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"I am afraid that I rather give myself away when I explain.

Results without causes are much more impressive.”
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Abstract

Part 1

An improved description of the current transient produced by an
abrupt change in the rate of rotation of a rotating disk electrode has
been obtained by the method of orthogonal collocation. The
procedure provides a formula that accurately describes the expected
current transient for at least 90% of its duration. If the final rotation
rate is chosen to be ca. 58% of the initial rotation rate, the resulting
current transient exhibits simple exponential decay, thereby
facilitating data analysis. A simple offset in the time scale of the
experiment proves effective in compensating for the effects of both
hydrodynamic relaxation and imperfections in the response of the

electrode rotator.

Part 11

The high ionic content and low dielectric constant that prevail in
the interior of many redox polymers are expected to promote ionic
association between the polyelectrolyte and counterions. The
present study is an attempt to evaluate the influence of ion-pairing
interactions on charge propagation within polyelectrolyte films. The
system under investigation consists of the Os(bpy)33+/2+ redox couple
incorporated into Nafion, where ion-pairing between the osmium
complex and pendant sulfonate groups is argued to be responsible
for the irreversible retention of the complex within the film. The
apparent diffusion coefficient characterizing the dynamics of electron

propagation through the redox polymer exhibits a remarkably



\4
sudden increase as the film approaches electrostatic saturation with
the Os(bpy)33+ complex. Existing models, even those taking into
account the presence of electric fields within the film, do not account
satisfactorily for the observed behavior of the apparent diffusion
coefficients. = The introduction of ion-pairing into the model for
charge transport leads to predictions that are consistent with the
observed behavior. Key ingredients in the successful model are the
assumptions that the predominant forms of the Os(bpy)33+/2+
complex incorporated in Nafion are neutral aggregates resulting from
the formation of triple or double ion-pairs and that the triply ion-
paired Os(bpy)33+ species dissociates into a singly charged species
containing the same number of sulfonate groups as the predominant
form of the Os(bpy)32+ complex, thereby providing a low-energy
pathway for electron self-exchange. The dissociation of the triply
ion-paired Os(bpy)33+_ complex provides a natural explanation for the
steep increase in the apparent diffusion coefficient, i.e., the rate of
electron propagation, as the concentration of the osmium complex
comes close to saturation, because as saturation is approached the
ion-pairing equilibrium shifts to favor the formation of the doubly
ion-paired form of Os(bpy)33+ that is the best partner for accepting
an electron from the doubly ion-paired Os(bpy)32+ complex. The
inevitable presence of electric fields within the polyelectrolyte films
also affects the observed behavior, especially as the concentration of

the incorporated cation is increased.
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Glossary of Symbols for Part I

Physical Quantities

C* bulk concentration of electroactive species (M)

C(x,t) time-dependent concentration profile of electroactive
species (M)

Co(x) initial steady-state concentration profile of electroactive
species (M)

D diffusion coefficient of electroactive species (cm?2 s-1)

F Faraday constant (C mol-1)

i(t) time-dependent current (A)

n number of electrons transferred in electrode reaction

S electrode surface area (cm?)

t time (s)

tp delay time employed in finite difference simulation of
imperfect motor response (s)

to offset time required to compensate for nonideal effects
(ms)

tHR delay time arising from hydrodynamic relaxation (ms)

tMR delay time arising from imperfect motor response (ms)

v(x) time-independent hydrodynamic velocity function (cm s-1)

v(x,t) time-dependent hydrodynamic velocity function (cm s-1)

X distance from electrode surface (cm)

Al difference between initial and final steady-state currents
A

v solution kinematic viscosity (cm2 s-1)

®, initial rotation rate of electrode (s-1)

®_ final rotation rate of electrode (s-1)

o(t) time-dependent rotation rate of electrode (s-1)

Dimensionless Quantities

c(z,1) time-dependent concentration profile of electroactive
species

co(z) initial steady-state concentration profile of electroactive
species

f() fractional change in current



H(z)
H(z,t)
Ho(z)

u(t)
Va
Vb
V¢

10
1))

THR
TMR

XVill
time-independent hydrodynamic velocity function
time-dependent hydrodynamic velocity function
time-independent hydrodynamic velocity function
describing the initial steady-state condition
Schmidt number of electroactive species
function characterizing time-dependence of w(t)
coefficient in hydrodynamic velocity function
coefficient in hydrodynamic velocity function
coefficient in hydrodynamic velocity function
distance from electrode surface
step size parameter
time
offset time required to compensate for non-ideal effects
delay time employed in finite difference simulation of
imperfect motor response
delay time arising from hydrodynamic relaxation
delay time arising from imperfect motor response

Orthogonal Collocation Quantities

aj(1)
a(t)
A
Ao

Z2Z38 x> = o

orthogonal collocation eigenfunction
vector containing eigenfunctions a;(t)
orthogonal collocation convection-diffusion operator
orthogonal collocation convection-diffusion operator

associated with the initial steady state
vector describing initial steady-state boundary conditions

vector describing final steady-state boundary conditions

source matrix for the eigenvalue problem
orthogonal collocation coefficient

summation, matrix, or vector index
summation, matrix, or vector index

constants determined by boundary conditions
vector containing constants Kk;

matrix index

order of orthogonal collocation approximation
summation limit
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P EIGRF performance index

P; empirical constant relating Aj to S

Qi empirical constant relating Aj to S

U time-derivative matrix operator

\Y matrix whose columns are eigenvectors of the matrix B
x(1) exponential vector in the solution for &(t)

o parameter in exponential weight function

B parameter in exponential weight function

Aj eigenvalue of the orthogonal collocation matrix B

Finite Difference Quantities

Ci,j finite difference approximation of c(z,t;)

[ vector whose ith row contains ¢ j

d vector describing boundary conditions at time t;j

h spatial interval in finite difference mesh

k temporal interval in finite difference mesh

I identity matrix

N number of spatial intervals in finite difference mesh

P; finite difference convection-diffusion operator at time T;
- Q matrix employed in Crank-Nicolson procedure

R; matrix employed in Crank-Nicolson procedure
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Glossary of Symbols for Part II

Physical Quantities

A+
B

C
G
Ce
Cg0

[Os(bpy)33+e(F-)2]* ion-pair

[Os(bpy)32++(F-)2] ion-pair

[Os(bpy)33++(F-)3] ion-pair

concentration of species i (M)

total concentration of Os(bpy)33+/2+ (M)

total concentration of Nafion sulfonate groups (M)
concentration of species G* at the electrode surface (M)
concentration of species G* in bulk solution (M)

diffusion coefficient as measured experimentally (cm?2 s-1)
electron hopping diffusion coefficient (cm2 s-1) ,
diffusion coefficient for physical displacement of species G+
(cm? s-1)

diffusion coefficient for physical displacement (cm? s-1)
electrode potential measured relative to bulk solution (V)
initial electrode potential in linear sweep voltammetry (V)
standard reduction potential (V)

Nafion sulfonate group not ion-paired with Os(bpy)33+/2+
Faraday constant (C mol-1)

mobile electroinactive counterion, H* or Na*

current (A)

peak current (A)

second-order activation-limited rate constant (M-1 s 1)
second-order diffusion-limited rate constant (M-l s-1)
second-order activation-limited rate constant for electron
self-exchange (M-l s-1)

second-order activation limited rate constant for electron
self-exchange between adjacent sites on a fictitious lattice
M-1s°1)

ion-pairing association constant for species A* and F- (M-1)
ion-pairing association constant for species Q2+ and F- (M-1)
[Os(bpy)32++F-]* ion-pair

[Os(bpy)33++F-12+ ijon-pair
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Q charge consumed in exhaustive electrolysis of Nafion-
incorporated Os(bpy)33+/2+ (C)
Q¢ charge consumed in exhaustive electrolysis of Nafion-
incorporated Os(bpy)33+/2+ at full loadmg ©

R gas constant (J mol-1 K°-1)

s slope from Q vs. t1/2 of chronocoulometric data (C s-1/2)

S electrode surface area (cm?2)

t time (s)

T temperature (°K)

v sweep rate in slow-scan linear sweep voltammetry (V s-1)

X distance from electrode surface (cm)

Xc coating thickness (cm)

d center-to-center distance between redox species during
electron transfer (nm)

AE. voltammetric lower half-width at half-maxima (V)

AE+ voltammetric upper half-width at half-maxima (V)

) electric potential (V)

oy electric potential at the electrode surface (V)

O potential of electrode (V)

ON potential of Nafion coating (V)

Og potential of bulk solution (V)

Dimensionless Quantities

a concentration of A+ multiplied by x

ag value of a under conditions where p=0

b concentration of B

c concentration of C

f concentration of F-

f0 total concentration of Nafion sulfonate groups

f(g) characteristic function in general form of the boundary
value problem

g concentration of G*

gi finite difference approximation of g at point z=hi

h distance between points in finite difference simulation

1 index



xxii
constant of integration
number of points in finite difference simulation
Boltzmann transformation variable
fractional loading
exponential transformation variable
point employed in finite difference simulation
scaling factor in exponential transformation
ratio of kp to kj, multiplied by x
voltammetric lower half-width at half-maxima
voltammetric upper half-width at half-maxima
voltammetric full-width at half-maxima
electrode potential
voltammetric peak potential
electrode potential at lower half-maxima
electrode potential at upper half-maxima
current in slow-scan linear sweep voltammetry
peak current in slow-scan linear sweep voltammetry
electric potential
electric potential at the electrode surface
ion-pairing association constant
standard chemical potential of species 1
pi, 3.1415926536...
ratio of concentrations of Os(bpy)3z2+ to Os(bpy)33+
value of p at the peak potential
value of p at the lower half-maxima
value of p at the upper half-maxima
ratio of Dy to Dy
chronoamperometric or chronocoulometric current



PART 1

IMPROVEMENTS IN THE
ROTATION-RATE STEP EXPERIMENT FOR
THE EVALUATION OF DIFFUSION COEFFICIENTS
AT ROTATING DISK ELECTRODES



Chapter 1

The Rotation-Rate Step Experiment



Introduction

A commonly encountered electrochemical problem is the need to
determine diffusion coefficients without knowledge of concentration,
number of electrons transferred, and electrode area. Albery et al.l
have described a rotation-rate step experiment that permits such a
determination. The experiment consists of changing the rotation rate
of a rotating disk electrode instantaneously, under conditions where
the current is mass-transport-limited, and recording the resulting
current transient. Analysis of the time-dependence of the transient
allows the diffusion coefficient of the reactant to be determined.

In our attempts to implement this technique, we encountered a
number of discrepancies between the observed current transients
and those predicted on the basis of the treatment of Albery et al..l
For example, in experiments where ferrocyanide was oxidized at a
rotating platinum disk electrode, the diffusion coefficient derived
from the current transient deviated significantly from the accepted
value, and the magnitude of the deviation varied with the size and
direction of the change in rotation rate. We have, therefore,
performed a more complete analysis of the expected current
transients using orthogonal collocation and finite difference methods.
These approaches require no assumptions regarding the magnitude
or direction of the change in rotation rate and are, therefore,
applicable to experiments involving large changes in rotation rate for
which the approximate treatment in Reference 1 is unsuitable.

Two sources of deviant behavior in the rotation-rate step
experiment are of concern. First, the velocity of the solution near the

electrode surface requires time to adjust to the change in rotation
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rate. This effect, known as hydrodynamic relaxation, has been
modeled by Benton2 for an impulsively rotated disk and by Chawla3
for an impulsive change in the angular velocity of a rotating disk.
The influence of hydrodynamic relaxation on the relaxation of the
concentration profile resulting from the impulsive change in rotation
rate of a rotating disk electrode has been modeled by Albery and co-
workers.]  Second, even the best available motor cannot change the
rotation rate of an electrode instantaneously; imperfections in the
desired step change in rotation rate are inevitable. Unlike the effects
of hydrodynamic relaxation, however, the effects of imperfect motor
response on the current transients obtained from an abrupt change
in rotation rate have not been examined in detail. In fact, the effects
arising from imperfect rotation rate steps are inextricably coupled
with those arising from hydrodynamic relaxation. The former are
likely to be most important at relatively high rotation rates, where
the time required for the change in rotation rate is significant
compared to the duration of the current transient. The latter, being
independent of the rotation rate,2-3 assume greater importance at
low rotation rates, where imperfections in the motor response are
less serious.

As we are interested in relatively high rotation rates and utilize
rotators with relatively slow response times, our analysis assumes
that hydrodynamic relaxation proceeds rapidly enough to be
regarded as instantaneous on the time scale of the motor response
time and the convective-diffusive relaxation within the Levich layer,
which is the source of the transient current. After deriving the

behavior to be expected in the absence of both hydrodynamic



relaxation and imperfections in the motor response, we demonstrate
that a simple shift in the time scale in a manner similar to that
proposed by Bruckenstein et al.4 effectively compensates for these
two sources of deviant behavior. The details of our analysis and
comparison of its predictions with experimental current transients

are the subject of Part I.

Theory
The time-dependent, convective-diffusion equation and associated
boundary conditions describing the reduction or oxidation of a

molecule at a rotating disk electrode are>

oC(x,t) __ 9*C(x,t) _ aC(x,t)

ot =D ox* v(x) ox (1.1
and
C0,t)=0, }1_{{1. Cx,t)=C", C(x,0)=Cyx), (1.2)

where C(x,t) is the concentration profile of the electroactive species,
C* is the bulk concentration, Cg(x) is the initial steady-state
concentration profile, x is the distance from the electrode surface, t is
the time, and v(x) is the hydrodynamic velocity function,> and D is
the diffusion coefficient of the reacting molecule.

The experiment we wish to analyze involves an abrupt change in

the electrode rotation rate from its initial value, wg, to a final value,
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®o (s°1). It is wuseful to define a step-size parameter, &, to

characterize the change in rotation rate.

(1),,.,=o)0(1+.€)2 . (1.3)

In this formulation of the problem, the hydrodynamic velocity
function, v(x), is time-independent and describes the steady-state
condition associated with the final angular velocity ®_. The
concentration profile at time t=0 is assumed to be the steady-state
concentration profile associated with the angular velocity o,
consistent with the boundary conditions of Equation 1.2.  This
treatment is identical with the assumption that imperfections in the
motor response and hydrodynamic relaxation are inconsequential.

For convenience, the following dimensionless quantities are

introduced:
1/2
2=(°%) x, t=a.t, (1.4)
C(x,t)
,T)=1 .
o(zr)=1-=2 (1.5)
and

v(x)=(w_v) " H(z) , (1.6)
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where v is the kinematic viscosity of the solution and H(z) is the
dimensionless, steady-state hydrodynamic velocity function as
described by Cochran® and by Benton.2

To characterize the magnitude of the current transient that results
from the change in rotation rate in dimensionless form, the fractional

change in current, f(t), is defined:

_ i(r)-i(0) _ i(zr)—i(0)
f(0)= () —i(0) AP (1.7)

i(t) is the transient current that flows in response to the change in
rotation rate; i(0) and i(ee) are the initial and final steady-state

currents, and Ai is the total change in current.
A three-term expression for H(z) accurate to better than 1% in the

relevant region near the electrode surface is given by2
H(z)=v,z’+v, 2’ + v, 2", (1.8)

where v3=-0.51023, vp=1/3, and v¢=-0.10265.
The boundary value problem represented by Equations 1.1 and

1.2 can be recast as

S dc(z,t) _ 9%c(z,T)
ot 9z

—SH(Z)E’C—(;Z’-T—) (1.9)

and

c(0,71)=1, lgg c(z,1)=0, ¢c(z,0)=c(z), (1.10)
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where the Schmidt number S is defined by

S=Y, - (1.11)

Inspection of Equation 1.9 clearly reveals that the convective-
diffusive behavior of the electroactive molecule is conveniently
characterized by the Schmidt number. We therefore develop the
theory for the rotation-rate step experiment in terms of the
parameter S instead of D. Analysis of experimental current
transients thus yields a value for the Schmidt number; knowledge of
the solution kinematic viscosity, which may be readily measured,

permits determination of the diffusion coefficient.



Chapter 2

Orthogonal Collocation Analysis
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The Orthogonal Collocation Method -
The solution of the boundary value problem represented by
Equations 1.9 and 1.10 can be approximated by the method of
orthogonal collocation.”-10  In our implementation of the orthogonal

collocation method, the time-dependent concentration c¢(z,t) is

assumed to be of the form

o(zt) = exp(- o 2°) iai(’c) z. (2.1)

i=0

The parameters o and B are arbitrary; however, certain values for

these parameters are advantageous, as explained in Appendix I. The

boundary condition c¢(0,t)=1 (Equation 1.10) is satisfied by

an(t)=1, (2.2)

providing B>0. The boundary condition limc(z,t)=0 is inherent in the

expression for c(z,t), because the exponential function dominates the
expression at large z and forces convergence to zero as z— oo,
providing a>0.

The remaining functions, aj(t) for i= 1, 2, ..., N, are chosen so that
the function c(z,t) in Equation 2.1 fulfills the requirements of the
boundary value problem (Equations 1.9 and 1.10) at N collocation
points, z; for i= 1, 2, ..., N, at all times, t. In principle, any set of N
points can be employed in the orthogonal collocation procedure. The
error associated with a particular approximation will, however,

depend strongly upon the choice of collocation points, making it
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advantageous to choose a set of collocation points that minimizes
some measure of the error. In this project, the collocation points are
chosen by means of Gaussian quadrature on the interval [0,e) with
respect to the weight function exp(-azB). The details of this
procedure are provided by Caban and Chapman.?

Explicit differentiation of Equation 2.1 yields the following

expressions for the derivatives of c¢(z,t):

oc(z, & da, i

__C%Wp(_azﬁ); 29, (2.3)
____aCéZZ,T) =exp(—azﬁ) iai(’c) (i—ochB) AR (2.4)
and

9%c(z,7)

v = exp(—a zﬁ)iai(’c) (ii-1)-api+p-1)Z+a’p?2?)22  (2.5)

Substitution of Equations 2.3, 2.4; and 2.5 into the master differential

equation (Equation 1.9) produces

i da(t) Szi=

i dt

iai(‘c)[i(i-—l—SH(z) z)-aB(2i+B-1-SH(z)z)Z +a’* B> 2|27 . (2.6)
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The equality in Equation 2.6 must be satisfied at each collocation

point, vide supra, thereby leading to the linear system represented

by

U di?)=A§('t)—b,,, 2.7)

where the vectors are defined by

[a(v)],=a(v) (2.8)

and

[b.] =-aB(B-1-SH(z)z)z + o’ p? 2% (2.9)
~and the matrices are defined by

[UL,;=5% (2.10)

and

[A]i,jz[j (j_l_SH(Zi) Zi)—aﬁ(zj-i'B-l_SH(zi) Zi) z’+ o’ B’ Zizp] AR (2.11)

Each row in Equation 2.7 corresponds to an evaluation of Equation

2.6 at a different collocation point.

The final steady-state solution, a(e), of the initial value problem

represented by Equation 2.7 is the Levich solution corresponding to
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the rotation rate ®_ and is obtained by solving Equation 2.7 under
the condition da(’c%T = 0:

Ad(w)=b_ . (2.12)

The initial condition, characterized by a(0), is the Levich solution
corresponding to the rotation rate ®,. In order to evaluate #a(0), it is
necessary to alter the dimensionless hydrodynamic velocity function

H(z), Equation 1.8, to describe the initial velocity profile, i.e., the

velocity profile associated with the initial rotation rate, w,.- (Recall
that the variables have been normalized by the final rotation rate,
®., which is related to the initial rotation rate by Equation 1.3.) The
appropriate expression for the initial, dimensionless hydrodynamic

velocity function is

v,(1+ef 22 +v, (1+e) 2 +v 2z
(1+e)

H,(z)= (2.13)

The subscript 0 is introduced to indicate that a matrix or vector is
constructed by means of Hg(z) instead of H(z) and hence is associated
with the initial steady state. The initial steady-state solution is

obtained by solution of the linear system

A,d(0)=b, . (2.14)
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Solution of the Eigenvalue Problem

The manipulations described in the preceding sections transform
the original boundary value problem represented by Equations 1.9
and 1.10 into the eigenvalue problem represented by Equation 2.7.
The reader is referred to standard mathematics texts for details
regarding the solution of eigenvalue problems (see, for example,
Strang!! and Finizio and Ladas.12); we simply present the solution of

Equation 2.7 in the form of Equations 2.15 and 2.16.
a(t)=a(eo)+ VX (2.15)
[x], =k, exp(A, 1) (2.16)

The columns of the matrix V are eigenvectors associated with the

eigenvalues, Aj, of the matrix B, defined by
B=U"A. (2.17)

The constants k; are chosen to satisfy the initial conditions by

requiring
V k = d(0) — d(eo) , (2.18)
where

[k] =k, . (2.19)
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Calculation of Current Transients

The current that flows at the rotating disk electrode, i(t), is related

to the concentration gradient at the electrode surface by

=nFSDC (“’%)m (Eézzil)uo : (2.20)

i(t)anSD(aC—(X’-t—))
ax x=0
The electrode surface area is denoted by S and the Faraday constant
by F; n is the number of electrons transferred in the electrode
reaction. Combining Equations 2.4 and 2.15 with z=0 and B>1 yields

the following expression for the gradient of c(z,t) at the electrode

surface:

(a_c(é_zZ’_T)_) ._al('c 1(°°)+Z 11 lexp 7\. T) . (221)

Utilization of Equations 2.20 and 2.21 permits the fractional change

in current, f(t), defined in Equation 1.7, to be recast in the form

f(t)=1+ Y f, exp(A; T) (2.22)

i=1

where the collocation coefficients, fj, are defined by

f [V]lxkx 223
o)~ a(0) (2.23)
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Collocation Eigenvalues

The first step in the simulation of the current transient resulting
from a step change in the rotation rate of a rotating disk electrode is
to construct the matrices A and U from Equations 2.10 and 2.11. The
matrix B is then computed by means of Equation 2.17 and its
eigenvalues, Aj, and a set of eigenvectors are determined. In this
project, the IMSL subroutine EIGRF is utilized for the determination
of the eigenvalues and eigenvectors. Technical details regarding the
EIGRF subroutine may be found in the IMSL Reference Manual.l3
The elements of the matrices A and U, and hence B, depend upon the
parameters o, 3, and S but not upon the step-size parameter €. For
this reason, the eigenvalues, Aj, are independent of the magnitude
and direction of the change in rotation rate.

Typical sets of values for A, evaluated for N= 2, 4, 6, 8, 10, 12 are
shown in Table 2.1. The subscripts are assigned so that A;j>A; when
i<j. As the order of the collocation, N, increases, the eigenvalues
approach limiting values that are independent of o and B. For N=12,
the limiting values of Aj for i= 1, 2, 3, 4, 5, 6 have been esséntially
reached, as evidenced by the entries in Table 2.1. Higher collocation
orders would be required to reach limiting values of A; for larger
values of i. The limiting values of the collocation eigenvalues depend
solely upon S and therefore provide a means of correlating the shape
of a measﬁred current transient with the Schmidt number, and thus

the diffusion coefficient, of the electroactive species.
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Relation of Collocation Eigenvalues to the Schmidt Number

Albery and co-workers! have derived a relationship between the
Schmidt number and the exponential coefficients governing the
shape and duration of the current transients produced by step
changes in rotation rate. A modified form of the expression derived
by Albery et al.l has been found empirically to provide an excellent
approximation of the collocation eigenvalues. Expressed in terms of
the A; values that are obtained from the orthogonal collocation

procedure, the modified relationship takes the form

A =P8 (1-Q,577). ‘ - (2.24)
i N Ref. 1
2 4 6 8 10 12

1 |-0.18980 -0.17770 -0.17781 -0.17781  -0.17781  -0.17781 | -0.178
2 |[-0.41146 -0.42915 -0.43642 -0.43636 -0.43636 -0.43636 | -0.460
3 -0.78242 -0.73870 -0.73681  -0.73681  -0.73681

4 -2.18722 -1.08438 -1.06614  -1.06678  -1.06677

5 -1.49876 -1.41641 -1.41992 -1.41991

6 -7.12439  -1.94684  -1.79233  -1.79240

7 -2.58211  -2.21307  -2.17825

8 -17.15999  -2.84159  -2.58710

9 -4.54126  -3.20933

10 -34.46165  -3.87809

11 -7.62335

12 -61.31449

Table 2.1. Collocation eigenvalues, A, calculated for S=1500, a=250, and B=3.
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The coefficients P; and Q; obtained by fitting the limiting values of
Ai, calculated from the orthogonal collocation procedure for a series
of Schmidt numbers, to Equation 2.24 are listed in Table 2.2 for i= 1,
2, 3, 4. The corresponding coefficients estimated by Albery et al.l
are also given; the moderately good agreement indicates that the
approximations involved in the derivation in Reference 1 are not

seriously in error.

i Orthogonal Collocation Reference 1
Pj Qi Pj Qi

1 -2.2152 + 0.0001 0.9290 = 0.0005 -2.23 1.0

2 -5.571 £ 0.002 1.181 = 0.002 -5.77 1.0

3 -9.563 * 0.005 1.348 £+ 0.004

4 -14.03 + 0.02 1.475 + 0.007

Table 2.2. Coefficients, P; and Qj, relating the collocation eigenvalues and the

Schmidt numbers according to Equation 2.24.

Collocation Coefficients

Once the collocation eigenvalues are computed, the next step in
the orthogonal collocation procedure is to compute the initial and
final solutions, represented by a(0) and &a(e), by means of Equations
2.14 and 2.12, respectively. Knowledge of a(0) and a(e) permit
evaluation of the vector k from Equation 2.18. Finally, the
collocation coefficients, fj, are computed from the relation in Equation
2.23. Unlike the collocation eigenvalues, the collocation coefficients

are functions of &, in addition to o, B, and S, because the initial
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steady-state solution, required in the computation of fj, contains

information regarding the initial rotation rate.

Relation of the Collocation Coefficients to the Schmidt Number
Typical sets of values for fj, evaluated for N= 2, 4, 6, 8, 10, 12 are
shown in Table 2.3. The subscript indicates the collocation
eigenvalue with which the collocation coefficient is associated. As
the order of the collocation, N, increases, the coefficients approach
limiting values that are independent of o and B in the same manner
as described for the collocation eigenvalues. For N=12, the limiting
values of f; for i= 1, 2, 3, 4, 5 have been essentially reached (see
Table 2.3). Higher collocation orders would be required to reach

limiting values of f; for larger values of i.

i N Ref. 1
2 4 6 8 10 12

1 -1.93133 -1.72880 -1.72840 -1.72826  -1.72827 -1.72827 -1.57
2 0.93133 0.92104 0.94726 0.94726 0.94725 0.94725 0.57
3 -0.25469 -0.34284  -0.33650  -0.33652  -0.33652

4 0.06245 0.16578 0.14967 0.14927 0.14927

5 -0.04914  -0.05643  -0.05573  -0.05584

6 -0.00734 0.03097 0.02709 0.02631

7 -0.00848  -0.01163  -0.00890

8 0.00179 0.00780 0.00571

9 0.00013  -0.00362

10 0.00061 0.00375

11 0.00060

12 0.00025

Table 2.3. Collocation coefficients, fj, calculated for S=1500, a=250, B=3, and
e=0.1.
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The collocation coefficients, fj, exhibit a weak dependence on the
Schmidt number, as depicted in Figure 2.1, for a particular change in
rotation rate. As is evident from the figure, the variation is also
essentially linear with respect to S-1/3, The variation is sufficiently
small (e.g., f1 increases by 3.2% as S increases from 300 to 48000 for
€=0.1) that for the purposes of this work it is possible to regard the
coefficients, fj, as independent of S. (The larger variation of fj with
the Schmidt number as i increases introdruces negligible changes in

calculated values of f(t), because the multiplicative exponential term

decreases rapidly toward zero as i increases.)

Relation of Collocation Coefficients to the Step-Size Parameter

The variation of a typical set of values of fj with €, the parameter
characterizing the change in rotation rate (Equation 1.3), is shown in
Figure 2.2 for i= 1, 2, 3, 4. It is found empirically that the
dependences can be described reasonably accurately by simple
polynomial functions of €. The polynomials appropriate for a Schmidt
number of 1500 are listed in Table 2.4. The equations given in Table
2.4 are utilized to calculate the collocation coefficients for other
Schmidt numbers as well because of the insensitivity of the values of

f; to S (see above).

Complex Collocation Eigenvalues and Coefficients
For reasons discussed in Appendix I, it is advantageous to select
a=S/6 and B=3. Empirically, utilization of these values for o and B in
the orthogonal collocation analysis always leads to real values for A

and f;. For other values for a and P, complex eigenvalues and
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Figure 2.1. Variation of the first four collocation coefficients with the

Schmidt number for €=0.1. Straight lines are drawn through the

calculated points. ( O )fy; (O)fy; (A)f3; (9)fs.
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Figure 2.2. Variation of the first four collocation coefficients with the
magnitude and sign of the change in rotation rate for a Schmidt
number of 1500. Smooth curves were drawn through the calculated

points. (O )fy; (O)fx (A)f3; (O)fs.
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coefficients are occasionally obtained. A typical example is provided
in Table 2.5 for N=12, S=1500, «=100, B=3, and &=0.1; the
corresponding values for o=250 (Tables 2.1 and 2.3) are included for
comparison. The subscripts re and im denote the real and imaginary

components of the complex eigenvalues and coefficients.

f1 = -(1.551£0.002) -(1.781%0.007)¢
f3=  (0.562£0.006) +(3.54 0.02)¢ +(3.68+0.07)¢2
f3= -(0.029%0.006)  -(2.1530.03)e  -(8.8£0.1)e2  -(8.4+0.3)3

f4 = 0  +(0.46+0.06)e  +(7.4+0.2)e2  +(23.13£0.7)e3  +(20.+2.)e?

Table 2.4. Polynomial expressions relating fj to € for S=1500.

Complex eigenvalues and coefficients must necessarily occur as
conjugate pairs, because the fractional change in current, f(t), must
be real. Under the heading a=100 in Table 2.5, the entries for i=7, 8
are conjugate pairs. For conjugate pairs of eigenvalues, A and A*, and
coefficients, f and f*, the terms from Equation 2.22 involving these

complex values may be rewritten as

f exp(A T) + £* exp(X’ T) =2 (f, cos(h,, T) - £, sin(A,,, 1)) exp(A,, T) . (2.25)

For the example, the terms in Equation 2.22 involving the

eigenvalues and coefficients for i=7,8 and a=100 in Table 2.5 may be

rewritten as
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£, exp(Ag T) + £y exp(hg T) =

—0.00100 (3.24368 cos(0.27643 1) — sin(0.27643 1)) exp(-2.16589 1) . (2.26)

a=250 a=100

i Aj fi Are i Aim,i fre.i fimj

1 -0.17781  -1.72827 -0.17781 0 -1.72827 0
2 -0.43636 0.94725 -0.43636 0 0.94725 0
3 -0.73681 -0.33652 -0.73681 0 -0.33652 0
4 -1.06677 0.14927 -1.06676 0 0.14929 0
5 -1.41991 -0.05584 -1.41954 0 -0.05560 0
6 -1.79240 0.02631 -1.79953 0 0.02501 0
7 -2.17825 -0.00890 -2.16589 0.27643 -0.00162 0.00050
8 -2.58710 0.00571 -2.16589 -0.27643 -0.00162 -0.00050
9 -3.20933 -0.00362 -2.46487 0 -0.00146 0
10 -3.87809 0.00375 -3.27689 0 -0.00019 0
11 -7.62335 0.00060 -4.01785 0 0.00330 0
12 -61.31449 0.00025 -33.30052 0 0.00043 0

Table 2.5. Collocation eigenvalues and coefficients for a=100 and a=250 with
N=12, S=1500, B=3, and £=0.1.

In this example, the period of the trigonometric functions is 22.7
radians, whereas the half-life of the exponential function is 0.320.
Whenever complex eigenvalues and coefficients arise, the half-life of
the exponential function is always observed to be at least one,
frequently several, orders of magnitude smaller than the period of
the trigonometric functions. The complex eigenvalues and
coefficients therefore give rise to highly damped harmonic terms in

the expression for the fractional change in current.
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The limiting values of A; and fj, i.e., those obtained for sufficiently
large values of N, are never found, empirically, to be complex. The
utilization of the results of the orthogonal collocation analysis
described in the next section and in Chapter 4 involves only the
limiting values of the collocation eigenvalues and coefficients; thus no
complications associated with complex quantities exist. The limiting
values of A; depend solely upon S, and the limiting values of fj
depend solely upon S and €; the choice of o and f is arbitrary,

provided o>0 and B>1 as explained above.

Calculated Current Transients
Fractional changes in current may be calculated for a variety of

experimental conditions from Equation 2.27,

f(t)=1+ EM:fi exp(A, 1) | | (2.27)

i=1

by utilizing A; and f; values calculated by means of the orthogonal
collocation procedure for S=1500, N=12, and M<N. Representative
results are shown in Figures 2.3 and 2.4 for steps to higher and lower
rotation rates, réspectively. Examination of these two figures shows
that the fractional current changes resulfing from steps to lower
rotation rates can be described accurately with fewer summation
terms in Equation 2.27 than those resulting from steps to higher
rotation rates. In general, however, four terms, i= 1, 2, 3, 4, are
adequate to describe with satisfactory accuracy all but the first 15%

of the fractional current changes resulting from steps of either sign
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Figure 2.3. Fractional changes in current calculated from Egquation
2.27. From the top to the bottom curve, M = 2, 4, 6, 8, and 10
exponential terms are utilized in the calculation, with S=1500 and

e=0.3.
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Figure 2.4. Fractional changes in current calculated from Equation

2.27. From the bottom to the top curve, M = 2, 4, 6, 8, and 10

exponential terms are utilized in the calculation, with S=1500 and e=-

0.3. The last three curves are indistinguishable.
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with lel<0.4. For absolute values of & outside this range or for times
where f(t)<0.15, more terms are required in Equation 2.27 in order to

calculate the current transient accurately.

