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ABSTRACT

Olga Taussky (see W. Magrus, Math. Ann. vol. 111 (1935))

nite chain

Jete

osed the problem of determining whether there is an inf

X - . ” 2l [83 o6 12 e By g s . . ~ -
of p grsup& Gys Ggs s  Such that G? is abelian, un n+?/ T?g
n . T e
and G # where Gi+% ig the nth derived group of Gn +1° N. Itd

(Nagoya Mathe Jes vole 15 (1950)) constructed such a chain for p » 2
and G% of type (pspep)e. It is shown (by an explicit construction)
that 1f p > 2 there is a chain of the reguired kind for G? any
non=gyelic abelian p—group. If p = 2 there is a chain of the

=

= ) - & o 2 3“ Tal
required kind if G@ conbains a subgroup of type (27s27J, of type

A2 2 ﬂ2\ PR~ - ~ o
(g 42 ¢2 of type (2:2.272%), or of type (2,2:2,2,2). As a con=-
sequence, for p » 2 it is impossible to estimalte the length of th

(1)
derived series of & non~abelian p-group G from the type of e/t .
This gives a negabive answer (for p > 2) to a question posed by
2

0. Taussky (Research Problem 9, Bull. Amer. Math. Soc. vol. 64 (1958)

pp. 124).



Chapter 1

Olga Taussky [9] posed the following problem on finite p-
groups (i.e.s groups of prime power order): Is it possible to estimate
the length of the derived series of a p—group G from the type of

(1) (n) o . :
G/G''’, where G denotes the nth derived group of G? This ques-
tion is known to have an affirmative answer in certain cagses. For
example, it follows from the Burnside Basis Theorem [11, page 111] that
if G/G<@) is eyelie, then G is cyelic, and eonsequently G{?)$<?>®
0. Taussky [10] has shown that for 2=groups G, with G/G<i) of type

. (1) . . (2) _ e .
(242)s the derived growp G is eyelie and hence G'°7 = <1>, This
result was rediscovered by Blackburn [1] who showed that if G is a
£
Z=group with G/G‘ﬂ> of type (242), then G contains a cyclic sub=
group of index 2.

The following related result was obtained by Scholz and

Taussky [8] for a large class of 3=-groups. Let uy v, w be elements

. . v _ =i
of a group Gy and define symbolic powers by the rules: w =¥ U v
viw VW " . . :
g =u u e This enables us to consider polynomisls as symbolic

exponents, even though addition is not necessarily commutative. Let

G be a 3-group having generators a, b and denote by H the subgroup

-

-1 -

o < a b ; =1, =1 .
of G generated by ¢ and ¢ where ¢ =a b 'ab. Denote by

M +the ideal (3s (a~1 )29 (a~1){b=1)s (b~1 )2) in the ring of all
3

symbolic powers of elements of G. ILet G be the group generated by
the third powers of the elements of G. Then the result of Scholz and

- m 2 .
Taussky can be stated as follows: If ¢ ¢ G< ) for every m ¢ M,

7~y
and if H G(Z) §§G3 Giziﬁ then G(Z) = <{>, A stronger version of

this result can be obitained from a recent theorem of Rlackburn FZ}

L
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2
which states that if G is a 3=group with Gi ) # <1>, +then the class

of G is greater than four. The stronger version of the result of

o]
=

(2
Scholz and Taussky is then: If e £ G° ) for every m e M, then

o?) = <5,

(1)
The obvious conjecture, "If G is a p=group with G/G°

=

of
type (psp)s then G{Q} = <1>," is known to be false. Burnside [3]
constructed (for every prime p > 3) a p=-growp G of order jp6 such
that G/Gii) has type (p,p) and Gig} # <1>, However, as was nobed
by Blackburn [2], the construction of Burnside actually gives a group
G of order 37 if p =3, whers again G/G(i) has type (p,p) and,
G(Z} £ <i>,

W. Magnus [6] first noted that the length of the derived
series of a p—=group cannot always be estimated from the type of G/G(%)@
He constructed, for every positive integer n, a 3=group G with
G/qu} of type (3,3,3) and G<n> # <>,

The result of Magnus was generalized by Ne It8 who considered
a problem which arose in the work of Scholz and Taussky [¢] on class
field towers. This problem can be stabed as follows (see Magnus (6],
[71): Determine whether there is an infinite chain of p-groups
Gys Gys =ee s Such that Gy is abelian, /G‘if,g, and

(n)

n%ﬁ

Il*r’g

. \ . . 1) =
# <1>, Tt is easy to see that, in such a chain, Gn/Gi ) = Gi
o5 ® n
for every n. (See the proof of Theorem 1.) Thus, since G§¢§ #£ <1>,
&b
it follows from the existence of such a series that the first
mentioned question of 0. Taussky has a negative answer for any p=group
. sy /“)S‘; &{3 I ; . P .
G with G/G = Ggg Ito L5] constructed a chain of the kind

deseribed above, for every prime p # 2, with Gﬁ of type (pspsp)e



G

H, Zassenhaus, in an unpublished work, constructed a large number of
such chains, for every prime p # 2, with G, of type (p,p,p). Tt
follows that such a chaln exists for G, any abelian p—group (p # 2)
having at least three generators. (See Theorem 1, Chapter 2,)

As noted earlier, the derived series of a p=group G must

terminate if G/@ia)

is either cyelic or of type (2,2). Thus no
chain of the type described above can exist for G, eyclic or of type
(2,2). It will be shown that such a chain exists in the following
cases: p # 2 and G,a has at least 2-generators (Theorem 3, Chapter
3}y p=2 and G‘g contains a subgroup having one of the types
(22923)9 (22922922>9 (292922922}9 and (2,2,2,2,2) (Theorems 4 and 6).
It remains an open gquestion whether an infinite chain exists with G1

8 non-eyclic 2-group which is neither of type (2,2) nor contains a
subgroup having one of the types listed above.

Chapter 2 contains preliminary lemmas which are valid for
general groups. Two theorems are established which reduce the con-
struction of an infinite chain of the kind deseribed above to the
congtruction of a single infinite group having factor groups of a
specified form, Infinite chains with GT having two generators are
congtructed in Chapter 3. The chapter ends with & refinement of an
inequality for p-groups of P, Hall (Theorem 5), Infinite chains with

Gj a 2=-group having 3, 4, and 5 generators are constructed in Chapter 4.
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Chapter 2

This chapter consists of notation, preliminary lemmas, and
theorems which are valid for general groups. Theorems 1 and 2 give two
reductions of the problem of constructing an infinite chain of p—groups

Gys Gpo wen o vith & £, /68), ) #<t>, ana 6, an abeltan

) nk;ﬁ

group of type (P s P "5 cee 9 P Theorem |1 shows that it is

sufficient to construct such a chain for G§ of type

m.,ﬁ m‘,) m

(p "sP s ece 5D %) where m, $n; and s < k. Theorem 2 further
reduces the problem to the construction of a group conltaining an
infinite chain of normal subgroups satisfying certain conditions. The
remaining chapters of this thesis are devobed to the construwetion of
groups satisfying the conditions of Theorem 2.

