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Abstract

The effects of boundary conditions on the linear stability of finite cell pure
fluid Rayleigh-Bénard convection are investigated via a variational formalism and
a perturbative approach. Some general properties of the critical Rayleigh number,
Rc, with respect to change of boundary conditions or system size are derived. I
argue that R differs fro;n its infinite cell limit by an amount that is inversely
proportional to the square of the system size, and that the fluid variables must be-
come vanishingly small near the sidewall when compared to their bulk values, thus
generalizing the known results derivable from the amplitude equation approach for
a two-dimensional problem. It is also shown that the reaction-diffusion models of
spatial pattern forming systems in developmental biology can be thought of as a
special case of the convection problem. The similarity and major difference be-
tween the two systems are discussed. I also show that, as far as the onset stability
is concerned, one can replace the sidewall of a convection cell by a mathematically
simpler homogeneous boundary condition while still retaining the basic physics

involved.
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Chapter 1: Introduction

§1.1 Organization Of This Work:

Rayleigh-Bénard convection has been an intensively studied problem in recent
years for several reasons: (1) From the experimental point of view a layer of fluid
uniformly heated from below is simple to study, and the experimental setup can be
well controlled. (2) The pattern formation and dynamics of this system are very
rich, and bear several features common to other reaction-diffusion syétems that are
of interest to people working in different fields. (3) The governing equations for
the system are simple and admit reasonably general and powerful techniques for
theoretical treatment.

Although it is true that a considerable amount of analytic results in the weakly
nonlinear regime of the convection problem have been derived, relatively little
about the linear problem is known thoroughly when the effects of the boundaries
are explicitly taken into account. A major focus of the present work, therefore,
is devoted to this problem. This is of great interest because the finiteness of the
convection cell can significantly increase the complexity of the dynamics and put
constraints on the formation of patterns inside the cell. For example, the reflec-
tions of a traveling wave can interact with the original wave in a very complicated
manner if the sidewall is present. Also, the convective rolls might have to adjust
themselves in such a way that they can be accommodated by the geometry of the

convection cell and the imposed boundary conditions are satisfied. This certainly
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will constrain the allowed patterns in a cell. Because of the obvious intractability
of the full problem by a rigorous approach at this moment, not to mention that
other complications, such as rotation or the presence of impurity which could cause
even richer phenomena, I have decided to concentrate on the simplest case in which
only the convective instability of finite cell pure fluid is considered. I believe this is
the first step toward a better understanding of how the sidewall influences the bulk
fluid. A somewhat more analytical approach is taken in this work in the hope that
it might shed some light on why or when other more phenomenological approaches
are expected to work. In addition, this can also serve as an independent verification

of predictions made by other approaches whenever comparison is possible.

The presentation of the results of this study is organized in the following
order: In Chapter 2, I show how the linear stability problem can be formulated
in terms of variational principles. This is desirable because from the theoretical
point of view it helps us exclude some possible pathological behavior in other
systems that do not admit such formulation. For example, the eigenvalues of
this system are real and can never coalesce to form a complex conjugate pair.
This, then, implies the eigenvalues will change in a well-defined way when we vary
adjustable parameters of the system, a result that is essential to my approach and
used extensively in this work. Having shown the possibility of expressing both
the growth rate in time and the critical Rayleigh number in terms of variational

principles, I then go on to show that this formalism easily predicts monotonic
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dependence of system stability on properties of the sidewall, such as its thickness
and thermal conductivity. Several other monotonicity theorems are also presented.
A simplified “surrogate” homogeneous boundary condition modeling the effects of
the sidewall that has been commonly used in this field, and which seems capable of
capturing the underlying physics, is then introduced. Its corresponding variational
formulation is briefly discussed. This paves the way to Chapter 3, which is devoted

to investigating, in detail, the properties associated with this “surrogate system.”

I develop in Chapter 3 a perturbation theory and combine it with results ob-
tained in Chapter 2 to derive, among other things, the effects of cell size on stability
and the size scaling behavior of the critical Rayleigh number of the surrogate sys-
tem. I give an argument that makes it apparent that the spatial pattern-forming
mechanism characteristic of the reaction-diffusion models of developmental biol-
ogy can be'viewed as a special case of the convection problem. The difference
and similarity of the two systems are pointed out and discussed. I close the chap-
ter by showing that the surrogate system indeed simulates the real system in a

mathematically well-defined way, thus justifying the original simplification.

In Chapter 4, a very simple-minded picture of the behavior of a convective
roll near the sidewall is proposed as a physical argument for the orthogonality of
the roll to the sidewall. Though completely nonlinear in principle, the argument
I propose is linear in nature because the fluid equations become linear near the

sidewall when realistic boundary conditions are imposed.
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Chapter 5 concludes my investigation and points out other problems awaiting
further research. I also include Appendix A to illustrate the ideas and verify the
predictions of the main text. Appendix B supplements the text by providing a
brief discussion of the feasibility of separation of variables for the problem at hand.
In this first chapter, however, I will give a brief review of the history and some
of the simple characteristic phenomena observed in experiments, derive the gov-
erning equations to be studied in later chapters, and explain the observed features

in terms of simple physical arguments.

§1.2 Brief History:

In 1900, Bénard performed the first quantitative experiments' which later ini-
tiated much theoretical and experimental work on the convective instability of a
layer of fluid heated from below which is now known as “Rayleigh-Bénard convec-
tion,” though according to Drazin and Reid? the first one to describe this convective
instability seems to be J. Thomson.® In 1916, Lord Rayleigh published the first
theoretical treatment of this problem under the mathematically simpler assump-
tion of free-slip boundary condition.* Numerical solutions generalizing his theory
to cover cases with realistic boundary conditions were subsequently developed by
Jeffreys® and Low.® In 1940, Pellew and Southwell” succeeded in formulating the
linear stability of a laterally unbounded system in terms of a variational principle,
which was later generalized by Sorokin® to a finite system with either a perfectly

insulating or a perfectly conducting sidewall. The study of nonlinear pure fluid
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convection caught the scientific community by surprise when in 1963, Lorenz dis-
covered a strange attractor in a simple three-mode Galerkin truncation model of
the atmospheric convective motion.® Later, Segel'® and Newell and Whitehead!!
developed the amplitude equation approach that is capable of describing many
weakly nonlinear phenomena in one-dimensional systems. Their method is now
widely used in many other fields to treat different problems. Meanwhile, convec-
tion problems with other complications had also been studied intensively. These
include the rotating convection problem that is directly related to solar dynamics
and geophysical flows, binary fluid convection that becomes unstable through Hopf
bifurcation, and convection in porus media, just to name a few. It is interesting to
note that the cellular pattern originally observed by Bénard was later concluded
to be caused not by buoyant instability, but by surface tension at the air-liquid

interface.12:13

§1.3 Governing Equations:

Consider a layer of pure fluid placed in between two horizontal plates whose
temperatures are fixed in such a way that the bottom is warmer than the top. (See
Fig. 1.1.) Denote this convection cell by Q. In most experiments the thickness d of
the fluid layer is several millimeters and the temperature difference AT across the
layer is several Kelvin. The system is stable and remains in a quiescent, structure-
less, purely thermal conducting state unless AT exceeds some critical value. When

instability sets in because of the increased temperature gradient, cellular pattern
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of convective rolls with a characteristic wavelength~ d forms spontaneously.

convection cell

Figure 1.1: Schematic drawing of the experimental setup for
Rayleigh-Benard convection.

If AT doesn’t exceed its critical value by too much, the system will settle down
to a time-independent state with the described roll structure. It is commonly
observed that the convective rolls have the tendency of aligning themselves normal
to the sidewall of the convection cell.!*~® Complicated dynamics sets in if AT is

increased further.

The governing equations describing the time evolution of fluid velocity ¥, tem-

perature T', pressure P and density p are the Navier-Stokes equation, heat transport



equation, and mass conservation law:

g_:+(a-V)ﬁ= %VP—géz +uvVi, (1)
%f- +(7- V)T = kV?T, (2)

9 .
EP‘*‘V'(pv):O) (3)

where v and k are the kinematic viscosity and thermal diffusivity of the fluid,
respectively. Here g is the gravitational acceleration which acts in the opposite
direction to the vertical normal €,. The time-independent conduction profile (sub-
scripted by c¢) is given by

z

Tc—_-Tl—'d

AT,
4)
VPc+chéz =0,

with T} = temperature of the bottom plate, and p. being some known thermo-
dynamic function of T, (equation of state). For many experiments it suffices to
assume p = p1(1 —y(T —T1)), where p; is the fluid density at temperature T} and
7 is the (constant) thermal expansion coefficient, though one must bear in mind
the peculiar property of water at 4°C. With this assumption we can rewrite Eqns.

(1) through (3) in terms of deviations from the conduction profile:

5 1
Zt_” +(7-V)F = —-VP - Bpl—gfyéTéz + UV, (5)
5
%_tT + (7 V)8T = kV26T + %vz , (6)

V5= %7(&V25T) , (7)
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where the last equation is obtained by comparing Eqns. (3) and (6). When the
two terms of the R.H.S. of Eqn. (6) are of the same order of magnitude, as is the

case if we consider the linear stability of the onset configuration, Eqn. (7) gives
—| pl vZ
V. 6| =yAT—0(=) .
V-9l =y ATZ20(7)

For water at room temperature v = 6.427 x 1073°C~1,1% and we see that V - 7' is

practically zero in order of magnitude. This suggests the “Oberbeck-Boussinesq
approximation,” which assumes that (1) all the coefficients in Eqns. (5) and (6)
can be treated as constants, and (2) that Eqn. (7) can be approximated by the
incompressibility condition V - ¥ = 0. This argument also suggests the possibility
of expanding the solution in terms of the small parameter yAT, if non-Boussinesq
effects are not negligible. A more rigorous and general approach along this line
already exists in the literature.2°=22 In the following, I will simply adopt this
approximation without further discussion.

