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Abstract

This thesis deals with the electronic properties of a semiconductor superlat-
tice and with electronic tunneling in a semiconductor heterostructure. Chapter
2 presents the theoretical formalism of k.p method for calculating band struc-
tures for strained-layer superlattices. A strained-layer superlattice is defined as
a structure made up of alternating layers of at least two materials with different
lattice constants. In this type of superlattice, a uniform strain, instead of misfit
defects, accommodates the difference in the lattice constants. A strain affects
the band structure since it changes the atomic position, and hence, crystal field
which is the sum of all atomic potentials. The realization of strain effects in the
model makes possible the understanding of physical properties of strained-layer
superlattices, for example, optical properties and transport phenomena, which
both are functions of the band structure. The study of ZnTe-CdTe system il-
lustrates interesting strain effects in a strained-layer ZnTe/CdTe superlattice.
The ZnTe/CdTe system has potential applications for visible-light sources and
photodetectors. Because this system has a large lattice mismatch (~ 6%), the
theoretical study shows that strain plays an important role in optical properties.

Chapter 3 presents the theoretical formalism of k.p method for calculating
band structures for semimagnetic semiconductor superlattices. A semimagnetic
semiconductor superlattice is defined as a superlattice with one or more con-
stituent materials containing magnetic impurities. When placed in a magnetic
field, this type of superlattice exhibits interesting and possibly useful properties
such as band gap reduction. These features are associated with the exchange
interaction between the itinerant band electrons and localized d electrons on
magnetic impurities. The exchange interaction in the theory is included within
mean field approximation. Dependences of the band structure on the magnetic

field and temperature follow the mean field approximation.
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Chapter 4 presents the results of theoretical study of HgTe-CdTe superlat-
tices. The HgTe-CdTe system has interesting features which make it a candidate
superior to the HgCdTe alloy for infrared application. Based on the calculated
band structure, the optical properties of the HgTe/CdTe superlattice are dis-
cussed. The optical absorptions in the superlattice and alloy are studied and
compared. It is shown that the superlattice could have absorptions comparable
to or larger than those of the alloy. The effects of strain on the optical prop-
erties and transport phenomena are discussed. It is found that the transport
phenomena may be greatly affected by even a small strain in the HgTe-CdTe
superlattice, where the relative difference between the lattice constants is only
0.3%. The optical properties of the HgTe-CdTe superlattice is studied for a wide
range of valence band offset which is defined as the valence band edge of HgTe
relative to that of CdTe and whose value is currently an unsettled issue. Both
the band gap and absorptions of the superlattice are found to decrease rapidly

for both negative and large positive values of offset.

Chapter 5 considers the wide-gap Cd;_,Mn,Te/Cd;_,Mn,Te superlattice and
the narrow-gap Hg;_,Mn,Te/Cd;_,Mn,Te superlattices. Currently, the wide-
gap system is of great interest because of the possibility of using it as magnet-
ically tunable laser material. In the system spin-splitting is enhanced by the
exchange interaction between the localized 3d electrons of Mn** and band elec-
trons. The spin-splitting reduces the band gap opposing to the Landau level shift
which enlarges the gap. However, the spin-splitting is found to dominate in the
system. In consequence, the band gap decreases in a magnetic field. However,
the relative change in the band gap is shown to be small. This makes suspect the
idea of fabricating magnetically tunable laser out of this system. Interesting re-
sults concerning dependences of magnetic effects on temperature, magnetic field

and layer thicknesses are presented. Generally speaking, temperature random-



izes the spin oreintation while magnetic field aligns Mn** spins. In thin-layer
limit, the magnetic effect in the superlattice is found to be just that of an alloy
corresponding in composition to the superlattice. In contrast, the narrow-gap
system is found to have larger tunability. Due to small effective mass of electrons,
the Landau level shift is found to be important. Results regarding dependences
of magnetic effects on temperature, magnetic field and valence band offset are
shown.

Chapter 6 presents the theory and results of electronic tunneling in AlGaAs
multi-barrier structures. The observation of negative differential resistance of the
structure has been reported. However, basic mechanisms of current conduction
in the structure have not been fully understood. We have made study of inelastic
electronic tunneling due to electron-phonon coupling in a double-barrier struc-
ture. The current induced by the inelastic tunneling of electrons is calculated.
The main result is that the inelastic process results in a much larger current
than the elastic process at the voltage bias where no resonant tunneling occurs.
Dependences of the inelastic contribution on doping level and layer thickness are

discussed.



vi

Parts of this thesis have been or will be published under the following titles:

Chapter 2:
Photoluminescence Studies of ZnTe-CdTe Strained-Layer Super-

lattices,
R. H. Miles, G. Y. Wu, M. B. Johnson, and T. C. McGill, Appl. Phys.
Lett. 48, 1383 (1986).

Chapter 3:
k.p Theory for Semimagnetic Superlattices,
D. L. Smith, G. Y. Wu, T. C. McGill, and C. Mailhiot, in preparation for

publication in Phys. Rev. B.

Chapter 4:
Optical Properties of HgTe-CdTe Superlattices,
G. Y. Wu, C. Mailhiot, and T. C. McGill, Appl. Phys. Lett. 48, 72
(1985).

Strain Effects in HgTe-CdTe Superlattices grown on CdTe Sub-
strates,

G. Y. Wu and T. C. McGill, Appl. Phys. Lett. 47, 634 (1985).

Band Offsets and the Optical Properties of HgTe-CdTe Super-

lattices,

G.Y. Wuand T. C. McGill, J. Appl. Phys. 58, 3914 (1985).



vii

Superlattices: Progress and Prospects,

T. C. McGill, G. Y. Wu and S. R. Hetzler, Proceedings of 1985 U. S.
Workshop on the Physics and Chemistry of Mercury Cadmium Telluride,
J. Vac. Sci. Technol., 2091 (1985).

IR Absorption Measurement and Analysis of HgTe-CdTe Super-
lattices,

J. P. Baukus, A. T. Hunter and O. J. Marsh, C. Jones, G. Y. Wu, S.
R. Hetzler and T. C. McGill, Proceedings of 1985 U. S. Workshop on
the Physics and Chemistry of Mercury Cadmium Telluride, J. Vac. Sci.
Technol., 2110 (1985).

Chapter 5:
Theoretical Study of the Electronic Properties of Semimagnetic
Superlattices,
G. Y. Wu, D. L. Smith, C. Mailhiot, and T. C. McGill, Appl. Phys. Lett.
49, 1551 (1986).

Theoretical Study of the Electronic Properties of Semimagnetic
Superlattices,

G. Y. Wu, D. L. Smith, C. Mailhiot, and T. C. McGill, Proceedings of
1986 U.S. Workshop on the Physics and Chemistry of Mercury Cadmium
Telluride, to be published in J. Vac. Sci. Technol. A, (1987).



viii

Chapter 6:

Phonon-Assisted Inelastic Tunneling in Double Barrier Struc-

tures,

G.Y. Wu and T. C. McGill, in preparation for publication in Solid State

Commun.



ix

Contents

Acknowledgements ii
Abstract i
List of Publications vi

1 Electronic Properties of II-VI Superlattices and GaAs/AlAs Tun-

nel Structures 1
1.1 Introduction. .. ... . ... ... ... ... .. ..., 1
1.2 Superlattice -7 TheOTY « « « « o v v v vt e e e e e e e 9
1.3 II-VIsuperlattices . ... ... ... ... ... . ... ...... 12
1.4 GaAs/AlAs Tunnel Structures . .. ................ 15
1.5 Summaryof Thesis . . . . ... ... .. .. ... ... ..., 17
2 12-;3 Theory of Band Structures of Strained-Layer Semiconductor

Superlattices 22
2.1 Introduction. .. ... ... ... ... ... e 22

2.1.1 Background . . ... ... ... ... .. 0o 22

2.1.2 Outlineof the Chapter . . . . . ... ... ......... 26
2.2 First-Order Theory . . . . . . . . . . . i v .. 27

2.2.1 Outline of First-Order Theory . .. .. ... ... .... 27

2.2.2 Strained Crystal Band Structures. . . ... ... ... .. 28



2.3

2.4

2.5

2.2.3 Strained-layer Superlattice Band Structure ... ... .. 33
Second-Order Theory . ... .. ... .. .. ... 35
2.3.1 Outline of Second-Order Theory . ... .. ... ... .. 35
2.3.2 Strained Crystal Band Structure . . . ... ... ... .. 37
2.3.3 Superlattice Band Structure. . . . . ... ... ... L. 41
Strained-Layer CdTe-ZnTe Superlattices . . . . . ... ... ... 42
2.4.1 Introduction . ... .. ...... .. ... .. .. 42
2.4.2 Strained CdTe and ZnTe Band Structures . . . . . .. .. 43
2.4.3 Band Gap of the Superlattice . . . . .. .. ... ... .. 46
SUMMATY . . . v ottt e e e e e e e e e e e e e e e e e e e 49

E-ﬁ Theory of Band Structures of Semimagnetic Semiconductor

Superlattices 52
3.1 Introduction. .. .. .. .. .. ... ... e 52
3.11 Background . .. ... ... .. .. ... .. oL 52
3.1.2 Outlineof the Chapter. . . . . .. ... ... ....... 53
3.2 Theory of Band Structures of Semimagnetic Semiconductors. . . 55
3.2.1 Outline of the Section . . . . . ... ... ... ...... 55
3.2.2 Reference Material and Pseudopotential Calculation . .. 56

3.3

3.2.3 Effective-Mass Theory of a Bulk Semiconductor in a Mag-
neticField. . . . .. ... ... .. .. L L., 57
3.2.4 Examples of Semimagnetic Semiconductor Band Structures
64
3.2.5 The Complex Band Structure of a Semimagnetic Semicon-
ductor . . . . . ... e 65
Theory of Band Structures of Semimagnetic Semiconductor Su-
perlattices . . . . . . . . . .. e e e 69

3.3.1 Outlineofthe Section . .. ... ... ... ........ 69



xi

3.3.2 Electron Wave Function in a Single Material . . ... .. 70
3.3.3 Boundary Conditions at Interfaces . . . . ... ... ... 71
3.3.4 Bloch Condition for a Superlattice Wave Function . ... 73
3.3.5 Superlattice Eigenvalue Equation . . . . . . ... ... .. 74

3.4 Examples of Semimagnetic Semiconductor Superlattice Band Struc-

tures . . . . L L e e e e e e e e e e e e e 74
3.5 Summary . . . . . it e e e e e e e e e e e e e e e e e e e e e 78
Theoretical Study of HgTe/CdTe Superlattices 80
4.1 Introduction. .. .. ... ... .. ... ... e 80
4.2 Optical Properties of the HgTe/CdTe Superlattice ... ... .. 84
4.2.1 Dielectric Function . . . .. .. ... .. ... ....... 85
4.2.2 Band Structures of HgTe, CdTe and HgCdTe . . . . . .. 88
4.2.3 Band Structure of a HgTe/CdTe Superlattice . . . . . .. 90
4.2.4 Comparison of Superlattices and Alloys . ... ... ... 90
4.3 Band Offset and Optical Properties. . . . . . ... ... ... .. 95
4.4 Strain Effects and Optical Properties . . . . . . ... .. .. ... 98
4.5 Summary . . . . . . i i e e e e e e e e e e e e e e e e e e e e 106
4.5.1 Optical Properties . . . ... ... ... .......... 106
452 Band Offset Effects. . . ... ... ... .. ........ 106
453 StrainEffects . . ... ... ... .. . o000 107

Theoretical Study of Semimagnetic Superlattices in a Magnetic

Field 110
5.1 Introduction. .. ... ... ... ... ... oL, 110
5.1.1 Semimagnetic Semiconductors . . ... ... ... .. .. 110
5.1.2 Semimagnetic Superlattices . . .. ... ... ... .. .. 115

5.2 Cd;-;Mn,Te/Cd;_,Mn,Te Superlattices . . . . . ... ...... 117



xii

5.3 Hg;_.Mn,Te/Cd;_yMn,Te Superlattices . . . ... ........ 124

5.4 SUMMATY . . . & v v v v bt e e e e e e e e e e e e e e 130

6 Barrier Phonon-Assisted Inelastic Tunneling in a GaAs-AlAs-

GaAs-AlAs-GaAs Structure 135

6.1 Introduction. .. .. .. ... ... .. ..., 135

6.2 Theory of Elastic Tunneling . . . .. ... ............. 137

6.3 Theory of Inelastic Tunneling . . .. ... ... .......... 142

6.4 Comparison of Elastic and Inelastic Tunneling. . . . .. ... .. 145

6.5 SUmMmMAaTy . . . ¢ v v i e e e e e e e e e e e e e e e e e e e 150
Appendices

A E;’)’ Theory for Semimagnetic Semiconductor Superlattices: Deriva-

tions and Matrices 152
A.l Introduction. .. ... ... ... ... ... ... .. 152
A.2 Derivation of Effective-Mass Equation ... ... ......... 152
A.3 Hamiltonianmatrix . ... .. ... ................ 156
A.4 Current Density Matrices . . .. ... ... ... ......... 160
B Derivation of Inelastinc Tunneling Current in a GaAs-AlAs-
GaAs-AlAs-GaAs Structure 162
B.1 Introduction. .. ... ... ... .. .. .. ... . .. 162

B.2 Derivation



Chapter 1

Electronic Properties of II-VI
Superlattices and GaAs/AlAs

Tunnel Structures

1.1 Introduction

Recent advances in crystal growth techniques have made it possible to pro-
duce multilayer microstructures such as superlattices and heterostructures. Su-
perlattices are structures made up of alternating layers of materials. Molecular
beam epitaxy (MBE) and chemical vapor deposition (CVD) are both popular
techniques for growing high quality multi-layer structures. Layers in these struc-
tures are a few tens of A thick. The de Broglie wave length associated with the
motion of an electron in such structures is comparable to the layer thickness.

Thus quantum size effects are expected to be important in such systems.
Following the pioneering work of Esakil, various types of superlattices have

been proposed. Their properties are tailorable. The band structure, for example,

varies with layer thicknesses. Hence, the band gap, the effective mass, and the



optical matrix element are subject to control. Effects on electronic energy levels
due to superlattice structure can be pictured by considering a periodic array
of quantum wells. In an isolated well, quantization of electronic motion results
in a series of discrete levels, which are localized in the well. Localized states
contained in adjacent wells can interact with each other, resulting in mini-bands.
Thus a few subbands are derived from a single free electron energy band. The
subband width primarily depends on the strength of the interaction, which can be
controlled by adjusting barrier thickness. The band gap is primarily determined

by the size of quantum confinement, which can be varied by changing well width.

In general, semiconductor superlattices are classified into three categories:
type-I, type-1II, and type-III superlattices, according to relative positions of band
edges of constituent materials. In Figure (1.1), we show band diagrams for the
three types of superlattices. = Relative positions of band edges of constituent
materials are plotted. Electronic and optical properties displayed by the three

types of superlattices are different.

In a type-I superlattice, both electrons and holes are confined to the same
layer. Wave functions of electrons and holes overlap substantially, enhancing
radiative recombination rate. A well known example of type-I superlattice is the
GaAs/AlAs superlattice. GaAs layers, being energy wells, hold both electrons
and holes, while AlAs layers act as barriers and expel free carriers. Due to large
overlap of spatial positions, electrons and holes in GaAs layers recombine with
ease, resulting in intense radiation. The wavelength of the emitted radiation can
be tuned by changing layer thicknesses. The GaAs/AlAs multi-layer structure

as lasing device has been an important subject in quantum electronics.

In a type-II superlattice, electrons and holes are separated. An example is
the InAs/GaSb superlattice, in which electrons are confined to the InAs layer

while holes are confined to the GaSb layer. Wave functions of electrons and
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Figure 1.1: Band diagrams. Both conduction and valence band edges of con-

stituent materials are shown for three types of superlattices.



holes do not overlap much. But carriers can be driven to interfaces by an electric
field and radiatively recombine there. Hence electroluminescence devices can be
made of type-II superlattices. A type-II superlattice may exhibit semiconductor-
semimetal transition as layer thicknesses are increased. The InAs/GaSb super-
lattice is an example. The valence band edge of GaSb is higher in energy than the
conduction band edge of InAs. In the limit of thin-layer superlattice, quantum
effects seperate conduction subbands from valence subbands. A band gap exists,
making the superlattice a semiconductor. On the other hand, in the limit of
thick-layer superlattice, the subbands overlap. The band gap vanishes, making

the superlattice a semimetal.

A type-III superlattice has a band diagram different from either of the su-
perlattices discussed earlier. One of the constituent materials is semimetallic.
The HgTe/CdTe superlattice is an example of type-III superlattice. The HgTe
has a zero energy gap. The superlattice has a band gap which, depending on
layer thicknesses, varies from zero to the band gap of CdTe. It covers the energy
range of infrared light. With wide HgTe and thin CdTe layers, the superlattice
has electronic properties similar to those of HgTe. On the other hand, with thin
HgTe and wide CdTe layers, it has properties similar to those of CdTe. The

HgTe/CdTe superlattice also exhibits semimetal-semiconductor transition.

