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ABSTRACT

The effect of a plane discontinuity on a plane wave
propagated in s cylindrical tube is celculated by variational
methods; In carrying out the calétulations, a transmission
line analogy is used and the effect of the discontinuity at a
distance is represented by a capacitance placed at the dis-
continuity.

In section 1 the equations of motion for the
propagation of a small disturbance in a cylindrical tube are
established, culminating in the two~dimensional wave equation,
while the solutions to the equetions are discussed in section 2,
These solutions constitute an infinite set of modes, in.
addition to the plane wave usually trested in the literature.
In section 3 the analogy between propagation of sound and an
electriocal transmission line is established, and it is shown
that each ﬁode requires a separate transmission line, In
section 4 it is shown that the effect of.the higher modes
excited by a plane discontinuity may be represented by a lumped
capacitance, and this capacitance is given by a variational
expression which gives a systematiec method of calculation
yieldihg an upper bound to the true answer. For the case of a
window, a variational principle is produced which gives a |
lower bound to the true answer. In section 6 this method is

appolied to a window in a rectangular tube in some detail, in
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sectién 7 it is(applied to a change of cross section in =
rectangular tube, and in section 8 it is applied to windows
and changes of cross section in circular tubes. In section 9
the reflection and transmission factors are calculated, and in
section 10 the resonant frequency of certain types of reson-
ators';s calculated.

To the author's knowledge this is the first rigorous
treatment of the above problems with the exception of an
earlier paper calculating the reflection due to a change of

. . . R 21
cross section in a circular tube. (21)
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1. The Equations of Motion

If we assume a fluild medium to be sufficiently
dense so that any differential element of length considered
is large relative to the mean free path of the molecules

and to be free of viscosity, Newton's law may be written

.

— = "'? T, e S
(pm:ﬁ)l'%?f RN RS e (1)

where.Jo o and po are the mean mass densities and pressure
in the regions under consideration, respectively, and p
are the deviations from these means, énd g is the vector

velocity at any point in the fluid. The equation of con-

tinuity demands
2 (PetP) + Vo YR g1 = (2)
2 (Rot ) LPrpag]=0 |

If we restrict our treabtment to small disturbances such that

second order quantities are neglected, (1) and (2) simplify to

e

Po 9T = —vp
3t | - (3)

?aﬁ R o F =
v S 1 (4)

If we make the usual assumption that the fluctuations of
pressure and density are so rapid that the compression is

essentially adisbatic, we may write

N

(Po + P> {,,po }f}?m e <o

Ll

T (5)
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where ‘)’is the ratio of the specific heats Cp/Cv evaluated
at pclan@jo O 'Differentiating (5) and evaluating the con-
stant at P anddféo, we obtain

p=cp | (6)

'-""": Dp o Y bD
C Dy JOO (7)

where second order guantities have been neglected. Finally
we take the divergence of both sides of (3), interchange the
operations of time and space differentiation, substitute the

divergence of g from (4), and substituteJ/) from (6) to obtain

v =k z}g (8)

which is the well known scalar wave (Helmholtz)} equation.,
We observe that ¢ is the velocity of propagation for the
disturbance; in the standard atmosphere (20°C, 760 mm Hg,

Y =14 S0 = 0.00122 gm-ce "F) (7) yields ¢ = 544 m-sec”t
which is in close agreement with the observed velocity in the
normal acoustical range (where p anéjc are actually small
compared with Do andwxﬁo) thus justifyiﬁg the assumption of
adiabatic compression.

If we now restrict ourselves to the harmonic time

s 000 136
dependence er&t (3) becomes
BT - -\
9 = (W) Ip (9)
and (8) becomes
< ey
¢ e A = et
v p +Kp =0 , Weg=2n (10)

¥ Taoh GF The Titerature the time vedation is taken as e 2 °
in order to facilitate the discussion of wave propagation, but

eJwt is used here to facilitate the application of impedance
concepts.
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where K is the wave number, and.>\is the wave length. Hence

the vélécity istderiVable from a scalar potential satisfying (10).
We restrict ourselves further to a cylindrical region

described by the orthogonal coordinates (u, v, z). Separating

out the z portion of the Laplacian operator and then separating

out the z dependence of the pressure in the usuvual manner, we

h T a2
" pwwn = pun et
(11)
v ) + W tuw) =0 (12)
oz K- (13)

where the choice of a negative or positive exponent in (11)
corresponds to a disturbance propagating in.the directions of
increasing and decreasing =z, respectiﬁely. Our problem is now
reduced to determining solutions to the two-dimensional
equatioh (12) over a plane surface bounded by'the intersection
with the particular bylindrical surface being considered and

Ay . : .
subject there to the boundary condition -

V$F= 2 ng (10

L0

né 1

where i is the unit vector normal to the bounding surface.
Physically (14) is imposed by the condition that the velocity

have no component normal to a fixed surface at that surface.
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2. The Solutions to 1 (12)

We now turn our attention to.the solutions of 1 (12).
It is well known (1)that there will be a doubly infinite gset of
golutions @ mn ("eigenfunctions") corresponding to the set of
"eigenvalues" ¥ mn, the latter being determiﬁed by the boundary
condition 1 (14). These solutions are easily shown to be

“orthogonal to integration over the surface in a plane of constant

z3 to prove this property, we use Green's second identity (2)

_
\ T \}) - P! ’t;‘ P A U U S A oSt A N S SR
JJs LPr 08— gy c2bfel§ o S IR S S

M) “‘w

which, for our purposes, may be written

_ . T O e A - PN IO B R I
&\ﬁ’; %.(%3 - 4)]' .‘}..f;tﬁ“f A = ) g x_b» T TN Wi Dt (2)
To prove (2), we consider the volume enclosed between two planes
of constant z which are a distante e apart and the cylindrical
surface; then if we let e approach zero dS in (1) may be replaced
by edl where dl is a line element in the limiting contour since
the surface elements in the planes of constant 2z mﬁtually cancel,
(provided, of course, that the surface between the two elements
does not contain a.discontinuity in §i or Fj); similarly dv ini
(1) may be replaced by edS where dS is a surface element in the
plane of constant z. Hence the surface and volume integrals in
(1) may be replaced by line and surface integrals, respectively,

for a surface formed by the intersection of a plane of consgtant

z with a cylindrical surface. If ¢i and @j are now taken to be
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solutions to l (12), the line integral in (2) vanishes
identically because of the boundary condition 1 (14), and
substituting the Laplacians from 1 (12) in the surface
integral we obtain

(%2 = %5) {5 #4570 (3)
which proves the orthogonality. If i = j it is clear that the
only way in which the surface integral in (5) can vanish is
to pick the trivial solution @i - O, inasmuch as the integrand
is then positive definite. For convenience we normalize the

solutions & mn such that

335 Do pq 5= 97 5y ()

Hence the set @ mn is orthonormal. The proof of uniqueness

is complicated by the possibility of free oscillations, but

it is physically clear that sueh oscillations must eventually
die out. This matter, together with the explicit solutions,
has been discussed extensively in the literature (5,~4, 5 and
6), and no attempt will be made to give a proof of unigueness
herein, as it may be considered physically obvious in the face
of small but finite attenuation.

If we make the choice W = 0 in 1 (7), we have Laplace's
equation, and the only (non-trivial) solution compatible with
1 (14) and (4) is

g ~Vz
$ = 9 (5)

where S is the cross-gectional area of the cylinder. It is
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obvious that (5) satisfies (4); to show it is the only solution

to Leplace's equation compatible with 1 (14), we write Green's

first identity \as

3\ ¢ \ / Ll 'f‘ " E‘ 4 M‘J; »:5‘45" “i 3 )Tﬁ; r’;“’\ - - ‘L‘ 'w {1 '
@7‘ TJ f%fl 4 3\0 \}\ Wby LY 4y ) + d)z, N {{{) ] 45 (6)
P13 ;

WL L
v

et

which is obtained from the more usual form exactly‘as in the
case of the second identity of (1) and (2). If we let @i = @
be a solution to Laplace's equation satisfying 1 (14), (6)
‘becomes vv_F

§s TelS= 0 G
Since the integrand of (7) is positive definite it must vanish
identically, and @ is a constant.

The solution ﬁo is the most importént of all the
elgenfunctions and is the principal wave corresponding to the
usual plane sound wave consisting of alternate longitudinal
condensations and rarefactions of the medium. In order to
appreciate the importance of the principal wave or mode we
investigate further the physical properties of the other modes.
From 1‘(15), we observe that the propagation constant hmn of
the fmn mode is iﬁaginary if)ﬁ mn is greater then K; accordingly,
there are only a finite number of modes in any set (corresponding
to a given cylinder) which are capable of transporting enérgy,
for an imaginary value of the propagetion constant implies
attenuation. In»this reépect we remark that the sign of the
exponent must be chosen tq ensure attenuation, i.e. waves which

vanish at infinity are those corresponding to physical reality,

CONBTDENTTAT,
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and that the attenuation involves no dissipation of energy since

the pressure and velocity are 90° out of phase (cf. 1 (9)).

