Syntheses, Characterization and Reactivity of trans-Dioxorhenium(V) and -(VI) Complexes

Thesis by

John C. Brewer

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California
1991

(Submitted October 17, 1990)

People see only what they are prepared to see.

—RALPH WALDO EMERSON, Journals, 1863

Acknowledgments

I arrived at Caltech a stranger and now as I prepare to leave five years later, I realize I am truly fortunate to have met so many remarkable individuals. No human being could possibly survive this experience without the enduring support, love and companionship provided by friends and family. I think the least I can do is acknowledge those who have made my experience special here.

First I would like to thank Terry Collins for his enthusiasm and encouragement during my early Caltech years. The Collins group was indispensable in getting me started in my doctoral research. Yogi and Jeff Peake shared their scientific talents. Erich Uffleman was a source of many interesting chemistry discussions and good company on late-night donut runs to Winchell's. Brian Treco, in addition to being a caring friend, taught me the 'ins and outs' of problem solving and how to get information about anything. I would like to thank my 2nd floor neighbors, the infinitely goofy Al-Ray and Ged, for destroying serious moments when necessary (and often when unnecessary), all of the Hogs (including The Big Cheese) and Barb Burger for coffee-break company, and dinner treats. Barb you are my heroine.

Pixie (aka Miriam Zietlow), bless her heart, welcomed me with open arms into the Gray group and in addition to being my best bench-buddy ever, has left me with many fond memories of life off campus. Thanks Miriam, for bowling (and breakfast), Claro's, Santa Anita, Wednesday lunches, euchre (and dinners), for late-night visits to the Saw Mill, and for being such a considerate and thoughtful friend.

I would like to thank Tad Fox, David Smith, Jay Winkler, I-Jy Chang, and Vinny Miskowski for helpful discussions, Bob and Erica for sharing their points of view, Wayne, David, and Julia for bizarre moments. I would like to thank Ramy, for all of his help in and out of lab, and for sharing his infinite 'MacVice.' Mark McCleskey has been a good friend, the world's most patient travelling companion, a critical proofreader and a superb ligand-field tutor. Opie (aka Holden Thorp) has been a faithful friend, roommate, and

colleague. His scientific input has been invaluable and I hope we will have many more fruitful collaborations. Opie, you will soon be able to show me how one lives at the center of the universe.

The Gray group has had a continual stream of visitors who have also contributed to my progress at Caltech. I would like to thank Dave McMillin for interesting discussions, and Pat Sullivan for his boundless enthusiasm for chemistry, his "let's do it" attitude, and for hosting me during my visit to Chapel Hill.

I certainly owe a *great* deal to Harry Gray, who has demonstrated over and over again that it is possible to be a great scientist and a great person at the same time. Everyone who has had the privilege of working with him has been touched by his generosity and funloving approach to life. I am very grateful to have had many, many stimulating discussions with Harry (both with and without Old Weller). Thanks Harry, for all of the support, fun times, dinner treats, care and encouragement you have bestowed upon me. I promise I will keep an eye out for 'that truck.'

The support staff at Caltech deserve a special thanks: Dana, Paul, Jess, Larry, Kirby, and Dave Malerba shared their talents with me and helped my research move forward. Catherine, Fran, Virginia, Pat, and Beth have provided friendly assistance on a daily basis. I would like to thank Rhonda, Lori, John, Bruce, and especially Jeannette for considerate and sympathetic attention when I needed it.

Some of the best friendships evolve from sharing mealtime with others; I would thank Barry for breakfast, Jim for lunch, and Andy for dinner company and for being my close friends.

I was lucky to have had the opportunity to experience chemistry *en France* with Michèle and Yves Dartiguenave. I would like to thank them and the Dartiguenave group, especially Marie Alvarez, Eric Deydier, and Marie-Jöelle Menu (et Jean-François), for being wonderful hosts and for tolerating my rusty French. Madame LeClous provided all kinds of assistance and tasty treats on Sunday mornings. André and Philip were great

apartment mates during my stay; I sorely miss the late-evening trips to the Oxford Pub and Place du Capitol.

Scott, Todd and David were the best roommates one could possibly hope for. Scotty has been great company the last five years and I will miss him a great deal. Todd (with his 'kick-ass' drinks) and Val were always there to make sure I 'lightened-up' when I needed to.

I would like to thank Liz for all of the butt-bumping good times in the USA and Italy. Liz, the nine hours of hell in Milano Centrale were well worth it!

As my best friend, Marion defines perfection. I am indebted to her for many fond memories and for the continual support, love and encouragement she has unselfishly given me. She has been my family away from home.

I would like to thank my mom for all of her cheerful phone calls, her faithful letter writing (I figure at this point I am behind by about 52x5 responses), her love and her thoughtful surprises. My father is entirely responsible for nurturing my early scientific interests. Thanks Dad, for your unwavering patience as my childhood lab partner, from building ant farms, and short-wave radios, to climbing the 20-foot television mast to install weather instruments. I would like to thank my brother and sister for their love and concern throughout the years.

Of course, none of this would have been possible without financial support. I would like to thank Caltech for giving me a Blanche A. Mowrer fellowship during my first year, NATO for an exchange grant, and B. P. America for graduate fellowships.

to Mom, Dad, and Marion

Abstract

The synthesis, electronic structure and reactivity of *trans*-dioxorhenium(V) and -(VI) complexes have been examined in detail. An improved general synthesis of *trans*[ReO₂(L)₄]X complexes is presented. The amine complex [ReO₂(en)₂]I can be made in 90% yield from ReO₂(PPh₃)₂I and ethylenediamine in less than 15 minutes at room temperature. Refluxing methanol suspensions of ReO₂(PPh₃)₂I with 12-50 equivalents of electron-rich pyridines results in the formation of [ReO₂L₄]I compounds in 50 to 85% yield.

Systematic substituent studies reveal the influence of ancillary ligands on the physical properties of trans-[ReO₂(L)₄][PF₆] compounds. The Re(VI)/Re(V) redox couple is a linear function of pyridine ligand ΔpK_a : $E_{1/2}$ (ReVI/ReV) = $(0.96 + 0.21\Delta pKa)$ V vs. Fc+/Fc. The d_{xy}/d_{xz} , d_{yz} energy gap is also a linear function of pyridine ΔpK_a ; increasing the pyridine basicity lowers the energy of the $d_{xy} \rightarrow d_{xz}$, d_{yz} transition and the energy of the 3E_g (d_{xy})¹(d_{xz} , d_{yz})¹ excited state. The excited-state properties of trans-[ReO₂(L)₄][PF₆] pyridine complexes follow a trend consistent with the energy-gap law.

Strongly basic 4-dialkylaminopyridine ligands stabilize d^1 trans-dioxorhenium(VI) complexes. Analysis of the X-ray structure of trans-[ReO₂(dmap)₄]²⁺ shows that there is considerable shortening (0.04 Å) in the Re-N bond lengths relative to Re(V) analogues, but the Re-oxo bond lengths are virtually the same in both oxidation states. The EPR spectrum of the d^1 ion trans-[ReO₂(dmap)₄]²⁺ (dmap = 4-dimethylaminopyridine) has been measured in a 50% DMSO/H₂O glass at 7 K. Analysis of the spectrum gives $g_{\perp} = 1.91$, $A_{\perp} = 0.031$ cm⁻¹, $g_{\parallel} = 1.83$, $A_{\parallel} = 0.060$ cm⁻¹, and $Q_z = 0.0075$ cm⁻¹. Because of the large quadrupole coupling, the forbidden ($\Delta M_I = \pm 1, \pm 2$) transitions are quite intense and some are stronger than the allowed ($\Delta M_I = 0$) transitions. Comparison of Q_z values and $d_{xy} \rightarrow d_{xz}$, d_{yz} transition energies for trans-[ReO₂(dmap)₄]²⁺ and related monooxo and mononitrido complexes confirms that the ligand-field splitting associated with the multiply bonded units increases in the order ReO⁴⁺ < ReO²⁺.

Table of Contents

Acknowledge	ments	iii
Dedication		vi
Abstract		vii
List of Figure	es	ix
List of Tables	3	xiii
List of Abbre	viations	xv
Chapter 1	Introduction and Background	1
Chapter 2	Synthetic Routes to trans-Dioxorhenium(V) Complexes	18
Chapter 3	Ground and Excited-State Properties of trans-Dioxorhenium(V)	45
	Complexes as a Function of Ancillary Ligand Identity	
Chapter 4	Synthesis, Characterization, and Electronic Structure of	141
	trans-Dioxorhenium(VI) Complexes	
Appendix 1	Infrared data for selected trans-[ReO ₂ (L) ₄]+ complexes	196
	and free ligands	
Appendix 2	Supplementary material for the X-ray crystal structure	233
	determination of trans-[ReO ₂ (dmap) ₄][PF ₆] ₂	

List of Figures

Chapter 1		
Figure 1.1	MO diagram for octahedral and square-pyramidal	5
	metal-oxo complexes.	
Figure 1.2	Modified Latimer diagrams for trans-[ReO ₂ (py) ₄]+and	12
	trans- $[OsO_2(tmc)]^{2+}$.	
Figure 1.3	MO description of the excited-state reaction course	14
	for trans- $[ReO_2(py)_4]^+$ and trans- $[OsO_2(tmc)]^{2+}$.	
Chapter 2		
Figure 2.1	Reaction mechanism likely for substitution reactions	39
	employing ReO ₂ (PPh ₃) ₂ I.	
Figure 2.2	Reaction mechanism likely for substitution reactions	41
	employing trans-[ReO ₂ (py) ₄] ⁺ .	
Chapter 3		
Figure 3.1	Cyclic voltammogram of trans-[ReO ₂ (4-Phpy) ₄]PF ₆	53
	in 0.1 M TBAH CH ₃ CN solution.	
Figure 3.2	Cyclic voltammogram of trans-[ReO ₂ (3-Medmap) ₄]PF ₆	55
	in 0.1 M TBAH CH ₃ CN solution.	
Figure 3.3	Cyclic voltammogram of free 4-dimethylaminopyridine	60
	in 0.1 M TBAH CH ₃ CN solution.	
Figure 3.4	UV-vis absorption spectra of trans-[ReO ₂ (py) ₄]PF ₆ (top) and	63
	free pyridine (bottom) in CH ₃ CN solution.	
Figure 3.5	UV-vis absorption spectra of trans-[ReO ₂ (4-Phpy) ₄]PF ₆ (top) and	65
	free 4-phenylpyridine (bottom) in CH ₃ CN solution.	
Figure 3.6	UV-vis absorption spectra of trans-[ReO ₂ (4-pic) ₄]PF ₆ (top) and	67
	free 4-picoline (bottom) in CH ₃ CN solution.	
Figure 3.7	UV-vis absorption spectra of trans-[ReO ₂ (3,5-lut) ₄]PF ₆ (top) and	69

	free 3,5-lunding (bottom) in CH ₃ CN solution.	
Figure 3.8	UV-vis absorption spectra of trans-[ReO ₂ (4-MeOpy) ₄]PF ₆ (top) and	71
	free 4-methoxypyridine (bottom) in CH ₃ CN solution.	
Figure 3.9	UV-vis absorption spectra of trans-[ReO ₂ (3-Medmap) ₄]PF ₆ (top) and	73
	free 3-methyl-4-dimethylaminopyridine (bottom) in CH ₃ CN solution.	
Figure 3.10	UV-vis absorption spectra of trans-[ReO2(dmap)4]PF6 (top) and	75
	free 4-dimethylaminopyridine (bottom) in CH ₃ CN solution.	
Figure 3.11	UV-vis absorption spectra of trans-[ReO ₂ (4-pyrrpy) ₄]PF ₆ (top) and	77
	free 4-pyrrolidinopyridine (bottom) in CH ₃ CN solution.	
Figure 3.12	Room temperature emission spectrum <i>trans</i> -[ReO ₂ (3,5-lut) ₄][PF ₆]	79
	in CH ₃ CN solution.	
Figure 3.13	UV-vis absorption spectra of trans-[ReO ₂ (py) ₃ (PPh ₃)]I (top) and	83
	free PPh ₃ (bottom) in CH ₃ CN solution.	
Figure 3.14	Room temperature emission spectrum of a solid sample	85
	of trans-[ReO ₂ (py) ₃ PPh ₃]I.	
Figure 3.15	Low temperature (77 K) emission spectrum of a solid sample	87
	of trans-[ReO ₂ (py) ₃ PPh ₃]I.	
Figure 3.16	UV-vis absorption spectra of trans-[ReO ₂ (diphos) ₂][PF ₆] (top)	89
	and free diphos (bottom) in CH ₃ CN solution.	
Figure 3.17	UV-vis absorption spectra of trans-[ReO ₂ (dppen) ₂][PF ₆] (top)	91
	and free dppen (bottom) in CH ₃ CN solution.	
Figure 3.18	TA spectrum of trans-[ReO ₂ (4-Phpy) ₄][PF ₆] in CH ₃ CN solution.	94
Figure 3.19	TA spectrum of trans-[ReO ₂ (4-MeOpy) ₄][PF ₆] in CH ₃ CN solution.	96
Figure 3.20	TA spectrum of trans-[ReO ₂ (3-Medmap) ₄][PF ₆] in CH ₃ CN solution.	98
Figure 3.21	TA spectrum of trans-[ReO ₂ (dmap) ₄][PF ₆] in CH ₃ CN solution.	100
Figure 3.22	Plot of E _{1/2} Re(VI)/Re(V) for trans-[ReO ₂ (L) ₄]PF ₆ pyridine	102
	complexes vs. ΔpK_a of free ligand L.	

Figure 3.23	Time-lapse UV-vis absorption spectrum of the decomposition of	107
	trans-[ReO ₂ (4-MeOpy) ₄] ²⁺ back to $trans$ -[ReO ₂ (4-MeOpy) ₄] ⁺ ,	
	0.1 M TBAH CH ₃ CN solution.	
Figure 3.24	MO diagram for trans-[ReO ₂ (L) ₄]+ complexes.	109
Figure 3.25	Plot of ${}^1A_{1g}[(b_{2g})^2] \to {}^1E_g[(b_{2g})^1(e_g)^1]$ and MLCT transitions for	112
	trans-[ReO ₂ (L) ₄]+ pyridine complexes as a function of Δ pK _a of free I	٠.
Figure 3.26	Energetically proximal π - and π *-orbitals of the pyridine ligand.	116
Figure 3.27	Linear combinations of the pyridine π^* -orbitals relevant to the	118
	$d_{xy} \rightarrow \pi^*$ MLCT transition in <i>trans</i> -[ReO ₂ (L) ₄][PF ₆] compounds.	
Figure 3.28	UV-vis spectrum of trans-[ReO ₂ (py) ₄]I in 5:1 CH ₃ OH/CH ₃ CH ₂ OH	124
	glass at 77 K.	
Figure 3.29	Ultraviolet spectra of trans-[ReO ₂ (en) ₂]PF ₆ (top) and	126
	trans-K ₃ [ReO ₂ (CN) ₄] (bottom) in dilute aqueous solution.	
Figure 3.30	MO diagram describing the interaction of the rhenium d_{xy} orbital	130
	with the π^* levels on the pyridine ligand (after ref 45).	
Figure 3.31	Plot of $ln(1/\tau_0)$ vs. E_{em} for luminescent trans-[ReO ₂ (L) ₄] ⁺	133
	pyridine complexes.	
Chapter 4		
Figure 4.1	UV-vis absorption spectra of trans-[ReO ₂ (dmap) ₄][PF ₆] ₂ (top)	151
	and trans-[ReO ₂ (dmap) ₄][PF ₆] (bottom) in CH ₃ CN solution.	
Figure 4.2	MO diagram for trans-[ReO ₂ (L) ₄]+ complexes.	155
Figure 4.3	An ORTEP diagram for trans-[ReO ₂ (dmap) ₄][PF ₆] ₂ .	163
Figure 4.4	Atomic numbering scheme used for the trans-[ReO ₂ (dmap) ₄][PF ₆] ₂	165
	structure determination.	
Figure 4.5	A view down the O=Re=O axis of the trans-[ReO ₂ (dmap) ₄] ²⁺	167
	molecule.	
Figure 4.6	The unit cell of trans-[ReO ₂ (dmap) ₄][PF ₆] ₂ structure.	169

Figure 4.7	Important resonance structures for the dmap ligand.		174
Figure 4.8	(A) EPR spectrum at 7 K of [ReO ₂ (dmap) ₄](PF ₆) ₂ (~10 μ M)		177
	in 50% DMSO.		
	(B) Simulated spectrum.		
Figure 4.9	Proposed mechanism of alcohol electrooxidation by		186
	trans- $[ReO_2(py)_4]^{2+}$.		
Figure 4.10	Proposed mechansim of base-induced self-reduction of [Ru(bpy)3]]3+	188
Appendix 1			196
Figure A1.1	IR spectrum of trans-[ReO ₂ (py) ₄][PF ₆].	197-	-198
Figure A1.2	IR spectrum of trans-[ReO ₂ (py) ₄]I.	199-	-200
Figure A1.3	IR spectrum of trans-[ReO ₂ (4-Phpy) ₄][PF ₆].	201-	-202
Figure A1.4	IR spectrum of trans-[ReO ₂ (4-pic) ₄][PF ₆].	203-	-204
Figure A1.5	IR spectrum of trans-[ReO ₂ (3,5-lut) ₄][PF ₆].	205	-206
Figure A1.6	IR spectrum of trans-[ReO ₂ (4-MeOpy) ₄][PF ₆].	207-	-208
Figure A1.7	IR spectrum of trans-[ReO ₂ (3-Medmap) ₄][PF ₆].	209-	-210
Figure A1.8	IR spectrum of trans-[ReO ₂ (dmap) ₄][PF ₆].	211-	-212
Figure A1.9	IR spectrum of trans-[ReO ₂ (4-pyrrpy) ₄][PF ₆].	213-	214
Figure A1.10	IR spectrum of trans-[ReO ₂ (dmap) ₄][PF ₆] ₂ .	215-	216
Figure A1.11	IR spectrum of trans-[ReO ₂ (py) ₃ (PPh ₃)]I.	217-	218
Figure A1.12	IR spectrum of trans-[ReO ₂ (diphos) ₂][PF ₆]•toluene.	219-	220
Figure A1.13	IR spectrum of diphos.	221-	222
Figure A1.14	IR spectrum of trans-[ReO ₂ (dppen) ₂][PF ₆].		223
Figure A1.15	IR spectrum of dppen.		224
Figure A1.16	IR spectrum of trans-[ReO ₂ (en) ₂][PF ₆].	225-	226
Figure A1.17	IR spectrum of PPh ₃ .	227-	228
Figure A1.18	IR spectrum of O=PPh ₃ .	229-	230
Figure A1.19	IR spectrum of 4-MeOpy.	231-	232

List of Tables

Cha	pter	3
\sim 114	DUCE	•

Table 3.1	Formal potentials of the Re(VI)/Re(V) couple for	51
	trans-[ReO ₂ (L) ₄]PF ₆ pyridine complexes in 0.1 M TBAH CH ₃ CN	
	solution.	
Table 3.2	Position of the asymmetric O=Re=O stretch for trans-[ReO ₂ (L) ₄]+	58
	pyridine and phosphine complexes.	
Table 3.3	Luminescence properties of trans-[ReO ₂ (L) ₄][PF ₆] pyridine	80
	complexes in CH ₃ CN solution at room temperature.	
Table 3.4	Summary of emission peak maxima for the 77 K spectrum of	81
	trans-[ReO ₂ (py) ₃ (PPh ₃)][PF ₆] (uncorrected for spectrometer response)	١.
Table 3.5	Excited-state lifetime data for some trans-[ReO ₂ (L) ₄]PF ₆ pyridine	92
	complexes determined from TA measurements.	
Table 3.6	Band positions for the ${}^1A_{1g}[(b_{2g})^2] \rightarrow {}^1E_g[(b_{2g})^1(e_g)^1]$ transition for	105
	several trans-[ReO ₂ (L) ₄]+ complexes in aqueous solution.	
Table 3.7	UV-visible data for trans-[ReO ₂ (en) ₂]Cl, and trans-K ₃ [ReO ₂ (CN) ₄]	114
	in aqueous solution.	
Table 3.8	UV-vis data and assignments for trans-[ReO ₂ (L) ₄]PF ₆ pyridine	122
	complexes in CH ₃ CN solution.	
Table 3.9	UV data for pyridine and some pyridine derivatives (CH ₃ CN solution).	127
Chapter 4		
Table 4.1	Selected UV-vis absorption data of trans-[ReO ₂ (L) ₄][PF ₆] and	152
	trans-[ReO ₂ (L) ₄][PF ₆] ₂ complexes.	
Table 4.2	State energies for trans-[ReO ₂ (L) ₄][PF ₆] complexes in terms of	156
	1-e- MO energy differences and electron-electron repulsion energies.	
Table 4.3	Crystallographic data for trans-[ReO ₂ (dmap) ₄][PF ₆] ₂ .	158
Table 4.4	Final non-hydrogen parameters for trans-[ReO ₂ (dmap) ₄][PF ₆].	159

Table 4.5	Selected distances and angles for <i>trans</i> -[ReO ₂ (dmap) ₄][PF ₆] ₂ .	161
Table 4.6	Bond length data for dmap and dmap-like molecules obtained	172
	from other X-ray structure determinations.	
Table 4.7	EPR data for some Re(VI) complexes also containing π -bonds.	178
Table 4.8	MO coefficients for d_{xy} , (d_{xz}, d_{yz}) , and $d_x^2-y^2$ orbitals for some	181
	selected Re(VI) complexes.	
Table 4.9	Ruthenium(IV) oxo complexes that mediate electrooxidation of	183
	benzylalcohol.	
Table 4.10	Complexes that undergo self-reduction in basic solutions and	190
	their associated redox potentials.	
Appendix 2		233
Table A2.1	Crystal and Intensity Collection Data for	234
	trans-[ReO ₂ (dmap) ₄][PF ₆] ₂ .	
Table A2.2	Anisotropic Thermal Displacement Parameters x 10 ⁴ for	235
	trans- $[ReO_2(dmap)_4][PF_6]_2$.	
Table A2.3	Assigned Hydrogen Parameters for trans-[ReO ₂ (dmap) ₄][PF ₆] ₂ .	236
Table A2.4	Complete Distances and Angles for <i>trans</i> -[ReO ₂ (dmap) ₄][PF ₆] ₂ .	237-238
Table A2.5	Observed and Calculated Structure Factors for	239-254
	trans-[ReO ₂ (dmap) ₄][PF ₆] ₂ .	

List of Abbreviations

A associative (mechanism)

Å angstrom

anal. analysis

assign. assignment (NMR spectra)

asym asymmetric

atm atmosphere

bpy 2,2'-bipyridine

br broad

Bu butyl

C Celsius, coulomb

ca. approximately (circa; about)

cal calorie

calcd calculated

cb conjugate (counter) base

cf. compare

cm⁻¹ wavenumber(s)

concd concentrated

cont'd continued

cor corrected

CT charge transfer

CV cyclic voltammetry

D dissociative (mechanism)

d doublet (spectral)

 δ parts per million (NMR scale)

 Δ O.D. optical density change

diphos 1,2-bis(diphenylphosphino)ethane

dmap

4-dimethylaminopyridine

DMSO

dimethyl sulfoxide

DNA

deoxyribonucleic acid

dppen

1,2-bis(diphenylphosphino)ethene

Dq, Ds, Dt

cyrstal field splittings

e-

electron

ε

molar absorptivity

 $E_{1/2}$

half-wave potential

 $E_{(0-0)}$

electronic transition energy between two n = 0 vibrational levels

е Å-3

electrons per cublic angstrom

ed.

edition

Ed., Eds.

editor, editors

e.g.

for example

Eem

emission energy maximum

en

ethylenediamine

EPR

electron paramagnetic resonance

eq

equation

equiv

equivalent

ESR

electron spin resonance

Et

ethyl

et al.

and others

etc.

and so forth

eV

electron volt

exp

exponential

 $\Phi_{\rm em}$

emission quantum yield

FTIR

Fourier transform infrared spectroscopy

g

gram

G

Gauss, giga

GOF

goodness-of-fit

h

hour

hν

UV-visible radiation

HOMO

highest occupied molecular orbital

Hz

Hertz (s⁻¹)

Ι

electric current, intimate mechanism

 I_a

intimate-associative mechanism

 I_d

intimate-dissociative mechanism

i.e.

that is

int.

integration results (NMR spectra)

inten

intensity

IR

infrared

k

kilo, rate constant

 k_{r}

radiative decay rate constant

 k_{nr}

non-radiative decay rate constant

K

Kelvin

1

liquid

L

litre, ligand

λ

wavelength

 λ_{max}

band maximum

LF

ligand field

LMCT

ligand-to-metal charge transfer

ln

natural logarithm

LUMO

lowest unoccupied molecular orbital

3,5-lut

3,5-lutidine

m

meter, milli, multiplet (spectra)

μ

micro

 $\mu_{\mathbf{B}}$

Bohr magneton

M

mega (106), metal, mol dm⁻³ or mol L⁻¹ (molar)

max

maximum

Me

methyl

4-МеОру

4-methoxypyridine

3-Medmap

3-methyl-4-(dimethylamino)pyridine

min

minute, minimum

mg

milligram

MLCT

metal-to-ligand charge transfer

mmHg

millimetres of mercury (measure of pressure)

MO

molecular orbital

mol

mole

mult.

multiplicity (NMR spectra)

 MV^{2+}

methylviologen

n

nano

n

normal (as in *n*-butyl, *n*-Bu)

ν

frequency (wavenumber)

 v_{asym}

frequency of asymmetric stretch

 ν_{sym}

frequency of symmetric stretch

NHE

normal hydrogen electrode

nm

nanometer

 μ_N

nuclear magneton

NMR

nuclear magnetic resonance

no.

number

obsd

observed

ORTEP

Oak Ridge Thermal Ellipsoid Peak Program

p page, negative logarithm of (as in pH, pKa)

PAR Princeton Applied Research

Ph phenyl

4-Phpy 4-phenylpyridine

phen 1,10-phenanthroline

4-pic 4-picoline (4-methylpyridine)

pKa negative logarithm of acid dissociation constant

pp pages

PPh₃ triphenylphosphine

ppm parts per million

Pr propyl

py pyridine

4-pyrrpy 4-pyrrolidinopyridine

q quartet (spectra)

ρ_{calc} calculated density

ref reference

rel relative

RT room temperature

s second, singlet (NMR), strong (IR spectra)

SCE standard calomel electrode

sec secondary (as in sec-butyl, sec-Bu)

sh shoulder (spectral)

SSCE saturated sodium choride electrode

sym symmetrical

t triplet (spectra)

t tertiary (as in t-Bu; but tert-butyl)

 τ_{o} excited-state lifetime

TBABr

tetra-n-butylammonium bromide

TBAH

tetra-n-butylammonium hexafluorophosphate

THF

tetrahydrofuran

tmc

1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane

TMPD

tetramethyparaphenylenediamine

TPP

meso-tetraphenylporphyrin

trans. coeff.

transmission coefficient

uncor

uncorrected

UV

ultraviolet

UV-vis

ultraviolet-visible

V

Volt

vol

volume

vs

very strong (UV-vis, IR spectra)

vs.

versus

v/v

volume-to-volume ratio

vw

very weak

W

weak

W

watt

X

halide

Chapter 1.
Introduction and Background.

INTRODUCTION

Metal-oxo complexes are an important class of oxidizing agents.^{1,2} For this reason, there have been numerous studies to obtain a detailed understanding of their electronic structure and reactivity patterns.³⁻⁵ These species also have biological relevance; the reactive intermediate in the cytochrome P-450 cycle has been postulated to be an iron(IV) terminal oxo porphyrin complex.⁶ In an attempt to develop a detailed understanding of this last species, several groups have studied the generation and reactivity of metal-oxo porphyrin complexes of the transition metals.^{7,8}

Metal-oxo porphyrin complexes are often very thermally reactive and can only be generated as reactive transients from a metal porphyrin halide and some source of oxygen atoms such as hydrogen peroxide or iodosylbenzene. Addition of an oxygen atom formally results in a two-electron metal-centered oxidation. In this manner, metal oxo complexes have been made with metals in a variety of oxidation states and different d-electron configurations. Examples include O=Mn(TPP), O=Cr(X)(TPP), and O=Fe(X)(TPP) with d-electron configurations of 2, 1, and 4, respectively.

Although metal porphyrin complexes have certainly dominated the metal-oxo area for the last decade, they are not the only species which have been studied in mechanistic detail. Meyer and coworkers have published a very informative series of mechanistic studies concerning the oxidation chemistry associated with [(bpy)₂(py)Ru(O)]²⁺ and related complexes.⁹⁻¹⁷ This ruthenium(IV) oxo complex epoxidizes olefins, and can oxidize aldehydes, alcohols¹⁷ and unsaturated hydrocarbons.¹⁵

Che and coworkers have also developed oxoruthenium complexes that are effective oxidants. This group has made use of oxidation resistant saturated amine ligands and nitrogen heterocycles as successful ancillary ligands.¹⁸

What is the origin of metal-oxo reactivity, and how does oxygen atom transfer proceed at the molecular level? To begin to address these questions, it is essential to examine in detail, the electronic structure associated with these compounds.

BACKGROUND

The MO diagram developed by Ballhausen and Gray¹⁹ to explain the EPR, magnetic, and optical properties of the vanadyl ion, $[VO(H_2O)_5]^{2+}$, is a good starting point for understanding the electronic structure of metal-(di)oxo complexes with square-pyramidal (point group C_{4v}) and octahedral (point group D_{4h}) geometries. This MO diagram is provided in Figure 1.1. The presence of the oxo ligand, with its strong σ – and π -donor properties, partially resolves the degeneracy in the e_g and t_{2g} manifolds of the d-orbitals in an octahedral environment. Taking the z-axis as lying along the M-O axis, the d_{xz} and d_{yz} orbitals are used to form π -bonds with the oxo ligand(s), leaving the d_{xy} orbital nonbonding in nature. In monooxo complexes, the bond M-O bond order would formally be 3 (one σ – and two π -bonds); in the case of a dioxo complex, each oxygen ligand forms one π -bond with one $d\pi$ orbital and the net bond order for each M-O bond is 2.

The MO diagram in Figure 1.1 readily explains the empirical observation that stable oxo complexes with these coordination geometries exist only for d configurations of 4 or less. 1,4 This is a result of the requirement that at least one $d\pi$ orbital must be vacant (or two half-occupied) to accept an electron pair from an oxygen p-orbital. In the case of dioxo complexes, a limit of 2 electrons exists, as both d_{xz} and d_{yz} must be vacant to allow each oxygen atom to form one π -bond with the metal center.

When one considers the metal-oxo complexes that are known to be effective oxidants, the following observation is noted: All are either good electron-transfer oxidants and/or have the d_{xz} , d_{yz} orbitals populated. The first property ensures that the compound is capable of extracting an electron from the substrate, thereby activating it towards further redox or acid-base reactions. The second property primes the oxo group to become extremely reactive upon electron addition; M-O π -antibonding levels become populated causing an M-O π -bond to rupture, increasing the oxo ligand's basicity. The oxo ligand becomes susceptible to protonation or electrophilic attack by an electron poor substrate.

Figure 1.1. MO diagram for octahedral and square-pyramidal metal-oxo complexes. The diagram is valid for a *trans*-dioxo complex with D_{4h} symmetry. For monooxo complexes of C_{4v} symmetry, remove the subscripts u and g on the orbital labels.

$$z^{2}$$
 (a_{1g}) \longrightarrow σ^{*} M-O
$$x^{2}-y^{2}$$
 (b_{2g}) \longrightarrow σ^{*} M-L
$$xz, yz (e_{g}) \longrightarrow$$
 π^{*} M-O
$$xy (b_{2g}) \longrightarrow$$
 $n b$

The above information can be put to use in the design of new metal-oxo reagents. The ideal complex would be strongly oxidizing with as high a d-electron population as possible. This is exactly what nature has accomplished with Fe(IV)-oxo reagents. This ion is highly oxidizing in virtually all²⁰ coordination environments and has a metal-oxo bond order of two. Upon transfer of a single electron to this entity, the metal-oxo π -bond would be ruptured, and the oxo group would become more nucleophilic. The design of such species has been difficult because of the inherently high activity associated with these d-configurations. Meyer's complex, $[(bpy)_2(py)Ru(O)]^{2+}$, probably represents the best example to date of this approach.

If one considers the MO diagram of Figure 1.1, an alternative approach becomes evident: One could attempt to activate thermally inert species photochemically. Excitation of a non-bonding (d_{xy}) electron to the d_{xz} , d_{yz} level will have two consequences: it will make the compound a stronger (electron-transfer) oxidant by virtue of the hole created in d_{xy} , and it will weaken the M-O bond because of π^* orbital population.

To explore this approach, Winkler and Gray began a detailed study²¹ of the electronic structure and excited-state properties of the two possible cases, d¹ and d². In the first case, molybdenum(V) oxohalide species, [MoOX₄]⁻, were considered. These species were deemed to be unpromising because of their short-lived excited states.²¹ In order for bimolecular photochemistry to compete with other deactivation processes, the excited state must live for at least 50 ns,²¹ and these compounds did not fulfill this requirement.

It was thought that d^2 complexes might have inherently longer-lived excited states because of the potential spin-barrier that could exist for relaxation back to the ground state (i.e., triplet-singlet conversion).²¹ Indeed, this is the case for the rhenium(V) complex trans-[ReO₂(py)₄]+. Detailed single-crystal absorption and emission studies²² revealed that the lowest excited state was a triplet with a $(d_{xy})^1(d_{xz},d_{yz})^1$ configuration, as was expected. In fluid solution, this excited state had a mean radiative lifetime of 10 μ s in the absence of protic solvents.^{22,23} A Franck-Condon analysis of the vibronic structure present in the low

temperature emission spectrum revealed that there was a 0.07 Å elongation along Re-O in the excited state, indicative of the bond weakening expected from (d_{xz},d_{yz}) population.²² In light of doing photochemcially induced oxo transfer, these results were quite encouraging. This flicker of hope was rapidly extinguished, however, by the fact that the oxo groups of *trans*-[ReO₂(py)₄]⁺ were found to be photo-inert towards transfer to even the most obliging of acceptors, triphenylphosphine.^{21,24}

In contrast to the lack of success that had been observed in the rhenium systems, Che and coworkers found some reactivity in related osmium systems. Photo-induced oxo transfer to triphenylphosphine was accomplished as shown in the following reaction:²⁵

$$[OsO_{2}(tmc)]^{2+} + 2PPh_{3} \xrightarrow{hv, \lambda > 300 \text{ nm}} CH_{3}CN$$

$$[Os(NCCH_{3})_{2}(tmc)]^{2+} + 2 O=PPh_{3} (1)$$

Photochemical alcohol oxidation could also be effected as shown below:²⁶

$$[OsO_2(CN)_4]^{2^-} + 2 PhCH_2OH \xrightarrow{hv, \lambda > 300 \text{ nm}} MeCN$$

$$[Os(NCMe)_2(CN)_4]^{2^-} + 2 PhCHO + 2 H_2O$$
 (2)
84%

Even alkene substrates could be functionalized:²⁶

Trans-[ReO₂(py)₄]+, trans-[OsO₂(tmc)]²⁺, and trans-[OsO₂(CN)₄]²⁻ are isoelectronic systems with the same lowest-energy excited states.²⁵ What then, is the source of the drastic difference in excited-state reactivity between the rhenium and osmium systems?

Recall that metal-oxo bond weakening was only one component of the effect expected from electronic excitation. The other, which has not been examined so far, is the redox character of the excited state.

Using thermodynamic cycles, excited-state potentials can be estimated from a knowledge of ground state electrochemistry and excited state energy as shown in the equations below:²⁷

$$E^{0}(M^{+}/M^{*}) = E^{0}(M^{+}/M) - E_{(0,0)}[M \to M^{*}]$$
(4)

$$E^{0}(M^{*}/M^{-}) = E^{0}(M/M^{-}) + E_{(0,0)}[M \to M^{*}]$$
 (5)

As indicated by the above equations, excited complexes are both stronger oxidants and reductants than when in their ground states.²⁷

Che and coworkers found that the osmium complexes could be reduced electrochemically as shown below:²⁵

$$trans$$
-[OsO₂(tmc)]²⁺ + e⁻ $\rightarrow trans$ -[OsO₂(tmc)]⁺ $E_{1/2} = -0.31 \text{ V vs. SSCE}$ (6)

$$trans-[OsO_2(CN)_4]^{2-} + e^- \rightarrow trans-[OsO_2(CN)_4]^{3-} \quad E_{1/2} = -1.1 \text{ V vs. SSCE}$$
 (7)

Using the above formal potentials and an estimated E₀₋₀ value of ~2 eV (~16,000 cm⁻¹ or 620 nm emission), it is possible to predict that the above complexes will behave as excited-state oxidants with potentials of 1.7 and 0.9 V (vs. SSCE) respectively.²⁵ It is significant that no oxidative chemistry is observed in these systems within the anodic limits of the solvent (2.5 V vs. SCE in CH₃CN), suggesting that the excited states of these complexes can be no more reducing than 0.5 V. That the osimium complexes behave as excited-state oxidants was verified experimentally by electron-transfer quenching experiments,²⁵ such as the one shown below:

$$[OsO_2(tmc)]^{2+} + TMPD \xrightarrow{hv, \lambda > 300 \text{ nm}} [OsO_2(tmc)]^{+} + TMPD^{+}$$
 (8)

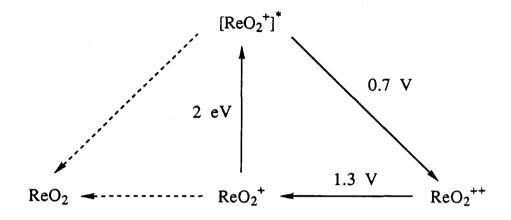
Using the known reduction potential of 0.12 for the radical cation of tetramethylparaphenylenediamine, (TMPD)+*, the above reaction is determined to be exergonic by 0.8 V.

From these results, it is believed that substrate oxidation is initiated via electron abstraction by the excited osmium complex. This is followed by a nucleophilic attack on the substrate by the oxo ligand. The net result is the ultimate transfer of both oxo ligands to substrate molecules by a complex cascade of reactions after these initial steps.²⁸

Pipes and Meyer²⁹ first studied the aqueous electrochemistry of *trans*-[ReO₂(py)₄]⁺ and this was followed by work in non-aqueous solvents by Thorp *et al*³⁰. In contrast to what was observed in the osmium systems, *trans*-[ReO₂(py)₄]⁺ could be reversibly *oxidized* at ~1.3 V vs. SSCE. Considering an excited-state energy of ~2.0 V, the Re(VI)/Re*(V) potential was estimated to be -0.7 V vs. SSCE. In its excited state, *trans*-

[ReO₂(py)₄]⁺ was therefore expected to behave as a reductant. This was verified by excited-state electron-transfer quenching reactions,³⁰ such as that shown below in Equation 9.

$$[ReO_2(py)_4]^+ + MV^{2+} \xrightarrow{hv, \lambda > 300 \text{ nm}} [ReO_2(py)_4]^{2+} + MV^{+*}$$
 (9)


The reaction depicted in Equation 9 is predicted to be exergonic by ~0.25 V vs. SSCE.

The thermodynamics relevant to the osmium and rhenium systems are summarized in the modified Latimer diagrams presented in Figure 1.2. Note the complimentary behavior that exists between the two systems. A molecular orbital view of the consequences of these thermodynamic properties is presented in Figure 1.3. *Trans*-[ReO₂(py)₄]⁺ behaves as an excited state reductant and is converted into a d¹ species by electron transfer. In contrast, *trans*-[OsO₂(CN)₄]²⁻ and *trans*-[OsO₂(tmc)₄]²⁺ behave as excited-state oxidants and are converted into reactive d³ species.

Although the oxo groups in *trans*-[ReO₂(py)₄]⁺ were found to be photo-inert, the oxidized rhenium center generated by photo-induced electron transfer appeared to be reactive. When the reaction represented in Equation 9 was carried out by bulk photolysis in CH₂Cl₂ solvent, the radical cation MV⁺ accumulated, indicating consumption of the rhenium(VI) species. Electrochemically generated *trans*-[ReO₂(py)₄]²⁺ was observed to react with silanes and secondary alchohols. Bulk electrolysis of *sec*-phenethylalcohol was effected in the presence of *trans*-[ReO₂(py)₄]²⁺ with 90% current efficiency and three 'turn-overs' of rhenium complex base on the coulometry.³⁰ No detailed mechanistic information could be obtained nor could the structure of the active oxidant be studied because of the short-lived character of *trans*-[ReO₂(py)₄]²⁺.

The results obtained for the d^2 osmium complexes clearly show that the original idea of photo-induced oxo transfer can be realized under appropriate conditions. It is clear that the

Figure 1.2. Modified Latimer diagrams for trans-[ReO₂(py)₄]⁺ and trans-[OsO₂(tmc)]²⁺.

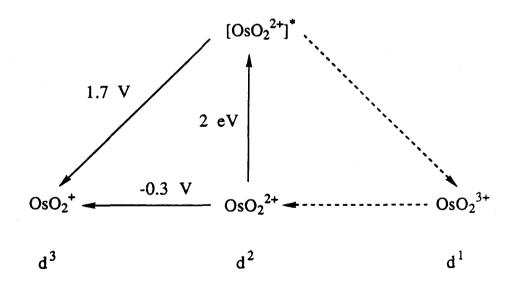
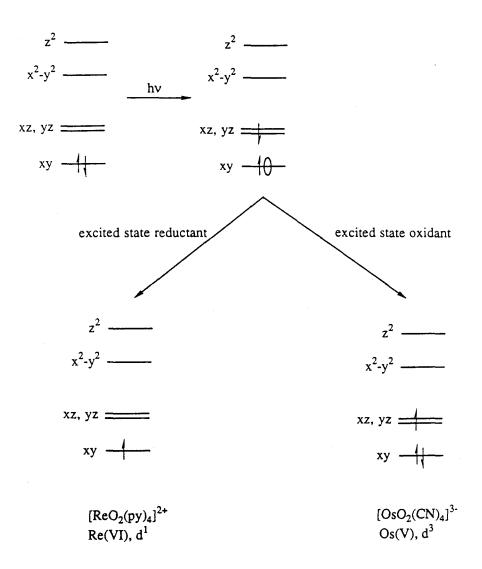



Figure 1.3. MO description of the excited-state reaction course for trans-[ReO₂(py)₄]⁺ and trans-[OsO₂(tmc)]²⁺.

ground-state redox properties are crucial and set the stage for excited-state behavior. The natural direction of this research is to explore to what extent the ground and excited-state properties of metal-oxo units can be modified by changes in ancillary ligand identity. Can the environment around ReO₂+ be modified to make it behave in an analogous fashion to osmium complexes? There is also the question of the nature and reactivity of the d¹ species, *trans*-[ReO₂(py)₄]²⁺. It is the purpose of this thesis to begin walking down the long path to answering these questions.

In Chapter 2, we will discuss the first problem encountered in this endeavor: The insertion of the *trans*-ReO₂⁺ unit into a variety of coordination environments. In order to modify the ancillary ligands at will, it is essential to have efficient synthetic methods for making the complexes. A new, general synthetic method for insertion of the *trans*-ReO₂⁺ unit will be presented along with a brief discussion of the reaction mechanism.

In Chapter 3, the electronic structure, excited-state properties and redox behavior of a family of pyridine complexes and some phosphine compounds are examined in detail. From these studies, it will become clear how systematic changes in ancillary ligand affect the physical properties of *trans*-[ReO₂(L)₄]+ complexes.

Chapter 4 is devoted to the synthesis, characterization and reactivity of some stabilized trans-dioxorhenium(VI) compounds that provide insight into the mechanism of trans-[ReO₂(py)₄]²⁺ alcohol oxidation. Optical, EPR, and X-ray structural information are used to gain a better understanding of trans-[ReO₂(L)₄]²⁺ electronic structures. This information is valuable for the design of new complexes containing high-valent O=Re=O units.

REFERENCES AND NOTES

- (1) Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; John Wiley and Sons: New York, 1988.
- (2) Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds; Academic: New York, 1981.
- (3) Griffith, W. P. Coord. Chem. Rev. 1970, 5, 459-517.
- (4) Holm, R. H. Chem. Rev. 1987, 87, 1401-1449.
- (5) Yamaguchi, K.; Takahara, Y.; Fueno, T. In Applied Quantum Chemistry, Proceedings of Nobel Laureate Symposium, Meeting Date 1984; Smith, V. H.; Schaefer, H. F., Ed.; 1986; pp 155-184.
- (6) Guengerich, F. P.; MacDonald, T. L. Acc. Chem. Res. 1984, 17, 9-16.
- (7) Bruice, T. C. Aldrichimica Acta 1988, 21, 87-94.
- (8) Groves, J. T.; Nemo, T. E. NATO Adv. Study Int. Ser., Ser. C., (Coord. Chem. Metalloenzymes) 1983, 100, 329-341.
- (9) Dobson, J. C.; Meyer, T. J. Inorg. Chem. 1988, 27, 3283-3291.
- (10) Gilbert, J.; Roecher, L.; Meyer, T. J. Inorg. Chem. 1987, 26, 1126-1132.
- (11) Meyer, T. J. J. Electrochem. Soc. 1984, 131, 221C-228C.
- (12) Meyer, T. J. In *Metal Oxo Complexes and Oxygen Activation*; Martell, A. E., Ed.; Plenum: New York, 1988; pp 33-47.
- (13) Moyer, B. A.; Thompson, M. S.; Meyer, T. J. J. Am. Chem. Soc. 1980, 102, 2310-2312.
- (14) Roecher, L.; Dobson, J. C.; Vining, W. J.; Meyer, T. J. *Inorg. Chem.* 1987, 26, 779-781.
- (15) Seok, W. K.; Dobson, J. C.; Meyer, T. J. Inorg. Chem. 1988, 27, 5-8.
- (16) Seok, W. K.; Meyer, T. J. J. Am. Chem. Soc. 1988, 110, 7358-7367.
- (17) Thompson, M. S.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4106-4115.

- (18) Che, C.; Ho, C.; Lee, W.; Lau, T. In *PREPRINTS, Division of Petroleum Chemistry*; Haines, W. E., Ed.; American Chemical Society: Washington, D. C., 1990; Vol. 35, pp 179-186.
- (19) Ballhausen, C. J.; Gray, H. B. Inorg. Chem. 1962, 1, 111-122.
- (20) For an exceptional example of stabilized, five-coordinate Fe(IV), see: Collins, T. J.; Kostka, K. L.; Münck, E.; Uffelman, E. S. J. Am. Chem. Soc. 1990, 112, 5637-5639.
- (21) Winkler, J. R.; Ph.D. Thesis, August 1983, California Institute of Technology.
- (22) Winkler, J. R.; Gray, H. B. Inorg. Chem. 1985, 24, 346-355.
- (23) Winkler, J. R.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 1373-1374.
- (24) Nocera, D. G.; Maverick, A. W.; Winkler, J. R.; Che, C. M.; Gray, H. B. ACS Symp. Ser. 1983, 211, 21-33.
- (25) Che, C. M.; Yam, V. W. W.; Cho, K. C.; Gray, H. B. J. Chem. Soc., Chem. Commun. 1987, 948-949.
- (26) Yam, V. W.; Che, C. M.; Tang, W. T. J. Chem. Soc., Chem. Commun. 1988, 100-102.
- (27) Balzani, V.; Bolletta, F.; Gandolfi, M. T.; Maestri, M. Top. Current. Chem. 1978, 75, 1-64.
- (28) Che, C.-M., personal communication, 1988.
- (29) Pipes, D. W.; Meyer, T. J. Inorg. Chem. 1986, 25, 3256-3262.
- (30) Thorp, H. H.; Van Houten, J.; Gray, H. B. Inorg. Chem. 1989, 28, 889-892.

Chapter 2.

Synthetic Routes to trans-Dioxorhenium(V) Complexes.*

^{*}A portion of this chapter has been previously published: Brewer, J. C.; Gray, H. B. *Inorg. Chem.* 1989, 28, 3334-3336.

INTRODUCTION

Before exploring the effects of ancillary ligand identity on the ground and excited-state properties of *trans*-dioxorhenium(V) complexes, it is necessary to develop a facile method for inserting the *trans*-ReO₂⁺ unit into a variety of ligand environments. The ideal starting material would (1) be synthesized in high yield from K[ReO₄] (commercially available), (2) contain ligands that could be easily substituted without complicating product work-up, and (3) require only stoichiometric amounts of ligands in substitution reactions.

The Re(IV) compound, K₂[ReCl₆], is the common starting material for the syntheses of coordination complexes containing the *trans*-ReO₂+ unit. For example, the compound *trans*-[ReO₂(py)₄]Cl is obtained (in 34 to 60% yield) by bubbling O₂ through an aqueous pyridine solution of K₂[ReCl₆].¹

$$2K_2[ReCl_6] + 14 py + 1/2 O_2 \rightarrow$$

 $2[ReO_2(py)_4]Cl \cdot 2H_2O + 6(pyH)Cl + 4KCl (1)$

In a similar fashion, the ethylenediamine complex *trans*-[ReO₂(en)₂]Cl is synthesized by reacting K₂[ReCl₆] in aerated 90% ethylenediamine for a 12 h period.²

$$4 \text{ K}_{2}[\text{ReCl}_{6}] + 8 \text{ C}_{2}\text{H}_{4}(\text{NH}_{2})_{2} + \text{O}_{2} + 6 \text{ H}_{2}\text{O}$$

$$\rightarrow 4 [\text{ReO}_{2}(\text{en})_{2}]\text{Cl} + 8 \text{ KCl} + 12 \text{ HCl} \qquad (2)$$

The three major drawbacks of methods employing this material are: (1) long reaction times, (2) the use of aqueous solvents (because of the solubility properties of K₂[ReCl₆]), and (3) moderate to poor yields of desired product. Rhenium(IV) has a d³ configuration and would therefore be expected to be substitutionally inert.^{3,4} Because the target molecules contain Re(V), both an oxidant *and* an oxygen source must be present under the

reaction conditions. For all of the above reasons, $K_2[ReCl_6]$ is a poor choice of starting material for *trans*- $[ReO_2(L)_4]^Z$ compounds.

