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INTRODUCTION

Between rebruary 13 and March 19 1939 the
"EJW.Scripps", research vessel of the Scripos Insti-
.tution of Oceanograﬁhy, occuplied 53 oceanographic
stations 1in the Gulf of California. The observations
of temperature, salinity and oxygen content, which at
every station wcre taken at a series of depnths, suggested
?the existance of internal waves.with amplitudes as
large as one tenth the depth of the Gulf.

Waves generally can be classified into short
and long waves and both groups comprise surface and
Internsal waves, with freguencles corresvonding to free
or forced oscillatlons, and of the standing or pro-
gressive wave types. Those under consideration are of
the "long, internal, free, standing wave" type, perhaps
the least known of the sixteen possible combinations.

It 1s the object of tnis paper to present a dlscussion
of these waves from both an observational and theoretical
point of view and to compare the results.

The bottom topography of the Gulf 1s quilte
complicated but the average depth remains nearly constant

to 2z considerable distance from the entrance and decreases



then regularly. %e know qualitatively that velocity

of propagation decreases with decreasing depth. With
this in mind we first find that all observations can

be combined to a consistent plcture from which we ob-
tain the period of oscillation and the wavelengths.

A theoretical treatment of the outer portion
of the Gulf, applying FJELDSTAD's theory for internal
waves at constant depth (1) yields results in good
agrecment with those indicated by observation. For.
the inner portion of the Gulf a general theory for
internal waves in a basin of non-constant depth is
developed and apnlied. FJELDSTAD's theory is also
expanded to include the case of a horlzontal density
gradient. |

"The results of the theory, applied to the
Gulf of California, compare favorably to those obtainéd

by the observational approach.



RESULTS FROM DIRECT OBSERVATION

The Gulf of California is the southern end
of the group of the great Pacific depressions, which
extend roughly paralell to the coast perhaps as far
north as Alaska. The Gulf follows a straight course
throughout its length of 1100 km. This linearity is
a conseguence of 1ts tectonic origin, for the Gulf
of California is most likely
asgoclated with the large
San Andreas fault system.
Its exceptional symmetry
makes it remarkably
sulted for the exis- ‘/
tance of large perio- |
dic movements of 1its
water mass.

A study of
the currents in the

outer portions of the

Gulf led at first to

very discouraging results.

The dynamical topography of
the surface relative to the

1500 decibar surface does not indicate Fig.l




any regular exchange of water between the Gulf and
the adjacent part of the Pacific but showsa sequence
| of seperate highs and lows. (Fig.l) The highs and
lows are assoclated with alternating downward and
upward displacements of the isopycnic surfaoes.
Let ¢,,, be the density, depending upon
the oxygen content, temperature and salinity of the

water. The vertical displacements, as represented by
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-curves (o4 = 105(fs=1) , are clearly seen in a

0’
—t
longitudinal section, (Fig.2) bvased on data from

stations along the center line of the Gulf. All stations
used for the construction of this section are indicated
on the small map on the left of the figure. It should

be observed that the vertlcal scale 1s highly exaggerated



relativé to the horizontal, the ratio between vertical
and horizontalvscales being equal %o 1/800. The pro-
files of a series of isobarlc surfaces relative to the
1500 decibar'surface are shown to the right of the
figure. |

The wavy character of the curves sﬁggests the
possibility that they may be associated with a standing
internal wave. The observatlons are not simultaneous,
but at the top right hand corner of the figure is shown
the number of days elapsed between occupation of station
5, the central station at the southern section, and the
other stations used for constructing the'profile. It
18 evident that if the observations indicate a standing
wave, the wave perliod must be such that when travelling |
un the Gulf the vessel remained nearly in phase with
the wave. Thls gives immédiately an indication of the
possible perlod length. S8tation 14 appears to have
been occupled nezr a nodeof the wave, and in this case
the time difference is of no importance. Station 21
appears to have been oeccupied shortly before the wave
reached 1ts hignhest value, and the wave period must
therefore have been greater than 12.6/2, that means
greater than 6.3 days. Statlon 27 was occupled after

the wave reached its crest and the wave period must
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therefore have been less than 15.3/2, which means less
than 7.65 days. Station 30 appears to have reached
approximately at the time when the wave at the surface
reached 1its lowest position and the wave period must
therefore be apvoroximately 19.3/3, whichi means aporoxi-
mately 6.4 days. FPFinally, Station 38 must have been
reached nearly at the time of greatest elevatlon.
Therefore the period must be approximately 25.3/4, that

means 6.3 days.

r 5004

Fig.3
This merely indicates that 1f the wavy character
of the lsgobarlc surface is due to an internal wave, its
period would lie between 6.3 and T7.65 days, and probably

glosgser to the former value. Before we can decilde in favor
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of thissexplanation we must make sure that it does not
conflict with any other laws governing internal waves.
A general discussion of these laws has been presented
by SVERDRUP (4) and DEFANT (2).

The internal wave 1s considered here in two
dimensions: A vertical axis and a horizontal axis along
the center line of the Gulf. Harmonics may develop
with respect to both the horizontal and the vertical
coordinate. Fig.3 1illustrates waves of the first,
second and third order with respect to the vertical axis.
On the left side we have plotted maximum vertical.
displacement agalnst depth, or, since they are propor-
tional, maximum vertical velocity agalnst depth. This
veloclty component vanishes at top and bottom, and
shows maxima, equal 1n number to the order of the waves.
To the right the horizontal velocity component has been
plotted against deptn. It 1s evident from the g
curves that one hasg mainly to deal with an internal
wave of‘the first order. The maximum amplitude lies
between 500 and 600 meters and 1is of the order of magni~
tude of nearly 100 metera.

Amplitudes of the internal wave become small
near the surface and the bottom of the ocean. LAMB (3)

calculated the ratio of the am»>litude at the free surface
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to the ﬁaximum amplitude:

-ﬁ-i = (-Z;,'— - l) e-kh ~8.,2 x 104
where h refers to the depth of the maximum amplitude,
¢ 1s the average density above thils depth, p, the
average density beneath this depth. k = 2 /wave-length.