The following notation will be used: (M,N) dis the group

4 -4
=j_= o N
generated by 211 mnm n 0 for m in M and n in Nj € X4Fseees >
. i n th derived
is the group generated by Xy 75 +0e o %} H< ) is the n==

group of the group Hy; R is the ring consisting of all expressions
Jo for u, v integers and p a fixed prime; P is the ideal
of R generated by /D3 I, and 0O, are, respectively, the 2 x 2
identity and zerc matrices; X, is the set of all 2 x 2 matrices
having elements in X, where ¥ 1is an arbitrary ring.
Freguent use will be made of the following wesk form of the

Burnside Basis Theorem [11, page 111].

Burnside®s Basis Theorem. Let G be any p=group and leb X@gnguochn

be coset representatives of a minimal basis of the sbelian sroup

G/CYQﬁ}@ Th@n G = < X.Eg ng ® e e £ X}:l >G



e

Theorem 1. Leb §%§ Ggy eeo be an infinite chain of p-groups such that

6 /60), o) £,

nﬁﬁg §$§ 1>y, and Gy is abelian of type {p "sP Teeess

I.‘a f}_

n

p ). Then an infinite chain of p-groups Hys Hys ... can be con-

e ) e

structed with H, abelian of type (p "sD "5 e 5P )y

= H /H<ﬂ> and *<Q) # <1> yhenever n, > e and k > s.

n £ ,L'g n.,i_.‘g e o S 1

Proof. Suppose that k = s and let H% be an abelian group of type

1"2% 112 ‘f},s
( sy eee 5 p ") such that H, N G, =<1> and (H;, G ) = <>

for every un. Then H@ = < h% EL hz F X eee X< hs > where sach
hi is an element of order n,.

If G is an arbitrary group and N is a normal subgroup of

Gy then (G/N}m = Gmm/m Thus it follows from G = G 4/ G ;(f‘%
that Ggﬁ) = ii% {3%9 and hence G / G = nk?//G§§%} /{G{ﬁj §+

(1) z 4 o) . . = m
Therefore G, /G)'' 26 . /611, and G = G@/ e\t 2¢ / 6!’ Thus,
by the Burnside Basis Theorem, each Gn has % independent generabors,

. w It ] (1)
and these generators have orders D 9 P 5 ese 5 P modulo Gn o

~,

Suppose G2 = < Xys Kps oo 5 Xy 7 where the x, are
! (1)
elements of order p ~ modulo G2 . Define H2 to be the subgroup of

G, X H? generated by xghﬁﬁ Xghzg ses xkhk@ That is,

Eg = < X@h?Q xzhzg eoe 8 thk > It is clear that Hiﬁ) = Gégi gince

each hi commutes with every element of GZQ Since ng z my the

h
order of h, 1is not less than the order of x, module Géjja Thus
. oo

_ (1) =~ v @ o (1)
Hz/Hg =< h? > X < hg & Y X < nk > o= E&LE ® Alseg }{2 # <‘E}
(1)

since Gg was sesumed to be different from <>,

&



e

If H,oe Hog eos Hn have been constructed by letting
o

Hi = < h%gii§ eos 3 ﬁkgih > yhere Gi = <zigg Beps eve s Byy re and
e s %
~ i) (1) \ .
i H, = H, H§ H. <{> for < pe=i hen 8 gon-
if Hy Hﬁ'/mg if A <> for i<n-l, then H . i

1
structed ss follows. Let Gﬁ = < z‘ﬁ@ By see 3 B . 7y and led

AY
o is9 . i . M 3
oz be the coset of Qféﬁ//G& % corresponding to z_. in the
A0 §

ni ni
. . o0 ] ) _ . )
isomorphism HT@// +q+ Then Gyq/ Gopd = €08 08 poeeesa? %

Let y, be a coset representative of 0z ., in G Then, by the

ni n+1®

By £ Raads gy o] = < Ve . = J@W—ﬁ .
Burnside Basis Theorems, G 4 Tq9 Tos cee s Ty Define Eﬁ+% to

be the subgroup of G L4 X H@ generated by hjyﬁg .y

m o~
nit s

% ez e 9 hig

That is, Hn%% = < hﬁng hgygg cee hkyk >, Clearly ér% Géj%

since each hﬁ commutes with every elenment of Gn+%' Also,

(n) _ 4 an) o {n) (N (n) o
n”‘%"ﬁ /ang” e Eﬂ’%ﬂ{} nwaﬁ = h.éy‘gg\’ .Eg e o @ ] h Vy /@ .sg@ ﬁu}fﬂlﬁ?

- (n)
Bn ]

H

< hﬁeo‘zﬂ§§h29a'znzg.e.ghkwa'zgk > which is isomorphie

i . oy (n) =z
EO < nizﬁﬁgh22ﬂ2$’$QQthﬂk >@ Th&t 1w§ Hﬁ+@ H§+? H @ Algﬁg

Hm+% <ﬁ} # <}>, The existence of the reqguired chain ﬁfg s vee

now follews by induction.

If k>s8, let B be an abelian group of type

9

Construct a chain K@@ Kgg ses  With }E{,ﬁ

542 e
<p 3 P ¢ voe g D )9

Ti, n
i 4 , . eo o
of type ép s P 9 ees s D ) by the method described above, and let
Hy = K, X B, The chaln E§§ Hgg s.o Clearly has the required
b

L

properties.
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Theorem 2. Let H be a gromp haviong an infinite echain of normal sub-

geowps H=H 2 H,D ..o o Suppose f(n) 1is a monotonic increasing,

integer valued, positive function defined on the positive integers.

(n) . . o5 = ppn)
Let Hpr) SH B, for every n, k21 anddefie G =HM™Hg. .
Then G, = Gn%?//ﬁi¢% for every n.

(n> = H(n} f ﬂ)/ﬁ<n+dg }Hf{ +1)* for

Cryq/ Gn% @,«H\m‘ﬂ) Ben +"3)/ (a®)n Hon)/ ry He (n })

~ (n) _
= H/MH aﬂn) = G

Proof. It suffices to show that G

then

Note that H( ) f(s+ﬁ) QS} Hf{s) for all positive inte-

o e (s)
gers 8 and %. For, by hypothesis, H Hf{s+t) ;QHf(s} and hence

als) g ~gls) g

_ wls) n(s)
1S/ (m £(s)"

f{ ) T f( %)}

¥ ooy § 3 Y “E's ° »&e « °
The reverse inequality is trivial since Hf(s%t) ngiﬁ(s}”

The first derived group of Gn_g_fg is given by

TR £(a+1)

_ (1) (n+1)
=8 Hf(n+ﬁ)//ﬁ : Hf(n+3)°

(1) _ (1) L (n+1) . (1) _ (1)
Thus G Tk Hfm/z-z Hornyq) Sinee HOUHy oy o=un

n+l £(1)°

The proof will follow by induction if it is shown that

k) _ (k] )
( ks ) = glttly e ea1 )/H(m H,

whenever 1 < k <mn. But, if G(K) hgs the above form, then

e = \Hik}ﬁfékﬁmg(nﬂ )Hf{n%-'ﬁ)/ B Ry ) nd 16 only

remaing to show that

Eﬁ = glkly Ho ) /H@“’*"”E )hf< ) imlies G

+1)