Constituent materials of most superlattices do not lattice-match. The
GaAs/AlAs and the HgTe/CdTe superlattices are examples of nearly lattice-
matched superlattices. The relative difference in lattice constant is less than one
percent (0.14% for the GaAs/AlAs superlattice and 0.3% for the HgTe/CdTe
superlattice). On the other hand, the CdTe/ZnTe superlattices, for example,
consist of constituent materials with relatively large lattice constant difference.
The relative difference is 6.2%. A lattice-mismatched system may contain misfit

defects. However, it could accommodate lattice-mismatch through the formation



of a uniform strain. Growth of such systems, called strained-layer superlattices,
has been demonstrated. The size of strain can be adjusted to control the band

gap®.

In recent years, semimagnetic semiconductors (SMSCs) as a class of novel
materials have raised a lot of interest®. Narrow-gap SMSCs such as Hg;_,Mn,Te
and wide-gap SMSCs such as Cd;_.Mn,Te have been investigated. The Mn**
ions contain five 3d electrons which are aligned in accordance with the Hund’s
rule. A 5/2 spin is associated with each Mn** ion. Without the presence of any
magnetic field, electronic and optical properties of these systems are similar to
the nonmagnetic HgTe and CdTe. The band gap of Hg;_.Mn,Te or Cd;_.Mn_,Te,
however, increases with z, the fraction of Mn**. When an external magnetic field
is applied, a SMSC displays unique behavior. The localized spins are aligned by
the magnetic field. The exchange interaction between a mobile band electron
and the net spin may greatly affects the energy of an electronic level. It could
be exploited for adjusting optical properties. This is the basic idea behind mag-
netically tunable devices. With superlattices made of SMSCs, more degrees of

freedom are gained for tailoring properties of materials.

To understand electronic properties of superlattices, various methods have
been developed. Examples are tight binding method, pseudopotential method,
and k - p theory. Each method has its own advantages. Under certain circum-
stances, simple calculations are possible. For example, for a GaAs/AlAs su-
perlattice, since conduction and valence bands are well separated in energy, it is
justified to use a one-band Kronig-Penny model for obtaining dispersion relations
for conduction and valence subbands. However, when the energy separation is

small, a multi-band calculation becomes necessary.

In the tight binding method, wave functions are normally expanded in terms

of one s and three p orbitals associated with each atom. A period in the super-



lattice is envisioned as a large unit cell for which the tight binding Hamiltonian
is constructed. This method often has difficulties with getting correct conduc-
tion bands. Wave functions of conduction band states obtained are somewhat
localized while in reality they spread in space. The effective mass of electrons
calculated with tight binding method is usually too large. However, this prob-
lem can be avoided by the inclusion of second- or even third-nearest neighbors in
the calculation. The tight binding method provides information about electronic
properties on atomic scale, such as local density of states. This information is

useful for study of defects, surface, and interface.

In pseudopotential calculation, atomic pseudopotentials are used for setting
up the Hamiltonian. This method, due to the presence of superlattice periodicity,
usually employs lots of plane waves as basis functions for expansion. It requires
a powerful computer, particularly in the case of thick-layer superlattices. It has
been developed for ab initio self-consistent calculation of electronic properties.
Relative positions of energy band edges in heterostructures (band offsets) have
been so determined. Pseudopotential method also resolves electronic properties

on atomic scale, allowing the study of surface and interface properties.

To study the properties of a superlattice, we have developed a theoretical
method called superlattice k- p theory®. In this method, band gap and optical
matrix element of constituent materials are input parameters, which are deter-
mined by fitting optical data. The bulk band structure calculated with these
parameters can be used to predict optical properties accurately. It provides ef-
fective masses of electrons and holes for bulk materials in better agreement with
measured values than tight binding method. It has been extended to deal with
band structures for both strained-layer and semimagnetic semiconductor super-
lattices. In Chapter 2, we present the theory incorporating strain effects. In

Chapter 3, we develop the theory for calculating band structures for semimag-



netic semiconductor superlattices.

The k- p theory has been applied to several II-VI superlattice syatems. One in
which we may find infrared application is the HgTe-CdTe superlattice. As men-
tioned early, the HgTe/CdTe superlattice is a type-III superlattice. By adjusting
layer thicknesses, its band gap may vary from O to 1.6eV, with the correspond-
ing wavelength covering 8-14um, the atomospheric window for the infrared. The
HgTe-CdTe superlattice was proposed in late 70’s by Schulman and McGill in our
group®. As pointed out by Smith, McGill, and Schulman, it has advantages not
offered by the conventional infrared material, the HgCdTe alloy®. The HgCdTe
alloy, while capable of infrared absorption, is plagued by some problems. For
example, the wavelength cutoff for absorption is sensitive to composition fluctu-
ation produced during growth. Moreover, the leakage current in a p-n junction
is increased with decrease in the band gap. The superlattice, on the other hand,
has a band gap which varies smoothly with layer thicknesses, allowing a better
control of cut-off. The leakage current can be made small by increasing CdTe
layer thickness. Thus, the superlattice offers promising features which may ad-
vance infrared technology. A detailed discussion of optical properties is provided

in Chapter 4 for further assessment of the superlattice.

With band diagram similar to that of a HgTe/CdTe superlattice, the
Hg;_,Mn,;Te/Cd;_,Mn,Te superlattice can be made to have a narrow energy gap.
The band gap can be tuned by a magnetic field. It may serve as magnetically
tunable infrared material. On the other hand, the Cd;_,Mn,Te/Cd;_,Mn,Te
superlattice has a large band gap. It has been proposed as lasing device, with
wavelength of emission tunable with a magnetic field. In Chapter 5, we present
discussions on magnetic effects and optical properties of the two superlattice sys-
tems. The theory for calculating band structures of semimagnetic semiconductor

superlattices is applied to the two systems.



While electronic properties of a superlattice may be understood with the
various energy band theories previously mentioned, a complementary point of
view is provided by tunneling theory. Electrons at gap states cannot tunnel
very far. On the other hand, those which tunnel with transmission of unity
belong to superlattice eigenstates. In reality, due to the presence of defects,
scattering occurs. Only a finite number of layers are traversed between two
consecutive scattering. Hence, in case a high density of defects exists, a theory
of tunneling through a multi-layer structure is more appropriate. However, when
the superlattice is sufficiently free of defects, electrons may travel through a
number of periods. In that case, tunneling theory merges with energy band

theory.

Besides raising scientific interest, multi-layer tunnel structures also offer po-
tential applications. The GaAs/AlAs/GaAs/AlAs/GaAs structure, as negative
differential resistance (NDR) device”®, has attracted much attention. An
explanation on the origin of NDR, based simply on elastic tunneling in which the
total energy and the parallel momentum of the electron are both conserved, has
been made by Tsu and Esaki’. However, the current-conducting mechanism can
also be inelastic. This may modify the theory of Tsu and Esaki. To understand
the effects of inelastic processes, we have investigated electronic tunneling in-
duced by electron-phonon interaction. In Chapter 6, we present results of study

of phonon-assisted inelastic tunneling in the double barrier structure.

In Section (1.2), we will discuss the principle involved in the superlattice k- D
theory. In Section (1.3), introduction to properties of a few II-VI superlattices
will be given, which are HgTe/CdTe superlattices, Hg;_,Mn,Te/Cd;_,Mn,Te
superlattices, and Cd;_,Mn,;Te/Cd;_,Mn,Te superlattices. In Section (1.4), we
will describe concepts involved in electronic tunneling in a double barrier struc-

ture.
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1.2 Swuperlattice k - p Theory

For study of optical properties, k- p theory is particularly dependable. The
method employs perturbation theory. The perturbation consists of k- p term
and the difference in crystal potentials of constituent materials. Wave functions
are calculated to the first order and the energy dispersion is evaluated to the
second order in the perturbation. When the band gap is large, k- P theory can be
reduced to one-band Kronig-Penny model. When the band gap is small and the
coupling between conduction and valence bands is strong, a multi-band model
is necessary. However, the principle involved in the superlattice k- p method is
nearly the same as in a one-band Kronig-Penny model. Discussing the one-band
calculation serves to illustrate the k - § theory.

In the Kronig-Penny model, the equation describing the electronic motion is

the following:

h2

[~ V2 + m-] ¥(7) = E$(7), (1.1)
2m;

where ¢ labels a constituent material, m} is the effective mass, V; is the energy

band edge, and 1 is the envelope function. Here, the effective mass is assumed

to be isotropic. The total wave function @ is

2(7) = Y(Fu(#), (1.2)

where u(7) is the cell-periodic Bloch function, which is assumed to be the same
for both constituent materials, i.e., u; = us = u. The difference in the two Bloch
functions complicates the problem. We will address this issue later.

To solve Eq. (1.1), we usually proceed as follows. We take the direction
perpendicular to the layer as z-direction. The envelope function is separable.

Due to translational symmetry in z and y directions, we write it as

= exp(iky - 7)) ¥z, (1.3)
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where Ell is the parallel component of the wave vector, and v, contains all of
z-dependence. When putting Eq. (1.3) in the equation of motion, we get an
equation for v,, the perpendicular component of the envelope function. We give

the equation for 1, in the following:

K2 d? hzkﬁ
- — + Vi, = | E— —2L ] ,. 1.4
[2m§ dz? + ] v ( 2m?} v (1.4)

The equation obviously has solutions in the form of exp(zk,z). Normally in a

bulk crystal without any boundary, k, with complex value is not allowed. Only
solutions with real k, satisfy the Born-von Karman boundary condition. How-
ever, in a superlattice, the bulk solutions do not have to be freely propagating,
due to the presence of interfaces. In other words, complex as well as real k, are
allowed.

The way the above equation is solved is different from that normally taken
in the calculation of a bulk band structure. To calculate a bulk band structure,
we select a real Bloch vector k first, and then solve the Hamiltonian equation for
the energy E. However, in the superlattice problem, we input an energy and a
I_‘”:II and solve for generally complex k,.

Having solved the equation for v,, 1, is expressed as a linear combination of
the bulk solutions, propagating or evanescent. We need to connect the envelope
function across the interface. This has been an interesting subject in heterojunc-
tion problem. One set of boundary conditions which have been often used are
the continuity of the envelope function and the current at the interface. That is,

R LAY, dy;
¢z, "27;77’? ("pz dz'i "'"ﬁz dﬁ) (15)

are continuous. Or equivalently,

1 di,

m} dz

Yz,
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are continuous. The boundary condition involving the derivative can also be

obtained by integrating the equation for ¥, (Eq. (1.4)) across the interface.
Since a superlattice displays translational symmetry in z-direction, we can

associate with that a quantum number ¢, which is the z-component of the wave

vector. The Bloch condition states that

Y(z + d) = exp(igd)(2), (1.7)

where d is the superlattice periodicity. With both boundary conditions and Bloch
condition, the energy dispersion E (I::]‘,q) can be established.

Having illustrated basic principles involved in superlattice k- p theory, we now
address the issue regarding the difference in the Bloch functions. In a first-order
calculation, it is legitimate to neglect the difference. However, to calculate the
energy dispersion to a higher order, the inclusion of the difference is necessary.
The difference in the Bloch functions for constituent materials can be attributed
to the difference in their crystal potentials. Pseudopotential calculation, which
gives the Bloch functions explicitly, helps to handle this problem. The informa-
tion so obtained is used as input for k- P calculation.

As strain effects are present, the k- p Hamiltonian is modified. In a strained-
layer superlattice, the presence of strain does not change the symmetry of the
superlattice. Each electronic state is labeled by k,, k,, and k, as for an unstrained
crystal. However, band edges of constituent materials and dispersion relations are
changed. These changes can be described by deformation potentials. In Chapter
2, we will show how the k - 7 Hamiltonian is modified and how the difference
in the Bloch functions is taken into account. The strained-layer CdTe/ZnTe
superlattice will be taken as an example to illustrate strain effects.

On the other hand, when magnetic effects are introduced, fundamental mod-
ification of band structure is induced. Landau levels are formed. The quantum

numbers for labeling each bulk eigenstate are k,, N, and k,. Here, N is the
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Landau level index. In Chapter 3, we will show how to set up the effective-mass
equation for the envelope function. We will elaborate to modify the current

continuity condition. Some of the derivations will be included in Appendix A.

1.3 1II-VI superlattices

In this section, we will discuss properties of several II-VI superlattices which
make them uniquely suitable for some applications. The discussion on
HgTe/CdTe superlattices will center on optical properties. We will look into the
potential of Hg;_,Mn,Te/Cd;_,Mn,Te superlattice as the magnetically tunable
version of the HgTe/CdTe superlattice. We will discuss another semimagnetic
system, the Cd;_,Mn,Te/Cd;_,Mn,Te superlattice, which was proposed for use
as magnetically tunable laser.

The potential of the HgCdTe alloy and the HgTe/CdTe superlattice as in-
frared materials is attributed to unique band structures of HgTe and CdTe. The
CdTe is a wide-gap semiconductor. The valence band states at the zone center
(T point) of the Brillouin zone are four-fold degenerate. Two of them are heavy-
hole states and the other two are light-hole states. The conduction band states
are two-fold degenerate. The two conduction band states are primarily derived
from s orbitals of Cd while the four valence band states are primarily derived
from p orbitals of Te. Under the operation of the tetrahedral group, these degen-
erate states transform within the subspace of functions they form. The valence
band states constitute a basis for I'g irreducible representation of the tetrahedral
group. The conduction band states form a basis for the I'¢ representation.

On the other hand, the HgTe is a semimetal. Symmetries in HgTe band
structure are inverted. The valence band and the conduction band are degenerate

at I' point, both belonging to I's representation, while I'¢ states which are s-like
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are lower in energy. The inversion of symmetry results in a negative I's — I's
gap. Hence, within virtual crystal approximation, the HgCdTe alloy may have a
T'¢ — I's band gap, negative or positive depending on its composition. The band
gap can be tuned for infrared detection. By forming superlattice structures, it is

also possible to obtain band gap suitable for infrared application.

To study optical properties, an important parameter is €;(w), the imaginary
part of the dielectric function, since it determines optical absorption. The calcu-
lation of €;(w) forms a major part of Chapter 4. Optical properties are functions
of band structure. The valence band offset, describing the relative positions of
valence band edges of constituent materials on the energy scale, is an important
parameter which determines the band structure. This parameter has not been
pinned down yet for HgTe/CdTe superlattices. Another factor which affects the
band structure is the presence of strain, which is due to lattice mismatch in the
HgTe/CdTe system. In Chapter 4, we examine variations in electronic properties

of this system induced by effects of strain and change in band offset.

The Hg;-,Mn,Te/Cd;_,Mn,Te superlattice is the magnetic version of the
HgTe/CdTe superlattice. This semimagnetic superlattice also has a band gap
which covers the range of infrared light. The band gap of this system can be
adjusted by changing layer thicknesses as well as applying a magnetic field. In
the presence of a magnetic field, Landau levels are formed. More importantly,
the localized Mn** spins are partly aligned by the field. A nonzero net spin is
established. The exchange interaction between the aligned spins and an itiner-
ant band electron, lifting spin degeneracy, splits energy levels. This effect can
be represented by introducing an equivalent internal magnetic field. Magnetic
effects are magnified through the internal field. Mean field theory can be used to
relate the internal field to the external one. There are other factors affecting the

internal magnetic field. Thermal effects, for example, which tend to randomize
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the orientations of localized magnetic moments, decrease the internal field. It is
also possible to tune magnetic effects by changing Mn** composition. Increasing
the composition enhances the internal field. However, the Mn™™ ions in a SMSC
are antiferromagnetically coupled. With large Mn** composition, the alignment

of moments is reduced by the antiferromagnetic coupling.

The band gap of a semimagnetic superlattice varies with Landau level shift
and spin-splitting. Landau level shift tends to enlarge the band gap, while spin-
splitting tends to reduce the band gap. Enhanced by the exchange interaction,
spin-splitting usually dominates. A central issue in the application of semi-
magnetic superlattices is the magnitude of the relative change in the band gap,
achievable with a currently available magnetic field, which is on the order of a
few Tesla. In Chapter 5, we discuss the tunability of the band gap by a magnetic
field for the Hg;_;Mn,Te/Cd,_,Mn,Te superlattice. In this system, the electron

has a small effective mass, resulting in a large Landau level shift.

The Cd;—_,Mn,Te/Cd;-,Mn,Te superlattice can emit intense radiation with
energy above 1.6eV, the band gap of CdTe. The constituent material which has
the smaller band gap acts as energy well for both electrons and holes. Both
types of carriers are trapped there. Radiative recombination of free carriers can
be made intense enough for the structure to lase. The energy of the emission
depends on the strength of the external magnetic field, which affects the energy
levels. In this system, with large electron effective mass, the Landau level shift
is small. The band gap is reduced primarily due to enhanced spin-splitting. In
Chapter 5, we will look into the Cd;_,Mn,Te/Cd;_,Mn,Te superlattice for its

potential as magnetically tunable lasing material.
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1.4 GaAs/AlAs Tunnel Structures

In this section, we discuss the concepts involved in the tunneling theory. Dis-
cussion will be concentrated on the GaAs/AlAs/GaAs/AlAs/GaAs structure. In
such a structure, the middle GaAs layer is energetically preferable to electrons,
while the AlAs layers are energy barriers. This results in quantization of elec-
tronic motion perpendicular to the layers. There are eigenstates with energies
less than the barrier height and primarily localized in the GaAs well.

Electronic tunneling through a double barrier structure can be classified into
elastic and inelastic processes. In an elastic process, both the energy and the
parallel component of momentum are conserved. If either one of them is changed,
it is an inelastic process. In Fig. (1.2), we illustrate both processes. The
inelastic process shown in the figure creates a phonon in the barrier. Other types
of inelastic tunneling are also possible. Plasmons or other elementary excitations
can be excited during tunneling. Impurities can scatter tunneling electrons too.

