emerging from this analysis is as follows. At great
distances from the South Coast Air Basin, either out to sea or well
into the desert, sulfate concentrations appear to be about one micro-
gram per cubic meter. Immediately adjacent to the air basin at San
Nicolas Island or Lancaster, average sulfate concentrations are in
the 3 to 5 ugm/m3 range. We have seen that sulfate levels at downtown
Los Angeles are substantially elevated above background. But what do

the gradients in sulfate concentration look like within the Los Angeles

Basin?
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2.2.2 Previous Surveys of Sulfate Air Quality Data in the
‘Los Angeles Area

Within the past few years, a number of investigators (Tokiwa,
et al., 1974; Trijonis, et al., 1975; Kurosaka, 1976) have surveyed
the availability of sulfur dioxide and sulfate air quality data in the
South Coast Air Bésin. A composite listing of the data sources cited
in these references plus some pioneer studies of historical interest
are shown in Table 2.2, classified according to the purpose for which

the sulfate air monitoring program was conducted.

Ideally, to define pollutant patterns over an air basin, one
would like to have simultaneous observations on pollutant concentration
at a large number of well spaced air monitoring locations. A high
degree of temporal resolution in the data base would be desired.
Sample analysis would be by comparable methods. Unfortunately, no
single sulfate data base is available which provides long-term simul-
taneous sampling, basin-wide geographic coverage and high temporal
resolution. The special studies mentioned in Table 2.2 often contain
the most detailed information on diurnal sulfate concentration patterns.
However, they do not attempt to provide a long-term continuous record
over a wide-enough geographic area to allow one to draw many firm
conclusions about spatial concegtration gradients or seasonal pollutant
trends. On the other hand, the routine 24-hour average sulfate air
monitoring data gathered by local, state and federal agencies possibly
satisfy at least two of our criteria. A large number of widely spaced
monitoring sites exist and the sampling histories at these sites stretch

Over long periods of time. The 24-hour average temporal resolution of
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Routine Air Monitoring
Progrems in Operation in 1974

(Likt Compiled by Kurosaka, 1976}

Agency

Lon Angeles Air Polluticn
Control District (LAAPCD)*

San Bernardino Air Follution
Control Districtw

Riverside Air Pollutioa
Control District*

Nationa] Afr Surveillsnce
Retwork (NASH)

Community Health
Foviroomental Surveillance
System (CHESS)

Recent Special Studies
(List compiled by
Xurosaka, 1976)

Srudy Tiel d_lpvestigato Afftliacion
Aerogol Charscterization Rockwell Interoational
Science Cencerts

California Air
Board Monitoring Prograe Rescurces Board

U.C. Daviat*

Experiment (ACREX)
California Air Resoutces

Regional Monitoring of
Smog Aerosols

Sulfur Dioxide Conversion Caltech
Study

Number of Stations
in South Cosast Air

Bagin(1974
JUREDEEEE A Y

7
8

1

n

3

Recent Studies of Freewsy Air Qualiry

(List Compilad by Kurosska, 1976)

Impact of Motor Vehicle

Exhaust fstalyste on Alr
Qualicy

Los Angeles Catalyst
Scudy

Air Resources Board

Freeway Monitoring Sady

Additionsl Sources of Sulfate Data

UV.S. EPA

Rockwell International
AINL, U.5. Havy**

California Afr
Resources Board

in or mexr the South Coast Air Bamsin

(Data taken prior to 1972]

Reference

Renzerti et al, {1935} (Afr Pollution Famdation)

Holzworth, (1959) (U.§, Westher Bureau)

Thomas, (1962)

TABLE

(through

Los Angeles APCD “Sulfur Tri
Progran

Gillette and Blifford, (1971}

Lundgrea, {1970)

Bidy, et.al, (1974)

*

Now part of the Southern California Air Paliurion Cootrol Districl
*

Sponsored by the Callforniz Air Resources Board

*
While X-Ray fluorescence is listed as & wean of sulfste
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2.2

1974)