(k) }(i) (n+1) = oo(kH)
ga H,. H Hf{nﬂ} =1 He(ieb1)®
H 23
Nobe that Bl DH.(Z)’M’ since k < n. Clearly
/ () 1) o glkitly m (k)
f :) T C &
(%> < qﬁTi)E since H is normal in He. These inegual-
Hege) = £{n+1) £{n+1) - ° :

ities, and the fact that all groups considered are normal in H and

hence commube, give

(Hi )y Nylest)y S gkt <§)>H<n )y

e (k) ) f(ntl) = Helnit)

- gty o gl

£(n+1) £{k+1)°

- M)y o yle) w
On the other hand, it follows from H Hf(k} =H Hf{k%i} that

(&) V(1) - (glkdy 1) (k+1)
VT ey ) \HK Hees1) ) SR Be(e)

where the last inequality holds since Hf§k+i} is normal in H. 3Bub

s (k+1) —y(nt+1) |
k <n implies that H JH and Hf(k%i) ;>Hf{n+ﬁ)g hence

H(kf?)g (n+1) (k+1)

H =H

(10, \Dsleg .

f k)/ n*i) f(k+i}H fn+1) £{k+1 )

and the proof is complete.

The following lemms is dus to He Zassenhaus [12],

Lemma 1: Let U and V be ideals of ¥, a commubtative ring with

identity. Define Dy ZLor every ideal X of K gs the set of all

2% 2 patrices {aij} for a;; dn K such that (ag ;ml? =0,

modulo X,o Then (DysDy) € Dpys where (DysDy) is penerated by the

=1 -1 s .
set of all xyx ¥ for x in Dy and v in Dye
L oL .8 =25 =1 are & Yy



Qe
4

o
=7 =1 e s . .
Proof: It suffices to show that xyx ¥ = I, dsin (GV}Q if x
ig in Dg and ¥ des in DV' But

-t - ]

xyr 'y =L, = &y -z y

[

((X@Iﬁ}(j”:ﬁg}mg\;?'ﬂl (x ~ 1)) v"”@

Now x = IQ and y = 12 belong to ﬁ? and Vég respectively . hence
(x =~ L)y - 1) € GV, C (W),, and (y - L)x - 1,) € V,0, © (VU),.
The ring R is commubative, hence (UV), = (VU}Qa Since (ﬂV}z is an

jdeal in the ring of all 2 * 2 matrices with elements in X, it

follows from the above that

(x - Iy - I,) = vy - iz - 1) ¢ (W),
and hence,

[{x = 12}@ - ) - (y - 12)@: -1, )] ;‘% -1 e (UV)...

Lemms 2: Suppose the group G contains s descending chairn of normal

subgroups, G = G@’D Gy D oo e et H be a subgroup of G guch

thate for 1 <31 <n, H contains a set of elements X; which maps

on & complete set of generators of Gj/Giﬂ in the homomorphism

> G/Gy 4. Then HG = G.

F 33 q‘u-e ,;"‘U«L-f. .o <& = % (l . ”-\ s
Froof: The relations < X . Gn/Gn ;?Gﬁwg/Gn9 and X . C H imply

that HG 2G et ® Suppose HG, 2 G - Then

< Xnukmﬁ g Gnak/aﬂwk Z?ankmg/cn and Xr =k=1 S H imply that
i = HI{HG 1 T
HG, 4 2 G,y ¢ Therefore HG = H(HG ) 2HG , 2 G gq» and the

proof follows by induction.

The next lemmz is due to N. Blackburn.
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Lemmg 3. [2, Theorem 1.1]. Let G be a group generated by a set X

i

- . . 2\ - !
of elements, Define subgroups j{i{G/ recursively by the rules

Y(G) =6, and V;q(6) = (G,(G)) for 121, If Y is a seb

of elements which together with \{i+?(G) generate T{i{G)ﬁ then

\/i+?(G) ig penerated by ‘W(i+2§G) together with all commubators

%
=4 = ‘e ..
s SN L where %, ¥ run throwgh X, ¥ respectively. This is true

for i = -§§ 2§ ® 8 @ @
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Chapter 3

The following theaorems are proved in this chapter.

Iheorem 3. If v >2 and G, 1s an srbitrary non-eyclic abelien

p=group, then there exists an infinite ehain of p-groups G}gGgy seey

such that G exe 1/5 (n) and G(n) 7 <t>,

Theorem 4. If G? ig an arbitrary abelian Z2-group which containsg a
3

guberoup of type (22@2 }s then there exists an infinite chain of

QQgrOU.QS Gﬂs 8 Gz 9 see § gu(ﬂ.’l Lﬁ;h&ﬁ Gm ; ﬁ"’ﬂ /G (n ) a@@. G‘ n ) % < >,

This chapter ends with & refinement of an inequality for
p-groups of P, Hall (Theorem 5).

The notation of Chapter 2 is used.

T Vp
Definition 1. The group generated by the matrices a = (

T 0
and b = is denocted by A.

Jooo

Definition 2. The subgroup of A, consisting of 2ll matrices ¥ in

modulo Pﬂ

Y is denoted by A °

A such that X - T, T0,,

Outline of the proof of Theorems 3 and 4: The subgroups

A=A, 2 A2 'DAB 2 ... are geen to form an infinite descending chain
of normal subgroups of A, A monotoniec increasing, integer valued,

positive function f(n) is defined on the positive integers, and i%

is shown that Af(n) EEA(n}Ak for every n and k, (The definition
of f£{n) depends upon whether p 1is even or odd.) Groups G are

defined by G = A/A<§)Af(n>9 then By Theorem 2, G_ = ﬁé?/6£§1

n
Tt is seen that a(m} £<1>, If p>2, then G, is abelian of type
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{psp)s and Theorem 3 follows from Theorem 1. If p = 2, then G'E is
1 ° 2 "}3 " 1 o8
abelian of type (27s27)s; and Theorem 4 follows from Theorem 1.

The following lemmas establish some elementary properties of

the group 4 = Aye

Lerms, 4: (Angﬁm) SA L

Proof: This is an immedisbte consequence of Lemma 1 and the definition

of s A1f the ring K is chosen as R and the ideals U, V are

=3

fal

taken as P° and P

lemma 5: A 18 a normal subgroup of A,

Proof: This feollows from Lemma 4 since

(hoh) = (Aqshy) S Ay S A,

n
[Tra, £\ f4s, b\

Lemms 6: Let X = | s IT= | be elements
\.\ h'd 9 1+£/ ;z\ U s "H’v/

of A such that X - ¥ = 0, modulo Po. Then XY ' is an element

of A .