For an electron impinging onto the structure, the transmission coefficient is
normally exponentially small. The propagation of the wave in each barrier is

characterized by an imaginary wave vector

. _\/2m‘(V - El)

1K =1 = ,

(1.8)

where V' is the barrier height, and E, is the energy associated with the longitu-
dinal motion of the electron. The wave is attenuated by exp(—«d) in traversing
through each barrier, where d is the barrier thickness. But the transmission is
near unity when the energy of the electron coincides with one of the quasi-bound
levels. When the device is so biased that a quasi-bound level is aligned with the
Fermi sea in the GaAs electrode, a large tunneling current is produced. With a
deviation from such a bias, the current drops very rapidly. This results in NDR.

In inelastic tunneling, even when the Fermi sea is not aligned with any quasi-
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TUNNELING MECHANISM

Figure 1.2: Tunneling mechanisms in a double barrier structure. Both elastic

and inelastic processes are shown.
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bound level, electrons injected into the GaAs well may still utilize the levels as
channels for tunneling, thus enhancing the current. The tunneling electron can
excite an optical or acoustical phonon through electron-phonon coupling. A lon-
gitudinal acoustical (LA) phonon, for example, deforms the crystal globally and,
hence, changes the crystal field. This results in the deformation potential cou-
pling between an electron and a LA phonon. Similarly, an longitudinal optical
(LO) phonon can set up a dipole field which acts on the electron. This polar cou-
pling is much stronger than other types of electron-phonon interaction. Inelastic
tunneling decreases the peak to valley ratio characterizing the current-voltage

curve predicted by Tsu-Esaki model.

The Transfer Hamiltonian method is well suited for calculations of inelastic
tunneling. For a single barrier structure, electrons are viewed as quasi-particles
confined to the two regions separated by the barrier. The quasi-particle states are
not stationary states. Their amplitudes decay with time, since they can tunnel
from one side to the other side of the barrier. The transition rate is determined
by Fermi’s golden rule. The transmission is proportional to the overlap in the
barrier of wave functions of the initial and the final states in the tunneling process.
The validity of the method lies in the fact that the transimission is small. In
Chapter 6, we will employ transfer Hamiltonian method to analyze phonon-
assisted tunneling and illustrate the importance of inelastic tunneling in the
double barrier problem. Derivations of expressions for currents are presented in

Appendix B.

1.5 Summary of Thesis

In Chapter 2, we will develop the superlattice k- p theory for strained-layer su-

perlattices. Two versions of the theory will be given: first-order and second-order
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theories. In the first-order theory, analytical dispersion relations are given for
superlattice subbands. This theory allows us to study the energy gap as a func-
tion of layer thicknesses and, hence, is of importance to superlattice engineering.
In the other version, a numerical method is required for evaluation of the band
structure. However, the difference in Bloch functions is taken into account and
energy dispersion is obtained to a higher order of accuracy. Band structures of
strained CdTe, strained ZnTe, and strained-layer CdTe/ZnTe superlattices will
be calculated as examples. Transport properties are compared for unstrained
and strained cases and qualitative difference is shown to be likely induced by the
strain. It is found that the strain in the ZnTe pushes the light-hole band up-
wards, while in the CdTe it pulls the light-hole band downwards. As a result, the
band diagram for a CdTe/ZnTe superlattice may vary, the change depending on
layer thicknesses of CdTe and ZnTe. This produces a discontinuous dependence

of band gap on layer thicknesses.

In Chapter 3, the k- p theory for semimagnetic semiconductor superlattices
will be presented. The exchange interaction between localized magnetic moments
and band electrons is treated within mean field theory. Effective-mass equation is
derived for envelope functions. Boundary conditions are established. The eigen-
value equation for superlattice wave function is derived. As applications, band
structures of Cd;_,Mn,Te and Hg;_,Mn,Te/Cd;_,Mn,Te superlattices are cal-
culated. Spin-splitting in the energy band structure due to exchange interaction

is shown. Complex structure in the band structure is illustrated.

In Chapter 4, we present discussions on electronic properties of HgTe/CdTe
superlattices. €;(w) for superlattices and alloys are calculated and compared. We
also study effects on optical properties induced by a variation in the valence band
offset. Strain in the superlattice is included in the calculation of band structures.

Optical properties are compared for unstrained and strained superlattices. It
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is found that the superlattice may have absorptions comparable to or larger
than those for the alloy. Strain effects are shown to be unimportant for optical
properties. However, they may push the light-hole subband upwards and induce
large conductivity. The band gap is near maximum at zero valence band offset.
Optical absorptions are found to be insensitive to variation in the valence band
offset. However, absorption decreases very rapidly as the valence band edge of
HgTe becomes lower than that of CdTe. This is attributed to the occurrence of

separation of electrons and holes.

In Chapter 5, electronic properties of Hg;_,Mn,Te/Cd;_,Mn,Te and
Cd;_;Mn,Te/Cd;_,Mn,Te superlattices are discussed. Magnetic effects, includ-
ing their temperature and layer thickness dependence, are shown. Variations
in the band gap due to Landau level shift and spin-splitting are compared.
Relative change in band gap with a large magnetic field at a low tempera-
ture is calculated for both systems. For Hg;_,Mn,Te/Cd;_,Mn,Te superlat-
tices, we also show magnetic effects as functions of the valence band offset.
It is found that the presence of a magnetic field reduces the band gap. The
relative change in the band gap is 2.5% for the Cd;_,Mn,Te/Cd;_,Mn,Te sys-
tem and 10% for the Hg;_,Mn,Te/Cd;_,Mn,Te system. The reduction in the
band gap is attributed to spin-splitting, which is enhanced by exchange interac-
tion. The Landau level shift, although unimportant, is found to be larger in the
Hg,-,Mn,Te/Cd;_,Mn,Te system than in the other system. This is attributed
to the light effective mass of electron. Magnetic effects are found to decrease

with an increase in temperature for both systems.

In Chapter 6, we first discuss shortly the theory for elastic tunneling. Order
of magnitude estimates are made for the peak to valley ratio. Inelastic tunneling
assisted by barrier phonons is studied with transfer Hamiltonian method. Two

representative types of coupling are considered: a strong one which is polar
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optical coupling between electrons and logitudinal optical phonons, and a weak
one which is deformation potential coupling between electrons and longitudinal
acoustical phonons. We also show J,./Joss, the ratio of currents at and off
resonance. This ratio is calculated with and without the inclusion of phonon-
assisted tunneling. The dependence of this ratio is also studied as a function of
the doping level at the electrode. Polar coupling is shown to induce a much larger
current than deformation potential coupling. The ratio of currents is found to be
changed by orders of magnitude by inelastic tunneling. However, it is relatively

insensitive to variation in doping level at the electrode.
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Chapter 2

K - P Theory of Band Structures
of Strained-Layer Semiconductor

Superlattices

2.1 Introduction

2.1.1 Background

In this chapter we present k- p method of calculating band structures of
strained-layer semiconductor superlattices. Strained-layer superlattices are made
up of alternating layers of semiconducting materials which are lattice-mismatched.
Lattice-mismatch either can cause misfit defects in the superlattice or can be
accomodated by forming an uniform strain in each individual layer. It is the
latter which we will be considering in the chapter. Technically, there is always
some lattice-mismatch in a superlattice whose composition varies spatially. In
GaAs/AlAs and HgTe/CdTe superlattices, the relative difference between lattice
constants of constituent materials is a few thousandths (0.14% for GaAs/AlAs

superlattices and 0.3% for HgTe/CdTe superlattices). In CdTe/ZnTe superlat-
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tices, the lattice mismatch is about 6.2%.

A strain in the crystal changes atomic positions and, hence, changes the
crystal potential. The change in the crystal potential, in turn, changes the energy
band structure. Bardeen has proposed the idea of using deformation potentials
for describing strain effects. The change in the conduction band edge is described
by

S0E, = alA (2.1)

under hydrostatic stress, where A is volume dilation, and a is the change in the
conduction band edge per unit dilation and is called the deformation potential.
Similar equations hold for valence band edges. When shear stress is also present,
more deformation potential parameters are used to represent strain effects. They
are all on the order of a few electron volts. We can make order of magnitude
estimate of strain effects in GaAs/AlAs or HgTe/CdTe superlattices. Since the
strain components are a few thousandths, the change in the bulk band structure
is, from Eq. (2.1), on the order of a few milli-electron volts, compared to the
band gap which is on the order of one electron volt. On the other hand, a
relatively large strain is present in the CdTe/ZnTe superlattice. The change in
the bulk band structure is on the order of a few tens of milli-electron volts. Strain
effects in CdTe/ZnTe superlattices are thus bigger than those in GaAs/AlAs or
HgTe/CdTe superlattices.

In either case, strain could play an important role in transport phenomena
in the superlattice. Generally speaking, the presence of strain not only shifts
edges of conduction and valence bands, but it could also invert relative positions
of heavy-hole-like and light-hole-like valence bands under certain circumstances.
In ordinary zinc-blende semiconductors, valence bands contain light-hole bands
and heavy-hole bands, which are degenerate at the zone center. However, the

degeneracy could be lifted by the application of stress. For example, an uniax-
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ial compression pushes the light-hole band upwards above the heavy-hole band,
while an uniaxial tension pushes the heavy-hole band upwards above the light-
hole band. This could have important effects on transport phenomena. When
the crystal is unstrained, holes occupy largely the heavy-hole band at low tem-
perature. However, as an uniaxial compressive stress is applied, majority carriers
become light-hole-like, causing a relatively large conductivity. On the other hand,
when an uniaxial tensile stress is applied, majority carriers are heavy-hole-like,
causing a relatively small conductivity. Thus, the application of a stress could
significantly alter the conductivity.

Optical properties of a direct gap semiconductor, however, are not necessar-
ily sensitive to the occurrence of strain. Let us take absorption for example.

Absorption function « is defined by
I(z) = Iyexp(—az), (2.2)

where Iy is the intensity of the incident light, and I(z) is the intensity of light
after traversing a depth of z. The absorption at a certain frequency w is, roughly

speaking, proportional to D(Aw), i.e.,
a(w) « D(hw),

where D(hw) is the number of pairs of states per unit energy (i.e., joint density

of states) available as initial and final states to the direct electronic transition

-, -,

€ (k) — (k) = eo(k) + hw. (2.3)

Here, €, and ¢, are the energies of conduction and valence bands at E, a general
point in the reciprocal space. Joint density of states depends, in turn, on band
structure over the full Brillouin zone.

In the presence of strain, an energy band is shifted more or less rigidly, at

least so near the zone center, since strain-induced change in a band is a smooth
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function of k. Joint density of states, being a function of band structure, is
shifted as rigidly in energy near the onset (i.e., E ~ E,).
The situation can be best explained in the zero-order approximation, in which

energy bands can be taken as parabolic, that is,

K2k?
€ = )
2m,
2.2
e = —’;’“ . (2.4)
my

Joint density of states per unit volume is, in the approximation, given by (count-

ing spin degeneracy)

D(E = hw) = ;1% / k6 [e.(F) + 6B, — e,(K) — 6E, — E|
_ 2_;(2_;”2_‘)3/2 (B - e(K =0) = 6B+ e, (F = 0) + 6,] "
under hydrostatic stress, where
- = mi _ni— (2.5)
Hence,
Ditrainea(Aw) = Dypstrained (hw — §E, + 6 E,). (2.6)

Density of states is shifted in energy. So is absorption function near its on-set:
Qstrained (hw) = aunstrained(hw - 5Ec + 5Eu) (27)

A currently interesting subject is the critical thickness for which a strained-
layer superlattice can be grown. From physical considerations, the thickness of
the strained-layer superlattice possesses an upper limit. Strain-induced elastic
energy increases linearly with the thickness of superlattice. Beyond a certain
thickness, misfit defects start to take over uniform strain to lower the energy
of the structure. The structure then contains both strain and defects. There

have been several theories on critical thickness for growth of a strained epilayer.
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However, a theory capable of predicting critical thickness of a strained-layer
superlattice has not been satisfactorily developed. We shall not address this
issue further except to note that strained-layer superlattices with high quality
have indeed been grown, with thickness beyond the critical limit predicted for

strained epilayer growth.

The inclusion of strain effects in the theory of superlattice band structures is
very important. The theory to be developed here is capable of predicting effects
of strain on electronic properties. It is also helpful to data analysis. Photo-
luminescence measurement, for instance, has been performed with CdTe/ZnTe

superlattices”. The developed theory has been used to interpret the data’.

There are several versions of k - D theory of superlattice band structures. In
the chapter we are going to present two of them. One has the analytic capability

while the other one is more accurate.

2.1.2 Outline of the Chapter

The k& - p theory is basically a perturbation theory. We can perform first-
order or second-order perturbation!. The first-order theory provides us with a
convenient analytical expression for describing the superlattice band structure
at the cost of accuracy. The second-order theory has the capability of describing

the band structure to a higher-order accuracy.

In Section 2.2, we describe the first-order theory. In Section 2.3, we present
the second-order theory. In Section 2.4, for illustration of strain effects, we
present the results of study of the strained-layer CdTe/ZnTe superlattice. In

Section 2.5, we summarize the study.
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2.2 First-Order Theory

2.2.1 Outline of First-Order Theory

In the first-order theory?, we start with first-order k- p calculation of bulk
band structures of strained constituent materials. The perturbation is carried
out around the zone center (k = 0). In other words, zone-center states are used
as basis functions. Perturbation calculation provides solutions at general k # 0,
which are linear combinations of the basis functions.

We then expand the superlattice wave function in terms of bulk solutions,
which include both propagating and evanescent states. With bulk solutions as
linear combinations of zone-center states, the expansion can ultimately be written
in terms of the basis functions. It is then a sum of products of envelope functions
and basis functions.

The envelope functions are to be evaluated. In the first-order calculation,
we take zone-center states of the two constituent materials to be the same. Su-
perlattice wave functions are matched at the interface. This results in a set of
equations for envelope functions. The Bloch condition is also imposed in ac-
cordance with the superlattice translational symmetry. This establishes another
set of equations for envelope functions. Solutions to the two sets of equations
provide superlattice wave functions characterized by superlattice wave vectors.

If only kj = O superlattice band structure is concerned, we have an analytic
expression for it. This allows us to extract fundamental quantities of the super-
lattice very conveniently, for example, band gap and longitudinal effective mass.
In superlattice engineering, the knowledge of band gap and effective mass as
functions of growth parameters such as layer thicknesses is required for devising
a superlattice structure with certain desired properties. The analytic expression

is indeed very useful for that purpose.
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2.2.2 Strained Crystal Band Structures

We start with the Hamiltonian of a strained crystal for the zinc-blende structure®,

2
H= _%w 4 V() + Hyo + He, (2.8)

where V is the crystal potential, H,,. is the spin-orbit interaction

h 3 =
Hs.o. = W(VV X P) -0, (2.9)

and H is the strain-induced term. According to Bloch’s theorem, we then write

a solution at an arbitrary wave vector k in an arbitrary band indexed by n as

follows:
Yop(F) = € Tu 5 (7),
where u_; satisfies the periodic condition

u,;(F) = u ;(F+ R) (2.10)

where R is a lattice vector. Substituting Eq. (2.10) into time-independent Schrodinger
equation, neglecting k-dependent spin-orbit interaction and k-dependent strain

term, we obtain the k- p Hamiltonian equation

hk-p  hk? _,
(H +—= '27,;) Un(F) = Bn(k)uni()- (2.11)

We will use perturbation theory to treat the above equation. The unperturbed

equation is taken to be

(-%\72 " vm) uno(7) = Buotiol?). (212)

Solutions to the unperturbed equation are the basis for perturbation calculation.
Such solutions can be obtained by pseudopotential method or orthogonalized
plane wave method. However, the knowledge of their explicit functional depen-
dence is not required for the first-order calculation, which needs only matrix

elements of the perturbation.
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We will be concerned only with the superlattice eigenstates derived from near
band-gap conduction and valence bands of constituent materials. u,o(7)’s of near
band-gap conduction and valence bands are taken as basis functions for pertur-
bation calculation. Other solutions are disregarded. Perturbation calculation

will give u, () at a general k in terms of these basis functions.

The calculation is carried out to first-order in k. We need matrix elements of
the perturbation, Rk - p/m and H,, which are evaluated between various basis
functions. We can compute them if basis functions are given. However, for a
number of zinc-blende crystals, these matrix elements have been tabulated. In
either case, it will be useful to know symmetry properties of these functions. It
leads to selection rules for the matrix elements. In the following paragraph, we

sketch symmetry properties of basis functions for a zinc-blende crystal.

Without spin-orbit interaction, the wave functions at the conduction band
edge are represented by |S 7> and |S |> with up and down spin, respectively.
They have the symmetry of s-like atomic wave functions under transformations
of the symmetry group of a zinc-blende crystal. On the other hand, the wave
functions at the valence band edge are represented by |X 1>, |[X |>, [V 1>,
Y |>, |Z 1>, and |Z |>. They transform like the components of a position
vector under the symmetry transformations. The knowledge of symmetry prop-
erties simplifies calculation of matrix elements. For example, the matrix element
< 8 1|pz|Z 1> is nonzero while < S 1 |p,|X 1> is zero since it has odd symmetry

under a reflection with respect to x-y plane.