Eqgns. (5) and (6) and the incompressibility condition can be cast into a di-
mensionless form if we scale length, time and temperature by d, d?/x, and skv /vygd®,

respectively:

i (@ V)i =oV:i+ 00é, — Vp (8)

a9 . 2 Lo

—a—t--’r(u-V)Q:V 0+ Ru, (u,=1u-¢,) (9)
V-4=0. (10)

Here @ and 6 are the dimensionless deviations of velocity and temperature from
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the pure conduction profile, respectively, whereas o = v/k and R = ygd*AT/(kv)
are respectively called the Prandtl number and the Rayleigh number.
The fluid also interacts with the sidewall €2,,, whose dimensionless thermal
conductivity is k, through heat exchange across their interface S. Denote the
ratio of heat capacity per unit volume of the sidewall and the fluid by r, then the

dimensionless temperature ,, in the sidewall is assumed to satisfy

% = kyV20, in Oy, (11)
0,=0, —gg-—rnw% on S, (12)
-g—g: =0 on Sg N (13)

where S, is the outer surface to the sidewall, and 7 is the outward normal to a
surface. We also assume 6,,=0 at 2=0,1. The viscous boundary conditions on 9§

are taken as

upn=d-A=0, (14)
a—'
At aiy =0, (15)

where )| and %ﬁ} are the shorthand notations for the projection of @ and g% onto
the boundary 952, respectively, and « is a conveniently introduced nonnegative con-
stant that can differ on the two horizontal plates and the sidewall. (The physically

admissible no-slip condition corresponds to taking a = co. )

§1.4 The Underlying Physics:
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To understand physically why a minimum temperature difference AT, or
equivalently R, is required to create convective instability, we shall consider the

linear stability of the conduction profile. Then
/Qﬁ'° Eqn.(8) + Zg - Eqn.(9) —&—/;2 %Gw - Eqn.(11)

d 2 9 / TO o

— — —6:

dt(/'“'+/R9+ R

(16)
{ (frvaes [ aiae+ [ Ziveps [ Toeiwa,p)
+2/ uzﬁ}
Q

after integration by parts, where we have also made use of Eqns. (10) and (12)
through (15). Notice that in order for the system to be stable, R must be controlled
so that ﬂd%l < 0 for all infinitesimal disturbances. Therefore, stability corresponds

to {---} <0 on R.H.S. of Eqn. (16). Rewriting this stability criterion, we have

‘ 2 Jg usb <1 (17)
Ja IVl + [oq aldl? + fo £IVOP? + fo, %= IV6u[?

In view of Eqn. (8), we see that the numerator of Eqn. (17) is twice the power
supplied by the buoyancy, and the terms involving # that appear in the denom-
inator are simply the power dissipation due to viscosity. The terms involving 6
represent thermal dissipation. Hence, the stability criterion corresponds nicely to
our intuition that instability occurs when the buoyancy wins over dissipation. In
particular, we note that at marginal stability, Eqns. (8), (9) and (11) imply the

buoyancy driven power gain, the viscous dissipation and the thermal dissipation
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are all equal, and we recover Chandrasekhar’s thermodynamic criterion for the
onset Rayleigh number.??
Because the disturbances are arbitrary, we can absorb \/1/_R into 6 and 6,

and yield

2 foub < 1
fQ IVl + faQ alil? + fQ Vo2 + fﬂw rkw|VOu2 ~ VR

(18)

The L.H.S. of Eqn. (18) apparently has a maximum that will be denoted by
1/v/Rc, and we immediately see that the system is stable if and only if R is less
than Rc. This shows why a certain critical R¢ must be exceeded in order for
convective instability to set in.

To understand why a particular wavenumber is selected at the onset of in-
stability, one can work with the stability criterion Eqn. (18). But here we give a
different, yet more direct approach. Let’s consider a two-dimensional convection
problem for illustration. Suppose the disturbances have a very large wavenumber
g. Then Eqn. (10) implies that u, is ¢~ smaller than u, in order of magnitude,
and Eqns. (8) and (9) reduce to

Ou, N J@zuz 06 N ?2_9

ot 8z2 ’ Ot 0z’

(19)

This means, basically, there are two modes: A vertical viscous mode with a decay
constant o¢?, and a horizontal thermal diffusive mode with a decay constant ¢2.
(Fig. 1.2) Similarly, for ¢ ~#0 we deduce that u, < u, and

Ouy u, o8  9%6

A AR T (20)
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from which one sees there is a horizontal viscous mode with a decay constant at
least 072, and a vertical thermal diffusive mode with a decay constant at least
7%, (Fig. 1.2) In other words, both large ¢ and small ¢ modes are stable against
perturbations, and so the system must pick some intermediate g if it becomes

unstable.
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(a)

(b)

Figure 1.2: (a) Large wave number configuration is
dissipated via strong vertical motion and horizontal
thermal diffusion. (b) Thermal diffusion is mainly
along the vertical direction, whereas viscous
dissipation is due to horizontal motion when the
wave number is very small.
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Chapter 2: Variational Formulation Of Linear Stability Analysis

The linear stability of finite cell pure fluid convection can be formulated in
terms of variational principles even when the sidewall is explicitly taken into ac-
count. This generalizes the results obtained by previous workers.”® In this chapter,
I will describe these variational principles and derive some monotonicity theorems
directly from them. A system with a mathematically simpler thermal boundary
condition is introduced together with its corresponding variational properties. Its

relation to the real physical system will be relegated to the next chapter.

§2.1 Variational Principles:

It turns out that the natural (and most commonly adopted) scaling we used
in Chapter 1 to render the governing equations dimensionless is not particularly
convenient from the theoretical point of view when we try to formulate the linear
stability problem of a convection cell in the framework of variational principles.
In order to make the presentation less complicated I will adopt a slightly different

scaling. If we rescale § — /R/06 and 8,, — \/R/00,, then the linearized version
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of Eqns. (1.8)*, (1.9) and (1.11) can be expressed concisely as

ov
- =LV
c 0 0 0 O 00 O 0 0
0 0 0 0 O 00 O 0 0 Vp
= 0 0 0o 0 0 |VZ2+]0 0 0 +VoR 0 v—1| 0
000 1 O 0 0 VoR 0 0 0
0 0 0 0 ke 00 0 0 0
Vp
E{b'v2+\/E_R‘A}\I/_(0),
0

(1)

where D' and A are 5 x 5 matrices defined in an obvious way, and

Y= : E(;i)' ?

After integration by parts and using Eqns. (1.10) and (1.12) through (1.15), it

S o)

is easy to show that the operator £ is self-adjoint, provided we define the inner
product between ¥’ and ¥ by

< WU >= /ﬂ wtows /Q "0’ -6, (3)

w

where “1” stands for the complex conjugate of the transposition of a vector. Thus,

the eigenvalues A of £ are real, and to determine the onset Rayleigh number one

* An equation referred to in other chapters will be preceded by its chapter
number then followed by its equation number. Equations in the same chapter
will be referred to by their equation numbers alone. This convention will also be

adopted for the numbering of theorems and lemmas.
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can simply set %‘%’-:O. Associated with £ is a variational principle which apparently

has the following form:

Variational Principle I.
The growth rate A of Eqn. (1) is a stationary value of the following variational
functional I[¥], whose trial function ¥ must satisfy Eqns. (1.10), (1.12), (1.14)

and 6 =6, =0 at z =0 and 1:
Y] =
— (Jo oIV + foq oaldl? + [o [VOP + [y, rhulVOul?) +2VoR fyu.b  (4)
Jolal? + [o 602 + [, 762, '

It is straightforward to verify that the function ¥ that renders I[¥] stationary
is precisely the eigenfunction of £ associated with A which satisfies the correct
boundary conditions Eqns. (1.13) and (1.15).

Before discussing properties associated with this variational principle we need

to derive two lemmas that will be used later.

Lemma 1.
For any given function g defined in a domain 2 whose topology is not neces-

sarily that of a ball, the following inequality holds:

Joq 92 Jo IVgl?
I ®

for some positive constants ¢; and c; that only depend on the geometry of Q but

not g¢.
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Proof:

We can find a tubular neighborhood N near 02 that is completely inside Q,
and cover all of N by a finite number of patches with polar-like coordinates (¢;,1;)
(0< & <1) such that: (1) (§;=0,n;) represents the “inner” boundary ON\9Q of
N, (2) &; is the normalized arc length along any ¢;-curve, (3) (¢; = 1,7;) describes
the boundary 0€,and (4) the angle v between the basis vector ;—sj and the surface
normal 7 on Of) is always less than and bounded away from %, as shown in Fig.
2.1. Notice &; is like the radius, while n; is like the angular coordinate. In order

to simplify the notation, we’ll also drop the subscript j in the following derivation.

Let f= £° for some s>1, and let J be the Jacobian, then

/mgz=/¢_=192co£7dns %/Eﬂgzldn
= gtasan= [ ¢t75an
- %/01 d&gg/ngfdn
:.lc./old§</2g8£.1fd +/ 0(ajgf)d’7>

for some constant c.

But

b

! 0
df/g—a%den’ = gg‘g‘f, S/ IQII@I

\// /l 12<1\// /]Vg}2<l\// /lvglz

where [ is the maximal arc length of £ curves from the inner surface of N to 9,
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Figure 2.1: Local coordinates in a tubular neighborhood N
of the exterior surface ABCD to a domain Q.

and we had used Cauchy-Schwarz inequality and the fact that the directional

derivative of 8 is never larger than its gradient.

/oldffsgz?—%zﬂdn,=’/lvyz—}§££—) Sc’/ﬂg2

for some constant c'.

Also,

Combining the previous results we immediately prove the claim.

Q.E.D.

With this result we can show the following:
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Lemma 2.
For any trial function ¥ that renders ]I [\Il]l bounded by some given constant,
the magnitude of each term in the numerator of Eqn. (4) is necessarily bounded

by the denominator of Eqn. (4) times some constant that is independent of ¥.

Proof:
Define
= fQ 0|V17|2 + fQ |V9]2 -+ fﬂw r&wIVGwIQ
= fQ ﬁlz + fQ 92 + fﬂw 7.930 ’
then
Joa liil*
fQ @] + fQ 6% + wi 62,
_ Joq lE? Jo |2

- Jo 2 . Jo 1@ + [, 6% + fnw rds,

LAY Jo I
: ( AEE " 2) Jolal? + [o 6% + o, 8%

< 01\/f Jo [Val” +c2 . (6)
Q

)% + fQ % + wi r62,

Therefore, we have

-+ aM\/;cl\/Z—{- apoc +2VoR > I[V]
(7)
>—(—- aM\/Ecl\/z—- apocy —2VoR
where as denotes the maximum of ||, and we have also applied Cauchy-Schwarz

inequality to the term fQ u.0. This clearly shows that ( must be bounded by some

constant that is independent of the choice of ¥ as long as II [\Il]l is bounded by
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some given number. Eqn. (6) then tells us even the boundary term [, |@|? is

bounded, and our proof is complete.

Q.E.D.

With the help of Lemma 2, one can immediately derive the following?*

Theorem 1.

The ordered eigenvalues of £ are bounded from above, and they vary contin-
uously with respect to changes of parameters o, Ky,...etc. in the problem. (This
means the eigenvalues don’t appear or disappear into nowhere when we tune the
parameters.) In addition, there are no accumulation points in the eigenvalue spec-
trum, and, therefore, there are only a finite number of eigenvalues that are greater

than zero.

The variational principle gives us the following characterization of the most
unstable mode A;:

Ap = m\gx[[\lf] . (8)

In this work we will call the configuration associated with \; the “ground state.”

With this characterization we can state the second variational principle now.

Variational Principle II.

The critical Rayleigh number R¢ that makes A; vanish is characterized by

: 2Jg o8 mw, o
—— = max — = ,
VRc v [o [V + V2 + faQ aoli)? + wi TKy|V8y|?
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where we have absorbed /o into the definition of .

Proof:

At criticality we have 0 = Ay > I[¥]. Our claim then follows from Eqn. (4).
Q.E.D.

