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Abstract

Let G be a locally compact Abelian group with character group

. M(G) will denote the class of all bounded Radon measures on G

and P(G) will denote the class of all continuous positive definite

functions on G. For P M(G) we write }'.). (%) zjg(x, 9{)&}.}.(};) and
for ¥ ¢ M(B) we write » (x) :j@(x, 2dp (8). ELI(G)ﬁ P(G)} will

denote the linear space spanned by Ll(G)ﬁ P(G). We find necessary

and sufficient conditions on P; in order that Mo Ll(G) ~ LP(G) for

1< p<oo. Theorem5, Chapter II: }1 € Ll(G) A LP(G) for 1< p< oo

if and only if there exists a constant K > 0 such that

j@f(:’s‘:) EE:

Theorem 6, Chapter Ii: }.L ¢ LG A LQ(G) for 1< p< oo if and only

<K| §|] for all f ¢ EL]‘(GM P(@)} where L

Lo
P 4

if /.Lf € (L Gl Lp(G)) for all fe L (G) Theorems 3 and 4,
Chapter II: }.,( € LI(G) if and only if there exists some p, ! < p < o0,

such that for each ¢ > 0 there exists a § >0 with the property that

Jypos

:tfl < 5" u . By taking G to be the unit circle and p = 2 in

< | f" whenever f ¢ {Ll(a) np(é)} and

Theorems 3 and 4, Chapter IIl, we obtain a generalization of a theorem
by R. Salem (Comptes Rendus Vol. 192 (1931)). Taking G to be the
additive group of reals and p = 1 gives a generalization of a theorem

by A. Berry (Annals of Math, (2) Vol. 32 (1931)).



Introduction

Consider an arbitrary locally compact Abelian groui} G, and
let M(G) denote the set of all bounded Radon measur;cs' defined on G.
With suitable definitions of norm, vector addition and multiplication
and scalar multiplication M(G) becomesa commutative Banach algebra
with an identity. The character group 8 is homeomorphically
embedded as an open subset in the maximal ideal space of M(G), and
the restriction of the Gelfand representation of M(G) to G is known
as the FourierwStieltjes transform or simply the Fourier transform.
This thesis is devoted to characterizing the Fourier transform of
elements of certain subspaces of M(G). In particular we give charac-
terizations of those continuous functions on @ which are transforms
of elements of Ll(G)n Lp(G) for 1<p Snco

In Chapter I we collect various known definitions and results on
topological groups and Fourier transforms which are necessary for
an understanding of Chapters Il and III. Chapter I also contains a
rather complete outline of the theory of a bounded Radon measure as
it applies to locally compact groups. Chapter II is devoted to charac-
terizing the Fourier transform of elements from Ll(G) N LP(G) for
1 < p<oo. The main theorem of Chapter I characterizes f for
fe Li(G) M LP(G) in terms of a continuity property of the linear

i
functional jé g(?c)?(?{)d%, ge L (6) From this we deduce a multi-

plier thecrem for the Fourier transforms of Ll(G) nLF@G). A
closely related theorem concerning certain linear transformations of
LI(G) into LI(G) A LP(G) is also included in Chapter II. In Chapter

III we treat Ll(G)ﬁ LP(G) for p=1 i.e. Ll(G)e Here we again



1
characterize f for fe L (G) in terms of a continuity property of the

linear functional f@ g(%)’f(?c) da®, ge L}'(@)o As a consequence of this

result we obtain two classical theorems: by taking G te be the unit
circle we have a theorem by R. Salem: and by taking G to be the real
line we have a corresponding theorem due to A. C. Berry.

Throughout this thesis numbers in brackets E} refer to refer-~
ences listed at the end of the thesis. We abbreviate the phrase Mif
and only if" by "iff", and we indicate the end of a proof with the

symbol g .



Chapter I

Function Spaces and Topological Groups

This section contains a brief summary of the topological and
group theoretic concepts used throughout this thesis. Topological
notation and terminclogy which is not explained here can be found in
Kelley {1} If X is an arbitrary topological space, C(X) will denote
the linear space of all continuous, bounded, complex valued functions
defined on X. For f e C(X) we define u f“m = sup !f(x)] ; xe X,

] .

Banach algebra. K(X) will denote the subalgebra of those functions

Under pointwise multiplication and with the norm

f o’ C(X) is a
f e C(X) for which there exists a compact set AC X such that
f{x) = 0 for x e A' (= the complement of A). In general A depends
upon f. The closure of K(X) in the norm of C(X} is denoted by
Cm(X) and consists of those and only those functions f ¢ C(X) with
the property that for every € >0 there exists a compact set AC X
such that [f(x)] < ¢ for all x ¢ A'. We say for brevity that the
elements of Coo(X) vanish at infinity. Cm(X) is a closed subalgebra
of C(X)}. C+(X), K+(X) and CZO( X} will denote the sets of non-
negative, real valued functions f (f >0) in C(X), K(X) and COO(X)
respectively. In all of our applications X will be a locally compact
Hausdorff space. This condition insures the existence for every
compact set CC X and every open set U with CC U of a function
fe K+(X) with the properties that 0 <{f{x) <1 forall xe¢ X, f(x) =1
for xe C and f(x) =0 for xe U

A topological group G is a group which is also a topological
space such that the mapping (%x,y)—=x -~y of GX G ontec G is con-

tinuous. We will denote the group elements by the letters x, y, z, =z,



s, t ektc, » and we will denote the group operation by +. Throughout
this thesis G will be a locally compact Abelian group which is
specifically assumed to be a Hausdorff space. With these assumptions
the space G is normal {2} It is always possible to choose a com -~
plete neighborhood system, {‘\{[| o€ € @} , of the group identity with
the properties that i) V is compact for all o ¢, ii) each Vi

is symmetric i.e. xe¢ Y, implies -x e . The index set Q is
ordered by the relation of > g iff V C VP . With this ordering O

is directed upward, for given anvy ol , £ then y > o and vy ?_@ for
VY = Ve N V@ . If V is any compact symmetric neighborhood of the

identity then VP =z lim oV isa o -compact, closed and open subgroup
nN-=00

of G. This means that G is always a union (in general uncountable)
of the 0--compact cosets of V. If fe K(G) then f is uniformly
continuous. This means that given ¢ >0 there exists a symmetric
neighborhood, V, of the identity such that |f(x) - £y}l < ¢ whenever
x-ye V,

A continucus homomorphism of G into the multiplicative group
of complex numbers with absolute value one is called a character of
G. The symbol (x,%) will denote the value of the character 2 at the
point x ¢ G. If %, and %2 are any two characters then (- ,9{1)(° ,%Z)
is another character which we denote by (° ,9:1+§‘gz). Under this
operation the set of characters becomes an Abelian group & called
the character group of G. For each compact set CC G and each
€ >0 consider the set U{C,¢) = g:l [(x. %) -1 < € forall xe C}s
By taking the sets U{C, ¢} as a basis for the neighborhoods of the

identity in @, & becomes a locally compact Abelian group. Thus &



will always denocte the character group of G with this topology. The
famous Pontrjagin Duality Theorem states that ((’3)" and G are
algebraically and topologically isomorphic. Other properties of

topological groups can be found in E?)] and E%}a

Measure and Integration

Although there exist in the literature several excellent accounts
of the theory of Radon measures, no single reference seems to supply
a complete background for the measure theoretic aspects of this
thesis. The purpose of this section is to supply that background.