The "Magic" Step Size

Inspection of Figure 2.2 reveals that for experiments in which the
rotation rate is decreased by an amount corresponding to &=-0.24
(o./ 0,=0.58), the collocation coefficients for i= 2, 3, 4 are very close
to zero. It follows from Equation 2.27 that the fractional current
change obtained for this particular step change in rotation rate
should be a simple exponential function of 1. This expectation is
tested by calculating f(t) from Equation 2.22 for £=-0.24, S=1500,
N=12, «=250, and B=3 (Figure 2.5) and analyzing the calculated
transient as if it were a simple exponential function. The results are-
shown in Figure 2.6, where the points represent a plot of In[1-f(t)] vs.
t for the last 90% of the transient. The excellent linearity of the plot
shows that current transients obtained from the "magic" step change
in rotation rate, €=-0.24, can be analyzed accurately as single
exponential functions. This represents a considerable simplification
in the data analysis when compared with the nonlinear curvefitting
that is required to analyze the current transients obtained with any
other value of the step change in rotation rate.

The value of A; obtained from the slope of the least-squares line
drawn through the points in Figure 2.6 may be used to calculate the
Schmidt number from Equation 2.24. The value obtained, 1493,
compares very favorably with the Schmidt number of 1500 used to

simulate the current transient from which the points in Figure 2.6
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Figure 2.5. Fractional change in current calculated from Equation

2.22 using N=12, S=1500, o=250, B=3, and €=-0.24, the "magic" value.
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Figure 2.6. Logarithmic analysis of the transient in Figure 2.5. The
points are the calculated values and the line corresponds to a least-

squares fit.
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were derived. This agreement confirms that analysis of current
transients resulting from the "magic” step change in rotation rate as
simple exponential functions does not introduce significant error in

the values of the Schmidt number obtained.
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Chapter 3

Simulation of the Effects

of Imperfect Motor Response
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Simulation of the Effects of Imperfect Motor Response

A potentially significant source of error in the rotation-rate step
experiment is the inability of the rotator to execute a perfect step
change in rotation rate. In order to assess the extent to which finite
motor response perturbs the current transient from that expected
from a step change in rotation rate, we simulated the current
transients resulting when the change in the rotation rate of a rotating
disk electrode occurs over a nonzero time tp.

Analysis of the effect of imperfect step changes in rotation rate is
complicated by the coupling of this effect with that of hydrodynamic
relaxation. Rigorous modeling of the current transients to be
expected from the change in rotation rate actually applied to the
rotated electrode by the motor, w(t), requires use of the correct time-
dependent velocity function, v(x,t), obtained from solution of the
Navier-Stokes equation using w(t), in place of the time-independent
velocity function, v(x), in the boundary value problem of Equations
1.1 and 1.2. Such an analysis is too complicated and, fortunately,
unnecessary for the purposes of this study. Albery and co-workers!
have examined theoretically the effect of hydrodynamic relaxation
on the current transient expected from a step change in rotation rate
under conditions where imperfections in the motor response do not
exist. We have performed the complementary study in which the
effects of sluggish motor response are examined in the absence of
effects arising from hydrodynamic relaxation.

We begin our investigation with the assumption that the velocity
profile of the solution is, at all times, described by the steady-state

velocity profile associated with the instantaneous angular velocity of
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the electrode, w(t); hydrodynamic relaxation is presumed to occur
instantaneously. The theoretical framework presented in Chapter 1
is retained, the sole modification being the replacement of the
function v(x) in Equation 1.1 with the function v(x,t) shown in

Equation 3.1.

v(x,1) = (o(t) ) (v, (“’—Sl) X2+ v, (-“%)3/2 X+ v, (9%))2 x4J , (3.1)

For consistency with the treatment presented in the preceding
chapters, the normalizations shown in Equations 1.4, 1.5, and 1.6 are

employed. The resulting expression for H(z,t) is

1/2 3/2 2
N ol B e o I o RS

Additionally, the time-dependent angular velocity, ®(t), is defined in

a manner analogous to that for the final rotation rate, ®e.
2
o(T) =, (1+ & u(t)) . (3.3)

Combining Equations 1.3 and 3.3 yields the following expression for

the ratio 0(t)/®Mo:

03(1:)=(1+811(T))2 . (3.4)

0] 1+¢

oo
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The function u(t) characterizes the time-dependence of the

rotation rate of the electrode. For a perfect step change in rotation

rate, tp=0, u(t) is defined by Equation 3.5.

0 <0
u('t)={1 >0 (3.5

The imperfection of the motor response is modeled by a linear

change in u(t) over a time period of Tp=wwtp as expressed in Equation

3.6.

0 t<0
u(t)=4 T/1p 0st<1,. (3.6)
1 T21T,

A plot of the time-dependence of the rotation rate defined by
Equations 3.3 and 3.6, such as that illustrated in Figure 3.1 for
€=+0.414, is nonlinear in the region O<t<7tp, though the degree of
curvature is modest. The actual change in angular velocity
performed by a motor attempting to execute a step change in
rotation rate has been measured and published by Bruckenstein and
co-workers.4 While not providing an exact match, the expressions in
Equations 3.3 and 3.6 provide a reasonable approximation of an
actual motor response.

The master boundary value problem is similar to Equations 1.9
and 1.10. The function H(z,tr) that replaces H(z) depends

parametrically upon € and 1p.
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Figure 3.1. The time-dependence of the rotation rate of a rotating

disk electrode as defined by Equations 3.3 and 3.6 with e=+0.414.
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oc(z,1) _ 9%c(z,1) dc(z, 1)
S T e SHEUT, (3.7
c(0,t)=1, 11_{2 c(z,t)=0, c(z,0)=cz) (3.8)

The Finite Difference Method

The simulation of current transients resulting from nonideal step
vchanges in rotation rate involves a dimensionless hydrodynamic
velocity function that is a function of both displacement and time.
The existence of a time-dependence in the hydrodynamic velocity
function destroys the separability of the differential Equation 3.7,
thereby preventing formulation of a simple eigenvalue problem as
part of the orthogonal collocation analysis described in Chapter 2.
Because of the complications associated with applying the orthogonal
. collocation procedure to the problem involving a nonideal step
change in rotation rate, we have resorted to the more general finite
difference technique. The reader is referred to standard numerical
analysis texts for detailed discussion of the finite difference method
(see, for example, Kreyszigl4 and Burden, Faires, and Reynolds!3).

Our implemehtation of the finite difference method utilizes six-
point finite difference formulas (Equations 3.9 and 3.10) for

approximation of the spatial derivatives of c(z,1).

(3.9)

(ac(z,t)) _- 12¢,_,;—65¢,,+120¢c,,,;—60c,, ;+20C, 5, —3Cyy;

oz 60 h

i,j
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(azc(z,t)) - 10 Ciai— 15 Cii~ dc,, it 14 Civaj— 6 Cisaj ¥ Ciraj
i,j

oz? 12 h? (3.10)

The subscripts i and j signify evaluation of the function c(z,t) or its
derivative at the point z; and tj. This scheme implements a square
mesh with N+4 uniform spatial intervals of size h and an arbitrary
number of uniform temporal intervals of size k. The approximations
in Equations 3.9 and 3.10 have error terms of O(h3) and O(h4),

respectively.

The Initial Conditions
The initial steady-state solution, cg(z), is described by the

boundary value problem in Equations 3.11 and 3.12.

dCO(Z)

0=3(2) _ .0y 9@ (3.11)
dz?

c(0)=1, lim cy(z)=0 (3.12)

These equations follow directly from Equations 3.7 and 3.8 with
ac(z’T%T = 0. Substitution of the finite difference formulas, Equations

3.9 and 3.10, into this boundary value problem leads to the N-

dimensional linear system

P,¢,=d, . (3.13)



46

The vector subscript is the temporal index j; the initial steady-state

solution corresponds to j=0. Row i of vector € consists of cjj=c(zj,T;).

The matrix P is defined by

(50+12ShH,, m=i-1; i=2,3,..N

~75+65ShH,, m=i; i=12,..N

~20-120ShH,, m=i+1; i=1,2,..N—-1
[Pj]im=<70+GOShHi,j m=i+2;i=12,..N-2, (3.14)

~30-20ShH,, m=i+3;i=12,..N-3

5+3ShH,, m=i+4;i=12,..N-4

0 all otheri and m

\

and the vector aj imposes the spatial boundary conditions and is

defined by

- -50-12ShH,; i=1 315
[dj]i_ 0 i=2,3..N : (3.15)

Implicit in these definitions are the relations c¢g,j=1 and cj,j=0 for i>N,
which are consistent with the boundary conditions in Equation 3.8.
The semi-infinite nature of the boundary value problem is
accommodated by selecting the point zN so that the concentration cn,j

is essentially identical to the bulk concentration, which is zero.

The Time-Dependent Problem

Once the initial steady-state concentration profile has been
obtained by solution of Equation 3.13, the time-evolution of the
concentration profile is simulated by utilizing the finite difference

- formulas in Equations 3.9 and 3.10 in conjunction with the Crank-
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Nicolson method.14.15 The forward difference approximation of the

time-dependent differential equation in Equation 3.7 is

60 h*

—S(8.-%)=P-d;. (3.16)

The corresponding backward difference approximation is

60 h*
k

S(E éj)=Pj+1 Ej+1"‘:lj+1 . (3.17)

T
The Crank-Nicolson approximation, obtained by addition of Equations
3.16 and 3.17, is

120 h*
k

S(€.~¢)=P¢-d;+P, T, —d, . (3.18)

Introduction of the matrices Qj and Rj,

120 h?
Q=2 g1 p (3.19)
and

120 h?
R= SI+P,, (3.20)

with I being the identity matrix, permits Equation 3.18 to be recast

as
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Q& =R, &~ (d;+d,,,) . (3.21)
Given the vector ¢, the right side of Equation 3.21 may be
evaluated; solution of the resulting linear system yields ¢,,. The
procedure for computing & for j=0 has been described above; from
this starting point, the concentration profile at any time t=jk may be
calculated by recursive application of Equation 3.21. The error term
for the Crank-Nicolson method is O(k2); thus the overall error of the
finite difference simulation is O(h#+k2). The finite difference

procedure described above is unconditionally stable.

Calculation of Current Transients

The fractional change in current function f(t), defined by

Equations 1.7 and 2.20, is calculated by means of Equation 3.22.

oc(z,T) _[oc(z,7)
L
0z 20,1300 0Z /o010

From the concentration profile of c(z,t) at a particular time t=jk, the

concentration gradient at the electrode surface is approximated by

(ac(z,‘c)) _ —25+48¢,;—36¢,,;+16¢,, -3¢, (3.23)
T oo 12h ' '

The concentration gradient associated with the initial steady-state

problem is determined using the concentration profile for j=0, found
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by solution of Equation 3.13. The concentration profile associated
with the final steédy-state condition may be found in one of two
ways. First, the recursion in Equation 3.21 may be applied until the
concentration profile becomes invariant, thereby indicating that the

final steady state has been reached. Alternately, the linear system
P ¢ =d (3.24)

‘may be solved. The oo subscript indicates that the conditions

correspond to the final steady state, in which case the function H(z,t)

is evaluated using t>1p.

Calculations

Finite difference simulations were performed on an AlphaNumeric
PC2 computer (8088/8087) or a COMPAQ Deskpro computer (8086)
using programs written in MicroSoft FORTRAN77 V3.20 or on a
Digital Equipment MicroVAX 3500 using programs written in VAX
FORTRAN V4.7. Simulations were performed using 40 to 100 spatial
nodes and 100 to 3000 temporal nodes, depending upon the desired
precision.

Fractional changes in current, f(t), calculated by means of the
orthogonal collocation procedure (Chapter 2) were identical to those
calculated by means of the finite difference procedure using tp=0 to
the extent that each method had converged. Given the
fundamentally different approximations of the orthogonal collocation
and finite difference methods, it is virtually inconceivable that both

methods would give, to as many as eight decimal places, the same
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wrong answer. The agreement between the results of the two
numerical methods therefore provides compelling verification of the

veracity of the numerical techniques employed in this project.

Effect of Imperfect Motor Response

Imperfect motor response, like hydrodynamic relaxation, acts to
delay the time when measured current transients }conform to the
behavior predicted when the presence of imperfections in the motor
response is neglected.  Bruckenstein and co-workers4 have found
that current transients resulting from rotation-rate steps of varying
sizes can, once normalized, be superimposed by shifting the
transients along the time axis. Theoretical arguments provided by
Albery and co-workersl predict that the net effect of hydrodynamic
relaxation is to shift the current transients along the time axis
without a significant change in their shape.

Finite difference simulations of the rotation-rate step experiment
using the "ramped" rotation-rate function, Equations 3.3 and 3.6,
reveal that this particular imperfection in the‘ step change in rotation
rate also manifests itself as a simple time delay with little or no
perturbation in the shape of the current transient. A set of six
simulated transients is shown in Figure 3.2. As anticipated, all of the
curves may be very nearly superimposed by shifting along the time
axis.

To determine the effect of the presence of a delay time on the
analysis of current transients for the evaluation of Schmidt numbers,
the six simulated transients in Figure 3.2 are fitted to the modified

version of Equation 2.27 given by
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Figure 3.2. Effect of increasing the delay times on the fractional
changes in current as determined from finite difference simulations.

From left to right, the dimensionless delay times, tp, are 0, 1.0, 2.0,

3.0, 4.0, and 5.0 with S=2000 and &=-0.24.
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f(t)=1+ Y.f, exp(A; (v— 1)) . (3.25)

i=l1

The values of f; are calculated using the polynomials in Table 2.4,
and the expression in Equation 2.24 is substituted for A; in Equation
3.25. A nonlinear, least-squares fitting routine is employed with S
and tg adjusted to obtain the best fit. The resulting optimal values
for S and tp are listed in Table 3.1 for comparison with the actual
values used in the simulation of the transients. The first 10% of each
current transient was omitted from the least-squares procedure to
avoid the imprecision of Equation 3.25 at short times as discussed in
Chapter 2 (Figures 2.3 and 2.4). The entries in Table 3.1 show that
for modest delay times the Schmidt number resulting from the least-
squares fitting remains within 10% of its actual value. The values for
1o obtained from the fit are approximately half of the actual delay
time used in the simulation, a fact that is not surprising. It appears
that by reétricting the analysis of current transients to data
originating after the delay time, reasonably accurate estimates of
Schmidt numbers can be obtained. Even fairly severe deviations of
the change in rotation rate from a perfect step can be tolerated if the
analysis of the resulting current transient is restricted to the

appropriate portion of the transient.

Implications for the Analysis of Experimental Transients
The ability to determine Schmidt numbers, and hence diffusion
coefficients, accurately from experimental current transients

requires an efficacious strategy for accommodating the deviations
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D3 sb 0P Tmin® min_f(1)¢
0.0 2000 -0.03 1.20 0.10
1.0 2014 0.42 1.68 0.10
2.0 2054 0.87 2.10 0.10
3.0 2138 1.30 2.46 0.10
4.0 2282 1.69 2.76 0.10
5.0 2528 2.04 3.00 0.10
5.0 2379 2.14 3.66 0.15
5.0 2277 2.22 4.26 0.20
5.0 2214 2.28 4.80 0.25
5.0 2181 2.31 5.22 0.30
5.0 2144 2.34 5.88 .0.35
5.0 2122 . 237 6.42 0.40

Table 3.1. Effect of delays during the application of changes in rotation rate
on the Schmidt numbers obtained from analysis of current transients.

a2 Delay time used in simulation of the current transient for S=2000 and £=-0.24.
b Optimum parameters obtained from nonlinear, least-squares fit to Eq. 3.25.

¢ The smallest values of T and corresponding f(t) that were employed in the

nonlinear, least-squares fit of the current transients.

from ideal behavior arising from hydrodynamic relaxation and
imperfect motor response. Albery et al.l have prédicted that a
simple shift along the time axis will compensate effectively for the
effects of hydrodynamic relaxation in the absence of effects arising
from finite motor response times. We have shown, in the preceding

sections, that a simple offset along the time axis will also compensate
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for the effects of imperfect motor response in the absence of effects
arising from hydrodynamic relaxation. It is not implausible,
therefore, to suggest that a simple offset in time will also compensate
for the combined effects of both of these sources of deviant behavior.
This notion is consistent with the observations of Bruckenstein et al.4

Given his analysis of the relaxation of the solution velocity profile
produced by an impulsive angular velocity change for a rotated disk,
Chawla3 concluded that hydrodynamic relaxation occurs in two
distinct stages. The immediate effect of the impulsive change in
rotation rate is to generate a shear wave in the azimuthal flow,
traveling away from the disk with dimensionless velocity 0.884. As
the shear wave interacts with the existing von Karman flow, the
radial outflow is altered, leading to a change in the axially flow. The
system then develops toward the final steady state. The total time
required for hydrodynamic relaxation is TgrR=S5.

The analysis of Albery et al.l predicts that an offset time of
19=0.26, independent of the Schmidt number, will effectively
compensate for the effects of hydrodynamic relaxation. This value
for the offset time appears too small, given the findings of Chawla.3
The initial shear wave crosses the hydrodynamic boundary layer in a
dimensionless time of approximately 1, and the offset time should be
no less than half of this value. Alternately, one might expect the
relevant offset time to be determined by the thickness of the Levich
layer and thus to be dependent upon the Schmidt number. For
S=1500, the initial shear wave crosses the Levich layer in a

dimensionless time of 0.16. In this context, the value of 1p=0.26
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reached by Albery et al.! might be reasonable, though their analysis
does not consider the thickness of the Levich layer.

In addition to the uncertainty regarding the exact offset time, TygRr,
necessary to compensate for hydrodynamic relaxation, there is also
uncertainty regarding the exact offset time, TMR, necessary to
compensate for imperfect motor response. The correct value of TMR
depends upon the actual performance of the rotator, which may be
difficult to ascertain. Even were tgr and tMR accurately known, the
delay time required for compensation of the combined effects of
hydrodynamic relaxation and imperfect motor response is unlikely to
be the simple sum of tgr and tmr. The preceding discussion clearly
demonstrates the efficacy of an offset time in the analysis of
experimental current transients but cannot provide the exact value
to be used in the data analysis. For this reason, the real offset time,
to, must be optimized, along with the Schmidt number S, in the curve

fitting of experimental data.

Practical Limits on the Final Rotation Rate

Hydrodynamic relaxation occurs on a time frame that scales with
the final rotation rate in the same way as the current transient.
(This observation arises from the fact that tgr is a constant.) The
degree to which hydrodynamic relaxation perturbs the current
transient is therefore roughly independent of the choice of the final
rotation rate.

Contributions arising from an imperfect rotator response, on the
other hand, are strongly dependent upon the final rotation rate. The

actual time required for many motors to execute an abrupt change in
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angular velocity, tMR, is relatively independent of the choice of final
rotation rate. At low rotation rates, the value of tpr=w_tMR 1s likely
to be negligibly small compared to the time scale of the current
transient. The lower limit for the final rotation rate is therefore
determined only by the operating limits of the rotating disk
electrode technique. At high rotation rates, the time tMR becomes
significant compared to the time scale of the current transient; for
sufficiently large values of w_., the entire transient is dominated by
the response of the motor. An inspection of Table 3.1 reveals that
the maximum tolerable delay time is approximately tp=w_tmr=2; for
tp>2, the error in S grows rapidly with increasing tp and becomes
unaéceptably large. The final rotation rate should, therefore, be
chosen so that w_<2/tmr. If tMr=10 ms, a functional upper limit for

®. is 200 s-1 or 1900 rpm.
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Chapter 4

Experimental Results and Discussion
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Experimental

Reagents

Reagent-grade K4Fe(CN)g and KCl were used without additional
purification.  Laboratory distilled water was purified by passage
through a Barnstead Nanopure purification train. Measurements
were conducted in 1.00 M KCl solutions containing approximately 2
mM Fe(CN)g4-. The solutions were maintained at 25.0+0.2°C. The
kinematic viscosity of the solution was measured with an Ostwald
viscosimeter; a value of (8.56+0.03)x10-3 cm? s-1 was obtained. All

solutions were de-aerated with prepurified argon.

Apparatus and Procedures

The rotating electrode was a commercially available platinum disk
electrode (Pine Instrument Co. or Oxford Electrodes Ltd.). A Pine
Instrument MSR Rotator and Controller and Oxford Electrodes Model
MC1/87 motor-controller were utilized. The overall response of the
Pine Instrument system was somewhat faster than that of the Oxford
system. The specifications for the latter indicate a response time of
50 ms. The unit we utilized met this specification for steps to higher
rotation rates, but when stepping to lower rotation rates the
response time appeared significantly longer, and considerable
overshoot was evident.

Single current transients were recorded with a Tektronix Model
5223 Digitizing Oscilloscope and subsequently output on a Houston
Omnigraphic X-Y recorder for measurement purposes. Experiments
were conducted with conventional, commercially available

instrumentation (PAR Model 173, 175, and 179 units). Multiple
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transients were recorded with a computer-based digital acquisition
and analysis system described previously.16 Typically, 25 transients
were recorded and ensemble-averaged to improve the signal-to-

noise ratio.

Results
A typical current transient obtained by abruptly increasing the
rotation rate of an electrode at which Fe(CN)g4- was being oxidized to
Fe(CN)g3- is shown in Figure 4.1. The points correspond to the
experimental measurements, and the line represents a weighted,

nonlinear, least-squares fit of the data points to the Equation

i(t)—i(0)=Ai ,:1+§4:fi exp(?Li W, (t-—to))j' , (4.1)

i=1

which is an expanded version of Equation 3.25. Ai, the difference
between initial and final steady-state currents, was fitted along with
Ai (as expressed in Equation 2.24) and tp to allow for the fact that the
final steady-state current had not been reached before the recording
was terminated. The values of f; were obtained from Table 2.2. The
nonlinear, least-squares fitting procedure produced Ai=+44.97+0.07
LA, t9=11.3£0.3 ms, and S=1260%40. The value of Ai is in
reasonable agreement with the value determined independently
from the linear Levich plot (i vs. w1/2) for the same solution,
Ai=+45.410.1 pA. The least-squares value of tp is somewhat longer
than half the estimated motor response time (10 ms), probably

because of a contribution from hydrodynamic relaxation. The
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Figure 4.1. Experimental current transient for the oxidation of 2 m M
Fe(CN)g*- at a platinum rotating disk electrode (§=0.17 cm?2),
resulting from a step change in rotation rate from 52.4 s-! to 104.8

s-1 (e=+0.415). The points are experimental. The solid line is the

result of a nonlinear, least-squares fit to Equation 4.1.
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Schmidt number obtained from the least-squares fit corresponds to
D=(6.8+0.2)x10-6 cm2 s-1 and is in reasonable agreement with the
accepted value for Fe(CN)g4 in 1 M KCl at 25°C, D=6.33x10-6 cm? s-1
(S=1352).17,18  This agreement and that of the calculated line with
the experimental points in Figure 4.1 indicate the reliability of
Equation 4.1 and the orthogonal collocation procedure that produced

it.

"Magic" Step Experiments

When the rotation rate of the electrode was decreased from 42.3
s-1 to 24.4 s-1, corresponding to e=-0.24, the transient shown by the
plotted points in Figure 4.2 resulted. The solid line, obtained by
fitting the transient to Equation 4.1, corresponds to the least-squares
values Ai=-23.59+0.09 pupA, tp=17t2 ms, and S=1240%70
(D=(6.9+0.4)x10-6 c¢cm2 s-1). Because a step change in rotation rate
corresponding to €=-0.24 represents the "magic" step size described
above, the transient is expected to obey Equation 4.1 with all but the
first exponential term dropped. The same data points are plotted in
a simple first-order decay plot in Figure 4.3 where the anticipated
linearity is clearly evident. The weighted least-squares line drawn
through the points corresponds to tp=15%3 ms and S=1340%50
(using Ai=-23.64 pA as obtained from the Levich plot). The
corresponding diffusion coefficient, D=(6.410.2)x10-% cm? s-1, is in
good agreement with that obtained by means of Equation 4.1,
demonstrating the utility of "magic” step experiments in simplifying

the data analysis.
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Figure 4.2. Experimental current transient for the oxidation of 2 m M
Fe(CN)g4- at a platinum rotating disk electrode (§=0.17 cm?2),
resulting from a "magic" change in rotation rate: 42.3 sl to 24.4 s-1
(e=-0.241). The points are experimental. The solid line is the result

of a nonlinear, least-squares fit to Equation 4.1.
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Figure 4.3. Logarithmic analysis of the transient in Figure 4.2. The
straight line is a weighted, linear, least-squares fit of the

experimental points.
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A summary of results obtained from thirty-five experiments in
which the rotation-rate changes varied from €=-0.3 to +0.4 with ®e
values ranging from 6.3 to 105 s-! is given in Table 4.1 along with
the results of related experiments by others. The averages of the
Schmidt humbers and diffusion coefficients obtained with the
rotation-rate step experiments are in excellent agreement with the
accepted values.17.18  The higher standard deviations listed for the
rotation-rate step method result from the poorer signal-to-noise
ratio associated with the measurement of relatively small current
changes at rotating disk electrodes. This factor will limit the
precision attainable with this method, but a somewhat lower
precision is often an acceptable price to pay for eliminating the need
to know the electrode area and the reactant's concentration and n-
value. The results in Table 4.1 also demonstrate clearly that the
single exponential analysis that is possible with the "magic" change in
rotation rate is no less reliable than the more detailed analysis

required for other changes in rotation rate.

Discussion

In their earlier study, Albery et al.l derived an expression for f(t)
that was expected to be valid for small changes in rotation rate. The
expression is similar in form to our Equation 2.22, but the series of
exponential terms was truncated after the first two terms instead of
the four that we found necessary to fit the transients over most of
their duration. In addition, the pre-exponential and exponential
numerical coefficients given by Albery et al.,! corresponding to f; and

Ai values in Equation 2.22, differ somewhat from those that resulted
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from the orthogonal collocation calculations. The values of the
coefficients calculated by Albery et al.l are compared with those

obtained in this work in Tables 2.1, 2.2, and 2.3.

Method S 106 D/(cm2 s-1) | Reference
Rotation-rate step experiment? 1330%302 6.4 0.1 this work
"Magic" rotation-rate step 1340+50b 6.4 +0.2b this work
experimentP
Chronoamperometry 1354+ 8 6.3410.02 17
| Exhaustive electrolysis at a
rotating disk electrode 1350+ 6 6.32+0.03 18

Table 4.1.  Results of the evaluation of the Schmidt number and diffusion
coefficient for Fe(CN)g4- in 1 M KCl at 25.0°C by several experimental

methods.

a4 Step sizes were in the range -0.3<e<0.4. Four exponential terms were
employed in the data analysis. The uncertainty is the standard deviation of the
mean resulting from 35 determinations.

b The "magic" step size of £=-0.24 was employed. One exponential term was
employed in the data analysis. The uncertainty is the standard deviation of the

mean resulting from 12 determinations.

The previous treatment, which was intended for small changes in
rotation rate, neglected the dependence of fj on €. Since the present
analysis demonstrates a considerable dependence of fj on the
magnitude and direction of the change in rotation rate (Figure 2.2),
we compare, in Figure 4.4, the values of the diffusion coefficient
calculated according to the equations of Albery et al.l with those
obtained by fitting current transients to Equation 4.1. The present
treatment is seen to yield diffusion coefficients that are essentially

independent of the sign and magnitude of & while the former, more
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Figure 4.4 Effect of the magnitude and direction of the change in
rotation rate on the diffusion coefficient obtained from analysis of
the resulting current transient according to (O) Equation 4.1 or (O)
Equation 4.5 of Reference 1. The solid horizontal line indicates the

accepted value for the diffusion coefficient of Fe(CN)g4- in 1 M KCl at
25°C (References 17 and 18).
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approximate, treatment of Albery et al.l produces systematic errors
in the evaluation of Schmidt numbers, and thus diffusion coefficients,
except in the vicinity of €e=0. We also observe no dependence of the
evaluated diffusion coefficients on the magnitude selected for the
final rotation rate between . = 6 to 100 s-1,

It is essential to take account of the inevitable less-than-
instantaneous motor response in analyzing the results of the
experiment with which we have been dealing. In the first
experimental description of the method,!] a motor response time of 4
ms was quoted, but no currently commercially available motor
responds so quickly. 10 to 50 ms is more typical, and failure to take
this delay into account in the analysis of the current transients
results in serious errors in estimates of Schmidt numbers. It is
fortunate that a simple shift in the time axis as indicated in Equation
4.1 solves this potential problem as satisfactorily as it does. This
approach is apparently also effective in correcting for the effects of
hydrodynamic relaxation. The delay times, tg, that are obtained from
the least-squares fit to Equation 4.1 seem reasonable estimates for
the combined effects of slow motor response and hydrodynamic
relaxation. Previous empirical* and theoreticall attempts to deal
with hydrodynamic relaxation have led to correction factors of
widely different magnitudes.  Another advantage of the present
treatment is its apparent success in accounting simultaneously for
the effects of hydrodynamic relaxation and imperfect motor response

by the introduction of a single, least-squares fitted delay time.
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Appendix I

Considerations Regarding the

Choice of Values for the Parameters o and B
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Considerations Regarding the Choice of Values

for the Parameters o and (
In this appendix we address the choice of values for the
parameters o and B. If the approximation H(z)=vaz2 is used in place
of the expanded expression of Equation 1.8, the right side of Equation

2.6 may be rewritten as

iai(’t)[i(i—1)—(1]3(2i—B—I)ZB+U.2BZZZB—-iV‘SZS-'rC(.ﬁVaSZB”]Zi_Z . (L)

i=0

It is advantageous to choose PB=3, because this choice leads to the

simplified expression

iai(’c)[i (i-1)-(6a(i+1)+iv,S)2?+3a(3a+v,S)z |27 . (1.2)

This expression may be further simplified by choosing a=-v35/3, in
which case the coefficient associated with the term z® becomes zero.
As indicated previously, v,=-0.51023; thus o=-v,5/3=0.170085=S/6.

In practice, the expanded expression in Equation 1.8 is employed
for the calculation of H(z); thus the "simplifications" described in the
preceding paragraph do not, strictly speaking, simplify the
mathematical treatment. Nonetheless, choosing o = S/6 and f = 3 will
ensure that the expression in brackets on the right side of Equation
2.6 is dominated by two terms, one of which does not involve z and
the other of which involves z3. Under this condition, Aj and f;j are
always found to be real, other values for a and B sometimes lead to

complex values for Aj and fj, vide supra.
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Appendix II

Programs for the Simulation of Current Transients
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Introduction
All programs for the simulation of current transients were written
in FORTRAN and employed double-precision arithmetic. Orthogonal
collocation computations were performed on a Digital Equipment
VAX 11/750 or MicroVAX 3500. Finite difference computations
were performed on a microcomputer (8086/8086 machine) or a

Digital Equipment MicroVAX 3500.

OCWSTEP

The program OCWSTEP calculates the collocation eigenvalues and
coefficients described in Chapter 2. When executed, the program
prompts the user for the collocation order N, the Schmidt number S,
the name of an output file (maximum 12 characters), the parameter
o, and the parameter B. Floating point values are expected for S, «,
and B; i.e., the entered values must include a decimal point. If no
response or if a value of zero is provided for either a or j, thé default
values of a=S/6 and B=3 are used in the computations.

Given the simulation parameters N, S, a, and B, the collocation
points z; are selected and the eigenvalue problem is formulated and
solved. The collocation points and collocation eigenvalues are written
to the output file. The IMSL subroutine EIGRF computes a
performance index, P; the program OCWSTEP displays the value of
the performance index on the terminal, providing verification of the
veracity of the computations. The performance index compares the
magnitude of the residuals with the floating-point precision of the
machine to assess the performance of the numerical algorithm. The

performance index may be interpreted in the following manner:
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0<P<1, excellent performance; 1<P<100, good performance; P>100,
poor performance or algorithm failure. In all cases examined in this
study, the performance index lay in the interval O<P<<l1, signifying
that the residuals were as small as could be expected, given the
numerical limits of the double precision arithmetic.

Once the eigenvalue problem has been solved, the user is
prompted for the step size parameter €. If a nonzero value is
provided, the collocation coefficients corresponding to the specified
step size are computed and written to the output file. If no value or

a value of zero is entered at the prompt for €, the output file is closed

and program execution ends.
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PROGRAM OCWSTEP
David N. Blauch March 1988, Revised June 1990

California Institute of Technology, Pasadena, CA 91125

C % % % % K Kk % % kK K ok ke ok ok ok gk Kk ok sk ke ok ok ke ok ok ok Sk ok ke ke ok ok e ok ok ok sk K gk ok ok ok ok kR ok ok ke ok ok ke ke ok ko ok

C
C
C

C

Rotation~Rate Step Experiment:
Current Transient Simulation by means of an
Orthogonal Collocation Algorithm.

see D. N. Blauch, Ph.D. Thesis, Caltech, Chapter 2

C %k % %k K %k %k ok %k dk Kk ok Kk ok Kk %k Kk ok &k ke ko ok K sk ok ok ok sk ok K ok ok ok ok ok ok ok ok ok ok ke Sk ok ok ok ok ok ok ok kK ko ke kR ok Ak

10
15
20

INTEGER I,N,PZ(20),PE(20),ICMPLX
DOUBLE PRECISION A,B,E,Z(20),S
COMPLEX*16 EVL(20),F(20)
CHARACTER*12 FNAME

COMMON /ZNODE/Z/PAR/N,A,B,S/EVP/ICMPLX,EVL
FORMAT (Al2)

FORMAT (I8)
FORMAT (D16.9)

Chhhkhkhkhhk Ak kA AR ARk A R K A KA AR ATk Ak AR AR R KA KAk A AR AR A RA KRRk Rk kK Kk ok *kkk

C
C

100

120

130

135

137

*

Print Program Description and
Obtain the Necessary Simulation Parameters.

