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STUDIES ON ROBUST CONTROL
OF DISTILLATION COLUMNS
by

Sigurd Skogestad

ABSTRACT

Distillation is undoubtedly the most important unit operation in chemical en-
gineering. During design a significant effort is normally put into steady-state op-
timization of the column with respect to its size, feed location and reflux ratio.
However, operating the column close to this optimal point requires reasonably tight
control of the product compositions. This is usually not achieved in industrial prac-
tice due to stability problems. Improved strategies for distillation control offer a
viable means for significant economic savings as compared to the existing ad hoc
techniques. This thesis addresses robust control of distillation columns in the face
of model-plant mismatch caused by model uncertainty, nonlinearity and changes
in operating conditions. The robust control paradigm, introduced by Doyle and
coworkers, is used as the basis for controller design and analysis. An important tool
is the Structured Singular Value (SSV) which enables the evaluation of a plant’s
achievable control performance. This provides a consistent basis for comparing
controllers and design alternatives. Achievable performance is also related to other

commonly used measures such as the RGA and the condition number.

Physical insight is used to derive low-order column models which address the
issues most important for feedback control. It is shown that the dynamic behavior
can be explained in terms of the fundamental difference between external and inter-
nal flows. This difference manifests itself both at steady-state and in the dynamic
response. Furthermore, the initial response, which is of principal importance for

feedback control, is affected much less by changes in the operating conditions than
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is the steady-state response. The initial response is even less markedly affected
when logarithmic compositions are used.

An important issue in distillation control is which two of the possible five ma-
nipulated inputs should be selected for composition control; each configuration may
yield entirely different control performance. Issues which must be addressed include
model uncertainty and dynamic response as well as rejection of flow disturbances
by the level loops.

Finally, a design method for robust decentralized controllers, which generalizes
the SSV-interaction measure of Grosdidier and Morari, is introduced. Each loop
is designed independently such that robust performance of the overall system is

guaranteed.
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Chapter I

INTRODUCTION



Distillation is undoubtedly the most important unit operation in chemical en-
gineering. During design a significant effort is normally put into steady-state op-
timization of the column with respect to its size, feed location and reflux ratio.
However, operating the column close to this optimal point requires reasonably tight
control of the product compositions. This is usually not achieved in industrial prac-
tice due to stability problems. Improved strategies for distillation control offer a
viable means for significant economic savings as compared to the existing ad hoc
techniques. A system is “robust” if it is insensitive to model-plant mismatch. This
thesis addresses robust control of distillation columns in the face of model-plant
mismatch caused by model uncertainty, nonlinearity and changes in operating con-

ditions. The thesis is naturally divided into three parts:
A. Robust control
B. Dynamic and steady-state behavior of distillation columns
C. Robust control of distillation columns

This introduction is organized accordingly.

A. Robust Control. Feedback control is used to control processes despite
unmeasured disturbances and model-plant mismatch without which feedforward
control would suffice. Another important factor which limits the achievable perfor-
mance of a system is the presence of RHP-zeros (inverse responses, time delays) in
the plant. A good theory for feedback control should address these three issues in

a direct manner.

Control theory is a new science. The early work in the 1930’s and 40’s provided
a theory for single-loop (SISO) plants based on an input-ouput description using
the frequency domain. This theory addressed all three above-mentioned issues to
some degree . However, the extension of these results to multivariable (MIMO)
systems did not prove to be straightforward. During the 60’s the “optimal” control

theory based on a state-space system description in the time domain was developed.



MIMO systems are handled readily within this framework. The design techniques
suggested, for example, the Linear Quadratic Gaussian (LQG) controller, treated
disturbances as stochastic processes. These methods represented significant theo-
retical breakthroughs, but in hindsight probably more so in optimization than in
feedback theory. The names "optimal” and "modern” which were associated with
this theory proved to be deceiving, since they engendered the belief that all prob-
lems in linear control theory had been solved. However, the slow acceptance of
optimal control theory in industrial practice eventually led to the realization that
the theory had serious shortcomings (Horowitz,1975). For one thing, ”classical”
control theory, which had proven to work in practice for SISO systems, had no
clear link to the optimal control theory. Secondly, it became obvious during the
70’s that optimal control did not address the issue of model uncertainty at all.
Furthermore, important concepts such as RHP-zeros and bandwidth were obscured
by the state-space formaliszn. This finally led in the late 70’s and early 80’s to
the development of a robust linear control theory (e.g., Doyle, 1984) which directly
addressed the problem of model uncertainty and also provided a bridge between
”classical” frequency domain theory and the "modern” state space theory. The
formulation of the control problem is accomplished in the frequency domain. This
includes the definition of performance specifications (Ho) and the quantification
of model uncertainty. However, all computations are carried out within the state-
space formalism, and the LQG-theory (Riccati equations, etc.) remains useful for
solving the numerical problems which arise.

Robust Performance (RP) is satisfied if the performance specifications are also
met for the "worst case” plant as defined by the uncertainty bounds. The Structured
Singular Value () introduced by Doyle (1982) provides a non-conservative means

.for testing whether Robust Performance (RP) is satisfied:

RP & pu(N)<1
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where the matrix N depends on the plant model, controller, performance speci-
fications and uncertainty bounds. In the thesis, this theory is detailed and spe-
cific applications to chemical engineering problems (including distillation control)
are presented. New results which link quantities such as the Relative Gain Array

(RGA) and the condition number to RP are also provided.

Linear control theory is used throughout this thesis; only recently has a viable
theory which account for model uncertainty been introduced, and no such theory as
yet exists for nonlinear systems. A good understanding of linear systems is clearly
a prerequisite for attacking the vastly more complicated behavior of nonlinear sys-

tems.

B. Dynamic and steady-state behavior of distillation columns. A
precondition for applying any control theory is that a model of the physical system
is available. In particular, this model should include the characteristics of the
plant which are most important for feedback control. For distillation columns, this
includes the presence of RHP-zeros caused by the flow dynamics and the plant’s
ill-conditioned character. Furthermore, to use the p-theory, the sources of model
uncertainty must be identified and bounds on these must be quantified. For this step
it is very important to have a clear physically motivated picture of the process, so
that the "uncertainty” (which sometimes includes model-plant mismatch caused by
nonlinearity or changes in operating conditions) can be treated in a non-conservative
manner. Therefore, a main objective of this thesis is to develop simple dynamic

models for distillation columns.

The mathematical treatment of distillation columns is also a new ”science,” and
its development has followed an analogous pattern to that of control theory. The
early work of the 1920’s and 30’s treated the steady-state behavior using graphical
methods (McCabe and Thiele) and simple short-cut models (Gilliland). Restric-

tive assumptions made these methods inaccurate for certain design calculations,
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but they provided invaluable insight into the steady-state behavior of distillation
columns. The methods are difficult to apply for multicomponent and nonideal mix-
tures, and no simple methods for predicting the dynamic behavior were developed.
With the inception of the digital computer in the late 50’s and early 60’s, the need
for simple methods was no longer considered important; the governing nonlinear
differential equations for distillations columns are easily formulated, and virtually
any column could therefore be simulated. Consequently, most of the research effort
was directed away from simple analytical methods. Still, some progress was made in
the 60’s toward the understanding of the dynamic behavior of distillation columns
(Moczek et al., 1963, Wahl and Harriot, 1970). It was established that the dy-
namic response is dominated by one large time constant which is roughly the same
regardless of where a disturbance or input is introduced or where composition is
measured. Yet, the generally held belief remains that the dynamic behavior of dis-
tillation columns is difficult to predict. This is exemplified by the following quote
from Shinskey (1984) (the industry standard book on distillation control): “The
only general relationship that seems to apply to the dominant time constant is that
it is proportional to the total liquid volume divided by the column feed rate.” This
is an immediate observation because this essentially determines the scale factor for
time in the problem. One important objective of this research has been to provide
relationships which enable understanding and prediction of the dynamic behavior
of distillation columns without the need for reliance on simulations, and which may

also be used as an integral part of a control study.

C. Robust Control of Distillation Columns. Most two-product distilla-
tion column can be described as a 5 x 5 plant, but the control system design is

usually simplified by means of the following procedure:

1. Choose two manipulated inputs for composition control (corresponding to a

specific control ”configuration”).
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2. Design a level and pressure control system (usually three SISO controllers).
3. Design a 2 x 2 controller for composition control.

Step 1 is probably is the most important one, yet almost no guidelines are
available in the literature. The only exception is the work of Shinskey (1984) who
bases his analysis mainly on steady-state RGA-values. From Shinskey’s book the
reader is led to believe that the RGA is just an interaction measure which indicates
the difficulties one can expect when tuning single loops of multivariable systems.
But if this were true then the RGA recommendations regarding control configura-
tion selection would be archaic today, now that the implementation of multivariable
control systems is quite straightforward. Practical evidence suggests, however, that
an RGA evaluation should be very useful for the design of multivariable control
systems. Thus, while the RGA has proven to be very useful tool for categorizing
experience, it has not helped to ezplain the observed phenomena. A goal of this
research is to fill the apparent gap between the theory and the industrial experience
as represented by Shinskey (1984).

Another issue which has been obscure is the use of ratios between flows, e.g.

Lo ¥
5 O B

1984) that the RGA-values are affected, but apart from this, what is their real

as manipulated inputs for composition control. It is well-known (Shinskey,

effect? Do they result in a plant which is more linear? The results in the thesis
show that this is not the case, but that a main feature is that they provide improved

flow disturbance rejection.

Once the choice of control configuration is made, the design of the control sys-
tem is not too difficult. First, the level control system has to be designed and guide-
lines for this step are already available in the literature (e.g., Shinskey, 1984). Sec-
ondly, the 2 x 2 controller for composition control must be designed. The academic
literature (e.g., Weichedel and Mcavoy, 1980) have perennially discussed whether or

not to use “decouplers” as part of the controller. However, to address this problem
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rigorously, model uncertainty has to be considered. In this thesis, new results are
presented (partly in terms of the RGA) which clearly demonstrate those cases for
which decouplers may be used to good effect and cases for which robust performance
will be poor.

A final question which merits an answer is the following: Distillation columns
are strongly nonlinear, but can they be adequately controlled using a linear con-
troller? Industrial experience indicates that the answer is ”yes.” This is indeed
confirmed by the results of this thesis. In particular, it is shown that the initial re-
sponse (which is of main importance for feedback control) does not depend strongly
on operating conditions. This claim is supported both by a general analysis of the
dynamic behavior of distillation columns and by a particular study of the robust
control of a high-purity column. It is found that the initial response is even less

markedly affected by nonlinearity when logarithmic compositions are used.

Thesis Overview.

This introduction motivates the need for a systematic approach to distillation
column control which yields a control system with robust performance, that is, a
system which performs satisfactory also in the presence of model-plant mismatch.
Important steps include modelling, selection of the control configuration as well as
robust controller design. This approach is presented in this thesis as follows:

Part A. Robust Control: Chapter II discusses the issue of robust stability and
how model uncertainty limits the achievable performance. The notion of disturbance
directions, which is important for multivariable systems (and in particular for ill-
conditioned plants), is treated in Chapter III. Subsequently, Chapter IV discusses
general problems of controlling ill-conditioned plants, indicates the applicability
of the p-theory for the analysis and controller design for such plants in face of
model uncertainty, and demonstrates the usefulness of this approach via a simplified

distillation column example. The RGA is used extensively in the literature to screen
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design alternatives with respect to their expected control performance: Some new
relationships between model uncertainty and large RGA-elements are presented in
Chapter V which justify this measure’s widespread use. Chapter VI provides some

new properties of p; the application of these results to the design of decentralized

controllers yielding robust performance is demonstrated in Chapter VII.

Part B. Dynamic and steady-state behavior of distillation columns: This part
begins with Chapter VIII which provides an overview of the reminder of the thesis
and also shows how to evaluate the steady-state gains for various configurations.
Chapter IX discusses the use of the separation factor for the estimation of steady-
state gains. Chapter X and XI consider the dynamic column behavior and present
important new insights. It is shown that the dynamic behavior can be explained
in terms of the fundamental difference between external and internal flows. This
difference manifests itself both at steady-state and in the dynamic response. Fur-
thermore, the initial response, which is of principal importance for feedback control,
is affected much less by changes in the operating conditions than is the steady-state
response. The initial response is even less markedly affected when logarithmic com-

positions are used.

Part C. Robust control of distillation columns: Chapter XII addresses the
issues of control configuration selection. It is shown that ratio configurations yield
complex multivariable controllers which in some cases provide improved flow dis-
turbance rejection. However, their linearizing effect on the plant does not prove
significant. Finally, in Chapter XIII a more realistic study of the distillation ex-
ample of Chapter IV is presented. Chapter XIII shows that the robust control of
a high-purity distillation column over a wide range of operating conditions is in
indeed possible with a single linear controller. Logarithmic compositions were used
in this example to reduce the effect of nonlinearity. The simulation results as well

as the p-analysis presented in this chapter confirm the general results regarding
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the dynamic behavior of distillation columns of Chapter XI, and also support the

control theory developed previously in Part A.

References.

Doyle, J. C., Analysis of Feedback Systems with Structured Uncertainties, IEE
Proc., Pt. D, 129, 242-247 (1982)

Doyle , J. C., Lecture Notes, ONR /Honeywell Workshop on Advances in Mulivari-
able Control, Minneapolis, MN, Oct. 8-10 (1984)

Horowitz, I. and U. Shaked, Superiority of Transfer Function over State-Variable
Methods in Linear Time-Invariant Feedback System Design, IEEE Trans. Automat.
Contr., AC-20, 84-97 (1975).

Moczek, J. S., R. E. Otto and T. J. Williams, Approximation Model for the Dynamic
Response of Large Distillation Units, Proc. 2nd IFAC Congress, Basel (1963).

Shinskey, F. G., Distillation Control, 2nd Ed., McGraw-Hill, New York (1984).

Wahl, E.F. and P. Harriot, Understanding and Prediction of the Dynamic Behavior
of Distillation Columns, Ind. & Eng. Chemistry Proc. Des. & Dev., 9, 396-407
(1970).

Weischedel, K. and T. J. McAvoy, Feasibility of Decoupling in Conventionally Con-

trolled Distillation Columns, Ind. & Eng. Chemistry Fundam., 19, 379-384 (1980).



- 10 -

Chapter II

DESIGN OF RESILIENT PROCESSING PLANTS:
EFFECT OF MODEL UNCERTAINTY ON DYNAMIC RESILIENCE



- 11 -

DESIGN OF RESILIENT PROCESSING PLANTS
EFFECT OF MODEL UNCERTAINTY ON DYNAMIC RESILIENCE

Sigurd Skogestad
Manfred Morari

Chemical Engineering, 206-41
California Institute of Technology
Pasadena, California 91125
(818)356-4186
Chem. Eng. Sci. Ms #CES 1724
Submitted July, 1985
Revised September 1986
Updated January 1987
Abstract

The achievable quality of control for a particular system (its
dynamic resilience) is limited by the nonminimum phase characteristics
of the plant, constraints on the manipulated variables and model
uncertainty. Model uncertainty requires that the controller be
detuned and performance be sacrificed. The goal of this paper is to
quantify this well-known qualitative statement.

