A Parallel Programming Model with Sequential Semantics

Thesis by
John Thornley

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1996
(Submitted May 20th, 1996)

ii

© 1996
John Thornley
All Rights Reserved

il

Acknowledgements

Many thanks to my academic advisor, Mani Chandy, for his support, guidance, and as-
sistance in so many ways over the previous six years. I feel very fortunate to have been
advised by such a gracious and insightful academic and such an all-around nice guy. Thanks
also to the other members of my examining committee, Mary Hall, Carl Kesselman, Pe-
ter Schroder, and Eric Van de Velde, for their time spent reading this thesis and for their
suggestions regarding this work.

Thanks to the graduate students who have been part of our research group during my
stay at Caltech, Berna Massingill, Paul Sivilotti, Adam Rifkin, Peter Hofstee, Rustan Leino,
Eve Schooler, Ulla Binau, Svetlana Kryukova, Rajit Manohar, and Peter Carlin, for their
help with my research and for their friendship. Particular thanks to Paul for helping me
with all those “interesting little questions” (equivalence, nondeterminacy, time travel, and
invisible cameras) and to Berna, Adam, and Rajit for assistance and proofreading above and
beyond the call of duty. Thanks also to Diane Goodfellow for her administrative support
and for keeping us well fed.

Much of this research has been influenced by two parallel programming projects at
Caltech: the PCN project led by Steve Taylor and Mani Chandy at Caltech and by Ian
Foster at Argonne National Labs, and the CC++ project led by Carl Kesselman and Mani
Chandy at Caltech. Thanks to those individuals and their groups. Special thanks to Steve
for introducing me to parallel programming with PCN during my first year at Caltech.

Thanks to the Ada 95 team at Silicon Graphics, in particular Tom Quiggle and Wes
Embry, for providing me with software, computer time, and technical support for my par-
allel programming performance experiments. Getting my hands on a 36-processor shared-
memory multiprocessor was a dream come true for me. (We computer scientists have very
tame dreams!)

Thanks to my teachers and academic colleagues in the Department of Computer Science

at the University of Auckland, New Zealand for providing me with so many opportunities

iv

and for encouraging me to embark upon this adventure. Thanks also to the students that I
taught at the University of Auckland for shaping my perspective on computer science and
for making that phase of my life so interesting and so much fun.

Thanks again to Professor Graham Hill and his team in the Department of Surgery at
the University of Auckland for their compassion and skill. Thanks to Dr. Stephen Petit,
Dr. Charles Bernstein, and Lucy Artinian for making me believe that bad times don’t have
to last forever.

Thanks to Cecilia for being my special friend and for providing me with a safe haven
away from Caltech for the past five years.

Thanks to my mother, Margaret, my father, Basil, and my brother, Robert, for their
unconditional love and support throughout all of my life and education. Without them, I
really could not have done this!

Finally and somewhat vaguely, thanks to the California Institute of Technology for the
uncountably many things that have made these last six years so fascinating and unforget-
table.

This research was supported in part by Air Force Office of Scientific Research grant
AFOSR-91-0070 and by the NSF under Cooperative Agreement No. CCR-9120008.

Abstract

Parallel programming is more difficult than sequential programming in part because of
the complexity of reasoning, testing, and debugging in the context of concurrency. In this
thesis, we present and investigate a parallel programming model that provides direct control
of parallelism in a notation with sequential semantics. Our model consists of a standard

sequential imperative programming notation extended with the following three pragmas:

1. The parallelizable sequence of statements pragma indicates that a sequence of state-

ments can be executed as parallel threads.

2. The parallelizable for-loop statement pragma indicates that the iterations of a for-loop

statement can be executed as parallel threads.

3. The single-assignment type pragma indicates that variables of a given type are as-
signed at most once and that ordinary assignment and evaluation operations can

be used as implicit communication and synchronization operations between parallel

threads.

In our model, a parallel program is simply an equivalent sequential program with added
pragmas. The placement of the pragmas is subject to a small set of restrictions that
ensure the equivalence of the parallel and sequential semantics. We prove that if standard
sequential execution of a program (by ignoring the pragmas) satisfies a given specification
and the pragmas are used correctly, parallel execution of the program (as directed by the
pragmas) is guaranteed to satisfy the same specification.

Our model allows parallel programs to be developed using sequential reasoning, testing,
and debugging techniques, prior to parallel execution for performance. Since parallelism
is specified directly, sophisticated analysis and compilation techniques are not required to
extract parallelism from programs. However, it is important that parallel performance issues

such as granularity, load balancing, and locality be considered throughout algorithm and

program development.

vi

We describe a series of programming experiments performed on up to 32 processors of

a shared-memory multiprocessor system. These experiments indicate that for a wide range

of problems:

1. Our model can express sophisticated parallel algorithms with significantly less com-

plication than traditional explicit parallel programming models.

2. Parallel programs in our model execute as efficiently as sequential programs on one

processor and deliver good speedups on multiple processors.

3. Program development with our model is less difficult than with traditional explicit
parallel programming models because reasoning, testing, and debugging are performed

using sequential methods.

We believe that our model provides the basis of the method of choice for a large number of

moderate-scale, medium-grained parallel programming applications.

vil

Contents

Acknowledgements iii
Abstract v
List of Figures xiii
List of Tables XV
List of Programs xvi
1 Introduction 1
1.1 Motivation e 1
1.2 Programming Model L o 3
1.3 Programming Methodology 5
1.4 A Simple Example Program e 6
1.5 Key Questions e e e e e e 9
1.6 Key Findings e 9
1.7 Thesis Outline e 10
2 Background 12
2.1 Parallel Composition of Statements 12
2.2 Parallel For-Loop Staternent 13
2.3 Single-Assignment Variableso o o oo 13
2.4 Integration with Sequential Imperative Programming 14
2.5 Comparison with Our Model oL 14
3 A Programming Model with Parallel and Sequential Semantics 17

3.1 Framework o . e e e e e e e e e e 17

3.2

3.3

3.4

3.5
3.6
3.7
3.8
3.9

viii

3.1.1 The Underlying Language: Ada
3.1.2 Why Ada?
3.1.3 Errors and Exceptions o 0oL
3.1.4 Sequential and Parallel Semantics
3.1.5 Method of Definition
3.1.6 Definition of Restrictions,
3.1.7 Memory Model e
The Parallelizable Sequence of Statements Pragma
3.21 Syntax e e e e
3.2.2 Summary of the Standard Sequential Semantics
3.2.3 Restrictions
3.2.4 Equivalent Parallel Semantics
3.25 Examples e
The Parallelizable For-Loop Statement Pragma
331 Synmtax e
3.3.2 Summary of the Standard Sequential Semantics
3.3.3 Restrictions oL L
3.3.4 Equivalent Parallel Semantics
335 Examples e
The Single-Assignment Type Pragma
341 Syntax e e e
3.4.2 Summary of the Standard Sequential Semantics
3.43 Restrictions e
3.4.4 Equivalent Parallel Semantics 0000
3.4.5 Examples e
Restrictions on Shared Variables
Restrictions on Exceptions L oo
Parallelizable For-Loop Statement Arguments
Compilation and Error Handling Options
Related Pragmas e
3.9.1 Suppressing Error Checking
3.9.2 Specifying Thread Priorities

Equivalence of the Parallel and Sequential Semantics

4.1

Preliminaries o v i i e e e e e e e e e e e e e e e e

ix

4.1.1 Specifications 42
4.1.2 Equivalence of Programs 43
4.1.3 Parallel Execution 43
4.2 Equivalence Theorem 43
4.3 Equivalence Proof 44
44 LemmalProof 44
4.5 Lemma2Proof e 45
Experimental Methods and Performance Issues 51
5.1 Computer System e e 51
52 Compilation L L e 52
5.3 Performance of Parallel Constructs 54
5.3.1 Sequential Operations 54
5.3.2 Parallelizable Sequences of Statements 54
5.3.3 Parallelizable For-Loop Statements 55
5.3.4 Single-Assignment Variables 58
5.4 Parallel Performance Issues, 58
5.4.1 Granularity and Load Balancing 59
5.4.2 Locality and Caching 59
5.4.3 Memory Contention 62
5.4.4 Process and Data Mapping, 64
5.5 Experimental Methods 64
Experiments Using Parallelizable Sequences and For-Loops 66
6.1 Experimental Goals 66
6.2 One-Deep Parallel Mergesort 67
6.2.1 Program Specification L 0L 67
6.2.2 Traditional Paralle] Mergesort Algorithm 68
6.2.3 One-Deep Parallel Mergesort Algorithm 69
6.2.4 Parallel Multiway Merge Algorithm 71
6.2.5 Performance Measurements 73
6.2.6 Experimental Analysiso oL 73
6.3 The Paraffins Problem o 7
6.3.1 Problem Description 0 e 77

6.3.2 Program Specification o oo 79

6.3.3 Sequential Algorithm L. 80
6.3.4 Parallel Performance Issues 80
6.3.5 Parallel Algorithm 86
6.3.6 Performance Indications o o000 88
6.3.7 Experimental Analysis 0 oo 89

7 Experiments Using Single-Assignment Types 91
7.1 Experimental Goals e 91
7.2 Mergesort of a Linked List 92
7.2.1 Program Specification 0oL 92

7.2.2 Linked Lists with Single-Assignment Links 93
7.2.3 Parallel Mergesort with Mutable Links 97
7.2.4 Performance Measurements with Mutable Links. 97
7.2.5 Parallel Mergesort with Single-Assignment Links 101
7.2.6 Performance Measurements with Single-Assignment Links 103
7.2.7 Experimental Analysis L oL 103

7.3 LU Factorization v v v vt ittt e e e 107
7.3.1 Program Specification o 0o oo 107

7.3.2 Parallel LU Factorization using Barriers 108
7.3.3 Performance Measurements using Barriers 110

7.3.4 Single-Assignment Flags 0., 110
7.3.5 Paralle]l LU Factorization using Single-Assignment Flags 114
7.3.6 Performance Measurements using Single-Assignment Flags 118
7.3.7 Experimental Analysis o oo L 118

8 Limitations on Nondeterminacy 122
8.1 Limitations on Nondeterminacy in Qur Model 122
8.2 A Simple Example 123
83 Restrictionson Clocks L 126
8.4 A Class of Nondeterministic Parallel Algorithms 127
8.4.1 Sequential Branch-and-Bound oo 128
8.4.2 An Example: The 0-1 Knapsack Problem 129
8.4.3 Synchronous Parallel Branch-and-Bound Using Our Model 131
8.4.4 Asynchronous Parallel Branch-and-Bound Using Locks 131

8.5 Integration of Qur Model with Less-Restrictive Models 132

xi

8.5.1 The Ada Tasking Model
8.5.2 Integration of Our Model with the Ada Tasking Model

9 Distributed Memory

9.1
9.2
9.3
9.4

Overview e e e e e e
Shared Memory L e e
Distributed Memoryo
Distributed Shared Memory Lo

10 Comparison with Related Work

10.1 OVEIVIEW . . . o o o e e e e e e e e e e e e e e e

10.2 Automatic Parallelizing Compilers

10.3 Runtime Parallelization Systems,

10.4 Parallel Declarative Programming

10.5 Data-Parallel Programming

11 Conclusions

11.1 SUIMINATY .« v o o e o e e e e e e e e e e e e e e
11.2 Findings o 0 e e e e

11.2.1 EXPressiveness v v v v v v vt et e e e e e e
11.2.2 Efficiency
11.2.3 Development Methodology
11.2.4 Integration with Other Models

A Transformation of Pragmas to Ada 95 Tasking Constructs

Al

A2

A3
A4

Parallelizable Sequence of Statements
A.1.1 Transformation with Parallel Exception Checking Suppressed
A.1.2 Transformation without Parallel Exception Checking Suppressed . .
Parallelizable For-Loop Statement
A.2.1 Transformation with Parallel Exception Checking Suppressed
A.2.2 Transformation without Parallel Exception Checking Suppressed . .
A Protected Type for Joining Parallel Threads
Single-Assignment Types« o oo e
A.4.1 Transformation of a Type Declaration
A.4.2 Transformation of Operations on Variables

A.4.3 A Protected Type for Synchronizing Operations

139
139
140
141
143

145
145
146
148
148
150

152
152
153
153
154
155
156

xii

B Experimental Programs
B.1 One-Deep Parallel Mergesort
B.2 The Paraffins Problem
B.2.1 Sequential Solution to the Paraffins Problem
B.2.2 Parallel Solution to the Paraffins Problem
B.3 Mergesort ofa Linked List
B.3.1 Linked Lists with Mutable Links

B.3.2 Sequential Mergesort of a Linked List with Mutable Links

B.3.3 Parallel Mergesort of a Linked List with Mutable Links
B.3.4 Linked Lists with Single-Assignment Links

B.3.5 Parallel Mergesort of a Linked List with Single-Assignment Links . .

B.4 LU Factorization
B.4.1 Sequential LU Factorization
B.4.2 Parallel LU Factorization using Barriers

B.4.3 Parallel LU Factorization using Single-Assignment Flags

Bibliography

165
165
175
175
182
190
190
194
200
206
211
217
217
219
224

228

xiii

List of Figures

1.1
1.2

5.1
5.2
5.3

5.4

6.1
6.2
6.3

6.4
6.5
6.6
6.7

7.1
7.2

7.3

An example of LU factorization.,
LU factorization: (a) Data dependencies in computation of LU(I, J). (b)

Snapshot of sequential execution. (c¢) Possible snapshot of parallel execution.

8

Execution time of a parallelizable sequence of statements on a single processor. 56

Execution time of a parallelizable for-loop statement on a single processor. .
Comparison of parallelized matrix multiplication for square matrices of vary-
INESIZES. . o e e e e e e
Comparison of parallelized matrix multiplication (256 by 256 components)

and parallelized array copy (40 million components).

An example of one-deep parallel mergesort with four parallel threads.

Speedup of one-deep parallel mergesort over sequential quicksort.
Execution time of one-deep parallel mergesort compared to ideal speedup of
sequential quicksort. oL o Lo
All distinct paraffins of size 1, 2,3, and 4.
Some duplicate paraffins of size 4. o o0
All distinct radicals of size 0, 1, 2, and 3.
(a) An example of a bond-centered paraffin of size 6. (b) An example of a

carbon-centered paraflin ofsize 6. oL

An example of a linked list of blocks of integers.
Speedup of traditional parallel mergesort over sequential mergesort for linked
lists with mutable links (block length = 65,536 elements).
Execution time of traditional parallel mergesort compared to ideal speedup
of sequential mergesort for linked lists with mutable links (block length =

65,536 elements).

57

60

63

70
74

75
78
78
78

78

95

99

100

7.4

7.6

7.7

7.8

7.9

7.10

7.11

7.12

8.1

9.1
9.2

xiv

Speedup of parallel mergesort for linked lists with single-assignment links
over sequential mergesort for linked lists with mutable links (block length =
65,536 elements).
Execution time of parallel mergesort for linked lists with single-assignment
links compared to ideal speedup of sequential mergesort for linked lists with
mutable links (block length = 65,536 elements).
An example of the pattern of computation for parallel LU factorization using
only parallelizable for-loop statements or barriers for synchronization with
four parallel threads.
Speedup of parallel LU factorization using barrier synchronization over se-
quential LU factorization.
Execution time of parallel LU factorization using barrier synchronization
compared to ideal speedup of sequential LU factorization.
An example of the subdivision of LU into blocks for parallel LU factorization
using single-assignment flags. oL L L.
Parallel LU factorization using single-assignment flags: (a) An example of
the data dependencies between blocks. (b) An example of the order in which
blocks are assigned to parallel threads.
Speedup of parallel LU factorization using single-assignment flags over se-
quential LU factorization (block size = 10 by 10 components).
Execution time of parallel LU factorization using single-assignment flags com-

pared to ideal speedup of sequential LU factorization.

An example of one iteration of the basic branch-and-bound strategy: (a) The
queue of subsets. (b) The subset with the highest upper bound is removed
from the head of the queue. (c¢) The subset is partitioned into a collection of
subsets. (d) The subsets are inserted into the queue according to their upper

bounds or discarded. e

A symmetric multiprocessor system.

A distributed-memory computer system. L

104

105

109

112

113

116

117

119

120

XV

List of Tables

3.1

5.1

6.1

Example of the assignment of iterations in the loop range 0 .. 9 to four threads
for a parallelizable for-loop statement with and without reverse and with

different patterns. L e 37
Computer system details. L o 52

Number of radicals of size 0 to 12 and number of paraffins of size 1 to 24. . 85

xXvi

List of Programs

1.1
5.1
5.2
5.3
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8
7.9

LU factorization. e e 7
Parallelized matrix multiplication. 61
An example of a program that could exhibit false sharing. 62
Parallelized array copy. o o 64
Specification of one-deep parallel mergesort. 68
One-deep parallel mergesort. L oo oL 69
Parallel multiway merge. e 72
Specification of the Paraffins problem. 79
Sequential algorithm to solve the Paraffins problem. 81
Sequential algorithm to generate paraffins of a given size. 82

Sequential algorithms to generate bond-centered and carbon-centered paraffins. 83

Straightforward parallelized algorithm to solve the Paraffins problem. . .. 84
Efficient parallelized algorithm to solve the Paraffins problem. 86
Parallelized algorithm to generate paraffins of a given size. 87
Parallelized algorithm to generate bond-centered paraffins. 88
Specification of parallel mergesort of a linked list. 93
Declaration of the list type. oo 94
Implementation of some operationson lists., 96
Traditional parallel mergesort for linked lists with mutable links. 98
Parallel mergesort for linked lists with single-assignment links. 102
Specification of parallel LU factorization. 107
Parallel LU factorization using parallelizable for-loop statements as the only

form of synchronization. o oo oo 108
LU factorization using threads and barriers. 111
Definition of the single-assignment flag type. 114

7.10 LU factorization using single-assignment flags. 115

8.1

8.2

8.3
8.4

xvii

Parallel summation of the components of a two-dimensional array using
single-assignment types for synchronization.
Parallel summation of the components of a two-dimensional array using locks
for synchronization. e e e
Parallel matrix multiplication using tasking.
A producer task and a consumer task communicating via a rendezvous op-
ETALION. . . . v o i e e e e e e e e e e e e e e
A group of producer tasks and consumer tasks communicating via a bounded

buffer implemented as a protected object. L.

124

125
134

136

Chapter 1

Introduction

1.1 Motivation

A parallel program is a program that is designed to execute as a group of cooperating,
concurrent tasks. There are two main reasons to write parallel programs: (i) to increase
performance through execution on multiprocessor computers, and (ii) to satisfy explicitly
concurrent problem specifications. The scope of this thesis is parallel programming for the
reason of increasing execution performance compared to equivalent sequential programs. We
are not primarily concerned with explicitly concurrent problems that do not have sequential
solutions, e.g., real-time monitoring and control problems.

The most direct method of parallel programming is provided by programming models
with explicit parallel semantics. Constructs are provided for specifying: (i) creation and
termination of parallel processes, e.g., fork-and-join, process declarations, or process spawn-
ing, and (ii) communication and synchronization between processes, e.g., message passing,
locks, semaphores, monitors, or remote procedure calls. The semantics of parallel execution
is usually defined to be equivalent to an interleaving of the actions of the parallel processes.
This approach to parallel programming is supported by languages such as Ada [3][6] and
Modula-3 [93], and by libraries such as p4 [18], Pthreads [97], PVM [119], and MPI [34][115].
Comprehensive reviews and discussions of programming models and notations with explicit
parallel semantics are given by Andrews [8], Bal et al. [11], and Pancake [96].

Explicit parallel programming gives direct control of execution performance because of
the close correlation between the programming model and the operation of a multiprocessor
computer system. However, explicit parallel programs are often difficult to develop com-

pared to equivalent sequential programs due to the complexity of reasoning, testing, and

debugging in the context of concurrency. For example, considerable effort is often necessary
to avoid race conditions, deadlock, and livelock—issues that do not arise in sequential pro-
gramming. For many applications, the performance gain of explicit parallel programming
does not justify the additional development costs.

An appealing alternative to explicit parallel programming is provided by automatic
program parallelization [12][95]. Automatic parallelizing compilers transform sequential
programs into equivalent parallel programs based on conservative data-dependence analy-
sis. The most important techniques are transformations that allow sequential loops to be
converted into parallel loops. Strengths of automatic parallelization are: (i) the programmer
is shielded from most of the complexity of reasoning about concurrency, and (ii) existing
sequential programs can be parallelized with relatively little effort. The major weakness is
that execution performance is dependent on the compiler’s success at recognizing opportu-
nities for efficient parallel execution.

Automatic program parallelization has been shown to be fairly successful at detecting
loop-level parallelism in scientific programs that operate on matrices. However, more gen-
eral applicability has not been demonstrated convincingly. The essential difficulty is that
an efficient sequential algorithm is not necessarily a good basis for an efficient parallel al-
gorithm. For example, quicksort is widely accepted as the most efficient general-purpose
sequential sorting algorithm [98, section 8.2][107, Chapter 9], yet the parallelism in quicksort
does not scale to more than a few processors [29][36]. Usually, there is too little information
in the text of a sequential program to allow automatic transformation into an equivalent
parallel program with entirely different algorithms and data structures.

In this thesis, we present and investigate a parallel programming model that combines
the advantages of both explicit parallel programming and automatic program paralleliza-
tion. The programming model consists of a standard sequential notation extended with a
small set of pragmas. These pragmas are used to indicate where statements and loop iter-
ations can be executed in parallel and where assignment and evaluation of variables can be
used as implicit communication and synchronization operations between parallel threads. If
the pragmas are used correctly, parallel execution of a program as directed by the pragmas
is equivalent to standard sequential execution. The key idea is direct control of parallelism
in a programming model with sequential semantics.

This model allows parallel programs to be developed with sequential reasoning, testing,
and debugging, prior to parallel execution for performance. Sequential reasoning is per-
formed by ignoring the pragmas, except to verify their correct use. Sequential testing and

debugging are performed by instructing the compiler to disregard the pragmas and gener-

ate ordinary sequential code. Parallel execution is achieved by instructing the compiler to
generate parallel code as indicated by the pragmas. Since parallelism is specified directly,
sophisticated analysis and compilation techniques are not required. If the sequential inter-
pretation of a program satisfies a given specification and the pragmas are used correctly,
the parallel interpretation of the program is guaranteed to satisfy the same specification.

Although this programming model removes the difficulty of parallel reasoning, testing,
and debugging, it does not lessen the need to explicitly consider parallel performance issues
during program design and development. The methodology that we propose is not to first
develop a sequential program without regard to parallelism, then later add pragmas. Such
an approach would usually lead to an inefficient parallel program, for the same reasons that
limit the applicability of automatic program parallelization. The appropriate methodology
is to develop a parallel program from the outset, but to do so using sequential reason-
ing, testing, and debugging techniques. Parallel performance issues, e.g., granularity, load
balancing, and locality, should be taken into account throughout the process of program
development.

The goal of this work is not to develop a more efficient parallel programming model
than other models with explicit parallel semantics. Rather, it is to reduce the difficulty of
parallel programming, without significant sacrifice of efficiency, through the use of sequential
programming methods. Our interest in parallel programming is not solely focused on the
traditional arena of scientific computation on parallel supercomputers, where performance is
often of paramount importance. We believe that the proliferation of small-scale to moderate-
scale multiprocessor servers, workstations, and personal computers will also lead to a greatly
expanded role for parallel programming in a wide range of commodity and specialized
software. For many of these applications, parallel programming will be feasible only if
program development and maintenance costs are not significantly greater than those of

sequential programming.

1.2 Programming Model

The parallel programming model that we investigate consists of a structured, imperative,

sequential programming notation extended with the following three pragmas:

1. The parallelizable sequence of statements pragma is applied to a sequence of state-

ments to indicate that the statements can be executed as parallel threads.

2. The parallelizable for-loop statement pragma is applied to a for-loop statement to

indicate that the iterations of the loop can be executed as parallel threads.

3. The single-assignment type pragma is applied to a type declaration to indicate that
assignment and evaluation of variables of that type can be used as communication
and synchronization operations between parallel threads. Types that are not single-

assignment types are referred to as mutable types.

Additional support pragmas are provided to control thread scheduling priorities and parallel
error checking. Part of the model is a set of restrictions on the use of the pragmas that
ensures the equivalence of the parallel and sequential interpretations of the constructs. The
fundamental restrictions on the placement of the pragmas in a sequential program are as

follows:

e It is illegal to jump into, out of, or between the statements of a parallelizable sequence

of statements or parallelizable for-loop statement.

e It is an error to evaluate an unassigned single-assignment variable or to assign a

previously assigned single-assignment variable.

e It is an error for one statement or iteration to assign a mutable variable that is assigned
or evaluated by another statement or iteration of the same parallelizable sequence of

statements or parallelizable for-loop statement, unless those actions are synchronized.

e It is an error to depend on a particular kind of exception being propagated out of a

parallelizable sequence of statements or parallelizable for-loop statement.

Some of these restrictions can be checked at compile time, some can be checked with low
overhead at run time, and some can either be left the programmer to verify or be checked
with high overhead at run time.

If the pragmas are used correctly, execution of the constructs according to the parallel

semantics is equivalent to execution according to the standard sequential semantics. The
parallel semantics is based on the following framework:
1. The statements of a parallelizable sequence of statements are executed as parallel

threads. Execution of the paralielizable sequence of statements terminates when all

the statements have terminated.

2. The iterations of a parallelizable for-loop statement are executed as parallel threads.
Execution of the parallelizable for-loop statement terminates when all the iterations

have terminated.

3. Evaluation of an unassigned single-assignment variable causes the evaluating thread

to suspend until the variable is assigned by another parallel thread.

In this thesis, we prove the equivalence of the parallel and sequential semantics of our
programming model, for programs without errors. Therefore, if the sequential interpretation
of a program satisfies a given specification, the parallel interpretation of the program satisfies

the same specification.

1.3 Programming Methodology

The parallel programming methodology that we explore is one in which parallel performance
is considered throughout program development, but reasoning, testing, and debugging are
performed using sequential techniques. The sequential semantics provides the basis for
reasoning about correctness, testing, and debugging. The parallel semantics provides the
basis for parallel performance design and analysis.

A parallel program can be shown to satisfy its specification by showing that the sequen-
tial program without the pragmas satisfies the specification and that the pragmas do not
violate any of the restrictions. Program development, testing, and debugging can be per-
formed sequentially, by disregarding the pragmas and compiling the program into sequential
code. Standard compilers and debugging tools can be used for this sequential phase of pro-
gram development. After testing and debugging, a program can be compiled into parallel
code as indicated by the pragmas and executed on a multiprocessor computer for paral-
le] performance. Parallel execution will produce the same results as sequential execution,
except for possibly different behavior for some parallel error conditions.

The efficiency of a parallel program is under the direct control of the programmer.
From the outset of program development, the programmer should consider the parallel per-
formance consequences of algorithm and program design choices for the intended target
architecture. The major issues affecting parallel performance are granularity, load balanc-
ing, and locality of data accesses. Simply adding the pragmas to a existing sequential
program is unlikely to result in an efficient parallel program. An efficient parallel program
will usually require to some degree different algorithms and data structures than an efficient
sequential program. However, a sequential program will often be a suitable starting point

for the development of an efficient parallel program.

1.4 A Simple Example Program

In this section, we present a small program as an introductory example of the parallel
programming model and methodology that we investigate in this thesis. The LU_Factorize
procedure in Program 1.1 computes the unit lower triangular and upper triangular factors of
an input matrix, A, using Crout’s method without pivoting [98, Section 2.3]. The computed
factors are overlaid in the output matrix, LU. An example is shown in Figure 1.1. In
the interest of brevity, the procedure specification ignores the imprecision of floating-point

arithmetic and the possibility of division by zero due to the absence of pivoting.

18113{18123| 9 |22/28|11| 9
42137 (45|52(23(50(71(37|20
241412 /81/68]15/23|58|54
1813713216543 82 91|58 67

36|30125(56|94| 1125|6218
18129/38/29) 5178/80| 2 |24

Pl aiNisia]l-ia
DIl loleioie
iAo leolelals
o w]lmjojoiols oo
Al oliociolalololo
—~fololololoro iolal=
X
ololalololalolialoe |-
olololaglolealals|w
oloiolaoliac ol iw|lov
Slolorolfaolw| o | Ao
OéOOO}A\Jd;-h
ololafo s (~N[dh|[=[~
SOOI i) L s
Dlmijw|w|wlrm | |m|w
W lalLiNIdloialiLis]z

~Njf@imivlwisa|lviwia]

Al iN|[bidliolwiolo
N[l lololo

>
r
c

Figure 1.1: An example of LU factorization.

The program is derived from the following formula, which defines LU(I, J) in terms of

A(I, J) and other components of LU:

(Aij — SI 2 LU px LU ;)/LU;; for 1<i<N,1<j <3

LU, = .
7 Aij— T LU pxLU for I<i<N,i<j<N

Computation of LU(I, J) is dependent on the prior computation of components of LU above
and to the left of LU(I, J), as shown in Figure 1.2(a). Ignoring the pragmas, the program
is a sequential program in which the components of LU are computed in order of increasing
rows and columnus, as shown in Figure 1.2(b). The pragmas indicate how the program can be
executed as a paralle] program in which the components of LU are computed concurrently.
Computation of each component will automatically suspend when it attempts to evaluate
an unassigned component and resume execution when that component is assigned. In this
manner, the data dependencies implicitly control the order of computation. An example of

parallel execution is shown in Figure 1.2(c).

type Single Float is new Float;
pragma Single_Assignment(Single_Float);
type Matrix is array (1 .. N, 1 .. N) of Single Float;

procedure LU _Factorize (A : in Matrix; LU : out Matrix) is
—~ | requires
-] Nonsingular(A).
—— | ensures
—= | Unit.Lower_Triangle(LU)*Upper_Triangle(LU) = A.
begin
pragma Parallelizable Loop;
forTin 1 .. N loop
pragma Parallelizable Sequence;
pragma Parallelizable Loop;
forJinl. I-1loop
declare
Sum : Float := 0.0;
begin
forKinl. J -1 loop
Sum := Sum + Float(LU(I, K)*LU(K, J));
end loop;
LU(1, J) := (A(1, J) — Single_Float(Sum))/LU(J, J);
end;
end loop;
pragma Parallelizable Loop;
for JinI.. N loop
declare
Sum : Float := 0.0;
begin
forKinl. I-1loop
Sum := Sum + Float{LU(I, K)*LU(X, J));
end loop;
LU, J) := A(1, J) — Single Float(Sum};
end;
end loop;
end loop;
end LU _Factorize;

Program 1.1: LU factorization.

VIVIVIV|IV]=

- . L LU D - LU

Figure 1.2: LU factorization: (a) Data dependencies in computation of LU(I, J). (b) Snap-
shot of sequential execution. (c) Possible snapshot of parallel execution.

The Single_Assignment pragma on line 2 indicates that all variables of type Single_Float
are assigned at most once. The Parallelizable_Loop and Parallelizable_Sequence pragmas
on lines 12, 14, 15, and 26 indicate that the N? executions of the inner blocks can be
executed as parallel threads. Each parallel thread assigns to one LU(I, J) and evaluates other
components of LU. Parallel assignment and evaluation operations on the components of LU
are permitted because the components are single-assignment variables. These operations
are implicit synchronization points between the parallel threads. There are no parallel
operations on mutable variables.

In parallel execution of the program, the order of execution of the parallel threads is
in part determined by the data dependencies. However, there are many different execution
orderings that satisfy the data dependencies. For example, on a single processor, parallel
execution may compute the components in the same order as sequential execution, whereas
on multiple processors, many components may be computed truly concurrently and the
order of computation may be nondeterministic. The correctness of all parallel execution
orderings is guaranteed by the correctness of the sequential interpretation of the program
and the fact that the pragmas do not violate any of the restrictions.

This simple program is not intended as a demonstration of an efficient parallel program.
In practice, the benefits of parallel execution would be overwhelmed by the costs of thread
management and synchronization operations. In Chapter 7, we present an efficient variation

of this program in which the use of parallelism and single-assignment variables is more coarse

grained.

1.5 Key Questions

The equivalence of the parallel and sequential semantics of our programming model is
achieved at the cost of the restrictions on the programs that are allowed by the model.
There are two ways to view the restrictions: (i) sequential programs are restricted to those
that have the same meaning when interpreted as parallel programs, or (ii) parallel programs
are restricted to those that have the same meaning when interpreted as sequential programs.
The essential restriction on the sequential interpretation of a program is the limitation on
access to mutable variables in parallelizable constructs. The essential restriction on the
parallel interpretation of a program is the limitation on nondeterminacy as a result of
using single-assignment variables as the only means of communication and synchronization
between parallel threads.

The practical value of our programming model and methodology is determined by the

answers to the following two key questions:

1. Expressiveness: How significantly do the restrictions limit the algorithms and data

structures that we can express?

2. Efficiency: How significantly do the restrictions limit the efficiency of the programs

that we can write?

In this thesis, we describe programming experiments designed to investigate these questions.
We present parallel programs to solve a range of problems that require a variety of algo-
rithmic patterns and data structures. For some of these programs, we analyze performance
measurements gathered on up to 32 processors of a symmetric multiprocessor computer sys-
tem. From these programming experiments, we draw conclusions regarding the strengths

and weaknesses of our programming model and methodology.

1.6 Key Findings

Our programming experiments indicate that for a wide range of problems our programming
model is able to express parallel programs that have sophisticated control and synchroniza-
tion patterns, yet are: (i) not much more complicated than efficient sequential programs
developed without regard to parallelism, and (ii) significantly less complicated than effi-
cient parallel programs expressed using traditional explicit parallel programming models,
e.g., thread libraries with barrier and lock synchronization.

We found that the integration of single-assignment types with the type system of a

10

traditional sequential programming notation provides a powerful means of expressing syn-
chronization based on data flow at a high level of abstraction. The integration of single-
assignment types and mutable types within the same type system provides concise control of
the granularity of synchronization through the inclusion of single-assignment components
in otherwise mutable data structures. Parallelizable for-loop statements with arguments
provide control of the granularity of parallelism without adding additional complexity to
the structure of the program.

Our performance experiments indicate that our programming model is able to express
moderate-scale, medium-grained parallel programs that: (i) execute as efficiently as efficient
sequential programs on one processor, (ii) deliver good speedups on multiple processors,
and (iii) transparently adapt to dynamically changing processing resources. This is exactly
the behavior that is required for parallel programming to make an impact in mainstream
computing. The performance measurements also indicate that the use of single-assignment
types as a synchronization mechanism is as efficient as the use of less-structured constructs
such as locks.

Our experience in developing the experimental programs confirms the benefits of a
parallel programming model with equivalent sequential semantics. All of our programs
were developed, tested, and debugged entirely sequentially, and no errors were discovered
in the subsequent parallel execution. We found that errors relating to the restrictions on
the pragmas were easily avoided, since subtle cases rarely occur in practice. Development
of equivalent programs using traditional explicit parallel programming models would have
been considerably more difficult and error prone. We believe that our model provides the

basis of the method of choice for a large number of moderate-scale, medium-grained parallel

programming applications.

1.7 Thesis Outline

In Chapter 2, we summarize the background of the parallel programming model that we
explore in this thesis. The pragmas in our model are based on constructs that date back to
the 1960s in the context of other parallel programming notations.

In Chapter 3, we present our parallel programming model as a small set of pragmas
added to a standard sequential notation. We describe the restrictions on the use of the
pragmas, and we define a parallel semantics for the pragmas. In Chapter 4, we prove that
the parallel semantics is equivalent to the standard sequential semantics of the programming

notation, if the pragmas are used correctly. This equivalence result forms the basis of our

11

parallel programming methodology.

In Chapter 5, we discuss the issues that affect the performance of programs in our
parallel programming model on a shared-memory multiprocessor. We give measurements
of the execution costs of the fundamental operations in the parallel programming model.
In Chapters 6 and 7, we describe parallel programming experiments designed to investigate
general programming and performance issues. We give performance measurements for some
of the experimental programs on a shared-memory multiprocessor.

In Chapter 8, we consider the consequences of the limitations on nondeterminacy in
our programming model. We describe a class of problems where increased nondeterminacy
allows more efficient parallel algorithms. As a result, we investigate the integration of
nondeterministic constructs with our programming model.

In Chapter 9, we discuss additional implementation, programming, and performance
issues for our parallel programming model on distributed-memory computer systems.

In Chapter 10, we compare our programming model and methodology with related
work that is also motivated by the goal of reducing the difficulty of reasoning about explicit
parallelism. In particular, we contrast our approach with automatic parallelizing compil-
ers, run-time parallelization systems, parallel declarative programming, and data-parallel
programming.

In Chapter 11, we conclude with an assessment of our parallel programming methodology

and we suggest directions for future development.

12

Chapter 2

Background

The parallel programming model that we investigate in this thesis consists of a sequential
imperative language extended with pragmas for parallelizable sequences of statements, par-
allelizable for-loop statements, and single-assignment types. These pragmas are based on
constructs that date back to the 1960s in the context of other parallel programming nota-
tions. In this chapter, we review the background of the individual constructs and of their
integration with sequential imperative programming notations. We then compare our pro-
gramming model with other parallel programming models that incorporate these constructs.
In Chapter 10, we compare our programming model to other approaches to reducing the

difficulty of reasoning about explicit parallelism.

2.1 Parallel Composition of Statements

Our parallelizable sequence of statements pragma is based on the parallel composition of
statements construct. In 1966, Wirth [135] pointed out the difference between: (i) paral-
lelism for multiprocessor performance, and (ii) parallelism to represent concurrency in the
problem specification. For the first case, he advocated a parallel composition of statements
construct based on the syntax of standard sequential composition of statements, as opposed
to providing an entirely different notation for parallel execution, such as fork-and-join.
Wirth suggested the use of and in place of ;" between statements. In 1968, Dijkstra [33]
proposed the parbegin-parend notation for parallel composition of statements.

The first major language to support parallel composition of statements was Algol 68 [133],
which incorporated the parbegin—-parend notation. Other early notations to support par-
allel composition of statements include CSP [60][61] and Occam [86] (a programming lan-

guage derived from CSP). Many subsequent parallel programming notations express parallel

13

execution using some form of parallel composition of statements.

2.2 Parallel For-Loop Statement

Qur parallelizable for-loop statement pragma is based on a general parallel for-loop state-
ment. This form of parallel for-loop statement is simply a quantified parallel composition
of statements. In his 1968 paper, Dijkstra discussed the need for quantified parallel com-
position of statements. He used an informal notation that was not based on the syntax of
the sequential for-loop statement.

The initial version of CSP incorporated a limited form of quantified parallel composition.
However, it was not integrated with sequential repetition. Occam is the earliest implemented
language that we know of to integrate quantified parallel composition of statements with
the syntax for sequential iteration. The Occam replicator construct can be either sequential
or parallel, depending on whether the seq or par keyword is used.

Many data-parallel notations [58] incorporate more restricted (usually synchronous)
forms of parallel loops, such as the FORALL construct [4] in some Fortran dialects. The
INDEPENDENT directive of HPF (High Performance Fortran) [40][74] is an assertion that the
iterations of a loop are independent and can be executed in parallel. Unlike our parallelizable

for-loop statement pragma, no interaction is permitted between the iterations.

2.3 Single-Assignment Variables

In 1968, Tesler and Enea [123] described the use of single-assignment variables as a se-
quencing mechanism in their parallel programming notation, Compel. In Compel, the
single-assignment restriction enables automatic compile-time scheduling of the concurrent
execution of statements.

Since the mid-1970s, single-assignment variables have been used for run-time synchro-
nization in parallel dataflow languages such as Id [9][94], Val [1][88], and Sisal [38][87]. A
review of the principles and early development of parallel dataflow programming is given
by Ackerman [2]. Since the early 1980s, single-assignment variables have been used for
run-time synchronization in parallel logic programming languages such as Concurrent Pro-
log [109][110), Parlog [27][28], and Strand [43]. A review of the principles and history of
parallel logic programming is given by Shapiro [113]. Shapiro also edited a collection of
seminal papers on parallel logic programming [111][112].

Single-assignment variables are in many ways similar to the concept of futures incor-

14

porated in some parallel functional programming notations. In the mid-1980s, futures
were incorporated in parallel functional programming languages such as Multilisp [54] and
Qlisp [50]. A collection of papers relating to parallel functional programming using futures
was edited by Ito and Halstead [68].

2.4 Integration with Sequential Imperative Programming

In 1977, Kessels [71] described a conceptual framework that integrated single-assignment
and mutable types, parallel and sequential composition of statements, and parallel and
sequential for-loop statements. However, we are not aware of this framework directly leading
to the design and implementation of any actual programming language.

Designed in the late 1980s, PCN [23][24][42] is the first implemented language that we
know of to incorporate single-assignment and mutable types and parallel and sequential
composition of statements. A formal operational semantics and proof rules have been
developed for PCN [24, Part III]. Much of the structure of PCN is derived from parallel
logic programming. In particular, neither loops nor functions are supported, and single-
assignment and mutable types belong to separate type systems with completely different
compatibility rules.

Declarative Ada [124][127] is a notation designed and implemented (in earlier work
by the author of this thesis) to experiment with the integration of some key ideas from
PCN with a traditional sequential imperative language. Single-assignment types, parallel
composition of statements, and a parallel for-loop statement are integrated with the types
and statements of a small sequential subset of Ada [6]. Parallel Declarative Ada programs
can be developed to be identical to equivalent sequential Ada programs.

A recent parallel programming language, CC++ [21][22], integrates single-assignment
types, parallel composition of statements, a parallel for-loop statement, and other extensions
with the full C++ [117] language. CC++ supports many styles of parallel programming,

including the parallel programming methodology that we explore in this thesis.

2.5 Comparison with Our Model

The significant difference between the programming model that we define and investigate
in this thesis and the notations described in Section 2.4 is that our programming model
is restricted so that it can be defined with a sequential semantics. In the other notations,

parallel composition of statements, parallel for-loop statements, and single-assignment types

15

are more general and can only be defined with a parallel semantics. A parallel semantics is
defined in terms of concepts such as concurrency, interleaving, and suspension.
For example, consider the following two parallelizable sequences of statements in our

parallel programming notation:

begin begin
pragma Parallelizable Sequence; pragma Parallelizable_Sequence;
X = b5; Y = X;
Y :=X; X :=5;

end; end;

Assume that the variables X and Y are single-assignment integer variables. The sequence of
statements on the left is allowed, but execution of the sequence of statements on the right
is erroneous, because X is evaluated before it is assigned in the sequential interpretation.

In contrast, consider the following two analogous CC++ parallel blocks:

par { par {
X = 3; y =%
Yy =% X =5
} }

Assume that the variables x and y are single-assignment integer variables. Both blocks are
allowed and have exactly the same meaning, because the order of the individual statements
in a CC++ parallel block is not significant.

The sequential semantics of our programming model defines the pragmas to have no
effect whatsoever on the standard sequential meaning of the program. There are four

important benefits of having a sequential semantics:

1. Reasoning about correctness: The programmer can reason about the correctness of

parallel programs without reasoning about concurrency.

2. Parallelizable for-loop statement variations: The iterations of a parallelizable for-
loop can be assigned to a smaller number of parallel threads in a blocked, cyclic,
or on-demand pattern to reduce thread creation and scheduling costs. For the more
general parallel for-loop statements of Declarative Ada and CC++, this might result
in deadlock.