Maost of the definitions and results collected here have been taken
directly from the works of Bourbaki ES} , Hewitt {6}, Hewitt and
Zuckermann E?} , Edwards ES} and Halmos EQ} For measure theoretic
terminology not explained here we refer to Halmos [9}

X will be a locally compact Hausdorff space, A will denote
the smallest ¢ -ring containing all compact subsets of X and B will
dencte the smallest ¢ -algebra containing the compact subsets of X.
We will refer fo B as the collection of Borel subsets of X. B* will
be the smallest 6" -algebra containing all closed subsets of X.

We begin by considering a positive linear functional M defined
on the real valued functions of K(X). Such functionals are called Radon
measures by Bourbaki, but we will reserve this term for the measure
induced by the functional. If M is a positive linear functional on K(X)
then M has the following continuity property: if fn ¢ K = K+(X) for
n=1, 2, 3, ..., ifall fn vanish outside some fixed compact set and
if fn(x)\’, 0 pointwise then M(fn){, 0. Using M we define an outer

%

measure }J, on certain subsets of X such that M(f) =j f(x)d}fz(x)
X



for fe R(X), f real. The rest of this section is devoted to the theory

of this measure.

Definition I For each compact set CC X define M (C) = inf M(f),
Xc <f, fe KnﬁL, where XC denotes the characteristic function

of C.

Definition 2 For each open set UC X define }L*(U) = sup/u,(C),

CC U, C compact.

Definition 3 For an arbitrary set EL X define

%
= (E) = inf/U,*{U), ECU, U cpen.
-
Theorem 1 (Hewitt Eé} p. 72) M is an outer measure.

%
Definition 4 A set E is said to be s ~measurable if
* % %
M (8) = m (SNE) + 1 (SAE') for all SC X. The class of
b4
/U- -measurable sets will be denoted by FP and the restriction

of /i.L'§< to ﬁ will be written aslpt .

Theorem 2 (Edwards EB} o. 144) ﬁ is a ¢ -algebra which
always contains all compact subsets of X and all open

subsets of X. Also /u is a measure on F}l .

Theorem 3 (Halmos E‘)}pq 237) If C is a compact subset

. S
of X then M (C) = M (C). Thus the two definitions of }1

agree on compact sets.

Theorem 4 (HewamEé} b. T4) I F e F;L and if  (F) <+

then there exists a set A ¢ A suchthat F=AU P, ANQAP =¢



and /LL"C(P) = 0. A can be taken as a countable union of

compact sets.

Theorem 5 If/[f is the outer measure generated by
(X, F;L s/u) then[f = /uf"a

Proof Let E be anarbitrary subset of X. We will show

that /('I(E) = /{,L*(E). Since F}l is a 0 -algebra E is
covered by sets of F}l and we have F(E) = inf)lL(F),
ECF e« a . On the other hand /.L*(E) = inf}L(U), ECU,
U open. Since EL contains all open sets it follows that
fL(E) < If(E)., 1t fL(E) = +oo then [I(E) = lu*(g). Assume
that F: E}< 4+ andlet € >0 be arbitrary. Then there
exists a set F ¢ F;L EC F such that /U.(F) }L (E) < =
Since /LL(F) = }.{, (F) there also exists an open set U with
FC U and such that /J; (U) m}J.(F) 5% Adding the inequali=-
ties gives /.L(U) S}I(E) +e¢, ECU. Since ¢ is arbitrary

we have },L*(E) S/ZI(E). Thus F(E) = /f(E) for ECX
- -
and hence /u, = /ULE

Theorem 6 (Edwards ESEP" 174) The restriction of /,L to A

is a regular measure. This means that for A e A we have

}.,L(A) = supr(C), CC A, C compact
and

A)=inf/L(U), ACU&A, U open.

Theorem 7 (Hewitt E?}) If fe K(X), f(x) real then

M(f) :jf(x)d/J.(X) where the integral is the usual Lebesgue-
X



Stieltjes integral.

F}; will in general depend upon },L which in turn depends upon
the initial functional M. If is desirable however to be able to fix our
attention on some one o -algebra of measurable sets which is suitable
in some sense for the measure and integration theory and which is

independent of Mo Theorem 8 provides a result in this direction.

: *
Theorem 8 Let p be the restriction of /}.L to B and let
sk %k
7/ be the outer measure generated by (X,B , V). Then

ks * *
o= ’},L . In particular the 2/ -measurable sefs are just

the elements of F}L .

Proof If was shown in Theorem 5 that the outer measure

ES
generated by (X, F/; y/,L) was M. Thus in order to prove

S

o

sk sk
that 2 = p it is sufficient to show that iy Vo= }1 onﬁ
% % %
and ii) /.L =7 onB (Zaanen @0] p. 23). SinceB CFP,
{(Theorem 2) ii) is trivially true. Now suppose F ¢ FP- .
s
We will show that 2 (F) :f.L(F) By definition
sk *
2 (F) =infp(B), FC B« B , and by Definition 3
E3
’U~ (F) = inf/_L*(U),. FC U, U open. Since F, Ue F):L we
3“‘ * . @
can write ;.L (F) =/LL (F) and /LL*(U) :/LA (U} giving
% %
fl(F) = inf/u. (U), FC U, U open. Since U« B
- # .
2 (U} :/u, (U). Thus 7 (F) __<_/LL(F) By writing
= : %
2'(F) = inf 1(B), FC B eB* and P (F) = inf p(E), FCEeFP
* *
and recalling that B C F;L we see that W(F) < p (F).
/ >

This combined with the opposite inequaﬁty gives

7/*—-—/u on FP;



It is not known in general whether the above theorem is true with )
replaced by B . Nevertheless this is true in those situations which
are of interest in harmonic analysis. We now turn our attention to
these special cases.

The translates fs of a function f{ defined on the group G are
defined by fs(x) = f{x+s). If M is a positive linear functional
defined on K(G) such that M(f) = M(fs) forall fe¢e K and s e G then
M is said to be translation invariant and is called a Haar integral.
The measure induced by M 1is called a Haar measure. A well known
theorem (Weil EB}) insures the existence and unigueness to within a
positive multiplicative factor of a non-trivial Haar measure for any
arbitrary locally compact topological group. If the group is not
Abelian we speak of left and right invariance and left and right Haar
measures. The next theorem summarizes the most important proper-

ties of Haar measure.

Theorem 9 If G is a lecally compact Abelian group and m
is a Haar measure on G then

i) m{F) =m(F+s) for all F e Fm and all s e G

i) m{(U) >0 for U open and non-empty

i;i) m{G)< + oo iff G is compact

iv) m({s}) # 0, s € G iff G is discrete.

Definition 5 P is said to be bounded if [ (X)< + oo,

We can now prove a theorem which links the measure spaces (G,FF,/L)
and (G, B ,/u) for certain measures /LL . Theorem 10 is 2 refinement

of Theorem 8.
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Theorem 10 Let G be an arbitrary locally compact Abelian

group and let m denote a Haar measure on G. If /u. is
bounded or if Ho=m then the outer measure generated by

(G,B,y) is /u where 7/ denotes the restiriction of /.L

toB.