The closed-loop system must remain stable for all possible
plants as defined by the uncertainty description. This robust
stability requirement is used to derive simple bounds on the nominal
performance for some specific cases. These bounds are relatively easy
to evaluate and should be effective tools for screening alternative
designs in terms of their resilience characteristics. The RGA and the
minimized condition number are accurate measures with respect to
element uncertainty, provided the relative errors of the transfer

matrix elements are independent (uncorrelated) and have similar

magnitude bounds.
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I. INTRODUCTION

Most chemical plants are designed on the basis of steady state
considerations, and the control system is designed separately in a
subsequent stage of the project. This separ'étion is acceptable
provided that there exist suitable design-stage methods which can
assess the "controllability" of the plant. That is, it must be
determined a priori whether the design of a control system offering
"reasonable" closed-loop response will subsequently be feasible.
Until recently, such methods were not available. As a result, the
expected performance often was not achieved in the operating plant.
In some instances, a minor change at the initial design stage could
have resulted in a "controllable'" plant.

Previously, the controllability assessment has been based on
simulations. This approach is complex and requires a complete dynamic
model of the plant. Usually a number of case studies are performed
with different choices of inputs, disturbances, operating conditions,
controller structures and controller parameters. All those choices
could bias the controllability assessment in an erroneous manner.

Morari (1983) suggested making the problem of controllability
assessment independent of the controller selection problem. This is
done by finding a plant's best achievable closed-loop control
performance for all possible constant parameter linear controllers.
This target, the upper bound on the achievable closed loop

performance, is defined as the plant's dynamic resilience. Thus,

"dynamic resilience" is an expression of the plant's inherent

limitation on the closed-loop system's dynamic response which is not

biased by specific choices of controllers.
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The limitations imposed by non-minimum phase elements and
constraints have been discussed in quantitative detail by Morari (1983)
and Holt and Morari (1985). Fundamentally, perfect control can only

be achieved if the plant is invertible. Non-minimum phase elements

(Right Half Plane (RHP) zeros and time delays) make it impossible to
invert the plant and retain (internal) stability of the closed-loop

system. The effect of constraints on performance is also related to
a plant's closeness to singularity. If the minimum singular value of
a plant P, (o (P)) is small then the plant is nearly singular. This

means that the plant has a very small gain for a particular input

direction. To achieve tight control, the controller would have to

provide very large input signals in this direction, possibly violating
input size constraints.

The objective of this paper is to study the effects of model
uncertainty on dynamic resilience. Model uncertainty requires that
the controller be detuned and performance be sacrificed. The primary
goal is to quantify this well-known qualitative statement by deriving
expressions relating achievable closed loop performance and
uncertainty.

The first (and most important) step is to quantify the model
uncertainty. This is usually not a ftrivial problem, and very
misleading results may arise if an inappropriate uncertainty
description is used. Another goal of this paper is to demonstrate
some of these pitfalls. Therefore, the desigh engineer encounters a
difficult situation: simple achievable performance bounds may be
obtained with a crude uncertainty description but such bounds are

often misleading., On the other hand, a detailed description of the
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model uncertainty is needed to find more meaningful bounds. Such
descriptions are normally not available. A first step in resolving
this dilemma is to identify for specific problem classes (e.g.
distillation columns) the sources of model uncertainty which are
likely to cause complications. The engineer can then concentrate on
these when quantifying the uncertainty. Some of the examples in this
paper will be helpful in this respect.

IT. UNCERTAINTY, STABILITY AND PERFORMANCE

1. Model Uncertainty: Causes and Definition.

The linear time invariant models used throughout this paper
describe the actual plant dynamics only approximately.
1. All real processes are nonlinear. In this paper, linear

transfer functions are used to represent the plant and some

"uncertainty" is introduced by linearizing the nonlinear plant at
various operating points. This may lead to a linear model with
"uncertain" coefficients.

2. In other cases the process may be represented quite accurately

by linear models. However, different operating conditions can

lead to changes of the parameters in the linear model. For
example, increased throughput/flowrates usually result in
smaller deadtimes and time constants.

3. Consequently, in many cases parts of the "uncertainty" are known
accurately. However, ‘there will always exist "true"

uncertainties even though the underlying process is essentially

linear: The model parameters are never known exactly and, at

high frequencies, even the model order is unknown.
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Definition of Model Uncertainty: We assume the plant P is linear

and time invariant, but that its exact mathematical description is
unknown. However, it is known to be in a specified ™eighborhood" of
the ™ominal" system, whose mathematical "model" P is available. This
neighborhood will be denoted the "uncertainty set"; it defines the "set
of possible plants" II. In some cases the uncertainty set I may
include a finite number of plants. However, in most cases we will
define I in terms of norm-bounded perturbations on 13, and the set I
becomes infinite.

2. The Effect of Model Uncertainty

Before discussing how uncertainty 1limits the achievable
performance (dynamic resilience), a digression on why feedback is used
for control is of interest. Obviously, for stable plants in the
absence of uncertainty, feedforward control would be sufficient.
Feedback is used to control a plant despite unmeasured disturbances
and model uncertainty. One particular example is the application of
integral action in order to achieve perfect steady state control.
Without exact knowledge of the steady state gain, perfect control may
be achieved through feedback.

However, even though high gain feedback can be used to reduce the
effect of uncertainty, it is intuitively obvious that there must be a
limit to the extent that uncertainty can be tolerated before the
system must be detuned and performance sacrificed. Thus uncertainty
may impose limitations on the achievable performance (dynamic
resilience). Here, quantitative effects of uncertainty on closed—loop

performance will be found. First, additional terminology is required:
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Performance: "Performance" is the quality of the closed- loop
response. Typically, the error signal (e) should be small for the
expected disturbances (d) and reference signals (r) (Fig. 1). The
sensitivity function (S) describes the relationship between r, d and e.
e = S(r-d), S = (I+PC)™! (m
In order to have "good" performance, S has to be "small." In this
paper, the magnitude of S is measured using the singular value §. At
a given frequency w, G(S(jw)) represents the "worst" amplification
(| |e] |o/] [r=d{].) of (r-d). By "worst" we mean that r-d is in the
direction giving rise to the largest amplification. A typical

performance specification is

5(s) < T/le‘ Yo (2)
where wp(S) is a weight which is used to define what responses are
acceptable. The complementary sensitivity function H will also be
used to measure performance. H is defined by

H=I-3S8
or H = PC(I + PC)™" (3)
H relates the output y to the reference signal r
y = Hr )
It is desirable to have H = I. G(H) < 1 at some frequency implies that
tight control (HSI) is not possible. S and H are used to denote the
nominal (P=13) sensitivity and complementary sensitivity functions.

Nominal stability (N.S.): The nominal closed loop system (with no

uncertainty) is stable.

Nominal Performance (N.P.). The nominal closed loop system 3

(with no uncertainty) satisfies the performance specification (2).
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Robust stability (R.S.): The closed loop system is stable for all
plants in the ™uncertainty set."

Robust performance (R.P.): The closed loop system satisfies the

performance specification (2) for all plants in the "uncertainty set."
In the context of 'how' uncertainty affects performance, there
are at least three problems of interest:
Problem 1: The effect of the robust stability requirement on

nominal performance: How does the stability requirement for all

plants in the uncertainty set limit the nominal performance?
Problem 2: The effect of the robust performance specification on

nominal performance: If we specify that some particular performance

requirement has to be satisfied for all plants in the uncertainty set,
how does this bound the nominal performance?

Problem 3: Achievable robust performance: Design the best

possible controller; what is the best achievable performance by all
plants in the uncertainty set?

In Problem 1 and 2, a "lower bound" on robust performance is
specified (for Problem 1 this "lower bound" is simply the requirement
of stability), and we are considering effect on the nominal
performance. The goal is to derive some simple bounds on the nominal
system which, when satisfied, give the desired robust performance.
These bounds are intended to assist the engineer in designing a
controller for the nominal system such that the specified performance
for all plants in the uncertainty set is achieved.

In Problem 3, there is no in particular concern for the
performance of the nominal system. In this case, the problem is to

find the "upper bound" on robust performance using any linear
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controller. This situation is addressed by Doyle (1984) and actually

involves finding the optimal controller; this "u-synthesis" is a

complicated mathematical and numerical problem which will not be

addressed here.

This paper will be concerned mainly with Problem 1. Problem 2
may formulated trivially as a special case of Problem 1 provided that
the appropriate norm (H,) is used to define performance (Doyle,
(1982b, 1984)). Problem 1 is important in itself for the case when
the plant is "operating" most of the time close to its nominal point,
but with ocecasional plant perturbations. In this case performance may
not be important when perturbations occur provided that the system
remains stable. Furthermore, for Problem 1 it will be possible to
derive reasonably simple bounds on the achievable nominal performance.
Simplicity is desired in order for the engineer to gain insight into
'why' a particular design is sensitive to uncertainty.

Two approaches may be taken in order to find bounds on nominal
performance imposed by robust stability (Problem 1):

1. A performance related transfer function which is to be bounded
(for example, 5(H) or (S)) is selected. This requires that the
uncertainty be expressed in terms of a specific single
perturbation (Munstructured" uncertainty) as discussed in Section
III. The bounds derived using unstructured uncertainty are

generally conservative since the actual uncertainty rarely

n"rits" into a single norm-bounded perturbation.
2. A reasonably "tight" description of the uncertainty is chosen.
This is done by identifying more precisely where the uncertainty

ocecurs in the system, such as by considering uncertainty in the
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model parameters. This generally leads to an uncertainty
description with multiple perturbations (Aj's). By assuming
norm bounds on these (e.g. 6(Aj) < 1) uncertainties, it is

possible to derive non-conservative conditions for robust

stability using the Structured Singular Value, p. This approach
is due to Doyle and coworkers (1982, 1984) and is considered in
Section IV. One disadvantage of this procedure is that the
resulting conditions are not in terms of a simple bound on 5(H)
or §(8), but involve p(N) where N may be a complicated function
of S and H.

A number of conditions in this paper are stated as both necessary
and sufficient for robust stability, but it is stressed that necessity
is only meaningful if the assumed uncertainty is an accurate ("tight")
description of the true uncertainty.

ITI. SINGLE PERTURBATIONS (UNSTRUCTURED UNCERTAINTY)

In this section, thé uncertainty which occurs at different parts
of the system will be lumped into one single perturbation L. In most
cases this will correspond to M"unstructured" uncertainty. (More
precisely, "unstructured" uncertainty means that several sources of
uncertainty are described with a single perturbation which is a "full"
matrix of the same size as the plant P).

Let Pe Il be any member of the set of possible plants I, and let
Pell denote the nominal model of»the plant. To describe unstructured
uncertainty the following four single perturbations are commonly used:
additive (Lp), multiplicative input (L), multiplicative output (Lg) and
inverse multiplicative output (Lg) perturbations (Figf 2)

P=F~’+LA or ]’_,A;p;; (5a)



Figure 1.

Figure 2.
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Feedback system with controller C and plant P.
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Four common uncertainty descriptions involving single

perturbations:
Input multiplicative uncertainty (Ly); Additive uncertainty (Lpds
Output multiplicative uncertainty (Lg); Output inverse

multiplicative uncertainty (Lg).
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P = P(I+Lp) or Ly = B~'(P-P) (5b)
P = (I+Lg)P or Lg = (P-P)P~ (5¢)
P = (I+Lg)'P or Lg = (P-P)P™ (5d)

Additional examples are given by Doyle et al. (1982). The conditions
derived for robust stability will be different depending on which
single perturbation is chosen to describe the uncertainty.

1. Simple bounds on §(H), 5(Hy) and 5(S)

In each of the cases above the magnitude of the perturbation L
may be measured in terms of a bound on &(L)
5(L) < 2w)  Ww (6)
where
2(w) = max G(L)
Pe 1
The bound &(w) can also be interpreted as a scalar weight on a
normalized perturbation A(s)
L(s) = 2(s)A(s) , 5(A) <1 %w (7
The magnitude bound %(w) will not generally constitute a tight
description of the "real" uncertainty. This means that the set of
plants satisfying (7) will be larger than the original set 1.

Output Multiplicative Uncertainty. The sensitivity function S has to

be stable for all Pell. Using the identity

S = S(I+(P-B)P'H)™* = S(I+LgH)™? (8)
and the Nyquist stability condition, the following robust stability
bound is derived.

Theorem 1. Bound in terms of &(H) (Doyle and Stein, 1981,

Postlethwaite and Foo, 1985)

Assume the nominal system is closed loop stable, that is, assume

in particular that H is stable. Let T be any set of plants such that
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P and P have the same number of RHP (unstable) poles. Then robust
stability is guaranteed
i §(H) < 1740(w) where 2p(w) = max o(Lo) (9)
(Condition (9) is necessary and sufficient for robust stability if it is
assumed that all plants satisfying G(Lg) < %p(w) actually occur (Doyle
and Stein, 1981)).

The robust stability condition (9) can always be satisfied for
open loop stable systems since H=0 (no feedback) is always possible.
However, good disturbance rejection and good command following require
H =1 (i.e., 5(H)*1). Condition (9) says that the system has to be
"detuned" (5(H)<1) at frequencies where %g(w) > 1. This is reasonable
since 2p(w) > 1 for some w implies that the plant can have zeros on
both sides of the imaginary axis; it is well known that RHP-zeros
limit the achievable performance.

Input Multiplicative Uncertainty. In this case a theorem similar to

Theorem 1 is obtained, but with H replaced Hy (Postlethwaite, 1985):
R.S. if B(HD < 1/21(w) ,  27(w) = max 5(Ly) (10)
where
Hp = C(I+PC)™*P = P~'HP (11)
ﬁI is the nominal closed loop transfer function as seen from the
input of the plant. It is desirable to have this transfer function
close to I in order to reject disturbances affecting the inputs to the
plant. However, since performance is usually measured at the output
of the plant it may be of interest to use (10) in order to derive a
bound in terms of H. To derive this bound the inequality
3(Hp = 6(5“1ﬁ5).§ G(P~1F(H)o(P) = Y(P)5(H)

is used; the bound is:
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R.S. if a(ﬁ)g—Y—(%) W;EF Yo (12)
Here Y(P) = G(P)/o(P) is the condition number of the plant. (12) has
been used to introduce the condition number as a stability sensitivity
measure with respect to input uncertainty (Morari, 1983), but this is
misleading. The condition number enters the stability condition (12)
mainly as the result of the conservative step introduced by going from
an input (Eq. (10)) to an output uncertainty description (Eq. (12)).
For Y(P) large, (12) may be arbitrarily conservative even though the
uncertainty is tightly described in terms of a norm-bounded input
uncertainty such that (10) is both necessary and sufficient. However,
even though (12) is misleading and the system is stable, input
uncertainty usually does cause control problems when Y(P) is large.