B

Proof: It suffices to show thet XY ' = I, ¥ 0, modulo P,. By

/2

. . : . L n
hypothesis, there exist s4s t’ﬂ Ugs V4 in R sueh that s = olp™’ "84,
5

n/?

n/a n/2 . -
t = E%p/t%g u = \{%ﬂp/““’u,g, and v = & +p Vqe When these
expressions are substituted In Y, it follows that

=1

datk § T AN 1’3./2 - n/?; - o » \
! = (T+at S +as = gY ) +p (V’.ﬁavg /)‘ui}, e (,5;;,% oty %’“ﬁ} é

T
- “\.\

5‘2 / ~ 3 n/e -
P / {Zv?mu€£m§}§ {(Itat S+a §=57) +pﬂ/”“{s.§+ o8y ‘dt@}/s

Y

Since X belongs to A, the debterminant of X must be 1. That is,



o] Fon

T +g+ 5 +ad=27Y =15 and the lemms follows.

lemma 7 Let n be g positive integer. Then

Y / 18 o 3 a&F ards . it
(1) Aggfﬁzn+@ is eyelic of order ps and

ne n

vz

(2) if & == a, b’ =>1b in the homomorphism A —~> AfAs ins

then A2n¢§/A2n¢2 = < asb >y where < agb » 18 a non-—gyclic
2
grovp of order p .

!/ I+a, pet X\
Proof of (1): If X = ( o

NRE R L

is in the set difference

. e - Y o
Agy, = A2n+@§ then o and o6 are integers, /£ and {  are integers

multiplied by yp. (The generators of A have this property, and it is
clearly preserved under multiplication.) Thus o and & can be
written as

1
a

and

Not both of oy and 51 can be zero, for this would imply that X
belonged to Azn+?e

Since X 48 in A, the determinant of X must be 1. That
is, det X =1 +a+ 5 + a8 = A Y =1, The coefficient of p  in

det ¥ is oy + 8§g hence
gjiO modulo (p).

Since not both oy =0 and 81 = 0 ecan hold, it follows that ¢ # O

and 5‘3 ;# O@



m'é Agw.:

Tt is clear that ay can be assumed to be positives for, if

. n¥
aq < 0, +then a can be writien as o = @**a%@né'@ﬁwwﬂmng +oseey,
where now p + ay > O,
[aty B0 N
Let ¥ =| | be an arbitrary element of
Loyl 1+ g/
L O y
A2n - A2n+@ such that
n . ndl
gﬁ:pd%“rp B&é'ﬁ"‘”@g Oi!a£3<p@
It will be shown that if af = a,, then yedl belongs to Ao 4
This will imply that the order of A, H/A?mﬂ is at most p.
Suppose now thab Q% = Oy Then
{?+a$ AN / 1+ &ty “ggﬁ\g 1+a+ Tha 3=y, * N
= ( = | \
?,/ 9 ‘E+o / \ Y' s Ttaf ) * s ’HS%‘&H@"Emgizj

+
where it is clear that the off=diagonal elements belong to P Antl

since this is slready true for the off-diagonal elements of X and

P
== § a \,
Y . Now a; & 5 o'y and S° belong to P ,{/ 29/ Y and Y

belong to ?2n+ﬁs Therefore
0§ = AY' =0 modulo PRI,
and
al§ - £'Y S0 modulo PN
Thus it is only necessary to show that
1+a+ 8 =1  modulo P21,
and
1+ 5 +a' =1 moedule PP°H,



w5

in order to verify that XY | is an element of Byisqe But & + o

can be written as

S+at= (5 +al)p"+ (5, +ap) ™ 4 e

and, since a% = Oy the coefficient of pﬁ is oy + SP Since

oy S 1 =0 module py, it follows that

=L
14 5 +a 1 modulo P:zn‘g@

The other congruence is proved similarlye.
m o £3e) O > ®
The crder of A,Zn/ji;?;ﬁ +1 has been shown to be at most o
This is a p—group, which is not the identity group since

pnm% _n=
a* bat b = |

)

belongs to A, = Ayl +° Therefore A‘Zn/Azn +1 Bes order p, and

hence must be cyeclic.

Proof of (2). Note that & = N

n 1, pn \/g\) n /1 . G\\
and b5 = |
\p /e 1)

Os 1

belong e Aznﬂ = A Also,

n+2®

w{ 1, Spnfg ‘a‘/ | O\: /‘Hstpznﬂg spn/;\

pn)s (pn}t
( b - \ 7 L=
) \o, 1 /\tpﬁ\/iol‘ﬁ/ Ktpwg s )

is in Aoio if, and only if, 5 =+ T 0 modulo pe By Lemma 4,

(AEn +1 ’AZn +‘§’) < A int2 < AZn 409 hence A:?;n +1 /A.gn 9 is abelian. Thus,



b

n n
if & -3, and P —>1b in the homomorphism A -=> A/ﬁzn&zg

then < ggg > is a non=gyclic subgroup of order p2 of A2n+?/ﬁzn+2°

\

e, 4
Now let x = » _ | be an arbitrary element of
X 3 =§+ \\///
Since o and ' are integers divisible by p{2n+®}/ég

A2net = Aonoe
it follows that they must be divisible by pnTie Also, & = upnzfg

. n : .
and ¥ = wp gg’ for some integers u and v. Therefore

n 1+ 3 - 1 4 0\
x amu@n VP = b v ( i i/m ’
R ESYAN /" = o 1)
E N\,
// §+a+aavp2n%ﬁ s ~aup o \

\mgwnéﬁym@%ﬂg gmy®n¢%,g/

clearly belongs to Aniine Thus the homomorphism A - A/A2n+9 maps

e 3 =1 T 4 = < >
% % wWhers s b 1 That is, A2n+@/ﬁzn+2 ash >

and the proof is complete.

The following three equations will be used to determine the

derived series of the group A.

8 Dt 8 t
Let his,t) =a® b a® bP, Then

PR S g et
1 %~psét4g + pzs+2t%2$¥ ﬁpgw+ﬁ%? /g
(1) hiset) =
ps+2t+‘a /A 1 ps+t4-%
\ 9 ®
Also,
9 . q o Gusg o) \
(11) & n(s,t) aP n(s,a) V= M 12
P12 “22/
where
g 3t4gt3 520+ s+ kg
oy = 1+ pS*At+q 2 +)p23 Sttgtd pZS Lb+2qgH, +‘p3§ 4b+g 49



«}Te

+2%5+q+ +25+
+p25 2btq+2 +p3$ y" 2)5

%2 ©
+4 +
o, = 2SS
21
and
L. . o
Ao =1 = ps+2‘t-%q+@ i pZS“f‘J’&;“f”q'FB - pB& }&t7q+46

The corresponding identity for b is given by

/

) pt . - -1 _|
(111) P hisyt) b his,t) QK

é}ﬂg
f

Aot
where

Yo 4 5 22
'Zjﬁ =1 + p2$1’h+q+2 _ p}é’%?;t-%*q bs

325+ +3
/./5)-32 = pA‘S =t q ° Vgﬁ

B g pES Horqi2 pgg-gmgnt{q-»g—?j 4 p[;,,s—%Zt-i‘?,q”%«i@«s

Lemms 8. Suppose p # 2. Then

; F2h A g 28
_zps%%qﬁ ‘/g _ ps 25+q42 ‘/5 (pq + ps t+gt + Bps + gp"’ 41

V' ik 8
yf‘/’ - zps%-ivq’%“‘ﬁ ‘/g - pzs'}’t“}“q’PQ v/; \p‘t _ pCj_ + pS‘?‘tTQ‘H) .

