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Abstract

In this thesis we study the evolution of strategy choices for symmetric,
finite, normal games. The second chapter of the dissertation analyzes infinite
populations where in each period individuals are randomly and anonymously
matched. Individuals are of different types, where a type represents a belief
or a strategy choice. After each match individuals are allowed to change
types. Thus a stochastic process is defined which describes the evolution of
types in the population. The main result in the second chapter is that the
evolution of the population can be described through a simpler determin-
istic system. The third chapter relates the properties of the evolutionary
dynamics to standard game theoretic principles. Although individuals act in
a purely mechanistic way, in equilibrium, the population as a whole acts like
an individual adoptinig a strategy corresponding to a perfect equilibrium.
The fourth chapter analyzes how two learning dynamics for finite normal
form games - namely, the Cournot process and fictitious play - can explain
experimental data. In doing so the chapter develops econometric techniques

that can have a wide application to the analysis of experimental data.
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Chapter 1

INTRODUCTION AND
OVERVIEW

1.1 Introduction

The choice of equilibrium concept is crucial in the study of individual decision
making. Existing equilibrium concepts rely on assumptioﬁs on individuals’
beliefs. Unfortunately no equilibrium concept developed so far is satisfac-
tory for all games.! An alternative approach is to think of equilibria as
stable points of some dynamic model. In order to pursue this approach two
questions need to be answered: (i) What dynamics describes the evolution of
strategy choices? (ii) What are the properties of such dynamics? In order to
answer the first question we need to describe a particular environment, de-
velop a set of axioms that characterize individual behavior, and then compare
the theoretical predictions with experimental data.

One class of dynamical models studies the evolution of the distribution
of strategies in a large population. At each period individuals are randomly
pairwise matched. The distribution of strategies at time ¢ + 1 depends on

the distribution of strategies at time ¢ and the outcome of the matching

1The following authors discuss the problem with existing equilibrium concepts: Cho
and Kreps (1987), van Damme (1987), Tan and Werlang (1988).



process. Since the population is very large the randomness created by the
matching scheme is assumed to be negligible and the process is studied as a
deterministic dynamical system. The second chapter shows via an example
that such a deterministic process can provide a very poor approximation of
the model for finite populations and gives sets of assumptions for which the
deterministic approximation is correct.

One model which belongs to the class of models described above is the
replicator model. The replicator model is studied in evolutionary biology;
it postulates that strategies are genetically determined and that individuals
who adopt successful strategies have more offspring than those who adopt
unsuccessful strategies. Although in this model individuals do not act as
Bayesian maximizers, in many cases the evolutionary forces make individuals
look like Bayesian maximizers. The third chapter develops a new equilibrium
concept for a generalization of the replicator model and relates properties of
equilibria of the generalized replicator model to refinements of Nash equilib-
ria.

In order to analyze dynamic models of strategy choice experimentally,
we need to consider models that describe the evolution of strategies in very
small populations (possibly two individuals). The two models that have
been analyzed the most in this context are the Cournot process and the
replicator model. The fourth chapter analyzes some experimental data to
determine how well these models describe human behavior. The chapter
develops some econometric techniques that could be used in the future to
examine the validity of other dynamical processes.

In this section we first discuss why evolutionary forces should be analyzed

in conjunction with games. Then we describe the three dynamics analyzed



in this dissertation; namely, the Cournot process, fictitious play, and the
replicator model. Finally we discuss the reason for perturbing the dynamical

processes.

1.1.1 Evolution as a justification of rationality

The assumption that players are rational? and that this fact is common
knowledge among players is very important in determining the equilibrium
strategy of a game: if the assumption does not hold, then the common-
knowledge-of-rationality equilibrium strategy may not be played. Suppose
that player 1 assigns some positive probability to player 2 being irrational.
Then, as illustrated in the example in the next paragraph, player 1 may
be irrational (i.e., not maximizing his payoffs) if he plays the equilibrium
strategy. Similarly if player 2 assigns some positive probability to player 1
thinking that he is irrational, then he may not want to choose the equilibrium
strategy.

Suppose that two individuals play the following game which is called the
‘centipede’ game.® At the first round there are two piles of money: the
large pile contains $10 the small pile $0.50. For finitely many rounds two
players alternate in deciding whether to stop the game. After each round,
if the game is not stopped, the amount in each pile is multiplied by ten.
The player who stops the game gets the large pile; the other player gets the
small pile. If rationality is common knowledge, then the first player who has

the opportunity of ending the game will do so. If rationality is not common

20One possible definition of rationality is that individuals choose only rationalizable
strategies (see Bernheim (1984) and Pearce (1984)); i.e., individuals select actions that
maximize their expected payoffs and individuals believe that other individuals select only
rationalizable strategies.

3For the origin of this game see McKelvey and Palfrey (1990).



knowledge then the players may decide against taking the pile.

Economists have argued that evolutionary laws ingrained in the market
system lead to the prevalence of rationality. Alchian (1950) argued that firms
do not necessarily act as profit maximizers but that the laws of evolution,
by selecting for the most successful patterns of behavior, make firms look
like profit maximizers. In finance, LeRoy (1989) among others, has given
evolutionary arguments for the validity of the efficient market hypothesis.*
However, if there are enough irrational subjects, rational people may not
do better than others. For instance, in a experiment run by McKelvey
and Palfrey (1990) where a group of individuals was repeatedly divided into
pairs and where each pair played the centipede game, there were two players
who clearly did not understand the game they were playing and consistently
declined to take the large pile. Those same two players received the two
highest payoffs in this experiment.® In order to reconcile the economist belief
that rationality will prevail and that in the short run rational play may be

detrimental, we need to model explicitly the evolutionary forces.

1.1.2 Dynamical processes for the study of games

In order to be able to study the evolution of strategy choices we need to
examine the case where the game is played repeatedly. Assume that the
same two individuals play a finite normal form game repeatedly. At each
round individuals update their beliefs about the opponent’s strategy and
then select the strategy that maximizes expected payoffs. Such a model was
first studied by Cournot. In the Cournot model each person believeé that

the opponent selects the same strategy the opponent selected in the previous

4That prices of stock reflect all the information.
5This is possible if there are enough people that do not take the pile.
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Figure 1.1: Shapley’s example.

period. It is straightforward to construct games for which this process will
not converge but instead cycle indefinitely.®

Brown (1951) suggested a different learning process which he called ‘fic-
titious play.” In this process individuals assign a probability for each of the
opponent’s strategies equal to a convex combination of the empirical distri-
bution and his initial beliefs. Robinson (1951) showed that if individuals
select strategies according to the fictitious play process, then for all two-
person finite zero-sum games individuals will converge to a Nash equilibrium.

Shapley (1962) showed that if individuals play the non-zero sum game in
Figure 1.1 according to fictitious play then individuals’ beliefs and strategies
do not converge and in fact cycle indefinitely.

Evolutionary biologists have studied a different dynamic which is called
the ‘replicator model.” Each member of an infinite population chooses a
strategy for the game. At regular periods all members of the population are
‘randomly paired’ to play a game. Given the distribution of strategies in the
population, some strategies will be more successful than others. Strategies
that are more successful are adopted more frequently in the successive pe-
riod. This model can be described by a stochastic difference equation. As
the second chapter shows, for infinite populations there exist matching rules

for which this stochastic difference equation is equivalent to a determinis-

Take for instance a game of matching pennies.
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Figure 1.2: Symmetrized version of Shapley’s example.

tic difference equation. When analyzing the process in continuous time, the
difference equation is approximated by a differential equation.

Suppose that individuals play the following game: a toss of a coin decides
which individual is the row player and which individual is the column player.
After observing the outcome of the toss the two individuals play Shapley’s
example. The normal form of this game is described in Figure 1.2. For this

game the replicator dynamics in continuous time will cycle indefinitely.

1.1.3 Perturbations in strategy choices

Many of the equilibrium concepts developed since Selten (1975) have sought

" The following

to restrict the set of strategies considered by each player.
example illustrates the reason for this approach. Suppose 51 voters select
one of two alternatives, A and B, by secret ballot and majority vote and that
all voters prefer A over B. For many choices of alternatives by the voters,
none of the voters can unilaterally change the outcome. Therefore, almost

any pattern of voting is reasonable. If the voters’ strategies are restricted

in a way such that all moves are played with positive probability, then each

"See for instance Myerson (1978), Kohlberg and Mertens (1986).



player is a swing voter with positive probability and will thus want to vote
for A.

In the existing literature, game theorists assume that small mistakes in-
sure that players play all possible moves with positive probability. In the
previous example, although voting is a simple process, the assumption that
players will vote for their favorite alternative by mistake is necessary in order
to predict unequivocally that A will be selected.

The existence of small perturbations seems more natural in dynamic pro-
cesses. Small perturbations of fictitious play may assure a better sampling
of the strategies available. In evolutionary biology small mutation rates are
believed to lead to the selection of the more favorable traits for a given en-
vironment. It thus seems reasonable to study the dynamical processes over
arbitrarily small perturbations and determine whether the cycling behavior
described in the previous section will persist. Chapter 3 analyzes stationary
points that are resistant to small perturbations in the dynamics.

Small perturbations in the dynamics seem also necessary in order to eval-
uate experimentally the dynamic models of strategy choice. Without small
perturbations the likelihood ratios may not be defined because we can ob-
serve data that is contrary to all hypothesis. Thus in Chapter 4, in order
to examine how well the Cournot process and fictitious play explain experi-
mental data of repeated play of different normal form games, we add a small
perturbation to the two models and examine the consequence of changing

the level of perturbation.



1.2 Overview

1.2.1 Summary of Chapter 2

Biologists and economists have analyzed populations where each individual
interacts with randomly selected individuals. The random matching gener-
ates a very complicated stochastic system. Consequently evolutionary bi-
ologists have approximated such a system by a deterministic system. The
justification of such an approximation is that the population is assumed to
be very large and thus some law of large numbers must hold. In this paper
we give an example for which this assumption does not hold. We then show
that if we assume that the population is infinite then there exist matching
rules for which the stochastic and the deterministic systems are the same.
Finally, we show that if the process lasts finitely many periods and if the
population is large enough, then the deterministic model offers a good ap-
proximation of the stochastic model. In doing so we make precise what we

mean by population, matching process, and evolution of the population.

1.2.2 Summary of Chapter 3

The paper requires that equilibrium behavior for two person symmetric
games be resistant to evolution. In particular, the paper assumes that the
evolution of the distribution of strategies in a population can be described
according to some generalization of the replicator model. This paper defines
an equilibrium concept, ‘evolutionary equilibrium,’ as the limit of stationary
points of an evolutionary process as the proportion of the population that
mutates goes to zero. The set of these evolutionary equilibria, is a nonempty
subset of the set of perfect equilibria (and thus of the set of Nash equilibria)

and a superset of the set of regular equilibria and the set of ESS.



1.2.3 Summary of Chapter 4

In recent years, there has been a surge in the number of experimental studies
in economics, and their influence on the field can no longer be denied. On the
other hand, one feels that the interaction between the findings in experimen-
tal economics and the theoretical and modeling techniques in other subfields
of economics has not yet reached its full potential. One of the main reasons
that the impact of experimental studies on the rest of the discipline has been
limited is our inability to systematically combine what we have learned from
all the experiments that have been run to-date. In this paper, we propose a
methodology for combining a large number of experiments to make an over-
all assessment of the empirical justifiability of certain hypotheses regarding
human economic behavior. We illustrate our methodology by an application
to models of learning in repeated games. Empirical studies of that class of
models using experimental or non-experimental data are very sparse in the
literature and they are by necessity limited to an experiment-by-experiment
analysis. It is clear that no classical statistical procedure will allow us to com-
bine the results of many experiments with vastly different designs to form
stylized facts that can benefit the rest of the profession. The application of
our proposed (purely Bayesian) procedure allows us to combine two sets of
experiments (for a total of nine experiments) to update our beliefs on the rel-
ative justifiability of the Cournot and the fictitious play learning hypotheses.
Even though some of the experiments individually pointed unequivocally in
favor of the Cournot hypothesis, our overall analysis makes us believe that
fictitious play is an infinitely more likely hypothesis. The proposed statisti-
cal procedure provides a very powerful tool which is quite easy to use. We

believe that the extensive use of this and similar tools in literature surveys
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can lead to a more fruitful interaction between theory and experiments in

economics.



Chapter 2

LAWS OF LARGE
NUMBERS FOR
DYNAMICAL SYSTEMS
WITH RANDOMLY
MATCHED INDIVIDUALS

2.1 Introduction

There is a large literature (see below) that studies dynamical system with
individuals randomly matched in pairs, although the particular way with
which people are matched is left unspecified. In this chapter we describe
ways of matching individuals and the properties of such matching schemes.

Fudenberg and Levine (1990) examine a model where there are n popula-
tions; each population consists of m different types where each type consists
of a belief over which strategy the other individuals adopt. The proportion of
population ¢ that is of type j is denoted by p;;. Every period each player from
a population ¢ is randomly and independently matched with one individual
from every other population ¢’ (i’ # ¢). Fudenberg and Levine assume that
the probability with which a player meets a player from population ¢ and

of type j is pirj. The randomly matched individuals play a game selecting

11
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strategies according to their beliefs and updating their beliefs according to
the observed strategy choices of the other players. Fudenberg and Levine go
on to characterize the steady states of the dynamics.

This type of model is very similar to the models that have been studied
extensively in population genetics and evolutionary biology.! This similarity
has led to a large literature on the application of evolutionary biology to
game theory.” In this paper we assume that there is a large population.
Each individual is matched anonymously to exactly one other individual.
There are m types of individuals. We keep the terminology vague so that
the discussion applies to economics (where types are beliefs), evolutionary
biology (where types are strategies), and to population genetics (where types

are genotypes or alleles). The set of types is denoted by S, where
S ={s1,---,8m}

The initial proportion of the population of type s, is denoted by p,; we assume
throughout that, for all s, in S, p, is positive. The initial distribution of types
in the population is denoted by p where p = (p1,...,pm)- |

Underlying the models by Fudenberg and Leving as well as the biological
models is the conjecture that if the population is very large (possibly infinite)
there exists a matching scheme such that for all types s, and s, the pro-
portion of individuals of type s, that are matched with individuals
of type s, is p.p, (almost surely).

In the model given in\Fudenberg and Levine (1990) and the biological
models, the matching scheme is implemented repeatedly and each individ-

ual’s type is allowed to change between periods. Then the individuals follow

! Appendix C contains a brief discussion of these models.
2See Chapter 3 and references therein.
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a stochastic process governed by the way types are updated and the matching
rule. Again, the models are analyzed as deterministic systems. The law of
motion is computed by assuming that in every period the set of individuals
adopting the same strategy is matched with the population average. Thus
there is an implicit conjecture that, if the population is large enough, there
exists a matching rule that matches individuals in every period such that the
deterministic process provides a good description of the stochastic process.

This paper proves that there is a matching rule for which both conjectures
are correct when individuals are represented by the set of natural numbers.
Thus this paper answers the following questions that are usually left unan-
swered in the literature: How is the population characterized? What is the
structure of the matching process 7 How are types assigned to individuals?
What do we mean by each subpopulation facing the distribution of types
equal to the population distribution? How do we characterize the evolution
of the population from the random matching scheme?