As shown by Morari and Doyle (1986), robust performance (measured at

the output of the plant) is usually poor in such cases (even though
the nominal performance may be excellent). Output uncertainty does
not lead to the same performance problems, and this indicates why

input uncertainty is of more concern than output uncertainty for ill-
conditioned plants.

Inverse multiplicative output uncertainty. Using the identity

S = S(I+LgS)™'PP™ = (I+SLg)™'SPP™ (13)
and the inverse Nyquist stability condition, the following theorem may

be derived.

Theorem 2. Bound in terms of S (Postlethwaite, 1985)

Assume the nominal system is closed loop stable, that is, assume
in particular that S is stable. Let I be any set of plants such that

P and P have the same number of RHP zeros. Then robust stability is
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guaranteed if
e 1
5(S) < where fg(w) =max d&(Lg) 14
= 250w s lax o olbs (14)

For minimum phase systems (no time delays or RHP zeros), the
nominal sensitivity function S may be arbitrary small ("perfect
control") and (14) can always be satisfied. Therefore, Condition (14)
seems to imply that for minimum phase systems arbitrarily good
performance (S small) is possible regardless of how large the
uncertainty is. This is claimed by Postlethwaite, but is not quite
true. The pitfall is that any real system has to be strictly proper,
and S=TIand S =1 as w » = must be required. Consequently, to
satisfy (14) it is necessary that §(Lg) = §(P-P)P™' < 1 as w » = for
all possible P. This condition is usually violated in practice,
because the order of the actual plant is higher than that of the
model.

Theorems 1 and 2 prescribe two fundamentally different ways of
handling uncertainty: To guarantee robust stability Theorem 1
prescribes that the system be detuned (low gain), while Theorem 2
prescribes that the control be tightened (high gain). In practice, it
is desirable to combine the two approaches: By tightening the control
at low frequencies better performance is obtained. Eventually, at
higher frequencies, the system has to be detuned to guarantee robust
stability. In fact, Postlethwaite (1985) has shown that it is possible
to combine Theorem 1 and 2 over different frequency ranges. However,
the bounds are still conservative since there is no "tight" description
of the uncertainty. A better approach is to derive tighter

uncertainty descriptions in the first place and then derive robust
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stability bounds (Section IV).

2. Input Uncertainty for Distillation Column (Example)

Conditions (9) and (10) indicate that the system has to be detuned
-7 1 - 1 .
such that &(H) < To@ (or §(Hp) < I ) in order to guarantee

robust stability. However, because of the conservativeness introduced
by using unstructured uncertainty, these conditions are generally only
sufficient for robust stability; the detuning indicated may be much
larger than what is actually necessary. This is illustrated
conveniently through an example.

Consider the distillation column described in Table 1 where the
overhead composition is to be controlled at yp = 0.99 and the bottom
composition at xp = 0.01 using the distillate D and boilup V as
manipulated inputs. By linearizing the nonlinear model at steady
state and by assuming that the dynamics may be approximated by a
first order response with time constant t = 75 min, the following
linear model is derived (Skogestad, 1986):

5. _1_[-0.878 0.014
T 1s+1 | -1.082 -0.014

A simple decentralized control system with two PI controllers is

chosen

e - B G2 (15)

This controller gives acceptable nominal performance, and can be
shown (Section IV) to give Robust Stability when there is relative
uncertainty of magnitude wy(s) on each manipulated variable:

5s+1

This implies a relative uncertainty of up to 20% in the low frequency
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Binary separation, constant molar flows, feed liquid

Relative volatility

No. of theoretical trays
Feed tray location

Feed rate and composition
Product compositions
Product rates

Computed from steady state model

Reflux rate

Linearized steady state gains.

LV-configuration:

DV-configuration:

dyp|  [-0.878
dxg| = |-1.082

o= 1.5
N = 50
Ngp = 21

F = 1 kmol/min, zp = 0.5
yp = 0.99, xg = 0.01

D = B = 0.5 kmol/min

L = 2.71 kmol/min (1.39

Lmin)

40,864 [dL]
-1.096] |av

0.0147] TdD]
-0.014] |dav

Table 1. Data for distillation column example.
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range which increases at high frequencies, reaching a value of 1 at w
= 1 min~!'. This increase with frequency allows for a time delay of
about 1 minute, and may represent the effect of the flow dynamics
which were neglected when developing the model. This relative
uncertainty can be written in terms of two scalar multiplicative
perturbations Ap and Ay.

dD = (1+wy(s)Ap)dD, , IAD, <1 Yo

dv = (T+wp(s)ay)dle , |Ay| <1 ¥ (16)
(dD and dV are the actual inputs, while dD, and dV, are the desired
values of the flow rates as computed by the controller). (16) can be
approximated by an "unstructured" single perturbation Ly = wy A7 (A7 is

a "full" 2x2 matrix)

Y dDg |
LS\?J - (T+wg(s)ap) [deJ oA <1 W (17)

with 27(w) = |w1(jw)lf (10) indicates that Robust Stability is
guaranteed if §(Hp) < 1/87(w) ¥w. However, from Fig. 3 it is seen that
this condition is violated over a wide frequency range, despite the
fact that the system is known to be robustly stable. The reason for
the conservativeness of condition (10) in this instance is that the use
of unstructured uncertainty (17) includes plants not included in the
"true" uncertainty description (16). These problems may be avoided by
using the structured singular value u(ﬁl) as discussed in Section IV.Z2.

3. Integral Control and Robust Stability

Because of the importance of integral control in the context of
process control we will derive specifically conditions under which
controllers with integral action can be designed in the presence of

uncertainty. We will keep the uncertainty as general as possible. To
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Figure 3. Robust stability for the distillation column with diagonal input
uncertainty is guaranteed since u(Hp) < 1/|wll ¥w. The use of
unstructured uncertainty and G(Hy) is conservative, and would
require the system to be detuned to guarantee robust stability.
> W] A — % —
T' C - P
Figure 4. System with weighted additive uncertainty. Rearranging this

system to fit Fig. 6 gives M = W,C(I+PC)™W,.

this end define Ny as the set of plants which is generated by a single
weighted additive norm bounded perturbation (Fig. L)

My = {P: P = P+ Lp} , Ly = WoApW,, 5(Ap) < 1, Wu (18)
This is a generalization of (7) because the weights W, and W, are
allowed to be matrices. I includes additive uncertainty (5a) (W, =
2a» We = I), multiplicative input uncertainty (5b) (W, = I, W, = 1321) and
multiplicative output uncertainty (5¢) (W, = }39,0, W, = I) as special

cases.
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A necessary and sufficient condition for "perfect control" and
robust stability will be stated first. Note that "perfect control” (H
= I, ¥uw) is clearly not possible for real systems which must be
strictly proper, (i.e., H+0as w-~ »), but the notion of "perfect
control" is nevertheless useful.

Theorem 3. Perfect Control( I=l). Assume:P is minimum phase, all

plants have the same number of unstable poles. Robust stability and
"perfect control" (H=I) may be achieved
iff  det(P P™%) #0  ¥w, ¥Pe Ny (19)
This theorem implies that perfect control is possible if and only

if none of the plants P in the set Iy have zeros on the ju-axis (i.e.,
detP#0). From the proof and (5) it is clear that det P = 0 ¥uw is

equivalent to

Additive uncertainty: & < o(F) ¥u

Multiplicative input uncertainty: 21 < 1 ¥uw

Multiplicative output uncertainty: g < 1 ¥uw
The necessity of condition (19) is obvious since perfect control
(S=8=0) is never possible for plants with RHP zeros. Regarding
sufficiency, it is clear from Theorem 2 that for minimum phase plants,
perfect control is always possible in principle. The search for zeros
is restricted to the jw-axis as the result of the particular norm
bounded uncertainty assumed, it implies that zeros cannot appear in
the RHP without crossing the ju-axis. Theorem 3 offers little that is
new; it is stated mainly as a means to prove Theorem 7 in Section V.

The following conditions for integral control are more interesting.
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Theorem 4A. Integral Control. Let T be any set of plants such that P

and P have the same number of RHP (unstable) poles. Also, assume
that PC and PC are strictly proper. Then robust stability and
integral control (H(0)=I) may be achieved
only if  det(P(0)P(0)™*) > 0  ¥Pe I (20)
Theorem 4A implies that for stable plants, integral control is
never possible if the sign of the plant, expressed in terms of detP(0),
changes. This is a direct generalization of the result for SISO

systems[ Note that Theorem 4A does not apply to cases where the pole

1
s+a

may cross the jw-axis. As an example, let P = and P = _3_1_5 (a>0).
These plants may be stabilized using a single controller with integral

, k>a) despite of the fact that they do not

action (e.g. C = k(ss+a)

satisfy condition (20).
For the special case when Il is of the norm-bounded form I (18),

condition (19) is both necessary and sufficient:

Theorem 4B. Integral Control( 1 = IIz). Assume all plants Pe IIj are

stable and that PC and PC strictly proper. For controllers with
integral control robust stability may be achieved
if and only if det(PO)B(O)™Y) >0 ¥Pe My (1)

The sufficiency of condition (21) follows mainly from the assumed
norm-bounded additive perturbation, and also from the fact that at
frequencies w # 0, the robust stability condition (similar to (10)) may
always be satisfied by detuning the system (provided the plant is
stable). Note that condition (21) does not imply robust stability if
I is not on the form IIp. As an example, consider the set II consisting

of the two plants P = diag{1,1} and P = diag{-1,-1}. Since this
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corresponds to two SISO plants where the gains change sign, integral
control is not possible.
IV. MULTIPLE PERTURBATIONS ("STRUCTURED"™ UNCERTAINTY)

In this section, we will describe the uncertainty in a
"structured" manner by actually trying to identify the sources and
locations of wuncertainty in the system. This usually leads to an
uncertainty description with multiple perturbations (A;). These
perturbations may correspond to uncertainty in the model parameters,
uncertainty with respect to the manipulated variables (input or
actuator uncertainty) and the outputs (measurement uncertainty), ete.
By using such a mechanistic approach, we can norm-bound each
perturbation (e.g. ||Ai|[<1) without introducing too much additional
conservativeness and get a "tight" description of the uncertainty set.

However, we should not necessarily describe the uncertainty as
rigorously as possible. Rather, we should take the engineer's
approach and describe the uncertainty as rigorously as necessary.
This means some of the sources of uncertainty (occurring at different
places of the system) should be lumped into an "unstructured’
multiplicative perturbation, for example, if this does not édd too

much conservativeness. This leads to a practical uncertainty

description: Some sources of uncertainty are described in a
"structured" manner (e.g., parametric uncertainty), while the rest
(usually uncertain high-frequency dynamics) is lumped into a single
"unstructured" perturbation (see Reactor Example below).

The main objective in this section is to familiarize the reader
with the work of Doyle (1982, 1984). The results are presented

without further motivation; subsequent examples illustrate how these
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results may be used in practice.

1. General Theory

Consider the uncertainty as perturbations on the nominal system.

Each perturbation A; is assumed to be a stable and norm-bounded

transfer matrix

a(A1) <1 Y (22)
Weighting matrices are used to normalize the uncertainty such that the
bound is one at all frequencies; that is, the actual perturbation Lj is
written

Li = W, Aj W, (23)

If Aj; represents a real parameter variation we may restrict A; to be
real, but in general Aj may be any stable rational transfer matrix
satisfying (22). The choice of the singular value § as the norm for
bounding Aj is not arbitrary, but is needed to obtain the necessity in
the theorems which follow.

The perturbations (uncertainties) which may occur at different
places in the feedback system (e.g., Fig. 5), can be collected and
placed into one large block diagonal perturbation matrix

A = diag {Ay, ... Ap} (24)
for which we have

G(A) <1 Yuw (25)

The blocks Aj in (24) can have any size and may also be repeated. For
example, repetition is needed in order to handle correlations between
the uncertainties in different elements. The nominal closed loop
system with no uncertainty (A=0) is assumed to be stable. The
perturbations (uncertainty) give rise to stability problems because of

the Madditional" feedback paths created by the uncertainty. This is
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Figure 5. System with weighted multiplicative input and output uncertainty.

Rearranging this system to fit Fig. 6 gives M as in qu (29).

A |+

> M

Interconnection structure for studying effect of uncertainty on

Figure 6.

stability. A = diag{a,, ..., Ant.
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shown explicitly by writing the uncertainty as perturbations on the
nominal system in the form (MA-structure) shown in Fig. 6. M is the
nominal closed loop system "as seen from" the various uncertainties,
and is stable since the nominal system is assumed stable. More
precisely, M is the interconnection matrix giving the nominal transfer
functions from the output of the perturbations A; to their inputs.
Constructing M is conceptually straightforward, but may be tedious for
specific problems.

We want to derive conditions on M in order to guarantee robust
stability. It may bé shown (Doyle et al., 1982) that for a nominally
(A=0) stable system, robust stability is equivalent to the stability of
the MA-structure in Fig. 6. This system is stable if and only if
det(I+AM) does not encircle the origin as s traverses the Nyquist D
contour for all possible A. Because the perturbations are norm
bounded, (i.e. all A's satisfying (25) are allowed) this is equivalent
to

det(I+AM) # O Yo, ¥A, 3(A) <1 (26)
<=> p(aM) <1 Yu, ¥4, 5(A) <1
Condition (26) by itself is not very useful since it is only a yes/no
condition which must be tested for all possible perturbations A. What
is desired is a condition on the matrix M, preferably on some norm of

M. This is supplied by the following theorem.

Theorem 5. Necessary and Sufficient Condition for Robust Stability
(Doyle et al., 1982). Assume the nominal system (A=0) is stable.
Then the closed loop system (Fig. 6) is stable for all A, ©(A) < 1 if

and only if
u(M) < 1 Yw @7
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Theorem 5 may be interpreted as a "generalized small gain theorem"
applied to (26) which also takes the structure of A into account. The

function yu, called the Structured Singular Value (SSV), is defined in

order to get the tightest possible bound on M such that (26) is
satisfied. A more precise definition of y and some of its properties
are given in Appendix 1. It is important to note that u(M) depends
both on the matrix M and on the structure of the perturbations A.
u(M) is a generalization of the spectral radius p(M) and maximum
singular value (M) in that u(M) = p(M) when the perturbation A is
totally structured (A=6I,|§|<1), and u(M) = G(M) when the perturbation
is unstructured (A is a full matrix). Note that the matrix M is a
function of the nominal system only, and the condition u(M) < 1 limits
the possible nominal transfer functions.

At this point, it is not apparent that the uncertainty description
(22)=(25), does indeed provide a useful framework for handling
uncertainty. Furthermore, it is not clear how to find the matrix M.

Hopefully this will become clearer through the examples below.