SOQURCES OF SULFATE AIR QUALITY DATA IN THE SO0UTH COAST AKR BASIN

Sulfate Sampling/ Sulfste Dace 507 Sampling $0; Data Sampling
and Analyais Averaging Time Hethod Aversging Time Biagory
Method (1974)wws
Hi-Vol/Turbidimetric 24 tour conductomerric 1 bour 1965-Presant
Bi-Vol/Turbidimerric Quarter Year conductometric 1 hour 1965-Prasent
Composite
Bi-Vol/Turbidimetric 24 bour conductometric 1 hour 1974-Present
Hf-Vol/Methylthymol Blue 24 hour West-Gacke 24 hour M1d 1950 8-
Present
Bi-Vol/Methylthymol Blue 24 bour West-Caeke 24 baur 1972-Present
Variety of mathods 2 hour and flame several days
compsred 24 bhour photomecric during 1972~1973
Low-Vaol filter/X-Ray 2 hour 1873 to present
Eluorescence
Lundgren Impactor NONE 1973 to present
1op~excited X-Rey smission
flash vaporizacicn 1 hour {lame ssversl days, 1973
photonetric
Variety of methods 2 hour 1374 to present
compared
B1-Yol/? 4 hour and 1974 to present
24 hour
Low-Vol filter/X-Ray 2 hour 1975 to present
fluorescence
Bi-Val? 24 hour
B1i-Vol/Turbidimetric 24 hour conductometric Aug. thru Nov,
1954
HBi-Vol/Turbidimetric 24 hour NONE My, 1956 ~
Jan. 1957
Conductometric 30 minutes conductometric several wveeks
1961
ic 1 hour conductometric 1 hour 1963-1969
impactor/X~Rey 1 hour NONE 1967
Fluorescence
1mpactor & Piltere/ & hour and  NONE Nov, 1958
Turbidimectic 24 hour
Hi-Val & Low-¥ol/ 24 hour NONE Jul~ Oet. 1970
Turbidisetric
the sctual made in that caee ia for total particulate salfur.
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these monitoring programs, while not as refined as some special studies,
is still short when compared to our objective of defining seasonal
trends. This baseline air quality characterization will first focus

on the nature of the available sulfur oxides routine air monitoring

data.

2.2.3 Routine Air Monitoring Programs for Sulfates and Sulfur Dioxide
in the South Coast Air Basin

During the period 1972 through 1974, the APCD, CHESS and NASN
air monitoring programs listed in Table 2.2 operated concurrently.
Each agency sampled for both sulfur dioxide and suspended particulate
sulfates. If these data bases could be pooled, measurements at over
two dozen monitoring sites would be available against which to compare
air quality model calculations. Thus the years 1972 through 1974

will be chosen as the base years for our study.

But the question remains, "To what extent were the sampling
methods used by these agencies comparable?" 1In Appendix Bl to this
report, each of these air monitoring programs has been described in
an attempt to isolate differences in experimental design. It is found
that ideally the sulfate air quality monitoring methods used by each
of these agencies should be comparable. However, the CHESS network
encountered some analytical proglems in practice and a correction
factor must be applied to some of their data. Sulfur dioxide monitoring
methods used by the LAAPCD are judged to be significantly different

from those of CHESS and NASN. Some important implications of these
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differences in sulfur dioxide sampling methodology will become

apparent as our investigation proceeds.

Figure 2.3 indicates the location of sulfate air quality monitoring
stations operated in or near the South Coast Air Basin during the
period 1972 through 1974. Since the validity of the San Bermardino
County APCD sulfate data during those years has been questioned
(Rurosaka, 1976}, only stations operated by the Los Angeles Air
Pollution Control District, EPA's CHESS program, and the National Air
Surveillance Network are shown. Steps taken to acquire and prepare
data from these air monitoring stations for comparative analysis are

outlined in Appendix B2.

2.2.4 Long~-Term Average Sulfate Air Quality

Concentration averages given in Figure 2.4 represent the
arithmetic mean of sulfate concentrations for all days of record at
the CHESS, LAAPCD and NASN monitoring stations during the years 1972
through 1974, It is seen that long-term average sulfate levels are of
the same order of magnitude over most portions of the South Coast Air
Basin. Concentrations appear higher than average in the San Fernando
Valley and lower than average at the western-most and southern-most
monitoring sites. These deviations from the basin-wide mean of 11.7
ugm/m3 are still small, perhaps ¥ 3 ugm/m3. But how much uncertainty
is associated with these concentration averages? Is that uncertainty
larger than the differences in average sulfate concentration computed

at separate monitoring sites? How many samples must one average in
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order to make useful statements about differences in sulfate levels
from one time period to the next? The complexity and averaging time
chosen for our air quality model will depend on the outcome of those

inquiries.

One way to approach answering these questions is to examine the
statistical sampling distribution of the air quality measurements made
at individual air monitoring stations. Empirical work pioneered by
Larsen (1971) suggests that air quality measurements approximately
follow a simple two parameter log-normal distribution for all pollutants
and all averaging times. An exception to this rule of thumb often
occurs when minimum detection limit problems distort pollutant measure-
ments_made at low concentrations. A quick visual check on the log-
normality assumption as it applies to our sulfate air quality data is
provided in Figures 2.5, 2.6, and 2.7. These three figures represent
log-probability plots of sulfate concentration measurements made over
the period 1972 through 1974 at typical NASN, LAAPCD, and CHESS air
monitoring stations, respectively. It can be seen that the cumulative
distribution of the sulfate data plots as a nearly straight line at
sulfate concentrations above 2 ugm/m3, indicating that the data indeed
approximately fit a two parameter log-normal distribution in that
range. At the CHESS and LAAPCD stations, the lower tails of the
distribution sag noticeably at concentrations below 2 ugm/m3, while
vValues in that range are unavailable at the NASN station. The departure
from two parameter log-normality by the LAAPCD data at very low sulfate