A literature search (CAS on-line) was conducted in order to locate all varieties of known complexes containing an ReO₂+ framework. The compound ReO₂(PPh₃)₂I stood out as exceptional; it has a *cis* disposition of oxo groups (rare for a d² dioxometal configuration) and is coordinatively unsaturated.⁵ Substitution of the phosphine ligands for 'harder' amine donors was expected because Re(V) is a hard acid.⁶ These characteristics and the fact that the complex could be synthesized⁵ in two (high yield) steps from K[ReO₄] lead us to believe that ReO₂(PPh₃)₂I might be an ideal synthon for the ReO₂+ unit.

Earlier work lent support to this hypothesis. In 1969, Freni⁷ first prepared and studied the reactivity of ReO₂(PPh₃)₂I. Noteworthy was the observation that *trans*-[ReO₂(py)₄]I could be obtained in 91% yield from boiling ReO₂(PPh₃)₂I in neat pyridine for 15 minutes.

Chakravorti⁸⁻¹⁴ had commented on the lability of the pyridine ligands in *trans*[ReO₂(py)₄]⁺. Hence, the use of this material as an ReO₂⁺ synthon is also briefly explored in this chapter.

EXPERIMENTAL

Materials. All chemicals were either of reagent grade or the best grade commercially available and used as received. The ligand 4-methoxypyridine was prepared from the commercially available N-oxide using the method of Ochiai, 15 as described below. The sample of 3-methyl-4-dimethylaminopyridine used was a generous gift from Dr. Eric Scriven of Reilly Tar and Chemicals.

Physical Measurements. ¹H NMR spectra were recorded at 90 MHz on a Varian EM-390 spectrometer or at 89.93 MHz on a JEOL FX90-Q spectrometer. ¹H chemical shifts are reported in ppm (δ) using the solvent (CHCl₃ δ7.24, CHDCl₂ δ5.32, CD₃SOCD₂H δ2.49, CD₂HCN δ1.93, or CD₃COCHD₂ δ2.04) as an internal standard,

unless noted otherwise. ³¹P{¹H} NMR spectra were recorded at 36.27 MHz on a JEOL FX90-Q spectrometer and referenced to external 85% aqueous phosphoric acid. By established convention, peaks appearing upfield from this standard are assigned *negative* shift values. Infrared spectra were recorded as Nujol mulls on a Beckman IR 4240 spectrometer or on a Perkin-Elmer 1600 series FTIR. Background-corrected electronic absorption spectra were obtained using a Shimadzu UV-260 recording spectrometer or on a Cary Model 14 Spectrophotometer that had been rebuilt by On-Line Instruments Service (OLIS). Quartz cells of 1-cm pathlength were used in all cases. Elemental analyses were obtained at the Caltech analytical facility or from Galbraith Laboratories Inc.

Syntheses. The purple-violet compound ReO₂(PPh₃)₂I, 1, was prepared by hydrolysis of ReO(OEt)(PPh₃)₂I₂ using the literature method⁷ except that KReO₄ was used in place of H[ReO₄]. The complex ReO₂(PPh₃)₂I is soluble in benzene, chloroform, dichloromethane and nitromethane. It is insoluble in water, alcohols, acetone, diethyl ether and hydrocarbons. Except where noted, all manipulations were carried out in air.

4-methoxypyridine. Approximately 25 mL of 6 N NaOH solution was prepared by dissolving 6 grams of NaOH in 25 mL of distilled water. After mixing, this solution was set aside to cool to room temperature. 4-Methoxypyridine-N-oxide (1.32 g, 10.5 mmol) was placed in a 100-mL round-bottomed flask and dissolved in ~11 mL of chloroform. The solution, which contained a small amount of undissolved solid, was immersed in an ice water bath and allowed to cool for 5 min. With rapid stirring, PCl₃ (2 mL, 23 mmol) was added dropwise over a 10 min period. The first drop caused a violent fizzing in the solution that was *not* observed with subsequent additions. After the addition of PCl₃, the solution was homogeneous and pale yellow in color. The cooling bath was removed, and the solution was allowed to warm to room temperature. After standing for 5 min, it developed an opaque, milky appearance. The mixture was brought to and maintained at reflux for 35 min. After this heating period, the solution was discontinued and the solution

cooled to room temperature. The flask was immersed in an ice bath and allowed to cool for 5 min. Distilled water (15 mL) was then *slowly* added from an addition funnel over a 10 min period, while stirring vigorously. (CAUTION: This hydrolysis reaction is very exothermic.) After the addition was complete, the solution was left to stir 5 min and then the aqueous and organic layers were separated. The clear aqueous layer was made alkaline (pH ~11 by litmus paper) by *slow* addition of ~15 mL of 6 N NaOH solution. The approach of the correct pH was signalled by the development of an opaque appearance to the solution. The alkaline aqueous layer was extracted with 3 X 40 mL of diethyl ether. These extracts were combined and dried over K_2CO_3 for 10 min. The suspension was filtered by gravity (Whatman #1 filter paper) and the diethyl ether removed by rotary evaporation. Yield: 960 mg, 83%. ¹H NMR (δ , CDCl₃ rel to Me₄Si) shift (mult., int., assign.): (1) 4-methoxypyridine: 8.45 (d; J = 7 Hz, 2H, o-H); 6.80 (d; J = 7 Hz, 2H, m-H); 3.85 (s, 3H, OCH₃); (2) 4-methoxypyridine-N-oxide: 8.14 (d; J = 9 Hz, 2H, o-H); 6.81 (d; J = 9 Hz, 2H, m-H); 3.84 (s, 3H, OCH₃). UV-vis, λ_{max} in nm (CH₃CN solution): 216, 240sh.

trans-[ReO₂(py)₄]I, and trans-[ReO₂(py)₄][PF₆] (py = pyridine). 1 (2.01 g, 2.31 mmol) was added in small portions, over a 5 min period, to 50 mL of pyridine. The pyridine was brought to its boiling point. After 10 min, small orange crystals began to precipitate. Heating was discontinued 5 min later and the solution was allowed to cool to room temperature on the hot plate. The reaction mixture was placed in a refrigerator (4 °C) and left standing for 3 h. The product was collected on a medium-porosity sintered-glass frit and washed successively with 2 X 30 mL of toluene, 2 X 30 mL of diethyl ether, and 30 mL of pentane. The material was aspirated to dryness (4 h). Yield: 1.52 g, 91%. UV-vis, λ_{max} in nm (CH₃OH solution): 345, 427.

Conversion to the hexafluorophosphate salt was accomplished as follows. *Trans*-[ReO₂(py)₄]I (700 mg, 1.06 mmol) was dissolved in 12 mL of chloroform in a 125-mL Erlenmeyer flask. Approximately 1.0 g (2.6 mmol) [Bu₄N][PF₆] was dissolved in 5 mL

of chloroform and added to the first solution. An orange precipitate formed immediately upon mixing. The slurry was stirred for an additional 10 min and the product was collected on a medium-porosity sintered-glass frit and washed successively with 5 mL of chloroform, 2 X 10 mL of ethanol, 2 X 10 mL of diethyl ether and 2 X 10 mL of pentane. After aspirating to dryness (1 h) the yield was 490 mg, 68%. Anal. Calcd for $C_{20}H_{20}N_4F_6O_2PRe$: C, 35.35; H, 2.97; N, 8.24. Found: C, 34.96; H, 2.92; N, 8.25. ¹H NMR (δ , CD₃CN) shift (mult., int., assign.): 9.03 (d; J = 7 Hz, 2H, o-H); 7.77 (m, 1H, p-H); 7.47 (m, 2H, m-H). UV-vis, λ_{max} in nm (ϵ , M⁻¹ cm⁻¹), CH₃CN solution: 248 (17,000); 279 (4,200); 352 (22,000); 418 (2,000). IR (ν_{asym} ReO₂): 816 cm⁻¹.

trans-[ReO₂(4-Phpy)₄]I, and trans-[ReO₂(4-Phpy)₄][PF₆] (4-Phpy = 4-phenylpyridine). 1 (200 mg, 0.23 mmol) and 4-phenylpyridine (710 mg, 4.57 mmol) were placed in a 25-mL round-bottomed flask. About 5 mL of methanol was added and the pale orange suspension was stirred. As the solution was heated to reflux, a deep orange color developed and an orange solid began to precipitate. The mixture was refluxed for 15 min, cooled to room temperature and then placed in a refrigerator for 4 h. The orange solid was collected on a medium-porosity sintered-glass frit and washed successively with 3 X 10 mL of diethyl ether, 10 mL of toluene, 2 X 10 mL of pentane, and then aspirated to dryness. Yield: 120 mg, 54 %. Anal. Calcd for C₄₄H₃₆N₄IO₂Re: C, 54.71; H, 3.76; N, 5.80. Found: C, 54.96; H, 4.15; N, 5.05. ¹H NMR (δ, CDCl₃) shift (mult., int., assign.): 9.21 (d; J = 7 Hz, 2H, o-H); 7.59 (m, 7H, m-H and C₆H₅). UV-vis, λ_{max} in nm (ε, M-1 cm-1), CH₃OH solution: 269 (62,000); 371 (41,000).

Metathesis to the hexafluorophosphate salt was accomplished as follows. The iodide salt (105 mg) was dissolved in 100 mL of methanol and filtered by gravity (Whatman #1 filter paper). To this yellow-orange solution, 100 mg of [NH4][PF6] was added and the solution was vigorously stirred. Within 2 min, a precipitate began forming. The mixture was placed in a refrigerator for 4 h to encourage further precipitation. The product was collected, washed successively with 2 X 15 mL of cold (4 °C) methanol, 2 X 15 mL of

toluene, 2 X 15 mL of diethyl ether, 2 X 15 mL of pentane, and then aspirated to dryness. Yield: 55 mg, 51 %. Anal. Calcd for C₄₄H₃₆N₄F₆O₂PRe: C, 53.71; H, 3.69; N, 5.69. Found: C, 51.47; H, 3.77; N, 5.44. ¹H NMR (δ , CD₃CN) shift (mult., int., assign.): 9.12 (d; J = 7 Hz, 2H, o-H); 7.66 (m, 7H, m-H and C₆H₅). UV-vis, λ_{max} in nm (ϵ , M⁻¹ cm⁻¹), CH₃CN solution: 266 (56,000); 383 (37,000).

trans-[ReO₂(4-pic)₄]I, and trans-[ReO₂(4-pic)₄][PF₆] (4-pic = 4-methylpyridine). 1 (410 mg, 0.47 mmol) was combined with 4-picoline (4-methylpyridine) in a 25-mL round-bottomed flask fitted with a reflux condensor. Approximately 5 mL of methanol was added. A deep orange solution developed immediately upon mixing. The mixture was refluxed for 30 min. A small sample was examined by UV-visible spectroscopy; absorption band energies indicated the reaction had gone to completion. To ensure complete conversion, the mixture was refluxed for an additional 30 min and then allowed to cool to room temperature. Toluene (10 mL) was added and the solution volume reduced (rotary evaporation) until precipitate began forming (ca. 5 mL total volume). The reaction mixture was placed in a freezer (-10 °C) and allowed to stand overnight. The following morning, the mother liquor was separated from the precipitate using a Pasteur pipette. The residue was washed successively with 2 X 15 mL of toluene, 2 X 15 mL of diethyl ether, and 2 X 15 mL of pentane. The solid was dried on a rotary evaporator for 30 min at 50 °C (aspirator vacuum). Yield: 275 mg, 82%. UV-vis, λ_{max} in nm (CH₃OH solution): 339, 433.

Conversion to the hexafluorophosphate salt was accomplished as follows. *Trans*-[ReO₂(4-pic)₄]I (150 mg, 0.21 mmol) was dissolved in 10 mL of methanol and filtered by gravity (Whatman #1 filter paper). [NH₄][PF₆] (360 mg, 2.2 mmol) was dissolved in 5 mL of methanol and filtered by gravity into the first solution. Beautiful orange microcrystals began forming within 5 min of mixing. Approximately 4 drops of free 4-picoline were added to the solution. The flask was then covered with aluminum foil and allowed to stand undisturbed in a fumehood. After waiting 4.5 h, the orange microcrystals

were filtered off (Büchner funnel) and washed briefly with small portions (ca. 5 mL) of diethyl ether, and pentane. After aspirating to dryness, the yield was 100 mg, 65%. Anal. Calcd for C₂₄H₂₈N₄F₆O₂PRe: C, 39.18; H, 3.84; N, 7.62. Found: C, 39.17; H, 3.93; N, 7.53. ¹H NMR (δ , acetone-d⁶) shift (mult., int., assign.): 8.95 (d; J = 7 Hz, 2H, o-H); 7.42 (d; J = 7 Hz, 2H, m-H); 2.58 (s, 3H, p-CH₃). UV-vis, λ_{max} in nm (ϵ , M⁻¹ cm⁻¹), CH₃CN solution: 247 (16,000); 277 (4,400); 353 (32,000); 429 (2,000). IR (ν_{asym} ReO₂): 820 cm⁻¹.

trans-[ReO₂(3,5-lut)₄]I, and trans-[ReO₂(3,5-lut)₄][PF₆] (3,5-lut = 3,5-dimethylpyridine). 1 (210 mg, 0.24 mmol) and 2 mL of methanol were combined in a 25-mL round-bottomed flask. 3,5-lutidine (3,5-dimethylpyridine) (710 mg, 6.6 mmol) was added and rinsed into the above mixture with an additional 3 mL of methanol. An orange color developed immediately upon mixing, becoming a lighter yellow-orange color after stirring for ca. 3 min. The reaction mixture was refluxed for 12 h and then allowed to cool to room temperature. Approximately 10 mL of toluene was added and the solution volume reduced (rotary evaporation) until a yellow-orange solid had precipitated (the total volume of solution was about 10 mL). The pale yellow mother liquor was removed by Pasteur pipette and the residue washed (in the flask) successively with 10 mL of toluene (this wash was also pale yellow), 2 X 10 mL of diethyl ether (colorless), and 2 X 10 mL of pentane. The solid was then aspirated to dryness on a rotary evaporator (30 min). Yield: 165 mg, 91%. UV-vis, λ_{max} in nm (CH₃OH solution): 346, 426.

Conversion to the hexafluorophosphate salt was accomplished as follows. *Trans*-[ReO₂(3,5-lut)₄]I (150 mg, 0.19) was dissolved in 5 mL of methanol and filtered by gravity (Whatman #1 filter paper). [NH₄][PF₆] (410 mg, 2.5 mmol) was dissolved in 5 mL of methanol and filtered into the first solution. Upon mixing a small amount of orange precipitate began forming. Approximately 5 drops of free 3,5-lutidine were added, and the mixture was covered with aluminum foil and then allowed to stand undisturbed in a fumehood for two days. The yellow-orange crystals that had formed were collected on a

Büchner funnel and washed with small amounts (ca. 5 mL) of diethyl ether and pentane. After aspirating to dryness (1 h) the yield was 80 mg, 52%. Anal. Calcd for C₂₈H₃₆N₄F₆O₂PRe: C, 42.47; H, 4.58; N, 7.08. Found: C, 42.16; H, 4.60; N, 7.11. ¹H NMR (δ , CD₃CN) shift (mult., int., assign.): 8.70 (s, 2H, o-H); 7.37 (s, 1H, p-H); 2.20 (s, 6H, m-CH₃). UV-vis, λ_{max} in nm (ϵ , M⁻¹ cm⁻¹), CH₃CN solution: 258 (24,000); 275 (5,700); 356 (29,000); 416 (2,100). IR (ν_{asym} ReO₂): 820 cm⁻¹.

trans-[ReO₂(4-MeOpy)₄]I, and trans-[ReO₂(4-MeOpy)₄][PF₆] (4-MeOpy = 4-methoxypyridine). 1 (420 mg, 0.48 mmol) was combined with 4-methoxypyridine (890 mg, 8.2 mmol) in 5 mL of methanol. A dark orange solution formed initially and this became lighter orange after stirring for 5 min. This solution was refluxed for 2 h and then allowed to cool to room temperature. Toluene (10 mL) was added and the solution volume reduced by rotary evaporation until an orange product precipitated (the solution volume was about 5 mL at this point). The mixture was placed in a refrigerator to stand overnight. The solid was collected on a medium-porosity sintered-glass frit, then washed successively with 3 X 15 mL of toluene, 3 X 15 mL of diethyl ether, and 3 X 15 mL of pentane. The material was aspirated to dryness (1 h). Yield: 290 mg, 75%. UV-vis, λ_{max} in nm (CH₃OH solution): 334, 452.

Conversion to the hexafluorophosphate salt was accomplished as follows. *Trans*-[ReO₂(4-MeOpy)₄]I (160 mg, 0.2 mole) was dissolved in 20 mL of 50% aqueous methanol and filtered by gravity. The filter paper was rinsed with 2 mL of distilled water. [NH₄][PF₆] (190 mg, 1.2 mmol) was added to the filtrate and a bright yellow solid immediately precipitated. The mixture was left to stand for 10 min to ensure complete precipitation. The solid was collected on a medium-porosity sintered-glass frit, washed successively with 2 X 15 mL of distilled water, 3 X 15 mL of toluene, 3 X 15 mL of diethyl ether, 3 X 15 mL of pentane, and then aspirated to dryness. Recrystallization from acetone-hexane mixtures gave yellow-orange needles. These were dried at room temperature *in vacuo* (<10⁻³ torr) overnight. Yield:115 mg, 70%. Anal. Calcd for

C₂₄H₂₈N₄F₆O₆PRe: C, 36.05; H, 3.53; N, 7.01. Found: C, 35.66; H, 3.44; N, 6.96. ¹H NMR (δ , CDCl₃) shift (mult., int., assign.): 8.74 (d; J = 7 Hz, 2H, o-H); 6.99 (d; J = 7 Hz, 2H, m-H); 3.94 (s, 3H, OCH₃). UV-vis, λ_{max} in nm (ϵ , M⁻¹ cm⁻¹), in CH₃CN solution: 227 (33,000); 281 (6,800); 347 (27,000); 438 (1,500). IR (ν_{asym} ReO₂): 810 cm⁻¹.

trans-[ReO₂(3-Medmap)₄]I, and trans-[ReO₂(3-Medmap)₄][PF₆] (3-Medmap= 3-methyl-4-dimethylaminopyridine). 1 (420 mg, 0.48) was rinsed into a 25-mL round-bottomed flask with 2 mL of methanol. 3-methyl-4-dimethylaminopyridne (960 mg, 7.1 mmol) was added, followed by an additional 8 mL of methanol. In less than 1 min, all of the starting complex dissolved and a deep orange solution formed. The mixture was refluxed for 90 min and then allowed to cool to room temperature. Toluene (10 mL) was added and the total solution volume reduced to 3 mL, at which point a large amount of rust-colored precipitate had formed. Toluene (10 mL) was again added and the slurry allowed to stand for 1 h. The product was collected on a medium-porosity sinteredglass frit and washed successively with 4 X 10 mL of toluene, 5 X 10 mL of diethyl ether, 2 X 10 mL of pentane and then aspirated to dryness (30 min). Yield: 385 mg, 94%. UV-vis, λ_{max} in nm (CH₃OH solution): 342, 473.

Conversion to the hexafluorophosphate salt was accomplished as follows. *Trans*-[ReO₂(3-Medmap)₄]I (240 mg, 0.27 mmol) was dissolved in 8 mL of methanol and filtered by gravity (Whatman #1 filter paper). [NH₄][PF₆] (660 mg, 4.0 mmol) was dissolved in 5 mL of methanol and filtered into the first solution. Immediately upon mixing a large amount of powdery rust-colored precipitate began forming. Free 3-Medmap (*ca.* 3 drops) was added and the reaction mixture covered with foil. After standing undisturbed in a fumehood for 2 days, the product was collected on a medium-porosity sintered-glass frit and washed with small amounts (*ca.* 5 mL) of diethyl ether and pentane; it was then aspirated to dryness (1 h). Yield: 155 mg, 63%. Anal. Calcd for C₃₂H₄₈N₈F₆O₂PRe: C, 42.33; H, 5.33: N, 12.34. Found: C, 42.78; H, 5.30; N, 12.71. ¹H NMR (δ, CDCl₃)

shift (mult., int., assign.): 8.36 (d; J = 7 Hz, 1H, o-H); 8.28 (s, 1H, o-H); 6.63 (d; J = 7 Hz, 1H, m-H); 2.98 (s, 6H, N(CH₃)₂); 2.20 (s, 3H, m-CH₃). UV-vis, λ_{max} in nm (ϵ , M⁻¹ cm⁻¹), CH₃CN solution: 280 (38,000); 363 (42,000); 455 (2,600). IR (ν_{asym} , ReO₂): 810 cm⁻¹.

 $trans-[ReO_2(dmap)_4]I$ (dmap = 4-dimethylaminopyridine). 1 (0.5 g, 0.57) mmol) and 4-dimethylaminopyridine (860 mg, 7.0 mmol) were placed in a 50-mL roundbottomed flask. Approximately 10 mL of methanol was added; stirring gave a deep yellow-brown solution. This was brought to reflux. After heating for 10 min, the color changed to a deep red-brown color and a small amount of precipitate appeared. A sample of the crude reaction mixture was examined by UV-visible spectroscopy; the positions of the absorption bands in the spectrum suggested the reaction was complete. Refluxing was continued an additional 25 min to ensure that a complete reaction had occurred. The heating was stopped and the reaction mixture allowed to cool to room temperature. The product was collected on a coarse-porosity sintered-glass frit and washed successively with 3 X 15 mL of toluene, 3 X 15 mL of diethyl ether, 2 X 15 mL of pentane and then aspirated to dryness (1 h). Yield: 290 mg. Toluene (10 mL) was added to the filtrate and solution taken to near dryness by rotary evaporation; another portion of toluene (10 mL) was then added. The mother liquor was removed by Pasteur pipette and the solid washed as before. Yield: 120 mg. The combined yield of product was 410 mg, 86%. UV-vis, λ_{max} in nm (MeOH solution): 332, 483.

trans-[ReO₂(dmap)₄][PF₆]. This compound was prepared directly from 1, without isolation of the intermediate iodide salt, as described below. 1 (410 mg, 0.47 mmol) was combined with 4-dimethylaminopyridine (820 mg, 6.7 mmol) in 30 mL of methanol. A dirty orange solution formed upon mixing and this was refluxed for 12 h. The reaction mixture was cooled and filtered by gravity (Whatman #1 filter paper). [NH₄][PF₆] (230 mg, 1.4 mmol) was added to the filtrate. Immediately after addition of the [NH₄][PF₆], a rust colored precipitate began forming. The rust colored slurry was

placed in a refrigerator (4 °C) for 2 hours to ensure complete precipitation. The product was collected, washed successively with 2 X 10 mL of cold (4 °C) methanol, 3 X 30 mL of diethyl ether, 2 X 20 mL of pentane and then aspirated to dryness (1 h). The solid was transferred to a vial and dried *in vacuo* at 90 °C for 4 hours. Yield 325 mg, 81%. Anal. Calcd for C₂₈H₄₀N₈F₆O₂PRe: C, 39.48; H, 4.73; N, 13.15. Found: C, 39.53; H, 4.70; N, 12.78. ¹H NMR (δ , DMSO-d⁶) shift (mult., int., assign.): 8.24 (d; J = 7 Hz, 2H, o-H); 6.68 (d; J = 7Hz; 2H, m-H); 3.30 (s, 6H, N(CH₃)₂). UV-vis, λ _{max} in nm (ϵ , M⁻¹ cm⁻¹), CH₃CN solution: 272 (47,000); 358 (37,000); 462 (2,300). IR (ν _{asym} ReO₂): 800 cm⁻¹.

trans-[ReO₂(4-pyrrpy)₄]I, and trans-[ReO₂(4-pyrrpy)₄][PF₆] (4-pyrrpy = 4-pyrrolidinopyridine). 1 (1.00 g, 1.15 mmol) and 4-pyrrolidinopyridine (2.20 g, 14.8 mmol) were combined with 10 mL of methanol. Immediately upon mixing, a deep orange-brown solution was obtained. After stirring about 10 min, an orange-brown solid began precipitating. The reaction slurry was then refluxed for about 1 hr, cooled to room temperature and placed in a refrigerator to stand overnight. The precipitate was collected on a medium-porosity sintered-glass frit and washed successively with 3 X 15 mL of toluene, 3 X 15 mL of diethyl ether and 2 X 15 mL of pentane. The product was then aspirated to dryness. Yield: 920 mg, 85%. UV-vis, λ_{max} in nm (MeOH solution): 335, 490.

Conversion to the hexafluorophosphate salt was accomplished as follows. *Trans*-[ReO₂(4-pyrrpy)₄]I was dissolved in a minimum volume of 2:1 (v/v) methanol/acetone and then 2-3 equivalents of [NH₄][PF₆] were added. The material obtained was then washed successively with 2 X 7 mL of cold (4° C) methanol, 2 X 15 mL of toluene, 2 X 15 mL of diethyl ether and 2 X 15 mL of pentane. The product was aspirated to dryness. Yields were typically 50% or greater. Anal. Calcd for C₃₆H₄₈N₈F₆O₂PRe: C, 45.23; H, 5.06; N, 11.72. Found: C, 45.02; H, 5.24:; N, 11.59. ¹H NMR (δ, CD₂Cl₂) shift (mult., int., assign.): 8.31 (d; J = 7 Hz, 2H, *o*-H); 6.34 (d; J = 7 Hz, 2H, *m*-H); 3.36 (m, 4H,

N(CH₂CH₂); 2.00 (m, 4H, N(CH₂CH₂). UV-vis, λ_{max} in nm (ϵ , M⁻¹ cm⁻¹), CH₃CN solution: 273 (52,000); 353 (42,000); 465 (2,600). IR (ν_{asym} ReO₂): 798 cm⁻¹.

trans-[ReO₂(en)₂]I. 1 (210 mg, 0.24 mmol) and 10 mL of methanol were combined in a 50-mL round-bottomed flask. To this purple slurry, 340 mg (5.7 mmol, 24 equiv) of ethylenediamine and another 10 mL of methanol were added. In less than 2 min, all of the purple solid disappeared and trans-[ReO₂(en)₂]I began to settle out. The pale yellow slurry was stirred for 15 min to ensure complete reaction. The precipitate was collected on a coarse-porosity sintered-glass frit, washed with 3 X 15 mL of diethyl ether, and aspirated to dryness. Yield: 90 mg, 80%. UV-vis, λ_{max} in nm (rel inten), H₂O solution: 254(vs); 280(sh); 440(w). IR (ν_{asym} ReO₂): 815 cm⁻¹.

trans-[ReO₂(en)₂][PF₆]. This compound could not be obtained from metathesis of the iodide salt. Therefore a route using a complex containing the PF₆- counterion was developed.

Trans-[ReO₂(py)₄][PF₆] (440 mg, 0.65 mmol) was dissolved in 50 mL of methanol in a 125-mL Erlenmeyer flask. Ethylenediamine (2.25 g, 37.3 mmol, 57 equiv) was added and the mixture then brought to reflux. After 40 min, a large amount of pale yellow precipitate formed and the solution developed a purple color. Toluene (30 mL) was added to induce precipitation. The solid was collected on a medium-porosity sintered-glass frit and washed successively with 3 X 30 mL of diethyl ether, 2 X 15 mL of pentane and then aspirated to dryness (15 min). Yield: 130 mg, 42%. UV-vis, λ_{max} in nm (rel inten), H₂O solution: 254(vs); 275(sh); 439(w).

trans-[ReO₂(py)₃(PPh₃)]I. This complex was prepared using trans-[ReO₂(py)₄]I according to the literature procedure.⁷ Yield based upon 105 mg of trans-[ReO₂(py)₄]I: 60 mg, 60%. Anal. Calcd for C₃₃H₃₀N₃IO₂PRe: C, 46.92; H, 3.58; N, 4.97. Found: C, 46.75; H, 3.70; N, 5.01. ¹H NMR (δ CDCl₃, zero ref 1% Me₄Si) shift (mult., int., assign.): δ 9.00 (d; J = 7 Hz; 2H, o-H on py trans to PPh₃); δ 8.75 (d; J = 7 Hz, 4H, o-H on py cis to PPh₃); δ 7.00 - 8.00 (m, 24H, all remaining H). ³¹P{¹H} NMR: δ -1.7 (s).

UV-vis, λ_{max} in nm: 335 (CH₃CH₂OH solution); 341 (CH₂Cl₂ solution). IR (ν_{asym} ReO₂): 815 cm⁻¹.

trans-[ReO₂(diphos)₂]I (diphos = 1,2-bis(diphenylphosphino)ethane).

There are four possible routes to this compound. The first two were developed by Freni in 1969 and are fully documented elsewhere.^{7,16} Two alternative routes are described below.

Method 1. 1 (330mg, 0.35 mmol) and diphos (330 mg, 0.75 mmol) were placed in 10 mL of methanol. Neither reagent dissolved in this medium. The suspension was brought to reflux. After heating for 45 min, the solution was a rosé-red and a cream colored solid had precipitated. This mixture was refluxed overnight (12 h). After cooling to room temperature, the solid was collected by filtration on a medium-porosity sintered-glass frit and washed successively with 3 X 15 mL of diethyl ether, 2 X 15 mL of pentane and then aspirated to dryness (1 h). Yield: 175 mg, 44%. (The yield is limited by the formation of an unidentified red side product.)

Method 2. Trans-[ReO₂(py)₄]I (105 mg, 0.16 mmol) and diphos (105 mg, 0.16 mmol) were placed in 10 mL of acetone. The mixture was brought to reflux. After heating for 1.75 h, a light yellow solid began to precipitate and the heating was discontinued. The solution was left to cool overnight. The following morning, the light yellow solid was collected by filtration on a medium-porosity sintered-glass frit and washed successively with 3 X 10 mL of diethyl ether, 10 mL of pentane and then aspirated to dryness. Yield: 105 mg, 76%.

trans-[ReO₂(diphos)₂][PF₆]. A reflux condensor, with attached gas inlet, was fitted to a 50-mL three-necked round-bottomed flask. The apparatus was thoroughly flushed with argon and then diphos (920 mg, 2.3 mmol) and trans-[ReO₂(py)₄]PF₆ (150 mg, 0.22 mmol) were added. Deoxygenated acetone (10 mL) was added by syringe. The reaction assembly was momentarily swept out with argon gas and then kept under a slight positive pressure of argon. The white and orange slurry was refluxed overnight. The following morning (10 h later) the bright yellow solution was cooled to room temperature.

A white solid had precipitated (excess diphos) and was removed by filtration through a coarse-porosity sintered-glass frit; it was washed with 2 X 10 mL of acetone and the washings added to the filtrate. Toluene (20 mL) was added and the solution volume reduced by rotary evaporation until a yellow solid began forming. The mother liquor (colorless) was removed by Pasteur pipette and the residue washed successively with 2 X 15 mL of toluene, 2 X 15 mL of diethyl ether, 2 X 15 mL of pentane and then taken to dryness by rotary evaporation (aspirator vacuum, 30 min). Yield: 200 mg (mono-toluene adduct), 72%. Anal. Calcd for $C_{59}H_{56}F_{6}P_{5}O_{2}Re$: C, 56.59; H, 4.51. Found: C, 56.77; H, 4.55. ^{1}H NMR (δ , CD₃CN) shift (mult., int., assign.): 7.04 (m, 20H, 4 X $C_{6}H_{5}$); 2.60 (t; $^{2}J_{PH} + ^{3}J_{PH} = 7$ Hz, 4H, $CH_{2}CH_{2}$). 17 UV-vis, λ_{max} in nm, CH₃CN solution; 220sh, 257. IR (ν_{asym} ReO₂): 780 cm⁻¹.

$trans-[ReO_2(dppen)_2][PF_6]$ (dppen = 1,2-

bis(diphenylphosphino)ethene). A reflux condensor with attached gas inlet was fitted to a 25-mL three-necked round-bottomed flask. This was charged with dppen (900 mg, 2.3 mmol) and *trans*-[ReO₂(py)₄]PF₆ (150 mg, 0.22 mmol). The assembly was flushed with argon gas and then 10 mL of deoxygenated acetone was introduced by syringe. After warming for 10 min, the white-orange slurry became a homogeneous orange solution. The mixture was refluxed under argon for 4.5 h and then cooled to room temperature. The green-yellow solid that had precipitated was collected on a medium-porosity sintered-glass frit and washed successively with 2 X 10 mL of acetone (this dissolved some colorless crystals that had co-precipitated), 2 X 15 mL of diethyl ether, 2 X 15 mL of pentane and then aspirated to dryness (40 min). Yield: 155 mg, 61%. Anal. Calcd for C₅₂H₄₄F₆P₅O₂Re: C, 54.03; H, 3.84. Found: C, 54.54; H, 3.84. ¹H NMR (δ, CD₃CN/CDCl₃) 7.24 (m) (zero ref Me₄Si). UV-vis, λ_{max} in nm, CH₃CN solution; 228sh, 267sh. IR (v_{asym} ReO₂): 790 cm⁻¹.

RESULTS

The complex ReO₂(PPh₃)₂I is an ideal starting material for the synthesis of pyridine and amine complexes of the ReO₂+ unit. Upon addition of ligating agents, the methanolinsoluble ReO₂(PPh₃)₂I dissolved, and orange solutions rapidly developed. Reaction mixtures were stirred at room temperature or brought to reflux to drive the reaction

$$[ReO2(PPh3)2I] + 4L \rightarrow [ReO2L4]I + 2PPh3$$
 (3)

to completion. Reaction progress was monitored by UV-visible spectroscopy. The energies of the MLCT and LF transitions were used to estimate the extent of the reaction; refluxes were terminated when the LF band ceased to move to lower energy. In general, the more basic pyridines required fewer excess equivalents of ligand and shorter reflux times.

The iodide salts of the complexes could be isolated by concentrating methanolic solutions or by addition of toluene and subsequent removal of the more volatile methanol solvent. Metatheses to hexafluorophosphate salts were accomplished using [NH₄][PF₆] in methanol, aqueous methanol, or methanol/acetone mixtures. Complexes of the form *trans*-[ReO₂L₄]+ could be made from the following pyridines: 4-dimethylaminopyridine (dmap), 3-methyl-4-dimethylaminopyridine (3-Medmap), 4-pyrrolidinopyridine (4-pyrrpy), 4-methoxypyridine (4-MeOpy), 3,5-lutidine (3,5-lut), 4-picoline (4-pic), and 4-phenylpyridine (4-Phpy). For pyridine and less basic derivatives, the method was not successful. Solvolysis reactions and competition for coordination sites from the displaced triphenylphosphine became significant side reactions.

All of the tetrapyridine complexes synthesized were unstable in solution with respect to ligand loss. This occurred over hours (pyridine) or several days (dmap) and was readily evident from the appearance of multiple signals in the region $\delta 8.2$ to $\delta 9.2$ of the ¹H NMR spectra. In general, this instability became more pronounced (1) in polar coordinating

solvents (e.g., DMSO), (2) in the presence of coordinating anions (Cl⁻, I⁻), and (3) as the basicity of the ligand decreased. To suppress this reaction, traces of free ligand were added to solutions left standing for extended periods.

Complexes of saturated amines could also be obtained from ReO₂(PPh₃)₂I. The compound *trans*-[ReO₂(en)₂]I could be prepared in 80% yield in less than 15 minutes at room temperature:

$$[ReO2(PPh3)2I] + 2 en \rightarrow [ReO2(en)2]I \downarrow + 2 PPh3$$
 (4)

As had been noted previously,^{7,16} ReO₂(PPh₃)₂I could also be used to synthesize phosphine complexes.

ReO₂(PPh₃)₂I was not always the starting material of choice. Reactions with ligands that did not have appreciable solubility in methanol did not proceed efficiently. In preparations that were exposed to air, the reaction^{7,18}

$$4 \operatorname{ReO}_{2}(PPh_{3})_{2}I + 7/2 \operatorname{O}_{2}$$

$$\rightarrow \operatorname{ReO}(PPh_{3})_{2}I_{2}(OReO_{3}) + \operatorname{ReO}(PPh_{3})(OPPh_{3})I_{2}(OReO_{3}) + 4 \operatorname{OPPh}_{3} (5)$$

was likely competitive. The above reaction also became relevant for reactions conducted in solvents that appreciably dissolved ReO₂(PPh₃)₂I. For these reasons, *trans*-[ReO₂(py)₄]I was a superior starting material to prepare the complexes *trans*-[ReO₂(py)₃(PPh₃)]I and *trans*-[ReO₂(diphos)₂]I.

There were also occasional difficulties in metathesizing the iodide salts of some complexes to their hexafluorophosphate analogs. In these cases, it was desirable to use trans-[ReO₂(py)₄][PF₆] as the starting material. Here solvent identity was not crucial and was chosen on the basis of ease of product work-up. By substitution reactions on trans-

[ReO₂(py)₄][PF₆], the compounds trans-[ReO₂(en)₂][PF₆], trans-[ReO₂(diphos)₂][PF₆], and trans-[ReO₂(dppen)₂][PF₆] were obtained.

DISCUSSION

Reaction Mechanisms Relevant to the Synthetic Strategy. The planning and execution of successful inorganic syntheses requires a thorough understanding of substitution mechanisms. A brief summary of mechanisms relevant to octahedral systems is presented below. For a more complete description, the reader should consult one of the many books^{4,19,20} or monographs³ on this topic.

From the wealth of information that has been collected on substitution reactions of octahedral centers, four mechanistic schemes have emerged. The fundemental criterion for classification is whether or not a discreet intermediate is encountered at any point along the reaction coordinate. If an intermediate of higher coordination number is involved, the mechanism is classified as associative (A); similarly, a dissociative (D) mechanism implies an intermediate with a lower coordination number. If no intermediate is detectable, the classification is intimate (I). The 'I' category is further qualified based upon the effects of the incoming ligand on substitution rate. If the rate of substitution is dependent upon the identity of the incoming ligand, this is labelled intimate-associative (I_a); if independent, it is intimate-dissociative (I_d).

To date there are few examples of octahedral substitutions that occur via an 'A' mechanism.²⁰ This result is not surprising on steric or electronic grounds. Formation of a seven coordinate intermediate would increase ligand congestion (e.g., a bicapped pentagon would have ligands only 72° apart instead of 90° as in the octahedron). Electronically, addition of an electron pair from the incoming ligand requires a vacant, low-energy orbital. In trans-[ReO₂(L)₄]^Z complexes the LUMO is the degenerate pair of d_{xz} , d_{yz} orbitals, which are O=Re=O π -antibonding (see Figure 1.1). This level lies to considerably higher

energy than the d_{xy} HOMO; $[ReO_2(L)_4]^Z$ complexes can only be reduced at very negative potentials.^{21,22}

There have been several investigations of both $0x0^{23-25}$ and ancillary ligand²⁶ substitutions in $[ReO_2(L)_4]^Z$ complexes. These studies suggest that a D mechanism may be operative. For $[ReO_2(amine)_4]^+$, the rate of amine exchange is described by the following rate expression:²⁶

$$R = k_0[complex] + k_1[OH^-][complex]$$
 (6)

The first term is due to loss of ligand from the complex; the second term is the result of a conjugate base mechanism (S_N1-cb) and is absent when no ionizable protons are available on the amine (e.g., pyridine). The role of hydroxide ion is to deprotonate the amine group to form a coordinated amide. The strong trans-effect of this ligand results in expulsion of the trans-NH₂ group and the formation of a five coordinate species.

The existence of ReO₂(PPh₃)₂I as a stable solid⁵ suggests that five coordinate [ReO₂(L)₃]^Z complexes are reasonable to propose. A complex with the formulation ReO₂(py)₂I has been reported⁷ but has not been completely characterized. Additional support for this intermediate has recently appeared from the results of synthetic methods developed by Hupp and co-workers.^{27,28} This group found that mixed ligand complexes *trans*-[ReO₂(py-X)₂(py-Y)₂]⁺ could be obtained from reactions of pyridine ligands with Re(OEt)(py)₂I₂ in wet alcohol. These workers propose^{27,28} the intermediacy of ReO₂(py)₂I, formed from the hydrolysis of Re(OEt)(py)₂I₂. Experimental results suggest that ReO₂(py)₂I may also have a *cis* disposition of oxo ligands, implying that upon ligand loss, the *trans* -ReO₂⁺ core isomerizes to yield a *cis*-ReO₂⁺ unit. For this to occur prior to ligand attack, the five coordinate intermediate would have to have a considerable lifetime.

From the above analyses, it is clear why both ReO₂(PPh₃)₂I and *trans*-[ReO₂(py)₄]⁺ are good starting materials for the synthesis of [ReO₂(L)₄]^Z complexes. Substitutions with ReO₂(PPh₃)₂I likely proceed stepwise as shown in Figure 2.1.

ReO₂(PPh₃)₂I is completely insoluble in methanol. When a potentially ligating species, L, is added, the solid is consumed in seconds, suggesting steps 1, 2 and 3 in Figure 2.1 are very fast. The orange color of the solutions, early in the course of the reaction, also suggest that steps 4 and 5 are rapid; *trans*-[ReO₂(py)₂(PPh₃)₂]⁺ is yellow while *trans*-[ReO₂(py)₃(PPh₃)]⁺ is orange-yellow in color. Substitution of the last triphenylphosphine ligand appears to be much slower than the previous steps.

Substitution reactions of *trans*-[ReO₂(py)₄]⁺ could occur by a related mechanism. For example, the generation of *trans*-[ReO₂(diphos)₂]⁺ might proceed as in Figure 2.2. Upon substitution of one pyridine ligand by one arm of diphos, a second substitution of pyridine would rapidly follow due to the chelate effect. The rate-limiting step would be the introduction of the first PPh₂ group into the coordination sphere. The lability of the pyridine ligands in *trans*-[ReO₂(py)₄]⁺ has be noted previously⁸⁻¹⁴ and alkylating agents such as CH₃I or Me₂SO₄ have been used to make the loss of pyridine irreversible.¹⁰

Syntheses employing ReO₂(PPh₃)₂I work well for very basic or chelating ligands. Complexes containing electron-poor pyridines cannot be isolated in pure form using ReO₂(PPh₃)₂I for two reasons: (1) As the pyridine ligand becomes less basic, PPh₃ competes more effectively for a coordination position, that is, the equilibria

$$[ReO_2(PPh_3)_2(L)_2]I + L \implies [ReO_2(PPh_3)(L)_3]I + PPh_3 \quad (7)$$

$$[ReO2(PPh3)(L)3]I + L = [ReO2(L)4]I + PPh3$$
 (8)

Figure 2.1. Reaction mechanism likely for substitution reactions employing $ReO_2(PPh_3)_2I$.

Figure 2.2. Reaction mechanism likely for substitution reactions employing $trans-[ReO_2(py)_4]^+$.

$$[ReO_{2}(py)_{4}]^{+} \xrightarrow{slow} [ReO_{2}(py)_{3}]^{+} + py \quad (1)$$

$$[ReO_{2}(py)_{3}]^{+} + diphos \xrightarrow{fast} [ReO_{2}(py)_{3}(\eta^{1}-diphos)]^{+} \quad (2)$$

$$[ReO_{2}(py)_{3}(\eta^{1}-diphos)]^{+} \xrightarrow{fast} [ReO_{2}(py)_{2}(diphos)]^{+} + py \quad (3)$$

$$[ReO_{2}(py)_{2}(diphos)]^{+} \xrightarrow{slow} [ReO_{2}(py)(diphos)]^{+} + py \quad (4)$$

$$[ReO_{2}(py)(diphos)]^{+} + diphos \xrightarrow{fast} [ReO_{2}(py)(diphos)(\eta^{1}-diphos)]^{+} \quad (5)$$

$$[ReO_{2}(py)(diphos)(\eta^{1}-diphos)]^{+} \xrightarrow{fast} [ReO_{2}(diphos)_{2}]^{+} + py \quad (6)$$

$$[ReO2(L)4]I + S = [ReO2(L)3(S)]I + L$$
(9)

In aqueous solutions of *trans*-[ReO₂(py)₄]Cl, this reaction is known to proceed (25 °C) with a half-life of several days.²⁴ Thus, *trans*-[ReO₂(py)₄]I can be cleanly synthesized from neat pyridine but not from methanol solutions containing up to 40 equivalents of pyridine.

CONCLUSIONS

The complex ReO₂(PPh₃)₂I can be used to insert the *trans*-ReO₂+ unit into coordination environments containing pyridine or saturated amine ligands. The complex *trans*-[ReO₂(py)₄]+ is an alternative material that is useful when the former does not give satisfactory results. Our results and the studies of others^{28,29} suggest these substitution reactions proceed via a series of dissociative steps involving reactive five-coordinate intermediates. Recent research completed on analagous technetium complexes is consistent with this hypothesis.³⁰⁻³²

REFERENCES AND NOTES

- (1) Chakravorti, M. C. Inorg. Syn. 1982, 21, 116-118.
- (2) Murmann, R. K. Inorg. Syn. 1966, 8, 173-177.
- (3) Taube, H. Chem. Rev. 1952, 50, 69-126.
- (4) Basolo, F.; Pearson, R. G. Mechanisms of Inorganic Reactions; A Study of Metal Complexes in Solution; 1st ed.; John Wiley and Sons: New York, 1967; pp 141-158.
- (5) Ciani, G.; D'Alfonso, G.; Romiti, P.; Sironi, A.; Freni, M. *Inorg. Chim. Acta* 1983, 72, 29-37.
- (6) Bertolasi, V.; Ferretti, V.; Gilli, G.; Duatti, A.; Marchi, A.; Magon, L. J. Chem. Soc. Dalton Trans. 1987, 613-617.
- (7) Freni, M.; Giusto, D.; Romiti, P.; Minghetti, G. Gazz. Chim. Ital. 1969, 99, 286-299.

- (8) Chakravorti, M. C. J. Ind. Chem. Soc. 1969, 46, 383-385.
- (9) Chakravorti, M. C. J. Ind. Chem. Soc. 1970, 47, 844-850.
- (10) Chakravorti, M. C. J. Ind. Chem. Soc. 1970, 47, 827-833.
- (11) Chakravorti, M. C. J. Ind. Chem. Soc. 1970, 47, 838-843.
- (12) Chakravorti, M. C. J. Inorg. Nuc. Chem. 1972, 34, 893-900.
- (13) Chakravorti, M. C.; Chaudhuri, M. K. J. Inorg. Nuc. Chem. 1972, 34, 3479-3484.
- (14) Chakravorti, M. C.; Chaudhuri, M. K. J. Inorg. Nuc. Chem. 1974, 36, 757-761.
- (15) Ochiai, E. Aromatic Amine Oxides; Elsevier: New York, 1967; p 195.
- (16) Freni, M.; Giusto, D.; Romiti, P. Gazz. Chim. Ital. 1967, 97, 833-844.
- (17) Carty, A. J.; Harris, R. K. J. Chem. Soc., Chem. Commun. 1967, 234-236.
- (18) Ciani, G.; Sironi, A.; Beringhelli, T.; D'Alfonso, G.; Freni, M. *Inorg. Chim. Acta* 1986, 113, 61-65.
- (19) Langford, C. H.; Gray, H. B. *Ligand Substitution Processes*; 2nd ed.; W. A. Benjamin: Reading, Massachusetts, 1974; Chapter 3, pp 79-89.
- (20) Tobe, M. L. *Inorganic Reaction Mechanisms*; Nelson: Don Mills, Ontario, Canada, 1972; Chapters 3 and 7.
- (21) Lawrance, G. A.; Sangster, D. F. J. Chem. Soc. Chem. Comm. 1984, 1706-1707.
- (22) Pipes, D. W.; Meyer, T. J. Inorg. Chem. 1986, 25, 3256-3262.
- (23) Saito, K.; Sasaki, Y. In Advances in Inorganic and Bioinorganic Mechanisms; Sykes, A. G., Ed.; Academic: New York, 1982; Vol. 1, pp 179-216.
- (24) Kashani, F. F.; Murmann, R. K. Int. J. Chem. Kinet. 1985, 17, 1007-1015.
- (25) Gamsjäger, H.; Murmann, R. K. In Advances in Inorganic and Bioinorganic Mechanisms; Sykes, A. G., Ed.; Academic: New York, 1983; Vol. 2, pp 317-380.
- (26) Beard, J. H.; Calhoun, C.; Casey, J.; Murmann, R. K. J. Am. Chem. Soc. 1968, 90, 3389-3394.
- (27) Ram, M. S.; Jones, L. M.; Ward, H. J.; Wong, Y.; Johnson, C. J.; Subramanian, P.; Hupp, J. T. manuscript in preparation.

- (28) Ram, M. S.; Hupp, J. T. Inorg. Chem., submitted May 1990.
- (29) Ram, M. S.; Johnson, C. S.; Blackbourn, R. L.; Hupp, J. T. Inorg. Chem. 1990, 29, 238-244.
- (30) Lu, J.; Clark, M. J. Inorg. Chem. 1989, 28, 2315-2319.
- (31) Kastner, M. E.; Lindsay, M. J.; Clarke, M. J. Inorg. Chem. 1982, 21, 2037-2040.
- (32) Kastner, M. E.; Fackler, P. H.; Clarke, M. L.; Deutsch, E. *Inorg. Chem.* 1984, 23, 4683-4688.

Chapter 3.

Ground and Excited-State Properties of trans-Dioxorhenium(V) Complexes as a Function of Ancillary Ligand Identity.*

^{*}A portion of this chapter has been previously published: Brewer, J. C.; Gray, H. B. In *PREPRINTS*, *Division of Petroleum Chemistry*; Haines, W. E., Ed.; American Chemical Society: Washington, D. C., 1990; Vol. 35, pp 187-191.

INTRODUCTION

Organic chemists have frequently used systematic substituent studies to elucidate the mechanism of organic reactions. Linear free-energy relationships, such as the Hammett correlation, often characterize the nature of the transition state in both redox¹ and acid-base transformations.^{2,3} Using the large amount of experimental data available from organic studies, substituent effects can be resolved into σ and π contributions. These organic chemistry concepts can be readily applied to inorganic systems,⁴ and in many cases, a more thorough understanding of the electronic structure and bonding in coordination compounds can be obtained.

