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Abstract

PART I

Consider an analytic operator equation G(u,A) = 0 where A is a real
parameter. Suppose 0 is a “simple” eigenvalue of the Fréchet derivative G,
at (ug, Ag). We give a hierarchy of conditions which completely determine
the solution structure of the operator equation. It will be shown that mul-
tiple bifurcation as well as simple bifurcation can occur. This extends the
standard bifurcation theory from a “simple” eigenvalue in which only one
branch bifurcates. When 0 is a multiple eigenvalue, we give some sufficient
conditions for multiple bifurcations with a lower bound on the multiplicity
of the bifurcation. This theory is applied to some semilinear elliptic partial

differential equations on a cylinder with a constant cross—section.
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PART II

We present a homotopy method to compute the eigenvectors and eigen-
values, i.e., the eigenpairs of a given real matrix A;. From the eigenpairs of

some real matrix Ag, we follow the eigenpairs of
"A@)= (1 —t)Ae +tAs

at successive times from ¢ = 0 to ¢ = 1 using continuation. At¢ = 1, we
‘have the eigenpairs of the desired matrix A;. The following phenomena are

present for a general nonsymmetric matrix:
e complex eigenpairs
¢ ill-conditioned problems due to non-orthogonal eigenvectors
e bifurcation (i.e., crossing of eigenpaths)

These can present computational difficulties if not handled properly. Since
each eigenpair can be followed independently, this algorithm is ideal for con-
current computers. We will see that the homotopy method is extremely slow
for full matrices but has the potential to compete with other algorithms for

sparse matrices as well as matrices with defective eigenvalues.
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Part 1
MULTIPLE BIFURCATIONS



Chapter 1

Introduction

Consider a nonlinear operator equation G(u,A) = 0, parametrized by a real
number A. Suppose a (continuous) branch of solutions (u(e), A(¢)) is known
for all € in some interval about 0. We call this the basic solution branch.
When the linearized equation has a one-dimensional null space at (ug, Ag) =
(u(0), A(0)), we give some sufficient conditions for bifurcation from the basic
solution branch. This is sometimes referred to as bifurcation from a “simple”
eigenvalue. We will show that both simple and multiple bifurcations can
occur. We indicate how a hiéra,rchy of conditions can be constructed to
determine the solution structure of the operator equation. This complements
the work of many authors in bifurcation theory. For example, Crandall and
Rabinowitz [7] found sufficient conditions for the generic bifurcation from a
“simple” éigenvdlue, in which case only ONE branch bifurcates.

When the dimension of the null space is greater than one, say M, the
task of formulating general sufficient conditions is'much more difficult. The
case M = 2 is treated in McLeod and Sattinger [27]. For a general M, see
Berger [4], Sather [31], Keller and Langford [20], Dancer [9], Sattinger [32]
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and Rabinowitz [29]. In our work, we impose a strong set of conditions on
the operator equation such that there are at least M branches of solutions
bifuréating from the basic solution branch. The conditions are chosen so
that the roots of the algebraic bifurcation equations, a system of polynomial
equatioﬁs obtained from the original operator equation, can be found and
show;n to be isolated. This theory can be applied to systems of nonlinear

equations in IR™ and semilinear elliptic equations:
Au+Af(u) =0 g

in a 3-dimensional cylinder with a constant cross—section for two classes of
functions f (e.g., f(v) = €* and f(u) = u(u®? + 1)). These are nontrivial
examples where there exist bifurcation points of arbitrarily large multiplic-
ities. In addition, all bifurcation points from the basic solution branch can
be found. |

In the remainder of this introduction, we will define some concepts and
give an outline of the rest of the thesis.

Let IB; and IB; be real Banach spaces and G be a smooth operator from
| IB; xR into IB,. Let T be some real interval containing 0. We call the curve
I' = {(uo(€), Xo(€)) : Ve € T} a solution branch if G(ug(€), Ao(€)) = 0 for every
¢ € T and both ug(€) and Ag(€) are continuous. The point P = (ue(0), /\0(0))
is called a bifurcation point if every neighborhood of P contains a solution
not on I'\P. We say T’ is a basic solution branch from which other branches
of solutions bifurcate. If up(€) = 0, we also call I the trivial solution branch.
The multiplicity of the bifurcation is defined as the number of mutually

distinct solution branches that are different from the basic solution branch



and all meeting at P. When the multiplicity is one, we call it a simple
bifurcation. Otherwise, it is called multiple‘bifurca,tion.

We conclude this introduction by giving a synopsis of the rest of the the-
sis. We give a complete treatment of multiple bifurcation from a “simple”
eigenva,l‘ue in Chapter 2. Some results for bifurcation from a multiple eigen-
va,lué are stated in Chapter 3, where we give conditions which guarantee a
bifurcation point with a lower bound on the multiplicity. By making addi-
tional assumptions, we will improve this lower bound. A weak upper bound
will also be given. In Chapter 4, we apply this theory to some semilinear
elliptic partial differential equations. We show that under some conditions,
there exists a bifurcation point of multiplicity at least n for any given positive
integer n. We also give a procedure to locate all the bifurcation points along
the basic solution branch. In the last chapter, we recapitulate and suggest
directions of further research.

Some good references for bifurcation theory include Chow and Hale [6]

and Sattinger [32].



Chapter 2

Multiple Bifurcation from
“Simple” Eigenvalues

In this chapter, we extend the standard bifrucation theory from “simple”
eigenvalues (see Crandall and Rabinowitz [7]) to show that multiple bifurca-
tions can occur if the basic transversality or range condition is not satisfied.
Briefly, this theory concerns solutions of a general equation G(u,A) = 0
where ) is a real parameter. Suppose u = 0 is a solution for all A near 0
and G, the Fréchet derivative of G with respect to u evaluated at (0,0), has
0 as a “simple” eigenvalue. Then, subject to a transversality condition, the
equation has exactly one nontrivial solution branch near (u, ) = (0,0). We
examine what happens when the transversality condition is not satisfied. We
will derive a hierarchy of conditions which categorizes the solution set. In
particular, we will observe multiple bifurcations.

Note that it is not always possible to transform a given problem to one
where the trivial solution is a solution for all A néar 0. A simple example is

u? — X = 0. We will also derive conditions for categorizing the solution set



near these so called limit points.

The method of proof of all our results will be a Lyapunov—-Schmidt re-
duction followed by two applications of the Implicit Function Theorem. We
can also give the exact form of the solutions. Many authors have looked for
multiple bifurcations from equations where the dimension of the null space
of the linearized operator is greater than one. There does not appear to
have been any attempt to seek multiple bifurcations from problems with a
one-dimensional null space.

We now establish some notation. The adjoint of G, denoted by G, is
the linear mapping from 1B} into 1B}, where IBj is the dual space of IB;.
The null and range spaces are abbreviated as A() and R() respectively. We
recall that a bounded linear operator A : IB; — 1B, is Fredholm of index 0 if
dimN(A) = codimR(A) < co. Two important properties that A possesses

are:
e R(A) is closed.
o R(A)={y € By: #"(s) =0, V¥ € N(A7)}.
In this chai)ter, we will restrict to the case of a bifurcation from a “simple”

eigenvalue. That is, dim N (G?) = codim R(GY) = 1.

2.1 ‘Biflircation from the Trivial Solution

We will use the superscript © notation to mean evaluation of the derivatives of
G at the point (u, A) = (0,0). We begin by stating the following well-known

result:
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. Theorem 2.1 (Crandall and Rabinowitz [7]) Let B, and 1B; be Ba-
nach spaces and let G be a mapping from IBlk IR into IB,. Suppose G(0,) =
0, fof all A m some interval containing 0 and G, G and G, are continuous
* in a neighborhood of (u,)) = (0,0). Assume dim N'(G%) = codim R(GY) =
1. Let ¢ and * be nonzero elements of N(G®) and N(GY') respectiv;ely.

Assume:
P Gurd # 0. (2.2)
Then, there is exactly one nontrivial solution branch near (0,0). It has the

form, for e’suﬁiciently small,
u=cep+el(e), A= A(e),

where A(€) and ®(€) are continuous functions such that A\(0) = 0 and ®(0) =
0. |

We now seek solutions when the transversality condition (2.2) is violated.
For convenience, we state some hypotheses which are assumed for the re-

mainder of this section.
Hypothesis 2.3

e G is a mapping from BBy x R into 1By, where IB; and 1B, are real

Banach spaces.
e G(0,)) =0, for all X in some interval containing 0.

o G has continuous first Fréchet derivatives at (u,A) = (0,0).
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o dimN(G) = codimR(GY) = 1 (that is, 0 is a “simple” eigenvalue
of GY. ) We will denote some specific nonzero element of N(G°) and
N (G%) by ¢ and ¢*, respectively.

* PG4 =0.
We can decompose the Banach spaces into direct sums:
B, =N(G)) @By, IB;=R(G))®By.

From (2.3), By, is a one-dimensional space. Let ¥ be the unique element in
IB,; such that ¥*(x) = 1 and let P be the projection operator from IB; onto

IB;;. We can represent P as:

P = . (2.4)

The projection operator from IB; onto R(GY) is I — P, where [ is the identity
operator.

Assuming (2.3), we can write any element v in IB, as {6+ ®, where{ € IR
and ® € IB,;. The solution set of G(u, ) = 0 is precisely the solution set of
" the equations PG(u,A) = 0 and (I — P)G(u,A) = 0. We first focus on the
equation

F(@,f,)\) = (I - P)G(£¢ + (I)’)‘) = 0.

Now F(0,0,0) = 0 and, as an operator from IB;; onto R(GY), Fg(0,0,0) =
(I — P)G% = G? is clearly a continuous isomorphism. Hence by the Im-
plicit Function Theorem, there is a unique continuously differentiable func-
tion ®(¢, A) such that

P®(E,\),¢,X) = 0 (25)



. for all £ and A sufficiently small and
®(0,0) = 0. (2.6)

The degree of smoothness of ® is the same as that of G. By taking successive
derivatives of (2.5) with respect to ¢ and/or A (as many times as G allows)
and evaluating at £ = A = 0, we obtain equations for the determination of

the derivatives. In particular, all derivatives up to order four are:

Qg - (D()). =0, (27)
Y = Xi, Bpr =X, B}, =0, (2.8)
q)g&& = X, ‘I"g’a = Xy, ‘I’gn = X5, ‘I’gAA =0, (2.9)

and

The superscript © on ® refers to evaluation at (§{,A) = (0,0). The elements

X;, residing in 1By, are defined as the solutions of the following equations:

G°X:+ (I - 'P)G?WQS2 = 0,
Go X, + (I -P)Go¢ = 0,

GAXs+ (I - P)Gon¢® +2G5, 06X, + G0 X1) = 0,
G X5 + (I - P) (G4 +2Gn Xs) = 0,

uuuu uuu w

G%Xe + (I — P)(G°, .. 9" + 6G2..*X; + 3G, X2 +
4G, 6X3) = 0,
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GoXr + (I = P)(Goun8® + 3Gouu8°Xs + 3G,0 X1 +
| GirXs + 3G, 0X4 + 3G, X1 X2) = 0,

G2 Xs + (I — P)(Gound® + 4Go0 6 X2 + Gopn X1 +
260 X4 + 2GR, X5 + 2G5, X3) = 0,
‘ GaXs + (I - P)(Gornd +3Gon Xz + 3G Xs) = 0.

With additional smoothness assumption on G, the elements X; exist and are

unique. Note that G?, ¢? is shorthand for G%, ¢¢.
The solution set of G(u,A) = 0 is the same as that of the bifurcation
equation: |

PG4+ B(£,1),2) = 0. (2.11)

The procedure which we described above is the Lyapunov-Schmidt reduction.
Note that (2.11) is just a scalar equation in variables (£, X). With further
assumptions on GG, we may deduce its solution structure.

Before stating our first result, we collect together the definition of some

constants for future reference:.

a = 6P*Go\ Xy + 3¢" G é
b = 64°Go,8X; + 39" GO X1 + 3 Gon ¢,
¢ = WG X1 + 9" Gh. ¢,
D = b’ —4ac,
d = 109*Go¢ +309°Goy Xz + 3097 G, X,
q = 6¢*G?&uAA¢2 + 24* G, 8 Xz + 69 GOy X + 129G, Xy +
124 G5, 6 X5 + 124* G, X3,
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r o= 4"/’*Gzomu,\¢3 + 12¢*G2uu¢2X2 + 12¢*Ggu/\¢Xl + 4¢*G?LAX3 +
129" G9, 6 X4 + 1267 G2, X X5,
8 = PGl ¢* + 607 Go,, X1 + 447G, 8 X5 + 3 G XT.

Theorem 2.12 In addition to (2.3), we assume G is three times continu-

ously Fre’cﬁet differentiable in a neighborhood of (u, ) = (0,0),
V*Go 4% = 0, (2.13)

and

a#0.
If D > 0, then the equation G(u,)) = 0 has exactly two distinct nontrivial
real solution branches (given by (2.17) below) near (0,0). If D <0, then the

trivial solution is the only real solution near (0,0).

Proof: We introduce a real variable ¢ and make the following rescaling:
£ =¢( and A = €A, (2.14)

where (? + A? = 1. Recalling the representation (2.4) of P, it is clear that
when ¢ # 0, the solutions of the bifurcation equation (2.11) correspond to

the zeroes of:
6 ,
zglp*G(CC(ﬁ + (e, eA), eA).
We can construct a continuous function g from the above by defining it

properly at € = 0:

Sp*G(e(d + B(eC, eA)', eA), €#0;
o((,A, €)= { (2.15)
C(aA? + b¢A + c(?), e=0.
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- . The continuity of g is shown using ¢*G3,¢* = 0 = ¥*G},¢. Now define the

function:

h(C’A’6)= [ C2+‘[q\2_1 ] .

If D > 0, then h((,A,0) = 0 has six distinct roots (¢, A):

(0,1), (k+, kf—b’z%‘/—l—)) , (k_, k_ i;i(;‘-@) (2.16)

and

(0,-1), (—k+,—k+i;-_¢%/——5), (—k_,—k_ig—g@),

where ky = (1 +((-b% \/—5)/2a)2)—1/2. It can be shown that the Jacobian
h¢a evaluated at any of the six roots and € = 0 is nonsingular. (We will
call such robts isolated.) Hence by the Implicit Function Theorem, there are
continuous functions {;(€) and A;(e), ¢ = 1,...,6 such that h((i(¢), Ai(e), €) =
0 for all e sufficiently small and ((;(0),A:(0)) is one of the six roots listed
above. By examining the scaling (2.14), it is apparent that the branch of
solution arising from the root of h({;(€), Ai(€), €) = 0 is the same as the branch
of solution arising from the root of h(—(;(€), —Ai(€), —€) = 0. Hence locally
‘about (u,A) = (0,0), there are three branches of solutions. Notice that the
roots ((,A) = (0,%1) &ield the trivial solution branch. In summary, there
are exactly two nontrivial solution branches near the origin (u, ) = (0,0).

They are given by:

uile) = Gi()d + B(Gi(), Ai(9)),  Mile) = cAile), i=1,2  (217)
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1 T
U 0
-1 1
-1 0 1
A

Figure 2.1: Solutions of u(u — A)(u + A) = 0.

where (;(¢) and A;(e) are continuous functions and the pairs ({;(0), A;(0)) are
given by the second and third roots in (2.16). The function @ is three times
continuously differentiable and it satisfies (2.6) through (2.9).

If D < 0, then at € = 0, h has exactly two real roots (¢,A) = (0,+£1).
They correspond to the trivial solution branch. Hence in a small neighbor-
hood of the origin (u, ) = (0,0), there are no nontrivial solutions. O

We now give some simple ekamples. For the equation u(u—A)(u+A) = 0,
the values of the constants a and D are —6 and 144 respectively. Hence
there are two nontrivial solution branches. See Figure 2.1. For the equation
-u(u?+)?%) =0, @ = 6,D = —144 and hence the trivial branch is the only real
solution Bra,nch. For a less trivial example, consider the ordinary differential
equation

u"(z) + (7% + N)u(z) —v¥(z) =0
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*_ with boundary conditions u(0) = 0 = u(1). Here, @ = 3 and D = 27 and
hence there are two nontrivial solution branches. This is confirmed by a
phase—plane analysis of the equation.