Notice this is exactly what we derived in Chapter 1 (Cf: Eqn. (1.18) and the
remarks following it). In fact, we can extract more information by looking directly
at Eqn. (1): If we set the time dependence to zero (to correspond to the onset

configuration), then we see that v/R¢ is a generalized eigenvalue of

Vp 1.

RE=-V¥+| 0 | = TAY, (10)
0

provided /o is absorbed into @, as was mentioned above.

Let Dbeab5x5 diagonal matrix whose diagonal elements are 1,1,1,1 and rx,,,
repectively. Then R is an invertible operator because DR is positive definite in
the inner product defined above. If we now define a second inner product

(V']9), = <W'|D[v\1}> +/ ad™ - q
1519

then, after integration by parts, it is straightforward to show the operator R~1A4 is

self-adjoint under the second inner product, and the eigenfunctions can be chosen
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to be real, as will be done from now on. In fact, for a given eigenstate ¥ one finds

(¥|r4]v),
T (I,
_ 2fQ u,0 (11)
B fQ IVﬁlz + |V9|2 + fan alﬁlz + fgw 7""7wIV6’w|2
= J[¥],

a result that is trivially true in view of Eqns. (9) and (10). Therefore, solving for
Rc is equivalent to solving a self-adjoint eigenvalue problem A¥ = RYA¥, and
the existence, orthogonality and completeness of the eigenstates (under the second
inner product) follow from standard arguments in the literature.2®> We mention in
passing that the eigenvalues of R apparently come in pairs of opposite signs, and
their corresponding eigenvectors differ only in  and 6., which are negative to their
counterparts. Whenever no confusion is possible we will also call the eigenfunction
associated with max J[¥] the “ground state.”

Although we have formulated the problem with a realistic sidewall in terms of
two variational principles, sometimes one simply replaces the effects of the sidewall

by a mathematically simpler boundary condition that takes the form .

o0
5. HB0=0. (12)

Here 3 is an “effective thermal conductivity” of the sidewall that is introduced
to simulate the influences of the sidewall on the convection problem. One usu-
ally allows S to vary on 9. The reason one would like to adopt this bound-

ary condition is several-fold: (1) It captures the basic underlying physics, (2) the
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associated mathematical problem is “simplified” because the convection cell be-
comes self-governed, (3) it admits comparison with the reaction-diffusion models
of developmental biology, and (4) the case of negative 3 can be treated without
modifications if we are interested in the behavior of the growth rate ;. (Later on
I will show that the negative B regime, though never realizable in nature, turns
out to be a convenient bypass for studying the more relevant regime with positive
B.) The variational principles corresponding to a system subject to this “surrogate

boundary condition” apparently will still look the same except for the following

/ 62 -0

/ Thw|Vy|? — £66% .
Qu o2

minor modifications:

(13)

We will attach a superscript SBC to the two functionals I[- -] and J|- - -] when we
are considering a system with the surrogate boundary condition. The trial function
for it will be denoted by % since ,, is not involved. The associated linear operators
will be denoted by £L5BC and RSBC| respectively. When the sidewall is perfectly
conducting, instead of literally treating 8 as co, we should put in by hand the
extra constraint that the trial function ¢ must satisfy § = 0 on the sidewall. A
physically appealing argument why this is so will be given in the next section.
Later we shall also investigate in what sense this surrogate boundary condition

captures the underlying physics and simulates the sidewall properties.

§2.2 Some Monotonicity Results:
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The variational principles readily allow one to derive the monotonic depen-
dence of the stability on some of the adjustable parameters of the system. The

following says the system is more stable if the boundary is “more viscous”:

Theorem 2.

The eigenvalues A\; and A; (j = 1,2,...) are both decreasing functions of a.

Proof:

We will prove it for A; only, because the proof for A; is similar. Suppose ¥ is
the ground state for a system with parameter o, and add a subscript « to I|- - /] to

remind ourselves its explicit dependence on «, then
M= Lo[¥] = (Ia[¥] = Lo [¥]) + Lo [¥]

_ gola—aniap
Jo lal?+ fo 6% + fn,,, ros,
Joq o(a —a")|al? )
< _
< fQ lglz_}_fg 02 +f9w 02 + A3

+ I [\I’]

by the first variational principle, where primed quantities refer to those associated
with o'. This clearly proves our claim for A;. We can then resort to Courant’s

minimum-maximum principle?* to show that it is true for all \ i
Q.E.D.
The same trick can be exploited to show

Theorem 3.
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The ground state growth rate A; is an increasing function of the Rayleigh

number K.

Proof:

Apparently, we only need to show that fﬂ u.0 is greater than zero for the
ground state. But if this were not the case we could simply flip the signs of  and
0w and show that the new trial function renders a bigger I[¥], thus contradicting

the variational characterization for A;. (Cf: Eqn. (8))
Q.E.D.

I should remark that this monotonicity property for A\; doesn’t necessarily hold for

other eigenvalues, as is demonstrated in Appendix A.

Theorem 4.
Everything else fixed, the onset Rayleigh number R¢ increases if we make the

sidewall thicker.

Proof:
Let the ground state for the system with a thicker wall be denoted by ¥. We
can construct a trial function ¥’ for the system with a thinner wall by restricting ¥

on 2 + 'y. Quantities associated with the smaller system will be primed. Then,

N wi\Q'w Thaw |V Oy |
2fQ u,0

> /R + fﬂw\ﬂ’w rhw|Voul*
- ¢ 2fQ u, 6

VRo =1/7[¥] = (1/J'[¥'))
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The theorem is true because (- --) is positive.

Q.E.D.

Similarly, from Variational Principle I we can show

Theorem 5.
If the Rayleigh number is tuned so that \; for the cell with a thicker wall is

nonnegative, then the cell with a thinner wall satisfies A} > A;.

It is interesting to note that for a vibrating membrane which satisfies the
Neumann boundary condition one cannot prove a similar result like this for the
first excited state because the eigenvalues of all the excited states have the same
sign.

If we modify the previous argument slightly, so that the jump condition in Eqn.
(1.12) is satisfied when we compare two systems that are in every respect the same
except that their sidewall thermal conductivities are different, then Variational

Principles I and II imply

Theorem 6.
A; is a decreasing function of the sidewall conductivity k., whereas R¢ is an

increasing function of k.

Clearly, Theorem 6 also holds for a surrogate system if we replace rx, by

the effective conductivity 8. A moment’s reflection shows that as long as we are
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considering Aj, we don’t have to restrict ourselves to the case § > 0, i.e., 3 can be
negative without affecting our argument. What is interesting in this case is that
we then have an apparent paradox: physically we expect the two cases 8 = 400
to correspond to the same situation in which the sidewall is a perfect thermal
conductor. Yet Theorem 6 seems to indicate otherwise because the eigenvalues
are predicted to be monotonically increasing ( and, thus, never come back to their
original values ) when we tune § from +o0o to —oo. The apparent inconsistency
is easily resolved once we realize that this is just the manifestation of the well-
known phenomenon of holonomy in differential geometry? or “Berry’s phase” in

27, i.e., cyclic evolution of a system doesn’t necessarily bring

quantum mechanics
the eigenstates of an operator on the system back to their starting configuration.
As will be shown in the next section, some eigenvalues actually disappear into
infinity when we vary 8 from +oco to —oco. Fig. 2.2 shows schematically what

happens for this cyclic evolution when f is treated like the angular coordinate on

a cylinder and the two extremes B = +o00 are identified.

The reason why we can only take trial functions whose § vanishes on 9 for
a cell with perfectly conducting sidewalls in the variational formulation should be
clear now: as we tune f3; of 8 + 5, g% = 0 from 0~ to 0%, several solutions are lost
abruptly, and the numbering of the eigenstates is not preserved in this process. We
would expect a result similar to Theorem 1 to hold if it were possible to construct

a variational principle that is valid for 8; in any open interval containing 0, thus
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allowing the use of trial functions whose 8 doesn’t necessarily vanish on 912.

conducting
sides

n
K

Figure 2.2: Schematic plot of eigenvalues lj as functions of

B when the two extremes B=—infinity and B=infinity are
identified on a cylinder. The ring ¢ corresponds to a state
that is never perturbed by B.

§2.3 The “Run-Away” Solution:

In this section we give a brief description of what happens when the effective
thermal conductivity B of a surrogate system is tuned negative. This problem is
of interest because later I will use this unphysical regime to derive properties for a

surrogate system with a positive .

Theorem 7.
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Keep everything else other than § fixed. Then at least one eigenvalue \; goes
to +o0o when the § on the sidewalls tends to —oo. A similar result holds when we

tune o to —oo.

Proof:

Let’s take a trial function whose temperature § doesn’t vanish on part of the
sidewall and allow 3 to go to —co. Inspecting the expressions for I°BC[y] (Cf:
Eqns. (4) and (13)) and Eqn. (8) we see A\; > I[fBC[zb] — +o00 as ( tends to —oo.

This proves our claim. The proof for « is similar.
Q.E.D.

Note: Apparently, symmetries are preserved in the foregoing argument. This
means there is at least one “run-away” eigenfunction of the kind described above
for solutions associated with each type of symmetry.

It is interesting to note that the above run-away eigenfunctions manage to dis-
appear without jeopardizing the completeness of the whole set of eigenfunctions by
mimicking a zero vector =0 when # approaches —oo. This mimicry is achieved by
developing a very thin thermal boundary layer near the sidewalls and suppressing
the velocity field in the fluid. In fact, this feature can be derived and the boundary
layer width calculated very easily: first, we notice the term v/oRu, in Eqn. (1)
must be much smaller than A;6 in magnitude, because otherwise \/a—RQéZ would

become negligible compared to other terms in the g—f equation, thus implying the
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decoupling of the temperature and velocity fields. But then a restricted version of
Eqn. (7) applied to the decoupled linearized Navier-Stokes equation alone immedi-
ately tells us A; is bounded above and could never be made arbitrarily large when
we tune § to —oo, thus contradicting our assumption. This argument apparently
implies velocity is suppressed strongly and is much smaller than the temperature
everywhere in the cell.
Next, we “dot” the 8 equation of Eqn. (1) by 6, and integrate over the whole
cell to yield
2 ¥ = 2
— [ |Vé]* + 0—+VoR | Gu, =X [ |6]°, (14)
Q sn On Q Q
from which the presence of a thermal boundary layer is obvious because (i) the
first term on LHS is always negative, and (ii) the third term is negligible compared

to RHS. Thus, near the sidewall the 6 equation can be approximated by

—— A
752 g, (15)

where s is the inward normal distance away from the sidewall.

Solving Eqn. (15) subject to the boundary condition ——g—g— + B0 = 0 yields
6 o ePs (16)

and

A= f2, (17)

which clearly indicates a thermal boundary layer of width § = —%. The example

studied in Appendix A (cf: Eqns. (A.12) and (A.13) ) verifies our prediction.
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The next proposition is intuitively obvious and follows from the continuity of

solutions as functions of «.