Section 2.2 gives an example of how the dynamics for very large popula-
tions differs from the dynamics for infinite populations. Section 2.3 describes
the problem of finding a matching technology for infinite populations such
that all matches are equally likely. Section 2.4 proves the first conjecture;
i.e., that there is a matching scheme such that a law of large numbers holds.
Sections 2.5 and 2.6 prove the second conjecture; i.e., that a law of large
numbers holds when individuals are randomly matched infinitely many times.
Section 2.7 examines a matching scheme for finite populations. Appendix A
briefly discusses the literature on the law of large numbers for a continuum of
agents. Appendix C gives a brief overview of the biological literature related

to matching schemes.
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2.2 Matches over very large populations

A natural argument for supporting the conjecture in the introduction is the
following: if the population is of size n then the probability that the matching
rule does not behave as its expectation is ¢(n). By the law of large num-
bers ¢(n) can be made arbitrarily small by taking n large. In other words
for large populations the conjecture is approximately correct. As we will
see in Section 2.7 this argument can be formalized if the matching scheme
occurs finitely many times. In many cases analyzed in the literature, how-
ever, the matching scheme analyzed occurs infinitely many times, and it is
thus possible that the small perturbations that occur in each period alter
the process significantly in the limit. We construct an example where this
problem actually occurs. The example is taken from evolutionary biology
because: (i) such models are very important in evolutionary biology, (ii) sev-
eral economists have applied evolutionary models to game theory, and (iii)
the mathematics in this example are very tractable.

Suppose that there is a population consisting of 3M individuals, where
M is an even number. Individuals have a very simple life: they are born at
time ¢ they interact with one randomly selected individual, give birth to new
individuals and die at time ¢ + 1. The matching scheme is left unspecified
but we assume that all matches occur with positive probability.® Individuals
belong to three different types: 1,2,3. If an individual of type r interacts with
an individual of type v then this individual has a,, offspring. All offspring

are of the same type as the parent. Suppose that the matrix A = (a,,) is as

30ne way of describing the random matching scheme is to think of individuals as being
drawn successively (without replacement) from an urn. The first and second individuals
drawn are matched together, the third and fourth individuals drawn are matched together,
and so on.
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follows:
0
2
2 01
First notice that the population size stays constant: if individuals of type
s, and s, meet they will have together 2 = a,, + a4, offspring and thus
keep the population constant. Notice that, because of the 0 entry in the
matrix A, at any period t there is a positive probability that one of the
types disappears, which we denote by ¢t. For any population distribution
among types (M, My, M3) (where My + M, + M5 = 3M) there exists a set of
matches for which one of the types totally disappears. Since all matches are
possible these matches will have positive probability. Denote the probability

that one type disappears when the population distribution is (M, M3, M3)

by qu,M%MT Let

= min My M, M3+
T {M1+M2+M3=3M}q LB

Then, for all ¢, ¢¢ > ¢. > 0.
Notice that if a type disappears, it never comes back. Consequently, if
the matching scheme is repeated infinitely often, the probability that a type

will disappear is greater than
1 - lim(1— g.)! = 1.

Let B; be the set of events for which one of the types disappears by time ¢.
From the previous remarks { B;} is an increasing sequence and lim;—., P(B;) =
1; therefore one of the types disappears in finite time. It is easy to see that
if type s, disappears then the population will converge to a population com-
posed uniquely of individuals of type $,41(mod3) (almost surely). Therefore

the population will converge to one of the vertices of the simplex in finite
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time (almost surely). Since this result is true irrespective of the population
size 3M, it will also be true as M tends to infinity.

Let p, be the proportion of the population of type s,. In evolutionary
biology the evolution for the population is analyzed according to the repli-
cator model. The replicator model assumes that a proportion 2p,p,, of the
matches are between individuals of type s, and s,,. Then the proportion of
the population of type ¢ at time ¢ + 1 is related to the population at time ¢

in the following way:

P = Rp) =l i 21)

First suppose that the initial population is composed of a third of each

type. Then the population will remain at the barycenter contrary to the
behavior of the population when we examined the random matching rule.

Next suppose that the initial population is not distributed equally among

each type. The interior of the simplex is invariant under the map K. Thus if

a trajectory starts in the interior of the simplex it cannot reach the boundary

in finite time. Also the vertices of the simplex are repéllors for the dynamics

_ 1
p1p2p3

on the interior of the simplex. Let W: A% — R be such that W(p)
Weising (1989) shows that W has a unique minimum at the barycenter and
that along any trajectory W is strictly increasing. Thus the trajectory ap-
proaches the boundary of the simplex asymptotically. By looking at the law
of motion we can see that the trajectory oscillates from a neighborhood of
(1,0,0), to a neighborhood of (0,1,0), to a neighborhood of (0,0,1) and so
on and that the time the trajectory takes to go from one neighborhood to
another is increasing. Thus for any period T there is a period ¢ > T such
that p’ is far removed from any of the vertices and the w-limit (the set of

accumulation points) of the trajectory is the whole boundary.
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2.3 Matches over countably infinite number
of agents

This section introduces the notation that will be used in this chapter and
discusses the problems of finding a random matching scheme for an infinite
population. We assume that the population is countably infinite and is de-

noted by
N={1,2,...,n,...}.

For convenience we represent the type space by the standard basis for R™;
i.e., s, is the m dimensional vector with a one on the r** component and

zeros on the other components. Let

a:N — § be such that Ill_rgo% . az) = p.

=1
If a(i) = s, then individual i is of type s,. The v** component of the vector
P, pu, represents the proportion of the population of type s,.

Let ¥ be the set of all possible pairwise matchings; i.e.,
¥ = {0:N — N|o is bijective and for all 7, 6%(:) = ¢ and o(3) # 1}.

A few remarks on the conditions that characterize ¥. The first condition
says that each individual is matched exactly once. The second condition
says that: ‘if John is matched with Paul then Paul is matched with John.’
The third condition states that an individual cannot be matched to himself.

We first show that there does not exist a probability space (¥, F, P) such
that for all distinct players ¢, j, k € N, the event that player ¢ is matched with
player j and the event that player ¢ is matched with player k are equally likely.

Suppose that (X, F, P) is such a probability space. Denote the probability
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that player ¢ is matched with player j by
p(o(i) = j) = P({o € Blo(i) = 5}).

In order for p to be well defined we need to assume that for all individuals
5,7 €N,

{c€Z|o(i)=j} € F. (2.2)
Suppose that p(c(i) = j) = ¢ > 0. Notice that since each individual is
matched once, the sets {o € X|o(:) = j} and {o € X|o(¢) = k} are disjoint.
Thus

p(o(i) e N) =p(|J o(i) = j) = }_ p(o(i) = j) = oo.

jeN jEN
This clearly contradicts the definition of a probability. Alternatively,if ¢ =0
then p(o(¢) € N) = 0 which is not consistent with the fact that individual ¢
is matched once.

Clearly the assumption in equation 2.2 and the assumption that all matches
are equally likely lead to this contradiction. In order to weaken the set of
measurable sets we need to find another way to express the idea that all
matches are equally likely. Alternatively, we could relax the assumption that

all matches are equally likely.*

2.4 Construction of a probability measure
over matches

In this section we will construct a probability space over the set of matches by

considering the events: ‘the set of matches such that individual ¢ is matched

?

with an individual of type s,.” We construct the probability space in an

4Another approach is to assume that there is a continuum of agents. A brief discussion
of this approach is contained in Appendix A.
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indirect way. First we define a probability over the space SN, ‘the set of
realizations of matches.” The probability space (SN, B, u) is defined by the
property that the probability with which z; (where z € SN, i € N) equals
sy is the proportion of individuals in the population of type s,, p, (for all
3y € §). Then we show that this probability space generates a probability
space over matches, (X, F2, P?). Thus calling elements in SN realizations of
matches is justified since they can be derived from a probability over matches.
This probability space is the (P?) unique probability space for which each
individual expects to be matched with the population average. For this
probability space the set of events ‘individual ¢ is matched with individual 7’
is not measurable. If we let these events be measurable, as in the probability
space (X, FL, P1), then these event will not be equally likely, although all
individuals have the same probability of being matched with an individual
that adopts strategy s, (for all s, € 5).

We call SN the set of realizations of the matching process. Let z € SN,
If £(z) = s, then individual 7 is matched with an individual of type s.. The
description of the relationship between ¥ and SN and the derivation of the
probability space over ¥ are the objects of this section.

We consider each element in SN as the realization of an infinite sequence
of i.1.d. random variables where the probability that z(z) equals s, is p,. If
m = 6 and p, = 1/6 (for v = 1,...,6) we can think of z as the outcome
from rolling a dice infinitely many times. Let (SN, B, 1) be the probability
space we just described where B is the o-algebra constructed by the finite

dimensional rectangles, and g is the extension of the probability over the
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finite dimensional rectangles.® For all types s., let I, C N be the subset of

the population of type s,; i.e.,

I.(a) = {1 € N|a(z) = s, }.

Notice that each set I.(«) is infinite. Let X,,(a) C SN be the set of real-
izations of the matching process such that the proportion of individuals that

are of type r and are matched with individuals of type v is p,p,; i.e.,

T
er(a) = {:U € SNI 11512071; Zar 1)Ty(2 ) _prpv}
i=1

Then by the strong law of large numbers, p(X,,(a)) = 1.° Let X, be the
set of realizations of the matching process such that for all s,,s, € S, the
proportion of individuals that are of type r and are matched with individuals
of type v is p.py; 1.e., Xo = N, Ny, Xu(@). Notice that since X,, is the finite
intersection of sets of measure one, u(X,) = 1. |
For all z € X, and for all types s, s,, let AZ, be the set of players of type

sr that are matched with an individual of type s,; i.e.,

A? = {i € N|a(?) = sy, 2(i) = 8y }.

SFormally, a finite dimensional rectangle is a set of the form

B={z€ X|z; € B; foralliin J}

where J is a finite subset of N and for all ¢ in J, B; is a subset of S. Let

ws(B) =TI »y).

i€J s€B;

Let B be the o-algebra generated by the finite dimensional rectangles. By Neveu (1965),

Proposition V.1.2 there exists a probability measure over (SN,B) such that for all J-
dimensional rectangles, B, u(B) = u;j(B).
6Let X; = a,(i)z,(i). Then, {X;)} is a sequence of independent random variables with

finite variance, o;. Furthermore, > 22, f:_,' < 00, and thus by the Kolmogorov’s law of large

numbers (see for instance Rao (1984) Theorem 6, page 60), limr_. 7 T Z; 1 Xi = prpy
(almost surely).
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Notice that each of the sets A, has countably many elements and thus can

be enumerated as follows:
Afv = {afv(l)’ afv(2)’ M }

For any two different types s, and s, let

ot o a(i+1) if7is odd,
oq(ar. (i) { at.(: —1) if i is even;
oa(ar,(2)) = a5, (2).

Clearly oZ € X.

Let 04: Xy — X be such that o,(z) = 2. The function o, is injective
since & o 0% = x.

Next we will construct two different probability spaces for matches. In
the first probability space the events “individual ¢ is matched with individ-
ual j” and “individualii is matched with individual £” are not equally likely.
The second probability space is the coarsest measure for which each subpop-
ulation I,(a) is matched with the population average. Notice that for this
probability measure the event “individual ¢ is matched with individual 7” are
not measurable.”

Since o, is injective, by identifying z and oZ we can construct a prob-
ability over £, = 04(X,). Formally, let F, be the o-algebra generated by
0o(BNX4) and let P, = g o o;!. Then, (X4, Fu, Pa) is a probability mea-
sure.

We can extend this probability over all ¥ by letting F! be the o-algebra
generated by F, and ¥ \ ¥, and letting P}(A) = P,(ANZ,).

Theorem 1 (X, F}, P}) is a probability measure for which the event

{0 € Z|o(t) = j} is measurable.

In Section 3 we showed that for a probability space over T either the events “individual
i is matched with individual §” are not measurable or they are not equally likely.
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Proof: Let BP be the event “i is the n'* player selecting strategy a(:) and
matched with an individual adopting strategy a(s).” Let
N; = {k <i|a(k) = a(i)}. Then

Br = U {z €SN z(3) = a(j), V&' € N, (k') = a(j),
{N'CNi[IN'|=n}
and VK € N; \ N',z(k") # o(j) }.

Thus B? is the finite union of rectangles and is thus measurable. Similarly,
let B? be the event “j is the nt* player selecting strategy a(j) and matched
with an individual adopting strategy «(z).” Clearly, B} is measurable. Let
B" = B!\ B} and let B = Up<mingi,j} Bn- Clearly, B, is measurable and

z € B if and only if o,(z)(i) = 5. Therefore,
0a(B) = {0 € B|o(i) = j} € F,

and thus the event that individual 7 is matched with individual j is measur-

able. |

Let ¢o:E — SN be defined by ¢a(0) = a 0 o and let Y, = ¢o(Z). Let

(SN, B, ') be the completion of the measure space (SN, B, u).
Lemma 1l X, CY,. Consequently, p'(Y,) =1.

Proof: Let z € X(a). Then o,(z) € ¥ and ¢u(04(z)) = z. Therefore,
z € Y(a). Consequently, p/(Y,) =1 since X, C Y, and p'(X,) = 1. |

The probability measure y' is restricted over Y, by setting:
By = B'(\Ya, pr(A) = (A Ya).

Let F,? be the o-algebra on ¥ generated by ¢~'(By) and let P2 = uy o ¢,.
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Theorem 2 (X, F2, P?) is a probability measure.

Proof: Follows from the previous lemma, the fact that p(X,) = 1, and
Proposition 2.12 (page 21) in Breiman (1968). |

For either probability measure we have thus proven the following theorem.

Theorem 3 Let I.(c) be the subset of the population of type s.. Suppose
that the proportion of the population of type s, is p,. Suppose that people
are matched at random according to the matching rule (X, F,, P,). Then the
proportion of the population I.(c) that is matched with an individual of type

Sy 18 py (almost surely).

2.5 Extension of the probability of the real-
izations of matches

In the previous section we defined a probability over the set of realizations
of the matching process. In order to do that we had to assume that the
assignment of types, a, was such that the Cesaro average converges; i.e.,
a € A where
A={ae SN lim 1 XT: a(i) exists and is strictly positive }.
T—oo T

i=1
In this section we dispense with this assumption; i.e., we define a probability
over the realization of matches for all « € SN. This is done by means of a
measurable extension of the averaging which we denote by g.

In order to prove the existence of a measurable extension we need both
a topological and a measurable structure for SN. The space SN is endowed

with the product topology; this makes SN a complete, separable, metric



24

space® and (SN, B) a measurable space where B is the Borel o-algebra.
Let G: SN — R™ be such that for all « € SN, G(a) is the lim sup of o;

ie.,

Tn
G(a) = {a € R™| 3 {T.}. such that lim %— > a(i) = a}.
=1

Notice that since {% YT, a(i)}reN is an infinite sequence belonging to the
m-dimensional simplex it has a convergent subsequence and thus G(a) is

nonempty.
Lemma 2 The correspondence G is closed-valued and measurable.

Proof: Fix a € SN, let {a™},, be such that a™ € G(a) and a™ — a. For all
n € N, let {T™},, be such that

o
lim Tim Y ai) =a™
"=l

n—00

For each m € NV, let n(m) be such that

TYTI

n(m)
||# 3 (i) —a™|| <1/m and n(m)>n(m—1).
#m) =1
Then it is each to check that lim,,_ # 233'") a(t) = a. Therefore,
a € G(a) and G(a) is closed.

Let FF C R™ be closed. Then,

GHF) = {a€SN|G(a)\F# 8}

Tn
{a € SN|3{T,}, such that lim TL Y a(s) € F}
i=1

= (1N U Fra

neNreNT>r

80ne possible metric is d, where for all a, 8 € SN,

o (i) = B(D)]
d(a, B) ;eZN 2((1 + |a(d) - B()|)’
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where
1 d 1
Frn = {a€ SNz > a(i) € B(F,; )} and
=1
B(F,1) = {a€R™3be Fsuchthat |la—b]| <1}
Since for all T and n, Fr, € B, G"}(F') € B and G is measurable. |

Lemma 3 The correspondence G has a measurable selection g.

Proof: The Kuratowski-Ryll-Nordziewski Theorem (see for instance The-
orem 14.2.1 in Klein and Thompson (1984)) states that any closed-valued
B-measurable correspondence into a complete separable metric space has a

B-measurable selection. Thus the result follows from Lemma 2. | |

Notice that for all a € A, g(a) = limr_c = Yoy afi) and thus g is the
extension we are looking for.