2. Input uncertainty for distillation column (Ex_ample)

It is now possible to derive a less conservative robust stability
test for the distillation column example. Previously, we assumed that
the input uncertainty was unstructured, but now A1 in (17) may be
restricted to be a diagonal matrix which results in a tight
description of the uncertainty. The interconnection matrix M = wI(s)IfII

and, from Theorem 5,
R.S. if'f’ w(Hp) < 1/|wI(jw)| = 1/83(w) Yo

where u(ﬁl) is computed with respect to the diagonal matrix Aj. From

Fig. 3 we see that this condition is satisfied and robust stability is
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guaranteed with the chosen controller (15).

3. Simultaneous Input and Output Multiplicative Uncertainty

Consider the system in Fig. 5 which has both input and output
multiplicative uncertainty with respect to the model of the plant P.
The possible plants are given by

P = (I+Lg)P(I+Ly)

L1 = WyAfW,1, G(A7) < 1 Yuw (28)

Lo = WoplAoW,0s 8(Ag) < 1 ¥uw
The perturbation block Ar represents the multiplicative input
uncertainty. If its source is uncertainty with respect to the
manipulated variables, then

A1: diagonal, W,y = diag{wjy} , Woy = I

where wyj represents the relative uncertainty on each manipulated
input.

The block Ap represents the multiplicative output uncertainty.
If its source is uncertainty or neglected deadtimes involved in one or
more of the measurements, then

Ap, diagonal, W,n = diag{wgil}, Woo = I
Wpj represents the relative uncertainty for each measurement. These
sources of input and output uncertainty are present in any plant. Ar
and A, are restricted to be diagonal matrices, since there is little
reason to assume that the actuators or measurements influence each
other. However, some of the unmodelled dynamics in the plant P
itself, which has cross terms, may be approximated by lumping them
into A1 or Ap, thus making either one of them a "full" matrix.

To examine the constraints on the nominal system imposed by the

robust stability requirement for this uncertainty description, let A =
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diag{A1,Ag} and rearrange the system in Fig. 5 into the form in Fig. 6.

The interconnection matrix M becomes:

~W,JCP(I+CP)~W,1  -W,C(I+P) W o
WoP(I+CP)™ W,y  -W,oPC(I+BC)™ W

W T -p~1iip B W l

) l I Wlo_“ P§§HP liﬁHJ[ oI szJ 29)
and robust stability is guaranteed for all A such that §(A) < 1 if and
only if u(M) < 1, ¥w. u is computed with respect to the structure
of A which in turn depends on the structure assumed for A7 and Ag.
Note that conditions (9) and (10) in Section IV are special cases of
(29) when the weights are assumed to be scalar, A7 and Ap are "full"
matrices, and either A7 = O or Ag = 0. However, this only applies for
stable A's; an unstable Ag (or Ar) may be allowed in condition (9) (or
(10)), while only stable A's were allowed when deriving (29).

4, Simultaneous Parametric and Unstructured Uncertainty (Reactor

Example)

Consider a perfectly mixed batch reactor where an exothermic
reaction is taking place. The reaction temperature T is controlled
using the temperature T, of the fluid in the cooling jacket (the fluid
in the cooling jacket may be boiling, and T, may be adjusted by
changing the pressure). A heat balance for the batch reactor gives

CpT = (-AHp)r = UA(T-T¢)

where
T reactor temperature (K)
Te:  coolant temperature (K)
r: reaction rate (function of T) (mol/s)

AHp:  heat of reaction (negative constant) (J/mol)
Cp:  total heat capacity of fluid in reactor (J/K)
UA: overall heat transfer coefficient (J/sK)
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Linearizing the reaction rate
r = r° + kpdT

results in a linear transfer function from T, to T

uA/C
dT(s) = —== dTq(s) (30)

where

. UA-(-AHp KT 31)
Cp

Two sources of uncertainty will be considered for the linear model
(30): 1) The effect of nonlinearity expressed as uncertainty in the
pole location a. 2) Neglected high-frequency dynamics.

Pole Uncertainty (As). Most of the terms in (31) are nearly constant,

except for kg = 9r/9T which is a strong function of temperature
(operating point). From (31) we see that the reactor may be open loop
stable (a>0) at low temperatures where kT is small, and unstable at
high temperatures where the reaction is more temperature sensitive.

To describe the effect temperature has on a, let

la—é’ < rza
a: nominal pole location
rp:  relative "uncertainty" in a (real constant)

If r5 > 1, the plant may change between stability and unstability.
Equivalently, the possible a's may be written in terms of a norm-
bounded perturbation Ag

a = a(l+radg) , |as| < 1, Ag real (32)

and this may be written as an inverse multiplicative perturbation
(I+WsAg)** on the plant.

1 1 1

Ta
S+3 = S+5 1+Ws(@As ’ ws(s) = (33)

1+s/a
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Neglected Dynamics (modelled as unstructured output uncertainty (Ag)).
A plant always has some unknown uncertainty, mainly at higher
frequencies, which cannot be modelled in a "structured" manner (using
parametric uncertainty, etc.). These sources are most conveniently
modelled as multiplicative uncertainty; in this case we choose to use
output multiplicative uncertainty (I+wplg). Physically, this
uncertainty may include neglected (and unknown) dynamics for chgmging
the cooling temperature T, (if T, is manipulated indirectly with
pressure), neglected actuator dynamics (the valve used to control
pressure) and neglected dynamics introduced by the heat capacity of
the walls. A conservative choice for wp(s) is found by approximating
the neglected dynamics as an effective time delay, and choosing
|Wo(Jw)l = 1 at the frequency where the phase lag represented by the
neglected dynamics reaches 60° (|1~ejel =1 for & = 60°).

A block diagram representation of the uncertainty is depicted in
Fig. 7. Note that both blocks (Ag and Ag) are in general needed: We
cannot lump the pole uncertainty (Ag) into the output uncertainty (Ag)
if the pole is allowed to cross the jw-axis. This would result in
'wo(jw)l + o at w = 0. Similarly, we cannot lump the output
uncertainty into the pole uncertainty. The reason is that the inverse
multiplicative uncertainty description (Ag) cannot be used to model
neglected or uncertain RHP zeros (this would require an unstable
perturbation Ag). It is therefore not suited for handling neglected
high frequency dynamics which most certainly include RHP zeros (one
simple example is the "dead band" on any valve).

Combining the two scalar perturbations into one block

perturbation A =diag{Ag,A,} and rearranging Fig. 7 to match Fig. 6
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gives the following interconnection matrix:

M = wS% HWO}:I (34)
WgS -WoH
From Theorem 5, robust stability is guaranteed
iff M) <1 Yo
or  iff  |ug§| + |woii| <1 W (35)

Because of the identity H+S-= 1, this bound is impossible to satisfy
if ,WS, and lwol are both "large" (that is, close to one or larger)

over the same frequency range. For ryz > 1 the pole may cross the
ju-axis, and |wg| > 1 for w < w* = & /Ta™T1 and [ws| < 1 for w > o'

In that situation, Robust Stability is guaranteed only if the
"unstructured" relative uncertainty given in terms of 'wo(jw)' reaches
one at a frequency higher than w¥.

If pole uncertainty were the only source of uncertainty (wg=0),
the robust stability bound would be || < |wg|. Since the plant is
minimum phase, this bound could always be satisfied by increasing the
gain and making g small, regardless of the size of rj.

In summary, the pole location uncertainty is handled by
"tightening" the control at low frequencies. Indeed, S small ("tight"
control) is needed in order to stabilize an unstable plant. However,
to realize robust stability in face of the uncertain high-frequency
dynamics, it is necessary to detune the system and make H small (8 =
I) at frequencies where wg(w) is larger than one. The implication of
this result for process design is that we cannot stabilize an unstable

plant if there are RHP-zeros or model uncertainty in the same

frequency range as the location of the unstable pole.
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el cHz [LesIST) [ ven

Figure 7. Block diagram representation of uncertainty for Reactor Example.
Ap represents the neglected (and uncertain) high-frequency
dynamics. Ag represents the pole uncertainty (changes between
stability and instability are possible if tws(jw)l > 1 at some
frequency). Rearranging this system to fit Fig. 6 gives M as in

Eg. (3L4).

inty: - Di § .s(w). The disk
Figure 8.  Additive element uncertainty: Ile lel < ajjlw). T

represents the set of possible pij(jw) at a given frequency.
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5. Independent Uncertainty in the Transfer Matrix Elements

In many cases the uncertainty is most easily described in terms
of uncertainties on the individual transfer matrix elements. This kind
of uncertainty description may arise from an experimental
identification of the system. No claim is made that this uncertainty
description is a good representation of how the uncertainty actually
occurs, but it is included as a possibly useful description in some
cases.

The 'simplest form of element uncertainty arises from the
assumption that each element Pij in the plant P is independent, but
confined to a disk with radius aij(w) around 13ij in the Nyquist plane
(Fig. 8), i.e.

'pij'lsij, < aij(w) Yuw (36)
This corresponds to treating each element as an independent SISO plant
with additive uncertainty of size ajj(w). Multiplicative (relative)
uncertainty rjj on the elements may also be written in the form (36)
by using
ajj(w) = rijw) lf)ijl (37)
The main limitation of the uncertainty description (36) is that
correlations between the elements cannot be handled (potentially very
conservative as shown for the distillation example in Section V.3).
Defining the complex perturbation, Ajj, (36) becomes
Pij -~ 513' = Ajj ajj o 'Aij, <1 (38)
Or equivalently, in matrix form

Anay,
Az@z;

P-P = a
Anan (39)

szalz



- 43 -
Introducing weighting matrices E and L it is possible to rewrite (39)

in terms of the "large" diagonal perturbation matrix Ag

P - P = EAgL (L0)
2. 2
where E ¢ RN, [ ¢ RV¥N and Ag € €™ are defined as
_a_l azi
[ = y
E=[II..1],L-~ an |87 | ay (1)

Agp = diag{A;;, Az, s Apnlt |Aij, <1
A block diagram representation of (40) is given by Fig. 4 with W,
= E and W, = L. This system may be rearranged into the form in Fig. 6
with the interconnection matrix M = LC(I+PC)™'E = LP™'HE. From

Theorem 5 follows the necessary and sufficient condition for robust

stability:

WLPHE) <1 W (42)
where u is computed with respect to the diagonal matrix Ag. 1In
principle, this condition may be used to generate all nominal closed
loop transfer matrices H for which the closed loop system is robustly
stable. Alternatively, it may be used to check whether a particular
design meets the robust stability requirement. However, at the design
stage (when dynamic resilience is to be determined), H is not known,
but rather the restrictions on H as imposed by the uncertainty are of
interest. In order to obtain an explicit bound on H from (42), assume
that H = hI, that is, assume the nominal response is decoupled with

identical responses. From (42) follows:

R.S. (H=A1) irf sy = A} ¢ 1
| Al < YO 43

Again, this bound shows that the system has to be detuned and
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performance be sacrificed when the uncertainty is large, that is, in
this case when w(LP™'E) > 1. w(LP~'E) is a measure of the dynamic
resilience which takes into account both the size of the uncertainty
and the sensitivity of the plant to uncertainty. In Section V.3, a
numerical example incorporating condition (43) is provided.

Upper bounds for u(Lﬁ"ﬁE). Alternative sufficient robust stability

conditions for this uncertainty description have been derived by
Kouvaritakis and Latchman (1985) and by Kantor and Andres (1983).
Kouvariakis and Latchman's (1985) condition provides a tight upper
bound on u

-~ 5(D,AD,) A
LIPHE) ¢ min 2 98T ¥ (4 f9B) (41)
= D,D, oDHA'FD,)

Here A = {aij} and D, and D, are diagonal matrices with real, positive
entries. Kouvaritakis and Latchman (1985) claim that (44) is an
equality, but their proof is wrong (Doyle, 1986). However, the bound
is tight in most cases and is useful since it is easier to compute
than p(LP~'HE). Another upper bound which is even easier to compute,
but is more conservative, is given by Kantor and Andres (1983)

w(LPHE) < p(a|F ) (45)
The spectral radius of the positive matrix Al "}5-1;1| is easily computed
as the Perron-Frobenius root of the matrix.

Special case: Equal relative uncertainty. Consider the special case

when all the elements have the same relative uncertainty r, i.e.
A - r|B| (46)
Assuming # = hI and using (44) and (45), the robust stability condition

(42) becomes

R.S. if |n] < /e k*(B|B) ¥ (47)
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ir & < 17e o([B||B) W (48)
These conditions obviously also hold for the case when the relative
uncertainties are different provided that r is replaced by the largest

relative uncertainty in any element, rpax

rmax(w) = m&}l}fi rij(w) (49a)
where
| D5 =B 4
rij = max LENRLZN (49b)
Pew Pij

Note that k*(lf’l,?) can be viewed as a minimized condition number. A

more thorough discussion of this result appears in Section V.



- 46 -

V. THE CONDITION NUMBER AS A SENSITIVITY MEASURE

This section discusses the use of the condition number Y(P) as a
sensitivity measure with respect to uncertainty. A plant is called
ill-conditioned if the condition number Y(P) is high. Physically, this
means that the gain of the plant is strongly dependent on the input
direction (see Notation). We give two interpretations to the condition
number:

1. The minimized condition number, Y*(f’) is a stability sensitivity
measure with respect to independent uncertainty on the elements
with similar relative uncertainty.

2. Y(P) is a robust performance sensitivity measure with respect to
input uncertainty (as discussed following Eq. (12)).

1. YXP) as a sensitivity measure

It has been argued previously in a somewhat qualitative manner
(Grosdidier, et al., 1985) that for robust stability the minimized
condition number Y¥(P) is a measure of sensitivity with respect to
model uncertainty. Furthermore, there is a direct relationship
between large elements in the Relative Gain Array (RGA) and v*(F)
(Grosdidier, et al., 1985), and large elements in the RGA are often
claimed to indicate sensitivity to model uncertainty. It will be
shown that the minimized condition number \{*(13) and the RGA are useful
measures with respect to element uncertainty, but only if the relative
errors of the transfer matrix elements are independent and have
similar magnitude bounds. This proves to be a restrictive assumption

in many cases.
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Express the uncertainty in terms of the largest relative
uncertainty, rpax, in any of the transfer matrix elements (49). This

uncertainty description is independent of scaling.

Theorem 6. Condition number criterion. Let I be any set of plants

such that P and P have the same number of RHP (unstable) poles, and
define rpax as in (49). Assume the nominal response is decoupled, H=
diag{ﬁi} and assume the system is nominally stable. Then robust

stability is guaranteed

vw, ¥ (50)

which is satisfied

1
rpax’n YX(P)

o ag < Yw, ¥i (51)

Y*(PF) is the minimized condition number and Y;(IS) is the minimized
"absolute" condition number as defined in the Notation. The minimized
condition numbers Y*(P) and Y;(ﬁ) are similar in magnitude since (Lemma
2, Appendix 2)

YaB)VA < Y¥E) < Ya(P)
Condition (50) in Theorem 6 is very similar to condition (47) involving
k*(!§|,§), but there are two differences:
1. Condition (50) also holds the when the decoupled nominal
responses are not identical.
2. Condition (50) is less conservative since Y;(f’) < k*(ll'sl,ls) (use

5(|D.BD.|) < 50, [B[p2)).