Theorem 8.
The total number of run-away eigenfunctions when f — —oo is independent

of a as long as «a is finite.

Because the ordered eigenfunctions for the rigid case are smoothly connected
to the ordered solutions for the case %%L + ai) = 0 when oo — 400, a continuity

argument immediately sharpens Theorem 8 and gives, in particular,

Theorem 9.
The total number of run-away eigenfunctions as f§ — —oo is the same for both

rigid and free-slip cases.

Although Theorems 8 and 9 look quite innocent by themselves, a combination
of both does produce the following less-expected assertion, which will find its use

later.

Theorem 10.
Fix all the parameters except . Assume )\g is a degenerate eigenvalue of
multiplicity k when 8 = f; for some f. Then, no matter what value § takes, Ao

is always an eigenvalue of multiplicity at least k-1, provided the total number of
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run-away eigenfunctions is one when f — —oo. Again, we have a corresponding

theorem for a.

Proof:

Arrange the eigenvalues in decreasing order and let the multiplicities of the
eigenvalues be denoted by ni,n2,ns,... In Fig. 2.3 we put in juxtaposition the
ordering of eigenvalues for the three cases § = fy and f = +oo schematically.
Monotonicity of eigenvalues with respect to 3, i.e., Theorem 6 for a surrogate

system, is explicitly shown in the figure.

run-away
olution
[1r
[mi-11"
. [l ,2,...,m]
H "
. fni+11"
[ni] [ni+1,...,n1+N2] [ni+n2—-1]"
[ni+17
[ni+n2]’
P=+infinity B=Bo p=-infinity

Figure 2.3:  Monotonicity of kj with respect to  is shown

with [...] and [...]" denoting, respectively, the eigenvalues for
B=infinity and pB=—infinity.
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From the figure we see that
1 22 o =1 2 1) (19)

[n1 +1]" > - > [n1+ny —1]" > [ng + 1) (19)

where [j] denotes the eigenvalue of the j-th state.
Since the two cases B = Zoo correspond to the same physical problem of

having a perfect conductor, we must have
(1" = [1] (20)

[y +1)" = [ng +1]' . (21)

Combining Eqn. (18) with Eqn. (20) immediately shows there are at least n; — 1
states in the first group that can never change their eigenvalues when 3 varies.
Similarly, inspection of Eqns. (19) and (21) tells us there is a degeneracy of at
least ny — 1 in the second group, irrespective of what 3 is. Our claim can then be

proved by induction.

Q.E.D.

I should point out that the previous proof respects the symmetries of the
system, too. In other words, the assertion is still valid if we consider only solutions

with specific symmetry. As a matter of fact, the theorem is only useful when we
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can sort out the symmetries of the system first to guarantee the uniqueness of the
run-away eigenfunction. An explicit application of this theorem will be given later

when we investigate the size dependence of convection problems.
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Chapter 3: Study Of The Surrogate System

We devote this chapter to the study of various properties of a surrogate sys-
tem. First, I will develop a formal perturbation theory to deal with the change of
stability when the sidewall properties are varied. By way of the proof of a particu-
lar theorem, I briefly touch upon the similarity and difference between a convection
system and the reaction-diffusion model one usually encounters in developmental
biology. Then, the influence of system size on the stability of this surrogate system
is discussed via the combination of a perturbative approach and the results I de-
rived in Chapter 2 based on the variational principles. This allows me to conclude,
in particular, that the critical Rayleigh number for a large system with dimension
L differs from its inﬁﬁite cell limit by an amount that is proportional to L=2. The
last section of this chapter is devoted to the comparison of the surrogate system

and a real convection cell, i.e., one that has a realistic sidewall.

§3.1 Perturbation Theory, Size Dependence, And Biological Pattern For-

mation:

L5BC subject to the

Let {|i); >} denote the orthonormal eigenvectors of
boundary conditions of Eqns. (1.13) through (1.15) and (2.12). The corresponding

eigenvalue for |1); > is denoted by A;. For any given nondegenerate eigenvalue Ag
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we define the Green’s function by

lj >< ;]

Gr=) a (1)

j#0
If we use a prime to denote variables associated with the different thermal bound-
ary condition %—i’ + B'¢" = 0, then Lyapunov-Schmidt reduction of Ly’ = X'

immediately gives

_owl,
0 =) [ty = [ wl G =Ty —— [ @ -pwmlEy, @

(8' = B)GnBY', (3)
N
P =y + ', (4)

where B is a 4 x 4 matrix with only one nonvanishing element Byy = 1, and ¢’ t
is the projection of 9’ off the one-dimensional subspace spanned by 1py. From the
known solutions (15, A;), one can compute (¢', \’) by the following iteration scheme
whose convergence can be established by standard methods, provided |8’ — 3| is

small enough:

)\1(1) — X = —/BQ(IB, —,B)T/f'(-)‘-BT/)O ,
O = [ (8= p)6r B
Y
)\,(H—l) — X = __/BQ(ﬁ, _ ﬁ)¢§1§¢:(1) , (1>1) (5)
gD :/ ' —5)G>J<')31/’I(l) )
1)

(0 _ s L (1)
Y = hy + 9 .
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I N

oA _ .
Notice the first equation implies £5 5 = AT a result that apparently is also

derivable based on the variational principle. (Note: The proof of Theorem 2.1,
when transcribed for variation of 8 instead of a, obviously gives us this result.)
When the two states 1; and 1, are nearly degenerate we can define a Green’s

function

o=y Mzl 1)
1#1,2

and do Lyapunov-Schmidt reduction on the two-dimensional subspace spanned by

11 and 1, to obtain

( M=N—by o by ) ( ) Joa(B' — BYp] By )
——b21 /\2 - A= b22 i) faQ(IB, ﬂ)'%bjB",b,_L

_ / (8' — B)Gx By (3)
o0 7
¥ =21y + Tathy + ' (4')
b= [ (8 -yl B (6)
a0

This suggests the following iteration scheme for solving for (¥1', A1") and (2", Ay"):

(1) Lowest order eigenvalue X'V is to be obtained by solving

A= N® gy, —byy zy)
< —by; Ay — /\1(1) — by (1) =0. (7)

This also determines

(1) _ b —bir A = A £ /(b — by + Ng — A1)? + 4b12byy (8)
xgl) 2b1 ’
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where we have assumed b;2 # 0 for simplicity. Qur normalization convention can
then be taken as z; = 1.

(2) Iteration:

1/)IJ-(1) = 0

(/\1 — X by bz ) ( (11+1)> = (faa(ﬂ' - ﬂ)%/’IB?/"L(I))
~bay P LR YA Lo (B = Byl By L®

¢Il(l+1) — /(;Q(IBI . ,B)G)‘,(I)B'(/),(I)

' =gy + 2Py 't (5)

1
where :cgl+ )

and XY are solved by the matrix equation shown above.

Recall that we showed in Theorem 2.10 that sometimes it is possible for an
eigenvalue to remain the same no matter how 3 is varied. This rare occurrence
apparently imposes a very strong constraint because it requires 6 (and -g—f:, in

view of (2.12)) to vanish identically on the sidewalls, irrespective of what value 3

assumes. As a matter of fact, Eqn. (5) or (5') implies an even stronger assertion:

Theorem 1.
If both 8 and g% ever become identically zero on the sidewalls for some 8,
then the eigenstate and the eigenvalue will never be perturbed by 8 at all. Similar

results hold for perturbation by a.

Proof:
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For the nondegenerate case we can use Eqn. (5) and check that the eigen-
state and the eigenvalue remain the same up to any order of iteration. In the
case when degeneracy happens one can resort to either a continuity argument or

straightforward degenerate perturbation, Eqn. (5'), to prove our claim.
Q.E.D.

Perturbation theory can also be applied to studying the size dependence of the
stability of a cell whose sidewall is smooth, rigid, and perfectly conducting. Let’s
~ assume ' is a cell that is completely inside a slightly bigger cell Q. A Lyapunov-

Schmidt reduction yields

tryou
(,\' — )\0) i@ﬂ_l_)_ , (9)
S B0
. O
wre= [ enpy, (10)

where we have extended the definition of ¥’ by setting ¢' = 0 outside ', and
W' = 1o + ', Here, Q' refers to the sidewall alone, and notice the integral is
over §)'. These equations suggest the following iteration scheme for solving the

solutions for Q' :

9o
/\1(1) . )‘0 faﬂ' TD ¢
fQI "/’0"[)0
¢,L(1) _ GAOD% ,
o On 11
]LD sz’(’) ( )
A,(l+1) /\ — f@Q’ ¢0
f ¢T¢/(1)
WD
¢I—L(l+1) — G,\ D Z)b .

an! an
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Now we can prove a monotonicity result.

Theorem 2.

Let © and Q' be two cells whose sidewalls are smooth, rigid, and perfectly
conducting. Assume Q' is completely inside {2 and it is possible to smoothly trans-
form 09 to A, then A; > N; for j=1,2.... In other words, ' is strictly more
stable than Q. (Notice that this result can be trivially translated in terms of R, by

virtue of Theorem 2.3.)

Proof:

It suffices to prove this statement when the cells almost coincide. We will
also assume, without real loss of generality, that the state we are considering is
nondegenerate.

If %"— is not identically zero on 0f2, then the lowest order iteration of Eqn.

(11) yields

17 I I
N _ = Joor o D5y’ z—/ Ko p%o, g
f91¢0¢0

where s is the inward normal distance from a point on 9 to 9Q'. This clearly proves

our claim. So there remains the possibility that %’%920 on 0X). If this happens,

then next order iteration of Eqn. (11) yields

(1)
V@ _ Ao = faQ' ¢3Da¢ ~ “/ 82¢§D82‘/’0 3<0.
f '(l)’(l) aQ 2 877, 8712
QI
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’ is never attained in the above expression. In fact, the

But we claim that “=’
equality can hold only if ¢¢ = %‘% = %@ = 0 on the sidewall. Yet, upon rewriting

the original fluid equations in local coordinates near the sidewall, one immediately

arrives at the following initial value problem for fluid variables as functions of s:

0

a2 =
Op
g_fé’

where fi and f; are “driving terms” that (i) only involve lower order derivatives
in s and derivatives along the sidewall, and (ii) vanish identically on the sidewall

if g = %’%9 = %2;12@ = 0 on it. This implies ¢ = 0 inside Q after integrating along

s, thus contradicting our assumption that 1 is an eigenvector. Therefore, “=" can

never be attained, and our proof is complete.
Q.E.D.

We note that a proof of this theorem based on the variational principle is no
simpler because the trial function for the smaller domain must be carefully chosen
to take care of the O(s®) possibility we treated above if strict inequality is to
be proved. Also note that although our proof assumés a smooth sidewall, thus
excluding a rectangular cell, we can easily modify the proof to cover the case when
the stability of two rectangular cells is to be compared. The idea is to compare
them with an intermediate rectangular cell 2" whose two pairs of parallel sidewalls

are each in contact with the sidewalls of  and Q' respectively (see Fig. 3.1).
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~
- s am nf o o]
~

<

Figure 3.1:  An intermediate cell Q"=EFGH is introduced to
allow one to compare stability of Q'=ABCD and Q=IJKL.