Let B be a finite measurable rectangle in ST; i.e.,
B = {z € SN|x(i) € B; for all 7 in J},

where J C N is a finite set and for all ¢ in J, B; C S. Then let u(a, B) be
the probability that if the population selects strategies according to «, then

for all ¢ € J, individual ¢ is matched with an individual of type B;; i.e.,

uwla, B) = TT(3_ g:(a)).

i€J seB;
The function p(e,-) can clearly be extended so that (SN,B, u(a,-)) is a

probability measure.

Lemma 4 The function p is a stochastic kernel.
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Proof: Inorder to check the measurability of x(-, B) it is sufficient to consider
the case where B is a finite dimensional rectangle ( Neveu (1965), page 75).
For this case, u(-, B) is clearly a continuous function of g(a). Therefore,

p(+, B) is a measurable function. |

2.6 Repeated matching scheme

In this section we define the notation to describe a population which is
matched infinitely many times, and in which after each period individuals’
type may change. We extend the results of Section 2.4 for this context.

Let 7: 5§ x S — S be such that if at time ¢ an individual of type s, is
matched with an individual of type s,, then at time ¢ 4+ 1 the individual is of
type 7(sy,5,).%"° In order to guarantee that no type disappears immediately
we assume that for all types s, there exist types s, and s, (where r, v, w
can be equal) such that t(s,,s,) = s, € S. Let t: SN x SN — A be such

that for all i € N, z,a € SN,

t(z,a)(2) = 7(a(i), z(z)).1

If at time ¢ individual ¢ is of type a(z) and is matched with an individual of

type z() then, at time ¢ + 1, individual 4’s type is t(a, )(i). For all z € SN

9This law of motion includes the learning models and the evolutionary models with
constant populations.
10A more general model would allow for a stochastic law of motion; i.e.,

rSxSx[0,1]—8

where 7 is measurable and (S, P(S)) and ([0, 1], B([0,1])) are measurable spaces (where
P(S) is the power set and B(S) is the Borel o-algebra). The map becomes stochastic after
we define a probability measure over ([0, 1], B([0, 1])).
111f 7 is stochastic then t: SN x SN x [0, I]N — Aissuch thatforalli € N, z,a € SN,
gefo, N,
t(z, @, §)(F) = T(a(f), 2(i), &)-
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and for all & € SN, the functions t: SN x {z} — SN and t: {a} x SN — SN
are continuous!? (and thus measurable) and hence jointly measurable.!3

Let Z = SN x SN and let C = B® B. Let Q: Z x C — [0, 1] be such that
for all (e, z) € Z and all (B, B’) €C,

Q((a, z), (B, B')) =XB (t(a, :B)) u(t(a, ), B’),14

Q ((a, z), (o, :c’)) is the probability that if at time ¢ the population has types
assigned by « and is matched according to z, then at timet+1 the population

has types assigned by o' and is matched according to z’.

Lemma 5 The function Q is a transition probability, i.e., for each C € C,

Q(-,C) is measurable and for each z € Z, Q(z,-) is a probability measure.

Proof: Fix z € Z. Then Q(z,-) is the product of two probability measures
and is thus a probability. Fix C = (B, B’) € C. Notice that Q(-,C) is the
product of two measurable functions of ¢ and that ¢ is a measurable function

of z. Therefore, Q(-,C) is a measurable function. |

The Tonescu Tulcea theorem (see for instance Neveu (1965), Proposition

V.1.1) states that if {(E;, F;)} is an infinite sequence of measurable spaces

12Guppose a™ — a and let m > 0. Then there exists an N such that for all n > N and
for all i < m, a™(i) = a(i). Thus for all n > N and for all i < m, t(a”,z)(i) = t(a, z)(i).
Therefore, t(a”,z) — t(a,z) and (-, z) is continuous. The same proof shows that ¢(a, -)
is continuous.

13The proof that the continuity of each section implies joint measurability is in Appendix
B

14For the case where 7 is stochastic let A be the Lebesgue measure over [0, l]N. For all
o,z € S’N, let po - be the probability measure on (SN , B) defined by

pac(B) = A({¢ € [0,NIK(, 2,¢) € BY).

Then,
Q((a,x),(B,B')) = /B u(t, B')dpa 2(t).
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and if P% is a transition probability defined with respect to the spaces

(X¢_oFs, ®' o Fs) and (Eiy1, Fi41), then there exists a unique probability,

5=0

Py, on
(Qa A) = Xt(Eh f.t)
whose value for every measurable rectangle xZ, F; X2, E, is given by

PIO[XZ::IFt]

= ].FO(.’II())/F PP(andxl)L‘ PZOI(CE(),IIII;d(Eg)"'/];T Pg'"T—l(.’Eo"‘.’I,'T_l;d.TT).
1 2

Let Z = xpenZ and C = ®,cnC. Then the Ionescu-Tulcea theorem in

conjunction with Lemma 5 gives the following result.

Theorem 4 There is a unique probability Q., over (Z,C) such that for every

finite dimensional rectangle, C; x --+ x Cy X732 7.4 SN,

on[Cl x - xCy ><;;.°=J+1 SN] = Q(Zo,zl;dzl) : /C Q(ZJ—l,ZJ;dZJ)-
J

C

For each a let X, be the set of realizations of the matching rule such that
each subpopulation is matched with the population average. By the results

in Section 4, for all a € A, p(a, X,) = 1.

Lemma 6 The correspondence X: A - SN is measurable and closed valued.
Proof: The proof is exactly the same as the proof of Lemma 2. |
Lemma 7 The graph of X is measurable.

Proof: Klein and Thompson (1984) prove (Proposition 13.2.2 and Propo-
sition 13.2.4) that the graph of a closed measurable function is measurable.

Thus this result follows directly from Lemma 6. |
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Theorem 5 Suppose that the initial population types are described by ag € A
and is matched according to xo € X,,. Then at every period each subpopula-

tion is matched with the population average (almost surely).

Proof: Let C' = graph X and let z € C. Clearly, x¢:)(t(2)) = 1 and by the
results in Section 4, p(t(z),Xt(z)) = 1. Then since t(z) € A we get that
(t(z), Xy(z)) € graph X and thus,

Q2,C) 2 Q(z, (t(2), Xuqa))) = Xuq)((2)) 4 (8(2), Xoge)) = 1.7°

Since for all z € C, Q(z,C) = 1, then for all J € N,

Q,[C x---xC Xoe g4l Z]=/CQ(zo,zl;dzl)---/CQ(zJ_l,zJ;dzJ)= 1.

Since in each period each subpopulation is matched with the population
average, given an initial population, a, we can compute the distribution of

types at any given period ¢, g*(a). Specifically, by letting

Z Zgu )gu(@)t(3y, Sw),

and we define recursively ¢*(a) by

Next we want to show that the probability @,, is generated by some

probability measure over the set of matches.

Let ¢: N x AN — Z be such that

¢({o:}, {a:}) = {(@i 0 oy, i) }.

15In order to prove that Q(z,C) = 1 we had to show that C was measurable. An
alternative way to proving the same results is to show that the set C is thick (i.e., A €
C,ANC =0 = P(A) = 0) and thus Q(z,C) = 1 where @ is the extension of Q over the
trace o-algebra C(C) such that Q(A()C) = Q(A) (see Rao (1981), page 15, Theorem 5).




30

Let Y = ¢(ZN x AN) and let (Z,C", Q') be the completion of the measure
(Z,C",Q,,). Using the same arguments as in Lemma 1 we can show that
graph X C Y and thus Q'(Y) = 1. The probability @’ is restricted over Y
by setting

Cy =C(Y and Qv(C)=Q'(CY).
Let F be the o-algebra generated by ¢~!(Cy) and let P = Qy o ¢. Using

the same argument as in Section 4 we get the following result.
Theorem 6 (IN x AN . P) is a probability measure.

In many applications we will not be interested in the actual matches but
only in the evolution of the population. Let v: SN x B — [0, 1] be such that

for all @ € SN and B € B,

v(a,B) = u(a, t;l(B)).
For all a, o’ € SN, v(a, o) is the probability that if at time ¢ the popula-
tion’s types are described by a, then at time ¢ + 1 the population’s types are

assigned by /. In Theorem 6.2, Futia (1982) proves the following result.

Lemma 8 The function v is a transition probability; i.e., for each B € B,

v(-, B) is measurable and for each o € SN, v(a,-) is a probability.

Let S = XpenSN and B = ®neN B. Then, the Ionescu Tulcea theorem

gives the following result.

Theorem 7 There is a unique probability v,, on (S,B) such that for every

finite dimensional rectangle, By X --- X By X3 7., SN,

Uao[B1 X +-+ X By X o g+l SN] =/

i u(ao,al;dal)---/ v(ag-y,az;day).
1

B,

Proposition 1 If ag € A then v, [AN] = 1.

Proof: Follows since we showed in Section 4 that ¥(ag, A) = 1. |



31

2.7 The law of motion for finite populations
and finite number of periods

A justification of the analysis of the deterministic model for finite population
is that we are just interested in following the law of motion for a finite
number of periods, T, and that for a large enough population the model is
approximately correct. This section proves this conjecture.

Let p¢ be the proportion of individuals of type s, at time ¢. The initial
proportion p° is given while the other proportions are computed by assuming
that each type is matched with the population average. For any type s,
let {z:} be a sequence of random variables such that (for all 7 and v) the
probability that 2} = s, is p, and let u be the probability defined over the
whole sequence of {z'} (as discussed in section 2.4). If the population size is
N, the population is denoted by P(N), where P(N) = {1,..., N}. For any
period t = 1,...T, let o': P(N) — S denote the assignment of strategies in
the population. The initial population o is given while the populations in
the other periods are obtained by the law of motion 7 (which is described in
Section 2.6) and the matching rule. Individual are matched as in section 2.3;
i.e., the individuals of type s, that draw a random variable with value s, are
matched with the individuals of type s, that draw a random variable with
value s,. Since these groups are finite we will not always be able to match all
individuals this way. Thus the remaining individuals are matched in some

arbitrary way.

Theorem 8 For any T > 0, € > 0 and for any § > 0 there exists a positive
integer N' such that for all population sizes N > N' and all strategies s,

the following holds: with probability greater than 1 — é the proportion of the
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population P(N) adopting strategy s, at time T, YN aT(3), is within €

of pi.

Proof: The idea behind the proof is the following. We find a uniform upper
bound (uniform over time period and strategy) for the proportion of the
population adopting a particular strategy in a given time period which is not
matched according to the population average (with probability 1 — ¢). The
upper bound and ¢ can be made arbitrarily small by taking the population
to be large enough. Then for almost all possible histories we can find a
subpopulation which behaves exactly according to the deterministic model.
Again the proportion of the population in this subpopulation can be made
arbitrarily close to one by taking the population to be large enough.

Fix T >0,€¢>0,and § > 0. Let £ > 0 be such that (1-§)ZT >1—c¢,

let p = min, ;<7 p}, and let N be greater than N’ where

" _ TE?
456233(1—2 7T

Let e¥ be the vector with 1 on the v** component and zeros on the other
components. Then {z!-e"}; is a sequence of Bernoulli random variables and

thus if n is greater than n’, where

then

Wy ar-e =l 2 F) S 7.0

15Bernoulli’s weak law of large numbers is proved (see Shiryayev (1984), page 47), by
showing that if {z;} is a sequence of Bernoulli randoms variables with E(z;) = p then

1 1
P{Z ¥ zi—-pl2 e} < 757 -
i=1



33

Suppose that the number of individuals adopting any strategy s, is greater
than n and the distribution of strategies in the population is given by p.

Then, with probability greater than 1 — % ,

1 .
|Per— : Sy 2_{ieP(N)|a(i)=r x;-e”l
max [{ieP(N)|a(i)=r}] ~{i€P(N)|a(i)=r} <
v pr‘U

e

Consequently, with probability greater than 1—6/T the proportion of individ-
uals matched according to the correct proportions is 1 — ? . But, with prob-
ability greater than 1— % , at each period there are at least Np(1— ? )T > n!
individuals adopting any strategy s, and thus a proportion l—g of the popu-
lation is matched according to the population proportion. Hence, with proba-
bility greater than 1—§ at every periodt =1,...,T~1, thereis a (1——? ) pro-
portion of the population which is matched according to the population pro-
portions. Define recursively P, = { individuals matched with the population average },
P, = { individuals matched with subpopulation P,_; average }. Hence with
probability 1-46, %—l > (1-—% )?". Thus with probability 1—§ the population

will be within 1 — (1 — £)27 < € of p. ]
€

2.8 Conclusion

Biologists and economists have analyzed populations where each individual
interacts with randomly selected individuals. The random matching gen-
erates a very complicated stochastic system. Consequently biologists have
approximated such a system by a deterministic system. The justification of
such an approximation is that the population is assumed to be very large
and thus some law of large numbers must hold. In the paper we give an
example for which this assumption does not hold. This does not mean that

this kind of approximation may never hold, but that the correctness of the
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approximation depends on properties of the law of motion. This paper shows
that if we assume that the population is infinite then the stochastic and the
deterministic system are the same.

Note that all the proofs hold if the set of type, S, is countably infinite. In
this case admissible proportions, p, must be such that: p > 0, >",csps = 1,
and lim,_.., ps = 0. However, we are not aware of any study of such models.

Finally, the matching technologies defined in the paper depend on the
particular distribution of strategies in the population. It remains an open
question whether matching schemes exist that are independent of the distri-
bution of strategies and for which individuals are matched with individuals

that adopt strategies in the same proportion as the population as a whole.
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Appendix A: Populations with a continuum
of agents

This section follows Feldman and Gilles (1985). Suppose that the population
is represented by the unit interval, I = (0,1]. Let Z denote the Lebesgue
measurable sets of I and let A be the Lebesgue measure on I. The fact that
the population selects strategies according to z is represented by partitioning

I as follows:

I= (0,.’131] U(Ilfl,.’lfl + mz]U . U(l - IL‘m,l].

Let B be the Borel sets of I. Let (£, F, P) be a probability space determined
by the randomized matching process. Let {X(-,%)}:es be a family of random
variables, where for all 7 € I, X(-,7):Q — {0,1} is such that

p(X(,Z) = 1) = P({wX(wal) = 1}) = Tr.

The event X (w, ) = 1 denotes that individual ¢ is matched with an individual
who selects strategy r; X (w,¢) = 0 denotes that individual ¢ is matched with
an individual who does not select strategy r. Then in order for the conjecture
given in the introduction to be correct the following needs to be true: for

every B € B
/B X(w,)\(di) = z,0(B). (2.3)
For any sample w € (1, define the set function v,: B — R, by
vo(B) = /B X (w,8)\(d5).

Since v, is absolutely continuous with respect to A, A > v,, by the Radon-

Nikodyn theorem there exists a unique measurable function f such that

vo(B) = /B F(a)\(da). (2.4)
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But if equation 2.3 holds then by setting f = z, equation 2.4 is satisfied.
Therefore since f is unique X(w,-) = z, (A) a.e.. But since z, ¢ {0,1}
this is not an admissible value for X. Thus 2.3 cannot hold for all possible
strategy partitions over the player set.

Green (1989) has shown that if the distribution of strategies in the popu-
lation is described by a different partitioning, then the conjecture may hold.

It still remains to be shown that there exists a probability space (£2, F, P)
and a sequence of random variables {X(+,7)} which correspond to a random
matching process such that the conjecture holds.

Finally, modeling a very large population as a countable set seems a better

approximation than modeling it as a continuum.
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Appendix B: Joint measurability of a function
with continuous sections

Theorem 9 Let (X, B) be a measure space where X is a separable complete
metric and B is the Borel o-algebra. Let f: X x X — X be such that for all
ze X, fi{r} x X - X and f: X x {z} — X are continuous. Then f is

measurable.