Our value for Ay = 100 meters indicates an
amplitude of only 8 cm at the surface. This is in
accordance with the L4 curves and also with tidal
records taken at Mazatlan during this period. These
records are not sufficiently accurate to measure such
small oscillations but they show that after elimination
of the regular diurnal and semi-diurnal components a long
period oscillation of amplitude larger than 10 cm did not
exist. |

‘The amplitude at the bottom would be zero if
the Gulf were of constant depth. Figure 4 will serve to
1llustrate the topogranhy of the region. It repfesents
a longitudinal section of the Gulf, with six profile
planes, intersécting the center line -N at points A to
F, turned clockwise into the plane of the grapn. These
profile planes are drawn to scale but it should be noted
that the vertical scale i1s highly exazgerated. at the

top of the flgure we have indicated the actual position



- 13 -

of the stations, from which these profile planes were
measured. The bottom of the Gulf appecars so irregular that
i1t is difficult to construct what may be called the "effec-
tive" depth. From observations at the decpest.statlons

1t appears that continous communication between the various

depressions 1s present only above 2000 meters. It seemed

EFFE(TIVEJ
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Fig.4

advisable to choose an "effective' depth which remalins close
to 1800 meters tnroughout the larger portion of the Gulf.

The vertical displacements at the bottom must be negligible
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ln this region, and this 1is substantiated‘by the J 4
curves. |
| Furthermore there must be a node at the
entrance of the Gulf, an anti-node at the inside end,
if we are dealing wlth a free standing wave. At about
290 latitude the channel becomes very shallow, and two

islands, San Esteban and San Lorenzo rise above the

|4—————— Closed end Open end —

A2 D

Fig.5
surface., Waves wlll be reflected before tbey reach
this point’or loose their energy by friction and inter-
ference. Hence we may consider this the inner end of
the Gulf, and may neglect the portion north of the
islands, although the Gulf deepens and widens again,

and extends 350 km further inland.
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The L, curves clearly show the exlstance
-of an antinode at this location. However, a node is
formed not at the actual mouth of the Gulf but about
150 ziles further south, near station #305. (Figures
1 and 2). It 1s generally known that the "effective"
length of a canal -ith regard to a wave phenomenom is
not identicuzl with 1its actual length, but depends upon
its width at tne opén end. A correction formula has

becn derived for this "kllndungskorrektion":

= - 1n2b
1o = 1.0/ 1 + -%a(o.geza 1n41a) ~ 1.2 1,

where lg 1s the effective lengtih, 1, the actual length,
b the width at the mouth. Hence the Mindungskorrektion
"lnegthens" the Gulf rougly by 204 and glves an effective
length of 1000 km. This 1s only a first approximation,
but 1t shows good agreement wlth the _g 4 curves.
Between the outer and inner 5oundary of the
Gulf, three nodes can be located. (Fig.2) Figure 5
1llustrates standing waves of the first, second, third
and fourth order in an half-oven channel. ‘we have
plotted maxlmum vertical displacement (or, since they
are proportional, the maximum vertical velocity com-
ponent ) throughout 1ts length. A comparison cf filgures

2 and 5 shows that we are dealling with a wave of the



fourth order with regard to the horizontal coordinate.

Finally the velocity of propagatlon and hence
the wave length decreases when the depth to the bottom
decreases. The I curves clearly show a decrease of
wave length towards the inner end of the Gulf.

Henceé a free, internal, standing wave of first
order with respect to the vertical axis and of fourth
order with respect to the horizontal axls is in good
agreement with the dynamical topography of the Gulf,
and obeys all boundary condlitions. Observations in-
dicate a period of 6.6 days. A wave length of 1000 km
near the mouth of the Gulf gives a velocity of propagation
of 175 cm/second, decreasing towards the inside. It 1is
the aim of the following investigation to examine 1f this
pilcture , which has been derived from cbservation, 1is

in agreement with theoretical considerations.
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THLORRTICAL INVESTIGATION

Internal Wwaves at Variable Depth

The velocity of propagation of a wave depends
generally upon‘the depth to the bottom and the density
distribution of the water in which it takes place.
FJELDSTAD (1) has treated the case of constant depth
and a density distribution which does not change in
in a horizontal direction. We shall first treat the
case applyling to the Gulf of California, that of
varlable depth but of a negligible horizontal density
gradient. Later we shall deal with a basin of constant
depth but an aporeclable density gradient. The general
case, that of variable depth and density avpears very
complicated and is not treated here.

Previous investigations of wave phenomena‘
(DEFANT, 2) have shown that in a long.narrow4channel
the earth's rotation will tend to produce oscillations
in a plane perpendicular to the length of the channel,
but 1ts effect upon the chief wave motion along the
channel wlll be small and can in first aporoximation
be neglected. For that reason the problem reduces
to a two-dlmenslenal analysis.

We shall assume the x-axis along the direction

of propagation of the wave, the z-axis perpendicular to
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the surface, where z = O represents the undisturbed
‘surface, z = h the bottom. (Fig. 6) Let u and w
represent the components of the velocity of the water
along the x and z axes respectively, ¢ the density,
p the pressure, the vertical displacement of a definite
particle of water from its position of equilibrium, and
g the gravitational cdnstant.

We shall at first proceed in a manner similar
to that of FJELDSTAD.

The equations of motion are:

dw , 1 3p .0
dt  Ix
.éi+_'i£+9=0
at dz

Assumlng the water as incompressible the
equation of continuity becomes

21+M=0

Ix =

The density of a particle remains unchanged

with time.
a9 _ o
dt or
2y i -
et L ewdl-o0

Numerlical values warrant the following
adjustments. Let_g“ﬂ denote the density in eguili-
brium condition. We define g, by

= P.(") + £i(nzr)

Let Py denote the atmospheric pregsure, and
po(Z)Athe pressure due to water in the equilibrium

condition.

la

1b

lc

1ld

2a
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Poczy = 9/fc(z) dz
‘and defline p) by
P = Dg + Do(z) + P1(xzt)

We obtaln by differentiation

L2 - _as _ 1 3n
y az P+ p .ﬁ’ Fz
2 £ , J

+_I —_— = _2__’. + — b}
9 f dz Jo ,__P’ gz

We may assume

du . Ju  dw . 9w Ir _In udf ¢ WP
dt ot ' gt at' 4z Dz o 9z

Substituting equations 3 into equations 1

we obtain

r Po P09z
X z

We shall investigate a standing wave with

period T =3%? and wave length 1 =?i1 and velocity of
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propagation ¢ = f%— . Equations 4 are
-general since they deal with the properties of an
incompressible medium and are quite independent of

boundary conditions. FJELDSTAD assumes solutions of

the type
W(xzt) = W(z)sin(kx)cos(st)
U(xzt) = U(z)cos(kx)cos(ct)
D(xzt) = E(z)sin(kx)sin(st)

¢(xzt) = R(z)sin(kx)sin(4t)

With these assumed solutions substituted
into eguations 4, we have four equations in four un-
knowns. Solving for W(z) We obtalin

a

w 2
"f = = —-—' .g-& =
o T Agfw =0 where f= -— SF )

0]~

subject to the boundary conditions

W=0for z=023a3nd % =2 0 for z = h
for the case of constant depth. % = f£(2z) only, and
the subscriots have been omitted in equat.ons 6. A
numerical integration between these boundaries (page 50)
determines varlous values of the parameter and hence
the veloclty of propagation. We shall now show that
agsumptions 5 leading t0 equation 6a are inconsistent
with the general problem, and furthermore are consistent

only 1f the slope of the bottom is ecual to zero.