Theorem 3.

Let Q be a rectangular box whose x dimension is L. Stretch € by a factor
I > 1 in the x direction to obtain a larger box '. Assume the boundary conditions
for both boxes are:
(1) the two horizontal plates are rigid or free-slip, and perfectly conducting,
(2) & + 89 =0 (B > 0) on the sidewalls, and
(3) =0 on the sidewalls.

Then there exists an I; such that R? < R2 for all I > ;.

Proof:
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If 6 happens to be identically zero on the sides that are parallel to the y — 2z
plane, then a modified version of Theorem 2 implies any [; greater than 1 will do.
Thus, we can assume @ doesn’t vanish identically on them. We now try to fill up
' by placing side by side as many copies of § as possible. In general there will
be a gap 2, left that is too small for any copy of 2 to be put in (see Fig. 3.2).

Assume it takes N copies 24,82, ...,Qn to almost fill Q'.

NL

Figure 3.2: N copies of identical box Q are joined
lengthwise to fill up cell Q'=ABCD, with an unfilled gap Qg.

We construct a trial function ¥’ for Q' in the following manner:

(1) Inside each of ©;,Q3,Qs,... we simply take the ground state wavefunction v

of Q as .
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(2) Inside each of Q2,84, s, ... we define ' to be the reflection of 1 with respect
to the wall common to its neighboring cell.
(3) In the gap Q, we define ¢’ as @' =0 and 6'(z,y,2) = 0(NL,y,z).
Note that the “kinks” of 1’ across the cell walls can be smoothed and present

no real difficulty to our argument. Thus,

_ N IV +VO1?) + N [oq IO

Q
T 2N fﬂ u,f
_ Jo IVEP A VO + [0, BIE']P + N[5 BI6) 1
= 2 fg,az?z:e' = +OlF)
/ 6|2 1
~ )+ A o) (12)

By the second variational principle we see this implies R% > Rg' for all large
enough N.

Q.E.D.

It is obvious that we can easily modify the proof and replace condition (3) of
the previous theorem by the more general viscous boundary condition (—9;%"- +oiiy =0
with a > 0. The same is true if the larger box is large in both x and y directions.
The main point to be made in theorems of this type apparently lies in Eqn. (12)
and the like which says the finite system is more stable than an infinite system by an
amount that is about what the boundary contributes in the variational expression
for R¢.

A look at Fig. A.3 shows that our inability to prove strict monotonicity for

all ' bigger than {2 stems from the fact that oscillatory behavior does indeed
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exist when Q' is not too much bigger than . This oscillation can be viewed as the
remnant of a very special spatial pattern selection mechanism one often encounters
in the reaction-diffusion models of developmental biology. To see the connection
between the two, we recall in the study of biological pattern formation that one

usually analyzes the stability of the following model?® :

DV +Ap=Xrp inQ, (13)
N0 s
D% +Byp =0  ondQ, (14)

where ¢ € C™ is an m-component concentration field in a “cell” , D, A, and B
are m X m matrices. Usually Dis positive definite and B is identically zero.
The problem can be solved analytically for the no-flux boundary condition by

taking the solution to be of form

Y=y, (15)

where 1 is some m x 1 constant vector, and ® 1s an eigenfunction of Laplacian

subject to the Neumann boundary condition:

Vip = pup in Q, (16)
Oy
= 0 on 0N . (17)

Substituting Eqn. (15) into Eqn. (13) we get the dispersion relation

det(uD + A—X)=0. (18)
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When the control parameters in the matrix A are suitably adjusted, there will only
be one branch of solution that becomes marginally stable when u equals some value
e- For all other u the associated A will have a negative real part and corresponds
to a stable configuration. Because y scales in size L like L™2, a cell that expands
indefinitely will lower the p of each mode, thus allowing different modes to become
unstable, in turn, upon passage through u., only to recover their .stability after
further expansion. A plot of the growth rate A versus L for this scenario looks very
much like Fig. A.1(a).

For a convection cell with free-slip boundaries and insulating sidewalls the

most natural ansatz is to write the solution 1 to the problem as

"y
Uy ugjzz
p= || = Yo |,
Uz I (19)
(¥ goe
8z
p = pyp,

where @, 1,8 and p are constants to be determined, and o satisfies Eqns. (16) and
(17).

Upon substitution of Eqn. (19) into the governing equations, one obtains

-1 opu—2A 0 0 P .
-1 0 cp—A VoR T

0 0 VoE u-x|la |0 (20)
0 p—p; He 0 6

where we have separated out z-dependence by introducing '327‘2“’ = p,p for some

appropriate constant p,. Solving Eqn. (20) for A we get

\ 1+a;t\/(1+0)2—4a(1—%(1‘*%2))

; - 9 ’ (21)
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from which we see that the pattern selection mechanism described before for bio-

logical systems works equally well here if we tune R to Rco = min E_’f—;—z—

Unfortunately, this particular case turns out to be more complicated than
is described above! The problem is that this trick requires the vertical vorticity
of the eigenfunctions we are interested in to vanish. Yet this is not guaranteed
for the problem at hand.* But for a one-dimensional problem this complication
apparently doesn’t occur, and in Fig. A.1(a) I show the X\ versus L plot for it
when R = Rgo = 24—77r4. One feature worth noticing in this figure is that there are
many intersections among different modes. When we change the viscous and/or
thermal properties on the sidewalls the intersections generally will break up and
form many oscillations, as shown in Fig. A.1(b). This clearly justifies our calling
the wavy curves remnants of a special biological pattern selection mechanism. The
implication is that Rayleigh-Bénard convection can be thought of as a canonical
pattern formation problem bearing features that some more specialized reaction-

diffusion models possess.

I should point out that a large three-dimensional cell whose two horizontal
plates satisfy the more general boundary condition, Eqn. (1.15), with a positive

or the physically realizable rigid condition can actually be solved by similar ansatz

* See Appendix B for a discussion of the subtlety involved.
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if the sidewall is free-slip and perfectly insulating:*

SR

R &

<
Il
«

(22)

Qb[N’
)

@
p=pp .

Here, ¢ is the eigenfunction of two-dimensional Laplacian on the horizontal cross-
section of the cell subject to the Neumann boundary condition, and @, ,, 8 and P
are functions of z properly chosen so that the governing equations and the boundary
conditions at z = 0,1 are satisfied.

Albeit our showing the similarity of pattern generation between convection
and biological systems, there exists a difference in which incompressibility of fluid

plays some role, as the next theorem and the remarks following it show.

Theorem 4.

Consider the eigenvalue problem of Eqns. (13) and (14), in which A is self-
adjoint and B is positive semidefinite. If Q' is a cell obtained by linearly stretching
() in the x direction by a factor I > 1, then A 2 A;j for all j.

Proof:

The eigenvalue problem is equivalent to the variational principle of the follow-

ing functional:

k) = S VIOV + fobldy — foulBy
Jo T

* This is in sharp contrast to the case when « is zero. The validity of this

method is verified in Appendix B.
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Let’s assume 9(r,y,z) is the “ground state” for the cell . Hence, \; = K Q4]
Next, we define a trial function ¢’ for the stretched domain Q' as ¢'(2',y',2') =
P(Z,y,2").
For any function f(z,y,z), we have
[)f(m,y, z)dzdydz = / f( i ,y 2")dz'dy'dz'

1
1 /
7 f 5

where f/(s/,1',2') = f(34',2").
Similarly,

apl azp 2.1 [ oyl out soy
/ l Q/ a.’li 6

We also have

L=/ - [ r=e,

where § (6') is the angle between the surface area element of 99 (8Q') and the y-z

plane. Hence, [ [ f = [y, f1<es ¢ . But from Fig. 3.3 we readily see

cos @

1608 6 _1. As/+/(As)? + (I1Az)?
wsf Dol A+ @ap

thus, I [0 f > [5q. f', if f is nonnegative on 9.

Combining all the previous results one obtains
M = KO[y]
_fQ/ v ¢,TDVIZ// + fQ/ ")blTAl/)l fag/ ¢’TB¢,
fﬂ ¢IT¢I

<AL,
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by the variational principle. Our claim can then be proved by invoking the
minimum-maximum principle.
,“ S

X

Q.E.D.

V-2 Elane

Figure 3.3: Side view of a small segment AB of the
boundary of Q and its stretched version A'B’' on the
boundary of Q’. A and A’ are identified for convenience.

A system that satisfies the conditions specified in the previous theorem, there-
fore, is not a candidate for biological pattern formation. After comparing Eqn. (13)
and L8 = Ay, we see the major difference between the two pattern forming
systems is the incompressibility condition. In fact, the role played by the incom-
pressibility condition can be most easily appreciated by comparing the proofs of

Theorems 2 and 3: in the former we have to put identical copies of Q side by side
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to produce a good trial function because the stability is lowered if an extra number
of more or less identical convective rolls can be generated to fill up the additional
space created due to the size increase, thus allowing the system to switch to a con-
figuration of more rolls, while in the latter, incompressibility constraint is absent
and “stretching” the original solution for Q readily produces a solution of lower

stability for the larger cell ', thus no switching to other modes is necessary.

We now concentrate on the scaling behavior of R¢ when the cell dimension L
varies from 0 to +oo0.

The small L behavior can be easily extracted from the fact that the critical
Rayleigh number corresponding to other boundary conditions is no smaller than
F—%’ the critical Rayleigh number for the same cell with free-slip boundaries and

insulating sidewalls, thanks to the analysis of Chapter 2. Thus,

X — (23)

for small L because p scales like L2, We can also see this from Eqn. (2.9) because
each of V& and V6 contributes a L~! factor for small L.

Thaven’t been able to prove with complete rigor that for a large cell of arbitrary
geometry the difference between R¢ and its infinite cell limit Rcoo is of order L2,
though a very plausible argument is presented below to show that this is indeed
the case. The idea is to study a cylindrical cell first and then compare it to other

cells of different geometry to derive the correct scaling behavior.
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To motivate the reasoning for the physically more relevant case of having two
rigid horizontal plates, let’s first study only the states with zero vertical vorticity
for a completely free-slip cylindrical cell with an insulating sidewall of radius L.