In this chapter, the effects of ancillary ligand identity on the ground and excited-state properties of trans-[ReO₂(L)₄]⁺ complexes are examined. The focus is on a series of substituted pyridine compounds, because electronic modulation of this ligand family is facile. The studies presented in this chapter use ligand basicity as a measure of donor strength towards metal centers. For heterocycles, the pKa of the corresponding conjugate acid is the operative parameter. Differences in pKa values between ligands can arise from variations in solvent and temperature for independent determinations. For this reason, most correlations in this section have been made with the parameter Δ pKa, as defined below:⁵

$$\Delta pKa = pKa(py) - pKa(py-X) \tag{1}$$

In each case, the pKa of both pyridine itself⁶ and the derivative in question, have been determined independently in the same medium under identical conditions.

The estimation of ligand donating strength from basicity values has received some critisism by others.⁷ The results in this chapter will demonstrate, however, that this approximation is valid when comparisons are made among ligands in the same heterocycle family.

Substitutions *ortho* to the ring nitrogen would be expected to alter drastically binding properties because of steric interactions with the oxo groups of *trans*-ReO₂+. Thus, in order to study the effects due to electronic changes only, pyridine ligands substituted in the 3, 4 or 5 position were employed. This still permits extensive electronic tuning; the tabulation of Δ pKa values compiled by Swada *et al.*⁵ shows that pyridine basicity can be varied over 9 orders of magnitude, from the very electron-poor 3,5-dichloropyridine (Δ pKa = 4.44) to the electron-rich 4-dimethylaminopyridine (Δ pKa = -4.36).

By examining the series of pyridine complexes using classical physical methods, we will obtain a more complete description of the electronic structure and bonding present in *trans*-[ReO₂(L)₄]⁺ compounds. In order to determine the effects of changing the nature of the ligating atom, we will also briefly examine the properties of some related phosphine complexes.

EXPERIMENTAL

Materials. All chemicals were either of reagent grade or the best grade commercially available and used as received. Tetra-*n*-butylammonium hexafluorophosphate, TBAH, was prepared as described below. Methylviologen hexafluorophosphate, [MV][PF₆]₂, and *tris*-(bipyridyl)ruthenium(II) hexafluorophosphate, [Ru(bipy)₃][PF₆]₂, were generous gifts of Dr. M. Heinrichs-Zietlow. For electrochemical experiments, dichloromethane and acetonitrile (EM, OMNISOLV) were freshly distilled from calcium hydride before use. Acetonitrile (Burdick and Jackson) was used as received for UV-vis experiments; for emission measurements this solvent was degassed with five freeze-pump-thaw cycles on a high-vacuum line (<10-3 torr), dried, and stored under vacuum over activated ¹⁰⁻¹² 3 Å sieves (Strem Chemicals).

Syntheses. Trans-[ReO₂(L)₄]PF₆. The syntheses of these complexes are described in the previous chapter.

Tetra-n-butylammonium hexafluorophosphate (TBAH). Sixty milliliters of concd HPF₆ (60-65%) was carefully diluted with 80 mL of distilled water and set aside. A 5% NaHCO3 solution was prepared by dissolving 25 g of NaHCO3 in 500 mL of distilled water. Sixty grams of tetra-n-butylammonium bromide, TBABr, was dissolved in 200 mL of distilled water, and the solution was filtered by gravity (Whatman #1 filter paper) into a 500-mL Erlenmeyer flask. The 140-mL HPF₆ solution was placed in a 250-mL addition funnel and added slowly, with rapid stirring, to the TBABr solution. After the addition was complete, a heavy white precipitate formed; this was difficult to stir magnetically. Water (80 mL) was added, and the mixture was stirred manually with a glass rod. Due to the large volume of material produced, the product was collected in several portions on a coarse-porosity sintered-glass frit. Each portion was washed with 3 X 100 mL of distilled water followed by 75 mL portions of 5% NaHCO3 until the washings were neutral to litmus paper. The product was then washed with an additional 5 X 100 mL of distilled water. (All waste solutions in this preparation were neutralized with solid NaHCO3 before disposal.) The resulting paste was aspirated on the frit for at least 1 h and then spread out on a watch glass, covered with a large piece of filter paper (Whatman #1), and left to dry overnight in an efficient fumehood. The following morning, the crude product was twice recrystallized (in smaller batches) from absolute alcohol. The large needles obtained were crushed and dried in vacuo (<10⁻³ torr) at 80 °C for 6 h. In a typical recrystallization step, 30 g of crude TBAH yielded 25 g of purified product (after drying) from 300 mL of hot absolute alcohol.

Physical Measurements. Cyclic voltammetry measurements were made using a Princeton Applied Research (PAR) 173 potentiostat and a PAR 175 universal programmer. Platinum button working electrodes were prepared by polishing with 5 μm alumina, washing with water, and sonicating in 1:1 MeOH/water. Solutions were deoxygenated with argon purging and kept under an argon blanket during the experiment. A saturated sodium chloride calomel (SSCE) reference electrode was used in each experiment. A

platinum wire/glass joint was used to prevent water leakage from the SSCE into the cell. A platinum wire was used as the auxiliary electrode. In cyclic voltammetry experiments, solutions were 0.1 M in TBAH and approximately 1-2 mM in Re compound. The iR drop across the cell was electronically compensated by positive feedback. Ferrocene (Fc), decamethylferrocene (*Fc), or methylviologen (MV²+) was used as an internal redox standard in these experiments. Under the given experimental conditions, the ferricenium/ferrocene couple (Fc+/Fc) occurred at 0.42 V and 0.51 V (vs. SSCE) in acetonitrile and dichloromethane, respectively. The decamethylferricenium/decamethylferrocene couple (*Fc+/*Fc) was at -0.55 V vs. Fc+/Fc in 0.1 M TBAH CH2Cl2 solution. The two reduction waves for [MV][PF6]2 were found at -0.83 and -1.25 V vs. Fc+/Fc in 0.1 M TBAH CH3CN solution.

Bulk electrolysis experiments were conducted at a Pt gauze working electrode using the PAR 173 potentiostat equipped with a digital coulometer. The bulk electrolysis cell was a two-compartment cell fitted with an argon inlet and a Pt wire/glass joint for holding the SSCE reference electrode. Argon flow and stirring were continual throughout the experiment. The digital coulometry was not corrected for solvent electrolysis because of the short duration of the experiments and the moderate potentials involved.

Spectroscopy. Background-corrected electronic absorption spectra were obtained using a Shimadzu UV-260 recording spectrometer or a Cary Model 14 Spectrophotometer that had been rebuilt by On-Line Instruments Service (OLIS). Quartz cells of 1-cm pathlength were used in all cases. Extinction coefficients of the ligand-field (LF) transitions were determined from solutions that were 0.2-0.5 mM in Re complex; these were diluted by 1/25 to examine the more intense MLCT transitions. Free-ligand absorption spectra were measured on solutions that had absorbances < 2.5. The concentrations of these solutions were not determined. Luminescence spectra were recorded on an instrument constructed at Caltech that has been described previously. The spectrometer response was determined with a calibrated tungsten filament lamp, and spectra

were corrected for this response by the method of Drushel, Sommers, and Cox. 14 The corrected spectrum of [Ru(bipy)₃]Cl₂ agreed with that reported in the literature, ^{15,16} verifying that the correction routine was being properly applied. Solution samples were prepared under vacuum in a 10-mL round-bottomed flask equipped with a side-arm 1-cm fluorescence cuvette¹⁷ and were rigorously degassed with no fewer than five freeze-pumpthaw cycles. Unless noted otherwise, all measurements were conducted at room temperature. An excitation wavelength of 436 nm was used for the tetrapyridine complexes and trans-[ReO₂(py)₃(PPh₃)]I. The emission spectra of trans-[ReO₂(diphos)₂]PF₆ and trans-[ReO₂(dppen)₂]PF₆ were measured in the solid state using 366-nm excitation. The absolute luminescence quantum yield for trans-[ReO₂(py)₃(PPh₃)]I was determined by the method of Demas and Crosby. 18 The absorbance of the solution was less than 0.1 (1-cm pathlength cell) at the 436-nm excitation wavelength used. The quantum yield standard was [Ru(bipy)3]Cl₂ (Aldrich Chemical Co.) in water (NANOpure), which has a reported quantum yield of 0.042 using a 436-nm exictation wavelength. Luminescence lifetimes were measured with a Quanta Ray DCR Nd-YAG laser system.¹⁹ Solution samples were prepared in a cell¹⁷ identical to that used for collecting luminescence spectra.

Transient-absorption spectra (TA) of *trans*-[ReO₂(4-Phpy)₄]PF₆, *trans*-[ReO₂(4-MeOpy)₄]PF₆, *trans*-[ReO₂(3-Medmap)₄]PF₆ and *trans*-[ReO₂(dmap)₄]PF₆ were kindly measured by Dr. I-Jy Chang at Brookhaven National Laboratory using an apparatus that has been previously described.²⁰ Data were collected from dry, degassed acetonitrile solutions of the complexes. Samples were excited at 355 nm. Excited-state lifetimes were determined by monitoring the recovery of the ground-state MLCT bleach and/or the decay of new absorptions (both for at least 4 half-lives). Transient spectra were recorded point-by-point and correspond to optical density changes (Δ O.D.) at time zero relative to the excitation pulse.

Infrared spectra were recorded as Nujol mulls on a Beckman IR 4240 spectrometer with internal calibration or on a Perkin-Elmer 1600 Series FTIR spectrometer.

RESULTS

Electrochemistry. All *trans*-[ReO₂(L)₄]PF₆ pyridine complexes exhibit a single reversible oxidation wave within the limits of the solvent. The square-root dependence of anodic peak current on scan rate (varied from $20 - 500 \text{ mV s}^{-1}$) suggested that in addition to being reversible, the oxidative processes observed were under diffusion control. ^{21,22} Two representative cyclic voltammograms are given in Figures 3.1 and 3.2. The E_{1/2} values measured for each complex are summarized in Table 3.1.

Table 3.1. Formal potentials of the Re(VI)/Re(V) couple for *trans*-[ReO₂(L)₄]PF₆ pyridine complexes in 0.1 M TBAH CH₃CN solution.

L=	Δ pK _a b	E _{1/2} , V vs. Fc+/Fc
ру	0.00	0.95
4-Phpy	-0.14	0.87
4-pic	-0.82	0.83
3,5-lut	-0.93	0.83
4-МеОру	-1.37	0.65
3-Medmap	-3.45	0.18
dmap	-4.36	0.10 ^a
4-руггру	-4.36 ^c	0.05^{a}

^a0.1 M TBAH CH₂Cl₂ solution

 $^{^{}b}\Delta pK_a = pK_a(py) - pK_a(py-X)$ for the conjugate acids of the pyridine ligands.

^cThe pKa of this ligand is not known. Due to the small difference in structure between 4-pyrrpy and dmap, the pKa's of these two ligands were assumed to be identical.

Figure 3.1. Cyclic voltammogram of *trans*-[ReO₂(4-Phpy)₄]PF₆ in 0.1 M TBAH CH₃CN solution. The peak at approximately 0.45 V is due to the internal redox standard ferrocene.

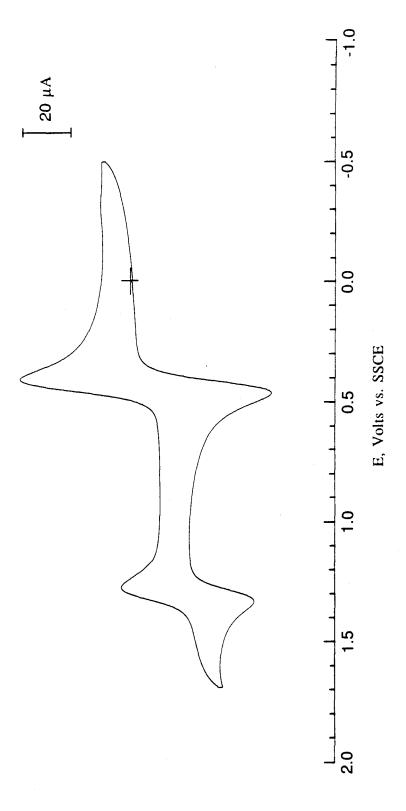
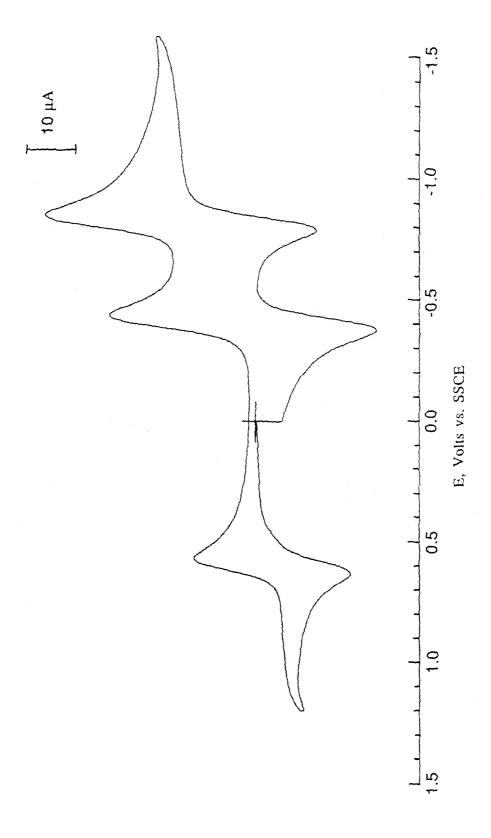



Figure 3.2. Cyclic voltammogram of *trans*-[ReO₂(3-Medmap)₄]PF₆ in 0.1 M TBAH CH₃CN solution. The peaks at approximately -0.4 and -0.8 V are due to the internal redox standard [MV][PF₆]₂.

The complexes *trans*-[ReO₂(dmap)₄][PF₆] and *trans*-[ReO₂(4-pyrrpy)₄][PF₆] also exhibited additional, irreversible oxidations at 1.07 and 0.97 V vs. Fc⁺/Fc. The assignment of these couples was not determined. The current associated with these anodic waves suggested 1-e⁻ processes.

The complex *trans*-[ReO₂(diphos)₂][PF₆] was electro-inactive in the potential range accessible (-1.5 to 1.8 V vs. SSCE) under the experimental conditions (0.1 M TBAH CH₃CN). The complex *trans*-[ReO₂(dppen)₂][PF₆] had insufficient solubility (in both 0.1 M TBAH CH₂Cl₂ and CH₃CN solutions) to be examined by cyclic voltammetry. *Trans*-[ReO₂(py)₃PPh₃]+ was not examined by cyclic voltammetry because only the iodide salt of the complex was available and the I₂/I⁻ couple complicated the measurement.

Three complexes were subjected to bulk (oxidative) electrolysis: trans-[ReO₂(4-pyrrpy)₄][PF₆], trans-[ReO₂(3-Medmap)₄][PF₆] and trans-[ReO₂(4-MeOpy)₄][PF₆].

These three complexes were chosen because their low Re(VI)/Re(V) potentials suggested they might yield stable rhenium(VI) products.

Within minutes after initiating the bulk electrolysis of a solution of *trans*-[ReO₂(4-pyrrpy)₄][PF₆] (at 0.9 V vs. SSCE; 0.1 M TBAH CH₂Cl₂) the orange solution became deep green (orange + blue). After current ceased to flow, the solution was deep blue. The amount of charged passed at this point was within 10% of that calculated for a 1-e⁻ oxidation of *trans*-[Re₂(4-pyrrpy)₄][PF₆]. Bulk reduction of this solution (at 0.3 V vs. SSCE) appeared to quantitatively regenerate the starting material, based on the charge passed and the cyclic voltammograms taken after the oxidation/reduction cycle. Similar behavior was observed for *trans*-[ReO₂(3-Medmap)₄][PF₆].

In contrast to the former two cases, *trans*-[ReO₂(4-MeOpy)₄][PF₆] was not stable to oxidation on the bulk electrolysis time scale. The current decreased substantially after 1 equivalent of charge had been passed but did not go to zero. After 1.4 equivalents of charge had been passed, a cyclic voltammogram was taken. In addition to a reversible wave at 1.05 V (vs. SSCE), indicative of starting material, there was an irreversible

reduction wave at approximately -0.7 V. Subsequently, a reducing potential was applied, but only 0.2 equivalents of charge was passed. Estimated i_{p,a} from the cyclic voltammogram taken after the cycle of oxidation/reduction suggested that 60% of the original material had decomposed. In addition, the broad irreversible reduction wave was still present between -0.6 and -0.9 V.

Three pyridine derivatives were also examined by cyclic voltammetry: 4-methoxypyridine (4-MeOpy), 3-methyl-4-dimethylaminopyridine (3-Medmap), and 4-dimethylaminopyridine (dmap). No reversible electrochemistry was seen for any of these; broad anodic waves were observed in all cases. The position of the anodic waves varied with scan rate. In each case the wave shape was similar to that shown in Figure 3.3 for 4-dimethylaminopyridine. At a scan rate of 200 mV s⁻¹, the anodic peak potentials (vs. Fc+/Fc) were 1.1, 0.9 and 1.2 V for dmap, 3-Medmap and 4-MeOpy, respectively.

Infrared Spectra. The IR spectra of the pyridine complexes of *trans*[ReO₂(L)₄][PF₆] are provided in an appendix of this thesis. In addition to bands resulting from the coordinated pyridine ligands, medium to strong absorptions were observed at 845 cm¹ and ~800 cm⁻¹ arising from [PF₆]⁻ and the *trans*-ReO₂⁺ asymmetric stretch, respectively. Band positions of the asymmetric *trans*-ReO₂⁺ stretch for several *trans*[ReO₂(L)₄]⁺ complexes are summarized in Table 3.2.

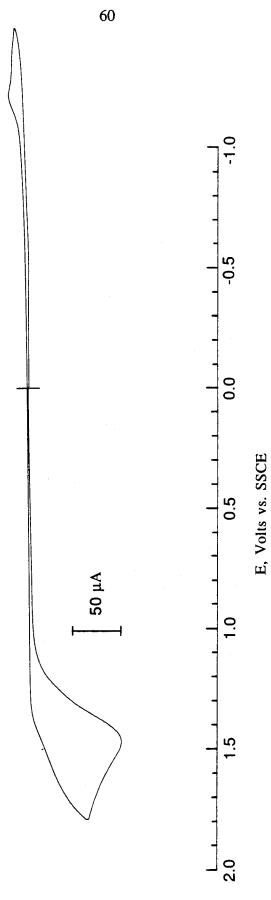
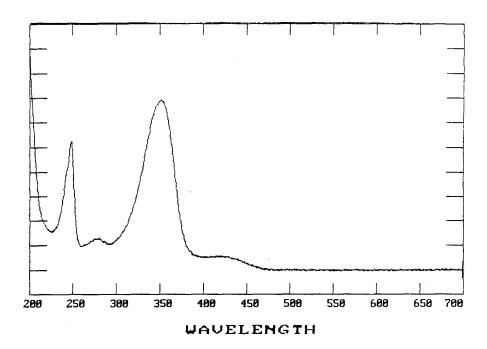

The IR spectra of *trans*-[ReO₂(py)₃(PPh₃)]I, *trans*-[ReO₂(diphos)₂][PF₆] and *trans*-[ReO₂(dppen)₂][PF₆] are also provided in an appendix of this thesis along with the corresponding free-ligand spectra. In addition to ligand vibrations, absorptions due to the *trans*-ReO₂+ asymmetric stretch occur in the vicinity of 800 cm⁻¹ along with additional bands at 845 cm⁻¹ due to [PF₆]⁻ (if present). The assignment of the metal-oxo vibration is dubious for the diphos and dppen complexes because of the presence of bands with similar energies in the corresponding free ligands. Oxygen-18 labelling of the rhenium complexes would be necessary to make this band assignment with certainty.

Table 3.2. Position of the asymmetric O=Re=O stretch for *trans*-[ReO₂(L)₄]⁺ pyridine and phosphine complexes.

L=	ν _{asym} for ReO ₂ + (cm ⁻¹)
ру	816
4-Phpy	810
4-pic	820
3,5-lut	820
4-МеОру	810
3-Medmap	810
dmap	800
4-руггру	798
(py)3(PPh3)	815
1/2 diphos	780
1/2 dppen	790

Figure 3.3. Cyclic voltammogram of free 4-dimethylaminopyridine in 0.1 M TBAH CH₃CN solution.



Spectroscopy. The *trans*-[ReO₂(L)₄]⁺ complexes of pyridine and its derivatives exhibit several prominent absorptions in their electronic spectra. The two lowest energy transitions exhibit a marked solvent dependence: the band occurring in the region 400 - 500 nm shifts to lower energy in Lewis acidic solvents, while the band in the region 340 - 370 nm shifts to higher energy. This dependence has been previously noted²³ and is attributed to the interaction of lone-pair electrons on the oxo ligands with vacant low-energy orbitals in the solvent molecules. Because of this behavior, all UV-vis data were collected using the same solvent (CH₃CN).

In order to aid in the assignment of the electronic transitions, the UV-vis spectra of the corresponding free pyridine ligands were measured in CH₃CN solution. These spectra are dominated by a single strong absorption ($\varepsilon \sim 5,000$) in the region 200 - 260 nm; in some cases vibrational fine structure is present in these bands. The UV-vis spectrum of each trans-[ReO₂(L)₄]⁺ pyridine complex and the corresponding free ligand are provided in Figures 3.4 - 3.11.

The compounds *trans*-[ReO₂(L)₄]PF₆ with L= py, 4-Phpy, 4-pic, 3,5-lut, and 4-MeOpy all exhibit red emission upon excitation with 436-nm light. For solid samples, emission bands showed vibrational fine structure that became more pronounced upon cooling to 77 K. The solution luminescence properties are summarized in Table 3.3. The emission spectrum displayed in Figure 3.12 for *trans*-[ReO₂(3,5-lut)₄][PF₆] is representative of those observed for the other luminescent tetrapyridine complexes. Excited-state lifetimes of the above complexes were determined by monitoring the rate of luminescence decay. Incident laser power was between 0.2 - 0.4 mJ/pulse and emission decays were monitored between 640 - 660 nm. All decay curves could be fit to single exponentials for at least 4 half-lives.

Figure 3.4. UV-vis absorption spectra of *trans*-[ReO₂(py)₄]PF₆ (top) and free pyridine (bottom) in CH₃CN solution. The ordinate scale is in arbitrary absorbance units.

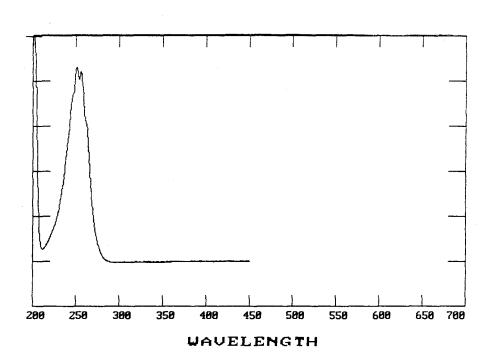
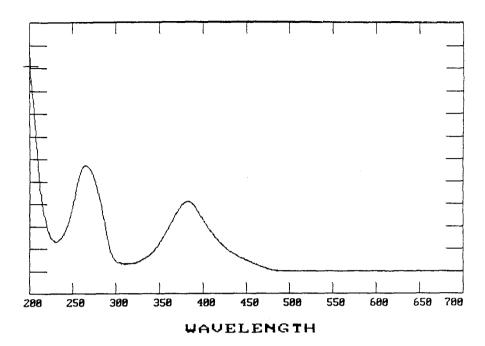



Figure 3.5. UV-vis absorption spectra of *trans*-[ReO₂(4-Phpy)₄]PF₆ (top) and free 4-phenylpyridine (bottom) in CH₃CN solution. The ordinate scale is in arbitrary absorbance units.

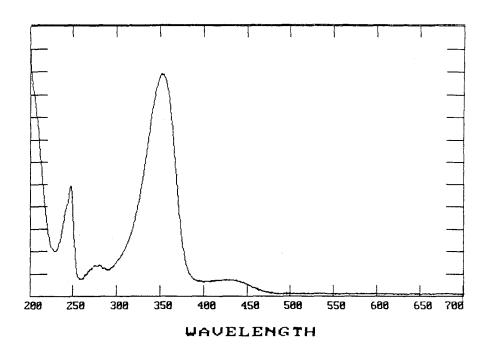



Figure 3.6. UV-vis absorption spectra of *trans*-[ReO₂(4-pic)₄]PF₆ (top) and free 4-picoline (bottom) in CH₃CN solution. The ordinate scale is in arbitrary absorbance units.

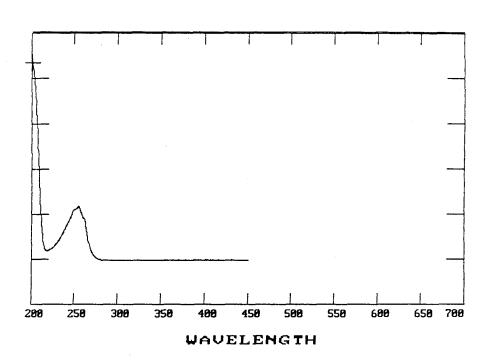
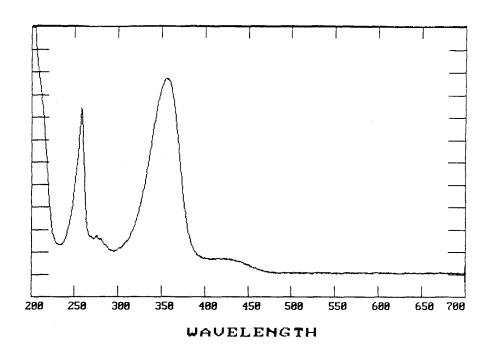



Figure 3.7. UV-vis absorption spectra of *trans*-[ReO₂(3,5-lut)₄]PF₆ (top) and free 3,5-lutidine (bottom) in CH₃CN solution. The ordinate scale is in arbitrary absorbance units.

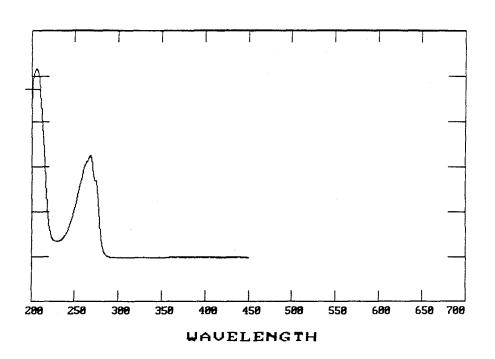
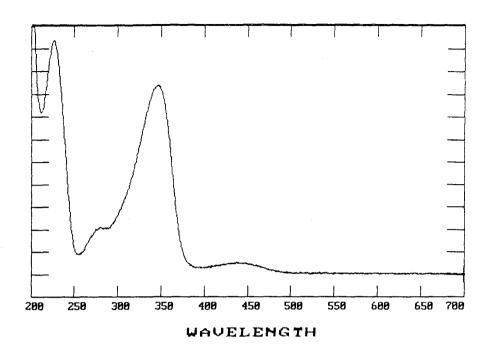



Figure 3.8. UV-vis absorption spectra of *trans*-[ReO₂(4-MeOpy)₄]PF₆ (top) and free 4-methoxypyridine (bottom) in CH₃CN solution. The ordinate scale is in arbitrary absorbance units.

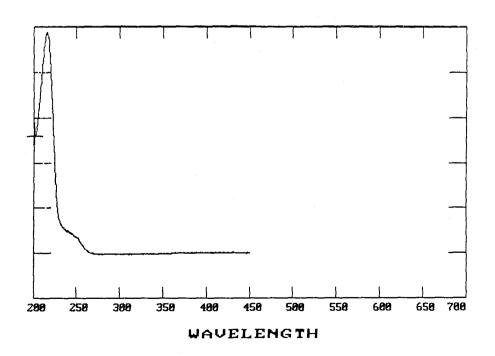
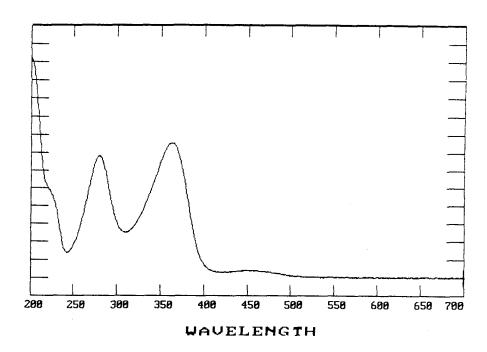



Figure 3.9. UV-vis absorption spectra of *trans*-[ReO₂(3-Medmap)₄]PF₆ (top) and free 3-methyl-4-dimethylaminopyridine (bottom) in CH₃CN solution. The ordinate scale is in arbitrary absorbance units.

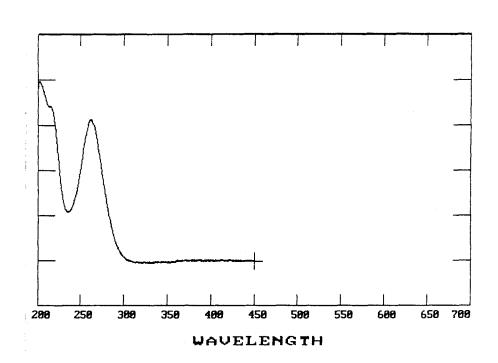
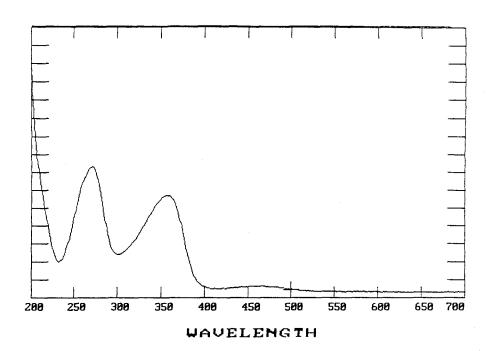



Figure 3.10. UV-vis absorption spectra of *trans*-[ReO₂(dmap)₄]PF₆ (top) and free 4-dimethylaminopyridine (bottom) in CH₃CN solution. The ordinate scale is in arbitrary absorbance units.

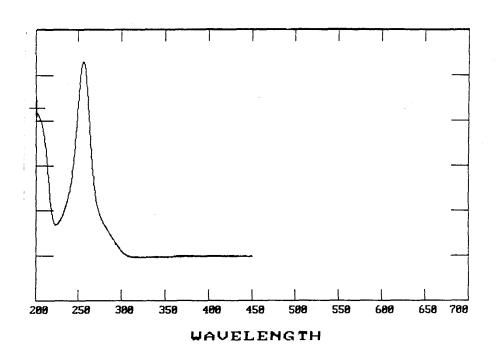
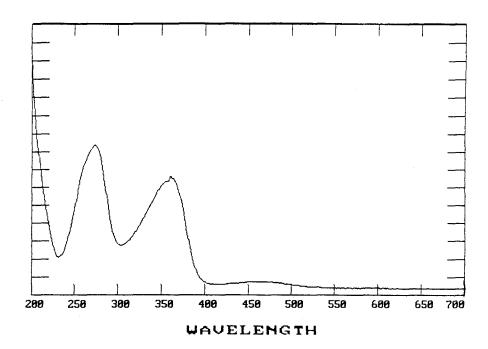



Figure 3.11. UV-vis absorption spectra of *trans*-[ReO₂(4-pyrrpy)₄]PF₆ (top) and free 4-pyrrolidinopyridine (bottom) in CH₃CN solution. The ordinate scale is in arbitrary absorbance units.

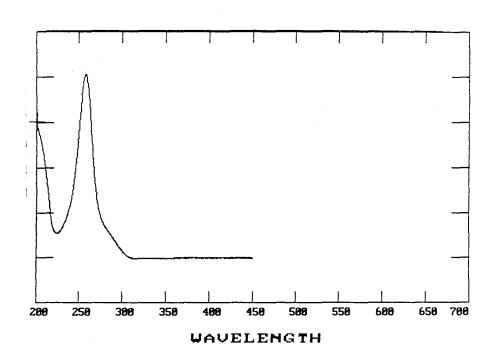


Figure 3.12. Room temperature emission spectrum *trans*-[ReO₂(3,5-lut)₄][PF₆] in CH₃CN solution. The spectrum has been corrected for spectrometer response.

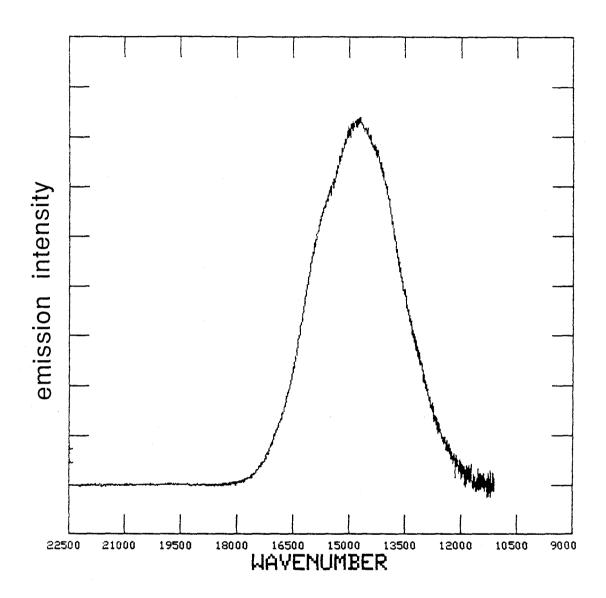
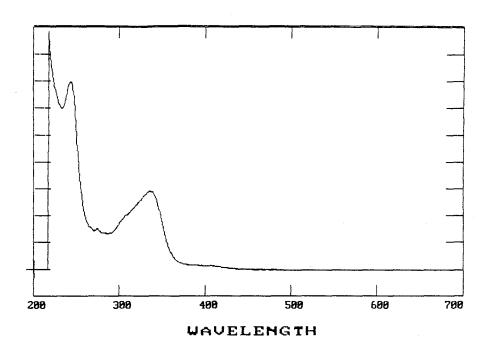


Table 3.3. Luminescence properties of *trans*-[ReO₂(L)₄][PF₆] pyridine complexes in CH₃CN solution at room temperature. All values reported have been corrected for spectrometer response.

L=	E _{max} (cm ⁻¹)	τ _ο (μs)
py	14,920	14
4-Phpy	14,720	14
4-Меру	14,580	12
3,5-lut	14,760	13
4-МеОру	13,790	2.8

The UV-visible spectrum of *trans*-[ReO₂(py)₃(PPh₃)]I is similar to that of the tetrapyridine complex, except that the far UV region is dominated by the intense π - π * transitions of the phenyl rings. The spectrum is shown in Figure 3.13 along with the spectrum of free PPh₃ for comparison.

The compound trans-[ReO₂(py)₃(PPh₃)]I was luminescent in CH₂Cl₂ solution (E_{max} = 15,150 cm⁻¹, τ = 1.5 μ s). The emission quantum yield was found to be 0.003, an order of magnitude smaller than that of trans-[ReO₂(py)₄]PF₆. The solid-state emission spectrum (τ = 33 μ s at RT) of trans-[ReO₂(py)₃(PPh₃)]I exhibited vibrational fine structure (Figure 3.14) which became well resolved at 77 K (Figure 3.15). The peak positions (uncorrected) are summarized in Table 3.4. At low temperature, two progressions were clearly evident: a major progression of ~800 cm⁻¹ and a minor progression of ~190 cm⁻¹. From analogy with the low temperature emission spectrum of trans-[ReO₂(py)₄][BPh₄], the vibrational modes causing these progressions are probably the symmetric O=Re=O stretch and a Re-py stretch, respectively.²⁸


Table 3.4. Summary of emission peak maxima for the 77 K spectrum of *trans*-[ReO₂(py)₃(PPh₃)][PF₆] (uncorrected for spectrometer response).

peak position, nm (cm ⁻¹)	minor progression (cm ⁻¹)	major progression(cm ⁻¹)
560.25 (17,849)		
566.25 (17,660)	189	
589.50 (16,964)		885
621.75 (16,084)	193	
629.25 (15,892)		880
657.75 (15,203)	192	
666.75 (14,998)		881
698.25 (14,322)	205	
708.00 (14,124)		881

In contrast to the pyridine complexes, the UV-vis spectra of the phosphine complexes trans-[ReO₂(diphos)₂][PF₆] and trans-[ReO₂(dppen)₂][PF₆] are essentially featureless, exhibiting only broad absorptions with intense transitions at ~ 266 nm extending out into the near-visible region. Poor solubility precluded accurate extinction measurements; however, an $\varepsilon \sim 30,000 \, \text{M}^{-1} \, \text{cm}^{-1}$ can be estimated. The spectra of these complexes, accompanied by those of the free ligand, are provided in Figures 3.16 and 3.17.

Both *trans*-[ReO₂(diphos)₄][PF₆] and *trans*-[ReO₂(dppen)₄][PF₆] exhibit emission only in frozen dichloromethane solutions and in the solid state ($\lambda_{max} = 15,100$ and 16,170 cm⁻¹ for the diphos and dppen complexes, respectively). The bands were Gaussian in shape, and no fine structure was evident down to temperatures as low as 77 K.

Figure 3.13. UV-vis absorption spectra of *trans*-[ReO₂(py)₃(PPh₃)]I (top) and free PPh₃ (bottom) in CH₃CN solution. The ordinate scale is in arbitrary absorbance units.

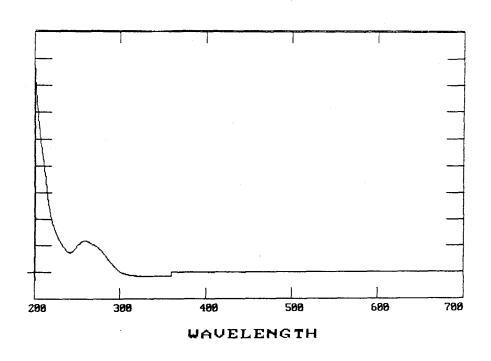
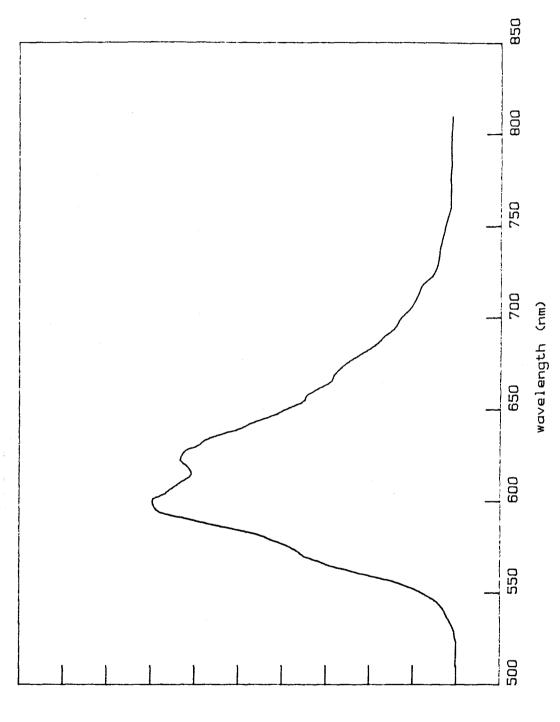



Figure 3.14. Room temperature emission spectrum of a solid sample of *trans*-[ReO₂(py)₃PPh₃]I (not corrected for spectrometer reponse). The band shape is due to incompletely resolved metal-oxo vibrational fine structure.

emission intensity

Figure 3.15. Low temperature (77 K) emission spectrum of a solid sample of *trans*- $[ReO_2(py)_3PPh_3]I$. The spectrum has not been corrected for spectrometer response.

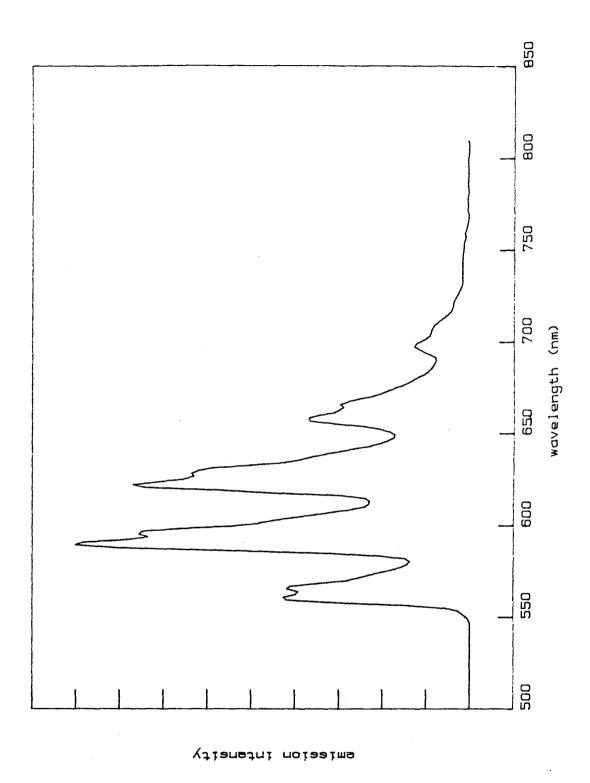
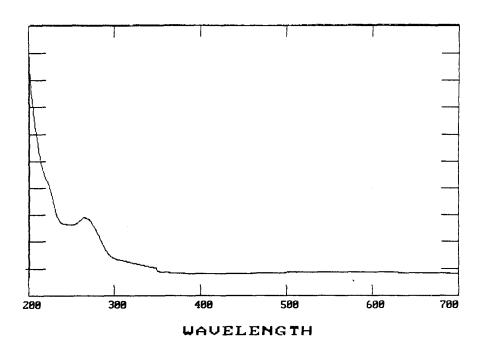



Figure 3.16. UV-vis absorption spectra of *trans*-[ReO₂(diphos)₂][PF₆] (top) and free diphos (bottom) in CH₃CN solution.

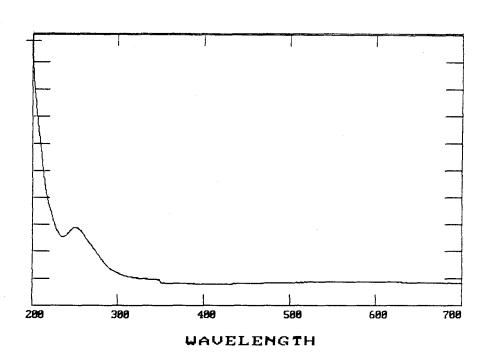
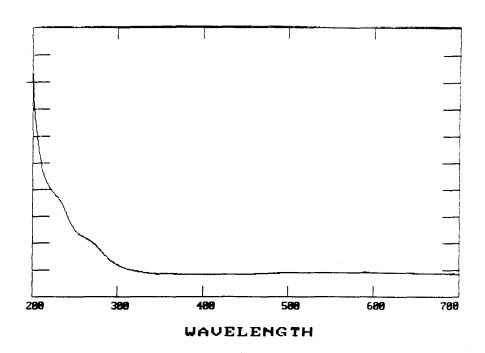
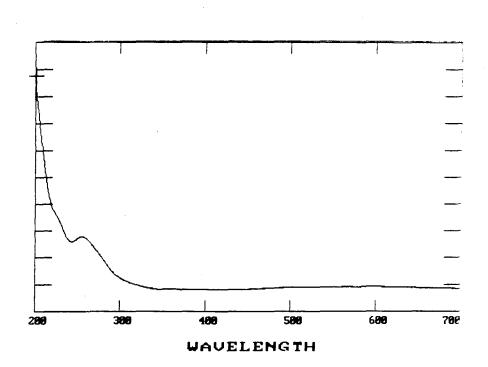




Figure 3.17. UV-vis absorption spectra of *trans*-[ReO₂(dppen)₂][PF₆] (top) and free dppen (bottom) in CH₃CN solution.

Curiously, no emission could be detected for the following complexes under any conditions: *trans*-[ReO₂(3-Medmap)₄][PF₆], *trans*-[ReO₂(dmap)₄][PF₆], and *trans*-[ReO₂(4-pyrrpy)₄][PF₆].

The transient-absorption (TA) spectra of *trans*-[ReO₂(4-Phpy)₄]PF₆, *trans*-[ReO₂(4-MeOpy)₄]PF₆, *trans*-[ReO₂(3-Medmap)₄]PF₆, and *trans*-[ReO₂(dmap)₄]PF₆ are shown in Figures 3.18 to 3.21. All TA spectra are dominated by a pronounced bleach in the region 350 – 400 nm. In the case of *trans*-[ReO₂(4-Phpy)₄]PF₆, there is a weak band at approximately 500 nm which is also seen for *trans*-[ReO₂(4-MeOpy)₄]PF₆. The latter complex exhibits an additional absorption at ~380 nm. The spectra of *trans*-[ReO₂(3-Medmap)₄]PF₆ and *trans*-[ReO₂(dmap)₄]PF₆ exhibit intense absorptions with maxima at 510 and 450 nm, respectively. The excited-state lifetime data determined from TA experiments are summarized in Table 3.5.

Table 3.5. Excited-state lifetime data for some *trans*-[ReO₂(L)₄]PF₆ pyridine complexes determined from TA measurements.

complex	τ _ο (μs)	
trans-[ReO ₂ (4-Phpy) ₄]PF ₆	11.5	
trans-[ReO ₂ (4-MeOpy) ₄]PF ₆	2.5	
trans-[ReO ₂ (3-Medmap)4]PF ₆	0.36	
trans-[ReO ₂ (dmap) ₄]PF ₆	0.15	

Figure 3.18. TA spectrum of *trans*-[ReO₂(4-Phpy)₄][PF₆] in CH₃CN solution. Data were collected point-by-point at time zero with respect to the excitation pulse.

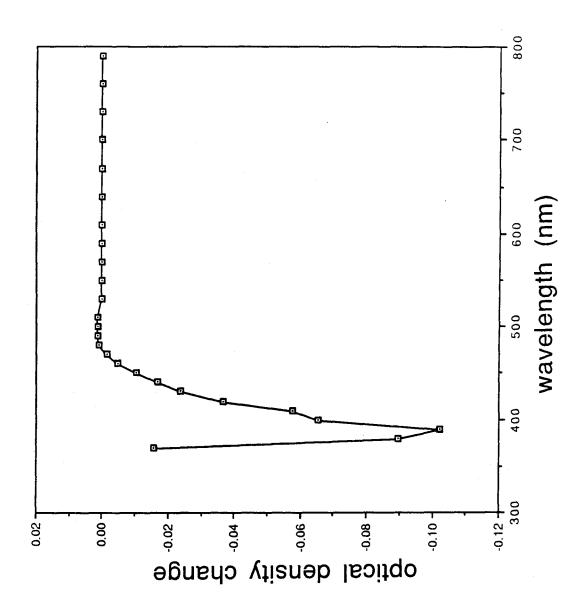


Figure 3.19. TA spectrum of *trans*-[ReO₂(4-MeOpy)₄][PF₆] in CH₃CN solution. Data were collected point-by-point at time zero with respect to the excitation pulse.

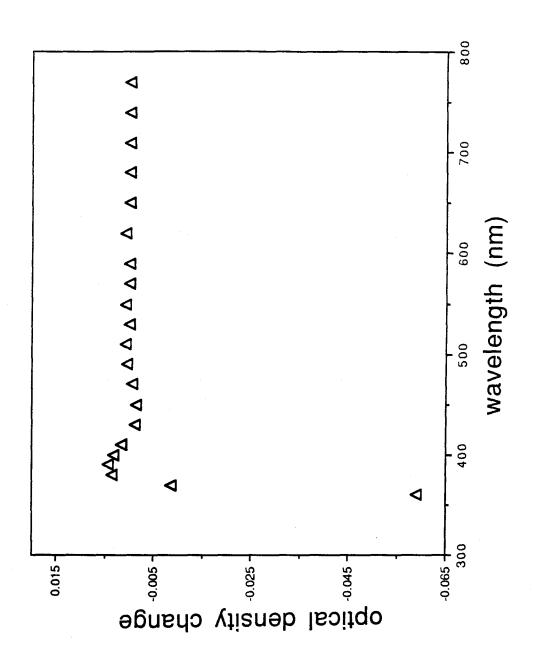


Figure 3.20. TA spectrum of *trans*-[ReO₂(3-Medmap)₄][PF₆] in CH₃CN solution. Data were collected point-by-point at time zero with respect to the excitation pulse.

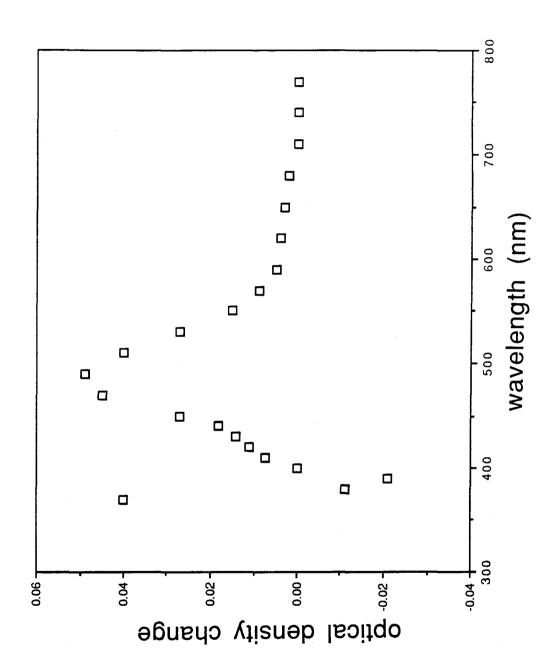


Figure 3.21. TA spectrum of *trans*-[ReO₂(dmap)₄][PF₆] in CH₃CN solution. Data were collected point-by-point at time zero with respect to the excitation pulse.

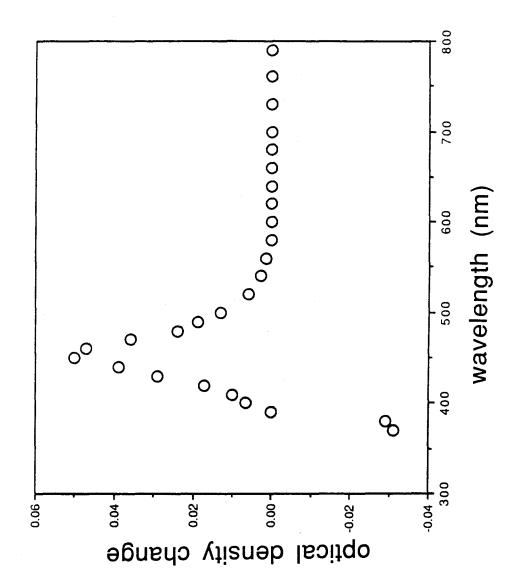
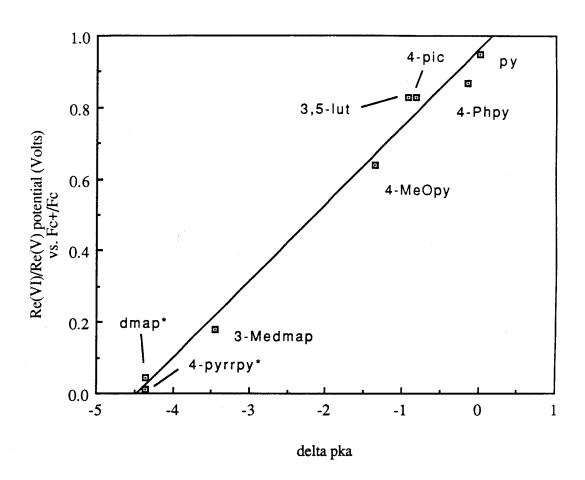



Figure 3.22. Plot of $E_{1/2}$ Re(VI)/Re(V) for trans-[ReO₂(L)₄]PF₆ pyridine complexes vs. ΔpK_a of free ligand L.