5a

5¢
5d

ba

6b



- 21 -

Conslder a channel of uniform width, but variable
depth. (Fig. 6) The total amount of water transported

through a section i-L per unlt time 1ls equal to U dz.
M M

K
|
|
|
l
|
|

; - Fig.6

l
|
|
I
I
N
Take any other cross-section M-N. 8ince the surface of
the water between the tvwo cross-sections remains at
constant level the transport through M-N must be equal

to the transport through K-L. Hence generally

2 [ |
-Zx-[U(u)dz=O 7

We shall now establish the same result by
mathematical analogy. Assume that u and w are in phase
with regard to time, so that

u(xzt) = U(xz).f(t)

wi{xzt) = W(xz).f(t)

This 1g in agreement with our understanding of standing
waves generally. Substitute into eguation of continuity

{le) and integrate:

h
f a(J(ll) d / ‘,rz] dZ
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We note that generally

. . X
d - 2h / CAVITES) ad
X /, U(rz)dz = Jx U(xh) L A ox z

and hence, noting that the slor-e of the bottom M =-%§

h
—m Uony +-82;,/U¢xz) dz = /__(_xi; dz

I}

(W(xh) - W(x 0)‘)

From 6a we note that Wiy, = O

The kinematic boundary condition at the
bottom, namely that all flow must take place along the
boundary, 1s expressed by

Wixn) ® m(x)-U(xn)
and equation 7 follows from 8c¢.

Change position of ¥-N until it occupies
position of Jl'-N'. Here the total transport is zero.

in view of equation 7 we finally obtain

h
/ U(xz) dz =O
- o]

Let us assume a solution of tyoe 5, or let

Substituting intoc equation 7 we obtain

%fh/f(ﬂf(q Az = O
(am) (}F(z) Az +(§'u)),(%‘/;‘(2)dz):o
(dﬂx)) ff‘(z)dz')‘f‘ F(x,)( f(h)) -0

8b

8¢

8d



From eguation 9

h ) h

L'“*’F‘Z’dz = 0, and hence /;uz,dz:=o
a

Together f(x).f(h)—jﬂl = O
X

U(xp).m = O

Wixn) = O 10a
According to the kinematic boundary condition 84

W(xh) = m'U(xh)

For that reason assumed solutions 5 are
inconsistent except for the casc in which m = O.

Froceeding in similar manner it can ve shown
that a solution of the type

Uixg) = 5 f1(x).£3(2)
ls consistent for values of n larger than one. For the

case n = 2, eqguation 7 leads to

(af‘“)(fﬁ(z)dz QF‘”)(ff()dz)“‘”‘(P(”r‘z)+f‘”)h(n)) o

equation 9 leads to

- .
fl e fﬂcz»dz + ﬁcx)£ fozydz = 0

Here the assumed solutions are consistent with

the kinematic boundary condition without "m" having to

vanisii.
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Hence we have shown that solutions 5, although

applicabl: to the case of constant deoth, cannot be used

for the general case of varlable depth. %Wwe shall now

assume a more general solutlon:

U(xzt) = U(xz)-coslot) lla
W(xzt) = W(xz)-coslat) 11b
P(xzt) = B(xz)-8inlet) lle
g(xzt) = R(xz)-sinlet) 11d

Substituting these into equations 4 we can

eliminate all functions of time:

- 4 2R _
5U+?a 3 x =( 12a
, R. 3R
“¢W+9§—+§:5;=O 12b
QU o W
5 X + 9 = =0 12c
J $.
cR+W3,=0 12d
2 1 IR

Differentiating 12a ~ 9 ax * 5 o4 O

Substituting from 12¢ 0 5, * v, duxr T 0
and differentiating agaln
R W I W ap
2 — ‘-O,ya - q T
Ix* Iz o =* iz oz 13a
Differentiating 12b
IW g 3R 4 3°P

=6 ox Y out TR Gxrez T 0 13b
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Differentiating 12d

Substitute 1l32a and 13c¢ into 13b, and rearrange
I*W a 9w IW
S (99=0%) —a (Gom— 152 ) =0

S om
where d = %, 9=z

L AW Ny IW

But we finda 9Y¥>» o, 9=z J=

and obtain finally
al\/\éz) . 9 LP(z) al\/\/(xz) O

Jd=? o* Iax*

For the substitution %(y,) = W(z).sin(kx)
equation 15 reduces to FJELDSTAL's equation 6a.

Only equations referring to standing waves
have been used in thils derivation. Consider the standing
wave as a supcerposition of two progressive waves of

equal amplitude and speed but opposite direction.

PROGRESEIVE RETROGRESSIVE

up(xzt) U‘(xzpsin(kx—at) Ur(xzt) U’(xz}sln(}{x-ft)

Wp(xzt) = W'(xz)cos(kx-st)  wp(xzt) = W'(xz)cos(kx-ost)

1}

Po(xzt) = P'(xz)sin(=%x-st) Ppr(xzt) = B'(xz)sin(kx-st)

go({xzt) = R'(xz)8in(-kX-ot) QLr(xzt)

I

E'(xz)sin(kx=-at)

Let 20 (xz)sin(kx)

U(xzj

2" (xz)coslhx) = W(xz)
25" (xz) coalix) = L(xz)

2R, (xz)cos(kx)

R{xz)

13e

145

l4p
l4c

15



Then up - U = Ug

Wp = Wp = Wy ... etc, where ug and Wg
refer to ecuations 11. Hence the solutions for
standing waves are the sum of two particular solutions,
referring to progressive waves.

It can be shown that either particular solution
16 satisfies the four basic laws of hydrodynamics and leads
to the differential equation 15. Nevertheless solutions
16 cannot be applied to a basin of variable depth. For
the ratio w/u at all points along the bottom must equal
the slope at these posltions, and therefore remain constant

with time. 1In case of standing waves the veloclity

componerits are in phase and

CW(xzt) _ ngz)COSQSt)_( W )
U(xzt) U(xz)COS(Gt) U Jixa)

depending upon position only. The velocity component
of a progressive wave are out of phase

Win(xzt) _
up(xzt)

%'(xz)cos(kx-ct) (W
U‘(xz)sin(k.x—c'ﬂ ( UT)(xﬁCOt(kx-at)

and a function of time.Only for m = O , since w becomes
zero at bottom, the ratlo w/u will always be zero and
independent of time.