WRITE (6,100)

FORMAT (///25X,'Rotation-Rate Step Experiment', /11X,
'Orthogonal Collocation Simulation of the ',
"Current Transient',//1X, 'Collocation Order ',
' (integer, max. 20) ? ',$)

READ (5,15) N

WRITE (6,120)
FORMAT (1X, 'Schmidt Number ? ',8)
READ (5,20) S

WRITE (6,130)
FORMAT (1X, 'Output filename ? ',$)
READ (5,10) FNAME

WRITE (6,135)
FORMAT (1X, 'Parameter alpha ? ',$)
READ (5,20) A
IF (A.EQ.0.D0) THEN
**xx* the default value is S/6
A=5/6.D0
ENDIF

WRITE (6,137)
FORMAT (1X, 'Parameter beta ? ',$)
READ (5,20) B
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OCWSTEP OCWSTEP.FOR
0057 IF (B.EQ.0.D0) THEN

0058 c **%%*x the default value is 3

0059 B=3.D0

0060 ENDIF

0061

0062 WRITE (6,140) A,B

0063 140 FORMAT (/1X,'Simulation Parameters:',/10X, 'alpha ',

0064 * ‘parameter = ',F10.2,/10X,'beta parameter = ',F5.2)
0065

0066 C******************************************‘k******‘k*************
0067 C Open the Output File

0068

0069 OPEN (1,FILE=FNAME, STATUS='NEW')

0070

0071 C*********************************‘k*‘k*‘k***‘k*k*****‘k**************
0072 C Save the Header Information

0073

0074 WRITE (1,160) N,S,A,B

0075 160 FORMAT (25X, 'Rotation Rate Step Experiment?',/llX,

0076 * 'Orthogonal Collocation Simulation of the Current ',

0077 * 'Transient',//22X,'Orthogonal Collocation Order = ',I3,
0078 * [/26X,'Schmidt Number = ',F10.2,/25X, 'Parameter ',

0079 * ‘Alpha = ',F10.2,/28X, 'Parameter Beta = ',F5.2)

0080

0081 C***'k***********************************************************
0082 C Determine the Optimal Nodes for the Simulation

0083 C Program employs Gaussian Quadrature using the

0084 C weight function is exp[-A z**B].

0085

0086 WRITE (6,200)

0087 200 FORMAT (/1X, 'Determining Optimal Nodes ...'")

0088

0089 CALL NODE

0090

0091 C For output purposes, sort the nodes (make sure the

0092 C order is smallest to largest).

0093

0094 CALL SORTZ(N,Z,PZ2)

0095

0096 C********************************‘k****‘k***********‘k**‘k********‘k*
0097 C Save the optimal nodes

0098

0099 WRITE (1,220)

0100 220 FORMAT (/24X, 'Nodes for Orthogonal Collocation',/27X%,
0101 * vit,14X,'z[1i] ")

0102

0103 Do 250, I=1,N

0104 WRITE (1,240) I,Z2(P2(I))

0105 240 FORMAT (27X,12,10X,F13.10)

0106 250 CONTINUE

0107

0108 c************************‘k**************************************
0109 C Solve the Final Steady State and Transient EVP

0110

0111 WRITE (6,300)

0112 300 FORMAT (1X, 'Solving the Final Steady-State and °',
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OCWSTEP : OCWSTEP.FOR
0113 * 'Transient Eigenvalue Problems ...')

0114

0115 CALL EIGEN

0116

0117 c Again for output purposes, sort the eigenvalues

0118

0119 CALL SORTE (N, EVL,PE)

0120

0121 C****************‘k******‘k***‘k***'k**'k***********‘k****************
0122 C Save the eigenvalues

0123

0124 IF (ICMPLX.EQ.0) THEN

0125 C *xxx* Al]l eigenvalues are real

0126 WRITE (1,320)

0127 320 FORMAT (/6X, ‘'Eigenvalues Describing the Time-',
0128 * 'Dependence of the Current Transient',/28X,' i',
0129 * 10X, 'e[ilY)

0130 DO 350, I=1,N

0131 WRITE (1,340) I,DREAL(EVL{(PE(I)))

0132 340 FORMAT (28X,I12,4X,F17.10)

0133 350 CONTINUE

0134 ELSE

0135 C *x**x Certain eigenvalues are complex

0136 WRITE (1,360)

0137 360 FORMAT (/22X, 'Chosen values of alpha, beta, and ',
0138 * 'the',/17%, 'Schmidt number give rise to complex ',
0139 * ‘eigenvalues',//6X,

0140 * '"Eigenvalues Describing the Time-Dependence of °*,
0141 * ‘the Current Transient',/18X,' i',10X, 'real(el[i])',
0142 * 10X, 'complex(e[i]) ")

0143

0144 DO 380, I=1,N

0145 WRITE (1,370) I,DREAL(EVL(PE(I))),DIMAG(EVL(PE(I)))
0146 370 FORMAT (18X,12,7X,F17.10,4X,F17.10)

0147 380 CONTINUE '

0148 ENDIF

0149

0150

0151 C****************************‘k******'k***************************
0152 C Solve the Initial Steady-State Problem for a Given Step-
0153 c Size Parameter epsilon.

0154 C Then compute the collocation coefficients f£[i]

0155

0156 WRITE (6,400)

0157 400 FORMAT (/1X, 'Enter a value for the step-size parameter ',
0158 * 'epsilon', /1%, 'A value of zero will terminate ‘',
0159 * 'the program',6 /1X)

0160 450 WRITE (6,460)

0161 460 FORMAT (1X, 'Next value of epsilon ? ',$§)

0162 READ (5,20) E

0163

0164 IF (E.EQ.0.D0Q) GOTO 1000

0165

0166 CALL FRAC(E,F)

0167

0168

C******************************************************,*********
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Save the coefficients for this value of epsilon

WRITE (1,500) E
FORMAT (/23X,'Coefficients for Exponential Terms', /30X,
'Epsilon = ',F8.5)

IF (ICMPLX.EQ.0) THEN
***x%* Al]l collocation coefficients are real
WRITE (1,510)
FORMAT (28X,"' i',10X,'f[i]l")

DO 550, I=1,N
WRITE (1,340) I,DREAL(F(PE(I)))
CONTINUE
ELSE
**x%*%x* Certain collocation coefficients are complex
WRITE (1,560)
FORMAT (18X,' i',10X,'real (f[i])"',10%,
'complex(£{i]) ")
DO 580, I=1,N
WRITE (1,370) I,DREAL(F(PE(I))),DIMAG(F(PE(I)))
CONTINUE
ENDIF

GOTO 450

(C % %k %k &k ok Kok ko ke sk ko ok skook ke ok ok vk sk ok ke A Sk ke ok ok ke ok ke ok ok sk ok ok ok ok ke ok ke ok ke ok K Sk ok ke ok kA ok ok ok ok Rk ke ke

1000

CLOSE (1)

END

Chkikhkhkkhhhhhkhkhkhkhhhhkrhhkhhhhhkhkhhkkhkhhhkhhhkhkhkhkkhhhkhkkhkkkkhkhkhkkxxkx
C & K ok &k kok Aok ke ok ok kok ok sk ok ke gk ok ok ok kK sk sk ek sk ok o ok ok ok ok ok 9k ok ok ok ok ke ok ok K ke ok ke ok kR ok R ok R

oNeNe! a0 aaaQ

QOO0

SUBROUTINE NODE

**x*xx* Node generation subroutine
The "optimal" points for orthogonal collocation are
determined.

***x** The subroutine generates a set of polynomials that
are orthogonal on the interval z>=0 with respect to
the weight function exp[~A z**B]

***x** The "optimal" points are the roots of a polynomial
of order NZ, which is also the order of the
orthogonal collocation approximation

***%x* Note: This subroutine requires use of the gamma
function. The IMSL double precision function
DGAMMA (X) is used. If IMSL calls are not possible,
a user-supplied gamma function must be available.
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OCWSTEP.FOR

c***************************************************************

INTEGER I,J,K,N2Z,MAX
DOUBLE PRECISION A,B,2z(20),TMP,X,Y,C(20),C0,PREC, DGAMMA, S
DOUBLE PRECISION MA(20,20),MA0(20),MA00,MB(20,20),MB0(20)
DOUBLE PRECISION MBOO

EXTERNAL DGAMMA

COMMON /ZNODE/Z/PAR/NZ,A,B, S

PARAMETER (MAX=100)

PARAMETER (PREC=1.D-12)

C***************************************************************
Begin Gram-Schmidt Orthogonalization Procedure
MA and MB are arrays used in this procedure
MAO(I) and MBO(I) correspond to Ma(I,0) and MB(I,0)
MAOO corresponds to MA(0,0) and MBOO corresponds to
MB(0,0).
C is a vector used in the procedure, CO0 corresponds
to C(0)

OO0

MA(I,K) contains the coefficient for the z**K term
in the Ith-order polynomial

Qo0

C TMP, X, and Y are local variables

C *xx**x Generate the Oth-order coefficient
TMP=1.D0/B
MBOO=DSQRT ( (B*A**TMP) /DGAMMA (TMP) )
MAQ00=MBOO

C *xx** Generate the lst-order coefficients
TMP=3.D0/B
Y=DGAMMA (TMP) / (B*A**TMP)
TMP=2.D0/B
X=MAQO0*DGAMMA (TMP) / (B*A**TMP)
MB(1,1)=1.D0/DSQRT (Y~-X*X)
MA(l1l,1)=MB(1,1)
MBO (1)=-MB(1,1)*X
MAQ (1) =MBO0 (1) *MAOOQ

C ***** Each pass through the loop ending at line 100
C generates the Ith-order coefficients
DO 100, I=2,N2Z
TMP=DBLE(I+1)/B
CO=MAQO*DGAMMA (TMP) / (B*A**TMP)
X=C0*C0
DO 20, K=1,I-1°
C(K)=MAQ (K) *DGAMMA (TMP) / (B*A**TMP)
po 10, J=1,K
—DBLE(I+J+1)/B
C (K) =C (K) +MA (K, J)*DGAMMA(Y)/(B*A**Y)
10 CONTINUE
X=X+C (K) *C (K)
20 CONTINUE

TMP=DBLE (2*I+1) /B
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NODE OCWSTEP.FOR
0080 Y=DGAMMA (TMP) / (BXA**TMP)

0081 TMP=1.DO0/DSQRT (Y-X)

0082 MB(I,I)=TMP

0083

0084 MBO (I)=~TMP*C0

0085 DO 30, K=1,I-1

0086 MB(I,K)=-TMP*C (K)

0087 30 CONTINUE

0088

0089 MA (I, I)=TMP

0090 TMP=MBQ (I) *MAQO

0091 DO 40, J=1,I-1

0092 TMP=TMP+MB (I, J) *MAQ (J)

0093 40 CONTINUE

0094 MAQ (I)=TMP

0095

0096 DO 60, K=1,I-1

0097 MA(I,K)=0.DO

0098 DO 50, J=K,I-1

0099 MA(I,K)=MA(I,K)+MB(I,J)*MA(J,K)

0100 50 CONTINUE

0101 60 CONTINUE

0102 :

0103 100 CONTINUE

0104

0105 C************‘k***********‘k**************************************
0106 o The coefficients of the polynomial of order NZ have been
0107 C determined. Now the roots, 2(), are found using a

0108 C modified version of the Newton-Rapheson algorithm.

0109

0110 c The roots are stored in the vector Z() as they are found
0111 C The algorithm is designed to find the smallest roots
0112 C first, though this order is not certain.

0113

0114 C MAX is the maximum number of iterations permitted.

0115 C PREC is the precision required for successful termination
0116 C of the Newton-Rapheson algorithm.

0117

0118 C **xx** Bach pass through the loop ending at line 200

0119 C determines the Ith root; the order is smallest to
0120 C . largest

0121 DO 200, I=1,NZ

0122

0123 C **x**x Always choose zero as the seed value

0124 Z(I)=0.D0

0125

0126 c ***x** K js the iteration counter

0127 K=0

0128

0129 130 IF (K.GT.MAX) THEN

0130 WRITE (6,140)

0131 140 FORMAT (//1X,'***%%* Maximum Number of ¢,
0132 * "Iterations Exceeded in Subroutine NODE')
0133 STOP

0134 ENDIF

0135
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K=K+1

**%** Horner's Algorithm is used to evaluate the
polynomial and its derivative at the current
root approximation.

X=MA (NZ, NZ)

Y=DBLE (NZ) *MA (NZ, N2)

TMP=2Z (I)

DO 160, J=NZ-1,1,-1
X=MA (N2, J) +TMP*X
Y=DBLE (J) *MA (N2, J) +TMP*Y

CONTINUE

X=MAQ (N2) +TMP*X

*x**x%* Factor out terms involving known roots
IF (I.NE.1) THEN
DO 180, J=1,I-1
Y=Y-X/ (TMP-Z (J))
CONTINUE
ENDIF

*%*%x**x Obtain next approximation for the root using
the standard Newton-Rapheson formula
Z{I)=TMP-X/Y
TMP=DABS (TMP-Z (I))
IF (TMP.GT.PREC) GOTO 130
CONTINUE
RETURN

END

C %k % % 5k K ke ok Kk ok ok ok A ok ke ok ke ke ok ok ok ok & ok ok Sk ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ke ke ke ok ke ok ok ok ok ok ko ok
C & & % K % % %k %k Kk K 5k ok Kk sk ok Kk sk ok %k ok kK K ok ok ok ok ok ke ok ke b ke ok ok ok ok ok ok ok ok K ok ok ok ok ke A ok e ke ok Rk ok ok ok ok ke ok

[oNONe]

SUBROUTINE EIGEN

David N. Blauch September 1987
Caltech, Pasadena, CA 91125

w-Step Experiment Simulation
Orthogonal Collocation Algorithm combined with Eigenvalue
Determination

INTEGER I, IJOB, IER,K,N,ICMPLX
DOUBLE PRECISION A(20,20),B(20,20),C(20),W(20),2(20)
DOUBLE PRECISION TMP,H,S,PA,PB,E,EX,EXZ, 2B, HI, EIGRF

EISPACK subroutine is in IMSLD library (double precision)
DOUBLE PRECISION AA(400),WK(440)
COMPLEX*16 V(400),EVL(20),EVT(20,20)

EXTERNAL H,EIGRF
COMMON /INVT/A,B,C,W/ZNODE/Z/PAR/N,PA,PB,S/EVP
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COMMON /ICMPLX,EVL,EVT
c***************************************************************
N is the number of collocation points
PA 1is alpha
PB is beta
S is the Schmidt number

a0

DO 100, I=1,N

*xx** (Generate the EVP Matrices
* Kk kK k SQ in A, V in B, and v in ¢
*okok Kk The time variable is normalized by the
* %k k% final rotation rate (the Alberian
* X kxk approach)
ZB=PA*Z (I) **PB
EX=DEXP (-ZB)
ZB=PB*ZB
EXZ=EX/(Z(I)*Z(I))
EX=EX*S
HI=S*H(Z(I),0.D0)*Z(I)
C(I)=EXZ*2B* (-PB+1.D0+HI+ZB)
DO 80, K=1,N
EX=EX*Z (I)
EXZ=EXZ*Z (I)
A(I,K)=EX
TMP=DBLE (REAL (K) )
B(I,K)=EXZ* (TMP* (TMP-1.D0-HI)
* ~ZB* (2.D0*TMP+PB~1,D0~HI)+ZB*ZB)
80 CONTINUE

[oNeNoNeN?!

100 CONTINUE

C**************‘k************************************************

Set up standard EVP by transforming SQ c' =V c + w
into c¢' = A ¢ + b.

Carry out inversion procedure to obtain standard EVP

A is in A and b is in w after subroutine call

OO0

CALL INVERT (N)

c****************'k****************************‘k*****************

C Calculate Offset Vector (i.e., final solution) for c¢
C Calculate vector INV(A) w = Db
DO 150, I=1,N
C(I)=W(I)

DO 130, K=1,N
B(I,K)=A(I,K)
130 CONTINUE
150 CONTINUE

CALL PIVOT (N)

C **x*** Move b from ¢ to w
C The final solution is stored in W()
Do 170, I=1,N
W(I)=C(I)
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0080 170 CONTINUE

0081

0082

0083 C***************************************************************
0084 C Currently A is in A and b is in w

0085 C Move the EVP matrix A into AA

0086 C EISPACK expects the characteristic matrix to be in vector
0087 C form; AA is thus ready for EISPACK subroutine call

0088 ‘ ’

0089 DO 200, K=1,N

0030 DO 190, I=1,N

0091 AA (N* (K-1)+I)=A(I,K)

0092 130 CONTINUE

0093 200 CONTINUE

0094

0095

0096 C**********‘k****************************************************
0097 C Solve the EVP using EISPACK (IMSL) Subroutines

0098 c Call EIGRF to evaluate eigenvalues and eigenvectors for
0099 c the real matrix AA

0100 :

0101 C **x*x** TJOB=2 asks for eigenvalues, eigenvectors, and
0102 C performance index

0103 IJOB=2

0104 CALL EIGRF (AA,N,N, IJOB,EVL,V,N,WK, IER)

0105 WRITE (6,250) WK(1l)

0106 250 FORMAT (1X,‘'EIGRF Performance Index = ',D16.9)

0107

0108 c *x%** The EISPACK subroutine returns the complex

0109 C eigenvalues in vector EVL and the complex
0110 C eigenvectors in vector V.

0111 C Switch ICMPLX=1 if any eigenvalues or eigenvectors
0112 C are complex and 0 otherwise

0113 ICMPLX=0

0114 bo 270, I=1,N

0115 IF (DIMAG(EVL(I)) .NE. (0.D0Q)) THEN

0116 ICMPLX=1

0117 ENDIF

0118 DO 260, K=1,N

0119 EVT(K,I)=V(N* (I~-1)+K)

0120 IF (DIMAG(V(N* (I-1)+K)).NE. (0.D0)) THEN

0121 ICMPLX=1

0122 ENDIF

0123 260 CONTINUE

0124 270 CONTINUE

0125

0126 RETURN

0127

0128 END

0001

0002 c*****'k*****‘k***‘k*'k******************************************t* *
0003 C*********-k************'k**********‘k***************************t x
0004

0005 SUBROUTINE FRAC(E,F)

0006
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**x** Calculation of Initial Conditions, given the step-
size parameter epsilon.

**x** Also, calculation of coefficients f[i] for the
fractional change in current function

[eNONON?]

**x*x%* Tf the problem involves complex eigenvalues and
eigenvectors, then complex arithmetic must be used

Q0

INTEGER I,K,N,ICMPLX
DOUBLE PRECISION A(20,20),B(20,20),C(20),CF(20),2(20)
DOUBLE PRECISION CO(20),TMP,H,S,PA,PB,E,EX, 2B, HI
COMPLEX*16 EVL(20),EVT(20,20),CA(20,20),CB(20,20),CC(20)
COMPLEX*16 CCF (20),CC0(20),CTMP,F (20)

EXTERNAL H
COMMON /INVT/A,B,C,CF/ZNODE/Z/PAR/N,PA,PB, S
COMMON /CINVT/CA,CB,CC,CCF/EVP/ICMPLX,EVL, EVT

(C & %k Kk %k %k gk sk kg ke gk ok ook gk ok ok gk vk ke ok ok ke Sk ok gk ok ok e ok ok ke ke e ok ok ok ok gk o gk ke ke ok ok ok ok ke ke ok ok ok ke ok

c Main Iterative Loop
C 1) Compute initial solution (CO0)
c 2) Compute vector k

C ek % Kk K ko ke do kK koK ke ko ko ke kok Kk ok e de ok ke kg ek ok g e ke ke ke ok T ke ke ek e ke ke ke ke ke ok ok ok ok ok

C Solve the initial steady-state problem (E<>0)
bo 550, I=1,N
ZB=PA*Z (1) **PB
EX=DEXP (-2ZB) / (Z2(I)*2Z2(I))
ZB=PB*ZB
HI=S*H(Z(I),E)*Z(I)
C(I)=~EX*ZB* (-PB+1.D0+HI+ZB)
DO 530, K=1,N
EX=EX*Z (I)
TMP=DBLE (REAL (K) )
B{I,K)=EX* (TMP* (TMP-1.D0-HI)
* -ZB* (2.D0*TMP+PB-1.D0-HI)+ZB*ZB)
530 CONTINUE
550 CONTINUE

CALL PIVOT(N)
C **x*x** Transfer the initial solution from c to cO0

IF (ICMPLX.EQ.0) THEN
DO 570, I=1,N

CO(I)=C(I)
570 CONTINUE
ELSE
DO 575, I=1,N
CCO(I)=DCMPLX{(C(1),0.D0)
CCF (1) =DCMPLX (CF (I),0.D0)
575 CONTINUE
ENDIF

ChhhkhkAAAKkAKKKAKA KA KKK A A AKX A XA A A ARk IR AA A KA XA A KAk hkkhkkkhkkhkkhkkhkkkhhh k%

c Apply initial conditions; solve for k using A, c0, and b
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IF (ICMPLX.EQ.0) THEN
DO 600, K=1,N
C (K) =CO0 (K) +CF (K)
DO 580, I=1,N
B(I,K)=DREAL (EVT (I,K))
CONTINUE
CONTINUE

CALL PIVOT (N)
ELSE

DO 620, K=1,N
CC (K) =CCO (K) +CCF (K)
DO 610, I=1,N

CB(I,K)=EVT(I,K)

CONTINUE

CONTINUE

CALL CPIVOT (N)
ENDIF

(C % %k Kk k& ok ok gk ke ke ok ke ke gk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ke ok A ok ok ok ok ke ok ok ok ke ke ok ok ke ke ok ok Kk ke

C
C
c

650

660

Output solution for current epsilon
**%%x%%* TMP is the normalization constant for f (tau)
**%x%* function
IF (ICMPLX.EQ.0) THEN
TMP=-C0 (1) -CF (1)
ELSE
CTMP=-CC0 (1) -CCF (1)
ENDIF

**xx** Calculation the coefficients, f[i]l, for the
fractional change in current function
IF (ICMPLX.EQ.0) THEN
DO 650, I=1,N
F(I)=DCMPLX (DREAL(EVT(1,I))*C(I)/TMP,0.D0)

CONTINUE

ELSE
DO 660, I=1,N

F(I)=EVT(1,I)*CC(I)/CTMP

CONTINUE

ENDIF

RETURN

END

C % % % K %k Kk ok K de ok ok kK ke ko sk ke A ok ok ok %k gk ok ok ok ok ok ok Sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok Kk Xk

Chhkkkkkkhkhkkkkkdhkdkkkhkkkkhkkdkkhkkkkkdkkdkkkkkkkkkdkkkkdkkkkkkkkkkkkkkkxkxk

[eNeNONe!

DOUBLE PRECISION FUNCTION H(Z,E)

Hydrodynamic Velocity Function
Z = dimensionless displacement
E = epsilon = step size parameter
All parameters are normalized by the final rotation
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rate
E=0 corresponds to final velocity profile
E<>0 corresponds to initial velocity profile
DOUBLE PRECISION Z,E,X
X=2Z2/(1.DO+E)
H=X*X* (-0.51023D0+X* (1.D0-0.30795D0*X) /3.D0)/ (1.DO+E)
RETURN

END

C & % & % % %k sk ook ok ok Kk ok Kk ok ok ke ok ok sk ok ok ok ke ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok kK ok ok ok ok ok ok ok k ki ok k
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50

60

100

SUBROUTINE PIVOT (N)

David N. Blauch January 1987
Caltech, Pasadena, CA 91125

Gaussian Elimination with Scaled Column Pivoting

The linear system A x = b is solved
The matrix A is altered
The solution is returned in the vector B

INTEGER I,J,N,NCOPY,P,NROW(20)
DOUBLE PRECISION A(20,20),B(20),S(20),TMP,R(20,20),W(20)

COMMON /INVT/R,A,B,W

Initialize the Row Pointer NROW and
Determine the Scaling Factors §

bo 100, I=1,N
S(1)=0.D0

bo 56, J=1,N
IF (S(I).LT.DABS(A(I,J))) THEN
S(I)=DABS(A(I,J))
ENDIF
CONTINUE

IF (S(I).EQ.0.D0) THEN
WRITE (6,60)
FORMAT (/X,'***** No Unique Solution in ‘',
'Subroutine PIVOT')
STOP
ENDIF

NROW(I)=I

CONTINUE
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0044

0045 C Begin the Gaussian Elimination Process

0046

0047 bo 200, I=1,N-1

0048

0049 P=I

06050 TMP=DABS (A (NROW (P),I)) /S (NROW(P))
0051

0052 DO 120, J=I+1,N

0053 IF (TMP.LT.DABS (A (NROW(J),I))/S(NROW(J))) THEN
0054 P=J

0055 TMP=DABS (A (NROW(P) ,I)) /S (NROW(P))
0056 ENDIF

0057 120 CONTINUE

0058

0059 IF (A(NROW(P),I).EQ.0.D0) THEN

0060 WRITE (6,60)

0061 STOP

0062 ENDIF

0063

0064 IF (NROW(I).NE.NROW(P)) THEN

0065 NCOPY=NROW (I)

0066 NROW (I)=NROW (P)

0067 NROW (P) =NCOPY

0068 ENDIF

0069

0070 DO 160, J=I+1,N

0071 IF (A(NROW(J),I).EQ.0.D0) GOTO 160
0072 TMP=A (NROW (J) ,I) /A(NROW(I), I)
0073 DO 140, K=I+1,N

0074 A (NROW (J) , K) =A (NROW (J) , K)
0075 * -TMP*A (NROW(I),K)
0076 140 CONTINUE

0077 B (NROW (J) ) =B (NROW (J) ) -TMP*B (NROW (I))
0078 160 CONTINUE

0079

0080 200 CONTINUE

0081 '

0082 IF (A(NROW(N),N).EQ.0.D0) THEN

0083 WRITE (6,60)

0084 STOP

0085 ENDIF

0086

0087

0088 C Begin Backward Substitution

0089

0090

0091 S (N) =B (NROW (N) ) /A (NROW (N) , N)

0092

0093 Do 300, I=N-1,1,-1

0094

0095 TMP=0.D0

0096 DO 250, J=I+1,N

0097 TMP=TMP+A (NROW (I),J) *S (J)

0098 250 CONTINUE

0098
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S(I)=(B(NROW(I))-TMP) /A (NROW(I),I)
CONTINUE
DO 400, I=1,N

B(I)=S(I)
CONTINUE

RETURN

END

Chhxhhkhkkhhkkhhkhhkhkhkkhhkhkkhkhhhkhkhhhkhkhhhhkhhkhkhhkkkhkhkhkkhkkkkkhkkkkkkk &k
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SUBROUTINE CPIVOT (N)

David N. Blauch January 1987
Caltech, Pasadena, CA 91125

Gaussian Elimination with Scaled Column Pivoting
The linear system A x = b is solved
The matrix A is altered

The solution is returned in the vector B

Subroutine written for complex variables

C 7 K & %k ok ok ko ok Kk ke K sk ok ok gk ok ok ok ok ok ke ok ke %k ke ke ok ok ok Tk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ke ke ok ok ok ke ok ke ok ok

50

60

INTEGER I,J,N,NCOPY,P,NROW(20)
COMPLEX*16 A (20,20),B(20),S(20),TMP,R(20,20),W(20)

COMMON /CINVT/R,A,B,W

Initialize the Row Pointer NROW and
Determine the Scaling Factors S

Do 100, I=1,N
S(I)=DCMPLX (0.D0, 0.D0)

DO 50, J=1,N
IF (CDABS(S(I)).LT.CDABS(A(I,J))) THEN
S (I)=DCMPLX (CDABS (A (I,J)),0.D0)
ENDIF
CONTINUE

IF (S(I).EQ.0.D0) THEN
WRITE (6,60)
FORMAT (/X,'***x**x No Unique Solution in ',
'Subroutine PIVOT')
STOP
ENDIF
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0045 :

0046 NROW(I)=I

0047

0048 100 CONTINUE

0049

0050 C Begin the Gaussian Elimination Process
0051

0052 DO 200, I=1,N-1

0053

0054 p=I

0055 TMP=DCMPLX (CDABS (A (NROW(P) ,I) /S (NROW(P))),0.D0)
0056

0057 DO 120, J=I+1,N

0058 IF (CDABS (TMP) .LT.CDABS (A(NROW(J),I)/S(NROW(J)))) THEN
0059 p=J

0060 TMP=DCMPLX (CDABS (A (NROW(P) ,I) /S(NROW(P))),0.D0)
0061 ENDIF

0062 120 CONTINUE

0063

0064 IF (A(NROW(P),I).EQ.0.DQ) THEN

0065 WRITE (6,60)

0066 STOP

0067 ENDIF

0068

0069 IF (NROW(I) .NE.NROW(P)) THEN

0070 NCOPY=NROW (1)

0071 NROW (I)=NROW (P)

0072 NROW (P) =NCOPY

0073 ENDIF

0074

0075 DO 160, J=I+1,N

0076 IF (A(NROW(J),I).EQ.0.D0) GOTO 160
0077 TMP=A (NROW (J) ,I) /A(NROW(I), I)

0078 DO 140, K=I+1,N

0079 A (NROW (J) , K) =A (NROW (J) , K)
0080 * ~TMP *A (NROW (I) , K)

0081 140 CONTINUE

0082 B (NROW (J) ) =B (NROW (J) ) -TMP*B (NROW (1))
0083 160 CONTINUE

0084

0085 200 CONTINUE

0086

0087 IF (A(NROW(N),N).EQ.0.D0) THEN

0088 WRITE (6,60)

0089 STOP

0090 ENDIF

0091

0092

0093 c Begin Backward Substitution

0094

0095

0096 S (N) =B (NROW (N) ) /A (NROW (N) , N)

0097

0098 DO 300, I=N-1,1,-1

0099

0100 TMP=DCMPLX (0.D0, 0.D0)
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DO 250, J=I+1,N
TMP=TMP+A (NROW (I), J) *S (J)
250 CONTINUE
S(I)=(B(NROW(I))-TMP) /A (NROW(I),I)
300 CONTINUE
DO 400, I=1,N
B(I)=S(I)
400 CONTINUE
RETURN

END

ChhkdkkhhkkkhhhkhkhhkkhkhkhkhkhkkkhkhkhhkhkdkhhkkhkkkhhhhhkkhkhkhkhkhhhkhkhkhhkhkxhAkkhkhkkkkk
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SUBROQUTINE INVERT (N)

cC Matrix Inversion Subroutine

C Gaussian Elimination with Scaled Column Pivoting
C Transforms the Linear System A x = B x + ¢ into
C x = U x +wwith Uin A and w in s

INTEGER I,J,K,N,P,NROW(20)
DOUBLE PRECISION A(20,20),B(20,20),C(20),S(20),TMP, MAX

COMMON /INVT/A,B,C,S
cC Set Up Scaling Factors and Initialize Row Pointer NROW

DO 200, I=1,N
MAX=DABS (A (I,1))
DO 100, J=2,N
TMP=DABS (A(I, J))
IF (TMP.GT.MAX) THEN

MAX=TMP
ENDIF
100 CONTINUE
IF (MAX.EQ.0.D0) GOTO 1000
S (I)=MAX
NROW (I)=I

200 CONTINUE

DO 300, I=1,N
IF (I.EQ.N) GOTO 255
C Find Pivots

P=I
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0041 MAX=DABS (A (NROW(I),I))/S(I)

0042 DO 250, J=I+1,N

0043 TMP=DABS (A (NROW{(J) ,I)) /S (J)

0044 IF (TMP.GT.MAX) THEN

0045 P=g

0046 MAX=TMP

0047 ENDIF

0048 250 CONTINUE

0049

0050 IF (MAX.EQ.0.D0) GOTO 1000

0051

0052

0053 C Carry Out Row Exchanges (if necessary)
0054

0055 IF (NROW(I) .NE.NROW(P)) THEN

0056 TMP=NROW (I)

0057 NROW (I) =NROW (P)

0058 NROW (P ) =TMP

0059 ENDIF

0060

0061

0062 C Normalize Row I in A

0063

0064 255 TMP=A (NROW (I), I)

0065 DO 260, K=1,N

0066 IF (K.GE.I) THEN

0067 A (NROW(I),K)=A(NROW(I),hK)/TMP
0068 ENDIF

0069 B (NROW(I),K)=B(NROW(I),hK)/TMP

0070 260 CONTINUE

0071 C (NROW (I) ) =C(NROW(I)) /TMP

0072

0073

0074 C Eliminate on the Remaining Rows

0075

0076 DO 290, J=1,N

0077

0078 IF (J.NE.I) THEN

0079 TMP=A (NROW (J) , I)

0080 DO 280, K=1,N

0081 IF (K.GE.I) THEN

0082 A(NROW(J),K)=A (NROW (J) , K) -TMP*A (NROW (I) ,K)
0083 ENDIF

0084 B (NROW (J) ,K)=B (NROW(J) ,K) -TMP*B (NROW (I) , K)
0085 280 CONTINUE

0086 C (NROW (J) )} =C (NROW (J) ) -TMP*C (NROW(I))
0087 ENDIF

0088

0089 290 CONTINUE

0090

0091 300 CONTINUE

0092

0083 c Elimination Complete, return rows to original positions
0094

0095 Do 500, I=1,N

0096 S(I)=C(NROW(I))
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0097 DO 400, J=1,N

0098 A(I,J)=B(NROW(I),J)

0099 400 CONTINUE

0100 500 CONTINUE

0101

0102 RETURN

0103

0104 C Algorithm Failure Handler

0105

0106 1000 WRITE (6,1010)

0107 1010 FORMAT (/1X,'***** gSubroutine INVERT Aborted',/7X,
0108 * 'Matrix cannot be inverted or no unique ',

0109 * ‘solution exists')

0110 STOP

0111

0112 END

0001

0002 C***************************************‘k******************‘k**‘k*
0003 C*************************************‘k****************‘k*******k*
0004

0005 SUBROUTINE SORTZ(N,KY,P)

0006

0007 C *x*x* Straight Insertion Sort

0008 C algorithm refined for sorting collocation nodes
0009

0010 C *x***x The keys are in vector KY

0011 C ***** The subroutine sets up the pointers in P

0012

0013 C *x*%%* The list is sorted so that the I-th smallest key is
0014 C KY(P(I))

0015

0016 C **x*** The nodes are sorted from smallest to largest
0017

0018 INTEGER I,J,K,N,P(20)

0019 DOUBLE PRECISION KY (20)

0020

0021 P(1)=1

0022

0023 C *k*k** Fach pass adds the KY(I) to the list of sorted keys
0024 DO 100, I=2,N

0025

0026 J=0

0027

0028 30 J=J+1

0029

0030 C Have all sorted keys been checked?

0031 IF (J.GE.I) GOTO 80

0032

0033 C Is the current entry less than or equal to KY(I)?
0034 IF ((KY(P(J))).LE. (KY{(I))) GOTO 30

0035

0036 C Insert the new key KY(I)

0037 DO 60, K=I,J+1,-1

0038 P (K) =P (K-1)

0039 60 CONTINUE
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P(J)=I

100 CONTINUE

RETURN

END

C k% & %k Kk J ke k Kk e e koK ek Kk ke Kok e e do e kg ke ke ok gk ke e e ok o ke ok ok ok ok gk ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok
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SUBROUTINE SORTE (N, KY,P)

C **x***x Straight Insertion Sort
o algorithm refined for sorting eigenvalues
C **x*%x* The keys are in vector KY
C **x*x* The subroutine sets up the pointers in P
c *%x**x* The list is sorted so that the I-th smallest key is
C KY (P(I))
C *xx** The eigenvalues are sorted from largest to smallest
C i.e., least negative to most negative based upon
C the real part of the eigenvalue
INTEGER I,J,K,N,P(20)
COMPLEX*16 KY(20)
P(l)=1
C *x*%*x Each pass adds the KY{(I) to the list of sorted keys
DO 100, I=2,N
J=0
30 J=J+1
C Have all sorted keys been checked?
IF (J.GE.I) GOTO 80
c Is the current entry >= KY(I)?
IF (DREAL(KY(P(J))).GE.DREAL(KY(I))) GOTO 30
C Insert the new key KY(I)
DO 60, K=I,J+1,-1
P (K) =P (K-1)
60 CONTINUE
80 P(J)=I
100 CONTINUE
RETURN
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0048
0049 END
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The program FDWSTEP simulates the current transient resulting
from a step or "ramp"” change in rotation rate using the finite
difference method described in Chapter 3. When FDWSTEP is
executed, the user is prompted for the Schmidt number S, the step
size parameter €, and the delay time tTp. All three of these
parameters must be entered as floating-point values; i.e., a decimal
point must be included. The computer will then request the total
number of spatial nodes N, the maximum dimensionless time tgmax,
and the total number of temporal intervals M. The maximum
dimensionless time 1tpax must be a floating-point value; N and M are
integers. Finally, the name of the output file is requested (maximum
twelve characters).