DISCUSSION

Electrochemistry. Cyclic voltammetry measurements reveal a most striking relationship between ligand donor strengths and the corresponding oxidation potential of the *trans*-[ReO₂(L)₄][PF₆] pyridine complexes. A plot of $E_{1/2}[Re(VI)/Re(V)]$ vs. ΔpK_a of the free pyridine (see Figure 3.22) yields a straight line with a slope of 0.21 and an intercept of 0.95 (R = 0.99). This linear dependence permits tuning of the Re(VI)/Re(V) couple by almost 1 V. The result is a family of Re(VI) complexes spanning a wide range of oxidizing power. The pyridine complex is about as oxidizing as Ce(IV). The 4-pyrrolidinopyridine complex is as mild as the ferricenium ion. The low oxidizing potential of this last complex suggested that isolation and full characterization of *trans*-[ReO₂(4-pyrrpy)₄][PF₆]₂ might be possible. Bulk electrolysis experiments supported this hypothesis; *trans*-[ReO₂(4-pyrrpy)₄][PF₆] can be oxidized and re-reduced several times without suffering any decomposition. The complex *trans*-[ReO₂(3-Medmap)₄][PF₆]₂ is also stable on the bulk electrolysis time scale. These compounds provide insight into the nature of *trans*-[ReO₂(L)₄]²⁺ species and are discussed in further detail in Chapter 4.

The Re(VI)/Re(V) couple of *trans*-[ReO₂(4-MeOpy)₄][PF₆] is 600 mV more oxidizing than that of *trans*-[ReO₂(4-pyrrpy)₄][PF₆]. Thus it is not surprising that *trans*-[ReO₂(4-MeOpy)₄][PF₆] is *not* stable to oxidation on the bulk electrolysis time scale. After one equivalent of charge was passed, current continued to flow at a measurable rate. When a reducing potential was applied, only 0.2 equivalents of charge was passed, but cyclic voltammetry indicated that 40% of the original material was present. A slow reaction converting the Re(VI) product back to the Re(V) starting material must occur concurrently with the oxidation process. The identity of the reductant is unknown. Evidence of the slow back reaction can be obtained from UV-vis spectra recorded at the end of the electrolysis. Apparently the additional products generated by the decomposition do not absorb in the UV-vis region since two well-defined isosbestic points were clearly evident

(Figure 3.23). Some possible reactions accounting for this behavior are presented in Chapter 4.

In order to determine whether the *trans*-[ReO₂(L)₄]²⁺ complexes contained stabilized ligand radicals or oxidized metal centers, the redox properties of some substituted pyridines were examined.

Cyclic voltammograms of 4-MeOpy, 3-Medmap and dmap exhibit only irreversible oxidations that are well above the potentials measured (> 600 mV) for the corresponding trans-[ReO₂(L)₄][PF₆] complexes. This is good evidence that the oxidations observed in each case are metal-centered. Further support for this hypothesis is evident from literature data.

The electrochemistry of pyridine itself has been studied. Turner and Elving²⁴ reported that pyridine is oxidized irreversibly at 1.49 V vs. SCE in 0.1 M Li[ClO₄] solution. Bulk electrolysis at 1.69 V produces the 2-pyridyl pyridinium ion. The reversible oxidation of *trans*-[ReO₂(py)₄][PF₆] at a potential more than 200 mV *lower* than for free pyridine argues strongly for a metal-centered oxidation. Studies completed by Pipes and Meyer²⁵ on the aqueous electrochemistry are also consistent with a 1-e⁻ metal-centered oxidation. The bulk electrolyses of *trans*-[ReO₂(4-pyrrpy)₄][PF₆] and *trans*-[ReO₂(3Medmap)₄][PF₆] also suggest 1-e⁻ metal-centered processes.

Infrared Spectroscopy. Previous work has confirmed that the absorption at ~ 800 cm⁻¹ is due to the asymmetric O=Re=O stretch.²⁶ Noteworthy is the fact that this vibration does not vary considerably with changes in pyridine ligand basicity, implying that changes in the σ -properties of equatorial ligands do not perturb Re-O bond strengths.

The asymmetric metal-oxo stretch of *trans*-[ReO₂(py)₃(PPh₃)]I occurs at essentially the same energy as that of the tetrapyridine complex, indicating no significant change in metal-oxo bonding between the two complexes. For *trans*-[ReO₂(diphos)₂][PF₆] and *trans*-[ReO₂(dppen)₂][PF₆], the metal-oxo stretch occurs at a considerably lower energy, (780 and 790 cm⁻¹, respectively) which suggests weaker O=Re=O bonding. This result is rather

surprising. Phosphorous ligands are typically poorer σ -donor ligands than heterocycles, and the Re-O bond strength might be expected to increase as a form of electronic compensation. Perhaps there is some steric interaction between the PPh₃ phenyl groups and the oxo ligands that causes a net bond weakening.

Absorption Spectroscopy and Electronic Stucture. In order to interpret the UV-vis spectra of *trans*-[ReO₂(L)₄]⁺ complexes, it is necessary to consider the generalized MO scheme^{27,28} in Figure 3.24. The lowest energy band common to all *trans*-[ReO₂(L)₄]⁺ complexes has been assigned to a singlet LF transition, ${}^{1}A_{1g}[(b_{2g})^{2}] \rightarrow {}^{1}E_{g}[(b_{2g})^{1}(e_{g})^{1}]$. The single-crystal polarized absorption and emission studies on the compounds *trans*-[ReO₂(py)₄][BPh₄], *trans*-[ReO₂(en)₂]Cl, and *trans*-K₃[ReO₂(CN)₄] strongly support this assignment.²⁸ The positions and extinctions of the ${}^{1}A_{1g} \rightarrow {}^{1}E_{g}$ bands for several previously studied^{23,26,28-31} *trans*-[ReO₂(L)₄]⁺ complexes are summarized in Table 3.6. The low extinction coefficients arise because these transitions are Laporte-forbidden and must acquire intensity by vibronic coupling. In the pyridine complex, the absorption is appreciably stronger due to intensity stealing from an adjacent charge-transfer transition. The corresponding triplet absorptions are very weak and acquire intensity through spin-orbit coupling mechanisms.²⁸

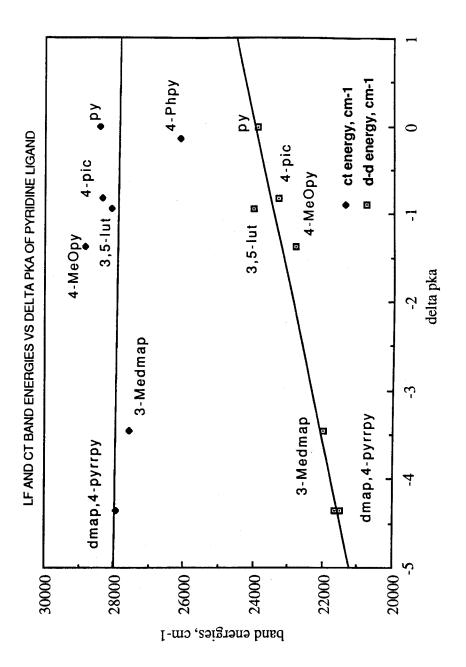
Table 3.6. Band positions for the ${}^{1}A_{1g}[(b_{2g})^{2}] \rightarrow {}^{1}E_{g}[(b_{2g})^{1}(e_{g})^{1}]$ transition for several trans-[ReO₂(L)₄]+ complexes in aqueous solution.

compound	band position, nm (ϵ)	
trans-[ReO2(py)4]Cla	445 (1240)	
trans-[ReO2(en)2]Clb	439 (27.5), 550sh (6)d	
trans-[ReO2(CH3NH2)4]Cla	445, 550sh ^d	
trans-K ₃ [ReO ₂ (CN) ₄] ^c	420 (30), 505(4) ^d	

^aref 29 ^bref 31 ^cref 30 ^dcorresponding triplet absorption

Figure 3.23. Time-lapse UV-vis absorption spectrum of the decomposition of *trans*-[ReO₂(4-MeOpy)₄]²⁺ back to *trans*-[ReO₂(4-MeOpy)₄]⁺, 0.1 M TBAH CH₃CN solution. Scan intervals were 2, 2, 2, 13, and 22 min respectively. The last scan represents the absorption spectrum of *trans*-[ReO₂(4-MeOpy)₄]⁺.




Figure 3.24. MO diagram for trans-[ReO₂(L)₄]⁺ complexes. The absolute positions of the energy levels are not shown. The a_{2g} and b_{2g} pyridine π (π *) levels have been omitted for clarity.

The energy of the ${}^{1}A_{1g}[(b_{2g})^{2}] \rightarrow {}^{1}E_{g}[(b_{2g})^{1}(e_{g})^{1}]$ transition for each member of the tetrapyridine family is plotted against ΔpKa of the free pyridine ligand⁵ in Figure 3.25. Note that there is a linear relationship between the ΔpKa of the pyridine ligand and the band energy. The linear least-squares fit gives $E_{LF} = (23,960 + 555 \, \Delta pKa) \, \text{cm}^{-1} \, (R = 0.96)$. This demonstrates that the rhenium center is directly influenced by the σ -donor strength of the pyridine ligand. The d_{xy} orbital is raised in energy as the pyridine ligand basicity increases. The absolute energy of the e_{g} (d_{xz} , d_{yz}) level is primarily determined by the amount of mixing between the rhenium d_{xz} , d_{yz} and the 2 p_{x} , p_{y} orbitals of the oxo ligand, and, therefore, this level does not vary appreciably with changes in the σ -properties of the equatorial ligands. As a result, the d_{xy}/d_{xz} , d_{yz} energy gap is reduced, and the LF transition moves to the red as the pyridine ligand becomes more basic.

All trans-[ReO₂(L)₄]+ pyridine complexes exhibit an intense band ($\varepsilon > 19,000 \text{ M}^{-1} \text{ cm}^{-1}$) to slightly higher energy of the LF transition described above. This absorption has been assigned to either LMCT³² (oxo to rhenium) or MLCT²³ (d_{xy} to pyridine π^*). The rationale for the former has been that the high oxidation state of rhenium should promote reductive charge transfer. Others have argued MLCT on the basis of the blue shift in band energy that occurs upon oxo protonation.²⁵ Several arguments exist in favor of the MLCT assignment. These will be considered sequentially below.

Strong evidence comes from the observations of pyridine substituent effects on band energies and intensities. It is instructive to compare the UV-vis spectra of *trans*-[ReO₂(py)₄]+ and *trans*-[ReO₂(4-Phpy)₄]+. In the 4-phenylpyridine complex, the CT band is more intense ($\varepsilon \sim 37,000 \text{ vs. } \varepsilon \sim 22,000 \text{ M}^{-1} \text{ cm}^{-1}$) and occurs at a lower energy than for the pyridine complex ($\lambda_{\text{max}} = 383 \text{ nm vs. } 352 \text{ nm}$). Analogous behavior has been observed in the pair of complexes [Ru(NH₃)₅(py)]²⁺ and [Ru(NH₃)₅(4-Phpy)]²⁺, where the intense absorption in the visible region has also been assigned to MLCT (Ru t_{2g} \rightarrow pyridine π^*).³³ The band positions in the Ru complexes are seen at 408 and 446 nm, respectively. The differences in CT energies between the pyridine and 4-phenylpyridine

Figure 3.25. Plot of ${}^1A_{1g}[(b_{2g})^2] \rightarrow {}^1E_g[(b_{2g})^1(e_g)^1]$ and MLCT transitions for *trans*- [ReO₂(L)₄]⁺ pyridine complexes as a function of ΔpK_a of free L. Lines drawn are the results of linear least-squares fitting. Note the lack of correlation for MLCT data: $E_{MLCT} = (27,840-27.6 \ \Delta pK_a) \ cm^{-1} \ (R=0.06)$.

complexes are almost identical for both the Ru and Re systems: 2100 cm^{-1} and 2300 cm^{-1} , respectively. The red shift can be attributed to the lowering of the pyridine π^* orbital energy due to phenyl ring conjugation, which also increases the intensity. Both of these effects, the lowering in energy and increase in intensity of MLCT bands, have been observed³⁴ in o-phenanthroline complexes of Cu(I). In this case, it has been argued that the higher intensity results from an increase in transition-moment dipole length.

The results of the electrochemical measurements also support a MLCT assignment. All pyridine complexes exhibit a 1-e⁻ oxidation between 0.4 and 1.3 V (SSCE) indicating the electron richness of the Re center. No reversible reductive waves are apparent in any of the complexes. Empirically, it has been found that the direction of charge transfer in coordination complexes is consistent with the observed redox chemistry of the metal center: Where CT transitions occur, complexes containing metal centers that are easily reduced exhibit LMCT bands, while easily oxidizable centers participate in MLCT behavior. The redox behavior of Re in *trans*-[ReO₂(L)₄]+ complexes is consistent with an MLCT assignment.

In order to account for the intensity of this transition, the metal and ligand orbitals involved must be examined in more detail. It is inaccurate to view the MLCT transition as occurring from d_{xy} to a single pyridine π^* level, since there are four pyridine ligands present in the complex. The energetically proximal orbitals of the pyridine ligand³⁵ are shown in Figure 3.26. From this diagram, it is clear that the π^* orbital relevant to the problem is $3B_1$, as it has orbital density on the nitrogen atom. The $4B_1$ (π^*) orbital also satisfies this criterion, but it is too high in energy to be important. The appropriate linear combinations for equatorial π^* orbitals in D_{4h} symmetry have been previously derived. 36,37 The four pyridine π^* orbitals transform as a_{2g} , b_{2g} , and e_u , as shown schematically in Figure 3.27. Thus, instead of one MLCT transition in *trans*-[ReO₂(L)₄]⁺, there are actually three: $A_{2g}[(b_{2g})^2] \rightarrow B_{1g}[(b_{2g})^1(a_{2g})^1]$, $A_{2g}[(b_{2g})^2] \rightarrow A_{1g}[(b_{2g})^1(b_{2g})^1]$ and $A_{2g}[(b_{2g})^2] \rightarrow E_u[(b_{2g})^1(e_u)^1]$. The first two transitions are Laporte-

forbidden $(g \to g)$ and would be expected to be weak in intensity; the last should be fully allowed $(g \to u)$ in D_{4h} . A favorable spatial overlap also accounts for the large intensity of the $A_{2g}[(b_{2g})^2] \to E_u[(b_{2g})^1(e_u)^1]$ transition.

Finally, it should be noted that there are now several examples of MLCT transitions occurring from electron-rich metal complexes to vacant π^* levels of pyridine ligands. A metal \rightarrow pyridine π^* transition has been identified in the following complexes:^{33,38-46} [Ir(NH₃)₅(py)]³⁺, [Ru(NH₃)₅(py)]²⁺, [Os(NH₃)₅(py)]²⁺, [Fe(CN)₅(py)]³⁻, [Ru(CN)₅(py)]³⁻ and W(CO)₅(py).

There are two observations that can be used to rule out a LMCT assignment. If the CT transition was associated with the oxo functionality, then this band should occur in the same region for all *trans*-[ReO₂(L)₄]+ complexes exhibiting similar reduction potentials. An intense band in the vicinity of 350 nm is conspicuously absent from the UV-vis spectra of the complexes *trans*-[ReO₂(en)₂]Cl and *trans*-K₃[ReO₂(CN)₄] (see Table 3.7), which are reduced at potentials similar to that of *trans*-[ReO₂(py)₄]+.²⁵

Table 3.7. UV-visible data for *trans*-[ReO₂(en)₂]Cl, and *trans*-K₃[ReO₂(CN)₄] in aqueous solution. Band positions are given in nm and their associated extinctions are enclosed in parentheses.

complex	band positions	ref
trans-[ReO2(en)2]Cl	205(18,500); 255(1070); 276sh(630);	31
	439(27.5); 550sh(6.0)	
trans-K ₃ [ReO ₂ (CN) ₄]	223(12,300); 272(1300); 298(380);	30
	420(30); 505(4)	

Figure 3.26. Energetically proximal π - and π^* -orbitals of the pyridine ligand (reproduced from ref 35).

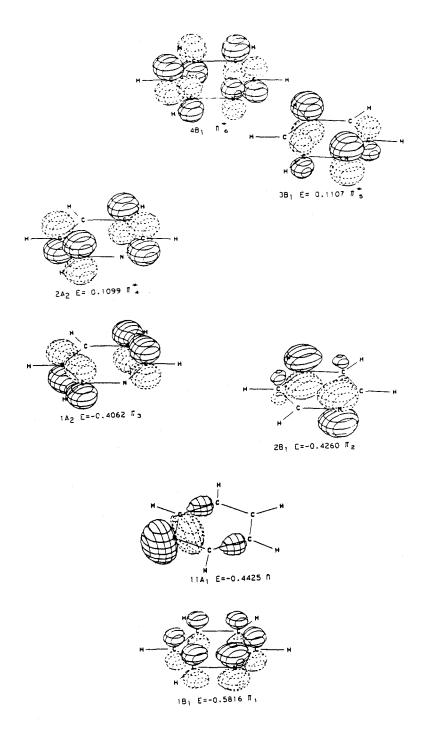
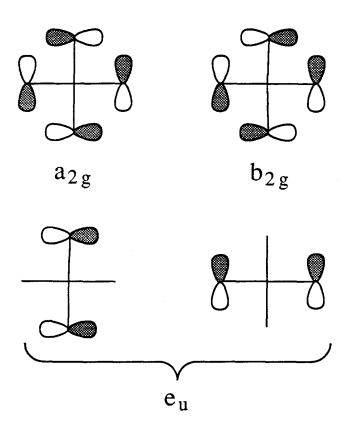
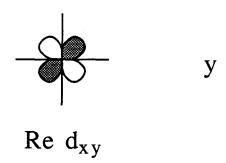




Figure 3.27. Linear combinations of the pyridine π^* -orbitals relevant to the $d_{xy} \to \pi^*$ MLCT transition in *trans*-[ReO₂(L)₄][PF₆] compounds.

X

It is also significant that reduction in non-aqueous solution is only observed at very negative potentials (~-1.8 V vs. SSCE). This makes reductive charge-transfer unlikely in these systems.

Technetium analogues of some of the *trans*-[ReO₂(L)₄]⁺ pyridine complexes have been prepared and their UV-vis spectra reported.⁴⁷⁻⁴⁹ The strong band in the vicinity of 310 nm has been assigned to oxo-to-metal charge transfer based upon the observation that the band energies were insensitive to changes in ancillary ligands. This same observation in the Re complexes can be explained by considering the two phenomena that occur on proceeding from pyridine to more electron-rich pyridines. As the donor strength of the ligand increases, the π^* levels in the pyridine ligands also rise in energy.⁴⁵ The Re d_{xy} orbital also rises in energy due the increase in electron density at the Re center from stronger pyridine σ -donation. These two effects operate in the same direction so that the net change in d_{xy}/d_{yz} , d_{xz} gap is near zero. As a result, the MLCT transitions vary little in energy from complex to complex.

Recall that the biggest shift in MLCT energy was between pyridine and 4-phenylpyridine complexes. The pKa's of the free ligands, the emission maxima of the corresponding *trans*-dioxorhenium complexes, and the potentials of the Re(VI)/Re(V) couples indicate that the σ properties of the two ligands are essentially identical. If the transition was LMCT, a dramatic change in transition energy would not be expected. The large red shift that *does* occur (34 nm) allows us to dismiss forever the possibility of low energy oxo-to-metal charge transfer in these systems.

In four of the *trans*-[ReO₂(L)₄]+ pyridine complexes (L = py, 4-pic, 3,5-lut, and 4-MeO), there is a medium intensity band to slightly higher energy (\sim 280 nm) of the MLCT transition. This band lies to lower energy than anything observed in the spectra of the associated free ligands and must therefore involve the rhenium center. Some information on the nature of this band can be obtained from the UV-vis spectrum of a frozen 5:1

methanol/ethanol glass solution of trans-[ReO₂(py)₄]I (Figure 3.28). Note that like the low energy LF transition, the 280 nm band exhibits vibrational progressions similar in energy to the symmetric O=Re=O stretch of the ${}^3E_g[(b_{2g})^1(e_g)^1]$ excited state (-800 cm^{-1}). This indicates that the excited state created by the transition induces a large displacement along the O=Re=O coordinate. The LF transition ${}^1A_{1g}[(b_{2g})^2] \rightarrow {}^1B_{2g}[(b_{2g})^1(a_{1g})^1]$ ($d_{xy} \rightarrow d_z^2$), would be expected to induce a large distortion in the O=Re=O unit because of population of a formally Re-O σ -antibonding level (see Figure 3.24). A similar band is seen in the complexes trans-K₃[ReO₂(CN)₄] and trans-[ReO₂(en)₂]Cl at about 300 and 275 nm respectively (Table 3.7). The associated progressions are 770 cm⁻¹ and 800 cm⁻¹. These bands have also been tentatively assigned to the ${}^1A_{1g}[(b_{2g})^2] \rightarrow {}^1B_{2g}[(b_{2g})^1(a_{1g})^1]$ ($d_{xy} \rightarrow d_z^2$) transition.

It should be noted, however, that this assignment is in contrast to that predicted by Szterenberg et al.30 Using the SCCC MO method, these workers have calculated the orbital energies of trans-[ReO₂(CN)₄]³⁻ which indicate that the $d_{xy} \rightarrow d_z^2$ transition would be located in the vacuum UV at about 196 nm. The 300 nm band of trans-[ReO₂(CN)₄]³is assigned to a lower energy LF transition, ${}^{1}A_{1g}[(b_{2g})^{2}] \rightarrow {}^{1}A_{2g}[(b_{2g})^{1}(b_{1g})^{1}]$ $(d_{xy} \rightarrow d_{xy})$ $d_{x^2-y^2}$). According to LF theory, ^{50,51} the difference in the one-electron orbital energies of the b_{1g} and b_{2g} levels is 10 Dq (Δ). Since both pyridine and ethylenediamine have approximately the same ligand field strengths,⁵² the $d_{xy} \rightarrow d_{x}^{2}$ -y² transition would be expected to occur at similar energies for trans-[ReO₂(en)₂]⁺ and trans-[ReO₂(py)₄]⁺. Note that the band in question occurs at ~280 nm in both complexes. Furthermore, in the ethylenediamine and cyanide complexes, bands to slightly higher energy (255 and 272 nm, respectively) could be due to the $d_{xy} \rightarrow d_z^2$ transition (see Figure 3.29). The problem with assigning the 280 nm band to the $d_{xy} \rightarrow d_x^2 y^2$ transition is that it is difficult to rationalize why the transition would lead to distortion in the Re-oxo bonds. Population of the d_x^2 - v^2 orbital should result in a significant lengthening in Re-py bonds, because it is formally Repy σ-antibonding. Perhaps this does occur and as a result, the oxo-ligands move in closer

to compensate for the loss of electron density. Thus, oxo distortion could result indirectly from changes in electronic density at the Re center. That the extinctions of these LF bands are higher than expected ($\varepsilon \sim 500$ - 5,000) could be the result of intensity stealing from higher energy CT transitions. Until further studies are completed, however, the exact location of these higher lying ligand field transitions will remain in question. One way to attempt to locate the $d_{xy} \rightarrow d_x^2$ -y² transition in *trans*-[ReO2(py)4]+ might be to photolyze the complex at different wavelengths and measure the amount of ligand exchange between pyridine and d5-pyridine. Population of the d_x^2 -y² would be expected to enhance the rate of this exchange relative to the corresponding dark reaction.

The remaining absorption band common to all of the pyridine complexes is found in the UV between 245 - 280 nm and varies with the identity of the pyridine ligand. Based upon comparisons with the free ligand spectra, this peak is assigned to an intraligand π - π * transition. Similar assignments have been made for other pyridine metal complexes such as $[Ru(NH_3)_5(py)]^{2+}$. The π - π * transition energy of pyridine has been found⁴⁵ to be invariant among pyH+, $[(NH_3)_5Ru(py)]^{2+}$, $[(NH_3)_5Ru(py)]^{3+}$, $[(NH_3)_5Os(py)]^{2+}$, $[(NH_3)_5Fe(py)]^{2-}$.

All of the arguments put forth above were used to arrive at the assignments summarized in Table 3.8.

Table 3.8. UV-vis data and assignments for *trans*-[ReO₂(L)₄]PF₆ pyridine complexes in CH₃CN solution. Band positions are given in nm with their associated extinctions enclosed in parentheses.

L=	$\pi \rightarrow \pi^*$ pyridine	LF, $d_{xy} \rightarrow$	MLCT, $d_{xy} \rightarrow$	LF, $d_{xy} \rightarrow$
		$d_{x}^{2}-y^{2}(d_{z}^{2})$	π* pyridine	d_{xz},d_{yz}
ру	248 (17,000)	279 (4,200)	352 (22,000)	418 (2,000)
4-Ph	266 (56,000)	obscured	383 (37,000)	obscured
4-pic	247 (16,000)	277 (4,400)	353 (32,000)	429 (2,000)
3,5-lut	258 (24,000)	275 (5,700)	356 (29,000)	416 (2,100)
4-МеОру	227 (33,000)	281 (6,800)	347 (27,000)	438 (1,500)
3-Medmap	280 (38,000)	obscured	363 (42,000)	455 (2,600)
dmap	272 (47,000)	obscured	358 (37,000)	464 (2,300)
4-руггру	273 (52,000)	obscured	353 (42,000)	465 (2,600)

The final point to be addressed in the electronic structure of the *trans*-[ReO₂(L)₄]⁺ complexes is the lack of importance of π -backbonding in the Re-py bonding. There are several examples of this type of interaction in other metal systems. ^{45,53,54} The common features to these examples are that they contain very electron-rich metal centers (formal oxidation states of 2⁺ or lower) and/or pyridine ligands with very electron-withdrawing substituents. Neither one of these conditions exist for the Re complexes. While the Re center is considerably electron-rich, there are only two d-electrons, and any back-bonding interaction would be attenuated by distribution among four pyridine ligands. Furthermore, electron-rich pyridines are poor π -acceptors, as indicated by the high MLCT transition energy known for [Fe(CN)₅(4-NH₂py)]²⁻ (320 nm as compared to 362 nm for the pyridine complex). ⁴⁴

Figure 3.28. UV-vis spectrum of *trans*-[ReO₂(py)₄]I in 5:1 CH₃OH/CH₃CH₂OH glass at 77 K. Peak positions in nm: (452, 438, 424, 410, 398); 352; (288, 282, 276). The two peaks at high energy are associated with the pyridine π - π * transition.

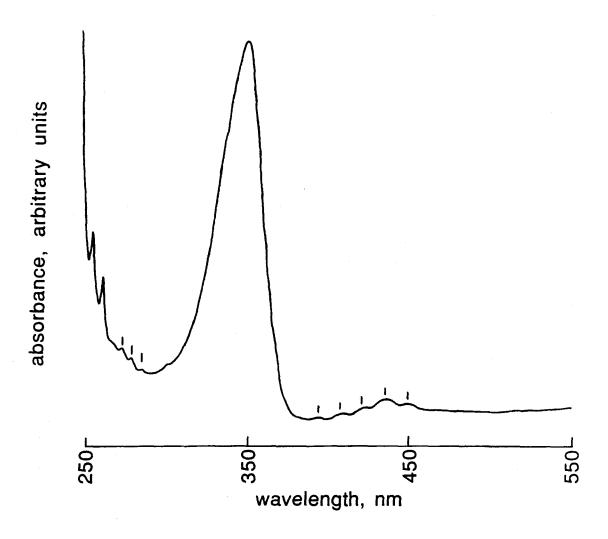
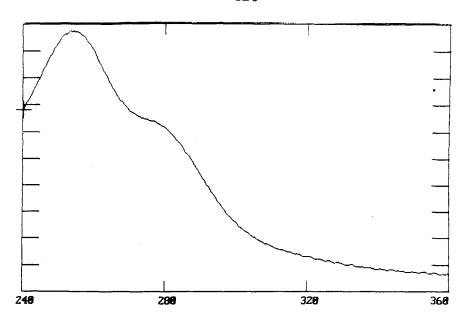
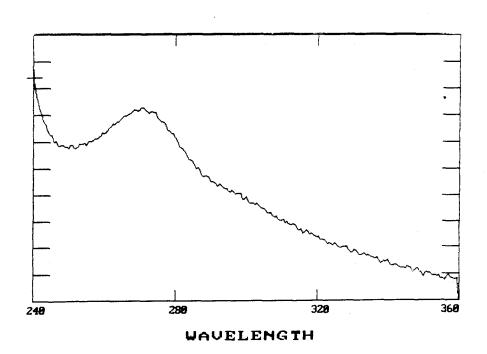




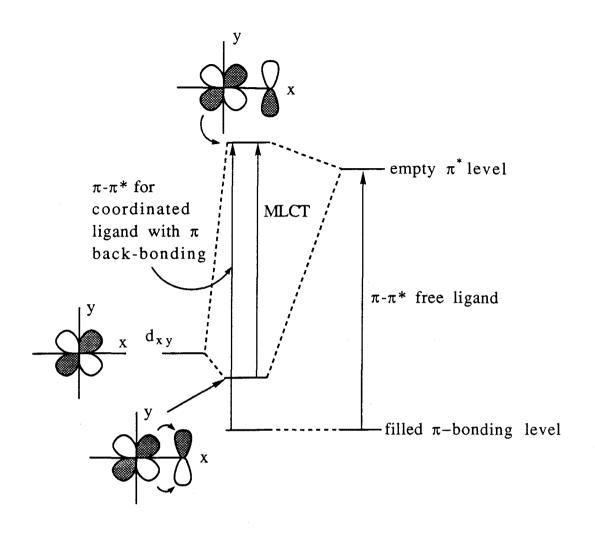
Figure 3.29. Ultraviolet spectra of trans-[ReO₂(en)₂]PF₆ (top) and trans-K₃[ReO₂(CN)₄] (bottom) in dilute aqueous solution.

Any substantial π -interaction would be expected to perturb the π^* levels of the pyridine ligands as shown by the MO diagram in Figure 3.30. This in turn would result in a blue shift in the intra-ligand π - π^* transition. In fact, just the opposite effect is observed; complexes containing the electron-rich pyridines exhibit intraligand transitions that are redshifted (see Table 3.9). It is therefore unlikely that the Re-py bonds in *trans*-[ReO₂(L)₄]⁺ complexes contain any significant π -component. The observed red shifts of ligand π - π^* transitions could be due to the repulsion of the filled π levels of pyridine by the pair of electrons in d_{xy} , resulting in a reduction of the π - π^* energy gap.

Table 3.9. UV data for pyridine and some pyridine derivatives (CH₃CN solution). The shifts of the π - π * transition energy upon metal coordination are given in the last column.

ligand	λ _{max} in nm	λ_{max} free – λ_{max} complexed (nm)
ру	247sh, 251, 256, 262	-5
4-Phpy	250	16
4-pic	250sh, 255, 262sh	-8
3,5-lut	264sh, 268, 274sh	-10
4-МеОру	216, 240sh	18
3-Medmap	203, 216sh, 262	18
dmap	256	16
4-руггру	258	15

The UV-vis spectrum of *trans*-[ReO₂(py)₃(PPh₃)]⁺ is qualitatively similar to that of *trans*-[ReO₂(py)₄]⁺. The ${}^{1}A_{1g}[(b_{2g})^{2}] \rightarrow {}^{1}E_{g}[(b_{2g})^{1}(e_{g})^{1}]$ transition cannot be resolved from the shoulder of the $d_{xy} \rightarrow$ pyridine (π^*) transition and therefore must be located somewhere < 400 nm. The MLCT transition occurs at 336 nm, which is ~1350 cm⁻¹


higher in energy than the corresponding transition in the tetrapyridine complex. The blue shifts observed for both the MLCT and LF transitions reflect the lower energy of the d_{xy} orbital which results from a decrease in electron density at Re brought about by the replacement of one pyridine ligand by PPh₃. The remaining band present at 244 nm is assigned to the π - π * transition of the pyridine ligand.

The absorption spectra of trans-[ReO₂(diphos)₂][PF₆] and trans-[ReO₂(dppen)₂][PF₆] are not informative. The diphos complex consists of a shoulder at 220 nm and a strong absorption at 257 nm that extends out into the visible region. In the spectrum of the dppen complex no band maxima are evident but two shoulders in the ultraviolet region (228, 267 nm) can be resolved. These bands are likely due to intraligand π - π * transitions of the phenyl groups and $d_{xy} \rightarrow$ phosphine (π *) transitions.⁵⁵⁻⁶⁰

Excited-State Properties. The lowest-energy emitting state of trans-[ReO₂(L)₄]⁺ has been unambiguously assigned as ${}^{3}E_{g}$ [(b₂g)¹(e_g)¹] by Winkler and Gray.^{28,61} The emission spectra of this family of complexes are often highly structured in Re-oxo vibrational modes because of the large distortion that occurs along this coordinate upon relaxing to the more bonding ground state (${}^{1}A_{1g}$ [(b₂g)²]).

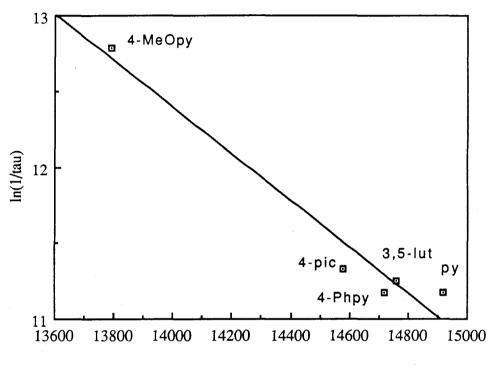
The excited-state lifetime of *trans*-[ReO₂(py)₄]⁺ is markedly affected by the deuteration of the pyridine rings, increasing from 14 to 64 μ s in acetonitrile solution (NOTE: These data were erroneously reported in a previous publication). This result demonstrates that the excited-state of *trans*-[ReO₂(py)₄]⁺ is weakly coupled to the ground state. Under these conditions, the excited-state decay rate is sensitive to the highest-energy vibrational modes present in the molecule. The non-radiative decay rate constant, k_{nr} , exhibits an exponential dependence on the ratio of the transition energy to the energy of the highest frequency vibrational mode. As a result, it can be shown that $ln(k_{nr}) \propto E_{em}$. This relationship is commonly referred to as the energy-gap law. 63,64

Figure 3.30. MO diagram describing the interaction of the rhenium d_{xy} orbital with the π^* levels on the pyridine ligand (after ref 45).

Re(V) center

free pyridine

In order to determine k_{nr} , it is necessary to know both the lifetime and emission quantum yield of the lowest energy excited state. If the emitting state is formed with unit efficiency, Equations 2 and 3 can be used to determine k_r and k_{nr} :⁶³


$$\tau_0 = (k_r + k_{nr})^{-1} \tag{2}$$

$$\Phi_{\rm em} = k_{\rm r} \, \tau_{\rm o} \tag{3}$$

Unfortunately, the emission quantum yields for all of the *trans*-[ReO₂(L)₄][PF₆] pyridine complexes are not known, so the energy gap law cannot be rigorously tested. For *trans*-[ReO₂(py)₄][PF₆], k_{nr} and k_r are 69,000 and 2,100 s⁻¹ (*vide infra*) indicating that the excited-state decay process is dominated by k_{nr} . Thus, $k_{nr} \sim 1/\tau_0$ and a plot of $\ln(1/\tau_0)$ for the pyridine complexes should exhibit a linear dependence on emission energy (see Figure 3.31). A linear least-squares analysis of the data yields a line with slope of 0.1537 and an intercept of 33,920 cm⁻¹ (R = -0.97738). Because of the lack of well distributed data points, it can only be concluded that the observed trend is consisted with that expected if *trans*-[ReO₂(L)₄][PF₆] pyridine complexes rigorously obey the energy-gap law. The important point is that as the pyridine basicity increases, the lifetime and energy of the LF excited-state diminishes.

The fluid solution emission spectrum of *trans*-[ReO₂(py)₃(PPh₃)]⁺ is similar to that of the tetrapyridine complex with a maximum at slightly higher energy (15,150 vs. 14,920 cm⁻¹). The most striking feature is that unlike the tetrapyridine complex, the 77 K emission spectrum is highly structured in *both* metal-oxo and metal-pyridine vibrations. Resolution of this degree is only observed in *trans*-[ReO₂(py)₄]⁺ at 5 K.²⁸ The reason for this difference is unknown. It is curious that the metal-oxo mode present in the low temperature spectrum is 100 cm⁻¹ higher in energy than that of the tetrapyridine complex. Infrared measurements indicated that the asymmetric O=Re=O mode is almost identical in

Figure 3.31. Plot of $\ln(1/\tau_0)$ vs. E_{em} for luminescent trans-[ReO₂(L)₄]⁺ pyridine complexes.

Emission maximum (cm-1)

energy for the two complexes; it is not clear why the symmetric mode should occur at a higher energy in *trans*-[ReO₂(py)₃(PPh₃)]⁺.

Finally, it should be noted that the excited state lifetime of *trans*-[ReO₂(py)₃(PPh₃)]⁺ is an order of magnitude shorter than that of *trans*-[ReO₂(py)₄]⁺. The origin of this change can be determined by calculating the radiative and non-radiative rate constants using Equations (2) and (3). For *trans*-[ReO₂(py)₄]⁺ (τ_0 = 14 μ s and Φ = 0.03), k_{nr} = 6.9 x 10⁴ s⁻¹ and k_r = 2.1 x 10³ s⁻¹. For *trans*-[ReO₂(py)₃(PPh₃)]⁺ (τ_0 = 1.5 μ s and Φ = 0.003), k_{nr} = 6.6 x 10⁵ s⁻¹ and k_r = 2 x 10³ s⁻¹. Thus, the changes in excited state lifetime result from an dramatic increase in the rate of non-radiative processes. This is likely due to the increase in the number of accepting vibrational modes provided by the phosphine ligand.

The excited-state properties of trans-[ReO2(diphos)2][PF6] and trans-

[ReO₂(dppen)₂][PF₆] are disappointing. These complexes show emission in the solid state and in rigid media but not in fluid solution. Presumably, this behavior is due to several extremely efficient deactivation processes. The energy of the emission for the complexes (15,100 cm⁻¹ and 16,170 cm⁻¹) is higher than that observed for the pyridine complexes, as expected from the replacement of pyridine ligands with a more poorly donating set of equatorial ligands. The reduction in electron density at Re should lower the energy of the d_{xy} orbital, and thus increase the d_{xy}/d_{xz} , d_{yz} gap. The lack of significant emission in fliud solution was disappointing as it was hoped that lowering the energy of the d_{xy} orbital might render these excited states highly oxidizing.

Transient Absorption (TA) Spectra. In order to gain further insight into the electronic structures of *trans*-[ReO₂(L)₄][PF₆] pyridine complexes and to determine excited-state lifetimes for non-emissive complexes, the absorption spectra of the excited states of *trans*-[ReO₂(4-Phpy)₄][PF₆], *trans*-[ReO₂(4-MeOpy)₄][PF₆], *trans*-[ReO₂(3-Medamp)₄][PF₆] and *trans*-[ReO₂(dmap)₄][PF₆] were measured (Figures 3.18 - 3.21).

The TA spectrum of *trans*-[ReO₂(py)₄][PF₆] has been previously measured.⁶⁵ The weak absorption feature observed at 500 nm was assigned to the LF transition $(d_{xy})^1(d_{xz}$,

 $d_{yz})^1 \rightarrow (d_{xz}, d_{yz})^2$ based upon the observed energy of the band. The absorption and emission spectra of *trans*-[ReO₂(4-Phpy)₄][PF₆] and *trans*-[ReO₂(4-MeOpy)₄][PF₆] are similar to those observed for the pyridine complex, implying that the energy gap between the d_{xy} and d_{xz}, d_{yz} levels is similar for all three complexes. Thus, the weak features observed at ~ 500 nm in the TA spectra of the 4-phenylpyridine and 4-methoxypyridine complexes are also assigned to the $(d_{xy})^1(d_{xz}, d_{yz})^1 \rightarrow (d_{xz}, d_{yz})^2$ transition. The additional band present in the 4-methoxypyridine complex at ~400 nm could be the result of concomitant occurance of an LMCT absorption (*vide infra*) and the MCLT ground-state bleach. The excited-state lifetimes of these two complexes determined from recovery of the MLCT ground-state bleach were within experimental error of those determined by luminescence decay methods.

The TA spectra of trans-[ReO₂(3-Medamp)₄][PF₆] and trans-[ReO₂(dmap)₄][PF₆] show strong absorptions in the visible region that are comparable in Δ O.D. to those observed for the MLCT ground-state bleaches. Their intensities and conspicuous absences from the TA spectra of the 4-phenylpyridine and 4-methoxypyridine complexes strongly suggest that they are LMCT in origin. LMCT transitions from 4-aminopyridine ligands to electron-deficient metal centers have literature precedence. 44,66,67 Sutton and Taube⁶⁷ have observed this behavior for [Ru(NH₃)₅(4-NH₂py)]³⁺, and Hrepic and Malin⁴⁴ made similar observations for [Fe(CN)₅(4-NH₂py)]². Both groups noted that LMCT is not observed for analogous complexes of pyridine, alkylpyridines or electron-poor pyridines. This band is expected to be intense in trans-[ReO₂(L)₄]+ complexes based upon the same arguments put forth earlier to explain the MLCT transition intensities (in this case the transition would be $[(e_u)^4(b_{2g})^1(e_g)^1] \rightarrow [(e_u)^3(b_{2g})^2(e_g)^1]$, which is also $g \rightarrow u$). Additional support for this assignment will be presented in Chapter 4, where the spectra of the d^1 rhenium(VI) complexes trans-[ReO₂(3-Medmap)₄][PF₆]₂ and trans-[ReO₂(dmap)₄][PF₆]₂ are presented. The latter complexes exhibit strong absorptions ($\varepsilon \sim$ 30,000) at 752 and 699 nm, respectively, that have been assigned to LMCT transitions.

CONCLUSIONS

Through systematic variation of the ancillary ligands in *trans*-[ReO₂(L)₄][PF₆], we have gained a detailed understanding of the electronic structure of this compound family and the role of ancillary ligands in defining their properties. The conclusions drawn from these studies are enumerated below.

- 1. The Re(VI)/Re(V) redox couple is a linear function of pyridine pK_a. As the donor strength of the pyridine ligand increases, the Re(V) complexes become easier to oxidize. Oxidants as potent as Ce(IV) and as mild as the ferricenium ion are accessible via tuning of the ancillary ligands.
- 2. The $d_{xy}/d_{xz,yz}$ energy gap is also a linear function of pyridine pK_a; increasing the pyridine basicity lowers the energy of the $d_{xy} \rightarrow d_{xz}$, d_{yz} transition.
- 3. The excited-state properties of *trans*-[ReO₂(L)₄][PF₆] pyridine complexes follow trends consistent with the energy-gap law. As pyridine basicity increases, the excited-state energies and lifetimes decrease.
- 4. The energy of the asymmetric O=Re=O stretch is relatively insensitive to the σ-properties of the pyridine ligands, suggesting that the Re-O bond strengths are insensitive to electronic changes in the pyridine ligands. Phosphorous donor ligands (diphos and dppen) weaken Re-O bonds, but this could be due to steric and *not* electronic effects.
- 5. Pyridine complexes of *trans*-[ReO₂(L)₄][PF₆] have pronounced MLCT transitions, verifying that they are electron-rich systems.
- 6. Phosphorous donor ligands result in a larger d_{xy}/d_{xz} , d_{yz} gap, that is desirable for creating more energetic excited states. Unfortunately, these complexes also have larger non-radiative decay constants, resulting in excited states that are too short-lived to be useful as photochemical reagents.⁶⁸
- 7. Through use of the strongly basic 4-dialkylaminopyridine ligands, we have shown that it is possible to stablize the corresponding d¹ complexes of *trans*-dioxorhenium(VI).

In the following chapter, we will examine the electronic structures and reactivities of these species in greater detail.

REFERENCES AND NOTES

- (1) Bunting, J. W.; Brewer, J. C. Can. J. Chem. 1985, 63, 1245-1249.
- (2) Johnson, C. D. The Hammett Equation; University Press: Cambridge, 1973.
- (3) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; Harper and Row: New York, 1981; pp 130-145.
- (4) Anson, F. C.; Collins, T. J.; Gipson, S. L.; Keech, J. T.; Kraft, T. E.; Peake, G. T. J. Am. Chem. Soc. 1986, 108, 6593-6605.
- (5) Swada, M.; Ichihara, M.; Yukawa, Y.; Nakashi, T. Bull. Chem. Soc. Jpn. 1980, 53, 2055-2060.
- (6) Perrin, D. D. Dissociation Constants of Organic Bases in Aqueous Solution; 1st ed.; Butterworths: London, 1965; pp 141, 162-163.
- (7) Reedijk, J. In *Comprehensive Coordination Chemistry*; Wilkinson, G., Ed.; Pergamon: New York, 1987; Vol. 2, Chapter 13.2, p 74.
- (8) Heinrichs-Zietlow, M.; Ph.D. thesis, August 1988, California Institute of Technology; Chapter 2, pp 24-25.
- (9) Broomhead, J. A.; Young, C. G. Inorg. Syn. 1982, 21, 127-128.
- (10) Burfield, D. R.; Lee, K. H.; Smithers, R. H. J. Org. Chem. 1977, 42, 3060-3065.
- (11) Burfield, D. R.; Smithers, R. H. J. Org. Chem. 1978, 43, 3966-3968.
- (12) Burfield, D. R.; Gan, G. H.; Smithers, R. H. J. Appl. Chem. Biotechnol. 1978, 28, 23-30.
- (13) Rice, S. F.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 4571-4575.
- (14) Drushel, H. V.; Sommers, A. L.; Cox, R. C. Anal. Chem. 1963, 35, 2166-2172.
- (15) Caspar, J. V.; Meyer, T. J. J. Am. Chem. Soc. 1983, 105, 5583-5590.
- (16) Van Houten, J.; Watts, R. J. J. Am. Chem. Soc. 1976, 98, 4853-4858.

- (17) Marshall, J. L.; Hopkins, M. D.; Gray, H. B. ACS Symp. Ser. 1987, 357, 254-256.
- (18) Demas, J. N.; Crosby, G. A. J. Phys. Chem. 1971, 75, 991-1024.
- (19) Nocera, D. G.; Winkler, J. R.; Yocum, K. M.; Bordignon, E.; Gray, H. B. J. Am. Chem. Soc. 1984, 106, 5145-5150.
- (20) Winkler, J. R.; Netzel, T. L.; Creutz, C.; Sutin, N. J. Am. Chem. Soc. 1987, 109, 2381-2392.
- (21) Bard, A. J.; Faulkner, L. R. Electrochemical Methods. Fundementals and Applications; John Wiley and Sons: New York, 1980; Chapter 6, p 219.
- (22) Evans, D. H.; O'Connell, K. M.; Peterson, R. A.; Kelly, M. J. J. Chem. Ed. 1983, 60, 290-293.
- (23) Beard, J. H.; Murmann, R. K. J. Inorg. Nuc. Chem. 1968, 30, 2467-2474.
- (24) Turner, W. R.; Elving, P. J. Anal. Chem. 1965, 37, 467-469.
- (25) Pipes, D. W.; Meyer, T. J. Inorg. Chem. 1986, 25, 3256-3262.
- (26) Beard, J. H.; Casey, J.; Murmann, R. K. Inorg. Chem. 1965, 4, 797-803.
- (27) Winkler, J. R.; Gray, H. B. Comments Inorg. Chem. 1981, 1, 257-263.
- (28) Winkler, J. R.; Gray, H. B. Inorg. Chem. 1985, 24, 346-355.
- (29) Beard, J. H.; Calhoun, C.; Casey, J.; Murmann, R. K. J. Am. Chem. Soc. 1968, 90, 3389-3394.
- (30) Szterenberg, L.; Natkanied, L.; Jezowska-Trzebiatowska, B. Bull. Acad. Pol. Sci., Ser. Sci. Chim. 1976, 24, 805-810.
- (31) Lawrance, G. A.; Sangster, D. F. *Polyhedron* **1986**, *5*, 1553-1558.
- (32) Newsham, M. D.; Giannelis, E. P.; Pinnavaia, T. J.; Nocera, D. G. J. Am. Chem. Soc. 1988, 110, 3885-3891.
- (33) Malouf, G.; Ford, P. C. J. Am. Chem. Soc. 1974, 96, 601-603.
- (34) Phifer, C. C.; McMillin, D. R. Inorg. Chem. 1986, 25, 1329-1333.