3. Optimizing compilation: The compiler can translate any parallelizable construct into
sequential code for efficiency. In general, with PCN, Declarative Ada, and CC++, it
is impossible to determine whether the sequential interpretation of a parallel construct

is equivalent to the parallel interpretation.

16

4. Nonpreemptive scheduling: Run-time scheduling of parallel threads can be nonpre-
emptive, thereby reducing thread scheduling and cache invalidation costs. Since PCN,
Declarative Ada, and CC++ programs may include parallel composition of nontermi-

nating computations, the thread scheduling strategy is required to be preemptive.

These benefits arise at the cost of restricting the applicability of our parallel programming

model to problems that have sequential solutions.

17

Chapter 3

A Programming Model with

Parallel and Sequential Semantics

In this chapter, we present the parallel programming model that we explore in this thesis,
as a small set of pragmas added to a standard sequential notation. The pragmas are used
to indicate where the execution of constructs according to a parallel semantics is equivalent
to their execution according to the standard sequential semantics. Part of the model is a
set of restrictions on the use of the pragmas that ensures the equivalence of the parallel
and sequential semantics. For each of the pragmas, we: (i) give the syntax of the pragma,
(ii) summarize the standard sequential semantics of the construct to which the pragma is
applied, (iii) describe the restrictions on the use of the pragma, and (iv) define the equivalent
parallel semantics associated with the pragma. A proof of the equivalence of the parallel

and sequential semantics of our programming model is given in Chapter 4.

3.1 Framework

3.1.1 The Underlying Language: Ada

Our parallel programming model could be integrated with almost any structured imperative
programming language. The major requirement is that the underlying language provide
structured choice and iteration constructs, rather than only goto statements. It is also useful
for the language to support dynamic memory allocation. Suitable languages include Pascal,
C, Ada, Modula-3, C++, and Fortran 90. We choose to define our parallel programming
model as a small set of pragmas added to Ada [3][6]. To avoid complicating the definition

with too many Ada-specific details, we define the model in the context of Ada without

18

tasking. In Chapter 8, we consider the integration of our model with the standard Ada
tasking model.

Ada is an established and internationally standardized programming language that sup-
ports constructs typical of modern imperative languages. The original Ada language,
Ada 83 [6], incorporates: (i) integer, floating-point, fixed-point, enumeration, character,
boolean, array, record, and access (i.e., pointer) data types, (ii) assignment, block, if-then-
else, case, while-loop, for-loop, loop-exit, function-return, and procedure-call statements,
(iii) procedures and functions with in, in out, and out mode parameters, (iv) subprogram
and operator overloading, (v) packages for data abstraction, (vi) separate compilation of
packages and subprograms, (vii) concurrent tasks with communication and synchroniza-
tion constructs, (viii) exception handling, (ix) generic subprograms and packages, and (x)
standardized input-output libraries.

The updated Ada language, Ada 95 [3], is a superset of Ada 83 that adds: (xi) ad-
ditional support for object-oriented programming, (xii) relaxation of some restrictions on
access types, (xiii) support for extensible and hierarchical library packages, (xiv) additional
communication and synchronization constructs, (xv) additional standardized libraries, and
(xvi) additional support for systems programming, real-time systems, distributed systems,
information systems, numeric programming, safety and security, and interfacing to other
languages. In the interest of general readability, we restrict our example programs to a

subset of Ada features. However, our programming model is compatible with the entire

Ada language.

3.1.2 Why Ada?

There are a number of reasons why we choose Ada as the underlying language for the

presentation of our parallel programming model.

Practical Issues: (i) Ada is stable, well-defined, and internationally (ISO and ANSI)
standardized. (ii) Ada has a verbose syntax that makes programs easy to read and under-
stand by anyone familiar with languages such as Pascal, C, or Fortran. (iii) Validated Ada
compilers are available for almost all computer architectures and operating systems. (iv)
Ada has a well-defined syntax for pragmas, and Ada compilers are required to simply ignore
any pragmas that they do not recognize. Therefore, we can test our programs sequentially

using standard Ada compilers.

Design Issues: (i) Ada has a well-defined hierarchy of compile-time errors, run-time

errors, and run-time exceptions. This framework is useful in clearly describing program

19

errors in our model. (ii) The loop parameter of an Ada for-loop statement is implicitly
declared and cannot be modified by the execution of the loop body. We require this of our
parallelizable for-loop statement. (iii) An Ada goto statement cannot jump from outside to
inside a sequence of statements. We require this for our parallelizable sequence of statements
and parallelizable for-loop statement. (iv) The default initial value of a scalar variable is

undefined. We require this of our single-assignment variables.

Tasking Issues: (i) Since Ada supports tasking, memory allocation and deallocation
operations are required to be “thread-safe”, i.e., they are required to be able to be executed
in parallel without interference. This is not necessarily true of the memory allocation
and deallocation operations provided by a purely sequential language. (ii) The Ada task
priority model can be extended to allow priorities to be assigned to the statements of
our parallelizable sequence of statements and the iterations of our parallelizable for-loop
statement. Assigning priorities does not affect the semantics of the pragmas, but may
improve run-time performance. (iii) Our parallel programming model can be integrated
with the Ada tasking model for problems that require some nondeterministic behavior. (iv)
The parallel semantics of our programming model can be implemented by straightforward
transformation of our parallelizable constructs into standard Ada tasking constructs. This

provides us with a simple method of testing and measuring the parallel performance of our

programs.

3.1.3 Errors and Exceptions

In our programming model, as in Ada, errors are classified as either illegal constructs,

exceptional execution situations, or erroneous execution situations.

Illegal Constructs: An illegal construct can and must be detected and reported by the
compiler, linker, or loader. Therefore, an illegal program can never be executed. For
example, it is illegal to assign an integer-valued expression to a floating-point variable
without an explicit type conversion. OQur programming model defines seven illegal uses of

the pragmas, which we label 1.1 through 1.7 for future reference.

Exceptional Execution: An exceptional execution situation always raises a specified
predefined exception. The exception propagates to the outermost program or task execu-
tion, unless it is explicitly handled. For example, the predefined Constraint_Error exception
is raised if an array index is out of range. Our programming model does not define any

new exceptional execution situations. However, an implementation may choose to handle

20

some of the new erroneous execution situations by raising an exception, as described in

Section 3.8.

Erroneous Execution: The behavior of an erroneous execution situation is undefined.
The program may terminate abnormally, continue execution, raise an exception, or suspend
without termination. For example, the execution of a program is erroneous if it attempts to
evaluate an undefined scalar variable. Our programming model defines six new erroneous

execution situations, which we label E.1 through E.6 for future reference.

3.1.4 Sequential and Parallel Semantics

The semantics of a programming notation is a definition of the meaning of all the legal
programs allowed by the notation. An “operational semantics” defines the meaning of
programs in terms of their interpretation by an abstract machine. Throughout this thesis,
we use the term “sequential semantics” to mean an operational semantics in which the
abstract machine maintains a single thread of control in the interpreted program, and the
term “parallel semantics” to mean an operational semantics in which the abstract machine
may maintain multiple threads of control in the interpreted program. For example, a
conventional operational semantics for a sequential imperative language, such as Fortran,
Pascal, C, C++, or Ada without tasking, would be a sequential semantics. A conventional
operational semantics for a multithreaded notation, such as CSP, Ada tasking, or a thread

library (e.g., Pthreads), would be a parallel semantics.

3.1.5 Method of Definition

We define the syntax of our pragmas using the same notation that is used in the Ada
language definition [3][6]. In this notation, items enclosed in square brackets are optional.
In all other respects, the syntax of the pragmas is trivial.

We define the sequential and parallel semantics of our programming model using an
informal written description rather than a formal definition using a mathematical model.
This is the approach taken in the primary definitions of almost all popular programming
notations, including Ada. We use the same terminology as that used in the Ada language
definition. In Chapter 4, where we prove the equivalence of the parallel semantics and
sequential semantics, we are more precise about the semantics of parallel execution.

The intention of this thesis is not to provide a language definition document for a
parallel extension of Ada. Ada is simply a convenient basis for describing our general

parallel programming model and methodology. Therefore, we do not explicitly discuss the

21

implications of the interaction of our programming model with every Ada-specific feature.
To do so would be tedious for most of our readers and add nothing to achieving the purpose

of this thesis.

3.1.6 Definition of Restrictions

The pragmas in our parallel programming model are subject to a set of restrictions chosen
to ensure that execution according to the parallel semantics is equivalent to execution
according to the standard sequential semantics. Most of the restrictions are defined in the
context of the sequential semantics. However, in Section 3.5 and Section 3.6 we describe
two restrictions that must be defined in the context of the parallel semantics. This is
unfortunate because it means that reasoning in the context of the parallel semantics is
required to show that these restrictions are satisfied. Fortunately, there are slightly stronger
versions of the two restrictions that can be defined in the context of the sequential semantics.
Therefore, in most cases, sequential reasoning can be used to show that the pragmas satisfy

the restrictions.

3.1.7 Memory Model

The model that we define is a shared-memory parallel programming model. All parallel
threads share access to a single logical address space. The same kind of memory model is
provided by the standard Ada tasking model and by thread libraries such as Pthreads. The
programming model may be implemented on top of a system in which all processors gen-
uinely share uniform access to a single memory system. Alternatively, the shared-memory
programming model may be implemented as a layer on top of a physically distributed mem-
ory hierarchy with non-uniform memory access mechanisms. In this thesis, we discuss the

performance issues associated with both implementation platforms.

3.2 The Parallelizable Sequence of Statements Pragma

3.2.1 Syntax

A Parallelizable_Sequence pragma is applied to a sequence of statements to indicate that

the statements can be executed as parallel threads. The form of a Parallelizable_Sequence

pragma is as follows:

22

pragma Parallelizable_Sequence;
statement
statement
A Parallelizable_Sequence pragma is allowed only immediately preceding a sequence of state-

ments. The sequence of statements is referred to as a parallelizable sequence of statements.

3.2.2 Summary of the Standard Sequential Semantics

The sequential semantics of a parallelizable sequence of statements is the same as the
standard sequential semantics of a sequence of statements. Execution of a sequence of
statements consists of the execution of the individual statements in succession until the
execution of all the statements is complete or a transfer of control out of the sequence of
statements takes place. It is illegal for a goto statement to transfer control into a sequence
of statements.

Transfer of control out of a sequence of statements can be caused by: (i) execution of
an exit statement, return statement, or goto statement within the sequence of statements,
or (ii) the raising of an exception within the sequence of statements. Because of the restric-
tions described in the Section 3.2.3, a transfer of control out of a parallelizable sequence

of statements can only be caused by the raising of an exception within the sequence of

statements.

3.2.3 Restrictions

In order for the parallel semantics to be equivalent to the standard sequential semantics, a
parallelizable sequence of statements is subject to the standard restrictions on a sequence
of statements, plus a small number of additional restrictions, described below. These ad-
ditional restrictions are the same as or analogous to the additional restrictions on a paral-

lelizable for-loop statement, described in Section 3.3.3.

Restrictions on Transfer of Control:

e It is illegal for an exit statement, return statement, or goto statement to transfer

control out of a parallelizable sequence of statements. (I.1)

e It is illegal for a goto statement to transfer control between the statements of a

parallelizable sequence of statements. (1.2)

23

Restrictions on Shared Variables:

e It is erroneous for one statement of a parallelizable sequence of statements to assign
a mutable variable that is assigned or evaluated by another statement of the same

parallelizable sequence of statements, unless those actions are synchronized. (E.1)

o Similarly, it is erroneous for one statement of a parallelizable sequence of statements to
deallocate any dynamically-allocated variable that is assigned or evaluated by another
statement of the same parallelizable sequence of statements, unless those actions are

synchronized. (E.2)

These two restrictions are described in more detail in Section 3.5.

Restrictions on Exception Handling:

e It is erroneous to make a choice based on the kind of exception that is propagated out

of a parallelizable sequence of statements that terminates exceptionally. (E.3)

e It is erroneous to evaluate or assign certain variables after a parallelizable sequence of

statements that terminates exceptionally. This restriction is described in more detail

in Section 3.6. (E.4)

3.2.4 Equivalent Parallel Semantics
A parallelizable sequence of statements has the following parallel semantics:

e Initiation of the execution of a parallelizable sequence of statements consists of the
initiation of the execution of each statement as a separate parallel thread of control.

The order in which the execution of the statements is initiated is undefined.

e If execution of all the statements terminates normally, execution of the parallelizable

sequence of statements terminates normally.

e If execution of one of the statements terminates exceptionally, execution of the other
statements is aborted and execution of the parallelizable sequence of statements ter-

minates exceptionally. The kind of exception that is propagated is undefined.

If all of the restrictions are satisfied, execution of a parallelizable sequence of statements

according to this parallel semantics is equivalent to execution according to the standard

sequential semantics.

24

3.2.5 Examples

The following is a simple example of a parallelizable sequence of statements:

begin
pragma Parallelizable _Sequence;
X:=1;
Y = 2;

end;

The following function is illegal (violates restriction I.1), because the return statement

transfers control out of the parallelizable sequence of statements:

function Zero_Vector return Vector is
Result : Vector;

begin
pragma Parallelizable_Sequence;
Result.X := 0;
Result.Y := 0;
Result.Z := 0;

return Result;
end Zero_Vector;
If X and Y are mutable variables, execution of the following parallelizable sequence of
statements is erroneous (violates restriction E.1), because X is assigned by one statement

and evaluated by another statement:

begin
pragma Parallelizable Sequence;
X :=1;
Y = X;

end;

Execution of the following block statement is erroneous (violates restriction E.3), because
the exception handler makes a choice based on the kind of exception that is propagated out

of the parallelizable sequence of statements:

begin

pragma Parallelizable_Sequence;

A(T) = B(I)*C(I);

A{J) := B())*C();
exception

when Numeric_Error => Put_Line("0Overflow");
end;

In contrast, execution of the following block statement is not erroneous, because the excep-

tion handler performs the same action regardless of the kind of exception that is propagated

25

out of the parallelizable sequence of statements:

begin

pragma Parallelizable_Sequence;

A(I) := B(I)*C(I);

A(J) == B(I)*C(D);
exception

when others => Put_Line("Error");
end;

Additional examples of the restriction on shared mutable variables in a parallelizable se-

quence of statements are given in Section 3.5.

3.3 The Parallelizable For-Loop Statement Pragma

3.3.1 Syntax

A Parallelizable_Loop pragma is applied to a for-loop statement to indicate that the itera-
tions of the loop can be executed as parallel threads. The form of an ordinary Paralleliz-
able_Loop pragma is as follows:

pragma Parallelizable Loop;

for loop_parameter in [reverse] loop._range loop

loop_body

end loop;
A Parallelizable_Loop pragma. is allowed only immediately preceding a for-loop statement.
The for-loop statement is referred to as a parallelizable for-loop statement. In Section 3.7,

we describe optional arguments of the pragma that may improve run-time performance.

3.3.2 Summary of the Standard Sequential Semantics

The sequential semantics of a parallelizable for-loop statement is the same as the standard
sequential semantics of a for-loop statement. Execution of a for-loop statement consists
of evaluation of the loop range, followed by execution of the loop body repeatedly, once
for each value of the loop range or until a transfer of control out of the loop takes place.
The loop parameter is implicitly declared and is only visible within the loop body. In each
iteration, the loop parameter is a different constant from the loop range and cannot be
changed by the execution of the loop body. The iterations are executed in increasing order
of loop parameter value, unless the word reverse is present, in which case the iterations

are executed in decreasing order of loop parameter value. It is illegal for a goto statement

26

to transfer control into a for-loop statement.

Transfer of control out of a for-loop statement can be caused by: (i) execution of an exit
statement, return statement, or goto statement within the loop body, or (ii) the raising of
an exception within the loop body. Because of the restrictions described in Section 3.3.3,
a transfer of control out of a parallelizable for-loop statement can only be caused by the

raising of an exception within the loop body.

3.3.3 Restrictions

In order for the parallel semantics to be equivalent to the standard sequential semantics,
a parallelizable for-loop statement is subject to the standard restrictions on a for-loop
statement, plus a small number of additional restrictions, described below. These additional
restrictions are the same as or analogous to the additional restrictions on a parallelizable

sequence of statements, described in Section 3.2.3.

Restrictions on Transfer of Control:

e It is illegal for an exit statement, return statement, or goto statement to transfer

control out of a parallelizable for-loop statement. (I.1)

Restrictions on Shared Variables:

e It is erroneous for one iteration of a parallelizable for-loop statement to assign a muta-
ble variable that is assigned or evaluated by another iteration of the same parallelizable

for-loop statement, unless those actions are synchronized. (E.1)

e Similarly, it is erroneous for one iteration of a parallelizable for-loop statement to
deallocate any dynamically-allocated variable that is assigned or evaluated by an-

other iteration of the same parallelizable for-loop statement, unless those actions are

synchronized. (E.2)
These two restrictions are described in more detail in Section 3.5.

Restrictions on Exception Handling:

e It is erroneous to make a choice based on the kind of exception that is propagated out

of a parallelizable for-loop statement that terminates exceptionally. (E.3)

27

e It is erroneous to evaluate or assign certain variables after a parallelizable for-loop
statement that terminates exceptionally. This restriction is described in more detail
in Section 3.6. (E.4)

3.3.4 Equivalent Parallel Semantics

A parallelizable for-loop statement has the following parallel semantics:

e Initiation of the execution of a parallelizable for-loop statement consists of the evalua-
tion of the loop range, followed by the initiation of the execution of each iteration as a
separate parallel thread of control. The order in which the execution of the iterations

is initiated is undefined.

o If execution of all the iterations terminates normally, execution of the parallelizable

for-loop statement terminates normally.

o If execution of one of the iterations terminates exceptionally, execution of the other
iterations is aborted and execution of the parallelizable for-loop statement terminates

exceptionally. The kind of exception that is propagated is undefined.

If all of the restrictions are satisfied, execution of a parallelizable for-loop statement accord-

ing to this parallel semantics is equivalent to execution according to the standard sequential

semantics.

3.3.5 Examples
The following is a simple example of a parallelizable for-loop statement:

pragma Parallelizable Loop;
forIin1 .. N loop

Data(l) := 0;
end loop;

The following is an example of a parallelizable sequence of statements nested within a

parallelizable for-loop statement:

pragma Parallelizable Loop;
forIin1 .. N loop
pragma Parallelizable Sequence;
A(l) := 0
B(I) := 0
end loop;

28

The following is illegal (violates restriction 1.1), because the exit statement transfers control

out of the parallelizable for-loop statement:

Found := False;
pragma Parallelizable Loop;
for1in1 .. Nloop
if Data(I) = Target then
Found := True;
exit;
end if;
end loop;

If Data is an array of mutable components, execution of the following parallelizable for-
loop statement is erroneous (violates restriction E.1), because each component of Data is
assigned by one iteration and evaluated by another iteration:
Data(l) := 0;
pragma Paralielizable Loop;
forIin2.. N loop
Data(I) := Data(I — 1);
end loop;
Execution of the following block statement is erroneous (violates restriction E.3), because
the exception handler makes a choice based on the kind of exception that is propagated out
of the parallelizable for-loop statement:
begin
pragma Parallelizable Loop;
forIin1.. Nloop
A(l) = BD*C(1);
end loop;
exception

when Numeric_Error => Put_Line("Overflow");
end;

In contrast, execution of the following block statement is not erroneous, because the excep-
tion handler performs the same actions regardless of the kind of exception that is propagated

out of the parallelizable for-loop statement:

29

begin
pragma Parallelizable Loop;
forTin1.. N loop
A(D) = BD*C();
end loop;
exception
when others => Put_Line("Overflow");
end;
Additional examples of the restriction on shared mutable variables in a parallelizable for-

loop statement are given in Section 3.5.

3.4 The Single-Assignment Type Pragma

3.4.1 Syntax

A Single_Assignment pragma is applied to a type declaration to indicate that assignment
and evaluation operations on variables of that type can be used as implicit communication
and synchronization operations between parallel threads. The form of a Single_Assignment
pragma is as follows:

type identifier is type_definition;

pragma Single_Assignment(identifier);
A Single_Assignment pragma is allowed only in a declarative region, and the identifier argu-
ment must denote a type declaration in the same declarative region. A Single_Assignment
pragma will normally be placed immediately following the type declaration to which it
applies. A type that is named by a Single_Assignment pragma is referred to as a single-
assignment type, and a variable of a single-assignment type is referred to as a single-
assignment variable. A type that is not a single-assignment type is referred to as a mutable

type, and a variable of a mutable type is referred to as a mutable variable.

3.4.2 Summary of the Standard Sequential Semantics

The sequential semantics of operations on single-assignment types and variables is the same
as the standard sequential semantics of operations on mutable types and variables. A type
declaration declares a distinct named type, and elaboration of a variable declaration creates
a variable object. The default initial value of a scalar variable is undefined and of an
access variable is null. Evaluation of a variable returns the current value of the variable,

and assignment to a variable replaces the current value of the variable with a new value.

30

Explicit type conversions are allowed between related types such as a derived type and its

parent type.

3.4.3 Restrictions

In order for the parallel semantics to be equivalent to the standard sequential semantics,
single-assignment types and variables are subject to the standard restrictions on mutable

types and variables, plus a small number of additional restrictions, described below.

Fundamental Restrictions on Assignment and Evaluation:

e It is erroneous to evaluate a single-assignment variable that has not previously been

assigned. (E.5)

e It is erroneous to assign a single-assignment variable that has previously been assigned.

This is the most significant restriction on single-assignment variables. (E.6)

Other Related Restrictions:

e It is illegal for a single-assignment type to be a limited type (i.e., a type without an

assignment operation). (1.3)

e It is illegal to assign an individual component of a variable of a composite single-

assignment type (i.e., a single-assignment array or record type). (1.4)

e It is illegal for an actual parameter of in out or out mode to be an individual

component of a variable of a composite single-assignment type. (I.5)

e It is illegal for an actual parameter of in out or out mode to be a type conversion

between a single-assignment type and a mutable type. (1.6)

e A single-assignment derived type does not inherit subprograms from its parent type

in which the type is a formal parameter of in out or out mode. (1.7)
3.4.4 Equivalent Parallel Semantics

Operations on single-assignment types and variables have the following parallel semantics:

e The default initial value of a single-assignment variable is a special “unassigned” value.

e Assignment and evaluation of a single-assignment variable are atomic operations (i.e.,

they are not interleaved when executed in parallel).

31

e Evaluation of an unassigned single-assignment variable causes the evaluating thread

to suspend at that point.

e Assignment to an unassigned single-assignment variable awakens all threads that are

suspended on the evaluation of that variable.

e The effect of assignment to a previously assigned single-assignment variable is unde-

fined. One possibility is to raise an implementation-defined exception.

e A single-assignment variable or expression occurring as an actual parameter of in mode
is passed by value. A single-assignment variable occurring as an actual parameter of

in out or out mode is passed by reference.

If all of the restrictions are satisfied, execution of operations on single-assignment types
and variables according to this parallel semantics is equivalent to execution of operations

on mutable types and variables according to the standard sequential semantics.

3.4.5 Examples

Type Declarations
The following are examples of type declarations involving single-assignment types:

—— a single-assignment integer type derived from the standard integer type

type Single Integer is new Integer;
pragma Single_Assignment(Single Integer);

—— an array type with single-assignment components
type Array_Of.Single is array (1 .. 10) of Single_Integer;

—— a single-assignment array type
type Single_Array is array (1 .. 10) of Integer;
pragma Single_Assignment(Single_Array);

—— 3 record type with single-assignment components
type Record Of_Single is
record
X, Y, Z : Single_Integer;
end record;

32

—— a record type with mutable and single-assignment components
type Record_Of_Single is
record
X : Integer;
Y : Single Integer;
end record;

—— a single-assignment record type
type Single_Vector is
record
X, Y, Z : Integer;
end record;
pragma Single_Assignment(Single_Vector);

—— a linked list with single-assignment links
type Node;
type Single Pointer is access Node;
pragma Single_Assignment(Single_Pointer);
type Node is
record
Item : Integer;
Next : Single_Pointer;
end record;

It is important to understand the distinction between a composite type with single-assign-
ment components and a single-assignment composite type. Assignment to the individual
components of a composite type with single-assignment components is permitted, whereas

a composite single-assignment variable must be assigned as a whole.

Sequential Assignment and Evaluation

The following is a simple example of sequential assignment and evaluation of single-assign-

ment variables:

declare
X, Y : Single Integer;
begin
L
X5

i

X:
Y:
end;

Execution of the following block statement is erroneous (violates restriction E.3), because

X is evaluated before it is assigned:

33

declare

X, Y : Single_Integer;
begin

Y =X;

X =1
end;

Execution of the following block statement is erroneous (violates restriction E.4), because

X is assigned more than once:

declare

X : Single_Integer;
begin

X =1

X =2
end;

Parallelizable Assignment and Evaluation

The following is a simple example of parallelizable assignment and evaluation of single-

assignment variables:

declare
X, Y : Single_Integer;
begin
pragma Parallelizable_Sequence;
X:i=1;
Y :=X;
end;

Execution of the following block statement is erroneous (violates restriction E.3), because
X is evaluated before it is assigned (in the sequential interpretation):
declare
X, Y : Single_Integer;
begin
pragma Parallelizable Sequence;
Y =X,

X:=1
end;

3.5 Restrictions on Shared Variables

The two most significant restrictions on a parallelizable sequence of statements are the

following:

34

1. It is erroneous for one statement of a parallelizable sequence of statements to assign
a mutable variable that is assigned or evaluated by another statement of the same
parallelizable sequence of statements, unless those actions are synchronized according

to the parallel semantics. (E.1)

2. Similarly, it is erroneous for one statement of a parallelizable sequence of statements to
deallocate any dynamically-allocated variable that is assigned or evaluated by another
statement of the same parallelizable sequence of statements, unless those actions are

synchronized according to the parallel semantics. (E.2)

Analogous restrictions apply to the iterations of a parallelizable for-loop statement. Action
A, in thread Ty is synchronized with action Ag in thread T, if T; assigns to a single-
assignment variable S after executing A; and Ty evaluates S before executing A;. For
example, execution of the following parallelizable sequences of statements is erroneous (vi-

olates restriction E.1) because of unsynchronized operations on the mutable variable X:

declare declare
X : Integer; X, Y : Integer;
begin begin
pragma Parallelizable_Sequence; pragma Parallelizable_Sequence;
X = 1; X:=1;
X :=2; Y =X,
end; end;

Execution of the following parallelizable sequence of statements is not erroneous, because

synchronization on S ensures that the assignment to X by the first parallel thread occurs

before the evaluation of X by the second parallel thread.

declare
X, Y : Integer;
S, T : Single_Integer;
begin
pragma Parallelizable Sequence;
begin
X:=1;
S = 0;
end;
begin
T :=S8;
Y = X;
end;

end;

35

In contrast, execution of the following parallelizable sequence of statements is erroneous
(violates restriction E.1), because the operations on S do not synchronize the assignment

and evaluation operations on X:

declare
X, Y : Integer;
S, T : Single Integer;
begin
pragma Parallelizable Sequence;
begin
X =1
S :=0;
end;
begin
Y =X,
T :=S;
end;
end;

In general, showing that these restrictions are satisfied requires reasoning about synchroniza-
tion between parallel threads of control. However, in practice most instances of parallelizable
sequences of statements (and parallelizable for-loop statements) satisfy the following two

stronger restrictions defined in terms of the sequential semantics of the programming model:

1. It is erroneous for one statement of a parallelizable sequence of statements to assign

a mutable variable that is assigned or evaluated by another statement of the same

parallelizable sequence of statements.

2. Similarly, it is erroneous for one statement of a parallelizable sequence of statements to
deallocate any dynamically-allocated variable that is assigned or evaluated by another

statement of the same parallelizable sequence of statements.

Analogous restrictions apply to the iterations of a parallelizable for-loop statement. There-
fore, in most cases the general restrictions on the shared variables of a parallelizable sequence
of statements or a parallelizable for-loop statement can be shown to be satisfied by using

sequential reasoning to show that the stronger restrictions are satisfied.

3.6 Restrictions on Exceptions

After a parallelizable sequence of statements terminates exceptionally, the following two

restrictions apply:

36

1. It is erroneous to evaluate any mutable variable that could have been assigned by
the execution of the parallelizable sequence of statements according to the parallel

semantics, until that variable has subsequently been assigned. (E.3)

2. Similarly, it is erroneous to evaluate or assign any single-assignment variable that
could have been assigned by the execution of the parallelizable sequence of statements

according to the parallel semantics. (E.4)

Analogous restrictions apply after a parallelizable for-loop statement terminates exception-
ally. In general, showing that these restrictions are satisfied requires reasoning about the
parallel threads of control to determine which variables could be assigned values by exe-
cution according to the parallel semantics. However, sequential reasoning can be used to
determine a superset of the variables that could been assigned values by parallel execution.
In practice, most instances of recovery from an exception do not erroneously evaluate or
assign any variable in this superset. Therefore, in most cases the general restrictions can

be shown to be satisfied using sequential reasoning.

3.7 Parallelizable For-Loop Statement Arguments

In order to provide control over granularity and load balancing, a Parallelizable_Loop
pragma has two optional arguments that are used to indicate that a parallelizable for-loop
statement should be executed according to a modified parallel semantics. The modified par-
allel semantics is equivalent to the default parallel semantics, but the run-time performance
may be different. The complete form of a Parallelizable_Loop pragma is as follows:

pragma Parallelizable Loop

[([Num_Threads =>] integer_expression, [Pattern =>] pattern.identifier)];

The arguments indicate that the iterations of the parallelizable for-loop statement should
be executed as a specified number of parallel threads, instead of the default of a separate
parallel thread for each iteration. The Num_Threads argument indicates the number of
parallel threads, and the pattern argument indicates the method by which iterations are
assigned to parallel threads. The pattern identifier can be Block, Cyclic, or On.Demand.
An example of the assignment of iterations to threads for each of the different patterns is
shown in Table 3.1.

The parallel semantics associated with the Block and Cyclic patterns can be defined
by transformation of a parallelizable for-loop statements with arguments into an equivalent

block statement enclosing a parallelizable for-loop statement without arguments. Therefore,

37

Thread A | Thread B | Thread C | Thread D
Block 0,1,2 3,4 56,7 8,9
reverse/Block 9,8 7,6,5 4,3 2,1,0
Cyclic 0,4,8 1,5,9 2,6 3,7
reverse/Cyclic 9,51 8,4,0 7,3 6, 2
On_Demand”* 0,6 1,4, 8 2 3,579
reverse/On Demand* 9,1,0 8, 3,2 7,54 6

*One possible assignment of iterations is given for On_Demand patterns.

Table 3.1: Example of the assignment of iterations in the loop range 0 .. 9 to four threads for
a parallelizable for-loop statement with and without reverse and with different patterns.

these patterns are really a convenient syntactic shorthand, rather than a distinct feature of
our parallel programming model. The parallel semantics associated with the On_Demand
pattern introduces nondeterministic assignment of iterations to threads, but the iterations

are always initiated in sequential order.

Block Pattern

The Block pattern indicates that iterations should be assigned to parallel threads in con-

tiguous blocks.

pragma Parallelizable_Loop(Num_Threads => N, Pattern => Block);
for I in [reverse] First .. Last loop

Loop_Body(I);
end loop;

A parallelizable for-loop statement without reverse and with the Block pattern is defined

by transformation to the following:

declare
Num_Iterations : constant Integer := Max(0, Pos(Last) — Pos(First) + 1);
Num.Threads : constant Integer := Min(Max(1, N), Num_Iterations);
begin
pragma Parallelizable Loop;
for T in 0 .. Num.Threads — 1 loop
for K in Integer((Float(T)/Float(Num_Threads))*Float(Num_Iterations)) ..
Integer((Float(T + 1)/Float(Num.Threads))*Float(Num Iterations)) — 1 loop
Loop_Body(Val(Pos(First) + K));
end loop;
end loop;
end;

A parallelizable for-loop statement with reverse and with the Block pattern is defined by

38

the same transformation except that the T and K loops are reverse loops.

Cyclic Pattern

The Cyclic pattern indicates that iterations should be assigned to parallel threads in a

round-robin manner.

pragma Parallelizable Loop(Num_Threads => N, Pattern => Cyclic);
for I in [reverse] First .. Last loop

Loop_Body(I);
end loop;

A parallelizable for-loop statement without reverse and with the Cyclic pattern is defined

by transformation to the following:

declare
Num Iterations : constant Integer := Max(0, Pos(Last) — Pos(First) + 1);
Num_Threads : constant Integer := Min(Max(1, N), Num_ Iterations);
begin
pragma Parallelizable Loop;
for T in 0 .. Num_Threads — 1 loop
for K in 0 .. (Num_Tterations + Num_Threads — T — 1)/Num_Threads — 1 loop
Loop_Body(Val(Pos(First) + T + K*Num_Threads));
end loop;
end loop;
end;

A parallelizable for-loop statement with reverse and with the Cyclic pattern is defined by

the same transformation except that the T and K loops are reverse loops.

On_Demand Pattern

The On_Demand pattern indicates that an idle parallel thread should be assigned the next

unexecuted iteration.

pragma Parallelizable Loop(Num_Threads => N, Pattern => On_Demand);
for I in [reverse] First .. Last loop

Loop_Body(I);
end loop;

A parallelizable for-loop statement without reverse and with the On.Demand pattern is

defined by transformation to the following:

39

declare

Num._Iterations : constant Integer := Max(0, Pos(Last) — Pos(First) + 1);
Num.Threads : constant Integer := Min(Max(1, N), Num_Iterations);
protected Loop_Parameters is

procedure Next (K : out Integer; Finished : out Boolean);
private

Count : Integer := 0;
end Loop.Parameters;
protected body Loop.Parameters is

procedure Next (K : out Integer; Finished : out Boolean) is

begin

if Count = Num_Iterations then
Finished := True;

else
K := Count; Count := Count + 1; Finished := False;
end if;
end Next;
end Loop_Parameters;

begin
pragma Parallelizable Loop;
for T in 0 .. Num_Threads — 1 loop

declare
Finished : Boolean;
K : Integer;
begin

Loop Parameters.Next(K, Finished);
while not Finished loop
Loop.-Body(Val(Pos(First) + K));
Loop.Parameters.Next(K, Finished);
end loop;
end;
end loop;
end;
The Loop_Parameters protected object is a construct from outside of our model (from
Ada 95 tasking) that enforces mutual exclusion on calls to the Next procedure. A paral-
lelizable for-loop statement with reverse and with the On_Demand pattern is defined by

the same transformation except that Pos(First) + K is replaced by Pos(Last) — K.

3.8 Compilation and Error Handling Options

A compiler for our parallel programming notation should provide options to compile a
program according to either the standard sequential semantics or the equivalent parallel
semantics. In the absence of erroneous execution situations, sequential and parallel exe-

cution will produce the same results. Therefore, most program development, testing, and

40

debugging can be performed on the sequential version of the program. The linker must
check that all of the compilation units of a program have been compiled according to the
same semantics.

Although compilation according to the sequential semantics can be achieved using a
standard compiler that ignores unknown pragmas, a compiler that understands the pragmas

can provide additional support for detecting erroneous execution situations:

e With compilation according to the sequential semantics, evaluation of an unassigned

single-assignment variable can be detected at run time.

e With compilation according to either the sequential or the parallel semantics, multiple

assignment to a single-assignment variable can be detected at run time.

e With compilation according to either the sequential or the parallel semantics, a par-
allelizable sequence of statements or parallelizable for-loop statement that terminates
exceptionally can propagate a unique implementation-defined exception, and a choice

based on this exception can be detected.

Detection of any of these errors should terminate program execution in a manner that
provides as much debugging information as possible. As discussed in Section 3.9, for reasons
of efficiency the programmer may sometimes choose to suppress detection of these erroneous

execution situations.

The only erroneous execution situations that cannot be detected at low cost are the
errors relating to parallel operations on shared variables and operations on variables after
exceptions described in Section 3.5 and Section 3.6. These errors are very difficult to prohibit

and expensive to detect in any notation that allows nested declaration scopes.

3.9 Related Pragmas

In addition to adding three new pragmas, we also extend two standard Ada pragmas for

suppressing error checking and specifying thread priorities.

3.9.1 Suppressing Error Checking

The standard Suppress pragma is used to indicate that the compiler can omit certain
specified run-time checks, e.g., checks on array indexing and division by zero. We extend
the pragma to allow suppression of the run-time checks relating to our programming model.

The form of these Suppress pragmas is as follows:

41

pragma Suppress(Single_Assignment_Check);
pragma Suppress(Parallel Exception_Check);

If Single_Assignment_Check is suppressed, the checks on evaluation of unassigned single-
assignment variables and multiple assignment to single-assignment variables should be omit-
ted. If Parallel_Exception_Check is suppressed, the propagation of exceptions out of paral-

lelizable sequences of statements and parallelizable for-loop statements should be omitted.

3.9.2 Specifying Thread Priorities

The standard Priority pragma can appear within a task specification to assign a scheduling

priority to the execution of the task. The form of a Priority pragma is as follows:
pragma Priority(integer_expression);

We extend the Priority pragma to apply to the statements of parallelizable sequences of
statements and the iterations of parallelizable for-loop statements. A Priority pragma can
appear immediately before a statement of a parallelizable sequence of statements to assign
a priority to the execution of the statement. A Priority pragma can appear immediately
before the sequence of statements enclosed by a parallelizable for-loop statement to assign
priorities to the execution of the iterations. Since the expression in the Priority pragma can
involve the loop parameter value, different iterations can be assigned different priorities.
Assigning priorities to parallel threads of control does not affect the semantics of our
programming model, but can often be used to improve load balancing and hence run-time
performance. In particular, higher priorities can be assigned to threads with large workloads

and to threads that produce data items on which many other threads depend.

42

Chapter 4

Equivalence of the Parallel and

Sequential Semantics

In this chapter, we prove that the parallel and sequential semantics of our programming
model are equivalent. More precisely, we prove that for any program that satisfies the
restrictions on the pragmas, execution of the program according to the parallel semantics
is equivalent to execution of the program according to the standard sequential semantics.
This equivalence result forms the basis of our methodology for developing parallel programs

using sequential reasoning, testing, and debugging.

4.1 Preliminaries

Before we prove the equivalence of the parallel and sequential semantics of our programming

model, we first define what we mean by specifications, equivalence of programs, and parallel

execution.

4.1.1 Specifications

The specification of a terminating program can be expressed as a precondition assertion and
a postcondition assertion on the input and output variables of the program. A specification

of this form can be written as:

{Precondition} Program {Postcondition}

The meaning of the specification is that if the precondition holds in the state in which

execution of the program is initiated, execution of the program will terminate and the

43

postcondition will hold in the state in which execution of the program terminates. The
specification says nothing about the behavior of the program if the precondition does not
hold in the initial state. Specifications of this form were introduced by Hoare [59] (based

on earlier work by Floyd [39]), and are described in more detail by Gries [51].

4.1.2 Equivalence of Programs

In this thesis, where we say that two programs, P and Q, are equivalent, we mean that for

any given specification, P satisfies the specification if and only if Q satisfies the specification.
V Pre, Post : {Pre} P {Post} < {Pre} Q {Post}

In other words, we cannot distinguish between the two programs on the basis of their

interaction with their input and output variables.

4.1.3 Parallel Execution

We have informally described parallel execution of a group of statements to be the individual
statements executed as separate parallel threads of control. We more precisely define parallel
execution of a group of statements to be equivalent to an arbitrary interleaving of the atomic
actions of the individual statements. For our model, the interleaving of the actions does not
need to be fair and the definition of an atomic action is arbitrary, except that evaluations
and assignments of single-assignment variables must be atomic actions.

Parallel execution of a group of statements may consist of truly concurrent execution
on separate processors, interleaved execution on a single processor, sequential execution on
a single processor, or some combination of these alternatives. The key requirement is that
the result of parallel execution is indistinguishable from the result of interleaved execution.
Therefore, we can reason about parallel execution by reasoning about interleaved execution.
In particular, we can prove that parallel execution of a group of statements satisfies a given

specification, by proving that all interleaved executions satisfy the specification.

4.2 Equivalence Theorem

The equivalence theorem that we prove in this chapter is as follows:
V P, Pre, Post : {Pre} Pp {Post} < {Pre} Pg {Post}

where:

44

P is a program that satisfies the restrictions on the pragmas,
Pre and Post are assertions on the input and output variables of P,
Pp is execution of P according to the parallel semantics, and

Pgs is execution of P according to the standard sequential semantics.

In other words, for any program that satisfies the restrictions on the pragmas, execution of
the program according to the parallel semantics is equivalent to execution of the program

according to the standard sequential semantics.

4.3 Equivalence Proof

The equivalence theorem is a consequence of Lemma 1 and Lemma 2.

Lemma 1

V P, Pre, Post : {Pre} Pp {Post} = {Pre} Ps {Post}

Proof Outline: Any sequential execution of P is one possible parallel execution of P. There-
fore, any specification that is satisfied by parallel execution of S is also satisfied by sequential

execution of S.
Lemma 2
V P, Pre, Post : {Pre} Pg {Post} = {Pre} Pp {Post}

Proof Outline: Any parallel execution of P is equivalent to some sequential execution of
P, by a succession of swaps of pairs of out-of-order actions in the parallel interleaving.
Therefore, any specification that is satisfied by sequential execution of S is also satisfied by

parallel execution of S.
4.4 Lemma 1 Proof
Lemma 1 is a consequence of Lemma 1.1 and Lemma 1.2.

Lemma 1.1

V S, Pre, Post : {Pre} Sp {Post} = {Pre} Sg {Post}

45

where S is a parallelizable sequence of statements that satisfies the restrictions on the
pragmas, Sp is execution of S according to the parallel semantics, and Sg is execution of S

according to the standard sequential semantics.

Lemma 1.1 Proof

Sequential execution of S is one possible parallel interleaving of S. Therefore, any specifi-

cation that is satisfied by parallel execution of S is also satisfied by sequential execution of

S.

Lemma 1.2

V L, Pre, Post : {Pre} Lp {Post} = {Pre} Lg {Post}

where L is a parallelizable for-loop statement that satisfies the restrictions on the pragmas,
Lyp is execution of L according to the parallel semantics, and Lg is execution of L according

to the standard sequential semantics.

Lemma 1.2 Proof

Sequential execution of L is one possible parallel interleaving of L. Therefore, any specifi-

cation that is satisfied by parallel execution of L is also satisfied by sequential execution of

L.

4.5 Lemma 2 Proof

Lemma 2 is a consequence of Lemma 2.5 and Lemma 2.6. The proof is related to the
diamond property and the Church-Rosser theorem [20][26] which is the theoretical basis of

parallel functional programming systems.

Lemma 2.1

Consider any parallelizable sequence of two statements that satisfies the restrictions on the
pragmas:

pragma Parallelizable_Sequence;
A; B;

Consider any parallel interleaving of the actions of the two statements, for example:

46

Bi; Ay; Ag; By .5 An—1; Bm—1; Bmj An;
Consider any adjacent pair of actions that are out of sequential order in the interleaving:
By Aj ..
The pair of actions is equivalent to the pair of actions swapped into sequential order:

Ay By

Lemma 2.1 Proof

Each of the actions can be categorized as either:

1. Read X;

An evaluation operation on a single-assignment variable X.