Concentrations could well be due to the measurement problems at low



47

L°C H4NDI4

WA 03LBAS NOHL 5537 “ONDD Il 40 INITM3d “AINIDML
6666 666 6696 S6 D6 +0@ 0L 090SDhOE N2+ Ot S Z 1SD 10 100
™

™ rrrr o 1 o1V LI B Bt 101

Cold/WIM) 31BIMS

— 0t

Y
|

il TUREE U WA AN N N NN W S S RUDOR I S N N N U D S NO—

heBl NEML ZL6T  +HNIADD 1S3M 1Y NOILNBIHISIO J1BAWE SSIH]

. -
9°7 HANOIA S°C mMDme
30WA MALIHIS NBHL S531 "JN0D Wil 40 INIMIJ A0S u:..g Dw._u.—m NBHL 6537 “ONOD MIL 40 ININIJ ADNINOMS
66°66 666 G696 S6 06 +*08 QL OSUSOhOE QG O S zZ 180 10 10°0 6666 &'6b 66 06 *08 OL 09 0SOh D€ OZ+ O S zZ 180 1'0 10°0

T ™ T T T T T T T T 7rTT Vot ™ . _ T T T T T T T T T T ™1 T T 77 10t

F_ = = = Y
otl a m
m »
= P A
m |8 ‘ 1%
” ] 3 3 3
= - o1 ~ — b L

W ]
1 PN SN VO YN U DU S OO S T T U A AN S WA SO0 WY T S 11 L PR SUES ST WON W RN SN ST TN S SEUU W SHN SR S U SN VO S I 1 01

DB UKL TLET  «STTIONY SO NMOINMOD Ld NOLLNATHLISIO ALBSWS GO heBl MHL ZLET  oHNIOHSH 16 NOLINBIYLSIO JIHIMS NSUN



48

concentrations reported by Porter, et al. (1976). A similar but
previously unreported problem may have affected the CHESS monitoring
program. In any case, the absolute magnitude of the sulfate concentra-
tion by which these samples deviate from a simple two parameter log-
normai distribution at low concentrations is extremely small. A
complete set of graphs showing the cumulative distribution of the
sulfate data at each of the monitoring stations under consideration
is given in Appendix B3. In general, the smoothest, straightest
lines on log-probability paper occur at stations with the greatest
number of observations. Cumulative distributions at NASN stations
with relatively few observations (e.g. Riverside with 18 samples)
wou;d seem to be a bit lumpy. This is to be expected at small sample

sizes.

Table 2.3 shows some pertinent statistics of the observations
at sulfate air monitoring stations over the period 1972 through 1974.
Estimates of the mean natural log, o, and variance, 82, of the natural

logs of the sulfate observations are given in that table. Parameter

estimation procedures are outlined in Appendix B4,

Our intended air quality modeling effort will later result in
calculation of arithmetic mean éulfate concentration patterns over
portions of the South Coast Air Basin. If we are to compare model
Tesults to field observations, it becomes important to be able to
Plage confidence intervals around the arithmetic mean calculated from

8 given set of sulfate air quality data. Approximate 95% confidence
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intervals on the three year arithmetic mean sulfate concentration at
each monitoring station are given in Table 2.3. The confidence inter-

val estimation procedure is detailed in Appendix B4,

The confidence intervals on the three year arithmetic mean
sulfate concentrations overlap at most monitoring sites. For example,
confidence intervals at fourteen of the twenty-five monitoring sites
would contain the basin-wide mean value of 11.7 ugm/m3. 0f the
remaining eleven stations, three miss containing that value by less
than 0.3 ugm/m3, which is probably less than the uncertainty introduced
by the approximations made when calculating the confidence intervals.
Average sulfate values at the margins of our study area, at Vista and
Thousand Oaks, are significantly lower than those at stations in the
centrél portion of the Los Angeles basin. Distinctly higher wvalues
than average are reported at Lennox in the immediate vicinity of some
majqr SO2 sources. High values are also found in the San Fernando
and the eastern San Gabriel Valleys. Even these relative "hot spots"
differ from the concentrations reported elsewhere in the central portion
of the air basin by about the same amount as the differences between
sulfate averages found by two different monitoring agencies at the

same location, downtown Los Angeles.

These comparisons of long-térm concentration averages plus the
Previous discussion of off-shore and desert sulfate air quality lead

to three important physical generalizations:

Generalization 1: Long-run average sulfate concentrations are about

the same at monitoring sites in the central portion of the South Coast
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Air Basin (i.e. about 11.7 micrograms per cubic meter over our three

base years).

Generalization 2: The lowest sulfate concentrations observed are

gystematically found at the margins of our study area (e.g. at San

Nicolas Island, Lancaster, Thousand Oaks, and Vista).

Generalization 3: Los Angeles sulfate air quality is significantly

elevated above background sulfate concentrations in incoming marine or

desert air.