By comparing (47), (48), (50) and (51) the following chain of

inequalitites is obtained

VB < Y4B < k*(BLE < o((F] B (52)
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Condition (50) is clearly conservative if the individual relative
uncertainties on the elements, rij, are different in magnitude.
However, from the discussion following Eq. (44), the bound is expected
to be tight when the relative error bounds are equal; in fact, the
bound is the tightest possible for 2x2 plants.

Theorem 7 (2x2): Assume H = hI and rij = ryax. Then condition (50) in

Theorem 6 is necessary and sufficient for robust stability.

In particular, Theorem 7 implies that, for the case of equal
relative >element uncertainty (using the nomenclature from Section
IvV.5),

(2x2): WLF™E) = rYa(P) (53)
and for higher order systems rY;(ﬁ) is expected to give a tight upper
bound on w(LP™'E).

Improved condition at steady state. The uncertainty description above

assumes that each transfer matrix element is given by
bij = 51j(1+r”iinj) s lAijl <1

where Ajj 1s a complex scalar. This may be reasonable at non-zero
frequencies, but does not make any physical sense at steady state
(w=0) where P, P and Ajj are real. Theorem 7 may therefore be
conservative at w = 0 where complex perturbations cannot occur.
Fortunately, for 2x2 systems it turns out that we can derive a tight
condition by replacing Y;(ﬁ) by Y*(P). Indeed, for the case of equal
relative uncertainty,

(2%2):  ppea](LPE) = rY*(F) (w=0) (54)
Theorem 4B and (54) may be combined into the following theorem.

Theorem 8. (2x2) Integral Control (H(0)=I)
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Assume the uncertainties of the elements in P(0) are independent

and real and have equal relative magnitude bounds r. Then for open

loop stable systems, robust stability and integral control may be
achieved
iff Y*(P(0)) < 1/r (55)

If the magnitude bounds on the relative uncertainties are not
equal, and r is replaced by rpax, Theorem 8 provides a sufficient
condition for robust stability and integral control. Theorem 8 is
unique to 2x2 systems; numerical examples show no such relationship
for systems of higher dimensions.

Theorem 7 and 8 give very clear interpretations of the minimized
condition numbers as sensitivity measures: Y*(P(0)) and Y;(ﬁ(jw)) are
accurate measures of sensitivity only if the plant uncertainties are
given in terms of independent (uncorrelated) norm-bounded elements

with equal relative error bounds. For other uncertainty structures

the minimized condition number may be a very misleading sensitivity
measure, and bounds on the uncertainties such as (55) may be
arbitrarily conservative. This will be illustrated by a subsequent

example.

2. Relationship to the RGA
A relationship between Y*(P) and the induced 1- and ~-norms of
the RGA has been conjectured by Grosdidier et al. (1985):
Y*(P) < 2 max| |RGA| |i1s | |RGA|]iw] (56)
Numerical examples show that this bound does not hold for systems of
dimension 4xY4 or higher. However, for 2x2 systems (56) holds even

with Y*;(P), and a stronger result is:

Theorem 9 (2x2):  Y*;(F) < | [RGA[], (57
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Note that for 2x2 systems ||RGA|[|, = 2| |RGA||i, = 2| |RGA||i». Numerical
examples for 3x3 and 4x4 systems support the following extension to

systems with higher dimensions:

Conjecture 1 (nxn): Y*3(F) < ||RGA||, + k(n) (58)

with k(2) = 0, k(3) = 1 and k(4) = 2.

The use of the function k(n) was suggested by Nett (1986). For
real matrices and high condition numbers, ||[RGA||, approaches Y*a(ﬁ).
The bound (58) appears to be most conservative for small condition
numbers. Note that these relationships also hold for the frequency
dependent RGA if it is defined as in the Notation.

Theorems 6 and 7 and Conjecture 1 provide at least a partial
explanation of why ill-conditioned multivariable systems with large
RGA should already be avoided at the design stage: When Y*a (or ¥¥)
or equivalently ||RGA||, is large, then the performance measured in

terms of fhi is very restricted (c.f. (50)) even if the model

uncertainty rpay is small.

3. Integral Control of High Purity Distillation Column (Example)

This example will illustrate that the stability bounds (50) and
(55) can be extremely conservative if the element uncertainties are
not independent. Once again consider the distillation column of Table
1, but this time with reflux L and boilup V as the manipulated inputs.
The steady state gain matrix is

-

. 0.878  =0.864
PO) - [1.082 -1.096J

and

(RGA),, = 35.07, | [RGA||, = 138.275, Y*(F) - Ya(P) = 138.268, Y(B) = 141.7
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From the high condition number Y*(ﬁ), one might conclude that the
plant may become singular for very small perturbations. This would
be true if the uncertainty had the fopm of independent element errors,
but not necessarily otherwise. To illustrate this point consider
conditions for using integral control (H(0)=I) under two different
assumptions about the uncertainty.

Case 1: The elements are assumed independent and norm bounded
with equal relative error r. From Section IV.5, Eq. (43) implies that
robust stability with integral control may be achieved iff w(lLP™!E) <
1 (w=0) where u is computed with respect to the real perturbation

matrix Ap. Here:

[ 0.878 0
1.082 0
[1 0 1 0] 0 0.864
E=[o 10 1J’L=” 0 1.096 |
35.07  -27.65  35.07  -27.65 |
34.07  -27.65  34.07  -27.65
L1 - 43.22  -34.07  b43.22  -3L.07
=Pl 4322 -35.07  U3.22 -35.07

which gives upea1(LPT!E) = 138.268 r which is equal to rY*(P) as
expected from (54). The upper bound p(|B[|P~*|) on Y*(B) (52) happens

to give the same result, i.e. p(llsnﬁ“i)‘ = 138.268. Consequently,

1
Y*(P)

robust stability with integral action is possible iff r <

0.0072. In practice, the variation in each element (mainly due to
nonlinearities) is much larger than 0.7%, and integral control does
not seem to be possible for this distillation column.

Case 2: A more realistic uncertainty description for this high purity
distillation column is the following additive uncertainty (Skogestad,

1986)



= [d ~d]
P -5 - L_d dJ
which may be written in terms of one real scalar A-block

P - }3 = WAW;, W, = ldl LJ']J y Wy = 1 -1], IA' <1

This highly structured uncertainty is mainly due to the material
balance constraints which cannot be violated. Using Theorem 5, robust
stability and integral control (H(0)=I) are possible iff ypeg1 (W,P7'W,) <
1 (w=0). Here W,P™™, = 0 + |d| and therefore robust stability and
integral control are possible for any value of d and the elements may
even change sign without causing stability problems. Thus, despite
the high condition number, the system is not at all sensitive to this
physically-motivated model error.
VI. Conclusions

To guarantee robust stability, model uncertainty requires
feedback controllers be detuned and performance be sacrificed. To
what extent detuning proves necessary depends on the size of the
uncertainty as well as the sensitivity of the plant.

I) General Case: The Structured Singular Value u(M) is by definition

the best measure of the effect of uncertainty on performance:
Robust stability iff uM) <1 Yuw 27
However, here the issue is not control system design but rather
process design. From this viewpoint, systems whose closed loop
stability and performance are very sensitive to model error are
undesirable because they are either impossible to control or require
that enormous effort be put into the design of the control system.

Condition (27) assumes that a control system has already been designed
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and is therefore unsuitable for screening purposes at the design
stage. If additional assumptions are made on the type of model
uncertainty and the control structure, achievable performance can be
related directly to characteristics of the system itself. In the
following summary it is assumed that the nominal closed loop system
is decoupled (H=hI) with identical responses. This proves to be a
reasonable assumption at low frequencies, and leads to the least
conservative bounds.

II) Uncorrelated Element Uncertainty: P - P = EAL (40)

A = diagf{aj}, §(A1) <1
Robust stability iff

~ 1

III) Uncorrelated element uncertainty with similar relative errors:

Each element: Pij = Isij(“f’iinj)’ lAij, <1
Largest relative error: rpzy = max rij

1J
1. Robust stability if

~ 1
h| < ——p— Yu (50)
' I rpaxY a(P)

2. 2x2 systems, rij=r ¥i,j, complex Aij

Robust stability iff (Theorem 7)

~ 1
Ia] < L) Yu

3. 2%2 systems, rij=r ¥i,j, real Aij

Integral control and Robust stability may be achieved iff

*
rY*(F(0))
The minimized condition number Y*(or Y*a) or equivalently the RGA

is a reliable indicator of closed-loop sensitivity to element
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uncertainty only if the relative errors of the transfer matrix

elements are independent (uncorrelated) and have similar magnitude

bounds.
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Notation

C(s)
P(s)

B(s)

|G|

611

1611

ASEE

| 1G] 1

RGA

p(G)

5(G)

o(G)

[l
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rational transfer matrix of fixed-parameter controller

H

nxn square rational transfer matrix of actual plant

{pij}

[

nxn square rational transfer matrix of nominal plant
{p1 3}

set of all possible plants, i.e.Pe I and Pell

matrix G with all elements replaced by their absolute

value

Z lgijl - 1-norm of matrix G

Z lgij lz 1/2 - 2-norm or Frobenius-norm of matrix G.
1,J

n
max Z lgij' -~ induced 71-norm ("max column sum™)
i=1
n
max 2 |g13| - induced =-norm ("max row sum")
i
J=1

Gx(G™HT where x denotes element-byAelement multiplication
(also called the Schur or Haddemard product)

spectral radius of G, i.e. magnitude of largest eigenvalue
maximum singular value or spectral norm of the transfer

matrix G, which at each frequency is equal to the induced

2-norm

o Gul |,
9(G(jw)) = s%plll[ﬁ-lllz— (Ju) = |G |12

minimum singular value



Y(G)
Ya(G)

Y*(G)

Y;(G)

u(G)
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060w = min L ()
— u l 'ul |2

We have the property o(G) = 1/5(G™?)

5(G)/0(G) = condition number

3(|G|)/a(G) - absolute condition number

minimized condition number, Y*(G) = min Y(D,GD,), where D,
132

and D, are diagonal matrices with real, positive entries,

For G, 2x2 and real:

1/2

1+k k >0
l 1/2'
Y¥*(@G) = 1=K (Grosdidier, 1985)
1 k <0

minimized absolute condition number,
6('D1GD2|)

min

D,,D, OZDIGDZS

x 1ale 1172
(2x2): Ya(G) r—% (Appendix 2)
1=K

Rijnsdorps interaction measure for 2x2 plant

*
Y5(G)

12821
£11822

k(G) =

structured singular value (see Appendix 1).

The Laplace variable s or jw is omitted in most cases.
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Appendix 1. The SSV u and its properties

Definition (Doyle, 1982). The function u(M), called the structured
singular value (SSV) is defined at each frequency such that u~'(M) is
equal to the smallest G(A) needed to make (I+AM) singular, i.e.

M) = mjan {8]|det(I+aM) = O for some A, 5(A) < 8(w)}  (A1-1)
A is a block diagonal perturbation matrix. up(M) depends on the matrix
M and the structure of the perturbations A. The definition of u may
be extended by restricting A to a smaller set, e.g., A real. The
above definition is not in itself useful for computing u since the
optimization problem implied by it does not appear to be easily
solvable. Fortunately, Doyle (1982) has proven several properties of
y which makes it more useful for applications.

Properties of u (Doyle, 1982)

1. The following bounds exist for u:

p(M) < u(M) < 3(M) (A1-2)
u(M) = p(M) in the case A = 8I. u(M) = (M) in the case A is
"unstructured”, i.e., A is a full matrix.

2. Let W be the set of all unitary matrices with the same

structure as A, then
Jax p(MU) = u(M) (A1-3)
This optimization problem is in general not convex.

3. Let & be the set of real positive diagonal matrices D =
diag{djIj} where the size of each block (size of Ij) is equal to
the size of the blocks Aj. Then for 3 or fewer blocks

D“éiﬁ T(DMD~1) = u(M) (A1-4)
For 4 or more blocks numerical evidence suggests that (A1-4)

gives a tight upper bound on u(M). A good estimate for the
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scaling matrix D is found by minimizing ||DMD™!||, (the Frobenius
norm).
u(aM) =|aju(M), a is a scalar.
For real matrices M with real, non-repeated perturbations, the
search in (A2-3) may be performed with real matrices U only, and
only the cornerpoints ("+1") need to be considered. For (20) and
(21) in Theorem 4 this implies that only cornerpoints for the

possible P(0)'s need to be checked.
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Appendix 2. Proof of Theorems

Proof of Theorem 3: The proof uses condition (26) from Section IV

which applies to any stable norm bounded perturbation. The
interconnection matrix M for the norm bounded additive set of plants,
N, is (rearrange Fig. 4 to get Fig. 6)
M = W,C(I+PC)™'W, = W,P~'HW, (A2-1)

Using P -~ P = W,ApW, we find det(I+ApM) = det(I+ApW,P 'HW,) =
det (I+W,ApW,P*H) = det(I+(P-P)P~'H), and assuming nominal stability and
using (26) it is found that robust stability is guaranteed

iff  det(I+(P-P)PTH) £ 0  ¥Pe Iy (A2-2)
Theorem 3 follows from (A2-2) by assuming H=1

Proof of Theorem 4A: Applying the Nyquist stability condition to (8)

we see that closed loop stability requires that the image of

det (I+(P-P)P~H) (82-3)
does not encircle the origin as s traverses the Nyquist D contour for
any Pell. For the case of integral control, the image starts from
(w=0) detP(0)P(0)~!. Using the strictly-proper assumption, the image
ends at (w==) det I = 1. The image of (A2-3) will therefore always
encircle the origin if it starts on the negative real axis and the
system will be unstable.

Proof of Theorem U4B:

Necessity: Follows from Theorem 4A
Sufficiency: For this uncertainty description robust stability is
guaranteed (Theorem 5)
iff  uW,PTHW,) <1 W (A2-1)
iff  det(I+(P-P)P™'H) # 0  ¥w, ¥Pe Iy (A2-2)

w = 0: (A2-2) with H(0) = I is satisfied if (21) is satisfied.
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w > 0: For stable plants, it is always possible to select a
controller such that H = AI and |A| < 1/u W,P~W,) ¥w, i.e., such that
(A2-4) holds. This proves that by assuming (21), (A2-4) is satisfied
for all w, and robust stability can always be achieved.