Proof Denote the outer measure generated by (G,Bg‘zj) by

s

2. The proof of Theorem 8 with B* replaced by . shows
that it is sufficient to prove that IU* = }J~ on FF. . This proof
also shows that }L(F) < ~);/>{<(F) for all F ¢ F/; . Hence it is
sufficient to prove that UL (F) = 2/ (F) in the case that

P(F) <+ oo, If Fe F);, and /u(F) < + oo then by Theorem 4
F=AUP where ANnP =¢, A GA’ and /U.(P) =, Since
A e A C B V(A) = QJ*(A) = M(A). Thus the proof is
reduced to showing that P e F}i andlLk(P) =0 imply

7/;‘((]?) = 0. For both }.A bounded and W = m the proof

/

centers on the fact that G = U_S where each SY is

e
closed and open and ¢ -compact, and the SY are all disjoint.
Assume first that /u is bounded. Then /u(Sy) =0 except

for a countable number of the vy's, (S‘Y € B) Let
G:{y’yeg'?}k(sy);fe}., Then S= U_ S is

g ~compact and hence S ¢ QCB and S° eB, St = 8] S\{,
ve[ ™[

an open set. If C is any compacti subset of S' then the

fact that /‘L(S\{) = 0 for ve r~ m iniplies that },L (C) = 0.

Thus by Definition 3 we have 2(5') = v (8") =/U-(S*) = 0.

For P defined as above we have P =(Pn S)y (PnA S,
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and hence y*(P) < U*(Pﬂ S) + Zj*(P NS’ = z/*(Pn S).
/A‘A(Pf\ S) =0 and }L(PﬁS) = inf},t(U), PASCU, U open.
Clearly we can replace U by UnS. Since UNS is
open and 0 -bounded it follows (Halmos [9} p. 219) that
UASe A and hence that }_l(Un S) =2(Un S). Thus PnS
is covered by sets UM S of arbitrarily small 2/ ~-measure.
It follows that ‘zj*(P) < 7j:(P N S) =0, This proves thé

case where }1 is bounded. Now assume that )J_ = m,. in

this case we {irst prove a lemma of some interest itself.

Lemma 1 If U is openand m{U)< + o then U er

Proof of Lemma UnN S‘{ is open for all y. By Theorem 9,

ii) m(U nsy) >0 for Un SY 7% . This and the fact that
m(U) < + oo imply that Un SY = ¢ except for a countable

number of the v's. Write 5 = US_ the union taken over
Y

those vy for which Un SY #¢. As before S is G -compact
and hence S e&., Thus U=UANS is ¢ -bounded and apain
as before U eAv This proves the lemma.
i m(P) :}L(P) = 0 then for arbitrary € >0 there
exists an open set U with PC U and m(U)< e. It
_follows from Lemma 1 that U e ACB . Recalling that

7/*(13) = inf2/(B) = inf m(B), PC B EB we get y*(p) _ O,E

If one is concerned with just measure theory the differences
which exist between the measure spaces (X,A,).L), (X’Bs}l) and
(X,a ,)J.) are truly significant, Theorem 10 shows that (X,ﬁ ,}1)

can in certain cases be obtained by applying the familiar Carathéodory
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extension process to (X,B ,/J,) The same extension process applied

to (XSA,#) in general does not lead to (X,F;L ,/.L) On the other hand
starting with (X,A,/,L) we can always arrive at (X,ﬁ ,/,L) by the
extension process indicated in Definitions 2 and 3. These differences
which exist in the measure theory completely vanish in the theory of
certain LP spaces. This is explained in the remark following Theorerm

IL.

Definition 6 Let S be an arbitrary ¢ -ring of subsets of

X suchthat U S=X and SCF}J. For 1< p<g oo
Se -

define ,ﬁp(X,S,/LL) to be the set of all S -measurable
complex valued functions on X with the property that

1

p
Il = (Gl P ap(x) ) <+ oo

X
VCOO (X,S,/JJ denotes the space of thaseS ~measurable
functions for which

llfllm:inf{ocl /u{x]xecs, () > oL }zo} < + oo.

s
It should be observed that if B C S and f’t is Haar measure then
this definition of ﬁ f " o 28rees with that given on page 3 for

f e C{X),

Definition 7 If ”}QP(X,S,F) = {f

define

2SNl -

on(Xst/u)
P =
S - %’LP(XS,/U |
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Here we repeat the often mentioned fact that the elements of
Lp(X,Sg/u) are, strictly speaking, equivalence classes of functions,
As usual we will denote these classes by representatives i.e. by the
elements of DCP(X,SyLL) In the same spirit we write the norm of
LP(X,S,#L) as || - | o° It is well known that with this norm

Lp(ng,/bL) is a Banach space.

Theorem 11 (Hewitt{é} p. T4) If fe an(X,F/:( ,/J.) for

1 < p< oo then there exists a function Te ,CP(X,A,}L) such

that [f - 7 5= 0

This theorem combined with the fact that A C BC FP‘ shows that the
three spaces Lp(X,A,/u), Lp(X,B,/u) and Lp(X,F/UL g/u_) are iso~
morphic and isometric Banach spaces. In this thesis we will be
mainly concerned with the spaces Lp(G,B, m) where G is a locally
compact Abelian group and m is a Haar measure on G. We will
write LP(G) for LP(G,Bym), In so doing we assume when we write
fe LP(G) that f is B»—measurabiee

We end this section with a short discussion of the Radon-
Nikodym theorem and absclute continuity of measures. A measure/u
is said to be absolutely continuocus with respect to a measure 7/ if
2Z(E) = 0 implies that E ¢ F/"“ and that /.L(E) = 0. The classical
Raé-mrNikadym thecrem states that a bounded measure /LL which is
absolutely continuous with respect to a ¢ -finite measure 7/ can be

represented in the form /&i(E) ‘—:j f(x) d2(x) for all E ¢ F/_L where
E

{f is a representative of a unique class of LI(X,E ,7). In general a

Haar measure is not 0~ ~finite, but it is nevertheless an important fact



14

that the Radon~Nikodym theorem holds for bounded measures which are
absolutely continuous with respect to a Haar measure. The reason
behind this result is the fact that G is always a disjoint union of ¢ -
compact sets. One of the implications of the Radon-Nikodym theorem
for G is that the Banach dual of LP{G) for 1< p< w is LYG)

1

% o= 1. The following theorem on absolute continuity will

&

where

be used in Chapter IIi.

Theorem 12 If /u, is a bounded measure on a locally compact
group G and if m is 2 Haar measure then /u, is absolutely
continuous with respect to m iff for every € > 0 there

exists a § = §(e ,/u) > 0 suchthat m(E)<§ implies /.L (E) <
for all sets E GA which are open and have compact

closure.