Proof: Since X is a separable metric space, the Borel o-algebra B has a de-
numerable subfamily, D generating B (see for instance Parthasarathy (1967)
Theorem 1.8). Let

D={Dy...,Dp,..., }.

Let
F* = {FlﬂFgﬂ---ﬂFn| where F; = D; or F; = X \ D;}

(P Flm )

Notice that F,, is a partition of X and that F, C B. For all 7 and n choose

y7 such that y* € F*. Finally, let

m(n)
fn(x’y) = Z f((l?, yzn) XXxFpr
=1
Notice that the continuity of f: X x {¢} — X easily implies the continuity
of the function ¢: X x X — X where g(z,y) = f(z,¢). Thus fo(z,y) is a
measurable function. Fix y € X and for all n let i(n) be such that y € FF,,.

Notice that FJj,, C F:(‘;_ll) and that Fi¢,y | {y}. Then,
Jim fo(z,y) = lim f(z,y,) = f(e, im yi,) = f(z,y).
The function f is hence the pointwise limit of a sequence of measurable

functions and is thus measurable. [ |
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Appendix C: Brief review of Biology

In this appendix we describe the relationship between the issues raised in
this paper and models considered in population genetics and evolutionary

biology.

Population Genetics

This section is based on Cavalli-Sforza and Bodmer (1971). In the models
we consider, the phenotype (e.g., eye color) is determined by the action of
two genes at one locus. Genes are assumed to be of two types (alleles): A;
and A,. Individuals are of three types (genotypes): A1A;, A1 Az, and AxA,.
When two individuals mate they each produce gametes (reproductive cells).
Gametes receive one of the parent’s genes. An offspring is produced by the
union of a gamete from each parent. When two individuals of types aa’ and
bb’ mate they produce offspring of type ab, ab’, a’b, and &'V’ with equal prob-
ability. Another assumption describes which individuals mate. “Matings
take place at random with respect to the genetic differences being
considered and in a population of infinite size” ( Cavalli-Sforza and
Bodmer (1971), page 45). All individuals mate at the same time and then
are completely replaced by their offspring. Thus the dynamics of the process
depends on the random matching of individuals and the random selection of
genotypes for the offspring. Suppose the initial relative frequency of alleles
Ay and Az is p; and p; (p1 + p2 = 1). Then the Hardy-Weinberg theo-
rem states that in the next period the relative frequency of the genotypes
A1A1, A1A2, Az A; is tespectively p?, 2p1p2, and p2. This theorem is ‘proved’
(just as in the original papers by Hardy (1908) and Weinberg (1908)) by

computing the expected proportion with which each of the matches occurs.
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No explicit modeling of the matching scheme and no derivation of a law of
large numbers is given. Furthermore there seems to be some confusion in the
literature about whether the population needs to be infinite or very large.
Feller (1967) (page 135) writes: “In a large population the actually observed
frequencies of the three genotypes in the filial generation will be close to
the theoretical probabilities.” And in a footnote at the end of this sentence:
“The statements is made precise by the law of large numbers and the central
limit theorem, which permit us to estimate the effect of chance fluctuations.”
Hofbauer and Sigmund (1988) write: “A few more premises were used implic-
itly in the derivation. For instance we equated ‘frequency’ with ‘probability.’
This is admissible in the limiting case of very large populations” (page 9).
The model just described is generalized to the case where genotypes differ
in fitness (the expecte;l number of offspring). Denote by w;; the fitness of
the genotype A;;. If the initial relative frequency of alleles A; and A, is p;
and p, then the next period frequency of the genotypes A;A;, A1A2, A2A,

is respectively
wupf 2w12p1P2 wzzP%

d’ d 7 d’

where d = w1p? + 2wi2p1p2 + weops.!” Then the frequency of alleles A4, in

the next period is

' wupf + wizp1p2 wzng + wyop1p2
pl = d ] p2 = d .

This model easily generalizes to the case where there are m alleles, Ay, ..., A,,.
The law of motion for the alleles is the same as equation 2.1 (where w;; = a;;).
This model has also been analyzed when the matches occur infinitely often;
e.g., Fisher (1930) and more recently Losert and Akin (1983) analyze the

properties of the limiting distributions of genotypes; i.e., lim;_, p*.

17Notice that in genetics it is always assumed that w;; = wj;.
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The model just described is closely related to the model considered in this
chapter. The set of types in this model is the set of genotypes. For instance,

in the case where there are only two alleles,
S = {A1A;, A1 Az, A2A,}.
The law of motion 7 in this model is stochastic; for instance
T(A1A1, A1A2) = 5 6a,a, + 5 64y,

Thus in order to prove the Hardy-Weinberg theorem in this context we need
to generalize the model for stochastic laws of motions.

The Hardy-Weinberg theorem and the law of motion in equation 2.1 can
be derived from a different set of assumptions on the reproductive scheme.
Individuals form a large number of gametes. A small proportion of the ga-
metes formed unite with gametes of the opposite sex. Thus, the distribution
of genotypes in the next generation is found by a sample of the gametes (and
hence of the alleles) in the population. Specifically, if the proportion of alle-
les A; and A; is respectively p; and p;, then the next generation is obtained
by drawing 2N gametes where we assume that the probability of drawing a
gamete of type A; is p; and the probability of drawing a gamete of type A,
is p;. Then the expected proportion of alleles of any type is given by equa-
tion 2.1 where p; is the proportion of alleles of type A; and «a;; is the number
of offspring of a genotype A;A;. Again no law of large numbers has been
derived for this system. However, geneticists realize that the deterministic
element of the model is due to the assumption of large population.

The stochastic element created by small population is considered in the
models of ‘random genetic drift.” Suppose that there are N individuals and

that the population size stays constant from generation to generation. If the
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population proportion of allele A; is p; then the next period population is
formed by drawing 2N gametes from an urn that contains a proportion p;
of gametes of type A;. This model is approximately correct if the number
of gametes is large enough (and thus we can consider the sampling proce-
dure as sampling with replacement). The binomial distribution gives the
gene frequency distribution after one period. Kimura (1964) derived the
gene frequency distribution after n generations. At any generation the mean
number of genes of type A, is p; although eventually one of the alleles is fixed
in all populations. The proportion of populations in which A; is eventually
fixed is p;. The probability of fixation at generation ¢, P(t,p;), depends on
the initial gene frequency, p;, and the population size, N. Kimura (1964)
showed that

iy
P(t,p1) = 1 —6py(1 —py)e” 2

and Ewens (1969) computed the mean fixation time to be

4N{py log p1(1 — p1) log(1 — p1)].

Thus this model underscores the difference between the expected gene fre-

quency and the real gene frequency.

Evolutionary Biology

This section follows Maynard Smith (1982), in particular pages 10-23. There
is an infinite population of individuals identical in all respects except for
how they behave in a two-person contest. In this contest there are only
two possible strategies: to act as a hawk (denoted by H) and to act as
a dove (denote by D). Each individual is paired off at random with one

other individual. Individuals reproduce their kind asexually. The number
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of offspring for an individual that adopts strategy ¢ and is matched with an
individual that adopts strategy j (¢, € {H,D}) is Wo + E(3,7)."® If pis
the frequency of individuals adopting strategy H then it is asserted that the

number of offspring of individuals that select strategy i, E(z), is
E() = Wo + pE(i, H) + (1 - p)E(i, D)

and that the frequency p’ of individuals selection H in the next period is

- E(H)
P=PoER ¥ (1 - pED)

This model can clearly be generalized to the case where there are m strate-
gies, $1,...,8,. The law of motion for this system is the one described in
equation 2.1 where a,, = Wy + E(s,,s,). Properties of the limit dynam-
ics are studied in Losert and Akin (1983), Akin and Losert (1984), Weising
(1989). Again there seems to be some confusion as to whether the population
is assumed to be infinite or very large as in Hines (1987).

Suppose that the population stays constant; i.e., ar, + @y = 2. Then if
we require the number of individuals of each type to be nonnegative integers,
then for all strategies s, and s,, a,, € {0,1,2}. Thus the model described in

Section 2.6 describes the replicator model where

Sy May, #0

Sp i @y, =0.

rlowsa) = {

The results in this chapter show that if the population is countably infinite

then equation 2.1 describes the behavior of the process (almost surely).

181f the parent lives more than one period, the number of offspring includes the parent.



Chapter 3

EVOLUTIONARY
EQUILIBRIA RESISTANT

TO MUTATION

3.1 Introduction

In this chapter we describe the properties of the replicator model. The repli-
cator model is studied by evolutionary biologists; it postulates that strate-
gies are genetically determined and that individuals who adopt successful
strategies have more offspring. Although individuals do not act as Bayesian
maximizers, it is possible that the population as a whole acts as a Bayesian
maximizer. This chapter characterizes the relationship between properties of
the replicator model and refinements of Nash equilibrium. We first discuss
how evolution relates to game theory.

Many games cannot be solved in pure strategies. The solution is then
for one of the players to play a mixed strategy; in other words to select a
strategy according to a specific randomization device. Rubinstein (1988)
finds troublesome that optimal behavior should occur by chance. If such
criticism is valid it seems useful to give a different interpretation of a game.

Instead of imagining two specific players confronting the game, suppose that

43
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there is an infinite population of potential players. At each period, players
are randomly and anonymously matched. Each player plays a pure strategy.
Equilibria in mixed strategies are then interpreted as equilibria where the
population is not homogeneous.!

One of the justifications for assuming that people use optimal strategies
is the belief that such strategies are ‘evolutionarily stable.” If (i) particular
strategies are transmitted genetically and (ii) evolutionary laws select for
optimal strategies, then people will act as optimizers. In most games there
are no optimal strategies, since best responses depend on what other players
choose. However, there may be modes of behavior that will persist and are
immune to genetic drift. This paper examines a specific model for the study
of genetic evolution which is called ‘the replicator model.”? In particular the
paper seeks to define a;ld characterize equilibria of the evolutionary process.

There is a very large literature in game theory which discusses different
definitions of equilibria. An equilibrium concept which is frequently used
by economists is called ‘Nash Equilibrium,” although game theorists have
given numerous examples where the equilibrium concept is inadequate.> A

strengthening of the notion of Nash equilibrium has led to the concepts of

‘perfect equilibrium’ and ‘proper equilibrium.’* This paper examines the

! Harsanyi (1973) gives a similar interpretation of mixed strategies. Harsanyi justifies
mixed strategies by players’ uncertainty on their opponents payoffs (or types). In particular
the payoff function for player i of type &; is u; + €£;. A type knows his own value of §;
and knows the distribution function for §; over the set of possible types =;; in particular,
all players know that the expected value of {; is zero. Then in equilibrium each type
selects a pure strategy and each player plays the mixed strategy determined by the pure
strategy played by each type and the distribution of types. Furthermore, a mixed strategy
equilibrium in the complete information game is the limit as ¢ goes to zero of equilibria of
incomplete information games.

>The following authors discuss the properties of the replicator model: Hines (1987),
Hofbauer (1981), Schuster et al. (1981), Taylor and Jonker (1978), Zeeman (1980).

3See for instance van Damme (1987).

“These equilibrium concepts were introduced in Selten (1975) and Myerson (1978).
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relationship between equilibria of the genetic process and existing equilibrium
concepts in game theory.®

The replicator model describes the distribution of strategies in the pop-
ulation in terms of a differential equation. Thus in order to examine the
dynamic equilibria of the replicator model, it is necessary to solve a system
of nonlinear differential equations, which is usually done through numerical
simulations. Alternatively, there are static equilibrium concepts that can be
defined for the replicator model and which can be solved analytically. A par-
ticularly well known static equilibrium concept is the evolutionarily stable
strategy (denoted in this paper by ESS) which was defined by Maynard Smith
and Price (1973). This paper defines a different static equilibrium concept
called ‘evolutionary equilibrium.” The equilibrium concept is based on an
arbitrarily small proportion of genes mutating towards a ‘random’ strategy.

The second section of the paper describes the replicator model and its
relationship with the concepts of Nash and perfect equilibrium. The third
section of the paper defines and establishes formal properties of an evolu-
tionary equilibrium. In particular this section proves that an evolutionary
equilibrium exists for a large class of payoff matrices. The fourth section
analyzes the relationship between evolutionary equilibria and other equilib-
rium concepts in game theory: the set of evolutionary equilibria is a subset
of the set of perfect equilibria and a superset of the set of regular equilibria.

Throughout the paper definitions are indicated by italics.

5The following papers discuss similar issues: Crawford (1988), Friedman (1988), Nach-
bar (1990), Samuelson (1988). The following papers discuss these issues in some more
specialized contexts: Axelrod and Hamilton (1981), Boyd and Lorberbaum (1987), Craw-
ford (1989).
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3.2 The replicator model

This section describes the replicator model and reviews results that charac-
terize the relationship between properties of the replicator model and game
theoretic equilibria.

Suppose that individuals from a large population are paired randomly.®
Each individual selects a strategy ¢ € {1,...,n}. The scalar z; is the pro-
portion of individuals who select strategy : and the column vector z =
(z1,...,2n) describes the proportion of the population that adopts each pos-
sible strategy. Thus z € A™ where

A"={z € R}:> z;=1}.

=1
If an individual selects strategy z and is matched with an individual that has
selected strategy j, ai;j (ai; > 0) individuals will adopt strategy ¢ in the next

period. The matrix A, where

aily a2 ... Qain

aqgy a2 ... AQopn
A= ,

Qn1 QGp2 ... Qpg

is called the payoff matrix for the evolutionary game. Then the proportion

of the population adopting strategy ¢ at time ¢t + 1 is

ty,
1 _ ¢ (Az");
T =T Axt
zt- Az
where (Az); = Yiciaszjand z- Az =3, YT a;jz;z;.” The next propo-

sition shows that the law of motion is well defined.

Proposition 2 The strategy simplex is invariant under the replicator differ-

ence equation; i.e., if z° € A" then fort=1,2,..., zt € A",

6Specifically take then individuals to be the natural numbers.
"The validity of this statement is proven in Chapter 2.
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The last expression can be rewritten as:

ty. t t

41 . (Azh); — 2t - Az
i T L= t t
Tt Az

z;

or by dropping the time subscripts

Az; = x;(Ax)i —z A = RP(z). (3.1)
z- Az

The system of difference equations Az = RP(z) is called the replicator model
in discrete time; when we need to specify the payoff function, A, the replicator
T

model is denoted by RE. Let At = - 45 be the timeinterval between periods

(where 7 € Ry 4); then
Az; = z;[(Az); — = - Az] At
By letting At — 0 the last expression can be written as:
i; = z;{(Az); — z - Az] = RY (2).%° (3.2)

The system of differential equations # = R®(z) is called the replicator model
in continuous time; again when we need to specify the payoff function, A,

the replicator model is denoted by RG. Let the function X : R* x Ry — R"

8This derivation is entirely heuristic. Let a = max;;|a;; — 1]. Akin and Losert
(1984) use Euler’s theorem to prove that as ¢ goes to 0 the solution of the replicator
dynamics in discrete time converges to the solution of the replicator dynamics in continuous
time. However, the convergence is pointwise, not uniform, and thus the limit of the two
trajectories can be quite different. For constant sum games, for instance, the replicator
dynamics in continuous time is a center while the replicator dynamics in discrete time is
an unstable focus (for a definition of these terms see Arnold (1973)).

® Hofbauer (1981) noticed that by setting bij = aij — an; and letting y; = z;/z,,
expression (2) can be rewritten as

n—-1

U= yi(bin + Zb;jyj) (l € {1,...,71 - 1})

i=1

which is the Volterra-Lotka equation.
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be such that for all ¢ € Ry and z° € A",

dX(t,z%)

Fra RC(X(t,z%) and X(0,2°) = 2°.1°

The next proposition states that this system too is well defined.

Proposition 3 The strategy simpler is invariant with respect to the replica-

tor differential equation; i.e., if z° € A™ and t € Ry then X(t,2°) € A™.