Otherwise equations 16, although satisfying
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the eguations of hydrodynamics, do not gatisfy the con-

ditions demanded by a sloping boundary. A standing

wave can exist in a basin where it is impossible for

either of the two progressive waves, which may be

considered as making up the standing wave, to exist.

We have based this investlsation upon the
fundamental equations of ﬁydrodynamics. These four
equations relate four properties, vertical and horizon-
tal velocity components, density and pressure. Solving
for the vertical velocity component we obtain a
differential‘equation with a parameter proportional
to the square of the period of vibration. Distinct
values of this parameter (kigenwerte) can be obtained
from boundary conditions.

In PJELDSTAD's simpler cass th;s parameter
is inversely proporﬁional to the square of the velocity
of propagation, and can be evaluated from the top and’
bottom boundaries. The periods of vibration can easily
be computed, once the velocity of propagation and the
length of the basin are known. In the general case one
single operation involving all four boundaries will

yield directly the period of vibration.
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lethods of numerical soclution.

It now becomes our task to evaluate o fronm

the differential equation
DWW gt TWaen g

D= gt dx*

gsubject to the boundary conditions

W(oz) = O along x = O
Wi(xo) = O along z = O
W(xz) = m(x).U(xz) along the bottom.

This becomes complicated, because ¥ varies
usually very irregularly with depth (Fig. 12). Solutions
to the differential equation 15 for Y = @~ 3 ang
f=ag—-=2 —'fé are discussed by Th. Sexl. (5 and 6.
If this approximation can be anplied, and depth expressed
as simple function of x, an algebraic method may be
called for.

It will usually be necessary to employ a method
of numerical integration. The following method is of
use if the veriod of oscillation and the velocity distri-
bution are known from actual measurements and only to
be substantiated by theory. Divide a longitudinal cross-
section into a great many squares and insert values of

¥ as suzcested by observation and boundary conditlons.

15

18a
18b
18d
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Calculate the value of the parameter corresponding to
the observed period. Equation 15 is transformed into
the difference equation:

We-2W. +Ws 3% Wem2We + Wa
(az) g’ - (ax)? - 19a

Wo e Wu*‘\/\/)”‘ (Ax)(WL+WR) , 19b
2 (1~ 95)

where the various letters indicate the assumed values

of W in the surrounding squares (Fig.7).

|_< L 5.]
| > X
A
W, ¢
H Wi | Wo Wi AZ
\ We N

AASS VAN '
ok

Fig.7
In this manner equation 15 is applied locally,
and by covering the entire cross-section we obtailn
corrécted values for W satisfying more closely the differen-~
tial eguation. If we have chosen a proper period and
repeat this process a sufficlient number of times, the
relationship will become smooth and corrections will

decreasc.



Along the x and z axlis prover boundary values
were introduced initially and remained unchanged. 4long
ﬁhe bottom the kinematic boundary condition must be
fulfilled, or

W = mU,

“e can eliminate U by solving simultaenously with the

equation of continuity lec
ouU aw

Txt 92 =0 ‘ , and obtain
° Iw
5 (H)+ 52 =0 or
A d W Jdm
m* gzt mTx W Gx =0

along the bottom. kquation 19c¢ 18 equivalent to the

difference equation

— W - WL 9141
m? &yéz;;—g + m Xz%;;—— -2Wo 5% =0

A third method was devised to treat numericalily
the problem of the Gulf of California.

Let W and U be expanded in a Fourrier seri-s:

U(xz) = bgzDi(z).cos(kix),

where Ky = —%fl

Wi(xaz)

These substitutions change the partial

differential equation 15 Inton total differential

19c¢

19d

20a
20b

20¢



equations
[ 2 iz \f)z kL2
CRLGTEINAL = Citsy =0 o
d'Z.L » G Clla
Boundary condition 18a is already satisfied
by 20a.

Boundzary condition 18b gives

Ci(O) = 0 , 2lb

Substlituting 20a and 20b into 184 we obtain

ici(z).sin(kix) = m(x)i'Di(z).cos(kix;
Substituting 20a and 20b into le we obtain

~Ki1Di(z) = éi(z) ( é denotes ~%%— )

Fliminating D between the last two equations, we obtain

- . ~ . dc |
Zci(z)-sin(kiX) + m(x)Z—i—I —é%é-L cos(kix) = O

o~

along the bottom. Let us define Wi(,) (not the vertical ve-

locitvy W(xz)) by Ci(z) = Wi(z)-Ci(o) ‘ 22a
Tnen éi(z) & @1(2).61(0) 22b

It follows directly from 22b that
ﬁi(o) = 1 22¢
Substituting 22a,b, into 2la,b,c, we

obtain the differentlal equations

d*W. L9 Kear K

o =z? a*

Wi =0 D%a

21¢
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subjectrto the boundary conditions

Wi(c) = O

and Wi(z).8in(kyx) + gﬁ 2(x)coslkyx)
z

ki

along the bottom.

Z Fig.8

We have shown (page 23) that in tue Fourier
summations 20a and 20b "n" must be at least equal to
two in order to provide consistency with all boundary
conditions. It must be larger than two to give a
satisfactory approximation. By making "n" sufficiently
large we can approximate as closely as we wish any
given velocity distribution.

A Fourier substitution yields therefore "n"
differential equatlions of the type which Fjeldstad has
developved for the case with constant depth. Lach of

these equations has 1ts characteristic wave length A ,

and indsed

25d



The internal wave can then be considered as
the result of "n" internal waves of equal period but
different wave leﬁgth, guperimpoged upon one another.
Fach of these waves by itsclf satisfies boundary

conditlions at surface, but only all taken together

can be made to satlsfy the boundary conditlion at the
bottom.

Let us then agsgume a definite value for the
parameter ¢ . Hach of the "n" eguations 23%a can be
numerically 1integrated according to the method used
by Fjeldstad for all values of "z" from O to H.
Starting with 22c¢c and 23b at the surface, we obtain
values for Wj(,) and %i(z) at all depths.