The maximum displacement appropriate for the simulation is
determined from the Schmidt number using the formula zn=5S-1/3,
The temporal spacing is k=tyax/M. The initial and final steady-state
concentration profiles are computed first; then the time-dependent
problem is solved. After all computations are complete, the
simulation parameters and results are written to the output file and
program execution is terminated.

The subroutine BCROUT performs Crout's LU factorization of a
"hexa-diagonal" matrix such as P, illustrated in Equation 3.14. No

pivoting strategies are employed.
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0001 PROGRAM FDWSTEP

0002

0003 C David N. Blauch March 1988, Revised June 1990
0004 C Caltech, Pasadena, CA 91125

0005

0006 C**************************************‘k************************
0007 C Rotation-Rate Step Experiment

0008 C Finite Difference Simulation of the Current Transient
0009

0010 c***************************************‘k***********************
0011 o] Algorithm includes the possibility of a nonperfect step
0012 C change in rotation rate.

0013

0014 INTEGER I,J,L,N,M,LL

0015 DOUBLE PRECISION HV,A(200,6),B(200,6),2,H, TMP,S,E,ZINF, T
0016 DOUBLE PRECISION DT, C(200),GRAD(5000),F(5000),GRADO,R,TD
0017 DOUBLE PRECISION TAU(5000), GRADF,DGRAD

0018 CHARACTER*12 FNAME

0019

0020 COMMON /BCRTRED/A,C

0021 EXTERNAL HV, BCROUT

0022

0023 C**********************************************************‘k****
0024

0025 C x*xx*x* System Parameters

0026

0027 WRITE (*,20)

0028 20 FORMAT (///25X, 'Rotation-Rate Step Experiment', /13X,
0029 * 'Finite Difference Simulation of the Current Transient',
0030 * //1X,'System Parameters:', /10X, 'Schmidt number ? ',8)
0031 READ (*,30) S

0032 30 FORMAT (D16.9)

0033

0034 WRITE (*,40)

0035 40 FORMAT (10X, 'Step-Size Parameter (epsilon) 2 ',$)

0036 READ (*,30) E

0037

0038 WRITE (*,60)

0039 60 FORMAT (10X, 'Dimensionless Delay Time for Change in ',
0040 * ‘Rotation Rate ? ',$)

0041 READ (*,30) TD

0042 IF (TD.LT.0.D0) THEN

0043 WRITE (*,70)

0044 70 FORMAT (/1X,'$$$$$S Delay Time Cannot be Negative')
0045 STOP

0046 ENDIF

0047

0048 C **xx* Get Spatial Parameters

0049

0050 WRITE (*,100)

0051 100 FORMAT (/1X,'Simulation Parameters:', /10X, "Number of ',
0052 * 'Spatial Intervals (maximum 200) 2 ',$)

0053 READ (*,130) N

0054 130 FORMAT (I8)

0055

0056 c ***x** The maximum displacement is obtained from the
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0057 C Schmidt number

0058

0059 ZINF=5.D0/S**(1.D0/3.D0)

0060

0061 C **x%xx* Calculate the spatial step size

0062

0063 H=ZINF/DBLE (REAL(N))

0064

0065 C ***x*x*x Get Temporal Parameters

0066

0067 WRITE (*,150)

0068 150 FORMAT (10X, 'Final Dimensionless Time ? ',$)
0069 READ (*,30) DT

0070

0071 WRITE (*,170) _

0072 170 FORMAT (10X, 'Number Temporal Intervals ? ',$)
0073 READ (*,130) M

0074

0075 C *xx** Calculate the Temporal Step Size

0076

0077 DT=DT/DBLE (M)

0078

0079 C ***** Get the file specification

0080

0081 WRITE (*,180)

0082 180 FORMAT (/1X, 'Output Specifications:',/10X, 'Name of ',
0083 * 'Qutput File ? ',$)

0084 READ (*,190) FNAME

0085 190 FORMAT (Al12)

0086

0087 C***************************************************************
0088 c *x*%%x Compute the computational constant R
0089 R=120.D0*S*H*H/DT

0090

0091 c **x** Create the Linear System for Determination of the
0092 C Final Solution

0093

-0094 T=TD+1.D0

0095 DO 250, I=1,N

0096 2=DBLE (1) *H

0097 TMP=S*HV (Z, T, E, TD) *H

0098 A(I,1)=50.D0+12.DO*TMP

0099 A(I1,2)=-75.D0+65.D0*TMP

0100 A(I,3)=-20.D0-120.D0*TMP

0101 A(I,4)=70.D0+60.D0*TMP

0102 A(I,5)=-30.D0-20.D0*TMP

0103 A(I,6)=5.D0+3.DO*TMP

0104 C(I)=0.DO

0105 250 CONTINUE

0106 C(1)=-50.D0-12.D0*S*HV(H,T,E,TD) *H

0107

0108 c ***x** Solve the linear system; the final concentration
0109 C profile is returned in C().

0110

0111 CALL BCROUT (N)

0112
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0113 C *x%x** Determine the initial dimensionless gradient at the
0114 C electrode surface

0115

0116 GRADF= (-3.D0*C(4)+16.D0*C(3)-36.D0*C(2)+48.D0*C(1)-25.D0)
0117 * /(12.D0*H)

0118

0119 C***-k'k*******************************‘k**************************
0120 C *x***x Create the Linear System for Determination of the
0121 C Initial Solution

0122

0123 DO 280, I=1,N

0124 Z=DBLE (I)*H

0125 TMP=S*HV (Z,-1.D0,E, TD) *H

0126 A(I,1)=50.D0+12.D0*TMP

0127 A(I,2)=-75.D0+65.D0*TMP

0128 A(I,3)=-20.D0~-120.D0*TMP

0129 A(I,4)=70.D0+60.D0O*TMP

0130 A(I,5)=-30.D0-20.D0O*TMP

0131 A(I,6)=5.D0+3.DO*TMP

0132 TMP=S*HV (%, 0.D0,E, TD) *H

0133 B(I,1)=50.D0+12.DQ*TMP

0134 B(I,2)=-75.D0+65.D0*TMP+R

0135 B(I,3)=-20.D0-120.D0*TMP

0136 B(I,4)=70.D0+60.D0*TMP

0137 B(I,5)=-30.D0-20.D0*TMP

0138 : B(I,6)=5.D0+3.D0*TMP

0139 C(I)=0.DO0

0140 280 CONTINUE

0141 C(1l)=-50.D0-12.D0*S*HV(H,-1.D0,E,TD) *H

0142

0143 o] *x*x*x*x Solve the linear system; the initial concentration
0144 C profile is returned in C{).

0145

0146 CALL BCROUT (N)

0147

0148 c xx**x* Determine the initial dimensionless gradient at the
0149 C electrode surface

0150

0151 GRADO=(~3.D0*C(4)+16.D0*C(3)~-36.D0*C(2)+48.D0*C(1)-25.D0)
0152 * / (12.D0O*H)

0153

0154 DGRAD=GRADF-GRADO

0155

0156 C**************************************************k***'k********i
0157 C Main Loop

0158 C B contains the iteration matrix, which is updated
0159 C at each iteration and is used to calculate A
0160

0161 DO 1000, J=1,M

0162 T=DBLE (REAL (J) ) *DT

0163 '

0164 Z=-100.D0-12.D0*S*H* (HV(H,T,E, TD)+HV (H, T-DT,E, TD))
0165 DO 320, I=1,5

0le66 Z2=2-B(1,I+1)*C(I)

0167 320 CONTINUE

0168 DO 360, I=2,N
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0169 TMP=0.D0

0170 IF (I+4.GT.N) THEN

0171 LL=N-I+2

0172 ELSE

0173 LL=6

0174 ENDIF

0175 DO 340, L=1,LL

0176 TMP=TMP-B (I, L) *C(I+L-2)

0177 340 CONTINUE

0178 C(I-1)=2

0179 Z=TMP

0180 360 CONTINUE

0181 C(N)=2

0182

0183 C **k*xx*x The matrices need only be recalculated
0184 C when T-2DT<TD; i.e., the hydrodynamic
0185 c velocity profile is still changing with time
0186

0187 IF ((T-2.D0*DT).LE.TD) THEN

0188 DO 400, I=1,N

0189 Z=DBLE (I)*H

0190 TMP=S5*HV (Z,T,E,TD) *H

0191 A(I,1)=50.D0+12.D0*TMP

0192 A(I,2)==-75.D0+65.D0*TMP~R

0193 A(I,3)=-20.D0-120.D0*TMP

0194 A(I,4)=70.D0+60.D0*TMP

0195 A(I,5)=-30.D0-20.D0*TMP

0196 A(I,6)=5.D0+3.DO*TMP

0197 DO 380, L=1,6

0198 B(I,L)=A(I,L)

0199 380 CONTINUE

0200 B(I,2)=B(I,2)+2.D0*R

0201 400 CONTINUE

0202 ELSE

0203 Do 500, I=1,N

0204 DO 480, L=1,6

0205 A(I,L)=B(I,L)

0206 480 CONTINUE

0207 A(I,2)=A(I1,2)-2.DO0*R

0208 500 CONTINUE

0209 ENDIF

0210

0211 C *%xx*x* Solve the linear system for this step
0212

0213 CALL BCROUT (N)

0214

0215 c **x*x** Save the results of this step (they will be
0216 C stored in the output file later)

0217

0218 TAU (J) =T

0219

0220 GRAD (J)=(-3.D0*C(4)+16.D0*C(3)~36.D0*C(2)
0221 * +48.D0*C(1)~-25.D0) /(12.D0O*H)

0222 F (J)=(GRAD (J) ~GRAD() /DGRAD

0223

0224 1000 CONTINUE
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0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
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Crh AR A A AR AR KA AR A AR AR A A AR I AR AR I AR A IR IR I AL AR IR A KA KRR ARk A AKX A * %

C

1200

1300

1400
1500

o% % A % % % % X% %

Open the Output File
OPEN (1,FILE=FNAME, STATUS='NEW')
**xxx* Store the Header and Simulation Information

WRITE (1,1200) S,E,TD,N,H,M,DT,GRADO,GRADF, DGRAD
FORMAT (25X, 'Rotation Rate Step Experiment', /13X,

'Finite Difference Simulation of the Current Transient?,
//25X, 'Schmidt number = ',F12.2,/21X,'Step Size ',
'Parameter Epsilon = ',F7.4,/8X, 'Dimensionless ‘',
'Delay Time for Change in Rotation Rate = ',F7.4,
//19%X,14,"' spatial intervals of size ',F10.8,/18X,

I5,' temporal intervals of size ',F12.6,

//20X, '"Initial Gradient (z=0) = ',D16.9,

/20X, 'Final Gradient (2z=0) = ',D16.9,

/15X, 'Total Change in Gradient (z=0) = ',D16.9,

//20%X, ‘*tau', 14X, 'gradient',9X, '£[tau]l ', /1X)
*xx** Store the Initial Gradient, etc.

WRITE (1,1300) 0.DO0,GRADO,0.DO
FORMAT (16X,F12.6,5X,F13.8,5X,F12.10)

*x*x*x* Store the rest of the results
DO 1500, I=1,M

WRITE (1,1400) TAU(I),GRAD(I),F(I)
FORMAT (16X,F12.6,5X,F13.8,5X,F12.10)

CONTINUE
CLOSE (1)
END

C & % %k ok k ke ko sk ok ok sk ke ke ke ok sk ok ok ok ok ke ok ok ke sk ok ok ok ke ok ok ok ok ok ke gk ok ok ok ke ok ok ok ok ok ok ok ok ok ok k ok ok ok ok ok ok
(C % % % %k k% ok ok kK ok ke ok ke ok ke ok ke ke ke ke vk ok ok ke kA sk sk ok ok e e ok ke ko ke Rk ok ok ke gk ok ke sk ok ke ke Rk ok Kk ok ok ok ok ok kX

QOO0

DOUBLE PRECISION FUNCTION HV(Z,T,E,TD)

Hydrodynamic Velocity Function
Z 1is the dimensionless displacement
E 1is the step-size parameter
T is the dimensionless time
TD is the step delay time, i.e. ramp time

DOUBLE PRECISION Z,E,Y,T,X,VA,VB,VC,TD,U
PARAMETER (VA=-0.51023D0)

PARAMETER (VB=1.D0)
PARAMETER (VC=-0.30795D0)

C ok % % %k ek Kk ok Kk ok ke k Kk ok ke ok ko ok kK ok ok A ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok vk ok ke ok ok ok ok Rk b ok ok ke ke ok ok X
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0020
0021
0022
0023
0024
0025
0026
0027
0028
0025
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
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The formulation of the rotation-rate step problem
includes normalization by the final rotation rate.

*x*** The function U; i.e., U[T], corresponds to the ramp
function. If TD=0, the U is a step function
IF (T.LT.0.D0) THEN
U=0.D0
ELSEIF (T.LT.TD) THEN
U=T/TD
ELSE
U=1.D0
ENDIF

***%* The variable X is the normalization factor used to
scale the dimensionless displacement. This factor
is required to compensate for the fact that the
current rotation rate is different from that used
for the normalization. Once the final rotation
rate has been reached, X=1

X=(1.DO+E*U) / (1.DO+E)

**xx%*% Y is the scaled dimensionless displacement

Y=X*Z

*x***x HYV is the dimensionless hydrodynamic velocity
function as described by Cochran (Reference 6)

HV=X*Y*Y* (VA+Y* (VB+Y*VC) /3.D0)
RETURN

END

c***************************************************************

C***************************************************************

[oNe!

OO0 O

an

SUBROUTINE BCROUT (N)

David N. Blauch September 1987
Caltech, Pasadena, CA 91125

Gaussian Elimination of an Assymetric "6-Diagonal" Matrix

*x*x* The finite difference algorithm implemented in the
main program gives rise to a matrix whose only non-

zero entries occur on the main diagonal, the diagonal
immediately below the main diagonal, and the four
diagonals immediately above the main diagonal.

x*x*kx* This subroutine is a direct factorization algorithm
that takes advantage of this symmetry.

*x**x* No pivoting strategies are employed
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0022

0023 INTEGER I,N,L,J

0024 DOUBLE PRECISION A(200,6),B(200),TMP, SUB

0025

0026 COMMON /BCRTRED/A,B

0027

0028 C**************************************t******‘k*****************
0029 C Only the six nonzero diagonals of the relevant matrix
0030 C are stored.

0031

0032 c *xkxx Tf A() is the matrix as implemented in this program
0033 C and M is the actual NxN matrix, then the storage
0034 c format is as follows:

0035

0036 C A(I,J) corresponds to M(I,I+J-2)

0037

0038 c *xx** Thus the main diagonal of M is stored as the column
0039 C A( ,2)

0040

0041 C******k*******************************‘k*****‘k*******************
0042 C Normalization and Forward Elimination

0043 DO 100, I=1,N-1

0044 TMP=A (I, 2)

0045 A(I,2)=1.DO

0046 SUB=A(I+1,1)

0047 IF (I+4.GT.N) THEN

0048 L=N-I

0049 ELSE

0050 L=4

0051 ENDIF

0052 DO 50, J=1,L

0053 A(I,2+J)=A(I,2+J)/TMP _

0054 A(I+1,1+J)=A(I+1,1+J)~-SUB*A(I,2+J)

0055 50 CONTINUE

0056 B(I)=B(I)/TMP

0057 B(I+1)=B(I+1)-SUB*B(I)

0058 100 CONTINUE

0059

0060 C Backward Substitution

0061 B(N)=B(N) /A (N,2)

0062 Do 200, I=N-1,1,-1

0063 TMP=0.D0

0064 IF (I+4.GT.N) THEN

0065 L=N-1I

0066 ELSE

0067 L=4

0068 ENDIF

0069 DO 150, J=1,L

0070 TMP=TMP+A (I, 2+J) *B(I+J)

0071 150 CONTINUE

0072 B(I)=B(I)-TMP

0073 200 CONTINUE

0074

0075 RETURN

0076

0077 END
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ION-PAIRING AND ELECTRIC FIELD
EFFECTS ON ELECTRON HOPPING IN THE
NAFION-TRIS(2,2°-BIPYRIDINE)OSMIUM3+/2+) SYSTEM
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Tris(2,2’-bipyridine)osmium(3+/2+) Redox Couple

Incorporated into Nafion
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Introduction

The creation and characterization of polymeric electrode coatings
containing covalently, coordinatively, or electrostatically bound redox
centers have been a field of intense research during the past two
decades.l In conjunction with the experimental work in this area, a
theoretical framework describing the mechanisms and rate laws
governing charge propagation within such coatings has been
developed.2-14 Beyond their intrinsic significance, the mechanisms of
charge transport in "redox polymers” are important in light of their
implications regarding the electrocatalytic properties of coated
electrodes,15 because charge propagation, together with kinetics and
the rate of substrate permeation of the coating, is a potential rate-
limiting factor in catalytic applications.l6

Charge propagation across redox polymers requires the presence
of a concentration gradient of the oxidized and reduced forms of the
redox species. For this reason, the rates of charge propagation in
redox polymer films have been investigated most often by
electrochemical techniques,17 the most commonly used techniques
being chronocoulometry and chronoamperometry. In all cases, the
chronocoulometric or chronoamperometric response has been
observed to obey the Cottrell equation; i.e., the charge or current is
proportional to the square root of time or to its inverse, resﬁectively.
providing the time scale is sufficiently short that the region of the
film adjacent to the electrode surface in which a sizeable
concentration gradient exists is small compared to the film
thickness.18  Such observations have led to the notion that charge

propagation through redox polymers can be regarded as a diffusional
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process, or at least equivalent to a diffusional process, which can be
characterized by an apparent diffusion coefficient, Dyp.

Redox species attached to polymeric coatings by covalent or
coordinative bonds are immobile; therefore, charge propagation
must occur by means of electron hopping between adjacent pairs of
oxidized and reduced redox centers. The way in which this sort of
electron hopping can result in diffusion-like behavior was first
explained by means of a stochastic model in which the redox centers
are regarded as randomly distributed over a fictitious cubic lattice
whose characteristic length is equal to the average hopping distance,
5.133,19  The electron hopping process is found to obey Fick's laws of
diffusion with the rate of charge propagation being characterized by
an electron hopping diffusidn coefficient, D1, defined by

— _ k8 C,

D, = k, 8*C, —, (5.1)

where k, is the second-ordér, activation-limited rate constant for
electron transfer between two adjacent sites on the fictitious lattice,
Cg is the total concentration of redox centers, and ki=6k, is the
conventional, second-order, activation-limited rate constant ‘for
electron self-exchange. (The factor of six arises because each node of
the lattice is surrounded by six neighbors.) In this case, the apparent
diffusion coefficient for charge transport is simply the electron-
hopping diffusion coefficient.

In the case of electrostatically bound redox species, physical

diffusive displacement may contribute significantly to charge
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propagation. The combined effects of physical displacement and
electron hopping also result in overall diffusive behavior that obeys
Fick's laws. The apparent diffusion coefficient in this case is the sum
of the diffusion coefficients for physical displacement, Dp4, and

electron hopping, D;:20

k, 8% C,

G (5.2)

D,=D, +D =D, +

Attempts to observe variations in the apparent diffusion coefficients
with the concentration of redox sites have led to a variety of results,
only some of which appear consistent with the predictions of
Equation 5.2.3¢ Improvements in the theoretical model of charge
propagation within redox polymers appear necessary.

A significant theoretical refinement arises from the observation
that the maintenance of electroneutrality requires that electron
movement be coupled with the physical displacement of
electroinactive counterions, a situation analogous to that associated
with ordinary solutions of electroactive reagents containing little or
no supporting electrolyte, where migration of charged reactants in
the electric field affects the rate of charge transport. Theoretical
analysis?21 of such solution systems is based upon the classical
Nernst-Planck-Fick equation. In the case of electron hopping in
redox polymer films, low concentrations or mobilities of
electroinactive counterions also produce electric fields that affect
charge propagation rates. The "migration” of electrons, however, is

not governed by the classical Nernst-Planck-Fick equation but by a
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related equation derived by Saveant.222-b  Analyses of the responses
expected in both steady-state22¢ and transient22d experiments show
that the presence of an electric field always enhances the rate of
electron hopping, and the enhancement grows as the mobility of the
electroinactive counterion decreases. Thus, earlier
suggestions,12.6,7a-c,9a that charge propagation rates in redox
polymer films might be controlled by the intrinsically slower of the
two coupled processes of electron hopping and counterion
displacement, seem incorrect. On the contrary, the slower the
movement of the electroinactive ions, the faster the electron hopping
and the larger the resulting current densities. In all cases, potential
step experiments display Cottrellian behavior from which apparent
diffusion coefficients can be evaluated. These apparent diffusion
coefficients increase with the concentration of redox centers more
steeply than the simple proportionality indicated in Equation 5.2.
This feature has been used to interpret22d previous observations
made with polyvinylpyridine copolymers containing coordinatively
attached osmium and ruthenium redox centers.l1¢

In view of the high ionic content of typical redox polymers and of
the hydrophobic character of large portions of their structures, ionic
aggregation in redox polymers is expected to be commonplace.23 A
simple and convenient way to treat ionic interactions is in terms of
ion-pairing equilibria. The ion-pairing equilibria under consideration
involve the formation of tight, contact ion-pairs between the fixed,
charged sites in the polyelectrolyte film and the electroactive
counterions. Henceforth we will employ "ion-pair" and "ion-pairing"

to designate this process. The basic relationships governing the ways
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in which ion-pairing affects electron-hopping rates in redox
polymers in the presence of electric fields have been established
recently.22b.24  These relationships predict apparent diffusion
coefficients, obtained from steady-state responses, that show steep
increases with the concentration of redox sites when the ion-pairing
equilibrium constants are large.22b

The goals of the work reported in Part II of this thesis are to
extend the relevant theoretical treatment for charge propagation in
redox polymers and to test experimentally the occurrence of the
predicted effects. For these purposes, redox polymers in which the
electroactive ions are electrostatically attached to polyelectrolyte
films in an irreversible fashion appear to be particularly attractive
systems, because the very existence of irreversible electrostatic
attachment implies a strong interaction between the electroactive
counterions and the fixed ionic sites. (What else would prevent the
loss of the incorporated counterions when the coatings are
transferred to pure, supporting electrolyte?)

Electrode coatings prepared from the perfluorosulfonate
electrolyte Nafion,25 in which cationic reactants can be incorporated
by ion-exchange, were chosen for this study. The excellent stability
and high ionic permselectivity exhibited by such coatings have
contributed greatly towards the attractiveness of Nafion for the
purpose of immobilizing cationic species near the electrode surface,
although problems with reproducibility, depending upon the source
of the solutions of Nafion and the procedures employed to deposit
the coatings, have been noted.10b  The most extensive previous

measurements have involved electroactive counterions consisting of
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cationic complexes of 2,2'-bipyridine (bpy) with transition metals
(e.g., Fe, Co, Ru, and Os), which are particularly strongly, and
essentially irreversibly, bound by the Nafion coatings.3b.4b-c,10a

In one of the first studies, the diffusion coefficients of the
Ru(bpy)33+/2+ couple in Nafion were reported to show little
dependence on the quantities of the complex incorporated into the
coating, but large fractions of the incorporated complexes were found
to be electroinactive.4® By contrast, in more recent studies of the
same system, a very strong dependence of the diffusion coefficient
on the concentration of the incorporated Ru(bpy)33+/2+ was observed,
and the same was reported for the Os(bpy)33+/2+ couple.8,14 We
have observed similar behavior in the latter system. The
preponderance of the evidence is that strong, nonlinear dependences
of the apparent diffusion coefficients on the concentration of the
redox centers is typical. The remainder of Part II is devoted to the
exposition and experimental testing of an ion-pairing model that
leads to predicted concentration dependences that agree with those

observed experimentally.

Experimental
Materials
Solutions of Nafion (EW 1100) in an alcoholic solvent (4 wt.%)
were obtained from the Aldrich Chemical Company. The
concentration of sulfonate groups present in the solutions was
determined by titration of the proton counter cations with standard
base to be 34.2 mM. (The Nafion solution provided by the supplier

was prepared by dissolution of the acid form of the polymer, so that
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the acidity is a measure of the concentration of sulfonate groups in
the Nafion stock solution.) This value was not far from that
corresponding to the concentration specified by the supplier (39.7
mM) and agreed with the concentration estimated from the sulfur
content of a dried sample of Nafion obtained by evaporation of an
aliquot of the stock solution.

Os(bpy)3Cl26H20 (bpy=2,2'-bipyridine) was prepared as
described in the literature?6 with slight modifications: 1.0 g of
K20sClg and 1.28 g of 2,2'-bipyridine were added to 10 mL of
glycerol, and the mixture was heated at 240°C for 1 hour. The
volume was reduced to ca. 2 mL by heating at 180°C under vacuum.
The residue was extracted with ether to remove excess 2,2'-
bipyridine followed by dissolution in the minimum quantity of
water. Lustrous, dark-green crystals were obtained from this
solution upon cooling in the refrigerator.

Glassy-carbon electrodes (Tokai Carbon Co.) were mounted and

polished as previously described.27

Instrumentation

Apparent diffusion coefficients were evaluated from
chronocoulometric measurements2’ performed with a BAS 100
Electrochemical Analyzer (Bioanalytical Systems, Inc.). Cyclic
voltammetry was carried out with PAR instrumentation (EG&G
Instruments, Inc., PAR Model 173, 175, and 179 units) and an X-Y
recorder. Conventional, two-compartment cells were employed.
Potentials are reported with respect to a sodium chloride saturated

calomel electrode (SSCE).
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Procedures

Nafion coatings were applied to the glassy-carbon electrode
surfaces either by spin-coating or by transfer of aliquots of the stock
solution to the surface with a microsyringe. In both cases, the
solvent was allowed to evaporate at room temperature to obtain
adherent films. The results of experiments conducted with "solution
processed"10b Nafion coatings were essentially similar to those
obtained with unprocessed coatings. The spin-coated films exhibited
the most reproducible behavior and were employed for
measurements of relative diffusion coefficients.  Os(bpy)32+ was
incorporated into coatings by immersing them for controlled times in
a 0.5 mM solution of the complex in 0.05 M H2SO4. Measurements
were started with the lowest concentration of Os(bpy)32+ in the
| coatings. The concentration was increased gradually by re-exposure
of the coating to the Os(bpy)32+ solution for controlled periods. In
this way, a series of diffusion coefficients was obtained for a wide
range of reactant concentrations with a single Nafion coating. After
each successive loading, the coating was soaked for 30 minutes in
pure, supporting electrolyte to allow the reactant concentration
profile to become uniform.

The experimental results were quite sensitive to the procedures
employed to prepare the coatings of Nafion on polished glassy-
carbon electrodes. After establishing an experimental protocol that
yielded satisfactorily reproducible behavior, apparent diffusion
coefficients for the Os(bpy)z2+-Nafion system were evaluated over a

wide range of concentrations by means of potential-step
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chronocoulometry. = The quantity of reactant incorporated into the
coating was determined by exhaustive oxidation of the complex to
Os(bpy)33+ followed by integration of the current required to reduce
the oxidized complex to Os(bpy)32+. This procedure was preferable
to the simple oxidation of the Os(bpy)32+, because corrections for

background currents were smaller and more reproducible.

Results
Determination of the Fractional Loading
When the coatings were loaded to saturation with Os(bpy)32+, the
quantity of charge consumed during the first coulometric oxidation of
the incorporated complex was greater than that required for the
reduction of the resulting Os(bpy)33+ and for all subsequent
oxidation-reduction cycles, which produced essentially equal anodic
and cathodic charge consumption. This behavior is consistent with
expulsion of the osmium complex during the oxidation of Os(bpy)32+
to Os(bpy)s33+. (The alternate incorporation of anions into the Nafion
is strongly disfavored by its high cation permselectivity.) If
electroneutrality were maintained exclusively by expulsion of
Os(bpy)33+ from the coating during the oxidation process, one would
expect the first coulometric assay to consume 1.5 times as much
charge as all subsequent assays, anodic or cathodic. If, on the other
hand, electroneutrality were maintained by expulsion of Os(bpy)32+
during the oxidation process, there would be no difference between
the first anodic and all subsequent coulometric assays.
Experimentally, the ratio of the charges consumed in the first

(anodic) and all subsequent assays was 1.4+0.1. It thus appears that
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electroneutrality is maintained primarily by the expulsion of
Os(bpy)33+ during the oxidation of Os(bpy)32+ in saturated coatings.
The charge obtained in the subsequent coulometric assays, Q°, was
taken as a measure of the quantity of osmium complex in the film
that corresponds to saturation of all the Nafion sulfonate groups by
Os(bpy)33+ and thus a fractional loading, Xg, of unity. The value of Xg

for loadings below saturation was obtained from Equation 5.3,

3C,  Q
XE = CgE = —8—(;)— s (5'3)

where Q: is the measured charge for a coating containing the osmium
complex at a concentration Cg. The total concentration of Nafion
sulfonate sites is Cg0.