We have, in cylindrical coordinates,
: 1 tmeo r
¢ = sinnn(z + 5) ‘e Jm(km,j'z) , (24)

where m,n are integers, Jp, is the Bessel function of order m, and ky, ; is the j-
th root to %"%Q = 0. The corresponding A versus L curves for fixed m and n
look very much like that shown in Fig. A.1 when R = Rcq. It is clear that at

the intersection of any two curves we can find a state ¢; in the two-dimensional

degenerate subspace such that ¢; = %‘i—l = 0 at r=L. This means the state

satisfles 8 = —g—:i = 0 on the sidewall, thus implying it will never be perturbed

by B from our previous discussions. We will call it an “anchored state” in what
follows. In addition, this implies there is only one run-away solution when 8 —
—oo. Hence, the most unstable eigenstate for a free-slip cell with a conducting
sidewall is bounded below by the second unstable state of a cell with an insulating
sidewall, a result that can be seen by the same reasoning used in proving Theorem
2.9. But it is easy to verify that the second unstable curve Ay in the A\ — L
plot is monotonic between the two anchored states that are intersections of curves
corresponding to K j, km, j+1 and km j, km j+2, respectively. By the asymptotic
formula k,; = jm 4 5(m + 3) '® and Eqn. (21) we conclude that Ay = O(L~2)

for large L. Thus, the effect of perturbation on the sidewall thermal property is
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always of order O(L~?). Translating this result in terms of R, we immediately
have Rc — Rgo = O(L™?). Similar analysis shows perturbing the sidewall viscous
boundary condition for the m=0 modes has the same effect. However, it is to
be noted that simultaneous perturbation by a and # immediately destroys the
anchored states. Also, we don’t have any control on m # 0 modes when we vary
a. This apparent difficulty can be easily handled once we realize there are states
that behave virtually like anchored states under any perturbations, an interesting

assertion that will be made precise below, using a rigid-rigid cell as demonstration.

When the two horizontal plates are rigid we have to use Eqn. (22) as the
unperturbed system and tune a and 8 of the sidewall to study their effects. In
contrast to the previous case, we don’t have any anchored states this time because
J, the quantum number that characterizes the number of radial rolls, is coupled -
to the z-dependence of the eigenstates, thus preventing us from constructing a
linearly superposed state out of the two intersecting solutions to satisfy § = 0
or 4« = 0 at r = L, as the case may be. However, we do have states that are
practically anchored for all positive @ and B! Let’s consider states that have the
same number of vertical rolls. (In reality, only the states of one vertical rolls
are of interest to us.) Fix R to be Rcoo. Again, the intersecting solutions at
L = Lin: correspond to those that have different j values. In particular, the

most unstable intersections consist of two solutions whose j's differ only by one.

From the asymptotic expression’® Jp,(km ;) ~ , /;762—_ cos (km,; — Z(m + —;—)) we
m,J
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see |Jm(km,j+1 + Jm(km, ;)| = (9(%) = (Q(L—;l’;) because j/L;,¢=constant for large
L;n:. Thus, the intersecting solutions differ only by (9(7;};) on the sidewall. Eqn.
(8) then tells us one of the perturbed eigenstates will have 6 almost zero on the
sidewall because it is almost proportional to Jm(km,j+1) + Jm(km ;). This state
in turn must remain practically fixed during the process of perturbation by}Eqns.
(3) and (4). More specifically, its perturbation will be O(L™!) smaller than that
experienced by other states or states of different L. I would like to emphasize that
this argument is apparently very general and applies to simultaneous perturbation
of a and f as well. For example, we can choose a = tan (5 -%) and let § — By. The
final configuration then corresponds to a cell with a rigid sidewall whose thermal

property is g—% + Bob = 0.

We now examine the case when maximal perturbation is achieved, ie., a =
B = +4o00. Our argument plus the monotonicity Theorem 2 imply A = —O(L™?)
monotonically in L. What is more, we can easily see from smoothness that the dif-
ference between A(L) and Aint(L), the curve obtained by “analytically continuing”
Aint(Lint) in Ling for the intersecting eigenvalue A, is of order O (L;ﬁ) (Aint is
given by Eqn. (A.3) of Appendix A for a one-dimensional problem. The scalings

for both cases are the same.)

Next we can reverse the direction of perturbations and start with this rigid
and perfectly conducting case. Because the “unperturbed” curve A(L) is smooth,

as opposed to our original perturbation from the free-slip and insulating case when
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the most unstable mode has a kink at every intersection, we know the effect of the
perturbation must always be of order O(L™2?) because all the practically anchored
states are perturbed by O(L~3) only. This is true for any perturbation of the type

6- —r .
31 g% +6 =0 and al-a—'j-zlL + ¥} = 0, where a; and f§; are nonnegative.

The implication of this argument is: if we turn on the perturbation from the
free-slip and insulating case, say g—% + 86 = 0 for some very small but fixed 8 > 0,
then there must be a cross-over size Lo-o above which A(L) = Xine(L)+O(L73) is
valid. In other words, no matter how small the perturbation is, the structure of the
“tail” of the unperturbed A(L) is immediately destroyed for all large enough L, and
is replaced by a smooth curve that is practically independent of the perturbation
streﬁgth. This curve deviates from Ajn¢(L) only by O(L3). (Of course, Lo_o will
depend sensitively on the perturbation strength. The smaller the perturbation, the

larger Lc_o becomes.)

All the previous predictions concerning the behavior of A can be easily trans-
lated in terms of R.. What is worth mentioning is that our argument is essentially
one-dimensional and, thus, not surprisingly, bears all the features of the example
we study in detail in Appendix A.

For a cell {2 of arbitrary geometry we can find two concentric cylindrical cells
11 and Q3 such that Q; C @ C Q;. Then Theorem 2 together with the above
analysis for cylindrical cells imply similar L~2 scaling of R¢ — Rcoo for §2 when the

sidewall is rigid and perfectly conducting. If Q doesn’t possess any symmetry that
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causes degeneracy in this most stable configuration, then the effect of boundary
perturbation can only give rise to the O(L~3) effect, and our basic conclusion
won’t change. On the other hand, we can group solutions with specific symmetry
to remove annoying degeneracy if the cell possesses particular symmetries itself.
Therefore, it is expected that the L~2 scaling and the immediate destruction of
the large L “tail” of A(L) curve under perturbation from the analytically solvable

cell with free-slip and insulating sidewalls are generally true.

At this point it is worth mentioning that if we are interested in the behavior of
Rc alone, then we can take the more direct approach of performing entirely anal-
ogous perturbation calculations on R¢ and combining the results with Variational
Principle II to derive all the conclusions I described above that were obtained in-
directly via studying the growth rate A. The advantage one gains is that we don’t
have to worry about the complication introduced by the vertical vorticity because
it is identically zero, as is shown in Appendix B. But then the analogy with the
reaction-diffusion models of developmental biology is less direct. As a final re-
mark, we observe that the L™2 scaling I derived above and Eqn. (12) suggest
that the temperature (and velocity as well, if we include o term in it to make it
completely general; see the remark following Theorem 3) must drop to O(L™1)
near the sidewall for general boundary conditions. Although I only derived Eqn.
(12) for a rectangular cell, it clearly holds for cells of other shapes as long as the

sidewalls don’t get too rugged. This can be seen by perturbing the boundary of
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a rectangular cell: one can derive formulas similar to Eqn. (11) to show that the
perturbation to the eigenstates is always of order O(L™?) near the sidewall and
can not alter our observation. It is interesting to note that the same conclusion for
a one-dimensional problem can be predicted via a two-scale amplitude equation
approach.?® My analysis, therefore, not only gives an independent verification to
that approach, but also asserts this is a general phenomenon expected for three-

dimensional convection in a cell of arbitrary geometry.

§3.2 Surrogate Versus Real System:

The effects of the sidewall on the marginally stable state can, in principle,
be described by a mathematically equivalent boundary condition imposed on the
convection cell. This is possible because at criticality the sidewall temperature
6., satisfies the Laplace equation and, thus, admits elimination of 6,, in favor of
fluid temperature 6 on 0. In the following, we shall denote the outer surface
of the sidewall by S; and the inner surface by S. Let ¢;(+,7") be the Green’s
function for —V? inside the wall with vanishing g-:]f, on S; and ¢; on 0Q,\S>2. Then
bw = /g g%@’, where 7i is the outward normal to the cell and primed quantities
are dummy variables in differentiation or integration. This allows us to rewrite the
jump condition, Eqn. (1.12), in terms of fluid temperature 8 on S alone when 6,
is substituted by the expression derived above. We can also use another Green’s

function, g, which satisfies the same boundary conditions as g; except %%27=0 on
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S to yield 0y, = —ky, ™ [ 592 g—zl,. If we are interested in the small «,, regime, as
is the case if we are perturbing about a perfectly insulating sidewall, then it is
more convenient to use the equivalent boundary condition that incorporates ¢;.
Analogously, a boundary condition that involves g, is appropriate for large k.,
regime. However, this approach is only useful in analysis because the equivalent
boundary condition for 8 is an integral equation defined on S.

The situation improves if the sidewall is very thin. Note that for a thin wall
with thickness 7 <1 and radius of curvature of the interface S we can approximate

the temperature inside the wall by a quadratic in the (outward) radial coordinate

€ that is zero on S by definition:

_ =+

6w
2

Vie+ 6, (25)

where 6 is the fluid temperature at £ = 0 and V% is the two-dimensional Laplacian

on S. Eqn. (1.12) then becomes

ﬁ
on

= kuTV%6 . (26)
When V% can be replaced by a negative number, as is the case if one considers
a particular Fourier mode, then the surrogate boundary condition g—z + B8 =0is
recovered. (Notice that the effective thermal conductivity £ in this case is indeed
proportional to the true sidewall conductivity &,,.)

The previous argument already suggests to us that the surrogate boundary

condition does capture the underlying physics involving a real sidewall. In fact, we
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can even derive a mathematically rigorous statement to quantify the vague idea of
“capturing the underlying physics!” Let ¥ be the ground state for a cell with a

real sidewall, then

Ja, IV6ul*  ( fo 1V8uP\ [ [o62 \
[0\ [o, 62 Jo, 63
¢
= 01\/€:+02 2

for some constants ¢;,c2 and ¢, where ( stands for the expression inside the first

(27)

C

(+-+) which is > #?*, and the boundary condition § = 6,, and the inequality
announced in Lemma 2.1 bounding the second (---) by /¢ are exploited. If we

define 8 = crk,, for a given k., and denote the restriction of ¥ on Q by ¢, then
RgBC“l/Z > JSBC[¢] > J[‘I’] — RC—1/2 , (28)

i.e., the critical Rayleigh number for the real system is bounded below by that for
a surrogate system with B = crk,. Incidentally, we note that this immediately
implies Rc — Rooo = O(L™2) if the thickness of the sidewall remains about the
same when one increases L, because for the surrogate system we have proved this
is true in the previous section.

Next, I argue that we can also bound R¢ from above by R(S;BC of another
surrogate system with = ¢'rk,, for some constant ¢'. I shall show that actually
this is true for a cell with an infinitely extended sidewall. Then the statement is

certainly true for a cell with a finite sidewall because I showed in Theorem 2.4 that

* See Eqn. (B.2) of Appendix B.
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its Rc is even smaller. Let ¢ be the ground state of the surrogate cell. Define
a coordinate system { — 5 in the wall region such that £ is the arc length of the
“radial coordinate” thet is orthogonal to S and vanishes on S, whereas 7 is the
coordinate on the two dimensional surface S’ defined by {=constant. I will assume
the coordinates are chosen so that the angle between the ¢ curve and the surface
normal to S’ is bounded away from /2. Construct a trial function ¥ for the real
system with a laterally infinite sidewall by extending the definition of 3 into the

wall region so that

where f; is a function of £ that satisfles f3(0) = 0, f2(0) = 1 and decays suffi-
ciently fast to zero as £ tends to oo, while f; = ¢ except when ¢ is greater than
some prescribed number 8, in which case we define f; = §. Also, 6 is the fluid

temperature on S whose definition can be trivially extended into the whole wall

region by 6(£,n) = G(U)IS. Then
[ v0uP = [ V6405 vh 4 orv s
Quw Qo
B [ V6152 +¢? / & 12+ 12, / AL
Q.