Por any given mode we oObserve that the propagation constant is

imaginéry for all frequencies below the "cutoff" freguency
‘(A)wm = C}e‘mn (14)

as given by 1 (13), The phase velocity of any mode is given by

Tl “‘*El‘g"
Vo= & = X< = w(w=wm) ©
v R
which (when real) is always greater than or egual to the

(15)

velocity c. The Velocity with which the signal propagates
("group" velocity) obviously is a function of frequency and is
a£ best a nebulous concept 1f the signsal is not monochromatic,
Suppose, however, that the. signal consists of a group of waves
with wave numbers h distributed continuously from h, - e to
h

o ~ ©, the contribution to the signal from the interval dh

at h being A (h). The resultant signal intensity at z is

. FAVE S Jlwt~he) |

5= 17 A e b
.\ha“e

If we define the signal amplitude as

c S'mw JLtw~wedt = (-, mET

(16)

=

Aln)e
»\a“e
we may write _
o S Wt =)
oF Le

CM‘ (17)

(18)
The signal velocity is the time derivative of z and must make
C & constant., If e is small the theorem of the mesn gilves

C =2¢ A(L) LB -wat ~ (T -ho)2] (192)

S
e ; (19b)
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Assumirg C_tb be constant and differentiating, we obtain

-, tfx‘;ﬁ - (TJ“‘UJ;
Ny = ZE o= L (20)
de R"‘l’\@ '
where Vs is the signal velocity. If e is an infinitesimal

we have ]
AT
{. = RSl
\’\5 - K PRV i.m (21)
Evaluating (21) from (15) we obtain
“Eon
e o ST Vi
!t) , Yoo 23 (22).

Referring to (15) we observe that for high frequencies both
Vs and Vmn are asymptotic to ¢, but as ¢ approaches the
cutoff frequency [l mn the phase velocity Vmn approaches in-
finity, while the signal velocity Vs approaches zero, and
below the cutoff frequency Vmm is imaginary (signifying
attenuation), while the signal velocity has, of course, no
meaning.

We have seen that when a2 signal is not monochromatic
the various components travel with different velocities and
phase distortion takes place, the amount of distortion being
proportional to the distance traversed along the z axis.
Moreover, even a mbnochromatic signal undergoes phase distortion
if more thén one mode is allowed to propagate since the different
modes have different phase velocities for any given frequency.
In practice the attenuation i1s also a function of the freguency
and mode, so that frequency distortion masy also be expected.

We conclude that the principai mode is unique in being freely

propagated for all frequencies with a velocity which is

CONFIDENTIAE
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identically equal to ¢; i.e., the principal mode is in-
dependent'of thé geometry of the cylinder in which it
‘propagates and behaves as if in an infinite medium. In
practice only the principal mode should be allowed to
propagafe (which may be effected by choosing the_dimensions
of the tube sufficiently small compared to the wavelength),
but the other modes must generally be excited at a discon~

tinuity in order to satisfy the boundary condition 1 (14),

CONFIDENTIAL




3e The Transmission Line Analogy

It 1s fruitful to compare the transmission of sound
in a tube with the propagation of an electric wave along a
transmission line. To this end we consider first the principal
mode. Since @o is constant the gradient of the pressure has

only a g component; hence from 1 (9) we may write

—Jw W(zi_)r-%.,b(%) (1)
&
where W is the 2z component of gs If we differentiate both

sides of (1) with respect to 2z and use 1 (10) we may write

R PR = 2wiR)
5 2% - (2)

If we define the characteristic admittance Y , as

Y
.QJO‘: wPﬁC':?’ 2@

(3)
(where Z o is the characteristic impedance) (1) and (2)
become
-k T wez) = 2 P
(4)
—i K Ry .%%W(?) (5)

which are the partial differential equations of an ordinary
~transmission line having a voltage w (2z) and a current p (z)

at the point 2z (8). If the time variation is not harmonic, we

may replace jK by %—,é%}. Our choice of voltage and current
(implicit in our choice of Z o) is inverted from that of the

elementary electrical analogy found in much of the literature (9)
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(where voltages. p and currentaw), but it has the distinct
advanﬁage that fhe boundary condition imposed at the end of
a closed tube is the vanishing of the normal velocity
oorrespénding to zero volbtage at the end of a short circuited
transmission line; similerly the boundary condition at the
end of an open ended pipe is p = 0, corresponding to gero
current at the end of an Opén circuited transmission line. In
addition it very often occurs in practice that the disturbance
in the fluid mediuvm is made to drive a moving coil mechanism
to convert the hydrodynamical energy to electrical energy; in
this case the current in the coil will be proportional to the
pressure of the fluid, and the equivalent electrical circuit
for the tube may be imagined directly connected to the
electrical receiver, whereas the choice of pressure as the
analogue to voltage requires the acoustic impedance to become
an electrical impedance.

In the case where the propagaﬁed mode is not the

principal mode the characteristic admittance may be generaliged

as NY s ».\, o \
o Xf WAV \{
mn D Zywan | (6)

while the generallzatlons of (4) & (5) are easily seen to be

Yy Sayony d

‘4 N ; Lo e 3 s
i s) h ¥ _Z‘/Yl V. W ( ‘W};\‘_; 40 ”"mn%)m- Varayy o
Qi (7)

m.\) N x_’zvvm me WY T :gi-. Wi (M2

(8)
which satisfy 1 (9) & 1 (10) since differentistion with respect

CONFIDENTIAL
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to z is effected by the operator jhmn. For the principal

mode hmn = ho =.K, and (6-8) obviously reduce to (3-5). We
remark, however, that (7) & (8) are not true transmission iine
equations inssmuch as they involve the transverse coordinates

u and v to remove this difficulty we write

\ - o Py

pmw(uﬁﬁw = 4 meiﬁ)¢Mwwhhv3 (9)
e 1 - 25

N LRV, S by W LR P S s (10)

where a and b are arbitrary constants, and Tmn (z) and Vwn (z)
are the "ecurrents" and "voltage™ measuring the pressure and
longitudinal veloeity, respectively, of the mn 'th mode. If

we substitute (9) & (10) in (7) & (8) we obtain

i~ - S S SO
o \S ‘P/‘) Wi v ( % ﬁm ,} \\f;fi':;,-1 { ok 1 {;}2 o S {2 \a (11)
N T T R )
i ‘} \V\ A Yy 4 i-%‘:; :i Y %) , i (‘2‘;‘)’ e NE;ZL 1337 (~12)

We observe that if the only restriction to be imposed on Vmn (z)
~1s the satisfaction of transmission liﬁevequations and the linear
measurement of w (2) and p (z) the charaéteristic impédance Z mn
is established only up to an arbitrary constant a/b., To com-
plete our transmiséion‘line analogy 1t 1s expedient to require
the timevaverage of the complex power at any surface of constant
-z in the cylinder to agree with the complex power atvthe same

point on the equivalent transmission line, viz:

N

, * . . o B
\ ?"’*‘f‘a ¥ (\‘) \;} "“}' }vmm { ’3 J‘ ) l"R \) = %n \"éf?‘v“i’:-“i‘; M 2 } Lowaw Vi) (15)
'J =

a)
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where the factor of 1/2 effects the r.m.s. time average.

Substituting (li) & (12) in (13) we obtain
™ by
J[b 3%3 L{PW\V\ {U.N)] t’}) \S il j (14)

so thet the product ab is associated with the normalization

of the eigenfunctions; in particular if we choose the normal-
ization of 2 (4) the product ab is equal to unity, and although
this particular choice of normalizstion is in no way required
for the validity of the transmission line analogy, we shall

make it in the interest of convenience. Having fixed the

product ab we are still free to choose the ratio s/b which

is essentially connected with the choice of the characteristic
impedance which enters in the transmission line equations (11)

& (12)« To agree with the choice of characteristic admittance

of (3) both a and b are unity, and this is probably the

gimplest choice. Another convenient choice is to take b eqgual

to the équare root of the surface area S and a as the reciprocal
of b, whence, for the principal mode force, rather then pressure,
is being taken as the analogue of current. Such a choice makes
our transmission 1ine analogy a distributed parameter application
of the M"mobility" or "electromagnetic" mechanical-electrical

~analogy for lumped parameters. (10) We shall make the choices

\,“‘\w ;;‘\912. - =)

Nt

(15a)
as this mekes the voltage of the principal mode equal to the

total flow in the tube; hence the voltage will be continuous
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across & change of cross section in the subseguent analyses.
For this particular choice of a and b we have

iy

Jo = pot]S | (150)
We emphasize again the sbove particular choices of a and ©
are by no means imperative and that the equivalent transmission
line is fixed only up to these constants. In practice the
physically measurable quantities such as reflection factors
and standing wave ratios will depend only on the ratios of
impedances so that the choice of a/b is dictated purely by
analyticel convenience.

We havé Seen that it is possible to represent the
propagation of a single mode by an egquivalent transmissioﬁ
- line, the‘characteristic impedance and propagation constant
of the line depending on the particular mode., It is important
to realize that as many transmission lines are required as
there are modes; however, for fixed dimensions and frequency
there are only a finite number of modes whose transmission
lines possess real characteristic impedances, and only these
lines propagate energy, while those lines having imaginary
charécteristic impedances can only store energy, i.e. the
pressure and velocity on the latter lines are 90° out of phase.,
If one considers the propagation of a disturbance down a
cylindrical tube it is apparent that those modes having imaginary
- propagation constants are exponentially damped out; hence the

stored energy is concentrated in the vicinity of the source
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(either a primary source or the scattering effect of a dis-
continuity) Whiéh radiates the non-propageted modes. Accord-
ingly, if we are not interested in the behaviour of the medium
in the immediate vicinity of the source, all transmission lines
having imaginary characteristic impedances may be lumped into

a single network containing only reactive elements and located
at the source.