Proof If /u. is absolutely continuous with respect to m

then the condition follows directly from the Radon-Nikodym
theorem.
Suppose now that the condition of the theorem holds and

that /LL is not absolutely continuous with respect to m.
Then there exists a set E such that m(E) = 0 and such
that /I”(E) > 0. (If /LL*(E) =0 then E eF .} Here W'
is the /u* of Definition 4. Since fu is boinded there/:xists
a ¢ -compact set S e A which is both closed and open and
is such that fL(S*) = }f(sﬁ) = 0. (See proof of Theorem 10.)
Thus we may as well assume that EC S. Since S is ¢ -

- compact we can cover S with a countable collection of sets

A e A with the property that each A is openand A is
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compact. Then since EC S we have
% % X %
/U_(E) = /.L (EmnS) < Z }J. (B ﬂAn), Thus it is sufficient
n=l

s

toc show /,L (B ﬁAn) = 0. Assume that this is not so and
*%
that for n =N /.L(EﬁAn)zn>0, Take ¢ >0
0<e<mn and § = 5(5,/u) >0. Since m(EAA ) =0 and
since m is outer regular (Definition 3} there exists an
open set B ¢ A such that ECBC An’ B compact and
m(B)< § . By the hypothesis of the theorem this implies
. * o

that P(B) < €. Since /1 (E nAn) < }1, (B) :}),(B) we
have a contradiction. Hence /J; (E) = 0 and /.L is

absolutely continuous with respect to m. E

LE(G), M(G) and Fourier-Stieltjes Transforms

The most widely studied object in abstract harmonic analysis is

the space LE(G) = L}(G,B,m). If £, ge LE’(G) then

fxg(x) = | H=x-y)gly) dy
G

exists for almost all x ¢ G (with respect to Haar measure) and f ¥ g
is called the convolution of f and g. (Here as in the remainder of the
thesis we Will‘ denote dm{x) by dx, dy etc.) The Fubini theorem
shows that f ¥ g« L}‘(G) and that [f * g S I £ 1 gl ;+ This convo-
intion is associative, commutative (for Abelian groups) and satisfies
the additional con‘ditmn that o((f * g) =of * g=f *¥Lg for all complex
numbers o0 . Thus LE(G) forms a Banach algebra under the norm
|| . n 1 and with convolution for multiplication. It vis further true that

if fe L]i(G),, ¢ ¢ LP(G), 1<pg oo then f*ge Lp(G) and
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le = g 5 <zl ) 2l o The fundamental theory of the algebra Ll(G)
can be found in Loomis Eéj |
it is well known that the algebra L}’(G) has an identity iff the

group G has the discrete topology. In the case that G is not discrete
a so0 called approximate identity is an indispensible tool for abstract
harmonic analysis. Let {Uoci e @} be a complete system of
compact symmetric neighborhoods of the group identity. For each

e A let u, be a positive, bounded and measurable function which
vanishes outside Uy and such that nuoCH p = L (Since G is a
locally compact Hausdorff space we may choose uy, ¢ K+(G).) The net
{”oc f ol € @;} is called an approximate identity for L}‘(G}n if

Ag s o€ (1, is a set of complex numbers then we will write liorcn Abc = A

if for every ¢ >0 there exists a (:3 ¢ (1 such that A - AoCl < e
whenever o 3(3 The following two theorems are fundamental results

for approximate identities.

Theorem 13 (Loomis {4}@ 124) Let {U‘ofl e @} be

an approximate identity for LE(G).; i fe LP(G), 1 <p<w,

then 1;120 “uoc*f - f” b = 0.

Theorem 14 If f is uniformly continuous on G then

1iorcn v ¥ f(x) = f(x) uniformly.

Proof Since fe Lm( G) = LI(G)a< and since u. ¢ LL(G)

uy ¥i(x) = | fx-y) ugly) dy
G

for all x e G. Since j uo(y) dy = 1 we can write
G



17

flx) = | f{x) uy(y) dy.
"G
Thus
g *£(x) - £(x) = [ [ieoy) - 1) u (v)
G
The uniform continuity of f implies that for every ¢ >0
there exists a symmetric neighborhood U of the identity

such that [f(xi) - f(xz)} <e for x, -x,¢ U. Cboosep

i.
such that UF C U. Thenfor o > [f(x-y) - £(x)] < e

when y e Uy . This gives

ug *£(x) *f(X)igj'lf(X'-y) - 1(x) vy (v)dy = | |ilx-y) - £(x)|u (v)dy< «.
G Uy

Hence 1'%.18'1 U ¥ £(x) = f(x) uniformly. E

1
Every f e L {(G) determines a bounded linear functional F on

K(G) where ¥(g) = [ ol 1) ax, [l <€l gl for o

g e K(G) and |F| =] f”lo In the case where G bas the discrete
topology Ll(G) accounts for all of the Banach dual of K(G) i.e.

)*

abo

K(G) = L]’(G) (Note K(G)* = cm(G)" since K(G) is dense in
Cm(G) ). For non-discrete groups this is not the case. The Riesz
representation theorem states however that for every M ¢ K(G)*
there exists 2 unigue complex valued, countably additive set function

defined on of the form = - Wy + i{hy = M) where each
M il B A B

/J’j is 2 non-negative, bounded Radon measure and such that

M(g) :j g(x) d/x(x), g € X(G}). Conversely each set function of this
G
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kind is calleda bounded Radon measure. M({G) will denote the set of
all bounded Radon measures and M(G) will be identified with
K(G)* = Coo(G)*° This identification has been used successfully by
Hewitt and Zuckermann {10} for the investigation of M(G). (See
Hewi‘ttEZ} pp. 132-133 for a survey of this method.) An alternative
approach outlined by Rudin El 1} pp. 229-230 introduces algebraic and
topological structure directly into M{G) considered only as a set of
measures, Doth of these methods lead to the same results and the
particular method one uses is a matter of taste. In the following
discussion we use interchangeablywhichever approach seems to be most
useful for the purpose of this thesis.

For A ,/.L e M{(G) and o, P complex we define
(ot A +p L )E) =a A(E) + p/L(E) for all E eB. With this notion of
addition and scalar multiplication M(G) is a vector space over the

complex field. A norm is introduced in M(G) by defining

Jos)
|l = sup (B )! where the sup is taken over all countable dis-
/u- nzzzi [)U, n

joint coverings of G by sets from B . M(G) endowed with this norm
is a Banach space. With this structure M(G) is topologically and

sk .
algebraically isomorphic to the Banach space K(G) . In particular we

L e(oaps

1
iution defined in L {(G) can be extended in at least two equivalent ways

. g ¢ K(G), Hg”mSL The convo-

have [[/u}l = sup

to M{G). The method used by Hewitt and Zuckermann El@} uses the
notion of the convolution of functionals on K(G) while the method of
Rudin Ei 1} uses the idea of a product measure on G X G. Both of these

methods lead to the same result: (/‘i*)\ HE) -—-j /_A(E-x)d)\(x) for all
G
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E eB . This convolution is associative, commutative and
OL(/\L*)\) = o(.}).* A= /;L* KA for all )\,},L e M(G) and all complex
numbers o . The convolution is also continuous in the norm of M(G)
i.e. !V,L* Al < {(/ull BN thus making M(G) a commutative Banach
algebra. Unlike LI(G), M(G) always has an identity, namely that
measure which assigns the value one to the group identity and zero to
every set which does not contain the identity., Haar measure m 1is an
element of M(G) iff G is compact.