However, with spin-orbit interaction, the above functions no longer diago-
nalize the Hamiltonian. The interaction couples spin and orbital angular mo-
mentum. The wave functions are linearly combined into Kramer basis functions,

which, for an unstrained crystal, diagonalize the Hamiltonian at k = 0 with spin-
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orbit interaction!. We list the Kramer basis functions |J, My > in the following:

ST S

13/2,3/2 >= —%(XWLZ'Y) T; 13/2,—3/2 >= -—VI—E(X——Z.Y) 1

3/2,-1/2>=—L[(X —i¥) T +22 |]; [3/2,1/2>=-J[(X+iY) | -2Z 1];

1/2,-1/2>= — L [~(X ~iY) 1 +Z |]; [1/2,1/2>= ~F[(X +1Y) | +Z 1].
(2.13)

&

Now, it is easy to write down k - § matrix elements with Kramer basis. For

example,
1

V2

< S1|k-p3/2,3/2 >= —— (ks + ik,)p,

where

p =< 8|p,|X >=< S|p,)|Y >=< S|p,|Z > . (2.14)

In fact, p is the only parameter required for setting up k- P matrix.

As to the matrix of Hy, the strain tensor is required. For illustration, we shall
consider the (001) grown free-standing superlattice. We assume the superlattice
consists of alternating material layers of thicknesses a and b, respectively. The
system in question is assumed to be in its lowest energy state. In other words,
the elastic energy of the system is minimized with respect to the lateral lattice
constant (i.e. the transverse force on the superlattice is zero) while subject to the
constraint that the normal force on each interface is zero. For this configuration,

it is easily verified that

€zz = €yy,

€zy = €yz = €z = Oa

while €, and ¢,, are related by

€20 = —2—"€3, (2.15)
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where C;;’s are elastic constants of the constituent material. Denoting the con-
stituent materials by a and b, respectively, we have ¢, determined by the fol-

lowing expression:

€a__Aa0[ G ]b_Aao[ G%a ]

2 |Goat G| ™~ Tay LG+ G%

where

Aay = af—al,
a b
ao = %o T a’O’
2
, 2C,’
G = 2|cCci,+Cl, 2, (2.16)
Ch

and a}, refers to a lattice constant.

Now, we are able to establish the Hamiltonian matrix. The presence of strain
modifies the matrix. It adds a few matrix elements to the Hamiltonian through
the use of deformation potentials. We follow Bir and Pikus® in the inclusion of
strain effects. (001) grown superlattices are considered. The constituent materi-
als have zinc-blende structure when undeformed. For illustration, we write down

only nonzero matrix elements of the Hamiltonian at & = 0:

< ST|H|S1>=E;+ C(ezz + €4y + €22),

< S | |H|S |>=E;+ Cl€zz + €4y + €22),

!
< 3/2,3/2|H|3/2,3/2 >= ™

(€zz + €4y) + me,,

<3/2,-3/2|H|3/2,~3/2 >= 1™

(€zz + €yy) + me.,
<3/2,1/2|H|3/2,1/2 >= é[(l + 5m) (€22 + €4y) + (41 + 2m)e,,]
<3/2,—1/2|H|3/2,~1/2 >= %W 1 5m) (60 + €4) + (41 + 2m)es1]

1
<3/2,1/2|H|1/2,1/2 >= ———(I - 2z T €y — 26,
2L /2AH[L/2,1/2 >= = =l = ) eca + 6y — 26
<3/2,-1/2|H|1/2,-1/2 >= —1——(1 — m)(€zz + €4y — 2€22),

3v2
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<S1|H[3/2,1/2 >= z'P(~\/gkz),
< S ||H|3/2,—1/2 >= z‘P(-\/—§-kz),

1 +2
<1/2,1/2|H|1/2,1/2 >= —A + 2

(fzz + €y + fzz)a

l+2
<1/2,-1/2|H|1/2,~1/2 >= —A + 2T

(ezz + €yy + 5zz)a
where
N
P= —i < S|P X >, (2.17)

A is the spin-orbit splitting, and I, m, and n are parameters describing defor-
mation potentials. Other nonzero matrix elements are obtained by taking the
complex conjugate of those in Eq. (2.17).

Subsequently, we will reduce the 8-dimensional space to 6-dimensional by
dropping two basis functions, |1/2,—-1/2 > and |1/2,1/2 >, which are split-off
states. The spin-orbit splitting is usually so large that split-off bands do not
significantly affect superlattice subbands near the superlattice band gap. Matrix
elements between split-off states and the six states are included in the 6 x 6

Hamiltonian matrix by perturbation theory:

<3/2,1/2|H|3/2,1/2 >6xe

= <3/2,1/2|H|3/2,1/2 >gxs +
| < 3/2,1/2|H|1/2,1/2 >5xs |*
< 3/2,1/2|H|3/2,1/2 >sxs — < 1/2,1/2|H|1/2,1/2 >gxs’

< 3/2,-1/2|H|3/2,—1/2 >exe

= <3/2,-1/2|H|3/2,—-1/2 >33 +
| < 3/2,—1/2|H|1/2,—1/2 >gxs |?
<3/2,—1/2[H|3/2,~1/2 >gxs — < 1/2,—1/2|H[1/2,—1/2 >gs

Other elements of the 6 x 6 matrix are simply equal to those of the 8 X 8 matrix.

(2.18)

Given the 6 X 6 matrix here, it is readily seen that strain effects only renormalize

on-diagonal values of the matrix.
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It can be verified that the 6 x 6 problem can further be decomposed into
two identical 1 x 1 and two identical 2 X 2 problems. The two 1 X 1 problems
are associated with the two heavy-hole states [3/2,3/2 > and (3/2,-3/2 >,
respectively. The two 2 x 2 problems are associated with |S 1> and [3/2,1/2 >,
and |S |> and |3/2,—1/2 >, respectively. The 1 X 1 and 2 X 2 equations for
each constituent material are to be solved seperately. Let us consider the 2 x 2

equation for |S 1> and |3/2,1/2 >, for example. Let
up = C,|S 1> +C,|3/2,1/2 > . (2.19)

Then the 2 X 2 equation becomes

<ST|H|ST>-E <S7T|H|3/2,1/2> C
T1HIS 1> LTERY, 2 PP
<3/2,1/2|H|S 1> <3/2,1/2|H|3/2,1/2> —E C,
C, and C, are nonzero only when the determinant of the matrix in Eq. (2.20) is
set to zero. This results in a relation between E and k,. There are two solutions

for each given energy. The solution of the above equation results in the bulk

band structure.

2.2.3 Strained-layer Superlattice Band Structure

In a superlattice, the crystal potential V (7) varies spatially with the superlat-
tice periodicity. Within effective-mass approximation, C, and C, become slowly
varying functions of z, and k, is replaced with P, /h where P, is the z-component
of momentum operator. Projecting onto the S state one further transforms the

system into a differential equation

2P? -
WPZ[E- <3/2,1/2|H|3/2,1/2 >]"'P,4+ < § 1 |H|S 1>| Cy(2) = EC,(2).

We impose on C,(z) the Bloch condition

Cy(z + md) = exp(igmd)C,(z), (2.22)
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where d is the superlattice periodicity and m is an integer. We assume that
the basis functions for the two constituent materials are the same. In order for
the superlattice wave function (which is a sum of products of envelope functions
and basis functions) to be continuous at the interface, we require the envelope
functions be continuous at the interface. At the interface, we integrate Eq. (2.21)

across the boundary and, since C, is assumed to be continuous, we obtain

dC,(2)

Cs(2),|E— < 3/2,1/2|H|3/2,1/2 >} o

(2.23)

both continuous at the interface. The superlattice wave function restricted to
a single material is a linear combination of the two bulk solutions. Therefore,
there are four unknown coefficients for a superlattice consisting of two constituent
materials. There are four equations. Two of them assure the continuity of C,
and (roughly speaking) its derivative at an interface, while the other two apply
to the neighboring interface in accordance with the Bloch condition. This results
in a set of four simultaneous equations. The function C; are nonvanishing only
if

cos(gd) = cos(kqa) cos(ksb) — %(n + 171 sin(kqa)sin(kyb),

where
ko E— <3/2,1/2|H|[3/2,1/2 >
T % E—<3/2,1/2/H[3/2,1/2 >0

(2.24)

Here k, and k, are determined by setting the determinant of the coefficient ma-
trix in Eq. (2.20) to zero for material a and b, respectively. The above equation is
referred to as light-particle dispersion relation. It describes the mini-band struc-
ture derived from the S-like and light-hole-like states. The mini-bands include
both valence and conduction bands.

The same procedure can be applied to the 1x 1 equation for heavy-hole states.
Heavy-particle dispersion relation is then obtained. It describes only heavy-hole

valence subbands. No conduction subband is derived from heavy-hole states.
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Hence, the conduction band edge is determined only by the light-particle
dispersion relation. However, the superlattice valence band edge is the higher
one of the first heavy-hole and the first light-hole subband edges. The superlattice
band gap is determined by the energy difference between the conduction and the

valence band edges.

2.3 Second-Order Theory

2.3.1 Outline of Second-Order Theory

In the second-order perturbation theory?, we start with the empirical pseu-
dopotential Hamiltonian without spin-orbit interaction and strain effects. The
Hamiltonian of a constituent material is made up of an unperturbed term and
a perturbation. The unperturbed term is the sum of the kinetic energy and the
pseudopotential obtained by averaging those of the two constituent materials.
The perturbation accounts for the difference between the full Hamiltonian and
the unperturbed one.

The eigenstates of the unperturbed Hamiltonian at k = 0O are taken as ba-
sis functions for perturbation calculations. Empirical pseudopotential method
(EPM) is used to solve for unperturbed energy eigenvalues and eigenfunctions.
The method employs plane waves exp(ié - 7)’s, where G’s are reciprocal lattice
vectors of constituent materials®. In the actual calculation, we expand a wave
function in a truncated basis which includes 113 plane waves. The calculation
provides 113 eigenstates. Out of them, basis functions for the perturbation cal-
culation are selected (typically 23, as actually implemented).

Next, spin degeneracy is included. “Near-in” wave functions are then chosen,
for example, the two at the conduction band edge and the six at the valence band

edge for a zinc-blende structure. The rest of basis functions are called “far-out”
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states. Only superlattice eigenstates primarily derived from the near-in states

are of interest for studying near band-gap optical properties.

We then deal with the perturbation, which includs the k-7 term, spin-orbit
interaction, the strain term, and the difference between the material pseudopo-
tential and the averaged one. We employ Léwdin perturbation theory. It treats
matrix elements between near-in states exactly. In the theory, however, effects
of far-out states are also included. We calculate eigenvalues correct to the sec-
ond order and wave functions correct to the first order®. Band structures of

constituent materials are established.

To calculate superlattice eigenstates, complex band structures of constituent
materials are required. A scheme is used to transform the Hamiltonian equation
into one which has k, as its eigenvalue. Solving the equation results in k, which is
generally complex. This provides both propagating and evanescent eigenstates.
Each state is labeled by the in-plane wave vector k;, k,, and € which is the state

energy.

Superlattice wave functions are to be solved. They are expressed as linear
combinations of bulk solutions at a given energy and in-plane wave vector. They
are matched at the interface. The boundary conditions, expressed through the
use of current density matrices, ensure the continuity of probability current. We
also impose Bloch condition which follows the superlattice translational symme-
try. We thus set up an eigenvalue equation. The eigenvalue is exp(—:Qd) where
@ is the superlattice wave vector, and d is the superlattice periodicity. The
eigenfunction is a superlattice eigenstate. Consequently, the band structure is

found for a strained-layer superlattice.
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2.3.2 Strained Crystal Band Structure
Pseudopotential Description

The empirical pseudopotential method basically follows that of Bergstresser

and Cohen®*. We start with a reference material which has the Hamiltonian

i % Va®) + @) = Lok <> (2.25)

Hp =
R 2m

2m
where a and b label the constituent materials and V;(r) is the pseudopotential of
material [ described in terms of pseudopotential form factors. Alloy materials are
treated in a virtual crystal approximation. At this stage, spin-orbit interaction,
and deformation potential are not included. The reference Hamiltonian has at k

= 0 eigenfunctions

Us(7) = % Z Rﬁée*’@"“, (2.26)

where [ labels the various eigensolutions, {1 is the unit cell volume, G is a
reciprocal lattice vector and R is an expansion coefficient. The corresponding
eigenvalue of Uy is denoted as eg. For crystals of zinc-blende structure, Us(7)’s
belong to I';5 representation at the valence band edge, and to I'; representation
at the conduction band edge, in the terminology of group theory. Following the
convention, they are made to transform like atomic p functions at the valence
band edge, and like atomic s functions f(r) at the conduction band edge, under
the operations of the tetrahedral group. They are accordingly denoted as X, Y,
Z and S. When spin degeneracy is taken into account, we designate them by XT,
X!, YT, Y|, 27, Z|, ST, and S|. These states will be taken as near-in states

while the rest are far-out states.
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k- p Description
The Hamiltonian H; of constituent material [ in the presence of a strain is
H, = Hg + AV' + H,, + Hy,

where

AV =V %(V“ + V. (2.27)

Here H!, represents the spin-orbit interaction, and H!, represents the stress
interaction in material .

Now with the eigenstates of the reference Hamiltonian as basis functions, the
k- p Hamiltonian matrix of material [ can be constructed. We will use Lowdin
perturbation theory to treat the perturbation AV + Rk - p/m. In this theory the
near-in states play the role of degenerate states. However, the theory modifies
the near-in states for each material to include effects of the far-out states. We
will use the notation Uy(r), where d runs over the eight states, to label the near-in

states. We construct, in each material, the cell-periodic functions,

Ufij(") =Ua(r) + %:Wéijﬂ(")a

where
< Ug| AV + hik; - B|U, >
Wi = sl - 6; | , (2.28)

where the sum over 3 does not include the explicitly treated states labeled by d,
and Ej is a point in k space. The Bloch and evanescent states in each material

are written as

eu?l.-r”

"/); = \/JV Zd:CéjUéj(f)a (2-29)
where N is the number of bulk primitive cells (two atoms in the zinc-blende

structure) in the superlattice. The cell-periodic states U are normalized to a

unit cell and the C’s are taken so that [(t;.)*®);] integrates to unity over the
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superlattice volume. We construct the 8 x 8 matrices defined by
Hy (k) =< Ugle BT H, 57U, > (2.30)

Then we add to the above k - p Hamiltonian matrices the spin-orbit interaction
and a term which describes the strain effects through the use of deformation
potentials. The matrix elements of the spin-orbit interaction and the strain term
are given empirically. The expansion coefficient C’s are found by solving the

eigenvalue equation

[H(lidl (Eg) - E&ddl]c‘li,j = 0, (2.31)

where € is the state energy.

Normally, the eigenstates, with k, being real, describe propagating states
in a bulk semiconductor. The Born-von Karman periodic boundary condition
forbids the existence of any evanescent states. But in a superlattice, the wave
function restricted in a single material does not have to be freely propagating.
Evanescent states are also allowed. This point becomes obvious when we think
of the quantum mechanics of a step potential barrier. In that case, when an
electron does not have sufficient kinetic energy to overcome the barrier height,
the wave function is evanescent inside the barrier. It has the form exp(-«xz) with a
complex wave vector k. Generalizing this situation to the superlattice problem,
we need to calculate complex band structures of constituent materials first. Next,
a mathematical scheme for conveniently calculating the complex band structure

will be presented.

The Complex Band Structure of a Constituent Material

For the purpose of complex band structure calculation, it is convenient to
display the k dependence of H!, (I;;) explicitly. In the second-order k - p pertur-

bation theory, the Hamiltonian matrix H}, (k%) is quadratic in k% ;. We rewrite
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Eq. (2.31) as
[H3,(kY)? + Hih (k) + Hiw]Cly =0, (2.32)

where the matrix H? is the same for the two materials. Here, the symbol k;,
without a vector sign, refers to the normal component of the wave vector. Each
of the three H matrices is Hermitian. Eq. (2.32) can be transformed into an

eigenvalue equation for k!, viz.,

0 1 o C
—k , (2.33)

—[H?|*H® —[H*'H! kC kC
Note that in this equation we have doubled the dimension of the matrix. In
a typical calculation, with the Kramer basis functions as near-in states, the H
matrices are 8 X 8 matrices. Thus the matrix in the last equation is 16 x 16. We
refer to Eq. (2.33) as 16-band model. This results in sixteen eigenvalues of k; for

each given set of k;, &k,, and e.

Note that because the various H matrices in Eq. (2.32) are Hermitian, if
k satisfies Eq. (2.32), so does k*. Orthogonality relations for the eigenvalue
equation are particularly important. The orthogonality condition is found by
considering two eigenvalues k; and k;» (k;» = k}), writing the two eigenvector
equations, taking the Hermitian adjoint of the second equation, overlapping each

equation with the other’s eigenvector, and subtracting. This procedure gives
(kj — k;)CLIH? (k; + k;) + HY|C; = 0. (2.34)

Thus, k; equals k; or else the vector product vanishes. The vector product has

a simple physical interpretation. It is the z component of the current-density

operator averaged over a unit cell,

Ji; < Yl | (r) [0k >4
1

= o CLIH?(k; + k) + H'IC;, (2.35)

It
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where ¢§- is given by Eq. (2.29) and the subscript A implies an average over a

unit cell. The orthogonality condition can then be written as

Jhi = J}eibi. (2.36)

2.3.3 Superlattice Band Structure

In the description of the individual materials making up a superlattice, there
is an arbitrary energy zero. When describing an interface between two materials,
the energy scales of the two materials must be the same. We include an offset
energy between the valence band maxima of the two materials. We take this
energy offset to be given empirically.