Inasmuch as the impedance presented at the input
terminals of an infinite transmission line (fthe reactive lines
may be regarded as extending to infinibty as far as thelr effect
at the source is concerned) is the characteristic impedance,the
reactance of the element representing any given transmission
line is simply the cheracteristic impedance of that line.
Referring to 1 (13) and (8) and choosing the éign of hmn {when
imaginary) to ensure.attenuation towards infinibty, we observe
that the characteristic impedance is positive real or purely
resistive for propagated modes,and negative imaginary or purely
capacitative for non-propagated modes. We must hasten to add,
however, that the frequency dependence of the capacitative
reactances is not that of a simple lumped capacitative element,

but is that of hmn/K (@f.(8)). However, we note that,

asymptotically, L o o
P Sl I R
A vom a2V S N e A
K ] W W = (220 e (16)

In order to lend some physical significance to the

capacitative nature of the non-propagating lines in the actual
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hydrodynamical case we must find the hydrodynamical analogue
fo capacity. Hlectrically, capacibance is the time inbegral
of the current (charge) divided by the voltage which produces
it; hence, remembering that time differentiation is replaced
by the operator jWwW , we may write

UC] l Pdt] - Xy}1m2-~ ij;im'g _

IERERY N

t

N
i
- (17)
b

L

The stored electrical energy in a capacitance is 1/2 C V2,

2 = = 1/2 Mw® = kinetic energy.

and hydrodynamically we have 1/2 C V
In our equivalenée we have used énly the longitudinal velocity
w, 80 that the stored energy in the reactive traensmission lines
represents a kinetic energy stored in alongitudinal motion of
the medium due to the non=propagated modes., Of course, there
is additional kinetic ehergy stored in the transverse motion of
the medium, but this motion has no direct effect either on the
magnitude or phase of the propagated energy which is our ultimate
interest. In establishing a quantitative measure of the energy
stored in the vicinity of the discontinuity under consideration,
we must remember that our guantities have been normalized
(cfe (13)) in such a way that the energy flow in the equivalent
circult represents the total energy flow and not the energy flow
per unit areas.

Due to the fact that the effects of all non-propagated

modes are capacitative, there is no possgibility of resonance due

to the combination of inductive and capacitative effects in the
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seme 2 plane; nevertheless it is possible to cancel the
cépacitative effect of a discontinuity in one plane by a
discontinuity in a second plane which, transferred through the
equivalent transmission line between the two planes, appears
as an iﬁductive effect in the Tirst plane.

Our cylindrical tube has now been replaced by a
finite number of transmission lines corresponding to the finite
number of transmitted modes plus lumped networks at points where
gsources and discontinuities exist. This representation will
_describe'accurately the propagation of the sound except in the
immediate neighborhood of the sources and discontinuities. The
unit of measurement of this "immediate neighborhood" is the

wavelength of the disturbance>in‘the tube which is K/hmn times

the Wavélength'in open space.

(11)

It can be shown that the equivalent lumped

circuit for =z dissipationless transmission line of length 1,

characteristic impedance Z = (Y’l ), and propagation constant h

is either a T or network as shown below.

(18)
(19)
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=20~

(20)

AT

The above schematic representations implicitly agsume h and 7

(21)
to be real, corresponding to & propagated mode, but (18-21) are
valld for non-propagated modes if it is,remémbered that both
h and Z are negative imaginary for.such modes; hence, beyond
cutoff, the inductances pictured ébove become capacitances, and
the transmission line for a given mode acts as a high pass
filter (12); Finally, we remark that the lumped networks have
no direct physical (hydrodynamical) interpretation since there
is no such thing as a lumped hydrodynemical inductance.

Two important specisl cases in practice are the open
ended and closed tubes (corresponding to open and short circuited

lines, respectively). Using the above equivalent circuits we

may write for the input impedances and admittances
- e - e Py
Z ag ™ ‘&3 %a,' S e ‘;»‘, A7

(22)
3 L v ’ .
25&3 J £v+mm&%ﬁ)

R (23)
mﬁﬁaﬁ é*ﬂ:%MuxiMQE

. pY 3 ( 2 4 )
“wl . N I R

:2: R I Lo L) (25 )

Notice that the resonant lengths depend on the mode (i.e. h) and
are infinite in number, For the more general case of a terminating

impedance Zy or terminating admittance Yf , the irput

CONRPTDRENT TAT,
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impedance is

. £y 2B, |

\ o PR
s ()= 7 55% ) PR
TES g Vo 4

while the input admittance is

e B ./h ‘Y "‘{?'} “{ v
) &thPwé>J (26)

. ..3

(27)

¢
!
b eon
i
i

@&E(H()4 (?Lfﬂ
We observe that if hl =11 (i.e. 1 = 1/2 wavelength in the
tube) 21 = Z %, so that = half wavelength of line acts as
an one to one transformer, while if hl = %g 2 i= Zg/ 2 ﬁ,
so that a quarter wa&elength of line effects inversion about the
circle R = Z2 ., These and many other important properties are
dl%cussed in more detail in any book dealing with high frequency
applications of transmission lines ( 5)
In practice, the excitation of sound in a tube is often
accomplished by a vibrating piston which may be driven with either
constant velocity or constant force. In the former case the
equivalent source representation is a constant voltage generator,
while in the latter case a eonstant current generator is indicated.
Consider now the general discontinuity formed by a
region containing arbitrary obstacles and diaphragms aﬂd which
acts as a junction between n tubes terminating there. We shall
assume that the frequency and dimensions are such that.only the
principal mode propagates freely in each of the tubes, but due
to the discontinuity, higher modes will be excited and will
affect the phase and.amplitude of the principal mode.reflections.,

If voltages and currents Von and Ion.are defined ss in (9) and

CONFIDENTIRL
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(10) in each of the tubes as measures of the longitudinal
velocity and pressure, respectively, then due to the linearity
of Tthe original equations of motlon, the discontinuity may be
described by an impedance matrix ( 2 ij) (the Zij are not
directly related to the characteristic impedances 4 mn) such

i
-‘\7‘(;) = NZ Zm

¢
=) J

that

<
s \
It

1. (28)

where the voltages and currents are measured in arbitrary (but
fixed) reference planes in each of the tubes. The equivalent
circuit then consists of n transmission lines of characteristic
impedances 53YB terminating in a 2 ﬁ-terminal network
described by the impedance matrix ( 4 ij). Since the impedance
matrix deseribes only the effects of the higher modes, all of
its elements will be'reactive, but inasmuch as the reference
pleanes in the tubes are arbitrarily fixed, the elements of
( 2 ij) are not necessarily capacitative, as a section of
line may transform a capacitative reactance to an inductive
reactance. However, in the special case where the discontinuity
is in a single plane of constant 2z, and all of the n reference
planes are made to coincide with this plane, we may further
assert that all of the elements of ( Z ij) are capacitative.
Due to conservation of energy we may show that reciprocity
holds and hence that 5 ij = % ji,

In the experimental determination of the matrix ( 213,

all the impedance elements are determined relative to 2 o, since
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guantities which are physically measurable depend only on
the ratios of 4ij to 2o ag indicated in the discussion of
(6=14) above.

In the subseqguent analysis we shall treat only the
éases of plane discontinuities, and the assertions of the

last two paragraphs will be demonsbrated explicitlye.
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4. The Analysis of a Plane Discontinuity

In the light of the foregoing discussion we shall
now establish z general treatment for a discontinuity in a
plane of'constant Z in the form either of an infinitely thin
diephragm oy an abrupt chsnge of cross section, or both.
We shall assume thet the frequency of the disturbance and the
dimensions of the cross section are such that only the principal
mode is freely propagated. Oﬁr task is then to calculate

-the equivalent circuit to describe the discontinuity arising

\:Q

when a tube of cross section Sl occupying the region of
negative z is coupled through an asperture (or apertures) R
in the plane z = O to a tube of cross section 82 occupying

the region of positive z, all surfaces being sssumed perfectly

s

reflecting. We shall use the superscripts 1 and 2 on all
quantities which are different in the tubes 1 and 2, the
superscripts 1 and 2 being associated with the top and bottom
sign respectively, where a choice of sign exists.

1,2

If we assume principal modes of amplitudes a to

Le incident on the discontinuitby from z = & =0, respectively,

K T2 CI - v, . »
the 1onmltud1n 1 viloﬁzaé 13 ‘? zi e +uVJWH#

T .
bw\m - g*i;"ﬂ i K \ /(U N ) sbwnq {U \‘M‘)D{S (2)

/.r

-

where w (u',v') is the longitudine
1

'_I
fed

elocity in the plane z = O

and the h ’%n ere the amplitudes of the reflected modes. Since
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(1) is a sum of solutions of the wave equation satisfying

the boundary conditions 1 (14) on the cylindrical walls (the
eigenvalues )ﬁ %ﬁz being so chosen) and reduces the Fourier
expansion of w 1,2 (u, v, o) correctly,iit is the required
solution by virtue of the tnigqueness theorem. Since the
integrals in (2) are taken only over the aperture region R

in the plane 2 = O the longitudinal velocity vanishes over the
remainder of the plene z = O (which we shall designate as T)
as is required by 1 (14); moreover (l) is a priori continuous
across the plane z = 0 in both R and T.

From (1) and 3 (8), the pressure is given by

(using 2 (5) and 3 (15)) x
o -t 4 12
O U3 =2 TR L e TINR ) ¢
- ! L &4 sy b=
- I tihi, B (3)
.}. }.ﬂ.\. Y\,ﬂ\r) Qmm ¢W\M (U) V) e e

\9\‘\,(\

We now define the voltages and currents measuring the longitudinal
velocities and pressures of the principal modes, after the

fashlon of 3 (9 & lO), a8 \
_r:_.?‘ ( e JKz +b\ph ;_x}ki (¢)\Ul) (2)

1.