- (35) Jorgensen, W. L.; Salem, L. *The Organic Chemist's Book of Orbitals*; Academic: New York, 1973; pp 263-265.
- (36) Ballhausen, C. J.; Gray, H. B. *Molecular Orbital Theory*; Benjamin/Cummings: London, 1978.
- (37) Gray, H. B.; Ballhausen, C. J. J. Am. Chem. Soc. 1963, 85, 260-265.
- (38) Jørgensen, C. K. Acta Chem. Scand. 1957, 11, 151-165.
- (39) Ford, P. C.; Rudd, D. F. P.; Gaunder, R.; Taube, H. J. Am. Chem. Soc. 1968, 90, 1187-1194.
- (40) Sen, J.; Taube, H. Acta Chem. Scand. Ser. A. 1979, A33, 125-135.
- (41) Figard, J. E.; Petersen, J. D. Inorg. Chem. 1978, 17, 1059-1063.
- (42) Toma, H. E.; Malin, J. M. Inorg. Chem. 1973, 12, 1039-1045.
- (43) Toma, H. E.; Malin, J. M. J. Am. Chem. Soc. 1975, 97, 288-293.
- (44) Hrepic, N. V.; Malin, J. M. Inorg. Chem. 1979, 18, 409-413.
- (45) Johnson, C. R.; Shepherd, R. E. Inorg. Chem. 1983, 22, 2439-2444.
- (46) Wrighton, M. S.; Abrahamson, H. B.; Morse, D. L. J. Am. Chem. Soc. 1976, 98, 4105-4109.
- (47) Kastner, M. E.; Fackler, P. H.; Clarke, M. L.; Deutsch, E. *Inorg. Chem.* 1984, 23, 4683-4688.
- (48) Kastner, M. E.; Lindsay, M. J.; Clarke, M. J. Inorg. Chem. 1982, 21, 2037-2040.
- (49) Kashani, F. F.; Murmann, R. K. Int. J. Chem. Kinet. 1985, 17, 1007-1015.
- (50) Ballhausen, C. J.; Gray, H. B. Inorg. Chem. 1962, 1, 111-122.
- (51) Jezowska-Trzebiatowska, B.; Natkanei, L. Zh. Struk. Khim. 1967, 8, 524-527.
- (52) Figgis, B. N. Introduction to Ligand Fields; Interscience: New York, 1966; p 66.
- (53) Barszez, B.; Gabryszewski, M.; Kulig, J.; Lenarcik, B. J. Chem. Soc. Dalton Trans. 1986, 2025-2028.
- (54) Sun, M. S.; Brewer, D. G. Can. J. Chem. 1967, 45, 2729-2739.
- (55) Fife, D. J.; Moore, W. M.; Morse, K. W. Inorg. Chem. 1984, 23, 1545-1549.

- (56) Fife, D. J.; Morse, K. W.; Moore, W. M. J. Photochem. 1984, 24, 249-263.
- (57) Marynick, D. S. J. Am. Chem. Soc. 1984, 106, 4064-4065.
- (58) Marynick, D. S.; Askari, S.; Nickerson, D. F. Inorg. Chem. 1985, 24, 868-870.
- (59) Orpen, G. A.; Connelly, N. G. J. Chem. Soc., Chem. Commun. 1985, 1310-1311.
- (60) Tossell, J. A.; Moore, J. H.; Giordan, J. C. Inorg. Chem. 1985, 24, 1100-1103.
- (61) Winkler, J. R.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 1373-1374.
- (62) Thomas, T. R.; Watts, R. J.; Crosby, G. A. J. Chem. Phys. 1973, 59, 2123-2131.
- (63) Caspar, J. V.; Meyer, T. J. J. Phys. Chem. 1983, 87, 952-957.
- (64) Englman, R.; Jortner, J. Molecular Phys. 1970, 18, 145-164.
- (65) Thorp, H. H.; Van Houten, J.; Gray, H. B. Inorg. Chem. 1989, 28, 889-892.
- (66) Warner, L. W.; Hoq, M. F.; Myser, T. K.; Henderson, W. W.; Shepherd, R. E. Inorg. Chem. 1986, 25, 1911-1914.
- (67) Sutton, J. E.; Taube, H. Inorg. Chem. 1981, 20, 4021-4023.
- (68) *Note in proof.* The complex *trans*-[ReO₂(PMe₃)₄]⁺ has been reported but no spectroscopic data was presented (Edwards, P. G.; Skapski, A. C.; Slawin, A. M. Z.; Wilkinson, G. *Polyhedron* **1984**, *3*, 1083-1085.). The complex has long Re–O bonds (1.79 Å) and a reported v_{asym} O=Re=O of 778 cm⁻¹. It would be interesting to examine the complex's excited-state properties.

Chapter 4.

Syntheses, Characterization, and Electronic Structure of trans-Dioxorhenium(VI) Complexes.

INTRODUCTION

As discussed in Chapter 3, trans-[ReO₂(L)₄]⁺ complexes exhibit reversible oxidations on the cyclic voltammetry time scale. In the absence of a proton source, no facile reduction chemistry is evident. Trans-[ReO₂(L)₄]⁺ pyridine complexes are electron-rich species, and thus, the important redox partners to these systems are their oxidized counterparts.

Earlier results indicated that the Re(VI) complex trans- $[ReO_2(py)_4]^{2+}$ was a potent oxidant towards silanes, halocarbons, secondary alcohols, and calf thymus DNA. Thorp et al. proposed that this activity resulted from the radical nature imparted to the oxo ligand upon metal oxidation. Trans- $[ReO_2(py)_4]^{2+}$ was so reactive that it had but a fleeting existence, and the fate of the Re after substrate oxidation was unknown. As a result, the nature of the Re(VI) species and the mechanism of its action remained obscure.

The systematic ancillary ligand changes discussed in Chapter 3 revealed that stabilization of Re(VI) was possible through the use of strongly basic pyridine ligands. Bulk electrolysis on *trans*-[ReO₂(4-pyrrpy)₄][PF₆], a more soluble relative of *trans*-[ReO₂(dmap)₄][PF₆], indicated that the corresponding Re(VI) complex was stable for long periods. Therefore, chemical methods of oxidation were sought in order to isolate the Re(VI) species.

In this chapter the synthesis, electronic structure, X-ray structure, EPR analysis, and chemical reactivity of the complex *trans*-[ReO₂(dmap)₄][PF₆]₂ are presented. This compound represents the first³ isolated d¹ *trans*-dioxo species.

EXPERIMENTAL

Materials. All chemicals were either of reagent grade or the best grade commercially available and used as received. Acetonitrile (Burdick and Jackson) was used as received for UV-vis experiments. Ferricenium hexafluorophosphate was synthesized as described below, using a modified version of the method reported by Jolly.⁴

Physical Measurements. X-ray Structure Determination. Ms. Kirby M. Slagle performed the X-ray structure determination as described below.

A prismatic crystal was mounted and centered on a CAD-4 diffractometer. Unit cell parameters and an orientation matrix were obtained by a least-squares calculation from the setting angles of 24 reflections with $18^{\circ} < 2\theta < 40^{\circ}$. Two equivalent data sets out to a 2θ of 50° were collected and corrected for absorption and a slight decay. An average background as a function of 2θ was used. Lorentz and polarization factors were applied, and the two data sets were then merged to yield the final data set.

Primary Weissenberg photographs indicated triclinic symmetry. The structure was successfully refined in space group $P\overline{1}$ (#2) in which the sole Re atom must lie on a center of symmetry. Locations of the other non-hydrogen atoms were determined from a structure factor-Fourier calculation. Difference maps showed that the methyl groups were staggered with respect to the adjacent aromatic-ring hydrogen atom. Thus, calculated positions were used for the methyl hydrogen atoms as well as the aromatic-ring hydrogen atoms. All hydrogen atoms were given isotropic B values 20% greater than that of the attached carbon atom. No hydrogen parameters were refined. The complete least-squares matrix, consisting of coordinates and anisotropic thermal parameters for the non-hydrogen atoms and a scale factor, contained 241 parameters. A final difference Fourier map showed deviations ranging from -0.71 to +1.41 eÅ-3. The largest peaks are due to absorption by the Re atom or disorder of the anion. The refinement converged with an *R*-factor of 0.0389 (0.0385 for $F_o^2 > 3\sigma(F_o^2)$) and a GOF of 2.77 for all 3499 reflections.

Calculations were done with programs of the CRYM Crystallographic Computing System and ORTEP. Scattering factors and corrections for anomalous scattering were taken from a standard reference.⁵ $R = \Sigma |F_o - F_c| / \Sigma F_o$, for only $F_o^2 > 0$, and goodness of fit = $\left[\sum w \left(F_o^2 - F_c^2 \right)^2 / (n-p) \right]^{1/2}$, where n is the number of data and p the number of parameters refined. The function minimized in least-squares was $\sum w \left(F_o^2 - F_c^2 \right)^2$, where $w = 1/\sigma^2 \left(F_o^2 \right)$. Variances of the individual reflections were assigned based on counting statistics plus an additional term, 0.014I. Variances of the merged reflections were

determined by standard propagation of error plus another additional term, $0.014 \langle I \rangle^2$. The absorption correction was done by Gaussian integration over an 8 X 8 X 8 grid. Transmission factors varied from 0.51 to 0.64.

EPR Measurements. Preliminary EPR measurements on solid samples of oxidized Re complexes were performed on a Varian E-line Century Series spectrometer (X-band, ~9.514 GHz) at 0.05 - 1 mW power. Solid samples were packed in Kimax-51 (no. 34505) capillary tubes and placed inside standard quartz EPR tubes for placement into the instrument cavity. Low temperature measurements were conducted by Dr. H. H. Thorp at Yale University. Reagent grade dimethyl sulfoxide (DMSO) and Millipore water were used. Dilute (~10 μM) solutions in glassing solvents or mixtures were required for resolution of the hyperfine lines. More concentrated solutions gave a single derivative signal at g ~ 1.91. EPR spectra were recorded on a home-built EPR spectrometer equipped with an Oxford Instruments ESR-900 liquid-helium cryostat. This instrument has been described in detail elsewhere. Simulation of EPR spectra was performed using PROGRAM QPOW, written by R.L. Belford, A.M. Maurice, and M.J. Nilges.

Syntheses. All *trans*-dioxorhenium(V) pyridine complexes used were synthesized according to the methods described in Chapter 2.

Ferricenium Hexafluorophosphate, [Fc][PF6]. Ferrocene (0.51 g, 2.7 mmol) was placed in a 50-mL Erlenmeyer flask. Concentrated H₂SO₄ (10 mL) was measured out in a dry graduated cylinder and added to the above. After stirring the suspension for 15 min, it became a homogeneous deep red-violet solution. After stirring for an additional 20 min, the solution was *slowly* poured into 150 mL of distilled water. After agitating for 15 min, the deep red-purple solution was passed through a 15-mL medium-porosity sintered-glass frit. This failed to remove the small amount of sulfur present, so the filtration was repeated using a 15-mL fine-porosity sintered-glass frit. The filtration was conducted over a 20 min period. KPF₆ (1.0 g, 5.4 mmol) was added to the filtrate with vigorous stirring. The opaque mixture was placed in a refrigerator (4 °C) and left to stand for 1.5 h. After

this period, 215 mg of a dark purple microcrystalline solid was collected on a medium-porosity sintered-glass frit. It was washed with 5 X 15 mL of diethyl ether, 2 X 15 mL of pentane and aspirated to dryness (1 h). Additional KPF₆ (5.0 g, 27 mmol) was added to the mother liquor. The flask was sealed and left to stand in a refrigerator (4 °C) overnight. The following morning, the additional product that had formed was collected, washed with 3 X 15 mL of toluene, 6 X 15 mL of diethyl ether, and 2 X 15 mL of pentane, and aspirated to dryness (1 h). Combined yield of material: 630 mg, 69%. The compound was characterized by UV-vis spectroscopy (aqueous solution).^{8,9}

trans-[ReO₂(dmap)₄][PF₆]₂. Approximately 150 mL of CH₂Cl₂ was added to trans-[ReO₂(dmap)₄]I (1.125 g, 1.3 mmol) in a 250-mL Erlenmeyer flask; a small amount of solid remained undissolved. Addition of Br₂ (0.5 mL, 5.2 mmol) resulted in the immediate formation of a deep green slurry. This was stirred for 10 min and then filtered through a coarse-porosity sintered-glass frit. The blue-green solid was washed with toluene (3 X 40 mL), diethyl ether (3 X 40 mL), and pentane (2 X 40 mL), and aspirated to dryness (10 min). The yield of crude product was 1.11 g, 95%.

The above material was placed in a 1000-mL Erlenmeyer flask and 600 mL of methanol was added. After vigorous stirring for 10 min, the deep blue solution was filtered by gravity (Whatman #1 filter paper) to remove a dark green-black residue. [NH4][PF6] (4.15 g, 25 mmol) was dissolved in 50 mL of methanol and filtered into the above solution. Upon contact, a microcrystalline, blue solid began to precipitate. After standing for 15 min, the solid was collected on a medium-porosity sintered-glass frit and washed successively with ethanol (3 X 15 mL), diethyl ether (3 X 15 mL), pentane (2 X 15 mL), and aspirated to dryness (1 h). The yield was 250 mg, 19%, based upon *trans*-[ReO₂(dmap)₄]I. Work-up of the remaining residues yielded another 100 mg of product.

Recrystallization was effected as follows. *Trans*-[ReO₂(dmap)₄](PF₆)₂ (250 mg, 0.25 mmol) was dissolved in 60 mL CH₂Cl₂ and filtered (Whatman #1 filter paper) by gravity. Ethanol (25 ml) was added to the filtrate. The solvent volume was reduced on a rotary

evaporator until the solution was colorless and a blue precipitate had formed. This was collected on a Büchner funnel and washed with 2 X 5 mL of ethanol, 2 X 5 mL of diethyl ether, and 2 X 5 mL pentane. After aspirating to dryness (1 h) the yield was 70 mg, 28%. Approximately 40 mg of this material was dissolved in 5 mL of CH₃CN. One millilitre of this solution was placed in a 1-dram vial, and this was placed inside a 4-dram vial containing 2 mL of diethyl ether. The large vial was then sealed with a Teflon-lined cap. The assembly was allowed to stand in a dark cupboard for 1 week, after which time several rectangular-shaped crystals had formed. One of these was selected for X-ray structure analysis. *Trans*-[ReO₂(dmap)₄](PF₆)₂ is very soluble in CH₃CN, moderately soluble in CH₃OH, acetone, and CH₂Cl₂, slightly soluble in ethanol, and insoluble in diethyl ether, THF, and hydrocarbons. Anal. Calcd for C₂₈H₄₀N₈ F₁₂O₂P₂Re: C, 33.74%; H, 4.04%; N, 11.24%. Found: C, 33.41%; H, 4.01%; N, 10.94%. UV-vis, λ_{max} in nm (ϵ , M⁻¹ cm⁻¹), CH₃CN solution: 273 (59,000); 364 sh (28,000); 372 (35,000); 699 (27,000). IR (ν_{asym} ReO₂): 820sh cm⁻¹.

RESULTS AND DISCUSSION

Chemical Oxidations of trans-[ReO₂(dmap)₄]⁺ and trans-[ReO₂(4-pyrrpy)₄]⁺. Electrochemical measurements indicated that trans-[ReO₂(dmap)₄][PF₆] and trans-[ReO₂(4-pyrrpy)₄][PF₆] were oxidized at 0.10 and 0.05 V vs. Fc⁺/Fc, respectively. Using the value of 0.66 V vs. NHE for the Fc⁺/Fc couple, ¹⁰ the potentials for the Re complexes are ~ 0.76 and ~ 0.71 V vs. NHE. This rough calculation was used to search for promising chemical oxidants by examining tables of standard reduction potentials. ¹⁰ Both substituted pyridine complexes were used in exploratory oxidation reactions as their redox properties were essentially identical. The 4-pyrrpy complex is more soluble than the dmap complex for the Re(V) state; the inverse is true for the corresponding Re(VI) compounds.

The first oxidant examined in detail was I_2 ($E_{1/2} \sim 0.534$ V vs. NHE). Although this appears to be a weaker oxidant than *trans*-[ReO₂(4-pyrrpy)₄]²⁺, it was explored because of its mild nature. Of all the halogens, it would be least likely to react with the pyridine ring. This side reaction was of concern during early stages of this research. The oxidation potentials calculated for the Re complexes are also only estimates and could likely differ substantially from actual values due to solvation effects.

Several attempts were made to oxidize trans-[ReO₂(4-pyrrpy)₄]+ with I₂ in CH₂Cl₂ solution. Each attempt was frustrated by erratic behavior of the resulting product. Upon addition of solid I₂ to a CH₂Cl₂ solution of trans-[ReO₂(4-pyrrpy)₄][PF₆], a dark green slurry was obtained. A blue-green solid was isolated and its UV-vis spectrum in CH₂Cl₂ solution was identical to that obtained after bulk electrochemical oxidations (see Chapter 3). Unfortunately, the complex was not stable in solution for long time periods. UV-vis spectroscopy revealed decreases in product band intensity with time in all organic solvents examined: acetone, THF, CH₂Cl₂, CH₃CN, and ethanol. The time for total decomposition varied from experiment to experiment. It is possible that this erratic behavior was due to the proximity of the redox couple I₂/I⁻ to that of the ReO₂²⁺/+. When half-cell potentials differ by 100 mV or less, a redox buffering effect can occur. The oxidized complex was stable in the presence of excess oxidant, but upon isolation, reverted back to the Re(V) starting material. The infrared spectrum of the product obtained indicated that no PF6 was present. The elemental analysis suggested the composition trans-[ReO₂(4-pyrrpy)₄][I₉] (Anal. Calcd for C₃₆H₄₈N₈I₉O₂Re: C, 22.14%; H, 2.48%; N, 5.74%. Found: C, 22.02%; H, 2.55%; N, 6.00%). The counterion could consist of two triodide anions along with an iodine molecule of crystallization. Thus, a possible sequence of reactions that may have occurred is as follows:

$$[ReO_2(4-pyrrpy)_4]PF_6 + xs I_2 \xrightarrow{CH_2Cl_2} [ReO_2(4-pyrrpy)_4][I_9] \downarrow (1)$$

$$[ReO_2(4-pyrrpy)_4][I_9] \xrightarrow{dissolve} [ReO_2(4-pyrrpy)_4][I_3] + 3 I_2 \quad (2)$$

The combination of excess I_2 and product insolubility would drive reaction (1) to the right. Upon redissolving the complex, comparatively little excess I_2 is present and the reaction reverses, *i. e.*, the Re(VI) complex oxidizes the I^- counterions back to I_2 and regenerates the Re(V) species.

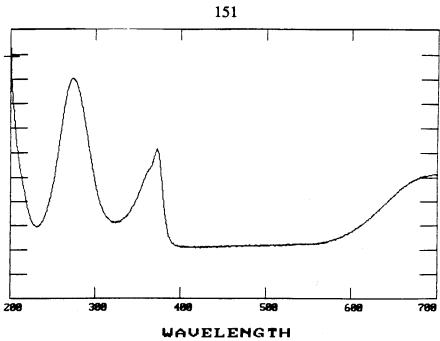
It was also speculated that the instability might originate from the nucleophilicity of the I⁻ counterion. To test this hypothesis, oxidations were attempted with [Fc][PF₆], which has a reduction potential similar to that of I₂ (0.548 V vs. NHE). The PF₆⁻ anion is a non-nucleophilic species and, hence, was not expected to initiate any decomposition reactions. Unfortunately, reactions with [Fc][PF₆] were equally troublesome; the instability of this oxidant in organic solvents has been noted by others.¹¹⁻¹³ Based upon these results, it was concluded that a much stronger oxidant was required, one with a reduction potential well removed from that of the Re(VI) complexes.

Bromine ($E_{1/2} \sim 1.1 \text{ V vs. NHE}$) was the next oxidant to be explored. When excess Br₂ was added to a CH₂Cl₂ solution of *trans*-[ReO₂(dmap)₄]I, a blue-green solid precipitated. In this case, bromine was expected to oxidize both the complex and the iodide anion:

$$[ReO_2(4-pyrrpy)_4]I + Br_2 \xrightarrow{CH_2Cl_2} [ReO_2(4-pyrrpy)_4][Br]_2 \downarrow + 1/2 I_2 \quad (3)$$

The material obtained was very soluble in CH₃CN, alcohols and CH₃NO₂. It dissolved with reaction in acetone, THF, DMSO, butyronitrile, and CH₂Cl₂. A UV-vis spectrum of the crude material appeared similar to that of *trans*-[ReO₂(4-pyrrpy)₄]²⁺ synthesized by bulk electrolysis. Samples sent for elemental analysis gave results suggesting the

molecular formula was *trans*-[ReO₂(dmap)₄][Br_x] where x = 7-9. This material was difficult to handle and often (unpredictably) decomposed to what appeared to be the Re(V) complex. For this reason, it was metathesized to the corresponding [PF₆]⁻ salt. During this process ~ 20% of the *trans*-[ReO₂(dmap)₄]Br_x complex could not be dissolved. The identity of this material and the reason for its recalcitrant behavior are unknown.


Curiously, the [PF6]⁻ salt of *trans*-[ReO₂(dmap)₄]²⁺ was stable in organic solvents such as acetone and dichloromethane; the polyhalide salts decomposed in less than 5 min under identical conditions. When TBABr was added to an acetone solution of *trans*-[ReO₂(dmap)₄][PF6]₂, decomposition began immediately. The complex was also unstable to bases (OH⁻, amines, K₂CO₃, KHCO₃) and to excess free ligand. Stability was greatest in methanol free of halides and basic agents.

After successful metathesis, *trans*-[ReO₂(dmap)₄][PF₆]₂ was recrystallized from CH₂Cl₂/EtOH mixtures using a rotary evaporator to slowly remove the more volatile CH₂Cl₂. The material obtained was then used for physical measurements. A single crystal suitable for X-ray structure analysis was grown by slow diffusion of diethyl ether into an CH₃CN solution of the complex.

As discussed in the previous chapter, bulk electrolyses were performed on both *trans*[ReO₂(3-Medmap)₄][PF₆] and *trans*-[ReO₂(4-MeOpy)₄][PF₆] but only the former was
stable on the time scale of the experiment. In the latter case, substantial decomposition was
evident from the low yield (~40%) of the Re(V) product upon electrolytic reduction.
Fortunately, both materials could be transiently characterized by UV-vis spectroscopy.

Electronic Spectroscopy. The UV-vis spectra of the three Re(VI) complexes trans[ReO₂(4-pyrrpy)₄]²⁺, trans-[ReO₂(dmap)₄]²⁺, and trans-[ReO₂(3-Medmap)₄]²⁺ are
similar. The spectrum of trans-[ReO₂(dmap)₄][PF₆]₂ presented in Figure 4.1 is
representative. The spectrum of trans-[ReO₂(4-MeOpy)₄]²⁺ has already been presented in

Figure 4.1. UV-vis absorption spectra of *trans*-[ReO₂(dmap)₄][PF₆]₂ (top) and *trans*-[ReO₂(dmap)₄][PF₆] (bottom) in CH₃CN solution. The ordinate scale is in arbitrary absorbance units.

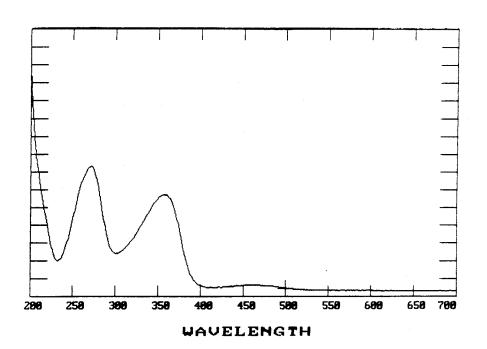


Figure 3.23 and is likely a composite of both the Re(V) and Re(VI) species. A summary of the data is set out in Table 4.1, along with selected absorption data for the corresponding Re(V) materials (for comparison). The band assignments are discussed below.

Table 4.1. Selected UV-vis absorption data of *trans*-[ReO₂(L)₄][PF₆] and *trans*-[ReO₂(L)₄][PF₆]₂ complexes. Except where otherwise indicated, measurements were made in CH₃CN solution. Roman numerals refer to the formal oxidation state of Re in the complexes.

L=	$\pi \rightarrow \pi^*$ py	MLCT, $d_{xy} \rightarrow \pi^*$	LMCT, π py \rightarrow d _{xy}
		ру	
4-руггру, (V)	273	353	
(VI) ^a	280	365 sh, 375	720
dmap, (V)	272	358	
(VI)	273	364 sh, 372	699
3-Medmap, (V)	280	363	
(VI)b	291	375 sh, 384	752
4-MeOpy (V)	227	347	
(VI)b	?	330	478, 530 sh

^a 0.1 M TBAH CH₂Cl₂ solution. ^b 0.1 M TBAH CH₃CN solution.

All of the *trans*-[ReO₂(L)₄]²⁺ pyridine complexes exhibit strong absorptions in the visible region ($\varepsilon > 10,000 \text{ M}^{-1} \text{ cm}^{-1}$) that are too intense to be of LF origin. As in the case of the Re(V) complexes, all LF transitions are Laporte-forbidden ($g \to g$) and therefore are expected to have low extinction coefficients. The most probable origin of these bands is

LMCT from the filled π -levels of the electron-rich pyridine ligands to the hole created in the d_{xy} orbital. The overlap and symmetry arguments put forth in the previous chapter to explain MLCT intensities apply equally here, the only difference being the direction of the charge transfer. Rigorously, the 1-e⁻ transition is e_u (py, π^b) $\rightarrow b_{2g}$ (d_{xy}). Note again that this is Laporte-allowed ($u \rightarrow g$) and hence will be intense. On this basis, the bands appearing at 720, 699, 752 and 478-530 nm for the complexes of 4-pyrrpy, dmap, 3-Medmap and 4-MeOpy, respectively, are assigned to LMCT. (The literature precedence for such an assignment was discussed in the previous chapter. See the section on transient absorption spectra.) The bands occurring in the near-UV have been assigned to MLCT because of their energetic proximity to MLCT bands of the corresponding Re(V) complexes.

Exactly where are the LF transitions? Obviously, they are obscured by one of the CT transitions, but which one? If one assumes that the 1-e⁻ MO energies do not change as a result of Re oxidation (Koopman's Theorem), it is possible to calculate the approximate positions of the LF transitions based upon transition energies known for the corresponding Re(V) compounds. In the Re(V) systems, the energy of a given transition will be equal to the 1-e⁻ MO energy splitting minus the difference in electron-repulsion energy between the two states. The 2-e⁻ transition energies can therefore be expressed in terms of 1-e⁻ energy level differences and repulsion energies. The repulsion energies for states derived from the $D_{4h} d^2$ case will be identical to those for the $d^8 D_{4h}$ case from the electron pair/hole equivalence principle.¹⁴ These repulsion energies were calculated by Gray^{15,16} sometime ago. Using this information and referring to the definitions set out in Figure 4.2, the state energies summarized in Table 4.2 were calculated. From Table 4.2 it appears that the 1-e⁻ transition $d_{xy} \rightarrow d_{xz}, d_{yz}$ should appear to the blue of the corresponding transition in the d^2 complex by (3B + C) or half the energy of the singlet-triplet gap in the d^2 complex.

Figure 4.2. MO diagram for *trans*-[ReO₂(L)₄]⁺ complexes. The 1-e⁻ orbital energies are given in classical LF notation¹⁷ and in terms of empirical values.

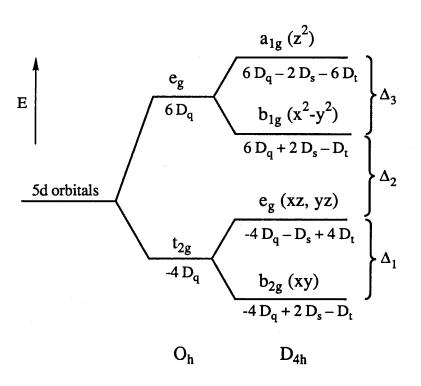


Table 4.2. State energies for *trans*-[ReO₂(L)₄][PF₆] complexes in terms of 1-e⁻ MO energy differences and electron-electron repulsion energies.^{16,18}

State	Energy in Racah Parameters	Energy in Slater-Condon
		Parameters
¹ A _{1g}	0	0
$^{3}E_{g}$	$\Delta_1 - 3(3B + C)$	$\Delta_1 - 9F_2 - 60F_4$
$1_{E_{g}}$	Δ_1 – (3B +C)	$\Delta_1 - 3F_2 - 20F_4$
$^{3}A_{2g}$	$\Delta_1 + \Delta_2 - 3C$	$\Delta_1 + \Delta_2 - 105F_4$
¹ A _{2g}	$\Delta_1 + \Delta_2 - C$	$\Delta_1 + \Delta_2 - 35F_4$
$^{3}\mathrm{B}_{2\mathrm{g}}$	$\Delta_1 + \Delta_2 + \Delta_3 - 3(4B + C)$	$\Delta_1 + \Delta_2 + \Delta_3 - 12F_2 - 45F_4$
$^{1}\mathrm{B}_{\mathrm{2g}}$	$\Delta_1 + \Delta_2 + \Delta_3 - (4B + C)$	$\Delta_1 + \Delta_2 + \Delta_3 - 4F_2 - 15F_4$

From single-crystal studies completed by Winkler¹⁹ on *trans*-[ReO₂(py)₄]BPh₄, the singlet-triplet splitting of the E_g term is known to be 3900 cm⁻¹. Thus, the 1-e⁻ transition $d_{xy} \rightarrow d_{xz}$, d_{yz} should appear at 22,500 + 1950 = 24,450 cm⁻¹ (~400 nm) for the pyridine complex. Based on this analysis, it is likely that all of the LF transitions for the other Re(VI) complexes are obscured by the high energy MLCT and π - π * pyridine transitions.

What about the $d_{xy} \rightarrow d_x^2 - y^2$ transition? Examination of the spectra of the ethylenediamine and pyridine *trans*-[ReO₂(L)₄]⁺ complexes reveals that they both have an absorption in the vicinity of 270-280 nm. The transition energy of interest actually corresponds to the LF parameter 10 Dq. Since pyridine and ethylenediamine have approximately the same ligand field strength,²⁰ the 10 Dq values for the two complexes should be almost identical. Thus, the $d_{xy} \rightarrow d_x^2 - y^2$ transition should occur at the same energy for both complexes. The results in Table 4.2 predict that the d^1 complex should

have the corresponding transition to the blue by an amount C. Thus, the $d_{xy} \rightarrow d_x^{2}y^2$ transition energy is at *least* at 36,000 cm⁻¹ (~280 nm) in the Re(VI) complexes.

It is important to remember that the above arguments assume the 1-e⁻ orbital energies are identical for the Re(V) and Re(VI) complexes. This might have some validity since the electron removed during the oxidation event is from a non-bonding level. Gross changes in bond lengths and angles are therefore not expected; this is born out by the results of an X-ray structure determination of *trans*-[ReO₂(dmap)₄][PF₆]₂.

X-ray structure of trans-[ReO₂(dmap)₄][PF₆]₂. An X-ray structure determination was successfully carried out for trans-[ReO₂(dmap)₄](PF₆)₂ by Ms. Kirby M. Slagle. The results are summarized in a series of figures and tables. A crystallographic data summary, final non-hydrogen parameters, and a list of selected bond lengths and angles are provided in Tables 4.3, 4.4, and 4.5, respectively. All other data pertaining to this structure have been collected in an appendix at the end of this thesis. An ORTEP diagram showing the gross structural features and the atomic numbering scheme used are given in Figures 4.3 and 4.4, respectively. A view of the structure looking down the O=Re=O axis is provided in Figure 4.5, and finally, the relative orientation of the complex and its counterions is illustrated in the unit cell diagram of Figure 4.6. A brief description of the structure is now presented.

The octahedrally coordinated Re atom lies on a crystallographic center of symmetry (Figure 4.6); the two oxo ligands are axial and the four pyridyl nitrogen atoms are equatorial. The Re-O bond is 1.764(4) Å; the Re-N11 and Re-N21 bonds are 2.108(4) Å and 2.120(5) Å, respectively. The O-Re-N11 and the O-Re-N21 angles are both 90.0(2)°; the N11–Re–N21 angle is 91.9(2)°. The dmap ligands are nearly perpendicular to the equatorial plane (Figure 4.5); the angles between the pyridine rings and the plane defined by the Re and four pyridyl nitrogen atoms are 93.6(3.1)° and 94.3(3.1)°. The amino nitrogen atoms are trigonal planar; the sums of the angles about the nitrogen atom are 359.9°

Table 4.3. Crystallographic data for trans-[ReO₂(dmap)₄][PF₆]₂.

Formula: ReO₂C₂₈N₈P₂F₁₂H₄₀

a = 8.307(3) Å

b = 10.911(5) Å

c = 11.907(11) Å

 $\alpha = 96.24(6)^{\circ}$

 $\beta = 108.28(6)^{\circ}$

 $\gamma = 99.42(6)^{\circ}$

 $V = 996.1(11) \text{ Å}^3$

Z = 1

Formula weight: 996.813

Space Group: P1(#2)

T = 293 K

 $\lambda = 0.7107 \text{ Å}$

 $\rho_{calc} = 1.662 \text{ g cm}^{-3}$

 $\mu = 34.09 \text{ cm}^{-1}$

trans. coeff. = 0.51 - 0.64

 $R(F_0) = 0.0389$

GOF = 2.77

Table 4.4. Final non-hydrogen parameters for trans-[ReO₂(dmap)₄][PF₆]. $x,y,z \text{ and } U_{eq}{}^a \times 10^4$

Atom	\boldsymbol{x}	y	z	$U_{oldsymbol{eq}}$
Re	0	0	0	479(1)
0	2122(4)	360(4)	1052(3)	575(10)
N11	-985(5)	451(4)	1387(4)	515(11)
C11	34(7)	893(6)	2535(5)	587(15)
C12	-562(7)	1182(6)	3452(5)	651(16)
C13	-2345(8)	1042(6)	3242(5)	649(16)
C14	-3414(7)	569(7)	2033(5)	722(18)
C15	-2706(7)	283(7)	1185(5)	649(17)
N12	-2991(7)	1327(7)	4094(5)	967(21)
C16	-1868(11)	1804(12)	5324(7)	1375(37)
C17	-4859(11)	1124(15)	3831(8)	1705(48)
N21	295(6)	1882(4)	-325(4)	544(11)
C21	-925(8)	2248(6)	-1221(5)	634(16)
C22	-691(9)	3380(7)	-1558(6)	714(17)
C23	868(9)	4281(7)	-1014(6)	719(17)
C24	2075(9)	3926(7)	-34(7)	779(20)
C25	1761(8)	2761(6)	261(6)	665(17)
N22	1189(10)	5351(6)	-1367(7)	675(17)
C26	2829(14)	6226(8)	-843(10)	1233(32)
C27	56(17)	5645(9)	-2392(11)	1365(37)
P	3778(3)	2979(3)	6815(2)	1027(7)
F1	3027(12)	1927(13)	5816(9)	2834(51)
F2	5023(11)	2204(11)	7362(13)	3012(56)

160

Table 4.4. (Cont'd)

\boldsymbol{x}	\boldsymbol{y}	z	$U_{m{eq}}$
5256(13)	3534(12)	6403(10)	2547(46)
4531(14)	3988(13)	7852(10)	3070(54)
2677(18)	3684(11)	6123(15)	3503(72)
2374(13)	2432(14)	7248(12)	3076(58)
	5256(13) 4531(14) 2677(18)	5256(13) 3534(12) 4531(14) 3988(13) 2677(18) 3684(11)	5256(13) 3534(12) 6403(10) 4531(14) 3988(13) 7852(10)

 a $U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} [U_{ij}(a_{i}^{*}a_{j}^{*})(\vec{a}_{i} \cdot \vec{a}_{j})]$

Table 4.5. Selected distances and angles for trans-[ReO₂(dmap)₄][PF₆]₂.

Dis	${\sf stance}({ ext{\AA}})$	Angle((°)
Re -O	1.764(4)	O -Re -N11	90.0(2)
Re -N11	2.108(4)	O -Re -N21	90.0(2)
Re -N21	2.120(5)	N11 -Re -N21	91.9(2)
N11 -C11	1.346(7)	C15 -N11 -C11	115.2(5)
N11 -C15	1.351(8)	C12 -C11 -N11	124.5(5)
C11 -C12	1.361(9)	C13 -C12 -C11	120.6(6)
C12 -C13	1.401(9)	C14 -C13 -C12	114.7(6)
C13 -C14	1.419(9)	N12 -C13 -C12	123.1(6)
C13 -N12	1.319(9)	N12 -C13 -C14	122.2(6)
C14 -C15	1.352(9)	C15 -C14 -C13	120.5(6)
N12 -C16	1.451(12)	C14 -C15 -N11	124.4(6)
N12 -C17	1.457(13)	C16 -N12 -C13	121.1(7)
N21 -C21	1.368(8)	C17 -N12 -C13	120.7(7)
N21 -C25	1.352(8)	C17 -N12 -C16	118.1(7)
C21 -C22	1.343(10)	C25 -N21 -C21	115.8(5)
C22 -C23	1.408(10)	C22 -C21 -N21	123.5(6)
C23 -C24	1.418(11)	C23 -C22 -C21	121.7(7)
C23 -N22	1.298(10)	C24 -C23 -C22	114.2(7)
C24 -C25	1.362(10)	N22 -C23 -C22	123.6(7)
N22 -C26	1.438(13)	N22 -C23 -C24	122.2(7)
N22 -C27	1.394(14)	C25 -C24 -C23	121.0(7)
		C24 -C25 -N21	123.5(6)
		C26 -N22 -C23	122.6(8)
		C27 -N22 -C23	121.6(8)
		C27 -N22 -C26	115.2(8)

Figure 4.3. An ORTEP diagram for trans-[ReO₂(dmap)₄][PF₆]₂.

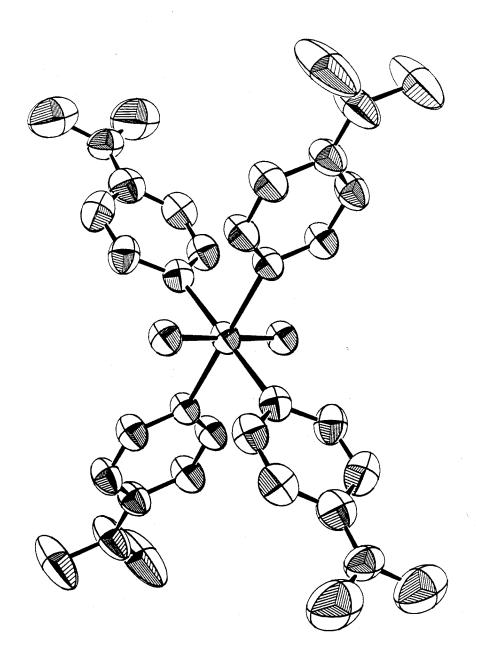


Figure 4.4. Atomic numbering scheme used for the *trans*-[ReO₂(dmap)₄][PF₆]₂ structure determination.

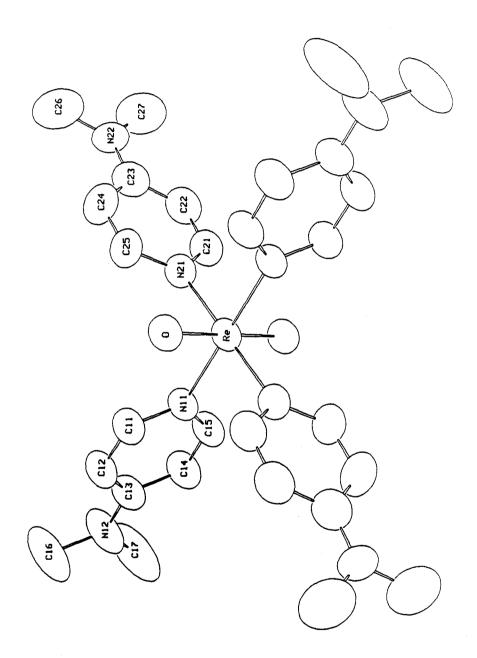


Figure 4.5. A view down the O=Re=O axis of the *trans*-[ReO₂(dmap)₄][PF₆]²⁺ molecule.

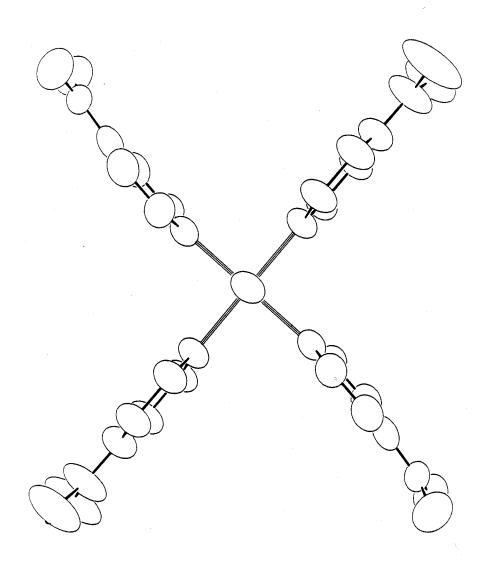
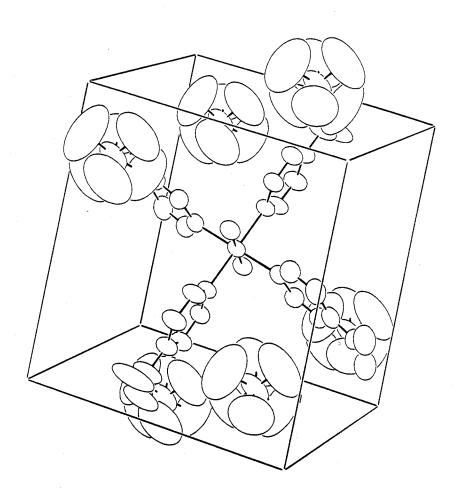



Figure 4.6. The unit cell of trans-[ReO₂(dmap)₄][PF₆]₂ structure.

and 359.4°. The amino-ring bond length is very short, only 1.319(9) Å for C13–N12 and 1.298(10) Å for C23–N22, indicating significant double-bond character.²¹ The NMe₂ groups are tilted slightly with respect to the pyridine ring; the dihedral angles are 178.5(9.1)° and 168.7(9.5)°. The remaining ligand bond lengths and angles are normal.

The anion is slightly disordered. The P–F bond lengths range from 1.415(15) to 1.521(12) Å (average: 1.469 Å), and the F–P–F angles for adjacent fluorine atoms vary from 81.7(7) to 97.0(7)°.

To determine if any unusual features were present in this structure, a comparison was made with the X-ray structure data gathered on the following materials: dmap,²² dmap•HCl,²³ 1,1'-methylenebis(4,4'-dimethylaminopyridinium)iodide,²⁴ trans-[ReO₂(py)₄]Cl•2H₂O,^{25,26} and trans-[ReO₂(4-pic)₄][ReO₄].²⁷

The Re-O bond length is essentially identical between the three complexes *trans*[ReO₂(py)₄]Cl•2H₂O, *trans*-[ReO₂(4-pic)₄][ReO₄] and *trans*-[ReO₂(dmap)₄][PF₆]₂ (1.76, 1.75, 1.76 Å, respectively). The MO description of *trans*-[ReO₂(L)₄][PF₆] (Figure 4.2) shows the highest-lying electron pair to be in the non-bonding orbital Re d_{xy}. Therefore, a 1-e⁻ oxidation would not be expected to cause a disturbance in any bond lengths or angles. This concurs with what is observed.

There is a slight contraction in the Re–N distance in trans-[ReO₂(dmap)₄][PF₆]₂ compared to trans-[ReO₂(py)₄]Cl•2H₂O and trans-[ReO₂(4-pic)₄][ReO₄] (2.11, 2.15 and 2.14 Å, respectively). This could be due to an electrostatic effect (the Re(VI) species has one full unit higher formal charge) or a π -bonding interaction between the filled π -level of dmap and the half-empty d_{xy} orbital on Re. Evidence supporting the last hypothesis is (1) the minimal amount of twisting of the dmap plane with respect to the O=Re=O axis, (2) the short Me₂N-py bond distance, and (3) the shorter Re–N bond length. A pure σ -effect would not require minimal twisting between the pyridine ring plane and the O=Re=O axis. Ring twisting (10 - 20°) has been observed in the X-ray structures of other trans-[ReO₂(L)₄]+ pyridine complexes²⁵⁻²⁷ and has been attributed to both crystal packing

effects, and the result of steric congestion between the oxo ligands and the *ortho*–H's on pyridine. ²⁶ The latter effect should be even more pronounced as the Re–N distance contracts. Therefore, it is somewhat surprising that the pyridine planes are almost perfectly parallel with the O=Re=O vector.

Structural data that are available for the dmap ligand and a related compound are presented in Table 4.6. The atom numbering scheme used to identify bond distances is provided below the table. Note that the C₄–C₃ and C₄–C₅ bonds are considerably longer (~1.41 Å) than other C-C bonds in the aromatic ring (~1.35 Å). The NMe₂-pyridine ring bond distance is substantially shorter (~1.34 Å) than a single C-N bond (~1.46 Å), indicating double-bond character. These features suggest that there is appreciable quinoidal character to the dmap ring, as depicted by the resonance structures drawn in Figure 4.7. This explains the superior donating ability of this particular pyridine derivative. The lack of significant change in the bond lengths and angles of the *trans*-ReO₂ unit between the Re(V) and Re(VI) complexes suggests that resonance structures resulting in formal reduction of Re(VI) to Re(V) with concomitant development of oxo-radical character are not accurate descriptions of the bonding in *trans*-[ReO₂(L)₄]²⁺ complexes.

EPR spectra of trans-[ReO₂(dmap)₄][PF₆]₂. Although hexavalent states are rare for rhenium, there have been several studies completed on the EPR of d¹ rhenium compounds.²⁸⁻³⁷ There are two naturally occurring isotopes of rhenium. Both of them are spin active (I = 5/2) with almost identical nuclear moments (185 Re, 37.07%, 3.143 μ_N ; 187 Re, 62.93%, 3.176 μ_N).^{28,38} The small difference in moments is not sufficient, however, to generate separate line manifolds in any spectra that have been observed to date.

The EPR spectra of Re(VI) species are often challenging to interpret because of the extremely large Re hyperfine and quadrupole coupling constants associated with tetragonal geometries of this ion. ^{28,31,32,39,40} As a result, the spectra exhibit (1) variations in band

Table 4.6. Bond length data for dmap and dmap-like molecules obtained from other X-ray structure determinations. The number scheme used to identify bond lengths is illustrated below the table.

compound	N ₂ C ₄	C ₄ –C ₃	C ₃ –C ₂	C ₂ -N ₁	N ₁ -M
dmap	1.367(2)	1.404(3)	1.375(3)	1.335(3)	
dmap•HCl•2H ₂ O	1.340a	1.421a	1.350a	1.343a	1.06a
1,1'-	1.333(4)	1.419(4)	1.351(4)	1.345(4)	1.468(4)
methylenebis(4,4'dimethylamino					
pyridinium)iodide •H2O		- · · · · · · · · · · · · · · · · · · ·			
trans-[ReO ₂ (dmap) ₄][PF ₆] ₂	1.309a	1.405a	1.352a	1.357a	2.114 ^a

^aIn structures where the distances were not uniquely defined, an average value has been determined.

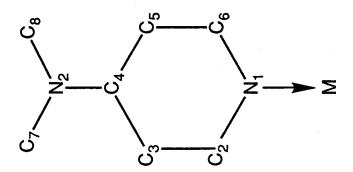


Figure 4.7. Important resonance structures for the dmap ligand. The bottom structure represents the best description of electron density distribution in the dmap ligand.

$$\stackrel{\overset{\bullet}{N}Me_2}{\longleftrightarrow} \longleftrightarrow \stackrel{\overset{\bullet}{N}Me_2}{\longleftrightarrow} \longleftrightarrow \stackrel{\overset{\overset{\bullet}{N}Me_2}{\longleftrightarrow} \longleftrightarrow \stackrel{\overset{\overset{\bullet}{N}Me_2}{\longleftrightarrow} \longleftrightarrow$$

intensities for $\Delta M_I = 0$ transitions, (2) unequal Re hyperfine spacing, (3) the presence of forbidden features due to $\Delta M_I = \pm 1$, ± 2 transitions, and (4) intense features at off axis turning points.³² These complications are evident in the spectra of ReOCl₄, [ReOF₅]⁻, [ReOCl₄]⁻, and *trans*-[ReO₂(dmap)₄]²⁺.

No EPR signal could be detected for *trans*-[ReO₂(dmap)₄][PF₆]₂ in CH₃CN, CH₃OH or acetone solutions. The EPR of a solid (powder) sample gave a single line with < g> 1.91. In attempt to obtain a better spectrum, a dilute ($\sim 10~\mu M$) 50% aqueous DMSO solution was examined at 7 K (Figure 4.8 (A)). The large A_[I] hyperfine coupling is apparent from the two outermost transitions of the parallel manifold (labelled a). The magnitude of A_⊥ is somewhat smaller; the outermost transitions of the perpendicular manifold are labelled b. The number of lines is greater than the six parallel and six perpendicular features expected for an axially symmetric system with I = 5/2. The extra features arise from $\Delta M_I = \pm 1$ (*e.g.*, peak c) and $\Delta M_I = \pm 2$ (*e.g.*, peak d) transitions and their off-axis turning points. The strength of these features is indicative of a large quadrupole coupling constant, which increases the probability of the forbidden transitions. ^{39,40} In some cases, the intensity of the forbidden transitions is even higher than the allowed transitions.

In order to estimate the g and hyperfine coupling values, a simulation was performed using the QPOW program, which calculates a second-order spectrum with quadrupole coupling and forbidden transitions. The simulation that best represents the experimental spectrum is shown in Figure 4.8 (B). It was generated using the following parameters: $g_{\perp} = 1.91$, $A_{\perp} = 0.031$ cm⁻¹, $g_{\parallel} = 1.83$, $A_{\parallel} = 0.060$ cm⁻¹, and $Q_z = 0.0075$ cm⁻¹. Note that the simulation accounts for all of the major transitions and reproduces qualitatively the experimental intensity pattern. Unfortunately, the calculation is complicated by the strong intensity of the forbidden transitions resulting from the large quadrupole coupling. The EPR results of related Re(VI) complexes are collected in Table 4.7.

Figure 4.8. (A) EPR spectrum at 7 K of [ReO₂(DMAP)₄](PF₆)₂ (~10 μ M) in 50% DMSO. Microwave frequency: 9.0505 GHz. Modulation frequency: 100 kHz. Modulation amplitude: 10 G. Microwave power: 0.05 mW. a: outermost peaks in the parallel manifold. b: outermost peaks in the perpendicular manifold. c: Δ M_I = \pm 1 transition. d: Δ M_I = \pm 2 transition. (B) Simulated spectrum calculated using g $_{\perp}$ = 1.91, A $_{\perp}$ = 0.031 cm⁻¹, g_{||} = 1.83, A_{||} = 0.060 cm⁻¹, and Q_z = 0.0075 cm⁻¹.