2. Write X;

An assignment operation on a single-assignment variable X.

3. Mutable;

Any operation on mutable variables.

Consider all the possibilities for an adjacent pair of actions that are out of sequential order

in the interleaving, where X and Y are different single-assignment variables:

1. Read X; Read X; or
Read/Write X; Read/Write Y;

The pair of actions is equivalent to the swapped pair of actions.

2. Read X;Write X;

The program violates restriction E.6 regarding multiple assignment to single-assign-

ment variables, since X must have previously been assigned.

3. Write X; Read X;

If X has not previously been assigned, the program violates restriction E.5 regard-
ing evaluation of unassigned single-assignment variables. If X has previously been
assigned, the program violates restriction E.6 regarding multiple assignment to sin-

gle-assignment variables.

47

4. Write X; Write X;

The program violates restriction E.6 regarding multiple assignment to single-assign-

ment variables.

5. Read/Write X; Mutable; or
Mutable; Read/Write X; or
Mutable; Mutable;

If restrictions E.1 and E.2 regarding operations on shared variables are not violated,

the pair of actions is equivalent to the swapped pair of actions.

Lemma 2.2

Consider any parallelizable sequence of two statements that satisfies the restrictions on the

pragmas:

pragma Parallelizable_Sequence;
A; B;

Consider any parallel interleaving of the actions of the two statements, for example:
Bi; A1; Ag; Ba; .5 An—1; B—1; B An;

Any parallel interleaving of the actions of the two statements is equivalent to the sequential

ordering of the actions:

A3 Ags.. 5 Ap_1; An; Bry Bas .. B 1; B

Lemma 2.2 Proof

Any parallel interleaving of the actions of the two statements is equivalent to the sequential
ordering of the actions, by a succession of swaps of adjacent actions that are out of sequential
order in the interleaving, By Lemma 2.1, each swap maintains the invariant that the
interleaving is equivalent to the initial parallel interleaving. When no further swaps are
possible, the interleaving is the sequential ordering of the actions.

To see that the number of swaps is finite, let M be the total number of pairs of ac-
tions (not restricted to adjacent pairs of actions) that are out of sequential order in the
interleaving. Since we consider only terminating programs, the length of the interleaving is
finite, and hence M is finite. Each swap produces an equivalent interleaving in which M is

decreased. Since M is bounded below by zero, the number of swaps is finite.

48

Lemma 2.3

Consider any parallelizable sequence of N statements that satisfies the restrictions on the

pragmas:

pragma Parallelizable_Sequence;
Al A% ANSI AN,

Any parallel interleaving of the actions of the N statements is equivalent to the sequential

ordering of the actions.

Lemma 2.3 Proof

The proof is by induction on N.
Base Case: Lemma degenerately holds for N = 1.
Inductive Hypothesis: Lemma holds for all N < K, for some K > 1.

Induction Step: N = K. By the inductive hypothesis, any parallel interleaving of the actions

of A, ...; AK-1l. is equivalent to the sequential ordering of the actions. Therefore, by
Lemma 2.2 with A equal to A'; ...; AK~1: and B equal to AX, any parallel interleaving of
the actions of Al; ...; AK; is equivalent to the sequential ordering of the actions.

Lemma 2.4

For any parallelizable sequence of statements S that satisfies the restrictions on the prag-
mas, if some parallel execution of S terminates exceptionally, there exists some sequential

execution of S that terminates exceptionally.

Lemma 2.4 Proof

By Lemma 2.3, the actions of the parallel execution of S are equivalent to the sequential
ordering of those actions. If statement A¥ terminates exceptionally in parallel execution,
there exists a sequential execution in which statement Al with i < k terminates exceptionally.
The actions of the statements Al ... Al in the sequential reordering of the parallel execution

of S form the prefixes of the actions of the statements A’ ... Al in the sequential execution

of S.

49

Lemma 2.5
V'S, Pre, Post : {Pre} Ss {Post} = {Pre} Sp {Post}
where S is a parallelizable sequence of statements that satisfies the restrictions on the

pragmas, Sg is execution of S according to the standard sequential semantics, and Sg is

execution of S according to the parallel semantics.

Lemma 2.5 Proof

Any parallel execution of S either terminates normally or terminates exceptionally.
Case 1: Parallel execution of S terminates normally.

By Lemma 2.3, a parallel execution of S that terminates normally is equivalent to some

sequential execution of S.
Case 2: Parallel execution of S terminates exceptionally.

By Lemma 2.4, if the parallel execution of S terminates exceptionally, there exists some
sequential execution of S that terminates exceptionally. Any postcondition that depends
on the kind of exception raised or the state of the variables modified by the execution
of S violates restriction E.3 or E.4. Therefore, a parallel execution of S that terminates

exceptionally is equivalent to some sequential execution of S.

In both cases, any parallel execution of S is equivalent to some sequential execution of S.
Therefore, any specification that is satisfied by sequential execution of S is also satisfied by

parallel execution of S.

Lemma 2.6

V L, Pre, Post : {Pre} Lg {Post} = {Pre} Lp {Post}

where L is a parallelizable for-loop statement that satisfies the restrictions on the pragmas,
Lg is execution of L according to the standard sequential semantics, and Lg is execution of

L according to the parallel semantics.

Lemma 2.6 Proof

Case 1: Parallelizable For-Loop Statements without Arguments.

50

A parallelizable for-loop statement without arguments is equivalent to a parallelizable se-
quence of statements in which the number of statements is computed immediately prior to
execution of the sequence of statements. Therefore, Lemma 2.6 for parallelizable for-loop

statements without arguments follows from Lemma 2.5.
Case 2: Parallelizable For-Loop Statements with Arguments.

The arguments of a parallelizable for-loop statement simply restrict the set of parallel
interleavings. Therefore, Lemma 2.6 for parallelizable for-loop statements with arguments

follows from Lemma 2.6 for parallelizable for-loop statements without arguments.

a1

Chapter 5

Experimental Methods and

Performance Issues

In this chapter, we describe the computer system, compiler, and methods that we use in
developing and measuring the performance of experimental programs for this thesis. We
also discuss the issues that affect the performance of parallel programs developed in this
context. The computer system is a 36-processor shared-memory multiprocessor. On this
platform, we implement our parallel programming model by transformation into tasking
constructs, which are compiled into calls to a thread library. In Chapter 6 and Chapter 7,

we present a collection of experimental programs and performance measurements.

5.1 Computer System

Our experiments are performed on from 1 to 32 processors of a 36-processor SGI Challenge
computer system running the Irix 6.1 operating system. Details of this system are given
in Table 5.1. The SGI Challenge is a symmetric multiprocessor. Each processor has its
own local first-level and second-level cache memories and access to a shared main memory.
Main memory is interleaved to allow multiple concurrent memory accesses. The hardware is
entirely responsible for the transfer of data between main memory and cache memory, and
for maintaining cache coherence between the processors. The SGI Challenge architecture is
described by Galles and Williams [47] and in SGI technical documentation [108].

Our choice of a shared-memory architecture as the primary hardware platform for our
performance experiments is based in part on the convenience of the hardware support for

our shared-memory programming model, and also on our belief in the importance of this

52

Name | cydrome.mti.sgi.com
Kind | SGI Challenge
Operating system | Irix 6.1
Processors | 36 x 100 MHz MIPS R4400
L1 cache | 16 Kbytes data, 16 Kbytes instruction
L1 cache line size | 16 bytes
L2 cache | 1 Mbyte combined data and instruction
L2 cache line size | 128 bytes
Main memory | 768 Mbytes, 2-way interleaved
Cache policy | write back, snoopy cache coherence

Table 5.1: Computer system details.

class of parallel computer systems. In the near future, we expect to see the proliferation of
small-scale to moderate-scale symmetric multiprocessor servers, workstations, and personal
computers. This will be mostly driven by the ease of exploiting concurrency between multi-
ple programs and between multiple users. As the number of installed multiprocessor systems
increases, so will the market for programs that can transparently execute across multiple
processors on these systems. Examples of applications that would benefit from multipro-
cessor support include commodity software programs such as spreadsheets, computer-aided

design tools, interactive symbolic computation systems, and simulation packages.

5.2 Compilation

We implement the parallel semantics of our programming model by manual transformation

into equivalent standard Ada 95 tasking constructs, as follows:

1. A parallelizable sequence of statements is transformed into a block statement contain-

ing a sequence of tasks, with one task for each statement.

2. A parallelizable for-loop statement is transformed into a block statement containing

an array of tasks, with one task for each parallel thread.

3. A single-assignment variable is transformed into a variable with an associated pro-

tected object that synchronizes assignment and evaluation operations.

Details of these transformations are presented in Appendix A. They are also discussed in

earlier work by the author of this thesis [126]{129].
The programs are compiled with the SGI-Irix release of the GNAT (GNU-NYU Ada

Translator) compiler [105]. GNAT is an Ada 95 front-end and run-time system for the GCC

53

(GNU C Compiler) family of compilers [116]. The efficiency of sequential code produced
by GNAT is comparable to that produced by GCC for C/C++ programs (except that
dynamically-sized arrays are implemented inefficiently in the current release). This to be
expected, since Ada 95 is a conventional imperative language with sequential constructs
and capabilities similar to C/C++, and the GNAT compilation system uses the standard
GCC code generator and optimizer as its back end. For our performance experiments, all
programs are compiled with the -02 optimization option.

The current release of GNAT implements dynamically-sized arrays inefficiently. The
execution time of quicksort of a one dimensional array of integers is approximately three
times that of an equivalent C program, because of Ada bounds checking and the ineflicient
implementation of arrays. The execution times of matrix multiplication and LU factoriza-
tion of two dimensional arrays of floating point numbers are approximately six times that
of equivalent C programs, because of Ada bounds checking and the inefficient implemen-
tation of arrays. However, this inefficiency does not affect the validity of our results, since
sequential and parallel programs are slowed down equally.

GNAT compiles Ada tasking constructs into calls to the SGI-Irix implementation of the
Pthreads (POSIX threads) library [97], as described by Giering, Muller, and Baker [49].
At run time, threads are dynamically scheduled across a user-specified number of sprocs
(system processes), and sprocs are dynamically scheduled across processors. Sprocs share
the pool of processors with the other processes running concurrently on the system. At
different times, a thread may execute on different sprocs, and an sproc may execute on
different processors, but the maximum number of processors executing a given program
at any time is limited by the number of sprocs. By default, scheduling is nonpreemptive
among threads of the same priority.

Implementation of our programming model on top of the GNAT implementation of
Ada tasking provides us with a convenient means of testing programs and measuring their
performance. However, this is not a particularly efficient method of implementation. We
pay performance penalties for: (i) the cost of Ada tasking features that are not required by
our threads, and (ii) the cost of the mapping from the Ada tasking model to the Pthreads
model. The performance of our prototype implementation strategy could be improved upon
significantly through the use of a more direct method of implementation. Nonetheless, this

simple strategy is sufficient for us to demonstrate good speedups on medium-grained parallel

programs.

54

5.3 Performance of Parallel Constructs

When attempting to determine an efficient level of granularity for a parallel program, it
is useful to have a quantified understanding of the approximate run-time overheads of the
fundamental parallel operations. In this section, we present the results of experiments
that measure the execution time of our parallel programming constructs in this prototype
implementation of our parallel programming model. It is not the purpose of this section to

provide a comprehensive or precise benchmark of parallel or sequential performance.

5.3.1 Sequential Operations

As a basis for comparison, in the following table, we first present measurements of the

execution time of some fundamental sequential operations:

Execution time
Construct (microseconds)
X := A(I); from L1 cache 0.04
X := A(I); from L2 cache 0.19
X := A(I); from main memory 1.19
X = Y*Z; 0.02
forIinl.. Nloop... 0.04N
PO; 0.21
P1(X); 0.25

X is a floating-point variable in the L1 cache, A is a statically-sized, zero-based array of
floating-point components, I is an integer variable in a register, Y and Z are floating-point
variables in registers, P0 is a procedure with no parameters and a null body, and P1 is
a procedure with one in out mode parameter and a null body. All variables are global

variables, and all operations are performed at the outermost level of the program, with

index and range checking suppressed.

5.3.2 Parallelizable Sequences of Statements

In the following table, we present measurements of the execution time of a parallelizable se-
quence of null statements, executed according to the parallel semantics on a single processor,

with and without parallel errors checked:

95

Number of || Execution time (milliseconds)
statements || Checked Unchecked
1 6.07 3.50
2 8.53 5.62
4 13.92 10.52
6 18.53 15.81
8 23.57 21.74
10 29.37 26.21

For small numbers of statements, the execution time of a parallelizable sequence of state-
ments is approximately linearly dependent on the number of statements, as shown in Fig-
ure 5.1. The execution overhead of a parallel thread is many thousands of fundamental
sequential operations. Therefore, very fine-grained parallelism is not efficient in this proto-

type implementation of our parallel programming model.

5.3.3 Parallelizable For-Loop Statements

In the following table, we present measurements of the execution time of a simple paral-
lelizable for-loop statement with a null body, executed according to the parallel semantics

on a single processor, with and without parallel errors checked:

Number of | Execution time (milliseconds)
iterations Checked Unchecked
1 5.92 3.47
2 8.77 5.70
5 16.33 13.71
10 29.14 25.07
20 53.75 52.57
50 175.23 138.34
100 377.45 287.62
200 954.12 876.71
300 1571.12 1448.30
400 2477.09 2427.66
500 3342.36 3218.67

For small numbers of iterations, the execution time of a parallelizable sequence of statements
is approximately linearly dependent on the number of iterations. However, for larger num-
bers of iterations, the execution time increases more than linearly with increasing numbers
of iterations, as shown in Figure 5.2. Therefore, only a moderate number of parallel threads
can be supported efficiently in this prototype implementation of our parallel programming
model.

In the following table, we present measurements of the execution time per iteration

within one thread of a parallelizable for-loop statement with a null body and different

pattern arguments:

56

Parallelizable sequence of statements

30 T T T T T 3
. Parallel errors checked ¢
% Parallel errors unchecked + T
c 3.4 + 2.6N -----
S 0.6 + 2.6N = e
O —’c‘ +_,~"
5 20 -
- -3
-
E ";l:-',,,
o P
£ L
-
8 10 F + _
- €
45‘ .
0 R +

0 i 1 1 1] 1

0 1 2 4 6 8 10

Number of statements

Figure 5.1: Execution time of a parallelizable sequence of statements on a single processor.

(milliseconds)

Execution time

Figure 5.2: Execution time of a parallelizable for-loop statement on a single processor.

97

Parallelizable for-loop statement

3000

2000

1000

Parallel errors checked -o—
Parallel errors unchecked -—+-

100 200 300 400
Number of iterations/threads

500

58

Execution time per iteration
Pattern (microseconds)
Block 0.04
Cyclic 0.04
On_Demand 15.00

The execution time per iteration is many hundred times greater for the On_Demand pattern
than for the Block and Cyclic patterns, because of the synchronization operation required
to obtain each loop parameter value. Therefore, a parallelizable for-loop statement that
uses the On_Demand pattern with a large number of fine-grained iterations is not efficient

in this prototype implementation of our parallel programming model.

5.3.4 Single-Assignment Variables

In the following table, we present measurements of the execution time of some fundamental

operations on a single-assignment floating-point variable, executed on a single processor:

Execution time
Operation {microseconds)
Declaration 168
Assignment (checked) 74
Assignment (unchecked) 28
Evaluation 35

The measurements are for: (i) the implicit initialization and finalization operations associ-
ated with the declaration of a variable, (i) assignment to a variable that has not previously
been assigned a value (with checks), (iii) assignment to a variable that has not previously
been assigned a value (with checks suppressed), and (iv) evaluation of a variable that has
previously been assigned a value. The execution time of an operation on a single-assignment
variable is tens to thousands of times greater than the execution time of an equivalent oper-
ation on a mutable variable. Therefore, very fine-grained use of single-assignment variables

is not efficient in this prototype implementation of our parallel programming model.

5.4 Parallel Performance Issues

Development of an efficient parallel program in our parallel programming model requires
consideration of several important issues that affect parallel performance. In this section,

we sumimarize these issues in the context of execution on a shared-memory multiprocessor.

59

5.4.1 Granularity and Load Balancing

The granularity of a parallel program is related to the ratio of sequential computation to
thread creation, termination, communication, and synchronization operations. A program
is “fine-grained” if a relatively small amount of sequential computation is performed be-
tween thread operations and is “coarse-grained” if a relatively large amount of sequential
computation is performed between thread operations. In our parallel programming model,
the granularity of a program is determined by the number of parallel threads, the longevity
of parallel threads, and the frequency with which threads access single-assignment variables.

Finding an efficient level of granularity for a parallel program involves a trade-off be-
tween processor load balancing and the execution overhead of parallelism. If a parallel
program is too coarse-grained, there may be fewer executable threads than available pro-
cessors for a large percentage of the computation. If a parallel program is too fine-grained,
a large percentage of the total computation may be spent executing thread creation, ter-
mination, communication, and synchronization operations. Both cases limit the parallel
speedup that can be achieved. An efficient balance can be found by program analysis or by
experimentation.

Problem size is an important factor in determining an efficient level of granularity and
in determining the maximum number of processors that can be used effectively. For exam-
ple, the Muitiply procedure in Program 5.1 multiplies two matrices using a straightforward
matrix multiplication algorithm with the outer loop parallelized. In Figure 5.3, we compare
the execution times and speedups of parallelized matrix multiplication for square matrices
of varying sizes. In each case, the number of threads is equal to the number of processors,
because this was found to give the best performance. For a given number of processors,
speedup increases with matrix size, because the overhead of parallelism becomes less sig-
nificant compared to the total computation. For the 128 by 128 case, speedup peaks then
decreases with increasing numbers of processors, because the increasing overhead of paral-
lelism begins to overwhelm the useful computation. In general, it is easier to obtain good

speedups for larger problems than for smaller problems, particularly on a larger number of

Processors.

5.4.2 Locality and Caching

On any modern computer system (uniprocessor or multiprocessor), locality of data access
is an extremely important factor in the performance of a program, due to the automatic

caching of data by the memory system. For example, on our SGI Challenge target archi-

60

Parallelized Matrix Multiplication

T T T T T T T
30 F b 4
Ideal speedup —— T
512 by 512 -&- st
. 384 by 384 -+-- R
- 256 by 256 -G giienn -
?) 128 by 128 —¢- e P
5 o
20 o .
g ,(fg' =
© R
pC -
~ % -
0] @
> -
° o
Q, s -
= 7
10 [55T Momi e]
8 /,/ A e x ~
0] e \.\
o8 % e e K
195) P
0 1 i i 1 [I i
012 4 8 12 16 20 24 28 32
Number of processors/threads
Number of 128 by 128 256 by 256 384 by 384 512 by 512
processors || Time | Speedup | Time | Speedup | Time | Speedup | Time | Speedup
sequential 1.16 — 9.26 — 31.44 — 75.56 —
1 1.17 1.0 9.25 1.0 31.51 1.0 75.60 1.0
2 0.59 2.0 4.63 2.0 15.92 2.0 37.80 2.0
4 0.31 3.7 2.35 3.9 7.93 4.0 18.95 4.0
8 0.16 7.3 1.21 7.7 4.04 7.8 9.65 7.8
12 0.12 9.7 0.83 11.2 2.69 11.7 6.46 11.7
16 0.13 8.9 0.66 14.0 2.03 15.5 4.88 15.5
20 0.12 9.7 0.55 16.8 1.68 18.7 3.92 194
24 0.17 6.8 0.48 19.3 1.40 22.5 3.28 23.0
28 0.17 6.8 0.42 22.0 1.23 25.6 2.88 26.2
32 0.17 6.8 0.38 24.4 1.08 29.1 2.53 29.9

Figure 5.3: Comparison of parallelized matrix multiplication for square matrices of varying

sizes.

All times are in seconds.

61

type Matrix is array (0 .. N — 1,0 .. N — 1) of Float;

procedure Multiply (Num_Threads : in Positive;
A, B cin Matrix;
Result : out Matrix) is
begin
pragma Parallelizable Loop(Num_Threads, Pattern => Block);
forIinG. N -1 loop
for Jin0. N -1 loop
declare
Sum : Float := 0.0;
begin
for Kin0.. N — 1 loop
Sum := Sum + A(I, K)*B(K, J);
end loop;
Result(I, J) := Sum;
end;
end loop;
end loop;
end Multiply;

Program 5.1: Parallelized matrix multiplication.

tecture, an access to main memory takes approximately 40 times as long as an access to
first-level cache memory. Caching reduces the number of main memory accesses by trans-
ferring data between main memory and cache in “lines” (i.e., blocks of data) and by keeping
recently (or frequently) accessed data in cache. The effectiveness of caching is determined
by the degree of locality in the data access patterns of a program. For example, the per-
formance of a program may vary significantly depending on whether the components of a
matrix are accessed row by row or column by column.

On a shared-memory multiprocessor system, caching is particularly important, because
it attempts to prevent the shared main memory from becoming a performance bottleneck.
However, the performance of a parallel program may be affected by the overhead of main-
taining coherent caches across processors. For example, if the caches of two processors
contain the same data item and the first processor writes to the data item, the data item
must be invalidated in the cache of the second processor. Performance is affected both by
the cost of the invalidation operation and by the cost of any subsequent read of the data
item by the second processor. Cache coherence mechanisms for shared-memory multipro-

cessors are surveyed by Lilja [83]. The key issues are summarized by Almasi and Gottlieb [5,

section 10.3.2].

62

In our parallel programming model, it is erroneous for threads to share mutable data
in the manner described above, between synchronization operations. Since synchronization
operations are required to be relatively infrequent for reasons of efficiency, the cost of cache
invalidation is insignificant in most practical programs. However, “false sharing” of data
can result in situations where cache invalidation degrades parallel performance [130]. For
example, consider Program 5.2, in which there is no sharing of variables between the two

parallel threads. If the variables X and Y reside in different cache lines, the program can be

declare
X, Y : Integer := 0;
begin
pragma Parallelizable_Sequence;
for Iin 1 .. 1.000.000 loop
X=X +1;
end loop;
for Jin 1 .. 1.000.000 loop
Y =Y + 1
end loop;
end;

Program 5.2: An example of a program that could exhibit false sharing.

expected to yield almost perfect speedup (relative to sequential execution) when executed
on two processors. If the variables X and Y reside in the same cache line, the program may
actually slow down significantly (relative to sequential execution) when executed on two

processors.

5.4.3 Memory Contention

Contention between processors for access to the shared main memory is a potential per-
formance bottleneck that can limit parallel speedups [13][46]. The keys to whether or not
memory contention is a significant problem are the memory bandwidth of the computer
system and the ratio of local computation to main memory accesses in each parallel thread
of the program. For example, the Copy procedure in Program 5.3 consists of a paral-
lelized loop that copies the components of one array to another array. In Figure 5.4, we
compare the execution times and speedups of the parallelized matrix multiplication given
in Program 5.1 and parallelized array copying. The problem sizes are chosen so that the
sequential execution times are approximately equal for the two programs.

The speedups for matrix multiplication continue to increase for up to 32 processors,

Speedup over sequential

30

20

10

Parallelized Matrix Multiplication

63

and Array Copy

32

T T T T T T T T
i Ideal speedup —
Matrix multiplication -¢-
Array copy -+--
2
/‘Q’
- ’,/0/,/ —
,xe;’/_/.- e RRRERE R ¢
/"/”"—- -~
’({,4@/':‘
V/’
‘/v
= //),
[} i i i i I i I
012 4 8 12 16 20 24 28
Number of processors/threads
Number of || Matrix multiply Array copy
processors || Time | Speedup | Time | Speedup
sequential 9.26 — 10.36 —
1 9.25 1.0 10.38 1.0
2 4.63 2.0 5.20 2.0
4 2.35 3.9 2.62 4.0
8 1.21 7.7 1.35 7.7
12 0.83 11.2 0.91 114
16 0.66 14.0 0.75 13.8
20 0.55 16.8 0.65 15.9
24 0.48 19.3 0.61 17.0
28 0.42 22.0 0.61 17.0
32 0.38 24.4 0.61 17.0

All times are in seconds.

Figure 5.4: Comparison of parallelized matrix multiplication (256 by 256 components) and
parallelized array copy (40 million components).

64

type Float_Array is array (0 .. N — 1) of Float;

procedure Copy (Num.Threads : in Positive;
To : out Float_Array;
From in Float_Array) is
begin

pragma Parallelizable Loop(Num_Threads, Pattern => Block);
forIin0. N - 1 loop
To(T) := From(I);
end loop;
end Copy;

Program 5.3: Parallelized array copy.

whereas the speedups for array copying level off above 20 processors. The reason is that each
thread of the matrix multiplication reads its operands into cache and performs significant
amounts of local computation using the cached values. In contrast, each thread of the
array copy reads or writes each component only once, thereby limiting the effectiveness
of caching. Nonetheless, the cache line size and memory interleaving still result in good
speedups, even for this memory-intensive program. Memory contention would be more
significant in a program where the parallel threads accessed a large data set in a pattern

without any locality.

5.4.4 Process and Data Mapping

On a distributed-memory multiprocessor, the mapping of data to local memories and the
mapping of threads to processors are extremely important issues in parallel performance.
On a symmetric shared-memory multiprocessor, these issues are controlled by the computer
system rather than the programmer. All data resides in the shared memory, and threads are
dynamically scheduled from a single pool. For moderate-scale multiprocessors, this strategy

appears to be both convenient for the programmer and generally efficient.

5.5 Experimental Methods
We use the following methods in gathering performance measurements for this thesis:
e Experiments are performed on an otherwise unloaded machine.

e Unless otherwise stated, exception checking is not suppressed.

65

e Times are elapsed “wall-clock” times, measured using the standard Ada Clock func-

tion.
e Measurements are averaged over many trials, with high and low outliers discarded.

o Parallel speedups are relative to execution of a separately developed sequential pro-

gram, not to the parallel program executed on a single processor.
e All experiments are repeated at least once to verify the consistency of the results.

The full text of the experimental parallel programs and the sequential programs that are

used for performance comparison is presented in Appendix B.

66

Chapter 6

Experiments Using Parallelizable

Sequences and For-Loops

In this chapter, we describe parallel programming experiments designed to investigate the
use of parallelizable sequences of statements and parallelizable for-loop statements without
additional synchronization. The experiments are performed in the context of the hardware
and software platform described in Chapter 5. In Chapter 7, we describe parallel program-

ming experiments designed to investigate the use of single-assignment types for additional

synchronization.

6.1 Experimental Goals

The programming experiments that we describe in this chapter investigate parallel pro-
gramming using parallelizable sequences of statements and parallelizable for-loop state-
ments without additional synchronization. The goal of these experiments is to evaluate the

following propositions with respect to this programming model:

e Expressiveness: For a range of interesting problems, parallel algorithms can be
expressed that are: (i) not much more complicated than efficient sequential algorithms
designed without regard to parallelism, and (ii) less complicated than efficient parallel
algorithms expressed using less-structured parallel programming models, e.g., thread

libraries providing barrier synchronization.

e Efficiency: For a range of interesting problems, parallel programs can be written that

are comparably efficient to parallel programs written using less-structured parallel

programming models.

67

e Automatic Parallelization: For a range of interesting problems, parallel programs
can be written that are more efficient than parallel programs that could reasonably

be expected to be generated automatically from efficient sequential programs.

¢ Development Costs: Efficient parallel programs are not much more difficult to de-
velop than efficient sequential programs, and are less difficult to develop than efficient
parallel programs written using less-structured parallel programming models. This is
because most reasoning, testing, and debugging can be performed in the context of

the sequential semantics.

We investigate the validity of these propositions in the context of the shared-memory mul-
tiprocessor computer system and compilation system described in Chapter 5. However,
the experiments are intended to yield results that are relevant beyond this one particular

example platform.

6.2 One-Deep Parallel Mergesort

In this section, we describe the development of a program that implements a scalable par-
allel variant on the mergesort algorithm that we refer to as the one-deep parallel mergesort
algorithm. The program demonstrates the use of parallelizable for-loop statements with-
out arguments. One-deep parallel mergesort is motivated by sequential mergesort, but the
algorithm could not reasonably be expected to be automatically generated from the sequen-
tial mergesort algorithm. We compare the measured performance of the one-deep parallel
mergesort program to the performance limits of the traditional approach to parallelizing

mergesort. One-deep parallel mergesort is an example of the class of one-deep parallel

divide-and-conquer algorithms [128].

6.2.1 Program Specification

The specification of the one-deep parallel mergesort program is given in Program 6.1. The
Parallel_Mergesort procedure takes the Data array as input and returns the Result array as
output. The output value of Result is the components of Data sorted into ascending order,
and the output value of Data is not specified. The component type of the arrays can be

any type on which ordering operators are defined. Num_Threads specifies the number of

parallel threads to be used in the algorithm.

68

type Elements is array (Integer range <>) of Element;

procedure Parallel Mergesort (

Data : in out Elements;

Result : out Elements;

Num_Threads : in Positive);
—— | requires

- | Data’Range = Result'Range and
— | 2*Num_Threads*Num_Threads < Data’Length.

—— | ensures
e | Ascending(Result) and Permutation(Result, in Data).

Program 6.1: Specification of one-deep parallel mergesort.

6.2.2 Traditional Parallel Mergesort Algorithm

The standard sequential mergesort algorithm [73, section 5.2.4][107, chapter 12] is one of
the most well-known methods of sorting and is a canonical divide-and-conquer algorithm.

Sequential mergesort of an array operates as follows:

1. The input array is trivially split into a fixed number of subarrays (usually two or

three) that differ in length by at most one element.
2. Each subarray is sorted using the sequential mergesort algorithm.
3. The sorted subarrays are merged to give a sorted output array.

The base case occurs for arrays with zero or one elements. The algorithm can be imple-
mented in a top-down manner using recursion or a bottom-up manner using iteration. In
both cases, a temporary storage array of the same size as the data array is required for
efficient merging.

The traditional approach to parallelizing the mergesort algorithm is to sort the subarrays
in parallel with each other at the outer levels of problem division. However, the maximum
possible parallel speedup for sorting N elements on P processors with this approach (using
two-way split and merge) is:

Ploga N

(6.1)
2P — 2+ loga(F)

because the merge sequentially follows the parallel sorting at each level of problem division.
The parallel speedup limit to traditional parallel mergesort is %loggN , regardless of the

number of processors that are used.

69

6.2.3 Omne-Deep Parallel Mergesort Algorithm

The one-deep parallel mergesort algorithm is a variant on the split-and-merge sorting strat-
egy that allows considerably better parallel speedup than the traditional parallel mergesort

algorithm. The one-deep parallel mergesort algorithm is presented in Program 6.2. The

type Elements is array (Integer range <>) of Element;
type Indices is array (Integer range <>) of Integer;

function Split (First, Last, I : Integer; N : Positive) Return Integer is

begin
return First + Integer(Float(Last — First + 1)*(Float(I)/Float(Num_Threads)));
end Split;
procedure Parallel Multiway_Merge (
Data : in Elements;
P 1 in Positive;
D :in Indices;
Result : out Elements) is

begin
end Parallel Multiway Merge;

procedure Parallel Mergesort (

Data : in out Elements;
Result : out Elements;
Num_Threads : in Positive) is

D : Indices (0 .. Num.Threads);

begin
for I in 0 .. Num_Threads loop
D(I) := Split(Data’First, Data’Last, I, Num_Threads);
end loop;
pragma Parallelizable Loop;
for Iin 0 .. Num_Threads — 1 loop
Sequential_Quicksort(Data(D(I) .. DI+ 1) — 1));
end loop;
Parallel_ Multiway_Merge(Data, Num_Threads, D, Result);
end Parallel Mergesort;

Program 6.2: One-deep parallel mergesort.

complete text of the program is given in Appendix B.1. An example is shown in Figure 6.1.

One-deep parallel mergesort of an array operates as follows:

70

2718281828459045235360228747135]| Data

{ {

2718281|82845904[5235360/(28747135]| Data

Sequential Sequential Sequential Sequential
Quicksort Quicksort Quicksort Quicksort

1122788|024458809/0233556[1234577s8]| Data
(Parallel Multiway Merge J

| N

00111222223334445555677788888Y9 Result

Figure 6.1: An example of one-deep parallel mergesort with four parallel threads.

71

1. The input array is trivially split into a user-specified number of subarrays (usually

one for each processor) that differ in length by at most one element.

2. The subarrays are sorted in parallel with each other using an efficient sequential sorting

algorithm (e.g., quicksort).

3. The sorted subarrays are merged using a scalable parallel multiway merge algorithm
to give a sorted output array.
The key differences between this algorithm and the traditional parallel mergesort algorithm
are: (i) the degree of splitting and merging is variable instead of fixed, (ii) there is only
one level of problem division, and (iii) the merge is a scalable parallel algorithm. The one-
deep parallel mergesort algorithm is also known as the PSRS (Parallel Sorting by Regular
Sampling) algorithm [29][114].

6.2.4 Parallel Multiway Merge Algorithm

Most of the ingenuity of the one-deep parallel mergesort algorithm is in the efficient and
scalable parallel multiway merge algorithm. The parallel multiway merge algorithm is

presented in Program 6.3. The algorithm for a parallel P-way merge operates as follows:

1. A sequence of P evenly-spaced pairs of local pivot elements are chosen from each of

the P sorted subarrays of Data.
2. The local pivot elements are sorted into ascending order.

3. A sequence of P evenly-spaced global pivot elements are chosen from the sorted local

pivot elements.

4. The P sorted subarrays of Data are each partitioned into P segments by searching for

the positions of the P global pivot elements in each of the subarrays.

5. For each of the P global pivot elements, the total number of elements in the corre-

sponding segments of the P subarrays is counted.

6. In parallel, for each of the P global pivot elements, the corresponding segments of the

P subarrays of Data are merged into their place in Result, using a sequential multiway

merge.

For large data length and practical values of P, only the final stage takes a significant amount

of time. Therefore, although several other stages can be parallelized, only the final stage is

actually parallelized.

72

type Segment is record First, Last : Integer; end record;
type Segments is array (Integer range <>) of Segment;

procedure Parallel Multiway _Merge (

Data : in Elements;

P D in Positive;

D :in Indices;
Result : out Elements) is

Pivot : Elements (0 .. 2*P*P — 1);

Index : Integer range Data’First — 1 .. Data’Last + 1;
Segment : array (0 .. P — 1) of Segments (0 .. P — 1);
R : Indices (0 .. P);

begin
forIin0.. P —1loop
Pivot(2*P*1) := Data(D(I));
forJin1. P —1loop
Index := Split(D(I), DI + 1) — 1, J, P);
Pivot(2*P*I + 2*J) := Data(Index);
Pivot(2*P*I + 2*J — 1) := Data(Index — 1);
end loop;
Pivot(2*P*(I + 1) — 1) := Data(D(I + 1) — 1);
end loop;
Sequential_Quicksort(Pivot);
for[in0O.. P — 1loop
Pivot(I) := Pivot(Split(Pivot’First, Pivot’Last, I, P));
end loop;
forIin0.. P —1loop
Segment(0)(I).First := D(I);
forJinl. P —1loop
Segment(J)(I).First := Search(Data(D(I) .. D(I + 1) — 1), Pivot(J));
Segment(J — 1)(I).Last := Segment(J)(I).First — 1;
end loop;
Segment(P — 1)(I).Last := D(I+ 1) — 1;
end loop;
R{0) := Result’First;
forlIinl . P — 1loop
R(I) := R(I - 1);
for Jin0. P — 1loop
R(I) := R(I) + Segment(I — 1)(J).Last — Segment(I — 1)(J).First + 1;
end loop;
end loop;
R(P) := Result’Last + 1;
pragma Parallelizable Loop;
forIin0 .. P — 1 loop
Sequential_ Multiway_Merge(Data, P, Segment(I), Result(R(I) .. R(I + 1) — 1));
end loop;
end Parallel Multiway _Merge;

Program 6.3: Parallel multiway merge.

73

6.2.5 Performance Measurements

Figure 6.2 gives the measured speedup of the one-deep parallel mergesort program over an
efficient sequential quicksort program. The measurements are for sorting arrays with 2.5
million and 5 million integer elements on 1 to 32 processors. In each case, the number of
parallel threads is equal to the number of processors that are used, as this was found to give
the best speedup. The sequential quicksort algorithm that is used for sorting the subarrays
and speedup comparison is adapted from the program given by Press et al. [98, section 8.2],
which uses many of the optimizations described by Sedgewick [106].

The measurements show that one-deep parallel mergesort is an effective parallel sorting
algorithm. The algorithm is only marginally slower than standard quicksort when executed
on one processor and produces increasing speedup with increasing numbers of processors.
On 32 processors, the speedup is 16-fold for 2.5 million elements and 22-fold for 5 million ele-
ments. In comparison, the speedup limit for the traditional parallel mergesort algorithm on
32 processors is 8.7-fold for 2.5 million elements and 9-fold for 5 million elements (computed
using Equation 6.1), and the achievable speedup would be somewhat less.

Speedup increases with increasing data length because the overheads of the algorithm
become less significant compared to the increasing amount of parallelizable computation.
The arrays that we sort in these experiments are relatively small compared to the total
memory of the computer system, and we would expect to see even greater speedup for
larger arrays. A detailed breakdown and analysis of performance is contained in earlier work
by the author of this thesis [128]. This analysis indicates that algorithm overheads (e.g.,
uneven data partitioning and increasing computation costs) rather than system-specific
factors (e.g., memory contention) and implementation overheads (e.g., thread creation and
synchronization costs) are the primary limitations to speedup.

Our performance measurements are consistent with those of Shi and Schaeffer [114],
who show that the one-deep parallel mergesort algorithm is among the most efficient par-
allel sorting algorithms currently known, for both shared-memory and distributed-memory
machines. They also show that the algorithm is asymptotically optimal (O(%logN) execu-

tion time) for sorting N elements on P processors with N >P3,

6.2.6 Experimental Analysis

The development of the one-deep parallel mergesort program supports our experimental

propositions as follows:

e Expressiveness:

Speedup over sequential quicksort

30

20

10

74

One-Deep Parallel Mergesort
1 i I I I 1 I 1
i Ideal speedup —]
5,000,000 elements -o—
2,500,000 elements -+--
%
= /"O/, i
/’/‘e”’
o P |
/”’ —'+——
Pt
L
- ///’:g’,—’ =
/,fg"x
J(y/"
1 i 1] i 1 i 1
012 4 8 12 16 20 24 28 32
Number of processors/threads
Number of || 2,500,000 elements | 5,000,000 elements
processors || Time | Speedup | Time | Speedup
sequential || 14.59 — 31.13 —
1 16.22 0.9 33.57 0.9
2 8.30 1.8 16.73 1.9
4 4.29 34 8.87 3.5
8 2.29 6.4 4.51 6.9
12 1.59 9.2 3.19 9.8
16 1.24 11.8 2.46 12.7
20 1.12 13.0 2.05 15.2
24 1.02 14.3 1.80 17.3
28 0.93 15.7 1.63 19.1
32 0.91 16.0 1.44 21.6

All times are in seconds.

Figure 6.2: Speedup of one-deep parallel mergesort over sequential quicksort.

75

One-Deep Parallel Mergesort

100 : Y T T T

5,000,000 elements —o— |

X 2,500,000 elements -+-]
. 4
[0}
T
a]
0 TR
o 10 F = 4
R T = 5
o LTI :
= e e
_ O F T s J
4) -y
8 '~._~ {

............ e Tl
'S 1 = T ~+ ‘*\"“"‘:E-
] E T]
O LT “
0 -
x 3 e
- i -
0.1 1 ! 1 I
0 1 2 3 4 5

log 2 (number of processors/threads)

Figure 6.3: Execution time of one-deep parallel mergesort compared to ideal speedup of
sequential quicksort.

76

At the outer level, the one-deep parallel mergesort algorithm is not much more com-
plicated than the sequential mergesort algorithm. The major difference is that the
parallelized merge algorithm is more complicated than a sequential merge algorithm.
The one-deep parallel mergesort algorithm is elegantly expressed using parallelizable
for-loop statements, and would be more complicated if it were expressed using less-
structured parallel programming constructs, e.g., threads with barrier synchroniza-

tion.

o Efficiency:
The one-deep parallel mergesort program delivers good parallel speedup, increasing
with number of processors and problem size. Implementation overheads do not appear
to be a major limitation to speedup. Performance is significantly better than that
which is possible for the traditional parallel mergesort algorithm. We do not know of

a more efficient parallel sorting algorithm.

e Automatic Parallelization:

The one-deep parallel mergesort algorithm could not reasonably be expected to be
generated automatically from an efficient sequential mergesort algorithm. A high-
level understanding of the purpose of the algorithm is required to recognize that the
variable-depth split-and-merge strategy can be replaced by an equivalent fixed-depth

split-and-merge strategy. Entirely new data structures and algorithms are introduced

into the program.

e Development Costs:
Reasoning, testing, and debugging in the context of the sequential semantics make
development of the one-deep parallel mergesort program essentially no more difficult
than development of a sequential program. Development would be more error-prone

in a less-structured parallel programming model.

Many other divide-and-conquer algorithms are likely to be amenable to efficient paralleliza-
tion using the one-deep parallel divide-and-conquer strategy. Splitting a problem into small
parts and independently solving those parts in parallel leads to good cache behavior and
low synchronization costs. In other work by the author of this thesis [128], we present a
one-deep parallel quicksort algorithm with very similar performance to the one-deep parallel
mergesort algorithm. In unpublished work, one-deep parallel divide-and-conquer algorithms
have been developed for a number of other problems including the convex hull, Manhattan

skyline, and closest pair problems.

77

6.3 The Paraffins Problem

In this section, we describe the development of a parallel program to generate the chemical
structure of all paraffin molecules up to a given size. This program demonstrates the use of
parallelizable for-loop statements with arguments and nested parallelizable for-loop state-
ments. For this problem, effective parallelism requires small but significant modifications
to the sequential algorithm that could not reasonably be expected to be generated auto-
matically. Although we do not have performance measurements, to give some indication of
performance limits, we compare the granularity of our program to the granularity of the

straightforward approach to parallelizing the sequential algorithm.

6.3.1 Problem Description

The Paraffins problem is to output the chemical structure of all paraffin molecules with size
i < n, for a given value of n, without repetition and in order of increasing size. The chemical
formula for paraffin molecules is C;Hg; 2. Isomers but not duplicates are to be included.
Duplicates are molecules that are identical except for the ordering of bonds. Isomers are
molecules that have the same chemical formula but are not duplicates. Figure 6.4 shows all
the distinct paraffins of size 1, 2, 3, and 4. Figure 6.5 shows some duplicate paraffins of
size 4.

Paraffin molecules of size k can be constructed from radical molecules of size less than
or equal to k/2. A radical is a molecule with chemical formula C;Ha;41, i.e., a paraffin with
one hydrogen atom removed. Figure 6.6 shows all the distinct radicals of size 0, 1, 2, and
3. Except for different bond orderings, every paraffin of size k¥ has a unique representation

as either:

1. a bond-centered paraffin: two radicals of size exactly k/2 bonded together, or

9. a carbon-centered paraffin: a carbon atom bonded to four radicals, each of size less

than k/2, with combined size k — 1.