2.2.5 Seasonal Trends in Sulfate Concentration in the South Coast
Air Basin

Sulfate concentrations observed at the downtown Los Angeles
station of the LAAPCD during the past decade are shown in time series
in Figure 2.8. Concentration fluctuations from day to day are quite
large, with high values occurring at least occasionally in all seasons
of the year. However, the data can be smoothed to reveal seasonal

trends, as shown in Figure 2.9.

The graph in Figure 2.9 was generated by passing the time sequence
of 24 hour average sulfate readings over the period of interest through
a linear digital filter.1 The effect of this processing is to reveal
long-term air quality trends by suppressing fluctuations with frequency

greater than four cycles per year, leaving seasonal variations intact.

The filter's characteristics are such that it returns the low frequency
signal with unit gain, half power cutoff set to remove disturbances
with period shorter than three months, and roll off at the half power
point of 20 db per octave. TFor a discussion of digital filtering
methods see Bendat and Piersol (1971), Chapter 9.2.
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It is apparent from Figure 2.9 that measured sulfate levels at
downtowﬁ Los Angeles have risen over the past decade, reaching a
relative peak in 1973. A small decline followed in 1974. Both the
annual mean and upper bound of seasonal maxima follow this trend.
There is a broad summer seasonal peak in sulfate levels apparent in
most years of record. A wintertime peak is also apparent, but its
magnitude varies greatly from year to year. In the winters of 1972-73
and 1973-74, for example, the winter peak was very small and confined
to a few weeks around the first of the year, while in the winters of
1970-71 and 1971-72 the winter peak was characterized by isolated days
of very high sulfate levels which led to elevated annual averages for

those years.

In Figure 2.10, the same filtering process has been applied to
the LAAPCD and CHESS sulfate data at all monitoring stations active
during the period 1972 through 1974. The resulting graphs are
positioned on a map of the South Coast Air Basin in close proximity
to each station's physical location. National Air Surveillance Network
data were not presented because their infrequent monitoring schedule
provides insufficient data for this sort of treatment. The graphs in
Figure 2.10 are small and thus difficult to read. They have been

reproduced at a larger scale in ‘Appendix BS.

The similarity of seasonal pollutant patterns at all monitoring
Btations is quite striking. The timing and relative magnitude of

seasonal concentration peaks and troughs is apparently related from
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Thousand Oaks to the northwest to Vista on the south, a distance of

nearly two hundred kilometers.

2.2.6 A Comparison of Simultaneous 24-Hour Average Sulfate Air Quality
Measurements

Two features noted so far are that long-~run average sulfate
concentrations in the central portion of the air basin are fairly
uniform, and similar seasonal modulation of those concentration levels
appears to be applied basin-wide. We will now find something even more
interesting. This organized behavior is manifested to a large degree

on a day-to-day basis.

Figures 2.11 and 2.12 show the relationship between sulfate
levels measured at Lennox, downtown Los Angeles, and Pasadena on the
same days during the years 1972 through 1974, These three monitoring
sites lie approximately along a resultant sea breeze wind trajectory.
stretching from a major 502 source area at the coast through the
central business district and into inland valleys beyond, as shown by
comparing Figure 2.3 with Figures 2.13 and 2.14. Sulfate values are
approximately the same at all three locations on the same day, as
shown by the unit slope and near zero intercept of the regression lines
describing the best fit relationship between sulfate values at pairs

of stations.

But how widespread is this tracking of daily sulfate concentration
changes? Tables 2.4 and 2.5 show the log-linear correlation between
sulfate concentrations reported at palrs of monitoring stations for

the same day, plus the number of simultaneous observations available
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from which to compute each correlation coefficient. For reasons
explained previously, only those sulfate observations reported at or

above 2 ugm/m3 were considered.

Measurements taken on the same day at all of the LAAPCD stations
are highly correlated (about 0.80 to 0.90) with each other. The
correlation between pairs of CHESS stations is typically in the range
of 0.80 to 0.70. The log-linear correlations between pairs of NASN
stations typically lie in the range 0.80 to 0.60. The NASN station at
Ontario, however, provides an exception to this pattern: it does not
_correlate well with observations at other monitoring sites. The

distribution of correlation coefficients between station pairs involving
"more than one monitoring agency is similar to the distribution of
”correlation coefficients between pairs of stations operated solely

by NASN. The distribution of correlation coefficients between moni-

‘toring programs is summarized in Table 2.6.