K T N2 Filke b ¥ \
I =™, (a‘“@"*""m -pe ™) 15’2') (5)

where Tol?2 (z) are both flowing into the junction plane z = O,

In the reference plane z = O we have,using (2)

\I?---,."!"' ) i EARE v
N, T E V= (g E IR S\N(u v (6)
\)L _'3” o~ ) _ "z,_ ’ '1;\ f‘\s .
L= L =L, (o ¢ RIEND (7)
Hence we may write
\ .
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In order to find a relation between the currents, we reguire
that the pressure be continuous across the aperture R (it is

obviously discontinuous across T) which, from (3) & (7),

yields
‘ - b ) 'F?- -— !’5’“; P /\ u» \;‘,;\ \\}\9 gt \,""\ % Iy !
Lo ¥ hg T ) TIOVVVD W VG
ot \
(9)
- ) %
O N Y T, ~FE i PR PY x
g 4 LaaNg L N “é’ st ‘{‘;’ﬁw;‘ g1 b . ‘4,’&\“;‘ 3 vﬁ;} S 4 '} N B (10)

where G(u,v,u',v') is the Green's function of the problem.
By virtue of (8), the equivalent circuit must

consist of a pure shunt element, viz:

o 5 e —
: ; I, : I# “i\
~7! 3 ~g
b |
< @

for which the circuilt equations are (8) and
e d —l Y > 3 |
(Igﬁ—,i@‘) =Y YV, (11)

where ¥ 1s the lumped admittance representing the effect of
the higher modes on the dominant modes.
In order to put our equations in a more convenient

form for solution we remove the amplitude dependence by writing

WUN) = (T« T2 Lo )

whence (10) becomes

Py

a o ‘K s " &
o S T TR S L AN Ay B
¢@ 5\,:7,‘ R g ‘*f}n A y \"f } “}_F‘ s, 14 » E\’ﬁ A
: i

\ < (15)
Jr

which is an integral equation of the first kind +%) for the

determination of f(u,v) and having the symmetric kernel
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Glu,v,u' ,v'}. (It must be remembered that (13) is valid
only in R since the pressure is disconbtinuous across T.)

Substituting (6) and (12) in (11) we have
-

g

. . 'q’(’/ LR
AN B W </ M A YR I
I Hs—ﬁ r ,

which determines Y and completes the formal solubtion of the .

(14)

b d
b
e

problem.

To solve the ecuastions (13) and (14) we multipiy
both sides of (13) by Y f(u,v)dudv, and 1ntefr te over the
aperture R, and combine with (14) to obtain

-

BP WUMOGWM UV}JS/“}

(15)

UN Som g ST
Substituting (10) in (15) we have
[ ,:%,.m ‘f" KSR}‘{’U‘N)QLMM(WV* 1 .} (16)

WW”)
~:“’),.,., wi, ¥ - :
[52"5"\"(“}\') d)c) (J‘i )j
We assert that (16) is a variabtional expression for

Y which is stationary with respect to first order variations
about the true value of f (u,v). This can be proved in the-
usﬁal manner by letting £ (u,v) = f%°u,v) d g (u,v) where
f? is the true value of f satisfying the integral equation (13),
d is an arbitrary parameber, and g is an arbitrary function,
subsbituting in (15) varying (i.e. taking first differences)
with respect to d, using (13) and (14) for fo, setting a = O,
and oosorv1nn that the first va tion of Y vanishes. UHowever,
we shall use a somewhat different proof which will demonstrate

that Y is not only stationary but is an absolute minimum.
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Assume that £°)

is the true solution to (15) satisfying the
integral equation (13) and giving Y (o) from (14); then

consider the function

by ™ PR A P

i i F (SN fv e f o
"" : o \{ Y un ."Jl@ /,',}' \ i s o 5‘{"","«,{,‘ L o Lok N
n,iixa\/> '§($£7l3 4 ¥, ; LT ey

i
i

(17)

where £ is a trial function to be inserted in (1s). We may
certainly assert

. 5 P v ‘ ? ‘, & ., s
E w ,w><}(u\fujvﬁtﬁgmﬁvgglg P EXe, (18)
jiv “f X J -

due to the Symmetry of G (actually we are on the positive

imaginary axis); moreover (18) is equal to zero only if g

(o)

vanishes, i e..if f and f are identical. If we expand (18)

by insertlng 117) we obtain
: iﬁ

- ’«:}h’!\” }, \ S\f\‘g )\J S‘

m t ,n\‘; -
. (fw ? 1} A5)
The first and third terms in (19) are simply Y and ¥

(o)

’

respectively, as is evident from (1x). If we multiply both

sides of the integral equation for f(o) (13) by £dS and

integrate over R the numerator in the sécond term in (19)

cancels the first term in the denominator, while the secondv
(o) .

term in the denominator is the reciprocal of X by (14),

Hence we may write

y _
\?f 7m A (20)

being equal to zero only if f and f(o)

are identical. We
emphasize again that Y is actually positive imaginary definite

rather than positive real definite, but, of course, the factor
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of.j could be cancelled from Y %ﬁg in all of the above

egquations by'setfing all Y i = jBi. We have now reduced the
situation to one having uhe aspects of the usual Ritz problem,
differing in the fact that the solution is unique and an absolute
minimum. Thus if we gQQSS'a_trial function and insért it in

(ié) the resulting value of ¥ will be larger than the true

vaelue but the error in Y will generally be less than the error
~in the trial function since Y 1is stationary with respect %o
first order variations about this function. We remark that.

(1r) & {18) are also independent of the amplitude of the funection
inserted and depend only on its geometrical form.

In order to solve the variational equation (16) we
expand £ {u,v) in a series of functions and use the variational
principle to determine the amplitudes of these functions. The
funcvions obviously must be soluﬁions to the wave equation 1 (12)
whose normal derivatives vanish on the boundaries of R since
T (u,v) is 1@near1y related to the pressure which serves as s
velocity potentialj such a set of functions we shall designate
as ¢5 pg (u,v). The set ﬁS pg is a priori orthogonal since it
. satisfies 1 (12), but there is no particular advantage o making
it orthonormal, since (lo) ig independent of the amplitude of
f (u,v); in particular, ¢i 18 simply a constant/ and we may give
it an amplitude such that the denominator of (ié) is unity.

Hence we choose the expansion

o~ 2 P p . i 5

,_f~. (8 \4 ' [A‘g) o ,,,?WW m\}\ ¢ \2!) w'e {’\.}J\//

‘ 4 P TP (21
B T hpy (U, 0 on bounderies of R (2 )
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/A\a ‘“})f; 3 d5=1

(23)
If we now substitute (31) in (18) we obtain
} 2 S =
B R + }%:?- Lﬂ‘{% ﬁﬁr +‘f&? Qm Dp,”, A?ma‘\wa (24)
1‘2" = o mi X»W&
R (A Q/ k;’iz;:aﬂ :-;;}“?‘( B iy, [SKJ &i)mm ”'U \4")@/’ \'tnij (25)

& P

S - N -g o £ B :' Oy =2 / %
(m:: ¥',) f? bl A P) z_ Z‘KM BP" " LS “}‘ 2% t‘z( "”#\/\n‘ A \b " % /‘\O ”,V‘ ¥ L4 ' 't’ 3 { L)i, V)ﬁ}d é?
W LK S8

cCATY MR LTRg
Sl (26)

(27)
P . M;"h;) g _ , % "\?)
:Jf ) \,3 J."l Yaq vy = \‘} ) ) ¥ ( 28 )

To determine the coefficlents Apqg we minimize (24) with
respect to each of the coefficients Apg in order that any finite
number of terms used to approximate (21) will give the best

possible approximation to B; the result is

; h Pap ' g - s',,, oo (29)
sy d

Since (29) must be valid for all p #nd g it constitutes a set
of simultaneous equations which is infinite in principle but
which,in practice, contains as many equations as the number of

terms it is desired to include in the summation of (21). If

we substitute (29) in (24) we obtain the sgimpler expression

3= B, ¥ 2 Cpa A (z0)

Due to the minimumization of B with respect to each of the

coefficients Apg the variational principle guarantees that if
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wé solve (29) by an orderly iteration, the value of B given
by (30) approaches'the true value of B monctonically as
additional Apg's are included and slways remains above the
true value (from which it is implicit that each of the terms
in the series of {30) is negative, as is indeed true). Bj

an orderly iteration we mesn any process that determines the
set bounded by Apg under the approximstion that all higher
order coefficients are zero (i.e., Ars = O if r=D, S=q);
in practice there are obviously a variety of procedures which
may DLe adopted, the most expedient depending on the estimsted
importance of the vapious_coefficiénts (e.g. in symmetrical
‘cases either or both p and q teke only odd values) and whether
the calculation is being done manually or with the aid of a
machine.‘ Actually, it will usually be found that Bo is
sufficiently accurate for most practical purposés (circa 10%
or less error).

There are two special categories of the above problem
which occur repeatedly in practice, namely the simple change of
cross section of a tube where the aperture R coincides with the
smaller of the two cross sections (which we shall assume to
be SB) and the simple plane obstacle where the cross sections
Sl and. S2 are identical. In the first case the functions
¢én are identical with the functions ¢§n, and due to orthogonalify,
all those terms for which s = 2 in €% - 27) vanish with the

exception of the single term in quth' for whichm = p = p
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and n=gqsz>q . Inthesecond case, the terms for s = 1 and _
8 = 2 are identiéal, so we simply drop the summation with
respect to g and multiply (2=-27) by a factor of 2. Hence, the
susceptance of a window of cross section 85 in a tube of
cross section Sy is approximatbely double the susceptance of the
analogous change of cross section.