The next theorem describes one of the most important properties of the

replicator model.

Theorem 10 If the vector of strategies (z,z) is a Nash equilibrium of the
normal game (A, AT) then the vector z is a stationary point of the replicator

model.

Unfortunately there are stationary points of the replicator model that are
not Nash equilibria of the normal form game.

A partial converse of the theorem was given by Bomze (1986).

Theorem 11 (Bomze) (i) If the vector x is a stable stationary point'! of the
replicator model in continuous time, then the vector of strategies (z,z) is a
Nash equilibrium. (ii) If the vector = is an asymptotically stable stationary
point'? of the replicator model in continuous time then the vector of strategies

(z,z) is an isolated perfect equilibrium.

10The existence and uniqueness of the function X follow from the differentiability of the
map R€. .

1 An equilibrium Z is stable if given any positive scalar ¢, there is a positive scalar §
such that for all strategies z in the ball centered at # and with radius §, z€B(Z, ) A",
and for all positive t, X(z,t)€B(Z,¢){(A".

12An equilibrium Z is asymptotically stable if it is stable and if § can be chosen such that

Vz€B(%,6), limy o X(z,t) = Z.
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Unfortunately, asymptotically stable stationary points are difficult to
characterize and do not always exist. This paper further characterizes the re-
lationship between the replicator model and game theory. The idea is to look

at stationary points of the replicator model that are resistant to mutation.

3.3 Evolutionary equilibrium

This section defines the notions of generalized evolutionary system, evolu-

tionary equilibrium, and nondegenerate payoff matrix. We prove that there

exists an evolutionary equilibrium for all nondegenerate payoff matrices.
This chapter examines a class of laws of motion, H, somewhat more

general than the replicator model. Let

Ha= {H:A" > TA" 3FL:TA™ — TA" such that:
L is continuously differentiable, L;(y)y: > 0,

(Li(y)yi=0 & y; =0), H= Lo RS}
where TA™ is the tangent space of the simplex; i.e.,
TA™ = {r € R"| Zziz()}.

In order to make the notation less cambersome, when no confusion can arise,
the subscript A in H 4 is dropped.

The important property of this class is that it includes the replicator
model in discrete and continuous time: if L(z) = I, xn then H = R and

H e 'H;‘if L(z) = 2-I,x, then H = RP and H € H.!® Suppose that the

z-Ar

3The set M includes other functions such as
H(z) = ((21(A2)1 - = - A2])®, ~(21[(A2); - = - A2])?)

where L : TA? — TA? is defined as L(y) = (13, —33).
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strategies selected by the offspring are subject to mutation. Assume that the

set of possible mutation rates is

M = {m:A" - TA" | m is bounded, continuously differentiable

and (VS C {l,...,n}) Y zi=1=> my(z) <0}.

i€s i€S
Notice that we can interpret members of H and M as gradient fields. Then
the last constraint implies that at the boundary the gradient field points in-
wards. Again, when it does not lead to confusion, the subscript n is dropped.
For an evolutionary game with payoff matrix A, the generalized replicator
model H € H, the mutation function m € M, and a scalar g € (0,1), define

an evolutionary system by the following differential equation:

Az = (1-p)H(z)+ pm(z) (discrete version)

¢ = (1—-p)H(z)+ pm(z) (continuous version).

A vector Z is an evolutionary equilibrium for the payoff function A and
the generalized replicator model H € H if for every function m in M, there
is a scalar p’ € (0,1) and a vector valued function z : (0, 4') — A™ such that
for all pe(0, u'),

(1 = p)H(z(p)) + pm(z(p)) =0

and lim, oz (p) = .1

The following theorem by Jiang (1963) (which generalizes the better
known theorem by Fort (1950)) is used in the proof of the existence of evolu-

tionary equilibria. Let X be a compact convex subset of a normed space, let

Showing that a vector of strategies is an evolutionary equilibrium by using the defi-
nition seems quite hard. In many examples a simpler procedure will be the following: (i)
first show that there exists an evolutionary equilibrium; this paper gives a sufficient condi-
tion for the existence of equilibria, ‘nondegeneracy,” which is straightforward to check. (ii)
Serially eliminate all strictly dominated strategies. If there is a unique Nash equilibrium
that puts positive weight only on undominated strategies then this will be an evolutionary
equilibrium. The validity of this procedure is proven in the rest of the paper.
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d be the metric defined on X defined by the norm, and let C(X, X) be the
set of continuous function with domain and range in X. Then (C(X, X), p)

is a metric space where

p(fag) = SuszXd(f(m)7 g(z))

Finally, let F:C(X,X) — X be the fixed point correspondence; i.e., for all
feC(X, X),

F(f)={z € X|f(z) = z}.
A set D is said to be totally disconnected if all the connected subsets of D

are singletons.

Theorem 12 (Jiang Jia-He) Suppose F(f) is a totally disconnected set.
Then there is a vector p in F(f) that satisfies the following property. For

every neighborhood U of p there is an € > 0 such that:
9 € C(X,X) and p(f,9) < e= F(g)(\U #0.

The vector p described in the theorem is called an essential fixed point.
For all subsets of the strategy set I C {1,...,n}, let A|; be the matrix

aij)ierjer- A matrix A is nondegenerate if for all I C {1,...,n} such that
J 2J

#(I) > 2, the matrix A|; is nonsingular.!®

Lemma 9 If A is nondegenerate then H € H, has finitely many stationary

points.

15The only property used in the paper is that there are finitely many symmetric equi-
libria in all the submatrices A|s. I think that a necessary and sufficient condition for the
latter property is
V(i,5) C{1,...,n}, aij = aii = aj; # aj;.
Notice that either assumption is much weaker than the Lemke and Howson nondegeneracy
condition (for a definition of the Lemke and Howson nondegeneracy condition see van
Damme (1987) page 52).
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Proof: Let A be a nondegenerate payoff matrix. Notice that by the as-
sumptions on H, in order to show that H has finitely many fixed points,
it is sufficient to show that RS has only finitely stationary points. Fur-
thermore since the simplex has only finitely many faces it is sufficient to
show that in any face there are finitely many stationary points of RG. Let
S={z e A"i eI & z; >0}. Then (zs,z_5) € S is a stationary point
of RS if and only if there is a scalar A such that Agszs = A1l. Since Ag is

invertible each face S has unique stationary point z. |

Proposition 4 For all nondegenerate payoff matrices A there is an evolu-

tionary equilibrium.

Proof: Fix a payofl matrix A and a generalized replicator function H €
Ha. We first construct a function, H’', whose fixed points correspond to the
stationary points of H. Then we use Theorem 12 to prove the existence of
an essential fixed point. Finally we show that essential fixed points of H’ are

evolutionary equilibria for A (where the law of motion is H). Let
H : A" — R" be defined by H' =1 + H.

Notice that fixed points of H’ are stationary points for H. Unfortunately
the function H' does not map its domain, A", into itself. In order to remedy
this problem we extend the function H’ to a domain EA™ which is invariant

under the extension, H. Specifically let

M = maXzeA,ie{l,...,n}IHf(m)I +1
i=1

a:EA™ — [0,1)
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a(z) = min{a€[0,1)|a/nl+ (1 -a)z € A™};

H:EA™ — EA"
H(z) = H'(a(z)/nl+(1-a(z))z).

Notice that fixed points of H' are stationary points for H and that all the fixed
point of H are in A™® (and thus are fixed points of H'). Since by assumption
A is nondegenerate, by Lemma 9 there are finitely many stationary points of
H and Theorem 12 is applicable. Let g = (1—pu)H +p(m+1I). Then for small
enough p, g : EA™ — EA™ and p(ﬁ,g) < e. A fixed point of g corresponds
to a stationary point of (1 —u)H + pgm. Thus the set of perturbations allowed
in the theorem includes the ones in the definition of evolutionary equilibrium.

Fix a mutation function m € M. Since all the conditions are satisfied,
we use Theorem 12 to prove the existence of an evolutionary equilibrium.

Thus there is an & such that for every e > 0 there is a g, and a function
ze(p) : (0, pe) — A™
such that Vu € (0, u)
(1= W) H (e () + pm{e(4)) = 0

and sup ¢ (o,4.)|Te(#) — 2| < €. Then since there are finitely many fixed points
of H there is an € > 0 such that B(Z,€)NF(H) = {Z}. For p € (0, uer) let
z(p) = zo(y). Then z : (0, pe) — A is such that

(1 — w)H(z(4)) + pm(z(n)) = 0,

and z(p) — &. Therefore, & is an evolutionary equilibrium. |

16Proof: Suppose that H(z) = « and z ¢ A", Since H - 1 = 0, there exists a strategy
i such that z; < 0. Let y € A, be such that y = a(z)/n1 + (1 — a(z))z. Then y; = 0.
But this implies that H;(z) = H{(y) > 0. Contradiction.



54

A few remarks about the condition in the theorem. Clearly, nondegener-
acy is not a necessary condition for the existence of an evolutionary equilib-

rium; the game A, where

0 00
A=]1000
0 01

is clearly degenerate and has (0,0,1) as an evolutionary equilibrium. How-

ever, some degenerate payoff matrices do not have evolutionary equilibria;

let A be
11 2
A=11 1 1
011

Let m be such that for all ¢, m;(z) = a; — z;, where 3_;a; = 1 and a; > 0.
Then for all positive p, the only stationary points of the generalized replicator
with mutation are points such that z; = a;. Thus there are no evolutionary
equilibria.

In this section we showed that if the payoff matrix A is nondegenerate
then every law of motion H € H has an evolutionary equilibrium. However
it is possible that different laws of motion give different set of evolutionary
equilibria. The next proposition proves that all laws of motions H € Hgr C K

have the same set of evolutionary equilibria, where

Hr={H:A" = TA"™ | 3f:A — R, such that f is continuously
differentiable and H = f - R¢}.

Theorem 13 Let H H' € Hp. Then if & is an evolutionary equilibrium for

H then % is an evolutionary equilibrium for H'.

Proof: Without loss of generality suppose that H' = f- H where f is strictly

positive and continuously differentiable. Fix m’ € M and let m = %I,i € M.
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Since Z is an evolutionary equilibrium for H there is a scalar ¢’ € (0,1) and

a vector valued function z : (0, u') — A™ such that for all u€(0, y'),

(1 = w)H(z(p)) + pm(z(p)) =0

and lim,oz(p) = #. Consequently, we have that for all p€(0, p'),
(1= wH'(z(p)) + pm/(z(p)) = f(@)[(1 — p)H(z (1)) + pm(z(p))] = 0

and lim,joz(p) = Z. Since m’ was arbitrary, Z is an evolutionary equilibrium

for H'. [ |

3.4 Relationship between evolutionary equi-
librium and other equilibrium concepts

The rest of the paper relates evolutionary equilibria to other game theoretic
equilibria; i.e., equilibrium concepts that are derived from assumptions on
the type of beliefs individuals have and on Bayesian maximization. There are
three reasons for being interested in these relationships. (i) Showing that an
evolutionary equilibrium corresponds to a game theoretic equilibrium allows
us to argue that individuals act ‘as if’ they are Bayesian maximizers. (ii)
There are ways of computing game theoretic equilibria that can be used
to compute evolutionary equilibria. (iii) Requiring that a game theoretic
equilibrium be evolutionary stable refines the set of equilibria.

The equilibrium concepts that are analyzed are following: (1) Nash equi-
librium, (2) undominated Nash equilibrium, (3) perfect equilibrium, (4) strict
dominance solvability, (5) regular equilibrium, (6) proper equilibrium, (7)
strictly proper equilibrium, (8) ESS, (9) essential equilibrium.

The main results in this section are the following: (a) an evolutionary

equilibrium is a symmetric perfect equilibrium; (b) a symmetric regular equi-
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librium is an evolutionary equilibrium; (c) an ESS is an evolutionary equi-
librium; (d) not all symmetric proper equilibria are evolutionary equilibria;

(e) not all evolutionary equilibria are strictly perfect equilibria.

3.4.1 Nash equilibrium

Let £ € A™. A vector of strategies (Z,%) is a symmetric Nash equilibrium
for the symmetric game (A, AT) if for all strategies y € A™, & - A% >y - AZ.
The concept of Nash equilibrium is the most widely used equilibrium concept
in game theory although it is often considered to be too weak (see however

Bernheim (1984) and Pearce (1984)).

Proposition 5 An evolutionary equilibrium, &, is a symmetric Nash equi-

librium, (Z,%).

Proof: Let & be an evolutionary equilibrium. (i) Suppose that there is a
strategy, say 1, such that Z; = 0. In order to prove that Z is a Nash equilib-
rium it suffices to show that (AZ); < £AZ. Let m be such that my(z) > 0
for all z in a neighborhood of Z. Then since Z is an evolutionary equilibrium
there is a ¢’ > 0 and a function z : (0>, g’y — A such that for every g in
(0,4),

(1 = wH(z(p)) + pm(z) = 0.

This implies that for all g in (0, '),
(Az(p))1 — z(p)Az(p) < 0.

Thus (AZ); < £AZ. (ii) Suppose that Z; > 0 and Z; > 0. Then, (AZ); —
TAT =0 and (A%); — £A% = 0. Thus (AZ); = (AZ);. Therefore % is a Nash

equilibrium.
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In the next subsection we show that not all perfect equilibria are evo-
lutionary equilibria and thus that not all Nash equilibria are evolutionary

equilibria.
3.4.2 Undominated Nash equilibrium

A strategy ¢ is weakly dominated if there exists a mixed strategy y such that
the payoff for using y is at least as great as the payoff for using : regardless
of the other players’ strategy and strictly better for some strategy; i.e., for
all z € A", y - Az > (Az); and there is a z € A™ such that y - Az > (Az),.
The principle that strategies that are weakly dominated should not be
played is very intuitive, although when used repeatedly it can give results
that are surprisingly strong.!” The next lemma characterizes the relationship

between evolutionary equilibria and weakly dominated strategies.

Lemma 10 Let & be an evolutionary equilibrium. Then Z; = 0, if strategy ¢

is weakly dominated.

Proof: Suppose that mixed strategy y weakly dominates strategy 1 and sup-
pose, without loss of generality, that 1 ¢ support(y). Suppose that Z is
an evolutionary equilibrium and #; > 0. Let m € M be such that in a

neighborhood of # ( where z; > 0)

my(z) = —1, and for all ¢ € support(y), mi(z) = 1.

17van Damme shows that in a game where player one first decides whether to discard
$1 and then plays a battle of the sexes game, repeated elimination of weakly dominated
strategies results to player one getting the highest possible payoff.
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Then since Z is an evolutionary equilibrium there exists a constant u’ and a

function z : (0, 4') — A such that for x4 € (0, u') and for all ¢ € support(y),
(1-wHi(y)+p = 0, (3.3)
(I—pHi(y)—p = 0, (3.4)
and lim,_oz(ps) = . Condition (3.3) implies that

z(p)Az(p) > (Az(p));;

condition (3.4) implies that for all x € (0, &')

(Az(p)) > o(p)Az(p).

Thus (3.3) and (3.4) combined give

(Az(p))1 > D wi(Ax(p));

which contradicts the assumption of weak domination. |

Thus an evolutionary equilibrium is an undominated Nash equilibrium;

i.e., a Nash equilibrium where dominated strategies are given zero weight.

3.4.3 Perfect equilibrium

There are several ways in which perturbations have been introduced in so-
lution concepts. Evolutionary equilibria consider perturbations in the law
of motion; essential equilibria (which are analyzed later in this section) con-
sider perturbation in the payoff function; finally, perfect equilibria consider
equilibria that are ‘resistant’ to some perturbation of the strategy set.

Let R}, = {z € R*|(Vi)z; > 0}, A}, = A"NRY,. Let £ € A™. A
vector of strategies (Z,%) is a symmetric perfect equilibrium if there exist
sequences {¢'} and {z'}, where ¢ € R}, and z* € A}, such that: (i) for all

t, z} > € only if ¢ € argmax;(Az);; (ii) lims—co € = 0; (iii) lim—oo o* = 3.
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Proposition 6 An evolutionary equilibrium is a symmetric perfect equilib-

rium.