Examination of Table 2.4 shows that most of the highest correlation
coefficients (above 0.80) involve pairings with LAAPCD stations. But
if one examines the variance of the logs of the sulfate observations,
82, in Table 2.3, they will note that it is data from the LAAPCD network
that deviate most noticeably from long-run distributional equivalence
with data from neighboring stations operated by other monitoring
agencies. 1In contrast, the NASN and CHESS air monitoring results show
more consistent statistical distributions, but lower cross-correlation
between simultaneous individual samples. The explanation for that

behavior is probably found in mismatches between the sampling schedules
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TABLE 2.6
'DISTRIBUTION OF CORRELATION COEFFICIENTS: 1972 through 1974

Correlation Coefficients taken from Table 2.4

Number of Station Pairs Whose

Correlation Cross Correlation Falls in the Range Stated:

Between Logs

of Simultaneous Station Pairs within the Station Pairs

Observations Same Monitoring Program in Two Different
CHESS LAAPCD NASN Monitoring Programs

1.00 to 0.90 3 2 4

0.89 to 0.80 3 13 8 20

0.79 to 0.70 12 5 16 66

0.69 to 0.60 6 12 53

0.59 to 0.50 7 28

0.49 to 0.40 2 12

0.39 to 0.30 2 3

0.29 to 0.20 1 6

0.19 to 0.10 1 2

0.09 to 0.00 0 3

-0.10 to -0.01 2

-0.20 to -0.11 2

Insufficient Data 3
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maintained by different agencies as described in Appendix Bl. The
CHESS sémpling period, for example, is offset by about a half day from
- that of the NASN and APCD samples reported for the same "day". Sample
gtart and stop times may have differed at stations within the CHESS
network itself. This cannot help but reduce the day-to-day correlation
between CHESS and other agencies' data since fully comparable "events"
have not been sampled. In the case of the NASN data, a review of the
reported dates on which sulfate samples were taken indicates that the
NASN volunteer operators often run their samples on days other than
those assigned, especially when assigned days fall on a weekend. There
is some doubt as to the exact date on which some of the NASN data were
actually collected. 1In both of these instances, a mismatch in sampling
schedules between monitoring agencies would reduce the apparent day-to-
day correlation between stations. The long-run statistics and distri-
bution of the data collected would be unaffected since all samples
taken at a station would still be drawn from the underlying population
of events at that location even if the information on the date of a
given event was confused somewhat. Correlation coefficients given in
Table 2.4 thus probably understate the true degree to which 24-hour
average sulfate concentrations tracked each other at pairs of monitoring

sites during the three years of interest.

Widespread similarity in seasonal sulfate concentration trends
and a high positive correlation between samples taken on the same day
at widely separated air monitoring stations leads to two more important

Physical generalizations.
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Generalization 4: Major sulfate concentration trends appear to be
determined by forcing functions which are felt over the entire South

Coast Air Basin.

Generalization 5: Sulfate concentration changes are felt to a large

degree on a basin-wide basis within the same 24-hour period.

This suggests that mesoscale and larger meteorological fluctuations
may be the dominant determinants of sulfate concentration changes from
day-to-day within this particular airshed. An extremely detailed
spatial representation of meteorological inputs and chemical mechanisms
within our air quality model might be unnecessary. A relatively
uncomplicated emissions to air quality model should be attempted

initially to test its explanatory power.

2.2.7 Selection of an Averaging Time for Air Quality Model Calculations

It is clear from Figures 2.4, 2.8, 2.9 and 2.10 that temporal
trends in sulfate air quality are more pronounced than average spatial
gradients. Thus for an air quality model to verify its explanatory
power, relatively short time averaging of concentration predictions
would be desired. The implications of averaging sulfate concentrations
over shorter time intervals within our three year study period will be

explored.

Tables 2.7, 2.8 and 2.9 present the results of the statistical
methods of Appendix B4 applied separately to data from the years 1972,
1973 and 1974. As the number of samples being considered within a