Figure 6.7 shows examples of bond-centered and carbon-centered paraffins. The existence
and uniqueness of this representation of paraffins follows from Knuth’s theorems regarding
enumeration of trees [72, section 2.3.4.4].

The Paraffins problem is discussed by Turner [131] and is one of the Salishan prob-
lems [37]. The Salishan problems are a set of problems proposed at the 1988 Salishan
High-Speed Computing Conference as a standard by which to compare parallel program-

ming notations. The original solutions were presented in Ada, C*, Haskell, Id, Occam,

78

Figure 6.5: Some duplicate paraffins of size 4.

H
H
H H H H H H H
REA VN oS
H H H H H H H H
Figure 6.6: All distinct radicals of size 0, 1, 2, and 3.

H

H

H H ”‘@‘H
H H H H H H 5 H H
H H H H H H H : H H
(a) (b) H

Figure 6.7: (a) An example of a bond-centered paraffin of size 6. (b) An example of a
carbon-centered paraffin of size 6.

79

PCN, Sisal, and Scheme. Solutions to the Salishan problems in CC++ were given in earlier
work by the author of this thesis [125].

6.3.2 Program Specification

The specification of a program to solve the Paraffins problem is given in Program 6.4. The

type Radical Kind is (Hydrogen, Carboniferous);
type Radical;
type Radical Pointer is access all Radical;
type Radical Pointers is array (Integer range <>) of Radical_Pointer;
type Radical is
record
Kind : Radical Kind;
Bonds : Radical Pointers (1 .. 3);
end record;
type Radical_Array is array (Integer range <>) of aliased Radical;
type Radical Array Pointer is access Radical_Array;
type Radical Array Pointers is array (Natural range <>) of Radical_Array_Pointer;

type Paraffin Kind is (Bond._Centered, Carbon_Centered);
type Paraffin is
record
Kind : Paraffin Kind;
Bonds : Radical Pointers (1 .. 4);
end record,
type Paraffin_Array is array (Integer range <>) of Paraflin;
type Paraffin_Array Pointer is access Paraffin_Array;
type Paraffin_Array Pointers is array (Positive range <>) of Paraffin_Array Pointer;

procedure Generate Paraffins (

Radicals : out Radical_Array Pointers;

Paraffins : out Paraflin_Array Pointers);
—— | requires
—— Radicals’First = 0 and Radicals’Last = Paraffins’Last/2.
—— | ensures

—— for all R in Radicals’'Range : All. Radicals_Of Size(R, Radicals) and
—— for all P in Paraffins’Range : All_Paraffins.Of Size(P, Paraffins).

Program 6.4: Specification of the Paraffins problem.

Generate_Paraffins procedure generates the Radicals array and the Paraffins array as output.
The array bounds determine the sizes of the radicals and paraffins that are generated. The
output value of each element of the arrays is a pointer to a dynamically-allocated array
of all the radicals or paraffins of one size. A radical is either a single hydrogen atom or a

carboniferous radical represented as an array of pointers to three smaller radicals. A bond-

80

centered paraffin is represented as an array of pointers to two radicals, and a carbon-centered

paraffin is represented as an array of pointers to four radicals.

6.3.3 Sequential Algorithm

A sequential algorithm to solve the Paraffins problem is presented in Program 6.5.
The complete text of the program is given in Appendix B.2.1. The algorithm generates
the radicals less than or equal to half the size of the largest paraffin, then generates the
paraffins from the radicals. The first step in generating the radicals or paraffins of a given
size is to compute the number of molecules of that size, so that the array can be dynamically
allocated to store the molecules. Computation of the number of radicals or paraffins of a
given size takes a tiny amount of time compared to the actual generation of the molecules.

A sequential algorithm to generate paraffins of a given size from radicals is presented in
Program 6.6. The algorithm generates all the paraffins of size k by generating the bond-
centered paraffins of size k from the radicals of size k/2 (if k is even), then generating the
carbon-centered paraffins of size k from all the distinct combinations of four radical sizes
less than k/2 that total to k — 1. To prevent the generation of duplicate paraffins, different
permutations of the same combination of radical sizes are not considered. The sequential
algorithm for generating radicals of a given size from smaller radicals is similar in structure.

Sequential algorithms to generate bond-centered paraffins from pairs of radicals of a
given size and to generate carbon-centered paraffins from radicals of four given sizes are
presented in Program 6.7. The algorithms generate paraffins from all the distinct combina-
tions of radicals of the given sizes. To prevent the generation of duplicate paraffins, different

permutations of the same combination of radicals are not considered.

6.3.4 Parallel Performance Issues

On the face of it, the sequential algorithm to solve the Paraffins problem appears to be

relatively simple to parallelize. We observe the following:

1. The generation of paraffins of one size is independent of the generation of paraffins of
the other sizes, therefore all the different sizes of paraffins can be generated in parallel

with each other.

2. The generation of paraffins of a given size does not necessarily require all the different
sizes of radicals, therefore paraffins and radicals can generated in parallel with each

other to some degree (with appropriate synchronization).

81

function Num_Radicals (

Size : Positive;

Radicals : Radical_Array Pointers) return Positive is
begin

end Num_Radicals;
function Num_Paraffins (

Size : Positive;

Radicals : Radical Array Pointers) return Positive is
begin

end Num_Paraffins;

procedure Generate_Radicals_Of_Size (

Result : out Radical_ Array Pointer;

Size :in Natural;

Radicals : in Radical _Array Pointers) is
Length : Positive;

begin
Length := Num_Radicals(Size, Radicals);
Result := new Radical _Array (1 .. Length);

end Generate_Radicals_Of_Size;

procedure Generate Paraffins_Of Size (
Result : out Paraffin_Array Pointer;
Size :in Positive;
Radicals : in Radical _Array Pointers) is
Length : Positive;
begin
Length := Num_Paraffins(Size, Radicals);
Result := new Paraffin_Array (1 .. Length);

end Generate_Paraffins_Of_Size;

procedure Generate Paraffins (
Radicals : out Radical_Array Pointers;
Paraffins : out Paraffin_Array Pointers) is
begin
for R in Radicals’Range loop
Generate_Radicals_Of_Size(Radicals(R), R, Radicals(0
end loop;
for P in Paraffins’Range loop
Generate_Paraffins_Of_Size(Paraffins(P), P, Radicals(0
end loop;
end Generate_Paraffins;

. R —1));

- P/2));

Program 6.5: Sequential algorithm to solve the Paraffins problem.

82

procedure Generate Bond_Centered Paraffins (
Result : in Paraffin_Array Pointer;
Last : in out Natural;
Radicals : in Radical Array Pointer) is
begin

end Generate_Bond_Centered Paraffins;

procedure Generate_Carbon_Centered Paraffins (

Result :in Paraffin_Array Pointer;
Last : in out Natural;

Size. 1, Size.2, Size.3, Size.4 : in Natural;

Radicals :in Radical Array Pointers) is

begin
end Generate_Carbon_Centered Paraffins;

procedure Generate_Paraffins Of_Size (

Result : out Paraffin_Array Pointer;
Size :in Positive;
Radicals : in Radical.Array_Pointers) is

Length : Positive;
Last : Natural;

begin
Length := Num.Paraflins(Size, Radicals);
Result := new Paraffin Array (1 .. Length);
Last := 0;
if Size mod 2 = 0 then
Generate Bond_Centered Paraffins(Result, Last, Radicals(Size/2));
end if;
for I in (Size + 2)/4 .. (Size — 1)/2 loop
for J in (Size + 1 — 1)/3 .. Min(l, Size — 1 — 1) loop
for K in (Size — I — J)/2 .. Min(J, Size — 1 — [— J) loop
Generate_Carbon_Centered Paraflins(
Result, Last, Size - 1 — I — J — K, K, J, I, Radicals);
end loop;
end loop;
end loop;
end Generate Paraffins Of Size;

Program 6.6: Sequential algorithm to generate paraffins of a given size.

83

function Last Index (
Outer_Size, This_Size : Natural;
Outer_Index, This_Last : Integer) return Integer is
begin
if Outer.Size = This_Size then
return Outer Index;
else
return This_Last;
end if;
end Last_Index;

procedure Generate Bond.Centered_Paraffins (
Result : in Paraffin_Array_Pointer;
Last : in out Natural;
Radicals : in Radical _Array Pointer) is
begin
for Iin 1 .. Radicals’Last loop
for Jin 1 .. I loop
Last := Last + 1;
Result(Last) := (Bond_Centered,
(Radicals(I)’Access, Radicals(J)’Access, null, null));
end loop;
end loop;
end Generate_Bond_Centered Paraffins;

procedure Generate_Carbon_Centered Paraffins (

Result 1 in Paraffin_Array Pointer;
Last : in out Natural;

Size_1, Size_2, Size 3, Size.4 : in Natural;

Radicals : in Radical_Array_Pointers) is

begin
for I in 1 .. Radicals(Size-1)'Last loop
for J in 1 .. Last_Index(Size_1, Size_2, I, Radicals(Size_2)’Last) loop
for K in 1 .. Last_Index(Size.2, Size.3, J, Radicals(Size.3)'Last) loop
for L in 1 .. Last_Index(Size_3, Size_4, K, Radicals(Size_4)’Last) loop
Last := Last + 1;
Result(Last) := (Carbon_Centered,
(Radicals(Size-1)(I)’Access, Radicals(Size_2)(J)’ Access,
Radicals(Size_3)(K)’Access, Radicals(Size4)(L)’Access));
end loop;
end loop;
end loop;
end loop;
end Generate_Carbon_Centered Paraflins;

Program 6.7: Sequential algorithms to generate bond-centered and carbon-centered paraf-

fins.

84

3. Similarly, radicals of different sizes can be generated in parallel with each other to

some degree (with appropriate synchronization).

Based on these observations, a straightforward parallelized algorithm to solve the Paraffins

problem is presented in Program 6.8. In this algorithm, all the different sizes of radicals and

pragma Single_Assignment(Radical_ Array Pointer);

procedure Generate Paraffins (
Radicals : out Radical Array Pointers;
Paraffins : out Paraffin_Array _Pointers) is
begin
pragma Parallelizable_Sequence;
pragma Parallelizable Loop;
for R in Radicals’Range loop
Generate _Radicals Of Size(Radicals(R), R, Radicals(0 .. R — 1));
end loop;
pragma Parallelizable Loop;

for P in Paraffins’Range loop
Generate_Paraffins_Of Size(Paraffins(P), P, Radicals(0 .. P/2));

end loop;
end Generate_Paraffins;

Program 6.8: Straightforward parallelized algorithm to solve the Paraffins problem.

paraffins are generated in parallel with each other. Generation and evaluation of radicals
is synchronized by making Radical_Array_Pointer a single-assignment type (and by a few
trivial changes to Generate_Radicals_Of _Size). Essentially, this is the algorithm presented
in most of the original solutions (and our own CC++ solutions) to the Salishan problems.

Although this algorithm executes as a reasonable number of parallel threads, the parallel
speedup it can yield is negligible, because most of the computation occurs in the generation
of the paraffins of the largest size. For example, Table 6.1 gives the numbers of radicals and
paraffins in the generation of paraffins up to size 24. Radicals make up only 0.01 percent of
the total number of molecules generated (and this percentage decreases as the problem size
increases). Paraffins of the largest size make up 60 percent of the total number of molecules
generated (and this percentage increases as the problem size increases). Therefore, the
maximum possible speedup for generating paraffins up to size 24 using the straightforward
parallelized algorithm is 1%-fold, regardless of the number of processors that are used.

Parallel performance is dependent on effective parallelization of the generation of the largest

85

Radicals Paraffins
Size || Number Total Number Total
0 1 1 —_— —
1 1 2 1 1
2 1 3 1 2
3 2 5 1 3
4 4 9 2 5
5 8 17 3 8
6 17 34 5 13
7 39 73 9 22
8 89 162 18 40
9 211 373 35 75
10 507 880 75 150
11 1,238 2,118 159 309
12 3,057 5,175 355 664
13 e — 802 1,466
14 e — 1,858 3,324
15 — — 4,347 7,671
16 — e 10,359 18,030
17 e — 24,894 42,924
18 — e 60,523 103,447
19 — — 148,284 251,731
20 — — 366,319 618,050
21 o — 910,726 | 1,528,776
22 — — 2,278,658 | 3,807,434
23 — — 5,731,580 | 9,539,014
24 e — 14,490,245 | 24,029,259

Table 6.1: Number of radicals of size 0 to 12 and number of paraffins of size 1 to 24.

86

sized paraffins, and it is not worthwhile to parallelize the generation of radicals.

6.3.5 Parallel Algorithm

An efficient parallelized algorithm to solve the Paraffins problem is presented in Program 6.9.

The complete text of the program is given in Appendix B.2.2. In this algorithm, radicals

procedure Generate Paraffins (
Radicals : out Radical _Array_Pointers;
Paraffins : out Paraffin_Array Pointers) is
begin
for R in Radicals’Range loop
Generate_Radicals_Of_Size(Radicals(R}), R, Radicals(0 .. R — 1));
end loop;
pragma Parallelizable Loop(Num_Threads => 2, Pattern => On_Demand);
for P in reverse Paraffins’Range loop
Generate_Paraffins Of_Size(Paraffins(P), P, Radicals(0 .. P/2));
end loop;
end Generate_Paraffins;

Program 6.9: Efficient parallelized algorithm to solve the Paraffins problem.

are generated before paraffins are generated. Paraffins are generated in reverse order of
size, using two parallel threads with iterations assigned to threads using the On_Demand
pattern. Since the number of paraffins of a given size increases with size, reverse order
helps load balancing by scheduling large computations before small computations. Since
there are more paraffins of the largest size than all the other paraffins combined, there is
no benefit to having more than two parallel threads at the outer level. To provide effective
parallelism, paraffins of the same size must be generated in parallel.

The parallelized algorithm to generate the paraffins of a given size is presented in Pro-
gram 6.10. The sequential algorithm is parallelized in three places: (i) bond-centered and
carbon-centered paraffins are generated in parallel with each other, (ii) the outer two loops
of the three nested loops that generate carbon-centered paraffins are parallelized, and (iii)
the algorithm to generate bond-centered paraffins is parallelized, with the same number of
parallel threads as the paraffin size. Interference between parallel threads is avoided by
precomputing the number of bond-centered and carbon-centered paraffins and the index in
Result of the carbon-centered paraffins with each combination of radical sizes. This pre-
computation takes a tiny amount of time compared to the actual generation of the paraffins.

The parallelized algorithm to generate bond-centered paraffins is presented in Pro-

87

type Indices is array (Natural range <>,
Natural range <>,
Natural range <>) of Positive;

procedure Generate Paraffins_Of Size (

Result : out Paraffin_Array_Pointer;
Size :in Positive;
Radicals : in Radical_Array Pointers) is

Num. Bond_Centered : Natural;
Num_Carbon.Centered : Natural;
Num_Paraffins : Positive;
First : Indices ((Size + 2)/4 .. (Size — 1)/2,
(Size + 3)/6 .. (Size — 1)/2,
0 .. (Size — 1)/3);
begin
Count Bond_Centered(Size, Radicals(Size/2), Num_Bond_Centered);
Count_Carbon_Centered(Size, Radicals, First, Num_Carbon_Centered);
Num _Paraffins := Num_Bond_Centered + Num_Carbon_Centered;
Result := new Paraffin_Array (1 .. Num_Paraffins);
begin
pragma Parallelizable Sequence;
if Size mod 2 = 0 then
Generate_Bond_Centered Paraffins(
Result, Radicals(Size/2), Num_Threads => Size);
end if;
pragma Parallelizable Loop;
for I in (Size + 2)/4 .. (Size — 1)/2 loop
pragma Parallelizable Loop;
for J in (Size + 1 — I)/3 .. Min(l, Size — 1 — I) loop
for K in (Size — I — J)/2 .. Min(J, Size ~ 1 — I — J) loop
Generate_Carbon_Centered Paraffins(
Result, Num_Bond_Centered + First(I, J, K),
Size — 1 -~ I ~J - K, K, J, I, Radicals);
end loop;
end loop;
end loop;
end;
end Generate_Paraffins_Of_Size;

Program 6.10: Parallelized algorithm to generate paraffins of a given size.

88

gram 6.10. The outer loop is parallelized with iterations assigned to parallel threads using

procedure Generate_Bond_Centered Paraffins (

Result s in Paraffin_Array. Pointer;
Radicals :in Radical_Array_Pointer;
Num_Threads : in Positive) is

begin
pragma Parallelizable Loop(Num_Threads, Pattern => Cyclic);
for I in 1 .. Radicals’Last loop
declare
Base : constant Natural := (I*(I — 1))/2;
begin
forJin1 .. Iloop
Result(Base + J) := (Bond_Centered,
(Radicals(I)’Access, Radicals(J)'Access, null, null));
end loop;
end;
end loop;
end Generate_Bond_Centered Paraffins;

Program 6.11: Parallelized algorithm to generate bond-centered paraffins.

the Cyclic pattern. The Cyclic pattern ensures that the computation performed by each
thread is approximately equal without the overhead of the On_Demand pattern.

6.3.6 Performance Indications

Because the current release of the GNAT compilation system does not correctly implement
nested parallelism on multiprocessors, we do not have parallel performance measurements
for the parallelized algorithm to solve the Paraffins problem.

We can give some indication of performance possibilities by computing the granularity
of the parallelism expressed by the algorithm. For generation of paraffins up to size 24,
generation of the largest sized paraffin is split into 50 parallel threads. The largest number
of paraffins generated by any one of these threads is 765,703, which is approximately 3.2
percent of the total number of paraffins generated. Therefore, the speedup for generating
paraffins up to size 24 using the efficient parallelized algorithm could be up to 31-fold. This
compares to a maximum possible speedup of 1%—fold for the straightforward parallelized
algorithm.

Further indication of the likelihood of good parallel performance is given by preliminary
experiments which show that the parallel program executes insignificantly slower than the

sequential program on a single processor. For generation of paraffins up to size 24, the

89

execution time of sequential program is approximately 210 seconds and the execution time

of the parallel program on a single processor is approximately 213 seconds.

6.3.7 Experimental Analysis

The development of the parallelized algorithm to solve the Paraffins problem supports our

experimental propositions as follows:

¢ Expressiveness:

The parallelized algorithm to solve the Paraffins problem is almost the same as the
sequential algorithm to solve the Paraffins problem. The major difference is the pre-
computation of the indices of the paraffins. The parallelized algorithm is elegantly
expressed using nested parallelizable sequences of statements and parallelizable for-
loop statements with iterations assigned to parallel threads using the On_Demand and
Cyclic patterns. The patterns of thread creation and synchronization are relatively
sophisticated, and the algorithm would be more complicated if it were expressed using

less-structured parallel programming constructs, e.g., threads with barrier synchro-

nization.

e Efficiency:

Although we do not have performance measurements, the parallelized program to
solve the Paraffins problem expresses sufficiently many threads of sufficiently fine
granularity to indicate that the program would demonstrate at least reasonable paral-
lel speedup on a moderate number of processors. We do not know of a more efficient

parallel algorithm to solve the Paraffins problem.

e Automatic Parallelization:

The efficient parallelized algorithm could not reasonably be expected to be generated
automatically from an efficient sequential algorithm to solve the Paraffins problem. A
high-level understanding of the purpose of the algorithm is required to recognize that
the indices of the paraffins can be precomputed to allow parallel generation of paraffins
of the same size. Entirely new data structures and algorithms are introduced to the
program. In addition, automatic program parallelization is difficult for programs

that involve pointers to dynamically-allocated data structures, because of potential

aliasing.

e Development Costs:

90

Reasoning, testing, and debugging in the context of the sequential semantics make
development of the efficient parallelized program to solve the Paraffins problem es-
sentially no more difficult than development of a sequential program. Development
would be more error-prone in a less-structured parallel programming model, particu-

larly because of the sophisticated patterns of thread creation and synchronization.

All aspects of the benefits of a high-level parallel programming model with direct control of
parallelism are increased for a problem such as the Paraffins problem in which nested par-
allelism and irregular patterns of thread creation are required and in which load balancing

is non-trivial.

91

Chapter 7

Experiments Using

Single- Assignment Types

In this chapter, we describe parallel programming experiments designed to investigate the
use of single-assignment types for synchronization between parallel threads of control. The

experiments are performed in the context of the hardware and software platforms described

in Chapter 5.

7.1 Experimental Goals

The programming experiments that we describe in this chapter investigate parallel pro-
gramming using parallelizable sequences of statements, parallelizable for-loop statements,
and single-assignment types. The goal of these experiments is to evaluate the following

propositions with respect to this programming model:

e Expressiveness: For a range of interesting problems, parallel algorithms can be
expressed that are: (i) not much more complicated than efficient sequential algorithms
designed without regard to parallelism, and (ii) less complicated than efficient parallel
algorithms expressed using less-structured parallel programming models, e.g., thread

libraries providing barrier and lock synchronization.

o Efficiency: For a range of interesting problems, parallel programs can be written
that are: (i) more efficient than parallel programs that can be written using the
same model without single-assignment types, and (ii) comparably efficient to parallel

programs written using less-structured parallel programming models.

92

e Automatic Parallelization: For a range of interesting problems, parallel programs
can be written that are more efficient than parallel programs that could reasonably

be expected to be generated automatically from efficient sequential programs.

e Development Costs: Efficient parallel programs are not much more difficult to de-
velop than efficient sequential programs, and are less difficult to develop than efficient
parallel programs written using less-structured parallel programming models. This is
because most reasoning, testing, and debugging can be performed in the context of

the sequential semantics.

We investigate the validity of these propositions in the context of the shared memory mul-
tiprocessor computer system and compilation system described in Chapter 5. However,
the experiments are intended to yield results that are relevant beyond this one particular

example platform.

7.2 Mergesort of a Linked List

In this section, we describe the development of a parallel program to sort linked lists (with
single-assignment links) into ascending order using the mergesort algorithm. The program
demonstrates the use of single-assignment types in the context of dynamically-allocated
data structures, and the use of the Priority pragma to improve load balancing. Although
the parallel mergesort algorithm is almost identical to the sequential mergesort algorithm,
the subtle synchronization in the parallel algorithm could not reasonably be expected to
be generated automatically from the sequential algorithm. We compare the measured per-
formance of parallel mergesort of linked lists with single-assignment links to the measured

performance of traditional parallel mergesort of linked lists with ordinary mutable links.

7.2.1 Program Specification

The specification of the mergesort program is given in Program 7.1. The Mergesort proce-
dure takes the Unsorted list as input and returns the Sorted list as output. The declaration
of the list type is given in Section 7.2.2, and the element type of a list can be any type
on which ordering operators are defined. The output value of Sorted is the elements of
Unsorted sorted into ascending order, and the output value of Unsorted is not specified.
Parallel_Depth specifies the recursive depth of parallel sorting and hence the number of

parallel threads to be used in the algorithm.

93

type List is ... ;

procedure Mergesort (Unsorted, Sorted : in out List; Parallel Depth : in Natural);
—— | requires
- Closed(Unsorted) and not Closed(Sorted) and Empty(Sorted).

—— | ensures
—— Closed(Sorted) and Ascending(Sorted) and Permutation(Sorted, in Unsorted).

Program 7.1: Specification of parallel mergesort of a linked list.

7.2.2 Linked Lists with Single-Assignment Links

The declaration of the list type is given in Program 7.2. A list consists of Head and Tail
pointers to a forward-linked list of nodes. Each node consists of an Item pointer to a
block of data elements and a Next pointer to the next node in the list. Links between
nodes are single-assignment pointers, and all other pointers are ordinary mutable pointers.
Blocking of data reduces the amount of storage taken by the links and reduces the time
spent traversing links, at the cost of an average of one half-filled block per list. Except for
the single-assignment links, this is an unremarkable declaration of a linked list type, such
as might be used in a sequential program. Figure 7.1 shows an example of a linked list of
blocks of integers.

Subprograms are defined for writing a (pointer to a) block of elements to the tail of a
list and reading a (pointer to a) block of elements from the head of a list. Subprograms are
also defined for closing writing to a list and for testing whether reading has reached the end
of a list. The implementation of some of these operations on lists is given in Program 7.3.
In the implementation, the Head pointer points to the last node that was read, and the Tail
pointer points to the last node that was written. Except for the single-assignment links,
this is an unremarkable implementation of an unremarkable set of operations on a linked
list type, such as might be used in a sequential program.

If the links between nodes were mutable pointers, a parallel reader and writer of a
list would be erroneous, because of the parallel assignment and evaluation of nodes and
links (violating restriction E.1). With single-assignment pointers as links between nodes,
a parallel reader and writer of a list is not erroneous, because evaluation of an unassigned
single-assignment link by a Get operation will automatically suspend until the link is as-
signed by a Put operation. The implementation ensures that the operations on the mutable
components of nodes are synchronized by the operations on the single-assignment links. In

this manner, a parallel reader and writer of a list are implicitly synchronized by operations

94

type Element is ... ;
type Elements is array (Integer range <>) of Element;

type Block (Block Length : Positive) is
record
Data : Elements (1 .. Block Length);
Length : Positive;
end record;
type Block_Access is access Block;

type Node;
type Pointer is access Node;
type Single_Pointer is new Pointer;
pragma Single_Assignment(Single_Pointer);
type Node is
record
Item : Block.Access;
Next : Single_Pointer;
end record;
type List (Block_Length : Positive) is new Limited_Controlled with

record
Head : Pointer;
Tail : Pointer;
end record;
procedure Initialize (L : in out List);
procedure Finalize (L : in out List);
procedure Put (L : in out List; Item : in Block-Access);
procedure Close (L : in out List);
function End.Of List (L : List) return Boolean;

procedure Get (L : in out List; Item : out Block Access);

procedure Get (L : in out List; Item : out Block_Access; Past_End : out Boolean);

Program 7.2: Declaration of the list type.

95

Node Block
te ? Length
Next
2
3 Data
List 4
Head — : 5
Tail i
v 5 Length
ltem
Next 6
7
8 Data
9
10
y 3 Length
Ite .
Next | unassigned 12
13 Data
Ordinary mutable pointer ————= T
Single-assignment pointer ------------ >

Figure 7.1: An example of a linked list of blocks of integers.

96

procedure Initialize (L : in out List) is
begin

L.Head := new Node;

L.Head.Item := null;

L.Tail := L.Head;
end Initialize;

procedure Finalize (L : in out List) is
P, Next : Pointer;
begin
P := L.Head;
while P /= L.Tail loop
Next := Pointer{P.Next);
Deallocate(P);
P := Next;
end loop;
Deallocate(P);
end Finalize;

procedure Put (L : in out List; Item : in Block_Access) is
New_Tail : Pointer;
begin
New_Tail := new Node;
New_Tail.Item := Item;
L.Tail.Next := Single_Pointer(New_Tail);
L.Tail := New _Tail;
end Put;

procedure Close (L : in out List) is
begin

L.Tail.Next := null;
end Close;

function End_Of List (L : List) return Boolean is
begin

return L.Head.Next = null;
end End_Of_List;

procedure Get (L : in out List; [tem : out Block_Access) is
Old_Head : Pointer;
begin
Old_Head := L.Head;
L.Head := Pointer(L.Head. Next);
Item := L.Head.Item;
Deallocate(Old_Head);
end Get;

Program 7.3: Implementation of some operations on lists.

97

on the single-assignment links. Multiple paralle] readers of a list or multiple parallel writers
to a list would be erroneous due to violations of restrictions E.1 and E.2. Note that a null

link indicates the assigned end of a closed list and is different from an unassigned link.

7.2.3 Parallel Mergesort with Mutable Links

Before we present the parallel mergesort algorithm for linked lists with single-assignment
links, we investigate a traditional parallel mergesort algorithm for linked lists with mutable
links. We compare the two algorithms and their performance measurements. The traditional
parallel mergesort algorithm for linked lists with mutable links is presented in Program 7.4.
The complete text of the program is given in Appendix B.3.3. The linked list type with
mutable links is essentially identical to the linked list type with single-assignment links,
except that the links between nodes are mutable pointers and there is no need for a Close
operation. Traditional parallel mergesort for linked lists with mutable links operates as

follows:
1. If the input list is empty, the output list is left empty.

2. If the input list consists of a single block, the block is sorted using sequential quicksort

and written to the output list.

3. If the input list consists of more than one block: (i) the input list is sequentially split
into two sublists that differ in length by at most one block, (ii) the two sublists are
recursively sorted, then (iii) the two sorted sublists are sequentially merged to give

the sorted output list. At the outer levels of recursion, the two sublists are sorted in

parallel with each other.

Splitting the input list into two sublists is an inexpensive operation, because only the
pointers to the data blocks are copied, not the data elements. Merging the sorted sublists is
an expensive operation, because the actual data elements are compared and copied to the
output list. Since the links between nodes are mutable pointers, neither the split nor the
merge can be executed in parallel with the recursive sorting. As discussed in Chapter 6, the
parallel speedup of the traditional parallel mergesort algorithm is severely limited because

the merge sequentially follows the parallel sorting.

7.2.4 Performance Measurements with Mutable Links

Figure 7.2 gives the measured speedup of the traditional parallel mergesort program over

an efficient sequential mergesort program for linked lists with mutable links. The measure-

98

procedure Quicksort (Data : in out Elements) is
begin

end Quicksort;

procedure Split (Input, Left, Right : in out List) is
begin

end Split;

procedure Merge (Left, Right, Output : in out List) is
begin

end Merge;
procedure Mergesort (Unsorted, Sorted : in out List; Parallel Depth : in Natural) is

Block_1, Block.2 : Block_Access;

Get_Past_End : Boolean;

Left, Sorted_Left : List (Unsorted.Block Length);
Right, Sorted Right : List (Unsorted.Block Length);

begin
Get(Unsorted, Block.1, Get_Past_End);
if not Get_Past_End then
Get(Unsorted, Block.2, Get Past_End);
if Get_Past_End then
Quicksort(Block.1.Data(1 .. Block-1.Length));
Put(Sorted, Block.1);
else
Put(Left, Block.1); Put(Right, Block_2);
Split(Unsorted, Left, Mid, Right);
if Parallel Depth = O then
Mergesort(Left, Sorted Left, 0);
Mergesort(Right, Sorted Right, 0);
else
pragma Parallelizable_Sequence;
Mergesort(Left, Sorted_Left, Parallel Depth — 1);
Mergesort(Right, Sorted Right, Parallel Depth — 1);
end if;
Merge(Sorted Left, Sorted Right, Sorted);
end if;
end if;
end Mergesort;

Program 7.4: Traditional parallel mergesort for linked lists with mutable links.

99

Parallel Mergesort with Mutable Links

T T T T T
15 F =
Ideal speedup —
16,777,216 elements -o-
Q 8,388,608 elements -+--
-L« 4,194,304 elements -B-
o
o
5 10 F _
@
03]
54
o)
>
e}
0,
5 5F
0}
0]
Q,
%)
0 1 1 |
0 1 2 4 12 16
Number of processors
Number of || 4,194,304 elements | 8,388,608 elements | 16,777,216 elements
processors || Time | Speedup Time | Speedup | Time Speedup
sequential || 84.15 e 172.88 —_— 363.20 —
1 83.84 1.0 172.83 1.0 363.75 1.0
2 43.76 1.9 91.21 1.9 192.81 1.9
4 27.38 3.1 56.19 3.1 113.50 3.2
8 20.37 4.1 40.85 4.2 82.85 4.4
12 17.73 4.7 34.94 4.9 70.32 5.2
16 17.68 4.8 34.31 5.0 68.08 5.3

Figure 7.2: Speedup of traditional parallel mergesort over sequential mergesort for linked

All times are in seconds.

lists with mutable links (block length = 65,536 elements).

100

Parallel Mergesort with Mutable Links

1000 . T . :
16,777,216 elements —o—]
i 8,388,608 elements -—+-]
o~ '_ 4,194,304 elements -B--
e T
g o TTRe
§ [Tvee. R
o 100 A,
o HImseel 0 e S
[T TS T]
<rsg... = - --~-““:H.."—'I’.~u
% TN TNl e I
D i el \E:.--.““""'\':-\-"E» T]
. ~e = B
g el T
o 10F T E
3 [~ .]
0 : ~-]
O - 3
¢ []
i i
l 1] |
0 1 2 3 4

log 2 (number of processors)

Figure 7.3: Execution time of traditional parallel mergesort compared to ideal speedup of
sequential mergesort for linked lists with mutable links (block length = 65,536 elements).

101

ments are for sorting lists with 4,194,304 to 16,777,216 integer elements in blocks of 65,536
elements on 1 to 16 processors. In each case, the parallel depth is the smallest depth that
gives at least one parallel thread per processor at the bottom level of the parallel recursion
(e.g., for 8 processors, the parallel depth is 3), as this was found to give the best speedup.
The sequential mergesort program that is used for speedup comparison is identical to the
parallel mergesort program, except that the recursive sorting of the sublists is performed
sequentially.

As expected, the measurements show that the traditional parallel mergesort algorithm
for linked lists with mutable links is only effective for a small number of processors. The
parallel algorithm delivers good speedup for up to four processors and very little additional
speedup for more than four processors. Speedups increase very little with increasing data
length. This performance pattern is consistent with Equation 6.1 and with other reported

results [114].

7.2.5 Parallel Mergesort with Single-Assignment Links

The parallel mergesort algorithm for linked lists with single-assignment links is presented
in Program 7.5. The complete text of the program is given in Appendix B.3.5. The
parallel mergesort for linked lists with single-assignment links is essentially identical to
the traditional parallel mergesort for linked lists with mutable links, except that the single-
assignment links allow the merge to be performed in parallel with the recursive sorting of the
sublists. (The split could also be performed in parallel with the merge and recursive sorting,
but takes too little time for this to be worthwhile.) The split and merge operations are
essentially unchanged from the traditional parallel mergesort for linked lists with mutable
links.

Synchronization between parallel merge and sorting operations is through read oper-
ations suspending on the evaluation of unassigned links and resuming when the links are
assigned values. In this manner, the network of parallel merge and sorting operations are
implicitly synchronized by the production and consumption of input and output lists. The
Priority pragma is used to give higher scheduling priorities to the merge operations at the
outer levels of recursion, which merge larger lists. Without assignment of priorities, poor
load balancing can occur as a result of the largest merge operations not beginning execution

until near the end of the computation.

102

procedure Quicksort (Data : in out Elements) is
begin

end Quicksort;

procedure Split (Input, Left, Right : in out List) is
begin

end Split;

procedure Merge (Left, Right, Output : in out List) is
begin

end Merge;
procedure Mergesort (Unsorted, Sorted : in out List; Parallel Depth : in Natural) is

Block.1, Block.2 : Block_Access;

Get_Past _End : Boolean;

Left, Sorted Left : List (Unsorted.Block Length);
Right, Sorted Right : List (Unsorted.Block Length);

begin
Get(Unsorted, Block. 1, Get_Past End);
if Get_Past_End then
Close(Sorted);
else
Get(Unsorted, Block 2, Get_Past_End);
if Get_Past_End then
Quicksort(Block.1.Data(l .. Block_1.Length));
Put(Sorted, Block_1);
Close(Sorted);
else
Put(Left, Block.1); Put(Right, Block_2);
Split(Unsorted, Left, Right);
if Parallel Depth = 0 then
Mergesort(Left, Sorted Left, 0);
Mergesort(Right, Sorted.Right, 0);
Merge(Sorted. Left, Sorted Right, Sorted);
else
pragma Parallelizable_Sequence;
Mergesort(Left, Sorted Left, Parallel Depth — 1);
Mergesort(Right, Sorted Right, Parallel Depth — 1);
pragma Priority(Default Priority + Parallel Depth);
Merge(Sorted Left, Sorted Right, Sorted);
end if;
end if;
end if;
end Mergesort;

Program 7.5: Parallel mergesort for linked lists with single-assignment links.

103

7.2.6 Performance Measurements with Single-Assignment Links

Figure 7.4 gives the measured speedup of the parallel mergesort program for linked lists
with single-assignment links over an efficient sequential mergesort program for linked lists
with mutable links. The measurements are for sorting lists with 4,194,304 to 16,777,216
integer elements in blocks of 65,536 elements on 1 to 16 processors. In each case, the
parallel depth is the smallest depth that gives at least one parallel thread per processor at
the bottom level of the parallel recursion (e.g., for 8 processors, the parallel depth is 3), as
this was found to give the best speedup. The sequential mergesort program that is used
for speedup comparison is essentially identical to the parallel mergesort program, except
that the links in the lists are mutable pointers and the recursive sorting and merging are
performed sequentially.

The measurements show that the parallel mergesort program for linked lists with single-
assignment links delivers considerably better speedup than the traditional parallel merge-
sort program for linked lists with mutable links. For sorting 16,777,216 elements on 16
processors, the execution time of parallel mergesort for linked lists with single-assignment
links is 60 percent of the execution time of parallel mergesort for linked lists with mutable
links. The speedup scales to increasing numbers of processors and shows greater increases
with increasing data length. The additional performance is obtained without adding any
complexity to the program.

The parallel mergesort algorithm for linked lists with single-assignment links is slower
and does not scale as well as the one-deep parallel mergesort algorithm for arrays presented
in Chapter 6. Nonetheless, parallel mergesort of a linked list may be an appropriate parallel
sorting algorithm for the following reasons: (i) parallel mergesort of a linked list requires
considerably less extra data storage than one-deep parallel mergesort, (ii) if the data length
cannot be determined prior to the generation of the data, a linked list may be the most
appropriate data storage structure, and (iii) a linked list allows dynamic distribution of the

data across the memories of several different processors.

7.2.7 Experimental Analysis
The development of the parallel mergesort program for linked lists with single-assignment

links supports our experimental propositions as follows:

s Expressiveness:

The parallel mergesort algorithm for linked lists with single-assignment links is es-

sentially identical to an efficient sequential mergesort algorithm for linked lists with

Speedup over sequential

104

Parallel Mergesort with Single-Assignment Links
T T T T T
15 F -
Ideal speedup —
16,777,216 elements -&--
8,388,608 elements -+--
4,194,304 elements B
10 -
_____ 3
,,,,, o= e
"""""""" T
,Q’— -“_‘__-—:. _______ Fo R
PO LS
BRIt = e
5 ’/::_:_':_'_ ________ -
z
0 1 i i] 1
0o 1 2 4 8 12 16
Number of processors
Number of || 4,194,304 elements | 8,388,608 elements | 16,777,216 elements
processors || Time | Speedup Time | Speedup | Time Speedup
sequential || 84.15 — 172.88 — 363.20 —
1 84.13 1.0 172.83 1.0 364.53 1.0
2 41.61 2.0 86.67 2.0 182.89 1.9
4 23.20 3.6 46.89 3.7 97.90 3.7
8 15.24 5.5 29.17 5.9 55.96 6.5
12 12.95 6.5 24.74 7.0 46.07 7.9
16 11.82 7.1 22.20 7.8 40.54 9.0

All times are in seconds.

Figure 7.4: Speedup of parallel mergesort for linked lists with single-assignment links over
sequential mergesort for linked lists with mutable links (block length = 65,536 elements).

105

Parallel Mergesort with Single-Assignment Links

1000 ¢ T T T
X 16,777,216 elements ——
8,388,608 elements -+-]
- 4,194,304 elements -8-- |
e i
C: -
8
o 100 F e, T
o S
-) e
g ~—., e e
e T e AU R
e ~ :::E]:_; \\\\\\\\\\\\ - s el P I
o BRSNS el T
9 el T EF:=as
) - =
o 10F T E
3 DR
@] e
Q
><:
=]
l I 1 |
0 1 2 3 4

log 2 (number of processors)

Figure 7.5: Execution time of parallel mergesort for linked lists with single-assignment links
compared to ideal speedup of sequential mergesort for linked lists with mutable links (block

length = 65,536 elements).

106

mutable links. The parallelism is conveniently expressed using parallelizable sequences
of statements, and the sophisticated and highly dynamic synchronization strategy is
elegantly expressed using single-assignment links between nodes in the linked lists.
The Priority pragma provides a simple method of improving load balancing. The
algorithm would be considerably more complicated if it were expressed using less-

structured constructs, e.g., threads with barrier and lock synchronization.

o Efficiency:

Despite the additional synchronization overheads, the parallel mergesort algorithm
for linked lists with single-assignment links delivers significantly better speedup than
a traditional parallel mergesort algorithm for linked lists with mutable links. We do
not know of a more efficient parallel algorithm for sorting linked lists that could be

expressed using a less-structured parallel programming model but not with our model.

e Automatic Parallelization:

The parallel mergesort algorithm for linked lists with single-assignment links could
not reasonably be expected to be generated automatically from an efficient sequential
mergesort algorithm for linked lists. A high-level understanding of the purpose of
the algorithm is required to recognize that operations on the links between nodes
can be used as synchronization operations in a parallelized version of the algorithm.
In addition, automatic program parallelization is difficult for programs that involve

pointers to dynamically-allocated data structures, because of potential aliasing.

e Development Costs:

Reasoning, testing, and debugging in the context of the sequential semantics make
development of the parallel mergesort algorithm for linked lists with single-assignment
links essentially no more difficult than development of a sequential program. Devel-
opment would be more error-prone in a less-structured parallel programming model,
particularly because of the sophisticated and highly dynamic patterns of thread cre-

ation and synchronization.

All aspects of the benefits of a high-level parallel programming model with direct control
of parallelism are increased for a problem such as mergesort of a linked list in which highly

dynamic thread creation and synchronization are required and in which load balancing is

non-trivial.

107

7.3 LU Factorization

In this section, we describe the development of an efficient parallel program to compute the
LU factorization of a nonsingular matrix without pivoting. The program demonstrates the
use of single-assignment types in the context of array data structures and provides additional
examples of the use of parallelizable for-loop statements with arguments. Although the
parallel LU factorization algorithm is developed from an efficient sequential LU factorization
algorithm, the parallel modifications could not reasonably be expected to be generated
automatically from the sequential algorithm. We compare the measured performance of LU
factorization using single-assignment types to the measured performance of LU factorization

using only parallelizable for-loop statements or barriers for synchronization.

7.3.1 Program Specification

The specification of the parallel LU factorization program is given in Program 7.6. The

type Matrix is array (Integer range <>, Integer range <>) of Float;

procedure LU _Factorize (A s in Matrix;
LU : out Matrix;
Num.Threads : in Positive);
—— | requires

—— | A’Length > 0 and Square(A) and Nonsingular(A) and
—— Same_Bounds(A, LU) and Num_Threads < A’Length.

—— | ensures

- | Unit_Lower_Triangle(LU)*Upper.Triangle(LU) = A.

Program 7.6: Specification of parallel LU factorization.

LU_Factorize procedure computes the unit lower triangular and upper triangular factors of
the input matrix, A, and overlays the computed factors in the output matrix, LU, as de-
scribed in Chapter 1. The components of the matrices are mutable floating-point variables.
In the interest of brevity, the specification ignores the imprecision of floating-point arith-
metic and the possibility of division by zero due to the absence of pivoting. Num_Threads
specifies the number of parallel threads to be used in the algorithm. The algorithms that we

present could overwrite the input matrix with the output matrix instead of having separate

matrices.