The next theorem concerns the next member of the hierarchy.

Theorem 2.18 In addition to (2.3), assume G is five times continuously

Fréchet differentiable in a neighborhood of (u, ) = (0,0) and
V"G ¢ = a = 0. (2.19)
If
bd # 0,

then the equation G(u,)) = 0 has ezactly two distinct nontrivial solution

branches near (0,0). They are given by (2.20) below.

Proof: The proof proceeds exactly as in the last theorem. The function

g defined in (2.15) at € = 0 is now
C(bA + () = 0.

Since b # 0, the pair of roots '(:lzl, Fc/b) are isolated. (We use the normal-
ization (2 + A% = k = 1 + ¢?/b%.) They yield one branch of solutions. The
other two root pairs (0, k) are not isolated. To resolve these double roots,

-we employ a new scaling:
_ » 2
{:-2—C and X = eA.

Now introduce the function g,: ‘
B G(5C + O(5C,€h),eh), € #0;

g2(€i Aa C) = {
CA(BBC + dA?), e=0.
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I
—

Figure 2.2: Solutions of u(u — A?)(u — A) = 0.

Note that g, is continuous at € = 0. The system g,({,A,0) = 0 together
with (2 + A2 = 1 = 1 + d?/250* has six roots ({,A) = (£I,0),(0,%!) and
(—d/5b,+1). The second and third pairs of these roots correspond to the
double roots mentioned previously. Since bd # 0, the second and third
root pairs are isolated. These give rise to two branches of solutions through
the origin, one of which is the trivial solution branch. To summarize, the

nontrivial solutions are given by:

ui(e) = e(i(€)g + @ (eC(e), M(e)),
/\,‘(6). = 6A,'(€), i=1,2, ) (220)

_ 2 €2
@ = 5608+ (5aE00),
where (;(€) and A;(€) are continuous functions such that ¢3(0) = 1,A,(0) =

—c/band (3(0) = —d/5b, A;(0) = 1. The function ® is five times continuously
differentiable and satisfies (2.6) through (2.10). O
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‘An example belonging to this class is the equation u(u — A?)(u — A) = 0.
The constants b, d take on the values —6 and 60 respectively. See Figure 2.2.
If the hypotheses are the same as those in Theorem 2.12 except D = 0,

then we have the following result.

Theorem 2.21 In addition to (2.3), assume G is five times continuously

Fréchet differentiable in a neighborhood of (u, ) = (0,0). Define the follow-

ing constants:

Y1 = P Guuuun®® + 109Gl 6° X1 + 1597 GLL, 6XT + 1097 G, 6° X5 +
104* G2, X, X3 + 5¢*G2, 6 X6 +
(5" Gounun®* + 200" Gl 8 X2 + 309" Gl 6" X1 +
601 G X1 X2 + 309" Gy 6 Xa + 159" Gon X7 + 2087 Gy X5 +
300" G2, X1 Xy + 200" G, X X3 + 200" G2, 6 X7 + 51" G2, Xe) +
107*(* Gryuar 8° + 607Gy 9 Xa + 69 G, 6X; + 39°Go,, 6° Xs +
3PV Gond X1 + 69*Gon X1 Xz + 64 GYy 6 X4 + 307G, X1 X5 +
61" G, X2 X4 + 30* G, 0 Xs + "Gy X3 + 20 Gy X7) +
107> ($*Gopan®® + 68 Gounn 8 Xz + 69 GLn X3 + 647G 9Xs +
61* G2, X2 X5 + 20*G2, 6 Xo + 30*G2, X4 + 3Y*GoL X5 + v* Gy X1) +
7% (309G Xs + 26¢*G?LAX9 + 59" G + 2047 Goy 0 X2),

Yys = -2-7' + 5nq + 3n°d,

Y¢ = da,

D, = y§-4yly6,
b

~5
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2 ,
z = gdn3+qn2+r7]+s.

Assd'me
a#0
and _

P*G2 ¢ =z =D = 0. | (2.22)

If Dy > 0, then the equation G(u,A) = 0 has ezactly two distinct nontrivial
~ real solution branches near (0,0). They are given by (2.24) below. If D, < 0,

then the trivial solution is the only real solution near (0,0).

Proof: One of the roots (¢,A) = (0,1) in (2.16) is isolated. This cor-
responds to the trivial branch. Because D = 0, the other two roots are the
same with (¢, A) = (k,kn), where k = (1 + 5*/4a?)~'/? and hence they are

not isolated. To remedy the situation, we use the transformation
e, €?
.§=£+—2—-C and /\=en+~2—A.

The function corresponding to (2.15) is defined as:

2y=G((e+ SC)d+ B(e + S me+ SA), ne+ SA), ¢#0;
9(¢ A e) =
) y1 + y2€ + ysA + yaC® + ysCA + yeA?, €=0,

where

15
y, = 10s+ S+ 5n%q + n°d,
Yyas = 5S¢,
5b.

Ys
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* . The continuity of g at € = 0 can be shown using the assumptions (2.22).
For the normalization condition, we choose { = 0 so that { = e¢. Now

g(O,A,O) has roots:
A= —Y3 + V Dl
2y6
and they are real and isolated when D; > 0. (Recall y¢ = 5a # 0.) For

(2.23)

i = 1,2 and ¢ sufficiently small, the nontrivial solution branches are given

by:

ui(e) = ed+ (e Ni(e)),
Aife) = en+%A,-(e), (2.24)

where A;(€) are continuous functions such that A;(0) are the roots (2.23).
The function ® is five times continuously differentiable and satisfies (2.6)
through (2.10). O

We now remark on the choice of normalization in the above proof. When
b # 0, we could also choose the normalization A = 0. Then, the condition
of g having two real isolated roots is y3 — 4y1y4 > 0. Using the assumption
z=D = 0,_ it can be shown that this condition is equivalent to D; > 0.

An example is furnished by u((u + A)?2 — u*) = 0. The value of D, is
14400 and hence there are two nontrivial solution branches near (0,0). See
Figure 2.3. For the example u((u+ A)? + ut) = 0, the value of D, is —14400
and hence the trivial solution is the only solution near (0, 0).

The next result gives conditions for three nontrivial bifurcating solutions.

Theorem 2.25 In addition to (2.8), assume G is four times continuously

Fréchet differentiable in a neighborhood of (u, ) = (0,0). Define the follow-
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Figure 2.3: Solutions of u((u + A)? —u?*) = 0.
ing constants:

d,

2
5
D, = (3rp - q2)3 + (qur — 27p%s — 2q3)2 .
9p? 54p3

Suppose
d#0
and
VG P =a=b=c=0.

If D; < 0, then the equation G(u, ) = 0 has ezactly three distinct nontrivial
real solution branches (given by (2.27) below) near (0,0). If Dy > 0, then

there is exactly one nontrivial real solution branch near (0,0).
Proof: We employ the scaling:

=€ and A = €A
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- and define _
Uy G(eld+ B(el,eA),eA), €#0;

9(¢,Ave) = {
C(pA® + qA%C + rAC? + 5(3), e=0.
It is straightforward to show that g is continuous at € = 0.
Ate=0, iC ,A) = (0,1) is one root of g = 0 with normalization condition
CC+ A= 1. Factoring out this root, we look at the remaining polynomial

pA2 + A2 + rA¢? + 8¢3 = 0. Since p # 0, (0,A) is not a root of this cubic

for any nonzero A. So the roots of this cubic correspond to the roots of

4+ e+ry+s=0, (2.26)

where v = % From the theory of roots of cubic polynomials, (2.26) has
three real distinct roots when D; < 0 and one real root when D, > 0.
We can now summarize the result. When D; < 0, the system has four real
isolated solution branches (one of which is the trivial branch). The nontrivial

solutions have the form:
u;i(€) = eGi(€)d + D(eli(€), Ai(€)), Ai(e) = €Ai(e), i=1,2,3  (2.27)

where (;(¢) and A;(€) are continuous functions and ({;(0),A:(0)) = (1,%)
_where ~; are the three roots of (2.26). The function @ is four times continu-
ously differentiable and it satisfies (2.6) through (2.10).

When D, > 0, there is one nontrivial real solution branch. O.

The equation uA(u—A)(u+) = 0 is an example with three nontrivial solu-
tion branches. The values of the constants p,q,7,8, Dy are —24,0,24,0,—-1/27

respectively. See Figure 2.4. An example with one nontrivial real solution
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1
u 0
-1
-1 0 1
A

Figure 2.4: Solutions of uA(u — A)(u + A) = 0.

branch is uM(u? + A?) = 0. The values of the constants p,q,r,s, D, are
24,0,24,0,1/27 respectively. For a less trivial example, consider the ordi-

nary differential equation
u"(z) + (7% + A¥)u(z) — M(z) = 0

with boundary conditions u(0) = 0 = u(1). Here, p = 12 and D, = —1/64
and hence there are three nontrivial solution branches. Again, we can carry
out a phase-plane analysis to verify this.
It is clear how to continue to derive conditions for other members of this
_hierarchy. All the theorems we have discussed so far require the condition

$*GP, $? = 0. We now consider the cases when this quantity is nonzero.

Theorem 2.28 In addition to (2.8), assume G is four times continuously

Fréchet differentiable in a neighborhood of (u,\) = (0,0) and

a- 9" Gu¢’ # 0.
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Then the equation G(u,A) = 0 has ezactly one nontrivial real solution branch

near (0,0). It is given by (2.29) below.
Proof: The proper scé,ling is:
2
f = -2—C and A = eA.

The function g is defined as:

U G(5¢h+ B(2(,eh), eh), €#0;
g(¢,Ae) =
((39* GO, 62 + 2aA?), €= 0.

It is continuous at ¢ = 0. We take the normalization condition to be (? +
A? =1+ (2a/3¢*G%,¢%)2. The nontrivial solution branch is given by (for €

sufficiently small):

w9 = 5008 +8(5¢0.0), NI =eh@,  (229)

where ((¢) and A(e) are continuous functions such that {(0) = —2a/4*GY,¢*
and A(0) = 1. The function ® is four times continuously differentiable and
satisfies (2.6) through (2.10). O

An example is given by the equation u(u — A?) = 0. Here, *G?, ¢? =2
and a = —6. See Figure 2.5.

For the next member of this hierarchy, we must come up with some
conditions which allow the characterization of the solution set for the case
Y*G,¢* # 0 and a = 0.

It is straightforward to modify the results for- complex solutions (A still

real). It is no longer necessary to distinguish between the positive and nega-

tive discriminants D, Dy and D, (see Theorems 2.12, 2.21 and 2.25). As long
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Figure 2.5: Solutions of u(u — A?) = 0.

as these quantities are nonzero, there are, respectively, two, two and three
nontrivial bifurcating complex solutions.

For the general member of the hierarchy, we can use Newton’s diagram
(see, for example, Sattinger [32]) to deduce the correct e-scaling(s) of the
variables £ and A. We can then find the algebraic bifurcation equation, a
polynomial consisting of the lowest order € terms of the bifurcation equation.
Finally, we can determine the conditions for the isolation of the roots of the
polynomial.

Our method of proof works for isolated solutions and do not apply to
-problems with a double zero such as u(u — A)? = 0. For this particular
equation,- a=c= 6, b= —12 and D = 0. The trivial solution is isolated but
the other solution u = X is a double zero. In the situation of Theorem 2.12,
a necessary condition for the occurrence of a double zero is D = 0 and hence

two of the roots in (2.16) are the same. To verify that a solution u,; is a
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. double (or higher order) zero, we need to show that the quantity

o 16w |

= [a—w |2

exists, where || - || is the norm in the appropriate space. For our example, it
clearly does. -

Our hierarchy also fails for pathological equations such as G(u, ) = u(u—
e~/ ’\2) = 0. All the Taylor coefficients of this equation (expanded about
(0,0)) are zero except for G%,. We do not know how to deal with this
situation. In Figure 2.6, we summarize all the theorems in this chapter.
By calculating the constants in the rectangles, we can proceed down the
flowchart to determine the solution structure.

Finally, we remark that if the given equation has a higher degree of
smoothness than is specified in the previous theorems, the solution branches
will have a higher degree of smoothness as guaranteed by the Implicit Func-

tion Theorem.

2.2 Limit Point Bifurcations

In this section, we still work with the equation G(u,A) = 0. Suppose
G(0,0) = 0 and G? is a Fredholm operator of index 0 with a nontrivial
pull space. Let (u(e), /\(e)) be a continuous branch of solutions (for all € in
a neighborhood of 0) such that (u(0), A(0)) = (0,0). We call (0,0) a limit
point (or fold point) if ,

im 28 _ g (2.30)
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I¢*G3A¢ = OI

®

Figure 2.6: Flowchart summarizing the results of this chapter. The number
inside each circle is the number of bifurcating solutions.
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. for every continuous branch of solutions (u(e), A(€)) passing through (0,0).
This is a more general definition than the one given in Decker and Keller [10]
where they require that every solution branch (u(e), A(€)) have continuous

first derivatives and

&} ¢ R(GY)- (2.31)

Indeed, assuming smoothness of the solution branches, we can differentiate

G(u(e), A(€)) = 0 with respect to € to obtain
G°u(0) + G3A(0) = 0,

where dot denotes e derivative. Applying any nonzero vector ¥* € N(GY)
to the above, we get
»*GY - A(0) = 0.

From (2.31), it is easy to see that A(0) = 0 which clearly implies (2.30).
Later on (following Theorem 2.35), we will give an example where the more
general definition is needed.

In this section, the Banach spaces are either real or complex. As before,
we state some of the hypotheses here for easy reference. They will be assumed

for the remainder of this section.
"Hypothesis 2.32
o (G is a mapping from IB;x IR into 1IB,.
e G(0,0) =0. |

o G has continuous first Fréchet derivatives at (u,A) = (0,0).
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o dim N(G}) = codimR(GY) = 1. We will denote some specific nonzero
‘element of N'(GY) and N(GY') by ¢ and §*, respectively.

In addition to the elements X; which were introduced in the last section, we
define the elements X0 and Xj; (in By, a space complementary to N(GY9))
by: ‘
G X0+ (I-P)GS = O,
GoXu + (I - P)(Go.9Xi0 +Gond) = 0.

Recall that P is the projection onto IByz, a complement of R(GZ). We also
define some constants:

¢ = 3p*G.dXi + PGl é,

f o= 9" GléXio+ ¥ Giré.

We begin by stating a well-known result on the generic limit point: a

simple quadratic fold. See Keller [17], Henderson and Keller [16].

‘Theorem 2.33 In addition tob (2.32), assume G is twice continuously Fréchet
differentiable in a neighborhood of (u, ) = (0,0) and

P Guud® - PG # 0.

Then, the equation G(u,A) = 0 has ezactly two complex solution branches

near (0,0). They are, for j=1,2 and € sufficiently small:

us() = ()8 +eli(6), ()
X)) = FA(),
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Figure 2.7: Solutions of u? — A = 0. Dotted line denotes complex solution.

where the functions (; and A; are continuous and satisfy:

G0) = eion, M) = —p,
G(0) = ie2, A(0) = p.

The real constants p and o (0 < o < 27) are given by

i ¢*Ggu ¢2

pe’ = ——2—

G
The function ® is two times cohtinuously’ differentiable and satisfies (0,0) =
0, & = 0 and % = Xyo. Furthermore, when IB; and 1B, are real Banach

spaces, then there is a unique real solution branch (u1, A1) given above (with

a=0) near (0,0).

The canonical example is u? — A = 0. See Figure 2.7.
We now state the result for cubic limit points. For related works, see

Yang and Keller [36] and references therein.

Theorem 2.34 In addition to (2.32), assume G is three times continuously
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. Fréchet differentiable in a neighborhood of (u, ) = (0,0),
¢-uc;v3ﬂ¢2 =0

and

c- "G} #0.

Then, the equation G(u,)) = 0 has ezactly three complex solution branches

near (0,0). They are, for j=1,2,3 and € sufficiently small:

ui(e) = ()¢ +B(e€i(9),5(9),
M) = FA),

where the functions (; and A; are continuous and satisfy:

G0) = e, A(0) = p,
G2(0) = eI/, Ay(0) = p,
((0) = eilotamlss, As(0) = »p.