The determination of XEg by this procedure assumes that the
maximum quantity of Os(bpy)s33+ that can be incorporated in the
coating corresponds to the complete replacement of the hydrogen
counterions by the osmium complex. This assumption was checked
for films deposited onto an electrode by transfer of measured
aliquots of a solution of Nafion by the following procedure: The
coating was exposed to a solution of Os(bpy)32+ in 0.05 M H2SO4 until
it was saturated with the osmium complex. The Os(bpy)32*+ was
oxidized to Os(bpy)33*, and the quantity of the oxidized complex
present was determined by coulometric assay (as described above).
The coulometrically measured value corresponded closely to one-
third of the total quantity of sulfonate groups present, thereby

supporting the use of Equation 5.3 in the evaluation of Xg.
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A second assumption inherent in this procedure is that all of the
incorporated osmium complex is electroactive.  This assumption,
which is supported by the observations reported in the preceding
paragraph, was checked by means of a spectrophotometric assay.
Platinum flag electrodes, from which it was easier to detach Nafion
coatings, were coated with Nafion, loaded with Os(bpy)32+, and a
coulometric assay of the quantity of electroactive complex present
performed. The coating was then dissolved in dimethylformamide
by ultrasonically agitating the coated electrode in the absence of air.
The concentration of Os(bpy)32* in the resulting solution was
determined from its absorbance at 482 nm with e=1.4x104 M-1 cm-1
as determined in separate calibration measurements. The quantities
of Os(bpy)3z2+ in the solution were found to be in excellent agreement
with those obtained from the coulometric assays, thus confirming the

complete electroactivity of the incorporated osmium complex.28

Determination of Apparent Diffusion Coefficients

The chronocoulometric plots of charge vs (time)l/2 for data
collected when the potential was stepped from 0.2 V, where no
current flowed, to 0.9 V, where the incorporated Os(bpy)32+ was
oxidized to Os(bpy)33+, were linear (Cottrell behavior) for all
investigated values of Xg. Measurement times were typically 10 to
225 ms with film thicknesses on the order of 0.85 pm. Apparent
diffusion coefficients were obtained from the slope, s (C s-1/2), of the

linear plots:
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2 2
$ 3s
D,=xn—m—| = f| ——————| . 5.4
@ “(2FSCE) (2FschEJ - (3.4)

The electrode surface area is represented by S, and F is the Faraday_»
constant. Uncertainties in the values of the fractional loadings result
in corresponding uncertainties in the absolute values of D,p, but the
relative values of Dap for a single coating with varying fractional
loadings could be reproduced to ca. 10%. The assumption that the
coating thickness, and hence Cg0, did not change significantly with
the fractional loading was based upon previous measurements3¢ in
which Nafion coatings were loaded with varying quantities of
Co(bpy)32+. The determination of the absolute values of Dap requires
that Cg0, the total concentration of sulfonate groups within the Nafion
coating, be known. A value of 1.2 M was chosen for Cg0.10c
Uncertainties in Cg0 result in correspondiqg uncertainties in the
absolute values of Dap but do not affect the relative variation of Dap
with changes in Xg, the central point of interest in the present
investigation.

| The results of a large number of measurements of D,p originating
from two different coated electrodes for a range of fractional
loadings are shown in the data points plotted in Figure 5.1. The
general trend in the data is similar to that reported recently by He
and Chen8 for similar experimental conditions. The present, more
extensive, data set makes it clearer that the diffusion coefficient
becomes very small as the loading approaches zero, that there is a
relatively small region of intermediate loadings where it increases

proportionately to the concentration of incorporated Os(bpy)32+, and
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Figure 5.1. Experimental values of the apparent diffusion coefficient
for charge propagation in the Nafion-Os(bpy)33+/2+ system plotted

against the fractional loading.
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that it increases in a strikingly steep manner as the molar fraction
approaches unity.29 Very similar behavior has been reported very
recently by Sharp et al.l4 for the same system under somewhat
different conditions, where the electroinactive counterions were
sodium ions instead of hydrogen ions. The features, evident in
Figure 5.1, are not in accord with the simple model based on
Equation 5.220 that has often been utilized in previous studies to
account for the observed variations in apparent diffusion
coefficients.3b,4b,20  These studies, however, have not included as
wide a range of loadings as the present measurements, nor has the
electroactivity of all the incorporated complexes been independently
verified. The ion-pairing model presented in Chapter 6 grew out of
our attempts to understand the unusual behavior exhibited by the

data in Figure 5.1.
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Chapter 6

The Ion-Pairing Model
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Proposed Ion-Pairing Reactions

Ions in polyelectrolyte films such as Nafion are likely to associate
to form ion-pairs because of the high ionic concentrations, the
reduced availability of water compared to ionic aqueous solutions,
and the low dielectric constant of the organic polymer matrix.30 The
two-phase structure envisioned for Nafion (organic and aqueous ionic
clusters)3! leads one to expect cations such as Os(bpy)z2+ to be
located in the interfacial region between the two phases where the
local environment is particularly likely to favor ion-pairing.

One of the most striking features of dipositive transition metal
complexes of 2,2'-bipyridine incorporated in Nafion coatings is the
persistence of the complexes within the coatings for long periods
after the loaded coatings are transferred to pure, supporting
electrolyte solutions. This retention is most likely a result of an ionic
aggregation of the cationic metal complex with the pendant sulfonate
groups of the Nafion polymer, which we envision as a tight or contact
ion-pair. In addition to the coulombic interactions leading to the
formation of the ion-pair, other factors might also be operative.
Because of the hydrophobic nature of the 2,2'-bipyridine ligand, the
Os(bpy)33+/2+ complex might be better solvated by the -CFCF(CF3)-
O-CF2CF2S03- pendant chains of the Nafion than by water. Solvation
effects of this sort might encourage formation of contact ion-pairs.
In the remainder of Part II, the terms "ion-pair” and "ion-pairing”
refer to interactions of this type.

The strong retention of the Os(bpy)33+/2+ complex by the Nafion
coating suggests a very strong interaction between the complex and

the polymer. For this reason we expect the predominant forms of
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the Os(bpy)32*+ and Os(bpy)33+ complexes inside the Nafibn to be the
uncharged ion-pairs [Os(bpy)3z2+«(F-)2] and [Os(bpy)33+e(F-)3],
respectively, where F- represents a Nafion sulfonate group.
The various possible ion-pairing equilibria involving the reduced
and oxidized forms of the osmium complex are illustrated in

Equations 6.1 through 6.5.

Os(bpy)s2* + F- ——> [Os(bpy)s2+F-I* (6.1)
[Os(bpy)32++F]* + F* —— [Os(bpy)32++(F)2] (6.2)
Os(bpy)33* + F- —— [Os(bpy)33+<F-]2+ (6.3)
[Os(bpy)33+sF12+ + F- —— [Os(bpy)s3++(F)al* (6.4)
(Os(bpy)s>+E I+ + F- 2 [Os(bpy)s>(F )] (6.5)

The coulombic attraction between the ion-paired complex and the
Nafion sulfonate groups is expected to diminish as the charge on the
ion-paired complex decreases.  Additionally, steric crowding may
discourage the formation of ion-pairs involving more than one or two
sulfonate groups. For these reasons, the association constants for the
reactions in Equations 6.1 through 6.5 are expected to decrease as
the number of ion-paired sulfonate groups increases. To a first
approximation, we consider that only three species,

[Os(bpy)32+e(F-)2], [Os(bpy)33++(F-)2]*, and [Os(bpy)33+e¢(F-)3], are



129
present in sufficiently large concentrations to contribute significantly
to the charge-transport process. As an alternative to the rather
cumbersome formulas for these ion-pairs, we utilize the symbols A+,
B, and C in place of [Os(bpy)33++(F-)2]*, [Os(bpy)32+«(F-)2], and
[Os(bpy)33++(F-)3], respectively. The symbol G+ represents the
mobile, electroinactive counterions, i.e., H* or Nat.

The ion-pairing model described above represents a simple,
approximate method of dealing with variations in the activity
coefficients for the tris(2,2'-bipyridine)osmium(3+/2+) complexes.
The corresponding approach for dealing with variations in the
activity coefficients for electroinactive counterions such as protons
and sodium ions in Nafion is more troublesome. Cations such as
sodium or hydrogen ions are likely to be located in the aqueous
portion of the two-phase Nafion structure evoked earlier. Although
sodium ions have been considered to engage in ion-pairing with the
pendant sulfonate groups in Nafion,30 the notion of significant
quantities of H*+F- contact ion-pairs is not compatible with the
strong acidity of Nafion membranes in their protonated form.32 The
fact that cations such as protons and sodium ions, unlike
Os(bpy)33+/2+, are not strongly retained in Nafion coatings suggests
that interactions between H* and Na* and F- are significantly
different from those between Os(bpy)33+/2+ and F-. While a contact
ion-pair between G* and F- of the sort described above seems
unlikely, a solvent-separated ion-pair might be plausible even in the
case of protons. To proceed, we adopt the following strategy: We
first develop a model based upon the ion-pairing reactions involving

the tris(2,2'-bipyridine)osmium(3+/2+) complexes, described above,
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that neglects possible variations in the activity coefficients for the
electroinactive counterions. As will be shown later, this model is
able to account for the salient feature of the experimental data in
Figure 5.1, specifically, the steep rise in the apparent diffusion
coefficient with the molar fraction of the redox centers present. The
implications of interactions between the electroinactive counterions
(H* or Nat) and the Nafion sulfonate groups are then discussed
qualitatively in terms of the variation of the activity coefficient of

the ionic species with changes in the ionic strength of the system.

Proposed Pathways for Electron Hopping
Two pathways exist by which electron hopping can occur. The

first pathway, illustrated in Equation 6.6,

[Os(bpy)33++(F-)2]* + [Os(bpy)sZ+s(F-);]
k1 Td K , (6.6)

[Os(bpy)32++(F)2] + [Os(bpy)33+e(F-)21*

involves the A+*-B redox pair and is a simple electron-transfer

reaction. The second pathway, illustrated in Equation 6.7,

[Os(bpy)33++(F-)3] + [Os(bpy)s2*«(F-)2]
k2 T4 k; : (6.7)

[Os(bpy)32++(F-)2]1 + [Os(bpy)33++(F-)3]

involves the C-B redox pair and consists of an electron-transfer

reaction with concomitant transfer of a sulfonate group. We believe
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the C-B pathway to be less facile than the A+-B pathway for the
following reasons: The main reaction coordinate for the C-B electron
hopping pathway is the distance between the transferring sulfonate
group and the metal centers. The potential energy for both the
reactants and products consists of the sum of the energies for the B
and the C moieties. The potential energy of the species C consists of a
repulsive van der Waals contribution that increases rapidly as the
metal-sulfonate distance decreases in the (A++F-) ion-pair that
constitutes species C and an attractive coulombic contribution that
varies as the inverse of the metal-sulfonate distance.  Upon
increasing this distance, the van der Waals repulsive interaction
between F- and B comes into play and rises rapidly as the
transferring sulfonate groups comes close to B. The ensuing
activation barrier for F- 1is certainly quite high, because the
dissociation of the (A+¢F-) ion-pair must take place inside a solvent
cage, i.e., in a region of space where the dielectric constant is small.
The barrier may be further increased by the F--B van der Waals
repulsion. Thus, the activation barrier is likely to be much larger
than the energy required to dissociate the ionic aggregate
represented by C into two solvated ions, A+ and F-. In contrast, the
reaction barrier for the A*-B electron-hopping pathway involves
only the van der Waals repulsions associated with bringing the
species A* and B sufficiently close for electron transfer to occur in
addition to the reorganization energy associated with the electron-
transfer process itself, contributions common to both the A*-B and

the C-B pathways.
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On the basis of these arguments, the electron-hopping rate
constant for the A+-B pathway, ki, is expected to be much larger
than the corresponding rate constant, k2, for the C-B pathway. One is
therefore tempted to disregard the latter pathway in favor of the
former. If the ion-pairing is exceptionally strong, however, the
concentration of species C can be many orders of magnitude greater
than that of species A*+, counteracting the kinetic considerations of
the preceding paragraph. In light of this possibility, both electron-

hopping pathways are included in the theoretical analysis.

Theory
The following notation is employed in addition to that previously
described: Ci, concentration of species i (charges dropped); x,
distance from the electrode surface; t, time; and ®, electric potential.
The transient behavior of the system under potentiostatic conditions

is described by the following pair of differential equations:22c-¢,33

d(C,+Cc) D, oC, oCy . F 0P
== |c,Ta_c, Ly ..
ot x| SR TR O %
D, d 0C, oC, F oD
=2 g, =c-c. B+ __C,C.I= .
" C; dx [CB ox € ox +RT » Ce Jx (6.8)
and

n - oxlax TRT °ox (6.9)

9Cs _ p 9 [ECG Fc_ag]
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The constants F, R, and T represent the Faraday constant, the gas
constant, and the absolute temperature, respectively. D1 is the
diffusion coefficient of the mobile electroinactive counterion. The
electron-hopping diffusion coefficients, D1 and Dj, are defined by the
expression in Equation 5.1, using the rate constants ki and kj,
respectively.34 It should be noted that the rate constants kj and kp
are those operative in the absence of an electric field.

One should also note that Equation 6.8 neglects contributions to
charge transport arising from physical displacement of the
electroactive ions. The strong retention of the osmium complex by
the Nafion coatings implies that the mobilities of the redox molecules
are very small. The extremely small value observed for the
apparent diffusion coefficient at very low fractional loadings, as
compared to the values for the apparent diffusion coefficient at
higher fractional loadings (see Figure 5.1), also suggests that Dpgq is
negligibly small for all but the lowest fractional loadings. The
sulfonate groups are also regarded as being immobile; hence there is
no migration of F- or any ion-paired species under the influence of
an electric field.

The permselectivity of Nafion and the conservation of charge

principle require

Cp =3C,+2Cy+3C.+C; . (6.10)

Conservation of mass for the electroactive complex requires

C, = C,+Cy+Cp . (6.11)



134
Given the composition of the ion-pairs and the stoichiometry of the
ion-pairing reaction, the concentration of free sulfonate groups, Cf,

i.e., those not ion-paired with the osmium complex, is given by

Cr = C+Cs . (6.12)

The ion-pairing reaction of Equation 6.5 is assumed to remain at
equilibrium throughout the time scale of the experiment; i.e., it is
assumed to be fast compared to the rate of electron hopping. The

relevant equilibrium expression is

(6.13)

where K is the ion-pairing association constant.

The boundary conditions for the potential step experiment
described in the experimental section of Chapter 5 may be expressed
in terms of Cg; all other quantities may be calculated by means of

Equations 6.8 through 6.13.

t=0, x20 and t 20, x & : C;=C; (6.14)

-
v
o
¥

it

0 and t 5 00, x20: Cy=0 (6.15)

The above boundary conditions correspond to the case where the
Nafion coating is loaded with Os(bpy)32+, which is then oxidized. The

opposite case where the coating is loaded with Os(bpy)33+, which is
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then reduced, is accommodated by feversing the values for Cpg in
Equations 6.14 and 6.15.
In addition to the above boundary conditions, the flux of G* at the
electrode surface must always be zero, because G* is neither
consumed nor created at the electrode. This condition is imposed

mathematically by

90
0=[§Eg+c ] ‘ (6.16)
x=0

ox S ax

Introduction of Dimensionless Quantities
The mathematical notation is simplified by introduction of the

following dimensionless quantities:

C C C
= KCp =2 b=—2 c==<
. a FCE ’ CE ’ CE ’
C Cc? 3 C
f —E s fo = —=E = —_ , = =€ , 6.17
C: C, X, £7 G (6.17)
' F k
= — O : = 0 = KCO =2 .
¢ RT > K KCF ’ Y F kl

Note that the quantity fO is another measure of the fractional loading
of the coating: f0— e corresponds to Xg=0, and f9=3 corresponds to
Xg=1.

A modified form of the Boltzmann transformation,
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X

u = (K Cg)llz—s—t y
1

(6.18)

is effective in combining the spatial and temporal dependences of the
concentrations into a single variable, thereby reducing the partial
differential Equations 6.8 and 6.9 to the ordinary differential
Equations 6.19 and 6.20:

u dla+xc) d [, da+yc) db do
- s darke & p,Qarve Db 4
0=2% @ +du[b @ @ryogHblatye) (6.19)
and
_ udg d 1dg ‘_19]
0"2@+°mhﬂﬂw’ (6.20)

where the parameter ¢ is defined by

D
c = Kc;l—Dl. (6.21)

1

Introduction of the dimensionless quantities into Equations 6.10

through 6.13 yields

f°=3—K‘i+zb+3c+g, (6.22)

1=24b+c, ‘ (6.23)

f=—+g, (6.24)
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and
af = cf’. (6.25)

The dimensionless form of the boundary condition of Equation

6.16 is

0= [d—g-+g943] . (6.26)

Determination of the Apparent Diffusion Coefficient

The current, i, that flows in response to the potential step is given

i=FS[2’-(C Cr_c, %, f cAcB@)

C. P ax A 9x RT ax
D, aCe aCy . F oD
+ =2|C -C + CyCc—
CE( "% Sax RT ok )| | (6.27)
where S represents the electrode surface area.  Consistent with

electrochemical convention, anodic currents are defined to be
negative.  Substitution of the dimensionless quantities of Equations

6.17 and 6.18 into Equation 6.27 yields

. D, 12 o\l/2
i=FSCg = (KCp) v, (6.28)
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where

d(a + db d
Y = l:b—(a—d;y—cl—(a+yc)a-+b(a+~{6)a%] ) (6.29)

u=0

The form of Equation 6.28 and the time-independent nature of the

quantity y indicate that the chronoamperometric response will obey

the Cottrell equation,

‘ Da 172 ’
i=FSCy|—2| . (6.30)

Tt

This prediction is consistent with the observations reported in the
experimental section of Chapter 5. Combining Equations 5.1, 5.3,

6.28, and 6.30, we obtain

k. 3n ,
» = 8K ¥ Xe

(6.31)
Equation 6.31 is the working equation by which the values of the
apparent diffusion coefficient are simulated. @ The corresponding
analysis for the chronocoulometric response also leads to the

expression in Equation 6.31 for the apparent diffusion coefficient.

The Expression for the Electric Potential
A diffusion coefficient of 3.5x10-6 cm? s-1 for protons in Nafion
films has been measured by radiotracer techniques.35 This value is

at least two orders of magnitude larger than the values of D
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encountered in this study. Moreover, the ion-pairing model
developed above anticipates values for the ion-pairing association
constant, K, considerably greater than unity. Given these
considerations, it is reasonable to examine only the behavior
expected in the limit ¢ —e. This restriction is, in fact, stronger than
necessary; Andrieux and Saveant22¢ have found that the
chronoamperometric response for a simple electron-hopping system
in a permselective medium is essentially independent of the value of
c for o>1.

As indicated in the previous chapter, Sharp and co-workersl4
have investigated the Os(bpy)33+/2+-Nafion system using sodium ions
as the mobile electroinactive counterions. The diffusion coefficient of
sodium 1ions in Nafion has also been measured by radiotracer
techniques and found to be 9.83x10-7 cm?2 s-1;31 thus the limiting
behavior for c—e 1is also appropriate for the system investigated by
Sharp et al..l14

The derivative of the left hand side of Equation 6.32,

%+c+g=f°—2 (6.32)

(obtained from Equations 6.22 and 6.23), must be equal to zero;

therefore, the sum of Equations 6.19 and 6.20 is

_d[pdatye) o odb de do
O—du[b ™ (a+yc)du+odu+(b(a+'yc)+cg)du. (6.33)

Integration of Equation 6.33 produces
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- b, 5% 9 6.34
(a+yc)du+<)'du+(b(a+yc)+crg)du ( )

d(a+7yc)
du

IC=b

The constant of integration, IC, must be equal to y, because Equation
6.34 evaluated at u=0 is equal to the sum of Equations 6.26 and 6.29.
Rearrangement of Equation 6.34 produces

+(a+yc)%—c—d§

du (6.35)

d
@ Vb (a+vyc)

du b(a+yc)+og

which reduces to

d _ _1dg
di  gdu (6.36)

in the limit c—co.

Integration of Equation 6.36 yields an expression for the electric

potential:

¢ = ¢o+ln[%], (6.37)

or, in real quantities,

RT [C
O = d)o+—F—ln[ C‘""] (6.38)
G

The subscript O indicates that the quantity is evaluated at u=0. The

choice of u=0 as the reference point is acceptable in all cases except
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when Xg=1 and the coating is loaded with the reduced form of the
complex, in which event Cg,0=0, and the logarithmic function is

undefined. In this case, x— o can be used as the reference point,

though this tactic does not circumvent the singularity at u=0.

Case 1: The General Problem, Arbitrary x and y
Substitution of Equation 6.36 into 6.19 and 6.29 leads to Equations
6.39 and 6.40, respectively.

0= a+yc)

u d(a+1<c)+d__{bd(a+yc)_( (6.39)
u

db bla+yc)dg
X du du

du g du

[ 3]

d(a+7vc) db b(a+yc)dg
= b e SR S -1 )
v [ du (a+ve) du g du] _, (6.40)

The boundary conditions for this problem are:

Coating loaded with osmium(2+) complex:

u=0, b=l1; u—o, b=0; (6.41)

Coating loaded with osmium(3+) complex:
u=0, b=0; u—o, b=l. (6.42)

Manipulation of Equations 6.22 through 6.25 and 6.32 enables one

to demonstrate that

b=g-(f°-3), (6.43)
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%+c = (f°-2)-g, (6.44)
and

a a
c= (;+g)¥3, (6.45)

from which one may solve for the quantity a in terms of g, f0, and «x:

a = —%(f°+xg)+%[(f°—Kg)2+4l€fo(fo—2)]m . (6.46)

The master differential Equation, 6.39, can be reformulated as

0= —%%+-§—u—[f(g)%], (6.47)
where
TN WA

+y(f°—2)(f0;3—2)+'yg, (6.48)

by utilization of Equations 6.43 through 6.45. The derivative dadg is

obtained by explicit differentiation of Equation 6.46. The boundary

conditions and appropriate simplified expression for y, obtained from

Equation 6.40, are:
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Coating loaded with osmium(2+) complex:
u=0, g=f0-3; u—e , g=f0-2; (6.49)

a0=_

%(x (f°—3)+f°)+—;-[(wc (£°-3)+ f°)2+41<f°]”2 ; (6.50)

o208

Coating loaded with osmium(3+) complex:

u=0, g=f0-2; u—e , g=f0-3; (6.52)

v = *(Y*(“%)?@%}TF)[%LO- (6:29)

The solution to the boundary value problem posed by Equations
6.47 and 6.49 or 6.52 was approximated by means of the finite

difference procedure described in Appendix III.

Limiting Behavior for Xg—0

At very low fractional loadings, there is a large excess of both
mobile electroinactive counterions, G+, and free sulfonate groups, F-.
In fact, G* and F- constitute essentially all of the ions present in the

Nafion coating; thus

g=f = f° (6.54)

and
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d¢ _ . (6.55)

du

in

Under these conditions, the equilibrium expression, Equation 6.25,

and the conservation of mass expression, Equation 6.23, reduce to

(6.56)

aQ
i
&

and

bsl—l-:;Ka. (6.57)

Given these relations, the master differential Equation, 6.39,

reduces to
2
0= %(——IZK)SL:‘;—*; (6.58)
u u

for sufficiently small values of Xg; the corresponding boundary

conditions being

Coating loaded with osmium(2+) comp_lex:

u=0, a=—‘-(—— ; u—oo , a=0 ; (6.59)
1+x

Coating loaded with osmium(3+) complex:

u=0, a=0: U—deo ,  a=— | (6.60)
1+x
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The analytic solution of this boundary value problem yields

y = (1+y)[-:11—2-]u=0 = «:(1”)”2( K Jm . (6.61)

T 1+x

The positive sign applies to coatings loaded with Os(bpy)33+ and the
negative sign to coatings loaded with Os(bpy)32+, as required by
electrochemical convention.

Substitution of Equation 6.61 into 6.31 produces the following

expression for the apparent diffusion coefficient:

2 2 0
D, = & co[LEY |y - S cofkithKCely (6.62)
* =18 Fli+vx 18 1+KC°

Given the form of Equation 6.62, a plot Dap vs. Xg is predicted to be
linear for sufficiently low fractional loadings. Also, note that the
expressions for y and Dap, and hence the values for these quantities,
are the same regardless of whether the coating is loaded with

Os(bpy)32+ or Os(bpy)33+.

Limiting Behavior for a Simple Electron-Hopping Model

The ion-pairing reaction in Equation 6.5 becomes irrelevant under
three conditions: x=0, k=vy, and x>7 with ¥>100. In the first situation,
x=0 means that the concentration of species C is zero, making the
value of kp, and hence v, irrelevant and leading to a simple electron-
hopping model involving only the reactants A* and B. In the second
case, kij=kz removes the relevance of the ion-pairing reaction,

because species A+ and C are equally reactive. In the third case, the
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concentration of species A* is much smaller than that of species C,
and the C-B pathway for electron hopping is inherently more facile
than the A*-B pathway; the system, therefore, resembles a simple
electron-hopping scheme involving only reactants C and B. The
fractional loading dependence of the apparent diffusion coefficient is
the same in all three cases and is identical with that of the simple

electron-hopping model examined by Andrieux and Saveant.22¢

Case 2: A+-B Pathway Only, vy=0

As explained above, the rate constant associated with the C-B
pathway for electron hopping, k2, is expected to be orders of
magnitude smaller than the rate constant associated with the A+-B
pathway for electron hopping, kj. For modest values of the
equilibrium constant K where the ratio Cc/Ca is not too large, it may
be possible to disregard the C-B pathway for electron hopping, in
which case, charge transport would occur exclusively via electron
hopping between species A+ and B.

By neglecting the C-B pathway, i.e., setting y=0, the expression for

f(g) simplifies to

f(g) = (g—(f°—3))%§-+(fo—3—2)a; (6.63)

a is still given by Equation 6.46, and d%g is still found by explicit

differentiation of that equation. The boundary conditions are

unchanged from those for Case 1, but the expressions for y are

simplified:
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Coating loaded with osmium(2+) complex:

- —a [S&] . 64
v | qu .y’ | (6.64)
Coating loaded with osmium(3+) complex:

___ xf _[Eﬁ] (6.65
V= E-2)+ P laude -63)

The quantity ag is found by means of Equation 6.50.

Limiting Behavior for Xg—0
The treatment for the low fractional loading limit presented in the
general treatment for Case 1 also applies for Case 2. With y=0, the

appropriate expressions for y and D,p are
172
v = [E‘.] - ii(_‘f_) (6.66)

and

k& ( Cp
D, =3 (HK"Cg)XE- (6.67)

Limiting Behavior for Xg—1
At full fractional loading, Xg=1 and f0=3, Equations 6.24, 6.25, and

6.42 reduce to
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b=g, (6.68)
f=1-c, (6.69)
and

c = 3; . (6.70)

Using these equations, the master differential Equation, 6.39, can

be written in the form of Equation 6.47 with

6+Kg_(3—Kg)(6—Kg)+24K . (6.71)
2 2B3-xg)+12x

f(g) =

The boundary conditions are identical to those for Case 1 with the

provision that f0=3. The appropriate expressions for  are

Coating loaded with osmium(2+) complex:
a0=—%+%1/9+121c; (6.72)

v = —2a0[9§] . (6.73)

Coating loaded with osmium(3+) complex:

3k [dg
= - LA 6.74
W 3+K[dU]u=o ( )
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Calculated Curves

The fractional loading dependences of the apparent diffusion
coefficient for various values of the dimensionless equilibrium
constant k with y=0 are illustrated in Figures 6.1 and 6.2 for coatings
loaded with Os(bpy)32+ and Os(bpy)s3+, respectively. These figures
reveal that the larger the value of x, the greater the curvature in the
plot and the steeper the rise at full loading. The plots of logiolw?2/x]
vs. logiplx] in Figures 6.3 and 6.4 for coatings fully loaded (Xg=1)
with Os(bpy)32+ and Os(bpy)33+, respectively, reveal that increasing
the equilibrium constant decreases the value of the apparent
diffusion coefficient. (Bear in mind that the quantity y2/x is
proportional to the apparent diffusion coefficient, as revealed by
inspection of Equations 6.17 and 6.31.)

The‘rapid, non-linear increase in the apparent diffusion coefficient
with increasing fractional loading parallels the rapid, nonlinear
increase in the concentration of species At as the fractional loading
increases. The curves in Figure 6.5 show the variation of the
equilibrium concentration of species A* with the fractional loading in
a Nafion coating containing only Os(bpy)33+ for several values of «.
As the fractional loading increases, the concentration of sulfonate
groups not ion-paired with the osmium complex, Cg, diminishes,
shifting the equilibrium in Equation 6.5 to the left. When vy=0, i.e.,
when k7=0, electron hopping must occur exclusively via the reaction
in Equation 6.6, which is the A*-B pathway. The rate of the reaction
in Equation 6.6 varies as the concentration of reactant A% varies. The
decrease in the magnitude of the apparent diffusion coefficients with

increasing values of the equilibrium constant at a given fractional
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Figure 6.1. Variation of the apparent diffusion coefficient,
normalized by its value at Xg=1, with the fractional loading for a
coating loaded with Os(bpy)32* with y=0. The curves from bottom to
top, i.e., those possessing the greatest to the least amount of

curvature, are calculated using x = 105, 103, 100, 10, 1, O.
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Figure 6.2. Variation of the apparent diffusion coefficient,
normalized by its value at Xg=1, with the fractional loading for a
coating loaded with Os(bpy)33+ with y=0. The curves from bottom to

top, i.e., those possessing the greatest to the least amount of

curvature, are calculated using x = 105, 103, 100, 10, 1, 0.
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Figure 6.3. Variation of logig[w2/x] with logig[x] for a coating loaded
with Os(bpy)32+ with y=0 and Xg=1.
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Figure 6.4. Variation of logio[w2/x] with logig[x] for a coating loaded
with Os(bpy)33+ with y=0 and Xg=1.
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Figure 6.5. Variation of the concentration of A*, normalized by its
value at Xg=1, with the fractional loading for a Nafion coating
containing only Os(bpy)33+. The curves from bottom to top, i.e., those

possessing the greatest to the least amount of curvature, are

calculated using x = 104, 103, 100, 10, 1.
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loading is due to the decrease in Cp with increasing x for a constant
value of XE. |

A noteworthy prediction of the ion-pairing model is that apparent
diffusion coefficients determined from oxidations involving coatings
loaded with Os(bpy)32+ will differ from those determined from
reductions involving coatings loaded with Os(bpy)33+. This feature is
illustrated in Figure 6.6 for the case where y=0 and x=1000. (Recall
that at constant x the quantity y2 Xg is proportional to Dap.) When
Xg=0, the values of Dap determined from cathodic and anodic
currents are identical, vide supra, but as Xg increases, the values of
Dap determined from cathodic and anodic currents differ by amounts
that increase with Xg. This behavior arises from the influence of
both the electric field and the ion-pairing equilibrium, both of which
are asymmetric as regards cathodic vs. anodic experiments.

Fitting of the ion-pairing model to experimental data is facilitated
by comparing the value of the apparent diffusion coefficient at a
particular fractional loading with the slope of the plot of Dyp vs. Xg at

very low fractional loadings. This quantity, defined as S(XEg,x,y),

dD,,
(X %, 7) = D,/ [EL:O : (6.75)

depends solely upon the fractional loading at which Dap is evaluated,
the dimensionless equilibrium constant x, and the parameter y. If
one chooses y=0, the equilibrium constant associated with a particular
value of D,p is unambiguously identified. The greatest senmsitivity is

obtained by choosing Xg=1; plots of S(1.0,x,0) vs. logip[x] for coatings
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Figure 6.6. Variation of y2 Xg, which is proportional to Dap, with Xg
for y=0 and «=1000. The solid line applies to a coating loaded with
Os(bpy)32+; the dashed line applies to a coating loaded with
Os(bpy)33+.
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loaded with Os(bpy)32+ and Os(bpy)33+ are shown in Figures 6.7 and
6.8, respectively.  Although measurements associated with Xg=1
provide the greatest sensitivity, experimental values of Djp at full
loading are highly unreliable. In light of the poor quality of data
taken at Xg=1, data analysis based upon plots of S(0.9,k,0) vs. logig[x],
shown in Figures 6.9 and 6.10 for coatings loaded with Os(bpy)32+
and Os(bpy)33+, respectively, permits utilization of the more reliable
data available at Xg=0.90 at the price of decreased sensitivity.

Once the value of x has been determined from one of the Figures

6.7 through 6.10, the value ki may be determined from the
experimental value of [dD%X] , and the expression in Equation
E

Xz =0

6.67.

Case 3: The Strong Ion-Pairing Limit, x>100

Computations based upon the general treatment for Case 1 reveal
that as the value of the dimensionless equilibrium constant becomes
increasingly large, the shapes of the curves Dap vs. Xg become
increasingly less insensitive to the value of x, though the magnitude
of the apparent diffusion coefficient continues to decrease with
increasing x. If we introduce the assumption that x is large (x>100
roughly), simplified mathematical formulas describing the Ilimiting
shape of the Dap vs. Xg curves can be derived. We call this limiting
behavior the "strong ion-pairing limit."

In the strong ion-pairing limit, only minute quantities of the
osmium(3+) complex exist in the form A+; the predominance of

species C over At prevents us from neglecting the C-B pathway for
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Figure 6.7. Variation of S(I.O,K,O) with logjol[x] for coatings loaded
with Os(bpy)32+.
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Figure 6.8. Variation of S(1.0,x,0) with logig[x] for coatings loaded
with Os(bpy)33+.
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Figure 6.9. Variation of S(0.9,x,0) with logjg[x] for coatings loaded
with Os(bpy)32+.
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Figure 6.10. Variation of S(0.9,x,0) with logio[x] for coatings loaded
with Os(bpy)33+.
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electron hopping in favor of the A+-B pathway. We therefore derive

limiting expressions for f(g) and y for arbitrary values of y and
k>100.

When K is very large, we can assume that Ca<<Cc, so that the sum
CA+Cc may be accurately approximated by Cc. We introduce the
further restriction that Co<<Cg. This second restriction can be met for
all fractional loadings except Xg=1 by insisting that x be above a
certain limit. The following equations are invalid when Xg=1 but are
accurate at all other fractional loadings.