108

7.3.2 Parallel LU Factorization using Barriers

Before we present a parallel LU factorization algorithm using single-assignment types, we in-
vestigate a parallel LU factorization algorithm using only parallelizable for-loop statements
or barriers for synchronization. The version of the algorithm using parallelizable for-loop

statements is presented in Program 7.7. The algorithm computes the components LU in

procedure LU Factorize (A :in Matrix;
LU : out Matrix;
Num_Threads : in Positive) is
begin

for I in LU'Range loop
pragma Parallelizable Loop(Num_Threads, Pattern => Block);
for Jin I .. LU Last loop
declare
Sum : Float := 0.0;
begin
for K in LU’First .. I — 1 loop
Sum := Sum + LU(I, K)*LU(K, J);
end loop;
LU J) := A, J) — Sum;
end;
end loop;
pragma Parallelizable Loop(Num_Threads, Pattern => Block);
for Jin I + 1 .. LU’Last loop
declare
Sum : Float := 0.0;
begin
for K in LU’First .. I — 1 loop
Sum := Sum + LU(J, K)*LU(K, I);
end loop;
LU, I) := (A(J, I) — Sum)/LU(, I);
end;
end loop;
end loop;
end LU _Factorize;

Program 7.7: Parallel LU factorization using parallelizable for-loop statements as the only
form of synchronization.

a pattern of alternating rows and columns. Within each row and column, the components
are computed in parallel using a parallelizable for-loop statement with iterations assigned
to parallel threads using the Block pattern. An example of the pattern of computation
for parallel LU factorization using only parallelizable for-loop statements or barriers for

synchronization with four parallel threads is shown in Figure 7.6.

109

Thread 3

L | Thread 4

2 46 81012141618 —

Figure 7.6: An example of the pattern of computation for parallel LU factorization using

only parallelizable for-loop statements or barriers for synchronization with four parallel
threads.

110

The same algorithm can be implemented more efficiently by creating one set of long-
lived parallel threads and using barrier synchronization between the computation of the
rows and columns. In most systems, barrier synchronization is significantly less expensive
than thread creation and termination. The version of the algorithm using explicit barrier
synchronization is presented in Program 7.8. The complete text of the program is given
in Appendix B.4.2. The parallel for-loop statement in this program is a more general
construct than our parallelizable for-loop statement. It is not required to be equivalent to a
sequential for-loop statement. The LU factorization program using barrier synchronization
implements exactly the same pattern of computation as the LU factorization program using

only parallelizable for-loop statements for synchronization.

7.3.3 Performance Measurements using Barriers

Figure 7.7 gives the measured speedup of the parallel LU factorization program using barrier
synchronization over an efficient sequential LU factorization program. The measurements
are for factoring matrices of size 500 by 500 to 1,250 by 1,250 on 1 to 32 processors. In each
case, the number of parallel threads is equal to the number of processors, as this was found
to give the best speedup. The complete text of the sequential LU factorization program
that is used for speedup comparison is given in Appendix B.4.1.

The measurements show that the parallel LU factorization program using barrier syn-
chronization delivers good speedup for small number of processors and that speedup in-
creases with increasing data size, but that speedup peaks at between 8 and 16 processors
and declines for more processors. The reason for the declining speedup is that the granular-
ity of parallelism becomes too fine as the number of threads is increased with the number
of processors. The overheads of increased synchronization become greater than the perfor-
mance gained through increased parallel execution, and the load imbalance from threads
waiting at barriers becomes more significant as the granularity of parallelism decreases.

For larger sized matrices, parallel execution on one processor is marginally faster than
sequential execution. This behavior is due to caching effects caused by the difference in

the order of computation of the components of LU between the parallel and sequential

algorithms.

7.3.4 Single-Assignment Flags

A more efficient parallel LU factorization algorithm requires a more sophisticated pattern

of synchronization. For this purpose, the definition of the single-assignment flag type is

111

procedure LU _Factorize (A :in Matrix;
LU : out Matrix;
Num_Threads : in Positive) is

function Split (First, Last, T : Integer) return Integer is
begin

return First + Integer((Float(T)/Float(Num_Threads))*Float(Last — First + 1));
end Split;

B : Barrier (Num.Threads);

begin
for T in 0 .. Num_Threads — 1 parallel loop
for I in LU'Range loop
for J in Split(I, LU Last, T) .. Split(I, LULast, T + 1) — 1 loop
declare
Sum : Float := 0.0;
begin
for K in LUFirst .. I — 1 loop
Sum := Sum + LU(I, K)*LU(K, J);
end loop;
LU, J) := A(1, J) — Sum;
end;
end loop;
At_Barrier(B);
for J in Split(I 4+ 1, LU’Last, T) .. Split(I + 1, LU’Last, T + 1) — 1 loop
declare
Sum : Float := 0.0;
begin
for K in LU’First .. I — 1 loap
Sum := Sum + LU(J, K)*LU(K, I);
end loop;
LU, IT) := (A(J, I) — Sum)/LU(L, I);
end;
end loop;
At_Barrier(B);
end loop;
end loop;
end LU Factorize;

Program 7.8: LU factorization using threads and barriers.

112

Parallel LU Factorization Using Barriers

T T T T T T T T
30 F ~
Ideal speedup -
1250 by 1250 -~
o 1000 by 1000 -+--
- 750 by 750 -8B
b= 500 by 500 -x-
o
& 20 | .
0
0
s
o
S
0
o
g 10+ 2 - PSR e .
o AT e .. T S
o L T T 4
a /»::,_rﬁf T2 = 5 R SRS |
G L = A e S
s Moom oo B e S 1
Hemrmemmy Koo B Lt
0 i 1 I i i 1 i I
012 4 8 12 16 20 24 28 32
Number of processors/threads
Number of 500 by 500 750 by 750 1000 by 1000 1250 by 1250
processors || Time | Speedup | Time | Speedup | Time | Speedup | Time | Speedup
sequential | 41.30 — 150.57 — 369.23 — 685.71 —
1 41.33 1.0 152.14 1.0 359.82 1.0 661.48 1.0
2 21.87 1.9 77.06 2.0 183.58 2.0 346.88 2.0
4 12.52 3.3 40.63 3.7 95.15 3.9 177.21 3.9
8 9.28 4.5 24.13 6.2 54.56 6.8 99.08 6.9
12 11.19 3.7 22.16 6.8 41.85 8.8 76.82 8.9
16 13.99 3.0 25.26 6.0 42.51 8.7 68.58 10.0
20 17.57 2.4 30.29 5.0 45.45 8.1 69.33 9.9
24 20.83 2.0 34.79 4.3 50.41 7.3 75.07 9.1
28 23.92 1.7 40.20 3.7 57.89 6.4 82.40 8.3
32 26.66 1.5 46.23 3.3 63.97 5.8 90.95 7.5

All times are in seconds.

Figure 7.7: Speedup of parallel LU factorization using barrier synchronization over sequen-
tial LU factorization.

1000

)
o]
a
o
o 100
0
0]
&
-
s
o
2
o 10
=
0
O
]
[£3]
1

113

Parallel LU Factorization Using Barriers

1250 by 1250 ——]
i 1000 by 1000 -+--
2 750 by 750 -8--
[T, 500 by 500 -
B T~
:_ i T ‘.a It . ->
: . e) \:\:\\ﬁ\\‘_ T~ - il
... £ ST e
5 e g \.\.\' \—E.-\-'\B—
~. S Ly _’E ~ \;('\'
- ')‘\ "'~-:) . ..:.y_.:-:*
........... S Y S
I ~).< 3L . e
- .l T Pt N "E
I 1 1 L]

log 2 (number of processors/threads)

Figure 7.8: Execution time of parallel LU factorization using barrier synchronization com-
pared to ideal speedup of sequential LU factorization.

114

presented in Program 7.9. A flag is a single-assignment unary variable that can only be

type Flag is (Set);
pragma Single_Assignment(Flag);

procedure Set (F : out Flag) is
begin

F := Set;
end Set;

procedure Check (F : in Flag) is
begin

if F = Set then null; end if;
end Check;

Program 7.9: Definition of the single-assignment flag type.

assigned one possible value. The Set operation assigns to the flag and the Check operation
evaluates the flag. A program is erroneous if its sequential interpretation checks a flag that
has not been set (violating restriction E.5) or sets the same flag more than once (violating
restriction E.6). Therefore, in sequential execution of a non-erroneous program, a Check
operation has no effect. In parallel execution of a non-erroneous program, a Check operation
suspends until the Set operation is performed on the flag. In this manner, Set and Check

operations on single-assignment flags can be used to synchronize parallel threads.

7.3.5 Parallel LU Factorization using Single- Assignment Flags

A more efficient parallel LU factorization algorithm using single-assignment flags for syn-
chronization is presented in Program 7.10. The complete text of the program is given in

Appendix B.4.3. Parallel LU factorization using single-assignment flags operates as follows:

1. The components of LU are subdivided into equal-sized square blocks, with each block
guarded by a single-assignment flag. An example of the subdivision of LU into blocks
is shown in Figure 7.9. In the program, R(B) is the row of block B and C(B) is the

column of block B.

2. All the blocks are computed in parallel. The number of blocks and the number of

parallel threads are specified separately.

3. At the start of the computation of a block, the flags of the first block above the block
in the upper triangle and of the first block to the left of the block in the lower triangle

115

procedure LU Factorize (A 1 in Matrix;
LU : out Matrix;
Num_Blocks : in Positive;
Num_Threads : in Positive) is

function Start (I : Integer) return Integer is
begin

return LU'First + Integer((Float(I)/Float{Num Blocks))*Float(LU Length));
end Start;

R, C : array (0 .. Num_Blocks*Num_Blocks ~ 1) of Integer;
Done : array (—1 .. Num.Blocks — 1, ~1 .. Num_Blocks — 1) of Flag;

begin
R=...;Ci=...;
for Iin 0 .. Num_Blocks — 1 loop
Set(Done(—1, I)); Set(Done(I, —1));
end loop;
pragma Parallelizable Loop(Num._Threads, Pattern => On_Demand);
for B in 0 .. Num_Blocks*Num.Blocks — 1 loop
Check(Done(R(B), Min(R(B), C(B) — 1)));
Check(Done(Min(C(B), R(B) — 1), C(B)));
for I in Start(R(B)) .. Start(R(B) + 1) — 1 Loop
for J in Start(C(B)) .. Min(Start(C(B) + 1), I) — 1 loop
declare
Sum : Float := 0.0;
begin
for K in LUFirst .. J — 1 loop
Sum := Sum + LU(I, K)*LU(X, J);

end loop;
LU(I, J) == (A(L, J) = Sum)/LU({J, J);
end;
end loop;
for J in Max(Start(C(B)), I) .. Start(C(B) + 1) — 1 loop
declare
Sum : Float := 0.0;
begin

for K in LU’First .. I — 1 loop
Sum := Sum + LU(I, K)*LU(K, J});
end loop;
LU,) := A(1, J) — Sumy;
end;
end loop;
end loop;
Set(Done(R(B), C(B)));
end loop;
end LU Factorize;

Program 7.10: LU factorization using single-assignment flags.

116

LU

Figure 7.9: An example of the subdivision of LU into blocks for parallel LU factorization
using single-assignment flags.

117

are checked. This implicitly suspends the computation of the block until the blocks on
which it depends have been computed. An example of the data dependencies between

blocks is shown in Figure 7.10(a).

1/2|3|4|5|6|7|8
9116|1718 19|20 21|22

10123129 30,31,3233|34

11124135]40 414243 | 44

12125136145 |49 | 50 | 51 | 52

131263746 53|56 57|58

1412713847154 159]61 62

15128139148 155]160]63]64
(a) (b)

Figure 7.10: Parallel LU factorization using single-assignment flags: (a) An example of the
data dependencies between blocks. (b) An example of the order in which blocks are assigned

to parallel threads.

4. At the end of the computation of a block, the flag of the block is set. This implicitly

awakens the computation of blocks that depend on this block.

5. Apart from checking and setting flags, the computation of a block uses the standard

sequential LU factorization algorithm.

6. Blocks are assigned to parallel threads in a pattern of alternating rows and columns
using the On_Demand pattern. This pattern is chosen to maximize the number of
block computations that are executable at any given time. An example of the order

in which blocks are assigned to parallel threads is shown in Figure 7.10(b).

In parallel execution of the program, operations on flags implicitly suspend the computations
of blocks until the blocks on which they depend have been computed. In sequential execution
of the program, blocks are computed in an order such that flags are always set before they
are checked. Therefore, deadlock cannot occur in parallel execution of the program. Since
checking flags is the first step and setting the flag is the last step in the computation of a
block, it is straightforward to show that the operations on flags synchronize the operations

on the mutable components of LU so that restriction E.1 is not violated.

118

7.3.6 Performance Measurements using Single-Assignment Flags

Figure 7.11 gives the measured speedup of the parallel LU factorization program using
single-assignment flags over an efficient sequential LU factorization program. The mea-
surements are for factoring matrices of size 500 by 500 to 1,250 by 1,250 on 1 to 32 processors.
In each case, the block size is 10 by 10 components and the number of parallel threads is
equal to the number of processors, as this was found to give the best speedup. The complete
text of the sequential LU factorization program that is used for speedup comparison is given
in Appendix B.4.1.

The measurements show that the parallel LU factorization program using single-assign-
ment flags delivers considerably better speedup than the parallel LU factorization program
using barriers for synchronization. For LU factorization of a 1,250 by 1,250 component
array, the best time using single-assignment flags is 125 percent faster than the best time
using barriers. Since the granularity of parallelism can be varied independently of the
number of parallel threads, the speedup scales well then levels off with increasing numbers
of processors instead of peaking then declining. The additional performance is obtained
without adding much complexity to the program.

For larger sized matrices, parallel execution on one processor is marginally faster than
sequential execution. This behavior is due to caching effects caused by the difference in

the order of computation of the components of LU between the parallel and sequential

algorithms.

7.3.7 Experimental Analysis

The development of the parallel LU factorization program using single-assignment flags for

synchronization supports our experimental propositions as follows:

¢ Expressiveness:

The parallel LU factorization algorithm using single-assignment flags is almost the
same as an efficient sequential LU factorization algorithm. The parallelism and con-
trol of granularity are concisely expressed using a parallelizable for-loop statement
with iterations assigned to parallel threads using the On_Demand pattern, and the
sophisticated synchronization strategy is elegantly expressed using single-assignment
flags. The algorithm would be considerably more complicated if it were expressed
using less-structured parallel programming constructs, e.g., threads with barrier and

lock synchronization.

119

Parallel LU Factorization Using Flags

LI 1 1 1 i I i I
30 p -
Ideal speedup —
1250 by 1250 -¢—-
- 1000 by 1000 -+--
- 750 by 750 -B--
= 500 by 500 - -4
& e
& 20
a]
0
o
)
[
o
o,
3 10 F
0]
Q
o, s
0 1 i 1 1]] 1 1
012 4 8 12 16 20 24 28 32
Number of processors/threads
Number of 500 by 500 750 by 750 1000 by 1000 1250 by 1250
processors || Time | Speedup | Time | Speedup | Time | Speedup | Time | Speedup
sequential || 41.30 — 150.57 — 369.23 —_— 685.71 —
1 42.31 1.0 151.35 1.0 356.20 1.0 653.85 1.0
2 22.16 1.9 78.32 1.9 184.02 2.0 344.80 2.0
4 11.81 3.5 40.57 3.7 94.85 3.9 177.24 3.9
8 6.54 6.3 21.48 7.0 50.07 7.4 91.82 7.5
12 4.38 94 14.36 10.5 33.07 11.2 59.82 11.5
16 4.00 10.3 12.60 12.0 25.42 14.5 46.43 14.8
20 3.88 10.6 10.95 13.8 22.73 16.2 37.81 18.1
24 3.80 10.9 9.93 15.2 20.80 17.8 33.90 20.2
28 3.73 111 9.50 15.8 19.17 19.3 32.11 214
32 3.86 10.7 9.14 16.5 17.84 20.7 30.13 22.8

All times are in seconds.

Figure 7.11: Speedup of parallel LU factorization using single-assignment flags over sequen-
tial LU factorization (block size = 10 by 10 components).

120

Parallel LU Factorization Using Flags

1000 T T T 1 .
1250 by 1250 —&— N
1000 by 1000 -+~]

~ — 750 by 750 -B-]

[N 500 by 500 -

[il ""\\

O ~-._.’ ~—

9100 F Trten

n r i N o

0 ... RES

.E | ~L.<.,~_:.: s

o Ty ~ 2 \':'tifj‘*\,;:

R R SO . ~-. - T

© Ttk = T

'L' 10 3 e BEI B

0 : T]

O N el e, .

v K o ST R SV S,

i i t SRR S VS ‘:K

1] 1] |)
0 1 2 3 4 5

log 2 (number of processors/threads)

Figure 7.12: Execution time of parallel LU factorization using single-assignment flags com-
pared to ideal speedup of sequential LU factorization.

121

e Efficiency:

The parallel LU factorization program using single-assignment flags delivers signifi-
cantly better speedup than the parallel LU factorization program using barriers for
synchronization. The algorithm using barriers does not capture all the parallelism
that is implicit in the data dependencies. We do not know of a more efficient paral-
lel algorithm for LU factorization without pivoting that could be expressed using a

less-structured parallel programming model.

¢ Automatic Parallelization:

The parallel LU factorization program using barriers for synchronization could rea-
sonably be expected to be generated automatically from an efficient sequential LU
factorization program. However, the more eflicient parallel LU factorization program
using single-assignment flags could not reasonably be expected to be generated au-
tomatically. A high-level understanding of the purpose of the program is required
to invent the synchronization strategy that allows the computation to be subdivided
into blocks and to determine an efficient order for assigning blocks to parallel threads.

Entirely new data structures and algorithms are introduced into the program.

¢ Development Costs:

Reasoning, testing, and debugging in the context of the sequential semantics make
development of the parallel LU factorization algorithm using single-assignment flags
essentially no more difficult than development of a sequential program. Develop-
ment would be more error-prone in a less-structured parallel programming model,

particularly because of the sophisticated strategies for synchronization and execution

scheduling.

The parallel LU factorization program using single-assignment flags is the most sophisti-
cated of all our experimental programs and provides the best demonstration of the benefits

of direct control of parallelism in a programming model with sequential semantics.

122

Chapter 8
Limitations on Nondeterminacy

In this chapter, we investigate the consequences of the limitations on nondeterminacy in
our parallel programming model that result from restricting the model so that the parallel
and sequential semantics are equivalent. The model cannot express parallel algorithms in
which the actions of the computation are affected by the timing of the execution of the
parallel threads. We describe an important class of parallel search algorithms that require
this form of nondeterminacy and hence cannot be expressed using our model. This leads
us to outline how our parallel programming model could be integrated with other models

that provide less-restrictive synchronization constructs.

8.1 Limitations on Nondeterminacy in Our Model

In our parallel programming model, communication and synchronization between parallel
threads are subject to a set of restrictions designed such that execution according to the
parallel semantics is equivalent to execution according to the standard sequential semantics.
The benefit of these restrictions is that reasoning, testing, and debugging of a parallel
program can be performed in the context of the sequential semantics. The cost of these
restrictions is that an important class of efficient parallel algorithms with nondeterministic
behavior cannot be expressed using our programming model.

Our parallel programming model cannot express an algorithm in which the actions that
are performed by the computation are affected by the timing of the execution of the parallel
threads. The interleaving of actions between the synchronization operations of two parallel
threads can be affected by the timing of the threads (since all such interleavings are equiv-
alent to sequential execution), but the order of the synchronization operations cannot be

affected by the timing of the threads. Essentially, we are restricted to expressing algorithms

123

that are no less deterministic in the actions they perform than sequential algorithms.

For some problems that involve irregular data structures or computational patterns, the
most efficient known parallel algorithms make nondeterministic choices affected by timing
of the parallel threads. Many examples are provided by parallel branch-and-bound search
algorithms to solve combinatorial optimization and operations research problems. For these
algorithms, our parallel programming model needs to be integrated with a model that

provides less-restrictive synchronization constructs, e.g., locks, semaphores, or monitors.

8.2 A Simple Example

Before we consider more complicated examples, we present a simple example that demon-
strates the limitations on nondeterminacy in our parallel programming model. A paral-
lel algorithm to sum the components of a two-dimensional array of integers using single-
assignment types for synchronization is presented in Program 8.1. The rows of the array
are independently summed in parallel with each other, with the row sums assigned to an
array of single-assignment integers. The array of row sums is summed in parallel with
the summation of the rows. The summation of row sums implicitly suspends whenever an
unassigned row sum is evaluated and resumes when the row sum is assigned.

With this algorithm, regardless of the timing of the row summations, the row sums are
always summed in the same order. In the worst case (when the first row sum is the last
to be assigned), all N steps in the summation of the row sums remain to be executed after
the summation of the rows completes. On average, N/2 steps in the summation of the row
sums remain to be executed after the summation of the rows completes. This could be
improved to logaN steps by building a binary tree of partial sums, at the cost of N—1 extra
assignments and evaluations of single-assignment variables. A more efficient algorithm is to
sum the row sums in the order in which the row summations complete, but this algorithm
cannot be expressed using our programming model.

An efficient parallel algorithm to sum the components of a two-dimensional array using
a less-restrictive programming model with locks for synchronization is presented in Pro-
gram 8.2. The rows of the array are independently summed in parallel with each other
and each row sum is immediately added to the total sum. A lock is used to ensure mutual
exclusion in the updating of the total sum. The parallel for-loop statement in this program
is not required to be equivalent to a sequential for-loop statement.

With this algorithm, the order in which the row sums are summed is nondeterministically

controlled by the order in which the row summations complete and acquire the mutual

124

type Matrix is array (1 .. N, 1 .. N) of Integer;
function Sum_Of Components (A : Matrix) return Integer is

type Single Integer is new Integer;
pragma Single_Assignment(Single Integer);

Row_Sum : array (1 .. N) of Single_Integer;
Sum : Integer := 0;

begin
begin
pragma Parallelizable Sequence;
pragma Parallelizable Loop;
forITin1 .. N loop
declare
Local.Sum : Integer := 0;
begin
for Jin 1l .. N loop
Local Sum := Local Sum + A(L, J);
end loop;
Row_Sum(I) := Single Integer(Local Sum);
end;
end loop;
forIinl .. N loop
Sum := Sum + Integer(Row_Sum(I));
end loop;
end;
return Sum;
end Sum_Of Components;

Program 8.1: Parallel summation of the components of a two-dimensional array using single-
assignment types for synchronization.

125

type Matrix is array (1 .. N, 1 .. N) of Integer;
function Sum_Of Components (A : Matrix) return Integer is

Sum : Integer := 0;

L : Lock;
begin
for Iin 1 .. N parallel loop
declare
Row_Sum : Integer := 0;
begin

for Jinl .. Nloop
Row._Sum := Row_Sum + A(I, J);
end loop;
Acquire(L);
Sum := Sum + Row._Sum;
Release(L);
end;
end loop;
return Sum,;
end Sum_Of_Components;

Program 8.2: Parallel summation of the components of a two-dimensional array using locks
for synchronization.

126

exclusion lock. A consequence of the nondeterminacy in the order of summation is the
possibility of nondeterminacy in the results of the program. Addition of bounded integers
is not associative with respect to overflow. Program 8.1 is deterministic with respect to
exceptional termination, regardless of whether the program is executed according to the
parallel or sequential semantics. However, for some input matrices, Program 8.2 may be

nondeterministic with respect to exceptional termination.

8.3 Restrictions on Clocks

The equivalence of the parallel and sequential semantics of our programming model requires
restrictions on parallel access to clocks. These restrictions are no more than a special case

of the restrictions on parallel access to shared mutable variables. Consider the following

program:
declare
X, Y : Time;
begin
begin
pragma Parallelizable_Sequence;
X := Clock;
Y := Clock;
end;
if X <= Y then Put_Line("Yes"); else Put_Line("No"); end if;
end;

Clock is a standard function that returns the current time of day. Sequential execution of
the program will always print “Yes” as output, whereas parallel execution may nondeter-
ministically print either “Yes” or “No” as output. The reason that parallel and sequential
execution are not equivalent is that the program violates restriction E.1 regarding parallel
access to shared mutable variables.

We model time as a global mutable variable. Execution of every action in a program
nondeterministically increases time by a nonnegative amount. Therefore, it is erroneous
for any statement of a parallelizable sequence of statements to evaluate the time, because
the other statements of the parallelizable sequence of statements are implicitly assigning to
the time. (It is not considered erroneous that the statements of a parallelizable sequence of
statements assign to the time in parallel, because this is unobservable.) In other words, it
is erroneous to call the Clock function within a parallelizable sequence of statements or a

parallelizable for-loop statement.
Note that it is not the nondeterminacy of time in itself that leads to the restrictions.

127

Rather, it is the difference in the determinacy of time between parallel and sequential

execution of a program. Consider the following similar program:

declare
X, Y : Integer;
begin
begin
pragma Parallelizable_Sequence;
X := Random;
Y := Random;
end;
if X <=Y then Put_Line("Yes"); else Put_Line("No"); end if;
end;

If Random is a true-random function that returns a different randomly chosen integer on
each call, the program is nondeterministic, but is not erroneous. In this case, both sequential
and parallel execution will nondeterministically print either “Yes” or “No” as output. If
Random is a pseudo-random function that updates a mutable seed variable on each call,
the program is erroneous. In this case, for a given initial seed value, sequential execution
will always print the same output value, whereas parallel execution may print either “Yes”

or “No” as output.

8.4 A Class of Nondeterministic Parallel Algorithms

In this section, we describe parallel branch-and-bound algorithms as a practical example
of the limitations on nondeterminacy in our parallel programming model. Branch-and-
bound [79][92] is a problem solving strategy that forms the basis of search algorithms to
solve a large number of important problems in combinatorial optimization and operations
research. Branch-and-bound algorithms are typically used for NP-hard problems in which
the search space is exponentially large with respect to the size of the problem. Examples of
problems for which branch-and-bound algorithms provide efficient solutions include the 0-1
Knapsack problem [62], the Traveling Salesman problem [84], and Integer Programming [77].

The size and shape of the search space that is traversed by a branch-and-bound algorithm
cannot be predicted in advance. Therefore, in a parallel branch-and-bound algorithm, it
is not possible to efficiently partition the search space among the parallel threads in any
predetermined manner. Parallel branch-and-bound algorithms in which the parallel threads
asynchronously respond to partial search results from other threads are more efficient than
algorithms in which the interactions between the parallel threads are synchronous. We

compare a synchronous and deterministic parallel branch-and-bound algorithm expressed

128

using our parallel programming model with an asynchronous and nondeterministic parallel

branch-and-bound algorithm expressed using a less-restrictive model.

8.4.1 Sequential Branch-and-Bound

Suppose we wish to find the solution from a constrained solution space that maximizes a
given objective function. Let S be the best feasible solution identified thus far, let Z be
the objective function value for S, and let Q be a queue of subsets of the solution space,
maintained in descending order of upper bounds on their objective function values. The
basic branch-and-bound strategy for finding an exact optimal solution using best-first search

operates as follows:

Initially: S is undefined, Z is negative infinity, and Q contains a single subset representing

the entire solution space.

Branching Step: Remove the subset from the head of Q and partition it into a collection

of more tightly constrained subsets of the solution space.

Bounding Step: For each of the subsets generated in the branching step:

1. If the subset is known to contain no feasible solutions, discard the subset.

2. If the subset is known to contain a single feasible solution, compute the objective
function value for the feasible solution. If the objective function value is greater than
Z, replace S with the feasible solution, replace Z with the objective function value,
and delete any subsets from Q with upper bounds less than or equal to the new value

of Z. Otherwise, discard the subset.

3. If the subset may contain more than one feasible solution, compute an upper bound
on the objective function value for the subset. If the upper bound is greater than Z,

insert the subset into Q according to its upper bound. Otherwise, discard the subset.

Termination Test: If Q is empty, S is an optimal feasible solution and Z is the objective

function value for the optimal feasible solution. Otherwise, return to the branching step.

To minimize rather than maximize the objective function, lower bounds are computed
instead of upper bounds and the queue is maintained in increasing order of lower bounds
instead of decreasing order of upper bounds. Variations on the basic branch-and-bound
strategy are possible, including different methods of choosing the subset to branch on at

each iteration and variations that find a solution within a specified percentage of the optimal

129

objective function value instead of an exact solution. An example of one iteration of the

basic branch-and-bound strategy is shown in Figure 8.1.

8.4.2 An Example: The 0-1 Knapsack Problem

The objective in the 0-1 Knapsack problem is to load a knapsack with a set of indivisible
objects, such that the total value of the included objects is maximized and the capacity of

the knapsack is not exceeded. The problem can be formulated as follows:

n
Maximize Z V05
=1

n
subject to Zwixi <C

=1

IL‘iE{O,l}, 1<21<n
where C is the capacity of the knapsack, n is the number of objects, and object ¢ has value v;
and weight w;. The 0-1 Knapsack problem is NP-complete, and therefore the most efficient
known algorithms have running time that is exponential with respect to n.

An algorithm to solve the 0-1 Knapsack problem can be developed from the branch-

and-bound framework as follows:

1. A subset of the solution space consists of an assignment of included, ezxcluded, or free
to each of the n objects. A subset is feasible if the total weight of the included objects
is less than or equal to the capacity of the knapsack, and is infeasible if the total
weight of the included objects is greater than the capacity of the knapsack. A feasible

subset represents a single feasible solution if none of the objects are free.

2. Branching is performed by choosing one of the free objects and generating two new
subsets of the solution space: one with the chosen object included, and the other with
the chosen object excluded. The strategy for choosing the free object to branch on
may affect the performance of the algorithm, but does not affect the correctness of

the algorithm.

3. An upper bound on a feasible subset is computed by relaxing the indivisibility of the
objects and loading the remaining capacity of the knapsack with the free objects in

order of increasing “value density” (v;/w;).

The efficiency of the algorithm may be improved by presorting the objects into decreasing
order of value density and branching on objects in this order. This simple branch-and-bound

algorithm is discussed in more detail by McKeown et al. [89].

(a)

130

Subset Bound
Head S, 12
S, 10
S3
Tail| S, 4
Fy
S Y4
(©
Sy Ss
L Se
Fs
S;

(b) K_N s,
S, 10
Sy
Sy 4
Q
Fy 3
S Zz
(d)
Si 11 = & 11
S, 10 Se 7
S, | 9 J
S5 7 Fs 6
|] S | 5
___-__.6 \l,
F, 6 Discarded
S

Figure 8.1: An example of one iteration of the basic branch-and-bound strategy: (a) The
queue of subsets. (b) The subset with the highest upper bound is removed from the head
of the queue. (c) The subset is partitioned into a collection of subsets. (d) The subsets are
inserted into the queue according to their upper bounds or discarded.

131

8.4.3 Synchronous Parallel Branch-and-Bound Using Our Model

A synchronous and deterministic parallel branch-and-bound strategy can be expressed using
our parallel programming model. The parallel strategy is a straightforward adaptation of

the sequential strategy, as follows:

e On each iteration, the first P subsets of the solution space are removed from Q, instead

of just one subset. Each of these subsets is assigned to a separate parallel thread.

e Each parallel thread performs the standard branching and bounding steps on its as-
signed subset, but stores the resulting subsets in a local queue, instead of inserting

them directly into Q.

o After all the parallel threads have completed their branching and bounding steps, the

resulting subsets are merged into Q.

This parallel strategy can be implemented using a parallelizable for-loop statement inside
the main loop without additional synchronization, or using long-lived threads with barrier
synchronization between iterations. This strategy will always visit exactly the same solu-

tions in its search and will always return the same optimal solution, regardless of whether

execution is parallel or sequential.

The synchronous parallel branch-and-bound strategy suffers from a number of short-

comings with regard to efliciency:

1. Poor load balancing can result from the synchronization of the parallel threads. This

problem is more severe if the branching and bounding time is highly variable.

2. The sequential component of each iteration limits the achievable speedup. This prob-

lem is more severe for larger numbers of processors.

3. Inefficient search ordering and unnecessary searching can result from the inability of
one parallel thread to asynchronously communicate updated search bounds to other

parallel threads. This problem is more severe for larger numbers of parallel threads.
Published experimental results [78][89] indicate that completely synchronous parallel branch-
and-bound algorithms deliver limited speedups.
8.4.4 Asynchronous Parallel Branch-and-Bound Using Locks

An asynchronous and nondeterministic parallel branch-and-bound strategy can be expressed

in a less-restrictive parallel programming model that provides locks for synchronization.

132

Again, the parallel strategy is a straightforward adaptation of the sequential strategy, as

follows:
e Long-lived parallel threads are created during the initialization phase of the algorithm.

o Each thread repeatedly removes the subset from the head of Q, performs the standard
branching and bounding steps, then inserts the resulting subsets directly into Q. There

is no synchronization of the parallel threads between iterations.
e Mutual exclusion of operations on Q is obtained through the use of locks.

Since the order of the operations on the shared queue is affected by the timing of the
parallel threads, this algorithm cannot be expressed using our parallel programming model.
Although the solution returned will always have the same optimal objective function value,
in different executions this strategy may visit different solutions in its search and may return

different optimal solutions.
The asynchronous parallel branch-and-bound strategy does not suffer from the short-

comings of the synchronous strategy with respect to efficiency:

1. Load balancing is improved, since parallel threads are not required to synchronize at

the end of each iteration.
2. There is no sequential component to limit speedup.

3. The efficiency of search ordering is improved, since each parallel thread is always able

to choose the currently best subset to search.

Many modifications to this strategy are possible to reduce the performance hot spot of the
shared queue and to asynchronously communicate updated bounds between parallel threads
without creating a communication bottleneck. A comprehensive discussion of the alterna-
tives is given by McKeown et al. [89]. Published experimental results [78][85][89][99][137]
indicate that asynchronous parallel branch-and-bound algorithms can deliver good speedups

for a wide range of problems and multiprocessor architectures.

8.5 Integration of Our Model with Less-Restrictive Models

There are two reasons that we might want to integrate our parallel programming model

with some other model that provides less-restrictive synchronization constructs:

133

1. To write programs to solve explicitly concurrent problems that do not have sequential

solutions, e.g., real-time monitoring and control problems.

2. To express parallel algorithms in which the actions of the computation are affected
by the timing of the parallel threads, e.g., asynchronous parallel branch-and-bound

algorithms.

In both cases, we may want to write part of the program using a less-restrictive model in
which parallel execution is not equivalent to sequential execution, and part of the program
using our parallel programming model.

It is relatively straightforward to define a framework that allows a parallel program writ-
ten using our model to be embedded in a parallel program written using another model.
Provided there are no communication and synchronization operations between the embed-
ded program and the enclosing program, the embedded program is equivalent to a sequential
program. Similarly, a parallel program written using another model can be embedded in a
parallel program written using our model, provided there are no communication and syn-
chronization operations between the embedded program and the enclosing program. As an
example, we outline the integration of our parallel programming model with the standard

Ada tasking model.

8.5.1 The Ada Tasking Model

The Ada tasking model [3, section 9] is a shared-memory parallel programming model with
a powerful set of structured constructs for task creation and termination, communication

and synchronization between tasks, and control of task timing and scheduling.

Task Declaration, Creation, and Termination

A task is a parallel thread of control that is created by either: (i) declaration of an object
of a task type, or (ii) dynamic allocation of an object of a task type. Task types may be
declared at any level of nesting and may include local declarations, in the same manner
as subprogram and package declarations. A task type declaration may include arguments
to be specified when task objects of that type are created. Task objects may be passed
as arguments to subprogram calls but may not be assigned to other task objects. A task
terminates when it completes execution or when it is explicitly aborted. Termination of a
block implicitly suspends until all task objects declared in the block have terminated and
all dynamically-allocated task objects designated by access types declared in the block have

terminated.

134

Program 8.3 presents an example of parallel matrix multiplication using tasking, with

every row of the Result matrix computed by a separate dynamically-allocated task.

type Matrix is array (0 .. N — 1,0 .. N — 1) of Float;
procedure Multiply (A, B : in Matrix; Result : out Matrix) is

task type Row (I : Integer);
task body Row is

Sum : Float;
begin
for Jin0.. N - 1loop
Sum := 0.0;

for Kin0. N - 1loop
Sum := Sum + A(I, K)*B(K, J);
end loop;
Result(I, J) := Sum;
end loop;
end Row;

type Row_Access is access Row;
Compute.Row : Row_Access;

begin
forIin0.. N — 1 loop
Compute Row := new Row (I);
end loop;
end Multiply;

Program 8.3: Parallel matrix multiplication using tasking.

Communication and Synchronization

Tasks communicate and synchronize using the following mechanisms:

e Tasks implicitly synchronize with their parent task and other tasks created in the

same block during activation and termination.

e Protected objects are shared data objects (similar to a limited form of monitor) that

provide mutual exclusion and suspension on entry conditions.

e Rendezvous provides synchronized communication when one task executes an entry

call on a declared entry of another task and the other task executes an accept on the

entry.

135

e Access to shared variables is permitted, subject to synchronization restrictions that

are equivalent to the restrictions on shared mutable variables in our model.

Select statements provide a means of waiting for any of a number of specified alternative
communication and synchronization events, which may include one or more conditional
accept statements, termination if all dependent tasks have completed, or a timed delay.
Task priorities may be specified to control scheduling.

Program 8.4 presents an example of a producer task and a consumer task communicating
via a rendezvous operation. Program 8.5 presents an example of a group of producer tasks

and consumer tasks communicating via a bounded buffer implemented as a protected object.

8.5.2 Integration of Our Model with the Ada Tasking Model

The execution of a program that contains our pragmas and no tasking constructs according
to the parallel semantics is equivalent to the execution of the program according to the
standard semantics of Ada. We would like a set of restrictions on the allowable interactions
between our pragmas and tasking constructs that extends the equivalence result to programs

that contain tasking constructs. We outline a framework for integration in which:

e a parallel program written using our model can be embedded within a parallel program

written using tasking, and

e a parallel program written using tasking can be embedded within a parallel program

written using our model.

Arbitrary nesting of programs written in the two models is permitted. We outline a conser-
vative set of restrictions that ensure that: (i) threads created using our model synchronize
with each other using only single-assignment variables, (ii) tasks synchronize with each
other using only standard tasking synchronization constructs, and (iii) an embedded pro-
gram synchronizes with the program in which it is embedded only at initiation and termi-
nation. With these restrictions, an embedded parallel program is equivalent to a (possibly

nondeterministic) embedded sequential program.

Embedding Our Model Within Tasking

The following restrictions ensure that parallel execution of a parallelizable sequence of state-

ments or parallelizable for-loop statement embedded within tasking is equivalent to sequen-

tial execution:

136

type Element is ... ;

task Consumer is
entry Receive (E : in Element);
end Consumer;

task body Consumer is
Item : Element;
begin
loop
select
accept Receive (E : in Element) do
Item := E;
end Receive;
Consume(Item);
or
terminate;
end select;
end loop;
end Consumer;

task Producer;

task body Producer is

Item : Element;
Finished : Boolean;
begin

Finished := False;
while not Finished loop
Produce(Item, Finished);
Consumer.Receive(Item);
end loop;
end Producer;

Program 8.4: A producer task and a consumer task communicating via a rendezvous oper-

ation.

137

type Element is ... ;
type Elements is array (Integer range <>) of Element;

protected type Bounded Buffer (Length : Integer) is
entry Put (Item : in Element);
entry Get (Item : out Element);
private
Data : Elements (1 .. Length);
Head : Integer := 1;
Tail : Integer := 1;
Count : Integer := 0;
end Bounded Buffer;

protected body Bounded Buffer is
entry Put (Item : in Element) when Count < Length is
begin
Data(Tail) := Item;
Tail := Tail mod Length + 1;
Count := Count + 1;
end Put;
entry Get (Item : out Element) when Count > 0 is
begin
Item := Data(Head);
Head := Head mod Length + 1;
Count := Count — 1;
end Get;
end Bounded _Buffer;

Buffer : Bounded. Buffer (Buffer Length);

task type Producer is
begin

... Buffer.Put(Item); ...
end Producer;

task type Consumer is
begin

... Buffer.Get(Item); ...
end Consumer;

Producers : array (1 .. Num_Producers) of Producer;

Consumers : array (1 .. Num_Consumers) of Consumer;

Program 8.5: A group of producer tasks and consumer tasks communicating via a bounded
buffer implemented as a protected object.

138

o It is illegal for a parallelizable sequence of statements/for-loop statement to contain

an accept statement or select statement for the enclosing task declaration.

e It is erroneous for a parallelizable sequence of statements/for-loop statement to per-

form an entry call on a task created at an outer dynamic level.

e It is erroneous for more than one statement/iteration of a parallelizable sequence of

statements/for-loop statement to perform an operation on the same protected object.

An example of the usefulness of embedding our model within tasking is as follows: In an
asynchronous parallel branch-and-bound algorithm, if the branching and bounding opera-
tions can themselves be parallelized, we might write the parallel branch-and-bound frame-
work using tasking and write the parallelized branch and parallelized bound operations

using our parallel programming model.

Embedding Tasking Within Our Model

The following restriction ensures that parallel execution of a parallelizable sequence of state-

ments or parallelizable for-loop statement with embedded tasking is equivalent to sequential

execution:

e It is erroneous for a task to perform any operation on a single-assignment variable

created at an outer dynamic level.

An example of the usefulness of embedding tasking within our model is as follows: In a
highly parallel LU factorization algorithm, the inner loop to compute the inner product of a
row and column of LU could be parallelized as well as the outer loops. We might parallelize
the outer loops using our parallel programming model and write an inner product routine
using tasking, so that the partial sums of the inner product can be summed in the order in

which they become available instead of in a predetermined order.

139

Chapter 9

Distributed Memory

In this chapter, we discuss the issues involved in the implementation, programming, and
performance of our parallel programming model on distributed-memory computer systems.
The shared-memory model on which our parallel programming model is based can be im-
plemented transparently in hardware or software on top of a distributed-memory system.
However, the structure of the underlying memory system has a significant impact on pro-

gram performance and must be considered in the design of efficient parallel algorithms.

9.1 Overview

Our parallel programming model is defined in the context of a shared-memory model in
which a single address space is shared by all parallel threads. This shared-memory model
is supported directly by symmetric multiprocessors such as the 36-processor SGI Challenge
that we use for our performance experiments. A straightforward approach to implementing
a shared-memory programming model on top of a distributed-memory system is to im-
plement all remote memory references as communication operations. With this approach,
explicit copying of remote data into local memory is often required for efficiency. A more so-
phisticated approach is to implement, either in hardware or software, a general “distributed
shared-memory” system in which copying of data between remote and local memory is
automatic and maintains memory coherence.

With distributed-memory computer systems, two important programming and perfor-

mance issues arise that are not concerns with shared-memory computer systems:
1. Data distribution: the distribution of data across the distributed memory space.

2. Process mapping: the mapping of parallel processes or threads to processors.

140

These issues are an integral part of the design of an efficient algorithm for a distributed-
memory computer system, as described by Van de Velde {132, Chapter 12]. In addition,
even with a distributed shared-memory system, parallel performance is often improved by
explicit copying of remote data into local memory. Development of an efficient program for
any kind of computer system (uniprocessor or multiprocessor) requires careful consideration

of all aspects of the interaction of the program with the memory hierarchy.