The real constants p and o (0 £ a < 27) are given by
o . C
pe'* = e
The function @ is three times continuously differentiable and satisfies ®(0,0) =
0,88 = 0,93 = Xy9 and 8} = X,. Furthermore, when IB; and IB; are real
Banach spaces, then there is a unique real solution branch (u1, A1) given above

(with & = 0) near (0,0).

Proof: We use the scaling:

3

=€ and A:%A.
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Figure 2.8: Solutions of 4> — A = 0. Dotted lines denote complex solutions.

The function ¢ is defined as:
U G(eCo + B(eC, GA), GA), € £0;

96, A 6) = {
e + P*G3A, €=0.
Note that g is continuous at € = 0. The system g({, A,0) = 0 together with
the normalization A = p has three complex solution branches. O
The equation u® — ) = 0 is the canonical example exhibiting a cubic limit
point. Here ¢ = 6 and ¥*GY = —1. See Figure 2.8.

The final theorem gives conditions for a bifurcation with four complex

solution branches.

Theorem 2.35 In addition to (2.32), assume G is four times continuously
Fréchet differentiable in a neighborhood of (u, ) = (0,0). Define the follow-

ing conslants:

t = 3P G, X+ 69" Gha X + 3 GY,



v
eratx,
W o= PGt + 697 Gou ' X1 + 3P GLLXT + 44°GL, 6 X5,
D; = v?— 4tw.
Assume
PGt =9 R=c=f=0
and
t 9 G\ # 0.
Then,
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= 6Y*Gopu 8’ X10 + 69 G, % + 6 GO, X1 X1o + 1247 G5, 6 X1 +

o ifw # 0 and Ds # 0, then the equation G(u,\) = 0 has ezactly four
complex solution branches near (0,0). They are, for j=1,2,3,4 and €

sufficiently small:

ui(e) = €(j(e)d+ (e(j(e), A;(e)),
62
Aie) = EAj(ﬁ),

where the Junctions (; and A; are continuous and satisfy:

(1,2(0) = 6—:'511/2’ A1,2(0) = P+,
(34(0) = jeiox/?, A34(0) = —ps.

The real constants py and ay (0 < ay < 27) are given by

-vx \/D.3

tot —
pxe 2%

(2.36)
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o ifv # 0 and w = 0, then there are exactly three complex solution

branches near (0,0). They have the same form as (2.36) with

CI(O) = 1, A](O) = 0,
((0) = e ¥, A(0) = 6§,
(3(0) = ie~#/2, A5(0) = -6

 The real constants § and B (0 £ 8 < 27) are given by

be' = —2.
t

e if B, and B, are real Banach spaces, then D3 > (< resp.) 0 imply
there are exactly two (no) real solution branches near (0,0). The real

solutions are given by (u1, A1) and (uz, A2) in (2.36) with ay = 0.
The function ® is four times continuously differentiable and satisfies ®(0,0) =
0, q)g = O, @g = Xlo, (Dg,\ = Xu and @25 = X].
Proof: We use the scaling:
€2
E=¢ and A= EA'

The function g is defined as:
L G(eC + B(eC, §A), §A), €#0;

g(Cs A, 6) =9
' tA? + (A + w(, e=0.

An example is the equation (u?—A)(u?+ ) = 0. The constants ¢,v,w, D3

have the values —6,0,24 and 576. Hence there are two real and two complex

solution branches in a neighborhood of (0, 0). See the top graph in Figure 2.9.
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Figure 2.9: Solutions of (u? — A)(u? + A) = 0 are shown in the top graph
while solutions of A(u? — A) = 0 are shown in the bottom graph. Dotted lines
denote complex solutions.
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+ . Note that in this example, *G3 = 0 and hence (0,0) would not be classified
as a limit pqint under the definition of Décker and Keller. The example
u* + A? = 0 has no real solution branches near (0,0). Here t,v,w, D3 have
the values 6,0,24 and —576. The equation A(u? — A) = 0 has three solution
brancheé, two of which are real. The values of the constants ¢, v, w and D3 are
-6, 12,0 and 144 respectively. See the bottom graph in Figure 2.9. Finally,

consider the ordinary differential equation:
u"(z) + 7?u(z) + ut(z) - A2 =0

with boundary conditions u(0) = 0 = u(1). Here, t,v,w, D3 have the values

—12/7,0,128/57,6144/5%%. Hence there are two real solution branches.
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Chapter 3

Multiple Bifurcation from
Multiple Eigenvalues

In this chapter, we consider bifurcation from a multiple eigenvalue of G(u, A).
We reduce the problem G(u, ) = 0 to a finite-dimensional set of equations,
called bifurcation equations, using the method of Lyapunov-Schmidt and
prove the existence of multiple bifurcating solutions using the Implicit Func-
tion Theorem (IFT). Note that in general the bifurcation equations consist
of more than one equation. This makes the analysis much harder than in the
previous chapter. Consequently, our results are much weaker. Very strong
assumptions 6n G will be made to allow us to find some isolated solutions of
the bifurcation equations.

For convenience, we state some hypotheses which are assumed for the

remainder of this chapter.

« Hypothesis 3.1

o G is a mapping from By x IR into By, where IB; and 1B, are real

Banach spaces.



36

o G(0,)) =0, for all X in some interval containing 0.

o G is twice continuously Fréchet differentiable near (u, ) = (0,0).

o dimN(G®) = codimR(G®) = M > 0. Let {¢1,...,Pnm} be a basis for
- N(GY).

We can decompose the Banach spaces into direct sums:
B, = N (G?) & By, B, = R(G?) ® By,.

Let {1,...,%nm} be a basis for IBy;. Let b} be the unique element in N'(G%")
such that ¥}(v;) = é;;. From (3.1), G is a Fredholm operator of index 0
and thus the dimension of N(GY") is M. Since {¢f,...,¥}} is a linearly
independent set of elements in N'(G?’), they form a basis in that space. Let
P be a projection operator from IB; onto IB;;. We can represent P as:
M

P= gtbﬂﬁf : (3.2)
The projection operator from IB; onto R(G?) is I — P, where [ is the identity
operator. ‘

Any element u in 1B; can be written as "M, £ ¢; + ®, where £; € IR and
® € By;. The solution set of G(u,A) = 0 is precisely the solution set of
the equations PG(u, A) = 0 and (I — P)G(u, ) = 0. We first focus on the
equation

M
F(8,¢,)) = (I - P)G (z i+, A) —o,

i=1
where £ is an M _vector whose 4t component is §. Now F(0,0,0) = 0 and

F5(0,0,0) = G? is a continuous isomorphism from IB;; onto R(G?). Hence



37

. by the IFT, there is a twice continudusly differentiable function ®(§, A) such
that

‘ F(‘I’(& A)’ & )‘) =0 (33)
for all (€, ) near (0,0) and
Q(Oa 0) =0. (34)

By taking successive derivatives of (3.3) with respect to ¢ and/or A and

evaluating at £ = 0 and A = 0, we obtain equations for the determination of

- the derivatives. In particular, for 4,5 = 1,..., M, some of these derivatives
are:

32 = 8% = 3%, =0, (3.5)

@O&j = ®,;, (3.6)

where ®;; € IBy; is the unique solution to
Gu®i; + (I — P)Ghudid; = 0. (3.7)

The superscript © on the derivatives of ® refers to evaluation at (&, A) = (0,0).
Note that ®;; = ®;;. Now the solution sét of G(u,A) = 0 is the same as that
of the bifuréation equations:
M
Pa (66 + 06, 0,3) =0 9
where @ satisfies (3.4), (3.5) and (3.6). The procedure described above is
known as the Lyapunov-Schmidt reduction. With further assumptions on

(G, we may deduce the solution structure of the bifurcation equations.
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Figure 3.1: Multiple transcritical bifurcation at (0,0) from the trivial solution
branch (multiplicity 2).

3.1 Multiple Transcritical Bifurcation

We begin by proving a simple result for multiple transcritical bifurcation.
This is a type of bifurcation where every branch of bifurcating solution con-
tains solutions over a A-interval with A = 0 as an interior point. A typical

case is illustrated in Figure 3.1.
Theorem 3.9 In addition to (3.1), suppose for all i,j, k€ {1,...,M}:

vi(Gondi) = 8, (3.10)
Pi(Goudi;) = aibijba, (3.11)

where the real constants a; are all different from zero, then G(u,A) = 0 has

exactly 2M — 1 distinct nontrivial bifurcating solution branches at (u,\) =

(0,0).
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Proof: We carry out the Lyapunov—-Schmidt reduction as described in
the beginning of this chapter. We introduce a real variable ¢ and make the
folloWing rescaling:

E=€ and A =e€A, (3.12)

where ™M, (? = 1. Recalling the representation (3.2) of P, it is clear that
when € # 0, the solutions of the bifurcation equations (3.8) correspond to
the zeroes of:

2 M M

- Zz,b;z/;;"G € Z (o + P(eC,eA),eA | .

€ iz j=1
We can construct a continuous function g from the above by defining it

properly at € = 0:

2T G(eT; (b + B(eC, €M), €M), e #0;
9(¢, A e) = (3.13)
it (@i +2GA), e=0.

The continuity of ¢ is shown using the L’Hopitals rule and hypotheses (3.10)
and (3.11). Now ¢g(¢{,A,0) = 0 is a system of M quadratic equations where
the variables ¢ are decoupled. This permits us to find its solutions analyti-
cally.

Define the function:

Hend=[s g

We now show that A((,A,0) = 0, sometimes called the algebraic bifurca-
tion equations (ABEs), have exactly 2(2M — 1) roots (£¢@, FA@), ; =
1,...,2M —1. From the equation g(¢,A,0) = 0, either ¢; = 0 or a;(;+2A =0

for eachi € {1,..., M}. Suppose the first k£ components of ¢ are nonzero and
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* . the rest are zero. It is easy to show that there are exactly two such solutions
to the ABEsf For instance, when k = 3, a sélution is (1 = =, (= = (3=
= C, =0,¢=3,...,M and A = —«/2, where £ = (;1? + ;lg + fg)‘l/z.
The second solution is the negative of the above solution. To determine the
total nufnber*of solutions to the ABEs, we sum the number of subsets with &
nonzéro components with k running from 1 to M. By a simple combinatorial
argument, this number is 2(2M — 1). To check that these roots are isolated,
we need to examine the appropriate Jacobian. At a root ({,A) and € = 0,
the Fréchet derivative of h with respect to (¢, A) is

2(Gar + Ay -+ 2(Cmen + A)Par 23 G
0

! — —_
e

It is straightforward to show that the above is an isomorphism from RM xR
onto IB,; x IR. We will show it for the root (¢,A) where ¢; = 1,(; = 0 for
t > 1 and A = —a,/2. The isolation of the other roots can be shown similarly.

Suppose for some (7, 1) € RM x R,

)

Writing out the equations, we have

(aam + 2p)p1 — a1 Y _mip; = 0,
i>2
21]1 = 0.
Since the set {¢y,...,¥nm} is linearly independent, the only solution to the
above equations is (n,4) = (0,0). Thus the matrix A’ is invertible. By

the IFT there exist unique continuous functions {(¢) and A(e) such that
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~ h(§(€), A(€), €) = 0 and (£(0), A(0)) is the given root. Hence one solution of
G(u,A) = 0, parametrized by ¢, is

u(e) = € 1) + B, M), M) = eA(e).

From the scaling (3.12), it is apparent that the root (¢1¥), A®) yields the same
branch of solutions as the root (—¢®, —A®). Since there is a one-to—one
correspondence between each isolated root and each solution of G(u, ) = 0,
there are exactly 2 — 1 nontrivial bifurcating solution branches at (0,0). O

Note that the O(€) term in A(€) is nonzero and hence we have a trans-
critical bifurcation. When M = 1, then assumptions (3.10) and (3.11) are

equivalent to
Pi(Gurdr) - Y1 (Guudi) # 0.
These are the simplest criteria for a transcritical bifurcation. The following

example in IRM furnishes an example where there are 24 — 1 bifurcating

solution branches at (0,0).

w;(ui = N) + O(ud + M + hot)=0, i=1,..., M.

3.2 Multiple Pitchfork Bifurcation

Ifa solution branch lies entirely on one side of the bifurcation point, and sim-
ilarly for all other solution branches (though not necessarily all on the same
side of the bifurcation point), we call this a multiple pitchfork bifurcation.
This is because the schematic diagram of each branch suggests a pitchfork

(see Figure 3.2). If a branch opens up to the right of the bifurcation point,
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Figure 3.2: ‘Multiple pitchfork bifurcation at (0,0) from the trivial solution
(multiplicity 3).

we describe it as being supercritical (branches 1 and 2 in the diagram). If
it opens up to the left, it is called a subcritical branch (branch 3 in the

diagram).

Theorem 3.14 In addition to (3.1), assume G is three times continuously
Fréchet differentiable in a neighborhood of (u,\) = (0,0). Assume for all
i, 5, k,l€{l,...,M}:

a) P}(Gord:) = &,
b) ¢Z(Gﬂu¢f¢j) =0,

c) ¥;(G2,4:9;k) = 0, except possibly when i = j = k =l or indices occur
in two pairs (e.g. i=j and k=1),

d) i (G, 0:0;dr) = 0, except possibly when i = j = k = [ or indices

occur in two pairs,
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e) Generic Assumption 1: a;; # 0 for: 94 J, where
1 1
aij = 597 (Guu$i®is) +¥f (Guuti®is) — 5¥7(Guu®i®ii) +
' 1 1
'2'¢;(G?mu¢i¢§) - g¢;(Gguu¢?)'

Then G(u, Ay =0 has at least M distinct solution branches bifurcating from
the trivial solution branch at (0,0).

Proof: Again, we start with the Lyapunov-Schmidt reduction and intro-

duce a scaling for the bifurcation equations:
€=¢( and X = €A,

where M, (? = 1. When ¢ # 0, the solutions of the bifurcation equa-

tions (3.8) correspond to the zeroes of the function g({, A, €) defined as:
( cl_a Zi ¢:1/)TG(€ Zj Cj¢j + ‘I’(fc, 62A)s 62A), € 7£ 0;

$ 51 [AG + $¢PUT(GRL 4i®u)+ (3.15)
36 T G (G, 01955) + 247 (GR.65P15)) +
L éC?¢?(G3uu¢?) + %Cl Zj;’:l C]2¢T(G2uu¢l¢?)] ¢l, e=0.

Using the assumptions (3.14a) through (3.14d), it can be shown that g is

continuous at ¢ = 0.

As before, we define the function:

. _ g .
h(C,AaC) - [ Zz(? -1 ] y
Let e; denote the i** column of the M x M identity matrix. Using the special

choice of ¢(V) = e;, we reduce g(¢, A,0) = 0 to the following linear equation
in A,
1 1,
[A + 591 (Gluér1®n) + 6¢1(G2uu¢:13)] P =0.
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. Defining
1 1
: A AW = —§¢;(G2u¢1q)11) - E¢;(Gguu¢?)7
we have h(¢M), A1), 0) = 0. At the point (¢(*), A®) and € = 0, we have

r_ _ anhy an: - emiPm 1
-h=hC,A"[ 2 0o .- 0 0

We now proceed to show that A’ is an isomorphism from IR¥ x IR onto

B, x IR. Suppose for some (1, 1) € RM x R.

(3]

Writing out the equations, we have

(anam + p)pr + Z%‘l’?ﬂﬁi = 0,

i>2
2y, = 0.

Using the facts that the {v;} are linearly independent and a;; is nonzero
for i > 2, we easily derive that p = 0 and 7 = 0. Hence b’ has a trivial
null space. Since it is finite-dimensional, it is also a surjection and thus an
isomorphism. From the IFT, we conclude that for sufficiently small ¢, there
exists unique continuous functions ¢(¢) and A(e) such that k(¢(€), A(€),e) =0
and (¢(0), A(0)) = (¢, AM). This implies a solution of the original equation
-G(u,A) = 0 of the form:

u(e) = €3 G(e)gi + 2(C(e), M(€)),  A(€) = €*A(e).