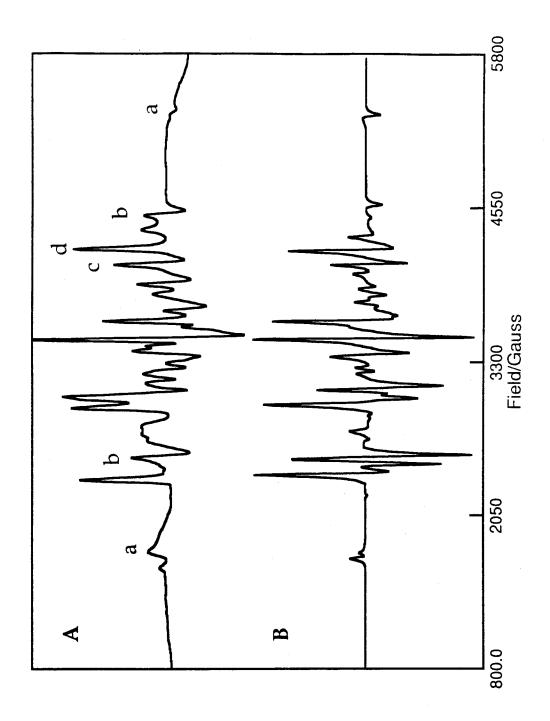


Table 4.7. EPR data for some Re(VI) complexes also containing π -bonds.

compound	g ⊥	A ⊥(cm-	g	A (cm ⁻¹)	$ Q_z (cm^{-1})$	Ref
		1)				
[ReO ₂ (dmap) ₄][PF ₆] ₂ ^a	1.91	-0.031	1.83	-0.060	0.0075	this work
[Ph4As][ReNCl4]b	1.934	-0.0382	1.909	-0.077	0.0047	32
ReOCl4 ^c	1.720	-0.0320	1.968	-0.0630	0.0020	28
ReOCl ₄ (NCCH ₃) ^d	1.732	-0.0315	1.970	-0.0621	0.0020	28
ReOCl4(OPCl3)e	1.734	-0.0308	1.97	-0.0616	0.0019	28
[Ph4As][ReOCl5] ^c	1.740	-0.0305	1.975	-0.0609	0.0020	28
[H ₃ O][ReOF ₅] ^f	1.74	-0.0500	1.72	-0.0960	0.0045	31

^afrozen 50% aqueous DMSO, 7 K

dfrozen CH₃NO₂, 77 K

bfrozen CH₃CN, 110 K

efrozen OPCl₃, 77 K

^cfrozen dioxane, 77 K

ffrozen anhydrous HF, 77 K

First order perturbation theory predicts that $g_{\parallel} < g_{\perp} < 2.0023$. Note that this is not the case for nitrido- and oxorhenium(VI) chlorides. In these cases, the order $g_{\parallel} > g_{\perp}$ is attributable to the effect of spin-orbit coupling of a (Cl)₄ d_{xy} -symmetry hole associated with in-plane π -bonding between the Re d_{xy} orbital and equitorial ligand π -orbitals.³⁶

The low energy LMCT transition of *trans*-[ReO₂(dmap)₄][PF₆]₂ indicates the energetic proximity of the filled π -levels of the dmap ligand to the Re d_{xy} orbital. Therefore, inplane π -bonding between dmap and Re is likely significant in *trans*-[ReO₂(dmap)₄][PF₆]₂. This does *not*, however, perturb the g-values because nitrogen has a very small spin-orbit coupling constant ($\xi_N = 70 \text{ cm}^{-1}$).⁴¹

In contrast to nitrogen, chlorine has a large spin-orbit coupling constant (ξ_{Cl} = 587 cm⁻¹)⁴¹ and, therefore, any in-plane π -bonding involving this ligand dramatically affects g-values. The g-values of [Ph₄As][ReNCl₄(NCCH₃)] are not inverted (in contrast to ReOCl₄), suggesting in-plane Cl π -bonding is not important in this complex.³²

Several attempts have been made to evaluate the degree of covalency in Re(VI) complexes using the results obtained from EPR spectra. The analysis is complex and hindered by the lack of good values for both orbital wavefunctions and Re spin-orbit coupling constants.

Gray and Ballhausen¹⁷ employed a semi-empirical MO approach to analyse the electronic structure of the vanadyl ion, [VO(OH₂)₅]²⁺. The molecular orbitals used were of the form

$$\psi^b = c_1 \Phi(\text{metal}) + c_2 \Phi(\text{ligand})$$
 (4)

$$\psi^* = c_1^* \Phi(\text{metal}) + c_2^* \Phi(\text{ligand})$$
 (5)

for the bonding and antibonding wavefunctions, respectively. The orbitals Φ (metal) and Φ (ligand) refer to the proper combination of metal and ligand orbitals for a given representation. The g values of the complex are related to the d-orbital coefficients and

state energies by the following equations:

$$g_{\perp} = 2(1 - (c_1^*)^2 \xi / \Delta E(^2 B_{2g} \to ^2 E_g))$$
 (6)

$$g_{\parallel} = 2(1 - (c_1^*)^2 4\xi/\Delta E(^2B_{2g} \to ^2B_{1g}))$$
 (7)

The relevant d-orbitals are (d_{xz}, d_{yz}) and $d_x^2-y^2$ respectively and ξ is the metal spin-orbit coupling constant. As discussed earlier, the LF transitions are not observed in trans-[ReO₂(dmap)₄][PF₆]₂ but can be estimated to be at 25,000 and 36,000 cm⁻¹ (for ${}^2\mathrm{B}_{2g} \to$ 2E_g and $^2B_{2g} \rightarrow ^2B_{1g}$, respectively). The actual value of ξ is unknown and must be estimated. If one plots ξ versus the charge (z) of the free Re ion, ^{20,42} a linear relationship is obtained: $\xi = (540(z) + 1000)cm^{-1}$. If it is assumed that due to charge neutralization effects, the residual charge on Re will be 2+, then $\xi = 2080 \text{ cm}^{-1}$ would be a good estimate.²⁸ Using all of the above information, one obtains $c_1*(d_{xz}, d_{yz}) = 0.735$ and $c_1^*(d_x^2-y^2) = 0.606$, indicating appreciable covalency in both the Re-oxo and Re-py bonds. MO coefficients calculated for some other Re(VI) complexes are presented in Table 4.8. These have been obtained by a variety of methods. Note that in trans-[ReO₂(dmap)₄][PF₆]₂ the Re-oxo bonds are appreciably more covalent than in the oxohalide complexes. There is also appreciable covalency in the equitorial bonds. MO coefficients for the imido complex calculated by the method of Ballhausen and Gray are 0.557 and 0.365 for (d_{xz}, d_{yz}) and d_{x}^{2} - y^{2} , respectively, and these are in good agreement with values obtained by an independent method (Table 4.8).32

It should be noted that others have claimed that the semi-empirical treatment overestimates bond covalency, 43 so that one may view the coefficients obtained as lower limits. Another source of error is the fact that no provision has been made for equitorial ligand- d_{xy} π -bonding.

Table 4.8. MO coefficients for d_{xy} , (d_{xz}, d_{yz}) , and $d_{x^2-y^2}$ orbitals for some selected Re(VI) complexes.

compound	$c_1^*(d_{xy})$	$c_1^*(d_{xz},d_{yz})$	$c_1^*(d_x^2-y^2)$	Ref
[ReO ₂ (dmap) ₄][PF ₆] ₂		0.735	0.606	here
[Ph4As][ReNCl4(NCCH3)]	0.811	0.512	0.449	32
ReOCl4	0.820	0.920	0.780	28
ReOCl ₄ (NCCH ₃)	0.809	0.907_	0.781	28
ReOCl ₄ (OPCl ₃)	0.808	0.906	0.781	28
[Ph4As][ReOCl5]	0.805	0.903	0.780	28
[H ₃ O][ReOF ₅]	0.85	0.92	0.78	31

In axially symmetric systems where the unpaired electron is coupled to a nucleus with a high quadrupole moment such as Re (Q(185 Re) = 2.8 x $^{10^{24}}$ /cm², Q(187 Re) = 2.6 x $^{10^{24}}$ /cm²), the magnitude of Q_z reflects the concentration of charge along the z-axis, which induces a large electric-field gradient in the complex. As evident in Table 4.7, Q_z generally increases in the order ReO⁴⁺ < ReN³⁺ < ReO₂²⁺. In addition, estimated LF energies (187 d_{xz}, 187 d_{yz}) increase with Q_z, 28,31,32 consistent with an increase in 187 dbonding on going from monooxo to mononitrido to *trans*-dioxo axial units. This combined spectroscopic evidence emphasizes dramatically the strong axially compressed tetragonal ligand field associated with the *trans*-dioxo moiety.

Trans-[ReO₂(L)₄]²⁺ reactivity. As mentioned in the introduction, trans[ReO₂(py)₄]²⁺ behaved as a potent oxidant towards silanes, halocarbons and secondary alcohols.^{1,2} Cyclic voltammograms of trans-[ReO₂(py)₄]⁺ were indicative of this reactivity; anodic current enhancement was observed when oxidizable substrates were added to the compound solutions. Sec-phenethylalcohol was converted to acetophenone at

1.5 V vs. SSCE with 90 \pm 5% current efficiency and three 'turn-overs' of Re complex. The term turn-over is used loosely here as no defineable Re species was found at the end of the experiment.

It was thought that the Re(VI) complexes possessing milder oxidizing potentials might be less prone to decomposition reactions and hence, more efficient catalysts. *Trans*-[ReO₂(4-MeOpy)₄]²⁺ is ~300 mV less oxidizing than *trans*-[ReO₂(py)₄]²⁺ and unlike it, accumulates during bulk electrolysis experiments. Cyclic voltammograms of *trans*-[ReO₂(4-MeOpy)₄]²⁺ are unperturbed when *sec*-phenethylalcohol is added. Bulk electrolysis at 1.2 V vs. SSCE in the presence of a 100-fold excess of alcohol yields no appreciable ketonic product; after 15 hours only 10 coulombs (3 equivalents of charge based upon Re) are passed, indicating some slow decompostion process. Isolated samples of *trans*-[ReO₂(dmap)₄]²⁺ are also ineffective oxidants. Thus, the oxidation of alcohols with *trans*-[ReO₂(L)₄]²⁺ appears to be limited to the unsubstituted pyridine complex.

Since the series of pyridine complexes are isoelectronic and differ essentially only in redox potential, it is likely that the lack of activity observed is due to the lowering of the Re(VI)/Re(V) couple. The rate-limiting step in the reaction sequence is likely to be the abstraction of one electron from the alcohol, and the efficiency of this step will depend upon the oxidizing strength of the metal complex. Wong and Anson⁴⁴ completed a detailed study of electrochemical oxidations of benzylalcohol mediated by oxoruthenium(IV) amine complexes. The compounds studied and the relevant electrochemical couples are set out in Table 4.9. Comparison of results obtained for benzylalcohol to those for *sec*-phenylethylalcohol is valid since the weakest C-H bonds in the two molecules are of identical strength (~85 kcal mol-1).⁴⁵

Table 4.9. Ruthenium(IV) oxo complexes that mediate electrooxidation of benzylalcohol. Potentials are measured in 0.1 M [Et₄N][BF₄] CH₃CN solutions.

complex	E _{1/2} , V vs. Fc+/Fc
trans-[Ru(TMC)O(Cl)][ClO4]	1.05
trans-[Ru(TMC)O(NCO)][ClO4]	0.89
trans-[Ru(TMC)O(N3)][ClO4]	0.72

The authors noted that benzylalcohol is not oxidized at glassy carbon at potentials less positive than 1.2 V vs. Fc+/Fc, so the activity observed must have originated from the Ru(V) complexes. Rotating-disk electrode and bulk electrolysis studies suggested the oxidations occurred via the following mechanism:

$$Ru(IV) - e^{-} \Longrightarrow Ru(V) \quad (8)$$

$$Ru(V) + PhCH2OH \xrightarrow{k} Ru(IV) + PhCH2(OH) + H+ \quad (9)$$

$$Ru(V) + PhCH2(OH) \xrightarrow{fast} Ru(IV) + PhCHO + H+ \quad (10)$$

Ru = coordinated ruthenium species

The proposed rate-limiting step is a bimolecular electron transfer between the electrochemically generated Ru(V) species and the alcohol substrate. Bimolecular rate constants of 2.1 x 10² and 1.4 x 10² M⁻¹ s⁻¹ were measured for the Cl⁻ and NCO-complexes, respectively. The azide catalyst was too sluggish for reliable kinetic measurements. The general trend observed was a decrease in catalyst efficiency with decreasing oxidation potential of the Ru complexes.

It has been proposed that the oxo ligand receives the proton released from the alcohol upon (a 1 e⁻) oxidation.⁴⁴ It is more likely that the oxo group assists in the simultaneous

transfer of an electron and a proton (H• transfer). This would not be possible in complexes where the ligands lack basic sites: The Ru(IV) complex *trans*-[Ru(TMC)Cl₂]²⁺ is a potent $1 e^-$ oxidant (E_{1/2} ~1.15 V vs. Fc⁺/Fc) but an extremely poor catalyst for alcohol electrooxidation.

It has long been known that *trans*-[ReO₂(L)₄]⁺ complexes can be protonated in acidic solutions, ⁴⁶⁻⁵³ indicating that the oxo group is capable of acting as a surrogate base. There is also substantial evidence from UV-vis spectroscopy, ^{19,54,55} ¹H NMR, ^{1,2,56} emission spectroscopy, ^{1,2,19,54-56} and luminescence decay data ^{2,19,55,56} that alcohol complexation occurs with *trans*-[ReO₂(py)₄]⁺. Thus, the electrooxidation of secondary alcohols by *trans*-[ReO₂(py)₄]²⁺ likely takes place via a H• abstraction mechanism as shown in Figure 4.9. The Re(VI) pyridine complex must represent the lower limit of oxidizing strength required to realize this reaction.

The final issue to be addressed in the properties of the Re(VI) complexes is the instability towards reduction observed in the presence of halides and basic agents. As mentioned in previous sections, the Re(VI) complexes react rapidly under basic conditions to regenerate the corresponding Re(V) species. All absorption bands present in UV-vis spectra could be assigned to the Re(V) complexes. This result was puzzling since the source of reducing equivalents was not obvious; the hydroxide ligand is not a strong reducing agent $(E_{1/2} \sim 1.89 \text{ V vs. NHE})$. 57

This behavior is remarkably reminiscent of that observed for [M(bpy)₃]³⁺ and [M(phen)₃]³⁺ (M= Fe, Ru, Os) complexes.^{58,59} Meyer has also observed metal complex self-reduction in basic solutions of [(bpy)₂(py)Ru(O)]²⁺ and [(trpy)(phen)Ru(O)]²⁺.⁶⁰ Each complex has its own manifold of complex reactions. The mechanism presented in Figure 4.10 has been proposed^{58,60} for hydroxide-induced, self-reduction of [Ru(bpy)₃]³⁺.

Figure 4.9. Proposed mechanism of alcohol electrooxidation by trans-[ReO₂(py)₄]²⁺.

$$\begin{array}{c} C_6H_5 \\ C_6H_3 \\ C_6H_3 \\ C_6H_5 \\ C_6H_$$

Figure 4.10. Proposed mechansim of base-induced self-reduction of [Ru(bpy)₃]³⁺.

Part of the coordination sphere of ruthenium has been omitted for clarity.

After nucleophilic attack on the bipyridyl ring, an intramolecular electron-transfer event occurs to produce a coordinated hydroxy-bipyridyl radical and ruthenium(II). This species is oxidized by a molecule of [Ru(bpy)₃]³⁺ and loses a proton from the aromatic ring, restoring aromaticity. The resulting complex [(bpy)₂Ru(bpyOH)]²⁺ is oxidized by another [Ru(bpy)₃]³⁺ molecule and the cycle continues, generating ruthenium complexes of bipyridyl ligands with varying degrees of hydroxylation. The net result is that after a given redox cycle, 90% of the original ruthenium(III) complex appears as [Ru(bpy)₃]²⁺. A list of complexes known to undergo self-reduction is provided in Table 4.10 along with the relevant redox potentials. ⁶¹⁻⁶⁴

The least oxidizing Re(VI) complex under study has a reduction potential of ~0.5 V vs. SCE. It is therefore possible that analogous reactions take place on the coordinated pyridine ligands in *trans*-[ReO₂(L)₄]²⁺ complexes. The susceptibility towards further hydroxylation (oxidation) results from the effect of hydroxyl groups on pyridine basicity. The pKa's of the conjugate acids of pyridine, 2-hydroxy-, 3-hydroxy- and 4-hydroxypyridine are 5.23, 11.65, 8.75, and 11.12, respectively.⁶⁵ From this data, it is clear that as pyridine ligands become hydroxylated in *any* position, they become better σ-donors towards the metal center. This in turn will make the corresponding Re complexes easier to oxidize. The net result will be the reduction of several molecules of *trans*-[ReO₂(L)₄]²⁺ via the degradative hydroxylation of one molecule of [ReO₂(L-{OH}_x)₄]⁺.

It is possible that degradation reactions observed in the presence of halides could be inititated in an analogous fashion, but the follow up chemistry is likely to be quite different as halogen substitution makes pyridine ligands *poorer* electron donors.

Table 4.10. Complexes that undergo self-reduction in basic solutions and their associated redox potentials. Potentials were measured in 0.1 M TBAP CH₃CN solution vs. SCE unless noted otherwise.

complex	E _{1/2} for one electron reduction, V vs. SCE	reference source
[Fe(bpy) ₃] ³⁺	1.03	64
[Ru(bpy) ₃] ³⁺	1.20	64
[Os(bpy) ₃] ³⁺	0.81	64
[Fe(phen) ₃] ³⁺	1.02a	63
[Ru(phen) ₃] ³⁺	1.40 ^b	62
[Os(phen) ₃] ³⁺	0.60 ^c	61
[(bpy) ₂ (py)Ru(O)] ²⁺	0.53d	60
[(trpy)(phen)Ru(O)] ²⁺	0.58d	60

a1 M H₂SO₄

c0.1 M NaNO₃

^dvs. SSCE, pH = 7.0; μ = 1.0 M

b0.1 M [TBA][BF4] CH3CN

CONCLUSIONS

The reactivity, X-ray structure, electronic structure and EPR studies completed on trans-[ReO₂(dmap)₄][PF₆]₂ and related compounds provide insight into the nature of trans-[ReO₂(L)₄]²⁺. Strongly basic pyridine ligands stablize the trans-dioxorhenium(VI) unit due to their favorable σ -properities and their ability to provide π -electron density to the Re d_{xy} hole. The latter interaction is suggested by (1) the small dihedral angle between the O=Re=O vector and the dmap rings in trans-[ReO₂(dmap)₄][PF₆]₂, and (2) the low energy LMCT transition (dmap $\pi \to \text{Re d}_{xy}$) present in its UV-vis spectrum. The results of the EPR analysis suggest considerable covalency in Re-oxo and Re-dmap bonds with the unpaired electron being primarily localized in Re d_{xy}. There is no indication of any substantial delocalization of this hole onto the oxo ligands. The high quadrupole splitting observed is consistent with the strong axial field generated by the two trans oxo ligands.

The ability of trans-[ReO₂(L)₄]²⁺ complexes to effect alcohol oxidation appears to be governed by the Re(VI)/Re(V) redox couple. More oxidizing potentials lead to substrate reactivity but also result in very unstable Re(VI) complexes. Oxidation of Re(V) to Re(VI) makes the pyridine rings susceptible to nucleophilic attack and this is likely responsible for the instablity of highly oxidizing trans-[ReO₂(L)₄]²⁺ complexes. Thus, the design of more efficient agents will likely require use of a poorly donating set of equitorial ligands that are robust to both electron abstraction and nucleophilic attack.

REFERENCES AND NOTES

- (1) Thorp, H. H.; Van Houten, J.; Gray, H. B. Inorg. Chem. 1989, 28, 889-892.
- (2) Thorp, H. H.; Ph.D. thesis, June 1989, California Institute of Technology.
- (3) Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; John Wiley and Sons: New York, 1988.
- (4) Jolly, W. L. *The Synthesis and Characterization of Inorganic Compounds*; Prentice-Hall: Englewood Cliffs, N. J., 1970; pp 484-488.

- (5) International Union of Crystallography *International Tables for X-ray Crystallography*; Kynock: Birmingham, England, 1974; Vol. 4, pp 71, 149.
- (6) Beck, W. F.; Innes, J. B.; Lynch, J. B.; Brudvig, G. W. J. Mag. Res. 1990, in press.
- (7) The EPR spectrum was simulated using PROGRAM QPOW, written by R.L. Belford, A.M. Maurice, and M.J. Nilges: Nilges, M.J., Ph.D. Thesis, University of Illinois, Urbana, Illinois, 1979. Belford, R.L.; Nilges, M.J. Computer Simulation of Powder Spectra; EPR Symposium, 21st Rocky Mountain Conference, Denver, Colorado, 1979. Maurice, A.M., Ph.D. Thesis, University of Illinois, Urbana, Illinois, 1980.
- (8) Prins, R. J. Chem. Soc. Chem. Commun. 1970, 280-281.
- (9) Sohn, Y. S.; Hendrickson, D. N.; Gray, H. B. J. Am. Chem. Soc. 1970, 92, 3233-3234.
- (10) Bard, A. J.; Faulkner, L. R. Electrochemical Methods. Fundementals and Applications; John Wiley and Sons: New York, 1980.
- (11) Abakumova, L. G.; Abakumov, G. A.; Razuvaev, G. A. Dokl. Akad. Nauk. SSSR. 1975, 220, 1317-1320.
- (12) Burova, T. V.; Trembovler, V. N.; Yavorsky, B. M.; Fock, N. V.; Materikova, R. B.; Kochetkova, N. S. J. Organomet. Chem. 1981, 217, 215-219.
- (13) Kochetkova, N. S.; Materikova, R. B.; Belousov, Y. A.; Salimov, R. M.; Babin, V. N. J. Organomet. Chem. 1982, 235, C21-C24.
- (14) Cotton, F. A. Chemical Applications of Group Theory; 2nd ed.; Wiley-Interscience: New York, 1971; p 264.
- (15) Ballhausen, C. J.; Gray, H. B. *Molecular Orbital Theory*; Benjamin/Cummings: London, 1978.
- (16) Gray, H. B.; Ballhausen, C. J. J. Am. Chem. Soc. 1963, 85, 260-265.
- (17) Ballhausen, C. J.; Gray, H. B. Inorg. Chem. 1962, 1, 111-122.

- (18) Jezowska-Trzebiatowska, B.; Wajda, S.; Baluka, M. Zh. Struk. Khim. 1967, 8, 519-523.
- (19) Winkler, J. R.; Gray, H. B. Inorg. Chem. 1985, 24, 346-355.
- (20) Figgis, B. N. Introduction to Ligand Fields; Interscience: New York, 1966; p 66.
- (21) Chao, M.; Schempp, E. Acta Cryst. 1977, B33, 1557-1564.
- (22) Ohms, U.; Guth, H. Z. Kristallogr. 1984, 166, 213-217.
- (23) Chao, M.; Schempp, E.; Rosenstein, R. D. Acta Cryst. 1977, B33, 1820-1823.
- (24) Munavalli, J.; Poziomek, E. J.; Day, C. S. Acta Cryst. 1988, C44, 272-275.
- (25) Lock, C. J. L.; Turner, G. Acta Cryst. 1978, B34, 923-927.
- (26) Calvo, C.; Krishnamachari, N.; Lock, C. J. L. J. Cryst. Mol. Struct. 1971, 1, 161-172.
- (27) Johnson, J. W.; Brody, J. F.; Ansell, G. B.; Zentz, S. *Inorg. Chem.* 1984, 23, 2415-2418.
- (28) Al-Mowali, A. H.; Porte, A. L. J. Chem. Soc., Dalton Trans. 1975, 50-55.
- (29) Baldas, J.; Boas, J. F.; Bonnyman, J.; Pilbrow, J. R.; Williams, G. A. J. Am. Chem. Soc. 1985, 107, 1886-1891.
- (30) Gibson, J. K.; Lack, G. M.; Mertis, K.; Wilkinson, G. J. Chem. Soc. Dalton Trans. 1976, 1492-1495.
- (31) Holloway, J. H.; Raynor, J. B. J. Chem. Soc., Dalton Trans. 1975, 737-741.
- (32) Lack, G. M.; Gibson, J. F. J. Mol. Struct. 1978, 46, 299-306.
- (33) Lahiri, G. K.; Goswami, S.; Falvello, L. R.; Chakravorty, A. *Inorg. Chem.* 1987, 26, 3365-3370.
- (34) Larin, G. M.; Bukharizoda, R. A.; Rakitin, Y. V.; Solozhenkin, P. M. Dokl. Akad. Nauk. SSSR. 1980, 251, 365-367.
- (35) Marov, I. N.; Borisova, L. V.; Ermakov, A. N. Russ. J. Inorg. Chem. 1975, 20, 415-417.

- (36) Marov, I. N.; Dubrov, Y. N.; Belyaeva, V. K.; Ermakov, A. N. Russ. J. Inorg. Chem. 1972, 10, 1396-1402.
- (37) Stravropoulos, P.; Edwards, P. G.; Behling, T.; Wilkinson, G.; Motevalli, M.; Hursthouse, M. B. J. Chem. Soc. Dalton Trans. 1987, 169-175.
- (38) Heath, R. L. In *CRC Handbook of Chemistry and Physics*; 60th ed.; Weast, R. C., Ed.; CRC Press: Boca Raton, 1980; p B-289.
- (39) Wertz, J. E.; Bolton, J. R. Electron Spin Resonance: Elementary Theory and Practical Applications; Chapman and Hall: New York, 1986.
- (40) Abragam, A.; Bleaney, B. Electron Paramagnetic Resonance of Transition Ions; Clarendon Press: Oxford, 1970.
- (41) McClure, D. S. J. Chem. Phys. 1949, 17, 905-913.
- (42) Goodman, B. A.; Raynor, J. B. Adv. Inorg. Chem. Radiochem. 1970, 13, 135-362.
- (43) DeArmond, K.; Garrett, B. B.; Gutowsky, H. S. J. Chem. Phys. 1965, 42, 1019-1025.
- (44) Wong, K. Y.; Che, C. M.; Anson, F. C. *Inorg. Chem.* 1987, 26, 737-741.
- (45) McMillen, D. F.; Golden, D. M. Ann. Rev. Phys. Chem. 1982, 33, 493-532.
- (46) Beard, J. H.; Casey, J.; Murmann, R. K. Inorg. Chem. 1965, 4, 797-803.
- (47) Beard, J. H.; Murmann, R. K. J. Inorg. Nuc. Chem. 1968, 30, 2467-2474.
- (48) Chakravorti, M. C. J. Ind. Chem. Soc. 1967, 44, 654-655.
- (49) Chakravorti, M. C. J. Ind. Chem. Soc. 1970, 47, 844-850.
- (50) Freni, M.; Giusto, D.; Romiti, P. Gazz. Chim. Ital. 1967, 97, 833-844.
- (51) Lawrance, G. A.; Sangster, D. F. Polyhedron 1986, 5, 1553-1558.
- (52) Murmann, R. K. Inorg. Syn. 1966, 8, 173-177.
- (53) Pipes, D. W.; Meyer, T. J. Inorg. Chem. 1986, 25, 3256-3262.
- (54) Winkler, J. R.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 1373-1374.
- (55) Winkler, J. R.; Ph.D. thesis, August 1983, California Institute of Technology.

- (56) Thorp, H. H.; Kumar, C. V.; Turro, N. J.; Gray, H. B. J. Am. Chem. Soc. 1989, 111, 4364-4368.
- (57) Schwarz, H. A.; Dodson, R. W. J. Phys. Chem. 1984, 88, 3643-3647.
- (58) Ghosh, P. K.; Brunschwig, B. S.; Mei, C.; Creutz, C.; Sutin, N. J. Am. Chem. Soc. 1984, 106, 4772-4783.
- (59) Nord, G.; Pedersen, B.; Bjergbakhe, E. J. Am. Chem. Soc. 1983, 105, 1913-1919.
- (60) Roecker, L.; Kutner, W.; Gilbert, J. A.; Simmons, M.; Murray, R. W.; Meyer, T. J. *Inorg. Chem.* **1985**, *24*, 3784-3791.
- (61) Dressick, W. J.; Raney, K. W.; Demas, J. N.; DeGraff, B. A. *Inorg. Chem.* 1984, 23, 875-880.
- (62) Tokel-Takvoryan, N. E.; Hemingway, R. E.; Bard, A. J. J. Am. Chem. Soc. 1973, 95, 6582-6589.
- (63) (a) Schröder, M.; Stephenson, T. A. In Comprehensive Coordination Chemistry; Wilkinson, G., Ed.; Pergamon: New York, 1987; Vol. 4, Chapter 45, pp 277-518.
- (b) Lin, C-T.; Böttcher, W.; Chou, M.; Creutz, C.; Sutin, N. J. Am. Chem. Soc. 1976, 98, 6536-6544.
- (64) Saji, T.; Aoyagui, S. J. Electroanal. Chem. Interf. Electrochem. 1975, 60, 1-10.
- (65) Perrin, D. D. Dissociation Constants of Organic Bases in Aqueous Solution; 1st ed.; Butterworths: London, 1965; pp 141, 162-163.

Appendix 1. IR spectra of *trans*-dioxorhenium compounds and free ligands. Ordinate scales are in percent transmission and abscissa scales are in wavenumbers. Compound identities are provided at the top of each spectrum.

Figure A1.1. IR spectrum of trans-[ReO₂(py)₄][PF₆].

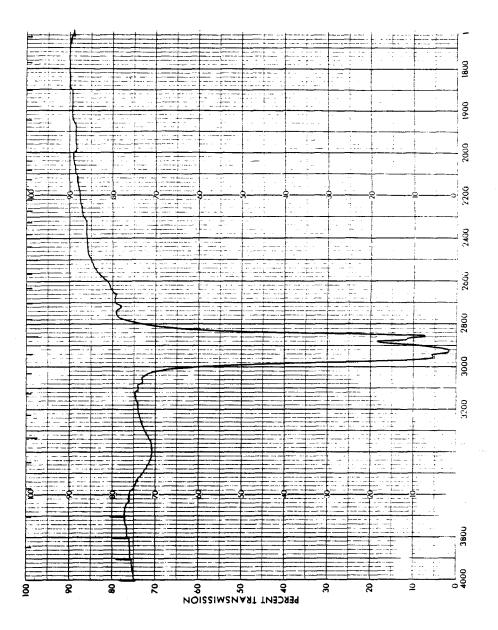


Figure A1.1. (Cont'd)

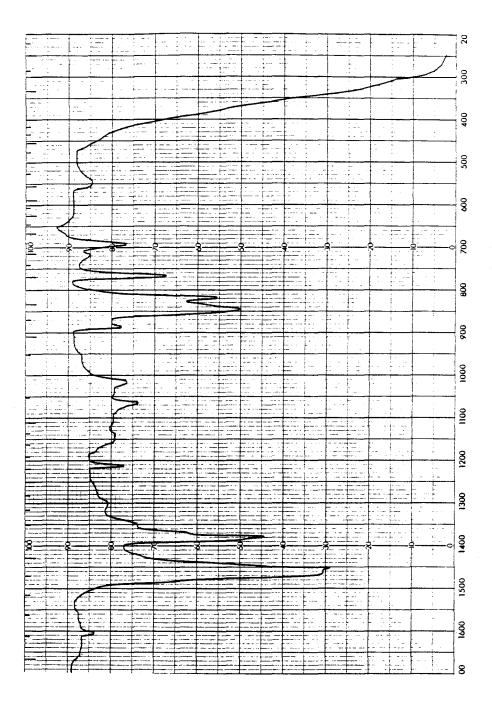


Figure A1.2. IR spectrum of trans-[ReO₂(py)₄]I.

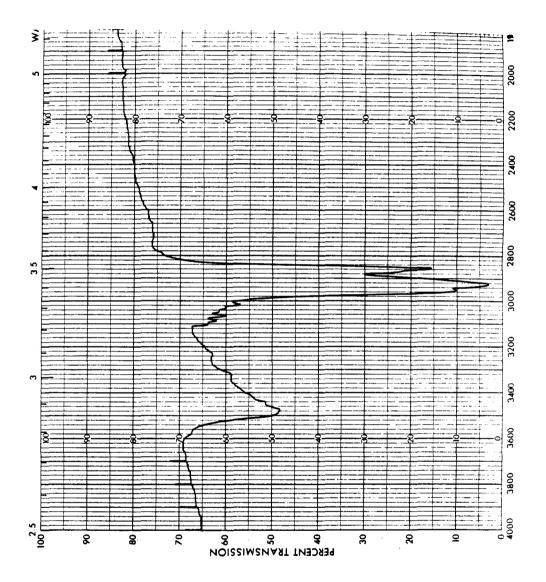


Figure A1.2. (Cont'd)

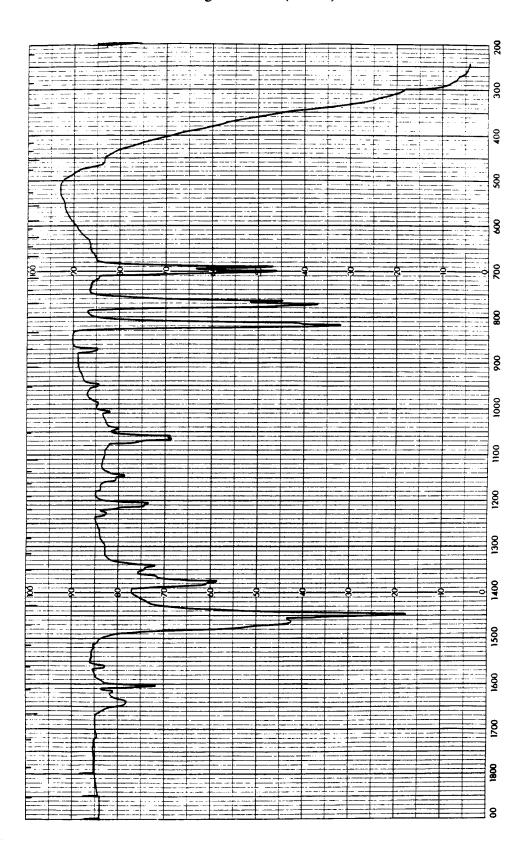


Figure A1.3. IR spectrum of trans-[ReO₂(4-Phpy)₄][PF₆].

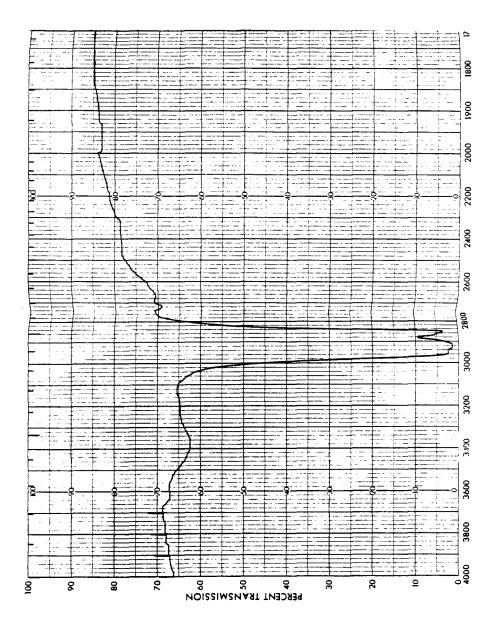


Figure A1.3. (Cont'd)

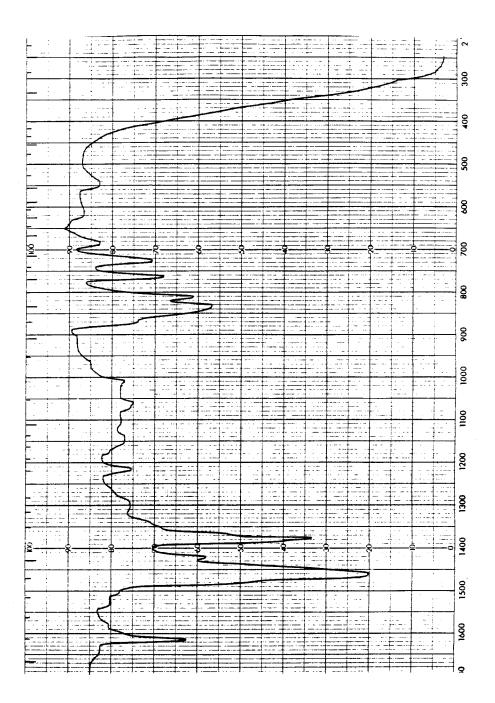


Figure A1.4. IR spectrum of trans-[ReO₂(4-pic)₄][PF₆].

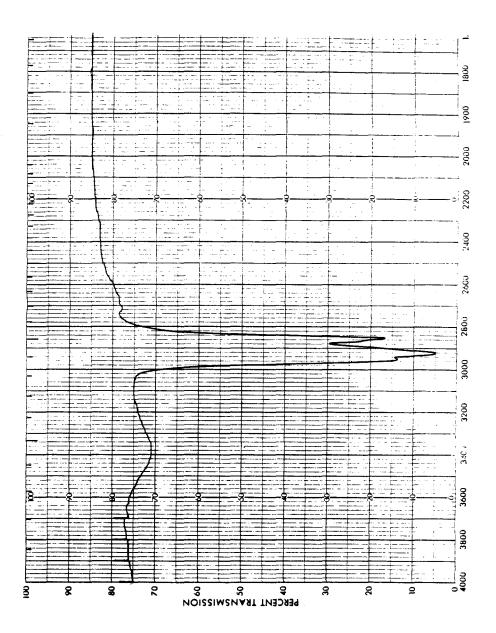


Figure A1.4. (Cont'd)

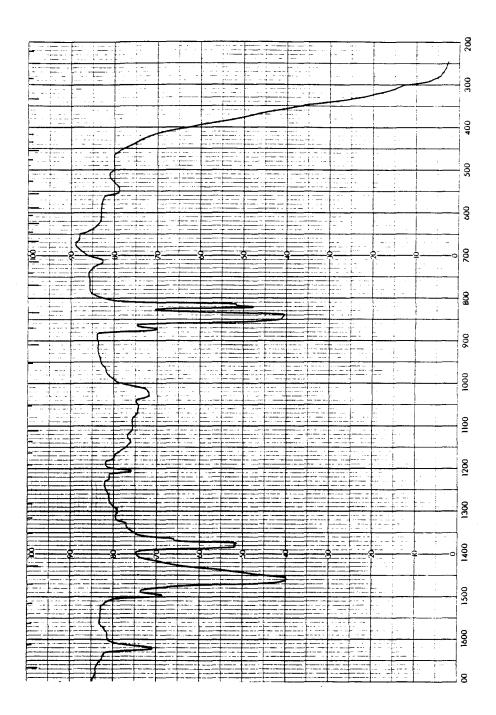


Figure A1.5. IR spectrum of trans-[ReO₂(3,5-lut)₄][PF₆].



Figure A1.5. (Cont'd)

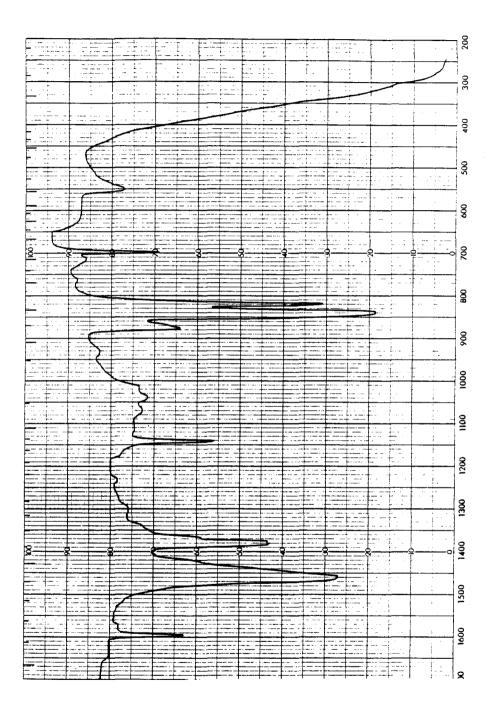


Figure A1.6. IR spectrum of trans-[ReO₂(4-MeOpy)₄][PF₆].

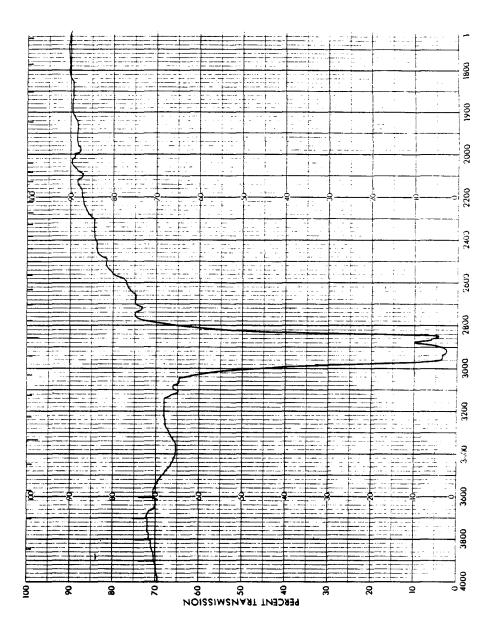


Figure A1.6. (Cont'd)

Figure A1.7. IR spectrum of trans-[ReO₂(3-Medmap)₄][PF₆].

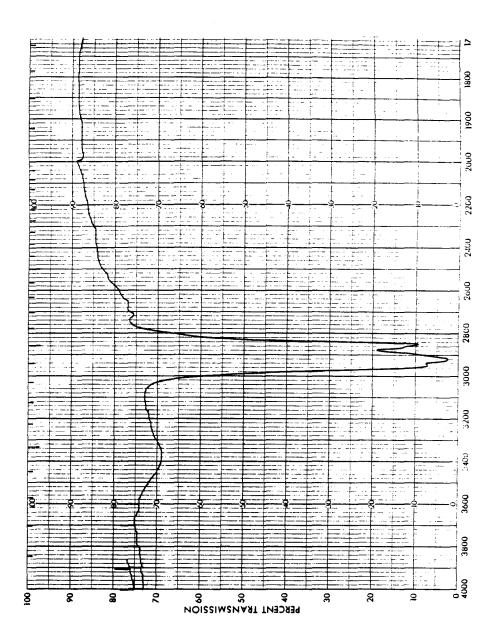


Figure A1.7. (Cont'd)

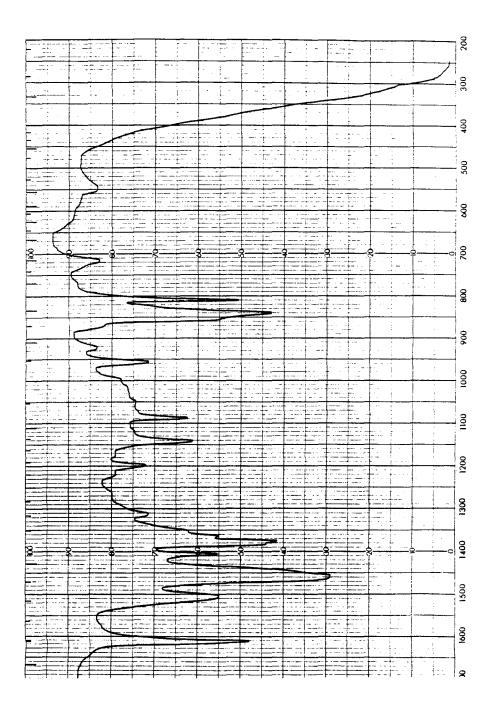


Figure A1.8. IR spectrum of trans-[ReO₂(dmap)₄][PF₆].

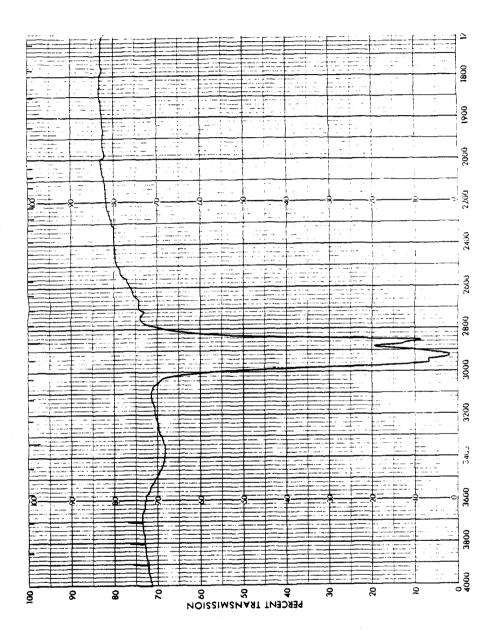


Figure A1.8. (Cont'd)

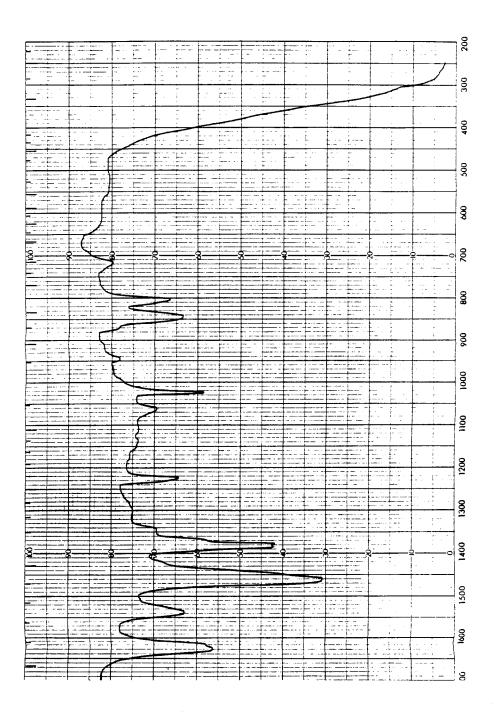


Figure A1.9. IR spectrum of trans-[ReO₂(4-pyrrpy)₄][PF₆].

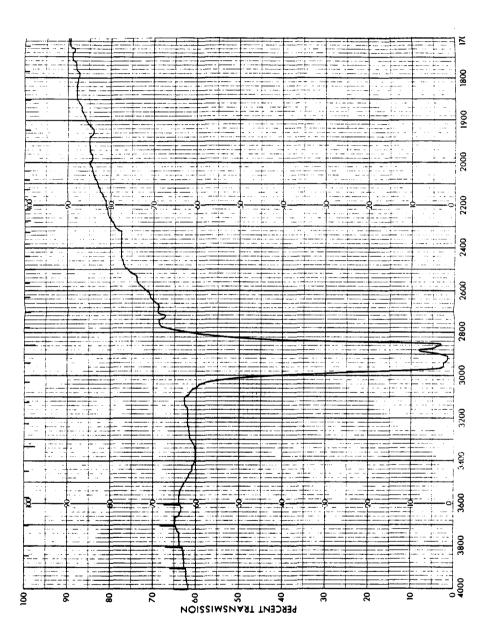


Figure A1.9. (Cont'd)

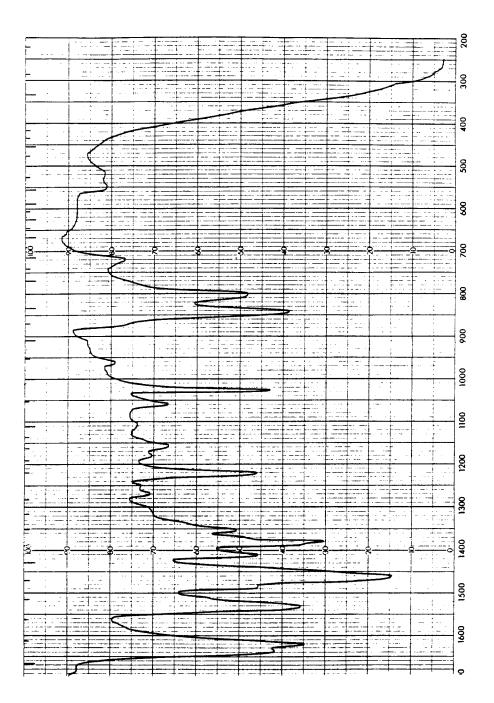


Figure A1.10. IR spectrum of trans-[ReO₂(dmap)₄][PF₆]₂.

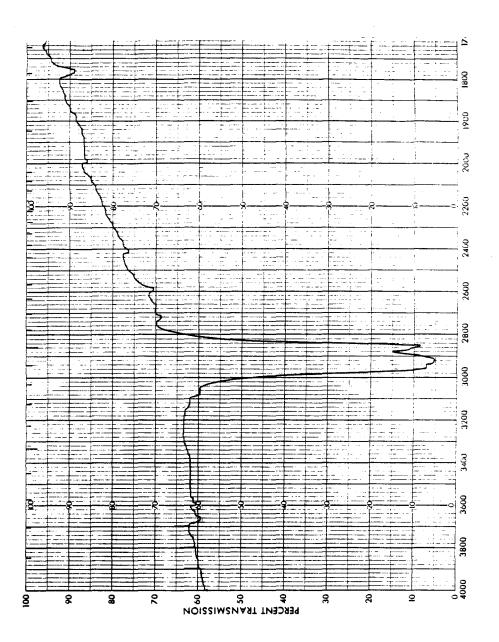


Figure A1.10. (Cont'd)

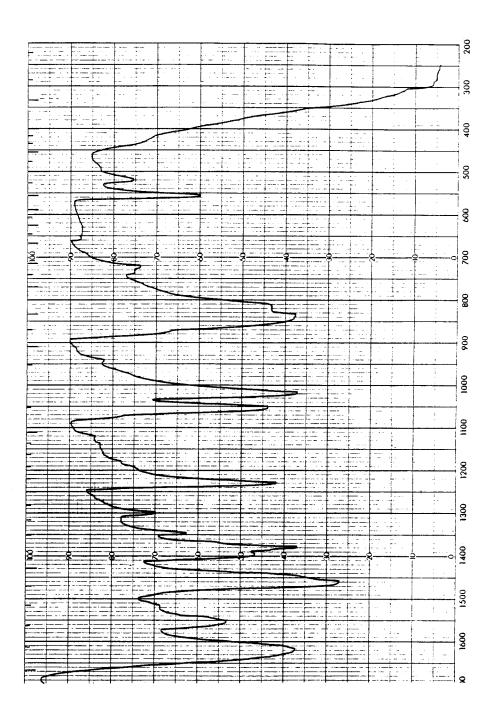


Figure A1.11. IR spectrum of trans-[ReO₂(py)₃(PPh₃)]I.