9.2 Shared Memory

Before we consider distributed-memory computer systems, we briefly outline programming
and performance issues for shared-memory computer systems with uniform memory ac-
cess, as typified by symmetric multiprocessors. A symmetric multiprocessor consists of a
group of processors that share uniform access to the memory system via an interconnection
network. The processors normally have one or more levels of caching, and the memory
may be interleaved in several banks to reduce memory latency and memory contention. A
symmetric multiprocessor system with four processors and two memory banks is shown in

Figure 9.1. The most common interconnection network consists of one or more buses to

Processor Processor Processor Processor
Cache Cache Cache Cache
I l I I
[Interconnection Network }
l I
Memory Memory
Bank Bank

Figure 9.1: A symmetric multiprocessor system.

which all processors and memory banks are connected. Examples of symmetric multipro-
cessor systems include the Sequent Symmetry, the SGI Challenge and Power Challenge, and

the Sun SparcServer 1000 and SparcCenter 2000.
Data distribution is no more complex than for a uniprocessor, because all memory

141

locations are uniformly accessible by all processors using ordinary read and write opera-
tions. Memory coherence is maintained automatically by the memory management and
interconnection network hardware. Process mapping is not an issue, because threads are
dynamically scheduled and mapped onto processors by the operating system from a sin-
gle ready-queue. Threads can migrate transparently across processors each time they are
rescheduled. The operating system may provide options to bind a thread to a subset of the
processors, €.g., to ensure a certain responsiveness or fairness, but this provision is normally
required only for real-time programs.

The behavior of the caching system is extremely important to the performance of par-
allel programs executed on a symmetric multiprocessor. Without effective caching, parallel
speedups are severely limited by memory contention. Therefore, development of an eflicient
parallel program for a symmetric multiprocessor requires consideration of the interaction
between the pattern of memory accesses and the operation of the caching system. Con-
sideration of cache behavior is also important in the development of efficient programs for
uniprocessor computer systems.

The major problem with symmetric multiprocessors is limited scalability. Although
caching and memory interleaving can overcome this problem for a moderate number of
processors, memory contention eventually becomes a performance bottleneck for a large
number of processors. Our own experiments and those of others [47] indicate that bus-
based symmetric multiprocessors can scale to at least many tens of processors with current

technology, but scalability to many hundreds or thousands of processors is unlikely.

9.3 Distributed Memory

A distributed-memory computer system consists of a group of processing nodes, each with
its own local memory, that can exchange messages via an interconnection network. Each
processing node may consist of one or more processors. A distributed-memory computer
system with four single-processor nodes is shown in Figure 9.1. Possible interconnection
networks include crossbar switches, omega networks, hypercubes, and meshes. Examples
of distributed-memory computer systems include the Caltech Cosmic Cube, the IBM SP-1
and SP-2, the Intel Delta and Paragon, the SGI Power Challenge Array, and networks
of workstations. An excellent review and comparison of shared-memory and distributed-
memory computer systems is given by Lenoski and Weber [81, chapter 1].

A significant difference between a distributed-memory computer system and a shared-

memory computer system is that a processing node in a distributed-memory computer

142

Memory Memory Memory Memory
1 I | 1
Cache Cache Cache Cache
Processor Processor Processor Processor
(Interconnection Network }

Figure 9.2: A distributed-memory computer system.

system cannot directly access the entire memory space. Each node can directly access its
own local memory using ordinary read and write operations and can exchange messages
with other nodes, but it cannot directly access the local memories of other nodes. No
hardware support is provided for maintaining coherent copies of data across the caches and
local memories of multiple nodes.

Data distribution and process mapping are an integral part of the design of efficient
algorithms for distributed-memory computer systems. Methods for data distribution in-
clude: (i) distribution specifications separate from the program, e.g., Ada 95 [3, Annex EJ,
(ii) annotations to data declarations, e.g., HPF [40][74], and (iii) dynamic memory alloca-
tion on different nodes, e.g., PCN [24][42], CC++ [22], Fortran M [45], PVM [119], and
MPI [34][115]. Methods for process mapping include: (i) mapping specifications separate
from the program, e.g., Ada 95, (ii) annotations and arguments to process creation, e.g.,
PCN, CC++, PVM and MPI, and (iii) dynamic process migration, e.g., the Concurrent
Graph Library [122]. In some systems, data distribution and process mapping can be spec-
ified in terms of virtual topologies [41][44][121] that are separately mapped onto actual
machine configurations.

A straightforward approach to implementing our parallel programming model on top of
a distributed-memory system is to treat the memories as a single address space and imple-
ment all remote memory references as message exchanges between processors. Restricting
the allowable remote operations, as in CC++ and Ada 95, may simplify implementation
and improve efficiency. Since remote memory references will be expensive relative to local

memory references, explicit transfer of data between remote and local memories is likely to

143

be required for efficiency in a program. This may add a significant degree of complexity to
the program, relative to programming a shared-memory computer system. Essentially, the
programmer is required to explicitly cache remote data items in local memory and maintain

memory coherence, as in explicit message-passing programming,.

9.4 Distributed Shared Memory

A more sophisticated approach to supporting a shared-memory programming model on a
distributed-memory computer system is to implement a distributed shared-memory sys-
tem, i.e., a virtual shared memory with automatic caching of remote data and maintenance
of memory coherence. Distributed shared memory is implemented in hardware by ma-
chines such as the Stanford DASH and FLASH and the Kendall Square Research KSR-1
and KSR-2. Distributed shared memory is implemented in software by packages such as
Ivy [82] and Treadmarks [7] that are designed to run on top of networks of workstations
and other distributed-memory computer systems. Most distributed shared-memory systems
implement a model with both non-shared local memory and shared global memory.

Distributed shared memory can be implemented in hardware through scalable cache co-
herence protocols that use distributed cache directories. For increased performance, these
protocols generally support weak memory consistency models such as the release consistency
model [48] instead of the stronger sequential memory consistency model [76] supported by
most bus-based shared-memory multiprocessors. Release consistency is equivalent to se-
quential consistency for programs that do not violate certain restrictions on access to shared
variables between synchronization points. These restrictions are part of most parallel pro-
gramming models, including our model. A review of approaches to the implementation of
distributed shared memory in hardware (and of the design of the Stanford DASH architec-
ture) is given by Lenoski and Weber [81].

Distributed shared memory can be implemented in software through adaptation of pag-
ing mechanisms to automatically trap accesses to nonresident remote memory pages and
copy those pages to local memory. Coherence of replicated memory pages is maintained
using protocols similar to those used to maintain cache coherence in hardware. However,
the cost of cache misses and false sharing is greater, because memory pages are generally
much larger than cache lines. A review of page-based algorithms for the implementation
of distributed shared memory in software is given by Stumm and Zhou [118]. A differ-
ent approach, based on caching at the level of data objects rather than pages and using

single-assignment values for synchronization, is used in the SAM system [104].

144

Our parallel programming model could be implemented on top of any system that imple-
ments distributed shared memory in hardware or software. Such an implementation would
inherit the strengths and weaknesses of the underlying distributed shared-memory system.
There is no clear consensus regarding the limits of this developing technology. Programming
on top of a distributed shared-memory system versus directly programming a distributed-
memory system is a trade-off between convenience and control, similar to the trade-offs
involved in other aspects of the memory hierarchy. The programmer needs to be aware of
the difference in cost between local and remote memory access, and design algorithms with
memory access patterns that minimize data transfer between nodes. Explicit copying of

data into local memory may still be important in many algorithms.

145

Chapter 10

Comparison with Related Work

In this chapter, we compare our parallel programming model with related work that is also
motivated by the goal of reducing the difficulty of reasoning about explicit parallelism. In
particular, we contrast our model with other parallel programming models without multi-
ple threads of control: automatic parallelizing compilers, run-time parallelization systems,
parallel declarative programming, and data-parallel programming. We identify the oppor-
tunities for integration of constructs and implementation techniques from these models with
our parallel programming model. A comparison of our model with other parallel program-

ming models that incorporate similar constructs is given in Chapter 2.

10.1 Overview

The motivation for the design of our parallel programming model is that explicit parallel
programs are more difficult to develop than sequential programs due to the complexity of
reasoning, testing, and debugging in the context of multiple concurrent threads of control.
Our parallel programming model provides a small set of pragmas that indicate how a stan-
dard sequential program can be executed as a parallel program. The key to our model is
that the pragmas provide direct control of parallelism, yet reasoning, testing, and debugging
can be performed in the context of a single sequential thread of control.

We contrast our parallel programming model with three other models that also reduce
the difficulty of parallel programming by removing the complexity of multiple concurrent

threads of control:
1. Automatic parallelizing compilers.

2. Run-time parallelization systems.

146

3. Parallel declarative programming,.
4. Data-parallel programming.

The major difference between our parallel programming model and these other models is
that our model provides explicit control of parallelism and of a sophisticated synchroniza-
tion mechanism. The intended scope of our parallel programming model is more than
traditional high-performance scientific computing. In many aspects, the strengths of these
other models are complementary with the strengths of our model and we identify opportu-
nities for integration of constructs and implementation techniques from these models with

our parallel programming model.

10.2 Automatic Parallelizing Compilers

A completely automatic parallelizing compiler [12]{16][31][32][53][95] transforms a source
program written in a sequential language (e.g., Fortran or C) into an equivalent parallel
object program for a given target architecture, based on conservative data-dependence and
data-flow analysis. The most important transformations are those that allow sequential
loops to be converted into parallel loops. The advantages of this approach to parallel

programming are obvious:
1. The programmer can write ordinary sequential programs using a familiar notation.
2. Existing sequential programs can be parallelized without additional effort.

The disadvantage is that parallel performance is reliant on the compiler’s success at recog-
nizing opportunities for efficient parallel execution in the sequential source program. There

are two main reasons why the compiler might be unable to generate an efficient parallel

object program:

1. The sequential source program may be efficiently parallelizable using the transforma-
tions available to the compiler, but there may be insufficient information in the text

of the program for the compiler to recognize the legality of the transformations.

2. The sequential source program may not be efficiently parallelizable using the trans-
formations available to the compiler. An efficient parallel algorithm may require
fundamental changes to the data structures and algorithms of the efficient sequential

algorithm that are beyond the scope of the compiler.

147

Most current automatic parallelization techniques detect loop-level parallelism in programs
that operate on matrices and produce parallel object code that uses barrier synchronization.
A large class of important scientific applications can be efficiently parallelized using this
approach. However, the applicability of automatic parallelization has not been convinc-
ingly demonstrated for problems that require complicated or dynamically-allocated data
structures or that require more complex patterns of parallelism and synchronization.

Some automatic parallelization systems allow the source program to be annotated with
extra assertions that can be incorporated in the compiler’s data-dependence analysis. For
example, annotations might be used to assert that the iterations of a loop do not interfere
with each other, that two variables are not aliases of each other, or that a section of code
accesses only a certain set of variables. However, as the need for annotations increases, the
programmer is required to understand more about the transformations performed by the
particular compiler and the advantage of automatic parallelization decreases.

There are two important differences between our pragmas and most compilation systems
with annotations: (i) there is an explicit parallel semantics associated with our pragmas, and
(ii) the single-assignment pragma provides explicit control over run-time synchronization.
Our parallel programming model provides direct control of parallelism and of a sophisti-
cated synchronization mechanism, instead of relying on the transformations available to the
compiler. For this reason, our parallel programming model is applicable to a wider range of
problems than those for which automatic parallelization is typically successful. A disadvan-
tage of our parallel programming model is that the pragmas can be misused, resulting in
erroneous parallel sharing of data, whereas analysis in completely automatic parallelization
is conservative and hence safe.

Most of the techniques developed for automatic parallelizing compilers are also appli-
cable to compiling explicitly parallel notations and can be applied to compilation of our
parallel programming model. For example, loop restructuring transformations often could
be used to reduce the cost of thread creation associated with our parallelizable for-loop
statement. A thorough discussion of techniques for generating efficient parallel code from
both sequential and parallel notations is given by Wolfe [136]. In addition, our pragmas

could be used as program annotations to aid compile-time analysis by an automatic paral-

lelizing compiler.

148

10.3 Runtime Parallelization Systems

An automatic parallelizing compiler analyzes a sequential source program (possibly with
annotations) prior to execution and generates an equivalent parallel object program. An al-
ternative approach is to perform at least part of analysis at run-time when more information
is available [103].

Jade [101] is an example of a run-time parallelization system based on program annota-
tions. A Jade program is a standard sequential program with annotations that specify the
decomposition of the program into tasks and the data objects accessed by the tasks. At run
time, the annotations are evaluated to determine a scheduling of the tasks that is equiva-
lent to sequential execution. The annotations could also be used for compile-time analysis.
The validity of the data access annotations can be checked at run time. The basic Jade
model consists of identifying independent tasks that can be executed in parallel without
synchronization. Jade also includes more sophisticated annotations based on continuations
that allow parallel tasks to synchronize their actions.

The motivation behind the Jade system is very similar to that of our parallel program-
ming model. Reasoning, testing, and debugging of a Jade program can be performed in
the context of the standard sequential semantics of the underlying programming notation.
However, as with our model, it is the responsibility of the programmer to structure and
annotate the program to ensure efficient parallel performance.

The major differences between our parallel programming model and Jade are: (i) par-
allelism is specified directly in our model, whereas data access patterns are specified in
Jade and parallelism is extracted by the run time system, and (ii) synchronization between
tasks is based on single-assignment variables in our model and on continuations in Jade.
Jade has a higher execution overhead than our model because of the cost of evaluating
the annotations and determining the scheduling of tasks at run time. However, the cost of
checking Jade annotations at run time is less than the cost of checking the restrictions on

our pragmas because the Jade annotations directly relate to data accesses.

10.4 Parallel Declarative Programming

A declarative program expresses an algorithm as an expression mapping inputs onto out-
puts, rather than as a sequence of operations that modify the state of variables. Since there
is no concept of program state or flow of control, the subexpressions of a declarative pro-

gram can be evaluated in any order or in parallel. Declarative languages include functional,

149

logic programming, and dataflow languages. In functional languages [10][35][64][66][91] the
mapping between inputs and outputs is expressed using functions. In logic programming
languages [30][75] the mapping between inputs and outputs is expressed using relations.
Dataflow languages [2][134] are declarative (usually functional) languages designed for exe-
cution using the dataflow operational model.

Parallel declarative languages are designed to express declarative programs that are
intended to be executed as paralle]l programs. Examples include the family of parallel
functional languages based on Lisp [50][54][68], the family of concurrent logic programming
languages based on Prolog [28][110][113], and dataflow languages such as Id [94], Val [88],
and Sisal [38]. A review of parallel declarative languages is given by Almasi and Gottlieb [5,
Section 5.3] and a collection of papers describing individual parallel functional and dataflow
languages was edited by Szymanski [120].

A compiler for a parallel declarative language transforms a declarative source program
into an equivalent parallel object program for a given target architecture. The advantages

of this approach to parallel programming are:
1. Declarative programming languages express algorithms at a high level of abstraction.

2. The compiler is responsible for recognizing the parallelism that is implicit in the high-

level description of the algorithm.

3. The results of parallel functional programs are deterministic, regardless of process

mapping and scheduling.
The disadvantages of this approach to parallel programming are:

1. Declarative programming languages have not achieved the popularity of imperative

languages in most programming communities.

2. Parallel performance is reliant on the compiler’s success at recognizing opportunities

for efficient parallel execution.

Proponents of declarative programming [10][67][131] claim that the high level of abstraction
decreases program development time and increases reliability and portability. However,
declarative languages are not as widely used as traditional imperative languages such as
Fortran and C. Whatever the reason for this, the lack of popularity of declarative languages

in the sequential domain is a significant hurdle to the acceptance of parallel declarative

programming.

150

At least part of the reason that declarative languages are less popular than impera-
tive languages is the difficulty of compiling declarative programs into efficient code. When
compiling to sequential code, sophisticated data-dependence analysis and transformations
are required to prevent excessive memory allocation and data copying. Although some
aspects of data-dependence analysis are easier because of the high level of algorithm de-
scription [17][19][70], automatic parallelization of a declarative program involves many of
the same problems as automatic parallelization of a sequential program. Hudak’s para-
functional programming approach [63][65] allows a parallel functional program to be anno-
tated to explicitly control granularity and process mapping.

The use of single-assignment variables for synchronization in our parallel programming
model is derived from ideas that appear in parallel dataflow and logic programming lan-
guages. Many of the programming and compilation techniques developed in the context of
parallel declarative languages are applicable to our parallel programming model. The ma-
jor difference between our model and declarative models is that our parallel programming
model provides direct control of which variables are single-assignment and which are muta-
ble and of which statements are executed in parallel and which are executed sequentially.
With a declarative language, this is the responsibility of the compiler. In addition, our
parallel programming model is integrated with a conventional sequential language, which

makes it readily accessible to a larger body of programmers.

10.5 Data-Parallel Programming

A data-parallel program consists of a single thread of control in which each operation can
be executed simultaneously on all the elements of a large data set. Data-parallel program-
ming was originally described [58] in the context of programming SIMD (Single Instruction
stream, Multiple Data stream) computers such as the Connection Machine [57]. Subsequent
work [55][56][100] describes techniques for the implementation of data-parallel programs
on MIMD (Multiple Instruction stream, Multiple Data stream) computers. Examples of
data-parallel languages include C* [102], Dataparallel C [55], pC++ [80], CM Fortran,
Fortran 90 [90], HPF (High Performance Fortran) [40][74], and NESL [14][15].

Parallel operations on the elements of data sets are specified using synchronous parallel
loops such as the FORALL loop of HPF and other Fortran dialects, and using parallel op-
erators on composite data structures such as the Fortran 90 array intrinsic functions. In
some data-parallel languages, e.g., Fortran 90 and HPF, parallel operations are provided

only for regular data structures such as dense arrays. In other data-parallel languages,

151

e.g., pC++, parallel operations can also be performed on irregular and user-defined data
structures. Some data-parallel languages, notably HPF, provide directives that specify the
data distribution and process mapping.

The advantage of data-parallel programming is direct control of parallelism in a simple
single-threaded programming model. Since there is a single thread of control, there are no
synchronization operations and therefore no possibility of race conditions or deadlock. The
major disadvantage of data-parallel programming is the limited range of algorithms that
can be expressed. Although, efficient data-parallel algorithms have been demonstrated for
wide range of applications [69], many efficient parallel algorithms involve multiple threads
of control executing different instruction streams. Some multithreaded algorithms can be
expressed by extending the data-parallel programming model to allow nested data-parallel
constructs, as in NESL. A more general approach is to integrate data-parallel programming
with task-parallel programming, as in several proposed extensions to HPF [25](41][52].

When used without single-assignment types, our parallel programming model is very
similar to the nested data-parallel model. The difference is that our model allows syn-
chronization between multiple threads of control and can therefore express algorithms that
cannot be expressed using the nested data-parallel model. Many features of data-parallel
languages, such as annotations for data distribution and parallel operations on composite
data structures could be added to our parallel programming model. Techniques that have

been developed for compiling data-parallel loops could be applied to some instances of our

parallelizable for-loop statement.

152

Chapter 11

Conclusions

11.1 Summary

The problem that we have addressed in this thesis is the difficulty of developing parallel
programs as compared to equivalent sequential programs due to the complexity of reason-
ing, testing, and debugging in the context of multiple concurrent threads of control. We
have presented and investigated a parallel programming model that consists of a standard

sequential notation extended with three pragmas:

1. The parallelizable sequence of statements pragma is used to indicate that a sequence

of statements can be executed in parallel.

2. The parallelizable for-loop statement pragma is used to indicate that the iterations of

a for-loop statement can be executed in parallel.

3. The single-assignment type pragma is used to indicate that the variables of a given
type are assigned at most once and that assignment and evaluation operations on

those variables can be used as synchronization operations between parallel threads.

We have proved that if the placement of the pragmas satisfies a small set of restrictions,
execution of a program according to the parallel semantics is equivalent to execution of
the program according to the standard sequential semantics. Our model allows parallel
programs to be developed using reasoning, testing, and debugging in the context of a single
thread of control, yet it provides direct specification of parallel execution and synchroniza-
tion.

We have performed a series of programming experiments designed to investigate the

expressiveness and efficiency of our parallel programming model and to assess the merits of

153

our parallel program development methodology. These experiments involved combinatorial
and numerical problems, and used arrays and dynamically-allocated data structures. We
have presented performance measurements for the execution of these experimental parallel
programs on up to 32 processors of a shared-memory symmetric multiprocessor system.
Parallel speedups were presented relative to the execution of efficient sequential programs
on a single processor.

We have identified limitations on the expressiveness of our parallel programming model.
In particular, our model cannot express parallel algorithms in which the actions of the
computation are nondeterministically affected by the timing of the execution of the parallel
threads. We have discussed issues involved in the implementation of our parallel program-
ming model on distributed memory computer systems and we have identified opportunities
for the integration of our model with related work that provides complementary strengths

and additional functionality.

11.2 Findings

11.2.1 Expressiveness

In each of our programming experiments, we found that the most efficient parallel algorithm
we know could be elegantly expressed using our programming model. Although the parallel
programs involve sophisticated control and synchronization patterns, they are not much
more complicated than efficient sequential programs, and are less complicated than efficient
parallel programs expressed using less-structured parallel programming models, e.g., thread
libraries providing barrier and lock synchronization.

We found that the forms of the parallelizable for-loop statement with pattern arguments
provide a concise means of expressing control of the level of granularity of a program, without
adding extra complexity to the algorithm. In our programming experiments, almost every
parallelizable for-loop statement required arguments for efficiency. This is because the
number of iterations of a for-loop statement usually does not represent the most efficient
level of granularity for parallelism in a program. All three patterns for assigning iterations
to parallel threads were found to be useful in different situations. In a model without
equivalent parallel and sequential semantics, a parallel for-loop statement could not be
parameterized in this manner without risk of deadlock.

We found that single-assignment types provide a high-level approach to expressing so-

phisticated synchronization patterns based on data-flow, with very little notational overhead

154

compared to equivalent sequential algorithms. Single-assignment types implicitly combine
mutual exclusion and broadcast synchronization through ordinary assignment and eval-
uation operations. Our programming experiments demonstrate that integrating single-
assignment types with the type system of the underlying language allows single-assignment
variables to be embedded in ordinary data structures to provide synchronization at an
efficient level of granularity.

We observe that the full generality of single-assignment types is not necessary except for
very fine-grained parallel programs. To control the level of granularity, single-assignment
variables usually need to be distinct components the data structures on which they syn-
chronize operations. This is because the number of components of a data-structure usually
does not represent the most efficient level of granularity for synchronization in a program.
In most cases, the same functionality can be obtained using single-assignment unary types
with set and check operations. We refer to this synchronization type as a “broadcast flag”.

Adding broadcast flags to a sequential notation as a predefined type is considerably more
simple than integrating single-assignment types with the entire type system. In addition,
algorithms described in terms of broadcast flags are more easily portable between differ-
ent notations than algorithms described in terms of single-assignment types, because the
semantics of single-assignment types may vary depending on the details of the underlying
type system.

The most significant limitation that we found on the expressiveness of our parallel
programming model is that our model cannot express algorithms in which the actions of the
computation are nondeterministically affected by the timing of the execution of the parallel
threads. Many efficient parallel search algorithms require this kind of timing-dependent

nondeterminacy and therefore cannot be expressed using our parallel programming model.

11.2.2 Efficiency

In each of our performance experiments, we found that our parallel programs executed as
fast as efficient sequential programs on a single processor and delivered good speedups on up
to 32 processors of a shared-memory symmetric multiprocessor system. These performance
measurements demonstrate that single-assignment types (or broadcast flags) can be an
efficient synchronization mechanism for coarse-grained to medium-grained parallel programs
on small-scale to moderate-scale multiprocessor systems.

We have not yet investigated the question of how efficiently single-assignment types (or

broadcast flags) can be implemented as low-level library or hardware primitives to support

155

very fine-grained parallel programming. It would be useful to determine whether single-
assignment types have any significant advantages or disadvantages in terms of efficiency
compared to other synchronization primitives, e.g., locks, when supported at this level.
We have not yet investigated the question of how efficiently access to remote single-
assignment variables (or broadcast flags) can be implemented on a distributed-memory
computer system. The straightforward approach is to implement every access to a remote
single-assignment variable as a series of communication operations. It would be useful to
design efficient algorithms for automatic local caching of remote single-assignment variables
that take advantage of the property that a cached and assigned single-assignment variable

will never be invalidated.

11.2.3 Development Methodology

From our programming experiments, we are convinced of the merits of our program devel-
opment methodology based on the equivalence of the parallel and sequential semantics. All
of our experimental programs were developed, tested, and debugged as sequential programs,
then later translated into parallel programs as directed by the pragmas, for parallel test-
ing and performance measurement. Minor errors were discovered and corrected during the
sequential phase of development, but no additional errors were discovered during parallel
testing and performance measurement. Because of the sophistication of the parallel control
and synchronization patterns, we believe that it would have been significantly more diffi-
cult to develop these programs using a less-structured parallel programming model, e.g., a
thread library providing barrier and lock synchronization.

The greatest potential for subtle errors in our parallel programming model results from
the restrictions on: (i) parallel access to shared variables, and (ii) access to variables fol-
lowing exceptional termination of a parallelizable construct. In general, these errors cannot
be caught either at compile time or at run time with reasonable cost. However, in our
programming experiments, we found that these errors were relatively easy to avoid. In
practice, subtle synchronization of operations on shared variables is usually localized. In
practice, exceptions are usually either handled in the block in which they are raised or else
they are left to propagate to the program level as run-time errors.

To help with the avoidance of errors, an area for further investigation is the extension of
assertional specification and reasoning systems to support our parallel programming model.
The public specification of a subprogram must somehow represent the operations on shared

private variables that occur in its implementation so that subprograms can be composed

156

on the basis of their specifications without violating the restrictions on our model. To help
with the detection of errors, an area for further investigation is the development of efficient
algorithms for run-time detection of erroneous execution situations during either sequential

or parallel execution.

11.2.4 Integration with Other Models

Although we are enthusiastic regarding its strengths, we do not believe that our model
provides the best solution to all parallel programming problems. Our model cannot express
parallel algorithms in which the actions of the computation are nondeterministically affected
by the timing of the execution of the parallel threads. For this reason, we recommend that
any practical implementation of our parallel programming model should be integrated with a
framework that also provides less-structured thread creation and synchronization constructs.
We have outlined one approach to the integration of our model with less-structured models.

In addition, there are other important aspects of a complete parallel programming sys-
tem to which we have not contributed in this research, where our model could be integrated
with methods and constructs developed in other contexts. Data dependence analysis and
code restructuring techniques developed in the context of parallel declarative languages and
automatic parallelizing compilers could be applied to the efficient compilation of our model.
Methods for implementing shared-memory models on top of distributed-memory computer
systems could be used to provide distributed-memory implementations of our model. Data
distribution annotations, automatic process mapping techniques, and language constructs

from data-parallel programming could be added to our model.

157

Appendix A

Transformation of Pragmas to

Ada 95 Tasking Constructs

In this appendix, we present the transformations from our pragmas to standard Ada 95
tasking constructs that we use to implement the parallel semantics of our programming
model for our parallel programming performance experiments. For each of the pragmas,

we give the transformations both with parallel runtime checks and with parallel runtime

checks suppressed.

158

A.1 Parallelizable Sequence of Statements

A parallelizable sequence of statements:

pragma Parallelizable_Sequence;
statement;

statement,,
is transformed into a block statement containing a sequence of task declarations, with one

task declaration for each statement.

A.1.1 Transformation with Parallel Exception Checking Suppressed

A parallelizable sequence of statements, with parallel exception checking suppressed, is

transformed into the following:

declare
task T.1; task body T_1 is
begin
statement;
end T_1;

task T_N; task body T N is
begin
statement,
end T_N;
begin
null;
end;

159

A.1.2 Transformation without Parallel Exception Checking Suppressed

A parallelizable sequence of statements, without parallel exception checking suppressed, is

transformed into the following:
use Ada.Exceptions;

declare
Join : Thread_Join (n);

task T_1; task body T_1 is
begin

statement;

Join. Thread_Complete(Error => Null Id);
exception

when E : others =>

Join.Thread _Complete(Error => Exception_Identity(E));

end T_1;

task T_N; task body TN is
begin

statement,,

Join.Thread .Complete(Error => Null_Id);
exception

when E : others =>

Join.Thread _Complete(Error => Exception_Identity(E));

end T_N;

Error : Exception_Id;
begin
Join.All_Complete(Error);
if Error /= Null.Id then
abort T_1;

abort T_N;
Raise_Exception(Error);
end if;
end;

160

A.2 Parallelizable For-Loop Statement

A parallelizable for-loop statement without arguments:

pragma Parallelizable Loop;

for I in [reverse] loop.range loop
loop_body

end loop;

is transformed into a block statement containing an array of tasks, with one task for each

iteration.

A.2.1 Transformation with Parallel Exception Checking Suppressed

A parallelizable sequence of statements, with parallel exception checking suppressed, is

transformed into the following:

declare
task type Iteration (I : Loop_Range);
task body Iteration is
begin
loop_body
end Iteration;

type Iteration_Access is access Iteration;

Iterations : array (Loop_Range) of Iteration_Access;
begin
for I in loop.range loop
Iterations(I) := new Iteration (I);
end loop;
end;

161

A.2.2 Transformation without Parallel Exception Checking Suppressed

A parallelizable sequence of statements, with parallel exception checking suppressed, is

transformed into the following:

declare
Num_Iterations : constant Integer :=
Integer’Max(0, Loop_Range’Pos(Loop_Range’Last) —
Loop-Range’Pos(Loop Range’First) + 1);

Join : Thread_Join (Num_Iterations);

task type Iteration (I : Loop_Range);
task body Iteration is
begin

loop_body

Join.Thread Complete(Error => Null_Id);
exception

when E : others =>

Join.Thread.Complete(Error => Exception_Identity(E));

end Iteration;

type Iteration_Access is access Iteration;

Iterations : array (Loop-Range) of Iteration_Access;
Error : Exception_Id;
begin
for I in loop_range loop
Iterations(I) := new Iteration (I);
end loop;
Join.All_Complete(Error);
if Error /= Null.Id then
for I in Loop_Range loop
abort Iterations(I).all;
end loop;
Raise_Exception(Error);
end if;
end;

162

A.3 A Protected Type for Joining Parallel Threads

use Ada.Exceptions;

protected Thread_Join (Num_Threads : Integer) is
procedure Thread Complete (Error : in Exception Id);
entry All_Complete (Error : out Exception Id);
private
Completed : Boolean := Num.Threads <= 0;
Num_Complete : Integer := 0;
Propagated Error : Exception Id := Null_Id;
end Thread_Join;

protected body Thread_Join is
procedure Thread_Complete (Error : in Exception_Id) is
begin
if Error /= Null Id then
Completed := True;
Propagated Error := Error;
end if;
Num_Complete := Num_Complete + 1;
if Num_Complete = N then
Completed := True;
end if;
end Thread_Complete;
entry All_Complete (Error : out Exception_Id) when Completed is
begin
Error := Propagated Error;
end All_Complete;
end Thread_Join;

163

A.4 Single-Assignment Types

A.4.1 Transformation of a Type Declaration

A single-assignment type declaration:

type S is type_definition;
pragma Single_Assignment(S);

is transformed into a record type consisting of the mutable type and an associated protected
type that synchronizes assignment and evaluation operations.

package S is
type Value is type_definition;
type Variable is liited private;
procedure Assign (To : in out Variable; From : in Value);
procedure Unchecked_Assign (To : in out Variable; From : in Value);
function Read (From : Variable) return Value;
private
type Variable is
record
Contents : Value;
Guard : Single_Assignment_Guard,;
end record;
end S;

package body S is
procedure Assign (To : in out Variable; From : in Value) is
Previously_Set : Boolean;
begin
To.Guard.Test_And. Lock(Previously Set);
if Previously.Set then
raise Constraint_Error;
else
To.Contents := From;
To.Guard.Set_And_Unlock;
end if;
end Assign;

procedure Unchecked_Assign (To : in out Variable; From : in Value) is
begin

To.Contents := From;

To.Guard.Set;
end Unchecked_Assign;

function Read (From : Variable) return Value is
begin
From.Guard.Wait.Until_Set;
return From.Contents;
end Read;
end S;

164

A.4.2 Transformation of Operations on Variables

Assignment and evaluation operations on single-assignment variables:

X:=Y;

(where X and Y are variables of a single-assignment type S) are transformed to calls to the

Assign and Read subprograms of the transformed single-assignment type declaration.

If single-assignment checks are suppressed, the transformation is into the following:

S.Unchecked_Assign(To => X, From => S.Read(Y));

If single-assignment checks are suppressed, the transformation is into the following:

S.Assign(To => X, From => S.Read(Y));

A.4.3 A Protected Type for Synchronizing Operations

protected type Single_Assignment._Guard is
entry Test_And_Lock (Set : out Boolean);
procedure Set;
procedure Set_And.Unlock;
entry Wait_Until_Set;

private
Is_Locked : Boolean := False;
Is_Set : Boolean := False;

end Single_Assignment_Guard;

protected body Single_Assignment_Guard is
entry Test_And _Lock (Set : out Boolean) when not Is_Locked is
begin
Set := Is_Set;
Is_Locked := not Is_Set;
end Test_And_Lock;
procedure Set is

begin
Is_Set := True;
end Set;
procedure Set_And_Unlock is
begin
Is_Set := True;

Is Locked ;= False;
end Set_And_Unlock;
entry Wait_Until_Set when Is.Set is
begin
null;
end Wait_Until_Set;
end Single_Assignment_Guard;

165

Appendix B

Experimental Programs

In this appendix, we present the complete text of the experimental programs that we de-
scribe in chapters 6 and 7. We give both the parallel programs and the sequential programs

that are used for speedup comparisons.

B.1 One-Deep Parallel Mergesort

Declaration of Sequential Quicksort

generic
type Element is private;
type Elements is array (Integer range <>) of Element;
with function "<" (Left, Right : Element) return Boolean is <>;
with function ">" (Left, Right : Element) return Boolean is <>;
with function "=" (Left, Right : Element) return Boolean is <>;
with function "<=" (Left, Right : Element) return Boolean is <>;
with function ">=" (Left, Right : Element) return Boolean is <>;
package Standard_Quicksort is

procedure Sequential_ Quicksort (

Data : in out Elements;
Base_Length : in Positive);
--| Requires:
-1 2 <= Base_Length.
--| Ensures:

-1 Ascending(Data) and Permutation(Data, in Data).

end Standard_Quicksort;

166

Definition of Sequential Quicksort

-~ Generic Standard Quicksort Package Body
~- Algorithm details:

~- * Recursive sequential quicksort algorithm.

~- * Base-case data arrays sorted using insertion sort.

~- % Median of first, middle, and last elements used as

~— pivot in partitioning.

~~ * Sentinels used to reduce number of comparisons the partitioning.
~~ % Source: "Numerical Recipes in C, Second Editijon".

with Assertions; use Assertions;

package body Standard_Quicksort is

procedure Insertion_Sort (Data : in out Elements) is

--| Ensures:
-~} Ascending(Data) and Permutation(Data, in Data).
begin
for I in Data’First .. Data’Last - 1 loop
declare
Temp : Element;
Pos : Integer range Data’Range;
begin
Temp := Data(I + 1);
Pos := Data’First;
for J in reverse Data’First .. I loop

if Temp < Data(J) then
Data(J + 1) := Data(J);

else
Pos = J + 1;
exit;
end if;
end loop;
Data(Pos) := Temp;
end;
end loop;

end Insertion_Sort;

procedure Swap (X, Y : in out Element) is
--| Ensures:
-1 X=3in Y and Y = in X.

Temp : Element;
begin

Temp := X;
X :=Y;

167

Y := Temp;
end Swap;

procedure Partition (

Data : in out Elements;
Pivot_Index : out Integer) is
--| Requires:
-=| Data’Length >= 3.
--| Ensures:

-1 Data’First <= Pivot_Index and Pivot_Index <= Data’Last and
-] for all I in Data’First .. Pivot_Index - 1 :

-] Data(I) <= Data(Pivot_Index) and

-1 for all I in Pivot_Index + 1 .. Data’last :

-] Pivot_Index <= Data(I).

First : constant Integer := Data’First;

Last : constant Integer := Data’last;

Length : constant Integer := Last - First + 1;
Pivot_Value : Element;

Left, Right : Integer range Data’Range;

begin

Assert(Data’Length >= 3);

Swap(Data(First + 1), Data((First + Last)/2));

if Data(First + 1) > Data(Last) then
Swap(Data(First + 1), Data(Last));

end if;

if Data(First) > Data(Last) then
Swap(Data(First), Data(last));

end if;

if Data(First + 1) > Data(First) then
Swap(Data(First + 1), Data(First));

end if;

Pivot_Value := Data(First);

Left := First + 1; Right := Last;
loop

Left := Left + 1;

while Data(Left) < Pivot_Value loop
Left := Left + 1;

end loop;

Right := Right - 1;

while Data(Right) > Pivot_Value loop
Right := Right - 1;

end loop;

exit when Right < Left;

Swap(Data(Left), Data(Right));

end loop;
Data(First) := Data(Right);
Data(Right) := Pivot_Value;

i

Pivot_Index := Right;
Assert(Data’First <= Pivot_Index and Pivot_Index <= Data’Last);
end Partition;

168

procedure Sequential_Quicksort (
Data : in out Elements;
Base_Length : in Positive) is
begin
Assert(2 <= Base_Length);
if Data’lLength <= Base_Length then
Insertion_Sort(Data);
else
declare
Pivot_Index : Integer range Data’Range;
begin
Partition(Data, Pivot_Index);
Sequential_Quicksort(
Data(Data’First .. Pivot_Index - 1), Base_Length);
Sequential_Quicksort(
Data(Pivot_Index + 1 .. Data’Last), Base_Length);
end;
end if;
end Sequential_ Quicksort;

end Standard_Quicksort;

169

Declaration of One-Deep Parallel Mergesort

generic
type
type
with
with
with
with
with
package

Element is private;

Elements is array (Integer range <>) of Element;

function "<" (Left, Right : Element) return Boolean is <>;
function ">" (Left, Right : Element) return Boolean is <>;
function "=" (Left, Right : Element) return Boolean is <>;
function "<=" (Left, Right : Element) return Boolean is <>;
function ">=" (Left, Right : Element) return Boolean is <>;
One_Deep_Mergesort is

procedure Parallel_Mergesort (

Data : in out Elements;

Result : out Elements;

Num_Threads : in Positive);
--| Requires:

Data’Range = Result’Range and
2#*Num_Threads*Num_Threads <= Data’Length.

~--| Ensures:

end One_

Ascending(Result) and Permutation(result, in Data).

Deep_Mergesort;

170

Definition of One-Deep Parallel Mergesort

with Assertions; use Assertions;
with Standard_Quicksort;

package body One_Deep_Mergesort is

type Indices is array (Integer range <>) of Integer;

type Segment is
record
First, Last : Integer;
end record;
type Segments is array (Integer range <>) of Segment;

package Element_Standard_Quicksort is
new Standard_Quicksort (Element, Elements);
use Element_Standard_Quicksort;

package Index_Standard Quicksort is
new Standard_Quicksort (Integer, Indices);
use Index_Standard_Quicksort;

function Split (
First, Last, I : Integer; N : Positive) return Integer is
begin
return First +
Integer(Float(Last - First + 1)*(Float(I)/Float(i)));
end Split;

function Search (Data : Elements; Target : Element) return Integer is
--| Requires:

-1 Ascending(Data).

--| Ensures:

== (Search = Data’First or else Data(Search - 1) < Target) and
--1 (Search = Data’Last + 1 or else Target <= Data(Search)).

F, L, Mid : Integer range Data’First - 1 .. Data’Last + 1;

171

begin
F := Data’First; L := Data’Last;
while F <= L loop
Mid := (L - F)/2 + F;
if Data(Mid) < Target then

F := Mid + 1;
else
L := Mid - 1;
end if;
end loop;
Assert(F = L + 1);
Assert(F = Data’First or else Data(F - 1) < Target);

Assert(F = Data’last + 1 or else Target <= Data(F));
return F;
end Search;

procedure Sequential Multiway_Merge (

Data : in Elements;

P : in Positive;

S : in Segments;

Merged : out Elements) is
--| Requires:

- | S’First = 0 and S’Last = P - 1 and

| for all I in 0 .. P - 1 :

-] (Data’First <= S(I).First and S(I).Last <= Data’Last and
- Ascending(Data(S(I).First .. S(I).Last))) and

--| Merged’Length =

-] Sum(I in 0 .. P - 1 : S(I).Last - S(I).First + 1).

-~| Ensures:

-1 Ascending(Merged) and

| Permutation(Merged,

-] Join(I in O .. P - 1 : Data(S(I).First .. S(I).Last))).

Max_Index : Integer range Data’Range;

Next : array (Integer range O .. P - 1) of
Integer range Data’First .. Data’Last;

Heap : array (Integer range O .. P - 1) of
Integer range 0 .. P - 1;

begin
Assert(S’First = O and S’Last = P - 1);
if Data’Length > O then
declare
Total : Natural;
Max_Element : Element;
Found : Boolean;
begin
Total := 0;
Found := False;
for I in 0 .. P - 1 loop
Assert(Data’First <= S(I).First);

172

Assert(S(I).Last <= Data’Last);
Total := Total + S{(I).Last - S(I).First + 1;
if 8(I).Last >= S(I).First and then (not Found
or else Data(S(I).Last) > Max_Element) then
Max_Index := S(I).Last;
Max_Element := Data(Max_Index);

Found := True;
end if;
end loop;
Assert(Merged’Length = Total);
end;
for T in 0 .. P - 1 loop
declare
Pos : Integer range 0 .. P - 1;
begin
if S(I).First <= S(I).Last then
Next(I) := S(I).First;
else
Next(I) := Max_Index;
end if;
Pos := 0;
for J in reverse 0 .. I - 1 loop
if Data(Next(Heap(J))) > Data(Next(I)) then
Heap(J + 1) := Heap(J);
else
Pos := J + 1;
exit;
end if;
end loop;
Heap(Pos) := I;
end;
end loop;
for I in Merged’Range loop
declare
Top : Integer range 0 .. P - 1;
Child : Integer range 0 .. 2%P;
begin

Top := Heap(0);
Merged(I) := Data(Next(Top));
if Next(Top) = S(Top).Last then
Next(Top) := Max_Index;
elsif Next(Top) /= Max_Index then
Next(Top) := Next(Top) + 1;
end if;
Child := 1;
while Child < P loop
if Child < P - 1 and then
Data(Next(Heap(Child + 1)))
< Data(Next(Heap(Child))) then
Child := Child + 1;
end if;
exit when Data(Next(Top)) <= Data(Next(Heap(Child)));
Heap((Child - 1)/2) := Heap(Child);
Child := 2%Child + 1;
end loop;

173

Heap((Child - 1)/2) := Top;
end;
end loop;
end if;
end Sequential_Multiway_Merge;

procedure Parallel_Multiway_Merge (

Data : in Elements;

P ¢ in Positive;

D : in Indices;

Result : out Elements) is
--| Requires:

-1 Data’Range = Result’Range and D’Range = 0 .. P and

- 2%P*P <= Data’Length and Partition(D, Data’Range) and

-~ for all I in O .. P : Ascending(Data(D(I) .. D(I + 1) - 1)).
~--| Ensures:

| Ascending(Result) and Permutation(Result, Data).