+2hus [ 10V61f2 + 2% [ 10901 11V fol +20har | e1nvsl
£<6 Qo R £<s

sa<h§4 /S V582 + (Rt +61¢)? /S 92+2(61<+hM>hM\/ /S ¢ /S lvse@ , (29)
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where h s is the maximum of h, and a is some constant depending on the geometry
of the cell and the coordinates we choose. In the above, §; is a number that is
proportional to v/§ when § is very small. Also, Vg is the gradient operator on
the interface S. But we observe that for the ground state it is possible to find a

constant b such that

/ﬁ V6|2 < b2 /S P (30)

for all B. First of all, this statement is trivially true if it so happens that 6 is
identically zero on S for all . So we may consider the case when 8 is identically
zero on S only at some isolated points By of B € [0,00). (The case By = oo is
included in this argument.) Near each of these points we can expand 8 in a power
series of a small parameter §'. (We can take §' = 8 — By if By is finite; the case
Bo = oo can be handled by taking §' = f~!.) Suppose § = 6,6'" + --- for some
leading power n such that 6, is not identically zero on S, then clearly Eqn. (30)
is satisfied for some b. Also, for B outside the neighborhood centered at 8, we
know the left hand side of Eqn. (30) must be bounded from above because the
eigenfunction is twice differentiable, while the right hand side is bounded away
from zero by construction. And so a constant b certainly can be found to satisfy

Eqn. (30). Therefore, Eqn. (29) can be further reduced to

/ V8,2 Sa(th+hM+51§)2/02. (31)
Qy S
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But one easily verifies

a7 —2(b+1)6 — /(aT —2(b + 1)b1 )2 — 4(b + 1)282
c =
262

is a positive solution to the following equation for ¢ if é is small enough:
a(bhar + has + 6:¢)° = [a(b +146¢) =] ¢

Choose the f for the surrogate system to be c'rk, then the previous reasoning

immediately implies

mw/lele"’Sﬂ/Sﬁz,

which in turn tells us
RgBC'—l/Z = JSBC[",[)] SJ[\I’] S RC—1/2 , (32)

by virtue of the variational principles for both systems.

To summarize, I have shown that, as far as marginal stability is concerned,
under suitable conditions the true system with sidewall conductivity «,, is sand-
wiched between two surrogate systems whose effective sidewall conductivities are
proportional to k.. This means that using the simpler surrogate boundary con-

dition to investigate the convective instability still retains the correct underlying

physics furnished by the sidewall.
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Chapter 4: Convective Rolls Near the Sidewalls

It is sometimes observed that in the visualization of stationary convection pat-
terns using shadowgraphic technique, the convective rolls tend to align themselves
normal to the sidewalls.}4'5 However, the interpretation of this observation is not
immediately clear because the light rays projected on the screen above the cell
to form observed patterns necessarily have to go through a series of focusing and
defocusing processes caused by density variation upon passage through the entire
fluid layer. A sensible definition of a roll that is theoretically simple and experi-
mentally justifiable doesn’t seem to exist at this moment. With this precaution in
mind, and in view of the fact that intuitively we know the density variations on
the two sides of a convective roll, whatever its definition may be, must be opposite
in signs to account for the rising and lowering fluid motion about the roll axis, I
have decided to take a simplistic approach of identifying the nodal surfaces of the
density variation with typical convective rolls. This necessarily makes this chapter
somewhat controversial and more on the speculative side, although I believe it still
offers some insight to what people observe in the lab. By the assumed linearity
between temperature and density, this means the nodal surfaces of 8 will represent
convective rolls in this convention.

For a time-independent solution, Eqn. (1.9) reduces to V26 = 0 on the bound-
ary, provided it is rigid, a condition we shall assume throughout this chapter. For

the given nodal surface OABC of € in Fig. 4.1 we choose a local Cartesian
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Figure 4.1: Local Cartesian coordinates x-y-z are chosen
such that the origin O is at the intersection of temperature
nodal surface OABC and the lower edge of the convection
cell, and the x-axis is tangent to the sidewall.

coordinate such that the origin O is on the lower edge of the container and x is
parallel to the sidewall. Because § = 0 at z = 0, we can expand 6 in powers of z

and write

6 = fz+g2® +0O(z*), (1)

where f and g are functions of = and y, and we have used the fact V26 = 0 at z=0
to kill the O(z?) term. Therefore, we see that to the lowest order the nodal surfaces
of § are given by z = 0 (the bottom plate) and f(z,y) = 0. Notice the latter implies

OABC is orthogonal to the bottom plate. Similarly it must be orthogonal to the
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top plate.

Next, we investigate the behavior of OABC near the point O. Expanding
f = az + by+(higher order terms) and imposing the thermal boundary condition
g% + ,BGIy:O = 0, one obtains b = 0. Thus, to the lowest order § = azz near the
origin. The case a # 0 implies OABC is also orthogonal to the sidewall near point
O. Parallelism of nodal surfaces to the sidewall corresponds to a nongeneric case

in our analysis.

It is clear that the nodal surfaces still behave the same if the system is evolving
according to linear stability analysis. The argument apparently is also valid for
binary fluid convection when the Dufour effect, which describes the concentration-
gradient induced heat current, can be neglected, because then the thermal equation

is the same as Eqn. (1.9).

The implication of the previous argument seems to be: if the nodal surfaces of
6 more or less correspond to the convective rolls one observes in experiments, then
the orthogonality of rolls to the sidewalls is a simple consequence of the imposed
realistic boundary conditions which render the governing equations linear close to
the boundary. However, I must admit that this treatment is limited because it can
not explain rigorously why visualization experiments using Doppler anemometry
or other visualization techniques still observe rolls ending perpendicular to the
sidewalls, 1718 though intuitively we know the correlation between u, and § should

imply the orthogonality of the former if the latter is perpendicular to the sidewalls.
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Also, one would like to resolve the apparent difference between my conclusion

® using the amplitude equation approach that

and calculations made by Cross®
assert the possibility of having rolls approach the sidewall at an arbitrary angle.
It seems likely that his calling upon the excitation of conjugate rolls near the
sidewall to satisfy the boundary conditions has the effects of generating a cellular
pattern and reorienting the temperature nodal surfaces so that they will tend to
end perpendicular to the sidewall. In other words, the two approaches are designed

to treat phenomena of different length scales. However, further work must be done

before this question can be completely answered.
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Chapter 5: Conclusion

I have shown that the linear analysis of the onset instability of Rayleigh-Bénard
convection can be facilitated by a combination of a variational formalism and
perturbation theory. In particular, the sidewall thermal conductivity and the wall
thickness affect the stability in a monotonic way. I also made a comparison of this
system with standard pattern forming models of developmental biology, remarked
on how the boundary conditions might affect the argument, and pointed out the
similarity as well as difference between the two systems. I argued that the difference
of the critical Rayleigh number and its infinite cell limit scales as the inverse square
of the system size for almost all boundary conditions by studying a system with
a mathematically simpler boundary condition, which is a common practice in this
field, and then showed that this artificially constructed boundary condition does
capture the correct physics because, in a mathematically well-defined sense, the
true system behaves halfway in between two such model systems.

Although it appears that I have relied very heavily on the variational formu-
lation in my argument so that it is not clear how this work can be generalized to
other more complex systems, I would like to point out that in the more difficult
problems one probably can start with perturbation theory right from the begin-
ning, and try to do a path-following technique, as was also described in this work.
The results one obtains are then still global in the parameter range. As a matter

of fact, a majority of the results I described in this work were first conceived and
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discovered by a purely perturbative approach. The variational formulation of the
problem actually came at a much later stage in my investigation of the convective

stability problem.

It is true that some of the predictions concerning the monotonic dependence of
the stability on the control paraméters of the system are hardly surprising because
one’s intuition clearly indicates so, yet we should notice this intuition actually
breaks down for a rotating convection cell, as is shown both in numerical calcula-
tions and experiments.3?*? Currently, there is no good theoretical understanding
of why this should be so, and I would like to study this problem as the next step

of extending my work in this direction.

Clearly lacking in the present work is the nonlinear aspect of the convection
problem. This in no way reflects the current trend of research since most workers
actually have been investigating it by different approaches with success. Indeed, the
nonlinear dynamics and pattern formation in binary fluid convection have offered
us a rich zoo of interesting phenomena that the system is bound to teach us much
more in the future. The binary fluid convection, therefore, is another problem I

would like to explore.

Another problem that has practical application in thin film drying is the sur-
face tension driven convection originally observed by Bénard. The pattern for-
mation problem associated with this system doesn’t seem to have drawn as much

attention as its buoyancy driven cousin, although in recent years more work has
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been done.?*~37 Unlike the previously mentioned problems which I myself actually
have been studying for some time, this problem is only an acquaintance to me at
this moment. I think an understanding of Rayleigh-Bénard convection can not be
called complete unless the earliest reported phenomenon that originated all the
beautiful work done by many of the finest experimentalists and theorists in the
field for almost a century is properly studied and understood. With this problem
in mind I hereby conclude this report of the first step of my study of the convection

problem.
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Appendix A

In this appendix I present the study of a one-dimensional surrogate system in
detail to illustrate the ideas proposed in Chapter 3. Sophistication to the model

will increase as we proceed.

We start with a cell Q of dimension L that is completely free-slip and has
perfectly insulated sides at z = :{:%. The two horizontal plates are located at

z= :i:%. The solution for this problem is

1+0i\/(1 +0)? -40(1-—%(1_%))

A= .
5 [y (A4.1)
0 = sinnw(z + -;—)cosjw(% + %) ,
) 1 1
Uy X ——J—sinmr(z + —)cosjw(i +2),
nL 2 L 2
(A.2)
Uy x cosnm(z + l)sinjw(z + —1—)
: 2 L 27
1 .,z 1
p x cosnm(z + —2—)cosy7r(f + 5) ,
where p = —((nm)? + (%)2) and p, = —(nm)? for integers n and j. We see from

Eqn. (A.1) that it is possible to have % < 0, although the most unstable state

apparently satisfies g% > 0.