Boundary condition 23c must now be applied.
For that purpose divide the length L of the Gulf into
r equidistant intervals with values of x ranging from
X, = 0 to xp = L. (Fig.8) Draw an accurate topogra-
rhic section of the water body and find for all values
of xj (j‘= 1,2,3,++..r) the corresnonding slope my and
depth zj. Values for Wy(,,) and %i(zi) from the
numerical integration are then obtalined and Kji numerically
evaluated, where

m(x,).co8(kixy)
31

Dhg

£yy = Wi(zy).sin(kiXJ) + Wi(z,)
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Boundary condition 23c becomes then simply

;Z fijiéi(o) =0

=k e=1

This can be:expanded into

Kglcl(o) + Kzgég(o) + e.eve KQiCi(O) 4 eveas KEnén(O) -0
KJlCl(O) + KJECE(O) $ aaess Yilei(o) + cecees lxjncn(o) = 0

PRI N SR S A O O R AN BT I R A B N N A I R R R R A R A A A A N N A N A N N RN

O 2 % 8 8 F 8 & 5 8 0 D & B B S S S & a8 B 8 I Bt & S8 6 T O e s B I e NS et OS2 s

KrlCl(O) + KTQCQ(O) + s eaoe Aric(o) + es e ﬁrncn(o) -

Hence we have one equation for each of the
f points at the bottom boundary, and each equation
contains n terms, referring to the n comoonents of the
internal wave. In practice we shall choose r to be
large compared to n.

If our parameter has been‘chosen corresponding
to a true Eigenvalue of the differe<ntial equation, or
in other words corresponding to a natural frequency of
vibration of the Gulf, the boundary conuition must be
satisfied at all r points, and the r eguations in n

unknowns must be conslstent.

24D

25a
25b

25r



- 35 =

In order to test consistence of equations 25,
multioly
25& by Ky1, «.. 253 by {41, etc, and add to obtain 26a,
25a by Kyp, ec. 25) by Kjg: etc, and add to obtain 26b,

LR B BRI 2 PR B A Y ) ® 8 5 6 9 3 a2 0 5 & 0 5 9 s O e ¢ s s S e LR A S 2R B I I I B I Y S )

25a by Ky4, +.. 25) Dby hji’ etc, and add to obtaln 261 etc.

In this manner we obtain "n" equations:

!
(@]

(EKJ]_ Kjl>cl,(o) 4+ o (Zf‘jl‘ﬂjgci(o) + .. (JZI,‘K.)I'KJA&H(O)
(;ﬁjg.iijl>cl(0) + .. (}: Jg.nﬁ)ci(o) + . (Z’K“.z«:jn)én(c)

J
e oo 0t oo o ¢ &0 e e e B s L R R A N N N RN LR R R O I

]

L A L R A 2 I O B R N B AR 2 RN I I I I I I I B 2 I T T I R S S S R R O N T T SR TG S SR

(J:ilﬁji.l‘ijl)él(o) + "'(jzzl:i(‘ji'hji)&i(o) + e (gﬁji'hjn)én(o)

LA A A I A I A e LI N A A A N A N R R N EEEEES

i
O

(R N A I O B I R AN A A L A A A B R A B R R I A I 2R SR B A N I S N B R I I S Y S I NP S T I )

r

(JZ ﬁjﬂ‘Kjl)él(O) + "'(Z:an'Kji)éi.(O) + ... (JZKJH'KJﬁ)én(o)

(26n

If they are consgistent the determinant "U" will vanish:

;Kjl-KJl ZKJloI{JE ® ¢ 00 a0 s fojl'ﬂji ococ.JZ,:Kjl.KJn
PRyokyl  IKjpelyp eeeee SEjpiiyy s $Kppen

n
st ,,.| ’", r P 27
z&xiohjl 21\31.;&32 2 e oo e e zﬁjl lxji P gﬁ.‘]i ﬂjn




In practice, since we have to choose "n"

finite, thls determinant will not vanis... However we
may expect that for a prover choice of ¢ it will be
a minimum.

t

For a first aporoxlmation let "n" equal a

A
D

VA

Fig. 9

small number, say three, and plot "D" against 0. (Fig.Y)
Then plot a similar curve for "n" egual to four, etc.
Connect the minima of these curves and interoolate to
D = O. Point "P" represents the final value of our
parameter J,

The consistency of equations 25 may be tested
by another method. Rewrite 25 for the case n = 3,

Kjlél(o) + Kjgég(o) + ijéj(o) = Mj (J = 1,2,...r) 28a

Let Co(o) = X-C1(o) 28b
(.}5(0) = Y‘él(o) 28(3

fﬁj = chél(o)' 284
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We obtain

Kjl + KJQ.X + KJB.Y =Ty (J=1,2,...r)

If equations 28a are exactly consistent,
@J = O and hence Ty = O. This will not be the case in
an actual investigation for finite values of "n". It
appears recasonable to assume that 1f the parasmcter
1s properly chosen

Z’;(TJ)Q = Minimum
or S(Kyp + KyooX + Ky3.0)2 = linimun
Minimizing first with respect to X and ¥,

T2Kyp(Kyp + KjpeX 4 Kyz.¥) = O

2721(33(}{31 + KJ20}\ + I{JB-Y) =0
Thersfore L r '
2Ky1Kyp  ZKyoKys
;Eijlhjj E(Kﬂ)?
X 2 -
Tiky2)?  XKjpkys
Xiypfyz  5(Ky3)?
S(kyp)2  XEyikgp
;Ixjgr:JB ;ﬁleﬁ
X = -
ZiKy2)2  ZKypKys |
YRyokys  2(Ky3)°

29a

290

29c

30a

30Db

3la

31b
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From equztions 31 we obtain the "relative
welghts" of the three components of the internal wave.
Substitutlng their numerical value into the general
expression for the vertical veloclty component, (obtained
from 20a, 22a, 28b, 28c¢):
W(xz) :[ﬁl(z).sin(klx) + X.Wp(z)+8in(kox) + Y°W3(z)'51n(K3X£}él(o}

(32

we can find the distribution of the vertical velocity

component throughout thes entire channel.

. Lguation 29¢ can be rewritten
leﬁjl(ﬁjl + Kyp.X + Ky3.Y) +;(KJQ + Ky3)o(Ky1 + KypoX + Ky3.Y)
s Minimum
The last ttrm vanlishes as result of 30, and we have simply
n A "
Z(Kjl)e + x.;Kjl.sz + Y3Ky1.Ky3 = Minioum 33
The procedure 1s now similar to that of page
36. Denote the minimum of equation 3% by "u", and
evaluate "M" for several values of GQ Plot M = f(0)
for various values of "n", analogous to the curves
D = f(o) in figure 9, and interpolate to obtain final
value of parameter. 7he various terwms of which "M" is
composed are very similar to those of "D", and only

little additional work is necegsary to obtain values for "u'".