group declines, the confidence interval associated with the group mean



66

J1GVVIVAYNA 34V LVHL ViVQ STLVIIONT (x) NSIYILSV KV

19%6 £€6°1 108 9£° 0 60°2 £G ol 62°b 00°9i¢ 89 996
26°11 91°2 LS8 6850 stz 8L7€} wE g oc ot [P %0° 11
ozt [T 266 €70 (X4 9t ni wh Y 008t 55*9 0% 1l
66°6 912 €91 55*0 102 66°21 e 0n*4¢ YAl £001
¥z 21 €1z 61*n LS°0 2z 85°21 g€ °11 00°¢CE €9 e 11
§2°11 [TA] oE*6 g€ 0 A4 99°11 94401 00" 12 19 30° 11
2191 1272 0€*01 €90 teee 8%°91 s 11 00° 1L T1o*11 86 €1
0% 11 16°1 90*6 9%° 0 02*2 9561 z8°L 00°67 9011 6911
9911 €02 168 05°0 617 €1°91 G2y 00°82 [ZAE'] b1ty
1011 [ThA S1°6 8v°0 12+2 6E* 11 zs 01 00°82¢ 89" 56°01
156 TR 108 €0 402 696 ZL*d 00°6£2 bE"S 'rad
96°01 [:] 4 uE*R €80 [ el t6 L 0042 BS"L Lt9*01
62*11 612 628 290 21tz 28 €1 125 00° 0L L1401 (118 8!
61°»1 00°*Z [AR 4] BY" 0 19°2 gg°91 FERR S 00°87 09°11 BE*H1
16701 18°1 916 SE*0 gzee 611 Gt *y [[AF4? ol's 0011
o%°01 (T8 ] SE*8 [T 212 1621 B9°L 00°8¢ 12 10
0s° 11 902 $8°8 250 8172 e tl Z%°8 [l ¥4 18°L CASA 1
* » ¥ ¥ ¥ ¥ ¥ o0 ¥ *
6111 €Ll £976 0€°0 12z He el A" 00862 [ 194 [XAR0
ZE 1T 99* 1 966 9¢°0 0ere {93! STt 00" 0t €9 ve° 11
et L 00°¢1 £€°0 962 [N GECET 00°€l 8L*6 Lesst
€811 b6 1 2E"6 8%°0 €272 LTRE 3 db*6 0ct2L %06 98°11
(224 RS 50°8 2e°0 602 26%6 1878 008t LT A 0% 6
$0°91 19*2 c9°01 2840 1€z 9Z*61 12 002t [TRXS 66° 61
g€ 8 00~z 869 av*o g48°1 68 1972 00" 1¢2 1€°L [ 744 ]
29 pue Bo 2 » (UL 56 (P11E 5°2) u 0 A
WoY 4 NOI1VIA3Q NOILVIA30
A3LVYH1453 QUYANYLS NY 3R $907 40 901 A NO LIWIT A NO LIWIT SIT4WYS Q¥VANYLS NYIW
) NY3W J14LIN0IY J1YLINGID 3ONVIYYA NY W 3IN3A1 3NOD JIN3A14NOD 40 21 LIWHLI WY 21 L3IWHL I HY
_u_m:_;:z [ETRTTINS] a3LvK 1153 G3LYWILST [EIRTNTE] [ ¥3ddN ¥IM01 YITWAN 31dWYS W_:Em_
SILLSIIVIS  JI¥LIHO3D SIILSHLYLS D1 LIWHLIYY
7L61 :ulseqg aTy 3se0) Yyinog

ayl ur eleq AITTend ITY 93eyng Fo uoridraonsag TeITISIIBISG

L°C HI4VL

SSIHD
NSYN
NSYN
NSUN

SS3HI

S$SIHI
Q3dvv1
NSUN
NSYN
$53H)
$S3HI
NSYN
[(RELLA
a3dvvl
NSYN

NSYN
NSYN
Q2dvv1
NSVYN
NSYN
424vvl
Gdvvl
$S3HD
GIdvv
SS3HD

visSia

ONI QUYNYIG NVS
301Su3ATY
OHYVLING
V40ONI19

WYNIADD LS3m
VYSnNZv

VNV VINYS

Wi IHVYNY

W1 3HVNY
3A0HD N3OWVD
YN3QvSYd
VYNIQVSYd
S3739NV SO
$3739NV SOT

ERVILERD]
ANYEYNG
QOOMNAT

HIY34 N0
JINVYYOL
XONNIT

V1 1534
VIINOW VINVS
vais

SAVO QNYSNOHL



67

I8VIIVAVND 3¥Y LVHL VIVQ S3ILVIIONI (») NSIYILSY NV

£4°01 §¢°¢ 15°1 99°0 202 6t 01 19%6 00°05¢ 85°L t0°01
00°*91 [4 4 %211 10 %2 1512 18°6 oceee bAoA A 6951
» *® * ¥ ¥ * * ¢*0 * *
65°01 18°1 1L°8 6L°0 91°2 se (1 65 %L 00°1¢ o3 B} 05°01
0%9°s1 652 LLte 16°0 CYAd4 S6°41 Te°tl 00°96¢ or*21 |3 28 2}
$5°51 852 16°6 06°0 622 60°s1 96°i 1 00*Lye 00*21 95yl
61°91 98°2 gl*8 o1t orez #4661 %901 00°€¢ g 11 Tleet
90°8 9s°1 1E°L 61°0 66°1 146 499 Qo°se ¥9°¢ 20°8
09°6 82°1 21°8 e 0 s0°¢ %611 |1 ) ('L 289 B9
6821 022 wht e Z9° 0 LY A4 [ YA sB°11 00°2S¢t 816 1€°21
16°€1 t0°2 L5°01 0s°0 9t ¢ 19°¢1 6121 00*¢st 9L 4 €ecet
00*%1 ol°e €9°01 s5°0 9€* 7 [IR Rt 31°01 00°0¢ £€6°6 66 ¢l
Luel [ 1.3 96l [ R eonte 02°s1 21°01 00°etL €e*z1 9921
66°91 65 ¢ 16701 16°n s€°2 te 41 L1211 ore€L oLyl 0g°6t
se*21 el 1L°01 620 1e°2 0g*%l 08°6 0052 65°9 og*z1
Z9°0tl 06°1 ty°e 1vn y1*2 st LLL 00°0¢ [4: '} 94°01
21°s1 80°¢ $6° 11 %6°0 [ 24 0i°el S0°11 0o01¢ ze* 1t 18°4
¥ ¥ ¥ * * ¥ ¥ (ol 4] ¥ »
¥5°01 8s° 1 120 L YAk4 0L 1%y et el 856 69°01
8z 11 98°1 9L°0 €22 €C°n ot 4 00°62 £ve L 12°1
€Lyl 1%°2 LLeo @z-e o991 vl LGS ¥} L1eet Y6 ¢l
Y111 6i°2 S0 1 L8 1 €921 LA 00°1¢ 1%°01 f9°01
98°21 €2°2 490 €22 %621 %0°21 005 ¢ o101 6921
0581 9l e it t0°7 Y8°0¢ so*2t 00" 2¢ L1tz $9* 9l
[XAR 81 LY R4 20°1 661 6411 a5 01 00°25¢ 96°01 €0° 11
2¥ pue © P 2 ° (a2 §°26) (2113 §°7) u B A
HWOY4 NOILYiIA3Q NOI LY IAIG
03LVWILST GYVYANY LS NY3IW $901 40 901 A N0 LIWOT A NO LIWIT S3TVdWYS QYVYANYLS NYIW
NvaW J1413INCID J1413W039 3INV 1 ¥VA NYIW 3INIA1ANDD JINIA1ANOD 40 J113IWHLIYY J1L3IWHLIYY
J1LIWHLI ¥ a3LvKILS3 Q431vW1153 G3LVWILS3 Q3LVWELSS Y3ddn EEL ] YIBHNN 37dWYS 37duvs
L I L |
SIILSILVLS Ji¥LIW0ID SIILSIAYLIS J1L13IWHLIEY
€L6T :urseqg ITV 1seo) yanog