Proof of Theorem 6: Consider any set of plants 1, such that all Pe

II have the same number of RHP poles. Assuming nominal stability, the
Nyquist stability condition applied to (8) implies that robust
stability is guaranteed if and only if the image of det (I+(P-B)P~1)
does not encircle the origin as s traverses the Nyquist D-contour for
all Pe II. A sufficient condition for robust stability using the small
gain theorem is therefore

p((P-P)P™'H) < 1 ¥w, ¥Pe I (A2-5)
Here the spectral radius p is invariant under similarity
transformations. In particular, let D, and D, be real diagonal
"scaling" matrices P and P. Then for any Pe @I we have
p((P-P)P™) = p(D,(P-F)D,D,”*F~™D,~'D,HD,~*) < §(D,(P-F)D,D,~F~'D,”'D,AD," )

5 1 -p 2)T 1NDIax -Dl P_is 2 ~ ~ ~
6(D,(P-P)D,)3(D,HD," ") _ ¢ (P-P)D,) 5 (For i = diag{hy}[a2-6)

- E(DlﬁDz) g_(D,?Dz)
< Pmax E%gi%i)l—) 3(H) (Lemma 1) (A2-T)
g 1 2

Combining (A2-5) and (A2-7) and choosing the scalings D, and D, to get

the least conservative bound, R.S. is guaranteed

5|D.PD - ~
, . = o Rt _di , -
if Juin 5(H)rpaxy 5Poy <1 Yo (H=diag{hi}) (A2-8)

13~2 —

which is equivalent to

o (I:I) < -——--—1-——-—,__—- H-di R.
PmaxY*a(P) (H—dlag{hl}) (50)

This proves condition (50). Condition (51) follows directly from (50)
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by applying Lemma 2 below.
Lemma 1
Consider any set of plants 1. Then,

max (8(D:(P-F)D2) < ryax 3(|D.PD,) (A2-9)

and equality applies if the set 1 is norm bounded with independent
elements and all elements have the same relative uncertainty.
Let A be the matrix which bounds each element in P - P
|P-F| < Aw) ¥Pe (A2-10)

Then

max §(P-P) < 5(A) < rmaxd(|B)) (A2-11)
(The first inequality is an equality if all P satisfying (A2-10) may
occur in practice). The last inequality follows trivially since A<
fmaxlﬁL It will be an equality if the relative uncertainty bounds of
the elements are equal. To derive (A2-=9), note that the relative

errors rj j and rpgyx are unchanged by applying the diagonal scalings D,

and D, to the plant.
and not D,|P|D,. The

Comment: Note that the bound involves 'DJ’D2
last would be more conservative since for D, and D, real and positive

§(|D.PD.|) < 5(0,[F[p2)

Lemma 2

Let G be a matrix of size nxn. Then
5(G) < 3(|G]) < Vn 3(G) (A2-12)
Proof: The following property is proved by Stone (1962)

7= 116l < 3@ < [ [o]
n
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Using the obvious property ||G]|. = || |G| |]. we get
5(|G]) < |]G] ]. < ¥ 3(G) QED

Proof of Theorem 7:

Let P be a nonsingular 2x2 transfer matrix and consider the case

of independent elements with equal relative errors r.

J i3] <1 Vo (A2-13)

P - 511(1+rA11) 512(1+I’A12)
1.521(‘l +PA21> 522(1 "'PAzz)

Comparing (50) with (43) we see that Theorem 7 holds if it can be
proved for this uncertainty description that
(2x2): p(LFE) = rY*;(B) (53)
Since both w(LP™'E) and rY*;(P) scale linearly with r, (53) is
equivalent to the following statement
W(LPTIE) < 1 <=> rY*5(P) < 1

Note from (43) that w(LPT'E) < 1 is a condition for having "perfect
control" (H=I). Then using Theorem 3, which applies to robust
stability and "perfect control," we get

WLPTIE) < 1 <=> detP(ju)) # 0, WP
Theorem 7 will therefore be correct if for each frequency

rY*a(P) <1 <=> det(P(ju)) # 0 , ¥P (A2-14)
i.e. if it can prove the following statement:
"At each frequency the smallest r which makes detP = 0 is r =
PN (A2-15)
Define at each frequency

*<=E“D2‘5 == = k| edd
11¥22

and use
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detP = 0 iff  (1+rA,))(1+rhA,,) = c(1+rA,,)(1+rA,,) (A2-16)
The smallest r which satisfies (A2-16) is found for A,, = A, = Ay, A
= A,y = A, and
(1+rA)? = k(1+rA,)2
Introduce A, = eJ91, A, = eJ2, where ¢, and ¢, are free to be chosen,

to find:

(9
1/2 eJ(2+¢2) C i

1- 1| 2eds/2 = plc|
The left hand side is fixed. Using geometrical arguments it is evident
that the smallest r satisfying this expression is found when ¢, and ¢,
are chosen such that the two terms on the right hand side are aligned
and in the direction of the left hand side:
I1-IK|1/ZGJ¢/2' - ,1_K1/2| = r([k|1/2+1)
- 2| (A2-17)

r =

The derivation of the expression for Y*a(ﬁ) is very tedious but
straightforward and follows the derivation for Y*(?) (Grosdidier et
al.,1985). This derivation shows that r given in (A2<17) is equal to
1/Y*a(§) which proves (A2-15) and thus proves the theorem.

Proof of Theorem 8:

The proof is similar to that of Theorem 7. The set of plants is
again given by (A2-13) but the perturbations are assumed to be real
(—1<Aij<1) and all the elements in P are also assumed to be real. As
for the proof of Theorem 7, (54) is proved if we can prove the
following statement is proved:

"The smallest r which makes detP = 0 (P and Aij real) is r = 1/Y*(B)m
(A2-18)

It is necessary to find the smallest r which satisfies (A2-16) when Ajj

is real.
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Case 1: k < 0. In this case (A2-16) cannot be satisfied for any r < 1,

but it may clearly be satisfied if r = 1 (e.g. choose A;, = -1 and A,, =
-+1). Consequently, the smallest r which makes detP = 0 in this case
is r = 1, and since Y¥(B) = 1 for « < 0 (Grosdidier, 1985) we have r =
1/Y%(P).

Case 2a: « > 1. Only cornerpoints of (A2-16) need to be checked (see

Appendix 1). Then it is obvious that the smallest r which satisfies
(A2-16) for k > 1 is the solution of (choose Ay, = Ay, = 1, Ay = Ay =
..1)

(1+r)? = k(1-r)?

which has as its smallest root r = (Vik-1)/(/<c+1) = '1-/E /(1+/%)

Case 2b: 0 < k < 1. The smallest r which satisfies (A2-16) in this

case is a solution of

(1-r?) = k(1+r)?

/(1+/%).

which has as its smallest root r = (1-Yk)/(1+/K) = '1—‘/E

Y*(P) is given in the Notation. From this it is evident that r is
equal to 1/Y¥(P) also for « > O and this proves statement (54).
QED

Proof of Theorem 9:

For 2x2 systems the RGA becomes

[ A 122y, | P.P
RGA = |, . S D ol | (A2~-19)
T=2n A P11P2:=P 2Py, 1=K
|RGAL [y = 2(|Ans[#[1-Au]) = 2 1A (42-20)
Using the expression for Y*_ (po-17)
o 1+]c|1/2 ¢ 1+2L'<TI_V2+1K1 < ||RGA[|. »  QED
a ([K[-2|.<|1/2coscb/2+1)1/2 - H=x]
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Chapter III

EFFECT OF DISTURBANCE DIRECTIONS
ON CLOSED LOOP PERFORMANCE
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Abstract

The effectiveness of disturbance suppression in a multivariable
control system can depend strongly on the direction of the disturbance.
The "disturbance condition number" is introduced to quantify the effect
of disturbance direction on closed loop performance. As an example a
two point composition control system for a distillation column is

analyzed for various disturbances and setpoint changes.

*To whom all correspondence should be addressed
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I. Introduction
Disturbance rejection 1s often the main objective of process
control. For multivariable systems, usually each disturbance affects
all the outputs. As an example consider a distillation column. A feed
composition disturbance corresponding to an increased amount of 1light

component in the feed leads to an increase of both product compositions

yp and xg. (Here yp and xp correspond to the mole fraction of light
component in the top and bottom product). In this paper we define as
"disturbance direction" the direction of the system output vector
resulting from a specific disturbance. As we will show some disturbance
directions may be easily counteracted by the control system, while
others may not. The aim of this paper is to develop simple measures
which may be used to tell how the disturbances are "aligned" with the
plant and thus how well they can be rejected.

Consider the linear control system in Fig. 1. The process model is

y(s) = G(s)m(s) + Gqg(s) z(s)
= G(s)m(s) + d(s) (1)

where y is the output vector, m is the manipulated input vector and d
represents the effect of the disturbances z on the outputs. The
transfer matrix G(s) is the process model, and Gq(s) is the disturbance
model expressing the relationship between the physical disturbances zj
and their effect on the output. For a distillation column the
components of z = (21, «eey Ziy eees zn)T may correspond to disturbances
in feed rate, feed composition, boilup rate, etc. The column vector gg4j
of Gq represents the disturbance model for each disturbance Zzi. The

effect of a particular disturbance z; on the process output is dj,



Figure 1.
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Block diagram of linear control system. The physical

disturbances z have the effect d = G4z on the outputs.
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dj = 8di 21 @)
The direction of the vector dj will be referred to as the direction of
disturbance i. The overall effect of all disturbances zj on the output
is d,

d=Zdi=ngizi=GdZ (3)
i ..

i

In most cases we will consider the effect of one particular disturbance
z;. To simplify notation we will usually drop the subscript i, and d =
g4z will then denote the effect of this single disturbance zj = z on the
outputs. We will also be referring to d as a "disturbance", although in
general it represents the effect of the physical disturbance.

We will consider two different effects of disturbance directions.
One is in terms of the magnitude of the manipulated variables m needed
to cancel the influence of the disturbance on the process output
completely at steady state. It is independent of the controller C.
This may be used to identify problems with constraints at steady state.
However, the issue of constraints at steady state is not really a
control problem, but rather a plant design problem. Any well designed
plant should be able to reject disturbances at steady state. The second
and most important effect of disturbance directions is on closed loop
performance. Here we mean by performance the behavior of the

controlled outputs y in the presence of disturbances.

II. Singular Value Decomposition

Throughout this paper we will make use of the Singular Value

Decomposition (SVD) of a matrix (Klema and Laub, 1980). Any complex nxn
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matrix A can be written in the form

A =U rvH ()
where U and V are unitary matrices (UH = U™') and T is a diagonal matrix
with real nonnegative entries

I = diag {oj} (5)
The superscript H denotes complex conjugate transpose. The set of {Oj}
are the singular values of A, and we have
0, > 022 «oo 0n 2> 0

The number of nonzero singular values is equal to the rank of the matrix
A. If the matrix A is nonsingular all singular values are greater than
zero, and this will be assumed in the following. The maximum singular

value ¢; = 3 and the minimum singular value o = ¢ are of particular

interest because of the properties

max [[AV] ]2 = 5(A) (6a)
= =0 a
v#£0 2
and
min LAV (6b)
v#£0 [V =
Here ||+||. denotes the Euclicean vector norm.

1/2

[l = (20 %)

Consequently, § corresponds to the largest amplification of the matrix A
and g to its smallest amplification. The matrix U consists of the left
singular vectors {Uj},I|UJIk = 1, and the matrix V of the right singular
vectors {Vj},!lelk = 1. For each right singular vector vj we have

Avj = oj(A) uj (7)

and in particular for the singular vectors associated with the maximum



and minimum singular value

AV = §(A)T (8a)

it

AV = o(A)u (8b)
V¥(A) therefore corresponds to the direction of the input with the
largest amplification, and XﬁA) £o the direction with the smallest
amplification. Furthermore

A™' =y rgH (9)
which is the SVD of A™!, but with the order of the singular values

reversed. Let & = n-j+1. It then follows from (9)

05(A1) = 1/0,(A) (10a)
uj(A™) = vy (A) (10b)
vi(ATY) = ug(a) (10c)
and in particular
G(A7*) = 1/0(A) (11a)
a(A™) = v(a) (11b)
u(A™) = ¥(A) (11ce)

III. Effect of Disturbance Direction on Manipulated Variables

Assume the disturbance model and the process model have been
scaled such that at steady state -1 < zj < 1 corresponds to the expected
range of each disturbance and -1 S’mj‘ﬁ 1 corresponds to the acceptable
range for each manipulated variable. For process control mj = ~1 may
correspond to a closed valve and mj = 1 to a fully open valve. The

steady state process model is

y = Gm + Ggz (12)
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For complete disturbance rejection (y=0) we require

m = -G™' Ggz (13)
Let ||x||o denote the largest component of the vector x. To avoid
problems with constraints we have to require

Im | < 1 for a1l ||z]}s < 1

Mathematically this is equivalent to requiring

|167Gal | < 1 (14)
| [Al je is the induced =-norm of the matrix A which is equal to its

largest row sum:

1Al fie = max (2 Jasg]) (15)
J

Whether (14) is violated and constraints cause problems depends both on
the process model G and the disturbance mocdel Ggq. Even if |[|G7!|i« is
"large", ||GT'Gq||i» can be M"small" if Ggq is "aligned" with G™! in a
certain manner. We will discuss this in more detail below.

The disturbance condition number

Evenn when constraints are not causing any problems, it is of
interest to investigate the magnitude of the manipulated variable
necessary to compensate for the effect of a disturbance. In this
context it is more reasonable to use the Euclidean (2-) norm as a
measure of magnitude because it "sums up" the deviations of all
manipulated variables rather than accounting for the maximum deviation
only (like the =-norm). Consider a particular disturbance d = ggz. For
complete disturbance rejection of this disturbance

m = -G-'g (16)

The quantity
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[ 1m] /1 1d] = = 1167"d] /][] . ()
depends only on the direction of the disturbance d but not on its
magnitude. It measures the magnitude of m needed to reject a
disturbance d of unit magnitude which enters in a particular direction
expressed by d/||d] ..

The "best" disturbance direction, requiring the least action by the
manipulated variables, is that of the singular vector U(G) associated
with the largest singular value of G.

d = v(G™) = (G
In this case we find by using (11b)
[1G™*d| |./]]d] | = ||GT*¥(G™H)]||. = o(G™") = 1/5(G) (18)
By normalizing Eq. (17) with this '"best" disturbance, we obtain the

following measure which we call the disturbance condition number

| |G™'d

|2

Yd(G) = _TT&H-”_ 5(G) (19a)
G™! 2

_ Gl o6y (19b)
84! -

It measures the magnitude of the manipulated variables needed to reject

a disturbance in the direction d relative to rejecting a disturbance with
the same magnitude, but in the "best" direction.
The "worst" disturbance direction is

d = ¥(G™') = u(G)

and in this case we get
Y3(Gpax = 5(G™HF(G) = Y(G) (20)

where Y(G) is the condition number of the plant. It follows

1 < Yg(G) < Y(G)

and Y4(G) may be viewed as a generalization of the condition number Y(G)
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of the plant, which also takes into account the direction of the
disturbances. The disturbance condition number Y4(G) is clearly scaling
dependent since Y(G) is scaling dependent. We know that ill-conditioned
plants (Y(G) large) indicate control problems (Morari, 1983, Skogestad
and Morari, 1986a). A large value of Y(G) indicates a large degree of
directionality in the plant G, which may have to be compensated for by
the controller in order to get good response. We used "may" in the last
sentence, because thié also depends on the disturbance direction: If
Yq(G) is small for all disturbances, then it really does not matter if
Y(G) is large.