The approximations described in the preceding paragraph allow

Equations 6.44 and 6.45 to be rewritten as

c = (f°—2)—g (6.76)
and
0— -—
N ) 90 (6.77)
g

Combining Equations 6.76 and 6.77 yields

a+yc =((f°—2)—g)(§+y). (6.78)

Substitution of Equations 6.78 into the general expression for f(g),

Equation 6.48, produces the simplified expression
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(£°-2)(£°-3)y-(4£°-9)f°
g

f(g) = 28"+ (g-2(F-2))y+

+2(f —2)g(2f -3)f (6.79)

for f(g), and the following simplified expressions for w:

Coating loaded with osmium(2+) complex:

£° dg)
= — _ ; 6.80
M (y+f°——3)(du om0 (6.80)
Coating loaded with osmium(3+) complex:
y=—|7+ e (g) . : (6.81)
fo_z du u=0

Limiting Behavior for Xg—0

The simplifying considerations associated with low fractional
loading have been explained in detail in the corresponding section
under Case 1. When x is large, y and Dzp can be approximated by

means of

da 1+vy
= (1 — = *,[—, 6.82
v ( +y)|:du:,u=o n ( )
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where the positive sign applies to coatings loaded with Os(bpy)s3+

and the negative sign to coatings loaded with Os(bpy)32+, and

_ k&

w = T (1Y) Xe . (6.83)

Calculated Curves

The fractional loading dependences of the apparent diffusion
coefficient for various values of the' parameter y are illustrated in
Figures 6.11 and 6.12 for coatings loaded with Os(bpy)32*+ and
Os(bpy)33+, respectively. When y=0, the Dyp vs. Xg curve is highly
nonlinear and rises very sharply as full loading is approached. As
explained above, this behavior is attributable to the variation of Ca
with XEg for large values of x. For nonzero values of vy, there is a
contribution from the C-B pathway to the charge-transport process.
Just as the contribution from the A*+-B pathway varies with Ca, the
contribution from the C-B pathway varies with Cc. In the strong ion-
pairing limit, essentially all of the osmium(3+) complex exists as
species C; hence, the variation in C¢c with the fractional loading is
linear. The cohtribution from the C-B pathway for charge
propagation, therefore, is also linear. (It is not rigorously linear
because of the influence of the electric field.) This linear
contribution is evident in the increasing slope and the prolonged
linear behavior of the Dap vs. Xg plot at low fractional loadings as the

value of y increases. In the limit y—oo, the Dap vs. XE plot is identical

to that obtained by Andrieux and Saveant?2¢ when ion-pairing is
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Figure 6.11. Variation of the apparent diffusion coefficient,
normalized by its value at Xg=0.999, with the fractional loading for a
coating loaded with Os(bpy)32+* in the strong ion-pairing limit, i.e.,
k>100. The curves from bottom to top, i.e., those possessing the
- greatest to the least amount of curvature, are calculated using y =

106, 103, 100, 30, 10, 1, O.
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Figure 6.12. Variation of the apparent diffusion coefficient,
normalized by its value at Xg=0.999, with the fractional loading for a
coating loaded with Os(bpy)33+ in the strong ion-pairing limit, i.e.,
k>100. The curves from bottom to top, i.e., those possessing the
greatest to the least amount of curvature, are calculated using y =

106, 100, 30, 10, 3, 1, 0.



178

.0

666

.OHNXHQODu\QOO




179
neglected, i.e., the case where x=0; the modest curvature at high
loadings under these conditions is attributable solely to the influence
of the electric field.

In a manner similar to that described for Case 2, fitting of the ion-
pairing model for the strong ion-pairing limit to experimental data is
facilitated by comparing the value of the apparent diffusion
coefficient at a particular fractional loading with the slope of the plot
of Dyp vs. Xg at very low fractional loadings. Plots of $(0.9,x>100,7)
vs. logioly] for coatings loaded with Os(bpy)32+ and Os(bpy)33+ are
shown in Figures 6.13 and 6.14, respectively.

Once the value of y has been determined from Figure 6.13 or 6.14,
the value of ki/K can be determined from the value of [dD%X]
E

Xg=0
and the expression in Equation 6.83. The value of kz is uniquely
determined, given values for y and the ratio k1/K. The nature of the
approximations associated with the mathematical treatment for the
strong ion-pairing limit prevent resolution of the contributions from
k1 and K, both of which affect only the magnitude of Dap. A change
in the value of either k31 or K may be offset by a proportionate
change in the value of the other. In order to assign individual values
to k1 and K, it is necessary to employ the general treatment using
nonlinear curve-fitting techniques to optimize ki, kp, and K
simultaneously.  Although feasible in principle, the insensitivity of
the apparent diffusion coefficient to the relative values of k3 and K
for large values of K prevents an accurate determination of these two
quantities. In short, the variation of the apparent diffusion

coefficient with the fractional loading of the coating is not an
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Figure 6.13. Variation of S(0.9,x>100,y) with logjo[y] for coatings
loaded with Os(bpy)32+.
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Figure 6.14. Variation of S(0.9,x>100,y) with logig[y] for coatings
loaded with Os(bpy)33+.
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effective means for distinguishing between various combinations of

values for the parameters ki and K when K is large.

The Effect of the Electric Field

As a comparison with the analysis and computations associated
with the preceding cases, the relevant theory is extended to include
the case where the electric-field enhancement of the rate of electron
hopping is neglected. Influences arising from the electric field are
quite simply eliminated by setting a%x = d%u = 0 and omitting the
Nernst-Planck-Fick equation for the electroinactive counterions
(Equation 6.9). The appropriate differential equation describing
charge propagation through the Os(bpy)33+/2+-loaded Nafion coating
is

0= -1
2K du du du du

M+9_[bw_(a+yc)@], (6.84)
which can also be written in the form of Equation 6.47. The
boundary conditions and expressions for a, ap, and y associated with
various limiting behaviors are identical to those described for Cases 1
through 3. The only differences are the expressions for f(g), which

are summarized below:

Case 1: General Treatment, Arbitrary x and vy

f(g) = ( —l)((g—(f“?’)):—a-—aj—v ; (6.85)

g
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Case 2: A*-B Pathway Only, y=0

(g) = (g—(f°—3))—g§—a; (6.86)

Case 3: The Strong Ion-Pairing Limit, x>100

f(g) = £°—2£° (fog_2)+f° (f°‘2)g§f°“3)_y : (6.87)

The limiting behavior for Xg—0 is identical to that described for
Case 1. When the fractional loading is small, there is a large excess of
supporting electrolyte; i.e., free sulfonate groups and electroinactive
counterions, under which condition electric field effects, if
considered, would be negligible.

The formulas in Equations 6.85 and 6.86 are valid when Xg=1.
The caveat associated with the strong ion-pairing limit also applies to

Equation 6.87.

Calculated Curves

For comparison with the results for Case 2, the fractional loading
dependences of the apparent diffusion coefficient for various values
of the dimensionless equilibrium constant x with y=0 are illustrated
in Figures 6.15 for a coating loaded with Os(bpy)32+. Qualitatively,
this set of curves is very similar to that of Figure 6.1. Noteworthy is

the linear dependence of D,p upon Xg when x=0, which is the
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Figure 6.15. Variation of the apparent diffusion coefficient,
normalized by its value at Xg=1, with the fractional loading for a
coating loaded with Os(bpy)32+ with y=0. Contributions to the
electron-hopping process arising from the electric field are omitted
from the computations. The curves from bottom to top, i.e., those

possessing the greatest to the least amount of curvature, are

calculated using x = 105, 103, 100, 10, 1, 0.
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behavior predicted by Equation 5.1 when both electric field and ion-
pairing effects are absent. Inclusion of the influence of the electric
field in the theoretical treatment leads to significant quantitative
differences in the calculated values of Djp, but the gross features of
the plots of Dap vs. Xg are attributable to the ion-pairing equilibrium,
not to the electric field. This is illustrated more clearly in Figure 6.16
where curves are plotted for x=1000 and y=0 in which electric field
effects are included (solid line) and omitted (dashed line). Although
these two curves are clearly different, both display a sharp upward
curvature at full loading. Given the obvious quantitative importance
of accounting for the influence of the electric field on the rate of
electron hopping, we base our analysis of the experimental plot of
'Dap vs. Xg, presented in Chapter 7, upon computations that include

contributions to charge propagation arising from the electric field.
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Figure 6.16. Variation of w2 Xg, which is proportional to D,p, with Xg
for y=0, k=1000, and a coating loaded with Os(bpy)32+. Electric field
effects were included in the computation of the solid line, whereas
electric field effects were neglected in the computation of the dashed

line.
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Chapter 7

Comparison of Theoretical and Experimental Results
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Characterization of the Experimental Data
As described in Chapter 6, experimentally measured plots of D,
vs. Xg can be analyzed by comparing the value of D,p at relatively
high fractional loading with the slope of the plot at low fractional
loading. The experimentally measured values for the apparent
diffusion coefficient shown in Figure 5.1 are proportional to the
fractional loading for Xg<0.25. A linear, least-squares fit of the data

in this low loading region yields
Dap = (2+2)x10-11 cm? s-1 + (1.0£0.1)x10-2 cm?2 51 Xg . (7.1)

The intercept corresponds to the diffusion coefficient for physical
displacement of Os(bpy)32+, because at infinite dilution the oxidized
and reduced reactants never encounter each other, leaving physical

displacement as the only mechanism for charge transport. The value

of 2x10-11 cm?2 s-1 for Dpq is sufficiently small compared to the
values of D,p for Xg>0.1 that the omission of physical displacement
from the theoretical analysis of Chapter 6 seems justified. (In fact,
statistically, the intercept in Equation 7.1 is not significantly different
from zero.)

The value of D,p at Xg=1 is estimated to be (6.6+0.7)x10-9 cm?2 s-!
by extrapolation from the data at the highest fractional loadings. At

X g=0.9, the measured value of D,p is (2.0£0.2)x10-9% cm?2 s-1.

Substitution of these values and the slope from Equation 7.1 into

Equation 6.75 yields S(1.0,x,y)=7+1 and S(0.9,x,y)=3.0%£0.4.
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Characterization of the Dgp vs. Xg Data Reported by Sharp, et all4
The Dap vs. Cg data reported by Sharp and co-workersl4 for the
Os(bpy)33+/2+-Nafion system with G+=Na* is linear for CE up to 0.25

M, the linear, least-squares line of best fit being
Dgp = (0.9+1.2)x10-11 cm? s-1 + (6.5+£0.7)x10-10 cm2 s-1 Cg . (7.2)

These Dap vs. CE data display a nearly vertical rise at C=0.415 M,
which is the concentration corresponding to full fractional loading.

The corresponding value for Cg0 is 1.25 M; thus from Equatioh 7.2 we
find [dD%X] =(2.7+0.3)x10-10 c¢m2 s-1. The values of D,p at
ElxXg=0

XEg=1.0 and Xg=0.9, (1.9+0.2)x10-9 cm? s-1 and (5.0+0.5)x10-10 ¢cm2 -
1. respectively, lead to S(1.0,x,y)=7+1 and S(0.9,x,y)=1.9+03. A
summary of the characterization of the experimental data is

provided in Table 7.1.

Comparison of Theoretical and Experimental Results
Utilizing the procedure for data analysis described in Chapter 6 in
conjunction with the characterizations listed in Table 7.1, the entries
in Table 7.2 for ki, kp, and K are obtained. Our calculations employ
§=1.4 nm34.36, Cg0=12 M for the analysis of data acquired in this
study, and Cg0=1.25 M for analysis of the data acquired by Sharp and
co-workers.!4 Comparisons of the experimental Dap vs. XE data with

various theoretical curves are provided in Figures 7.1 through 7.6.
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Figure 7.1. Comparison of experimental Dap vs. Xg data (circles) with
a theoretical curve (solid line) computed using k=11 (K=9 M-1),
k1=8x106 M-1 s-1, y=0 (k2=0), 6=1.4 nm, and Cg0=1.2 M. Data were
collected as part of this study using Gr=H+*+ as the electroinactive

counterion.
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Figure 7.2. Comparison of experimental Dyp vs. Xg data (circles) with
a theoretical curve (solid line) computed using k=6 (K=5 M-1),
k1=5x106 M-1 s-1 y=0 (kp=0), 6=1.4 nm, and Cg0=1.2 M. Data were
collected as part of this study using G+=H*+ as the electroinactive

counterion.
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Figure 7.3. Comparison of experimental D,p vs. Xg data (circles) with
a theoretical curve (solid line) computed using the strong ion-pairing
limit (x>100), k;/K=2.7x105 s-1, y=2.2 (k2=5.0x105 M-1 s-1), 6=1.4 nm,
and CpV=1.2 M. Data were collected as part of this study using G+=H*

as the electroinactive counterion.
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Figure 7.4. Comparison of experimental Dap vs. Xg data (circles) with
a theoretical curve (solid line) computed using x=12 (K=10 M-1),
k1=2.6x106 M-1 s-1 v=0 (k3=0), 6=1.4 nm, and Cg9=1.25 M. Data were
collected by Sharp and co-workersl4 using G+=Na+ as the

electroinactive counterion.
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Figure 7.5. Comparison of experimental Dap vs. Xg data (circles) with
a theoretical curve (solid line) computed using x=1.6 (K=1.3 M-1),
k1=5.2x105 M-1 s-1 y=0 (kp=0), 8=1.4 nm, and Cr0=1.25 M. Data were
collected by Sharp and co-workersl4 using G+=Na+ as the

electroinactive counterion.
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Figure 7.6. Comparison of experimental Dyp vs. Xg data (circles) with
a theoretical curve (solid line) computed using the strong ion-pairing
limit (x>100), k1/K=2.9x10% s-1, y=7 (kp=1.7x105 M-1 s-1), 8=1.4 nm,
and Cg0=1.25 M. Data were collected by Sharp and co-workersl4

using G+t=Na+ as the electroinactive counterion.
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Quantity Dgap vs. XE Data from Dap vs. Xg Data from
this Study Reference 14
109 [dDap] 1.0£0.1 0.27+0.03
dXE Xg=0
109 [D,], _,, 6.6£0.7 1.9+0.2
109 [D.-.p]xn:o_9 2.9+0.2 0.50£0.05
S(1.0,x,y) 71 7+1
S(0.9,x,y) 3.0£0.4 1.940.3

Table 7.1. Summary of results for the characterization of experimental Dap vs.

XEg data.

Discussion

There is clearly excellent agreement between the predictions of
the ion-pairing model and the empirical Dap vs. Xg data of this study,
as is readily evident upon inspection of Figures 7.1, 7.2, and 7.3. As
it happens, the versatility of the ion-pairing model is sufficiently
great that the experimental data can be accurately fit by more than
one set of values for ki, k2, and K. Given the experimental error, the
observed variation of the apparent diffusion coefficient with the
fractional loading does not distinguish effectively between the
various mechanistic options inherent in the ion-pairing model. The
data analysis strongly suggests that ion-pairing plays a major role in

the charge-transport process within Nafion; unfortunately, it is not
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possible to resolve the relative contributions to that process from the

A*-B and C-B pathways.

Theory Fit of Dgp vs. Xg Data from Fit of Dap vs. Xg Data from
This Study? Reference 14b

Case 2 =113 | k1=(9£3)x106 M-1 571 | =12+3 | k1=(2.5£0.7)x106 M- s°1
using v=0 k2=0 v=0 k=0
S(1.0,x,y) K=9+3 M-! K=10+2 M-!

Case 2 k=6+2 | k1=(5+2)x106 M1 51 | k=16 | ki1=(5+3)x105 M1 ¢!
using v=0 k2=0 +0.8 k2=0
$(0.9,x,y) K=5+2 M-1 ¥=0 K=1.3+0.6 M1

Case 3 100 | k1/K=(2.6+0.6)x105 s-1| 100 k1/K=(3+1)x104 51
using | 71=2.240.7 | k2=(522)x105 M1 571 | y=7+3 | k2=(2¢1)x105 M1 57}
5(0.9,x,y)

Table 7.2. Summary of values for parameters employed in fitting theoretical
| curves to experimental data.
a Calculations utilize Cg0=1.2 M.
b Calculations utilize Cg9=1.25 M.

In contrast to the good agreement between theory and
experiment evidént in Figures 7.1 through 7.3, the calculated curves
in Figures 7.4 and 7.5 provide poor fits to the experimental data.
The ion-pairing model under the conditions of Case 2 (y=0) is unable
to account accurately for the variation of the apparent diffusion
coefficient with the fractional loading observed by Sharp and co-
workers.14 The assumption of strong ion-pairing and inclusion of the

C-B pathway in addition to the A+-B pathway as a possible route for
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electron hopping in the model, however, leads to an excellent match
between theoretical and experimental data as shown in Figure 7.6. A
large value for the equilibrium constant is essential in order to
obtain the extremely steep rise in Dyp as Xg— 1. A substantial
contribution from the C-B pathway to the charge-transport process is
necessary to obtain the prolonged linear dependence of Dap upon XEg

for fractional loadings below 50%; hence, the nonzero value for Y.

Discussion

As discussed in the preceding section, the ion-pairing model
accurately describes  the Dap vs. Xg data obtained in this study using
protons as the mobile electroinactive counterions for a variety of
combinations of ki, kp, and K, three of these combinations being
shown in Table 7.2. The circumstantial evidence strongly suggests
that ion-pairing interactions have a major influence on charge
transport in the Os(bpy)33+/2+-Nafion system. Within the framework
of the model described in this report, it appears that the ion-pairing
interactions of Equations 6.1 through 6.5 are relatively strong with K
unlikely to be less than 6 M-1 and possibly much larger. It is not
possible to assess with any degree of certainty the relative
importance of the A*-B and C-B pathways for electron hopping,
except to say that the larger the value of K, the greater the
significance of the C-B pathway.

The Dap vs. Xg data reported by Sharp and co-workers14 using
sodium ions as the mobile electroinactive counterions is fit in a
compelling manner only by assuming that the ion-pairing

equilibrium in Equation 6.5 lies strongly to the right. Within the
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context of the ion-pairing model, we conclude that the data of Sharp,
et al.14 arises from very strong ion-pairing between the Nafion
sulfonate groups and the tris(2,2'-bipyridine)osmium(3+/2+) complex
such that essentially all of the complex exists as neutral, fully ion-
paired moieties regardless of the oxidation state of the complex; only
a trace quantity of the osmium(3+) complex exists in a doubly ion-
paired state. Two pathways for electron hopping are operative:
electron hopping between doubly ion-paired osmium(2+) and
osmium(3+) species (the A+*-B pathway) and electron hopping
between fully ion-paired osmium(2+) and osmium(3+) species (the C-
B pathway). At low fractional loadings both pathways participate
significantly in the charge transport process, though the C-B pathway
is somewhat more dominant, as indicated by y>1. At high fractional
loading, however, the A+-B pathway becomes the dominant pathway
for electron hopping; the sharp increase in the value of the apparent
diffusion coefficient as the fractional loading approaches unity

reflects the equally sharp increase in Cp under the same conditions.

The Rate Constant for Electron Self-Exchange

The electron self-exchange rate constant for the Os(bpy)33+/2+
redox couple in solution has been measured to be approximately 107
M-1 g1 1a This value is well below the bimolecular diffusion-limited
rate constant in solution and probably represents the activation-
limited rate constant under aqueous conditions. Fits of the
experimental data based upon the assumptions of Case 2 yield
k1=106 to 107 M-1 s-1 (see Table 7.2). Fits of the experimental data

based upon the treatment for the strong ion-pairing limit, Case 3 in
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Figure 7.2, yield k1/K=104 to 105 s-1 and k2=105 M-! s-1. The strong
ion-pairing limit applies only when K>100 M-1, roughly, which
indicates that k;>106 M-1 s-1,

Interestingly, the various analyses of both sets of experimental
data all suggest that the electron self-exchange rate constant for the
Os(bpy)33+/2+ redox couple incorporated into Nafion is within an
order of magnitude of its value in aqueous solution. It is important
to note that this value applies to the A*-B pathway, i.e., electron
hopping between reactants each ion-paired with the same number of
sulfonate groups. The rate constant, k2, for the C-B pathway is

considerably smaller than that for the A*-B pathway consistent with

our earlier arguments.

Comparison of Results for Different Electroinactive Counterions
Within the framework of the ion-pairing model described in
Chapter 6, the identity of the electroinactive counterion is irrelevant
provided it is monovalent and diffuses rapidly compared to the rate
of electron hopping; the value of the apparent diffusion coefficient
should therefore be independent of species G*. A comparison of the
apparent diffusion coefficients obtained when hydrogen ions are
employed as the electroinactive counterion, i.e., data acquired as part
of this study, with those obtained when sodium ions are employed as
the electroinactive counterion, i.e., the data of Sharp and co-
workers,14 reveals substantial differences in the magnitude of Djp
and in the shape of the Dap vs. Xg plots (compare Figures 7.1 and 7.4,
for example). Clearly, one must question whether these differences

are attributable solely to the different species serving as the
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electroinactive counterions or whether the differences could have
other origins, such as different sources and ages of the Nafion or
methods of coating preparation. Uncertainties in the determination
of the apparent diffusion coéfficients and the fractional loadings
could also be responsible, at least in part, for the discrepancies.

If differences between the experimental results of this study and
those of Sharp and co-workersl4 are not experimental artifacts, and
it appears they are not, then one must conclude that the
electroinactive counterions participate in propagating charge across
the coating in a manner that goes beyond their role in the electric-
field enhancement of the rate of electron hopping.22b  One likely
possibility is that the electroinactive counterions also interact with

the Nafion sulfonate groups.

Activity Effects Associated with Species G+ and F-

A rigorous, quantitative treatment of interactions between the
electroinactive counterion and the sulfonate groups is, in principle,
feasible, but such a treatment would introduce additional adjustable
parameters, complicating the analysis and detracting from the
persuasiveness of the model. As an alternative, we provide a
qualitative assessment of the likely implications of G*-F- interactions.

First, we observe that the equilibrium constant K for the reaction
of Equation 6.5 should be regarded as an apparent equilibrium
constant that depends on the nature of the mobile, electroinactive
counterion. In fact, in the ion-pairing equilibrium (Equation 6.5), the
concentration of the free sulfonate groups, Cpg, should be multiplied

by an activity coefficient that depends on the interactions of the
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sulfonate groups with the mobile, electroinactive counterions. The
activity coefficient, which is smallest when Xg approaches zero, will
increase as Xg increases, and more and more of the sulfonate ions
have the osmium complex as their counterions and less and less free
sulfonate ions are available, thereby enhancing the ion-pairing
between the osmium complex and the sulfonate groups. As a result,
the point where the initially linear dependence of Dj;p upon XEg
becomes nonlinear (because of lack of sufficient F- to ion-pair with
‘A*) occurs at larger values of Xg than would otherwise be true.

This behavior can also be explained as follows: The ionic
interactions between the electroinactive counterions, H* or Nat, and
the sulfonate groups that are responsible for the variation in activity
coefficients cause the initial slope of the Dap vs. XE plot to be smaller
than would be the case if the activity coefficient were unity at all
values of Xg. The experimental behavior one expects to observe is a
steeper increase of Dap with Xg as Xg—1 than is predicted by a model
in which variations in the activity coefficients of the electroinactive

counterions with Xg are neglected.

Contributions from other Ilon-Paired Species

Ion-paired species other than A*, B, and C might conceivably
participate in the electron-hopping process. Suppose, contrary to our
earlier assumptions, that the [Os(bpy)33+e(F-)2]* and [Os(bpy)32++F-}+
ions are not strongly ion-paired but that the [Os(bpy)33+e(F-)]2+ and
Os(bpy)32+ ions are. Electron hopping should occur between
reactants possessing the same number of ion-paired sulfonate groups

for the same reasons that electron hopping between species A+ and B
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should predominate over electron hoppihg between species C and B,
provided the equilibrium concentrations of A+ and C are not widely
different. If we introduce the representations Q2+= [Os(bpy)33++F-}2+

and P*+=[Os(bpy)32++(F-)]*+, then from the conservation conditions

C) = Co+Cp+2C,+C; (7.3)
and
C; = Co+Cp+C, , : (7.4)

we can write

Cp = Co+C+C; . (7.5)

The concentrations of species Q2+ and P+ are represented by Cq and

Cp, respectively. The ion-pairing equilibrium condition is

K = —Ca (7.6)

which may be re-written as

. C, o
K= Co(Co+ Ce+Cq) (7.7)

the corresponding expression for the ion-pairing model presented in

Chapter 6 is
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K=—_Sc (7.8)

The underlying cause of the sharp rise in Dap as XE approaches
unity for large K (Figure 6.1) is the sharp increase in Cp as Cg
approaches zero (Figure 6.5). (Recall that CG—0 as Xg—1 in regions

containing only the oxidized osmium complex.) At full loading when
K is large and Cg=0, the fraction of osmium(3+) complex existing as

species At is

Co . |1 (7.9)

whereas at low loadings when K is large and Cg=CEgY, the fraction of

osmium(3+) complex existing as species A® is

Ih

C 1
Sera- (7.10)
E F

It is obvious that for large K the fraction of osmium(3+) complex
existing as the charge-carrying species A* varies by orders of
magnitude as the fractional loading varies from low to high values.
The variation in Dap mirrors the variation in Ca/CEg, vide supra.

In the alternate scheme involving species Q2+, P+, and A+, the
variation in CQ/Cg with changing fractional loading is less drastic,
because the demominator in Equation 7.7 never reduces to Cqg2. At
full loading when K is large and Cg=0, the fraction of osmium(3+)

complex existing as species Q2+ is
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So_ L __3 | (7.11)
c. KC KC

whereas at low loadings when K is large and Cg=CFg0, the fraction of

osmium(3+) complex existing as species Q2+ is

@

1
2= (7.12)
E F

The fraction of species Q2+, therefore, varies by at most a factor of
three as Xg ranges from zero to unity; the variation in Dyp over this
same range of fractional loadings will be correspondingly modest.
One might also imagine a system containing only Os(bpy)32+,
Os(bpy)33+, and [Os(bpy)s3++(F-)]2+. This possibility can also be
rejected, because there is no dramatic change in the fraction of
charge-carrying species upon going from low to high fractional
loadings, and thus no steeply rising Dap vs. Xg plots are to be
expected. In addition, if the osmium(2+) species were not ion-paired,
one would expect the complex to rapidly leak out of the Nafion
coating into pure, supporting electrolyte in opposition to the

experimental observations.

Other Charge-Transport Models
Although the ion-pairing model discussed above is in reasonably
good agreement with the experimental data, it is worth considering
whether the observed variation of Dap with Xg could originate from
other phenomena. Curved Dap vs. XE plots have been predicted in an

alternative model in which the redox centers are assumed to be
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strictly located at the nodes of a real, perfect cubic lattice.33b As
already noted, redox polymers such as those involved in the present
study seem unlikely to have structures that match this model.

Another, quite different, model recently proposed to explain the
sharp rise of the Dap vs. XE plots observed with the Os(bpy)33+/2+ and
Ru(bpy)33+/2+ couples in Nafion is based upon the original Dahms-
Ruff notion of charge propagation as a diffusional process that
combines physical displacement of the redox centers with electron
hopping between them.8 The overall diffusion coefficient is
expressed as usual by Equation 5.2, but the constant ki is itself
regarded as possibly limited either by the rate of diffusion of the
redox centers toward one another or by the activation requirements

of the reaction according to

k = —mXe (7.13)

ok, +k,

where kycy is the activation-limited, electron self-exchange rate
constant and kq is the diffusion-limited, bimolecular rate constant.
The suggestion originally proposed by Ruff and Friedrich20b and
later, in a different formulation, by He and Chen,8 is that kg is a
function of both the diffusion coefficient for physical displacement,
Dpd, and that for electron hopping, Djp, leading to a concentration
dependence for k;j. This reasoning, however, is difficult to
understand, because both kac: and kg are bimolecular rate constants;
the combination of these two rate constants in Equation 7.13 should

therefore be independent of the concentration of redox sites. As it
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happens, the rate constant ki in Equation 5.2 is the activation-limited
electron self-exchange rate constant, and the first term on the right
side of Equation 5.2 entirely accounts for the contributions from
physical diffusion.20d-f  We thus conclude that the observed
dependence of the apparent diffusion coefficient upon the fractional
loading show in Figure 5.2 is not satisfactorily explained by these

alternative models.
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Chapter 8

Slow-Scan Linear-Sweep Voltammetry
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Slow-Scan Linear-Sweep Voltammetry
An interesting consequence of the ion-pairing model is the
predicted effects of the ion-pairing reaction on the shapes of current-
potential curves recorded under conditions where Nernstian
equilibrium is attained. @ The system under investigation involves
three phases: the electrode, the Nafion film, and the supporting
electrolyte. Phase equilibrium at the Nafion-electrode interface is

established when

pa+p+RTINC, + F(®y—®;) = 3 +RTIn Gy . (8.1)

Similarly, phase equilibrium at the Nafion-solution interface is

established when

Ho+RTINCy+F®y = po+RTInCys+ F Dy . (8.2)

The standard chemical potential of species i is represented by p’.
The subscripts E, N, and S signify the electrode, Nafion film, and>
supporting electrolyte, respectively; the subscript e represents an
electron. Cg,s is the concentration of electroinactive counterions, G*,
in the bulk solution. All other symbols possess the same significance
as previously defined.

The expressions in Equations 8.1 and 8.2 may be combined to

yield E, the electrode potential measured relative to bulk solution:

LRy CaCos

E=®,-® = E° ,
F  C,Cq

(8.3)
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where the standard reduction potential, EV, is defined by

- u§+u2+ug,s_ug—ug (8 4)
F . .

EO

Substituting the conservation conditions of Equations 6.10 through
6.12, the equilibrium expression of Equation 6.13 and the
dimensionless quantities defined in Equation 6.17 into Equation 8.3

lead to

3Css - g2
Cs bgkXg

F
€ = ﬁln[E—E"]—ln (8.5)

where ¢ is the dimensionless potential difference between the
electrode and bulk solution.
The time-dependent electrode potential in the linear-sweep

voltammetry experiment can be written as
E=E+vt, (8.6)

where the initial electrode potential E; is well positive or well
negative of the voltammetric wave, and v is the sweep rate (V s°1).
The treatment presented in this chapter presumes that the sweep
rate is small enough that the system is never far from equilibrium.
The current, i, that flows in response to the change in electrode

potential is described by

i=£1ﬂ=Fch£IE§=FSCExcv-—F—@, (8.7)
dt dt RTde
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where xc is the thickness of the Nafion coating. The dimensionless

current, ¢, is defined by

iRT _ db
FQv de ’

(8.8)

where Q=FSCEgx¢ is the total charge required to exhaustively oxidize
or reduce the Nafion-incorporated complex. A positive sweep rate
gives rise to anodic currents (negative i), whereas a negative sweep
rate gives rise to cathodic currents (positive i). The shape of the
voltammetric wave is independent of the direction of the linear
sweep; we therefore choose to define the dimensionless current as
always positive, hence the negative sign in Equation 8.8.

Introducing the parameter p characterizing the oxidation state of

the redox system,

Cy Kb

= = , 8.9
P C.,+C. a+xc (8.9)
the quantities a, b, and g may be calculated by means of
2= _z(x(fo_ﬁ_ﬁ_e)”o)

2 1+p
2 ST2
+1Kx(f°—3+2")+f°)+4“f] , (8.10)
2 1+p 1+p
b=, (8.11)
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and

3+2p
= .
g I+p (8.12)

Substitution, with differentiation where necessary, of Equations 8.10

through 8.12 into Equations 8.5 and 8.8 yields

£=ln{ a ]—m[ P (f°-3+2")] (8.13)
K Xg 1+p 1+p

and

-1
_p a+f° (f°-1)p+(£°-3)
(p—1+p[(l+p)a2+Kf°Kp+(f°—2)p+(f°—3) '

(8.14)

- Equations 8.13 and 8.14 permit calculation of the values of € and ¢
associated with a particular oxidation state of the redox polymer,
ion-pairing equilibrium constant, and fractional Iloading. The
appropriate value for a is calculated by means of Equation 8.10.
Equations 8.10, '8.13, and 8.14, therefore, enable the computation of
dimensionless linear-sweep voltammograms, i.e., plots of ¢ vs. g,

corresponding to slow-scan conditions.

Characterization of Voltammetric Waves
A convenient means of characterizing the voltammetric wave is to
identify the value of the peak current, ¢p, and the potential at which

the peak current occurs, €p. The current maximum coincides with the
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point where d%p = 0, because d%e never vanishes. Equating the

derivative of Equation 8.8 with respect to p with zero yields a
complex expression, one of the roots of which, pp, is the oxidation
state of the redox polymer at the peak current and uniquely
identifies ¢@p and &p.

The full-width, Ae+, and half-widths, Ae. and Ae,, of the
voltammetric wave at half-maximum provide a measure of the
wave's symmetry or lack thereof. The positions of the half-maxima,
which correspond to the points where ¢=¢p/2, are identified by p=p.
and p=p4+ or, alternately, e=e. and e=e4. The full-width at half-

maximum is defined by

Ae, = g, —€_, (8.15)
and the half-widths are defined by

Ae_ = g,—¢€_ (8.16)
and

Ae, = €, —¢, . (8.17)

Voltammetric Behavior under Limiting Conditions
Limiting Behavior for x=0
It is instructive to examine the slow-scan, linear-sweep

voltammetric response expected when no ion-pairing equilibria exist,
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k=0, because this is the behavior predicted by a simple electron-
hopping model.22¢ When k=0, the parameter p is simply the ratio

Cg/Ca; thus

lim& = —— (8.18)
-0 K 1+p

and the dimensionless potential and current are defined by

- - o_3+2p
£ = ln[p(f T+p JXE] (8.19)
and

_ P (F°-2)p+(f°-3)
¢ = 1+p[(fo_z)puz(fo_z)p+(f°-3) ' (8.20)

Equating the derivative of ¢, as defined in Equation 8.20, with

respect to p with zero yields

£ 3 2 £-3 £-3)
0= pp4+2f0_2pp3—'t"0—_'—2'pp2—2f0_2pp—(fo_z) . (821)

The limiting behaviors at low (f0—o) and full (f0=3) fractional

loadings are described below.

Limiting behavior for low fractional loading

e = —In[3p] « - (8.22)
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o= —P (8.23)

The peak current and potential correspond to p, =1 and are

approximately ¢p=0.2500 and €p=-1.0986; the full- and half-widths
at half-maximum are Ae+=3.5255 and Ae.=Ae;+=1.7627.