We describe the matching between bulk eigenstates of the individual materials
to construct the eigenstates of the interface using the z component of the current

density operator averaged over a unit cell. In analogy with Eq. (2.35), we define

< PLIT )L > a= Tk R, (2.37)

In the above equation, the interface is taken to be a distance t from the origin.
We expand an interface eigenstate ¥ with a given energy and EII in terms of
the individual bulk material eigenstates (both propagating and evanescent) with

those values of € and 13”,
U(r) = Ajbi(r) + > Bigu(r), (2.38)
i i

where A; and B; are expansion coefficients and 9; (¢;) are the eigenstates in
material a (b) at the given values of € and E,’. The notation in Eq. (2.38) means
that the sum on ¢ is taken for r in material a and the sum on ¢ is taken for r in

material b. When calculating < 9;|J|¥ >, at the interface, we have

< ;e

JI\I’ >p=< ’(l)j.

J| ZAH[);C >a=< ’tﬁj. J| ZB;LL',’ >4 . (2.39)
k H
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By the orthogonality condition,

1
4= = -J32: B, (2.40)
7%

1]

where the interface is taken to contain the origin. Thus we are able to relate
the expansion coefficients in the two constituent materials. The same argument
could as well be applied in a different order to give B; in terms of A;.

Again, we apply the same argument to the neighboring interface at t = b
assuming material a sits on the left-hand side of the interface at ¢ = 0 while
material b sits on its right-hand side. At the interface ¢t = b, for a superlattice
eigenstate with a superlattice wave vector @, in accordance with Bloch condition,

we have

J

Ut =b) = Y [ 4je K%y (t = 0)] + > [Biekgi(t =0)].  (2.41)

So, the interface-matching condition at ¢t = b is

Jba.

Byetkit = > %e—ik?“efQ(“+b)Aj, (2.42)

7 [2d1

Combining Eq. (2.40) and Eq. (2.42) we form an eigenvalue equation

> M Ay = ey,
J’I
where

_ —ikza 1 gy 1oy g
ijl = Ze 7 Fe e ﬁ""]]‘}‘i‘]i‘j" (243)
: 7% [he
By solving the above eigenvalue equation numerically, we find the eigenvalue

e~*@(a+Y) and the eigenvector A;. The expansion coefficients B; in material b are

then found from Eq. (2.42).

2.4 Strained-Layer CdTe-ZnTe Superlattices

2.4.1 Introduction

In this section, we present results of application of the previous theory to
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the strained-layer CdTe/ZnTe superlattice. In this case, the lattice mismatch is
relatively large (about 6.2%). The interest in this system is that it has an energy
gap in the visible, making it a promising light source and photodetector. The
band structures of strained CdTe and ZnTe will be shown. The band gap of the

strained-layer CdTe/ZnTe superlattice will be discussed.

2.4.2 Strained CdTe and ZnTe Band Structures

The CdTe layer in the (001) grown superlattice contains a biaxial tensile strain

while the ZnTe layer is biaxially compressed. This changes the band structures

of the bulk CdTe and the bulk ZnTe.

In Figure (2.1), we show the band structure of strained CdTe. In Figure
(2.2), we show band structure of the strained ZnTe. The valence band off-set is
taken to be zero for the unstrained system. Without strain, the heavy-hole and
the light hole states would be degenerate in both CdTe and ZnTe, typical of an
unstrained zinc-blende crystal. The strain is assumed to be evenly distributed
in the CdTe and the ZnTe layer. In other words, the lateral lattice constant of
the superlattice is taken to be the average of those of CdTe and ZnTe. This can
be realized by growing a CdTe/ZnTe superlattice on a substrate of Cdg.5ZngsTe
much thicker than the superlattice. The lateral lattice constant of the superlattice
takes the value of that of the substrate. As shown in the graphs, the heavy-hole
band is pushed above the light-hole band in the CdTe, which is under an biaxial
tensile stress, while the light-hole band is pushed above the heavy-hole band
in the ZnTe, which is under an biaxial compressive stress. Since the light-hole
states and the heavy-hole states are decoupled at kj = O (see Section 2.2), they

separately make light-hole and heavy-hole subbands at ky =o0.
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STRAINED
CdTe BAND STRUCTURE

Figure 2.1: Strained CdTe band structure at l?u = 0. The strain is assumed to
be distributed evenly in CdTe and ZnTe. The zero energy is taken to be at the

valence band edge of the unstrained CdTe.
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E (eV)

STRAINED
ZnTe BAND STRUCTURE

Figure 2.2: Strained ZnTe band structure at lZ” = 0. The strain is assumed to

be distributed evenly in CdTe and ZnTe. The zero energy is taken to be at the
valence band edge of the unstrained CdTe.
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2.4.3 Band Gap of the Superlattice

Since the conduction band edge of CdTe is lower in energy than that of ZnTe,
the electron is confined in CdTe. The lowest conduction subband is somewhere
between the conduction band edges of CdTe and ZnTe. On the other hand, strain
makes the heavy-hole band of CdTe higher than that of ZnTe. The heavy hole is
confined to CdTe. Due to the heavy effective mass, the first heavy-hole subband
of the superlattice is close to the heavy-hole band of CdTe, with the edge of the
superlattice subband being lower because of quantum confinement. On the other
hand, strain makes the light-hole band of ZnTe higher than that of CdTe. The
light hole is confined to ZnTe. The edge of the first light-hole subband of the
superlattice is lower than that of ZnTe.

The superlattice valence band edge is determined by the higher one of the
heavy-hole and light-hole subbands. In the case where the heavy-hole subband is
higher, the superlattice band gap is equal to the energy difference between edges
of the conduction and the heavy-hole subbands. In the case where the light-hole
subband is higher, the gap is equal to the energy difference between edges of the
conduction and the light-hole subbands. The relative positions of the heavy-hole
and the light-hole subbands depend on the size of quantum confinement, which,
in turn, depends on layer thicknesses. This results in a superlattice band gap

whose functional dependence on layer thicknesses is discontinuous.

Results of the calculation of the CdTe-ZnTe superlattice band gap as a func-
tion of the thicknesses of CdTe and ZnTe layer are shown for the unstrained
(Figure 2.3) and the free-standing strained-layer superlattice’ (Figure 2.4).
The valence band off-set is taken to be zero for the unstrained system. However,
the presence of strain effectively changes the value of valence band off-set. We
assume the change in the valence band off-set is determined by the shift of bulk

energy bands described by deformation potentials. Notice that in a CdTe-ZnTe
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ZnTe—CdTe SUPERLATTICE BAND GAP (eV)
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Figure 2.3: Unstrained CdTe/ZnTe superlattice band gap as a function of layer
thicknesses. The zero energy is taken to be at the valence band edge of the

unstrained CdTe. The valence band off-set is taken to be zero.
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Figure 2.4: Free-standing strained CdTe/ZnTe superlattice band gap as a func-
tion of layer thicknesses. The zero energy is taken to be at the valence band edge

of the unstrained CdTe.
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superlattice, the ZnTe layer acts like potential barrier while the CdTe layer acts
like a potential well. This explains why in Figure (2.3) and Figure (2.4) the
band gap changes relatively fast with CdTe layer number while it changes rela-
tively slowly with ZnTe layer number. We also see how different the two graphs
are. The structure in the plot for the strained case is due to the discontinuous

functional dependence of the gap on layer thicknesses.

The presence of strain also affects the luminescence intensity. When the high-
est valence subband is heavy-hole-like, the electron and the (heavy) hole are both
confined in CdTe. They recombine to radiate more readily than in a bulk CdTe.
This gives rise to higher luminescence intensity from the superlattice than that
from the CdTe crystal. On the other hand, when the highest valence subband
is light-hole-like, the electron and the (light) hole are separated in different lay-
ers. The radiative recombination becomes less likely in the superlattice and the

luminescence intensity is weaker.

In fact, the superlattice band structure may be different if the band off-set is
not small as have been assumed in the previous discussion. However, the study
of the specific free-standing CdTe/ZnTe system demonstrates what effects strain

could have on optical properties.

2.5 Summary

In summary, we have developed the k- p theory of band structures of strained-
layer superlattices. Two versions of the theory are presented. In one version, the
theory provides analytical expressions for dispersion relations of light-particle
and heavy-particle subbands. It allows us to calculate the dependence of the
band gap on growth parameters such as layer thicknesses in a quick way. That is

very useful in devising a proper superlattice with desired properties. On the other
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hand, the theory in the other version is less analytical but more accurate. We
start with the calculation of complex band structures of constituent materials.
An eigenstate is labeled by k,, k,, and k,. Generally complex k, is computed
for each given set of k,, k,, and energy. Continuity of current at an interface
is expressed through the use of current density matrices. This results in an
eigenvalue equation for superlattice eigenstates with the eigenvalue exp(—:Qd),
where @ is a superlattice wave vector in the growth direction. Solution of the
equation results in the superlattice band structure. A superlattice eigenstate is
labeled by k., k,, and Q.

We have applied the theory to the CdTe/ZnTe superlattice. It is found that
the degeneracy of heavy-hole and light-hole bands is lifted by the presence of
strain in the layers. The light-hole band is lower than the heavy-hole band in
CdTe, which has the larger lattice constant, while the light-hole band is higher
than the heavy-hole band in ZnTe, which has the smaller lattice constant. The
band gap has discontinuous dependence of layer thicknesses, which is due to
strain-induced splitting of valence band edges. Luminescence intensity from the
superlattice is increased when effects of strain are such that electrons and holes
are confined to the same layer. It is decreased when electrons and holes are
seperated by the strain.

Strain effects in the HgTe/CdTe superlattice have also been studied with the

theory developed in this chapter. The results will be presented in Chapter 4.
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Chapter 3

k-7 Theory of Band Structures of
Semimagnetic Semiconductor

Superlattices

3.1 Introduction

3.1.1 Background

In this chapter, we develop k- p method for calculating band structures of
semimagnetic semiconductor superlattices (SMSCSL). SMSCSL is defined as a su-
perlattice (SL) made up of alternating layers of semiconducting materials, with
one or more of which being semimagnetic semiconductors (SMSC). A SMSC,
usually a ternary alloy like Cd(;_;jMn,Te, contains randomly distributed sub-
stitutional magnetic ions, Mn** for example. It displays interesting and useful
electrical and optical properties, particularly when being placed in a magnetic
field. The presence of substitutional magnetic ions in SMSC leads to spin-spin
ezchange interaction between localized magnetic moments and band electrons.

This, in turn, has rather important consequences on band structures.
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Without the presence of any external magnetic field, a SMSC behaves just like
a non-magnetic alloy. In the presence of a magnetic field, an electron performs
orbital motion. Its energy is quantized and forms so-called Landau levels. The
energy levels are spin-split by the interaction between electron spin and magnetic
field. More importantly, because the localized spins in a SMSC are preferentially
aligned in the opposite direction of magnetic field, an internal field is effectively
created, which acts upon band electrons in addition to the external field. Spin-
splitting of electronic energy levels could be , therefore, greatly enhanced.

With superlattices made up of alternating layers of SMSCs, properties of
materials become more tailorable. Recently, Cd;-,Mn,Te/Cd;_,Mn,Te and
Hg;_,Mn,Te/Cd;_,Mn,Te superlattices have attracted much attention. The
Cd;-;Mn,Te/Cd;_,Mn,Te superlattice has been proposed as a candidate for
magnetically tunable laser material. The Hg;_,Mn,;Te/Cd;_,Mn,Te superlat-
tice has been considered as magnetically tunable infrared material. Interesting
measurements with these systems have been made. For the understanding of
properties of semimagnetic semiconductor superlattices, it is very important to

develop a theory to guide the work and to interprete the measured data.

3.1.2 Outline of the Chapter

We restrict our attention to the case where the magnetic field is directed along
the growth axis of SMSCSL, since it happens to be most potentially useful as well
as tractable in terms of computation time. Other cases, where the magnetic field
is not directed in the growth direction of the superlattice, require that further
approximations be made or that huge amount of computer time be consumed.
They are not explicitly considered here, for they do not as well illuminate mag-
netic effects on the band structure of a SMSCSL. For illustration, moreover, we

consider only (001) grown unstrained superlattices whose repeat cycle consists
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of two materials of zinc-blende structure. Multi-layer superlattices, however, can
be treated in a smilar fashion. The case of a strained-layer SMSCSL will be left
out, since it can be dealt with by a straightforward combination of theories in

Chapter 2 and in this chapter.

The nonmagnetic part of the Hamiltonian of a SMSC will be treated within
the virtual crystal approzimation. The magnetic part, i.e., the exchange inter-
action between localized d-level electrons and band electrons, will be dealt with
within mean field theory>. However, we should note that, by using experimen-
tal values of band gaps and magnetic susceptibilities, the theory will take into
account empirically higher-order effects, which result in band gap bowing and

antiferromagnetic cluster formation.

Since the presence of a magnetic field adds a spatially varying vector po-
tential to the Hamiltonian, the translational symmetry of the bulk crystal is no
longer in the symmetry group. A wave function becomes a sum of products of
slowly varying functions (envelope functions) and cell-periodic Bloch functions.

Effective-mass theory is used to calculate envelope functions and energy eigen-

values.

Bulk solutions to the effective-mass equation are linearly combined to form
superlattice wave functions. Boundary conditions are so formulated that the
current is continuous at the interface. Imposing boundary conditions and Bloch
condition results in an eigenvalue equation. Superlattice eigenstates and eigen-

values are evaluated by solving the equation.

With the developed theory, we calculate band structures of Cd;_.Mn,Te and
the Hg;_,Mn;Te/Cd;_,Mn,Te superlattice. Band structures with and without

the presence of magnetic field are shown.

In Section (3.2), we describe the k- p theory of band structures of semimag-

netic semiconductors. Examples of band structures obtained by this method
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are presented for Cd;_,Mn,Te. In Section (3.3), we describe the k- p the-
ory of band structures of semimagnetic semiconductor superlattices. In Sec-
tion (3.4), examples of band structures obtained by this method are presented
for a Hg;-,Mn,Te/Cd;_,Mn,Te superlattice. In Section (3.5), we summarize the

study.

3.2 Theory of Band Structures of Semimagnetic

Semiconductors

3.2.1 Outline of the Section

The theory is a second-order perturbation theory!. The Hamiltonian of a
SMSC in a magnetic field is made up of an unperturbed term and a perturba-
tion. A reference material is chosen such that it has the pseudopotential formed
by averaging those of constituent materials. Its Hamiltonian is regarded as un-
perturbed. Eigenstates of the reference Hamiltonian are basis functions for per-
turbation calculation. Empirical pseudopotential method (EPM) is performed
to solve for unperturbed energies and wave functions. It employs a truncated
but still very large plane-wave basis exp(z'C:’ -7)’s, where G’s are reciprocal lattice
vectors of constituent materials. The wave function does not include a spin part
yet. Diagonalization of the reference Hamiltonian matrix results in a number of
energy bands of the reference material. In a typical calculation, one hundred and
thirteen plane waves are used. The lowest twenty-three energy bands are kept for
calculation of superlattice band structure. The lowest conduction band and the
highest three valence bands are among them.

Spin degeneracy is then included. A set of wave functions are selected, for

example, the two at the conduction band edge and the six at the valence band
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edge, in the case of zinc-blende structure. They are called “near-in” states while
the rest are called “far-out” states. Only those superlattice eigenstates will be
of interest which are primarily derived from the near-in states. In light of this,
Lowdin perturbation theory is used. Effects of near-in states are included exactly,
while those of far-out states are included only to first order. This establishes
the effective-mass Hamiltonian equation for near-in envelope functions. With
Lowdin perturbation theory, the wave function is calculated correctly to the first
order and the eigenvalue is calculated correctly to the second order. Solving
the equation gives band structures of constituent materials. Each eigenstate is
labeled by k., k., and N, which is the Landau level index, instead of k,, k, and
k. as in the nonmagnetic problem.

However, to calculate the superlattice problem, complex band structures of
constituent materials are required. The effective-mass Hamiltonian equation is
transformed into an eigenvalue equation, which has k, (the direction of magnetic
field is taken to be +z) instead of energy as the eigenvalue. Solving the equation

results in complex band structures of constituent materials.

3.2.2 Reference Material and Pseudopotential Calcula-
tion

The empirical pseudopotential calculation basically follows that of Cohen?.

We start with a reference material which has the Hamiltonian

P2 1 p

B = Lt @+l = o+ 0 (3.1)

2m

where a and b label the constituent materials, and V,(r) is the pseudopotential of
material [ described in terms of pseudopotential form factors. Alloy materials are
treated in a virtual crystal approximation. At this stage, spin-orbit interaction,

spin-field interaction, and exchange interaction are not included. The reference
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Hamiltonian has at k = 0 eigenfunctions
Us(F) = —= 3 By, (3.2)
VA

where [ labels the various eigensolutions, {1 is the unit cell volume, Gis a
reciprocal lattice vector, and R is an expansion coefficient. The corresponding
eigenvalue of Us is denoted as €5. For crystals of zinc-blende structure, Ug(7)’s
belong to I'js-representation at the valence band edge, and to I';-representation
at the conduction band edge, in the terminology of group theory. They are
made to transform like atomic p functions at the valence band edge, and like
atomic s functions f(r) at the conduction band edge, under the operations of the
tetrahedral group. They are accordingly denoted as X, Y, Z and S. When spin
degeneracy is taken into account, we designate them by XT, X|, YT, Y|, ZT, Z|,
ST, and S|. These states will be taken as the near-in states while the rest belong

to the far-out states.