The same proof works for the other roots of h({,A,0) = 0 of the form
¢ =¢, i =2,..., M. Hence, we have found M distinct nontrivial solution

branches bifurcating from the trivial solution branch. O
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If every root of the ABEs is nonzero, then (u,)) = (0,0) is a pitchfork
bifurcation point because the O(€) term of X(e) is zero while the O(€?) term,
which is equal to a root of the ABEs, is nonzero. We remark that the Generic
Assumption 1 (3.14e) is a sufficient condition for A’ to be nonsingular. Other
authors (e.g.,-McLeod and Sattinger [27] and Decker and Keller [10]) assume
its infrertibility in the statement of their theorems.

Note that when M = 1, all the assumptions of Theorem 3.14 collapse to

two conditions

¢I(G3,\¢1) # 0 and

If we make the additional assumption ¥(G%,,¢3) # 0, then we have the
usual conditions for the most elementary pitchfork bifurcation.

It is clear that if the assumptions (3.14a) through (3.14e) hold for all
i3, k,1 € {1,..., M}, for some integer M; < M, then there exist at least
M, bifurcating branches.

With further assumptions, we can shdw the occurrence of more bifurcating

solutions. First we make the following definition, using the notation of the

above theorem.

Definition 3.16 We call the integerst and j with 1 # j andi,j € {1,..., M},
an associated pair (i,7)4 if the following conditions hold:

D1 (Goudi®i) = ¥;(Goudi®ij),

PH(Goudi®si) = ¥(Guudi®i),
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(G 8i®i;) = ¥5(GY,4:9:;),
¢:(G2uu¢*¢?) = ¢;(Gguu¢?¢.1)’
P (Gonu®?) = ¥3(Go.82).

In words, ¢ and j are symmetric in the above equations.

Theérem 3.17 In addition to the hypotheses of Theorem 3.14, we assume
there are K associated pairs (0 < K < M(M —1)/2). Define

aip = — (G 8i®i) — 197 (GRudi®si) — 391 (Gudi®i) — 5% (G d)) -

167 (G 9D + 11(Coutr®i) + 1R(Go8:00) + LG ti®sy) +
3VE(GLLi®ik) + 1Yk (Gouu bk ) + U1(GlL 8543)-

If a;jr # 0 for every associated pair (i,j) 4 and integer k such that k # i,k # j

(Generic Assumption 2), then G(u, ) = 0 has at least M + 2K bifurcating

solution branches at (0,0).

Proof: The idea of the proof is the same as that of the proof of The-
orem 3.14 and we will use the same notation. The extra assumptions here
allow us to find 2K extra isolated solutions of h(¢,A,€) = 0. Suppose (1,2)4
is an associated pair. Let ¢V = 715, (W = 3'\}_5’ ¢W=0fori=3,....M
and s is either 1 or —1. Then g(¢("), A,0) = 0 (see (3.15)) becomes

75 [A+ 391(621810) + J0i(GhB) + Ui (Chubra)t

(G0 8) + T (GhunrD)] 1 +
[A+ 3(Ghbatn) + 15(Chubrur) + 243(Coubrra)

Sl

1
']%¢;(G2uu¢g) + Z¢;(G3uu¢2¢g)] '¢'2 = 0.
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. Using the properties of an associated pair, the coefficients of ¥, and 1, are
the same and we could uniquely solve for A as A = —319}(GY,6:1911) —

Ly3(Gd1822) — 1965(Go$2012) — H¥3(Gouu8?) — 197(GSuu143). Hence,
h(c(l),A(?),O) = 0. Recall that ' is h¢ , evaluated at (¢M,AM) and € = 0.
We have

ay + sbpy  sbipy +arhy aygsps - araMPM 712-("/11 + s17)

2z sz 0 0 0

a = ’;‘¢;(G?,u¢1¢11)+%¢;(Gguu¢?)

b = SUH(C ) + Y3(Cor®ra) + S5 (Cnbrd).

We now show that A’ is invertible as an operator from R x IR onto

IB;; x IR. Suppose

Writing out the equations, we have, n; =0 fori =3,..., M, 7, = —sy and

1
— b4+ —p = 0,
(a—b)m wois

L]
Va2

(We have used Generic Assumption 2 and the linear independence of the set

{1/’1,- . 9"/)M})

The above 2 x 2 system has only the trivial solution 7, = g = 0 because

—s(a —b)m + = 0.

its determinant is ‘\/-2_s(a —b) = —/2say; and is therefore nonzero by Generic

Assumption 1 (3.14¢). Thus, A’ is an isomorphism and the IFT can be used
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- to show the existence of two distinct bifurcating solutions, one for each of
s = £l. The‘ same proof works for the othef associated pairs and hence we
have proven the existence of at least M + 2K bifurcating solutions. O

In the above theorem, there are at least two types of solutions. Those
where thé O(e) term has one non-zero component from N(GY), say ¢, and
those.with two non-zero components, say ¢; and ¢,. As we will see later, in
examples where there is some form of regularity, solutions with two nonzero
components occur naturally.

Decker and Keller [10] obtained an upper bound for their quadratic ABEs.
Similarly, we can derive an upper bound for our cubic ABEs. The ABEs
without the normalization form a system of M cubic polynomials in M +1
unknowns ({,A). We can conclude from Bézout’s theorem that they have
at most 3M isolated roots. Notice that (+¢{,A) are distinct solutions to
the polynomial equations but they are just two different halves of the same
branch of our bifurcating solution. Hence an upper bound on the multiplicity
is 1(3M — 1). Here, the solution { = 0 and A =1 is subtracted out since it
corresponds to the basic solution branch, For M = 1,2, this upper bound
is equal to our lower bound. We can now infer that there are no bifurca-
tion points of multiplicity 2 or 3 for problems satisfying the hypotheses of
‘Theorem 3.17.

The strong #ssumptions on G allow us to reduce the bifurcation equa-
tions to a tractable form where we could find a solution and show that it
is isolated. For a geﬁeral system of polynomial equations, there are very

few tools available to us. One such result is the Birkoff-Kellogg invariant
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direction theorem which only predicts the existence of a root when M is odd
(see Keller and Langford [20]) but doesn’t tell us more information about the
multif)licity. Krasnoselski [21] and Westreich [34] have actually shown the
existence of bifurcation under mild assumptions and when M is odd.

We have obtained local qualitative information about the solution of G
using only linear information. However it is often impractical to verify some
of the conditions analytically, especially the Generic Assumptions. Since
bifurcating solutions of high multiplicities are not very common, we expect
any sufficient conditions to be rather strong. The next result is directly

analogous to Theorem 3.9.

Theorem 3.18 In addition to (3.1), assume G is three times continuously
Fréchet differentiable in a neighborhood of (u,\) = (0,0). Suppose for all
1,5, k1€ {1, ..., M} and some real constant b:

o ¥}(Gindi) = &ij.

o ¢Z(G2u¢¢¢.7) = 0.

o P (GL.:i®ik) = 0.

o P} (Ghdid]) =2b fori#j.

o (GO, B:d;dk) =0 except possibly when indices are all equal or they

occur in two pairs.

Let a; = 391(GY,,9?). If for everyi € {1,...,M}, a; — b has the same sign

(i.e., a; — b > 0 for every i or a; — b < 0 for every i), then G(u,)) =0 has
exactly (3™ — 1)/2 bifurcating solution branches near (u, ) = (0,0).
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Proof: The proof is almost identical to that of Theorem 3.9. We just
give a brief sketch. We use the scaling

€=¢¢ and A=A

with ¥°; Cf = 1. The function g({, A, €), whose zeroes correspond to those of

the bifurcation equations, is defined as:
=) Zz—l 1¢*G(6 Zj Cj¢j + ‘I’(GC, 62A)a 62A)v € # 0;

z_l '[C2(a' —b)+A+b] "l)n e=0.

It can be shown that ¢ is continuous at € = 0, where the equations are again

9(C, A e) = {

decoupled enabling us to solve them analytically. The number of roots of
the above equation restricting ¢ to have norm one is 3¥ — 1. If the first
k components of ¢ are nonzero, each nonzero component ¢; must have the
value ﬂ:m where k = (25, 1/(b— a;))~ and A = & — b. There are
2% such solutions as a result of the choice of sign for each nonzero component.

Hence the total number of roots is

E(M k),k' 2k = 3gM _ 1.

In the above sum, the coefficient of 2* is the number of roots with k¥ nonzero
components of {. It can be shown that each of these roots is isolated. Since a
root (¢, A) yields the same branch of solutions as (—¢, A), the exact number
of bifurcating branches is (3% —1)/2. O

An elementary application of the above theorem to the following system

of M equations in M variables in IRM

u;(u? =N+ O(ut 4+ M2 + hot)=0, i=1,...,M.
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- yields (3™ —1)/2 bifurcating solution branches.
Before stating our final theorem, we define and give some results on finite

dimensional gradient systems.

Definition 3.19 Let f be a continuous function from IR"™ into IR™. Then f
is called a gradient system if there exists a continuously differentiable function

F from R" into R such that

Fe(z) = fi(=),
for every z € IR".
(Note that f; denotes the i*» component of f.)

Lemma 3.20 Let f be a continuously differentiable function from R" into

IR"™. Then, f is a gradient system if and only if

ofi, \ _9f;
3};(50) = 6m,-(w)

for everyi,j € {1,...,n} andz € R".

Lemma 3.21 Let S™ denote the unit sphere in IR™. Suppose f: S™ —
IR"*! is a gradient system such that f(z) = —f(—=z) for every z € S™, then
the equation f(x) = ax has at least n distinct pairs of solutions (£20), )i =

1,...,nin S" xIR.

For further details and proofs, see, for example, Berger and Berger [3]

and Rabinowitz [29]. The next result is actually a special case of a theorem

in Keller and Langford [20].
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- Theorem 3.22 In addition to (3.1), assume G is three times continuously
Fréchet differentiable in a neighborhood of (u,A) = (0,0). Assume for all
i,j’k’.l € {1’7M}

o) $j(Grdi) = &;,

b) $i(Goudidi) =0,

¢) 297 (Goudi®ir) + ¥ (Gl dr®i;) = 204(GL. 6:®51) + YE(Grudi®is),
d) ¥} (Gouudidrdr) = ¥} (Gl bidkr)-

Then the bifurcation equations (3.8) have at least M pairs of roots (€D 2@,
i=1,...,M, near (§, ) = (0,0).

Proof: As before, we apply the Lyapunov-Schmidt method to reduce the
operator equation G(u,A) = 0 to the bifurcation equations. Introduce the
scaling:

E=¢C and X =¢€A

with 37, (2 = 1. We define the following function whose solutions are precisely

those of the bifurcation equations.
S LivipiG(e T (idi + B(eC, €M), €M), e # 0;
5GA0) = ) 3 [6AG+3Tijx GGG (CRudi®in) +
Siik GGG (GO i85 08) | ¥ e=0.
Using (3.22a) and (3.22b), we can show that § is continuous at € = 0.

Now define g(¢,A) as a system of M equations equivalent to §(¢, A, 0).
(Le., g: is the coefficient of ¥; in §(¢, A,0).) Let A(¢) be the vector function
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- whose I** component is

hi =33 GGGYT(Goudi®in) + D GGG (Gluu$ididr)-

hik td,k

We now show that A is a gradient system.

¥ M
g—éﬂ =3 Z [2¢7(G?m¢tq’]k) + ¢?(G2u¢k¢,‘j)]cicj +
k ij=1
M
3 Y U (Gonu$59i$5)CiC-
4,5=1

4Using the hypotheses (C3) and (C4), %’f = %’g: and thus h is a gradient
system by Lemma 3.20.

By inspection, h(—¢) = —h({). Hence from Lemma 3.21, there are at
least M distinct elements €¥) € SM-1 i = 1,..., M, such that h(ic(i)) =
+a®¢, for some real al®). Define A) = —a()/6, we have

g(igw, AD) = £6AO¢O 4 p(££D) = 0.

Thus g has M pairs of distinct roots. O

If the roots are isolated, then there @re at least M branches of bifurcat-
ing solutioné. Note that this theorem requires fewer hypotheses than Theo-
rem 3.14. However it is non-constructive and hence it may be impossible to

check the isolation of the roots of the ABEs.
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Chapter 4

Application to Semilinear
Elliptic Equations

In this chapter, we apply our multiple bifurcation theory to a class of non-
linear elliptic partial differential equations (PDEs). Let §? be a cylinder in
IR? with an arbitrary cross-section, i.e., (0,1) x Q,, where §}; is a bounded,
simply—connected domain in JR? with a piecewise-smooth boundary. We

consider the following problem:

Au+Af(u) =0, (z,y,2) €
U(O, Y, Z) = u(l,y, Z) = 0, (y,z) € QZ 9 (4.1)
&=0, (,y,2) € (0,1) X B

The symbol A denotes the Laplacian operator, A is a real parameter, f is a
continuous real-valued function and %} denotes the outer normal derivative.
We abbreviate the boundary conditions as Bu = 0. This is called a semilinear
equation because the nonlinearity f is only a function of u and not derivatives

of u. The literature on semilinear elliptic equations is vast. See, for example,

Lions [26] and Ni, Peletier and Serrin [28].
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In the first section, we deal with the simplest situation. We will require
f(0) = f"(0) = 0 and demonstrate bifurcation from the trivial solution
branch. When f(0) # 0, the trivial solution is no longer a solution. We will
use a solution which is independent of y and z as the basic solution and seek
bifurcation from this nontrivial branch. The principles involved are the same
as the the former case but a nontrivial basic solution drastically increases

the algebra involved.

4.1 Bifurcation from the Trivial Solution Branch

In this section, we assume f is smooth and

f(0) = f"(0)=0, f(0)-f"(0) # 0.

Note that v = 0 is a solution of (4.1) for all A\. We will apply the general
theory to show multiple bifurcations along this trivial branch.

It is well-known that a necessary condition for bifurcation of (4.1) at
(u,A) = (0,Xo) is that the linearized equation has a nontrivial null space.

That is, the problem

Ao+ ’\Of,(o)‘iS = 0, (:L"y,z) €N (42)
B¢ = 0, (wayaz)eaﬂ

has a nontrivial solution ¢. We use separation of variables to solve this
problem. Because the domain has the product form (0,1) x Q2 and the
Laplacian is linear, it can be shown (Duff and Naylor [11]) that all null
functions are separable and have the form ¢ = X(z)T(y,z). Substituting
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this into (4.2), we obtain separate problems for X and T

X"(z)+ (Mof'(0) - *)X(z) = 0; X(0)=X(1)=0, (43)

Ty + T + 6*°T = 0; or =0. (4.4)
o |y,

In £3(%;), the Lebesgue square-integrable functions on {1;, the eigenvalue
problem (4.4) has a countable, unbounded set of eigenvalues x% with a com-
plete orthonormal set of eigenfunctions {T;}. That is, fg, T:T;dydz = 6;; and
any function g € £5(f);) whose normal derivative vanish on 9 can be rep-

resented as 3°32, a;T; for some real constants a;. Suppose x?

is an eigenvalue.
Then the solution of (4.3), if it exists, is X = sin(prz) where p is the positive
integer satisfying: Aof'(0) — «? = p?x?. Rearranging, we obtain:
K2 4 w2p?

HON

Hence for a fixed )g, if there are s distinct pairs of numbers (s, p;) sat-

Ao = (4.5)

isfying (4.5), then the number of linearly independent solutions of (4.2) is

2

M = m; + ... + m,, where m; is the multiplicity of the eigenvalue ;.
(This multiplicity is defined as the number of linearly independent eigen-

functions of (4.4) associated with x2.) We label these null functions of (4.2)
as {¢1,...,0m}, with

¢ = Xi(2)Ti(y,2), (4.6)

where X; and T; satisfy (4.3) and (4.4). We assume that they are normalized,

[ =1

i.e.,
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Because the set of eigenfunctions {T;} is orthonormal, we have

/n bid; = /0 ' X.X;do /ﬂ TiTjdydz = 6.

Next we define the following linear functional:

N |
¢i(g)="m/ﬂ¢59

for any g € L£,(0?). Now we are ready verify some of the hypotheses of
Theorem 3.14.