(1} the homomorphism A - A/ﬁ23%2t+3 meps his,t) on a gener=

ator of the cyelic group 323+2t+2/A

8. © > O

I - 2 -
(2) the homomorphism A - A/A23%2t+2q+4

q g -
and B his,t)b T his,t) ! on a complete set of generators

28-+2%43

for every

¢ a
maps  a’ h(s,t)ar hisy)

Of Aogintingt3/ Pastoteng

Proof of (1). This is an immediate congsequence of equation I and

statement (1) of Lemma 7.

Sgtgqiee

-1



] S

Proof of (2}, Bquation II and Lemma é imply that

q | R s+tdg+]
&’ hiset) a P hisst) ' Ea 2p modulo Aggo&bﬁg@%a
Similarly, using III,
g q _ s+btq+i
WP h(s,t) bP h(s,t)”! =P modulo Angiotiog+,®

The proof now follows from statement (2) of Lemma 7, since p # 2.

Lemma 9. Suppose p # 2, Define f(n) for every positive integer n

as follows: £(1) =2; if f£(n) is even, then f£(n+l) = 2£(n) + 1;

if f(n) is odd, then f£(n+1) = 2f(n). Then Bp(n) gg@) A, for

every k > 1.

P | P o =l
Proof: Clearly h(Ost), ah(Ost) a = h{0,t) ‘59 and bh{0,t)b jh(@@t) !
(1)

(1)

belong to A for every t > 0., Take 8 =g =0 in Lemma &. Then

for m>2, A is seen to contain € ements mapped by the homo-

morphism A - A/A on a complete set of generators of A /A It

m+1°
(1)

follows from Lemma 2 that Ay CA / ﬁk for every k > 1. That is,

ﬁ{g\CAil} A

3

Let n be chosen such that Ai‘(n) C A s Ak for every

k> 1 The lemma will follow by induction if it is shown that

A CA(nﬂ’ A, Tor eve k> 1 But, if A < Ain} A o then
flnt]) = k Ty % 2 be BULs I Ren) = ke e

(1) - (A@‘}Ak;}m;gé,(nﬂjﬁxk

Afg\m} c since A is normal in A. Thus
gé})_g < Ainﬂ jAkg henee it will suffice to show that
(‘E;

Ap(ne1) € Bp(n)hy for every k 2 1.

Dm+k @mﬂf
If f(n) is even, say f(n) = 2m, then a , b s and



o] G

h{Ogm~1) beleng to Bega) = A, whenever k > O, Thus himtk,m),
e e 3 e . e

3 N - kb . a f
a®  nh(0gm=1)a® h(Om=1)"', and b® h(C,m-1)bF  h{0,m=1)

belong te Aééi§ = Aé;j

4
=4

for every k > 0. Therefore, whenever

contains elements

L4 kS ESI N R
w2 4m -+ 1y it follows £
e

te set of generabors

of A /A ... Th 7 2 C Aag for every k > 1
W W 2

@
3

Stk mtk
Tf f£{n) is odd, say f(n) =2m + 1, then & 1B

and h(0um) belong to Apin) for every k > 0. Thus himtk,m),
&'L
nﬁ?ﬂi _ Itk 1 _ otk ok 4
a® h(0m)a® n(0m)™', and ¥  h(Om)b T h(0m)”' beleng to
(1)

f(n}” Therefore, whenever w > fm + 2, it follows from lemma &
1)

that Aé( contains elements mapped by the homomerphism A - A/ﬁi

n) s+1

on a complete set of generators of Awfﬁw+§° Thus, by Lemma 2,

(1) e s 4 : , (1)
A4m%2 g'&f(n} Ay for every k > 13 that is, Af(n+?}‘i‘éf(n} 1c®

This completes the proofs

H

Proof of Theorem 3: Let Gn A/A{n)ﬁf(ﬁ> where £{(n) is the function

defined in Lemme 9. It follows from Lemma 9 and Theorem 2 that

Bl ﬂﬁ\i - v L)
G, = n%l/biégg Gleaf%y Gy = A/Az has type (psp)e If it is shown
that Géii # <1> the proof will folleow from Theorem 1.

)

Iet k Dbe the smallest integer such that Ay f\é<n

contains an element, say =x, which does not belong to Ak%@{} A(n)o

) (k)
Then A{n/(i Ay s and A&n+§}(;g(éygék)e By Lemma 4, (ﬁksﬁk>‘£ Aryee

v%_ AY
Thus A(n i}<5 AZk,Eiﬁkéﬁg and, A<ﬂ%1}3k%? = Ak%ﬁs Therefore, since

(n+1) , (n+1) (n+1)
xdhyyqe xEAVT A by 24 Ap(neq)e It follows from



=20

. (n) _ ,(n) (n+1) .
the proof of Theorem 2 that Gn+? = Af{n) A Af(n+1}ﬁ Thus

(1‘1) A(ﬁ’%"g }A

@(n} # <> since x € A This

Nt Af(n) and % &

fn+1)°
completes the proofe
An analogue of Lemma 8, for the case p = 2, is needed in

the proof of Theorem 4.

Lemms 10. Suppose p = 2. Then

(1) +the homomorphism A - A/A23+2t+3 meps h(s,t) on a gener-

&tOI‘ Of A23+2%%2/A25+2%+3 m 5 ¢ t ;::, Q;

(2) +the homomorphism A = A/g2$+2t+2q+6 maps

a q - q ) -
&® n(s,t)a® h(e,t)” and P hlt,s)bP h(t,s)”' ona

complete set of generators of A23+2t+2q+§/ﬁ23+2t+2q+6

whenever t > 1, s, q 2 0.

Proof of (1): This is an immediate consequence of equation I and
statement (1) of Lemma 7.

Proof of (2): Fguation II and Lemma 6 imply that

~S+htgt+e
JE = a4 -

2l n -
a® his,t)a™® his,t) a modulo A

2s+24+29+6.
Similarlys by III and Lemma 6,

1 oSttigi2

o4 ! _ 1
b hisyt)b ¥ hls,s) =D moduLo Aog ot 42g+6.

The proof now follows from statement (2) of Lemma 7.
The next lemms gives a sharper version of Lemma 4 for the

special case p = 2,

Lemma 11. If p =2, then (Awﬂzm”g%m—%zs
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Proof: It follows from Lemms 7 and eguation I that Agm:<h((},mwi )>A2m +°
By Lemma 4, (A gAgmﬂ) C Ay oe Since Ay =< a,b > it follows from
equations II and III that {A.g 9<h {0 ym~1 )>) < AQm+2* The proof now

follows from the commubator identity
(xoyz) = (xoy) (®om) (lzext)sy)e

Lemma 12: Let p = 2. Defire f£(n) for every positive integer n gag

follows: £(1) =6, and f£(n+l) =2f(n) +2 for n > 1. Then
Ay

hoy) A7 Ay for every k2 1.

1)

Proof: If m > 6 then, by Lemma 10, A( contains el ements mapped

on g complete set of generators of Am/ﬁm + by the homomorphism

A eA/Amﬂ@ Thus, by Lemma 2, Ag Q'A(”Ek for every k > 1.