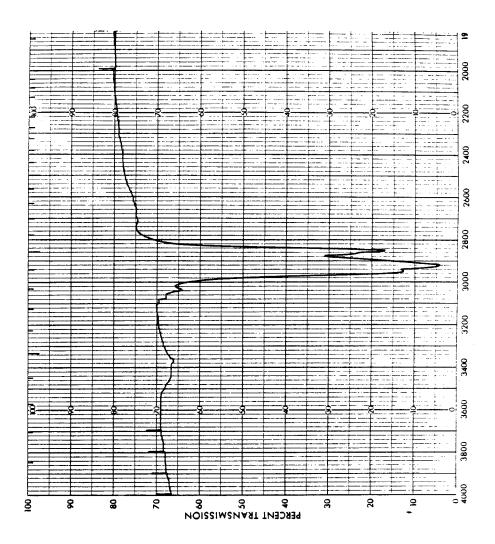


Figure A1.11. (Cont'd)

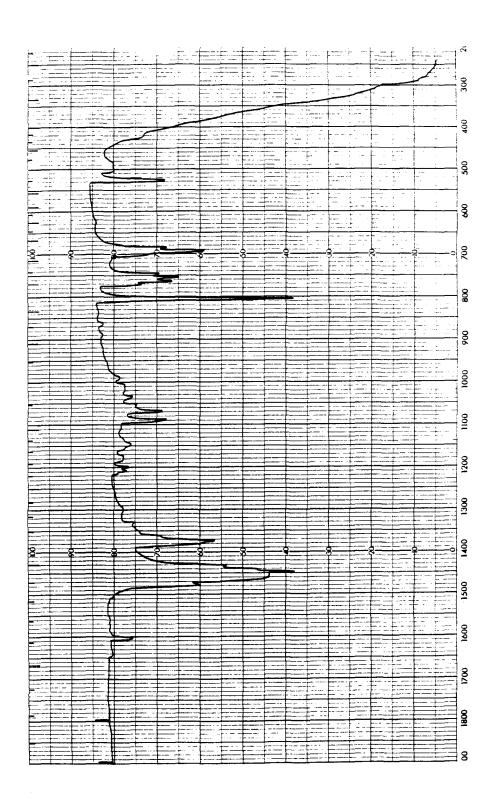


Figure A1.12. IR spectrum of trans-[ReO₂(diphos)₂][PF₆]•toluene.

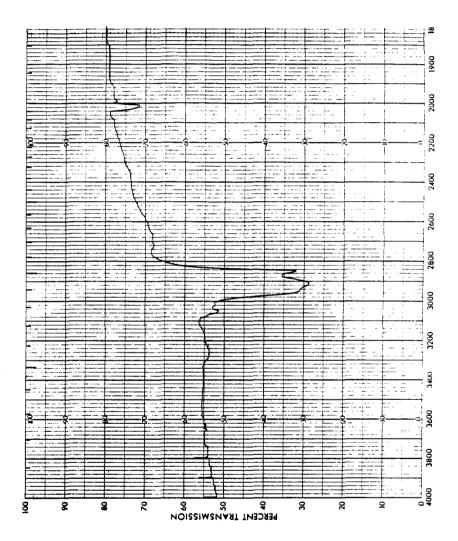


Figure A1.12. (Cont'd)

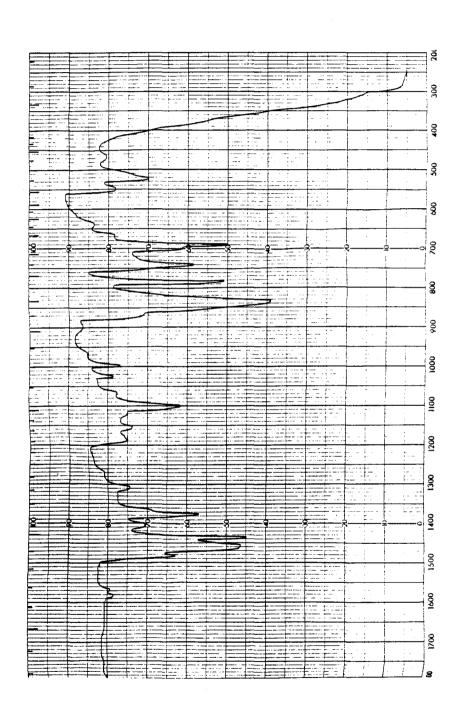


Figure A1.13. IR spectrum of diphos.

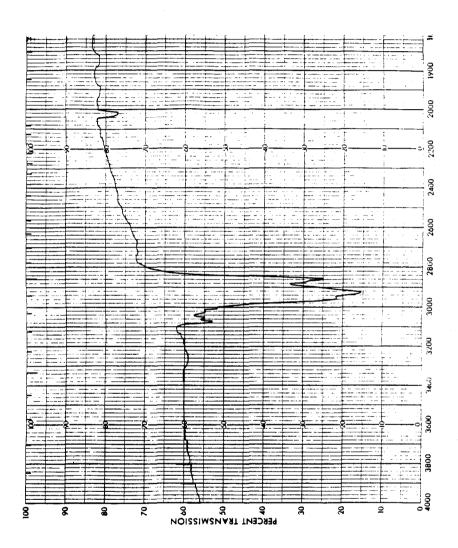


Figure A1.13. (Cont'd)



Figure A1.14. IR spectrum of trans-[ReO₂(dppen)₂][PF₆].

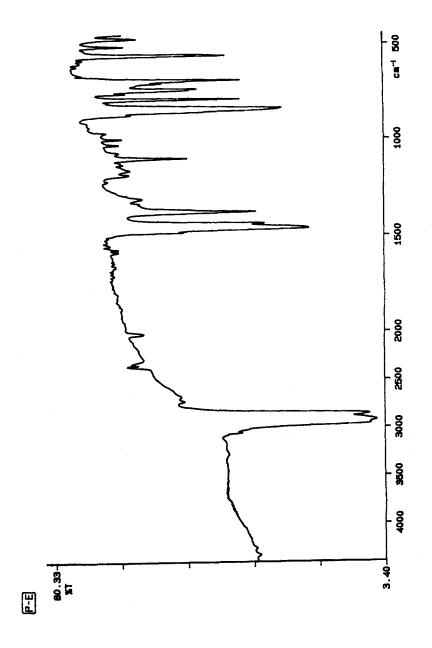


Figure A1.15. IR spectrum of dppen.

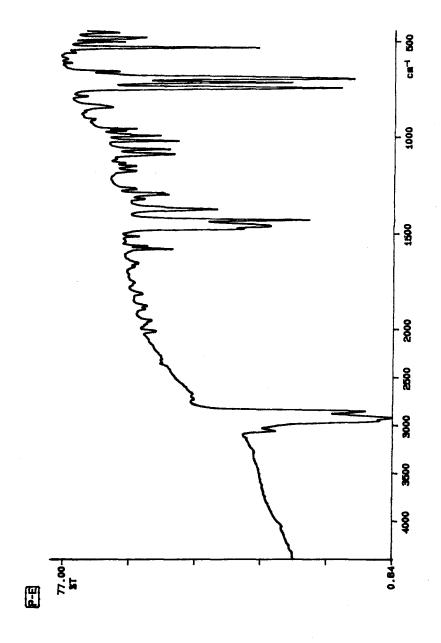


Figure A1.16. IR spectrum of trans-[ReO₂(en)₂][PF₆].

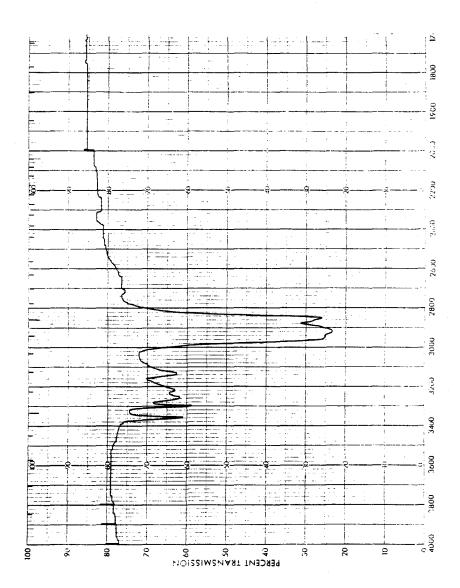


Figure A1.16. (Cont'd)

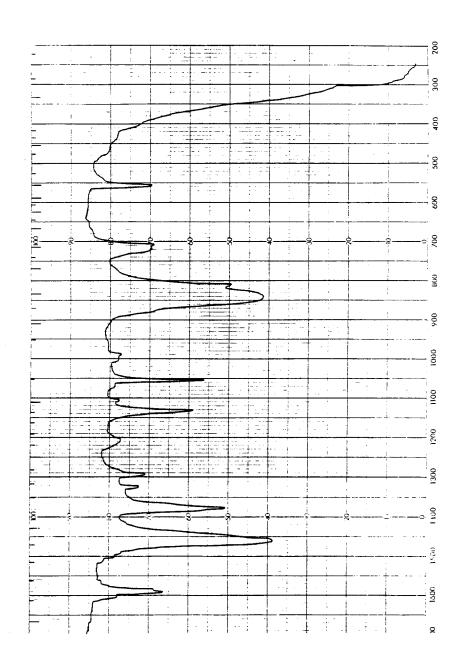


Figure A1.17. IR spectrum of PPh₃.

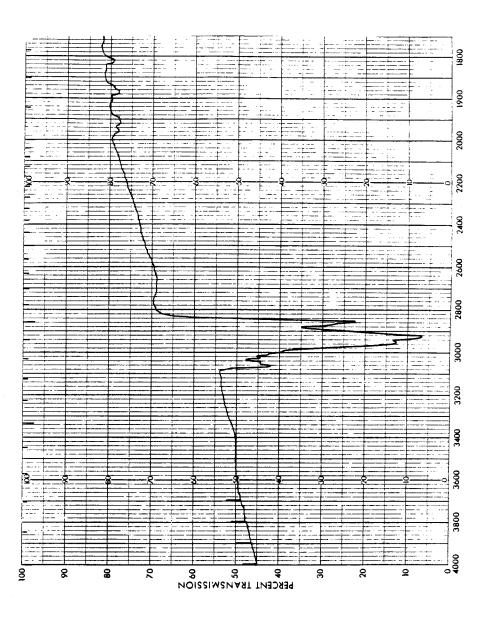


Figure A1.17. (Cont'd)

Figure A1.18. IR spectrum of O=PPh₃.

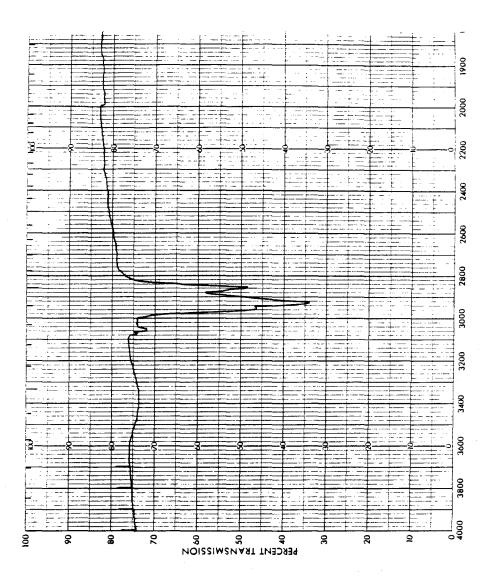


Figure A1.18. (Cont'd)

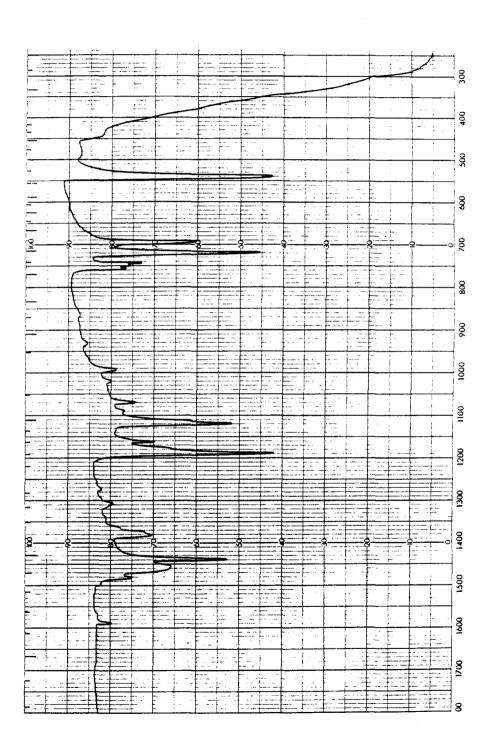


Figure A1.19. IR spectrum of 4-MeOpy.

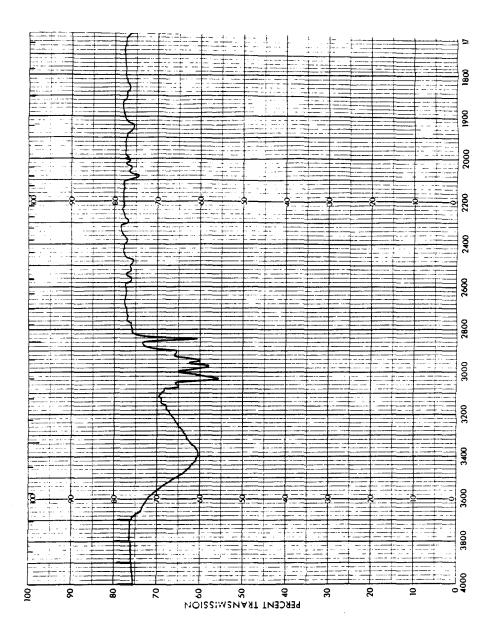
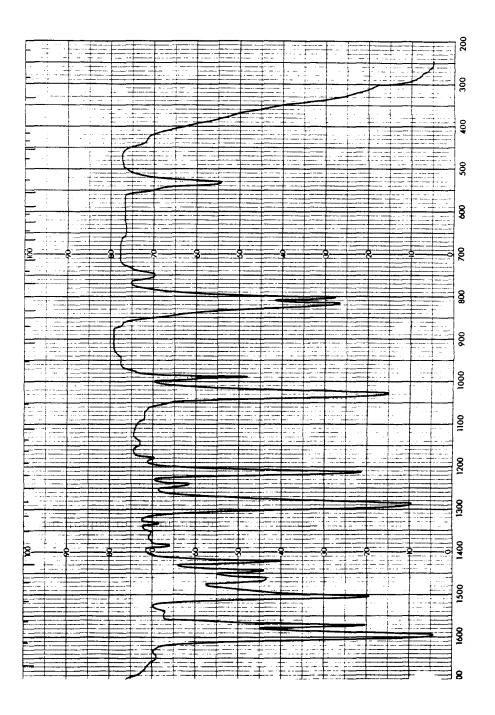



Figure A1.19. (Cont'd)

Appendix 2. Supplimentary Material for the X-ray Crystal Structure Determination of *trans*-[ReO₂(dmap)₄][PF₆]₂.

Table A2.1. Crystal and Intensity Collection Data for trans-[ReO₂(dmap)₄][PF₆]₂.

Formula: $ReO_2C_{28}N_8P_2F_{12}H_{40}$

Formula weight: 996.813

Crystal color: Azure

Habit: Prismatic

Crystal size: $0.16 \times 0.21 \times 0.41$ mm

Space group: Pī (#2)

a = 8.307(3)Å

 $\alpha = 96.24(6)^{\circ}$

b = 10.911(5)Å

 $\beta = 108.28(6)^{\circ}$

c = 11.907(11)Å

 $\gamma = 99.42(6)^{\circ}$

V = 996.1(11) Å³

Z = 1

 $\rho_{\rm calc} = 1.662 \ {\rm g \ cm^{-3}}$

 $\mu = 34.09 \text{ cm}^{-1} \ (\mu \text{r}_{\text{max}} = 2.66)$

Transmission coeff. = 0.51 - 0.64

CAD-4 diffractometer

 θ -2 θ scan

 $\lambda = 0.7107 \text{Å}$

Graphite monochromator

 2θ range: $2^{\circ}-50^{\circ}$

Octants collected: $\pm h, \pm k, \pm l$

T = 293°K

Number of reflections measured: 7608

Number of independent reflections: 3499

Number with $F_o^2 > 0$: 3498

Number with $F_o^2 > 3\sigma(F_o^2)$: 3482

Number of reflections used in refinement: 3499

Goodness of fit for merging data: 1.29

Final R-index: 0.0389 for 3498 reflections with $F_o^2 > 0$

Final R-index: 0.0385 for 3482 reflections with $\rm F_o^2 > 3\sigma(\rm F_o^2)$

Final goodness of fit: 2.77 for 241 parameters and 3499 reflections

Table A2.2. Anisotropic Thermal Displacement Parameters x 10⁴

for trans-[ReO₂(dmap)₄][PF₆]₂.

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Re	314(2)	665(2)	426(2)	114(1)	105(1)	7(1)
0	372(19)	783(27)	534(21)	114(18)	135(16)	28(19)
N11	385(23)	701 (30)	431(23)	113(21)	131(19)	7(21)
C11	373(28)	828(42)	513(32)	158(27)	102(24)	12(29)
C12	496(33)	909(46)	468(31)	162(31)	87(26)	-14(30)
C13	512(33)	927(47)	510(33)	181(32)	188(27)	43(31)
C14	411(31)	1148(56)	557(35)	154(33)	152(27)	-12(35)
C15	379(29)	1042(50)	470(31)	99(30)	141(24)	-21(31)
N12	591(34)	1762(68)	505(31)	308(38)	197(26)	-118(35)
C16	775(54)	2620(133)	578(45)	374(67)	187(40)	-264 (60)
C17	624(51)	3700(188)	709(53)	466(78)	307(43)	-230(77)
N21	472(25)	598(30)	554(26)	131(22)	178(21)	20(22)
C21	517(34)	743(43)	607(36)	193(30)	130(28)	57(31)
C22	730(44)	777(47)	660(39)	286(37)	212(34)	104(34)
C23	804(46)	716(45)	784(44)	287(38)	439(39)	39(36)
C24	642(41)	640(44)	992(53)	61(34)	284(39)	-40(38)
C25	494(34)	685(42)	711(40)	78(30)	120(29)	3(32)
N22	876(48)	479(37)	825(46)	199(34)	456(39)	168(33)
C26	1561 (93)	783(58)	1717(95)	275(60)	1046(81)	193(59)
C27	2025(121)	755(59)	1661(101)	338(67)	1072(96)	221(62)
P	483(10)	1595(23)	840(14)	237(13)	163(10)	-325(15)
F1	1552(74)	3968(164)	2118(89)	676(86)	-37(65)	-1263(100)
F2	1318(69)	2395(106)	4313(171)	0(68)	-396(87)	1011(115)
F3	1904(93)	3329(142)	2605(109)	348(87)	1125(85)	532(100)
F4	2028(94)	3583(150)	2441(103)	398(94)	-19(82)	-1703(103)
F5	2933(156)	1877(101)	4623(208)	306(97)	-341(146)	1237(124)
F6	1723(90)	4121(182)	3360(145)	199(99)	1402(99)	-470(134)

The form of the displacement factor is: $\exp{-2\pi^2(U_{11}h^2{a^*}^2 + U_{22}k^2{b^*}^2 + U_{33}\ell^2{c^*}^2 + 2U_{12}hka^*b^* + 2U_{13}h\ell{a^*c^*} + 2U_{23}k\ell{b^*c^*})}$

Table A2.3. Assigned Hydrogen Parameters for trans-[ReO₂(dmap)₄][PF₆]₂. x, y and $z \times 10^4$

Atom	\boldsymbol{x}	y	z	В
H16A	-2547	1956	5814	11.2
H16B	-1201	1202	5615	11.2
H16C	-1105	2570	5356	11.2
H17A	-5095	1367	4543	15.2
H17B	-5349	1590	3240	15.2
H17C	-5356	242	3543	15.2
H26A	2801	6944	-1225	10.7
H26B	3050	6472	-11	10.7
H26C	3722	5829	-952	10.7
H27A	503	6461	-2507	12.0
H27B	-71	5042	-3072	12.0
H27C	-1047	5626	-2303	12.0
HC11	1254	1011	2716	5.2
HC12	241	1478	4242	5.7
HC14	-4639	460	1817	6.4
HC15	-3472	-63	393	5.7
HC21	-1996	1673	-1627	5.6
HC22	-1599	3582	-2180	6.4
HC24	3120	4512	422	6.9
HC25	2616	2558	914	5.7

Table A2.4. Complete Distances and Angles for trans-[ReO₂(dmap)₄][PF₆]₂.

Di	$istance(ext{\AA})$	${\tt Angle(°)}$	
Re -O Re -N11 Re -N21 N11 -C11 N11 -C15 C11 -C12 C11 -HC11 C12 -C13 C12 -HC12 C13 -C14 C13 -N12 C14 -C15 C14 -HC14 C15 -HC15 N12 -C16 N12 -C16 N12 -C17 C16 -H16A C16 -H16B C16 -H16C C17 -H17A C17 -H17B C17 -H17C	1.764(4) 2.108(4) 2.120(5) 1.346(7) 1.351(8) 1.361(9) 0.951 1.401(9) 0.951 1.419(9) 1.319(9) 1.352(9) 0.951 0.951 1.451(12) 1.457(13) 0.950 0.953 0.952 0.949 0.941 0.961	O -Re -N11 O -Re -N21 N11 -Re -N21 C15 -N11 -C11 C12 -C11 -N11 HC11 -C11 -N11 HC11 -C11 -C12 C13 -C12 -C11 HC12 -C12 -C11 HC12 -C12 -C11 HC12 -C12 -C13 C14 -C13 -C12 N12 -C13 -C12 N12 -C13 -C12 N12 -C13 -C14 C15 -C14 -C13 HC14 -C14 -C13 HC14 -C14 -C13 HC14 -C14 -C15 C14 -C15 -N11 HC15 -C15 -N11 HC15 -C15 -C14 C16 -N12 -C13 C17 -N12 -C13 C17 -N12 -C16	90.0(2) 90.0(2) 91.9(2) 115.2(5) 124.5(5) 117.7 117.8 120.6(6) 119.5 119.9 114.7(6) 123.1(6) 122.2(6) 120.5(6) 119.7 119.8 124.4(6) 117.8 117.8 121.1(7) 120.7(7) 118.1(7)
C16 -H16B C16 -H16C C17 -H17A C17 -H17B	0.953 0.952 0.949 0.941	HC15 -C15 -N11 HC15 -C15 -C14 C16 -N12 -C13 C17 -N12 -C13	117.8 117.8 121.1(7) 120.7(7)
C27 -H27A C27 -H27B C27 -H27C P -F1 P -F2 P -F3 P -F4 P -F5 P -F6	0.949 0.952 0.951 1.458(11) 1.480(12) 1.521(12) 1.457(12) 1.415(15) 1.482(14)	C21 -C21 -C22 C23 -C22 -C21 HC22 -C22 -C21 HC22 -C22 -C23 C24 -C23 -C22 N22 -C23 -C22 N22 -C23 -C24 C25 -C24 -C23 HC24 -C24 -C23 HC24 -C24 -C25	121.7(7) 119.4 118.9 114.2(7) 123.6(7) 122.2(7) 121.0(7) 119.3 119.7

Table A2.4. (Cont'd)

Angle(°)

Table A2.5. Observed and Calculated Structure Factors for trans-[ReO₂(dmap)₄][PF₆]₂. The columns contain, in order, ℓ , $10F_{obs}$, $10F_{calc}$ and $10\left(\frac{F_{obs}^2 - F_{calc}^2}{\sigma F_{obs}^2}\right)$. A minus sign preceding F_{obs} indicates that F_{obs}^2 is negative.

		tran	s [ReO2	(DMA	P)4]((PF6)2					Page	1			
1 2 3	-9 168 163 202	1 l 150 152 207	39 24 -10	4 5 6 7 8 9	300 228 287 299 230 140	297 221 273 309 232 128	7 14 31 -21 -4 26	3 4 5 6 7 8	185 230 195 193 163	181 222 190 201 154 86	8 16 10 - 20 17 22	9 10 11	184 147 209	190 148 208 5 l	-12 -3 1
4 5 6 7 8 9	176 172 213 174 181 177 -9 228	166 159 214 166 166 175 2 1 235	21 28 -3 19 33 4	10 11 1 2 3 4 5	155 108 -8 276 319 209 206 261	159 108 2 l 281 321 216 207 273	-7 0 -11 -4 -16 -2 -26	1 2 3 4 5	-8 140 130 122 201 170 133	8 l 151 132 112 194 171 130	- 22 - 5 18 13 - 1	1 2 3 4 5 6 7 8 9	201 264 315 75 210 315 163 144 163	193 278 313 66 208 313 161 166 72 87	17 -31 3 12 3 3 4 -41 -5
2 3 4 5 6 7 8 9	176 227 256 172 191 239 192 185	166 223 253 153 180 243 186 173	2 2 8 5 4 1 2 6 - 9 1 3	6 7 8 9 10 11	250 230 272 172 161 121	248 225 284 172 147 135	4 9 -27 0 30 -31	1 2 3 4	-8 111 113 114 153	9 l 108 108 109 141 1 l	5 7 8 24	11 2 3 4 5	86 -7 271 261 244 148 168	87 6 l 283 253 260 143 159	- 1 - 26 16 - 36
1 2 3 4 5	-9 148 188 188 238 243 170	3 1 147 184 168 224 247 160	3 8 46 33 - 9 23	1 2 3 4 5 6 7 8	102 192 294 181 253 311 224 170	87 183 287 168 255 333 212 165	24 18 15 25 - 2 - 49 25 13	1 2 3 4 5 6 7 8	285 440 283 314 332 241 315 250	303 419 293 320 339 255 310 268	-45 41 -23 -15 -16 -35 10 -41	8 9 10	193 203 171 169 187	188 204 158 167 185	9 18 9 -3 29 3 4
5 6 7 8 9	199 183 144 -9 112 153	189 182 124 4 l 94 157	24 3 40	9 10 11	177 140 105 -8 209 143	180 133 98 4 1 207 140	-7 15 13	9 10 11 12	217 158 145 143	226 147 149 142 2 1	- 21 22 - 9 2	1 2 3 4 5 6 7 8	246 265 173 185 265 169 179 182	254 268 154 188 269 162 182	-15 -7 36 -6 -8 14 -7
2 3 4 5 6 7 8	172 121 179 211 180 172	171 99 177 214 167 172	-11 2 40 2 -8 29 0	3 4 5 6 7 8 9	229 231 225 254 273 160 159 156	222 230 218 254 283 149 154	6 14 2 13 0 - 22 25 13 - 33	1 2 3 4 5 6 7 8 9	306 303 480 302 83 296 265 183 258	322 476 312 74 311 268 187 268	- 48 - 25 - 15 - 36 - 5 - 8 - 23	1234567	104 -7 201 220 130 135	184 92 8 1 181 230 137 123	37 -19 -11 19
1 2 3 4 5 6 7	161 149 206 184 147 197	149 135 201 186 135 201 193	26 29 11 -2 24 -10	1 2 3 4 5 6	-8 196 221 149 208 281 198	5 1 197 217 132 198 289 189	-1 7 28 20 -18 18	11 12	186 124 156 -7 366 207 335	180 121 150 3 l 365 214 336	13 6 12 -18 -2	5 6 7 8	195 157 122 153 -7	194 157 122 150 9 l 150 119	19 10 00 4
1 2 3 4 5 6	-9 159 169 129 171 154 137	6 1 168 159 122 171 152 128	-20 21 13 -1 5	7 8 9	210 183 115 -8 166 222	213 181 97 6 l	-6 6 34 45 -8	2 3 4 5 6 7 8 9 10	403 103 284 299 221 185 212 177	394 98 283 320 224 194 212 175	19 9 4 -48 -6 -18 0	3 4 5 6	123 96 145 125 121 -7	106 142 123 125 10 l	9 -19 7 4 -7
2 3 4	-9 163 152 144 -8	7 l 165 143 135	-3 17 16	3 4 5 6 7 8 9	175 144 224 206 120 139 154	226 172 134 222 200 120 146 156	5 16 4 15 1 -14 -5	12 1 2 3 4	117 -7 286 362 288 218	112 4 1 310 372 294 231	9 - 56 - 20 - 13 - 30	2 3 4	49 21 109 -6 365 303	62 51 114 1 l 378 320	- 20 - 28 - 9
1 2 3	308 168 192	317 157 189	-18 25 7	1 2	-8 170 179	7 l 166 156	9 48	5 6 7 8	271 268 173 259	268 267 184 266	6 2 - 23 - 15	3 4 5 6	594 360 316 232	568 395 329 247	- 45 42 - 85 - 31 - 40

		tran	s [ReO2	2 (DMA	P)4](PF6)2					Page	2			
7 8 9 10 11 12 13	273 201 205 274 186 145 143	293 199 210 280 184 147 138	-51 5 -11 -13 3 -2 12	1	228 152 165 -6	223 155 170 7 l 243	11 -6 -10	5 6 7 8 9 10	542 589 252 381 320 188 265	538 383 267 376 299 200 272	8 12 -42 10 47 -27 -14	7 8 9 10	241 171 201 161	248 172 194 158	-15 -2 18 8
1 2 3 4 5 6 7 8 9 10 11 12 13	-6 5498 3107 2883 3666 1622 1848 124	2 1 517 411 335 541 304 24 365 175 313 190 137 127	57 -29 -64 12 -44 39 -10 -2 -28 -24 -9 -6	2 3 4 5 6 7 8 9 10	27312762153 12152211 2152211 -6 225221457	288 279 1108 247 146 2109 106 8 1 239 2208 144 144	-31 -12 -22 -25 -13 21 3 -9 12	12 13 12 3 4 5 6 7 8 9 10 11 12	1816 -5 4761 35823 2602 4152 3419 1149	1843 1 002 566 2027 2391 4102 3222 173 144	-7 -7 -29 28 3 -52 24 7 -78 36 -17	123456789	2310 1644 1604 1800 1903 -5 1158 1773 1534	2322 1566 1618 1699 1539 1 1 263 1774 1292	-12 165-3633 22-59 -179-5722
1 2 3 4 5 6 7 8 9 10 11 12	-6 329510355035357035725038	3 599 5799 370 388 326 180 279 3290 262 199 175 4	-77 41 -44 -18 17 16 -24 -26 -30 -26 11 6	6789 12345678	154 173 173 141 -6 166 163 107 115 124 70 125 147	167 171 156 144 9 1 170 169 93 121 133 70 117 144	- 24 35 - 7 - 8 - 12 - 20 - 9 - 18 0 17 8	13 12 3 4 5 6 7 8 9 10 11 12	102 -5 472 305 320 450 450 284 5262 153 303 190	106 4 1 444 3152 417 283 140 228 146 112 309 122	- 8 - 21 - 84 - 21 - 84 - 39 - 42 - 13 - 137	6 7 8 1 2 3 4 5 6 7	112 99 126 120 124 125 127	124 76 128 0 l 114 88 108 124 124 130 124	- 2 2 4 5 - 3 16 2 9 - 7 - 1 - 10 7
1 2 3 4 5 6 7 8 9 10 11 12	272 362 483 342 102 286 1694 301 232 146 176	277 386 467 3421 266 161 99 304 243 180 5	-13 -55 31 -18 48 -1 -10 -5 -24 -17	1 2 3 4 5 6	100 90 41 73 122 118	100 1 100 96 60 85 126 112 11 1 154 116 90 84	0 -11 -42 -19 -8 9	1 2 3 4 5 6 7 8 9 10 11 12	-5 300 393 207 230 329 286 238 308 2157 140 102	5 l 311 356 219 248 309 284 297 204 161 148 106	- 26 78 - 32 - 47 5 - 68 23 - 4 - 7 - 18	1233455	80 -4 92 570 415	134 116 90 106 95 12 1 1 1 1 1 1 94 4338	-5-24-500-25
1 2 3 4 5 6 7 8 9 0 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 1 2 3 4 5 6 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 7 8 7 8 8 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 7 8 7 8 7 8 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 7 8 7 8 7 8 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 7 8 7 8 8 7 8 7 8 8 7 8 7 8 7 8 8 7 8 7 8 8 7 8 7 8 8 7 8 7 8 8 7 8 8 7 8 7 8 8 7 8 7 8 7 8 7 8 7 8 8 7 8 7 8 8 7 8 7 8 7 8 8 7 8 7 8 8 7 8 7 8 7 8 7 8 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 7 8 7 8 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 8 7 8 7 8 7 8 7 8 8 7 8 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8 7 8 8 8 8 7 8 8 8 8 7 8	228873188052 23088652 23086552 2008660700076	36728814 228814 245822168054 1100 3793221657 21657 21657	11 10 13 16 -34 21 -6 -10 -3 -22 22 22 21 -9 016	1 2 3 4 5 6 7 8 9 10 11 11 12 13	91551153153315331603474 27334 27334 27334 27334	1 1 410 443 443 453 425 11 6 2 13 16 4 50 1 2 8 6 4 50 1	33 -42 34 -28 -27 -7 -12 -4 -40 -21 -27 -4	1234567891011	- 5	6 1 2833482 27742455 33911444 2668 10 1 1 1 97 2259 2280 21927	-31 -26 27 19 -29 6 22 -10 5 7 -1	456789911123 123345678910	54311576650 9362816448 9273347983 7395518918 4 3446565232	37443275113337 l 5277911222110 2 3450371122110	470311833-11538-141402274821-48241

trans [ReO2	(DMAP)4](PF6)2	Page	3
11 184 193 -18 12 170 166 11 13 170 176 -13	1 190 198 -17 2 225 215 24 3 179 176 4	13 143 140 6 -3 3 1	2 251 266 -38 3 204 200 7 4 203 199 9 5 172 168 8
-4 3 1 1 554 521 59 2 444 447 -7 3 349 356 -17 4 224 227 -9 5 210 204 18	4 129 119 21 5 193 183 23 6 220 230 -22 7 171 160 21 8 137 130 15 9 165 163 5 10 110 111 0	1 287 267 59 2 502 502 0 3 474 485 -24 4 469 441 81 5 115 123 -24 6 297 295 4 7 247 261 -41	6 141 136 9 7 165 178 -22 8 170 151 40 9 127 119 18 10 133 134 -2 -3 9 1
6 246 265 -56 7 522 514 16 8 443 437 12 9 214 241 -72 10 245 241 9 11 220 219 1 12 108 94 28 13 98 107 -18	-4 9 1 1 167 179 -27 2 149 159 -21 3 200 188 25 4 220 220 1 5 162 157 10 6 133 137 -6	8 285 276 21 9 371 369 4 10 165 169 -9 11 201 204 -7 12 148 157 -21 13 126 112 28	1 242 225 39 2 254 261 -17 3 168 179 -23 4 197 189 17 5 187 188 -2 6 101 92 13 7 114 115 0 8 148 147 1
-4 4 1 1 231 241 -29 2 373 341 73 3 428 438 -22	7 135 137 -5 8 115 105 19 9 105 105 -1 -4 10 1	1 278 301 -70 2 340 352 -33 3 586 561 44 4 540 540 0 5 357 348 24	9 109 107 3 -3 10 l 1 141 156 -29
4 340 360 -52 5 429 422 15 6 356 337 46 7 152 179 -74 8 275 254 51 9 201 197 9 10 148 156 -17 11 183 186 -7	1 167 157 19 2 129 137 -15 3 119 116 5 4 162 146 28 5 136 144 -18 6 115 110 10 7 103 103 0	6 427 431 -8 7 322 318 11 8 119 123 -9 9 290 297 -17 10 234 232 4 11 161 161 0 12 133 137 -8	2 181 172 17 3 138 149 - 20 4 122 115 11 5 107 95 22 6 74 84 - 22 7 81 82 0
11 183 186 -7 12 163 163 1	-4 11 l	-3 5 1 1 512 461 97	1 119 132 -21 2 91 101 -12
1 341 351 -27 2 327 341 -37 3 439 409 63 4 290 284 15	1 97 105 -13 2 103 98 10 3 93 97 -7 4 110 98 22 5 101 102 -2	2 469 466 6 3 582 584 -2 4 479 490 -22 5 339 330 24 6 212 217 -13	3 109 105 8 4 117 123 -11 5 84 89 -8 6 80 78 3
5 250 265 -42 6 445 425 39 7 329 326 7 8 198 212 -34 9 230 226 8 10 197 205 -19	-4 12 1 1 91 92 -1 2 91 79 20 3 98 87 19	7 257 268 -29 8 247 240 16 9 160 166 -13 10 194 202 -18 11 167 176 -21 12 115 103 23	-3 12 1 1 125 121 9 2 97 97 0 3 82 81 1
11 108 106 3 12 142 138 7	-3 1 l	-3 6 l	-2 1 l 1 985 1025 -47
-4 6 1 1 411 367 91 2 321 332 -27 3 283 297 -37 4 368 358 23 5 331 320 26 6 288 296 -11 8 198 187 25 9 116 121 -7 10 173 174 -2 11 111 109 5	1 520 516 6 2 475 482 -14 3 758 754 5 4 880 869 14 5 595 575 46 6 412 429 -42 7 472 464 16 8 273 295 -60 9 272 266 15 10 369 372 -6 11 205 201 9 12 177 181 -9 13 146 140 13	1 383 383 -1 2 561 537 42 3 456 468 -26 4 263 274 -29 5 396 406 -23 6 326 308 43 7 128 125 6 8 230 238 -18 9 162 168 -13 10 125 115 22 11 112 125 -29	2 1605 1515 57 3 1228 1266 -36 4 905 918 -15 5 865 827 48 6 420 420 1 7 313 307 18 8 452 436 32 9 105 114 -21 10 269 267 5 11 319 326 -16 12 204 201 6 13 156 147 20
-4 7 l 1 286 286 0 2 374 353 46	-3 2 l 1 306 310 -11 2 377 380 -7	1 183 203 -58 2 309 306 6 3 430 413 35 4 269 273 -10	-2 2 1 1 143 121 81 2 252 276 -89 3 319 304 42
2 374 353 46 3 237 248 -28 4 278 281 -8 5 358 359 -1 6 257 238 44 7 211 210 3 8 215 229 -31 9 176 170 13 10 118 117 2	3 542 524 36 4 972 989 -19 5 747 736 17 6 616 615 0 7 494 490 7 8 373 356 39 9 189 198 -25 10 216 208 21 11 233 239 -12 12 164 164 0	3 430 413 35 4 269 273 -10 5 257 256 2 6 271 280 -19 7 186 178 18 8 196 200 -7 9 206 207 -2 10 155 155 0 -3 8 1 1 309 303 14	3 319 304 42 4 791 740 69 5 802 826 -33 6 555 556 -2 7 345 346 0 8 270 260 27 9 139 136 7 10 235 244 -23 11 206 199 16 12 232 226 12 13 157 160 -6

		tran	s [ReO2	(IIMA	P)4]	(PF6)2					Page	4	ı		
1	- 2 437	3 l 436	1	3 4 5 6	233 176 237 171	237 167 246 174	-10 20 -21 -6	2 3 4 5	620 468 524 506	604 450 508 526	28 40 30 -43	9	154 -1	147 9 l	14
2 3 4 5	706 521 591 349	652 508 607 322	81 26 - 29 70	7 8 9	101 176 165	85 170 151	26 13 31	6 7 8 9	343 354 463 101	337 346 467 92	14 20 -9 19	1 2 3 4	177 121 114 131	178 121 104 139	-1 0 17 -16
6 7 8 9 10	289 458 109 156 325	303 467 111 145 342	-41 -18 -3 25 -39	1 2 3	-2 192 240 206	9 l 208 221 211	-37 42 -13	10 11 12	208 246 157	204 256 154 4 1	- 2 1 6	5 6 7 8	135 128 101 102	139 113 90 97	-6 24 20 10
11 12 13	193 188 175	191 179 170	2 2 1 2	4 5 6 7 8	147 147 101 67 118	152 145 103 70 118	-11 -4 -8 0	1 2 3 4	530 609 472 184	524 590 472 175	13 33 0 31	1 2 3	-1 158 175 143	10 l 147 186 146	21 -24 -4
1 2	619 582	562 606	95 -46		- 2	10 l		5 6 7	360 459 252	363 470 243	- 9 - 22 22	4 5 6	124 101 50	109 106 60	23 -10 -23
3 4 5	436 628 474 227	436 612 476 209	0 27 - 2 53	1 2 3 4	162 149 154 110	164 159 134 117	-3 -21 39 -11	8 9 10	254 187 190	263 185 186	- 23 5 9	7	38	46 11 l	- 9
6 7 8 9	362 178 195 254	365 186 185 255	-7 -21 23 -2	5 6 7	58 -8 57	69 29 67	-15 -18 -17	11 12	144 116 -1	136 123 5 l	17 -15	1 2 3 4	98 94 100 128	94 94 104 124	6 0 - 8 8
11 12	207 147	211 140	- 7 16	1	134	11 l 126	12	1 2 3	485 394 521	509 375 515	- 5 2 4 4 1 2	5	138 -1	133 12 l	9
1 2 3	-2 422 522 598	5 l 419 505 582	7 34 29	2 3 4 5	110 104 142 118	120 106 138 127	-16 -3 9 -18	4 5 6 7 8	446 170 252 328 86	441 147 267 323 86	10 61 -39 12	1 2 3	84 86 75	90 84 76	-11 5 -1
4 5 6 7 8	417 371 322 115 74	406 390 309 103 85	24 -46 32 27 -19	1 2 3	-2 128 100 81	12 l 116 102 83	23 -4 -5	9 10 11	139 217 141	142 225 130 6 1	- 4 - 17 23	2 3 4	0 320 911 221	0 l 336 855 226	-51 68 -18
9 10 11 12	246 186 172 159	253 179 178 158	-16 16 -15	1	-1 164 1036	1 1 163 1100	- 7 ²	1 2 3	483 423 259 405	462 436 269 381	44 - 29 - 28	5 6 7 8 9	385 522 485 380	406 496 493 400 405	- 56 52 - 17 - 48
1 2 3	-2 523 477 606	6 l 517 480 587	11 -7 32	2 3 4 5 6 7	1705 788 520 465 323	1596 776 524 455 337	64 17 -9 22 -38	4 5 6 7 8 9	372 262 302 153 151	369 256 303 157 143	53 6 15 -3 -9	10 11 12 13	401 240 137 159 103	249 126 148 104	- 9 - 20 20 27 - 3
4 5 6	390 233 374	397 230 383	-15 8 -19	8 9 10	299 369 140	297 362 147	5 17 -17	10 11	155 127	161 127	- 1 3 0	-13	0 95	1 l	Ō
7 8 9 10 11	195 80 209 183 115	192 72 213 167 114	12 -10 36 2	11 12 13	241 200 128 -1	232 200 127 2 1	19 -2 3	1 2 3	-1 221 307 283	7 l 224 291 289	-5 41 -15	-12 -11 -10 -9 -8	157 161 220 299 383	155 155 223 307 375	3 11 -8 -19 18
1 2 3 4 5	-2 289 221 293 370 249	7 1 272 246 294 361 249	44 -74 -2 20 0	1 2 3 4 5 6 7	957 256 325 509 409 413 441	931 266 345 518 374 414 450	31 -36 -61 -18 82 -1	5 6 7 8 9	220 288 261 159 141 189 127	222 291 260 156 141 182 119	-5 -6 1 5 0 15 14	-7 -6 -5 -4 -3 -2 -1	255 479 491 385 527 1000 106 1108	258 495 482 357 557 961 81 1038	-7 -35 19 70 -63 44 121
6 7 8 9 10	181 140 181 196 174	176 143 182 189 173	12 -7 -2 16 2	8 9 10 11 12 13	339 142 207 245 172 157	345 142 218 234 150 156	-13 1 -26 25 50	1 2 3 4	-1 229 230 256 194	8 1 235 221 253 189	-17 23 7	2 3 4 5 6 7	524 435 371 482 235 545	463 475 366 454 247 538	121 -104 14 59 -38 12
1 2	-2 287 351	8 1 268 338	44 29	1	-1 471	3 1 454	38	5 6 7 8	193 230 140 112	178 232 138 104	33 -4 2 17	8 9 10 11	335 290 247 174	356 288 245 187	- 5 2 5 4 - 27

	t	rans	[ReO	2 (DMA)	P)4](PF6)2					Page	5		
12 13 -13 -12 -11 -10 -9 -8 -7	96 0 2 139 1 147 1 181 1 259 2 245 2 362 3 328 3	14 94 1 27 34 172 271 261 379	25 4 26 29 19 -30 -41 -42 53 -18	2 3 4 5 8 7 8 9 10	225 145 440 109 316 413 277 188 179 90	225 154 436 102 323 422 277 172 177 89	0 -33 8 17 -19 -20 0 -12 5	- 1 0 1 2 3 4 5 6 7 8 9	296 287 253 158 305 241 251 230 149 153	292 291 254 156 309 311 232 2533 137 144	10 -9 -2 3 -2 -14 22 -7 -5 25 20	-8 -7 -5 -4 -3 -10 12 3	15 54 52 64 53 59 77 72 128 124 158 149 115 132 115 122 108 82 88 75 80 92 88	- 38 - 12 - 1 8 - 1 3 - 1 2 3 - 1 2 3 - 2 3 - 7
-65 -43 -21 -10 123 45 67 89 10	150 13207 1854 18503 285192 28514 6691 2345 4590 184	304 309 319 319 319 319 319 319 319 31	69 -41 1716 267 267 344 -40 43 -440 055 -387	-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -10 0	86 181 207 207 207 207 207 207 207 207	76 82 170 2187 26187 3285 3213 33711 8285 5373 4396	17 26 22 -33 8 31 -23 -23 -34 -77 -8 40 46 -11	-11 -10 -9 -8 -7 -5 -4 -3 -2 -10 12	115 120 139 141 120 183 189 167 329 338 200 191 200 156 182	109 1129 1399 1299 1299 1345 206 193 1869 172	12 15 17 5 -19 32 -1 -4 -11 -14 -15 -33 -34	65.4.32.1012	102 107 0 12 1 43 49 82 74 86 92 60 64 62 56 42 64 38 49 49 52 64 71 1 -12 1	-10 -13 14 -17 -11 129 -12 -4 -22
11 12 -13 -12 -11 -10 -9 -8 -7 -6	149 3 140 3 127 176 3 282 3 301 3 268 3 299 3	221 145 1 124 126 174 295 306 274 316 349	-6 10 35 3 -30 -14 -16 -49	3 4 5 6 7 8 9 10 11	191 442 415 210 240 247 149 152 135	198 4412 2113 2243 259 133 136 6	-21 6 -1 -9 -29 19 -1	4 5 6 7 8 -11 -10 -9 -8 -7	207 201 173 160 111 0 95 992 1197	213 201 163 155 113 9 l 78 86 105 114 118	-13 0 19 12 -3 43 7 -26 -18	0 1 2 3 4 5 6	88 83 84 77 50 60 52 50 74 76 63 77 37 50 1 -11 1 103 117 139 138	12 15 -23 -29 -29 -28
54 -32 -01 23 45 67	443 461 491 1840 1640 1651 451 472 277 375 631	293 400 475 488 609 782 169 443 265 778 808	-21 -25 -33 6 21 58 -73 19 35 -36 -32	-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -10	140 130 104 137 222 223 280 257 335 567 270 312 325	128 1298 1318 1212 278 262 278 262 278 278 278 278 278 278 278 278 278 27	21 14 13 10 10 -16 17 -30 -42 -44 -46	-65-43-210123456	95 1158 203 189 197 108 88 88 137	107 102 170 224 186 183 176 99 78 76 88 135	-24 -23 -5 -5 2-5 2-5 150 -46	3 4 5 6 7 8 0 1 2 3	127 146 153 142 88 85 61 61 74 66 42 55 1 -10 1 120 126 134 143 119 112 121 130	-34 20 5 0 14 -19 -11 -18 11 -16
8 9 10 11 12 -13 -12 -11 -10	269 177 151 144 0 4 102 114 189	279 275 169 151 148 1 101 117 189 241	-3 -14 17 1 -9 3 -6 0	2 3 4 5 6 7 8 9	326 306 175 331 355 244 204 189 123	311 305 188 330 353 245 201 176 118	37 2 - 35 2 3 - 2 7 29 9	-10 -9 -8 -7 -6 -5 -4 -3	107 0 1 88 78 67 90 119 113 163 176	94 0 1 63 68 64 90 129 130 170 184	30 47 16 7 0 -18 -28 -13 -19	4 5 6 7 8 9	145 174 142 131 108 110 81 94 67 64 68 63 1 -9 1 210 195 150 156 160 167	- 62 21 - 3 - 17 5 7
-98 -76 -55 -32 -101	286 269 304 341 317 505 450 750 997 350	297 2810 3326 3326 442 750 964 3573	-25 -34 -15 -24 -15 -24 -38 -38 -38	-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2	94 141 145 158 126 124 137 172 234 346 470	88 1347 162 142 143 174 211 379 441	10 21 -3 -8 -33 40 -14 -4 61 -82	-2 -10 12 3 4 5 6	105 117 134 129 168 179 151 122 114	113 118 133 129 171 190 143 110 101	-15 0 1 -6 -23 16 24 24	2 3 4 5 6 7 8 9	221 218 179 182 119 135 137 127 106 116 109 105 118 107 94 97 1 -8 1	-15 7 -7 -31 19 -16 21 -5