Let G(u,A) = 0 denote the problem (4.1). Suppose at A = Ao, (4.2) has
M null functions (4.6). We consider the candidate bifurcation point (u,A) =
(0, A0). We have G2, = XAof"(0) =0, G2, = f'(0) and G2, = Aof"(0). The

uuu

superscript ® means evaluation of the operator at (0, ). Now

V(G0 = [ ¢ids = b

Hence if the conditions (3.14d) and (3.14e) are valid, we have at least M

bifurcating solutions. We have shown:

Theorem 4.7 Consider the problem (4.1) denoted by G(u,A) = 0. Assume
f is three times continuously differentiable near 0 with the following proper-

. ties: : ,

f(0) = f"(0) =0, f'(0)- f"(0) #0.
Suppose dimN (G,(0, Mo)) = M with M null functions {¢1, ..., ém}. Suppose
for every 1,5,k € {1,..., M}, |

o [ohidididr =0 forl & {i,j,k}.
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® Jadidl —3Jadi#£0, i

Then G(u,A) = 0 has at least M nontrivial solution branches bifurcating

from the point (u,A) = (0, o).

~ If the cross-section €2, of the cylinder is a square, we obtain more elegant

results.

Theorem 4.8 Consider the problem (4.1) denoted by G(u,)\) = 0 with
Q, = (0, L)?, where L is a positive real number. Assume f is three times

continuously differentiable near 0 with the following properties:

f(0) = f"(0) =0, f(0)-f"(0) #0.

Suppose dimN (G,(0,)X0)) = M with M null functions {¢,,...,én}. Then
G(u,A) = 0 has ezactly (3¥ — 1)/2 nontrivial solution branches bifurcating
Jrom the point (u, ) = (0, Ao).

Proof: For this geometry, the null functions are

e m;Ty n;wz
éi = ¢; sin(p;wz) cos ( 7 ) cOS (—-———L )

where

: w5, mi+n? e
= I (pe T 1,....M
/\0 f'(O) (pz + L2 ) y 0 € { ] 9 }
2/2/L, if mn; # 0;
2/L, if exactly one of {m;,n;} is zero;

V2/L otherwise.
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The integer p; is positive and m; and n; are nonnegative integers. By a direct

computation, for distinct ¢,j € {1,...,M},

%’-c, if min; #0;
PGP = %c, if exactly one of {m;,n;} is zero;
: 26, otherwise.
wf o 3
¢i (Gguu¢t¢3) = -2-6,

where ¢ = 370 Note 147(G2,,4?) — ¥1(GS,.$i¢?) has the value —3c,

uuu

—%c or —c and hence has the same sign for every i,j € {1,...,M}. Also,
Y1 (Gouu $ididr) is proportional to fo, TiT;TiT; which is zero for I ¢ {4, j, k}
by a result from the Basic Lemma (see the last section in this chapter). Thus,
there are exactly (3™ —1)/2 nontrivial bifurcating solutions by Theorem 3.18.
a

We now make some remarks regarding the nature of these bifurcations. It
is immediate from (4.5) that the sign of A¢ is equal to the sign of f'(0). It can
also be shown that the pitchfork is supercritical if f”/(0) < 0 and subcritical
if f”(0) > 0. See Figure 4.1. Allgower, Bohmer and Mei [1] have shown the
same result holds for the same PDE on a square with Neumann boundary

conditions. Note that they require an additional hypothesis that f is odd.

4.2 _Bifurcation from the Nontrivial Solution
Branch

In this section, we study the semilinear equation (4.1) with the nonlinearity
f having the property f(0) # 0. Since u = 0 is no longer a solution, we use a

solution of (41) which is independent of y and z as the basic solution and seek
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Figure 4l Typical bifurcations from the trivial solution branch for the case
f(0) > 0 and f™(0) > 0.

bifurcation from this basic solution. First, we investigate some properties of
the basic solution mentioned above and its linear eigenvalue problem. Define

a function g to be positive* if
g(t) >0, Vt > 0.
4.2.1 A Two-Point Boundary Value Problem

The following two-point boundary value problem:

ul(z) + M(uo(z) = 0, z € (0,1); (4.9)
UQ(O) = ’uo(l) = 0,

for f continuous has been studied extensively. Some of the earliest work was
done by Gelfand [12], Keller and Cohen [19] and Laetsch [22]. We restrict the

discussion to the case of a non-negative uo(z) and f positive*. The following
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is a summary of the properties of solution(s) uo as given in Laetsch [22]. For

any positive A > 0,

e there exist a unique A and exactly one non-negative function up which

satisfies (4.9) and

) =

Furtherrnore,
2
A du
A=2 ——
[/0 Vi f (t)dt]

and A is a continuous function of A.

e Any solution ug is symmetric about z = 1 and uo(3) = A.

f()

lim — =00 = lim A(A) = 0.

t—00
MO f( )
t—0

=00 = limA(A)=0.
A—0

The graph of a typical ug is shown in Figure 4.2.

(4.10)

(4.11)

(4.12)

(4.13)

It is well-known that (4.9) may have more than one solutions for some

A. In view of the first property (4.10) listed above, it is more convenient to

- think of A, rather than ), as the parameter. Henceforth, we will sometimes

write quantities depending on A as quantities depending on A so that there

will be no ambiguity. Also, we sometimes write uo(z, A) to emphasize the

dependence of up on A.
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Uo

Figure 4.2: A typical graph of ue(z).

For the remainder of this section, we additionally require f to be a mem-

ber of C1. The eigenvalue problem associated with (4.9) is

w(@) + (\f'(uo(@)) + ) w(z) = 0, (414)
w(0) = w(l) =0, /0 w¥(z) dz = 1.

This is a regular Sturm-Liouville eigenvalue problem and thus it has a unique,
smallest, finite eigenvalue a. As we will see later, negative eigenvalues play a

significant role in bifurcation. The following two results are due to Beyn [5]:

¢ Equation (4.14) has at most one non-positive eigenvalue for 4 > 0.

- ]

. -‘%(Aﬂl is continuous and

a(A) {

} 0. (4.15)

ALYV
ATV
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Figure 4.3: The graphs of the smallest (o) and second smallest (o) eigen-
values as a function of A for f(u) = e*.

In Figure 4.3, we plot the behaviour of the two smallest eigenvalues of
(4.14) as a function A for the function f(u) = e*. The following lemma gives

simple sufficient conditions on f such that limg . a(A) = —o0.

Lemma 4.16 Suppose for some real constants a,c witha >0, ¢ > 1,
a(ct—1) < f'(t), t>0 and (4.17)

du
hm cA/2A'1/2/ =00
\/fqi4 f(t)dt

Then a(A) is a continuous function of A and takes on every value in (—oo,7?)

(4.18)

as A takes on values in the positive reals.

Proof: The variational principle for the smallest eigenvalue a(A) yields

a(4) = min [ ' (W(2))? da — A / ' Pluo(z, A) wi(z)ds.  (419)



64

The minimization is over all w € C[0,1]NC*(0, 1) such that w(0) = w(1) =0
and Ja w? = 1. To obtain an upper bound on «, we pick w(z) = v/2sin(rz).
It is easy to‘ show [ (w'(z))? dz = 72. Since uo is concave, we have ug(x) >
2Az for z € [0, 3]. Recalling that uo is symmetric about }, and using (4.17),
(4.19) ifnplies,

2 g (ZACA Inc+ (4 - 1) B 1)

@ - 72 + A?2Iln’c

A
~ _@_c_ for large A.

Inc A
The assumption (4.18) together with (4.11) imply that @« — —oo when A —
oo.

From (4.13), A(0) = 0 (since f(0) # 0) and thus (4.14) at A = 0 becomes,
w"(z) + aw(z) = 0,
w(0) = (1) =0, [ ' w0 (z)do = 1.
Hence the smallest eigenvalue a at A = 0 is 72.
Finally the continuity of a(A) follows from its variational characterization

and the continuity of ue(z, A) and f'. O
We now show that if f satisfies (4.17), then limg_,., A(A) = 0. Integrating

(4.17), we obtain
f(t)Zf(O)-{-a( e —-t).

Thus f(t)/t grows unboundedly for large t. Our claim now follows from

(4.12). An obvious consequence of (4.17) is that f’ is positive*.
A typical plot of the smallest eigenvalue « of (4.14) as a function of A

is shown in Figure 4.4. In the bottom plot of the same figure, we show the
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behaviour of A as A varies.
An example of a function satisfying (4.17) and (4.18) is f(t) = €'. The
first relation is clearly true with a = 1 and ¢ = e. The second relation is

demonstrated below:

/4 du /A du
o JiFedu o VeA—eb
Ved-1
=2 2 (tz eA'"e“)
0 ed — 12

eAdl? — \feA — 1
~ e 424 for large A.

The relation (4.18) now follows since its left-hand-side is asymptotic to v/A
for large A.

4.2.2 Main Results

We restate here the semilinear elliptic problem:

Av+Af(v) =0, (z,y9,2)€Q
. (4.20)
Bv =0, (z,y,2) € 0N

We will assume f is smooth and positive*. We first transform (4.20) to
_an eqﬁiva,lent problem with a trivial branch of solutions. A solution of the
two-point boundary value problem (4.9) will be used as the basic solution to
(4.1). Recall that for any positive A, there corresponds a unique non-negative
solution ug(x, A) of (4.9) such that A is the maximum value of ug(z, A). Let
T4 be some nonempty open interval such that for all A € T4, a(A) < 0.
(Recall a is the principle eigenvalue in (4.14).) From (4.15), g—’}ifl < 0 and
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w2 \I T T -
/__\
0 R
a(A) |
| ] 1
0 Al A2A A3
A
A3 .
A2} -
~.
Al /___> -
0 .
0

Figure 4.4: Plots of the behaviour of the principle eigenvalue « as a function
of A and the corresponding A versus A graph. Note « is negativein (A;, A;)U
(A3, OO)
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thus we may use A as a parameter for this branch of solutions. We denote
this by (uo, A) for A in the open interval Z) corresponding to Z4 where ug =
uo(w; A). That is,

&
U0+ Af(uo) = 0, VA€ T

We make a change of variable u = v — ug in (4.20), arriving at the equivalent

problem: -
Au+ A(f(uo +u) — f(uo)) ~
G(u,\) = =0. (4.21)
Bu

Note that G(0,)) = 0 for all real A.
Fix some Ao € Z». A necessary condition for bifurcation at (u,)) =
(0, o) is that M(GP) is nontrivial. (Superscript ® denotes evaluation at

(u,A) = (0, Ao).) Null functions (if they exist) must have the form
¢ = X(2)T(y, 2). (4.22)

As before, we obtain separate equations for X and T

X"(z) 4+ (Mo f'(uwo) — £*)X(2) = 0; X(0) = X(1) =0, (4.23)
orT
Ty + 1o+ *°T = 0; B |, =0. (4.24)

Comparing (4.14) and (4.23), we see that there exists a nontrivial null

space when —x?

is an eigenvalue of (4.14), i.e., when:
a=—k% (4.25)

We call (4.25) the bifurcation condition (BIC). Now we see the significance of

a non-positive eigenvalue in (4.14). It is a necessary condition for bifurcation.
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Later we will show that only negative eigenvalues need to be considered. We
now demonstrate that BIC is also a sufficient condition for bifurcation from
nega{;ive eigénva.lues.

Suppose dim N(G?) = M. Since (4.14) has at most one non—positive
eigenvalﬁe, (4.24) must have M equal eigenvalues: £ = --- = £}, = &2
satisfying (BIC). We label the null functions as {¢1,...,¢m}, with ¢; =
X(2)Ti(y, 2)-

For all g € £,(0), we define the linear functionals

v =s[gb  i=l..,M,

where s is a nonzero constant that will be defined later. We are ready to

check that some of the hypotheses of Theorem 3.14 are satisfied. Now

%bf‘(Gg,\%) = 3/ X? [f’(uo) + dof"(uo) =5+ duo] — dz /92 T:T; dyd=.

Since T; and T; are orthonormal, the above quantity is zero when ¢ # j. If

the integral in z is nonzero, we may choose s so that 1?(G2,¢;) = 1. Also,

(G bidide) = $ho /0 X4 " (uo)dz /9 TyT,T, T dydz.

We have shown:

Theorem 4.26 Consider the problem (4.20) denoted by G(u,)) = 0. Sup-
— pose f € C3 and f(t) >0 for all t > 0. Suppose upg = up(z, ) is a solution
of (4.9) for all A near some Ao > 0. Assume dim N(Gy(uo, o)) = M with
M null functions {¢y,...,dm} of form (4.22). Suppose for every ¢,j,k €
{1,...,M},

/ﬂ T =0, (4.27)
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| TTTT =0, 1¢ {i,i,k). (4.28)
2

and
d’uo

1 .
/ X2 | f(uo) + Ao f"(uo) dz £0, i=1,...,M.
0 d\ A=

If (3.14c) and (3.14e) hold, then (4.20) has at least M solution branches

bifurcating from the basic solution branch at (uo, Xo).

We remark that if the hypotheses (4.28), (3.14c) and (3.14e) are replaced
by (3.22c) and the isolation of those roots of the ABEs, then that same theo-

rem guamﬁtees the existence of at least M branches of bifurcating solutions.
There are less conditions involved in the second set of hypotheses but it
may be impossible to determine the isolation of the roots because only their
existence is known.

We will see in the next section that the additional assumptions (4.17) and
(4.18) on f guarantee a null space G,, of arbitrarily large dimension and hence
bifurcation of arbitrarily large multiplicity. For the existence of a nontrivial
null space, all that is required is that o, the smallest eigenvalue of (4.14), is
negative and whose magnitude is greater than or equal to k2, the smallest
eigenvalue of (4.24). In other words, the BIC holds for at least one value of
o and «2. This would guarantee the existence of one bifurcation point.

It is possible to enumerate every bifurcation point along the basic solution
branch. In the beginning of this section, we indicated the procedure along
one branch. We repeat this for all other branches (uo(z,A), A(A)) where
a(A) < 0. On the branches where a(A) > 0, there can be no bifurcation

because the BIC is not satisfied. Finally we show that at points A where
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. afAg) = 0, there is a locally unique solution. From the BIC and (4.24), it
is clear that M = 1 and T3 = 1 is the only eigenfunction. In other words,

(4.21) has a one-dimensional null space spanned by ¢; = X. Abbreviating
('u.o(:t, AO)’ ’\(AO)) by (u(h ’\0)’ we have

$iGa(uo do) = s [ X*f(uo) 0.

(Note we use the original formulation of (4.20) G = 0 because G, as defined
in (4.21) has an unbounded X derivative at Ap where a(Ao) = 0.) We have
shown that (ug, A) satisfies the criteria for a simple limit point. Keller [17]
has shown that there is a unique solution in a neighborhood of (ug, Ao). In
summary, we have enumerated all the bifurcation points along the basic solu-
tion and they reside on the part of the basic solution branch where a(A) <0
or equivalently dA\/dA < 0. The BIC is a necessary and sufficient condition
for bifurcation for negative a. In Figure 4.4, this corresponds to the part of
the curve where A lies in the union of (A;, A;) and (As, 00).

Assume the hypotheses of Theorem 4.26 hold. We can find an explicit
expression for ®;;, (see (3.7)) for ¢,j € {1,...,M}. In the current context,

®,; is the unique solution of
(A + dof'(u0))®ij + Ao f" (uo)id; = 0, (4.29)
| B(I),;j = 0,

orthogonal (in £3(Q) sense) to the span of {¢1,...,¢m}. Recall {T1,T>,...}

is a complete orthonormal set. Thus there exists real constants d, such that

T.T; =Y d,T,. (4.30)

=1
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Since these eigenfunctions satisfy
/n TTT =0, ke{l,...,M},
2

dy = ... = dy = 0. We look for solution of (4.29) of the form @;; =
¥, Ry(2)Ty(y, z). (We are abbreviating R,;; by R,.) Substituting into
(4.29), we obtain

ST, [RY + (oS (uo) — K2Ry + dp o f"(u0) X?| = 0.

p=1

We now show that for every p, there exists a function R,(z) satisfying
Ry + (Xof'(uo) — K2)R, = —d Ao f"(uo)X?, R,(0)=R,(1)=0. (4.31)

If d, = 0, then clearly R, = 0. In particular, B; = --- = Ry = 0. We now
restrict to the case p > M. If d, # 0, (4.31) is the inhomogeneous form of the
eigenvalue problem (4.14) at A = Ao. Denote by «, a3, as, . .. the eigenvalues

of (4.14) with @ < 0 < @y < a3.... By the Fredholm Alternative, (4.31)

2

2 is not equal to « or any a;. This is indeed the

has a unique solution if —&
case because by the definition of M, only elements of {«1,...,%n} satisfy
the (BIC). Furthermore, ; > 0 when ¢ > 2 and hence cannot be equal to

any —-/sf,. Hence, we have shown that

;= > RuTy (4.32)
p=M+1
where R,;; is the unique solution of (4.31). Note that R,;; = R,j.