Each /U, ¢ M(G) can be uniguely decomposed into three measures
/u. = /“La + /us +/U‘d where /‘Aa is absolutely continuous with respect to
m, /LLS is continuous and singular with respect to m and /“d is
discrete. We denote by Ma(G), MS(G) and Md(G) the corresponding
subspaces of M(G). The Radon-Nikodym theorem establishes an
isometric isomorphism between the Banach algebras Ll(G) and Ma(G).
We will often write /L,L € LE(G) and /Lk € Ma(G) interchangeably. Both
LK(G) and Ma(G) + MS(G) form closed ideals in M(G}), Md(G) is a
closed subalgebra of M{G).

For each/u e M(G) there exists a unique non-negative Radon
measure l/u;} ¢ M{G) with the property that [/p,l (E) > U\L(E)l for
E eB and if A e M(G), M(E) > I/.L(E)] then )\(E)g_[}q(m, t/u! has
the additional property that |/.L[ € Ma(G) iff }Le Ma(G) and similarly
for MS(G) and Md(G)g For fi e M{G) we always have I}LI(G) :”},LH .

A function f e C{G} is notin generalA -measurable or even

, -measurable, however for each /LL ¢ M{G} there always exists a set

A GA such that I}Ll(A') = 0. Since the restriction of f to A is

always A -measurable the integral j f(x)d/u(x) =j’ f(x)d/J.(x) always
G A
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exists. With this in mind, we define the Fourier-Stieltjes transform

P.Of Je M(G) by

If /.J. € Ma(G) and f ¢ Lz(G) is such that /},L(E) =j f(x) dx then we
E

write

Some of the main algebraic and topolegical properties of the Fourier-
Stieltjes transform are listed below: A ,’},L e M(G)
i) /:L is a uniformly continuous funciion on &
ii) (O(>\+€>/~JL)A :0&3\4- [3/& o(,{a complex
i) (dxuf = A f
) fle < Ipl
v) =0 iff/l(;%):o for all % ¢ G.
If we define /UL*(E) =FE;_1-3~3) for /LL e M{G) then we have
vi) (&) = LR foran & e &.
For f«¢ Ll(G) we define f*(x) = @

A function p defined on G is said to be positive definite if
k k _
Z Z p(xivxj) C*'Cj > 0 for all finite sets of points .Xi e ox e G
=l 1=l .

and choices of complex numbers c; *** €. P{G) will denote the set
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of all continuous, positive definite functions. An important result in
harmonic analysis states that p e P(G) iff p = }\i for some positive
measure L ¢ M(a) For any f ¢ Ll(G), £%f is equal almost every
where (with respect to Fm) to a function p ¢ P(G). By

[LI(G) N P(G)] we will mean the linear space spanned by LI(G) N P(G).
If fe [Ll(G) N P(G)] then f e Ll(a) and if the Haar measures of G
and 6 are suitably normalized f(x) = (,%)V (x) almost everywhere
(Loomis [4] p. 143). Observe also that if f e [Ll(G) a) P(G)] then

fe LI(G)n LP(G) and hence f ¢ LP(G) for all p, 1 < p< oo

The characterization of the Fourier-Stieltjes transforms for
several classes of measures in M(G) forms the main subject of this
thesis. Consequently other known results about Fourier-Stieltjes
transforms will be explained and referenced as they are used in
Chapters II and III. Most of the important results can be found in the
survey articles by Hewitt [2] and by Rudin [1 ] . We mention here
one last topic.

Both M(G) and Ll(G) are commutative Banach algebras and
the full force of the theory of Banach algebras can be and has been
successfully applied for studying these algebras. For Ll(G) the
Gelfand representation is just the Fourier transform and G is
homeomorphic to the maximal ideal space of LI(G). In the case that
G is discrete LI(G) accounts for all of M(G) and hence Ll(G) and
M(G) have the same maximal ideal space. If G is not discrete this
is no longer true. Although each %e corresponds to a maximal
ideal of M(G), G does not exhaust the maximal ideal space of M(G).
At present little is known about the other maximal ideals of M(G). A

good account of part of this subject can be found in Rudin [1 1] .
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Chapter II

An important class of problems in abstract harmonic analysis
can be formulated as follows: Given a subset N C M(G) and a function
}0 ¢ c(c’i), what are necessary and sufficient conditions which ¢ must
satisfy in order that ?ﬂ =/l,)- for some /U, € N? This chapter is devoted
to proving three closely related theorems which answer the question in
the case N = Ll(G) nLPG), 1<p < . Chapter IIl is devoted to the
case N = Ll(G), In the statements of our theorems we assume that
?sz,,\(, for some/u e M(G). Thus the results stated here can be con-
sidered as refinements and additions to certain previous results which
give necessary and sufficient conditions in order that an element
}06 c(é) be the Fourier-Stieltjes transform of a measure /,L e M(G).
We begin with a brief account of these older results.

in 1934 S. Bochner [1 Z] proved the following theorem for the
case G = Rl, the additive group of reals, and in 1955 W. F. Eberlein
[1 3] generalized the theorem for an arbitrary locally compact Abelian
group.

Theorem 1 (S. Bochner-W. F. Eberlein) If ;0 € C(a) then

a necessary and sufficient condition in order that ?9 :/,:L

for some /.,L ¢ M(G) is that there exists a constant M > 0

such that

|2, cp@ien sue |7 ety

for all finite sets of complex numbers (Ci) and points (’)\cl)

in G. If M is the smallest value of M satisfying this

inequality then "/JL" =M.
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In 1934 1. J. Schoenberg [14] proved a theorem intimately related to
the one above. Schoenberg proved the theorem for G = Rl, but his

proof is true verbatum for the general case.

Theorem 2 (I. J. Schoenberg) If P e c(@) then a neces-
sary and sufficient condition in order that 70 = /:\L for some

/.L ¢ M(G) is that there exist/a constant M > 0 such that

A\
f(é‘c)y)(s‘g) a2 SMﬂf"OO
for all fe Ll(e). If M_ is the smallest value of M

satisfying the inequality then I[/,L | = M -

Both of these theorems characterize the Fourier-Stieltjes transformfl
in terms of the continuity properties of a certain linear functional. We
will refer to a theorem of this kind as a functional characterization or
a functional theorem.

The next theorem was proved in its generalized form by
H. Helson [15] . We refer to theorems of this type as multiplier

theorems.

Theorem 3 (H. Helson) If 90 € c(@) then a necessary and
sufficient conditions in order that §ﬂ :/CL for some

e M(G) is that §D?€ (i@ for all fe LY(q).

A transformation theorem of which a special case is equivalent to the

multiplier theorem of Helson was proved by R. E. Edwards [16] .
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Theorem 4 (R. E. Edwards) Suppose that 1 <p< o and
let T be a continuous transformation from Ll(G) into
LP(G) which commutes with translations i.e. Tf = (TH)

for all s € G. Then T is of the following form:

Tf= s e LYG)

where },L depends only upon T and is such that
(1) }Le M(G) if p=1

(i1) e LP(G) if 1< p< oo.