3.2.3 Effective-Mass Theory of a Bulk Semiconductor in

a Magnetic Field

The Hamiltonian

The Hamiltonian H, of constituent material [ in the presence of a magnetic

field B, which is taken to be in z-direction, is

(P +ed/c)? h ~ e~]
H = T2 Loy +Vi—- 0]+ —— A -6
: 2m + W+ I+ 4m?2c? vV x (P + cA) ¢
eh | =
+2mco B+ A, (3.3)

where A4 is the vector potential of magnetic field E, and H. is the exchange

interaction between a band electron and localized d-level electrons. H, is modeled
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by
H. =S J(F- R;)S; -3, (3.4)
J
where j labels Mn*t* sites. Within mean field theory and virtual crystal approx-

imation, we have

H =X [}: J(F - R,-)] (Syo., (3.5)

)
where X denotes Mn™* composition, and 7 runs over all cation sites since Mn*+

ions substitute only cations of the crystal in question. Note that (S)=(S,)=0

since B points to z-direction.

Effective-mass Equation

Now with eigenstates of the reference Hamiltonian as basis functions, pertur-

bation calculation can be performed to solve
H®, = E®, (3.6)

for each constituent material. Because the Hamiltonian H; does not possess the
translational symmetry of a crystal, the wave function ®, becomes a sum of

products of envelope functions and cell-periodic Bloch functions:
@ =) Cpfp(P)Us(7)
8
with normalization
[ G@AUAE = [ @@= 1. (3.7

The magnetic field B is assumed to be such that the bulk lattice constant is much

smaller than the cyclotron radius
a < (hc/eB)'/?,

so the cyclotron motion encircles many unit cells. In such case the envelope wave

function of an electron has a narrow distribution in k-space. fs(7)’s are slowly
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varying on the scale of a unit cell. In other words, fp(lz) ~ 0 when |IZ| ~ |é|
When putting Eq. (3.7) in Eq. (3.6), we obtain a set of equations for Cjfs(7)’s.

We divide the amplitudes fz(7)’s into two sets corresponding to the near-
in states and far-out states. We label them by “d” and “o”, respectively. We
now look for solutions made up mostly of the d-states, i.e., those which con-
tain Cqyf4(F)’s as zeroth-order terms and C, f,(7)’s as first-order terms. The use
of Lowdin perturbation theory allows us to decouple equations for “d” states
from those for “a” states. Zeroth-order terms Cgyfi’s satisfy the effective-mass

Hamiltonian equation:

Z Mgy Cafa(7)
d

— P+edlc) _
+ L———ni—/cl -V + <Ud'|AVllUd>

S | (eabasr + (B + EE) .D-(P+ gﬁ)
d

Ua|AV,|Ug)(Ug|AV,|U. h S\ o
1y el AV Ul BWT) Ry (v x B) - 5104
= €0 — €3 4msc?
eh L =
+2mc(Ud'lU » B|Ua) + (Uar|He|Ua) | Cafa(7)

= ECgyfa(r),

where

| 13~ UalPIUL) (Ve PIUY).

2m  m? 4 € — €a

Sl
I

and

<
If

Uyg |PU) (Ua| AV |U) N
€0 — €

<Udl!ﬁ|Ud> + Z (

(Ua | AV|UN (UL P|U,)

€0 — €

. (3.8)

Igay is defined in Eq. (3.8). IL is called the effective-mass Hamiltonian. In
Eq. (3.8), there are no terms explicitly coupling fg with fo. First-order terms
Cafo’s are related to Cyfi’s by

Cafa(r) =

! Z[(ﬁ+ez/c).<ua|ﬁ+gz|ud>+

€0 — €x m
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(Ua|AVi|U)|Cafa(7), (3-9)

where €° is the average energy for the near-in states. Derivation of the effective-

mass equation is described in Appendix A.

C-number Matrix Form of the Effective-Mass Equation

Before looking for solutions to the effective-mass equation which, in its present
form, is a set of coupled differential equations, we need to cast them into a matrix
form involving only c-numbers, which can be handled by linear algebra. This can
be best accomplished by making use of quantum numbers. Quantum numbers
are associated with operators which commute with the Hamiltonian. When such
an operator (say, 6) operates upon the wave function, the operator is replaced

by the quantum number:

Oy = \yp. (3.10)

Thus, if the Hamiltonian in Eq. (3.8) is expressed in terms of such operators, the
differential equation can be transformed into an algebraic equation.

First, let us investigate symmetry properties of the SMSC Hamiltonian. They
will allow us to find the accompanying quantum numbers. Let us choose Landau

gauge and write
A = (-By,0,0). (3.11)

We then observe that, in Eq. (3.8), components of the operator K = (P+eA/c)/h

satisfy the following commutation relations:

[KZaKy] = - [KyaKz] = zce ’ (312)

while the others being zero. Since the Hamiltonian H; given in Eq. (3.3) does
not gain extra dependence on z or z with the introduction of a magnetic field, it

preserves the translational symmetry both in x-direction and in z-direction for a
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zinc-blende structure. It suggests that we label each eigenstate of H; with wave

vectors k; and k,, and write
fa(F) = et ke Xtk 2) o)), (3.13)

Then, the differential operators P, and P, in Eq. (3.8) can be replaced by %k,
and hk,, respectively.
Furthermore, we introduce the creation and destruction operators @' and @,

where

h
al=y— (K, +1¢
a 2wm( . +1K,),

[ .
a = m‘(K; — 1 Ky) (314)

Here, w = eB/mc is the cyclotron frequency. It can be proved that the creation

and destruction operators as defined above satisfy the following property:

[@,a'] = 1. (3.15)
We define the number operator
N =id'a (3.16)

Moreover, with the new variable y' = y — hk,/mw, we have

d'ha(¥') = Vo + Thani ('),
ahn(y’) = \/ﬁhn—l(yl)
Nh,(y') = nha(y'). (8.17)

Here, h,(y') is the harmonic oscillator function with quantum number n:

ho(y') = (v/m2 nl)~2e~ (/A (Vmu/h') g ( “n}}:;y') . (3.18)
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On the other hand, K, and K, can be expressed in terms of the creation and

destruction operators:

K, = \/;(AW a),

Lfmw ~
K, = —i E(aT—a). (3.19)

Now, let us put Eq. (3.19) back in Eq. (3.8) and replace P, there by hk,. Then
a and @' are the only operators involving differentiation in Ilggy.

We can form various linear combinations of the basis functions to facilitate
the set-up of Hamiltonian matrix. Kramer basis functions prove to be the most

convenient for that purpose. We list them in the following:

Ui(F) =18 1 Up(F) =48 1)
Us(7) = | J5(X +3¥) 1) A7) = 15X = i7) by 50
Us(7) = |5 (X —i¥) 1422 1))y Uslf) = |5 (X +3Y) | —22 1]);
Ur(7) = |5 [-(X —iY) T+2Z |]); Us(r) = |H (X +4iY) L +21])
We introduce a column vector with the transpose
(C1f1,C3f3,Csf5,Crf1,C2f2,Cusfs,Csfe,Csfs). (3.21)

It turns out that, with Kramer basis and the column vector, the effective-mass

Hamiltonian IT can be written as

m, I,
((H "o ) (3.22)

where II,, II,, and II, are all 4 x 4 matrices.

Let N,, be the number density of cations in the parental nonmagnetic mate-
rial, « = (S|H.|S)/Q and f = (X|H|X)/Q describing exchange interaction be-
tween band electrons and localized d-level electrons, C = #*/m, and s = eB/hc.

Matrix elements of the 4 submatrices can be written in terms of these parameters.
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Let us examine, for example, (IT;)11:
1 1
(Mo)11 = %mﬂN+?+CdN+n+@4+§C@+
1
€ + A€, + EXNma(S,}. (3.23)

In (II,)11, the first and the second terms describe spin-splitting and Landau
level shift. The third term represents the motion in z-direction. ¢, + Ag, is the
conduction band edge. The last term is due to exchange interaction. Values
of the various terms are calculated with knowledge of the pseudopotential form
factors and eigenfunctions of the reference Hamiltonian in Section (3.2.2).

Here, the average spin (S,) is empirically determined by Brillouin function:
(S‘Q = “S‘BS(t)’

where S* is the effective saturation spin of the magnetic ion and

25 +1 1 1
t) — — coth{—1), (3.24
25 )~ g5 oth(zg) (3.24)

B,(t) = 25;;_ 1 coth(

with ¢t = guSB/kpT*. Here, S is the saturation spin of a magnetic impurity,
e.g., 5/2 for Mn**. g is the gyromagnetic factor of the magnetic ion. T* is the
effective temperature equal to T' + Tyr. S* and Tur are empirically determined
and account for effects of the formation of antiferromagnetic clusters, which
effectively reduces the magnetization. Without any cluster formation, S* = 5/2

and Tyr = 0.
Solutions to the Effective-Mass Equation
The matrix II; can be divided into two parts:
I, =10 + 10} (3.25)

While II} can be treated by second-order perturbation theory, we shall neglect
it as small. If we neglect B in IT and some of the @'* and @® terms in the off-

diagonal matrix elements of II, and II, (see Appendix A), the effective-mass
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Hamiltonian IT reduces to II°, which can be solved exactly. It can be proved that

the eigenvectors of II° has the following form

(3.26)

in terms of linear harmonic oscillator functions h,(y')’s. For n = —2, we put

Ci=C3=C5=Cr=0Cy =C¢g=Cg =0. Forn= -1, weput C; = C3 =
Ce = Cg = 0. For n = 0, we put C3 = 0. The operation of II° on the column
vector in Eq. (3.26) creates the same vector multiplied by a c-number matrix.
This produces a c-number matriz form of the effective-mass equation. However,
the inclusion of IT! in IT will mix an infinite number of vectors with various n.
The c-number matrix form of the eigenvalue equation can be exactly solved
by numerical method. We thus find eigenvalues and eigenstates of the effective-
mass Hamiltonian of a SMSC. Each eigenstate is labeled by k., k., and n, where

k. is a real number.

3.2.4 Examples of Semimagnetic Semiconductor Band Struc-

tures

In this section, we apply the above theory to the calculation of a SMSC band
structure. We present the band structure of Cdg7sMng.22Te in Figure (3.1). The
magnetic field is zero. The temperature is taken to be zero. The crystal has the

zinc-blende structure. The band structure is similar to that of the nonmagnetic
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CdTe. Each band is doubly degenerate. The heavy-hole and light-hole bands are
degenerate at the zone center. The band gap is about 1.94eV in comparion to
1.6eV for the CdTe band gap. The subsititution of Cd by Mn simply increases
the band gap.

The band structure of Cdg7sMng s2Te in the presence of a magnetic field of
5T is shown in Figure (3.2). The Landau index is N = 1. The temperature is
taken to be zero to allow for the maximum exchange interaction. The two-fold
degeneracy of each band is lifted by the magnetic field. Spin-splitting of each
band is enhanced by the exchange interaction due to Mn** ions. Valence bands

show anti-crossing behaviour.

3.2.5 The Complex Band Structure of a Semimagnetic

Semiconductor

Normally, the eigenstates, with k, being real, describe propagating states in a
bulk semiconductor. The Born-von Karman periodic boundary condition forbids
the exsistence of any evanescent states. But in a superlattice, the wave function
restricted in the layer of a single material does not have to be freely propagating.
Evanescent states are allowed. This point becomes obvious when we think of the
quantum mechanics of a step potential. In that case, when the electron does not
have sufficient kinetic energy to overcome the barrier height, the wave function
is evanescent inside the barrier. It has the form exp(—«z) with a complex wave
vector tk. Generalizing this situation to superlattice problem, we need complex
band structures of constituent materials to calculate superlattice solutions. Next,
we present a mathematical scheme for conveniently calculating the complex band
structure.

In the second-order k - p perturbation theory, the effective-mass Hamiltonian

matrix II is quadratic in k.. For a given set of k., k., and n, the effective-mass
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E (eV)

I
K (n/0)

Figure 3.1: The band structure of Cdg 7sMng s,Te at zero magnetic field. The

temperature is taken to be zero. The zero of energy is taken to be at the valence

band edge. K is expressed in units of m/a where a is the lattice constant of

Cdg.7sMng 25 Te.
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Cdj gMny o Te
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B = 5T

E (eV)
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K (/)

Figure 3.2: The band structure of Cdg 7sMng .Te at a magnetic field of 5T. The
temperature is taken to be zero. The zero of energy is taken to be at the valence
band edge at zero magnetic field. The Landau index is n = 1. K is expressed in

units of 7/a where a is the lattice constant of Cdg 7sMng g, Te.
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equation can be written as
EC =T1°C = (Ho + Hik. + Hk?) C, (3.27)

where Hy,, H,, and H, are coefficient matrices and are functions of k, and n.
Here, we use the same symbol II° to denote the corresponding c-number matrix.

Eq. (3.27) can be transformed into an eigenvalue equation for k., viz.,

0 1 c c
=k, , (3.28)

—H;Y(Hy— E) —H;'H, c c
where C(1) = k,C. Note that in this equation we have doubled the dimension of
the matrix. In a typical calculation, with the Kramer basis functions as near-in
states, the H matrices are 8 X 8 matrices. Thus the matrix in Eq. (3.28) is 16 X 16.
This results in sixteen eigenvalues of k, for each given set of k;, n, and E.

Because the various H matrices in Eq. (3.27) are Hermitian, if k, satisfies
Eq. (3.27), so does k;. But it does not necessarily follows that k, and k? represent
different eigenstates. Moreover, if (Cyfi, Cafs, Csfs, Crfr, C2fz, Cafs, Csfe,
Csfs) is the transposed eigenvector corresponding to k,, then it can be proved
that (—k,) is also an eigenvalue with (Cif1, Csfs, Csfs, Crf1, —Cazfz, —Cufs,
~Csfe, —Csfs) being the transposed eigenvector. The degeneracy of k, and
(—k.) states can be attributed to the invariance of the Hamiltonian under the
operation of reflection with respect to x-y plane.

The invariance of the Hamiltonian can be verified as follows. First, the unitary
matrix of the reflection operating on a spinor is bo,, with b being an arbitrary
constant with the magnitude of unity. The reflection operation on the spatial
part of the wave function changes spatial coordinates z, y and zto z, y and (—z2).
To verify the invariance of the Hamiltonian, let us examine, for example, the & .B
term in the Hamiltonian. Under the reflection, the magnetic field is not affected,

while ¢ transforms as follows: 0, - —0,, 0, = —0y, and 0, — 0,. Therefore,
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the & - B is invariant. We can similarly prove the invariance of other terms in
the Hamiltonian.

Therefore, for a given set of k., n, and E, we have sixteen eigenvalues, with &,
(—k.), k2, and (—k:) always appearing together. If no magnetic field is present,
then it can be proved that k., (—k.), k;, and (—k;) always represent different
eigenstates, whether k, is real or imaginary. In such case each real energy band
is two-fold degenerate, since there are two different eigenstates for each k,. Each
band is symmetric with respect to k, = 0 due to Kramer degeneracy, i.e., k.
and (—k,) states are degenerate. However, with a magnetic field, time reversal
symmetry is removed. But with the approximation which replaces IT with 1%, the
reflection with respect to x-y plane becomes an element of the symmetry group.
With that, k, and (—k.) states are degenerate and they represent different states.

However, k., and k; represent the same eigenstate when k, is real, while k, and

(—k?) represent the same eigenstate when k, is imaginary.

3.3 Theory of Band Structures of Semimagnetic

Semiconductor Superlattices

3.3.1 OQutline of the Section

In this section, we describe the calculation of a superlattice band structure
based on complex band structures of its constituent materials.

As mentioned in the previous section, an eigenstate in the bulk material can
be labeled by three quantum numbers: k;, k., and n. To calculate a superlattice
eigenstate, we first select k., n, and E, and find all the k,’s through complex band
structure calculation. Usually there are sixteen eigenstates for a given energy. A

superlattice eigenstate restricted to a constituent material is a linear combination



70

of them.

Upon them we impose boundary conditions and the Bloch condition as well.
The boundary conditions are set up through the use of current density matrices.
This ensures the continuity of probability current at the interface. The Bloch
condition expresses the translational symmetry of the superlattice. It allows us
to associate with each eigenstate a wave vector @ in the growth direction of the
superlattice. Imposition of these conditions results in an eigenvalue equation.
The eigenvalue is exp(¢Qd), where d is the superlattice periodicity. The eigen-
vector is a superlattice wave function. This way we obtain the band structure of

a semimagnetic semiconductor superlattice.

3.3.2 Electron Wave Function in a Single Material

Let N;,N,, and N, be numbers of unit cells traversed in going across the
sample in x, y, and z direction, respectively. [, is the y-length of a unit cell.
m(d,n) is the index of the oscillator function for d state in n-Landau level. From
Eq. (3.9), Eq. (3.13), and Eq. (3.26), the electron wave function for a k, in

material [ is given by

1 .
@kz,k,,n;l(f) = N etlk2X+k.2) [Z Cdfd(?—")Ud(F) + Z CofaU, (77)]
z z d o]

1 .
- (kX +£:2) 5~ oL
€ aFak, n(7)s
VNN, y

z

with

Fall;kz,kz,n(fl) = \/l;{hm(d,n)(y')Ud(f’) + %Z [(Khm(d’n)(y')) . <UaJPIUd>+

€0 — €o

P—— (3.29)

hon(an) (¥') (U, | AV U,
—()\()(.,_L_]Q] Ua(f)} _
Normalization of the single materia] wave function requires that

Ed: |Cql* = 1. (3.30)
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To use this wave function in the superlattice problem, however, we need to
examine whether extra field is produced by magnetization in the superlattice.