The abové solution gives an answer which is always
an upper bound to the true value of B, and no estimate of the
error is directly available.,  In the foregoing treatment, the
problem was formulated in terms of the longitudinal velocity
in the plane z = 0, but an alternative formulation could have
been made in terms of the pressure in the plane z = 0. We
observe, however, that the pressure does not vanish in the
region T but is discontinuous there, and in general the Fourier
expansion of the pressure in the regions 1 and 2 will involve
integrals over different regions, thus complicating the
resulting integral equation. In the general problem involving
a change of cross section, the formulation in terms of the
pressufe in the plane z = O must therefore be regarded as
impractical, but in the simple problem involving only a plane
qbstacle and no change of cross section a formulation in terms
of the pressure discontinuity suggests itself,

To effect the formulation just suggested we define
the "pressure.jump" a8

CPav,e) —p, v =)= (1) - ) 9 L)

mhog

!

(1)

where e 1s an infinitesimal., In the region R g (u,v), of course,
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vanishes ideﬁtically. If we now add the pressure jumn of
(81) to the left hand side of (9) (which was originally
formilated on the b331s of continuity of pressure across R)
we have an equation which COrrectly relates the pressures py
and Po in both the regions R and T of the plane z = 0; hence
13 ) becomes / _
i{(u,\/} _j.. g{}; posd S‘RE‘J WY, N e \__;_mr;\; ™ u{ ‘J (52)

where, remembering that ¢ nln and n?n are now identical, G
is given by (10) as | | | |

{3 { {.}"\jj‘v};\j"} = ’Z“ ..[ Vil Psm\ R "C;")‘“'*" R (05 )
If we substitute (33) in (82), remember that f (u,v) vanishes
in T, g (u,v) vanishes in R, and that the set Q'mn is ortho-
normal we have an inversion (i.ec. multiply both sides of (32)

by O pg and integraste over R znd T
. AN \ i - @ PUN D L TV -
NJMM me,‘vﬂ“u; -a,(ﬁw\n (UNY A& = 5_7, SR ! %,Lhw\ (Vs

NEAY

)‘f“ G o) «l'a o e (3% )
If we now substitute (34) for the integrals in the numevator of
(lb) (14) for the integral in the denominabtor, and divide both
sides of the result by the sguare of (SF) in order to make 4

independent of the amplitude of ¢ (u,v) we obtain

i } . P
T E ‘BT H{ DN D (LM o T
= k: - H B
e T TR e gy P e 50 )
D A : e S {s0

" s
where the impedances Z and Z mn are the reciprocals of the

admittances Y m.
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Tnasmuch as (36) has exactly the same form as (16),
we may asserd imﬂediately that Z as given by (56)‘13 an
aovsolute minimum and hence that ¥ as given.by (36) is an
absolutc maximum. Thus,for trial functions f(u,v) and
glu,v), (16) and (36) give values of ¥ which bound the true
values from above and below, respectively. In expanding gl(u,v)
we pick funétions ﬁgq {u,v) which vanish at the free boundaries
(cohtinuity of pressure) and have vanishing normal derivatives
at walls (vanishing normal velocities), i.e., functions which,
in general, obey mixed boun@ary conditions. This means that
the denominator of (36) will generally e an infinite series,
rather than a single term as was the case in the solution of

(16). %o solve (38) we expand g(u,v) as

ﬂ (U,V) = z. lfirw (i)‘bz; 7, V) (37)

"“.!‘f’?

observing that (37) does not include = principal solution
#o since such a solution cannot vanish at free boundsries.

Substituting (37) in (36) we have _

Z “sz QP?P’” By B ?fj_a Crg s [ (58)

,‘
o £y 2 - s :
14 »\ s T ) T . » z I 3 3
Dpapty =% 2o Loy X \ Pranr Ppa ol S| S Proen e 45
i i P T G obe ¥ i

I
dor i ¥

If we now minimize Z in (38) with respect to each of the

‘coefficients Bpag, we obtain the simultaneous equations

5= wm )
“3;7;7’ DW P'q’ BT’ g - LM
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Multiplying both sides of (41) by Bpa, summing , and sub-

stitubing in (38) we have

IR}
f"? . g Rl ;_,, e
£ = 5 Oy P |
Zs [_, g PG P

(42)

In actual calculations the } will generally be removed from

the coefficients Dpap'a' and the impedances -
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5, “hick Obstacle Corrections

In practice 1t is often impossible to obtain
experimehtally an "infinitely thin'" obstacle. “he effects
of thickness will be most important in the case of large
epertures (R cowparable to Sl and 82) where the thickness
becomes comparable to the transverse dimensionsg of the
obstacle and, in the case of small apertures, where the thick-
ness becomes comparable to the aperture dimensions.

Rigorously the problem of the thick obstscle should
be considered as a double change of cross section, i.e. from
Sl to R and then from R to Sy; unfortﬁnately the thickness is
seldom large enough to Justify the assumption that theve is
no interactionvof the higher modes excited by the two changes
of cross section. Nevertheless, an extremely good approximation
to the thickness correction may be obtained by assuming the
eperture to be a section of tube propagating only the principal
mode. For a plane discontinuity of thickhess t having a
susceptance of B calculated on the assumption t = 0, the

~equivalent circult of the discontinuity is then approximately

given by | :\i\i.
 — e T TV
3‘ iR o N - 1
‘v@ D e \5‘ Xﬁg ——
4
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(2)

We remark that the above representation is
obviously wrong in splitting B evenly (i.e. B/2 at each face)
when S1 and 82 are congiderably different, but in such a case
the thickness correction will be of relatively small importance
compared to the case where Sl and Sg are identical, and for
small values of t the net behaviour of the network is only

slightly affected by the manner of splitting up B.
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6. Analysis of a Window in a Rectangular ‘lube

As a first application of the analysis of the fore-
going sections, we shall consider the case of a thin window

in a rectangular tubﬁ‘as shown below
Nt

NL L L L

S

N

R L
k)

i

| ‘_r

P

el

¥

-~

R e s .

/ S S S
1. ) ’ .
e a ,

R ‘:Z’ag«

-

While a two dimensional window (i.e. both dimensions less than
tube dimensions) is certainly feasible, it has no particular
advantage over the slit window shown above (since both will
give any capacitance ffom zero to0 infinity), and the slit
type is more easily constructed. Actually, the most easily
constructed type is the asymmetrical window (either yl or;yé
equal to zero) and would therefore generally be used, although
the symmetrical window (y; = b = ¥} has the advantage of
exclting only even order modes.,

The solubions to 1 (12) satisfying 1 (14)in =
rectangular tube of width a and heighth b and normalized accord-

to 2 (4) are YN
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(3)

(4)

(5)

Since there is no discontinuity in the x coordinate and the
incident wave is assumed to consist purely of the principal
mode, it is clear that only modes for which m = O will be
exclted, and we shall dispense with the subscript m in the
subsequent analysis. The Green's function of 4 (10) then

bhecomes

v Y

(j“ {y) \;, e 4 ,(‘%\)L &5‘"’ “":?M Cos ("Li‘l.i; cas, ‘ ”?‘j‘ ()

h

We observe that Yn is asymptotic to (Kb/n ;) Y' at low
frequencies; 1if we denote the asymptotic limit of the Green's

function as G,, we may write

i':} j“\:{g - ww / J} j “( ‘") { g;n)?l

.,,w:

T

(8)

‘ b }QU ("5,! / )

Since G, 1s essentially the static Green's function, it may be

obtained by static methods, such as conformal mapping; however,

CONFIDENTIAL




CONFIDENTIAL
~Z40-

the series in (9) may be summed directly by expressing the
product of the cosines in terms of the cosines of the sum and
difference of the‘arguments, regarding the. latter as the real
parts of exponentials, recognizing the Taylor series expansion
of a logérithm, and taeking the real part of the result.

To take edvantage of the closed form of G, we write

T AL A 20 G N AT RIS t

Sy "3 D m! ?j‘ » 2N e i ”'4" :»w"

where dS = d x d y. Since m is zero, the integrations in x

- e ¢ Y (™ ()] ‘\ i ' -
\f e g“’”\»”jw A ) % S f"»m =t MY 10)

cancel. We observe that the second term in (10) is small com-
pared to the Tirst termvsince, from (7) and (8), (G = GO)
-oonverges as n"s; thus a perturbation scheme is suggested where

we neglect the second part of (lO),.obtain the resultant function
fo(y) by an exact solution, and then obtain the first perturbation
by substituting fy(y) in (10) where the second part is then

included. Hence We obtain, on substituting (7) in (10),

2 PR )
”;El%” - YM)M \ “’ _‘”w &niwx U (? )) eag{Z, w‘),ﬁ\‘u’ 1=

§
!

Tt

(11)

o ) ; o \}

» » .
B * e
3 NS \,’% . ; ,,J =

Y A A‘-"»\ i

L A L

ﬁ gt i;

s
Sargmn 3 s
o

RN (12)

éﬁ A T PP ———
1 "
bR e
[N

Multiplying both sides ofb(lZ) by the denominator of the right

‘hand side, differentiating with respect to y, and substituting
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(9) we obtain

noY | /) ~\*“‘3 ”“3\7 )

an integral eguation which must hold for all y in R. This type
of integral equation may be obtained in the general case of
section 4 by combining 4 (13) and 4 (14),

As has already been demonstrated, (11) gives an upper
bound to B. Since the present problem does not involve a change
of cross section, the formulation of 4 (36) will give a lower
bound. Separating out the asymptotic limit of 4 (36), writing
Z = j X, and following an exactly analogous treatment to that

used with (lO) above we obtain

N

T d Jr,
(3 } - wg — T e e A

e - ,a,,‘, K
L) YRS Wb B Ty (14)
S @, (o)
y o
e a { ' Je T ?j
SSTPU
%o N LAY j wiSrraen
T ok 1) (15)
ﬁ: 7y " Y, ‘:‘a 4 ‘K L} h \)’ L j"'é ?
& k n L2 (16)

The summation of the series in (15) may be obtained as in the case

3
of (8), except that the series is geometric rather than logarithmic.