For the case of a square cross-section, we have,

Theorem 4.33 Consider the problem (4.20) with Q2 = (0, L)?, where L is
a positive real number. Denote it by G(u,)) = 0. Assume f € C® and
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f(t) >0 for all t > 0. Suppose uo = uo(z,A) is a solution of (4.9) for all A
near some Ao > 0. Assume dim N (Gu(uo, X)) = M with M null functions

{d1,...,bum} of the form (4.22). If

e 2| p n duo .
[)X f(UQ)-l'z\of (UQ)'E-A— d:c;éO, Z=1,,M,

and Generic Assumptions 1 and 2 (see Theorems 3.17 and 3.14) hold, then
(4.20) has at least 2M solution branches bifurcating from the basic solution

branch at (ug, \o) when M is even and at least 2M — 1 bifurcating branches
when M is odd.

Proof: For a square cross-section, the eigenfunctions of (4.24) have the

form
cos (mnry) Cos (nnrz)
L L)’
with eigenvalue
2_ T2 2. 2 .
K = -ﬁ(mi + nj), i=1,...,M, (4.34)
where m;,n; are non-negative integers and —«3 = .-+ = —k}; = —a, the

principle eigenvalue of (4.14) at )o. Note that for fixed ¢,5 € {1,..., M},
at most four terms in {Ryij}32,s,, are nonzero (see (4.32)). This is because

- T:T; has four nonzero components in (4.30). They are:

cos ((m,- ﬂ:Lmj)ry) cos ((n,- i:j)”) .

By the Basic Lemma, we see that (4.27) and (4.28) and (3.14c) hold. Thus by

Theorem 4.26, there are at least M bifurcating branches. Now we will show



73

-, that there are at least M/2 or (M —1)/2 associated pairs (see Definition 3.16),
depending on whether M is even or odd. |

F irst, suﬁpose M is even. Note that the null functions {¢;} come in pairs.
For example, corresponding to ¢, is the pair (m,n1) of solution to the BIC
(mq # hl by Corollary 4.37. See next section.) Let ¢; correspond to the
solution (n1,m4). It is now straightforward to show that (1,2)4 is an associ-
ated pair. Hence we have at least —1‘-2'1 associated pairs. When M is odd, there
is exactly one ¢ such that m; = n; (see Corollary 4.37). Ignoring this pair,
we get at least # associated pairs. Applying the result of Theorem 3.17,
we establish the claim of this theorem. O

In Figure 4.5, we draw some bifurcating branches for the function f(u) =

e'll.
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10 A I I 1 I 1 I

" Figure 4.5: Two bifurcation points of the semilinear PDE with L =1, f (u) =
ev. '
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4.2.3 An Excursion into Number Theory

In the previous sections, we always assumed that the dimension of a certain
null space is some positive number M. With a square cross-section and
two additional assumptions, we can show that such null spaces exist for all
positive integers M.

Let N, denote the number of integer solutions (m,n) of
N =m? 4+ n? (4.35)

for a given positive integer N. Determining N, is a well-known problem in

number theory. From Grosswald [14], we have:

Theorem 4.36 Let
N =2[]pF[] ¢?
d 3
be the unique representation of a given positive integer N as the product of
powers of primes p; and q;, where p; =1 (mod 4), ¢; =3 (mod 4), r; and s;
are positive integers and k a non-negative integer. Then

N { 41_[;‘»(7‘1‘ +1), if s; is even Vj;
a = 0

otherwise.
In particular, we are interested in N,, the number of non-negative integer

) solutions to (4.35). Using the above result, we show:

Corollary 4.37 Let N be represented as in the above theorem with s; even

for all 3. Then,

N=J 1t [1:(ri +1), if N is a perfect square;
P (i + 1), otherwise.

Furthermore, N, is odd iff N is of the form 2j2.
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Proof: We consider three cases. First, if N is neither a perfect square
nor of the form 252, for any integer j, then (4.35) has no solutions of the
form (0,5) or (4,7). Thus every non-negative solution (m,n) generates eight
distinct integral solutions, namely (£m,+n) and (£n,+m). Among them

only (m,n) and (n,m) are non-negative solutions. Thus, N, is even and

. N,
Np = -:1— = H(T,' + 1)

Secondly, if N = 252 for some positive integer j. Then (7, j) is one solution
‘which generates four integral solutions, namely (%j, =7), but only one non-
negative solution (j,7). All the other solutions are of the form (k, 1), E#1
and we can apply the result of the previous paragraph. Thus

N, -4
4

N, = +1=T](ri +1).

Since there is only one solution of the form (j, j) and all other solutions come
in pairs, /N, must be odd.

Finally, consider N = j2 for some positive j. Now (0, j) generates four in-
tegral solutions, namely (0, £5),(+7,0) and two non-negative solutions (0, ;)

and (j,0). Hence

N, -4
N, =— +2=1+H(ri.+1).

Because N is a perfect square, all the r;’s are even and so N, must be even.

O
Geometrically, N, corresponds to the number of lattice points on the

circle of radius N in the first quadrant of the m,n plane. Table 1 gives a few
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N | solutions (m,n) number of solutions
01(0,0) 1
11(0,1); (1,0) 2
21(1,1) 1
3| — 0
4 1(0,2); (2,0) 2
51(1,2); (2,1) 2
25 | (0,5); (34); (4,3); (5,0) 4
50 | (1,7); (3,5); (7,1) 3
325 | (1,18); (6,17); (10,15); (15,10); (17,6); (18,1) 6
1250 | (5,35); (17,31); (25,25); (31,17); (35,5) 5

Table 4.1: Non-negative integer solutions to N = m? + n?.
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- examples. It is clear that there exist infinitely many values of N for which
there are M solutions to (4.35), where M is any given non-negative integer.

Define the problem (4.1) by G(u, A) = 0. Assume fis C3, f(t) > 0Vt > 0,
and f satisfies (4.17) and (4.18). Let up = uo(z, A) be the unique branch of
non—negative solutions of (4.9) with the property that a(A) takes on every
negafive real number as A varies in a semi-infinite interval (A;, co) for some
Aj. Such an interval exists by Lemma 4.16. We now show the existence of Ag
such that at (ug, Ao), dim N (G,) = M, for a given integer M. We infer from
Corollary 4.37 that there is an integer N (in fact infinitely many of them)
such that there are M = N, non-negative integer solutions to N = m? + n?.
By Lemma 4.16, there exists an A such that

N=?
L2’

—o(A) =

(See (4.34) and the BIC (4.25).) Thus at A\g = A(A) and ue(z, Ao), dim
N(G,) = M. This establishes our claim.

4.2.4 The Basic Lemma

Lemma 4.38 (Basic Lemma) Consider the square domain Q, = (0, L).

Let Ty, ..., Ty be eigenfunctions of (4.24) with a nonzero eigenvalue k? of
- multiplicity M : : :
mon(52) o (59,
with
272 ~
Nsnﬂ_f =mi+n? i=1,..., M. (4.39)

Then for all i,5,k,1€ {1,...,M},
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1. fo, TLT;T: = 0.

2. Jo, TT;Ti Ty = 0 except possibly when i = j = k =1 or indices occur in

two pairs.

3. fm T.T;T, = 0 except possibly when ¢ = j = k =1 or indices occur in

two pairs, where T, is any one of the following four possible functions:

cos ((mk :l:Lmz)ﬂ'y) cos ((nk :I:Lnl)ﬂ'z) '

Proof: We use repeatedly the following facts:

L mnry
L cos( T )dy Lémo. (4.40)

L mny nry) L
/Ocos( T )COS(T dy = 55,,",,, mn # 0.

Assertion 1. Without loss of generality, we assume m; < m; < my. We

first treat the case m; > 0. As a consequence of (4.39) n; > n; > ni. Thus,

L m;Ty’ m;Ty mETy
o = [fon (S22 (B2 (52
| /L cos (nmz) cos (nﬂz) cos (nmrz) dz
o L L L
L : . L . —
o / cos ((m, + mJL mk)ﬁy) dyf cos ((n, nJL nk)‘lrz) dz.
0 : 0

To obtain the last line, we make use of the ordering of the constants m; and

n; and (4.40). From (4.40), the last integral is nonzero iff

mE =m; +m; and n; =n; — n;. (4.41)
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- Adding the squares of the above two equations and using (4.39) we obtain
N = 2(n,-nj - m,-mj) (4.42)

If nyn; = 0, then above is clearly a contradiction. So we assume n;n; # 0.
Write N = 2? Ny, m; = 2"y, n; = 2%b), where p,r; and s; are non-negative

integefs and 2 £ Niaib;. We must consider different cases:
e r; < s; and r; < ;. From (4.39), we have
PN, = 277i(a? + 220i~m)?) = 2773 (a2 4 22(5=7)}),

From the above, we deduce that p = 2r; = 2r;. Now (4.42) can be
written as

2°N; = Qritri+l (2s‘+"j—r"_” b,'bj - a,-aj).
Consequently we have p = r; +r; +1, contradicting the previous result.

e In a similar manner, we derive a contradiction for each of the cases {

r;>s;andr; > s }; {ri>siandr; <s;};and {r; < s;andr; > s;}.
e r; = 5;. We further suppose r; < s; without loss of generality. Then,
PN, = 27 (a? + b7) = 2% (a2 + 2205 77)p2).

It is easy to see that a? + b? has the form 4¢ + 2 and we may conclude

that p = 2r; + 1 and r; = 3; = r;. From (4.42), we get,
2pN1 = 22r‘+1(bibj h aiaj).

Now the term in the parenthesis on the RHS is even and we must have

p 2> 2r; + 2, which is a contradiction.
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. We have shown that when m; > 0, [, TiT;T: = 0. Next we consider the

case when m; = 0, m; > 0 and so N = n?. Now

. L (m; —my)my L (ni —n; —ng)wz
/92 T;T;Ty /0 cos (-———L——— dy/o cos 7 dz.
’ (4.43)

" The integral is nonzero iff m; = m; and n; = 2n;. Using this in (4.39), we

obtain m? = 3n?, which is a contradiction. Finally a similar procedure leads
to an inconsistency when m; =0, m; = 0.

Assertion 2. We must separate into four cases.

e m; < m; < my < my. Using (4.40) and the fact n; > n; > n; > ny, we

have:

| T
2
fOL [cos ((m.'+mj+Zlk—1nz)1ry) + cos ((mi—mj—;lnkwm)ﬂy)] dy
fL [cos (L——L———L"""'_Z" —f ”) + cos (("""’ "Z"’L"’)")] dz.

This integral is nonzero iff anyone of the following two cases hold:

o m; + m; + my = my and n; — nj — nx = £n;. Using (4.39) on the
sum of the squares of these two equations, we get,

“

0 = N+mm;+mimg+ mjme + njng —n;n; —n;ng

= (mi +m;)(mi + mg) + (n; — n;)(ni — ng) > 0.

In the last step, we replaced N by m?+n? so the expression factors

and allows us to reach a contradiction.
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o m; + my — m; = my and n; — n; — np = *n;. Using the same

technique, we arrive at the following contradiction:
0= (mj - m,-)(mk - m,-) -+ (n,- — nj)(n,- - nk) > 0.
° m.-’=mk=m1;/:mj.

L (3m; — m;)wy L (3n; — nj)7z
3T AT Y WO — )7 <
]ﬂle, T; /0 cos ( I ) dy/o cos ( 7 dz.

which is nonzero iff 3m; —m; = 0 = 3n; —n; which is clearly impossible

from (4.39).

e m; = my and m;,m; and m; are distinct. Without loss of generality,

we assume m; > mg.

L (2m; — m; — my)7y (2m; — mj + my) Ty
2 J J
/ZETJHOC/U [cos( T + cos T

/()L [cos ((2n,- ;= nk)wz) + o ((2n,- Lk n,,)m)]

Again we must consider four different cases.

o 2m; = m; — my and 2n; = n; — n;. Squaring and adding these
equations and then use (4.39), we get N = —(mjm+n;jni) which

is clearly false.

o 2m; = m; — my and 2n; = n; + n;. The same procedure yields
~ the fpll_owing inconsistency: N = njng —m;mi < njn; < nj < N.
o 2m; = m; + my and 2n; = n; — n;. Similar.

o 2m; = m;+ my and 2n; = ng +n;. After some algebra, we obtain

the false statement (m; — my)? + (n; — ng)? = 0.

Assertion 3. Proof is similar to the above. O
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Conclusions

In this thesis, we study some sufficient conditions for multiple bifurcation.
In the case of a “simple” eigenvalue, it is possible, at least in theory, to
derive a list of sufficient conditions which characterize every possible type of
bifurcation for analytic operator equations. For a multiple eigenvalue, the
theory is incomplete. We are only able to give some conditions which give a
lower bound on the multiplicity of the bifurcation. The main application we
give is to semilinear elliptic PDEs in a cylinder with a constant cross-section.
If the PDE has a trivial solution, then we can locate all the bifurcation
points along the trivial branch with a lower bound on the multiplicity. When
the cross-section is a square, we can, in one instance, determine the exact
multiplicity of the bifurcation. If there is no trivial solution, then we locate
all the bifﬁrca,tioh branches from a basic solution which is the nontrivial, non—
negative solution to a two-point boundary value problem associated with the
PDE. |

Our theory has many shortcomings. The assumptions are rather strong

and many of them (especially the Generic Assumptions) are usually imprac-
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tical to verify analytically. We would like to obtain a tight upper bound on
the multiplicity. The theory deals with rather special cases of multiple bifur-
cations. We. only dealt with the cases where the variables in the ABEs are
largely decoupled, allowing us to find the roots analytically. An ambitious
goal is fo come up with a set of sufficient conditions for general bifurca-
tioné, similar to the ones for the “simple” eigenvalue case. Another avenue

of research is to extend the results to a more general class of problems, say

Au+ f(z,u,Vu,A) =0.
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Chapter 6

Introduction

Given a real n x n matrix A, we wish to find all its eigenvalues and eigen-

vectors. That is, we seek A € € such that
Az = Az

holds for nontrivial z € C*. We call (z, A) an eigenpair.

The QR algorithm (see Golub and van Loan [13]) is generally regarded
as the best sequential method for computing the eigenpairs. Briefly, the QR
algorithm uses a sequence of similarity transformations to reduce a matrix to
upper Hessenberg form. It then applies a sequence of Givens rotations from
the left and right to reduce the size of the sub-diagonal elements. When
these elements are sufficiently small, the diagonal elements are taken to be
a.pproximé,tions fo the eigenvalues of the matrix. If the matrix is large and
sparse, the QR algorithm suffers two serious drawbacks. In the reduction to
Hessenberg form, the matrix usually loses its sparsity. Hence the algorithm
requires the explicit storage of the entire matrix. This may pose a problem if

the matrix is so large that not all its entries can be accommodated within the
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main memory of the computer. A second drawback is that it is inherently a
sequential algorithm due to fact that the Givens rotations must be applied
sequentially. Bai and Demmel [2] have circumvented somewhat the second
problem by performing a “block” version of the QR algorithm. This improved

version seems to work well on vector machines.

6.1 Hbmotopy Method

We present a homotopy method to compute the eigenpairs of a given matrix

A;. From the eigenpairs of some real matrix Ao, we follow the eigenpairs of

at successive times from ¢ = 0 to ¢ = 1 using continuation. At ¢ =1, we have
the eigenpairs of the desired matrix A;. We call the evolution of an eigenpair
as a function of time an eigenpath.