Limiting behavior for full fractional loading

g = 1n[1;2p] (8.24)
o= 2P (8.25)
(1+p)(2+p)

The peak current and potential correspond to p, = N2 and are

approximately ¢p=0.1716 and €p=0.1882; the full- and half-widths at
half-maximum are Ae+=5.1062, Ae.=2.2065, and Ae4+=2.8997.

At low fractional loading the voltammetric wave is symmetric
about the peak current with a full-width at half-maximum of 90.6
mV at 25°C, consistent with the classical voltammetric behavior for
surface-confined, one-electron redox species.3”7 The symmetry of the
wave arises from the presence of a large excess of supporting
electrolyte in the form of G+ and F- when Xg is near zero. Changes in
the oxidation state of the redox system result in negligible changes in
the concentration of G*; hence there is no change in the Donnan

potential.38 At high fractional loadings, however, the concentration
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of G+ changes drastically leading to corresponding changes in the
Donnan potential and the introduction of dissymmetry in the

voltammetric wave.

Limiting Behavior for x>100
In examining the voltammetric behavior expected for large values
of the ion-pairing equilibrium constant, we employ the
approximations described for the strong ion-pairing limit, Case 3 in
Chapter 6. In the strong ion-pairing limit, the rather cumbersome
expression for a in Equation 8.10 simplifies to
fO

R G ey e (8.26)

Substitution of this expression into Equations 8.13 and 8.14 yields

11 ) Y| .
= 1“{5((f°—2)p+(f°—3)” e 5.27)
and

_ P (F°-2)p+(f°-3)
¢ = 1+PI:(fo—Z)pz'i-(2f°—3)p+(f°—3)]' (8.28)

Notice that the position of the voltammetric wave shifts with In[x],

consistent with classical voltammetric behavior.39  Although the

value of x influences the position of the wave, it has no influence on
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the shape of the wave or the shifts in the wave attributable to
changes in the fractional loading.

Equating the derivative of ¢, as defined in Equation 8.28, with

respect to p with zero yields

£0-3 2£°-3 L £0-3 -3y
0=pi+2 520 2 )zppz f_zpv“[ﬁ—_z‘)' (8.29)

The limiting behaviors at low (f0— o) and full (f0=3) fractional

loadings are described below.

Limiting behavior for low fractional loading

e = —In[3p]—In[x] (8.30)
=P 8.31
Ly (83

The peak current and potential correspond to p, =1 and are

approximately ¢p=0.2500 and ep=-1.0986-In[x]; the full- and half-
widths at half-maximum are Ae+=3.5255 and Ae.=Ae, =1.7627.

Limiting behavior for full fractional loading

- 1n[3(1;;'°) }-m[x] (8.32)
o= —L (8.33)

(1+p)(3+p)
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The peak current and potential correspond to pp=«/§ and are

approximately ¢p=0.1340 and ep=1.4608-In[x]; the full- and half-
widths at half-maximum are A£:+=6.4820, Ae.=2.5479, and Ae,=3.9342.

At low fractional loading, the voltammetric behavior is identical to
that described for the case where k=0 with the exception that the
voltammetric wave shifts with In[x], vide supra. The insensitivity of
the low fractional loading behavior, apart from the shift in the
position of the wave, to the value of the equilibrium constant is
attributable to the presence of a large excess of species G* and F-. As
the oxidation state of the redox system changes, there is no
appreciable change in the concentration of F-, and, therefore, no
change in the ratio CaA/Cc.

In presenting the approximatior;s associated with the strong ion-
pairing limit in Chapter 6, it was noted that these approximations are
not rigorously applicable when Xg=1. To be more precise, these
approximations apply when Xg=1 only in the limit x—e, a condition
with physically unrealistic implications. (For other values of XE, it is
only necessary that x be large.) Our interest in writing Equations
8.32 and 8.33 is to examine a particular type of limiting behavior;

within this context, predictions associated with x—e are acceptable.

Limiting Behavior for Xg=0
The approximations appropriate for fractional loadings
approaching zero have been described in detail in Chapter 6 in

conjunction with the behavior of D,p vs. Xg curves when Xg—0.
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Utilization of these approximations in conjunction with Equations

6.22, 8.9, and 8.11 leads to

1 K

Substitution of Equation 8.34 into Equations 8.13 and 8.14 yields

€ = —In[3p]-In[1+x] (8.35)
and

=P 8.36
¢ (i+p) ( )

The peak current and potential always correspond to p, = 1 and are

approximately ¢p=0.2500 and &,=-1.0986-In[x+1]; the full- and half-
widths at half-maximum are Ae£+=3.5255 and Ae.=Ae,.=1.7627.

Summary of Limiting Behaviors

A summary of the characteristics of slow-scan, linear-sweep
voltammograms under various limiting conditions is presented in
Table 8.1. In going from low to high fractional loading, there‘ is a
shift in the position of the peak current, a reduction in the magnitude
of the peak current, and a distortion of the wave from the symmetric
shape observed for small Xg. These effects arise from both the

permselectivity of Nafion films and the ion-pairing reaction, though
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ion-pairing with a large value for K produces the most extreme

effect.
Limiting Conditions
Quantity =0 X >100
Xg=0 Xg=1 Xg=0 Xg=0 Xg=1
Pp 1.0000 1.4142 1.0000 1.0000 1.7321
Pp 0.2500 0.1716 0.2500 0.2500 0.1340
€p -1.0986 0.1882 |-1.0986-In[1+x]| -1.0986-In[x] | 1.4608-In[x]
Ae. 1.7627 2.2065 1.7627 1.7627 2.5479
Ag, 1.7627 2.8997 1.7627 1.7627 3.9342
Aes 3.5255 5.1062 3.5255 3.5255 6.4820
Table 8.1. Summary of the characteristics of slow-scan, linear-sweep

voltammetric waves under various limiting conditions.

Calculated Voltammograms
Slow-scan, linear-sweep voltammograms calculated for Xg= 0.0,
0.5, 0.8, 0.9, 1.0 and x= 0, 0.01, 0.1, 1.0, 10., = are presented in Figure
8.1. The voltammograms in Figure 8.1 are plotted with reference to

e*, which is defined by
e = -[3(1+x)] . (8.37)

The shift and decrease in the peak current and distortion of the
voltammetric wave in going from low to high fractional loading are

clearly evident. The magnitude of the ion-pairing equilibrium
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Figure 8.1. Linear-sweep voltammograms calculated for x= 0, 0.01,
0.1, 1.0, 10.0, . The curves in each window correspond, from left to

right (highest to lowest peak currents), to Xg = 0.0, 0.5, 0.8, 0.9, 1.0.
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constant has a marked effect upon the shape of the curves. In
principle, therefore, the analysis of the fractional loading dependence
of experimental slow-scan, linear-sweep voltammograms could yield
useful information regarding the degree of ion-pairing within the

Nafion coating.

Comparison of Theoretical with Experimental Results

Three representative slow-scan cyclic voltammograms recorded
using a Nafion-coated electrode containing electrostatically
incorporated Os(bpy)32+ at a fractional loading of Xg=0.88 are shown
in Figure 8.2. These voltammograms do not correspond exactly to
the achievement of equilibrium conditions, even at the lowest scan
rates (2 mV s-1), as is evident from the persistent difference, of the
order of 15 to 20 mV, between the anodic and cathodic peak
potentials.  Although this deficiency prevents a rigorous quantitative
testing of the validity of Equations 8.10, 8.13, and 8.14, a qualitative
comparison of the predicted with the observed behavior seems
worthwhile.

The variation of the observed peak currents of slow-scan
voltammetric waves with the scan rate and with the fractional
loading are compared with the predictions of the ion-pairing model
in Table 8.2; a similar comparison of the half-widths at half-
maximum is made in Table 8.3. The experimental peak currents, ip,

are presented in the normalized form, ¢p, defined in Equation 8.38.

i RT
¢, =2

= Fav (8.38)
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Figure 8.2. Experimental slow-scan cyclic voltammograms recorded
using a Nafion-coated electrode containing electrostatically bound
Os(bpy)s2+. The fractional loading is Xg=0.88. The curves
correspond, from smallest to largest peaks currents, to sweep rates of

2, 5, and 10 mV s-1.
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Experimental Theoretical
XE Q¢ (nC) Pp 9p
v=2mVs! | v=5mVs! |v=10mVsl!] x=11 | x>100

0.18 37 0.17 0.16 0.15 0.24 0.24

0.47 95 0.15 0.15 0.14 0.22 0.22

0.70 142 0.16 0.15 0.14 0.20 0.20

0.88 180 0.16 0.15 0.15 0.18 0.16

1.00 206 0.13 0.13 0.12 0.15 0.13
Table 8.2. Comparison of experimental and theoretical peak currents.
Experimental data are taken from the anodic sweep of slow-scan cyclic
voltammograms.

The experimental half-widths, measured in millivolts, are related to

. the dimensionless half-widths, Ae. and Aey, by

AE_ = BFEAe_ - %_I(em—e_) (8.39)
and '
AE. = B_TAe EI(.‘séf—em) (8.40)

The experimental half-widths of the experimental waves at half-
maximum are of the same order as predicted by the ion-pairing

model. low

The voltammetric waves are almost symmetric at
fractional loading, but as Xg increases the waves become clearly

dissymmetric in the direction predicted by the model (see Figure 8.1



and Table 8.3).

and calculated

equilibrium conditions
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The quantitative agreement between the observed

values is

not perfect,

were not achievable,

but inasmuch

as true

the behavior seems

compatible with the ion-pairing model discussed in this report.

Experimental Theoretical
XE x=11 k> 100
AE. (mV) | AE, (mV) | AE. (mV) | AE, (mV) | AE. (mV) { AE; (mV)
0.18 70 75 47.0 47.0 47.2 47.2
0.47 65 75 51.1 51.7 51.8 52.8
0.70 75 85 56.2 59.3 57.9 63.1
0.88 75 93 61.7 72.6 63.8 84.0
1.00 83 145 64.2 85.1 65.6 102.4
Table 8.3. Comparison of experimental and theoretical half-widths at half-

maximum for voltammetric waves.

Experimental

data are taken from the

anodic sweep of slow-scan, cyclic voltammograms recorded at v=2 mV s,
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Appendix III

Numerical Techniques
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The Boundary Value Problem
As indicated previously, the mathematical description of the

potential-step experiment leads to a boundary value problem of the

form
u dg d[ dg]
0= -—-—=+—|f(g)=2], II1.1
2du du (g)du (.1
u=0, g=g,; u—> oo, g=g_ . (II1.2)

For many values of Xg, x, and vy, the boundary value problem of
Equations III.1 and III.2 is stiff, thereby creating considerable
numerical difficulties. This feature of the problem, coupled with the
inherently awkward nature of the semi-infinite boundary conditions,

led us to employ the exponential transformation

z = (f'-3)+exp(-au) . (I11.3)

The scaling factor, o, is a positive number that scales the value of

d%z at z=f0-2, i.e., the gradient of g at the electrode surface.

Although the value of a is, in principle, arbitrary, choosing a so that

dgdz lies between 0.5 and 2.0 reduces the numerical difficulties

encountered in the solution of the boundary value problem.
Introduction of the exponential transformation of Equation III.3 in
the original boundary value problem (Equations III.1 and III.2)

produces a new boundary value problem:
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0= (f(g)—zfx2 1n[z—(f°—3)])%§-
2 2
+(z—(f°—3))[f(g)%z—§+%(ggz(%)) , (II1.4)
z=1f-3, g=g_; z=1"-2, g=g,. (I11.5)

The formulas presented in Chapter 6 require knowledge of the
gradient of g with respect to u at the electrode surface. This quantity

is given by

[9§] - -a[ig] . (111.6)
dul,-o dz |, - ¢0_»

Finite Difference Methods
The boundary value problem posed by Equations III.4 and IIL.S
was solved numerically by means of the finite-difference technique.
Our implementation of the finite-difference technique employed the

center-difference formulas

[9&} o BT 8 (111.7)
dz | ~ 2h '
and

d? gia—2g+8g.
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where the subscript i indicates evaluation of the function at the point
zi. The points z; for i= 0, 1,. .., n+1 are equally spaced on the interval
[0,1]; the spacing between nodes is h=1/(n+1). The values of gg and
gn+1 are established by the boundary conditions of Equation IIL.5
and are fractional-loading dependent. The error associated with the
center-difference formulas of Equations III.7 and IIL.8 is of O(h2).

Substitution of the center-difference formulas into the differential

Equation III.4 yields a nonlinear system of n equations:

0= (f (8)-5 Lz Infi h - (£° - 3)]) __gmz—hgi-l

- 2g +g g Y
+(ih——(f°—3))(f(gi) Sist h§‘+g1“+(dg(gg)) (g“‘Zhg"‘U (I11.9)

| for i=1,2,...,n. The solution of this nonlinear system, g; for i= 1, 2, ..., n,
is the finite difference approximation of the solution of the relevant
boundary value problem.

Once the numerical solution has been obtained, the gradient of g

at the electrode surface (z=f0-2) is approximated by

dg] —3gtdg -8 I
== = : I1.10
I:dz z2=£%-2 2h ( )

which also has an error of O(h2).

The nonlinear system of equations, Equation IIL.9, was solved
2
using Newton's method.40 The derivatives df(% and d*f(e) dg’ were

obtained by explicit differentiation of the appropriate expression for
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f(g). The Jacobian matrix for this system is tridiagonal, permitting
use of fast, direct-factorization techniques at each iteration of
Newton's method; Crout's method*! was employed in this study. In
certain cases, particularly at high fractional loadings, convergence-
acceleration techniques (Richardson extrapolation®?2 and Shanks

transformation“3) were employed.

Computations
Computations were performed on a Digital Equipment VAX
11/750 or MicroVAX 3500 using programs written in VAX FORTRAN
V4.7. Between 100 and 5000 nodes were utilized in the
computations; all numerical solutions were computed to an accuracy

of at least 0.01%.
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Appendix IV

Programs for the Calculation of
Apparent Diffusion Coefficients and

Slow-Scan Linear-Sweep Voltammograms
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Introduction
The programs for the calculation of apparent diffusion coefficients
and slow-scan linear-sweep voltammograms were written in
FORTRAN, employed double-precision arithmetic, and were executed

on a Digital Equipment VAX 11/750 or MicroVAX 3500.

IONPAIR

The program IONPAIR computes v, w2Xg, and profiles for the
dimensionless concentrations a, b, ¢, and g as well as the electric
potential ¢. The quantity y2XE is proportional to Dap, as can be seen
by inspection of Equation 6.31 |

Upon executing the program, the operator is asked to provide
information regarding the initial loading of the Nafion coating,
whether or not electric field effects are to be included in the
computations, and the extent of ion-pairing. The responses to these
questions are used to identify the limiting formulas from Chapter 6
to be used in the computations. If necessary, the operator is
prompted for values for x and/or y. Next, the fractional loading, XE, is
requested.

Once the parameters for the ion-pairing model have been
provided, the computer requests the parameters relating to the finite
difference simulation: the tolerance, the maximum number of
iterations, the number of points in the simulation, and the scaling
parameter o. The tolerance is the convergence criterion for
successful termination of Newton's method and is based upon the
relative root-mean-square correction applied at a particular

iteration. NOTE: the tolerance does NOT refer to the error in y! The
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error in y is best estimated by examining the convergence of these
quantities as the number of points in the finite difference simulation,
n, is increased. If the maximum number of iterations is exceeded
before the tolerance criterion is met, the program terminates. All
parameters must be supplied as floating point quantities, with the
exception of the maximum number of iterations and the number of
simulation points that are integers. Finally, the user is requested to
supply the names of the output files.

The program first performs the finite difference simulation,
apprising the operator at each pass of the progress of Newton's
method. Upon convergence, the values of y and y2Xg are displayed
along with the recommended value for o; the last task performed by
the computer is to write the simulation results to the specified file
and save the concentration and potential profiles, if so requested.
The recommended value of o is reliable except for very large values
of x, in which case it can be too large.

The quantity y and the concentration profile a have the same
significance as that described in Chapter 6 except when the limiting

behavior for k=0 (ion-pairing option "Z") is specified. In this case,

a=Ca (IV.1)

E

instead of the definition of Equation 6.17, and the
chronoamperometric current and apparent diffusion coefficient are
given by

D 1/2
i=FSCg (Tl) v (IV.2)
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and

b =k n
*® 18

Cev' Xe , (IV.3)

respectively.  When electric field effects are taken into account
(electric field option "E" and ion-pairing option "Z"), the results are
identical with those obtained by Andrieux and Saveant22¢; when
electric field effects are not taken into account (electric field option
"N" and ion-pairing option "Z"), the results are identical with those

predicted by Equation 5.1; i.e., y is independent of XE.
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IONPAIR IONPAIR.FOR
0001 PROGRAM IONPAIR

0002

0003 o] David N. Blauch March 1989, Revised June 1990
0004 C Caltech, Pasadena, CA 91125

0005 C

0006 C For a discussion of the Contact Ion-Pairing Model

0007 C D. N. Blauch, Ph.D. Thesis, Caltech, 1991

0008 C

0009 C Electrochemical System:

0010 C Nafion-coated electrode with 3+/2+ redox couple
0011 C incorporated

0012 C

0013 c Potential Step Experiment

0014 C Oxidation of M(2+) to M(3+) or

0015 C Reduction of M(3+) to M(2+)

0016 c

0017 c***************************************************************
0018 C

0019 C GAMMA is the parameter gamma = K CF0 k2/kl

0020 C KAPPA is the parameter kappa = K CFO0

0021 C G(i) is the finite difference approximation of g at z (i)
0022 c J(i,j) is the Jacobian (which is tri-diagonal)

0023 C i=1 points to the diagonal below the main diagonal
0024 C i=2 points to the main diagonal

0025 c i=3 points to the diagonal above the main diagonal
0026 Cc j is the row number

0027 c R(i) is the residual vector

0028 C XE is the fractional loading of the Nafion film

0029 C F0 is the dimensionless concentration of

0030 Cc free sulfonate sites

0031 C CA, CB, and CC are the dimensionless concentrations a or
0032 C CA/CE, b, and c, respectively

0033 C P is the dimensionless electric potential

0034 c FI, DFI, and DDFI correspond to f(g), df/dg, and d2f/dg2
0035 c

08;6 c********************************************‘k********‘k******k***
0037 INTEGER I,IERR,CNT,N,MAX

0038 DQUBLE PRECISION G(5000),J(5000,3),R{(5000)

0039 DOUBLE PRECISION KAPPA,K2,K3,K4,GAMMA,CON

0040 DOUBLE PRECISION XE,F0,F2,F3

0041 DOUBLE PRECISION H,H2,H4,HH,HH2,HH4,Z,22,DG,G0,GNP1

0042 DOUBLE PRECISION PREC,ERR, SLOPE,A,RA,AA2

0043 DOUBLE PRECISION PSI,D,TMP,A0

0044 DOUBLE PRECISION U,Ca,CB,CC,P

0045 DOUBLE PRECISION FI,DFI,DDFI

0046 CHARACTER*1 SEXP, SEF,SIP,SOUT

0047 CHARACTER*12 FOUT,FOQUTA,FQUTB,FOUTC, FOUTG, FOUTP

0048

0049 EXTERNAL CROUT,FG

0050 COMMON /OPT/SEXP, SEF, SIP,SOUT/CRTRED/J,R/FUNC/FI,DFI,DDFI
0051 COMMON /COND/XE,F0,F2,F3,KAPPA,K2,K3,K4,GAMMA, CON

0052

0023 C***********************************************‘k***************
0054 WRITE (6,10)

0055 10 FORMAT (//25X, 'Apparent Diffusion Coefficients',

0056 * /19X, 'for Charge Propagation in a Nafion Coating’,
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0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0023
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112

20

30

35

40

50

60

70

X % % X %

*

L
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IONPAIR.FOR

/24X, 'Containing a Metal (3+/2+) Complex',
//1X,'Initial experimental conditions:',
/10X, 'R - coating loaded with M(2+) complex',
/10X,'0 - coating loaded with M(3+) complex',
/1X,'Option for initial conditions ? ', $)
READ (5,20) SEXP
FORMAT (Al)
IF ((SEXP.NE.'R'") .AND, (SEXP.NE.'0')) THEN
WRITE (6,30)
FORMAT (1X, 'Invalid Response')
STOP
ENDIF

WRITE (6,35)

FORMAT (/1X, ‘Options regarding Electric Field Effects:',
/10X, 'E - Electric Field Effects Included?,
/10X, 'N - Electric Field Effects Not Included!',
/1X,'Option 2 ',8)

READ (5,20) SEF

IF ((SEF.NE.'E') .AND. (SEF.NE.'N')) THEN
WRITE (6,30)

STOP

ENDIF

WRITE (6,40)
FORMAT (/1X, 'Options regarding Ion-Pairing: °*,
/10X,'G - Case 1: general treatment, arbitrary kappa',
/10X,'A - Case 2: A+/B pathway only, gamma=0',
/10X,'S - Case 3: strong, ion-pairing limit, kappa>100',
/10X,'z2 - limiting behavior for kappa=0',
/1X,'0Option 2?2 ',$)
READ (5,20) SIP
IF ((SIP.EQ.'A').OR. (SIP.EQ.'G')) THEN

WRITE (6,50)

FORMAT (1X, 'Value of kappa ? ',$)

READ (5,60) KAPPA

FORMAT (D16.9)

IF (KAPPA.LE.0.DO) THEN

WRITE (6,30)
STOP

ENDIF
ENDIF
IF ((SIP.EQ.'G').OR. (SIP.EQ.'S')) THEN

WRITE (6,70)

FORMAT (1X, 'Value of gamma ? ',$)

READ (5,60) GAMMA

IF (GAMMA.LE.0.DQ) THEN

GAMMA=0.D0
ENDIF
ENDIF
IF ((SIP.NE.'G').AND. (SIP.NE.'A') .AND. (SIP.NE.'S"')
.AND. (SIP.NE.'Z')) THEN
WRITE (6,30)
STOP
ENDIF
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IONPAIR IONPAIR.FOR
0113 WRITE (6,80)

0114 80 FORMAT (/1X, 'Fractional loading ? ',$)

0115 READ (5,60) XE

0lle IF ((XE.LE.0.DO).OR.(XE.GT.1.D0) .OR.

0117 * (XE.EQ.1.D0) .AND. ((SIP.EQ."'S').OR. (SIP.EQ.'G"))) THEN
0118 WRITE (6,30)

0119 STOP

0120 ENDIF

0121

0122 WRITE (6,100)

0123 100 FORMAT (/1X,'Options for finite difference simulations:’',
0124 * /1X, 'Tolerance (relative rms error) 2 ',S)
0125 READ (5,60) PREC

0126 IF (PREC.LE.0.D0) THEN

0127 PREC=1.D-8

0128 ENDIF

0129 WRITE (6,110)

0130 110 FORMAT (1X, '"Maximum number of iterations ? ',$)
0131 READ (5,120) MAX

0132 120 FORMAT (I8)

0133 IF (MAX.LE.O) THEN

0134 MAX=20

0135 ENDIF

0136 WRITE (6,130)

0137 130 FORMAT (1X, 'Number of points in simulation ? ',$)
0138 READ (5,120) N

0139 IF (N.LE.O) THEN

0140 N=1000

0141 ELSE IF (N.GT.5000) THEN

0142 N=5000

0143 ENDIF

0144 WRITE (6,140)

0145 140 FORMAT (1X, 'Value for scaling parameter alpha ? ',$)
0146 READ (5,60) a

0147 IF (A.LE.Q0DO) THEN

0148 A=1.D0

0149 ENDIF

0150

0151 WRITE (6,145)

0152 145 FORMAT (/1X,'Filename for simulation results 2?2 ',$)
0153 READ (5,170) FOUT

0154 WRITE (6,150)

0155 150 FORMAT (1X, 'Save conc. and potential profiles 2?2 ',$§)
0156 READ (5,20) SoUT

0157 IF (SOUT.EQ.'Y') THEN

0158 WRITE (6,160)

0159 160 FORMAT (10X, 'Filename for profile of a 2?2 ',$)
0160 READ (5,170) FOUTA

0161 170 FORMAT (Al2)

0162 WRITE (6,180)

0163 180 FORMAT (10X, 'Filename for profile of b 2 ',8§)
0164 READ (5,170) FOUTB

0165 IF (SIP.NE.'Z') THEN

0166 WRITE (6,190)

0167 190 FORMAT (10X, 'Filename for profile of ¢ 2?2 ',8)

0168 READ (5,170) FOUTC



IONPAIR

0169
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IONPAIR.FOR

ENDIF
WRITE (6,200)
FORMAT (10X, 'Filename for profile of g ? ',$%)
READ (5,170) FOUTG
IF (SEF.EQ.'E') THEN
WRITE (6,210)
FORMAT (10X, 'Filename for potential profile ? ',$)
READ (5,170) FQUTP
ENDIF
ENDIF

WRITE (6,250)
FORMAT (1X)

ChhhkhkhkkkdkhkAXA kA kX Ik kA XAk hhkhkkhhhhkhhkdkhkhkhdrhkhkr kA kA kA XA Ak XAk hkk kKX k

C
C
C

PNeNe]

Perform various preliminary tasks

Initialize the iteration counter
CNT=0

Determine the interval size
H=1.D0/DBLE (REAL (N+1))

Calculate various constants which appear in the formulas

F0=3.D0/XE

F2=F0-2.D0

F3=F0-3.D0

IF ((SIP.EQ.'A').OR. (SIP.EQ.'G')) THEN
K2=KAPPA*KAPPA
K3=K2*KAPPA
K4=K3*KAPPA

ENDIF

H2=2.DO0*H

H4=4.DO*H

HH=H*H

HH2=2.D(0*HH

HH4=4 .D0*HH

AA2=2 DO*A*A

IF (SIP.EQ.'A') THEN
CON=1.D0
GAMMA=0.D0

ELSE IF (SIP.EQ.'G') THEN
CON=1.D0-GAMMA /KAPPA

ENDIF

Establish the boundary conditions
GO0 corresponds to z0=£f0-3
GNPl corresponds to zNP1=f0-2
IF (SEXP.EQ.'R') THEN
Film is loaded with M(2+)
GO=F2
GNP1=F3
ELSE
Film is loaded with M(3+)
GO0=F3
GNP1=F2
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0225
0226
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0280

QaQ

300

251 :
IONPAIR.FOR

ENDIF

The initial approximation is a straight line
The slope depends upon the boundary conditions
Do 300, I=1,N
IF (SEXP.EQ.'R') THEN
Film is loaded with M(2+)
the slope is negative
G(I)=F2~-H*DBLE(REAL(I))

ELSE
Film is loaded with M(3+)
the slope is positive
G(I)=F3+H*DBLE (REAL(I))
ENDIF
CONTINUE

C & ok %k ok ok 3k Kk ok ok ke k ok ok ok ke ok kS kK ok ok ok ok ke gk A ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk e K ok ok ok ok ok e ok Kk ok ok

C
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500
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Finite Difference Approximation of the Solution
The vector G() contains the current approximation
for g(z): each pass revises the approximation

Newton's Method is employved at each pass to obtain the
next approximation. The residuals vector, R(), and
the Jacobian, J(,), are computed. The correction
vector, x, is found by solving the linear system:

J x =R

Crout Reduction is used to obtain x. The EXTERNAL
SUBROUTINE CROUT uses the data in COMMON BLOCK
/CRTRED/J,R. The algorithm alters the contents of
J and returns the vector x in R.

Note that since J is tri-diagonal, only the central
diagonals are stored.

re-entry point for each iteration
CONTINUE

increment the loop counter
CNT=CNT+1

have we exceeded the iteration limit?

IF (CNT.GT.MAX) THEN
WRITE (6,550)
FORMAT (/1X,'%% Max. nbr. of iterations exceeded’)
STOP

ENDIF

element i is GO

The subroutine FG(G) calculates the values f(g), £'(g),
and £'' (g)

CALL FG(G(1))

DG=G (2) -GO0

Evaluate element 1 of vector R
R(1)=(DLOG (H) /AA2-FI) *DG/H2~-H*FI* (G(2)-2.D0*G(1)+G0) /HH
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0281 * -H*DFI*DG*DG/HH4

0282

0283 C Construct row 1 of the Jacobian

0284 J(1,1)=0.D0

0285 J(1,2)=-DFI*DG/H2+2.DO0*FI/H~DFI* (G(2)-2.D0*G(1)+G0Q) /H
0286 * -DDFI*DG*DG/H4

0287 J{(1,3)=(DLOG(H) /AA2-FI) /H2-FI/H-DFI*DG/H2

0288

0289 C Construct the interior elements

0290 DO 600, I=2,N-1

0291 Z=F3+H*DBLE (REAL (1))

0292 ZZ=Z~F3

0293 C Evaluate FI, DFI, and DDFI

0294 CALL FG(G(I))

0295 DG=G(I+1)-G(I-1)

0296

0297 C Evaluate element I of vector R

0298 R(I)=(DLOG(ZZ)/AA2-FI)*DG/H2

0299 * -ZZ*FI* (G(I+1)~-2.D0*G(I)+G(I~-1))/HH
0300 * -ZZ*DFI*DG*DG/HH4

0301

0302 C Construct row I of the Jacobian

0303 J(I,1)=(FI-DLOG(ZZ) /AA2) /H2

0304 * -2Z*FI/HH+2Z*DFI*DG/HH2

0305 J(I,2)=-DFI*DG/H2+2.D0*2Z*FI/HH

0306 * -ZZ*DFI* (G(I+1)-2.D0*G(I)+G(I-1))/HH
0307 * -2Z*DDFI*DG*DG/HH4

0308 J(I,3)=(DLOG(Z2) /AA2-FI) /H2

0309 * ~-ZZ*FI/HH-2Z*DFI*DG/HH2

0310

0311 600 CONTINUE

0312

0313 C element N+1 is FNP1

0314 22=1.D0-H

0315 CALL FG(G(N))

0316 DG=GNPL1-G (N-1)

0317

0318 C Evaluate element N of vector R

0319 R(N)=(DLOG(Z2Z) /AA2-FI)*DG/H2-2Z*F1I* (GNP1-2.D0*G(N)
0320 * +G(N-1)) /HH-ZZ*DFI*DG*DG/HH4

0321

0322 C Construct row N of the Jacobian

0323 J(N,1)=(FI-DLOG(Z2)/AA2) /H2~2Z*FI/HH+ZZ*DFI*DG/HH2
0324 J(N,2)=-DFI*DG/H2+2 .D0*Z2*FI/HH-2Z*DFI*

0325 * (GNP1-2.D0O*G(N)+G(N-1)) /HH-ZZ*DDFI*DG*DG/HH4
0326 J(N,3)=0.D0

0327

0328

0329 C Obtain the next approximation

0330 C The correction vector is returned in R()

0331 CALL CROUT (N)

0332

0333 Cc Compute the revised conc. profile and estimate the error
0334 ERR=0.D0

0335 IERR=0

0336 Do 700, I=1,N
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Add the correction vector to the old approximation
to obtain the new approximation
G(I)=G(I)-R(I)
Estimate the relative error
If G(I)=0, drop that point from the error estimate
IF (G(I).NE.0.DO) THEN
ERR=ERR+ (R(I) /G(I)) **2
IERR=IERR+1
ENDIF
CONTINUE
Estimate the root mean square of the relative error
ERR=DSQRT (ERR/DBLE (REAL (IERR) ) )

WRITE (6,720) CNT,ERR
FORMAT (1X,'Pass ',I3,10X,'rel. rms error = ',D16.9)

Are we within tolerance?
If not, repeat the iteration loop
IF (ERR.GT.PREC) GOTO 500
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Finite Difference Simulation has converged to within the
specified precision. Compute the final quantities

Calc. the slope dg/dz at the electrode surface (z=f0-2)
recall that dg/du = - alpha dg/dz
SLOPE=(3.D0*GNP1-4.D0*G (N) +G(N-1)) /H2

formulas for PSI for all cases are the same regardless of
whether or not electric field effects are included
IF (SIP.EQ.'Z') THEN
No ion-pairing, kappa=0
IF ((XE.EQ.1.D0).AND. (SEXP.EQ.'R'") .AND. (SEF.EQ.'E")) THEN
PSI=2.D0*A*SLOPE
ELSE
PSI=A*SLOPE
ENDIF
ELSE IF (SIP.EQ.'S') THEN
Strong ion-pairing limit, kappa>100
PSI=A* (GAMMA+F(/GNP1l) *SLOPE
ELSE IF (SEXP.EQ.'R') THEN
Coating loaded with M(2+)
TMP=F0+KAPPA*F3
AQ=(DSQRT (TMP*TMP+4 .DO0*KAPPA*F() ~TMP) /2.D0
IF ((XE.EQ.1.D0) .AND. (SIP.EQ.'A') .AND. (SEF.EQ.'E')) THEN
Special conditions for full loading
PSI=2.D0*A*A0*SLOPE
ELSE
PSI=A* (GAMMA+CON*AQ) *SLOPE
ENDIF
ELSE
Coating loaded with M(3+)
PSI=A* (GAMMA+CON*KAPPA*F0/ (FO+KAPPA*F2) ) *SLOPE
ENDIF

Calculate the dimensionless diffusion coefficient
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D=XE*PSI*PSI

Compute the optimal value for alpha
IF (SEXP.EQ.'R') THEN
AA=DABS (2.D0*A*SLOPE)
ELSE
AA=DABS (0.5D0*A*SLOPE)
ENDIF
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Print the results

WRITE (6,1000) PSI,D,AA
FORMAT (//1X,'psi = ',D16.9,/1X, 'psi*psi*XE = ',D16.9,
//1X, 'recommended value for alpha = ',D16.9)

OPEN (1,FILE=FOUT, STATUS='NEW')

WRITE (1,1100)
FORMAT (11X, 'Finite Difference Simulation of a ',

*Potential Step Experiment',

/24X, 'for the Contact Ion-Pairing Model')
IF (SEXP.EQ.'R') THEN

WRITE (1,1105)

FORMAT (/1X,'Coating loaded with M(2+) complex')
ELSE

, WRITE (1,1106)

FORMAT (/1X, 'Coating loaded with M(3+) complex')
ENDIF
IF (SIP.EQ.'Z') THEN

WRITE (1,1110)

FORMAT (/1X,‘'Limiting behavior for kappa=0"')
ELSE IF (SIP.EQ.'S') THEN

WRITE (1,1120) GAMMA

FORMAT (/1X,'Strong ion-pairing limit, kappa>100',

/10X, '‘gamma = ‘',D16.9)

ELSE IF (SIP.EQ.'A') THEN

WRITE (1,1140) KAPPA

FORMAT (/1X, 'A+/B pathway only, gamma=0',

/10X, *kappa = ',D16.9)
ELSE
WRITE (1,1150) KAPPA,GAMMA
FORMAT (/1X, 'General treatment',
/10X, ‘kappa = ',D16.9,
/10X, 'gamma = ',D16.9)
ENDIF

IF (SEF.EQ.'E') THEN
WRITE (1,1160)
FORMAT (/1X, 'Calculations include the effect of ',
‘the electric field')

ELSE
WRITE (1,1170)
FORMAT (/1X,'Calculations do not include the ‘',
'effect of the electric field')
ENDIF

WRITE (1,1180) XE



IONPAIR

0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500

0501 .