Since g, (v) and fo(y) both represent exact solutions to the

static problem, the static reactance X o is given by

B (17)

3%
and it is not necessary to solve (13) and (15) separately.
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Mofeover, using 4 (14,34 and 55) we may write

S gendy =— (B2) 5 AL

(18)
‘ » ” IR}B"’" ,"
Ay n s (T YAy = AXD [ g cas w3y A
S-’r Jotheos {57 4 y",“fvr y,n:?‘“ ( \) 7 (19)
|9
Substituting (17-19) in (14) we obtain
PAY ywoy BN - 2N .sl, ) e
(B Y= (5. )44k (B En [Sefotweos(23 )y
N 5 N o UYL ‘/)7’ - - - (20)
o %{m’%iw}ﬁVT%

which gives a lower bound to B in terms of B® and fo (v)e Of course,
the upper and lower bounds to B can be expressed in terms of
(y), but the integral equation (13) is more eaéily’solved than
(15) since the region R is singly connected, while the region T
is doubly connected.
While f, (y) may be determined by conformal mapping, it
is interesting to obtain it by solving the integral equation (13),
- since the method can be used to determine even better approximations

to £ (y)s In order to solve (13) we make the change of variasble

TYN . .
costvgfx.:% COS & ¢/§ (21)
'S;::!\ - \'Q‘,U‘ “‘3‘?‘"«/5\ W‘: a0 ﬁ)‘?”{’ ""w?
Y Ty /T v (22)

In the important case of the symmetrical window

I -
{E,:‘{ i {’\ \tl\% -E;L: :: '*-l,u’ o, \,;?p, ‘:’4 ,1 ) ﬁ _— C) (25 )
ubstltutlng (21) in (13) We obtain

BP } f K4 ! 23 7 ¢
( W@fﬁﬁ””ﬁ“? Lm@mﬂmeu”ﬂQU&M?@ (24)
| T }(& A\ ‘
2 A A u . N L ki// 2
}Jca:ﬁ) = g (&) sim & D.— (= (ugwﬂ,}uﬂ,)'} " (25)
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If we split off the log  from (24) and reexpand the log

\ cos O - cosg @’} we obtain

R m(

. (3 ’f r.é ¥ "f’)

If we expand \J (8) 1n the rourler series

SR 2@ Y §; wx(‘f__O\f?\tﬁ {27)

and bubstltute

[‘(‘I%?ﬂ 3'%—5» \'ﬂﬁ“’ﬁ x? Ay =

Hence all the a, vanish except a,, while the vanishing of the

coefficient of 4o in (28) yields
S N e R \
Q RT ) "::.in b e Ve (29)

For a non-trivial solution 8o does not vanish, and (0) is

therefore a constant; hence, from (25) VI
Loyy=C sin(L ’} |-{eeat
For the symmetrical window of opening yo - y3 *= d (29) reduces

Lr; o el ] (51)

where 1s the wavelength of the propagated disturbance,

tO 1wy ﬂ'a 5,

Before investigating the perturbations of (11) and (20)
we shall illustrate how higher order corrections may be obtained

through exact solutions of integral equations similar to (13).
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The ﬂpbroxlmatlon made in fo (¥) and B® is that K< 1s negligible
compared to 'MJJ “and is obV1ously poorest for small n ( Vir ig
of course, greater than K for all n since it has Dbeen assumed that
only the principal mode propagates freely, l.e. that the wave-
length is‘greater than 2b); hence the next approximation is given

by including the term n = 1 in the Green's functilion which is

separated out. Denoting this approximation by the superscript 1,

(11) and (12) become oo Mﬂ g2
(8- if"f"} 4 HEE ST A, {Spm,cyma;( /j
=y e | ) e 4
jﬁ. ! { {4\: ‘;.. {\j) ;,J{ 4 W,? = (32)

(33)

T M’?
R o

The solution of (33) may be effected, exactly as in the case of

(13), by the change of variable of (21). The results are

ol o L owr gy BFA W
TR G T < N;i;;,(:L;;) [;-) - ‘ - (54)

\\ O T bt é/:‘\ |
v {\“ f BN o
Vi) C - (..%il/?ﬁl c1s5g ) (35)
: . V) R T -

where U (©) is defined by (25) if fo‘is replaced by fy. e
remark that for the symmetrical case K% - 0, and the first
corrections of (34) and (35) vanish since the mode n = 1 is not
excited, If thé term n = 2 is also broken off and included in

the exact solution of the integral equation we obtain

g

%%L% \ﬂ

(36)
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which will generally be sufficiently accurate for all practical
PUrpPOSes.

We turn now to the perturbation result of (11). For
n=1ozandn=2 we use the terms in (36) so that the actual
perturbation starts with the term n = 3, To evaluate the integrals,
we use the change of varisble of (21); substitute Wo(0) = const.,
expand 008‘2;;"1 in powers of COSJ%JZ by 403.3 in Dwight's
integral tables, apply the binomial éxpansion, integrate by 483
in Peirce's integral tables, and simplify the Legendre's

(15)

duplication formula to obtain

oo 2.{"‘3'!} ™
(B-BY)= 1. 4b ¥ A, po(g-r-) nl (-
(B-1B7 EX%I.Z%%K>2 ey
{n-2vd (37)

.5 2 Zo((n -2 - s) 5 rn (}Q__-:__Z_-_ﬁ‘i:ﬁ ’]L

570 ( WL v b

v e

i

For the symmetrical window where ﬁg =0 (37)‘i@ of course,
considerably simplified. %o evaluate the lower bound to B, we
observe that the summetion in (20) is identical with the summation
in (11) if we reﬁlacezl n by E:D/NQ; henée, from (20), (36) and

(37) we obtain

- ,q'i!;, o » ‘. - - Vép
(= pe e, b s 2R T ¢ £ (-2
(W) . @%wﬁy 2 4 (M5,
- {V\‘i\ \\ ' L - KY ’ _ ’
.,*.A—. \ i N “/} ¥ Vi) ¥ )-‘(‘V\ ...\(;J L‘:\_ ’LY‘.) - S
)/] ?“ 1 vwe v 7 -~ "':"—‘N_-w,.. p L{, N
Lo 7' (r+1) $E0
[ »:‘;_,»r-—w:ﬁ Y 5 T”l “ Z‘*‘( A VS \\ “ (38)
wl & By

S

As & typical numerical example, we consider the
half-open symmetrical window (yy3 = b/4, yo = 3b/4) for b = %~k .
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We obtain sn upper bound from (57) of B4 Y | = 0.35512, while
(38) gives & lower bound of B/ Y, = 0.35510, Thus we have
bounded‘the exact value of B by quantities differing by less
than 0,007%. For this same case, the simple static value (BO/Y )
given by‘(Sl) igs 0e346 and differs from the true value by less
than 3%, while (Bz/Yié) given by (36) is 04355 to three places.
The highest ratio of b/}@ encountered in practice will generally
be %, since at this value;ofbb/)\ the first higher mode begins
to propagate (alﬁhough”not’ekcited by'the‘symmeteral window) e
For the half-open symmetrloal w1ndow and b/)& = % we obtain
upper and lower bounds of 0677034 and 0,77028 for (B/Y' ) (less
then 0.01% apart), the statie value'of BO/Y‘ ) is 04692 (about
10% from the true value), and (BZ/Y'O) is O 770 to three places.
The 10% error in B for bAA = %, while still not too large for
many praétical applications, is due to the fact that K is not
negligihle compared to Qgi for all‘n,;being,equal to it for n = 1.
From the foregoing it is obvious that the simplest
~ case, for purbpses of accufate calculation, is the s?mmetricai
Window;'ﬁowever,-ih'practiCe,~thefasymMetrical window will be of equel or
greateréimporﬁance. From'éymmetfy, it is clear that the plane y =
is a plane of zero normal velocity for the symmetrical window, and
hénce the asymmetrical window of opening d/2 in a tube of height b/2,
is equivaiént to a symmetriéal_window of opening d in s tube of
height b. ‘Now the susceptance of both windows is dependent only
on the ratios (d/h):ahd (b/f}g,‘so we may obtain the susceptance.

of the asymmetrical window by uSing%hélf the .actual wavelength in
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any of the foregoing results for the susceptance of the
symmetrical window. It is of interest to note that the

susceptance of the obstacle shown below

F /; T ": @ B
S b
//://j//://:’f"//j._gx. ;

is identical with that of the symmetrical window of opening d
as cen be seen either by images or by placing a plane of gero
normal velocity in the plane y = b/2 (by summetry) for the two
cases, and observing that they both give the same asymmetrical
case.