	tr	ans [ReO	2 (IMA	P)4]((PF6)2					Page	6			
0 1 2 3	287 28° 245 23° 237 23° 309 33°	5 23 1 13 4 -61	0 1 2 3	71 912 897 181	875 825 183	101 46 87 -9	-12 -11 -10 -9	182 145 158 269	180 152 161 267	5 - 15 - 7 5	8 9 10 11	202 125 169 150	198 123 167 147	9 4 4 5
4 5	202 19 152 14	7 11	4 5	474 466	473 437	0 61	- 8 - 7	234 360	252 350	- 54 26		1	4 l	
6 7 8 9 10 11	197 21 161 16 126 13 137 13 135 11 96 8	2 -2 5 -17 8 -1 1 48	6 7 8 9 10 11 12	160 359 334 290 214 186 146	187 361 337 278 220 192 130	-89 -5 -7 28 -12 -12 36	-6 -5 -4 -3 -2 -1 0	369 439 658 178 429 1026 587 239 792	366 423 664 154 430 1005 529 258 812	9 35 -10 96 -33 105 -76 -28	-13 -12 -11 -10 -9 -8 -7	139 138 169 254 216 292 331 357	143 130 162 257 224 287 335 369	- 9 14 15 - 7 - 22 12 - 11
0 1 2 3 4 5 6 7 8 9 10 11	286 27 249 27 324 32 399 36 61 67 6 140 11 141 14 140 15 124 11	2 -67 1 7 9 67 0 -79 5 49 3 13 7 -2 4 54 9 -16 0 -18	0 1 2 3 4 5 6 7 8 9 10 11	433 652 873 513 363 169 192 301 327 299 195	451 584 846 519 365 183 207 3315 185	-46 112 33 -12 -50 -45 -14 -58 18	3 4 5 6 7 8 9 10 11 12	579 222 355 491 304 429 273 165 182 141	561 212 372 497 314 419 281 155 181 2	33 33 - 45 - 11 - 26 20 - 20 2 2 3 14	-5 -3 -3 -10 12 3 4 5 6 7	568 582 5588 5596 523 4767 115 4560 249	5236 71177 7080 4773 5524 4502 253	80 -64 66 19 -16 71 3 25 44 -25 -10 -9
	1 -6	1	12	168	153	34	-13 -12	178 199	159 201	42 -4	8 9	266 158	265 159	- 2
0 1 2 3 4 5 6	340 31 217 21 403 42 407 38 240 24 374 37 297 27 177 18	4 8 6 -53 9 41 0 0 9 -12 0 65 4 -16	0 1 2 3 4 5	1165 958 112 682 715 335	1012 1046 66 647 711 339	127 -110 155 55 4	-11 -10 -9 -8 -7 -6 -5	87 214 310 265 357 430 401 668	83 214 306 270 376 406 423 630	6 1 10 -14 -49 54 -57	10 11 -13 -12 -11	138 106 1 111 56 98	122 114 5 l 99 47 94	35 -18 23 17 6
8 9 10 11 12	1 -5	7 14 0 2 2 19 8 35	6 7 8 9 10 11 12	561 433 285 276 227 136 143	526 438 291 270 232 133 136	63 -10 -14 14 -11 5	-3 -2 -1 0 1 2 3	706 147 135 1389 381 460 815 257	664 154 131 1338 399 446 785 278	64 -32 17 41 -48 31 -68	-10 -9 -8 -7 -6 -5 -4 -3	204 232 277 358 263 311 329 305	213 242 279 338 289 315 317 271	-21 -27 -5 45 -74 -10 30 91
0 1 2 3 4 5 6 7 8 9	550 54 63157 51 5044 37 285 234 286 234 286 293	7 96 9 21 9 -24 1 58 5 -49 9 -36 3 1 4 -4 6 0	-13 -12 -11 -10 -9 -8 -7 -6	1 116 196 218 372 489 514 445 525	0 1 112 197 217 68 391 468 504 469 521	7 0 24 -43 41 19 -56	5 6 7 8 9 10 11 12	342 572 405 253 330 226 192 154	331 564 415 260 329 230 177 142	28 13 - 22 - 19 3 - 10 35 27	- 2 - 1 0 1 2 3 4 5 6 7 8	484 606 407 262 444 413 251 317 380 214 176	4636 5999 299 397 254 327 385 215	446271595-254-9
11 12	140 13 101 10	3 15	-4 -3	539 176	534 218	9 - 20 3	-13 -12	165 173	146 169	41	9 10	177 139	174 134	6 10
	1 -4	1	- 2 - 1	1348 599	1284 556	49 78	-11 -10	91 227	106 229	- 25 - 4		1	6 l	
0 1 2 3 4 5 6 7 8 9 10 11 12	564 53 476 47 782 75 425 41 284 29 243 36 287 29 261 26 217 22 159 14	5 57 1 10 1 43 8 16 8 2 2 22 16 -21 6 -21 6 -16 7 22	01 12 3 4 5 6 7 8 9 10 11 12	7241 7241 7241 72571 7991 7991 7994 7994 7994 7994 7994 79	814 2091 580 401 582 244 4170 437 206 203 163 114	-150 155 211 -29 165 -654 -654 -41 -190 -16	987654321012345	306 326 299 433 476 402 401 502 637 567 436 3198 451	306 312 311 424 464 499 591 598 429 318 408 388	033-3292-5746-366-3722-55746-37722-55746-37722-55746-37722-557	- 13 - 12 - 11 - 10 - 98 - 7 - 6 - 5 - 4 - 3 - 10	102 899 117 114 123 2099 2859 2694 378 368 317	897 10107 1107 1207 1207 1207 1207 1207 12	24 -17 -19 14 -40 54 -25 -67 -12 -12
	1 -3	1	-13	137	135	4	6 7	393 287 462	295 450	-21 24	1 2	447 265	435 279	19 25 - 39

		tran	s [ReO	2 (DMA	P)4](PF6)2	2				Page	7			
3 4 5 6 7 8 9	264 359 255 265 218 154 144	263 359 248 275 226 145 138 7 1	3 0 18 -23 -18 16 12	-10 -9 -8 -7 -6 -5 -4 -3 -2	68 58 88 73 89 79 91 93 137 135 151 155 123 146 153 157 139 134 98 111	20 33 21 -2 -7 -42 -7 -8 -22	0 1 2 3 4 5 6 7 8	2 - 231 194 137 181 205 160 143 151 118	9 1 234 185 136 201 207 161 161 144 100	- 9 20 0 - 47 - 6 - 1 - 36 13	3 4 5 6 7 8 9 10 11 12	323 370 541 312 262 290 220 178 115	327 393 524 324 252 303 224 173 112 83	-10 -58 -22 -25 -31 -89 -55
-110 -98 -7 -6 -5 -4 -32 -10 123 345	13544 19884991078 121780730018 121873 221873 221873 221873	1200 1433 1493 1198 2664 2644 2770 2770 2770	21 -26 10 -61 36 -24 -13 -11 7 33 -10 6 -11 17 -5 -27	0 1 2 3 4 5 -8 7 -6 -5 -4 -3 -2 -1	125 124 137 134 135 143 152 153 154 147 116 111 1 11 1 65 65 63 68 71 62 88 86 95 95 102 88 96 99	2 5 -13 -2 16 10 -2 17 18 3 0 20 -4	9 10 0 12 3 4 5 6 7 8 9	231 238 177 120 121 143 186 179 136 120 89	87 87	- 6 - 35 - 35 - 41 - 48 - 45 - 22 0	0 1 2 3 4 5 6 7 8 9 10 11 12	546 1009 323 268 498 231 2517 1132	5 4 7 7 2 8 1 6 2 7 1 4 8 4 4 2 7 9 1 8 5 7 1 2 6	0 43 -40 21 -8 28 -32 6 -57 9
6 7 8 9	206 168 149 103 1	194 164 147 106 8 1 105	25 7 4 -4	0 1 2 3	91 101 83 83 81 83 86 84 1 12 1 27 48	-18 0 -4 4	0 1 2 3 4 5	2 - 216 235 290 310 219 191	7 1 227 215 315 285 205 208	-31 53 -67 62 34 -46	0 1 2 3 4 5 6	2 730 663 382 676 587 358 259	658 688 343 636 573 390 243	105 -41 98 63 25 -85
-10 -9 -8 -7 -6 -5 -4 -3	110 113 134 150 152 186 194 201 222	112 113 127 146 160 180 208 227	- 3 12 9 - 18 15 20 - 17 - 12	-5 -4 -3 -2 -1 0	45 58 73 64 68 59 59 66 50 57 33 44 2 -12 1	-17 -8 -7 -18 -14 -10	6 7 8 9 10 11	166 103 124 131 131 103	155 102 110 135 125 104	27 1 25 -6 13 0	7 8 9 10 11 12	356 221 237 168 117 117	357 231 249 176 111 116	-3 -26 -29 -18 12
-10 12 34 56 78	155 98 118 153 170 174 198 154 88 105	126 106 113 135 172 166 188 150 83	65 -16 10 38 -5 18 20 8 10 34	0 1 2 3 4 5 6	117 117 112 101 68 69 28 51 63 59 62 67 35 55	0 21 -2 -24 6 -7 -33	0 12 3 4 5 6 7 8 9	446 303 263 409 293 290 382 232 151 150 161	435 290 257 434 275 301 379 223 169 140	24 35 17 -59 -28 -27 -19 -46	0 1 2 3 4 5 6 7 8 9	110 779 499 600 702 627 260 351 319 199 133	128 741 509 616 672 609 294 336 317 197	-79 -229 -29 -30 -102 -35 -22
-11 -10 -9 -8 -7 -6 -5	84 86 110 128 128 124 92 127	9 1 68 74 109 133 129 131 107	24 21 3 -8 -3 -13 -24	0 1 2 3 4 5 6 7	105 110 105 123 128 123 113 111 114 110 81 83 66 65 73 71	-7 -29 10 3 6 -2 4	0 1 2 3 4	114 2 -! 411 484 307 319 488	105 5 1 416 488 283 319 470	-11 -8 65 0 36	-13 -12 -11 -10	134 114 2 172 168 243 168	136 111 0 1 170 159 250 173	-56 4 17 -16 -12 35
- 2 - 1 - 1 2 3 4 5 6	174 167 197 229 156 85 101 117 127	116 174 177 186 227 166 178 106 119 116 117	- 22 - 24 - 20 - 6 - 3 23 8	0 1 2 3 4 5 6 7 8 9	151 136 119 120 118 121 111 110 106 123 130 127 127 116 107 111 74 86 84 67	30 0 -5 0 -27 4 18 -8 -20 35	5 6 7 8 9 10 11	398 3300 2600 193 163 112 2 406 399 645	383 344 267 221 176 167 105 4 1 399 395 599	33 -35 -12 38 -73 15 875	-98-76-54-52-10123	140 350 418 531 5690 93 10612 290 546	126 381 413 512 762 557 100 595 245 298 521	35 -79 11 38 26 16 20 173 37 30 -1 -24 49

		tran	s [ReO	2 (DMA)	P) 4] (PF6)2					Page	8			
4 5 6 7 8 9	630 417 425 220 318 219 106	618 423 425 226 323 231 100	21 -13 0 -19 -12 -27	-4 -3 -2 -1 0	560 280 469 471 197 121 395	580 272 465 478 191 125 415	-38 21 8 -16 22 -14 -50	-6 -5 -4 -3 -2 -1	269 307 272 302 305 309 222	279 289 258 308 315 302 241	- 26 44 36 - 15 - 27 16 - 53	2 3 4 5	145 126 128 129		- 9 30 9 7
11	128	124 1 l 116	8 22	3 4 5 6 7	457 241 471 294 197	434 254 483 290 207	49 -39 -26 8 -25	1 2 3 4 5	379 439 246 258 273	376 444 244 263 285	7 -10 4 -12 -28	- 9 - 8 - 7 - 6 - 5	85 103 92 95 119	76 85 88 99 117	20 37 8 - 6
-14 -13 -12 -11 -10	165 194 207 97 272	157 194 210 95 258	18 0 -5 4 36	8 9 10	182 103 94	197 99 87	- 36 6 15	6 7 8 9	228 173 146 112	217 169 137 106	24 6 20 11	- 4 - 3 - 2 - 1	132 110 124 118 121	131 127 122 123 123	- 29 3 - 6 - 2
- 8 - 7 - 6 - 5 - 4	245 266 614 542 325	245 297 597 569 309	- 98 - 30 - 54 - 46	-13 -12 -11 -10	162 179 143 222	145 188 137 217	36 -18 10 11	-12 -11 -10	2 67 101 110	7 l 63 82 114	7 34 -6	1 2 3 4	122 127 98 84	117 116 106 89	9 23 -16 -9
-3 -2 -1 0	722 333 297 751 408	698 341 314 715 434	37 -24 -55 52 -70	- 9 - 8 - 7 - 6 - 5	233 178 422 471 390	244 200 399 474 410	- 27 - 60 51 - 7 - 49	- 9 - 8 - 7 - 6 - 5	109 192 246 200 210	127 189 242 218 215	- 3 2 6 8 - 4 5 - 10	- 8 - 7 - 6	2 1 64 73 72	1 1 68 72 71	-8 1 1
2 3 4 5 6	674 550 625 258 535	646 570 627 273 519	45 -38 -2 -44 29	-4 -3 -2 -1	596 540 415 372 470	568 541 405 373 469	48 -3 24 -4	-4 -3 -2 -1 0	215 179 158 248 269	215 186 165 223 271	-1 -16 -18 -63	-5 -4 -3 -2 -1	62 74 72 56 78	66 73 74 63 72	-8 2 -5 -12 8
7 8 9 10 11	409 275 227 182 137	418 294 224 170 123	-20 -49 6 25	1 2 3 4 5	377 439 563 209 216	387 442 563 200 224	- 26 - 5 0 25 - 21	1 2 3 4 5	256 304 227 182 169	255 287 231 165 165	38 -10 37 8	0 1 2	95 79 85	93 90 78 2 1	- 26 12
-14 -13	2 136 148	2 l 127 143	20 11	6 7 8 9 10	309 242 144 145 113	318 257 141 142 122	-21 -36 5 7 -20	6 7 8	177 104 98	180 106 90 8 1	-4 -4 14	- 4 - 3 - 2	25 35 51	48 50 57	- 25 - 24 - 14
-12 -11 -10	218 204 77	211 203 69	13 0 12		2	5 1		-11 -10	83 107	88 102	- 10 9	0	3 - 1 119	2 l 116	4
- 9 - 8 - 7 - 6 - 5	253 327 286 563 572	268 311 284 564 561	-41 39 7 -3 21	-13 -12 -11 -10 -9	102 94 46 141 214	93 77 49 133 212	19 29 -4 17 2	- 9 - 8 - 7 - 6 - 5	94 108 139 166 144	107 128 137 157 160	-19 -34 -5 20 -35	1 2 3 4 5	86 73 34 55 83	97 68 53 60 62	- 20 10 - 22 - 10 38
- 4 - 3 - 2	535 490 690	539 493 663	- 9 - 7 4 2	- 8 - 7 - 6	235 288 357	250 307 352	-40 -48 12	- 4 - 3 - 2	178 223 157	181 210 171	-6 31 -31		3 -1	1 l	
-1 0 1 2 3 4 5 6	306 451 549 660 606 601 335 181	304 482 502 652 600 610 341 193	8 - 74 88 12 9 - 17 - 13 - 35	-54 -32 -10 123	314 251 329 410 353 335 446 320	316 270 349 396 346 340 429 321	-4 -55 -53 31 19 -13 -13 -2	-1 0 1 2 3 4 5	101 111 115 114 142 162 140 133	91 87 124 116 147 164 131 127	19 40 -17 -2 -11 -4 18 14	0 1 2 3 4 5 6 7	123 77 85 99 104 74 78 80	118 93 98 108 100 83 74 70	7 - 22 - 19 - 12 - 6 - 16 6 15
7 8 9	367 294 159	357 312 162	23 -42 -6	4 5	338 380 257	349 375 248	- 25 10 23	7	93 2	86 9 1	13		\$ -1	0 1	
10 11	197 174 2	192 175 3 1	10 -2	6 7 8 9	227 253 139 105	226 257 136 105	-8 6 -1	-11 -10 -9 -8	66 69 109 163	62 71 107 159	6 -4 4 6	0 1 2 3 4	145 152 120 130 117	153 142 121 137 126	-14 19 -1 -14 -15
-13 -12 -11 -10 -9	168 190 138 147 239	157 182 135 150 241	25 15 6 -5 -5	-13 -12 -11	99 90 97	6 1 98 75 87	1 27 15	- 8 - 7 - 6 - 5 - 4 - 3 - 2	146 125 120 105 133	154 127 120 118 128	-15 -4 0 -24	5 6 7 8	128 109 104 100	114 114 110 94	24 -9 -13 11
- 9 - 8 - 7 - 6 - 5	302 479 592 594	316 473 596 588	-38 13 -7 9	-10 -9 -8 -7	118 126 207 274	125 119 208 297	-10 13 -1 -57	- 2 - 1 0 1	166 165 214 202	152 182 209 210	29 -40 10 -21	0	3 - 134 120	9 l 141 134	- 16 - 30

	tran	s [ReO2 (DMAP)4)	(PF6)2					Page	9			
2 3 4 5	147 147 195 187 204 218 182 193	0 17 -32 -22	10 179 11 109		26 5	-14 -13 -12	126 121 158	115 119 154	2 2 3 6	7 8 9 10	187 149 141 128	188 149 137 121	-3 -1 8 13
6 7 8 9	155 159 139 128 99 92 62 66	-7 24 13 -5	0 511 1 641 2 220 3 245	618	44 37 -55 -10	-11 -10 -9 -8 -7	206 195 209 391 319	211 190 222 379 309	-12 12 -36 26 28	-13 -12	3 106 157	4 l 99 156	1 4 2
0 1 2 3 4 5	3 -8 1 253 232 141 137 175 188 138 124 71 69 120 129 173 165	50 8 -34 30 2 -19 16	4 473 5 308 6 305 7 268 8 204 9 168 10 202 11 131	471 322 306 278 203 169 204	5 - 3 8 - 3 - 2 3 - 2 3 - 0 - 3 8	-6 -5 -4 -3 -2 -1 0	364 794 381 259 502 769 661 517 520	371 780 386 267 476 751 676 494 512	-19 -14 -26 -53 -24 -44 14	-11 -10 -9 -8 -7 -6 -5 -4 -3	186 1845 245 2244 438 4276 258	193 187 2449 243 420 433 290 261	- 14 - 6 2 - 9 - 56 38 - 15 - 41 - 6
7 8 9 10	152 162 126 128 95 89 68 64 3 -7 1	- 20 - 4 10 6	3 0 547 1 669 2 684 3 499 4 499	661 667 483	51 14 26 29 44	3 4 5 6 7 8 9	496 494 433 284 344 316 202	488 503 438 297 345 328 203	17 -19 -11 -32 0 -28	- 2 - 1 0 1 2 3	494 319 328 532 357 273 350	490 320 349 519 354 289 361	7 -5 -54 24 8 -43 -25
0 1 2 3 4 5	275 273 233 219 247 250 331 333 286 260 189 194 175 190	36 -6 -5 62 -11 -33	5 475 6 224 7 246 8 236 9 183 10 161 11 123	470 4232 231 242 442 184 157	10 -23 22 -14 0 8	-14 -13 -12	157 3 119 137 128	145 2 l 100 139 138	27 36 -3 -17	5 6 7 8 9	254 174 218 178 102	250 168 223 178 102	11 13 -12 1 0
7 8 9 10	175 160 128 118 118 115 116 103	33 16 5 26	3 0 599 1 619 2 528	-1 l 9 570 5 591 3 554	52 43 -52	-11 -10 -9 -8 -7	216 241 257 322 385 309	216 246 248 332 391 323	-1 -13 22 -27 -15 -38	-13 -12 -11 -10 -9	69 90 114 155 178	75 86 104 155 187	-11 7 17 0 -22
0 1 2 3 4 5 6 7 8 9	246 261 433 423 409 396 290 290 363 379 316 309 249 248 215 226 152 149 129 120	-43 21 29 -1 -38 16 2 -26 6 15	3 528 4 446 5 468 6 346 7 198 8 157 9 228 10 138 11 107	434 457 333 206 159 3 237 135	10 15 13 15 -21 -4 -21 9 17	-5 -4 -3 -2 -1 0 1 2 3 4 5	457 573 207 459 505 564 552 5337	456 573 213 463 512 564 550 483 337 296	0 -1 -22 26 -8 -16 0 35 -5 -24	- 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2	229 259 254 306 273 174 391 501 375 438	214 279 2698 282 170 404 492 3374 426	35 -51 -40 20 -25 10 -31 18 -14 25
0 1	118 120 3 -5 1 246 251 357 360	-14 -5	14 113 13 113 12 193 11 134	117 2 198 1 147 3 224	34 1 -11 -26	6 7 8 9 10	263 108 241 205 124	267 104 246 209 124	-9 8 -10 -8 0	3 4 5 6 7 8	289 204 243 190 179 168	284 202 263 179 175 168	11 5 -46 21 8 0
123456789 1011 0123456789	548 526 \$10 \$15 \$10 \$315 \$13 \$22 \$17 \$204 208 \$186 \$179 \$129 \$115 \$120 \$113 \$3 -4 \$1 \$369 \$370 \$517 \$361 \$304 \$309 \$76 \$776 \$517 \$76 \$517 \$76 \$517 \$361 \$404 \$399 \$240 \$241 \$213 \$208 \$186 \$191	40 -12 4 41 12 -8 16 11 29 15 -16 67 -25 -61 -11 -11	-9 281 -9 318 -7 -8 351 -6 551 -5 661 -5 661 -7 500 -7 500 -7 500 -7 500 -7 7 8 9 10 11 11 3	294 305 305 587 2882 2882 2882 2882 2882 2882 2882	18442 - 1389 2441 5 - 2441 - 337 - 746	-1432-110-98-765-432-10123456	3 12144 11591 130787 13078 13078 1416 1308 1450 1450 1450 1450 1450 1450 1450 1450	1 1739060050 1159060050581155830248823365441155345224088231683	18417-27136-1549-336-322-499-33397-166	-13 -12 -110 -98 -87 -6 -54 -3 -21 0 12 3 45 5 6	3 791596655944440816241122123333322271889	6 1 773 107 107 107 106 107 207 207 207 207 207 207 207 207 207 2	0213669 -2669 -4638138 -35110-411450 -21504

		tran	s [ReO2	(DMA)	P)4](PF6)2				Page	10			
7 8	163 121 3	157 112 7 1	13 17	2	67 71 3 11 1	- 7	0	280 27		6 7 8 9	169 216 157 167	162 225 164 162	16 -21 -15 12
-12 -11 -10	90 83 103 125	80 82 98 121	18 1 7 8	-7 -6 -5 -4	52 56 34 52 39 57 63 73 83 74	-10 -23 -34 -27 16	1 2 3 4 5	178 18 482 46 400 38 235 25 296 29	5 33 3 35 3 -44	-14	169 4 103	169 0 l 102	3
- 8 - 7 - 6 - 5	138 211 214 166	162 201 207 168	-51 25 16 -4	- 2 - 1 0	77 71 83 78 98 80	9 10 28	6 7 8 9	192 18 128 11 105 12 117 11	5 14 4 24 1 -26	-13 -12 -11 -10	105 157 183 190	106 156 200 200	- 3 1 - 3 9 - 2 3
-4 -3 -2 -1	82 125 122 106 247	81 108 129 124 227	2 34 -15 -36 46	0 1 2	4 -12 l 108 103 72 88 46 65	10 - 26 - 37	0 1	470 43 362 36		- 9 - 8 - 7 - 6 - 5	235 460 347 214 478	241 465 339 207 487	-17 -9 21 20 -18
1 2 3 4 5	244 168 176 156 103	256 171 160 154 99	-30 -6 33 3	3	51 54 4 -11 l 109 109	- 5 0	2 3 4 5 6	374 38 479 45 373 35 297 30 225 23	2 -18 8 42 9 32 2 -11	- 4 - 3 - 2 - 1 0	541 350 494 270 686	526 329 495 283 680	28 54 -1 -41 8
6 7	111 123	110 125 8 1	. 4	1 2 3 4	102 96 81 77 90 93 112 109	11 6 -6 4	7 8 9 10	173 17 119 12 133 12 126 11	5 - 5 0 - 1 1 25	1 2 3 4	549 483 630 409	569 464 628 408	-40 40 2 2
-11 -10 -9 -8	103 108 113 109	94 112 102 113	16 -8 16 -7	5 6	94 93 85 82 4 -10 l	3 9	0 1	4 -4 57 5 489 47	l 3 9 6 26	5 6 7 8 9	406 179 230 221 180	409 190 214 230 168	-6 -25 36 -19 27
-7 -6 -5 -4 -3	114 118 130 140 208	121 114 123 148 211	-13 7 12 -16 -9	0 1 2 3 4 5	148 154 164 176 165 163 157 156 122 143	-11 -26 3 3	2 3 4 5	380 38 317 31 476 47 293 30 179 17	1 16 7 -2 0 -17	-14	158 4 108	152 1 l 104	12
-2 -1 0 1	237 160 133 164 144	218 171 129 137	43 -25 7	5 6 7	119 108 114 99 89 93	2 2 2 8 - 7	6 7 8 9 10	214 22 193 18 165 15 153 15	4 -23 9 10 1 33	-13 -12 -11 -10	137 169 155 247 255	139 162 148 256 246	-5 14 14 -20 21
2 3 4 5 6	119 132 128 97	145 117 128 126 102	- 2 2 7 5 - 6	0 1 2 3	143 126 55 59 83 93	34 -6 -16	0	4 -3 209 22 583 55	4 52	- 8 - 7 - 6 - 5	276 432 323 256	284 423 308 254	-21 19 36 3
-10 -9	3 83 96	9 1 72 91	27 8	3 4 5 6 7	177 181 195 189 156 167 151 145 89 92	-9 13 -22 14 -5	2 3 4 5 6	581 56 278 28 390 37 328 32 206 21	6 -23 1 43 5 6	-4 -3 -2 -1	439 506 266 562 755	453 483 278 555 723	-32 46 -35 12 46
- 8 - 7 - 6 - 5	137 148 118 117	130 148 128 107	14 0 -17 17	8	60 59 4 -8 1	4	6 7 8 9 10	162 15 196 20 174 16 159 14	8 9 7 -25 6 18	1 2 3 4 5	592 476 488 129 292	598 482 470 138 290	-10 -13 36 -23
-4 -3 -2 -1 0	131 142 145 170 160	127 148 143 170 182	-12 -12 0 -41	0 1 2 3 4	239 238 197 186 154 138 177 186 149 139	25 35 -21 21	0	4 -2 549 56 634 59	9 58	6 7 8 9	306 221 231 209	312 227 232 213	-13 -14 -1 -12
1 2 3 4	138 135 108 87	140 125 110	-3 19 -4 1	5 6 7 8	137 130 157 157 138 122	12 -1 34	2 3 4 5	547 55 567 56 394 39 185 17	2 10	-14	4 99	2 l 86	22
_	3 1	86 0 l		ğ	84 91 71 77 4 -7 1	-13 -14	6 7 8	266 26 159 15 151 16	9 -7 7 4 0 -20	-13 -12 -11	126 155 168	119 167 163	14 -24 10
-9 -8 -7 -6	78 82 76 76	73 79 76 73	12 4 0 4	0 1 2	229 237 257 265 316 308	-20 -19 20	9 10	185 18 157 14 4 -1		-10 -9 -8 -7	251 380 353 307	250 384 346 310	1 - 9 1 5 - 8
-6 -5 -4 -3 -2	71 97 111 107	67 86 108	5 19 4	2 3 4 5	274 273 261 255 236 228	3 14 18	0	539 55 575 56	5 - 32 5 18	- 6 - 5 - 4	419 322 201	426 333 201	- 15 - 30 - 1
-2 -1 0 1	107 123 127 79	112 118 114 89	-11 10 26 -18	6 7 8 9	161 170 122 128 123 120 99 98	-18 -10 7 2	2 3 4 5	482 45 527 54 404 39 144 14	0 -26 7 14	-3 -2 -1 0	505 113 235 440	507 115 254 444	- 3 - 4 - 60 - 9

		trans	s [ReO	2 (DMA)	P)4](PF6)2					Page	11			
1 2 3 4 5 6 7 8	408 451 380 236 88 180	400 463 397 226 88 172 198	18 -26 -41 25 0 19 -13	3 4 5 6 7	235 192 163 185 167	245 183 150 181 164 6 1	- 23 20 25 8 7	- 2 - 1 0 1 2	137 129 156 104 51	133 117 140 109 61	7 23 35 - 9 - 22	1 2 3 4 5 6 7 8	284 262 307 202 190 197 109	291 249 315 216 189 190 99	-18 31 -19 -34 2 14 20 4
9	161 174 4	154 167 3 ì	14	-12 -11 -10 -9	86 119 150 169	79 122 151 173	12 -7 -2 -9	- 8 - 7 - 6 - 5	60 65 78 54	68 70 70 63	-18 -9 12 -16	0	5 - 316	5 l 314	4
-13 -12 -11 -10 -9 -8 -7	166 143 157 200 278 347 278	146 145 168 195 278 362 297	43 -3 -22 12 0 -36 -51	- 8 - 7 - 6 - 5 - 4 - 3 - 2	168 148 163 142 126 208 347	178 153 152 150 127 198	-21 -11 24 -18 -1 23 -20	- 4 - 3 - 2 - 1 0	54 92 99 104 117	69 90 100 108 103	- 2 2 3 - 1 - 7 2 5	1 2 3 4 5 6	393 347 266 257 319 209 120	386 362 251 260 324 204 134	15 -35 -35 -9 -13 11 -25
- 6 - 5 - 4 - 3	341 485 253 205	330 476 259 212	25 17 -16 -23 -22	-1 0 1 2	257 273 333 168	356 273 252 327 165 103	-39 48 14 6	0 1	71 88 5 - 1	79 86	- 18 3	8 9	133 109	133 104 4 l	9
- 2 - 1 0 1 2	362 489 362 424 480	371 496 379 410 468	-14 -44 29 23	3 4 5 6	109 153 142 131	154 134 123	-1 18 17	0 1 2 3	113 100 94 93	117 106 90 77	-8 -12 8 27	0 1 2 3 4	234 170 427 280 225	256 168 427 293 214	-64 5 0 -33 26
3 4 5 6 7 8	186 249 200 143 185 182	189 251 202 134 183 182	-8 -4 -2 16 4	-12 -11 -10	80 83 93 107	73 85 87 97	19 -4 12 14	4	99 5 - 1 149	92	13	5 6 7 8 9	352 191 144 165 143	368 197 135 167	-37 -11 17 -5
- 13	4 111	4 l 104	14 2	-8 -7 -6 -5	135 148 161 174	130 158 163 173 121	- 20 - 3 2 - 21	1 2 3 4 5	170 158 144 121 84	174 166 145 119 80	-8 -16 -1 4 10	0		3 l 521 315	54 -36
-12 -11 -10 -9 -8 -7	108 164 202 198 229 263	106 159 209 201 224 275	10 -14 -6 10 -30	-3 -2 -1 0	110 73 151 154 152 223	69 131 161 159 207	6 41 -15 -14 33	6	79	75 9 l 125	- 13	1 2 3 4 5 6	339 318 301 303 168	331 320 308 289 182	21 -4 -18 32 -32
-6 -5 -4 -3	214 286 428 243 264	213 238 266 422 244 260	-68 50 14 -3	2 3 4 5	147 99 100 107	159 92 93 109	-22 9 13	1 2 3 4	105 91 117 150	111 78 129 151	-13 -9 17 -19 -1	7 8 9	174 144 142	166 135 140	17 20 5
- 2 - 1 0 1 2	535 353 296 442	527 366 311 442	15 -31 -41 0	-11 -10	4 100 113	8 1 91 110	15	5 6 7	100 114	110 96 8 l	- 19 33	0 1 2 3	350 486 304 202	374 482 308	-63 10 -11
5 6 7 8	221 143 206 188 155 161	211 146 215 187 141 157	24 -8 -20 3 31 6	-9 -8 -7 -6 -5 -4 -3	116 114 110 116 122 139	114 108 113 120 119 131 185	10 -5 -7 5 14	0 1 2 3 4	200 206 174 164 136	195 210 172 160 149 132	9 - 8 3 8 - 26	3 4 5 6 7 8 9	426 225 103 191 149	190 439 237 103 194 144	30 -29 -29 -1 -7 11 13
1.	4	5 l 90	'- 7	- 2 - 1	158 181 185	190 174	-59 -24 22	5 6 7	149 168 122	152 118	33 36 9	,	121 5 -	114 1 1	13
-13 -12 -11 -10 -9 -8 -7	86 89 125 183 201 199 232	94 121 171 208 195 220	- 8 7 24 - 16 9 28	0 1 2 3 4	180 156 122 107 94	187 146 108 115 97	-14 18 28 -15 -4	0 1 2 3	5 328 237 229 254	327 233 242 249	3 9 - 32 12	0 1 2 3 4 5	298 507 472 252 394 241	\$15 520 457 254 395 242	-50 -26 29 -6 0
-6 -5 -4 -3 -2 -1 0	294 255 310 279 255	297 260 294 291 274	-7 -13 38 -29 -51	-10 -9 -8 -7	82 81 92 106	64 77 91 98	28 7 2 15	5 6 7 8	165 155 200 123 98	159 163 197 117 91	12 -16 6 13 12	6 7 8 9	125 156 176 166	130 149 184 159	-10 13 -18 16
0 1 2	346 398 334 272	341 403 352 280	9 -10 -43 -18	-6 -5 -4 -3	103 95 115 155	108 107 109 140	-10 -16 9 28	0	5 383	-6 l 378	10	-13 -12	5 116 162	0 l 125 166	-19 -7

		trans	ReO	(DMAI	2)4](PF6)2				1	Page	12			
-11 -10 -9 -8 -7 -6 -5	211 214 257 212 303 410 237	203 214 256 214 312 405 226	19 1 -4 -23 10	-8 -7 -6 -5 -4 -3	178 330 278 295 394 347 219	176 322 295 286 396 350 228	5 19 -46 20 -4 -8 -24	2 3 4 5	205 104 102 133	207 104 93 130 7 l	-4 0 16 5	1 2 3 4 5 6	147 1 152 1 123 1 93 1	174 154 153 123 101 122	30 -12 -1 0 -15 28
- 4 - 3 - 2 - 1 - 1 - 1 - 2 - 3 - 4 - 5 - 7 - 7	2016967246543 443733246546 44333542387	04485 14587 14587 144880 17387 1738	-36 54 -28 -33 -49 -38 -19 -18	-10 12 34 56 7	349 347 164 346 388 112 191 171 114	352 344 186 347 385 112 177 176 109	- 7 - 57 - 1 - 6 - 1 - 31 - 12 10	-11 -10 -9 -8 -7 -6 -5 -4 -3 -2	71 750 114 148 152 151 174 137 123 149	77 70 664 1038 1557 162 143 124 128 149	-10 11 -27 15 14 -14 -32 28 -13 -14 -15	0 1 2 3 4 5 6 7	241 2 166 3 152 1 124 3 87 144 1	1 285 256 159 151 126 90 152	-18 -36 15 -3 -6 -19 13
. 13	153 5 127	138 1 l 125	33	-13 -12 -11 -10 -9	124 146 127 163 172	115 136 121 163 181	18 21 9 0 -19	1 2 3 4	174 160 120 102	174 147 115 98	0 29 10 7	0 1 2 3	288 275 237 194	267 286 258 181	48 - 27 - 52 28
-12 -11 -10 -9 -8 -7	224 211 180 264 224 158	231 207 174 275 220 155	-14 7 13 -27 10 5	- 8 - 7 - 6 - 5 - 4 - 3	158 260 289 254 265 392	163 245 299 263 267 403	-11 35 -24 -24 -4 -24	-10 -9 -8 -7	5 84 86 106 122	8 i 73 86 113 119	\$2 0 -15 4	4 5 6 7	144 179	156 139 169 134	- 19 9 23 19
-6 -5 -4 -3 -2 -1 0 1	402 319 184 391 538 320 429 440 157	415 320 182 406 522 338 441 409 170	- 29 - 4 - 35 - 35 - 29 - 47 - 27 - 63 - 36	- 2 - 1 0 1 2 3 4 5 6	304 273 354 247 271 277 168 148 153	307 270 347 245 280 287 170 138 155	-5 7 16 4 -20 -21 -4 27 -3	-6 -5 -4 -3 -2 -1 0	143 151 131 148 133 100 132 153 108	133 144 126 135 146 104 116 155	18 12 7 22 -22 -6 32 -5 14	0 1 2 3 4 5 6	235 260 200 172 195 245	327 222 275 226 147 209 248 140	- 45 32 - 35 - 65 - 53 - 31 - 7 15
3 4 5	376 329 107	391 329 106	-34 -1 2		5	5 l			5	9 1			6 -4	1	
6 7 8	213 213 149 5	203 223 143 2 1	22 - 25 13	-12 -11 -10 -9 -8 -7 -6	128 122 135 131 142 193	115 120 133 118 146 190 243	26 4 3 23 -10 5	- 8 - 7 - 6 - 5 - 4 - 3 - 2	89 81 85 103 90 101	78 79 87 103 103 99	16 2 -4 0 -23 2	0 1 2 3 4 5 6	258 205 229 168 231	376 273 182 245 185 222 246	13 -38 55 -39 -40 21 -2
-12 -11 -10	207 187 220	112 193 204 214	34 -36 15	- 5 - 4 - 3	245 325 307 285	336 314 269	- 23 - 16 36	- 1	61 79	71 78	- 16 2	7		163 l	21
-9 -8 -7 -6 -5 -4 -3 -1	261 289 269 242 425 394 256 394 313	255 294 273 241 434 385 261 403	12 -13 -12 -19 -19 -14 -20	-2 -10 12 3 4 5	301 232 179 246 287 167 175 114	303 249 175 250 294 168 171 158 110	-5 -40 8 -8 -16 -2 10 19	0 1 2	151 115 95 6 -1	144 112 88 10 1	13 6 12	0 1 2 3 4 5 6	396 210 164 192 279 191	266 384 217 150 201 287 177 158	-39 25 -20 33 -22 -19 30 -4
0 1 2 3 4 5	261 299 302 296 205 179	280 309 275 310 205 185	-52 -25 61 -35 0	-12 -11 -10	5 76 107 132	95 125	22 21 14	1 2 3 4	156 128 94 81	152 132 102 87	8 -9 -17 -9	0 1 2	209 243	l 276 217 241	-60 -20 4
6 7 8	135 153 178	126 147 178	17 12 1	- 9 - 8 - 7 - 6 - 5	114 141 145 111 111	110 143 158 107 104	6 -4 -27 6 12	0 1 2 3	147 128 122 116	126 128 120 104	37 0 3 23	3 4 5 6 7	133 306 194	137 141 321 196 141	7 -18 -34 -4 33
-13 -12	153 188	146 166	16 50	- 4 - 3 - 2	142 126 191	156 141 183	-30 -28 16	4 5	99 99	106 85	-13 9		6 -1	1	
-11 -10 -9	148 187 202	136 192 200	-12 -14	-1 0 1	226 127 171	229 139 157	-6 -23 27	0	6 ·	-8 l 229	- 23	0 1 2	311	511 320 296	45 -20 -64

		tran	s [ReO	2 (EMA	P)4](PF6)2					Page	13			
3 4 5 6 7	316 256 253 216 192	307 275 240 219 182	20 -45 27 -6 23	-13 -12 -11 -10 -9	104 163 161 145 201	104 159 149 138 204	0 10 28 13	2 3 - 10	143 147 6 96	135 142 7 l 78	17 10	0 1 2 3 4	216 232 223 162 178	212 239 235 146 180	8 - 16 - 27 32 - 4
-13 -12 -11	6 (134 142 215	120 141 216	30 1 -1	- 8 - 7 - 6 - 5 - 4	123 125 339 333 315	121 117 333 329 301	2 16 13 8 31	- 9 - 8 - 7 - 6 - 5	73 97 129 152 157	59 89 130 144 162	25 18 -3 17 -10	5 6	180 175 7 -:	182 158 3 l	- 4 38
-10 -9 -8 -7 -6	183 189 265 84 205 526	170 200 274 61 214 518	29 -28 -21 37 -25	- 3 - 2 - 1 0 1 2	363 302 212 234 221 116	366 297 213 233 207 125	-5 10 -1 1 31 -17	-4 -3 -2 -1 0	147 134 140 104 109 122	149 128 136 111 92 129	-4 12 7 -12 30 -14	0 1 2 3 4 5	212 137 222 186 160 186	221 133 233 188 140 190	- 24 8 - 26 - 4 44 - 11
- 4 - 3 - 2 - 1 0	348 559 570 256 316	345 562 546 266 330	6 - 4 41 - 27 - 34	3 4 5 6	269 232 133 158	273 230 129 149	- 9 4 8 19	- 8 - 7	6 92 115	8 l 85 116	12 -3	6	175 7 - 359	338	15
1 2 3 4 5 6 7	332 182 204 420 257 188	298 194 217 437 264 177 204	77 -29 -33 -34 -14 26 10	-12 -11 -10 -9 -8	6 148 132 131 180 153	127 125 131 169	45 15 0 21	- 6 - 5 - 4 - 3 - 2 - 1	120 132 104 80 85 75	116 120 110 84 83 80	8 22 -11 -11 -4 -9	1 2 3 4 5 6	227 124 195 190 190 182	223 124 199 186 177 187	9 0 - 10 8 29 - 11
·		1 l		- 7 - 6 - 5	214 299 313	151 217 285 310	- 5 31 5	0	7 - 1 105	102	5	0	7 - 232	249	- 43
-13 -12 -11 -10 -9	149 158 250 193 172	136 156 259 196 166	28 4 -19 -6 12	-4 -3 -2 -1	296 257 270 243 179	291 249 281 257 176	12 16 -23 -32	1 0	141	103 -9 l	- 5 - 6	1 2 3 4 5	409 264 197 261 212	401 264 202 252 206	17 0 -11 21 13 25
- 8 - 7 - 6 - 5 - 4	256 111 185 386 393	264 112 185 393 382	- 20 - 2 0 - 16 23	1 2 3 4 5	210 212 221 204 175	203 216 211 191 171	15 -8 23 31 9	1 2 3	126 109 116	124 115 108	- 10 16	- 12	128	138 0 l 113	31
-3 -2 -10 12 3	260 350 366 196 185 242 119 272	263 362 356 209 201 222 132 271	-7 -28 22 -34 -42 46 -27	-12 -11 -10 -9 -8	6 120 113 130 91 52	5 l 117 108 121 84 37	5 9 19 10	0 1 2 3 4	173 169 124 116 125	164 166 117 118 123	18 8 15 -3	-11 -10 -9 -8 -7 -6 -5	143 181 174 209 283 83 261 431	140 178 163 225 294 61 274 424	7 25 -37 -27 33 -30 13
5 6 7	256 175 172 6	254 164 154 2 1	3 24 39	-7 -6 -5 -4 -3 -2	146 203 248 284 235 184	141 201 237 290 233 170	9 5 23 -12 4 28	0 1 2 3	219 196 144 123 98	194 192 154 108	51 9 -22 31 -9	- 3 - 2 - 1 0 1 2	239 306 340 161 177 271	244 321 336 163 188 263	-12 -36 10 -3 -27
-13 -12 -11 -10	132 166 196 183	117 156 198 197	31 21 -2 -31	-1 0 1 2	191 124 95 203	186 136 97 199	-21 -1 8	5		108 6 l	- 6	3 4 5	197 196 224	195 190 219	3 14 12
-9 -8 -7 -6 -5 -4 -2 -1	223 196 144 299 260 392 393 245	222 182 143 296 256 395 389 237 316	32 5 5 9 6 8 19 - 25	-11 -10 -9 -8	196 137 6 82 98 92 79	196 130 6 l 69 99 86 79	-1 14 30 -2 11	0 1 2 3 4 5	275 215 206 184 137 129	280 186 193 190 130 126	-11 60 27 -12 15	-12 -11 -10 -9 -8 -7	140 154 182 191 217 222	1 1 134 140 194 192 201 231 160	12 32 -25 -1 36 -20
0 1 2 3 4 5 6	297 141 169 292 198 187 207	281 142 175 283 202 179 208	- 25 - 37 - 2 - 12 - 7 - 18 - 1	-7 -6 -5 -4 -3 -2 -1 0	145 142 124 153 151 126 138 120	141 148 122 135 159 141 120 123 106	-16 -11 2 31 -14 -26 31 -4 -18	0 1 2 3 4 5 6	290 220 197 191 179 157 176	296 239 176 191 182 144 168	-15 -45 -44 0 -8 29 18	-54-3-2-10123	164 243 302 309 240 217 268 129 159	235 304 311 242 216 259 133 160 235	19 -4 -3 -4 21 -9 -19

		trans	[ReO2	(IMA)	P)4](PF6)2					Page	14			
4 5	191 163	186 151	11 26	- 9	110	100	19		8	0 1		- 1 0	142 155	133 144	18 22
	7	2 l		- 8 - 7 - 6	86 100 128	84 104 124	- 7 8	-11 -10 -9	104 142	94 132	18 20		8	5 l	
- 12 - 11	124 141	116 136	16 12	- 5 - 4	129 137	127 131	3 12	- 8 - 7	175 200 239	181 186 238	-13 28 1	- 8 - 7	113 83	105 89	15 - 9
-10 -9	163 207	148 198	3 2 2 0	- 3 - 2	144 132	128 132	32	- 6 - 5	252 182	255 159	- 5 4 5	- 6 - 5	100 117	96 110	6 13
- 8 - 7 - 6	251 146 199	251 146 193	0 -1 13	- 1 0	110 104	117 102	-14	- 4 - 3 - 2	196 235 147	193 231 136	5 8 19	- 4 - 3 - 2	99 115 135	101 113 134	- 4 3 1
- 5 - 4	289 222	289 209	0 27	-	7	7 1	• •	- 1 0	$195 \\ 244$	200 254	-10 -20	_		6 l	_
- 3 - 2 - 1	258 284 161	270 294 155	- 27 - 23 11	- 7 - 6 - 5	111 96 110	104 103 102	12 -13 13	1 2 3	187 141 234	183 139 225	10 5 19	0	131	116	29
0 1	$\begin{array}{c} 217 \\ 225 \end{array}$	$\frac{217}{219}$	0 13	- 4 - 3	$\begin{smallmatrix}122\\103\end{smallmatrix}$	122 106 93	0 - 5		8	1 l		0		5 1	
2 3 4	147 174 212	134 167 209	24 16 6	- 2	100	8 1	12	-11 -10	140 131	129 119	23 25	0	157 9 -	165 4 l	- 18
		3 1		ō	88	92	- 7	- 9 - 8	188 218	182 210	13 18	0	160	167	- 15
-12 -11	110 145	102 145	15 - 1	1	114	104 7 l	18	- 7 - 6 - 5	211 190 211	195 189 215	31 1 -7	1	196	203 3 l	- 15
-10 -9	$\begin{array}{c} 163 \\ 182 \end{array}$	159 181	10	0	161	167	- 14	- 4 - 3	164 176	155 166	$\begin{smallmatrix}17\\21\end{smallmatrix}$	0	146	127	40
- 8 - 7 - 6	220 127 179	216 125 178	8 3 2	1 2	167 132	147 135	43 -6	- 2 - 1 0	223 191 180	232 190 170	-19 2 22	1	188	186 2 l	2
- 5 - 4	268 265	278 259	-21 11	•		6 l		1 2	208 157	209 155	- <u>1</u>	o.	234	241	- 17
- 3 - 2 - 1	254 259 227	239 264 226	-10 -3	0 1 2	181 225 166	176 220 155	11 10 24	3	181	170 2 l	24	1	182 9 -	168 1 l	30
0 1 2	170 195 203	158 187 200	24 17 7	3	155 8 -	151 5 l	8	-11 -10	123 123	113 122	13 3	0 1	230 209	236 201	-14 16
3 4	145 149	145 145	0	0	182	160	42	- 9 - 8	151 215	145 204	$\begin{array}{c} 14 \\ 27 \end{array}$	1	9	0 I	10
	7	4 i		1 2 3	227 200 156	222 203 145	12 -8 23	- 7 - 6 - 5	223 178 217	225 162 201	- 5 29 31	- 9 - 8	152 202	140 189	26 29
-11 -10	99 130	89 119	18 23	•		4 1	20	- 4 - 3	192 138	197 128	-9 16	- 7 - 6	145 159	138 151	15 17
- 9 - 8 - 7	167 188 183	165 174 181	28 3	0	235 193	249 174	-31 43	- 2 - 1 0	195 219 153	200 231 152	-9 -30 1	- 5 - 4 - 3	196 171 122	199 161 125	- 5 19 - 7
- 6 - 5	238 225	236 212	4 25	2 3	197 164	192 166	10 -5	1 2	135 182	137 187	- 3 - 11	- 2 - 1	157 171	172 170	- 35 2
- 4 - 3 - 2	220 209 179	220 223 163	0 -29 31	4	144	129 3 l	30		8	3 1		0	174 9	160 1 l	3 2
- 1 0	198 176	195 186	5 - 2 4	o	216	231	- 3 3	-10 -9	173 197	161 185	25 26	- 9	148	138	21
1 2 3	154 179 189	147 175 178	15 9 25	1 2 3	185 161 159	192 143 170	-13 41 -26	- 8 - 7 - 6	196 205 173	185 185 169	26 44 9	- 8 - 7 - 6	174 168 135	158 163 126	35 11 17
	7	5 l		4	189 8 -	188 2 l	2	- 5 - 4	167 172 180	153 170 187	28 3 -16	- 5 - 4 - 3	161 173 113	153 186 121	15 -27 -16
-10 -9	108 117	101 119	13 -3	0	239	247	- 15	- 3 - 2 - 1	203 206	189 200	30 13	- 3 - 2 - 1	130 196	126 201	- 10 - 10
- 8 - 7	57 74 152	63 69 151	-11 9 1	1 2 3	246 200 147	257 196 139	- 25 8 18	0 1	196 126	193 122	4 9		9	2 I	
- 5 - 4	144 162	155 156	-19 11	4	210	201	19		8	4 1		- 8 - 7	132 153	120 143	$\begin{smallmatrix}24\\21\end{smallmatrix}$
-6 -5 -4 -3 -2 -1 0 1	190 127 105	181 134 102	17 -14 5	0	8 - 271	1 l 266	11	- 9 - 8 - 7	145 157 140	129 157 142	3 2 0 - 3	- 6 - 5 - 4	175 173 160	169 154 157	$\begin{array}{c} 14\\37\\7\end{array}$
0	125 143	124 130	2 f	1 2 3	215 238	209 238	15 0	- 6 - 5	169 142	163 145	13 -5	- 3 - 2	162 142	162 135	- 1 15
2	135 7	119 6 l	31	3 4	210 172	207 152	8 31	- 4 - 3 - 2	105 152 168	98 140 166	12 24 5		9	3 1	
		-						-			•				

trans [ReO2 (DMAP) 4] (PF6) 2 Page 15
-6 145 132 24 -5 158 150 16 -4 133 119 26 -3 144 133 15