(n)

Iet n be chosen such that Af{ 1) S AT AL for every

k> 1. The proof will follow by induction if it is shown that

A@{ N gA(nﬂ ‘>A1 for every k > 1. Bub, if A y & Ain}ﬁ? s Lthen
n+l) k £(n) k
Aé& 2@y since A is normal in A. Thus

s (A7) =440,
and it will suffice to show that Af{n +1) < g é }Ak for every k > 1.

By definition, f{n} is an even number, say 2m. Therefore,

gmw%k -tk
by I, o o+ 0° , h(m-1,0), and h(0,m~1) belong to Re(n) = Aoy

nm%é{; me»%«%:; 1
for every k > 0. Thus h{mtk,m), a° h(0Om~1)a ™ n{0o,m-1) ', and
m+ke mﬁfﬁ%}: L {., \ 1
b him-1,006°%  n{m-1,0)"" belong to Apji\ = A;K’ for every
Lin, i

k > 0. Therefere, whenever w > 4m + 2, it follows from Lemma 10



g e

3
that Aézé> contains elements mapped by the homomorphism A - A/AW+§

on a complete set of generators of ijhw+®‘ Thus, by Lemma 2,

4w+2 o {z)} for every k > 1o This is Just the statement that
Af(n*i éé ? and the proof is complste.

(0,

Lemma 13. Let p = 2. Then A/A is an abelian group of type

1
(2292J)@

Proof: It is clear thst A/ﬁig)&é is an sbelian 2=-group. The order

of A/ﬁé is, by Lemma 7, squal to 28@ The order of Ail)ﬁé/ﬁé will
be shown to be QBQ Thug the order of A/ﬁ(?}Aé is 259 Since

A =<asbh >, and agg b8 both belong o Aég no element of the

(‘1)

abelian grouwp A/A can‘hava order greater than &. Thus this
groups having order Zﬁg must have 2 generators. The lemma will
follows since an abelian Z-group having two generators, order 259 and
no elements of order greater than 239 mugt have Lype (22923}9
Let }é(A} be the subgroup of A defined in Lemma 3.

Since A = < gzb >, it follows from Lemma 3 that

Y,(a) =< h, 5(4) >,

1(0,0) = aba bV, and

ER

where h

i

?{3(A> < ab&w%hmﬁﬁ bhbmﬁhmég \Xg(A) >,

By Lerma 4., \Xé(A} = {Aﬂgﬁg)‘g Agg hence, by Lemmas 11,

i

¥y(a) = (8, %)) C (aq08y) S 4y,

and

1

yﬁ“ (s ¥3(8)) S (agsh,) S Age



w23

Thus X2<A} = < h, ah&mdghmﬁs b~ !

=1 1,1

5 \Xziﬁ} > is ineluwded in

< hy, gha 'h ', Bl 'h ', b >. Note that XE(A) = Am, hence

1, =1

h 'y and b~

A<ﬁ}Aé/A6 is generated by images of by aha hmi
in the homomorphism 4 - A/Aéa
By equation I,
1+2+4, =2/2\

h = h{0,0) = aa o5 1-2 j €A, - ABg
herice

, (14527, =327 /2
o a2 s, -8 ) ST
and hﬁ £ Aée Since, by Lemma 4, (Angg} g;Aég the group < hz > Aé
is normal in A. Clearly < hg > Aé/Aé has order 2. It remsins to

show that AQ?}Aéfﬁ h< > Aé has order Ae

It is easy to see that the square of

1+ 411, =4+19 /2
=l =1 _ ‘
aha h = !
8/2 5 1=47 )
is in Az Also, h and dham%&mé map on independent gensrabtors of

i

]

a1, [ 1-8 122/E\

(bbb~ 81 (aha™Tn ) = | | =p™

. =1 =1 I .
That is, aha h and bhbh h ! map onto the same element of



(3
w2l

m -1

A, /2 W > Ag. Also, (ahawihw?) h = aha ', hence (aham?hmﬁ) h

] 3 2 (‘E} ‘ng ~ 2 oA
has order 2 modulo < h > Aée Thus 4 Aé/l< h™ = Aé has two inde~

pendent generators of order 2 whose product has order 2, hence the

group has order 4. This completes the proof.

. . {n) v .
Proof of Theorem 4: Let G = A/80 fAffﬁ§ whers p =2 and f{(n) is
iy

the function defined in Lemma 12. It follows from Lemms 12 and Theorem

Y ~
. o 411 # ! Y
2 that G, = ﬁ / §$§® By Lemma 13, Sﬁ has type (2 §E3}@ The
A L g
) ﬁk }

argument used in the proof of Theorem 3 shows that G Y # <1>, Theoren

4 i3 now an immediste consecuence of Theorem 1.

Remark. The full strengbth of Lemms 13 is not nseded for the proof of
5 ’ 9 ; X é\i?) - A LSRR A
Theorem 4., It would suffice to know that A/A { has type (27,27)
(1)
for n <2, m<3., The exact type of A/A' ‘A, was determined in

order to show that Theorem 4 is the strongesst result obtainable from

efinement of an Inequalibty of P, Hall,

=ty

The groups A, can be used to obtain a refinement of an

inequality of P. Hall. This inequality is

Cy

]

onbained in the following

vy

theorem [4, Theorem 2,57t If p #2 and G is a p-group of minimal

. . n ] | s
order for which G< ) #<1>, then |G| (the order of G) satisfies

The upper bound of this inequaliby was reflined by N. 6 [4] to p” 7.

in additional refinement is glven by the next thsorenm.



25

Theorem 5: If p #2 and G is a p~grow of minimal order for which

6®) #<1>, then lo| satisties

n , ¢n+?m
p? Mol <p® L

n+1
5 - . -1 ,
Remark, It is interesting to note that »p is precisely the

upper bound found by Hall in the special case p = Z.

Proof of Theorem 5: Suppose p # 2 and let f(n) be the function

defined in Lemma 9., It is clear that, for any fixed n > 1, a normal
subgroup H of Af(n) ecan be found such that EA§<R)/HE =p and

-~ =z T { o 3 o
H 2 Ap(n)41° Since (AqsH) C (44 gAf(m)} Shp(n)4y SHs 1t follows

that H is normal in A. The required refinement of Hall's ineguality

-+l
o2 7 ana /@ £ <,

will be obtained by showling that Eg/ﬁ
Theorem 5 will then follew from the theorem of Hall.

By Lemma 9, Af(m}‘g &<m}Ak for every my, k > 1. Conse-

quently, (A/H)<ﬂ} = A{%}H/ﬁ 2 A(E}Af(i)/g since  Aerq) < Ai?kgf(n+3}

and H 24e(ni1)° Suppose (A/H)(k) = A(k)Afik)/H. Then
(a0 5 @ s W, buy

(x),

£(k)

. }(@)H EA(}:H )Aéé}i)g SA(kH)

(8" A )

Af(k+%)9 hence

1 ,{" _5,‘5 . N
(A/Eai)(“‘ 1) gA(k ”Af(kﬁ )fm Therefore, by induction,

(o . .
{Ajﬁ)‘n} Q‘Aiﬁ)AF(n)/ﬁg which is not the identity group since

Eﬂf{n)/ﬁg = Do

It follows from the defirition of f(n) that

2l _ 2o

P(2x+1) =2+ 2 +25+ue+2



=2y
and

‘ 22
2 -
f(gk} = ,,a -+ 22 “+ 24 4 e 4 gmk = g;wwgmﬁl fﬂ«:{a k i ‘38

It is easy to sse from Lemma 7 thatb

3. m=1
2 . .
la/a,l = v if m is odd,
and
, : 3@@ =1 - )
gA/AmE =p if m is even.