In the next section we will look at closed loop performance and
show explicitly the physical significance Y4(G) in this context.
However, let us first look at another measure which has been suggested
for measuring disturbance directionality.

The Relative Disturbance Gain

We will show that the Relative Disturbance Gain (RDG) introduced by
~Stanley et al. (1985) is similar to the disturbance measure Yq(G) defined
above, but with a different normalization. One advantage of the RDG is
" that it is scaling independent, while Y4(G) is scaling dependent. On the
other hand, the physical significance of the RDG is less clear than that
of Y4(G).

For a particular disturbance z, the RDG, By, is defined for each

manipulated variable, mg, as

(3mg/32)y 5

BQ’ - (3m9/32)}’g,mj¢5L (@1

(amg/az)yj is the change in manipulated variable my needed for perfect

disturbance rejection. (amg/az)YQ,mj#2 is the change in manipulated
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variable mg needed for perfect disturbance rejection for the
corresponding output yg, while keeping all other manipulated variables
constant. To find the relationship between By and Y4(G) use the

following identities (Grosdidier, 1985)

om - |
T = ~(G™'gq)y (22)

YJ

[am“J ((Gajag)™'8a) (23)
a7 = ~\\ldia 8d/q

9z lyg,mikg g

Here Ggiag denotes the matrix consisting of the diagonal elements in G.
Using d = gqz, the definition of By (21) may be rewritten as

(G™'d)y,
((Gdiag)ﬂd)g

(24)

(24) is similar to the definition of Y4(G) in Eq. (19), but with the
diagonal plant as the normalization factor. Note that B¢ = 1 if G is
diagonal.
We can also define a RDG matrix for the case when we have several
disturbances z as
RDG = G™'Gq + (Gdiag) 'Gd (25)
where the division in this case denotes element by element division.
Note the resemblance with the Relative Gain Array (RGA) which may be
defined as the matrix
RGA = G x ()T (26)
where x denotes element by element (Schur) multiplication. The RGA is
also scaling invariant.
Stanley et al. (1985) claim that the RDG can be used to investigate
the effect of decoupling. However, Eq. (21) and (24) clearly show that

the RDG is independent of the controller which may or may not include
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decoupling. The meaning of (24) when G is replaced by GH, where H
denotes a decoupler, is not clear. The variables my will then be some
internal variable in the controller with no direct physical significance.
Below we will derive an alternative physical interpretation for By
in terms of closed loop performance which retains it significance when G

is replaced by GH in Eq. (24).

IV. Effect of Disturbance Direction on Closed Loop Performance

In Seétion ITT we derived measures of how the magnitude of tr;e
manipulated variables depends on the disturbance direction. In this
section we will rederive these measures in terms of closed loop
performance. This will give us a more powerful interpretation of these
measures and will allow us to define dynamic measures and to include
"decouplers".

The disturbance condition number

One objective of the control system (Fig. 1) is to minimize the
effect of the disturbances on the outputs y. Consider a particular
disturbance d(s) = gg(s)z(s). The closed-loop relationship between this
disturbance and the outputs is

y(s) = (I+G(s)C(s))™* d(s) = S(s)d(s) (27)
where S(s) = (I+G(s)C(s))™* (28)
Let ||y(jw)||. denote the Euclidean norm of y evaluated at each
frequency. The quantity
a(w) = | [SdCiw)] /] |d(w)] | (29)
depends only on the disturbance direction but not on its magnitude. a(w)
measures the magnitude of the output vector y(jw) resulting from a

sinusoidal disturbance d(jw) of unit magnitude and frequency w.
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The '"best" disturbance direction causing the smallest output
deviation is that of the right singular vector !ﬁs) associated with the
smallest singular value o(S) of S. By normalizing a(w) with this best

disturbance we obtain the disturbance condition number of S™!

| 1Sd] .

Ya(8™) = ey @) (30)

S™! is used in the argument of Y4 for consistency with the previously
defined Yq(G) in Eq. (19).
Again

1 < vg(s™) < Y(8) (31)

At low frequencies where the controller gain is high we have

S(jw) = (GC(jw))™* (32)
In particular, this expression is exact at steady state (w=0) if we have
integral action. Based on this approximation we derive the disturbance
condition number of GC.

|1(6C)™d] |

s 3(60) (W) (33)

Y4(GC) =

As stated above this measure has physical significance only when o(GC)
>> 1. To avoid problems with evaluating the measure at w = 0 write

C(s) = k(s)H(s) (34)
where k(s) is a scalar transfer function which includes any integral
action. H(s) may be viewed as a "decoupler". We have

[[(GH)7d] |

Yd(GC) = _—HEH-Z_ O(GH)(J(U) (35)

To evaluate how the disturbance direction is aligned with the plant G
itself, choose H = I (i.e. the controller is k(s)I) and rederive the

disturbance condition number of G
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Y4(G) can be interpreted in terms of closed loop performance as follows:
If a scalar controller C = k(s)I is chosen (which keeps the
directionality of the plant unchanged), then Y4(G) measures the magnitude
of the output y for a particular disturbance d, compared to the
magnitude of the output if the disturbance were in the "best" direction
(corresponding to the large plant gain). If Y4(G) = Y(G), the disturbance
has all its components in the '"bad" direction corresponding to low plant
gain and low bandwidth. If Yd(G) = 1, the disturbance has all its
components in the "good" direction corresponding to high plant gain and
high bandwidth.

Though a large value of Y4(G) does not necessarily imply bad
performance, it usually does. In principle we could choose a
compensator C which makes Y4(GC) = 1 for all disturbances. However,
this controller often leads to serious robustness problems. Whether
robustness problems arise or not depends very much on the type of model
uncertainty which is encountered. For a detailed analysis the reader is
referred to Morarig Doyle (1986) and Skogestad & Morari (1986a).

Decomposition of d along singular vectors

The objective here is to gain insight into the type of dynamic
response which is to be expected when disturbances along a particular
direction affects a system with a high degree of directionality (Y(S) is
"large"). The singular vectors Vj(S) of S form an orthonormal basis.

The disturbance vector d can be represented in terms of this basis

n
d= 2 wi®T - a) vys) (37
J=1
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Then the output y is described by

y(jw) = Sd(jw) (382)
n
= 2 svi(S) vy®)T - d) () (38b)
J=1
n
- 2 oSS wyS)T - d)(jw) (38¢)
J=1
n
= 2 04(8)aI(w) (384)
3=

where we have defined the new "disturbance components”

dJ = (vy(8)T - duy(s) (39)
(38d) shows that the response to a particular disturbance can be viewed
as the sum of responses to the disturbances dJ passing through the
scalar transfer function 0j(S>. The magnitude of dJ depends on the
alignment of the disturbance d with the singular vector Vj(S). The
characteristics of the response (speed) to dJ depend on OJ(S).

For the controller
C(s) = k(s)H(s) (40)

with integral action in k(s) the approximation
S(w) % & (GH)™ () (41)

is valid for small w. Defining & = n - j + 1 and using (10), (38d)

becomes
n
y(jw) = g ?0—&@ dr (12)
where
dt = a2 = (u (GH) - d)vy (GH) (43)

The magnitude of d% is given by the component of d in the direction of
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the singular vector ug(GH) and d% affects the output along the direction
of the singular vector vo(GH). If the loop transfer matrix GH has a
high gain in this direction (i.e., 09(GH) is large) then the control will
be quick and good. If the gain is low the response will be slow and
poor. If GH is ill-conditioned (Y(GH) large), the widely different
response characteristics for different disturbance components will
result in unusual overall system responses. These issues will become
clearer from the example at the end of this paper.

Performance Interpretation of the RDG

The process response to a particular disturbance d = gqz is given

by

y(s) = (I+GC(s))~*d(s) (44)
Let the controller C be given by

C(s) = H(s)K(s) (45)

where K(s) is diagonal and includes integral action in all channels.
Since at low frequencies o(GC)(jw) >> 1, (44) can be approximated by

y(jw) = (GHK)™'d(jw) (46)

and in particular for output yy

1

(s
Ry L e, (47

vy (Jw) =

Compare yg(jw) to the response that would occur if the off-diagonal

elements in the system GH were neglected:

[(GH)™'d(Jw) g,

Bg(GH)(jw) = [((GH>diag)_ld]5L (Jw) (“8)

(48) gives a performance interpretation to the RDG and extends it to
frequencies other than zero. More importantly this definition provides a

justification for using RDG to evaluate the effect of decouplers H.
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Given:

Binary separation, liquid feed, constant molar flows

Relative volatility a=1.5

No. of theoretical trays N = 40

Feed tray location Np = 21

Feed composition xp = 0.5

Product compositions yp = 0.99, xg = 0.01
External flow rates F=1,B=20.,5,D=0.5
Computed:

Reflux ratio L/D = 5.41

Gains using L and -V as inputs (linarized tray-by-tray model):

Aya| J0.878  0.8647 [ AL |
axg| T [1.082  1.096] |-AV

Table 1. Data for distillation column.
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The normalization using (GH)diag makes the RDG scaling independent
which might be viewed as an advantage over Y4. (In particular, the RDG
is the same for any diagonal controller K). However, contrary to Y4, @
physical interpretation becomes difficult or impossible. If a
disturbance does not affect yp at all one finds By = «». For example,
for a full 2x2 system with

aT = [0 1]

we find (Stanley et al., 1985)

(8] T o 7

RDG - [BZJ B LA(GH)J
where L is the 1,1 element of the RGA of GH. (Also note that if GH were
diagonal, then 8, would be undefined for this specific d). Consequently,

By may range in magnitude from -« to «, and contrary to Yq(G) the

magnitude of By by itself is not very informative.

V. Example: LV-Distillation Column

Consider the distillation column in Table 1 with L and -V as
manipulated variables and the product compositions yp and xg as
controlled outputs. The steady state gain matrix is (Skogestad and

Morari, 1986b)

[0.878 0.804
G - [1.086 1.o96J (49)

We assume there will be no problems with constraints. We want to study
how well the system rejects various disturbances using a diagonal
controller C(s) = k(s) + I. Since we are only concerned about the
outputs (yp and xpg), the scaling does not matter provided the outputs

are scaled such that an output of magnitude one is equally "bad" for
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Disturbance z Setpoint
change
X F aF V4 ¥DS XBS

[0.8817 [0.394 0.8687 [o0.864
1.119 0.586 |1.092] |1.096,

RDG (Eq. (24))

[o] [es] [ []

B
27 [

1.48 11.75 1.09

1.41

110.7 88.5

Table 2. Disturbance measures for distillation example.

3
- J—
2 ]
10
1
10

Figure 2.

10 i@

10

FREQENCY (RADIANS/MINUTE)

Disturbance condition number of S™' for disturbances in feed

rate F, feed composition xp, and setpoint change in ¥yp. C(s)

= 0.1/5 1.
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both yp and xg. We have
5(G) = 1.972, o(G) = 0.0139, Y(G) = 141.7, Apga(G) = 35.1
Consider disturbances z of unit magnitude in feed composition, xp,
feed flow rate, F, feed liquid fraction, qp, and boilup rate, -V4q. The

linearized steady state disturbance models are

_ _ ]0.881 0.394 0.868] [0.864
d-gdq - L1.119J ’ Lo.586J ’ [1.092J ’ [1.096J (502)

Also consider setpoint changes in yp and xg of magnitude one. These are

mathematically equivalent to disturbances with

d-gq - [g] and [?] (50b)

The steady state values of the RDG, B¢(G), and the disturbance condition
number, Y4(G), are given for these disturbances in Table 2. The
disturbance condition number of S§7!, using the controller described
below, is shown as a function of frequency in Fig. 2. From these data
we see that disturbances in xp, qp and V are very well "aligned" with
the plant, and there is little need for using a "decoupler" to change the
directions of G. The feed flow disturbance is clearly the "worst"
disturbance, but even it has its largest effect in the '"good" direction.

A "decoupler" is clearly desirable if we want to follow setpoint
changes which have a large component in the "bad" direction corresponding
to low plant gains. However, a decoupler is not recommended for this
distillation column because of severe robustness problems caused by
uncertainty (Skogestad & Morari, 1986b). Therefore we cannot expect to
get good setpoint tracking for this LV-configuration. Other
configurations which are less sensitive to input uncertainty may be

better (Skogestad & Morari, 1986b). If setpoint changes are of little or
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no interest, the LV-configuration using a diagonal controller may be a
good choice. The response to a feed rate disturbances is then expected
to be somewhat sluggish because of the high value of Yd(G).

Time Responses

We will now confirm the predictions based on the data in Table 2 by
studying some time responses. Assume the plant G(s) has no dynamics,
i.e.,G(s) is as given in Eq. (49) at all frequencies. This may seem
unrealistic, but the dominating dynamics are often similar in all the
elements of G(s), and we can assume that these dynamics are exactly
compensated for by the dynamics in the controller. This also assumes
that the magnitude of the disturbances is small, such that a linear
approximation with constant time constants for the column is valid. We
use a diagonal controller of the form

C(s) = k(s)I
where k(s) is a simple integrator with gain 0.1 (min™!)

(In practice k(s) may be a PI-controller k(s) = (1+Ts)/s with integral
time T equal to the time constant of the distillation column).

Time domain simulations are shown for '"disturbances" in xp and F
and for setpoint changes in yp in Fig. 3-5. We have simulated all
responses as step setpoint changes of size d (Eq. (50) to make
comparisons easier, All simulations are linear, and readers who are
concerned about nonphysical values for yp and xg may assume, for
example, that the deviations, Ayp and Axg, from the initial steady state,
are in ppm. Dynamics have not been included in the "disturbances" for xp

and F, which is clearly unrealistic, but this has been done to make the
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(Closed loop response to setpoint change for yp.)

Disturbance Setpoint change
Xp F ¥Ds

q 10.881 [0.394 1]
11.119 | 0.586 0

~ "1.00 | [0.50] [0.447]

&' (Eq. (528)) 100] O.EOJ sl

~ [ -0.008 [-0.04 [ 0.

d* (Eq. (520)) 0008 J oo.ooa] —%.%55]

Table 3. d*' and d? for distillation example.
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example simpler. The time responses confirm what could be predicted
based on the disturbance measures in Table 1 with respect to which
disturbances are the worst. However, the measures in Table 1 give no
direct way of predicting the shape of the responses. The responses are
odd-looking and one might almost expect that the system is nonlinear.
This is obviously not the case, and the response may in fact be easlily
explained by decomposing the disturbances along the singular vector
directions of the closed loop system, as shown before. For each
disturbance, the closed loop frequency response at low frequencies can

be approximated by
y(e) ® © G d(jw)
By decomposing d along the "directions" of G as in Egs. (42) and (43), we

may write this response as the sum of two SISO responses

y(ju) = [kalm a k_o_*G HZJ (51)

where
d: = @’ - d) %) (52a)
dz = Wl - da) v(@) (52b)

Thus, each disturbance response will consist of two responses: one fast

in the direction d' and one slow in the direction of d?. The singular

value decomposition G =U IVH gives
o| _[1.972 0
g - 0 0.01391

|
_ [-0.625 ~0.781
U=to ul-| o8] o.625J

Cre o1 [-0.707  -0.708
v-Lv vl- [~o.708 0.797J

O al

—

d! and d? are given in Table 3 for the cases simulated in Figs. 3-5.
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The decomposition in Eg. (51) and (52) which applies at low
frequencies, explains the actual responses very well: Initially there is
a very fast response in the direction of ¥I = [-0.707 -0.708]. This
response has overall open loop transfer function k§(G) = 0.197/s
corresponding to a first order response with time constant 1/0.197 = 5.1

min. Added to this is a slow first order response with time constant
(0.1 9(G))™* = 720 min in the direction of vI = [-0.708, 0.707]T.