Pivot : Elements (0 .. 2*P*P - 1);

Index : Integer range Data’First - 1 .. Data’Last + 1;
Segment : array (0 .. P - 1) of Segments (0 .. P - 1);

R : Indices (0 .. P);

begin
Assert(Data’First = Result’First and Data’Last = Result’Last);
Assert(D’First = 0 and D’Last = P);
Assert(2#P*P <= Data’Length);

for I in 0 .. P - 1 loop
Pivot(2#P*I) := Data(D(I));
for Jin 1 .. P - 1 loop
Index := Split(D(I), D(I + 1) - 1, J, P);
Pivot (2*%P*I + 2%J) := Data(Index);
Pivot (2#P*I + 2%J - 1) := Data(Index - 1);
end loop;
Pivot (2%Px(I + 1) - 1) := Data(D(I + 1) - 1);
end loop;

Sequential_Quicksort(Pivot, Base_Length);

for I in 0 .. P - 1 loop
Pivot(I) := Pivot(Split(Pivot’First, Pivot’Last, I, P));
end loop;

for Iin 0 .. P - 1 loop
Segment (0) (I).First := D(I);
for Jin 1 .. P - 1 loop
Segment(J)(I) .First :=
Search(Data(D(I) .. D(I + 1) - 1), Pivot(J));
Segment(J - 1)(I).Last := Segment(J)(I).First - 1;
end loop;
Segment(P - 1)(I).Last := D(I + 1) - 1;
end loop;

174

R(0) := Result’First;
for Tin1 .. P - 1 loop

R(I) := R(I - 1);

for J in 0 .. P - 1 loop

R(I) := R(I) +
Segment(I - 1)(J).Last - Segment(I - 1)(J).First + 1;

end loop;
end loop;
R(P) := Result’Last + 1;

pragma Parallelizable_Loop;
for T in O .. P - 1 loop
Sequential _Multiway_Merge(
Data, P, Segment(I), Result(R(I) .. R(I + 1) - 1));
end loop;
end Parallel Multiway_Merge;

procedure Parallel_Mergesort (

Data : in out Elements;
Result : out Elements;
Num_Threads : in Positive) is

D : Indices (0 .. Num_Threads);

begin
for I in 0 .. Num_Threads loop
D(I) := Split(Data’First, Data’Last, I, Num_Threads);
end loop;
pragma Parallelizable Loop;
for I in 0 .. Num_Threads - 1 loop
Sequential_Quicksort(
Data(D(I) .. D(I + 1) - 1), Base_Length);
end loop;
Parallel_Multiway_Merge(Data, Num_Threads, D, Result);
end Parallel_Mergesort;

end One_Deep_Mergesort;

175

B.2 The Paraffins Problem
B.2.1 Sequential Solution to the Paraffins Problem

Declaration of Sequential Solution to the Paraffins Problem

-~ Paraffins_Problem Package Declaration (Sequential)

package Paraffins_Problem is

type Radical_Kind is (Hydrogen, Carboniferous);
type Radical;
type Radical _Pointer is access all Radical;
type Radical_Pointers is array (Integer range <>) of Radical_Pointer;
type Radical is
record
Kind : Radical_Kind;
Bonds : Radical_Pointers (1 .. 3);
end record;
type Radical_Array is array (Integer range <>) of aliased Radical;
type Radical_Array Pointer is access Radical_Array;
type Radical_Array_Pointers is
array (Natural range <>) of Radical_Array_Pointer;

type Paraffin Kind is (Bond_Centered, Carbon_Centered);
type Paraffin is
record
Kind : Paraffin_Kind;
Bonds : Radical_Pointers (1 .. 4);
end record;
type Paraffin_Array is array (Integer range <>) of Paraffin;
type Paraffin_Array_Pointer is access Paraffin_Array;
type Paraffin_Array Pointers is
array (Positive range <>) of Paraffin_Array Pointer;

procedure Deallocate (Radicals : in out Radical_Array_Pointers);
procedure Deallocate (Paraffins : in out Paraffin Array Pointers);

procedure Generate_Paraffins (

Radicals out Radical_Array_Pointers;

Paraffins : out Paraffin_Array_Pointers);
-~| Requires:
el Radicals’First = 0 and Radicals’Last = Paraffins’Last/2.
--| Ensures:

--1 for all R in Radicals’Range :

-1 A11_Radicals_0f_Size(R, Radicals) and
--1 for all P in Paraffins’Range :

== All_Paraffins_0f_Size(P, Paraffins).

end Paraffins_Problem;

176

Definition of Sequential Solution to the Paraffins Problem

with Assertions; use Assertions;
with Ada.Unchecked_Deallocation;

package body Paraffins_Problem is

procedure Deallocate is
new Ada.Unchecked_Deallocation (
Object => Radical_Array, Name => Radical_Array_Pointer);

procedure Deallocate is
new Ada.Unchecked_Deallocation (
Object => Paraffin_ Array, Name => Paraffin_Array_Pointer);

procedure Deallocate (Radicals : in out Radical_Array_Pointers) is
begin

for R in Radicals’Range loop Deallocate(Radicals(R)); end loop;
end Deallocate;

procedure Deallocate (Paraffins : in out Paraffin_Array Pointers) is
begin

for P in Paraffins’Range loop Deallocate(Paraffins(P)); end loop;
end Deallocate;

function Min (X, Y : Integer) return Integer renames Integer’Min;

type Bonded_Radical_Sizes is array (Positive range <>) of Natural;

function Num_Arrangements (
Radicals : Radical_Array_Pointers;

Sizes : Bonded_Radical_Sizes) return Positive is
Length : Positive;
Numerator : Positive;
Denominator : Positive;
Count : Natural;
begin

Numerator := Radicals(Sizes(Sizes’First))’Length;

177

Denominator := 1;
Count := 0;
for R in Sizes’First + 1 .. Sizes’Last loop

Assert(Sizes(R - 1) <= Sizes(R));
if Sizes(R) = Sizes(R - 1) then

Count := Count + 1;
else

Count := 0;
end if;
Length := Radicals(Sizes(R))’Length;
Numerator := Numerator*(Length + Count);
Denominator := Denominator*(Count + 1);

end loop;

return Numerator/Denominator;
end Num_Arrangements;

function Num_Radicals (
Size : Natural;
Radicals : Radical_Array_Pointers) return Positive is

Result : Natural;
begin

Assert(Radicals’First = O and Size - 1 <= Radicals’Last);
if Size = O then

Result := 1;
else
Result := 0;

for I in (Size + 1)/3 .. Size - 1 loop
for J in (Size - I)/2 .. Min(I, Size - 1 - I) loop

Result := Result + Num_Arrangements(
Radicals, (1 => Size - 1 - I - J, 2 =>7J, 3 => 1I));
end loop;
end loop;

end if;
return Result;
end Num_Radicals;

function Num_Paraffins (
Size : Positive;
Radicals : Radical_Array_Pointers) return Positive is

Result : Natural;

begin
Assert(Radicals’First = 0 and Size/2 <= Radicals’Last);
Result := 0;
if Size mod 2 = O then
Result := Result +
Radicals(Size/2) ’Length*(Radicals(Size/2) ’Length + 1)/2;

end if;

178

for I in (Size + 2)/4 .. (Size - 1)/2 loop
for J in (Size + 1 - I)/3 .. Min(I, Size - 1 - I) loop
for K in (Size ~ I - J)/2 .. Min(J, Size - 1 - I - J) loop

Result := Result + Num_Arrangements(Radicals,
(1 =>8ize -1 -1 -J-K, 2=>K, 3=>171, 4 =>1));
end loop;
end loop;
end loop;

return Result;
end Num_Paraffins;

function Last_Index (
Quter_Size, This_Size : Natural;
Outer_Index, This_Last : Integer) return Integer is
begin
if Quter_Size = This_Size then
return Quter_Index;
else
return This_Last;
end if;
end Last_Index;

procedure Generate Radicals_0f_Shape (

Result : in Radical_Array_Pointer;

Last : in out Natural;

Size_1, Size_2, Size_ 3 : in Natural;

Radicals : in Radical_Array_Pointers) is
begin

Assert(Result /= null);
Assert(Result’First - 1 <= Last and Last <= Result’Last - 1);
Assert(Size_1 <= Size_2 and Size_2 <= Size_3);
Assert(Radicals’First <= Size_3 and Size_1 <= Radicals’Last);
for I in 1 .. Radicals(Size_1)’Last loop
for J in 1 .. Last_Index(
Size_1, Size_2, I, Radicals(Size_2)’Last) loop
for K in 1 .. Last_Index(
Size_2, Size_3, J, Radicals(Size_3)’Last) loop

Last := Last + 1;

Result(Last) := (Carboniferous,
(Radicals(Size_1)(I)’Access,
Radicals(Size_2)(J)’Access,

Radicals(Size_3) (K)’Access));
end loop;
end loop;
end loop;
end Generate_Radicals_0f_Shape;

procedure Generate_Radicals_0f_Size (
Result : out Radical_Array_Pointer;

179

Size : in Natural;
Radicals : in Radical_Array_Pointers) is

Length : Positive;
Last : Natural;

begin
Assert(Radicals’First = 0 and Size - 1 <= Radicals’Last);
Length := Num_Radicals(Size, Radicals);

Result := new Radical Array (1 .. Length);
Last := 0;
if Size = 0 then

Last := Last + 1;
Result(Last) := (Hydrogen, (null, null, null));
else
for I in (Size + 1)/3 .. Size - 1 loop
for J in (Size - I)/2 .. Min(I, Size - 1 - I) loop
Generate_Radicals_0f_Shape(
Result, Last, Size - 1 - I - J, J, I, Radicals);
end loop;
end loop;
end if;
Assert(Last = Length);
end Generate_Radicals_0f_Size;

procedure Generate_Bond_Centered_Paraffins (

Result : in Paraffin_Array_Pointer;

Last : in out Natural;

Radicals : in Radical_Array_Pointer) is
begin

Assert(Result /= null);
Assert(Result’First - 1 <= Last and Last <= Result’Last - 1);
Assert(Radicals /= null);
for I in 1 .. Radicals’Last loop
for J in 1 .. I loop
Last := Last + 1;

Result(Last) := (Bond_Centered,
(Radicals(I)’Access, Radicals(J)’Access, null, null));
end loop;
end loop;

end Generate_Bond_Centered_Paraffins;

procedure Generate_Carbon_Centered Paraffins (

Result : in Paraffin_Array_Pointer;

Last : in out Natural;

Size_1, Size_2,

Size_3, Size_4 : in Natural;

Radicals :in Radical_Array_Pointers) is
begin

Assert(Result /= null);
Assert(Result’First - 1 <= Last and Last <= Result’Last - 1);

180

Assert(Size_1 <= Size_2 and Size_2 <= Size_3 and Size_3 <= Size_4);
Assert(Radicals’First <= Size_4 and Size_l <= Radicals’Last);
for I in 1 .. Radicals(Size_1)’Last loop
for J in 1 .. Last_Index(
Size_1, Size_2, I, Radicals(Size_2)’Last) loop
for K in 1 .. Last_Index(
Size_2, Size_ 3, J, Radicals(Size_3)’Last) loop
for L in 1 .. Last_Index(
Size_3, Size_4, K, Radicals(Size_4)’Last) loop
Last := Last + 1;
Result(Last) := (Carbon_Centered,
(Radicals(Size_1)(I)’Access,
Radicals(Size_2) (J)’Access,
Radicals(Size_3) (K)’Access,
Radicals(Size_4)(L)’Access));
end loop;
end loop;
end loop;
end loop;
end Generate_Carbon_Centered_Paraffins;

procedure Generate_Paraffins_0f_Size (

Result : out Paraffin_Array_Pointer;
Size : in Positive;
Radicals : in Radical_Array_Pointers) is

Length : Positive;

Last : Natural;
begin
Assert(Radicals’First = 0 and Size/2 <= Radicals’Last);
Length := Num_Paraffins(Size, Radicals);
Result := new Paraffin_Array (1 .. Length);
Last := 0;

if Size mod 2 = 0 then
Generate_Bond_Centered_Paraffins(
Result, Last, Radicals(Size/2));
end if;
for I in (Size + 2)/4 .. (Size - 1)/2 loop
for J in (Size + 1 - I)/3 .. Min(I, Size - 1 - I) loop
for K in (Size - I - J)/2 .. Min(J, Size - 1 - I - J) loop
Generate_Carbon_Centered_Paraffins(Result,
Last, Size - 1 - I - J - K, K, J, I, Radicals);
end loop;
end loop;
end loop;
Assert(Last = Length);
end Generate_Paraffins_0f_Size;

procedure Generate_Paraffins (
Radicals : out Radical Array_Pointers;

181

Paraffins : out Paraffin_Array_Pointers) is
begin
Assert(Radicals’First = 0 and Radicals’Last = Paraffins’Last/2);
for R in Radicals’Range loop
Generate_Radicals_0f_Size(
Radicals(R), R, Radicals(0 .. R - 1));
end loop;
for P in Paraffins’Range loop
Generate_Paraffins_0f_Size(
Paraffins(P), P, Radicals(0 .. P/2));
end loop;
end Generate_Paraffins;

end Paraffins_Problem;

182

B.2.2 Parallel Solution to the Paraffins Problem

Declaration of Parallel Solution to the Paraffins Problem

-- Paraffins_Problem Package Declaration (Parallel)

package Paraffins_Problem is

type Radical Kind is (Hydrogen, Carboniferous);
type Radical;
type Radical_Pointer is access all Radical;
type Radical_Pointers is array (Integer range <>) of Radical_Pointer;
type Radical is
record
Kind : Radical_Kind;
Bonds : Radical_Pointers (1 .. 3);
end record;
type Radical_Array is array (Integer range <>) of aliased Radical;
type Radical_Array_Pointer is access Radical_Array;
type Radical_Array_Pointers is
array (Natural range <>) of Radical_Array_Pointer;

type Paraffin_Kind is (Bond_Centered, Carbon_Centered) ;
type Paraffin is
record
Kind : Paraffin_Kind;
Bonds : Radical_Pointers (1 .. 4);
end record;
type Paraffin_Array is array (Integer range <>) of Paraffin;
type Paraffin_Array_Pointer is access Paraffin Array;
type Paraffin_Array_ Pointers is
array (Positive range <>) of Paraffin_Array_Pointer;

procedure Deallocate (Radicals : in out Radical_Array_Pointers);
procedure Deallocate (Paraffins : in out Paraffin_ Array_Pointers);

procedure Generate_Paraffins (

Radicals : out Radical_Array_Pointers;

Paraffins : out Paraffin_Array-Pointers);
-~| Requires:
| Radicals’First = 0 and Radicals’Last = Paraffins’Last/2.
~~| Ensures:

== for all R in Radicals’Range

- A11_Radicals_0f_Size(R, Radicals) and
- for all P in Paraffins’Range :

- | A1l _Paraffins_0f_Size(P, Paraffins).

end Paraffins_Problem;

183

Definition of Parallel Solution to the Paraffins Problem

-- Paraffins_Problem Package Body (Parallel)

with Assertions; use Assertions;
with Ada.Unchecked_Deallocation;

package body Paraffins_Problem is

procedure Deallocate is
new Ada.Unchecked_Deallocation (
Object => Radical_Array, Name => Radical_Array_Pointer);

procedure Deallocate is
new Ada.Unchecked_Deallocation (
Object => Paraffin_Array, Name => Paraffin_Array_Pointer);

procedure Deallocate (Radicals : in out Radical_Array_Pointers) is
begin

for R in Radicals’Range loop Deallocate(Radicals(R)); end loop;
end Deallocate;

procedure Deallocate (Paraffins : in out Paraffin_Array_Pointers) is
begin

for P in Paraffins’Range loop Deallocate(Paraffins(P)); end loop;
end Deallocate;

function Min (X, Y : Integer) return Integer renames Integer’Min;

type Bonded_Radical_Sizes is array (Positive range <>) of Natural;

function Num_Arrangements (
Radicals : Radical_Array_Pointers;

Sizes : Bonded_Radical_Sizes) return Positive is
Length : Positive;
Numerator : Positive;
Denominator : Positive;
Count : Natural;

begin
Numerator := Radicals(Sizes(Sizes’First))’Length;

184

Denominator := 1;
Count := 0;
for R in Sizes’First + 1 .. Sizes’Last loop

Assert(Sizes(R - 1) <= Sizes(R));
if Sizes(R) = Sizes(R - 1) then

Count := Count + 1;
else

Count := 0;
end if;
Length := Radicals(Sizes(R))’Length;
Numerator := Numerator*(Length + Count);
Denominator := Denominator*{(Count + 1);

end loop;

return Numerator/Denominator;
end Num_Arrangements;

function Num_Radicals (
Size : Natural;
Radicals : Radical_Array_Pointers) return Positive is

Result : Natural;
begin

Assert(Radicals’First = O and Size - 1 <= Radicals’Last);
if Size = 0 then

Result := 1;
else
Result := 0;

for I in (Size + 1)/3 .. Size - 1 loop
for J in (Size - I)/2 .. Min(I, Size - 1 - I) loop

Result := Result + Num_Arrangements(
Radicals, (1 => Size -1 -I-J, 2=>7J, 3 =>1));
end loop;
end loop;

end if;
return Result;
end Num_Radicals;

function Num_Paraffins (
Size : Positive;
Radicals : Radical_Array_Pointers) return Positive is

Result : Natural;

begin
Assert(Radicals’First = 0 and Size/2 <= Radicals’Last);
Result := 0;

if Size mod 2 = O then
Result := Result +
Radicals(Size/2) ’Length*(Radicals(Size/2) ’Length + 1)/2;

end if;

185

for I in (Size + 2)/4 .. (Size - 1)/2 loop
for J in (Size + 1 - I)/3 .. Min(I, Size ~ 1 - I) loop
for K in (Size - I - J)/2 .. Min(J, Size - 1 - I - J) loop

Result := Result + Num_Arrangements(Radicals,
(1 =>S8ize -1 -I-J-K,2=>K, 3=>17],4=>1));
end loop;
end loop;

end loop;
return Result;
end Num_Paraffins;

function Last_Index (
Outer_Size, This_Size : Natural;
Outer_Index, This_Last : Integer) return Integer is
begin
if Outer_Size = This_Size then
return Quter_Index;
else
return This_Last;
end if;
end Last_Index;

procedure Radicals_0f_Shape (

Result : in Radical_Array_Pointer;

Last : in out Natural;

Size_1, Size_2, Size_ 3 : in Natural;

Radicals :in Radical_Array_Pointers) is
begin

Assert(Result /= null);
Assert(Result’First - 1 <= Last and Last <= Result’Last - 1);
Assert(Size_1 <= Size_2 and Size_2 <= Size_3);
Assert (Radicals’First <= Size_3 and Size_1 <= Radicals’Last);
for I in 1 .. Radicals(Size_1)’Last loop
for J in 1 .. Last_Index(
Size_1, Size_2, I, Radicals(Size_2)’Last) loop
for K in 1 .. Last_Index(
Size_2, Size_3, J, Radicals(Size_3)’Last) loop

Last := Last + 1;

Result(Last) := (Carboniferous,
(Radicals(Size_1)(I)’Access,
Radicals(Size_2)(J)’Access,

Radicals(Size_3) (K)’Access));
end loop;
end loop;
end loop;
end Radicals_0f_Shape;

procedure Generate_Radicals_ 0f_Size (
Result : out Radical_Array_Pointer;

186

Size : in Natural;
Radicals : in Radical_Array_Pointers) is

Length : Positive;
Last : Natural;

begin
Assert(Radicals’First = 0 and Size - 1 <= Radicals’Last);
Length := Num_Radicals(Size, Radicals);

Result := new Radical Array (1 .. Length);
Last := 0;
if Size = O then

Last := Last + 1;
Result(Last) := (Hydrogen, (null, null, null));
else
for I in (Size + 1)/3 .. Size - 1 loop
for J in (Size - I)/2 .. Min(I, Size - 1 - I) loop
Radicals_0f_Shape(
Result, Last, Size - 1 - I - J, J, I, Radicals);
end loop;
end loop;
end if;
Assert(Last = Length);
end Generate_Radicals_0f_Size;

procedure Count_Bond_Centered (

Size : in Positive;
Radicals : din Radical_Array_Pointer;
Num_Bond_Centered : out Natural) is

begin
Assert(Radicals /= null);
if Size mod 2 /= O then
Num_Bond_Centered := 0;
else
Num_Bond_Centered := Radicals’Length*(Radicals’Length + 1)/2;
end if;
end Count_Bond_Centered;

type Indices is array (Natural range <>,
Natural range <>,
Natural range <>) of Positive;

procedure Count_Carbon_Centered (

Size : in Positive;
Radicals ¢ in Radical_Array_Pointers;
First : out Indices;
Num_Carbon_Centered : out Natural) is
begin
Assert(Radicals’First = O and Size/2 <= Radicals’Last);
Num_Carbon_Centered := 0;

for I in (Size + 2)/4 .. (Size - 1)/2 loop

187

for J in (Size + 1 - I)/3 .. Min(I, Size - 1 - I) loop
for K in (Size - I - J)/2 .. Min(J, Size - 1 - I - J) loop
First(I, J, K) := Num_Carbon_Centered + 1;
Num_Carbon_Centered := Num_Carbon_Centered +
Num_Arrangements(Radicals, (1 => Size - 1 - I - J - K,
2=>K, 3=>17J,4=>1));
end loop;
end loop;
end loop;
end Count_Carbon_Centered;

procedure Generate_Bond_Centered_Paraffins (

Result :in Paraffin_Array_Pointer;
Radicals ¢ in Radical _Array_Pointer;
Num_Threads : in Positive) is

begin
Assert(Result /= null);
Assert(Radicals /= null);
pragma Parallelizable_Loop(Cyclic, Num_Threads);
for I in 1 .. Radicals’Last loop
declare
Base : comstant Natural := (I*(I - 1))/2;
begin
for Jin 1 .. I loop
Result(Base + J) := (Bond_Centered,
(Radicals(I)’Access, Radicals(J)’Access, null, null));
end loop;
end;
end loop;
end Generate_Bond_Centered Paraffins;

procedure Generate_Carbon_Centered Paraffins (

Result :in Paraffin_Array_Pointer;
First : in Positive;

Size_1, Size_2,

Size_3, Size_4 : in Natural;

Radicals ¢ in Radical_Array_Pointers) is

Index : Positive;

begin
Assert(Result /= null);
Assert(Result’First <= First and First <= Result’Last);
Assert(Size_1 <= Size_2 and Size_2 <= Size_3 and Size_3 <= Size_4);
Assert(Radicals’First <= Size_4 and Size_1 <= Radicals’Last);
Index := First;
for I in 1 .. Radicals(Size_1)’Last loop
for J in 1 .. Last_Index(
Size_1, Size_2, I, Radicals(Size_2)’Last) loop
for K in 1 .. Last_Index(
Size_2, Size_3, J, Radicals(Size_3)’Last) loop

188

for L in 1 .. Last_Index(
Size_3, Size_4, K, Radicals(Size_4)’Last) loop
Result(Index) := (Carbon_Centered,
(Radicals(Size_1){(I)’Access,
Radicals(Size_2)(J) ’Access,
Radicals(Size_3) (K)’Access,
Radicals(Size_4) (L) ’Access));
Index := Index + 1;
end loop;
end loop;
end loop;
end loop;
end Generate_Carbon_Centered_Paraffins;

procedure Generate_Paraffins_0f_Size (

Result : out Paraffin_Array_Pointer;
Size ¢ in Positive;
Radicals : in Radical_Array_Pointers) is
Num_Bond_Centered : Natural;
Num_Carbon_Centered : Natural;
Num_Paraffins : Positive;
First : Indices ((Size + 2)/4 .. (Size - 1)/2,

(Size + 3)/6 .. (Size - 1)/2,
0 .. (Size - 1)/3);
begin
Assert(Radicals’First = 0 and Size/2 <= Radicals’Last);
Count_Bond_Centered(Size, Radicals(Size/2), Num_Bond_Centered);
Count_Carbon_Centered(Size, Radicals, First, Num_Carbon_Centered);

Num_Paraffins := Num_Bond_Centered + Num_Carbon_Centered;
Result := new Paraffin Array (1 .. Num_Paraffins);
begin

pragma Parallelizable_Sequence;
if Size mod 2 = O then
Generate_Bond_Centered_Paraffins(
Result, Radicals(Size/2), Num_Threads => Size);
end if;
pragma Parallelizable_Loop;
for I in (Size + 2)/4 .. (Size - 1)/2 loop
pragma Parallelizable_Loop;
for J in (Size + 1 - I)/3 .. Min(I, Size - 1 - I) loop
for K in (Size - I - 1)/2 ..
Min(J, Size - 1 - I - J) loop
Generate_Carbon_Centered_Paraffins(
Result, Num_Bond_Centered + First(I, J, K),
Size - 1 - I ~J-X, K, J, I, Radicals);
end loop;
end loop;
end loop;
end;
end Generate_Paraffins_0f_Size;

189

procedure Generate_Paraffins (
Radicals : out Radical_Array_Pointers;
Paraffins : out Paraffin_ Array_Pointers) is
begin
Assert(Radicals’First = 0 and Radicals’Last = Paraffins’Last/2);
for R in Radicals’Range loop
Generate_Radicals_0f_Size(
Radicals(R), R, Radicals(0 .. R - 1));
end loop;
pragma Parallelizable_Loop(0n_Demand, Num_Threads => 2);
for P in reverse Paraffins’Range loop
Generate_Paraffins_0f_Size(
Paraffins(P), P, Radicals(0 .. P/2));
end loop;
end Generate_Paraffins;

end Paraffins_Problem;

190

B.3 Mergesort of a Linked List
B.3.1 Linked Lists with Mutable Links

Declaration of Linked Lists with Mutable Links

-- Lists Generic Package Declaration (Mutable Links)

with Ada.Finalization; use Ada.Finalization;
with Ada.Unchecked_Deallocation;

generic
type Element is private;
package Lists is

List_Error : exception;

type Elements is array (Integer range <>) of Element;

type Block (Block_Length : Positive) is
record
Data : Elements (1 .. Block_Length);
Length : Positive;
end record;
type Block_Access is access Block;

procedure Deallocate is new
Ada.Unchecked_Deallocation(
Object => Block, Name => Block_Access);

type List (Block_Length : Positive) is
new Limited_Controlled with private;

procedure Initialize (L : in out List);
procedure Finalize (L : in out List);
procedure Put (

L : in out List;

Item : in Block_Access);

function End_Of_List (L : List) return Boolean;

procedure Get (
L : in out List;

191

Item : out Block_Access);

procedure Get (

L : in out List;
Item : out Block_Access;
Past_End : out Boolean)
private
type Node;

type Pointer is access Node;
type Node is
record
Item : Block_Access;
Next : Pointer;
end record;
type List (Block_Length : Positive) is new Limited_Controlled with
record
Head : Pointer;
Tail : Pointer;
end record;

end Lists;

192

Definition of Linked Lists with Mutable Links

-- Lists Generic Package Body (Mutable Links)

with Ada.Unchecked_Deallocation;

package body Lists is

procedure Deallocate is
new Ada.Unchecked_Deallocation(Object => Node, Name => Pointer);

procedure Initialize (L : in out List) is
begin

L.Head := new Node;

L.Head.Item := null;

L.Head.Next := null;

L.Tail := L.Head;
end Initialize;

procedure Finalize (L : in out List) is
P, Next : Pointer;

begin
P := L.Head;
while P /= null loop
Next := P.Next;
Deallocate(P);
P := Next;
end loop;
end Finalize;

procedure Put (
L : in out List;
Item : in Block_Access) is

New_Tail : Pointer;

begin
New_Tail := new Node;
New_Tail.Item := Item;
New_Tail.Next := null;
L.Tail.Next := New_Tail;
L.Tail := New_Tail;

end Put;

193

function End_0f_List (L : List) return Boolean is
begin

return L.Head.Next = null;
end End_0f_List;

procedure Get (
L : in out List;
Ttem : out Block_Access) is

01d_Head : Pointer;

begin
if L.Head.Next = null then
raise List_Error;
else
0ld_Head := L.Head;
L.Head := L.Head.Next;
Item := L.Head.Item;
Deallocate(01d_Head);
end if;
end Get;

procedure Get (

L : in out List;
Item : out Block_Access;
Past_End : out Boolean) is

01d_Head : Pointer;

begin
if L.Head.Next = null then
Past_End := True;
else
Past_End := False;
0ld_Head := L.Head;
L.Head := L.Head.Next;
Item := L.Head.Item;
Deallocate(01ld_Head);
end if;
end Get;

end Lists;

194

B.3.2 Sequential Mergesort of a Linked List with Mutable Links

Declaration of Sequential Mergesort of a Linked List with Mutable Links

-~ Generic Sorting Package Declaration (Sequential/Mutable Links)

with Lists;

generic
type Element is private;
with function "<" (Left, Right : Element) return Boolean is <>;
with function "<=" (Left, Right : Element) return Boolean is <>;
with function ">" (Left, Right : Element) return Boolean is <>;
with function ">=" (Left, Right : Element) return Boolean is <>;
package Sorting is

package Element_Lists is new Lists (Element);
use Element_Lists;

procedure Mergesort (Unsorted, Sorted : in out List);

--| Requires:

== Empty(Sorted).

-~| Ensures:

-1 Ascending(Sorted) and Permutation(Sorted, in Umsorted).

end Sorting;

195

Definition of Sequential Mergesort of a Linked List with Mutable Links

-- Generic Sorting Package Body (Sequential/Mutable Links)

with Assertions; use Assertions;

package body Sorting is

procedure Insertion_Sort (Data : in out Elements) is

begin
for I in Data’First .. Data’Last - 1 loop
declare
Temp : Element;
Pos : Integer range Data’Range;
begin
Temp := Data(I + 1);
Pos := Data’First;
for J in reverse Data’First .. I loop
if Temp < Data(J) then
Data(J + 1) := Data(J);
else
Pos := J + 1;
exit;
end if;
end loop;
Data(Pos) := Temp;
end;
end loop;

end Insertion_Sort;

procedure Swap (X, Y : in out Element) is

Temp : Element;

begin
Temp := X;
X :=Y;
Y := Temp;
end Swap;

procedure Partition (

Data : in out Elements;
Pivot_Index : out Integer) is
First : constant Integer := Data’First;
Last : constant Integer := Data’Last;

Length : constant Integer := Last - First + 1;

Pivot_Value : Element;

196

Left, Right : Integer range Data’Range;

begin
Assert(Length >= 3);
Swap(Data(First + 1), Data((First + Last)/2));
if Data(First + 1) > Data(last) then
Swap(Data(First + 1), Data(last));
end if;
if Data(First) > Data(last) then
Swap(Data(First), Data(Last));
end if;
if Data(First + 1) > Data(First) then
Swap(Data(First + 1), Data(First));
end if;
Pivot_Value := Data(First);
Left := First + 1; Right := Last;
loop
Left := Left + 1;
while Data(Left) < Pivot_Value loop
Left := Left + 1;
end loop;
Right := Right - 1;
while Data(Right) > Pivot_Value loop
Right := Right - 1;
end loop;
exit when Right < Left;
Swap(Data(Left), Data(Right));
end loop;
Data(First) Data(Right);
Data(Right) := Pivot_Value;
Pivot_Index := Right;

Assert(First <= Pivot_Index and Pivot_Index <= Last);

end Partition;

Base_Length : constant Positive := 16;

procedure Quicksort (Data : in out Elements) is

Data’First;
Data’Last;
Last - First + 1;

First : constant Integer :
Last : constant Integer :
Length : constant Integer :

"

begin
Assert(2 <= Base_Length);
if Length <= Base_Length then
Insertion_Sort(Data);
else
declare
Pivot_Index : Integer range Data’Range;
begin
Partition(Data, Pivot_Index);

197

Quicksort(Data(First .. Pivot_Index - 1));
Quicksort(Data(Pivot_Index + 1 .. Last));
end;
end if;
end Quicksort;

procedure Split (Input, Left, Right : in out List) is

Block : Block_Access;
Finished : Boolean;

begin
Get (Input, Block, Finished);
while not Finished loop
Put(Left, Block);
Get(Input, Block, Finished);
if not Finished then
Put (Right, Block);
Get (Input, Block, Finished);
end if;
end loop;
end Split;

procedure Merge (Left, Right, Output : in out List) is

Left_Finished, Right_Finished : Boolean;
Left_Block, Right_Block, Output_Block : Block_Access;
L, R, 0 : Natural;

begin
Assert(not (End_Of_List(Left) and End_Of_List(Right)));
Get(Left, Left_Block, Left_Finished);
Get(Right, Right_Block, Right_Finished);
Qutput_Block := new Block (Output.Block_ length);
L:=1; R :=1; 0 := 1;
Assert(not (Left_Finished and Right_Finished));
if not (Left_Finished or Right_Finished) then
loop
if 0 > Output.Block_Length then
Output_Block.Length := Output.Block Length;
Put (Qutput, Output_Block);
Output_Block := new Block (Output.Block_length);
0 :=1;
end if;
if Left_Block.Data(L) <= Right_Block.Data(R) then
Qutput_Block.Data(0) := Left_Block.Data(L);
0:=0+1; L :=1L+1;
if L > Left_Block.Length then
Deallocate(Left_Block);
Get(Left, Left_Block, Left_Finished);
exit when Left_Finished;

198

L :=1;

end if;

else

Output_Block.Data(0) := Right_Block.Data(R);

0:=0+1; R :=R + 1;

if R > Right_Block.Length then
Deallocate(Right_Block);
Get (Right, Right_Block, Right_Finished);
exit when Right_Finished;

R :=1;
end if;
end if;
end loop;
end if;
if not Left_Finished then
loop

if 0 > Qutput.Block_Length then
Output_Block.Length := Qutput.Block_Length;
Put (Output, Output_Block);
Output_Block := new Block (Output.Block_length);
0 :=1;
end if;
Output_Block.Data(Q) := Left_Block.Data(L);
0 :=0+1; L :=L + 1;
if L > Left_Block.Length then
Deallocate(Left_Block);
Get(Left, Left_Block, Left_Finished);
exit when Left_Finished;
L :=1;
end if;
end loop;
else
loop
if 0 > Qutput.Block_Length then
Output_Block.Length := QOutput.Block_Length;
Put(Qutput, Output_Block);
Output_Block := new Block (Output.Block_length);
0 :=1;
end if;
Output_Block.Data(0) := Right_Block.Data(R);
0:=0+1; R :=R + 1;
if R > Right_Block.Length then
Deallocate(Right_Block);
Get(Right, Right_Block, Right_Finished);
exit when Right_Finished;
R :=1;
end if;
end loop;
end if;
Output_Block.Length := 0 - 1;
Put (Output, Output_Block);
end Merge;

199

procedure Mergesort (Unsorted, Sorted : in out List) is

Block_1, Block_ 2 : Block_Access;
Get _Past_End : Boolean;
Left, Sorted_Left : List (Unsorted.Block_Length);

Right, Sorted Right : List (Unsorted.Block_Length);

begin
Get(Unsorted, Block._1, Get_Past_End);
if not Get_Past_End then
Get(Unsorted, Block_2, Get_Past_Fnd);
if Get_Past_End then
Quicksort(Block_1.Data(l .. Block_1.Length));
Put{(Sorted, Block_1);
else
Put(Left, Block_1); Put(Right, Block_2);
Split(Unsorted, Left, Right);
Mergesort(Left, Sorted_Left);
Mergesort (Right, Sorted Right);
Merge(Sorted_Left, Sorted_Right, Sorted);
end if;
end if;
end Mergesort;

end Sorting;

200

B.3.3 Parallel Mergesort of a Linked List with Mutable Links

Declaration of Parallel Mergesort of a Linked List with Mutable Links

-- Generic Sorting Package Declaration (Parallel/Mutable Links)

with Lists;

generic
type Element is private;
with function "<" (Left, Right : Element) return Boolean is <>;
with function "<=" (Left, Right : Element) return Boolean is <>;
with function ">" (Left, Right : Element) return Boolean is <>;
with function ">=" (Left, Right : Element) return Boolean is <>;
package Sorting is

package Element_Lists is new Lists (Element);
use Element_Lists;

procedure Mergesort (Unsorted, Sorted : in out List;
Parallel_Depth : in Natural);

-~| Requires:

-1 Empty(Sorted).

--| Ensures:

-1 Ascending(Sorted) and Permutation(Sorted, in Unsorted).

end Sorting;

201

Definition of Parallel Mergesort of a Linked List with Mutable Links

-- Generic Sorting Package Body (Parallel/Mutable Links)

with Assertions; use Assertions;

package body Sorting is

procedure Insertion_Sort (Data : in out Elements) is

begin
for I in Data’First .. Data’Last - 1 loop
declare
Temp : Element;
Pos : Integer range Data’Range;
begin
Temp := Data(I + 1);
Pos := Data’First;
for J in reverse Data’First .. I loop
if Temp < Data(J) then
Data(J + 1) := Data(J);
else
Pos := J + 1;
exit;
end if;
end loop;
Data(Pos) := Temp;
end;
end loop;

end Insertion_Sort;

procedure Swap (X, Y : in out Element) is

Temp : Element;

begin
Temp := X;
X :=Y;
Y := Temp;
end Swap;

procedure Partition (

Data : in out Elements;
Pivot_Index : out Integer) is
First : constant Integer := Data’First;
Last : constant Integer := Data’Last;

Length : constant Integer := Last - First + 1;

Pivot_Value : Element;

202

Left, Right : Integer range Data’Range;

begin
Assert(Length >= 3);
Swap(Data(First + 1), Data((First + Last)/2));
if Data(First + 1) > Data(lLast) then
Swap(Data(First + 1), Data(last));
end if;
if Data(First) > Data(lLast) then
Swap(Data(First), Data(last));
end if;
if Data(First + 1) > Data(First) then
Swap(Data(First + 1), Data(First));
end if;
Pivot_Value := Data(First);
Left := First + 1; Right := Last;
loop
Left := Left + 1;
while Data(lLeft) < Pivot_Value loop
Left := Left + 1;
end loop;
Right := Right - 1;
while Data(Right) > Pivot_Value loop
Right := Right - 1;
end loop;
exit when Right < Left;
Swap(Data(Left), Data(Right));

end loop;
Data(First) := Data(Right);
Data(Right) := Pivot_Value;

Pivot_Index := Right;
Assert(First <= Pivot_Index and Pivot_Index <= Last);
end Partition;

Base_Length : constant Positive := 16;

procedure Quicksort (Data : in out Elements) is

Data’First;
Data’Last;
Last - First + 1;

#

First : constant Integer :
Last : constant Integer :
Length : constant Integer :

begin
Assert(2 <= Base_Length);
if Length <= Base_Length then
Insertion_Sort(Data);
else
declare
Pivot_Index : Integer range Data’Range;
begin
Partition(Data, Pivot_Index);

203

Quicksort(Data(First .. Pivot_Index - 1));
Quicksort(Data(Pivot_Index + 1 .. Last));
end;
end if;
end Quicksort;

procedure Split (Input, Left, Right : in out List) is

Block : Block_Access;
Finished : Boolean;

begin
Get (Input, Block, Finished);
while not Finished loop
Put(Left, Block);
Get(Input, Block, Finished);
if not Finished then
Put (Right, Block);
Get(Input, Block, Finished);
end if;
end loop;
end Split;

procedure Merge (Left, Right, Output : in out List) is

Left_Finished, Right_Finished : Boolean;
Left_Block, Right_Block, Output_Block : Block_Access;
L, R, 0 : Natural;

begin
Assert(not (End_Of_List(Left) and End _0f_List(Right)));
Get(Left, Left_Block, Left_Finished);
Get (Right, Right_Block, Right_Finished);
Dutput_Block := new Block (Output.Block_ length);
L:=1; R :=1; 0 :=1;
Assert(not (Left_Finished and Right_Finished));
if not (Left_Finished or Right_Finished) then
loop
if 0 > Output.Block _Length then
Output_Block.Length := Output.Block_Length;
Put(Output, Output_Block);
Output_Block := new Block (Output.Block length);
0 := 1;
end if;
if Left_Block.Data(lL) <= Right_Block.Data(R) then
Output_Block.Data(0) := Left_Block.Data(L);
0:=0+1; L :=L +1;
if L > Left_Block.Length then
Deallocate(Left_Block);
Get(Left, Left_Block, Left_Finished);
exit when Left_Finished;

204

L :=1;

end if;

else

Output_Block.Data(0) := Right_Block.Data(R);

0:=0+1; R :=R +1;

if R > Right_Block.Length then
Deallocate(Right_Block);
Get(Right, Right_Block, Right_Finished);
exit when Right_Finished;

R :=1;
end if;
end if;
end loop;
end if;
if not Left_Finished then
loop

if 0 > Output.Block _Length then
Output_Block.Length := (utput.Block_Length;
Put(Qutput, Output_Block);
Output_Block := new Block (Qutput.Block length);
0 := 1;
end if;
Output_Block.Data(0) := Left_Block.Data(lL);
0:=0+1; L :=L + 1;
if L > Left_Block.Length then
Deallocate(Left_Block);
Get(Left, Left_Block, Left_Finished);
exit when Left_Finished;
L :=1;
end if;
end loop;
else
loop
if 0 > Output.Block_Length then
Output_Block.Length := Qutput.Block_Length;
Put(Qutput, Output_Block);
Output_Block := new Block (Output.Block_length);
0 :=1;
end if;
Output_Block.Data(0) := Right_Block.Data(R);
0:=0+1; R:=R+1;
if R > Right_Block.Length then
Deallocate(Right_Block);
Get(Right, Right_Block, Right_Finished);
exit when Right_Finished;
R :=1;
end if;
end loop;
end if;
Output_Block.Length := 0 - 1;
Put(Qutput, Output_Block);
end Merge;

205

procedure Mergesort (Unsorted, Sorted : in out List;

Parallel_Depth : in Natural) is
Block.1l, Block_ 2 : Block_Access;
Get_Past_End : Boolean;
Left, Sorted_Left : List (Unsorted.Block_Length);

Right, Sorted_Right : List (Unsorted.Block_Length);

begin
Get(Unsorted, Block_1, Get_Past_End);
if not Get_Past_End then
Get (Unsorted, Block_2, Get_Past_End);
if Get_Past_End then
Quicksort(Block_1.Data(l .. Block_1.Length));
Put(Sorted, Block_1);
else
Put(Left, Block_1); Put(Right, Block_2);
Split(Unsorted, Left, Right);
if Parallel Depth = 0 then
Mergesort(Left, Sorted_Left, 0);
Mergesort(Right, Sorted_Right, 0);
else
pragma Parallelizable_Sequence;
Mergesort(Left, Sorted_Left, Parallel_Depth - 1)
Mergesort(Right, Sorted Right, Parallel Depth - 1);
end if;
Merge(Sorted_Left, Sorted_Right, Sorted);
end if;
end if;
end Mergesort;

end Sorting;