The general vrocedure followed in finding a
golution for the differentlilal eqguation 15 was first to
assume a definite value for the parameter. Considering
the boundary conditions at the surface and the open end
of the channel the distribution of vertical velocity
was then computated. If the varameter has been properly
chosen, values from this conputation near the bottom
will satisfy the bottom boundary condition. The para-
meter then corresponds to a oeriod of free vibration
of the water mass. The author believes that this
procedurs, complicaten as 11t may scem, neverthelegs
represents the most accurate and the fastest vogsible

'

method.
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Internal Waves

in Case of a Horizontal Density Gradient

The velocity of propagatidn of an 1internal
wave depends upon devin and density distribution. 1In
our previous discussion, referring to the Gulf of
California, 1t was oogsible to consider the eguillibrium
density ¢ & function of depth only. In river-fed cuanncls
with low densities at the river mouth, in large oceans
where denslty changes with latlitude, a variation of
along the horizontal coordinate may become appreclable.

we shall use the same notation as in the previous
development but note that g, by, k, and ¢ are functions
of coordinate x. Graoshs of density anamolies agalnst depth
will differ for different points in + channel; nevertuneless
the actual horizontal gradient remains extremely small,
and almost always

dpe < Ip.

L O X
We arrive agaln at eqguation 4. Since we shall

deal here with a basin of constant depth only, the

following solutlons have proven to be consistent:

W(xzt) = W(z)sin(kx)cos(ot) 5a
U(xzt) = U(z)cos(kx)cos(st) 5b
B(xzt) = B(z)sin(kx)sin(st) 5¢
$(xzt) = R(z)sin(kx)sin(st) 53



where

it

K"
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i1s a function of "x"

Let Ay = (1 - & .de

ax

c dx

) Y
then 20 k4 x-di
dx

i

C

Substituting equations 5 into 4,

eliminate all trigonometric terms:

-0U+—%0’/\=0

“<f\V'*

R
§o

|

Mz

o
d

P

=

—_ G‘A U+ az =0

Eliminating U from 35a and 35c¢c and differen-

gfa
O_RI -+ falbr 4
tiating:
97 _ | dw p-
2z  aA* dz 0z

Substituting 36 and 35d into 3%5b we obtain

=0

+ Po

o/‘W]
dz*

the degired differential equation in W:

o W

o W

gz

dz

|

§e

2¢.
gz

J+

w [ TN -

6

Qﬁ
07.

we ¢can

I

241

>ba

35b

37
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In view of 1l4b and l4c we obtain finally

Cﬁlvg'“FAA:ﬂa ¥ W =0

ol =z

It can be shown that a substitution of the
form 16 will lead to the identical result.

This equation 1is identical in form with that
derived for constant density dlstribution (6a), but in
that case

A=<

while here = o+[1-2% ‘:,;J

wnich reduces to the above case if ¢ remains constant.

Rewrite equation 34a

d
di .)'()C (—..ﬁ)cz
and let . C¢& L

The equation is then reduced to linezar form

or Cc—= fxd‘x

. = O gince ¢ does not vanish for x = 0.

38
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34a



Tnis method has been carried out for a basin
of constnnt denth, but can also be used for a sloping
bottom, 1if this slope is sufficlently small.

Let ”df renrescnt the deosth of maximum vertical velocity,
"M" represent tie denth to the bottom.

From == numericzl integration, analogous to tnat

of Fjleldstad {vsze 50) we obtain values for W and -%%«
throushout the entire denth.

iy reprecsents the maximum vertlcal veloclty.

i (85)  (35¢).

g dz

Wn = m.Uh z

If Wn(( :‘"“"‘—i
or nC W 40
(%)
az /h

Fjieldstad's numerical integration mcthod may be employed,
since Wy, may tnen be assumed eqgual to zero for all |
nractical nurvoges.

e may wisn to calculate periods of free vibration
of various water bodics. Note that ¢.dt = d4dx, and hence
the time neccasary for a wave to cover the entire length
of a cnannel of lenzth "L" 1is

i

1 = J;‘,"dd(

=
jav]

Proe

In case of a half open channel & = 1/4 T1, t = 3/4 To,

t = 5/4

[}
L

, ete, referring to waves of flrst, second and
nivd harwmonic. “e obtaln generally

L

Ty 2 1odx 41D
21 - 1 c
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A kKethod of Numerical Solution

l: Draw a xz cross-section with

{
a sufficient number of isooycnal &‘“‘“‘ﬁ~—-—4_~::::t:::::qZﬁ3§
M

lines (referring to a density

=158
distribution in the undisturbed  [———t———q l i agso
gstate) to permit the calculation ; ] ) j
of . 2 - 1 Nad 265
S 7/ 7777 l
rlv N N3 Ny Ns
|
[} L. \.(

2: For various sections M-N

plot ¥ against depth. Values
of ¥ are obtained from above

graph.

—_— —— -0
= = —— -0
— TR

3+ For each section M-N
Fjeldstad's method of numerical
integration (page 50) should be !
apolied, using values as ob- }
|
I

Z
t
I

o

tained in (2), and if condition
40 18 fullfilled, taking into
consideration the chanze of depth. 2

s — O

[;dx ond /\

4y For each of these sections
corresponding to different
values of x a paramter will be
obtained from above lintegration.
Plot A= f(x), and jfhu: f(x)

5¢ Referring to eguation 39 we
now plot velocity of provagation
¢c = f(x)

‘}.X

6: Plot —%— = f(x) and

C

A

ra

A
integrate over the entire length \\\\\\\\‘\k
L ¢f the channel. This

integral, substltuted into 41D
will give the periods of free
vibration. |

Flg.10



Numerical Results

Fjeldstad's theory for basins of constant
depth was applied to the outer portion of the Gulf of
California. (Equation 6a, and pages §0, 51, 52)
Figure 13 illustrates the results obtalned by this
theory. They-compare favorably with those obtailned

from observation:

~c_ B
Theory - 167 cm/sec 500m - 600 m
Observation 175 cm/sec 675 m.

where ¢ represents the velocity of propagation, H the
depth of maximum amplitude of oscillation.

The period of oscillation "T'" was calculated
by consldering the Guif a basin of varlable depth, the
density of the water constant with respect to the
horizontal coordinate, and employing the theory de&e—
loped in this paper. The investigatlon was carried out
for three values of "i" only, 1 = 4,5,and 7, hence the
internal wave in the Gulf was considered a super-position
of three internal waves of constant wave-length.