For purpose of illustration, we will fix n=1 and R = R, = 2}%4. The resulting

- A vs. L curves with different j’s are shown in Fig. A.1.
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Figure A.1: (a) Growth rates A vs. size L for a free-slip insulated two-
dimensional cell are shown in dark or light, according to whether their
symmetry under x -> -x is even or odd, when R=R¢q. The monotonic

curve, given by Eqgn. (A.3), connects intersections of curves j and j+2
(j=integer) that have the same symmetry. Biological pattern formation
models show the same features. (b) Perturbing the dark curves by
adjusting the sidewall property, in general, removes the

degeneracies in (a) to form many wavy curves.

For any given j, A vanishes when L = +/2j. The intersection of curves j and
J + 2 which have the same symmetry under £ — —z can be easily computed from

Eqn. (A.1), and is given by

4720 1
1+0L2

int

(A.3)

)\int =

for large Lin¢, the size of the cell when degeneracy occurs. This curve is shown

dotted in Fig. A.l. The size difference between two intersections (j&j + 2 and
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J+28&j5 +4)is V2.

Also, notice in each degenerate two-dimensional subspace spanned by 1; and
¥j+2 we can find a vector ¢ = ¢¥; — ;42 such that the associated § = §; — 042
(cosjm(§ + 3) — cos(j +2)m(£ + 1)) vanishes identically at z = +£. Hence,
0 = g—z = 0, and the solution satisfies §%+69 = 0 on 0% for any f, i.e., perturbation
of 8 has no effect on % at all! These “anchored” solutions are clearly manifested
in Fig. A.2(c) when translated in terms of R, vs. L plot. Similarly, one can find
anchored solutions when the viscous boundary condition is changed, though they
will be different from the ones constructed above. The critical Rayleigh number at
L = L;n¢ can also be calculated to give

7T4

RC%R00+18L2 .

(A.4)

Next, we consider boundary perturbation of form g—z + 6 = 0. To be specific,
we’ll consider € that is odd in z. (Even solutions can be obtained by the replace-

ment rule k;l — k;l 4 7.) The problem is reduced to the following determinantal

equation
Bsinkyl + kq coskyl B sin kol + ko cos ksl B sin k3l + k3 cos k3l
A+ 72 +kD)kycoskil (A + 72+ k)kacoskal (A + 7%+ k2)kscosksl | =0 ,
2 2 2 2 2 2

LH——’;C;-UEQ cos k1l ('\—“FIE:—kzl cos kol m—"k:ﬁ—) cos k3l
(A.5)

where I = L and k2, (m=1,2,3) are solutions to the dispersion relation

2 m

A a? 4 E2)A +o(n? 4 K2))(n* +K2) — Robl, =0, (A6)

and @ is some suitable linear combinations of sin 7(z + %) sink;z.
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Figure A.2: Figures (a) and (b) show the prediction of Eqn. (A.9) and
numerical results (smooth curves) for B=.3 and 1, respectively. ¢q is

set to zero whenever it is not defined for a given L. Solutions for B=.3,
1 and 50 are displayed in (c) to show the existence of "anchored

states."



74
In the following, we’ll consider the problem of determining R, as a function

of I. We can easily show that for a small deviation of AR = R, — R, k,zn’s are

given by
T vVAR 7 AR
kl,‘Z ~ E(l :i: 371'2 + 162 7T4 ) ? (A7)
: 2 AR
k3 ~ 227((1 + 8—1F) . (AS)

For AR > 0, the lowest order solution to Eqn. (A.5) can be obtained by (1)
dividing through the third column of the determinant by cos k3! and approximat-
ing tan ksl ~ 1 for large [, (2) allowing all the k,,’s that don’t appear as argu-
ments of sinusoidal functions to assume their unperturbed values. The result is
Bsin(ke — k1)l =0,or AR = 18%;—, provided f is not too small. (We are extracting
the leading order of Eqn. (A.5). Hence, the case § is very small must be handled
separately. This is the first indication of the existence of a cross-over size Lo_o we
discussed in Chapter 3.) Notice this lowest-order solution coincides with that given
by (A.4)! As a matter of fact, this result can also be predicted using a two-scale
amplitude equation.?? The agreement between the two methods is not too surpris-
ing once we realize both approaches employ the same global phase drift (k2 — k1)l
to ensure that the correct boundary conditions are satisfied to the lowest order. To
get the next order correction, we can rewrite Eqn. (A.5) as fsin (ky — k1)l = f for

some function f that also involves sinusoidal functions itself. Then one replaces

the kn’s contained in f by their first order (correct to O(v/AR)) values so that
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the equation is solved by (k2 — k1)l =7 — ¢o = W—sin_lg, or

_ 1872(m — ¢o)?

AR T :

(A.9)

for some complicated function ¢o that also involves L. Correct to order O(L™1)

we find ¢¢ is given by

cos kal

l

do = sin™! (—(g sinkyl + (5 + %")cos kD) Rty (A.10)

The point to be made is that for any fixed 8, the oscillatory behavior as carriea by
do is always O(L™!) smaller than the “background” L~2 decay law given by Eqn.
(A.4), thus confirming our claim in Chapter 3. Fig. A.2 shows the comparison
between Eqn. (A.9) and numerical calculations.

For any given small positive 3, the cross-over size can be estimated by requiring

@0 to be well-defined for all L > L¢-.o. Thus,

4
Lo—o ™ F“ . (A.11)

The R. vs. L plot for solutions whose 8 is even under ¢ — —z looks very
similar to that for odd 6 when # > 0.
It is also easy to compute the solutions to Eqns. (A.5) and (A.6) when R is

fixed while £ is negatively very large. We find
A

k2~ -, klx - k2 = —7?,

(A4.12)
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To lowest order the associated eigenvector is given by

(A.13)

This shows clearly that the run-away solution /A = —8 develops a thermal

boundary layer of thickness —3~! and strongly suppresses the velocity field.

It is apparent that all the previous results we have obtained through detailed
analysis of a cell with free-slip sidewalls must similarly hold for a cell with rigid
sidewalls because the methods we used work equally well for the latter. Instead of
repeating the same analysis, we simply show, in Fig. A.3, the numerical calcula-

tions as further evidence supporting our claims.

As a final example, I present the numerical results of my study of a cell whose
a on the two horizontal plates is also tunable. (a = oo corresponds to a rigid-
rigid cell.) Again, sidewall properties are tuned by (a different) a and 3. The
critical Rayleigh number is computed by maximizing JSM €[] for ¢ that is in a
Hilbert subspace of finite dimension whose basis vectors § and @ are independently

proportional to their corresponding variables given in Eqn. (A.2), with 15 modes

of odd j and 5 modes of odd n.
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Figure A.3: Solutions for a free-slip cell with (o,B) taking all possible
combinations from three values: .1, 2, and 50. The existence of the practically
anchored states is obvious. The monotonically decreasing curve is calculated
from Eqn. (A.4).

It 1s easy to show that this approach is actually just a variant of the mode
expansion method one would use for solving a general linear problem in the sense
that now we are simultaneously projecting both the governing equations and the
boundary conditions onto the same conveniently chosen basis vectors. This partic-

ular projection scheme is favored over others because it is manifestly equivalent to
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the variational principle, and the resulting generalized matrix eigenvalue problem
is Hermitian. The results are shown in Fig. A.4. One is quickly convinced of
the existence of the practically anchored states from this figure. Again, the basic

features are not different from those for a free-slip cell.
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Figure A.4: Solutions for a cell with sidewall o and B taking three
values: 0, 1, and 15. The two horizontal plates have an a= 0 (a), 4 (b),
and 50 (c), respectively. The practically anchored states are clearly
exhibited in the figures.
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Appendix B

In this appendix, I will describe a simple sufficient condition for the method
of separation of variables to hold for the convection cell. First, we need a simple

estimate for a Rayleigh-Ritz ratio:

Lemma B.1
Let f(z) be a trial function defined on [0,1]. Let A; denote the ground state
eigenvalue for —g—} = Ag, where g must satisfy :1:%% + ag = 0 at z=0,1 for some

nonnegative constant . Then for any f that is not identically zero we have
a(f2(0) + () + fy (&)*d=
fol f2dz
2
( et m)

(B.1)

> A >
== 4r

Proof:

The first inequality is the standard variational characterization for the eigen-
value A;. Therefore, we only need to prove the second inequality. Let k = /] €
[0, 7], then the boundary condition implies & = ktan % By convexity of cosine

function in the interval [0,%], we know cosy > (1 — 2¥) for all y € [0, Z]. Hence,

k/2 1 K2 g
/ s dy > / ——dy,
o (1-2)2 0o cos’y

which implies, upon evaluating the integrals, that

2
2
) > —ktan

(

1—

e

2
—a .
2

N X
Il
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Inverting this inequality immediately gives Eqn. (B.1).

Q.E.D.

Notice the above yields the following well-known assertion when applied to

the case o = o0o:

Corollary:
Any nonzero trial function f which satisfies the boundary condition f(0) =

f(1) = 0 always satisfies
2
' (4 gy
fO (ldz) > 7'r2 .
Jo f2dz

More generally, the previous two assertions are still true if f is a function

(B.2)

defined on a three-dimensional cell 2, provided we substitute % by V£, f2(0) +
f3(1) by [y, f?, and fol dz by [,

Suppose the sidewall is perfectly insulating and we impose free slip boundary
condition on it. Then we can expand both 8 and u, in an orthonormal basis
@;’s that are eigenfunctions of the two-dimensional Neumann Laplacian on the
horizontal cross section: —V3¢; = pjp;. Of course, the “Fourier coefficients”
will then be functions of z. Now if we look at Eqn. (2.1) it is clear that in
order to decouple all the ¢; modes (so that we do have separation of variables)
we must be able to write the horizontal component @, of the fluid velocity as

linear combinations of V. (The pressure p is automatically expandable in ¢;’s.)
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This apparently implies the vertical vorticity w must vanish. Thus, we are led to
investigate when we can expect w to vanish identically.
Taking the curl of the Navier-Stokes equation and projecting it to the é,
direction we obtain

lw = V3w . (B.3)

Assume w is not identically zero, then upon multiplying Eqn. (B.3) by w and

integrating over the fluid cell Q we get

A=

aw? + Vwl|? _ 3 2 2
_Jfag\s fQ ” ” <o\ < —o a+ Va4 8ra . (B.4)
fQ w? 4z

In arriving at this result I have performed integration by parts, imposed the bound-
ary conditions of Eqns. (1.14) and (1.15) on the two horizontal plates, and made
use of Eqn. (B.1) that was just derived. Hence, w must vanish identically, thus
permitting separation of variables, provided the growth rate of interest lies above
the bound set up by Eqn. (B.4). If we recall the derivation of the large cell scaling
behavior of A or R¢ for positive a in Section 3.1, we immediately see that the
argument presented there was well justified, because for all large enough size L the
relevant growth rate A considered there actually goes to zero, and therefore does
lie above the bound given by Eqn. (B.4).

I would also like to point out that had we started studying R¢ directly without
invoking A, as opposed to what was done in Section 3.1, then all the orthonormal

eigenfunctions (under the second norm defined there) have zero vorticity, and sep-
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aration of variables certainly is all right if the sidewall is free slip and perfectly

insulating.
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