When A, is a real symmetric tridiagonal matrix with nonzero off-diagonal
elements, a very successful homotopy method is known (see Li and Rhee [24]).
The following phenomena, while absent in the symmetric tridiagonal case,

are present for the general case:
° complex eigenpairs
e ill-conditioned problems due to non-orthogonal eigenvectors
e bifurcation (i.e., crossing of eigenpaths)

These can present computational difficulties if not handled properly. Since
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each eigenpair can be followed independently, this algorithm is ideal for con-
current computers.
Asa simple illustration, we consider 2 x 2 matrices where the matrix Ao

is diagonal whose elements are the diagonal elements of A;:

a 0 a d
w5 8] we[ ]

The eigenvalues of A(t) are

a+b+/(a—b)?+4t2cd
5 :

Three different situations arise (see Figure 6.1). In the first case, the two
eigenpaths never meet for all ¢ in [0,1]. In the second case, the eigenpaths
meet at one point (called a bifurcation point) with the eigenpaths remain-
ing real throughout. In the third case, there is a bifurcation point with the
eigenpaths becoming a complex conjugate pair to the right of the bifurcation
point. Typically this is how complex eigenpaths arise from real ones. (When-
ever a quantity is said to be complex, we mean it has a nontrivial imaginary
component.) The situation for higher dimensional matrices is similar except
that an eigenpath can have more than one bifurcation point and that the re-
verse of case three described above can occur (i.e., complex conjugate pair of
- eigenpaths occur to the left of the bifurcation poiht and two real eigenpaths
to the right.) See Figure 6.2 for the eigenpaths of a random 10 by 10 matrix.

We conclude this introduction by giving a synopsis of the rest of the thesis.
In Chapter 2, the homotopy method along with complex bifurcations will be

presented. We will discuss some different types of bifurcations that may arise
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Figure 6.1: Eigenpaths of a 2 by 2 matrix. The dotted lines denote complex
eigenpaths.
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complex’
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Figure 6.2: Eigenpaths of a random 10 by 10 matrix. Only one path of a
complex conjugate pair of eigenpaths is shown.
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-, and identify the generic kind. We will derive an upper bound on the number
of bifurcation points of all the eigenpa,ths.‘ The numerical algorithm will
be divscussed. in Chapter 3. We will describe how to deal with bifurcations,
how to solve the linear systems arising from the continuation algorithm, the
selectioﬁ of stepsizes etc.. This will be followed by some numerical results.
We Will see that the homotopy method is extremely slow for full matrices but
has the potential to compete with other algorithms for sparse matrices as well
as matrices with defective eigenvalues. In the final chapter, we recapitulate
and suggest directions of further research.

For other approaches to the nonsymmetric eigenvalue problem, see for
example, Cullum and Willoughby [8], Saad [30], and Shroff [33] . The classic

reference for the eigenvalue problem is the treatise by Wilkinson [35].
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Chapter 7

Homotopy Method and
Complex Bifurcation

In this chapter, we discuss some of the various phenomena that may arise
on an eigenpath. Usually an eigenpath will be locally unique. That is,
there are no other eigenpaths nearby. This can be characterized by a certain
Jacobian being nonsingular. When this Jacobian is singular, bifurcation
may occur. In other words, two or more eigenpaths may intersect at a point
(uo,t0). We list some of the possible cases: simple quadratic fold, simple
bifurcation point, simple cubic fold and simple pitchfork bifurcation. We
will show thét the generic kind of bifurcation is the simple quadratic fold.
In fact, the transition between real and complex eigenpaths (and vice versa)
are via simple quadratic folds.

We first establish some notation. We use the superscripts 7 and * to
denote the transpose and the complex conjugate transpose respectively. The
null and range spaces of a matrix are written as A'() and R() respectively.

The :** column of the identity matrix I is denoted by e;.
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Given a real n X n matrix A, we form the homotopy
A(t)=(1—-t)Ao+tA;, 0<t<1, (7.1)

where Ap is a real matrix with real eigenvalues. We write the eigenvalue

problem of A(t) as:

Glu,) = [ A(ti“(”m‘) Az ] =0, (7.2)

where u is the eigenpair (z, A) of A(t) and n(z) is a normalization equation.

For the purposes of analysis, we take
n(z) = (zTz - 1)/2.

This may not be valid in some cases. Take for example, any matrix with
an eigenvector z = [1,]7. Here, 27z = 0. The advantage of using this
normalization is that the resultant G is analytic and the real and complex
cases can be treated identically. The usual normalization n(z) = z*x — 1 is
not differentiable except at z = 0. In this chapter, we will always assume
that every eigenvector z satisfies 7z # 0.

Suppose an eigenpair ug is known at time %o, i.e., G(uo,%0) = 0. We now
describe how to obtain an eigenpair at a later time £;. We must separate
the discussion into different cases, depending on whether the Jacobian G% =

Gu(uo, to) is singular or not and on the nature of the singularity.

7.1 Nonsingular Jacobian

When G? is nonsingular, then the Implicit Function Theorem tells us that lo-

cally about o, there is a unique solution u(t) with u(¢o) = uo. Differentiating
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o

Figure 7.1: Euler-Newton continuation

(7.2) with respective to t and evaluating at ¢o, we obtain
G%ip + GY = 0,

where dot denotes t derivative and G? = Gy(uo, o). Since GY is nonsingular,
the above equation has a unique solution %. To obtain the eigenpair at a
later time ¢;, we apply Newton’s Method to the equation G(u,t;) = 0 with
initial guess up + (t1 — to)to. Thié is the Euler-Newton continuation method.
The Euler step (t; — %)t is used to obtain the first Newton iterate (see
Figure 7.1). Provided ¢; — o is sufficiently small, the Newton iterates will

converge quadratically to the eigenpair at #;.

7.2 Singular Jacobian: Simple Quadratic Fold

Here we assume the eigenpair ug is real and
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e GY has a one-dimensional null space spanned by say ¢, and let 4 span

the null space of G,
o G? € R(GY),
o $T(Go47) #0.

Note that G0, ¢? is a shorthand for G9,4¢. The point (ug,?o) having the
above properties is said to be a simple (real) quadratic fold point of the
Equation 7.2. Pictorially, the eigenpath is represented as the solid curve in
Figure 7.2.

Since we can no longer use ¢t to parametrize the solution, we employ the
following pseudo-arclength method due to Keller [17]. Augment (7.2) with

the scalar equation:
g(u,t,8) = ¢7 - (u —ug) — (s — s0) = 0.

This is the equation of a hyperplane whose normal is ¢ and is at a distance

8 — 8g from ug. Now define
F(u,t,8) = [ fj ] =0. (7.3)

We have immediately F (uo,to, s0) = 0. It can be shown that the derivative

of F with respect to (u,t) and evaluated at (uo,to,so)

Gy Gi 1 (7.4)

0 -
F (ut) = [ ¢T 0
is nonsingular. Hence again by the Implicit Function Theorem, F' has a

locally unique solution (u(s),#(s), s) with u(sp) = uo and #(s¢) = to. In fact,
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‘the solution has the form:

u(s) = up + ¢(s — s0) + O(s — s0)?,
t(s) = to + 7(s — 80)% + O(s — s0)3, (7.5)

where
_ 197(G%4%)
T2 PG

From the definition of a simple quadratic fold, 7 is well-defined and nonzero.
Note that dt(sp)/ds = 0. We can apply the Euler-Newton continuation to the
system F = 0 and follow the eigenpath around the fold point. Geometrically,
the solution of F = 0 is the point at which the eigenpath punctures the
hyperplane ¢ = 0. However, once around the fold point, ¢ will begin to
decrease. This is undesirable since our goal is to compute the eigenpair at
t = 1. It turns out that a complex conjugate pair of eigenpaths will emerge
to the right of the fold point. We now elaborate on this point.

Recall that a point Py = (ug, o) is called a bifurcation point of the equa-
tion G(u,t) = 0 if in a neighborhood of P, there are at least two distinct
branches of solutions (u;(s),%1(s)) and (u2(s),t2(s)) such that u;(se) = uo
and t;(so) = to for ¢ = 1,2. If at least one of these branches is complex, we
will call P, a complex bifurcation point. When wup is real, (7.2) is a system
of real equations. From the last paragraph, we know that locally about the
point Py, there is a unique path of real solutions. However, when consid-
ered as a system of equations over the complex numbers, Henderson and
Keller [16] have shown that P, is a complex bifurcation point with a complex

conjugate pair of solutions on the opposite side of the real quadratic fold (see
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Figure 7.2: Complex conjugate pair of solutions on the opposite side of a
simple real quadratic fold point. Dotted lines denote complex solutions.

Figure 7.2). Furthermore the complex solutions have local expansions:

u(s) = uop + id(s — s0) + O(s — 30)?,

t(s) = to — 7(s — 80)% + O(s — s0)°.

They are very similar to the form of the real solution (7.5). Note that the
tangent vector of the complex solution is a rotation of the tangent (¢) of the
real solution.  We can now use the Euler-Newton continuation with initial
step in the direction ¢¢ to find the complex eigenpairs at a later time.

_ The i'esult of Henderson and Keller can be generalized to a complex
quadratic fold point: i.e., up € €C**! and satisfying the three properties

outlined at the beginning of this section.

Theorem 7.6 (Henderson [15]) Let G(u,t) be an analytic operator from
C"t! x R to CT**'. Let (uo,to) be a simple quadratic fold point of G(u,t) = 0.
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- Then in a small neighborhood of (uo,lo), there exist ezactly two solution
branches. They have the expansions for small k|e|:

ui(e) = uo+ee ¢+ 0(e%),

tie) = to—re? +0(e%),

uze) = wuo+iee™/*p+O(e),

ta(e) = to+re+0(),
where

tor ¢*(G2u¢2)
T PpGY

Tre

7.3 Singular Jacobian: Simple Quadratic Bi-
furcation
Here, we assume the eigenpair vy is real and,

e G? has a one-dimensional null space spanned by say ¢, and let ¢ span

the null space of G,
o G € R(GY),
e a+#0and b — ac # 0, where
o = PTG, 4%,
b = T (G,bd0 + G2 9),
¢ = 7 (GL85+ 2G5 d0),

and ¢y is the unique solution of

Ghgo = -G} (7.7)
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‘orthogonal to N(G?).

The point (ug,%o) having the above properties is called a simple quadratic
bifurcation point. In any small neighborhood of (ug,%), there are exactly
two distinct branches of solutions passing through the point (uo,?) tran-
scritically. This case is depicted in the middle diagram of Figure 6.1. If
b2 — ac > 0, then both branches are real. If 2 — ac < 0, both branches are
complex except at the point (uog,%0). See Henderson [15] for a more detailed
discussion.

The tangént vectors of the two bifurcating branches can be computed
and the Euler-Newton continuation can proceed as usual with these new
directions. However, in practice, a continuation method usually jumps over
a simple quadratic bifurcation point. This is because it is highly unlikely for

a numerical step to land exactly at the point.

7.4 Singular Jacobian: Cubic Fold Point

Here, we assume the eigenpair ug is real and,

e G° has a one-dimensional null space spanned by say ¢, and let % span

the null space of G%*,
o G} ¢ R(GL),
o $7(GL.4°) =0,
o YT (GY,061) # 0, where ¢, is the unique solution of

Guh = —Go,¢° (7.8)
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________

Figure 7.3: Cubic fold point.

orthogonal to N (G?).

The point (ug,%o) having the above properties is called a cubic fold point.
There is a unique branch of real solutions near (uo,tp) as well as a complex
conjugate pair of solutions. See Figure 7.3. Cubic fold points were discussed

in Part I of this thesis.

7.5 Singular Jacobian: Simple Pitchfork Bi-
furcation

Here, we assume the eigenpair uo is real and,

o G° has a one-dimensional null space spanned by say ¢, and let ¥ span

the null space of G%",
o Gf € R(G}),

o $T(G2¢%) =0,
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Figure 7.4: Simple Pitchfork Bifurcation.

o HT(GC 1) - HT(GC, dod + G2, ¢) # 0, where ¢ and ¢; were defined in
(7.7) and (7.8).

The point (ug, o) having the above properties is called a simple pitchfork
bifurcation point. On one side of the point, there are three real solutions. On
the other side, there is one real solution and a complex conjugate eigenpair.
The situation is depicted in Figure 7.4. See Henderson [15] for a more detailed

discussion.

7.6 Generic Singular Jacobians

In the previous sections, we discussed four cases where the Jacobian G?
has a one-dimensional null space. It is clear that of all the singular n X n
matrices, those with a one-dimensional null space are generic. Note that for
such matrices, the generic case occurs when ug is real. This is because for

a complex up, its complex conjugate must also be a singular point. Another
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view is that both the real and imaginary parts of the determinant of G?
are zero. For a real ug, there is only one such equation. Of the four cases

considéred, all but the first are nongeneric because they have nongeneric
conditions 7 (G%,4?) = 0 and/or G? € R(G?). The next result characterizes

the generic singular Jacobian GB.

Theorem 7.9 Let G be defined as in Equation 7.2. Suppose for (ug,to) €
R™2, G(ug,to) = 0 and GO is singular with a one-dimensional null space.
Let ¢ and 3 be spanning vectors for N'(G°) and N'(G®") respectively. Then
YT(G,9?%) # 0 iff Ao is an eigenvalue of A® = A(to) of algebraic multiplicity

two and geometric multiplicity one.
Proof: From (7.2), we obtain

G° = A® — Aol —zo € RrH1xn+l
u T3 0 )

Partition the null vectors as:

¢ = [h], ¥' =o', 4,

v

where h,p € R” and v, u € IR. By a direct calculation, we get
PT(GY,¢%) = —2vp"h +p Y B} (7.10)
i=1

(h; is the 1** component of h.) We rewrite the equation $7G% = 0, using the

definitions of ¢T and G?, as

[pT(A° — NoI) + pal, —pTxo] = 0. (7.11)
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Taking the dot product of the first n components of the above vector with
To, we obtain

pT(A° = AoD)zo + palzo = 0.

Therefore,

p=0. (7.12)

The following two cases are the only possible cases in which dim A/ (G%)=1.

e CASE 1: )¢ is an eigenvalue of A® with algebraic multiplicity m > 2

and geometric multiplicity 1. Let

J=Q (A= AI)Q = (7.13)

s

Ja

be a Jordan form of A%~ \oI where J, is nonsingular of dimension n—m

and the zq is the first column of the matrix @ of principal eigenvectors.

J —e1
zZITQ 0 |-

Now from (7.11) and (7.12), we have

Note that G? is similar to:

0 = pT(A°— XoI)
= p'QJIQ™.

Let yT = p7Q. Then
yTJ = 0.
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Thus from (7.13), we can take yT to be el.

From
a[2]-+
v
we get,
(A® = XoI)h = vzo. (7.14)

Using (7.13) in above, we obtain
QJIQh = vao
which implies
Jw=vQ lz = ve;,

where w = Q'h. From (7.13), we obtain the unique solution w = ve,.

Hence yTw = vé,5. Finally, from (7.10),
PT(Glg’) = —2v(p"Q)Q'h)
= —2vyTw
= —2V26m2.
Note that v # 0 since otherwise w = 0 which imples A = 0. We have

reached a contradiction that ¢ is the zero vector. Hence 47 (G9,4?) is

nonzero iff m = 2.

e CASE 2: )¢ is an eigenvalue of A° with algebraic multiplicity two and

geometric multiplicity two. Let

00
J=Q 1A= X])Q = [ 0 0 ] (7.15)
Ja
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be a Jordan form of A®— Agl where J; is nonsingular and of dimension
n—2 and %o is the first column of the matrix @ of principal eigenvectors.

As before, we have from (7.14),
Jw = ve,,
where w = Q~1h. From the form of J, it is clear that » = 0. Hence

T (Go¢?) = —2vpTh = 0.

We have established the claim of the theorem. O

This theorem is a minor variation of a result originally due to H. B. Keller.
A similar result also appears in Li, Zong and Cong [25].