®4l UT BlBQ £IFTEND ITV 23BIINS JO UOFIATIDSAQ [BOFISTIEIS

8°C dTIdVL

SSIHD
NSYN
NSYN
NSYN

$S3HI

$SIHI
Q3dvvl
NSUN
NSYN
$SIHI
$S3HI
NSYN
Q3dvvl
[(WEL LA
NSYN

NSYN
NSWN
24vv1
T NSWN
NSYN
a2dyv1
G24vY
SSIHD
a24vv
SSIHD

VISIA
ONIQYVYNY3E8 NvS
3015¥3A1Y
GIYVLING
YH0aNIID

YNIADD 1S3mM
ysnzy

VYNV VINVS
WIIHUNY

W1 IHUNY
3A0¥9 NIQWYD
VYNIQYSY4
YNIQYSVd
$37398V SO0
$3739NV SO1

3IVANITD
MNVENNg
Q00MNAT
HIV38 INOT
3INVHYOL
XONN3

¥1 LiS3M
VIINOW VINVS
Y6353y

SAYO ANVSAOHL



68

7VIIVAVNR 34Y LYHL YIVQ S3LVIIGNI () NSIYILSY NV

i8°¢ atl*z Lo c5*0 06°1 l6°8 L 20" 00 b4 g 89°9 99°¢
921 02z L2e z9°0 e2°e 91°91 L Ad 00*¢e2 896 et
M * ¥ ¥ * ¥ » 0*‘o0 » *
98°¢1 164 s2* 11 P4 ] 4 a4 6% L1 6%°6 Qo0°st $0°¢ 6y el
gs 11 SE*Z 20°g €L°0 802 2271 6%°01 po°8Le 80°6 €111
611l gecez €68 990 »1°2 &0°CY 06°D1 PO tbl 00°6 6411
9Z"11 L4 %89 00°1 261 9zt SY G 00°T1L 96*6 45* 01
LA Ad A1 6L°1 59%6 vE* 0 12°2 60°%1 S0 8 00°52 L § 1% 1)
0921 s6°1 60°01 y%°0 1e°2 £9°61 bE b 00°0t 016 1621
18°01 802 9€° R 26°0 212 %¥Z2°11 q101 009682 68l 69°01
%2°01 961 ER ] s%°0 [0 a4 rA S9°6 [s[\ 3§13 2g°9 60°01
9z°11 81 Y2°6 6e°0 222 2z*sl 2L°d 00°2Z €26 IR ARN
426 182 1e*s Ty 191 2¢°01 08°9 00° 1t 198 998
L€l 692 [ rad:] 86”0 otr=e 00°s1 1€°01 00° 1L 61°11 9921
Ly°yi -2 4 566 sl*0 oe*e ty°81 €96 00°92Z 60°21 To el
216 222z Y3°9 £€9°0 681 Zitet 1€y 00° el oB*e 20°6
£8°v1 96°1 18°11 5% 0 192 50°82 B6 L 00°0¢ 0z2° 6 209t
[{FRSY 9y*2 In*9 18°0 18°7 Te 1t €9°L 00°89 LT ] i{9°6
18°¢1 €Ll 6811 0L"0 L4 Let11 €5°01 00°9¢ 1Z*6 S6°€l
st [ F R | 12°0%y 8l 0 FA 4 byl ow°6 00°82Z 62°9 s 11
£6°11 2€°Z 3E°8 1.°0 €1z 68 ¢l 9L"6 00°€t 10°C1 2811
001 <8°*2 18°*¢ 60°1 CTRA 8z*n L8 oc*éi 26" € f4 AX-]
19°11 12°2 £c°g 19%0 21tz S0y 65°01 00°8%2 S6°8 ZE€" 11
0z+ 21 11¢ 1%°9 621 98°*1 Zetel 8L°8 06¢* 0L eLeet so 11
oe-uy 9%tz 98°< 18°0 Lty 98°6 L6°L 00°L0¢ LIRS t4 M)
28 pue ® % Bn o ° (P11 5°L6) (1% 5°7) u o 4
WOY3 NOL¥1A30 NOI L1y 1430
[ENY YRR QUYANYLS Ny3W $307 40 201 A NO LIWID A NO LIWiY S37dWYS QUYANYLS NV3IW
NY3IH J1413K039 J1413KW039 3INVIHYA Ny ERLEDNTE]vA] FINFQLANOD 10 IJLLANHLLYY JLLARHL LYY
ﬁw_ku:xh_x< 0311183 031¥W11S3 Q3LYNILS3 Qwh<z_hmwlh F ¥3addn YIMN0Y ¥IAWNN 314WYS wdmlwwh