Thus, if n is even, f(n) is odd, and

ntd .
% (E%@§mg =1) §m+@m2
EA/Af(ﬂ}E =P =p .
If n is odds then f{(n) is even, and
3 2% o,
EA/’Af(ﬁ}§ =P =T o
27

That is, EA/Ef(n}E =p for n =152y eve o Bub [Ay \/H| =D,

(n)

2n+@m?
hence |A/H| = o This completes the proof.
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Chapter 4

Let G@ be an arbitrary abelian zmgraa@ wnlch conbains a
. . iy 2 o2
subgroup having one of the types (2 92 §~ Vs (242,2%42%), or

2,2,2,2,2), An infinite chain of 2-groups Gys Gas eeo will be
§5 9 9 'g 2

. n n
sonstructed such that G /x( ) and Gi } # <1>,
n m—”ﬁ

The method of construction will be similar to that used in
Chapter 3. However, instead of considering the group A, three new
groups are introduced. The notation of Chspter 2 is used. The prime
p used in the definition of R and P is assumed to be 2.

1 +/2, 0 1, 2
et ¢ = =

\ 0 9 1+ 2‘“2 Gg ?

Definition 3.

/1 0\
{ H
and v :\ o Groups B, O, and D are defined as follows:
29

1/

<
i
A
oy
w-ﬁ
Fa
Y
@

and D

i
M
[}
-
<4
Vi
@

Definition 4o The subgroup of D consisting of all matrices x £ D

such that
_ n
x = I, = 0, modulo P, n > 1,

is denoted by D . Subgroups B, and C, of B and 0, respeec-

&

tively, are defined similarly. That is, B, = B N D C, =0 N D .

Lemna 14: (BB ) S B 5 (CpsCy) S Cpps @D ) SD .

Proof: This is an immediste consequence of Lemma 1 and Definition 4.
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o 5. s S EET o : ‘ T3 e e norn
Lemma 15: B, 28 normal in  Bg Gm is normal in G Dn is normal
in D.

Proof: This follows from Lemma 1.
The next lemma will be used to debermine generabors of
B_/! o nd D for n =1, 2
Bﬁj Bﬁ“’%"ﬂy Gﬁ/@n%%g a;d ﬂ!/Dn’ELR oo bl 4 % $ eee @
Lemma 16: Let H be g group of 2 x 2 matrices with elements in R,
Let H_» for n =1, 2, «co 5 be the subgroup of H consisting of all
L = n
matrices X € H such that det X =1 gnd X - I, = 02 modulo Poe
Suppose H, contains elements X, ¥, Z such that
— 11+
X =6 = 0, modulo P s
2 2
- n+i
- @ = 0, modulo I
v\ = B St
and Z -/ = 0, modulo Py '
/ n
[, (/2™ 1, 0)
where © = | | s O = " bo and
\Os T/ (V2)% 1 /
n
1+ (/207 0 \
¥ o= n| ¢ Iben H =< X’E”ZQHQ+@ 7y and
0 » 1+ (/2))
1 ¢H =8
R ¢
Proof: It is easy to ses thatl
T 8 .t r o8 b = o+
X" Y27 -8 @ W= 0, modulo F,

for any integers v, s, and t. Let W be an arbitrary element of
Hﬂ = En+?n Then



=20=

1 +a, B
W= )
Y s T+8/
where o = 0q ( /2)" medulo ( J§}m+ﬁg
55.:?/54@ (vfg)n nodulo ( ﬁ}:ﬁﬂg
YEN, (v2)° modulo { /2)771,

o
!
=

and ( /2)" module ( /2)"',

oy

for aqs ¢§%§ \ng 5% gach either O or 1. Since W ¢ Hq@

det W=1+ (at8) +a8 =BY =1, Therefore aq * 5?'5 0 moduleo 2.

/-'n Y A +
A simple compubation shows that € ‘g L 97 L W= 82 modulo Pg 1

i

Therefore
By Xy o

x 'y 'z ! -WE o0, mdule Pn}?

and it follows that H = < X,Y,%,H ., >

¥ 9 . Lr
Ty T % ance = < ??’ H >
By Lemma 1, ﬁﬁﬁgﬁn)<; H ,qs hence H =<X¥ 2750, 1

where ry 8 and t range over the integers. It is easy to see that

L oogs L © = = 1 nt
o g v I, 0, modulo P,

ify and only if, 2 divides sach of 1y 8, t. It follows that

e AE

o+ if, and only if, 2 divides each of ry 8, and .

Therefore H :H :H +1 = 8, and the proof is complete.

Lemma 17: Define f{n), Ffor every positive integer n, as follows:

£{1) =5, and f£(ntl) =3f(n} +4 for n > 1. Then, for all positive

: (
integers n and k, Be(n) < B W Ve S C
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Progf: Note that a cac a = | =u, and
N
e@2 m‘é wa%m:/dﬁ Q\"_,_ 2 I PR
b e heh o= | | =v 5 belong to B. Thus, for + > 0, the

‘\\\ L 1 /z,

: (1)
following three matrices belong to B ¢

S g ot (1, (222 )2%’%2\
¢ u e ' u = | )
\ 0, 1 /
R 1 , 0\
e ! v e v - = £ }
{z+2 \/;:5}:?,“ 29 T// ?
a2 iz o /14283 g A0 28 a0
and 2 ba~ b= /

\ 43 /3 . 1- Stt3 J

S

Taking these matrices as the elements X, ¥, and Z of Lemma 16, with

H=B and H =3, it follows from Lemma 15 that, for every t > O,

(1)

B contains elements mapped by the homomorphism B - 3/32t+? on &

complete set of generators of Bpt%éfggt+7s The three matrices

St gt / 1, (202 /2)2% 1 /5
G a (] & = (\
\\ 09 »E 9
- ot bt / T .- 5 0

\

).

//3 + 2@%2\/5 + 22t+59 v BN
\

{' A
\ (242 /2)28T,

and a Vv a v = E
¥
2‘@4‘4 \ﬁ \ { - 2%:;’%"2 ﬁ/

A
also belong to B(@j for every + 2 O. Taking these three matrices as

X¢ ¥y and Z in Lemma 16, and letting H = B, Hn = Bng it follows

(1)

that B contains elements mapped by the homomorphism B - B/E2t+6



o)

on & complete seb of generators of B2t+5/32t+6 whenever t > O.
Combining these results, and using Lemma 2, it is seen that
B(E)Bk 2By for every k2 Te

The proof (for B) will follow by induction if it is showm

(a), (a+1),

. . (n)
that By )G B By implies By .4\ S B e I Bpy & BUB

k9

then, since Bk is normal in B,
£

Bg i x= (B(’“’)Bk}m < plotlly .+ Therefore
(1) (1), v _ (o)
Bp(n)Bx & (B 'BJB, =BT B,

and it will suffice to show that Bf(n+?}‘£ Bézi}sk°

By definition, f(n) is odd, say f(n) =2m + 1 where

Znﬁ% 2mﬁ% ey 2m+t Zm%t
m > 2e t is easy to see that & s D s © s U s and v

belong to Boumt1 whenever +t > O.