The following table illustrates why values of
i =4, 1 =5, i =7, corresponding to wave-lengths of

1000km, B800km, 570 km were chosen. (Rguatlon 23d4)

‘values of i 5=6=T ZalimBe 456  4a5eT
D x 10”27 130,067 123.337 63.185 25,017
(Equ. 27)

T = 6.4 days
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A4 sample calculation (pages 53-56 ) 1llustrates

the method followed in obtaining the following results:

T-‘n day\s

Fig.1l1
T in days | 6.4 6.6 7.0 T2
p x 10707 (Equ. 27) [25.0017  [11.753 | 3.915 | 4.220 | .4
X (iqu. 3la) | 0.459 6.139 | -0.1163 | -0.o40 |2 = °
Y (fou. %lb) | 0.239 ~0.085 | ~0.315 o105 | =7
i x 1008 (&qu. 33) [13.85 4. 9L .82 6.57




A seml-logarithmic scale in flgure 11 helps
to emphasize the location of ths minima.
A fTalr .agreement between theory and obs:srvation

can be shown:

' T from curve D = £{T): 7.07 days

T from curve i = f(T): 6.92 days

T from observation ..: 6.5 days



Conclusion

Figure 13 indicates a maximum horizontal
velocity of 20 em/sec at the bottom of the Gulf. This
velocity is large enougn to excrt = proﬁeunced influence
upon sedimentation. 1If we consl..er a standlng wave
the horizontai velocity component will rcach a maximum
neay the location of noses, and ws mieght expect that
only large-sized particles could settle in thelr vicinity.
On the other hand anti-nodes are characterized by very
small norizontal currents, which would permit small

‘particles L0 be deposited at the bottom.

Dr. Revelle has measurcd the sizes of oarticles
from various bottom samples, and they indlcate the
existance of three nodes. Only few measuremants are
avallable and the sevidence is not conclusive, out it

94
¢

o]
G

&
L

us

¥

eats strongly that the particular wave-form of
fourth order with respect to the horizontal axis (page 15)
doss not constitute anisolated vhenomenon bul aposars
to be of common occurenc: .

Sucn a wave migit be caused by an outside
periodic disturbance, the neriod of the disturbance
being closely related to that o! the Gulf. The
lunar-fortnightly tide has & period of 13.5 days

( 2 x 6.8 days ) but 1ts strengtih is only one sixtin



the strength of the -=rinciple lunar tide. Weather
.maps do not indicate a periodic disturbance in thse
Gulf region.

The cause for the predominance of a parti-
cular overtone may lie in the tovograpvhy of the region.
Cnly a rectangular basin is equally sultable to all
overtones, a non-lincar topography might favor only
a very limited number of overtones. In that case a
sinzle atmospheric disturbance would suffice to set
up oscillations of tnis frequency, which would prevail
for a sreat length of time sincc the damping factor 1is
small. An investigation of our curves for other
freguencles should fail to procure minima as pronounced
ag those in figure 11.

Anocther expedition into the Gulf of California
has been nlanned for the fall of 1940. casurements
relating to intcernal waves wiil again be taken. They
should prove especially interesting in the light of

this investigation.



SAMPLE CALCULATION |
Fjeldstad's Method of Numerical Integration

for Constant Lepth

1. Obtain Y (l4b) as function of depth from direct measurc-
ments of density. See Figure 12.
2. Assume Wy = O, o = 1.
2 : \ aﬂ-n"ﬂ . * o t
30 V\lo - WO(l et A g(AZ)2 \Fé ) + .\O(QZ)(l - /\S(ﬂ Z)2 ““"*E\Fq; —:f)
(A z = 1000) #

Using 1z = 2000, z = 3000, calculate Wpq, W}O

~

4, Qo = Wio= Wo A= Yge= ¥g

5 Al'fvo A.WlO‘ AWO

6. Vg = =XNg¥e(4z)2.Wwy From this general formula obtain

Vo » Vios Vzo-

11

T« AVpy = Vpoy = Vy From this find AVg and AV

8. A,Vn = AVp-1 -AVn From tais obtain AVg

1]

9. Ay = Vyo1 + 55 AVpo1 From this obtain A,wqg

10. QDjin 2 AWy + A el From this obtain AWgg
1. W =Wl ARy From this obtain Vzg
Find Vz, from (6}, etc.
12. Interpolatlon: W,_. = W, - Afin + A¥n-1 + é;&ﬂ
z 4

Results from integration in figure 13.

* A1l equation are given for cgs units.
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Sample Calculation

*
A9 = 3.52:10°7 ¢ = 167 cu/sec
1 -2 2. A 2 5 1
epth  10°Y w0 b, s AW v AV
in m.
_ - = e -
0 .20 0.0000 - 0.0 B
B T T 1000 — T -2.0
lo 5 qz OolOO - T — -2 "c?o@ T
’ 998 \ - u'v:)
20 7.’?4 001998 . "6 "’556
992 “103
%0 6.40 0.2990 -7 -549
; 985 0.2
40 4,68 043975 | -7 “5a
) 9?78 ) “14’ 04
50 5.20 0.4953 -11 -11.1
967 ““lCaEI)
50 10.%2 0.5920 ~23 ~22.0
- . 9“}“‘}‘4 ’““}403
70 10.80 0.6864 -26 -26.8
. 918 _002
8o 9.60 0.7782 -27 =27.0
] 891 . -1.1
90 8.96 0.8673 -28 -28.1
563
100 g.28 0.9536
9236 =107
60 10.32 0.5920 -38
A 1862 20
&0 9.60 0.7782 -108 -108
1754 -5
100 8.26 0.9536 -113 ~114
' 1641 27
120 5.36 1.1177 -84 -a7
- 1557 18
140 3,75 L2734 -70 65
) 1487 12
150 2,80 1l.4221 57 ~57
, ) 1430 4
180 2.36 1.5551 -54 -53
1276 >
200 5,04 1.7027 ~50 ~50
~ 1326 1
220 1.84 1.8353 =49 ~49
_ L7t 1
240 1.71 19630 ~48 “48
1229 el
260 1.6% 2.0859 -4G =49
1180 -2
280 1,60 2.2059 ~51 =5l
. ) 29
300 1.50 €.2108 0 T70EETT W7




200

250

300
550
400
450
500
550
600
650
700

1.38
1.15
0.80
0.70
C.66
0.55

0.45‘

0.41
0.37
0.32
.28
0.25
0.23

G.21

L.7027
2.0266
2.3168
2.5733
2.7905
2.9694
3.1097
3,2112
3.2742
3.3035

3.303%4

3.1097
3.2742
343034
5.23806
5.0094
2.8660
2.5863
2.2642
1.9081
1.5264
1.1270
0.7161
0.2986
-0.1215

4 2.

3239
=227

2902
=337

2565
=295

2172
~383

1789
-386

1403
-388

1015 ‘

-385

630
=337

295
-294

-1
16007 - 2240

1645
-1353

292
-940

-648
-844

-1492
~T42

-2224
=563

-2797
-424

-3221
=340

-3561
-256

-3817
=177

-3994
-115

~4109
-66

-4175
-26

-4201

190
LCl
139
83
167
148
87
80
78
63
49
40



- 53 -

SAMPL.. CALCULATION

of a Folnt in Figure 11.