From basic magnetostatics,

V.-B=0. (3.31)

In the problem, the magnetic field in a layer is uniform and perpendicular to
the layer. Hence, from Eq. (3.31), B is continuous at the interface. It follows
that the magnetic field is uniform throughout the superlattice. In other words,
magnetization in one layer does not influence electronic motion in other layers.

The wave function described here is valid for use in the superlattice problem.

3.3.3 Boundary Conditions at Interfaces

Now, we need boundary conditions to connect ®; across the interface. Obvi-
ously we want J,, the z-component of the probability current, to be continuous
at every interface. The current matrix element between two states, say, |1) and

|2), is given by

a2 = o (alP+ Sz - 21P+ Sa)

7 (LF:(2) = (2|P[1)) (3-32)

since A, = 0 with Landau gauge. The current density operator j,(75) is given by

{U7z(70)|2) = o— [{L|6(F — 70) P2 |2) — Q|6 (7 — 7o) P[] . (3-33)

2m
Let us define

ei(le+ki;jZ)Fé;k:,kz;i:n (Fl)’ (3'34)

1
dkl ) = ——
| J")) \/m
where j denotes one of the sixteen k, eigenvalues. We shall use the symbol |dkL. )

to represent the function corresponding to k;. In terms of ]dk;,},

®,(F) = > _Cj|dk} ). (3.35)



72

Now, let us first calculate (@kl. ,|7.(Fo)|d'k} 1) 4, the averaged value of the matrix
element over a unit cell. Since the superlattice structure preserves the transla-
tional symmetry in x-direction, k; is a quantum number. Hence, in the matrix
element, k,’s become the same. For definitiveness, we take | = a and I' = b.

Putting Eq. (3.34) and Eq. (3.29) in Eq. (3.33), and integrating over y', we get

[ v i ()| dK,

___.1_. i(kb—k$)zo0 1 a a b a
= NxNzﬂe ( 3 J) ﬁ [(H2)ddl (kJ + le) + (Hl)dd' - Addl] 5(n’nl)
where

h Ua| P |U) (Ua| AV U

Dy = _Z[< 4| P2 |Ue) (Us| |Ua)
m =, €0 — €a
AV TP D) 36

€y — €

The subscript A means the average over a unit cell of constituent materials. We
have listed Agy in Appendix A.

To calculate the matrix [ dyy(d'kd i|72(70)|dkS. )a, we simply set the last
term in Eq. (3.36) to zero. The matrix [ dyy(d'k} .|7:(70)|dk2. )4 is similarly
calculated. The matrix [ dyy @k ./|7.(7o)|dkf. ) 4 is found by taking the complex
conjugate of [ dyy(dks. ,|7:(70)|d'kl: ) 4.

The boundary condition expressed through the use of current density matrices
only couples bulk states with the same 7, as indicated by 6 function in Eq. (3.36).
This allows us to take n as a quantum number for a superlattice eigenstate.

Now, we are in a position to connect wave functions across the interface.
Let us consider a heterostructure with only a single interface. In material I,
the superlattice wave functions ¥, with quantum numbers k., n, and E, can be

written as

V(7 kzon, E) =Y D49 (7 ks, B, kL), (3.37)
)
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where ®&,(7;k;,n, E, kL, ;)’s are eigenstates in material ! given in Eq. (3.29). At

the interface, we must have

Z D3 ®3( Z D} ®!(F (3.38)

Following the same procedure as in Chapter 2, we calculate the current density

at the interface and get

a 1 ab b
DJ :ZJG, J]‘1D1.7
7°2

i

and similarly

b __ ba a
D; = E Jb J; D
where

iy =2_(Clge)* Caryo(dk;
d,d’

AW (3.39)

From Eq. (3.39), for the two expressions for D} and D? to be consistent, it follows

that

ab
Z Ja, Jj Jei Jb

i

iejt = Ojjty (3.40)

and

}:Jb ]Ja T = G (3.41)

3.3.4 Bloch Condition for a Superlattice Wave Function

A superlattice contains infinite number of interfaces. Since the superlattice
has translational symmetry in z-direction, a superlattice eigenstate has a super-
lattice wave vector é From Bloch theorem, the superlattice wave function must

satisfy
(7 + d2) = e'9%9(7), (3.42)

where d is the superlattice periodicity.
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3.3.5 Superlattice Eigenvalue Equation

We now choose z = 0 at a certain interface, with material A on its left side
and material B on its right side. The application of the boundary condition
at this interface results in Eq. (3.39). At the next right interface we apply the
boundary condition again. With Eq. (3.42) we then obtain at the neighboring

interface
1

i
We combine Eq. (3.39) and Eq. (3.43) together to obtain the superlattice eigen-

D?eiQ(d¢+db)e*fk?da — Z

i

2]
I Dietkis, (3.43)

value equation

3" M;;: D5 = e9l4t®) pe, (3.44)
J'I
where
La 1 . 1
ijl = Zetkid“jrjjqfieik?db'jb—-];’.‘}:- (345)
i ) ALY

This equation can be solved numerically by matrix diagonalization.

3.4 Examples of Semimagnetic Semiconductor
Superlattice Band Structures

In this section, we apply the above theory to calculate band structures of the
Hgo.95sMng 05 Te/Cdg.7sMng 22 Te superlattice. Cases with and without magnetic
field will be shown.

Hgo.0sMng g5 Te is a semimetal with a negative band gap induced by symmetry
inversion. Cdg.78Mng.32Te has the band structure shown Figure (3.1), typical of
a zinc-blende structure. The band gap is 1.94eV. Hgg9sMng osTe has the band
structure similar to that of HgTe shown in Chapter 4. The p-s gap is —0.1€V.

In Figure (3.3), we show the band structure of the superlattice of

Hgo.9sMno.0sTe/Cdo.7sMng 22Te at kj = 0. The magnetic field is zero. The tem-
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perature is taken to be zero. There are five molecular layers of each material
in each superlattice unit cell. The Mn** compositions are chosen such that the
lattice constants of the two constituent alloys are matched. The strain in each

layer is therefore zero.

The mini-band structure is due to zone-folding effect in a superlattice. The
first conduction subband, the first light-hole subband, and the first three heavy-
hole subbands are shown in the graph. Each subband is actually two-fold de-
generate. The band structure shown here is similar to that for a nonmagnetic
HgTe/CdTe superlattice, which will be discussed in detail in Chapter 4. The

band gap is about 0.7eV.

In Figure (3.4), we show band structure of the Hgg osMng g5Te/Cdg 7sMng 22 Te
superlattice at a magnetic field of 5T. The temperature is taken to be zero. The
two-fold degeneracy in each band is lifted. There are totally ten subbands shown
in the graph. If we compare this graph with Figure (3.3), we see that, near the
zone center, the highest and the fourth valence subbands are spin-split bands of
the first heavy-hole subband in Figure (3.3). The second and the third subbands
are spin-split bands of the light-hole subband. The fifth and the sixth, and the
seventh and the eighth are spin-splitted bands of the second and the third heavy-
hole subband, respectively. The subbands show anti-crossing behavior. Notice
that the conduction subbands are almost degenerate at the zone center in the
superlattice. In contrast, the conduction bands in Cdy.7sMnjy;Te are spin-split as
shown in Figure (3.2). This is due to the superlattice structure mixing the s-like
and p-like states. The s-like states are split opposite to the way the p-like states

are split. The two spin-splittings nearly cancel out each other at the zone center.
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Figure 3.3: The band structure of Hgg.gsMng gsTe/Cdo.7sMng 22 Te superlattice at

k) = 0. There are five molecular layers of each alloy in each superlattice unit cell.
The zero of the energy is taken to be the valence band edge of Cdg75Mng 2;Te.
The valence band off-set is taken to be zero. K is expressed in units of = /d where

d the superlattice periodicity.
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Figure 3.4: The band structure of Hgg.gsMng o5 Te/Cdo.7sMng 22 Te superlattice at
B = 5T. The Landau index is n = 1. There are five molecular layers of each alloy
in each superlattice unit cell. The zero of the energy is taken to be the valence
band edge of Cdg.7sMng22Te at zero magnetic field. K is expressed in units of

7 /d where d the superlattice periodicity.
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3.5 Summary

In summary, the k- P theory of semimagnetic semiconductor superlattices has
been developed. Mean field approximation and virtual crystal approximation
are assumed. The effective-mass theory is used to calculate the band structure
of a SMSC. The complex band structures of constituent SMSCs are computed
prior to the calculation of the superlattice band structure. With approximations,
each eigenstate can be labeled by k,, n and k,. The complex k, is calculated
for each given set of E, k, and n. With approximations, only the eigenstates
with the same k; and n are coupled in the presence of the interface. The use of
current density matrices ensures the continuity of current at the interface. An
eigenvalue equation for the superlattice eigenstate is established. The eigenvalue
is exp(1@d) where Q is the superlattice wave vector in zdirection. The solution
to the equation results in the superlattice band structure. Each superlattice
eigenstate can be labeled by k,, n, and Q. The formalism of this chapter can be
combined with that of Chapter 2 to treat the band structure of a strained-layer
semimagnetic semiconductor superlattice.

Band structures of the bulk Cdg 7sMng22Te and the
Hgo.9sMng 05 Te/Cdo.7sMng 22 Te superlattice have been shown for both zero and
finite magnetic fields. The bands are doubly degenerate with no magnetic field.
The degeneracy is lifted by a magnetic field. The bands show anti-crossing
behavior.

The method developed in this chapter has been applied to a number of sys-
tems, such as Hg;_,Mn,Te/Cd;_,Mn,Te and Cd;_Mn,;Te/Cd;_,Mn,Te super-
lattices. The results will be presented in Chapter 5.
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Chapter 4

Theoretical Study of HgTe/CdTe

Superlattices

4.1 Introduction

Superlattices of HgTe-CdTe have been proposed as novel materials for ap-
plication as infrared materials?, particularly those operating at wavelength be-
yond 10um. Experimental studies of properties of these superlattices are now
underway>*. These man-made systems have the advantage of allowing us to
adjust a number of properties of the material so that the interesting features
are near optimum for a given application in the infrared. In this chapter, we
apply the theory developed in Chapter 2 to analyze the various properties of the

HgTe-CdTe superlattice and compare them with those of the alloy.

The conventional infrared material is the HgCdTe alloy, which has disad-
vantages such as cut-off wavelength fluctuation and relatively large tunneling
current. The HgTe has a negative I'¢-I's gap while the CdTe has a positive one.
Within virtual crystal approximation, the band gap E, of the Hg,Cd;_,Te alloy

is a linear function of the composition: —0.3z + 1.6(1 — z). Photons with energy
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less than the band gap are not absorbed. The cut-off wavelength is determined

by the band gap of the alloy:
e = he/ E,y(z).

For detecting infrared light with wavelength of 8-14um, the band gap must be
made near zero. For example, a band gap of 0.1eV gives a cut-off of 12um. In fact,
when the band gap is exactly zero, a singularity exists and the cutoff is infinite.
This makes the control of cut-off difficult for infrared absorption. A fluctuation
in the composition during growth may result in a relatively large variation in the
cut-off. Moreover, in a narrow-gap HgCdTe alloy, effective masses of the light-
hole band and the conduction band are directly proportional to the band gap.
Thus, as the band gap is made small, so are the effective masses. This increases
the leakage current produced by tunneling electrons in a photodiode.

On the other hand, in the case of superlattice, the band gap is controlled
by the thicknesses of the HgTe and CdTe layers. The dependence of the cut-
off on growth parameters such as layer thicknesses is smooth. Qualitatively, the
superlattice can be modeled by a quantum well. The HgTe layers act as potential
wells while the CdTe layers are like energy barriers. Or equivalently, the band

gap is inversely proportional to the square of the HgTe layer thickness:

1

Egocﬁ’

(4.1)

where L is the well thickness. In other words, the cut-off has a square dependence

on the HgTe layer thickness:

Ao L2 (4.2)

Although this approximation is not really valid for a HgTe/CdTe superlattice,
it does give us some idea about the smooth dependence of the cut-off on growth

parameters such as layer thicknesses. Furthermore, the effective mass can be
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made large with large CdTe layer thickness while the band gap can be made
small with wide HgTe layers. With the superlattice, we decouple the unwanted
relation between the effective mass and the band gap in the alloy.

The near band-edge optical properties of such superlattices are very important
for the applications that are envisioned. The displacement D is related to the

electric field E by

D = ¢E, (4.3)

in an isotropic dielectric material, where € is the dielectric function. The imag-
inary part of the dielectric function makes the displacement D and the field E
oscillate in different phases in time. The energy of the field is then absorbed
by the material. The optical absorption is roughly proportional to €;(w), the
imaginary part of the dielectric function. For either photoconductive or photo-
voltaic detectors, the knowledge of light absorption as a function of frequency is
required. The function determines amount of the carriers generated by the light
and, hence, determines the current or the voltage. The understanding of e;(w)
is thus important for exploration of the superlattice as IR materials.

However, the dielectric function depends on the superlattice band structure
which, in turn, depends on the value of the valence band offset. The valence
band offset, defined as AE, = EH9Te — EC?Te throughout the chapter, describes
the relative positions of HgTe and CdTe valence band edges. Therefore, it effec-
tively determines the barrier height in the superlattice problem. In spite of both
theoretical and experimental efforts, the precise value of the band offset for this
heterostructure is currently not well known.

On the theoretical side, the common anion rule'?!® states that the location
of the valence band edge relative to the vacuum level (energy gap plus electron
affinity) depends heavily on the anion of the compound semiconductors and,

hence, predicts essentially zero valence band offset for the HgTe-CdTe superlat-
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tice. The LCAO theory of Harrison states that the valence band maximum at k
= 0 is given by E, = (€5 + €2)/2 — {[(¢5 — €2) /2]* + V.2 }'/? where ¢ is the p-state
energy on the metallic atom (cation), €; is the p-state energy on the nonmetallic
atom (anion) and the matrix element V. is an appropriate interatomic matrix
element between atomic p states on adjacent atoms!*. The valence band offset
is given by the difference in these absolute energies. The LCAO theory agrees
with the common anion rule on the estimated value of the band offset, which is
nearly zero. On the other hand, the recent theories of Tersoff'® and Harrison!®

predict a large valence band offset of ~ 0.5¢V.

On the experimental side, an early experiment performed by Kuech and
McCaldin!” gave a large value 0.52eV for the upper limit of the valence band
offset, but the value could be quite different due to interdiffusion in the sample
and inversion at the interface. The recent magneto-optic experiment of Guldner
et al® concluded that AE, = 40meV. However, recent theoretical work!® has
shown that the failure to include strain in the theoretical work of Guldner et
al® made the interpretation of their data suspect. On the other hand, the X-ray
photoemission spectroscopy (XPS) measurement®’ gave 0.35eV for the value of

valence band offset.

Thus, the value of the valence band offset could be any number from 0 to
0.5eV. The uncertainty in the band offset leads naturally to the question how

sensitive the properties of the superlattice are to the value of band offset.

As to the crystal structure, the lattice constants of HgTe and CdTe are not
exactly the same ( d#97° =6.462 A and d°?T¢=6.482 A), and, hence, there is lattice
mismatch in the superlattice. Generally speaking, the layers in the superlattice
may be strained with essentially no misfit defect generation if the layers are
sufficiently thin and the difference in lattice constants of constituent materials is

less than a few percent!®!®, Superlattices have been grown both on CdTe and
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CdZnTe substrates. The CdZnTe substrates are chosen to near lattice match
the HgCdTe. The superlattice grown on CdTe produce the largest strain in the
HgTe since the HgTe will be under maximum strain and CdTe will be unstrained.
We will be considering this case to illustrate strain effects in the superlattice. As
commonly known, the strain in the HgTe-CdTe superlattice opens up a band gap
in the HgTe and, hence, converts the semimetallic HgTe into a semiconductor.
The same phenomenon was found in a-Sn. The conversion of HgTe layers is

expected to have effects on the properties of the HgTe-CdTe superlattice.

In Section (4.2), we present the optical properties of the HgTe/CdTe super-
lattice in terms of the imaginary part of the dielectric function. In Section (4.3),
we present the band gap and optical properties of the HgTe-CdTe superlattice
as functions of the valence band offset. In Section (4.4), we present a study of
strain effects on the band structure, the band gap and optical properties of the
HgTe-CdTe superlattice at zero temperature. In Section (4.5), we summarize the

study.

4.2 Optical Properties of the HgTe/CdTe Su-

perlattice

In this section, we discuss optical properties of the HgTe/CdTe superlat-
tice, particularly light absorption. The absorption as a function of frequency
determines the wavelength cutoff. For intrinsic case, the wavelength cutoff A,
is determined by the band gap. For wavelengths shorter than )., the incident
radiation is absorbed and electron-hole pairs are generated. Hence, knowing the

absorption function a(w) is important for characterizing an IR material.

The absorption function describes the decay of the incident light intensity as
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a function of the traversing depth:
I(2) = Iy exp(—az).