Proof: The result follows from previous lemma and the following result ( van
Damme (1987), Theorem 3.2.2): for a two person finite normal game an
equilibrium is perfect if and only if every weakly dominated strategy is played

with probability 0. |

The next example shows that not all symmetric perfect eqﬁilibria are

evolutionary equilibria. Let

2
A=1|1
0

O = ke
— D

The vector (#, %) where & = (0, 1,0) is a symmetric perfect equilibrium (since
strategy 2 is not weakly dominated) but # is not an evolutionary equilib-

rium.®

3.4.4 Strict dominance solvability

The next proposition says that an evolutionary equilibrium is resistant to the
elimination of dominated strategies. Thus restricting the replicator model to

rationalizable strategies will not reduce the set of evolutionary equilibria.

Proposition 7 Suppose that strategy j dominates strategy v and suppose

that Z is an evolutionary equilibrium for the payoff matriz A. Let A_; be the
h

payoff matriz where the it row and column have been deleted. Then %; is an

evolutionary equilibrium for the payoff matriz A_;.

18Proof: suppose I is an evolutionary equilibrium. Let m € M be such that m(z) =
(1,—1,0) for every z in a neighborhood of & and let z(u) be the corresponding sequence of
stationary points for the generalized replicator model. Since for all z in a neighborhood of
Z, z - Az > (Az)s, for small enough 1 we must have z3(u) = 0. For such g, Hi(z(n)) > 0
and thus (1—u)Hy(z(u))+pmy(z(p)) > 0. Thus, & cannot be an evolutionary equilibrium.
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Proof: Let m’ € M™! be a mutation function. Let m € M™ be such that

o= {59 122

Since Z is an evolutionary equilibrium then for small enough g’ > 0 there is

a function z : (0, 4’) — A™ such that z(g) — # and for all p € (0, '),

(1 — w)Ha(z(p)) + pm(z(n)) = 0.

Since 7 is a Nash equilibrium and since strategy : dominates strategy j, then
#AZ > (Az); > (AZ);. Then there is a small enough p” > 0 such that for all
p € (0, "),

z(p)Az(p) > (Az(p)):-

Since m;(z) = 0 then z;(u) = 0. Therefore, for all u € (0, x"),

(1= w)Ha_(z-i(p)) + pm/(z-i(p)) = 0,
and Z_; is an evolutionary equilibrium for A_;. |

An equilibrium is strictly dominance solvable if it can be obtained by

reducing the game to a single cell by iterated deletion of dominated strategies.

Proposition 8 A strictly dominance solvable equilibrium is an evolutionary

equilibrium.1®

Proof: Suppose that Z is an evolutionary equilibrium, strategy 1 dominates
strategy 2 in the normal game Ay; . »)-{4}, and strategy 3 dominates strategy
4 in the game A. By Lemma 10, Z4 = 0. Suppose &; > 0. Choose the function
m such that for every z in a neighborhood of #, m(z) = 1, my(z) = —1.
Then for small enough g, (Az(x))2 > (Az(p)):. But this is impossible since
z4(p) — 0. Thus 2, = 0. |

19Thus an evolutionary equilibrium is ecologically solvable as defined by Nachbar (1990).
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3.4.5 Regular equilibrium

The concept of regular equilibrium was introduced by Harsanyi (1973). The
following description of the equilibrium is taken from van Damme (1987)
although it is simplified by looking at two person symmetric games. Let
z = (z,y) be a vector of strategies for the game (A, AT). Let k € supp(z),
let I € supp(y) and let m = (k,!). Then let F(z|k) be such that:

n

(Vi # k) Fi(z|k) = z:[(Ay): — (Ay)k] and Fi(z|k) = Z:c,- - 1.

=1
Similarly let F(y|{) be such that

n

(Vi # 1) Gi(yll) = wil(Az); — (Az),] and Gi(yll) = 3 _wi — 1.

=1

Finally let
H(z|m) = (F(alk), G(y|D)" and J(3fm) = 2™ |,

Then % is a regular equilibrium if for some m € supp(z)xsupp(y), H(z|m) =0
and det J(z|m) # 0.
Intuitively, a regular equilibrium is one for which the best response map-

ping is continuously differentiable at a neighborhood of the Nash equilibrium.

Proposition 9 A symmetric regular equilibrium is an evolutionary equilib-

rium.

Proof: Theorem 9.4.3 in van Damme (1987) states that a Nash equilibrium
(%,%) is regular if and only if dR®/dz|,=z is nonsingular. Notice that if

dRC /dz|.=; is nonsingular and p is small enough then

Zl%[(l — p)L(R®(z)) + pm(z)}|p=o,0=5

is nonsingular. Therefore if (%, #) is a regular equilibrium then by the implicit

function theorem Z is an evolutionary equilibrium. ]
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Player 1

R

Player 2

0,0 0,0 5,1

Figure 3.1: Game with a proper equilibrium which is eliminated by forward
induction.

The next example shows that not all games with nondegenerate payoff

matrices A have a regular equilibrium.

n_ [ 22 2,2
(A’A)“(2,2 1,1 )

Clearly the matrix is nondegenerate and the only perfect equilibrium

Let

is ‘top,” ‘left.’” The Jacobian of the best response function (as defined by

Harsanyi (1973)) at the equilibrium point is

det

o OO
OO = O
—_o o O
_ o O O

and thus the game has no regular equilibria.

3.4.6 Proper equilibrium

Let & € A™. A vector of strategies (Z, ) is a symmetric proper equilibrium
if there exist sequences {€'} and {z'}, where ¢ € Ry and z* € A%, such

that: (i) for all ¢, z; < €'z} if (Ax®); < (Az?);; (i) limyoo € = 0; and (iii)
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Nature

0.5 0.5

Player 1 Player 2

Ter [,

Figure 3.2: Symmetrization of extensive game in Figure 3.1.

lim;_,. ! = Z. In this subsection we show that not all proper equilibria are
evolutionary equilibria.

The game in Figure 3.1 is used by Tan and Werlang (1988) to show the
insufficiency of the concept of proper equilibrium. There are two proper
equilibria in the game: Rr and Ll. By a forward induction argument Tan
and Werlang argue that since C is dominated by L, C should never be played
and therefore 1 should never be employed.?°

Therefore properness allows unreasonable equilibria, such as Ll. Are Rr
and Ll evolutionary equilibria? We can construct a symmetric game by
assuming that two individuals are randomly assigned to the roles of player
1 and player 2. Figure 3.2 shows the extensive form for such a game. An
evolutionary game is constructed by normalizing the symmetric extensive
game. Figure 3.3 shows the symmetrization of the game in Figure 3.2.

Notice that the matrix is degenerate. The strategy Rr is clearly a strict

20L] corresponds to the equilibrium where player 2 warns player 1 that he will play 1.
Then player 1 has the choice of playing L and receiving 3, playing C and receiving 2, and
playing R and receiving 0. If player 2 gets to move he realizes that player 1 did not believe
in his bluff. Then player 2 is better off not to follow with his threat and play r.
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Rr|[6(1(5]0|8}3
RI|[5|0({9}4|8]|3
Cr{1|3]|0]|2|3]|5
Cl|of2|4|6[3|5
Lr (4133366
L1 |3|7]7|7]6]6

Figure 3.3: Symmetrization of the game in Figure 3.2.

Nash equilibrium and thus a regular equilibrium ( van Damme (1987), Theo-
rem 2.3.3) and thus an evolutionary equilibrium (Proposition 9. Notice that
# =(0,0,0,0,0,1) is a symmetric proper equilibrium.?! Suppose that Z is

an evolutionary equilibrium. Then for all z in a neighborhood of Z let
m(z) =(1,0,0,0,1, —2).

Choose p small enough so that z(u)Az(x) > 5.5 and 6 > 0.9. Then z,(p) =
z3(p) = z4(p) = 0. The assumptions on m also give that z;(x) > 0 and
(Az)s > x Az > (Az)s which is impossible given the payoff function. Thus &

is not an evolutionary equilibrium.

3.4.7 Strictly Perfect Equilibrium

A Nash equilibrium is strictly perfect if it is resistant to all perturbations
of the strategy set. Formally, (Z,%) is a strictly perfect equilibrium if there
exists a vector n € R% such that for all sequences {n‘}, where n} € (0,7;),
there exists a sequence {z'}, where z! € A", such that: (i) for all : and ¢,
zf > ny; (i) «f > nf implies that ¢ € argmax,(Az?);; (iil) limy—eo n° = 05 (iv)
lim¢oo 2t = Z.

The concept of strict perfect equilibrium resembles the concept of evolu-

21 — 2 i — = 1
Just set z; = m if i £ 5,6, xs—m, and z¢ = TFesdea
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tionary equilibrium but as the following examples illustrates not every non-
degenerate game has a symmetric strictly perfect equilibrium.

Let

11 0
A=|1 0 1
1 0 -1

Then the game (A, AT) has no symmetric strictly perfect equilibrium but

has a unique evolutionary equilibrium z = (1,0,0).2

3.4.8 ESS

The most widely used equilibrium concept in evolutionary game theory is
the concept of evolutionary stable strategy (ESS). While evolutionary equi-
libria consider dynamic perturbation, ESS considers stable perturbation. A
strategy & € A™ is an ESS if for any other strategy y € A™ — {Z} there is an

¢’ such that for all € € (0, ¢')
ZA(ey + (1 — €)) > yA(ey + (1 — €)Z).

Thus contrary to the notion of evolutionary equilibrium, ESS considers mu-

tation in a static framework. This condition can be rewritten in the following

22Proof: The vector (Z, #) is the unique symmetric perfect equilibrium, A is nondegen-
~ erate and thus Z is an evolutionary equilibrium. Consider the perturbation

261? (€,€2,¢).
Suppose z(¢) — (1,0,0). Then
z1(€) + z2(€) > z1(€) + z3(e);
i.e., £2(€) > za(¢). This implies that
z1(€) + z3(€) 2 z1(€) + z2(e),
or z2(€) = z3(e). But this is possible only if
z1(€) — z3(€) > z1(€) + z3(e).

Contradiction.
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way. Strategy & is an ESS if for all strategies y different than  one of the

two conditions holds:
(7) Z-AL >y- A%
(it) z-AZ =y AZ and - Ay > yAy.

The next proposition relates ESS to the replicator model in continuous

fime.

Proposition 10 (Zeeman) An ESS is an asymptotically stable stationary

point of the replicator model R¢ %

Unfortunately the requirements of ESS and asymptotically stable station-

ary points seem too strict as the following example shows. Let

€ 1 -1
A= -1 € 1
1 -1 €

where € € (0,1/3). The only Nash equilibrium is & = (1/3,1/3,1/3). The
Hessian of the law of motion is negative definite, therefore: (1) Z is not
asymptotically stable (2) and thus & is not an ESS (3) and the game has
not asymptotically stable stationary points and no ESS; (4) since the deter-
minant of the Hessian is nonzero, & is regular (5) and thus an evolutionary
equilibrium.

Suppose that € < 0. Then # is an ESS and is thus an asymptotically

stable stationary point for the replicator model. The replicator model in

23The proposition does not hold for RP. Let

0 1+4¢ -1
A= -1 0 14c¢
l1+¢ -1 0

where ¢ > —1. Then (1/3,1/3,1/3)is an ESS but not an asymptotically stable equilibrium
for RP.
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discrete time in not stable at & since one of the eigenvalues of the linearized
system is greater than one. Thus ESS are not necessarily asymptotically

stable points of the replicator model in discrete time.

Proposition 11 A hyperbolic stationary point of the replicator model in con-

tinuous time is an evolutionary equilibrium.

Proof: A stationary point is hyperbolic if and only if all the eigenvalues are
negative. Thus the proposition follows from the implicit function theorem.

Proposition 12 An ESS is an evolutionary equilibrium for the law of mo-

tion RC.

Proof: Let & be an ESS. In the proofs of Theorem 9.2.8, 9.4.8 van Damme

(1987) shows that there is an open ball U centered at # such that the function

V:U - R
V(iz) = J]zF

is a Lyapunov function and such that Z is the only fixed point of R in U.
Take ¢ to be large enough so that V='(¢) C U. Let X be the solution of
the differential equation # = R°. For z € U, let F(z) = X(1,z). Then F
is continuous and maps V~!(c) into V~!(c). Then by an argument similar
to the one in proposition 3 one can show that there # is an evolutionary

equilibrium for RC. ||

Finally notice that not all ESS are regular equilibria since the game matrix
discussed in Section 3.4.5 has no regular equilibria but has (1, 0) as the unique

ESS.
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3.4.9 Essential equilibrium

A Nash equilibrium (z,y) is essential’* for a game (A, B) if for an arbitrarily
small perturbation of the payoff matrix (A’, B’) there is a Nash equilibrium
to (A’, B') close to (z,y). This notion predates the concepts of hyperstable
equilibrium introduced by Kohlberg and Mertens (1986).2°

A symmetric Nash equilibrium (%, ) for the game (A, AT) is symmetric
essential if for any symmetric game with payoffs close enough to A there is
a symmetric Nash equilibrium close enough to (&,%). The next propositions

characterize the set of symmetric essential equilibria.

Proposition 13 (Bomze) A regular equilibrium is a symmelric essential

equilibrium.

Proposition 14 (van Damme) An ESS is a symmetric essential equilib-

rium.

Proposition 15 Restrict the set of mutation function of the form
mi(z) = 2;[(Cz); + zCxz).

Then a symmetric essential equilibrium is an evolutionary equilibrium.

Proof: Suppose & is a symmetric essential equilibrium of the game (A4, AT).

Let m;(z) = 2;[(Cz); + zCz] and let A, = (1 — p)A+ pC. Then

2(p) = (1 - pzi(p)(Az(p)); — 2(u)Az(p)]
+uzi(p)[(Cz(n))i + z(1)Ca(p)]

= zi(p(Auz(p))i — z(p)Auz(p)] =0

24The equilibrium concept is defined by Wu and Jia-He (1962).

25A subset, H, of the set of Nash equilibria for the game (A, B) is hyperstable if it is
minimal according to the following condition: given any small perturbation of the payoff
matrix, (A’, B'), there is a Nash equilibrium to (A’, B'), (z', ¥), close to the set H.
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if (z(u),z(x)) is a Nash equilibrium of the game (A, AT). But since Z is a
symmetric essential equilibrium then for any perturbation of the payoff there
is a Nash equilibrium arbitrarily close to . Therefore & is an evolutionary

equilibrium. [ |

3.5 Conclusion

In this chapter we constructed a model where: (i) the proportion of the pop-
ulation that adopts a strategy is dependent on the distribution of strategies
in the population and (ii) mutation affects the dynamics. Models have been
studied that included each of these effects separately but to our knowledge
nobody has studied them together.

An equilibrium in this paper is a mix of strategies which is a stationary
point for the law of motion of the replicator model with arbitrarily small levels
of mutation. We show that such an equilibrium exists for all nondegenerate
payoff matrices.

An individual facing the population at equilibrium is faced with the same
problem as an individual facing a player who selects a particular selection
of the set of perfect equilibria: the set of evolutionary equilibria. Several
examples in the paper illustrate that evolutionary selection has the property

of getting rid of some unintuitive equilibria.



Chapter 4

FICTITIOUS PLAY: A
STATISTICAL STUDY OF
MULTIPLE ECONOMIC
EXPERIMENTS

This chapter is joint work with Mahmoud El-Gamal.