L = 1000 km.

Columns 10 and 1l. Defined by equation 22a
Corresponds to columns 3 and 4 of previous
sample calculation.

Column 12. "Defined by equation 22b.

vivide corresponding vliues in column 11 by
Columns 14,15,16. Obtain from a topographic map (Figure 4)
Coluusn 17, 18. k7 as defined by equation 20c
Column 19 Column 10multioplied by correspondin: valuesg

of columa 17

Column 20 Column 12 multiplied by corresponding values
of column 18

Column 21 Defined by eqguation 24a.
4dd Column 19 to column 20,

Column 22 and 23. Obtained by the same procedure employed to
calculate coluun 21, using values of
1= 4, 1 =6,
Columns 24 - 29. By multiplication of column 21, 22, and 23%.
By adding these products we obtain the suams,

necessary for the calculution of D, X, ¥, K.

D sas defined by eguation 27 = 4.229 x 10?7

X as defined by equation 3la = <0.2420
Y as defined by equation 31b = -0.1053
% as defined by equation 33 2 6.57 x 10°



10

Depth

in m.

L P L

¥7(2)  A¥7(2)

0.0000
0.0999
0.1992
0.2966
0.3919
0.4851
0.5747
0.6562
0.7298
0.7937

1.0010
l.0415
l.0801
1.1006
1.1115
1.1127
1.1051
130891
1.0650

11

999
993
974
953
932
896
815
736

- on v om0 =
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Sample Calculation

T = 7.2 days

2

Depth
in m.

450
500

550 -

600
650

10 11
Wr(z) AN7(2)
xto~"
0.6463 ‘
-2131
0.4332
-2315
0.2017
-2393
-0.0376
~2380
-0.2756
. -2306 -
-055062 ......
------------- -4192
-0.9254
~B44T
-1.2701
2471
°l 05172
-1515
'l -6687
-643
195
=1.7137
931
-1.6206
1533
-l 04673 X
2014
-1.2659 ‘
2387
-1.0272
2664
"6.7608
101092 ° -76 .
-1.2701 -2959
-1.4673 1773
-1.1361 2406
-0.93%62 2622
-0.8260 2733
-0.7892 2826
-0.7665 2838
-0.7636 2842

1=7

5k2

o2

_ 1.17x10°%
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14 | 15 15 17 18 19 20 21
X "z slope| sin(kyx)|mcos(ky ENTQ ;1‘: L
in kmlin w |y 105 k7 2= M RN YRR
A
0| 1800 0 . 0000 0 | 0.0000 0 .0000
50 1800 0 L5225 0 =0.3975 0 -.3975
100 1800 0 . 8910 0 -0.6779 0 ~.6779
150 1800 0 <9969 O -0.7584 0 =-.7584
200 1800 0 . 8090 O =0.6155 0 =-.0155
250 1800 0 L3827 0 -0.2912 0 -.2912
500 1800 0 - 1564 0O 0.11%0 3] 1190
8 350 1800 0 - 6495 0 0.4941 0 4941
3 400 1820 0 -.9511 O C.7236 0 .7236
10 4580 1800 0 - 9724 O  0.73598 o .7298
1l 500 1820 C -.7071 O  0.5380 0 .5380
1z 550 1799 w3 7 = 2334 =150 0.1782 =.0043 -1739
600 17,6 =7.5 L3090 -650 =0,2368 -.0184 -,2552
650 1790 =20 J7604 1170 -0.6001 -.0331 -.6332
700 1775 =55 L9877 -782 =0.8158 -.0214 =-.8372
750 1735 -100 L9240 3480 -0,8650 L0912 -.7738
800 165% ~250 L5878 18400 ~-0.6678 427 - 2251
850 1500 =400 L0785 36800 -0.1152 0525 L8373
SO0 1250 ~570  -.4540 46200  0.784L L0892  L&6T33

G50 900 =970 - 8526 46100  1.0829 =~1.2641 =-.2t12

LO00 250 =20 =1.0000 0 =1.1092 0 -1.1092



13 e
?5 =
1 5.0000
2 -0.1691
3 -0.3216
4 -6.4426
5 -0.5203
6 -0.5471
7 =0.4203
8 -0.4426
29 -5 3216
}o -0.1691
;1 0.0000
2 0.1567
;5 0.2750
4 0.3272
5 0.3010
6 0.267h
17 0.4552
&  0.9809
9 1.7832
0 2.3601
31

-0.1891

Koy

0.0000
-1.1112
-2.,053%1
~2.5820
-2.9036
-2.6826
-2.,0531
-1.1112

0.0000

1.1112

2.0531

2.6775

2.5980

2.6864

2.1375

1.4142

1.1900

1.1834
1.8573
2+9515
1.7462

>

1 \J‘\
[N
3

24 25 26 27 28 29 _
Sagfay  Fayfsy Raghyy Ksylisy  Kgylqy  Koyeq,
0. 0000 0.0000 0.0000 0.0000 0.0000 O.éOOO
0.0286  0.1879 0.0672 1.2348  C.4417  0.1580
0.1034 0.6603 0.2180 4 ,2152 1.3918 C.4595
0.1959  1.1873  0.3357 7.1963 2.0345  0.5752
0.2707 1.5107 0.3203 8.4309 1.7872 0.2738
0.2993 ) LA6TT 0.1593% T.1903 0.7612 0.0848
V. 2707 1.0682 -0.0619 4,2152 =0.2443 0.0142
0.1959 0.4918 -0.2187 1.2348 =0.5490 0.2441
0.1034 0. 0000 -O.2327 0.0000 0.0000 0.523%6
0.0286 =0.1879 =-0.1251 1.2348 0.8221 0.5473
00,0000 0.0000 0.0000 44,2152 1.1047 0.2894
0.0246  0.4196  0.0027 7.1690 0.4656  0.0302
0.0756  0.7970 =0.0702 8.3984 -0.7396  0,0651
0.1071 0.879C ~O;2072 T.2167 ~-1.7010 0.400u
0.0906  0.6434 =0.2520 4.5689 -1.7895  0.7009
0.0715 0.3782 -0.2069 2.,0000 «1.0043 0.5988
0.2072 0.5417 -0.1025 1.4161 =0.2679 0.0507
0.9622 1.1608 0.5270 1.4004 0.6358 0.2887
3.1798 5.5119 1.5573 3.4496 1.6220 0.7027
5.,5701  6.9658 =-0.6637 8.7114 -0.8300 0.0791
0.0558 =0.3302 0.2097 3.0496 =1.9370 1.2303

11.8210 21.1532 1.2562 86.5536  1.9340

All numbers to be multiplicd by 10"

T4823%

in order to comform with thecry (24a;
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