206

B.3.4 Linked Lists with Single-Assignment Links

Declaration of Linked Lists with Single- Assignment Links

-~ Lists Generic Package Declaration (Single-Assignment Links)

with Ada.Finalization; use Ada.Finalization;
with Ada.Unchecked_Deallocation;

generic
type Element is private;
package Lists is

List_Error : exception;

type Elements is array (Integer range <>) of Element;

type Block (Block_Length : Positive) is
record
Data : Elements (1 .. Block_Length);
Length : Positive;
end record;
type Block_Access is access Block;

procedure Deallocate is new
Ada.Unchecked_Deallocation(
Object => Block, Name => Block_Access);

type List (Block_Length : Positive) is
new Limited_Controlled with private;

procedure Initialize (L : in out List);
procedure Finalize (L : in out List);
procedure Put (

L : in out List;

Item : in Block_Access);
procedure Close (L : in out List);

function End_0f_List (L : List) return Boolean;

procedure Get (
L : in out List;

207

Item : out Block_Access);

procedure Get (

L : in out List;
Item : out Block_Access;
Past_End : out Boolean);
private
type Node;

type Pointer is access Node;
type Single_Pointer is new Pointer;
pragma Single_Assignment(Single_Pointer);
type Node is
record
Item : Block_Access;
Next : Single_Pointer;

end record;
type List (Block_Length : Positive) is new Limited_Controlled with

record
Closed : Boolean;
Head : Pointer;
Tail : Pointer;

end record;

end Lists;

208

Definition of Linked Lists with Single-Assignment Links

-~ Lists Generic Package Body (Single-Assignment Links)

with Ada.Unchecked_Deallocation;

package body Lists is

procedure Deallocate is
new Ada.Unchecked_Deallocation(Object => Node, Name => Pointer);

procedure Initialize (L : in out List) is
begin

L.Closed := False;

L.Head := new Node;

L.Head.Item := null;

L.Tail := L.Head;
end Initialize;

procedure Finalize (L : in out List) is
P, Next : Pointer;

begin
P := L.Head;
while P /= L.Tail loop
Next := Pointer(P.Next);
Deallocate(P);
P := Next;
end loop;
Deallocate(P);
end Finalize;

procedure Put (
L : in out List;
Item : in Block_Access) is

New_Tail : Pointer;

begin
if L.Closed then
raise List_Error;
else
New_Tail := new Node;
New_Tail.Item := Item;
L.Tail.Next := Single_Pointer(New_Tail);

209

L.Tail := New_Tail;
end if;
end Put;

procedure Close (L : in out List) is
begin
if L.Closed then
raise List_Error;
else
L.Tail.Next := null;
L.Closed := True;
end if;
end Close;

function End_0f_List (L : List) return Boolean is
begin

return L.Head.Next = null;
end End_0f_List;

procedure Get (
L : in out List;
Item : out Block_Access) is

01d_Head, Head_Next : Pointer;

begin
Head_Next := Pointer(L.Head.Next);
if Head_Next = null then
raise List_Error;
else
01d_Head := L.Head;
L.Head := Head_Next;
Item := L.Head.Item;
Deallocate(01d_Head);
end if;
end Get;

procedure Get (

L . in out List;
Item : out Block_Access;
Past_End : out Boolean) is

01d_Head, Head_Next : Pointer;

begin
Head_Next := Pointer(L.Head.Next);
if Head_Next = null then

210

Past_End := True;
else
Past_End := False;
01d_Head := L.Head;
L.Head := Head_Next;
Item := L.Head.Item;
Deallocate(0ld_Head);
end if;
end Get;

end Lists;

211

B.3.5 Parallel Mergesort of a Linked List with Single-Assignment Links

Declaration of Parallel Mergesort of a Linked List with Single- Assignment Links

-- Generic Sorting Package Declaration (Parallel/Single-Assignment Links)

with Lists;

generic
type Element is private;
with function "<" (Left, Right : Element) return Boolean is <>;
with function "<=" (Left, Right : Element) return Boolean is <>;
with function ">" (Left, Right : Element) return Boolean is <>;
with function ">=" (Left, Right : Element) return Boolean is <>;
package Sorting is

package Element_Lists is new Lists (Element);
use Element_Lists;

procedure Mergesort (Unsorted, Sorted : in out List;

Parallel Depth : in Natural);
--| Requires:
-1 Closed(Unsorted) and not Closed(Sorted) and Empty(Sorted).
--| Ensures:

--1 Closed(Sorted) and
== Ascending(Sorted) and Permutation(Sorted, in Unsorted).

end Sorting;

212

Definition of Parallel Mergesort of a Linked List with Single-Assignment Links

~- Generic Sorting Package Body (Parallel/Single-Assignment Links)

with Assertions; use Assertions;
with System; use System;

package body Sorting is

procedure Insertion_Sort (Data : in out Elements) is

begin
for I in Data’First .. Data’last - 1 loop
declare
Temp : Element;
Pos : Integer range Data’Range;
begin
Temp := Data(I + 1);
Pos := Data’First;
for J in reverse Data’First .. I loop
if Temp < Data(J) then
Data(J + 1) := Data(J);
else
Pos := J + 1;
exit;
end if;
end loop;
Data(Pos) := Temp;
end;
end loop;

end Insertion_Sort;

procedure Swap (X, Y : in out Element) is
Temp : Element;

begin
Temp := X;
X :=Y;
Y := Temp;
end Swap;

procedure Partition (

Data : in out Elements;
Pivot_Index : out Integer) is
First : constant Integer := Data’First;
Last : constant Integer := Data’last;

Length : constant Integer := Last - First + 1;

Pivot_Value :
Left, Right :

begin

213

Element;
Integer range Data’Range;

Assert(Length >= 3);

Swap(Data(First + 1), Data((First + Last)/2));

if Data(First + 1) > Data(Last) then
Swap(Data(First + 1), Data(Last));

end if;

if Data(First) > Data(lLast) then
Swap(Data(First), Data(Last));

end if;

if Data(First + 1) > Data(First) then
Swap(Data(First + 1), Data(First));

end if;
Pivot_Value

:= Data(First);

Left := First + 1; Right := Last;

loop

Left := Left + 1;
wvhile Data(Left) < Pivot_Value loop

Left
end loop;

Left + 1;

Right := Right - 1;
while Data(Right) > Pivot_Value loop

Right
end loop;

:= Right - 1;

exit when Right < Left;
Swap(Data(Left), Data(Right));

end loop;
Data(First)
Data(Right)
Pivot_Index
Assert(First
end Partition;

Data(Right);
Pivot_Value;

[

]

:= Right;

<= Pivot_Index and Pivot_Index <= Last);

Base_Length : constant Positive := 16;

procedure Quicksort (Data : in out Elements) is

First : constant Integer :
Last : constant Integer :
Length : constant Integer :

begin

Data’First;
Data’last;
Last - First + 1;

t

Assert(2 <= Base_Length);
if Length <= Base_Length then
Insertion_Sort(Data);

else
declare

Pivot_Index : Integer range Data’Range;

begin

214

Partition(Data, Pivot_Index);
Quicksort(Data(First .. Pivot_Index - 1));
Quicksort (Data(Pivot_Index + 1 .. Last));
end;
end if;
end Quicksort;

procedure Split (Input, Left, Right : in out List) is

Block : Block_Access;
Finished : Boolean;

begin
Get (Input, Block, Finished);
while not Finished loop
Put(Left, Block);
Get(Input, Block, Finished);
if not Finished then
Put(Right, Block);
Get (Input, Block, Finished);
end if;
end loop;
Close(Left); Close(Right);
end Split;

procedure Merge (Left, Right, Output : in out List) is

Left_Finished, Right_Finished : Boolean;
Left_Block, Right_Block, Output_Block : Block_Access;
L, R, 0 : Natural;

begin
Assert(not (End_0f_List(Left) and End_0f_List(Right)));
Get(Left, Left_Block, Left_Finished);
Get(Right, Right_Block, Right_Finished);
Qutput_Block := new Block (Output.Block_length);
L:=1; R :=1; 0 :=1;
Assert(not (Left_Finished and Right_Finished));
if not (Left_Finished or Right_Finished) then
loop
if 0 > Output.Block_Length then
Output_Block.Length := Output.Block Length;
Put (Output, Output_Block);
Output_Block := new Block (Output.Block_ length);
0 :=1;
end if;
if Left_Block.Data(L) <= Right_Block.Data(R) then
Output_Block.Data(0) := Left_Block.Data(L);
0:=0+1; L :=L+1;
if L > Left_Block.Length then
Deallocate(Left_Block);

215

Get(Left, Left_Block, Left_Finished);
exit when Left_Finished;
L :=1;

end if;

else

Output_Block.Data(0) := Right_Block.Data(R);

0:=0+1; R :=R + 1;

if R > Right_Block.Length then
Deallocate(Right_Block);
Get (Right, Right_Block, Right_Finished);
exit when Right_Finished;

R :=1;
end if;
end if;
end loop;
end if;
if not Left_Finished then
loop

if 0 > Output.Block_Length then
Output_Block.Length := Output.Block_Length;
Put (Qutput, Output_Block);
Output_Block := new Block (Output.Block,length);
0 := 1;
end if;
Output_Block.Data(0) := Left_Block.Data(lL);
0:=0+1; L :=L+1;
if L > Left_Block.Length then
Deallocate(Left_Block);
Get(Left, Left_Block, Left_Finished);
exit when Left_Finished;
L :=1;
end if;
end loop;
else
loop
if 0 > Output.Block Length then
Qutput_Block.Length := Output.Block_Length;
Put (Output, Output_Block);
Output_Block := new Block (Output.Block_length);
0 := 1;
end if;
Dutput_Block.Data(0) := Right_Block.Data(R);
0:=0+1; R :=R + 1;
if R > Right_Block.Length then
Deallocate(Right_Block);
Get(Right, Right_Block, Right_Finished);
exit when Right_Finished;
R :=1;
end if;
end loop;
end if;
Output_Block.Length := 0 - 1;
Put (Output, Output_Block);
Close(Output);
end Merge;

216

procedure Mergesort (Unsorted, Sorted : in out List;
Parallel _Depth : in Natural) is

Block_1, Block_2 : Block_Access;

Get_Past_End : Boolean;

Left, Sorted Left : List (Unsorted.Block_Length);
Right, Sorted_Right : List (Unsorted.Block_Length);

begin
Get(Unsorted, Block_1, Get_Past_End);
if Get_Past_End then
Close(Sorted);
else
Get(Unsorted, Block_2, Get_Past_End);
if Get_Past_End then
Quicksort(Block_1.Data(1 .. Block_1.Length));
Put(Sorted, Block_1);
Close(Sorted) ;
else
Put(Left, Block_1); Put(Right, Block.2);
Split(Unsorted, Left, Right);
if Parallel Depth = O then
Mergesort(Left, Sorted_Left, 0);
Mergesort(Right, Sorted_Right, 0);
Merge(Sorted_Left, Sorted_Right, Sorted);
else
pragma Parallelizable_Sequence;
Mergesort(Left, Sorted_Left, Parallel Depth - 1);
Mergesort(Right, Sorted_Right, Parallel_Depth - 1);
pragma Priority(Default Priority + Parallel Depth);
Merge(Sorted_Left, Sorted Right, Sorted);
end if;
end if;
end if;
end Mergesort;

end Sorting;

217

B.4 LU Factorization
B.4.1 Sequential LU Factorization

Declaration of Sequential LU Factorization

-- LU_Factorization Package Declaration (Sequential)

package LU_Factorization is

type Matrix is array (Integer range <>,
Integer range <>) of Float;

procedure LU_Factorize (A : in Matrix; LU : out Matrix);
--| Requires:

-1 A’Length > 0 and Square(A) and

--1 Nonsingular(A) and Same_Bounds(LU, A).

~--| Ensures:
- Unit_Lower_Triangle(LU)*Upper_Triangle(LU) = A.

end LU_Factorization;

218

Definition of Sequential LU Factorization

-~ LU_Factorization Package Body (Sequential)

with Assertions; use Assertions;

package body LU_Factorization is

procedure LU_Factorize (A : in Matrix; LU : out Matrix) is

begin
Assert(A’Length > 0);
Assert(A’First(1) = A’First(2) and A’Last(l) =
Assert (LU’First(1) A’First(1) and LU’Last(1)
Assert (LU’First(2) = A’First(2) and LU’Last(2)
for I in LU’Range loop
for J in LU’First .. I - 1 loop

declare

Sum : Float;
begin

Sum := 0.0;

for K in LU’First .. J - 1 loop
Sum := Sum + LU(I, K)*LU(K, I);

end loop;
LUCI, 3) := (A(I, J) - Sum)/LU(J, I);
end;
end loop;
for J in I .. LU’Last loop
declare
Sum : Float;
begin
Sum := 0.0;

for K in LU’First .. I - 1 loop
Sum := Sum + LU(I, K)*LU(K, J);

end loop;
LUCI, J) := A(I, J) - Sum;
end;
end loop;
end loop;

end LU_Factorize;

A’Last(2));

A’Last(1));
A’Last(2));

end LU_Factorization;

219

B.4.2 Parallel LU Factorization using Barriers

Declaration of Barriers

-~ Barriers Package Declaration

package Barriers is

protected type Barrier (Num_Threads : Positive) is
entry Reach_Barrier;
entry Pass_Barrier;

private
All_Reached : Boolean := False;
All_Passed : Boolean := True;

Count : Natural := O;
end Barrier;

procedure At_Barrier (B : in out Barrier);

end Barriers;

Definition of Barriers

-- Barriers Package Body

package body Barriers is

protected body Barrier is
entry Reach Barrier when All_Passed is
begin
Count := Count + 1;
if Count = Num_Threads then
Al11_Reached := True;
All_Passed := False;
Count := 0;
end if;
end Reach_Barrier;
entry Pass_Barrier when All_Reached is
begin
Count := Count + 1;
if Count = Num_Threads then
Al11_Passed := True;
411 _Reached := False;
Count := 0;
end if;
end Pass_Barrier;
end Barrier;

procedure At_Barrier (B : in out Barrier) is

220

begin
B.Reach_Barrier;
B.Pass_Barrier;

end At_Barrier;

end Barriers;

221

Declaration of Parallel LU Factorization using Barriers

-~ LU_Factorization Package Declaration (Parallel/Barriers)

package LU_Factorization is

type Matrix is array (Integer range <>,
Integer range <>) of Float;

procedure LU_Factorize (A :in Matrix;
LU : out Matrix;
Num_Threads : in Positive);
-~| Requires:

~=| A’Length > 0 and Square(4) and

-] Nonsingular(A) and Same_Bounds(LU, A) and

-1 Num_Threads <= A’Length.

--| Ensures:

-~ Unit_Lower_Triangle(LU)*Upper_Triangle(LU) = A.

end LU_Factorization;

222

Definition of Parallel LU Factorization using Barriers

-~ LU_Factorization Package Body (Parallel/Barriers)

with Assertions; use Assertions;
with Barriers; use Barriers;

package body LU_Factorization is

procedure LU Factorize (A : in Matrix;
LU : out Matrix;
Num_Threads : in Positive) is

function Split (First, Last, T : Integer) return Integer is
begin
return First + Integer(
(Float(T)/Float(Num_Threads))*Float(Last - First + 1));
end Split;

B : Barrier(Num_Threads);

begin
Assert(A’Length > 0);
Assert(A’First(1) = A’First(2) and A’Last(1) = A’Last(2));
Assert (LU’First(1) = A’First(1) and LU’Last(1) A’Last(1));
Assert(LU’First(2) = A’First(2) and LU’Last(2) = A’Last(2));
Assert(Num_Threads <= A’Length);
parfor T in O .. Num Threads - 1 loop
for I in LU’Range loop
for J in Split(I, LU’Last, T)
Split(I, LU’Last, T + 1) - 1 loop

H

i

declare

Sum : Float;
begin

Sum := 0.0;

for K in LU’First .. I - 1 loop
Sum := Sum + LU(I, K)*LU(K, J);
end loop;
LU(I, J) := A(I, J) - Sum;
end;
end loop;
At_Barrier(B);
for J in Split(I + 1, LU’Last, T)
Split(I + 1, LU’Last, T + 1) - 1 loop

declare

Sum : Float;
begin

Sum := 0.0;

for K in LU’First .. I - 1 loop

Sum := Sum + LU(J, K)*LU(K, I);
end loop;
Lu(J, 1) := (AQJ, I) - Sum)/LU(I, I);

223

end;
end loop;
At_Barrier(B);
end loop;
end loop;
end LU_Factorize;

end LU_Factorization;

224

B.4.3 Parallel LU Factorization using Single-Assignment Flags

Declaration of Single-Assignment Flags

-- Flags Package Declaration

package Flags is
type Flag is limited private;
procedure Set (F : out Flag);
procedure Check (F : in Flag);
private

type Flag is (Set);
pragma Single_Assignment(Flag);

end Flags;

Definition of Single-Assignment Flags

-~ Flags Package Body

package body Flags is

procedure Set (F : out Flag) is
begin

F := Set;
end Set;

procedure Check (F : in Flag) is
begin

if F = Set then null; end if;
end Check;

end Flags;

225

Declaration of Parallel LU Factorization using Single- Assignment Flags

-~ LU_Factorization Package Declaration (Parallel/Single-Assignment Flags)

package LU_Factorization is

type Matrix is array (Integer range <>,
Integer range <>) of Float;

procedure LU_Factorize (A : in Matrix;
LU : out Matrix;
Num_Blocks : in Positive;
Num_Threads : in Positive);
--| Requires:

-1 A’Length > O and Square(A) and

-1 Nonsingular(A) and Same_Bounds(LU, A) and

- | Num_Blocks <= A’Length and

-~ Num_Threads <= Num_Blocks*Num_Blocks.

~--| Ensures:

-] Unit_Lower_Triangle(LU)*Upper_Triangle(LU) = A.

end LU_Factorization;

226

Definition of Parallel LU Factorization using Single- Assignment Flags

-- LU_Factorization Package Body (Parallel/Single-Assignment Flags)

with Assertions; use Assertions;
with Flags; use Flags;

package body LU_Factorization is

function Min (Left, Right : Integer) return Integer
renames Integer’Min;

function Max (Left, Right : Integer) return Integer
renames Integer’Max;

procedure LU_Factorize (A : in Matrix;
LU : out Matrix;
Num_Blocks : in Positive;
Num_Threads : in Positive) is

function Start (I : Integer) return Integer is
begin
return LU’First +
Integer ((Float(I)/Float(Num_Blocks))*Float(LU’Length));
end Start;

B : Integer;
R, C : array (0 .. Num_Blocks*Num_Blocks - 1) of Integer;
Done : array (-1 .. Num_Blocks - 1, -1 .. Num_Blocks -~ 1) of Flag;

begin

Assert(A’Length > 0);
Assert(A’First(1) = A’First(2) and A’Last(1) = A’Last(2));
Assert(LU’First(1) A’First(1) and LU’Last(1) A’Last(1));
Assert (LU’First(2) = A’First(2) and LU’Last(2) A’Last(2));
Assert(Num_Blocks <= A’Length);
Assert (Num_Threads <= Num_Blocks*Num_Blocks);
B := 0;
for I in O .. Num_Blocks —~ 1 loop

for J in I .. Num_Blocks - 1 loop

R(B) :=1I; C(B) :=J; B :=B + 1;
end loop;
for J in I + 1 .. Num_Blocks - 1 loop
R(B) J; C(B) :=1I; B :=B+1;

end loop;
end loop;
for I in O .. Num_Blocks - 1 loop

Set(Done(-1, I)); Set(Done(I, -1));
end loop;
pragma Parallelizable_Loop(Num_Threads, Pattern => On_Demand);

fl
i

]

227

for B in 0 .. Num_Blocks*Num_Blocks - 1 loop
Check(Done(R(B), Min(R(B), C(B) - 1)));
Check(Done(Min(C(B), R(B) - 1), C(B)));
for I in Start(R(B)) .. Start(R(B) + 1) - 1 loop
for J in Start(C(B)) .. Min(Start(C(B) + 1), I) - 1 loop

declare

Sum : Float;
begin

Sum := 0.0;

for K in LU’First .. J - 1 loop
Sum := Sum + LU(I, K)*LU(K, J);

end loop;
LU(I, 5 := (AT, I - Sum)/LUW, 1)
end;
end loop;
for J in Max(Start(C(B)), I) .. Start(C(B) + 1) - 1 loop
declare
Sum : Float;
begin
Sum := 0.0;

for K in LU’First .. I - 1 loop
Sum := Sum + LU(I, K)*LU(K, J);
end loop;
LUCI, J) := A(I, J) - Sum;
end;
end loop;
end loop;
Set(Done(R(B), C(B)));
end loop;
end LU_Factorize;

end LU_Factorization;

228

Bibliography

(1]

2]

W. B. Ackerman and J. B. Dennis. VAL—a value-oriented algorithmic language: Pre-
liminary reference manual. Technical Report TR-218, MIT Laboratory for Computer
Science, Cambridge, Massachusetts, June 1979.

William B. Ackerman. Data flow languages. IEEE Computer, 15(2):15-25, February
1982.

Ada 95 Reference Manual. International Organization for Standardization, January
1995. International Standard ANSI/ISO/IEC-8652:1995.

Eugene Albert, Joan D. Lukas, and Guy L. Steele, Jr. Data parallel computers and the
FORALL statement. Journal of Parallel and Distributed Computing, 13(2):185-192,
October 1991.

George S. Almasi and Allan Gottlieb. Highly Parallel Computing. Benjamin/Cum-
mings, Redwood City, California, second edition, 1994.

American National Standards Institute, Inc. The Programming Language Ada Refer-
ence Manual. Springer-Verlag, Berlin, Germany, 1983. ANSI/MIL-STD-1815A.

Christiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu, Ra-
makrishnan Rajamony, Weimin Yu, and Willy Zwaenepoel. Treadmarks: Shared
memory on networks of workstations. IEEE Computer, 29(2):18-28, February 1996.

Gregory R. Andrews. Concurrent Programming: Principles and Practice. Ben-

jamin/Cummings, Redwood City, California, 1991.

Arvind, K. P. Gostelow, and W. Plouffe. An asynchronous programming language
and computing machine. Technical Report TR-114a, Department of Information and

Computer Science, University of California, Irvine, December 1978.

[10]

[11]

[12]

[13]

(14]

[16]

(17]

[18]

[19]

[20]

229

John Backus. Can programming be liberated from the von Neumann style? a func-
tional style and its algebra of programs. Communications of the ACM, 21(8):613-641,
August 1978. 1977 ACM Turing Award Lecture.

Henri. E. Bal, Jennifer. G. Steiner, and Andrew. S. Tanenbaum. Programming lan-
guages for distributed computing systems. ACM Computing Surveys, 21(3):261-322,
September 1989.

Utpal Banerjee, Rudolf Eigenmann, Alexandru Nicolau, and David A. Padua. Au-
tomatic program parallelization. Proceedings of the IEEE, 81(2):211-243, February
1993.

Forest Baskett and Alan Jay Smith. Interference in multiprocessor systems with
interleaved memory. Communications of the ACM, 19(6):327-334, June 1976.

Guy E. Blelloch. Programming parallel algorithms. Communications of the ACM,
39(6):85-97, March 1996.

Guy E. Blelloch, Jonathan C. Hardwick, Jay Sipelstein, Marco Zagha, and Siddhartha
Chatterjee. Implementation of a portable nested data-parallel language. Journal of

Parallel and Distributed Computing, 21(1):4-14, April 1994.

William Blume, Rudolf Eigenmann, Jay Hoeflinger, David Padua, Paul Petersen, and
Lawrence Rauchweger. Automatic detection of parallelism: A grand challenge for
high-performance computing. IEEE Parallel and Distributed Technology, 2(3):37-47,
Fall 1994.

F. W. Burton. Functional programming for concurrent and distributed computing.

The Computer Journal, 30(5):437-450, October 1987.

Ralph M. Butler and Ewing L. Lusk. Monitors, messages, and clusters: The p4
parallel programming system. Parallel Computing, 20(4):547-564, April 1994.

David Cann. Retire Fortran? A debate rekindled. Commaunications of the ACM,
35(8):81-89, August 1992.

K. Mani Chandy and Ian Foster. A notation for deterministic cooperating processes.

IEEE Transactions on Parallel and Distributed Systems, 6(8):863~871, August 1995.

[21]

[22]

23]

24]

[25]

[30]

[31]

230

K. Mani Chandy and Carl Kesselman. CC++: A declarative concurrent object ori-
ented programming language. Technical Report CS-TR-92-01, Computer Science De-
partment, California Institute of Technology, 1992.

K. Mani Chandy and Carl Kesselman. CC++: A declarative concurrent object-
oriented programming notation. In Gul Agha, Peter Wegner, and Akinori Yonezawa,
editors, Research Directions in Concurrent Object Oriented Programming, pages 281-

313. MIT Press, Cambridge, Massachusetts, 1993.

K. Mani Chandy and Stephen Taylor. A primer for Program Composition Notation.
Technical Report CS-TR-90-10, Computer Science Department, California Institute
of Technology, 1990.

K. Mani Chandy and Stephen Taylor. An Introduction to Parallel Programmaing.
Jones and Bartlett, Boston, Massachusetts, 1992.

Barbara Chapman, Hans Zima, and Piyush Mechrota. Extending HPF for advanced
data-parallel applications. IEEE Parallel and Distributed Technology, 2(3):59-70, Fall
1994.

A. Church and J. B. Rosser. Some properties of conversions. Transactions of the

American Mathematical Society, 39:472-482, 1936.

Keith Clark and Steve Gregory. PARLOG: Parallel programming in logic. Technical
Report DOC 84/4, Department of Computing, Imperial College, London, April 1983.

Keith Clark and Steve Gregory. PARLOG: Parallel programming in logic. ACM

Transactions on Programming Languages and Systems, 8(1):1-49, January 1986.

Mark J. Clement and Michael J. Quinn. Overlapping computations, communications

and 1/O in parallel sorting. Journal of Parallel and Distributed Computing, 28(2):162-
172, August 1995.

W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag, Berlin,
Germany, third edition, 1984.

Keith D. Cooper, Mary Hall, Ken Kennedy, and Linda Torczon. Interprocedural
analysis and optimization. Communications of Pure and Applied Mathematics, 48(9-

10):947-1003, September—October 1995.

32]

[38]

[39]

[40)

[41]

[42]

231

Keith D. Cooper, Mary W. Hall, Robert T. Hood, Ken Kennedy, Kathryn S. McKin-
ley, John M. Mellorcrummey, Linda Torczon, and Scott K. Warren. The Parascope
parallel programming environment. Proceedings of the IEEFE, 81(2):244-263, February
1993.

E. W. Dijkstra. Co-operating sequential processes. In F. Genuys, editor, Programming

Languages, pages 43-112. Academic Press, Inc., New York, New York, 1968.

Jack Dongarra, David Walker, et al. Special issue — MPI — a message-passing interface
standard. International Journal of Supercomputer Applications and High Performance

Computing, 8(3-4), Fall-Winter 1994.

R. Kent Dybvig. The SCHEME Programming Language. Prentice-Hall, Englewood
Cliffs, New Jersey, 1987.

D. J. Evans and N. Y. Yousif. Analysis of the performance of the parallel quicksort
method. BIT, 25:106-112, 1985.

J. T. Feo, editor. A Comparative Study of Parallel Programming Languages: The
Salishan Problems, volume 6 of Special Topics in Supercomputing. North-Holland,

Amsterdam, The Netherlands, 1992.

John T. Feo, David C. Cann, and Rodney R. Oldehoeft. A report on the Sisal language
project. Journal of Parallel and Distributed Computing, 10(4):349-366, December

1990.

Robert W. Floyd. Assigning meanings to programs. In Proceedings of a Symposium in
Applied Mathematics of the American Mathematical Society, pages 19-32. American
Mathematical Society, 1967.

High Performance Fortran Forum. High Performance Fortran language specifica-
tion/journal of development. Scientific Programming, 2(1-2), Spring and Summer

1993.

Tan Foster. Task parallelism and high-performance languages. IEEE Parallel and
Distributed Technology, 2(3):27-36, Fall 1994.

Tan Foster, Robert Olson, and Steven Tuecke. Productive parallel programming: The
PCN approach. Scientific Programming, 1(1):51-66, Fall 1992.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[53]

232

Tan Foster and Stephen Taylor. Strand: New Concepts in Parallel Programming.
Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

ITan Foster and Stephen Taylor. A compiler approach to scalable concurrent-program
design. ACM Transactions of Programming Languages and Systems, 16(3):577-604,
May 1994.

Ian T. Foster and K. Mani Chandy. Fortran M: A language for modular parallel
programming. Journal of Parallel and Distributed Computing, 26(1):24-35, April
1995.

Christine Fricker. On memory contention problems in vector multiprocessors. IEEE

Transactions of Computers, 44(1):92-105, January 1995.

Mike Galles and Eric Williams. Performance optimizations, implementation, and
verification of the SGI Challenge multiprocessor. In Proceedings of the 27th Annual
IEEE Conference on Systems Science, Architecture Volume, pages 134-144, Wailea,
Hawaii, January 4-7 1994.

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. Memory consistency and event ordering in scalable
shared-memory multiprocessors. In Proceedings of the 17th International Symposium

on Computer Architecture, pages 15-26, May 1990.

E. W. Giering, Frank Mueller, and T. P. Baker. Features of the GNU Ada runtime
library. In Proceedings of ACM TRI-Ada 94, pages 93-103, Baltimore, Maryland,
November 6-11 1994.

Ron Goldman and Richard P. Gabriel. Qlisp: Parallel processing in Lisp. IEEE
Software, pages 51-59, July 1989.

David Gries. The Science of Programming. Springer-Verlag, New York, New York,
1981.

Thomas Gross, David R. O’Hallaron, and Jaspal Subhlok. Task parallelism in a high
performance fortran framework. IEEE Parallel and Distributed Technology, 2(3):16—
26, Fall 1994.

Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao, and Mon-
ica S. Lam. Detecting coarse-grain parallelism using an interprocedural parallelizing

compiler. In Proceedings of Supercomputing 95, San Diego, December 3-8 1995.

[54]

[55]

[57]

[58]

[59]

[64]

[65]

233

Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems, 7(4):501-538, October
1985.

Philip J. Hatcher and Michael J. Quinn. Data-Parallel Programming on MIMD
Computers. Scientific and Engineering Computation. MIT Press, Cambridge, Mas-
sachusetts, 1991.

Philip J. Hatcher, Michael J. Quinn, Anthony J. Lapadula, Bradley K. Seevers, Ray J.
Anderson, and Robert R. Jones. Data-parallel programming on MIMD computers.
IEEE Transactions on Parallel and Distributed Systems, 2(3):377-383, July 1991.

W. Daniel Hillis. The Connection Machine. ACM Distinguished Dissertation. MIT
Press, Cambridge, Massachusetts, 1985.

W. Daniel Hillis and Guy L. Steele, Jr. Data parallel programming. Communications
of the ACM, 29(12):1170-1183, December 1986.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications of

the ACM, 12(10):576-583, October 1969.

C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,

21(8):666-677, August 1978.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood

Cliffs, New Jersey, 1985.

Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knap-
sack problem. Journal of the Association for Computing Machinery, 21(2):277-292,
April 1974.

Paul Hudak. Para-functional programming. [EFEE Computer, 19(8):60-71, August
1986.

Paul Hudak. Conception, evolution, and application of functional programming lan-

guages. ACM Computing Surveys, 21(3):359-411, September 1989.

Paul Hudak. Para-functional programming in Haskell. In Boleslaw K. Szymanski,
editor, Parallel Functional Languages and Compilers, pages 159-196. ACM Press,
New York, New York, 1991.

[66]

[67]

[68]

[74]

[75]

[77]

[78]

234

Paul Hudak, Simon Peyton Jones, Philip Wadler, et al. Report on the programming
language Haskell: A non-strict, purely functional language. ACM SIGPLAN Notices,
27(5), May 1992.

J. Hughes. Why functional programming matters. The Computer Journal, 32(2):98-
107, April 1989.

T. Ito and R. H. Halstead, Jr., editors. Parallel Lisp: Languages and Systems, volume
441 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, 1990.
Proceedings of US/Japan Workshop on Parallel Lisp.

Joseph JaJa and Pearl Y. Wang, editors. Special issue on data parallel algorithms
and programming. Journal of Parallel and Distributed Computing, 21(1), April 1994.

S. L. Peyton Jones. Parallel implementation of functional programming. The Com-
puter Journal, 32(2):175-186, April 1989.

J. L. W. Kessels. A conceptual framework for a nonprocedural programming language.
Communications of the ACM, 20(12):906-913, December 1977.

Donald E. Knuth. The Art of Computer Programming, Volume 1: Fundamenial
Algorithms. Addison-Wesley, Reading, Massachusetts, second edition, 1973.

Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Search-
ing. Addison-Wesley, Reading, Massachusetts, 1973.

C. Koelbel, D. Loveman, R. Schrieber, G. Steele, Jr., and M. Zosel. The High Per-
formance Fortran Handbook. MIT Press, Cambridge, Massachusetts, 1994.

Robert Kowalski. Algorithm = logic + control. Communications of the ACM,
22(7):424-436, July 1979.

Leslie Lamport. How to make a multiprocessor that correctly executes multiprocess

programs. IEEE Transactions on Computers, C-28(9):690-691, September 1979.

A. H. Land and A. Doig. An automatic method of solving discrete programming

problems. Econometrica, 28:495-520, 1960.

Per S. Laursen. Simple approaches to parallel branch and bound. Parallel Computing,

19(2):143-152, February 1993.

[79]

[80]

235

E. L. Lawler and D. E. Woods. Branch-and-bound methods: A survey. Operations
Research, 14(4):699-719, July-August 1966.

Jenq Kuen Lee and Dennis Gannon. Object oriented parallel programming experi-
ments and results. In Proceedings of Supercomputing ‘91, pages 273-282, Albuquerque,
New Mexico, November 18-22 1991.

Daniel E. Lenoski and Wolf-Dietrich Weber. Scalable Shared-Memory Multiprocessing.

Morgan Kaufmann, San Francisco, California, 1995.

Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM

Transactions on Computer Systems, 7(4):321-359, November 1989.

David J. Lilja. Cache coherence in large-scale shared-memory multiprocessors: Issues

and comparisons. ACM Computing Surveys, 25(3):303-338, September 1993.

John D. C. Little, Kalta G. Murty, Dura W. Sweeney, and Caroline Karel. An al-
gorithm for the traveling salesman problem. Operations Research, 11(6):972-989,
November—December 1963.

W. Loots and T. H. C. Smith. A parallel algorithm for the 0-1 knapsack problem.
International Journal of Parallel Programming, 21(5):349-362, October 1992.

David May. Occam. ACM SIGPLAN Notices, 17(4):69-79, April 1983.

J. R. McGraw, S. Allan, J. Glauert, and I. Dobes. SISAL: Streams and iteration in
a single-assignment language, language reference manual. Technical Report M-146,

Lawrence Livermore National Laboratory, 1983.

James R. McGraw. The VAL language: Description and analysis. ACM Transactions
on Programming Languages and Systems, 4(1):44-82, January 1982.

G. P. McKeown, V. J. Rayward-Smith, and S. A. Rush. Parallel branch-and-bound.
In Lydia Kronsjé and Dean Shumsheruddin, editors, Advances in Parallel Algorithms,

chapter 5, pages 111-150. Halsted Press, John Wiley and Sons, New York, 1992.

Michael Metcalf and John Reid. Fortran 90 Ezplained. Oxford University Press,
Oxford, Great Britain, 1990.

Robin Milner, Mads Tofte, and Robin Harper. The Definition of Standard ML. MIT
Press, Cambridge, Massachusetts, 1990.

[92]

(93]

(94]

[99]

[100)

[101]

[102]

[103]

236

L. G. Mitten. Branch-and-bound methods: General formulation and properties. Op-
erations Research, 18(1):24-34, January-February 1970.

Greg Nelson, editor. Systems Programming with Modula-3. Innovative Technology.

Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

Ridhiyur S. Nikhil and Arvind. Id: a language with implicit parallelism. In J. T. Feo,
editor, A Comparative Study of Parallel Programming Languages: The Salishan Prob-
lems, volume 6 of Special Topics in Supercomputing, pages 169-215. North-Holland,
Amsterdam, The Netherlands, 1992.

David A. Padua and Michael J. Wolfe. Advanced compiler optimizations for super-
computers. Communications of the ACM, 29(12):1184-1201, December 1986.

Cherri M. Pancake. Multithreaded languages for scientific and technical computing.
Proceedings of the IEEE, 81(2):288-304, February 1993.

Draft Standard for Information Technology - Portable Operating Systems Interface
(POSIX). IEEE, September 1994. P1003.4a/D10.

William H. Press, Saul A Teukolsky, William T. Vetterling, and Brian P. Flannery,

editors. Numerical Recipes in C. Cambridge University Press, Cambridge, Great

Britain, second edition, 1992.

Michael J. Quinn. Analysis and implementation of branch-and-bound algorithms on a

hypercube multicomputer. IEEE Transactions on Computers, 39(3):384-387, March
1990.

Michael J. Quinn and Philip J. Hatcher. Data-parallel programming on multicom-

puters. IEEE Software, pages 69-76, September 1990.

Martin C. Rinard, Daniel J. Scales, and Monica S. Lam. Jade: A high-level, machine-
independent language for parallel programming. IEEE Computer, 26(6):28-38, June
1993.

John R. Rose and Guy L. Steele, Jr. C*: An extended C language for data parallel
programming. In Proceedings of the Second International Conference on Supercom-

puting, volume 2, pages 2-16, May 1987.

Joel Saltz, Harry Berryman, and Janet Wu. Multiprocessors and run-time compila-

tion. Concurrency: Practice and Ezperience, 3(6):573-592, December 1991.

[104]

[105)

[106]

[107]

[108]

[109)

[110]

[111]

[112)

[113]

[114)

[115)

[116]

237

Daniel J. Scales and Monica S. Lam. The design and evaluation of a shared object
system for distributed memory machines. In Proceedings of the First Symposium

on Operating Systems Design and Implementation, Monterey, California, November

14-17 1994.

Edmond Schonberg and Bernard Banner. The GNAT project: A GNU-Ada 9X
compiler. In Proceedings of ACM TRI-Ada 94, pages 48-57, Baltimore, Maryland,
November 6-11 1994.

Robert Sedgewick. Implementing quicksort programs. Communications of the ACM,
21(10):847-857, October 1978.

Robert Sedgewick. Algorithms. Addison-Wesley, Reading, Massachusetts, second
edition, 1988.

Symmetric multiprocessing. Technical report, Silicon Graphics, Inc., 1994.

Ehud Shapiro. A subset of Concurrent Prolog and its interpreter. Technical Report
TR-003, ICOT, Institute for New Generation Computer Technology, Tokyo, Japan,
1983.

Ehud Shapiro. Concurrent Prolog: A progress report. IEEE Computer, 19(8):44-58,
August 1986.

Ehud Shapiro, editor. Concurrent Prolog: Collected Papers, volume 1. MIT Press,
Cambridge, Massachusetts, 1987,

Ehud Shapiro, editor. Concurrent Prolog: Collected Papers, volume 2. MIT Press,
Cambridge, Massachusetts, 1987.

Ehud Shapiro. The family of concurrent logic programming languages. ACM Com-
puting Surveys, 21(3):413-510, September 1989.

Hanmao Shi and Jonathon Schaeffer. Parallel sorting by regular sampling. Journal
of Parallel and Distributed Computing, 14(4):361-372, April 1992.

Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Don-
garra. MPI: The Complete Reference. MIT Press, Cambridge, Massachusetts, 1995.

Richard Stallman. Using and Porting GNU GCC. Free Software Foundation, Cam-
bridge, Massachusetts, 1994.

[117)

[118]

[119]

[120]

[121]

[122)

[123]

[124]

[125]

[126]

[127)

238

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,

Massachusetts, second edition, 1991.

Michael Stumm and Songnian Zhou. Algorithms implementing distributed shared
memory. IEEE Computer, 23(5):54-64, May 1990.

V. S. Sunderam, G. A. Geist, J. Dongarra, and R. Manchek. The PVM concur-
rent computing system: Evolution, experiences, and trends. Parallel Computing,
20(4):531-545, April 1994.

Boleslaw K. Szymanski, editor. Parallel Functional Languages and Compilers. ACM
Press, New York, New York, 1991.

Stephen Taylor. Parallel Logic Programming Technigques. Prentice Hall, Engelwood
Cliffs, New Jersey, 1989.

Stephen Taylor, Jerrell Watts, Marc Rieffel, and Michael Palmer. The concurrent
graph: Basic technology for irregular problems. IEEE Parallel and Distributed Tech-

nology, 1996.

L. G. Tesler and H. J. Enea. A language design for concurrent processes. In Proceedings
of the 1968 AFIPS Spring Joint Computer Conference, pages 403-408, Atlantic City,
New Jersey, April 30-May 2 1968.

John Thornley. Parallel programming with Declarative Ada. Technical Report CS-
TR-93-03, Computer Science Department, California Institute of Technology, 1993.

John Thornley. Integrating functional and imperative parallel programming: CC++
solutions to the Salishan problems. In Proceedings of the 8th IEEE International
Parallel Processing Symposium (IPPS ’94), pages 61-67, Canctin, Mexico, April 26~
29 1994.

John Thornley. Integrating parallel dataflow programming with the Ada tasking
model. In Proceedings of ACM TRI-Ada 94, pages 417-428, Baltimore, Maryland,
November 6-11 1994.

John Thornley. Declarative Ada: Parallel dataflow programming in a familiar context.
In Proceedings of the 23rd Annual ACM Computer Science Conference (CSC 95),
pages 73-80, Nashville, Tennessee, February 28-March 2 1995.

[128]

[129]

[130]

[131)

[132]

[133]

[134]

[135]

[136]

[137]

239

John Thornley. Performance of a class of highly-parallel divide-and-conquer algo-
rithms. Technical Report CS-TR-95-10, Computer Science Department, California
Institute of Technology, 1995.

John Thornley. Performance of a high-level parallel programming layer defined on top
of the Ada tasking model. In Proceedings of TRI-Ada ’95, pages 252-262, Anaheim,
California, November 5-10 1995.

Josep Torrellas, Monica S. Lam, and John L. Hennessy. False sharing and spatial
locality in multiprocessor caches. IEEE Transactions on Computers, 43(6):651-663,
June 1994.

D. A. Turner. The semantic elegance of applicative languages. In Proceedings of the
ACM Conference on Functional Programming Languages and Computer Architecture,

pages 85-92, Portsmouth, New Hampshire, October 1981.

Eric F. Van de Velde. Concurrent Scientific Computing. Springer-Verlag, New York,
New York, 1994.

A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, C. H. A. Koster, M. Sintzoft, C. H.
Lindsey, L. G. L. T. Meertens, and R. G. Fisker. Revised report on the algorithmic
language ALGOL 68. Acta Informatica, 5(1-3):1-236, 1975.

Paul G. Whiting and Robert S. V. Pascoe. A history of data-flow languages. IFEE
Annals of the History of Computing, 16(4):38-59, Winter 1994.

Niklaus Wirth. A note on “Program Structures for Parallel Processing”. Communi-
cations of the ACM, 9(5):320-321, May 1966.

Michael Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley,
Redwood City, California, 1996.

Myung K. Yang and Chita R. Das. Evaluation of a parallel branch-and-bound algo-

rithm on a class of multiprocessors. IEEE Transactions on Parallel and Distributed

Systems, 5(1):74-86, January 1994.