The fact that the generic case of of a singular G2 occurs when )q is an
eigenvalue of A° of algebraic multiplicity two and geometric multiplicity one
may seem surprising. We now attempt to give an intuitive explanation. Let
X be the set of n X n matrices which have )\ as an eigenvalue of algebraic
multiplicity two. Suppose A is a member of X. Now A — Aol can be similarly

transformed to one of:

01 00
0 0 and 00 ,
J 1 J 2

where J; and J; are some nonsingular matricies. The rank of the left and
right matrices are n — 1 and n — 2, respectively. Hence in the space X,
the matrix A — Aol with geometric multiplicity one (i.e., similar to the left
matrix) is generic.

We can infer from (7.13) (with m = 2) that at simple quadratic folds and

simple quadratic bifurcation points, the eigenvalue has algebraic multiplicity
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PG #0 PG =0

P*GP,¢* # 0 | simple quadratic fold | simple quadratic bifurcation

¥*Go,¢* =0 | simple cubic fold | simple pitchfork bifurcation

Table 7.1: Summary of some of the different types of points at a singular
Jacobian G9.

two and geometric multiplicity one. At both cubic fold and simple pitch-
fork bifurcation point, the algebraic and geometric multiplicities are three
and one, respectively. See Table 7.1. The Jacobian G? of course may have
other types of nongeneric singularities. For example, the eigenvalue may
have multiplicities three and two respectively. Note that in our enumera-
tion of the different types of singular Jacobians with a one-dimensional null
space, the case when both the algebraic and geometric multiplicities are two
was excluded. Here, there is no bifurcation because there are two linearly
independent eigenvectors havin‘g the same eigenvalue at the singular point.
The significance of the above theorem is that in practice, we only en-
counter simple quadratic folds and this is the route by which real eigenpaths

become complex.
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7.7 A Bound on the Number of Bifurcation
Points

It is not difficult to show that at a real or complex bifurcation point of (7.2),

the algebraic multiplicity of the eigenvalue of A(%) is at least two. Let
p(t,A) = det(A(t) — M).

Since A(f) is linear in ¢, the above is a polynomial in (2, A) of degree n. It

can be written in the form
p(t, ) = ao(t) + ar(t)A + - - - + an(t)A", (7.16)

where a;(t) is a polynomial in ¢ of degree at most n —¢ for ¢ = 0,...,n and

an(t) = (=1)". Define
ap(t, A
q(t, )‘) = ‘"p—(ai_l
From (7.16), it is easy to show that ¢ is a polynomial of degree n — 1. At a

bifurcation point (¢, A), we must have

p(ta-)\) =¢(t,A) = 0.

This is a system of two polynomial equations of degrees n and n — 1 in two
variables. By Bézout’s theorem, it has either at most n(n — 1) roots or it
has a continuum of roots. The latter case can be shown to be impossible
by examining the discriminant of p. See Li, Zong and Cong [25]. Hence the
eigenpaths collectively can have at most n(n — 1) bifurcation points.

We remark that some of these roots may have a complex time ¢ and that
some roots may lie outside the region of interest (i.e., t € [0,1]). In practice

we see on the order of n bifurcation points.
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Chapter 8

Numerical Algorithm

In this chapter, we describe the numerical implementation of the homotopy
algorithm including choice of the initial matrix Ao, stepsize selection and the
method of solution of the linear systems which arise in the Newton iterations.
We will also discuss the transition from real to complex eigenpairs and vice
versa. For a more thorough treatment of some of these topics, see Keller [18].

Let the symbols ® and & represent the real and imaginary parts of a
quantity. In our implementation of the homotopy algorithm, instead of using
the normalization (T2 —1)/2 = O, we use:

n(z) = [ (x*“"g;l)/ 2 ] 0, (8.1)
where z, is the J* component of z and is required to be nonzero. Now
writing the éigenv:—ﬂue equation A(t)z — Az = 0 as an equivalent system of
2n real equations plus the two real equations from (8.1), there are 2n + 2 real
equations in n+1 compléx variables (z, A) or 2n+2 real variables. (Note that
t is a real parameter and is not counted as a variable.) Another view of why

we need two equations in (8.1) is that any complex constant of magnitude
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.one times a normalized eigenvector remains a normalized eigenvector. The
normalization (8.1) is not analytic as complex equations but their real forms
are infinitely differentiable. In practice we choose J so that |Rz ;| 2 Rz
for all : = 1,...,n. Li, Zong and Cong [25] use an alternate normalization

c*z — 1 = 0 where c is some random vector.

8.1 Choice of Initial Matrix Ay

We first rescale the given n x n matrix A4, so that its largest element (in
absolute valﬁe) has magnitude one. Using Gerschgorin’s theorem, we obtain
a number r such that all the eigenvalues of A; must lie within a circle of
radius r in the complex plane. We choose Ay to be a diagonal matrix whose

elements are the diagonal elements of A, possibly perturbed so that

.. . 2r .
|40(3,8) — Ao(is )| > —7, 1 # 4 (8.2)

where Ag(z, j) denotes the (2, j) entry of Ag. More precisely, we define Ag(1,1)
to be A;(1,1) and for i > 1, we take Ag(Z,%) to be A;(¢,1) + & where 6 is
the smallest number in magnitude which makes Ao(%,7) satisfy (8.2) for all
j < 1. This Ay has unique eigenvalues and the eigenvectors are just the
standard unit vectors. With this choice of Ag, the initial normalized tangents
z;mre unique and easily éomputed. There is no theoretical justification for
the bound in ( 8.2). From numerical experiments on random matrices, the
spectrum of A with this particular bound seems to be reasonably distributed.

Ideally, Ao should be chosen so that the number of real and complex

bifurcation points be minimized. This is because there is extra work involved
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in locating real fold points. In the example shown in Figure 6.2, by simply
reordering the diagonal elements of Ay, it is possible for the eigenpaths to
have jﬁst 3 réa.l fold points. This is the minimum possible because this A,
has six complex eigenvalues. Another desirable property of Ao is that the
eigenpaths be well-separated. This decreases the chance of the path-jumping
phenoinenon,. However, it seems extremely difficult to choose a priori an

initial matrix which has both the above properties.

8.2 Transition at Real Fold Points

The homotopy starts off from Ag and advances using the Euler-Newton con-
tinuation, solving the problem in real space. When it detects that it is going
backwards in time, then a real fold has been passed. By the theory of the last
chapter, there must be a complex conjugate pair of solutions on the opposite
‘of the real fold. We first get a more accurate location of the fold point by
using the regular-falsi method to approximate the point at which dt/ds = 0.
(Recall that this is a necessary condition at a fold point.) With the aug-
mented system, the Jacobian (7.4) is nonsingular so there is no numerical
difficulty in the task. We store the location of this fold point in a table for
later reference. Using the tangent vector ¢ at the fold point, we solve the
i)roblem (7.2) in complex space at a later time. This is done by carrying
out the Euler-Newton continuation with the initial tangent i¢, in accordance
with the theory of Henderson and Keller. |

When the partner of the above path comes from the other arm of the

same fold, it checks that the fold point has been visited before and it stops
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- further computation. This way, only one path of a complex conjugate pair
of eigenpaths is computed. |

The reverse of the above situation also arises, although less frequently.
That is, time is decreasing when we are advancing along a complex path.
Generica,lly, there must be a real fold on the opposite side of this complex
path. 1t can be shown that the Jacobian of the system (7.2), with normal-
ization (8.1), is singular at the (real) fold point. Hence it is not wise to
approximate it in the same manner as described in the first paragraph of
this section. Our procedure is to choose from the last two computed points,
the one that is closer to the fold point (i.e., the one whose eigenvalue has the
smallest imaginary part in magnitude). From this point, we take a small step
and solve the problem (7.2) in real space. Suppose the new real eigenpair is
u;. We then apply the Euler-Newton continuation in both the directions %,
and —u;. See Figure 8.1. Because the problem is being solved in real space,
there is no chance of converging back to the complex solution. On a parallel
computer, the node which became idle at a fold point can be invoked to carry
out the computation along one df these directions.

When a fold point is approached from the complex side, it is also possible
that the continuation step converges to the real solution on the other side of
the fold point (instead of turning around the fold and remaining complex).
In this casé, we carry on as explained in the previous paragraph except that

we no longer need to take the first step since the eigenpair is already real.
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Figure 8.1: Transition from a complex solution to a real solution at a fold
point. Dotted lines denote complex solutions.

8.3 Computing the Tangent

Suppose two eigenpairs ug and u; have been found. We wish to compute the

tangent vector at ¢;. In the formulation (7.3), we have:
FJ'T..III + Ftlil = 0,

where the superscript ! denotes evaluation of the Jacobian at (uy,?;) and dot

denotes s derivative. For a unit tangent, we require in addition:
Uity + £ = 1. _ (8.3)

Note that the above two equations define the tangent up to a sign. To ensure
that we are always computing in the same direction, we further impose the
condition,

E’R(d;‘;m) + ioil > 0.
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- Because (8.3) is nonlinear, we solve instead the system (when u, is real):

EdIMEl

The tangent (i,¢,) is obtained by normalizing the solution of the above

system.

8.4 Solution of Nonsymmetric Linear Sys-
tems

To compute the tangent vector and in each iteration of the Newton method to
find the eigenpairs, a nonsymmetric linear system must be solved. A direct
solver is out of the question because the system is large. Unfortunately,
iterative solution of nonsymmetric systems is still in the research stage and
there are no fast, robust iterative solvers (except for special linear systems).
In our implementation, the conjugate gradient method is used to solve the
normal equations. That is, to solve Az = b, we apply the conjugate gradient
method to the symmetric system AT Az = ATb. This has the disadvantages
of requiring AT, which may not be readily available and the condition number

of the new system is the square of the original one.

8.5 Selection of Stepsize

Suppose we have the two eigenpairs ug and u,;. We obtain stepsize 8s; for u

as follows:

532 = 681 (%('I:&;’fl;]) + iOil + .5),
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where 6s; is the stepsize used to obtain u;. The idea is that when the
two previous tangents are parallel, then we increase the stepsize by 50%. If
the tahgents >a,re perpendicular, we decrease the stepsize by a half. We use
the above scheme until the time is close to one, when we solve the system
G(u,1) =0. .

Whenever a Newton iteration fails to converge after say 8 iterations, we

restart it with a stepsize that is one-half of the original one.

8.6 Path-jumping

Path-jumping is a serious problém for the homotopy method. This is the phe-
nomenon where the Newton iteration converges to another eigenpath. This
occurs when the stepsize is overly ambitious or the linear system involved in
the solution of a Newton iterate has a large condition number.

An elegant method of detecting path-jumping is available when the ma-
trix is symmetric tridiagonal with nonzero off-diagonal elements (Li and
Rhee [24]). They employ the Sturm sequence property of symmetric ma-
trices. However no satisfactory procedﬁre is known for general matrices.
One ineﬂiciént way is to use the property that the sum of the eigenvalues of

a matrix is equal to the trace of the matrix. Noting that
Tr(A(t)) = Tr(Ao) + t(Tr(A; — Ao)),

almost all path-jumps can be detected by summing the computed eigenvalues
and comparing to the above expression for the trace of A(t). However this

does not tell us which path has jumped and hence it is necessary to recompute
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. the last step for all eigenpaths. Another drawback is that the computation
of the eigenpaths must be synchronized.

We resorf to some safeguarding mechanisms to avoid path-jumping. If
the change in time and the magnitude of the change in eigenvalue of the
newly cénvepged eigenpair is greater than twice the corresponding average
changes of the past eigenpairs then we discard the new eigenpair and restart

the Newton iteration with one-half the original stepsize.

8.7 Parallel Aspects

The homotopy method is fully parallel because each eigenpath can be com-
puted independently of the others. If the sparse matrix A(t) can be stored
in each node, then there is no communication overhead at all other than the

trivial broadcast of the location of a fold point.

8.8 Homotopy Algorithm of Li et al.

Li, Zong and Cong [25] use a different strategy in their homotopy algorithm.
They first use Householder transformations to reduce the given matrix to a
similar matrix A; in upper Hessenberg form. Their initial matrix A is the
_same as A; except one subdiagonal entry is set to zero. They use a divide-
and-conquer stratégy to obtain the eigenpairs of Ag. Because Ay is very close
to A;, the eigenpaths will be nearly straight and path-jumping is much less
of a problem here. The performance of this method is very encouraging.
However, it requires storage of the entire matrix in addition to work storage

to find the eigenvalues of Ag. For another approach to finding the eigenvalues
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- . using homotopy, see Lenard [23].

8.9 Numerical Results

We have implemented the homotopy on a SUN Sparc 2 workstation. It runs
extremely slc;wly for large matrices. For a 50 by 50 matrices, the execution
times are about five hours. (If we replace the conjugate gradient solver by
gaussian elimination with partial pivoting, it takes about 30 minutes.) This is
" not too surprising if we examine the time complexity of this algorithm. Each
of the n eigénpaths requires O(n®) operations for one Newton iteration. If we
assume that the number of Newton iterations and the number of continuation
(time) steps are constant, then this is a O(n*) algorithm. In contrast, the
QR algorithm is O(n®). In practice, the Newton iterations converge after two
to four iterations. To minimize the chance of path-jumping, we take rather
small stepsizes. The number of continuation steps is a growing function of
the size of the matrix. Typical numbers are 10, 15 and 25 for 4 by 4, 10
by 10 and 50 by 50 matrices respectively. Path-jumping occurs up to five
times for the random 50 by 50 matrices which we have tested. This results
in missing two or three eigenvalues in the computation. We have also tested
some 40 by 40 matrices arising from the discretization of reaction-diffusion
>equa,tions with varying degrees of success. In Figure 8.2, the eigenvalues
are well-separated and the homotopy method encountered no difficulty in
computing all the eigenpairs. |
One nice feature of the homotopy method is that it is able to handle

defective (i.e., nondiagonalizable) matrices. This is because even though the
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Figure 8.2: Eigenpaths of a 40 by 40 matrix arising from the discretization
of a reaction—diffusion equation. Only one path of a complex conjugate pair
of eigenpaths is shown.
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- given matrix is defective, the matrix A(t) is almost always diagonalizable
right up to ¢ = 1. |

Empiricélly, we notice that the eigenpaths move in a relatively simple
fashion as t progresses. That is, there are no wild oscillations and the paths
in generé,l maintain their order where they are ordered according to ®A. Thus
hométopy method has the potential to efficiently find an eigenvalue with the
largest real part. Such eigenvalues are of interest in linear stability theory for
partial differential equations. For a sample of twenty 50 by 50 matrices, we
follow the two eigenpaths whose initial eigenvalues are largest. In 16 of those
cases, the correct eigenvalue was found. We have not been able to devise a
mechanism to guarantee that an eigenpath will end up (at ¢ = 1) having an
eigenvalue with the largest real part.

We have also tried the other normalization (z7z — 1)/2 = 0 and the

results are similar.
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Chapter 9

Conclusion

We have presented a homotopy method to compute the eigenpairs of a real
matrix. Starting with a matrix that has real and distinct eigenvalues, Euler-
Newton continuation is used to advance the eigenpaths. An eigenpath will
remain real unless it encounters a real fold point. On the opposite side of this
fold point, two complex conjugate eigenpairs emerge. The reverse situation
where two complex conjugate eigenpairs meeting at a real fold point with two
real paths bifurcating to the right also occurs. By restricting the solutions
in the real space we have shown how to deal with these transitions without
numerical difficulties.

For a large, dense n by n matrix, this algorithm has time complexity of
O(n?) é.nd hence it is prohibitively slow. The storage requirement is pro-
portional to the number of nonzero elements of the matrix and thus it is
attractive for a sparse matrix. The algorithm seems to work well even if
the original matrix has multiple eigenvalues and even defective eigenvectors.
This together with the fully parallel nature of the algorithm may make it a

competitive method for the large sparse nonsymmetric eigenvalue problem.
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However several obstacles must be overcome first. We have already men-
tiongd the path-jumping problem and the inadequacies of our iterative linear
solver. Anofher open problem is to come up with a good initial matrix for the
homotopy which would minimize the number of bifurcation points and keep
the eigénpa.ths well-separated. Finally, we would like to determine selected
eigeﬁvalues (for example those with the largest real part) by just following

one or two eigenpaths.
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