It was mentioned earlier that the static value B®
of the susceptance may be obtained by conformal mapping., This
is true, first because the static approximation fo(y) is a
.soiution to Laplace's equation (since K is considered negligible
compared to Egﬁ the wave equation of 1 (10) reduces to Laplace's
equation), and secondly because .the f(y) is independent of =x,
and the problem is thereforevtwo dimensioﬁal. The equivalent
electrostatic problem is that of finding the excess capacity per
unit width due to the window plates in an infinite plane parallel

plate condenser. Consider the parallel plates with symmetrical

window plates mapped in the w plane as shown below:

A _
¥ | T
d o
. }
- by

(Since the calculation is for purposes of illustration we consider
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only the symmetrical case.) It is desired to transform the

configuration in tne w ol 2ne to a pair of plane parsllel plates

in the w' plane without the w1ndow plates, viz:

’i g \j’\[;wf 4 ’“4A"» 2
! b ﬁ = TLY
3 5
: 2 2

The transformation from the w plane to the w! plane is found

to be (16)

'M_/ 3 Cos ( ‘V’)
{—“O‘si/‘< _} )}f ""> 2! L] ‘y) - (59)

From & (16) the hydrodynamical capacity is g:ven by the mass

divided by the Squére of the area, tmerefore
C =
) N

is the capacity per unit width in the w plane, and similarly

(40)

in the w! plane if we prime C, z1, and Zg in (40). In order to

obtain the added capacity due to the WindOW plates, the points

a7 and zo must be infinitely removed; hence we use the asymptotic
form of (39), which between the planes y = y' becomes

Ty /3:”; -

fh
({
<
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To obtain the ﬁotal relative susceptance, we mﬁltiply (42)

by W and divide by the characteristic admittanoe‘faoc/s‘to

obtain :
Al fa P - ]
(\3» } = 40 lea lesey {;L:{ )
- T ot b B 43
e ¢ A L. : -
‘ , ™y
(since K = %? E;f) in agreement with (31).

*

The foregoing example has been treated in some detail
in order to illustrate the accuracy that may be expected by
virtue of the varistional principle. Thus the assumption of the
static pressure distribution gives a susceptance (c¢f. (37)) which
is sufficiently accurate for all practical purposes. It is
important to realize that the static pressure distribution gives
more than the static susceptance, a direct consequence of the
variational principle. In the majority of ceses, it is not so’
simple to obtain as much accuracy as in the case of the rectangular
window, but the differences (in principle) are only geometrical,
and we may expect that very good approximaetions to the susceptance
may be obtained by reasonable approximations to the pressure

distributione.
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7. Analysis of a Change of Cross Section in a Rectangular Tube

As a second illustration we shall calculate the

susceptance due to the change in one dimension of a rectangular

tube as shown below./by
)\‘ O | (N “
Foleea Y ! VT
¥ i nh:& “wb

g

Although we shall treat only the asymmetrical case, the symmebrical
case may e obtained by reflection in the bottom side as in the
case of the rectangular Winddw.

The eigenfunctions to the problem are given by 6 (1-5)
if we merely usé the superscripts 1 and 2 to différentiate
between the tubes of heights by and bg. Since there is no
discontinuity in the x direction, and the execiting wave contains
oniy the principal.mode, only thdse modes for which m = 0 will
be excited. Substitubting 6 (1-5) in 4 (16), dropping the
gubseript m, carrying out the integrations with respect to x
(since the pressure distribution is not a fundtiqn of x), and

. Kb
writing ¥ = jB and ;3 = 3¢ Wwe have

g ) WY e ) P o
1 p % T N - ‘Z'Y(“ e Y}‘ i foaenty YT > . P
(,,f;ﬁm ) -::‘}5:? ] §L‘ﬁ - ( § ()A ,,sa e *9 ¥ ﬁ\u j RS oot r‘““v Ly A
j& ; ‘T { b IO g 4! s 8 : ( l )

2 e el e
Sa . LD

) eofln R e AT T L R Doy T o
E\w '.{:"‘ #5 \(\ b, 'fﬁ "‘(‘j‘ \3/ é’ “< ‘\ \)5 - ’y’p) t;w-g; K

The solution to (1) may be effected as in 4 (21-29) where the

. 3 .
functions ¢§q are simply ¢%(y) as given by 4 (1 and 2).
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For most practical applications sufficient accuracy could be
obtainéd simply by substituting f(y) equal to a constant in
(1). However, more useful approximations may be obtained by
static solutions.

| Although 1% is not feasible to solve (in closed form)
the integral equation associsted with (1), the pressure
distribution F£(y) may be debermined by conformal mapping and
then substituted in_(l) to give results whose‘acouracy will be
compareble with those of 6 (37) for the anélogous window. The
equivalent electrostatic problem hias been trested in several

(17, 18) . y

places_ (the increase of resistance due to change in
conductor cross sectilon is also an equivalent problem.)
Although the Schwarsz transformation is relatively simple, the
resulting function f(y) is too complicated to permit simple

evaluation of the integrels in (1); the added capacity due %o

: 18
the discontinuity is found to be (18)
C (=) = 35.. o< ’f"n cosw (LR 2 lag () (2)
N T ) AT

in MJK.S. units where K is the dielectric constant. The
formila for electrostatic capacity in M.K.S. units analogous to

6 (40) is

}i‘ ( "“mt Hf} (3)

(]

so that K nmst be replaced byv/D oP/S in (2). (In (3) we use b
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because the. chsracteristic admittance used is that of tube 1.)
Making this substitution in (2), multiplying by W to obtain the
susceptance, dividing by the characteristic admittance of the
dominant mode in tube 1 and putting the arc hypervolic cosine

in its logarithmic form we have

\ Ay m
2, 4

Ao et et 70

\

=28 log | ( (L= '}K”““"’E ‘ o (2)

< Ao [V,
=D

)

el

where B° is the static approximation to the susceptance.
To obtain the first dynamic corrections to (4) we
should split off the static portion of (1), given by setting
? = 0 in all the propagation constants, which mus t be equsal to
(4), and then substitute the static pressure distribution in the

remainder; eactually the staitic pressure distribution is too

complex, and we substitute f(y) = const. in the remainder to

obtain oo N - \ =
\ o By [T
- 0 v AT B AR,
B~E5 "3"2;/"‘7!:52;:» K, (m"nm}j
_ (5)
. Wn\b’)"’ém ~\
= { = r™ Y
bu= L0 (6)

A more elementary, but simpler correction can be
made Dy assuming that the dynamic correction factor is something
. 2 "% " » » . < N
less than (1 -3 °) s Since this is the correction for the
first mode and therefore the maximum possible correction; hence

we write

\ A -
j IR : 2N TR o
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We perceive that (7) is an upper bound and may be expected to
be good for 1argé = Where the series in (1) converges as n” °,
but poor for small o< , where the early convergenée of the
series is only as n~1,

Another simple approximetion may be obtained by
remembering that the susceptance of the analogous window is
approximately twice that of the sbove change of cross section;
actually the change of c¢ross section glves somewhat wore than
half the window susceptance since the plane z = 0 is not a
plane of symmetry, and there is some contribution to the
susceptance from guide £, However, the’principal discrepancy
between the two cases (aside from the factor of 2) isg in the
neture of the singularity at the edge which has an exterior angle
of 270° for the change of cross section and of 360° for the thin
window, and inasmuch as the éingUlarity is contained entirely
in the stetic solution one half of the dynamic correction to the
window susceptance should be gquite accurate. The correction for
the symmetrical window is given by the third term in 6 (36) where
_%3 = 0 and =< = sin (TMa/2b); for the asymmetrical window
(analogous to our asymmetrical change of cross section) we must

use half the actual wavelength in this correction; hence we obtain

\ - . (‘4 . e
RB= R +4(R)VY, (& cos™ (T
- As

)
i
i
ORI S g, Ty, !'
§

E N
. £ i [ J o

- } o

where B is given by (4) and'lx 1 is given by (6) above,

(8)

A T S e b o N

.
T
DAL
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For the typical case o< = AS = & (6,7 and 8) yield
(5/ ¥ ) = 0.460, 0.452 and 0.452, respectively. It should be
expected that (8) will generally be the most accurate of the
three approximations; however, (7) is much simpler and almost
as good éxcept for small values of my¢ . It may be reasonably
expected that (8) should give a lower bound to the true
sugceptance since half the dynamic correction for the window
is presumgbly too small; hence (7) and (8) appear to give
answers accurate to better that 0.2% for the above numerical

Cases
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8. Change of Cross Section and Window in Circular Tube

We shall now consider two very closely related
problems‘which are best treated directly by 4 (24-29): first,
the concentric decrease of diasmeter from 283 to Zas, in a
circular tube, and, second, a thin plate haviﬁg a concentric
hole of diameter Zap in the plane z = 0 in a circular tube of
diameter 2aq

The solutions to 1 (12), satisfying 1 (14) in a

circular tube of radius a, and normalized according to 2 (4),

are L

‘%’ “/a 0
ffi}wmm (\(’“’ t’?} = }\/ Wi )W”’i \’(’»mﬂ(} Los (W\ = \P\mzf
(2)
%
Mo & 2 {ﬁ%& ~ ] I (W @)

gé"“"(\,m 2 .:,, :fpwz ¥} o (3)
)V»} | c ] *~f§ = {”Z‘ (4:)

For the particular problems at hand there is radial symmetry,
and only those modes for which m = O will be excited; hence,
dropping the subsecript m, (2=4) simplify to

\\}D‘V\ \‘P} = \f%} 1 \,J\') )\‘*i‘ / ) * ”’*k“‘. A 3\ ?
wa

o

(5)
Y -
=" A YR

by Latwonr )l O (6)

where (6) is the transcendental equation for the determination
of the eigenvalues.
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For the change of cross section problem the results
are gilven by 4 (24450) where the functions ¢§§ are taken as the
set ﬁ%; carrying out the integrations by Jshnke and Emde, p. 148,

V-‘) [ . —;i.f&
B B, +2. ¢ A k
¢

we have

o

Vo AN R > "”‘} K
&b . ‘ e 7 ,vfl_ ) } |
oY o T
Bo = 4k 2 Tpea= o] |l ]
b (3\?%”4}&) (\,{? e {
. 5 o e ( 8 )
N ) ‘\ ) (ﬁrﬂ w ) '
‘ “ :“ 7 - & . ( 9 )
4 # \ N
W (10)
[ ; ; .
g \‘:‘ % N h
ﬁ \) i £ & \ (A R )