With these results as background we return to the problem of
characterizing the Fourier transforms of functions from the spaces
Ll(G) N Lp(G) for 1 < p< . The first step is to prove a lemma
which forms the basis of our functional theorem. We recall that P(G)
denotes the class of continuous, positive definite functions on G and

that [LI(G) o P(G)] denotes the linear space spanned by Ll(G) n P(G).

Lemma 1 [Ll(G) N P(G)] is dense in LP(G) for 1<p< o
—emma * ~ <

andin C_(G). Alse [L'(G)n HG)| =[Lhawywaﬂ,
Proof The proof is essentially given in Loomis [4]pp. 142~
143. We repeat it here for completeness. Take f ¢ LP(G),
l1<p<o,and € > 0. Then there exists a continuous function

g e LI(G) N Lp(G) such that
¢
I£ -2l ;<3

We can choose a continuous function u from an approximate

identity such that
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€
le -u*gl <2

and hence
le-uxg <«

u*g=nh *h*—h *h*—l-ih *h*~ih *h* where
1 1 2 2 3 3 4 4

b, =%(u+g*)
h2=%(u-g*)
h3=%(u+ig*)
h4=%(u~ig*).

Thus u * g is a linear combination of elements

1

%*h;engﬂnP@)aM.u*ge[ﬁKﬂhP@ﬂ, 1f

fe Coo(G) then for € >0 there exists a g ¢ K(G) such that

le-el <5

g is uniformly continuous and hence by Theorem 14, Chapter
I we can choose a function u from an approximate identity
such that
€
le -u*g] <5
Hence

It -uxg] < «.

Since K(G)C L(G) we have u * g« [LI(G) N P(G)] . To
prove the second part of the lemma we observe that if

fe [Ll(G)nP(G)] then fe L&) (Loomis[4]p, 143),
Since f is a linear combination of four positive functions

N
in Ll(G) we also have f ¢ [Ll(e) N P(e)] . Conversely if
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ge [L'®nP@)], T L@ NAP©)] and g= (&) .
Thus (L@ nP@)] = [L'@) nr(@)] ana
[L}“(G)nP(G)] - [Ll(é)np(e)]v,l

1
We now come to the functional theorem for L (G) N LP(G)9 1 <p< oo

~ 1 .
Theorem 5 For ¢ ::/J,jj,e M(G) and fe L (6) write

F(f) = f f(%)ﬁo(é\;) dR.
&

In order that/,L € LI(G) N LP(G) for 1<p L oo itis
necessary and sufficient that there exist a constant K >0

such that

[F(6)] < Kl{%’l]q for all f e [Ll(@) r\P(G)]

Proof Assume first that (Le LE(G) n LP(G) and that
1

d/.l(x) = h(x) dx for he L (G) N LP(G). Define

L(g) :f g(x) h(-x) dx for ge LYaG).
G

Then
e < Inl el -

1

Take f ¢ [Ll(é)np(é)]° Then f ¢ [L (G)nP(G)] cLYa)

and we have by the Fubini theorem

L(f) = f | [ (x, g)f(%)de‘{] h(-x)dx = [ #(R(R)aR = f 1(2) p(R)aE.
G 76 a

a

-
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AV

Thus for f ¢ [Ll(e) N P(e)], L{f) = F(f) and we have

|F ()] < |n) p“ \:6“ q This proves the necessity of the con-
dition. Now assume [F(f)] < K| ‘flu a for all

fe [Ll(a) N P(a)] . Define the linear functional L on
[Ll(e) a) P(@)]V as follows: L(\f/) = F(f). Then

76 _<_K||\f/“q for all fe [Ll(c’i)n P(G)] . This means
that L 1is a bounded linear functional on a dense subset of
’Lq(G), 1 < g < oo, and hence I, can be extended uniquely
to all of Lq(G) without changing its norm. By the Riesz

representation theorem for bounded linear functionals on

Lq(G) there exists a unique h e LP(G) such that

L(g) = g(x) h(-x) dx for all g ¢ LYG).
G
I fe [Ll(e)np(@)] then

F(f) = | HR)p(RIaR - (%) | (;,—-?;)d},l(x)]d§= :f,(~x)d),k(x).
a G

\Y4

Since F(f) = L{f) we get
\fl( -x)d},((x) = \fl(x)h( -x)dx = ¥(~X)h(x)dx
for all T e [Ll(e) A p<e)]v = LY@ np(c)], The fact that
[LI(G) s P(G)] is dense in Lq(G) and Coo(G) implies
that
f(x) d}i (x) = f(x) h(x) dx
G G

for all f ¢ K(G). F;om this it follows that for any compact
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set ECG

4 pl () =flh(x)! dx.
E E

Thus for any compact set E

flh(x)l dx < HM
E

and hence h e LI(G) n LP(G). I

is compact the hypothesis of the theorem can be weakened and we

Corollary 1 If G is a compact Abelian group and e c(8)
then a necessary and sufficient condition in order that
}0 = //_\1 for some }J € LI(G) nLP@G), 1«<p < 00, is that
() (%) at| < K| £
() p() o) < x| €]
n

G

for some K >0 andall f e [Ll(a)r\ P(a)] .

TA
Proof Since G is compact G is discrete and

L@ - [Ll(fz) A P(@})] . Also | \fluq < £ . for

fe Ll(e}). Thus the hypothesis of the theorem implies that

\4
e & | < k|l
N
for all f e Ll(a)° From the Schoenberg theorem p. 23
we know that 50 =/,~:l for some }J. e M(G). It follows from

Theorem 5 that }JLE Ll(G) n LP(G). I
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The next corollary is an immediate result of the theorem.

Corollary 2 Let {}*ac} be a net of Fourier transforms
with /xm € Ll(G) a Lp(G), 1 <p< o, and

“}‘ld"p <K< o If /,L e M(G) and if

lioin f(x)/uoc(x)dx = f(x)}.& (x)ax
& &

for all fe [Ll(é)np(é)] ’chen/.k e L}

(G) n LP(G).

Proof From Theorem 5 and the condition of the corollary

we have

(@R @M% | < Il < =l

we have

oo

Thus by Theorem 5 /,L « LYG) A LP(@G). |

We now derive our multiplier theorem from the functional

theorem.