4.1 Introduction

In recent years, there has been a marked growth in the number of experi-
mental studies in Economics, and their influence on the field can no longer
be denied.! The interaction between experimental studies and other parts
of the discipline has also been flourishing, but we believe that it has not
yet reached its potential. We believe that the main reason for the slow de-
velopment of those interactions is our inability to systematically (in some
rigorously statistical manner) integrate a large number of experimental stud-
ies to develop stylized facts that can inspire and benefit from work in other
subfields of economics. It is true that a number of stylized facts have already

been established by experimental studies and have been taken into account by

1A review of experimental findings can be found in Hoffman and Spitzer (1985), Plott
(1982), and Smith (1982).

70
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modeling economists, but the progress of the science can no doubt be greatly
enhanced by a systematic procedure of generating such stylized facts. This
is the issue that we address in this paper. It was clear to us from the start
that no classical procedure can be used to combine the results of different
experiments in generating stylized facts. That is clearly the case since the
different experiments have completely different designs and were performed
to investigate different issues. To complicate things further, one cannot ig-
nore the fact that experimenters are aware of the other experiments that
their colleagues have run, and hence a classical procedure will need to take
into consideration what amounts to pre-testing of the hypotheses in question;
a task that defies even the most capable of statisticians.

We propose to analyze the data in a Bayesian fashion, endowing ourselves
with a belief on the relative validity of a number of possible theories of human
economic behaviér and updating our beliefs using the experimental results
available to us. Two points make our proposed procedure especially valuable.
The first is the fact that the order in which we observe the experimental
results (and hence the order of updating of our beliefs) is irrelevant. This
is not a surprising result, but we include a rigorous statement and proof in
Section 4 for completeness. The second point is specific to the example we use
in this paper. We analyzed a total of nine experiments to update our beliefs
about two alternative hypotheses, and found that some of the experiments
pointed unequivocally in favor of one, and others pointed unequivocally in
favor of the other. The overall analysis of all nine experiments, however, made
us believe that one hypothesis is infinitely more likely than the other. This
suggests that analyzing experiment by experiment and hoping for consensus

of the results from all experiments is not a good procedure. It is clear that
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running a new experiment every time we have a lack of consensus and giving
the latest result the full weight is not a good procedure either. This leaves
us with the need to combine a large number of available studies in making
stylized facts, and leads us back to our Bayesian procedure.

We believe that the best way to illustrate a new procedure is by exam-
ple, and for this paper, we chose to analyze different learning procedures in
repeated games. The motivation for the learning literature is the limitation
of the most common game theoretic assumption that players in a repeated
game will choose to play a Nash equilibrium. The framework is that of a
number of players each of whom chooses to play the action that maximizes
her expected payoff subject to her beliefs about her opponent’s strategies.
The Nash equilibrium is the one where the expectations of all the players are
fulfilled. The number of such equilibria that arise in many games can be quite
large, and that is a clear restriction on the usefulness of the equilibrium.?

A more dynamic justification of theoretical choices of actions for the play-
ers is based on different learning algorithms. One assumes that the players
start with beliefs on their opponents’ possible actions, and update their be-
liefs as they play each stage of the game and observe their opponents’ actual
actions. In this paper, we consider two of the most popular learning hy-
potheses in repeated games. The first hypothesis was proposed by Cournot
and assumes that each agent will assume that her opponents will choose the
same action they chose in the previous period (see Moulin (1985)). The sec-

ond hypothesis that we analyze is the so-called fictitious play hypothesis (see
Brown (1951), Robinson (1951), Shapley (1962), Brock et al. (1988)). The

20One way of reducing the number of equilibria is to restrict the player’s set of beliefs.
This approach is adopted by Banks and Sobel (1987), Cho and Kreps (1987), Grossman
and Perry (1986). However such restrictions are somewhat arbitrary.
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process assumes that an individual has Dirichlet priors over her opponents’
strategies and that at each round the player updates her beliefs according to
Bayes’ rules. It turns out that these assumptions are equivalent to assuming
that each player selects the strategy that maximizes her payoff given beliefs
that correspond to a convex combination of the initial beliefs and the empir-
ical distribution. The experimental literature investigating different learning
algorithm is very sparse, and limited to an experiment-by-experiment study.
We illustrate our proposed procedure by starting with prior probabilities
about the relative plausibility of those two learning hypotheses described
above, use a simulation technique to compute the likelihood functions (the
probability of observing the data in each experiment under each of the two
hypotheses), and then use those likelihood functions to do Bayesian of our
priors for each individual experiment, and then for all nine experiments com-
bined.

Figure 4.1 is a plot of the economist’s posterior as a function of her prior
and the smearing parameter € to be explained later. For now, just look at the
posterior over the smeared fictitious play hypothesis (the height of the graph)
at different values of the prior over that hypothesis at small (say less that .5)
values of e. At e = 0, the hypothesis is strictly fictitious play (and we cannot
compute the posterior), and for positive values, € is the probability that
any particular person in any particular stage of any particular experiment
gets to choose her action purely randomly. It is clear that the posterior for
most reasonable values of epsilon and for all positive priors is very close to
unity, and hence our posterior belief indicates that the smeared fictitious play
hypothesis is infinitely more likely than the smeared Cournot hypothesis.

The rest of this paper builds up and justifies the necessary machinery to
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achieve Figure 4.1. Section 2 discusses one class of games three of which we
studied. Section 3 discusses the other class of games, six of which we studied.
Section 4 describes and justifies the econometric procedure that we follow.

The paper ends with a series of 9 appendices for the nine experiments.
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Figure 4.1: Posterior probability of agents playing according to fictitious play
using all 9 experiments.

0.8 posterior

=
i
(

epsilon

The reader should keep in mind that the procedure we adopt in this paper
is not specific to the particular hypothesis we are testing (namely, whether
individuals select strategies according to fictitious play) or to the type of
data we have (namely, experimental data). Indeed, the procedure we adopt

is a general way of aggregating data and evaluating theories.

4.2 Games with one opponent

This section is based on some experiments that were run by Knott and
Miller (1987). In this series of three experiments (labeled A, B, and C), each
of which has individuals matched in pairs and play the games reproduced

in Figures 4.2, 4.3, and 4.4 respectively ten times. Thus, for instance, if
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in a given repetition of game A, an individual selects strategy S2 while her
opponent selects strategy S1 then the individual receives 200 pennies (the

payoffs are the ones for the row choser).

S1 52 83 S4 55 Sé s7 58 S8 S10 S11 S12 S13 S14 S$15
31 100 100 75 85 85 90 90 90 90 90 90 20 90 90 90
52 200 120 100 100 100 100 100 100 100 100 100 100 100 100 100
53 0 140 125 115 115 110 110 110 110 110 110 110 110 110 110
S4 -100 160 150 130 125 120 120 120 120 120 120 120 120 120 120
35 -200 180 175 145 135 130 130 130 130 130 130 130 130 130 130
S6 -300 200 200 160 145 140 140 140 140 140 140 140 140 140 140
s7 -400 220 220 175 155 155 150 150 150 150 150 150 150 150 150
S8 -450 0 250 190 165 160 160 160 160 160 160 160 160 160 160
359 -475 -100 0 205 175 170 170 170 170 170 170 170 170 170 170
s10 -500 -125 -100 0 185 180 175 175 180 180 180 180 180 180 180
511 -525 -150 -125 -100 0 190 180 180 190 190 190 190 190 190 190
s12 -550 -175 -150 -125 -100 0 195 190 195 195 200 200 200 200 200
513 -575 -200 -175 -150 -125 -100 Y 250 200 200 210 210 210 210 210
S14 -600 -225 -200 -175 -150 -125 -100 0 250 250 250 250 250 220 220
515 -625 -250 -225 -200 -175 -150 -125 -100 80 100 120 140 160 180 200

Figure 4.2: Payoff matrix for Knott and Miller’s experiment A.

Si S2 33 S4 S5 S 87 S8 S9 S10 S11 s12 S13 514 S15
31 100 100 90 90 90 90 80 -100 -125 -150 -175 -200 -225 <250 -625
352 800 120 100 100 100 100 100 0 -100 -125 -150 <175 -200 -225 -600
33 700 400 125 110 110 110 110 110 0 -100 -125 -150 -175 -200 -575
5S4 600 450 350 130 120 120 120 120 120 0 -100 -125 -150 -175 -550
S5 500 500 375 150 135 130 130 130 130 130 0 -100 -125 -150 -525
356 400 600 400 200 200 140 140 140 140 140 50 0 -100 -125 -500
57 350 800 425 210 210 150 150 150 150 150 100 50 4] -100 -475
S8 200 300 450 250 220 160 160 160 160 160 160 120 50 0 -450
359 100 200 240 400 230 170 170 170 170 170 170 140 100 20 -400
S10 90 100 200 200 300 200 180 180 180 180 180 160 150 40 -300
Si1 65 65 85 100 100 280 200 190 190 190 190 180 175 60 -200
S12 60 60 60 60 80 100 250 200 200 200 200 200 200 80 -100
513 55 55 55 55 55 55 210 220 210 210 210 210 210 100 0
S14 50 50 50 50 50 50 50 50 220 220 220 220 220 220 220
518 40 40 40 40 40 40 40 60 80 100 120 140 160 180 200

Figure 4.3: Payoff matrix for Knott and Miller’s experiment B.

For each experiment, all the interesting aspects of the theoretical and
observed behavior are depicted in a separate appendix. For instance, Ap-

pendix A deals with experiment A, Appendix B with experiment B and
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S1 s2 53 S4 S5 S6 S7 s8 S9 §10 S11 S12 513 S14 315
s1 100 75 85 85 90 €0 a0 90 90 °0 90 90 90 90 90
52 350 120 100 100 100 100 100 100 100 100 100 100 100 100 100
53 300 140 125 115 115 110 110 110 110 110 110 110 110 110 110
S4 275 130 150 130 125 120 120 120 120 120 120 120 120 120 120
S5 250 120 125 145 135 130 130 130 130 130 130 130 130 130 130
S6 200 110 110 125 145 140 140 140 140 140 140 140 140 140 140
37 100 100 100 100 100 155 150 300 350 250 150 150 150 150 150
S8 -350 0 50 50 75 100 125 250 400 450 450 160 160 160 160
59 -400 -100 0 25 50 75 100 200 300 425 400 375 350 325 170
510 -500 -125 -100 [¢] 25 50 75 175 225 325 375 350 325 300 300
S11 -525 -150 -12% -100 o 25 50 125 200 225 350 325 300 275 250
512 -550 -175 -150 -125 -100 0 25 100 175 200 200 250 250 250 225
S13 -575 -200 -175 -150 -125 -100 0 75 150 175 175 175 200 200 200
S14 -600 -225 -200 -175 -150 -125 -100 0 125 150 150 150 150 175 175
515 -625 -250 -225 -200 -175 -150 -125 -100 0 100 120 140 140 150 150

Figure 4.4: Payoff matrix for Knott and Miller’s experiment C.

Appendix C with experiment C. In each appendix, the first two figures show
a Monte-Carlo distribution of actions in each of the ten stages of the game.
Specifically, in Appendix A, Figure 4.11 displays the simulated distribution
of those plays under Cournot updating. To obtain this distribution, we sim-
ulate 1000 pairs (2000 individuals) and endow them with randomly drawn
(uniform over the unit simplex) initial priors over their opponents’ possible
actions. Figure 4.11 shows the obtained empirical distribution. We then let
each pair go through the 10 stages of the game where they are made to update
according to the Cournot rule. Similarly, Figure 4.12 shows the distribution
obtained by running a similar simulation except that the agents are made
to update using the fictitious play rule. The third figure in each appendix
shows the actual observed proportions of play of each action in each period.
For example Figure 4.13 shows the proportion of times that each of the 15
actions was played in each of the ten periods. The proportion here is taken
over the 8 pairs (16 individuals) that played the game in experiment A. The

fourth figure in each appendix is the result of our econometric analysis of
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each individual experiment which will be explained in section 4.

By looking at the best response mapping we see that each game has a
unique pure strategy Nash equilibrium: (S14, S14) for experiments A and
experiment B and (S7, S7) for experiment C. By inspection of the first two
pictures in Appendix A,B, and C we notice also that both the Cournot pro-
cess and fictitious play converge to the pure strategy Nash equilibrium and
that the convergence of fictitious play is much slower. The behavior of the
subjects in the three experiments is very similar to fictitious play: subjects
seem to converge to the pure strategy Nash equilibrium at a somewhat slower

rate than fictitious play.

4.3 Games with multiple opponents

This section is based on some experiments that were run by Cooper et al.
(1990). In each experiment, there are 11 players. Each player plays twice
against each of the other players where the matchings in each round are de-
termined at random. Agents do not know the identity of the player they are
matched with and after each play they find out which strategy the oppo-
nent selected. We analyze 6 of the experiments run by the authors. These
experiments are labeled experiment 3 through 8, and the payoff matrices
are depicted in Figures 4.5 through 4.10. The structure of appendices 3
through 8 is identical to that of appendices A through C, with the first three
figures in each appendix depicting the simulated proportion under Cournot,
the simulated proportion under fictitious play, and the observed proportions
respectively. Notice that in each figure of appendices 3 through 8 that there
are only three strategies; the fourth strategy was only mandated by the lim-

itations of our graphics package.
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In simulating the 1000 experiments for each of the hypotheses and each
of the experiments, we actually drew 1000 ensembles of 11 agents and en-
dowed each of them with an initial belief that is drawn uniformly over the
unit simplex. We then replicated the exact matching scheme that occurred
in each experiment keeping track of the beliefs of all 11 individuals in our
simulated ensemble. For each experiment, then, we followed the full evolu-
tion of actions and beliefs for the 11 simulated individuals for a total of 1000
ensembles. The depicted simulated distributions for Cournot and fictitious
play in appendices 3 through 8 are the empirical distribution over 1000 en-
sembles where the individuals were made to update according to the Cournot

rules or the fictitious play rules as the figure states.

S1 S2 S3
S1 | 350,350 | 350,250 | 1000,0
S2 | 250,350 | 550,550 0,0
S3 | 0,1000 0,0 600,600

Figure 4.5: Payoff matrix for Cooper et al.’s experiment 3.

S1 S2 S2
S1 | 350,350 | 350,250 | 700,0
52 1 250,350 | 550,550 0,0
S3 | 0,700 0,0 600,600

Figure 4.6: Payoff matrix for Cooper et al.’s experiment 4.

All the games analyzed have two pure strategy Nash equilibria: (51,51)
and (52,S2). Suppose that n; players select strategy Si at a given period
and suppose that players select strategies according to the Cournot process.

Then all the players that were matched with players that selected strategies



S1
52
53

Figure 4.7: Payoff matrix for Cooper et al.’s experiment 5.

S1
S2
S3

Figure 4.8: Payoff matrix for Cooper et al.’s experiment 6.

S1
S2
S3

Figure 4.9: Payoff matrix for Cooper et al.’s experiment 7.

S1
S2
S3

Figure 4.10: Payoff matrix for Cooper et al.’s experiment 8.
g P
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S1 S2 S3
350,350 | 350,250 | 700,0
250,350 | 550,550 | 1000,0

0,700 | 0,1000 | 600,600

S1 S2 S3
350,350 | 350,250 | 700,0
250,350 | 550,550 | 650,0

0,700 0,650 | 600,600

S1 52 S3
350,350 | 350,250 | 700,0
250,350 | 550,550 0,0

0,700 0,0 500,500

S1 S2 S3
350,350 | 350,250 | 1000,0
250,350 | 550,550 0,0

0,1000 0,0 500,500
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S1 and S3 will assign probability 1 that their next opponent selects strategy
S1 and S3 and thus will select strategy S1. Similarly, all players that are
matched with players selecting strategy S2 will select strategy S2. Thus in
any period t > 2, ny + n3 individuals select strategy S1 and n; individuals
select strategy S2. Thus the only difference in the Cournot processes corre-
sponding to different payoff matrices is the proportion of initial beliefs that
lead the players to selecting strategy S1 and strategy S2.