For the case of the window the set @5y 1s again the
set ¢%; hence the results are given by (7-11) sbove if we merely
miltiply the right hand sides of (8~10) by a factor of 2 and drop
the last term in (10). The results of (7-11) give an upper bound
to the true value of B when only a finite number of the coefficients
Ap are calculated, approaching the true value uniformly as p is
increased. To obtain a lower bound for the case of the

window we use 4 (39-43)., The functions @o%} must have radial

symuetry, must vanish at r = a5, and must have vanishing normal
1
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derivatives at » = ay; 'such a set, satisfying 1 (12), is

4 ¥ 75p % i gy ’ B PR N
¢V;('q"‘7 ﬂg)g 1d@ \ é)(‘?lﬁ V) 5‘:\5@ (NW '*"’{ 2} - a\"l‘ o) r\i“?}r:’ ‘\fﬁ"’ i}g “, ,Z,‘l,x } ;‘j

s—

(12‘)

i‘e J\ (30 a0 Mo (07 = N {0 a) Jo (0 ) f/:‘: J  (13)

where Np(x) is the Bessel function of the second kind in the

notation of Jahnke and Emde. Substituting in 4 (39-4%),

integrating by Jahnke and Emde, p. 146, and simplifying by the
| (19) ! |

Wronskian relating ® 3(x) and J, (x) , we obtain

Sy

g

- P
. =y ‘.»‘im
g= = Ch AL

(14)
L (15)
(16)
4 , [ s et T T R SR e gt A . (1’7 )
7 D \P %’3’ i"f‘) \F& s ey % . }) t \"v u i r’ U YR ) }
%;"}1’1‘ } '

. The first approximations to the above susceptances are
simply B° and B® = (Cl)Z/DG s, respectively, and in the case of the
window the true value lies somewhere between theée values, while
the accuracy of B° for the change of cross section will be in-
dicated by the. discrepancy between these values for the analogous
window. We observe that B° for the window is exactly twice B°

for the change of crosg section. The next spproximations are

(18)
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(19)

and should be good to within a few pércent for all frequencies
which satisfy the original requirement that only the principal
mode be freely propagated,

For higher order solutions we must resort to the
solution of simultaneous equations by iteration 1f the desired
acéuracy is high. An interesting method of solution may be
effected if we notice that the equations are symmetrical about
the dlagonal (i.e. Dpog = D gp), whence we may regard the
coefrficients Ap or Bp as thé current flowing in the p'th mesh
of an electric circuit having a mesh voltage of Cp, a self-im-
pedance Dpp, and a mutual impedance Dpg with any other mesh q.
Since all the coefficients Dpg are real only direct currents
would be required, and such "d.c. calculating ocoards” are owned
by almost all electrical utility companies. It would probably
be necessary to ihsert scale factors in Cp, Dpg, and Ap to give
convenlent electrical units. Although such a_scheme makes the
solution of a large number of simultaneous equations simple it
must be remembered that the computation of Cp and Dpq becomes

inereasingly difficult as p and g are increased.
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9, Calculation of Reflection and Transmission

In many cases it is desired to know the reflection
and transmission coefficients due to a discontinuity. For the
category 6f discontinuities considered in section 4 the equivalent'
circuit is a junction between traﬁsmission lines of characteristié
admittances ‘Y’o and Y i', with an admittance JB in shunt at
the junction. The volbages and currents on the lines are given
by 4 (4) and 4 (5). If we consider the case where the incident

wave is in the first tube we may set a; = 1, a, = 0 and write
\ - \ .

R*’“ \D T= % (_ii_) /2. (1)

L S '

for the reflection coefficient R and the transmission coefficient

2

T {note that the trensmission coefficient defined is for the

longitudinal velocity and may be greater than unity), where

2 (5) and 3 (15) have been used for simplification; from the

latter equations we may write

\

‘Jnn-l Y ™ ,g‘. o VY N 2 7 i : EN
(d“ﬁ /(}) \) - ('b‘ /\q \} ! N T p-\’“\,‘.“,“,.’f [ Ovjie )
G , e \ / HEN y TN (2)

7 e

From 4 (4) and 4 (5) the voltages and currents in the plane of

discontinuity are

v Y oo : :
- — - H N k — N 7
Vo' = (IHR) (§) LN T s, (87
: (5)
"T‘ 3 o -\\?\ . . I \’}? - N - )/L ’
=0 T Yo =R (S F c - =18, (5)
. 2 0 % (4)
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while from 4-(8) and 4 (12) the circuit equations are

Vo' 2 Vo, (5)
(TS +T5) = RV

(6)
Solving for R and T we have
,\(7 - E L ( [V P = § V}\}\
N ' N (‘7 )
- L v
i s S ‘ 8
N ook {vaw>§w?j » (8)
: . ﬁv‘«“ N N av,"‘:
YV \.}, 6 O, Sy = }l_f?) (9)
.\..,_::_“ ans AR g J ;::ma_--_—lr‘r-w'u“\s
] . \ 4’
\I!d NES .

If it is desired to0 define the transmiésion coefficient for
total flow the m should be removed from the numerabtor of (9).
We observe that the effect of the higher modes is to change
both the phase and magnitude of the reflected and transmitted
waves from those values that would have been obtained if the
higher modes had been neglected (i.e. n = 0), the usual
assumption in the calculatibn of reflection at a junetion. For
the case wherelthere_is no change of cross section, but only a

window, m is, of course, unity, and (7) and (8) become

(10)

(11)

As a numerical example consider the case of an

ésymmetrical change of height in a rectangular tube where by = %bl
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so that m = 2, while from 7 (7)

e en a2t per ()
N o784 6 0= 875 0%) e

Then for the case where n is neglected (very low frequencies)
we obtain R = -0433 and T = 1.33. If we next letd = % and

o oAy

n = 0.452, we obbtain R T -0.362 wa.go and T = 1,316 /-8.55°,
while for (’-3 = 049 and n = 1,62, we obtain R = ~0.56 &90

and T = 1,174 528,40; It is evident that, even for frequencies
which aré sufficiently low to prevent the propagation of higher
ﬁodes, neglecting the higher modes in a discontinuity may lead

to serious errors in the calculation of reflection and trans-
migssion coefficients, particularly with regard to phase. If we
consider the case where the incident wave is in the smealler of the
two tubes m = § while n is twice the value given in (12). For

f3 = 0 we obtain R = 0.33, T = 0467, for f? = 0.5 R = 04627 /-42,1°,

E -

T = 04571 /-51°, and for £3 = 09 R = 04919 /=146.,4%, T = 0,

S s P S 5

For the incident wave in the smaller tube we observe that the
effect of the higher modes is even more pronounced..

Suppose it is desired to cancel the reflecﬁion of our
discontinuity (i.e, to match impedances) by inserting a window in
the tube of the incident wave. It is necessary to determine how
far back of the discontinuity to place this window and %0 evaluate

the required susceptance. The equivalent circult is then as shown

below
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where By 1s the susceptance due to the discontinuity, Bl is

‘ ] 2
the window susceptance, and¥ o is the characteristic ad-
mittance_of the second tube. It is desired that the admittance

seen at terminal 1 be 3{01, and this admittance is given by

\3(27), S 3 +7, J;m et + (Yo ,";“J"Z’M} Cos | w,x‘."!;
- ) _
which yields the equations v
e ) 05 (WAY A (wan, =N, i) =0
(e o ody 4 (- Vs sn (k=0 (14)

on equating real and imeginary parts and using the notation of
(9). The simultaneous solution of (14) will give the desired
values of ny and 1, that value of nj3 being chosen which is
positive, and the value of 1 being taken long enough (i.e. by
adding half wavelengths) to ensure that there is no interaction
of higher modes. It is probably simpler to use graphical methods
of solution via circle diagrams (ZO)A The problem of impedance
matching of transmission lines is discussed extensivelj in the

1iterature.(2o)
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10. Application to Cavity Resonators

fhe impedance concept may be profitably spplied to
the calcuiation of a fairly common type of resonators con-
sisting of two tubes joined through the type of discontinuity
discussed in section 4 with the remaining ends closed, pro-
vided that the closed ends are sufficientlj removed from the

discontinuity so that no higher modes strike the clesed ends.

The equivalent circuit is then

~— X -ER‘—W-,(’-L 3
= 71 - 7 A
Yo 8 8 1

and the condition for resonance is, using 3 (25) for the

susceptance of a short circuited line,

(1)

where m and n are given by 9 (9). If the desired resonant

wavelength ,X is known then n may be calculated, either 1. or

1

'12 may be fixed, and the remeining length may be calculsted.

ir 1, and 12 are fixed then the resonant wevelength must be

found by successive approximations since n is generally not a

simple closed function of this wavelength. Such a resonator

furnishes a simple and accurate experimental determination of B.
If the closed ends are replaced by open ends we use

3 (24) %o obtain

) SN

fﬂw{%ﬁﬂfdgw{nm(pt&) +n =g
’ /

\
M
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& second type of resonator whibh is susceptible to
such treatment is. a tube closed at one end with a small hole
in the plate which closes the other end, such as the hole
through which excitation is received. The susceptance of such
a hole may be approximated by helf the susceptance such a hole
would have as a window in an otherwise continuous tube. The

equivalent circuit is then

<— 9 al

-\Io REN
ﬂ’?_l

For resonance we have

- 2l
n = fot-k R _) (3)
If the hole is small n will be large and 1 will be close %o
half a wavelength, being somewheat greater, since n must be

positive, and the extra length is then given by

(f = 2 "

2
Hence the resonant wavelength is less than 21 by 100/2TTn%.

It should be rememvered that the cross section of
the resonstors iz assumed small compared to the wavelength,

so that only the principal mode can resonate,
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