0502
0503
0504

1180

1200

* % X % Ok X X X%

255
IONPAIR.FOR

FORMAT (/1X, 'Fractional loading = ',F8.6)

WRITE (1,1200) N,PREC,MAX,CNT,A,PSI,D,AA

FORMAT (/1X, 'Simulation parameters:‘',
/10X, 'Number of points = ',15,
/10X, 'Relative rms tolerance for convergence = ‘',
D16.9, /10X, 'Maximum number of iterations = ',I5,
/10X, '"Number of iterations required = ',I5,
/10X, 'scaling parameter alpha = ',D16.9,
//1X,'psi = ',D16.9,
/1X, 'psi*psi*XE = ',D16.9,
//1X, 'recommended value for alpha = ',D16.9)

CLOSE (1)
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Save the concentration and potential profiles, if
necessary

All concentration profiles are dimensionless

the values of b=CB/CE, c¢=CC/CE, and g=CG/CE are saved

the value of a=kappa*CA/CE is saved, except for option

Z where a=CA/CE is saved

The potential profile is dimensionless

The independent variable in the output files is u not z

IF (SOUT.EQ.'Y') THEN

OPEN (1,FILE=FOUTA,STATUS='NEW')

OPEN (2,FILE=FOUTB, STATUS='NEW')

IF (SIP.NE.'Z') THEN
Open file for C only if kappa is non-zero
OPEN (3,FILE=FOUTC, STATUS='NEW')

ENDIF

OPEN (4,FILE=FOUTG, STATUS='NEW'")

IF (SEF.EQ.'E') THEN
save the electric potential profile only if
computations include electric field effects
OPEN (5,FILE=FOUTP, STATUS='NEW')

ENDIF

FORMAT (1X,D14.7,',',D14.7)

The last point corresponds to the electrode surface
IF (SEXP.EQ.'R') THEN
Coating loaded with M(2+)
IF (SIP.EQ.'Z') THEN
WRITE (1,1500) 0.0,1.0
ELSE
IF (SIP.EQ.'S') THEN
CA=F0/F3
CC=1.D0
ELSE
TMP=KAPPA*F3+F0
CA= (DSQRT (TMP*TMP+4 . DO*KAPPA
*FQ)-TMP) /2.D0
CC=1.D0-CA/KAPPA
ENDIF
WRITE (1,1500) 0.0,CA
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0505 WRITE (3,1500) 0.0,CC

0506 ENDIF

0507 WRITE (2,1500) 0.0,0.0

0508 WRITE (4,1500) 0.0,F3

0509 IF ((SEF.EQ.'E').AND. (XE.NE.1.D0)) THEN

0510 WRITE (5,1500) 0.0,0.0

0511 ENDIF

0512 ELSE

0513 C Coating loaded with M(3+)

0514 WRITE (1,1500) 0.0,0.0

0515 WRITE (2,1500) 0.0,1.0

0516 IF (SIP.NE.'Z') THEN

0517 WRITE (3,1500) 0.0,0.0

0518 ENDIF

0519 WRITE (4,1500) 0.0,F2

0520 IF (SEF.EQ.'E') THEN

0521 WRITE (5,1500) 0.0,0.0

0522 ENDIF

0523 ENDIF

0524

0525 DO 2000, I=N,1,-1

0526 Z=F3+H*DBLE (REAL(I))

0527 U=-DLOG (Z~-F3) /A

0528

0529 CB=G(I)-F3

0530

0531 IF (SIP.EQ.'Z') THEN

0532 CA=1.D0-CB

0533 ELSE

0534 IF (SIP.EQ.'S') THEN

0535 CA=(F2~G(I))*F0/G(I)
" 0536 CC=1.D0-CB

0537 ELSE

0538 TMP=F0-KAPPA*G (TI)

0539 CA=(DSQRT (TMP *TMP+4 .DO*KAPPA

0540 * *FO*F2) -FO-KAPPA*G(I))/2.D0

0541 CC=1.D0-CB-CA/KAPPA

0542 ENDIF

0543 WRITE (3,1500) U,CC

0544 ENDIF

0545 .

0546 WRITE (1,1500) U,CA

0547 WRITE (2,1500) U,CB

0548 WRITE (4,1500) U,G(I)

0549

0550 IF (SEF.EQ.'E') THEN ,

0551 IF ((XE.EQ.1.DO0).AND. (SEXP.EQ.'R')) THEN

0552 P=-DLOG(G(I))

0553 ELSE

0554 P=DLOG (GNP1/G(I))

0555 ENDIF

0556 WRITE (5,1500) U,P

0557 ENDIF

0558

0559 2000 CONTINUE

0560
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Bulk solution possesses u ~> infinity and
hence cannot be written

CLOSE (1)
CLOSE (2)
IF (SIP.NE.'Z') THEN
CLOSE (3)
ENDIF
CLOSE (4)
IF (SEF.EQ.'E') THEN
CLOSE (5)
ENDIF
ENDIF
END
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SUBROUTINE FG(G)

evaluation of

FI = f(qg)
DFI = (df/dqg)
DDFI = d2f/dg2

KA A KA A AR KA A KKK A A A A A AR A A AR AR AR A A A AR A ARAARAR AR AR A AR AR A ARk ok *k

DOUBLE PRECISION XE,F0,F2,F3,KAPPA,K2,K3,K4,GAMMA
DOUBLE PRECISION FI,DFI,DDFI

DOUBLE PRECISION A,DA,DDA,DDDA, TMP, SQ, CON

DOUBLE PRECISION G,G2,G3,G4

CHARACTER*1 SEXP, SEF, SIP, SOUT

COMMON /OPT/SEXP, SEF, SIP, SOUT/FUNC/FI,DFI,DDFI
COMMON /COND/XE,F0,F2,F3,KAPPA,K2,K3,K4, GAMMA, CON
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G2=G*G
G3=G2*G
G4=G3*G

IF (SIP.EQ.'Z') THEN
No Ion Pairing Case, kappa=0
IF (SEF.EQ.'N') THEN
Omit Electric Field Effects
FI=-1.D0
DFI=0.D0
DDFI=0.D0
ELSE IF (XE.EQ.1.D0) THEN
Full Loading Case with Electric Field Effects
FI=G-F0+1.DO0
DFI=1.D0
DDFI=0.DO0
ELSE
Fractional Loading less than unity
with Electric Field Effects Included
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FI=G-2.D0*F2+F2*F3/G
DFI=1.D0-F2*F3/G2
DDFI=2.D0*F2*F3/G3

ENDIF

ELSE IF (SIP.EQ.'S') THEN

Strong Ion-Pairing Limit

IF (SEF.EQ.'N') THEN
Electric Field Effects Not Included
FI=F0* (1.D0+F2* (-2.D0+F3/G) /G) —-GAMMA
DFI=2.D0*FO0*F2* (1.D0-F3/G) /G2
DDFI=2.D0*FO*F2*% (-2 .D0+3.D0*F3/G) /G3

ELSE
Electric Field Effects Included
FI=2.D0*F0+ (G-2.D0*F2) *GAMMA

+(-(4.D0*F0-9.D0) *FO

+F2*F3* (GAMMA+2.D0*F0/G)) /G
DFI=GAMMA+ ( (4 .DO*FQ0-9.DQ) *FOQ

~F2*F3* (GAMMA+4.D0*F0/G) ) /G2
DDFI=2.D0* (-(4.D0*F0-9.D0) *F0

+F2*F3* (GAMMA+6.D0O*F0/G) ) /G3

ENDIF

ELSE IF ((XE.EQ.1.D0) .AND. (SIP.EQ.'A")
.AND. (SEF.EQ.'E')) THEN
Full loading with Case 2 and E-Field effects incl.
TMP=DSQRT (12.D0*KAPPA+ (3.D0~KAPPA*G) **2)
FI=(6.D0+KAPPA*G) /2.D0- (K2*G2-9.DO*KAPPA*G
+18.D0+24 .DO*KAPPA) / (2.D0*TMP)
DFI=0.5D0*KAPPA~ (K3*G3-9.D0*K2*G2+27.D0*KAPPA
*G-27.D0-36.D0*KAPPA) *KAPPA/ (2.D0*TMP**3)
DDFI=~18.D0*K4*G* (KAPPA*G~3.D0) / (TMP**5)
ELSE
Both of the remaining ion-pairing cases, G and A,
require calculating a and its derivatives
regardless of whether or not electric field
effects are included in the computations
TMP=F(0-KAPPA*G
SQ=DSQRT (TMP*TMP+4 .DO*FO*KAPPA*F2)
A= (SQ-KAPPA*G-F(Q) /2.D0
DA=-KAPPA* (1.D0+TMP/SQ) /2.D0
DDA=2.DO*FO*K3*F2/ (SQ**3)
DDDA=6 .DO*FQ*K4*F2*TMP/ (SQ**5)
IF (SIP.EQ.'A') THEN
A+/B pathway only, gamma=0
IF (SEF.EQ.'N') THEN
Electric Field Effects Omitted
FI=(G-F3)*DA-A
DFI=(G-F3) *DDA
DDFI=DDA+ (G~F3) *DDDA

ELSE
Electric Field Effects Included
FI=(G-F3)*DA+((F3/G)-2.D0)*A
DFI=(G-F3) *DDA+ ((F3/G)-1.D0) *DA-F3*A/G2
DDFI=(G-F3) *DDDA+F3*DDA/G
-2.DO0*F3*DA/G2+2.D0*F3*A/G3
ENDIF

ELSE
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General treatment

IF (SEF.EQ.'N') THEN
Electric Field Effects Omitted
FI=CON* ( (G-F3) *DA-A) -GAMMA
DFI=CON* (G-F3) *DDA
DDFI=CON* (DDA+ (G-F3) *DDDA)

ELSE
Electric Field Effects Included
FI=CON* (G-F3) *DA+GAMMA*G
+((F3/G)-2.D0) * (CON*A+GAMMA*F2)
DFI=CON* ( (G-F3) *DDaA+ ( (F3/G) -1.D0) *DA)
~-F3* (CON*A+GAMMA*F2) /G2
DDFI=CON* (G-F3) *DDDA+F3* (CON*DDA+2 .D0*
{(-DA*CON+ (CON*A+GAMMA*F2) /G) /G) /G
ENDIF
ENDIF
ENDIF
RETURN
END
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SUBROUTINE CROUT (N)

David N. Blauch November 6, 1986
Caltech, Pasadena, CA 91125

Solution of the Linear System of Equations Mx=v
Using Crout Reduction (i.e., direct factorization)

Note that M must be tri-diagonal:
the diagonal elements are in column 2
the off-diagonal elements i-1 and i+l are in
columns 1 and 3 resp.

INTEGER I,N
DOUBLE PRECISION M(5000,3),V(5000)

COMMON /CRTRED/M,V

M(1,3)=M(1,3)/M(1,2)

DO 100, I=2,N-1
M(I,2)=M(I,2)—M(I,l)*M(I-1,3)
M(I,3)=M(I,3)/M(I,2)

CONTINUE

M(N,2)=M(N,2)-M(N, 1) *M(N-1,3)

V(1)=V(1)/M(1,2)

DO 200, I=2,N
V(I)=(V(I)-M(I,1)*V(I-1))/M(I,2)

CONTINUE

DO 300, I=N-1,1,-1
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0035 V(I)=V(I)-M(I,3)*V(I+1)
0036 300 CONTINUE

0037

0038 RETURN

0039

0040 END
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The program SSLSV calculates the slow-scan, linear-sweep
voltammogram predicted by the ion-pairing model for a particular
value of x and Xg. When executed, the operator is prompted for
information regarding the extent of ion-pairing and the fractional
loading, specific values of x and Xg being requested where necessary.
This information determines which formulas from Chapter 8 will be
utilized in the calculations. The initial and final values for the
dimensionless potential, &, are then requested, along with the
resolution in €. The convergence criterion and maximum number of
iterations for Steffensen's algorithm,44 used to solve for p given ¢, are
requested. The resolution in € indicates the spacing between points
on the voltammogram; at each point the value of p 1is calculated to
the relative precision of the convergence criterion. Because
quadratic interpolation is employed in the determination of the
values for the peak current, peak potential, and the full- and half-
widths at half-maximum, the actual accuracy of €p, AE+, Ae., and Aey

are considerably better than the specified resolution in e. All user-

supplied numbers are floating point variables, except the maximum
number of iterations. Finally, name(s) for the output file(s) must be
provided.

The computer first constructs the entire voltammogram and then
analyzes the voltammogram, locating the peak current and peak
potential, potentials for the half-maximum currents, and the full-
and half-widths. These voltammetric characterizations are then
displayed on the terminal and written to disk; the voltammogram is

then saved, if so requested.
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PROGRAM SSLSV

David N. Blauch March 1989 Revised June 1990
Caltech, Pasadena, CA 91125

Slow-Scan Linear-Sweep Voltammetry
at a Nafion Modified Electrode

See David N. Blauch, Ph.D. Thesis, Chapter 8 for a
discussion of the relevant theory and nomenclature

AEKIA KA A A A A AR AAKAKARA AR A AR A AR AR A A ARk kA hkkkhkhkhhkkhkhkhkhkhkhkhkhkkkkkxk

XE is the fractional loading

KAPPA is the dimensionless, ion-pairing equil. constant

RHO is the ratio of total concentrations of reduced to
oxidized forms of the redox species

CURRENT is the dimensionless current theta

E is the dimensionless potential epsilon

AAAI KKK A AR AKKA AR A AAAAKRAA A A AR A A AA KR AA A Ak A Ak hk kA kA hkkkhkhkkhkkhhkhhkkkx

INTEGER I,IP,CNT,MAX,NE
DOUBLE PRECISION E(10000),C(10000),CP,CHALF,EP, HWPOS
DOUBLE PRECISION XE,KAPPA,RHO,EI,EF,DE,F0, HWNEG,FW
DOUBLE PRECISION EPSILON,CURRENT,PREC,ERR,X1,X2,X3
CHARACTER*1 SIP,SXE,SLSV

CHARACTER*12 FLSV,FCHR

EXTERNAL EPSILON, CURRENT

C*'k***'k*********‘k**********‘k***‘k********‘k***********‘k***********

C
C

10

20

30

40

* % % A % %

Get the simulation parameters

WRITE (6,10)
FORMAT (//23X,'Slow-Scan Linear-Sweep Voltammetry',
//1X, 'Available ion-pairing limits:*‘,
/10X, 'Z2 - no ion-pairing, kappa=0',
/10X,'G - general treatment, arbitrary kappa',
/10X,'S - strong ion-pairing limit, kappa>100°',
/10X, ' (kappa is the dimensionless ion-pairing ‘',
'equilibrium constant.)’',
/1X,'Option for extent of ion-pairing 2?2 ',$)
READ (5,20) SIP
FORMAT (Al)
IF ((SIP.NE.'2').AND. (SIP.NE.'S')) THEN
'G' is the default option
SIP='G’
WRITE (6, 30)
FORMAT (1X, 'Value for kappa ? ',$§)
READ (5,40) KAPPA
FORMAT (D16.9)
IF (KAPPA.LE.0.D0O) THEN
SIp="'2"
ENDIF
ENDIF

WRITE (6,50)
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0057 50 FORMAT (/1X,‘'Available fractional loading limits:?',
0058 * /10X,'Z - limiting behavior for XE=0',

0059 * /10X,'G - general treatment, arbitrary XE?',
0060 * /10X, 'F - limiting behavior for XE=1'

0061 * /10X, '(XE is the fractional loading.)?‘,
0062 * /1X,'Option for fractional loading ? ',$)
0063 READ (5,20) SXE

0064 IF ((SXE.NE.'Z') .AND. (SXE.NE.'F')) THEN

0065 SXE='G"

0066 WRITE (6,60)

0067 60 FORMAT (1%, ‘'Value for XE 2?2 ',8)

0068 READ (5,40) XE

0069 IF (XE.LE.0.DO) THEN

0070 SXE='2"

0071 ELSE IF (XE.GE.1.D0) THEN

0072 SXE='F'

0073 ELSE

0074 C Fractional loading expressed as f0
0075 F0=3.0/XE

0076 ENDIF

0077 ENDIF

0078

0079 WRITE (6,70)

0080 70 FORMAT (/1X,'Limits for epsilon:',

0081 * /1X,'Initial value for epsilon ? ',$)

0082 READ (5,40) EI )

0083 IF (EI.EQ.0.D0) THEN

0084 IF (SIP.EQ.'G') THEN

0085 EI=-10.D0-DLOG(3.D0* (1.D0+KAPPA))
0086 ELSE

0087 EI=-10.D0

0088 ENDIF

0089 ENDIF

0090 WRITE (6,80)

0091 80 FORMAT (1X,'Final value for epsilon ? ',$§)

0092 READ (5,40) EF

0093 IF (EF.EQ.0.D0) THEN

0094 IF (SIP.EQ.'G') THEN

0095 EF=20.D0-DLOG(3.D0* (1.D0+KAPPA))

0096 ELSE

0097 EF=20.DC

0098 ENDIF

0099 ENDIF

0100 WRITE (6,90)

0101 90 FORMAT (1X, 'Absolute resolution of epsilon ? ',5)
0102 READ (5,40) DE

0103 IF (DE.LE.0.D(O) THEN

0104 DE=0.01

0105 ENDIF

0106

0107 WRITE (6,100)

0108 100 FORMAT (/1X, 'Computational parameters:',/1X, 'Relative ¥,
0109 * ‘tolerance for the Steffensen algorithm 2 ',$)
0110 READ (5,40) PREC

0111 IF (PREC.LE.(0.D0O) THEN

0112 PREC=1.D-6
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ENDIF
WRITE (6,110)
110 FORMAT (1X, 'Max. nbr. of Steffensen iterations ? ',$§)
READ (5,120) MAX
120 FORMAT (I8)
IF (MAX.LE.O) THEN
MAX=20
ENDIF

WRITE (6,123)
123 FORMAT (/1X,'Filename for results ? ',$)
READ (5,140) FCHR
WRITE (6,125)
125 FORMAT (1X, 'Save voltammogram ? ',$)
READ (5,20) SLSV
IF ((SLSV.EQ.'Y').OR. (SLSV.EQ.'y')) THEN
WRITE (6,130)
130 FORMAT (/1X,'Filename for the voltammogram ? ', $)
READ (5,140) FLSV
140 FORMAT (Al2)
ENDIF

C***************************************************************

C Perform initializations

C

C Number of points in the simulation
NE=IDINT ( (EF~EI) /DE)

ChhkkhkhhhhhhkhhhhhhhhkhkhkhhkhhhrhhhkhkhAkbhhhhdhkkhkhhkdhkhdkhkhkhxhhkkkhxx

C Select the seed value for RHO, based upon initial
C potential for all points except the first, the seed
C value is the previous value of RHO

RHO=DEXP (-EI)

DO 500, I=1,NE+l
E(I)=EI+DE*DBLE (REAL(I-1))

C **x** Steffensen's algorithm is used to determine
o the value of RHO that gives rise to E
C initialize the iteration counter
CNT=0
C re-entry point for next iteration
C increment iteration counter
300 CNT=CNT+1
C Are we wasting our time?
IF (CNT.GT.MAX) THEN
C we have exceeded MAX iterations
C algorithm has failed
WRITE (6,320)
320 FORMAT (/1X, "MAX exceeded')
STOP
ENDIF



SSLSV

0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224

265
SSLSV.FOR

c save the current value of RHO
X1=RHO
C two passes of fixed-point iteration
C the system is such that fixed-point
c iteration always converges

X2=DEXP (EPSILON (X1, KAPPA,F0,SIP,SXE) -E (I))*X1
X3=DEXP (EPSILON (X2, KAPPA,F0, SIP, SXE) -E (I)) *X2

C calculate the fixed-point error
ERR=DABS { (X3-X2) /X3)
C are we within tolerance?

IF (ERR.GT.PREC) THEN

C best estimate is outside of tolerance
c Aitken's algorithm is used to speed
C convergence
RHO=(X1*X3-X2*X2) / (X3-2.D0*X2+X1)
C return for another iteration
GOTO 300
ELSE
C RHO has been calculated to a
C satisfactory precision
RHO=X3
ENDIF
C calculate the current
C (1) =CURRENT (RHO, KAPPA,F0, SIP, SXE)
500 CONTINUE
C*******************‘k*******************************************
c Save the voltammogram
C

IF ((SLSV.EQ.'Y‘).OR.(SLSV.EQ.'Y')) THEN
OPEN (1,FILE=FLSV,STATUS='NEW')

DO 600, I=1,NE+1
WRITE (1,620) E(I),C(I)

620 FORMAT (1X,D14.7,',',D14.7)
600 CONTINUE
CLOSE (1)
ENDIF

ChhhhkhxhkhkkhkhhkAAkAkhhhAhkAkhAhkAA kK kA AhkhkhdhhdkhAkkhhkkhkhkkkkhkhkkhkhkhkk

C Pass 1: Locate the peak current
C
I=1
700 CONTINUE
I=I+1
IF (I.GT.NE) THEN
c we ran out of points and have found no maxima
WRITE (6,720)
720 FORMAT (1X, 'Peak Current Not Found')
STOP
ELSE
C the peak current is always above 0.1
c scan voltammogram until current is above 0.1

IF (C(I).LT.0.1) GOTO 700
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ENDIF
is the curve still rising?
IF (C(I)-C(I-1)) 750,750,700

CONTINUE

Determine the peak current and potential
the peak current lies between points I-2 and I
use quadratic interpolation to estimate the peak
current and peak potential

save the position, roughly, of the maxima

IP=I

calculate the peak current and peak potential

CP=C(I-1)~0.125D0* ((C(I)-C(I-2))**2)/(C(I)
-2.D0*C(I-1)+C(I-2))

EP=E (I-1)~0.5D0*DE* (C(I)-C(I-2))/(C(I)
-2.D0*C(I-1)+C(I-2))

C % %k ok %k Kk ok ek ok e Sk ke ok sk gk ke ok ok ok ok ok ok ok sk ok ok ok ok A ok ok ok ok Sk ok ok ke 3k ok kA ok ok ok ok ok ok ok ok ke ok ok ok Rk ok ok ok

Qoo
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Pass 2: Locate one of the half-maxima
examine portion of the curve with points I > IP

value of the current at half-maxima
CHALF=CP/2.D0
initialize the pointer
I=IP+1
CONTINUE
I=I+1
IF (I.GT.NE) THEN
we have run out of points and the current is
still above CHALF
WRITE (6,820)
FORMAT (1X, 'First Half-Maxima Not Found')

STOP
ENDIF
IF (C(I)-CHALF) 850,850,800
CONTINUE

use quadratic interpolation to locate the potential at
half-maxima
have we found the upper (positive) or lower (negative)
half of the wave?
IF (E(I).GT.EP) THEN
HWPOS=E (I-1)+DE* (CHALF-C(I-1))/(C(I)-C(I-1))-EP
ELSE
HWNEG=EP-E (I-1) -DE* (CHALF-C(I-1))/(C(I)-C(I-1))
ENDIF

C % % % J % Kk % %k ke Kk Kk ok ok ok kK ke Kk sk K ok ek ke ok Ak ek ok ok ke ok ek Ak ok ok ke ok ok ke ok gk ok kK ok sk Rk ok ok Kk ke ok ok

sNoNoNe]
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Pass 3: Locate the other half-maxima
examine portion of the curve with points I < IP

initialize the pointer
I=1IP
CONTINUE
I=I-1
IF (I.GT.NE) THEN
we have run out of points and the current is
still above CHALF
WRITE (6,920)
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920 FORMAT (1X,'Second Half-Maxima Not Found')
STOP
ENDIF
C is the current less than half the peak current?

IF (C(I)-CHALF) 950,950,900
950 CONTINUE

C use quadratic interpolation to locate the potential at
C half-maxima
C have we found the upper (positive) or lower (negative)
c half of the wave?
IF (E(I).GT.EP) THEN
HWPOS=E (I) +DE* (CHALF-C(I))/(C(I+1)-C(I))-EP
ELSE
HWNEG=EP-E (I) -DE* (CHALF~C(I))/ (C(I+1)-C(I))
ENDIF
c Calculate the full-width at half-maxima
C the full-width is the sum of the half-widths

FW=HWPOS+HWNEG

C********************************‘k******************************

ol Print the results at the terminal
C
WRITE (6,1000) EP,CP,HWNEG, HWNPOS,FW
1000 FORMAT (/10X, 'peak potential = ',F10.6,
/10X, 'peak current = ',FB8.6,
/10X, 'negative half-width at half-maxima = ',F8.6,
/10X, ‘positive half-width at half-maxima = ',F8.6,
/10X, '*full-width at half-maxima = ',F8.6)

L I I

C*******‘k**‘k********************‘k*******************************

C Write the results to the characterization file
C
QPEN (1,FILE=FCHR, STATUS='NEW')}

WRITE (1,1100)
1100 FORMAT (23X, 'Slow-Scan Linear Sweep Voltammetry',
* //1X, '"Computations based upon:')
IF (SIP.EQ.'2') THEN
WRITE (1,1110)
1110 FORMAT (10X, 'No ion-pairing (kappa=0)"')
ELSE IF (SIP.EQ.'S') THEN
WRITE (1,1120)

1120 FORMAT (10X, 'Strong ion-pairing (kappa>100)°',
* /10X, 'peak potential does not include lnl[kappal')
ELSE
WRITE (1,1130) KAPPA
1130 FORMAT (10X, 'General treatment, kappa = ',D16.9)
ENDIF

IF (SXE.EQ.'Z') THEN
WRITE (1,1140)
1140 FORMAT (10X, 'Low fractional loading limit (XE=0)"')
ELSE IF (SXE.EQ.'F') THEN
WRITE (1,1150)
1150 FORMAT (10X, '‘Full fractional loading (XE=1)"')
ELSE
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WRITE (1,1160) XE

FORMAT (10X, 'General treatment with XE = ',F8.6)
ENDIF
WRITE (1,1200) DE,EP,CP, HWNEG, HWPOS,FW
FORMAT (/1X,'Resolution in epsilon = ',F8.6,//1X,

0342 * 'Potentials and wave widths expressed in terms ',
0343 * ‘of epsilon',/1X, 'Peak current expressed in ‘',

0344 * 'terms of theta',/1X, 'Characteristics determined ‘',
0345 * 'by quadratic interpolation:?®,

0346 * /10X, 'peak potential = ',F10.6,

0347 * /10X, 'peak current = ',F8.6,

0348 * /10X, 'negative half-width at half-maxima = ',F8.6,
0349 * /10X, 'positive half-width at half-maxima = ',F8.6,
0350 * /10X, "full-width at half-maxima = ',F8.6)

0351

0352 CLOSE (1)

0353

0354 END

0001

0002 CE058555558555555558555558555555555555558555558539555555555555%858558
0003

0004 DOUBLE PRECISION FUNCTION EPSILON (RHO,KAPPA,F0,SIP, SXE)
0005

0006 C Function returns epsilon given the oxidation state

0007 (o of the coating (RHO), the ion-pairing equilibrium
0008 c constant (KAPPA), and the fractional loading (FO0).
0009 c

0010 c The switches SIP and SXE indicate the extent of

0011 C ion-pairing and fractional loading, thereby

0012 o identifying the proper formulas to be used.

0013 C

0014 C***************v************************************************
0015 DOUBLE PRECISION R,RHO,RHO1,KAPPA,F0,F1,F2,F3

0016 DOUBLE PRECISION TMP,A,E

Qo117 CHARACTER*1 SIP,SXE

0018

0019 C*********************************t**********‘k******************
0020 C these quantities appear frequently in the formulas for E
0021 F1=F(0-1.D0

0022 F2=F0-2.D0

0023 F3=rF0-3.D0

0024 RHO1=RHO+1.D0

0025 R=RHO/RHO1

0026

0027 IF (SXE.EQ.'Z') THEN

0028 C Zero fractional loading

0029 E=-DLOG(3.D0*RHO)

0030 IF (SIP.EQ.'G') THEN

0031 C Arbitrary degree of ion-pairing

0032 E=E-DLOG (1.D0+KAPPA)

0033 ENDIF

0034 ELSE IF (SXE.EQ.'F') THEN

0035 C Full fractional loading

0036 IF (SIP.EQ.'Z') THEN

0037 c No ion-pairing
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0038 E=-DLOG (R*RHO)

0039 ELSE IF (SIP.EQ.'S') THEN

0040 c Strong ion-pairing

0041 E=DLOG(3.D0/ (RHO*R**2))

0042 ELSE

0043 C Arbitrary degree of ion-pairing

0044 TMP=KAPPA*R+3.D0

0045 A={(DSQRT (12.D0*KAPPA/RHO1+TMP**2) -TMP) /2.D0
0046 E=-DLOG ({R*R*KAPPA/A)

0047 ENDIF

0048 ELSE

0049 c Arbitrary fractional loading

0050 IF (SIP.EQ.'Z') THEN

0051 C No ion-pairing

0052 E=-DLOG (3.D0*RHO* (F2*RHO+F3) / (FO*RHQO1) )
0053 ELSE IF (SIP.EQ.'S') THEN

0054 C Strong ion-pairing

0055 =~DLOG (3.D0*RHO* ( (F2*RHO+F3) / (FO*RHO1) ) **2)
0056 ELSE

0057 C Arbitrary degree of ion-pairing

0058 TMP=F(0+KAPPA* (F2*RHO+F3) /RHO1

0059 A= (DSQRT (4 .D0*KAPPA*F(0/RHO1+TMP**2) ~-TMP) /2.D0
0060 E=-DLOG (3.D0*RHO*KAPPA* (F2*RHO+F3)

0061 * / (A*FO*RHO1*RHO1) )

0062 ENDIF

0063 ENDIF

0064

0065 EPSILON=E

0066

0067 RETURN

0068

0069 END

0001

0002 8505585555555 05555585555500555555558S855555555555555555555558558s885
0003

0004 DOUBLE PRECISION FUNCTION CURRENT (RHO,KAPPA,F0,SIP,SXE)
0005

0006 c Function returns value of dimensionless current given the
0007 C oxidation state of the coating (RHQ), the

0008 C ion-pairing equilibrium constant (KAPPA), and

0009 C the fractional loading (F0).

0010 C

0011 c The switches SIP and SXE indicate the extent of

0012 o ion-pairing and fractional loading, thereby

0013 c identifying the proper formulas to be used.

0014

0815 (C:*************************************************************tt
0016 DOUBLE PRECISION R,RHO,RHO1l,KAPPA,F0,F1,F2,F3

0017 DOUBLE PRECISION TMP,A,C

0018 CHARACTER*1 SIP, SXE

0019

0020 C***k********************************‘k************************tnn
0021 C these quantities

0022 F1=F0-1.D0

0023 F2=F0-2.D0
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3.D0

RHO1=RHO+1.D0
R=RHO/RHO1

IF (SXE.EQ.'2') THEN

Zero fractional loading
C=R/RHO1

ELSE IF (SXE.EQ.'F') THEN

ELSE

Full fractional loading
IF (SIP.EQ.'Z') THEN
No ion-pairing
C=R/ (2.D0+RHO)
ELSE IF (SIP.EQ.'S') THEN
Strong ion-pairing
C=R/ (3.D0+RHO)

ELSE
Arbitrary degree of ion-pairing
TMP=KAPPA*R+3.D0
A=(DSQRT (12 .D0*KAPPA/RHO1+TMP**2) -TMP) /2.D0
C=R* (RHO1*A*A+3.D0O*KAPPA) / (6 .DO*KAPPA
+(3.D0+A) *KAPPA*RHO+2 .DO*RHOL*A*A)
ENDIF

Arbitrary fractional loading
IF (SIP.EQ.'Z') THEN

No ion-pairing

C=R* (F2*RHO+F3) / (F2*RHO*RHO+2 .DO*F2*RHO+F 3)
ELSE IF (SIP.EQ.'S') THEN

Strong ion-pairing

C=R* (F2*RHO+F 3) / (F2*RHO*RHO+

(2.D0*F0~3.D0) *RHO+F3)

ELSE
Arbitrary degree of ion-pairing
TMP=F0+KAPPA* (F2*RHO+F3) /RHO1
A= (DSQRT (4.DO*KAPPA*F(0/RHO1+TMP**2) -TMP) /2.D0
C=R/ (KAPPA*RHO* (A+F0) / (RHOL*A*A+KAPPA*FO0)
+ (F1*RHO+F3) / (F2*RHO+F3))
ENDIF
ENDIF
CURRENT=C
RETURN
END
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