Since m > 2, a calculation shows that

/(gm Zﬁ\ 2mﬁﬁ// ?m 2m5m1 m2m+t //;9 23mﬁ3%t\

{ ! e = ; 1

Ké’ sD 1} g Ka, Ny y u \ 0, % j modulo Bém+2t%79

and

/ S SmN\=1 mit /1 om mNmd / 1, 0\

La® 5% | v [a° p° v = | } modulo B

&) N \ p3mth3 Gmt24+7”
\\ 2 ) 1 /

Alsoy by eguation I,

. e P g o\
( 7 ?? i gm 4o ‘\i 1+ 23171%“5’,“’33 + 25&&"&‘2@ %@9 “gﬁm“‘&t% 3 \/5, g‘
\2 ) 5D ) = E
. / \ 24m%t+5 /3 , 1= 23m+t+3 /L
These elements belong to Bézi = B§;£1 whenever + > O. Hence, by

Lemma 16 (with the asbove matrices as X, Y, 2 and H = B, H, = Bn)§



5(1)
Br(n)

a complete set of generators of B@mw&%%/gém DT

contains elements mapped by the homomorphism B - B/Eém%g:t%? on

It follows from Lemms 6 and eguations IT and IIT that

» t?m"‘:"%&%‘ﬁ
Ll Py -1 - (Vs 27 2 \}
a n{mem) a himgm; © = 0 ] modul.o B’m*%%“ﬁ
s /
and
Zmﬁftﬁ‘“ﬁ , mzm"%”}'? ) g;g _ "E 9 Q \‘i
b himsm) b h{mgm) 3mtb 43 A | modulo B@@*Q’W“S
\ 2 /2, 1

Another compubation gives

Db 4 » g*‘ﬁ’ri} 3 : 1 ";’& bfj ‘K“k

[ QRmiEiZ  ,m [ q 4 p7mitA3 /2 o+ Py 7§ LIt HE \(

\ 8 ) E ;
b Asianivey je

y 2@% iiw \/5 s ? - :ﬁ?ﬁ ’?"J ‘/F‘E/

S

; e (1
These elements belong to Bémj‘ﬁ whenever +t > 0. Hence, by Lemma 16

(with the above matrices as X, ¥y, 2 and H = B, H = Eq}g
p & &

g{1) = pll)

onbains elements mapp he homomorphism
mn y = Bopiq eonbaing elements mspped by the homomorphism

%/B,»ﬁ g 00 2 complete set of generators of Bémﬁ?;t%*’?/ bmtob4a®

(1)

Thus B (n) contains elements mapped by the homomorphism B -~ B/B Bt

o

on & complete set of generators of 8@;81&;% whenever w > &m + 6. It

(1)
follows from Lemma 2 thaeb EJ% o

)

oy wmh

}Bi o B, vy for every k> 1o In
1 -

A
8 - N

5 :) ] o - &y % = ;8 JLLLVA
£(r )B%:: 2 By Ejf{m)-% £n+1)°

& 1. 2 n
proot of the statement Bf{ﬁ} € B< EB}:@

g i, 3 7 s B e
B 18 replaced, throughoutb,

The above proof remsing valid i

by either C or D. The lsmma follows.



T pyre I4 ) Ty
Theovem &:  Leb Gy ne

N LA
subgroun of one of the types (2742742

Then there exists an infinite chain of Z=groung Gﬁg Goys eee such that

- n n
G, = nﬁ/ﬁi ’ and G( ! # <=,

o E R ('ﬂ} o (n} — u.(:n}
Proof: Tet Hy =B/B" By s K =0/LTCp s and L =DAHY Do .

Tt follows from Lemma 17 and Theorem 2 that H_ = H oy /ngif .

F; /KKH} and L = 1, /L{nj The srgument used in the proof

KZE n%-"E T n nﬂ ﬂ’%“? ® ine arg 2110 3 in tae pr o
. . n {n n

of Theorem 3 shows that $} # <1>, K. % # <1>, and $¢§ # <1,

Theorem 5 will follow from Theorem 1 if 1%t is shown thab: E? can be

generated by three elements of order less than or equal to 43 K% can
be generated by four elements, two of which have order 2 while the
remaining two generators have order less than or equal to 4 Li can
be generated by five elements of order 2.

Since B = < asbse >, where a£$ bé@ and c& belong to
Bs = Bf<j>g the growp Hy = B/E{?)Bf{?) can be generated by three
elements of order less than or equal to 4.

3
Since C = < a,byceu >y the group K..E = C/Ci?’ﬁg can be
4 4

generated by four elements. It is easy to see that b7 and e

belong to 359 But

/?9 ﬁ%ﬁ’{"g\

20y o D)
u (@gu) = : / 5\;5 SsC? 359

and

(csu) ]

i1

2
a iCza.}

hence u? and az belong to G(jjegﬁ Thus two of these generstors

have order 2, while the remaining two generators have order less than



= [;m

or equal 10 4.

Since D = < a,b,eu,v >y the group Ll = D/Dﬁ%}5 can be

generated by [ive elements. Clearly G(%)G g;D§1)D§S hence ug and

leD

(1)
&zm/’”%-sﬁ 1)

o® belong to D'y, Mlso, vo(e 74w cnllhp

5 5%

and b2(c™',b) = (c”?gv), Therefore b° and v° belong to Dij)ﬁga
2 /‘E Z;?'\ 5 1 0\\
Note that u = | s V= ', and
\o 1) 41/

L \O
- 21, =8/2)\
(8%4b) = | « Thus, by Lemma 16,
\ 42 1 =4/
2 2 2
D!y gc< u v g(a gb)gaﬁ >
Similarly,

2.2
DB = < g 4b g(&gV}gDﬁi Za

Since angggugg and vg belong to D{?)Dﬁg it follows that

DQ?EDﬁ 2Dy. It is easy to see that

/ 21+ 14/2, -6/2-8)

2
¢ (agh) = l £ Do
T\ ef-8, 342/, 3

Thus @2 € E<@)D59 and hence Ly ecan be generated by five elements of

order 2. This completes the proof of Theorem 6.

Remark. An argument similar to that used in the proof of Lemma 13
shows thab E/B<§}Bg has type (2 92 g? )s G/C<@}G5 has type
(2,2,2752%), and D/b<1)35 has type (2,2,2,2,2). Thus Theorem 6 is
the strongest result obbainable from the groups B, C, and D.
Whether Theorem 6 is the best possible result, for G.g g 2=group with

a2t least three generators, remains an open guestion.
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