In games 3, 4, 7, 8 for almost all initial beliefs strategy S1 is a best
response. Suppose an individual acts according to fictitious play. Suppose
that an individual has the rare belief for which strategy S2 is a best response
and is matched with another individual who adopts strategy S1. Then the
second individual increases the probability she assigns to other individuals
selecting strategy S2 but not sufficiently to change his strategy choice. On
the other hand the first individual increases his belief that individuals select
strategy S1 and thus changes her strategy choice to 1. Thus in experiments
3,4,5,7,8, if fictitious play holds, the proportion of individuals that selects
strategy S1 converges to 1.

Game 5 is similar to games 3, 4, 7, 8 except that for almost all beliefs
an individual selects strategy S2 and thus the proportion of individuals that
selects strategy S2 converges to 1.

In game 6 the proportion of initial beliefs for which strategy S1 and S2
are best responses are about equal. However, strategy S1 is dominated by
strategy S2 if strategy S3 is not played. Therefore, when individuals behave
according to fictitious play the proportion of individuals that selects strategy
S2 converges to 1.

The results of experiment 3,4 and 5 are consistent with fictitious play
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and the Cournot process since in the first two experiments the proportion of
the subjects that selects strategy S1 seems to converge to 1 and in the third
experiment the proportion of the individuals selecting strategy S2 seems to
converge to 1.

In game 6 the two models make very different predictions: the Cournot
process predicts that strategy S1 and strategy S2 are equally likely while
fictitious play predicts convergence to strategy S2. The experimental data
strongly favors fictitious play since the proportion of the subjects selecting
strategy S2 seems to converge to 1.

The results of experiment 7,8 are inconsistent with both fictitious play
and the Cournot process since both models predict that almost all subjects
should select strategy S1 while in fact most of the subjects select strategy
S2.

4.4 Econometric Analysis

4.4.1 The simulation procedure

In sections 2 and 3, we described the simulation procedure we used to get
approximations of the likelihood function. There are two major questions

that we expect the reader to ask:

1. In both experiments, why, the reader may ask, do we draw initial beliefs
of all of our robots from the uniform distribution over the unit simplex?
Surely, the reader may add, the distribution of beliefs should depend
on the actual payoff matrix that the players get to observe. We totally
agree with that statement. The problem with incorporating this type of
theoretical analysis of the payoff matrix, however, should be obvious.

For indeed it is the very game-theoretic contemplation of the payoff
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matrices that would convince us that all players should have point mass
beliefs that their opponents will play the Nash strategy, and nothing
other than Nash strategies should ever be observed. That clearly takes
us back full circle and does not add to our knowledge of the justifiability
of the notion of Nash equilibrium on the basis of different learning

algorithms.

. One alternative approach that we chose not to follow is to put our
method on its head and start with an assumption about one particular
learning algorithm being the true one, and then proceeding to get an
estimate of the initial distribution of beliefs. This is the procedure
followed by McKelvey and Palfrey (1990). It is clear that for our
purposes, we are trying to find a reasonable learning algorithm, and
assuming that agents actually follow any particular algorithm will be
no more justified than assuming that they all play Nash in the first
place. Also, once we use our data to estimate fhe initial distribution of
beliefs (under some parametrization of course), we cannot update our

beliefs on the truth of our maintained learning hypothesis.

. A related question to the previous one is why we do not condition our
simulations on the actual observed data. In other words, we could have
the robots respond by updating to the actual moves that the human
subjects used. The answer is quite simple. We want, for the purposes
of our Bayesian updating, to compute the likelihood function under
the maintained hypothesis that initial beliefs are drawn at random,
and under our two alternative models. We then compare our prior

beliefs on the two models with the (theoretically) simulated likelihood
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function and the observed data, and do our updating. Using the data in
computing the likelihood function will interact with our assumption on
the distribution of initial priors (and hence with the likelihood function)
in ways that we cannot account for and would constitute a form of

“data-mining.”
4.4.2 The updating procedure

Now we go back to the issue of Bayesian updating of the economist’s belief
over the two hypotheses and discuss the derivation of the fourth figure of
each appendix and the overall result of our analysis depicted in Figure 4.1.3
Formally, let p! be the experimenter’s subjective probability at time ¢ that
individuals act according to the Cournot process. Let p’ be the experiment
subjective probability at time ¢ that individuals act according to fictitious
play. Let ¢’ be the probability of observing the observed strategy choices at
time t given that the individuals act according to the Cournot process. Let
q; be the probability of observing the observed strategy choices at time ¢
given that the individuals act according to fictitious play. The experimenter
updates her beliefs according to Bayes’ rule. Then the posteriors, pf, p% (¢ >
0), are determined from the priors, p),p} and the observations {¢f,¢%} in
the manner described in the following lemma. An obvious corollary to this
lemma is that the order with which the experiments are analyzed does not
affect the belief of the experimenter.

Lemma 11 For allt € N,

- P29:q: -4

p
© Plalq? - ¢t + patet - ¢}

3The asymptotic aspects of the evolution of the economist’s beliefs following that ap-
proach is discussed in more rigor and in more general contexts in El-Gamal and Sundaram
(1989), El-Gamal and Sundaram (1990).
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o = Pyas9; - 9
T plale?-qt+ pYaiad b

Proof: We will prove the lemma by induction. By Bayes’ rule the equalities
hold for £ = 1. Suppose that the equalities hold for ¢ = &; i.e.,

Phgiqt- gt

Pqla? - - qf + p%aje- - - qf’
riayat---qj

k
Pt = .
/ Poqlq? - - g* + pOqigt - - - gk

k
D

By Bayes’ rule,

k _k+1
pk+1 _ pcqc+
= R
¢ f f“ +P’}‘If+

Substituting the values for p* and pff in the previous expression we get:

plgiq?---qf gt
P = P2elq2-ak+pGajat-af 1¢
¢ - 01,2,  _k
platqZ-gk rghtl 4 ”qu‘ifoqf a2
p2ale2 gk +p%qjat g} ¢ PoalaZ-qk+pSaia}af 1S
01,2 k+1
P:q9:49: " 4.

o
pRaiq? - gt + pajlaf - g7

Thus the equalities hold for t = k¥ + 1 and thus by induction for all integers
t. [ |

4.4.3 Smearing the hypotheses

If we were to put all of the probabilistic mass in our prior on rational agent
theories, then a single observation which is inconsistent with all the the-
ories in the support of the prior will make Bayesian updating impossible
(it will produce a zero numerator and denominator in the Bayesian updat-
ing formula). In the Cooper et al.’s experiments there are observations of
agents playing strictly dominated actions which cannot be justified under

any beliefs. There are also observations of actions that, although not strictly
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dominated, cannot be justified under either of our learning algorithms. To
make Bayesian updating applicable, we include in our models a small prob-
ability of a completely random action taking place. Specifically, we shall
let each model predict actions based on the updating rule in question with
probability (1 — €) and using a uniform (completely arbitrary) decision rule
with probability e. We shall then examine the predictive power of the two
models for different values of e.

The argument for such a procedure (other than the fact that it allows
us to do Bayesian updating) is that people early on in the experiment do
not understand the experiment fully, in particular if they do not wish to
spend the effort (the payoffs are not particularly high: a payoff of 600, for
instance, gives the subject a lottery with a probability .6 of winning one
dollar). Cooper et al. (1990) show that with time there is a statistically
significant decrease in the number of times a dominated strategy is selected.
Furthermore, individuals have different mental costs in figuring out the ex-
periment. Thus there is a strong argument for a different error rate for each
data point. The problem with this approach is that the error component then
explains all the experimental data, and thus does not allow the experimenter
to differentiate between the different theories. Thus we opted to select a sin-
gle € for all out agents at all time periods. As the sample size gets large, the
average ‘correct’ € will get small. Thus we will be interested in the validity
of the model as € goes to zero. Alternatively, the value for € can be taken to
be the average number of mistakes over the experiment.

The two models we compare are then the following:

a. with probability 1 — ¢

. -
Model 1: a' = { a with proba.blllty f{a
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ay with probability 1 —e
a with probability £,

Model 2: o' = {
where o’ is the action chosen by the experimental subjects, a. is the action
that maximizes their expected payoff given their beliefs that are updated
according to the Cournot procedure, ay is the same as a. with fictitious play
updating, and a € {1,2,..., A} is any strategy.

The simulation results depicted in the previous sections give us Monte-
Carlo approximations to the probability in each period of the experiment
that a particular action will be played. Given those probabilities and the
actual observed actions of the individuals in each period, we can compute
q!, the probability that model 7 generates the data observed at time ¢, and
then proceed with Bayesian updating as described above. The computations
we use for ¢! will be reduced form in the following sense. We shall treat
the actual action of an agent in a period as a data point which is assumed
to be a random draw according the probability distribution obtained from
the simulated experiments with probability (1 —€) and as a uniform random
draw with probability . Let the observed data points be indexed by (n,t) €
{L,2,..., N} x {1,2,...,T}, let the actions available to each individual n in
period ¢ be a € {1,2,...,A}* and let the simulated probability under the

pure version of Model: of action @ in period ¢ be qc’;’t. Then

ot = TTT1(01 - gt + %)

where a,; is the actual action chosen by agent n in period t.

Bad = {(n,t) € {1,...,N} x {1, ---aT}I‘Zi,an,. =0 and ‘I;,an,, =0}

4In general, A may depend on n and ¢, but since it does not in our experiments, we do
not need to include this complication.
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and let Good be the set of points that can be explained by at least one of

the theories; i.e.,
Good = ({1,..,N} x {1,...,T}) \ Bad.

Lemma 12 For all € > 0 Bayesian updating ignores all points that are in-

compatible with both models.
Proof: Notice that

€ e €
g = (Z)#(B Y% I ((1 — €)¢;,,, + 74')>
{n,t)€Good
where #(A) is the number of elements in the set A. Then substituting in the

Bayesian updating rule above, we can cancel the common factor (£)#(Fa?)

from the numerator and denominator. Thus Bayesian updating ignores these

points; i.e.,
(I (L—e)g,,, +5)-r
pwi+1 — Good
M -eg,, +5)p+ 1Q-€d,,, +5)p
Good Good

The fourth figure in each of the nine appendices shows the posterior beliefs
using the likelihood function for that experiment alone as a function of the
economist’s prior and the level of smearing €. As we discussed in the previous
section the behavior of the subjects in the experiments ran by Knott and
Miller is very similar to the one predicted by fictitious play. Notice that for
reasonable values of € (i.e., less than sixty percent of the actions are caused by
random error) and as long as the experimenter’s priors put positive weight on
fictitious play, then after seeing the outcome of any of the Knott and Miller’s
experiments, the experimenter believes with probability very close to 1 that

subjects act according to fictitious play.
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In Cooper et al.’s experiment 3, the proportion of subjects that selects
strategy S1 converges to 1 but at a much slower rate than fictitious play.
Thus, for reasonable values of ¢, the experimenter’s posteriors give probabil-
ity very close to 1 to the event that subjects act according to the Cournot
process. In experiment 4 subjects converge to strategy S1 at a faster rate;
thus for small values of € (such as € = 0.1) the experimenter’s posteriors put
probability very close to 1 on the Cournot process. For high values of € (such
as € = 0.4) the experimenter’s posteriors will assign almost all the weight to
fictitious play. Finally, intermediate values of € will give posteriors that put
positive weight on both theories.

In Cooper et al.’s experiment 5 the proportion of the population that
adopts strategy S2 converges very quickly to 1. The convergence is not quite
as fast as the convergence of the Cournot process and thus, for any reasonable
prior and reasonable value of ¢, the posteriors put probability very close to
1 on fictitious play.

Cooper et al.’s experiment 6 is by far the most interesting example since
for this game the dynamics of fictitious play and the Cournot process are
totally different. The behavior of the subjects is very similar to fictitious play
and thus not surprisingly the posteriors of the experimenter put probability
very close to 1 on fictitious play.

In Cooper et al.’s experiments 7 and 8 the Cournot process and fictitious
play indicate that almost all subjects should adopt strategy S1. In fact
almost all subjects adopt strategy S2. The posteriors after observing these
experiments put probability very close to 1 on- the Cournot process; however,
both models are clearly inadequate for this experiment. Overall, these results

lead an experimenter to believe that fictitious play describes the data better
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than the Cournot process and this observation is represented in Figure 1.

4.5 Concluding Remarks

In this paper, we have proposed and illustrated a fully Bayesian procedure
for updating of our beliefs on a number of economic hypotheses. We showed
that in the nine experiments that we analyzed, some pointed unequivocally
in favor of the Cournot learning hypothesis and some pointed unequivocally
in favor of the fictitious play learning hypothesis. No classical statistical
procedure will allow us to combine all nine experiments to decide on what
we have learned from all of them combined. Qur overall Bayesian analysis
of the nine experiments, however, shows that starting from any prior on the
relative validity of the two learning hypotheses, we end up believing that the
fictitious play learning hypothesis is infinitely more likely. It is possible that
a different collection of experiments may give the opposite result, but then we
can use the data from those other experiments together with the nine we have
already analyzed and obtain an overall measure of the relative validity of the
pair of hypotheses in question. There is a danger that published studies may
be biased in one direction or another, but that is an even stronger motivation
to try to run more experiments with different designs and combine all the
observations. The stylized facts derived with this approach will hopefully
generate more theories. We hope, for instance, that we will have new learning

theories to test against fictitious play.
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Appendix A

Figure 4.11: Simulation of Knott and Miller’s experiment A with the Cournot
process.

Figure 4.12: Simulation of Knott and Miller’s experiment A with fictitious
play.
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Appendix A

actions

{ ’ epsilen

Figure 4.14: Posterior probability of agents playing according to fictitious
play in Knott and Miller’s experiment A.
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Appendix B

Figure 4.15: Simulation of Knott and Miller’s experiment B with the Cournot
process.

Figure 4.16: Simulation of Kno

tt and Miller’s experiment B with fictitious
play.
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Appendix B

actions

Figure 4.18: Posterior probability of agents playing according to fictitious
play in Knott and Miller’s experiment B.
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Appendix C

Figure 4.19: Simulation of Knott and Miller’s experiment C with the Cournot
process.

Figure 4.20: Simulation of Knott an

d Miller’s experiment C with fictitious
play.
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Appendix C

Lub%
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Figure 4.22: Posterior probability of agents playing according to fictitious
play in Knott and Miller’s experiment C.
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Appendix 3

Figure 4.23: Simulation of Cooper et al.’s experiment 3 with the Cournot
process.

Figure 4.24: Simulation of Cooper et al.’s experiment 3 with fictitious play.
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Appendix 3

Figure 4.26: Posterior probability of agents playing according to fictitious
play in Cooper et al.’s experiment 3.
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Figure 4.27: Simulation
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Appendix 4

Figure 4.30: Posterior probability of agents playing according to fictitious
play in Cooper et al.’s experiment 4.
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Appendix 5

Figure 4.31: Simulation of Cooper et al.’s experiment 5 with the Cournot
process.

actions

Figure 4.32: Simulation of Cooper et al.’s experiment 5 with fictitious play.
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Appendix 5

periods
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|
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Figure 4.34: Posterior probability of agents playing according to fictitious
play in Cooper et al.’s experiment 3.
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Appendix 6

Figure 4.35:

process.

Figure 4.36: Simulation of Cooper et al.’s experiment 6 with fictitious play.
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Appendix 6
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Figure 4.38: Posterior probability of agents playing according to fictitious
play in Cooper et al.’s experiment 6.
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Appendix 7

periods

*% posterior

T epsilon

Figure 4.42: Posterior probability of agents playing according to fictitious
play in Cooper et al.’s experiment 7.
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Appendix 8

Figure 4.43: Simulation of Cooper et al.’s experiment 8 with the Cournot
process.

Figure 4.44: Simulation of Cooper et al.’s experiment 8 with fictitious play.
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Appendix 8

periocds

* posterior

epsilan

Figure 4.46: Posterior probability of agents playing according to fictitious
play in Cooper et al.’s experiment 8.
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