SIILSILYLS  J1¥L3W039D

/6T :UTsSeqg aTy ISBO) Yyjnog
®43 Ut e3jeq L3TTend ATV 23e3[ng jJO uworidiiossq TedT3IsTIeils

SIILSIAVLS JIL1AWHLIEY

6°¢ dTAVL

$SIHD
NSYN
NSYN
NSYN
$S3HI

$53HD
[(ELLA]
NSYN
NSYN
$S3HD
§S3IHD
NSYN
Qadvyl
¢2dvv1
KSYN

NSUN
NSYN
QaJdvy
NSYN
NSYN
249V
a3dvv1
§S3IHI
QIdvvi
S$S3HD

ViSIA
ON1Q¥YNY3E NYS
30)1S¥3A NN
O1Y¥YLND
vy0aN31n

WNIAQD LS3M
vsnzy

VNV VINVS

Wi IHYNY

W1 3HYNY
JA0Y9 NIQUYI
VYN3QVSVd
YNIQYSYd
$3739NvY SO1
§3739NV 507

R ERE]
ANvEuNng
QOOMNAT

HIvIs ONOT
JONVHHOL
XONNTY

v AS3IM
VIINOW VINVS
¥03S3y

SAV0 ANVSNOHL



69

value of course widens. When attention is turned to even shorter time
periods, such as a month, the result is well illustrated by Figures
2.15 and 2.16. These figures show the monthly arithmetic means of

all sulfate samples taken at typical CHESS and LAAPCD stations during
the period 1972 through 1974. The o's indicate the magnitude of the
monthly averages of the raw sulfate data, ;; while the +'s indicate an
estimate of the arithmetic mean of the underlying population of events,
ﬁ,»calculated from a log-normality assumption applied to those sulfate
values above 2 ugm/m3 by the methods outlined in Appendix B4. 1In
general, correspondence between y and p is still close, even for the
LAAPCD stations which average only 6 samples per month. The important
feature of these graphs, however, is that the 95% confidence intervals
on thé monthly means of the LAAPCD data have become quite large due

to the small number of samples taken each month. The NASN data have
not been plotted at all since the insufficiency of data is even more
exfreme (only one or two samples per month). A graphical description
of the monthly arithmetic means of the CHESS and LAAPCD sulfate data

at all monitoring stations is given at the end of Appendix B4.

These confidence interval estimates hold important implications
for a long-term air quality modeling study. It is clear from the
previous discussion plus Appendix B4 that rather long averaging times
8fe needed to reduce the uncertainty introduced into the NASN and
LAAPCD data averages by their sparse sampling schedules. A compromise

must be struck between the desire for short averaging times and the
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desire for tight confidence intervals on the ambient concentration

averages used to validate air quality model predictioms.

Monthly average sulfate concentrations will be modeled with the
understanding that only the CHESS data and certain portions of the
LAAPCD data strings will provide an exacting test of model performance
on a monthly basis. These monthly predictions can then be combined
to form annual average predictions for comparison to annual average
air quality measurements which are known to * a few micrograms per

cubic meter at a larger number of monitoring sites.

2.3 Sulfate Alr Quality in Relation to the Total Sulfur Content of
the Atmosphere

The reason for the localized sulfate enrichment of the air over
metropolitan Los Angeles is likely to be found in emissions of sulfur
oxides from fuel burning and industrial activities. Roberts (1975)
has outlined the atmospheric sulfur budget of the Los Angeles area, as
shown in Figure 2,.17. His calculations indicate that while only about
thirty percent of the global sulfur emissions are due to man's
activities, ninety-eight percent of the sulfur emissions within
the Los Angeles Basin are attributable to man-made pollution sources.

Most of these emissio