Roughly speaking, the absorption is proportional to the imaginary part of the
dielectric function. The absorption function « is related to the imaginary part

of dielectric function €;(w) by the formula

o= (4.4)
cn

where c in the light velocity, and n is the real part of the index of refraction. For
a nonabsorptive material, the imaginary part of the dielectric function is zero.

The complex index of refraction is

n+1k = \/ €1 +'I:62. (4.5)

To determine «, we need not only €; but also n, which is a function of both
€1, and €;. In principle, with the knowledge of €2(w), the function €;(w) can be
calculated through Kramers-Kronig relation:

waSQ (4.6)

_wz

However, this requires full knowledge of €;(w), i.e., the value of €2 at any fre-
quency. In practice, we will model €;(w) very roughly to get some idea about the

absorption.

4.2.1 Dielectric Function

We discuss near band edge optical properties. Only interband transitions are
considered. Our discussion will center on €z, which is a second rank tensor. For
a zinc-blende crystal, the k- p theory in first-order approximation gives a band

structure which is isotropic in k space. Thus €; reduces to a scalar. However, the
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superlattice structure has a unique direction which makes energy bands cylin-
drically symmetric. Therefore, two independent parameters are necessary for
specifying €;. These two parameters correspond to polarizations of light parallel
and perpendicular to the layers, which are denoted as eg and €, respectively.

With the assumption that the field spatially varies appreciably only on the
scale of a large number of unit cells, perturbation theory gives the expression for
€2:

&k By o
m2w2 /( _ By(F) - hwl| < cle-Blv > |, (4.7)

where w is the photon frequency, ¢ and v refer to degenerate conduction and
valence bands, respectively, € denotes the direction of polarization and p is the
momentum operator. If we assume the matrix element is a smooth function of
E, then in the previous equation, we can factor the matrix element out of the
integral and get

e2(w) o« D(hw)| < clé - plv > |%, (4.8)

where D(hw) is the joint density of states at the energy hw, describing the number

of pairs of states available as initial and final states to the electronic transition

E,(k) — E.(k) = E,(k) + hw.

Here only direct transitions are considered. We have neglected the spatial
dependence of infrared field, which varies smoothly over a few thousands of A.
Indirect transitions involving phonons or other elementary excitations are higher-
order processes, and hence are neglected.

We have studied both e” and ey for the superlattice. However, €5 is found

to be smaller than €;. For perpendicular polarization, (c1|p,|hhl), the optical
matrix element between the heavy-hole-like and conduction subbands, is near
zero. Optical transitions between heavy-hole-like and conduction subbands are

unlikely. But (cl|p,|lh1 >, the matrix element between the first light-hole-like
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and the first conduction subbands, is finite. Hence, €3 is primarily determined
by optical transitions between the light-hole-like and conduction subbands. Due
to the small joint density of states, €5 is relatively small. However, with parallel
polarization, (c1|pj|khl > is finite. eg is determined primarily by optical tran-
sitions between the heavy-hole-like and conduction subbands. The large joint
density of states results in a relatively large eg. The configuration of parallel
polarization is hence preferred for IR detection. The study of optical properties
in this chapter will center on eﬂ.

We have calculated ¢; for superlattices in two ways. To evaluate the integral
over the first Brillouin zone for ¢;, we can perform effective-mass model calcu-
lations, assuming that the momentum matrix element is a smooth function of
the wavevector, replacing the momentum matrix element with its value at zone
center and taking it out of the integral. In the effective-mass approximation, we

found that, for the transitions between a valence band 7 and a conduction band

Js

where
A;; = 4v2(e? /mPR)mym!?| < jle - fli > |2 (4.9)

is to be averaged over direction and summed over degenerate bands i and j. Here,
1/mj and 1/m, are the parallel and perpendicular components to the interface
of 1/m; — 1/m;, repectively. m; and m; are the effective masses. The dielectric
function of the alloy can be calculated in a similar way. In such case, the band
structure is taken to be isotropic. So the parallel and perpendicular masses are
equal.

We can also employ an interpolation scheme similar to that proposed by
Raubenheimer and Gilat® and calculate the integral in Eq. (4.7). The difficulty

with ordinary schemes for numerical integration (such as Simpson’s rule) is that
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the integral, involving a é function, makes the numerical convergence very slow.

The scheme of Raubenheimer et al speeds up the convergence.

4.2.2 Band Structures of HgTe, CdTe and HgCdTe

Band-edge features for the valence band and conduction band of HgTe and
CdTe are shown in Figure (4.1). The valence band edges are tentatively aligned
to reflect the smallness of the valence band offset. CdTe is a wide gap semi-
conductor; whereas, HgTe is a symmetry-induced zero gap semiconductor. In
CdTe, the states at the valence band maximum and at the conduction band min-
imum have I's and I's symmetries, respectively. The I'¢-states are conduction
band edge states which transform like atomic s functions. The I'g-states include
heavy-hole (|3/2,+3/2)) and light-hole (|3/2,4+1/2)) states. The I';-states are
split-off (|1/2,41/2)) states. The k - § matrix element between the |S 1) (|S 1))
function of I'¢ symmetry and the |3/2,1/2) (|3/2,—1/2)) function of I's symme-
try pushes the conduction band and the light hole band away from each other.
However, in HgTe the states at the valence band maximum and at the conduction
band minimum both have I's symmetry. The states of I'¢ symmetry lie below the
I's edge in HgTe. This is because the relativistic effect in HgTe is so large that
it brings down the I's states below the I's states. Again the k.p matrix element
makes them curve away from each other. The heavy hole band remains curving
down since the heavy-hole states do not couple to the I's states.

The interband optical matrix element in HgTe at k=0 is given by (T's|p|Ts).
This matrix element, while not zero, is known to be small. The optical absorption
in CdTe is governed by (I'¢|p|T's) which is quite large. The band structure of a
HgCdTe alloy with a positive I'¢-I's gap is similar to that of CdTe except that
the band gap is smaller. The value of the momentum matrix element remains

the same in zero-order approximation. However, the joint density of states, being



89

BAND STRUCTURES

HgTe CdTe

Figure 4.1: Band structure for HgTe and CdTe near the center of the Brillouin
zone for HgTe-CdTe superlattices. Band offsets and symmetries of bulk states

are also shown.



90

proportional to m*3/? (or E'g3/ ?), is small for the alloy with a small band gap.

4.2.3 Band Structure of a HgTe/CdTe Superlattice

In Figure (4.2), we show the band structure of a representative superlattice.
The calculation was carried out for 14 layers of HgTe and 4 layers of CdTe. The
band offset is taken to be 40meV and the strain in the layers is taken to be
zero. Emnergy dispersions are shown for both wave vectors perpendicular to the
layers k, (measured in units of m/dsr, where dgy, is the total thickness of each
repeat of the superlattice, 604 in this case) and for wave vectors parallel to the
layers k, (measured in units of 7 /a, where a is the lattice constant of bulk HgTe,
approximately 6.42;1). The superlattice has a direct band gap. Zone-folding
effects in the superlattice growth direction are clearly illustrated in the graph.
This results in a mini-band structure. The dispersion in z-direction is relatively
flat. In the superlattice with a small gap, with the assumption of small valence
band offset, the valence band states have almost pure I's-character, while the
conduction band states have finite I's-character in the HgTe layer and primarily
T's-character in the CdTe layer. Hence, the optical matrix element is finite but
smaller than that for the alloy. The thicker the HgTe layer, the larger the matrix
element. On the other hand, since the CdTe layer is the potential barrier, the
thicker the CdTe layer, the larger the perpendicular effective mass and the joint

density of states.

4.2.4 Comparison of Superlattices and Alloys

In this section, we present the comparison of optical properties of the
HgTe/CdTe superlattice and the HgCdTe alloy. As mention, the alloy has a small
joint density of states and a large optical matrix element, while the superlattice

has a reduced optical matrix element and a large joint density of states. From
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BAND STRUCTURES
HgTe—CdTe SUPERLATTICE

Figure 4.2: Band structure of a representative superlattice. The zero of energy
is taken to be the valence band edge. Dispersion for wave vectors perpendicular

to the layers k, and for wave vectors parallel to the layers k, are both shown.
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Eq. (4.8), the dielectric functions for the superlattice and the alloy might be

comparable. We have carried out numerical evaluation of dielectric functions.

The results of our study are presented in Figures (4.3) and Figure (4.4). In
Figure (4.3), we have plotted the near band edge values of eﬂ (w) for a wide band
gap superlattice made up of 38.5 A thick layers of HgTe alternating with 38.5A
thick layers of CdTe. The resulting superlattice has a band gap at 0.233 eV. The
polarization of the light is parallel to the layers. For comparison, the results
for an alloy with the same band gap are shown. The important result of this
calculation is that the magnitude of elzl (w) for the superlattice is comparable to

that of the alloy.

In Figure (4.4), we present the results for a superlattice containing 70.6 A
thick layers of HgTe and 70.6 A thick layers of CdTe in one unit cell. This
superlattice has a small band gap about equal to 0.107¢V. The cut-off wavelength
is about 12um. The polarization of the light is parallel to the layers.  The

exciting results are that the superlattice has eg (w) larger than that for the alloy.

To compare the absorption, we need, as mentioned, to calculate n or ¢;. In
principle, ¢; can be calculated through the use of Kramers-Kronig relation if €,
is given for all frequencies. But in fact, we do not fully know the imaginary
part of the dielectric function. It can be calculated only if we know the band
structure of the superlattice over the whole range of energy. We need to make
rough approximation to estimate n. We assume that n of the superlattice is
about equal to that of the alloy, since n does not change by orders of magnitude

with semiconductor materials.

Hence, with the assumption about n, we get some idea about the absorption
by calculating only €;. Optical properties of the superlattice near the band edges
are such that the absorption may be comparable to or even bigger than that for

the alloy.
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Figure 4.3: Predicted EQ vs. photon energy. The superlattice is made up of an
alternating structure consisting of layers of HgTe 38.5 A thick and layers of CdTe
38.5 A thick. The superlattice has a band gap of 0.233 eV. For comparison, €,

for the alloy of the same gap is also plotted.
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Figure 4.4: Predicted 6‘2‘ vs. photon energy. The superlattice is made up of an
alternating structure consisting of layers of HgTe 70.6 A thick and layers of CdTe
70.6 A thick. The superlattice has a band gap of 0.107 eV. For comparison,e;

for the alloy of the same gap is also plotted.
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4.3 Band Offset and Optical Properties

In the previous section, we have assumed that the valence band offset is zero.
As mentioned, the offset of HgTe valence bands with respect to those of CdTe
varies from 0 to 0.5eV. In this section, we examine the effect of variation in the
band offset on the band gap and optical properties of the HgTe-CdTe superlattice.
We have calculated the band gap and optical properties of the superlattice with
the band offset (AE, = EHsTe — ECdT¢) varying around zero.

In Figure (4.5), we show the band gap as a function of the band offset for
three superlattices with unit cells composed of 50A HgTe and 50A, 50 A HgTe
and 25 A CdTe, and 50 A HgTe and 75 A CdTe, respectively. As the valence band
offset becomes negative, the conduction and the valence band edges move toward
each other. As the band offset becomes positive, both edges move in the same
direction. But the valence band edge moves more in the energy. As shown in
the figure, the band gap has a maximum at AE, = OmeV and decreases by a
small amount with respect to a variation in AFE, around zero. In contrast, the
variation in band gap with AF, < OmeV is faster than that with AE, > OmeV.

In Figure (4.6), we show optical properties as a function of the band offset.
Only transitions from the heavy-hole-like band to the first-conduction band are
considered, since they determine near band-edge absorptions. The effective mass
of the valence band is taken to be infinite compared to the effective mass of
the conduction band. A is plotted versus the band offset for the superlattice
with alternating layers of 50 A HgTe and 50 A CdTe. The electric field is taken
to be parallel to the interface. It is found that A is a slowly varying function
with AE, > OmeV around zero. However, A decreases relatively fast as AF,
becomes negative. This has to do with the fact that the electron and the hole
are confined in different layers, namely, HgTe and CdTe layers, respectively, in

the case of negative AE,. The recombination rate of the electron and the hole
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Figure 4.5: The band gap as a function of the band offset for three superlattices
with unit cells composed of 50 A HgTe and 50 A, 50 A HgTe and 75 A CdTe, and

50A HgTe and 25A CdTe.
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Figure 4.6: A is plotted versus the band offset for the superlattice with alternating
layers of 50 A HgTe and 50 A CdTe. The electric field is parallel to the layers.
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is decreased. This results in a small optical transition rate, and hence small e;.

4.4 Strain Effects and Optical Properties

The HgTe/CdTe superlattices have been fabricated on two different sub-
strates, CdTe and CdZnTe. The CdZnTe have Zn concentrations which make
the lattice constant of the substrate nearly match the average lattice constant
of the HgTe-CdTe superlattice. In this section, we examine the role of strain
in the HgTe layers in HgTe-CdTe superlattices grown on CdTe substrates. We
will discuss the effects of strain on the band structure, the band gap and optical
properties of the superlattice. The CdTe substrates result in the largest strain in
the HgTe layers of the superlattice. The lattice constant of the overall superlat-
tice structure is that of the CdTe. The strain is in the HgTe layers only. CdTe

layers are unstrained.

In Chapter 2, we have seen that the strain in the CdTe/ZnTe superlattice
pushes the light-hole band upward in the ZnTe which, having the smaller lattice
constant, is under biaxial tensile stress. In a HgTe/CdTe superlattice grown
on CdTe substrate, the HgTe layer, with the smaller lattice constant, is also
under biaxial tensile stress. The conduction band in the HgTe actually has the
light-hole band character (recall the inversion of I'¢-symmetry and ['s-symmetry
shown in Figure (4.1). It gets pushed upwards by the strain. Thus a finite band
gap is opened up. This results in a strain-induced semimetal-semiconductor
transition. As a result, some features of the superlattice band structure may
change with the presence of a strain. In Figure (4.7), a strained HgTe band
structure is shown. The strain is taken to be the same as that in the HgTe layer
in a (111) HgTe/CdTe superlattice grown on CdTe substrate. HgTe, with the

smaller lattice constant, has a positive volume dilation. With that, the I's-levels,
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Figure 4.7: The band structure at zero EII for the strained HgTe. The dispersion
is along the growth direction of the superlattice. The strain is that in the HgTe

layer in a superlattice grown on a (111) CdTe substrate. a is the lattice constant

of the bulk HgTe. The band gap is around 14meV.
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being bonding orbitals in LCAO (linear combination of atomic orbitals) picture,
become higher in energy. Figure (4.7) shows that the center of weight of T's-
states is pushed up compared to that in unstrained HgTe, which is taken to be
zero in the energy scale. However, the '¢-levels are anti-bonding orbitals. The
energy decreases with a positive volume dilation. The band gap opened up by
the strain is approximately 14meV. We expect strain induces the same order of
magnitude changes in superlattice band structures. They are discussed in the

next paragraph.

In Figure (4.8), we show the band structures at zero EII for the superlattice
grown on a (111) CdTe substrate. There are 180 A of HgTe and 44 A of CdTe in
each unit cell of the superlattice. This particular superlattice was chosen, since
it was the one studied by Guldner et al®. On the left of Figure (4.8), we show
the band structure for the unstrained superlattice with zero valence band offset.
The structure agrees with the result of Guldner et al®>. The band gap is near
zero. The top two valence subbands are accidentally degenerate due to the choice
of zero valence band offset in our calculation. The highest valence subband is
derived from |3/2,3/2 > and |3/2,—3/2 > heavy hole bands of HgTe and CdTe,
and the second valence subband is related to |3/2,1/2 > and |3/2,—1/2 > light
hole bands of HgTe and CdTe. As shown on the right of Figure (4.8), the band
structure for the strained superlattice shares some common features with that
of the unstrained one. The strained superlattice has a direct band gap. The
band gap is about zero. The effective masses of the electron and the hole are
about 0.002m,, and the effective mass of the heavy hole is about 2m, for the
motion perpendicular to the layer. The effective mass of the electron is about
0.007m, for the motion parallel to the layer. These values are comparable to those
for the unstrained superlattice. However, interesting differences are observed in

the strained superlattice band structure. The degeneracy of the two valence
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Figure 4.8: The band structure at zero EII is shown for the superlattice grown on
a (111) CdTe substrate. dgy, is the lattice constant of the superlattice. There are
180 A HgTe and 44 A CdTe in each unit cell of the superlattice. On the left is the
band structure for the unstrained superlattice. The band gap is about 3meV.
The top two valence subbands are degenerate in our calculation. On the right is
the band structure for the strained superlattice. The band gap is about 2.7meV.

The separation between the top two valence subbands is 10meV.
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subbands is lifted. The separ/ation between the two valence subbands is 10meV.
The upper valence subband is light-hole-like while the lower one is heavy-hole-
like for wave vectors perpendicular to the layer. For the motion parallel to the
layer, the effective mass of the hole of the upper valence subband is 0.05m,
which is larger than that of the lower one 0.006m.. We have also studied the
band structure of the (001) strained superlattice of the same composition. It
has a band structure similar to that of the (111) strained superlattice. The
band gap is 2meV. The separation between the two valence subbands is 14meV.
We would like to stress that the band structure plotted here for the strained
superlattice is qualitatively different from that obtained under the conditions
of zero strain and 40meV offset by Guldner et al®. Guldner et al® obtained an
inverted valence band structure in which the upper valence band is heavy-hole-
like. Consequently, the effective masses of the subbands occur in different order
in th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>