Theorem 6 If §0 € c(é) then a necessary and sufficient

condition in order that}D =P for some },L 3 LI(G) s} LP(G),

1

n N
1 <p< oo, is that 50f ¢ (L7 (G) an(G)) for all f ¢ Ll(G)q

~
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Proof Suppose that §D =)’,\L for f,L € Ll(G)f\ LP(G). Then

P £ e LYG) A LP(G) for all fe LYG) and

N

AN [a)
/J.f = §0f € (Ll(G) 2 Lp(G)) for all f e LI(G). This proves

the necessity of the condition. Now suppose that

N
HG) A LP(G)", 1< p< o, forall fe LY(G). Then

1

lal

§Df e (L
~n N 1
in particular SOf e(L°(G) for fe L (G) and by the
Helson theorem p. 23 50 :}A for some /.L ¢ M(G). Thus
1

we have }x *fe L (G)A LP(G) for all fe Ll(G). This
transformation is a bounded linear transformation from

1 . ]- : ale -
L (G) into L (G) with “}L s f | 1 & “}L" I ] 1+ We can
also show that the transformation is continuous from LI(G)
into LP(G). For suppose f—=f in Ll(G) and }.L *f—=h
: P .
in L*(G). Then there is a subsequence {fm}c { fn} such
that }J, * fm(x)—>h(x) almost everywhere. By the conti-
nuity of the transformation from Ll(G) into LI(G) we
know that for some subseguence {fk }C {fm} we have
/-L * fk(x)—>}.i * f(x) almost everywhere. Thus
}i * f(x) = h(x) almost everywhere. Hence by the closed

graph theorem the transformations is continuous from

Ll(G) into LP(G). Thus there is a constant K such that

el < xlel,

for fe Ll(G), Now let {uoc} be an approximate identity

for Ll(G). Then ().L* Uy )A = /’lao( = jOGD(—>50

uniformly on compact sets in &. Thus for fe [Ll(a) N P(a)]

we have
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(1) = | (2)p(R)a% = lim | (ARG, (Rak = lim £(-x) JREFCLE
& & G
Thus
|7 (5)] <11rn "/J."u [f" <11‘mK Hu I 1"f“
and since " " =1 we get

Pl < x|l

for all fe [Ll(a) N P(e)] . By Theorem 5 we have that

pe L}G) A LP@). |

Theorem 6 can also be proved by using Edwards' theorem p. 24. The
continuity of the transformation f—>}1 * f in both LI(G) and LP(G)
implies by Edwards' theorem that /.A e M(G) and ).k € Lp(G). From
this it follows as in the proof of Theorem 5 pp. 27-28 that
Jx L}(G) n LP(G).

We complete the discussion of LE(G) N LP(G) » 1 < p<oo,with
a transformation theorem. Again this result is a direct consequence

of Edwards' theorem.

Theorem 7 Let T be a linear transformation from LI(G)

into LY(G)ALP@G), 1<p < 0, which commutes with
translations and is such that

el | < k€l

Tf f

I IIp <l

Then Tf = fi*f for some e Ll(G)an(G) where }A

depends only upon T.
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Proof From Edwards' theorem we know that T 1is of the

form Tf = },L*f where L ¢ M(G) and e LP(G), and

again we must have }A € Ll(G) n LP(G). '
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Chapter III

This chapter is devoted to characterizing the Fourier trans-
forms of Ll(G). The main theorem is a functional characterization
of (Ll(G))A which includes as special cases a theorem by R. Salem
and a theorem by A. C. Berry.

In 1931 R. Salem [1 7] . [18] gave the following necessary and

sufficient conditions which must be satisfied by coefficients

o0
1
(an, bn) in order that 5 a_ + 21 (an cos nx + b _ sin nx) is the
n=

Fourier series of an absolutely integrable function on the unit circle.

Theorem 1 (R. Salem) Let (Z) be the class of functions

a0

a{x) = Zl (o(n cos nx + P L, Sin nx) which are continuous
n=

and differentiable and such that Im(x)l < 1 and the Fourier
series of w'(x) is absolutely convergent. In order that
(an, bn) be the Fourier coefficients of an integrable function
it is necessary and sufficient that .

o a
(1) The formally integrated series Z ( —I‘lr'l' sin nx - “;Il cos nx)
n=

1
converges to a continuous function F(x);

00
(2) The expression nZZI (an(xn + bﬂ? n) tends to zero

when ® varies in (Z) in such a way that

S 2 L2
nzz:l (CCn + Pn) tends to zero.
A year later, in 1932, A. C. Berry [19] proved the following theorem
for R, the additive group of reals. The relation between Theorem 1

and Theorem 2 will be apparent after we have proved the generalization

i



34
of these theorems.

Theorem 2 (A. C. Berry) A necessary and sufficient
condition for ¢ e C(R) to be of the form P = )I.\k for some
}J.e Ll(R) is that

(1) There exists a constant K > 0 such that

‘jf(x)so(x)dx _s_KII?IIOO

for all fe Ll(R)

(2) To every ¢ >0 there correspondsa & > 0 such that

g ax | < el Tl

for all f ¢ Ll(R) with f e Ll(R) and
il < 5175l

In both of these theorems condition (1) insures that the function in
question is a Fourier-Stieltjes transform of some bounded Radon
measure, and condition (2) implies the absolute continuity of the
measure. Since the Schoenberg theorem quoted in Chapter II gives a
satisfactory generalization of the conditions (1) we will assume from
now on that we are dealing with the Fourier transform of some

)J,e M(G). Our results will therefore be generalizations of the condi-
tions (2). For simplicity of presentation we prove the theorems of
necessity and sufficiency separately. We begin with a theorem and

corollary concerning the necessity of the generalization of the
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conditions (2).

1
Theorem 3 If }_L ¢ L (G) then the linear functional

M(f) =[f(x) d)_L(x)

G
defined for f e L%(G) satisfies the following condition:
For every ¢ >0 and every p, 1 <p <o, there

existsa § >0 such that
M) < el £]
whenever fe LY(G) I'SLOO(G) and
Lol < 81 el
Furthermore § depends only upon €, p and/J. .

Proof Let ¢ >0 and p, 1! <p< oo, be given and fixed.

For each fe LP(G)n L®(G) define

£ = x| bl > s 1l )

Here we assume that [I).L " # 0. The theorem is trivial

if H/J” = 0,

[(f)] 5,[ |f<x)|d!}1|(x) =[lf(x)ld|}1| (%) +flf(x)|d|yl (%)
E G-E

G

For xe¢ G -E, [f(x)] < ”;L” I £l oo 2nd hence we have

G-E G-E
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For xe¢ E we have

[If(x)l dlul (=) < Ilflloo‘[dl,xl(x)°

E E

o) < Udlﬁuxng) K

E

Thus

The absolute continuity of },L implies the absolute conti-
nuity of [}.LI . Thus there is an n >0 which depends only
upon )J. and ¢ and is such that [}JI(F) < % whenever

F e Fm and m(F) < n, where m denotes a Haar

measure on G. Choose § so that
1

0<§ <P

J )

el < 80l

Then

Since [f(x)! > 2";, | f"oo for xe¢ E we have

€ p [fgx!p . €
fE 1) f e s ol

and hence
[ dx = m(E) < n.

E

P
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Thus for | f“ < §l f“ , m(E) < n, implying that

€

_];5 d[/J.l( (}.L‘(E > . Combining inequalities we get

IM()] < (f dlpl =) + %) [l < elel,
E

whenever | f"p < § f"oo '

Corollary 1 If }.A € Ll(G) then the linear functional

M(g) = [ e (3) ak
a

defined for g ¢ Ll(é) satisfies the following condition:
For every ¢ >0 and every p, 1 <p <o, there exists
a & >0 which depends only upon ¢, p and },L and is such

that o

¥
v

M@ < e [Elg

whenever g ¢ [Ll(a)np(a)] and

181, < 81El,

Proof If ge [Ll(é)ﬂp(@)] then g € [Ll

(G)nP(G)] and
hence g ¢ LP(G)N LP(G) for all p, 1 <p< . By the

Fubini theorem we have

M(G) =[ g(%) 1 (%) a% =[ g(-x) dfi(x).

G G

The result now follows directly from Theorem 3. '
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By taking G =R and p =1 in Corollary 1 we obtain a generali-
zation of half of Berry's theorem. If p =2 then by the Plancherel
theorem ([4] p. 145) we know that | g|, = | £] , for ge [Ll(@) n p(é‘;)].
Thus taking G = the unit circle and p = 2 and replacing the condition
[ éll , < S é“oo by || g “2 < Sl é“ o Bives a generalization of Salem's
theorem. The nextlemma and theorem generalize the other half of these
theorems.

Lemma 1 ILet E-«¢ B be any open Borel set with compact

closure and let /J be any bounded Radon measure. Then

for every ¢ >0, n >0 and each p, 1< p<oo, there

exists a function fe [Ll(G) n P(G)] such that

[l =1,

HE) -] (=) d}x(x) e

and G

m(E) —"f“g < n.

Proof If [l/uu = 0 then )_L(E) -_—f f(x)d}_L(x) =0 for all
1 &

fe [L (G) N P(G)] and one condition of the lemma is
trivial. The other condition to be met is independent of
/,L. Thus assume that ”}J.” £ 0.

Let x be an arbitrary fixed point in E. Since G is
a regular topological space we can find a compact neighbor-
hood C of x| such that C C E.

E is an open set and hence by the inner regularity of

the measures f,L and m {Definition 2, Chapter I} there
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exists a compact set K having the properties that

and

JHICESES 7

Here we use the fact that E is compact so that

m(E) Sm(-h:,) < + oo. Having chosen sucha K the com-
plete regularity of the topological space G insures the
existence of a function h € K(G) with the following
properties:

0 < n(x) <1 for xe G

i
o

h(x) for xe¢ K

h(x)

1l
]

for xe¢ EY,

It is clear that hP for 1 <p <o also satisfies these

three conditions. Furthermore for each p, 1 S p < o0,

0 < Kp(x) - hP(x) < 1 for x¢ G
Kp(x) - wP(x) = 0 for xe K E'.
Thus
m(E) - [ a]D] = |m(E) - | BPGdx | =) | (Xp(x) - h7(x))ax
G G
= [ {((Xg(x) - BP(x)dx < m(E-K) < 5 -



40

And similarly

l e = [ 60 dped | = | OG- nGnapa
G G
sfle<x> - relafplx < [plmx) < .
E-K

Compressing these inequalities gives

Sf__

m(E) - “ h“g 2

3
<3

P (E) - | hix) dulx)
G

Since h ¢ K(G) we know that h is uniformly continuous

and that h e LP(G) for 1 < p<oo. Thus by Theorems 13

and 14, Chapter I we can choose a function u from an

approximate identity such that

BN S

Szﬁq“»

The set X" C is a compact neighborhood of the identity

and

l h(x) - u * h(x)

and hence the function u can be chosen such that u(x) =0
for x € X, C. Now let f = u * h. Then the last inequality

gives

h(x)dpu(x) - f(x)dp () sflh(x) - f(x)ldl}tl(x) <3
G G G

These last three inequalities combined with (%) give
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m(E) - |17} <«

and

< ne

)A(E) - | f(x) dfl(X)
G

We have only to show that f = 1 in order to complete
y e P

the proof.

() = | aley vy = | v (x-y)n(y)ay = | ulx -y)y = 1
G C C

since h(y) =1 for y e CCK. This combined with the

facts that f is continuous and [ £ "oo <Julf l" h o = I h"oo =1

insures that “ f “oo = 1. l
We are now ready to state and prove the converse of Corollary 1.

Theorem 4 A measure ),L ¢ M(G) is an element of LI(G)
if the functional

~n

M(g) = g(?c)}'l(X) ax
IAY
G
defined on Ll(e}) satisfies the following condition:
For some fixed p, 1 <p <o, andfor every ¢ >0
there exists a § >0, which depends only upon €, p and

/_1, and is such that
M@ < < [E]

whenever g ¢ [Ll(@)nP(a)] and

[El, < 8lel,
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Proof We will show that the condition of the theorem implies
the absolute continuity of ).L . In doing this we use the
criteria expressed by Theorem 12, Chapter I:k That is we
will show that for every ¢ > 0 there is a A :A(e,),(.)
such that {/.,L(E)I < ¢ whenever E EA , E open, E
compact and m(E) SA (* See footnote on page 49.)

Let ¢ >0 be given and fixed and suppose that the
condition of the theorem holds for some p, 1 <p< oo.
Let E eA be open and have compact closure. Since
ACB we know that E eB . Since E is open we know
(Theorem 9, Chapter I) that m(E) > 0. By taking the ¢

to be % and the n to be m(E) in Lemma 1 we know
that there exists a function f e [LI(G) N P(G)] with the

properties that

Il =1,

€
Sz

l}x(E) - | =) du)
G

and
|m<E) -1 fug’l < m(E) .

i

Let g(8) = (-8 ¢ [L'@) A P@)]. Then

sl
®
i
®
®
o
®
(o
o
1
Q<

(-x) .

(@)

By Fubini's theorem

n n

M(g) = | g(® Q) ax
A I

I

f(x) d}uL (x)
G
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which combined with the previous inequalities gives

o) - M(g)| < 5
and

| m(E) -]} < m(E).
These imply that

|)1<E>I < M) + 5

and

[2]} < 2m(®).

We note that g depends only upon ¢ and E. The hypothe-
sis of the theorem states that there existsa § = § ( %)

such that

M) < S{nl,,
for he [Ll(é)np(é)] and

Il < slnl,,-

P
Take A = %—’ Then A depends only upon €, p and}J
and not upon g or E. We will show that m(E) < A

P
implies l}_L(E)‘ <e. For m(E)S A= —‘52—- implies that
l&l) < z2m® < "

and hence

lel, <§-

Since " é" o = ] we can write

I&l, < 5l el



44

This by the hypothesis of the theorem implies that

Mgl < 3 -

Combining this with the inequality [}J,(E)l < M)+ >
gives

l }.L(E)l <e.
Thus m(E) < /\ implies that [/_)_(E)l < € and the theorem

is proved. I

Theorem 4 is seen to be a generalization of Salem's theorem if again
we set p = 2 and G = the unit circle. Berry's theorem follows from

Theorem 4 by taking p=1 and G = R.

Theorem 12, Chapter I, is stated for a positive measure. If ).L is
complex we must show that the condition holds for the positive and
negative variations of the real and imaginary parts of }L I [).L (E)l <e
then clearly the same is true for the real and imaginary parts of M-
Thus assume that },L is real, and let )JL+ denote the pos1t1ve iarlf‘uon
of }L Then there exists a Borel set E sucli that = (G) Jul (E)
“},L . Let U be an open Borel set with E € U and let E be an
open Borel set with compact closure. Then m(E n U) < )< §, and
since En U is open and has compact closure we have l}}.(E N Ul< €.
But | ( EnU] —I},L +)uEn(U D) . By the regularity of I,
,).L (U - E ] can be made arbitrarily small. Thus I/,L (En U} < e
implies that }1 < ¢. The same argument works for the negative

variation.
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