Note that slow disturbance component d? is the "error" at t =z 40
min, because the fast response has almost settled at this time. As an
example consider the disturbance in feed rate F (Fig. 4). At t = 40 min
the deviation from the desired setpoint, (0.394, 0.586)T, is approximately
equal to d? = (-0.04, 0.04)T. Similarly, for the setpoint change in yp
(Fig. 5) the deviation from desired setpoint, (1,0)T, at t = 40 min is

approximately equal to d? = (0.55, -0.55)T.
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Abstract

Ill-conditioned plants are generally believed to be difficult to
control. Using a high-purity distillation column as an example, the
physical reason for the poor conditioning and its implications on control
system design and performance are explained. It is shown that an
acceptable performance/robustness trade-off cannot be obtained by simple
loop-shaping techniques (via singular values) and that a good understanding
of the model uncertainty is essential for robust control system design.
Physically motivated uncertainty descriptions (actuator uncertainty,
nonlinearities) are translated into the H./Structured Singular Value
framework, which is demonstrated to be a powerful tool to analyze and
understand the complex phenomena. For the particular example the most
effective solution to the control problem turns out to be an alternate
choice of manipulated variables (inputs) for which very simple controllers

yield robust high quality performance.
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I. INTRODUCTION

It is well known that ill-conditioned plants cause control problems
(Morari and Doyle, 1986, Skogestad and Morari, 1985). By ill-conditioned we
mean that the gain of the plant is strongly dependent on the input
direction, or equivalently that the plant has a high condition number

Y(G(j0) = 5(G(3w))/o(G(ju)) (1)

Here G(G) and o(G) denote the maximum and minimum singular values of the

plant
(G) = max Gu
u#£0 U |2
| 1G] |2

o = T TR

||*]{. denotes the usual Euclidian norm. We also say that an ill-

conditioned plant is characterized by strong "directionality" because inputs

in directions corresponding to high plant gains are strongly amplified in
the plant, while inputs In directions corresponding to low plant gains are
not.

The main reason for the control problems associated with 1ill-
conditioned plants is "uncertainty". Uncertainty in the plant model may
have several origins:

1. There are always parameters in the linear model which are known only
approximately. For the distillation column such parameters may be
the relative volatility or the number of theoretical stages.

2. Measurement devices have imperfections. This may give rise to
uncertainty on the manipulated inputs in a distillation column, since
they are usually measured and adjusted in a cascade manner.

3. At high frequencies even the structure and the model order is
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unknown, and the uncertainty will exceed 100% at some frequency.

b, The parameters in the linear model may vary due to nonlinearities or
changes in the operating conditions. Examples of this are given in
Section V.

For "tight control" of ill-conditioned plants the controller has to
compensate for the strong directionality by applying large input signals in
the directions where the plant gain is low, that is, a controller similar
to G~! in directionality is desirable. However, because of uncertainty, the
direction of the large input may not correspond exactly to the low gain in
the plant and the amplification of these large input signals may be much
larger than expected from the model. This will result in large values of
the controlled variables y (Fig. 1), leading to poor performance or even
instability.

The concept of directionality is clearly unique to multivariable
systems, and extensions of design methods developed for SISO systems are
likely to fail for multivariable plants with a high degree of
directionality. Furthermore, since the problems with ill-conditioned
plants are closely related to how the uncertainty affects the particular
plant, it is very important to model the uncertainty as precisely as
possible. Most multivariable design methods (LQG, LQG/LTR, INA/DNA, IMC,
etc.) do not explicitly take the uncertainty description into account, and
these methods will in general not give acceptable designs for ill-
conditioned plants.

A distillation column will be used as an example of an ill-conditioned
plant. Here the product compoéitions are very sensitive to changes in the

external flows (high gain in this direction), but gquite insensitive to
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Figure 1. Classical linear feedback structure with error e as input to
the controller. d represents the effect of the disturbance
on the outputs'y.
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Figure 2. Two product distillation column with single feed and total

condenser. Details are shown of the flows and holdups on a
plate.
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changes in the internal flows (low gain in this direction). Distillation
columns are a major consumer of energy in the chemical industry, and there
is a large potential for savings by maintaining tighter control of the
product compositions. One interesting property of distillation columns is
that the condition number may be arbitrary large if the purity of the
products is sufficiently high. 1In this paper the main emphasis is on
general properties of ill-conditioned plants, rather than on the control
system design for a real distillation column.

IT. DISTILLATION COLUMN EXAMPLE

Fundamentals of Distillation Control

The objective of a distillation column (Fig. 2) is to split the feed,
F, which is a mixture of a light and a heavy component, into a distillate
product, D, which contains most of the light component, and a bottom
product, B, which contains most of the heavy component. The compositions
zp, yp and xg of these streams refer to the mole fractions of light
component. Perfect separation would be obtained with yp = 1 and xg = O.
The driving force for this separation is the difference in volatility
between the heavy (H) and light (L) component, which can be expressed by
the relative volatility

YL/X,
yH/xH

- mole fraction in liquid

>

- mole fraction in vapor in equilibrium with x

For a binary separation yy = 1-y[, and xyg = 1-x, and we get

i ax
Y = Tia-Dx (@)
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(the subscript L is generally dropped for the light component). In a
distillation column separation is improved over what can be obtained with
one stage (Eq. 2), by stacking stages on top of each other as shown in Fig.
2.

In such a distillation column there are five controlled variables

- Vapor holdup (expressed by the pressure p)
- Liquid holdup in accumulator (Mp)

- Liquid holdup in column base (Mp)

- Top composition (yp)

- Bottom composition (xp)

and five manipulated inputs
- Distillate flow (D)
- Bottom flow (B)
- Reflux (L)
- Boilup (V) (controlled indirectly by the reboiler duty)
- Overhead vapor (Vi) (controlled indirectly by the condenser duty)

Because the composition dynamics are usually much slower than the flow
dynamics, we will make the simplifying assumption of perfect control of
holdup (i.e., p, Mp, Mp constant) and instantaneous flow responses. With
these assumptions and using the mole fractions of the light component at
each stage as state variables, we easily derive the nonlinear model shown
in the Appendix. Different control configurations are obtained by choosing
different inputs pairs (e.g., L and V) for composition control; the
remaining three manipulated inputs are then determined by the requirement
of keeping p, Mp and Mp under perfect control. Irrespective of the control
configuration, the two operating variables corresponding to the high and

low plant gain are, as we shall see, the external flows (product flow
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rates, D and B) and the internal flows (which are changed by changing the

reflux L and boilup V while keeping D and B constant).

Model of the Distillation Column

The distillation column described in Table 1 will be used as an
example. The overhead composition is to be controlled at yp = 0.99 and the
bottom composition at xg = 0.01. Consider first using reflux L and boilup

V as manipulated variables for composition control, i.e.,

i [AYD} . [:AL}
Axg |’ AV
This choice is often made since L and V have an immediate effect on
the product compositions yp and xp, respectively. By linearizing the
steady state model and assuming that the dynamics may be approximated by a

first order response with time constant 1 = 75 min, we derive the

following linear model

[dyb] =GLV[dL]’ oLy = — [0.878 —0.8614} 3)
dxp av 1s+1 [1.082  -1.096

This is admittedly a very crude model of this strongly nonlinear plant, but
the model is simple and displays the main features of the distillétion
column behavior. The use of a low order model for this high order plant
turns out to be a good approximation, since one time constant is usually
dominating (Moczek, et al., 1965). In Section V we will consider the
nonlinearities in more detail, and discuss how these may be treated as
uncertainty on the linear model (3).

Singular Value Analysis of the Model

The condition number of the plant (3) is

Y(GLV) = 141.7
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Binary separation, constant molar flows

Relative volatility a=1.5

No. of theoretical trays N =50

Feed tray location Np = 21

Feed rate and composition F = 1 kmol/min, zg = 0.5
Fraction of liquid in feed qr = 1.0

Product compositions yp = 0.99, xg = 0.01

Product rates D = B = 0.5 kmol/min

Tray holdup Mj = 0.5 kmol, 1 = 2,40
Accumulator and column base holdup Mp = 32.1 kmol, Mg = 11.1 kmol

Computed at steady state from nonlinear model (Appendix)

Reflux rate L = 2.71 kmol/min (1.39 Lpin)
Boilup rate V = 3.21 kmol/min

Linearized steady state gains
[dyp 0.878 -0.8647 [dL 0.394 0.881
[de} - {:1.082 —1.096} [d\l} ' [0.586} ar - [1.119] dzg

Table 1. Data for distillation column example.
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which shows a high degree of directionality in the plant. More specific
information about this directionality is obtained from the Singular Value

Decomposition (SVD) of the steady state gain matrix

G =U zVH
or equivalently since VH = y~!
Gv = 5(G)u
Gv = o(Gu
where
L - diag(s, o) = diag(1.972, 0.0139)
o0 [5ER M e we [R5

The large plant gain, §(G) = 1.972, is obtained when the inputs are in

. : a.] . _ [ o.707 .
the direction [dv] =7 = L—O.?OB]' Since

dB = -dD = dL -~ dVv (4)
this physically corresponds to the direction with the largest change in the

external flows, D and B. From the direction of the output vector G4 =

-
[g'gg? , Wwe see that changes in the external flows move the outputs in the

. s Yp*x
samé direction, i.e., mainly affect the average composition D2 B.

Any column with products of high purity is sensitive to changes in the
external flows because the distillate rate D has to be about equal to the
amount of light component in the feed. Any imbalance leads to large
changes in the product compositions. Assume in our example that the
distillate flow D is increased by 5% to 0.525 kmol/min. Since there is

only 0.5 kmol/min of light component in the feed at least 0.025 kmol/min
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of this has to be heavy component. The best attainable value for the top
composition, even with total reflux, is then yp = 0.5/0.525 = 0.952. This
is far from the desired yp = 0.99.

The low plant gain, g(G) = 0.0139, is obtained for inputs in the

dv 0.707

direction [dL] = Vv = [0'708]. From (4) observe that physically this

corresponds to changing the internal flow only (dB = dD = 0), and from the

output vector u = [_%'768215], we see that the effect 1s to move the outputs

in different directions, i.e., to change yq - xp. Thus, it takes a large
control action to move the compositions in different directions and to make
both products purer simultaneously.

The notion that some changes are more "difficult" than others is
important, since it implies that some disturbances may be "easier" to
reject than others. Let d be the effect of the disturbance on the outputs
(Fig. 1), or let d represent a setpoint change. A distur‘bance d which has a
direction close to G, is expected to be "easy" to reject since it
corresponds to the high plant gain. Similarly, a disturbance close to u in
direction is expected to be more difficult. The disturbance condition
number, Y4(G), gives a more precise measure of how the disturbance is

"aligned" with the directions of the plant (Skogestad and Morari, 1986a).

|1672d] |,
d

Yd(G) = '—H——l"[;' 5(G) (5)

Y4(G) ranges in value between 1 and Y(G). A value close to 1 indicates
that the disturbance is in the "good" direction (3) corresponding to the
high plant gain, o(G). A value close to Y(G) indicates that the disturbance

is in the "bad" direction (u) corresponding to the low plant gain, o(G). We
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will consider the following two disturbances (actually setpoint changes) in
the simulations

s, = m With ¥q.(0) = 110.5

Vs, = [8:2] with Yq,(G) = 12.3

¥s, corresponds to a setpoint change in yp only, and is seen to be a
change with a large component in the "bad" direction. The direction of Ys,
corresponds to that of a feed flow rate disturbance (Table 1) and it is
seen to have a large component in the "good" direction corresponding to the
high plant gain.

Linear Closed Loop Simulations

Linear simulations of the distillation column using the model (3) will
now be used to support the following three claims regarding ill-conditioned
plants:

1. Inverse-based controllers are potentially very sensitive to
uncertainty on the input variables.

2. Low condition-number controllers are less sensitive to uncertainty,
but the response is strongly dependent on the disturbance direction.

3. Changing the plant may make the plant insensitive to uncertainty on
the input variables.

1. Inverse-based controllers are potentially very sensitive to

uncertainty on the input variables

The inverse-based controller

-1 k,(1+75s) [39.9142 -31.487

Ky
Ci(s) = = G (s) = 5 39.432 _31,997] » Ky = 0.7 min™*  (6)

may be derived by using the IMC design procedure with a first order filter
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(Morari et al., 1987) or by using a steady state decoupler plus a PI
controller. This controller should in theory remove all the directionality
of the plant and give rise to a decoupled first order response with time
constant 1.43 min. This is indeed confirmed by the simulations in Fig. 3A
and Fig. 4A for the case with no uncertainty. In practice, the plant is
different from the model, and for the simulations in Fig. 3B and 4B an
error of 20% in the change of each of the manipulated inputs is assumed:

dL = 1.2 dLs, dV = 0.8 dVp (M
(dL and dV are the actual changes in the manipulated flow rates, while dL,
and dV, are the desired values as computed by the controller). It is
important to stress that this kind of diagonal input uncertainty, which
stems from the inability to know the exact values of the manipulated
variables, is always present, although the actual size of the uncertainty
may vary. For the setpoint change in yp (Fig. 3B) the simulated response
with uncertainty differs drastically from the one predicted by the model,
and the response is clearly not acceptable. The response is no longer
decoupled, and Ayp and Axg reach a value of about 6 before settling at
their desired values of 1 and 0. The uncertainty has less deteriorating
effect for the feed rate "disturbance" (Fig. 4B) which occurs mostly in the
"good" direction.

There is a simple physical explanation for the observed poor response
to the setpoint change in yp. To accomplish this change, which occurs
mostly in the "bad" direction corresponding to the low plant gains, the
inverse-based controller generates a large change in internal flows (dL +
dv), while trying to keep the changes in the external flows (dB=-dD=dL-dV)

very small. However, uncertainty with respect to the values of dL and dV
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Nominal (No Unc.) With Unc. (Eq. 7)

8.8
_ 1 8.6
Y =10/ a4
0.2
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%} 18 2@ 30 7] 18 20 30
TIHME (min) TIME (min)
] T T 1 ] i ¥ Iﬁ 1] L ' T 1) T T '
28 38 2] 10 20 30
TIME (min) TIME (min)

Figure 3 and 4. Closed loop responses Ayp and Axg with inverse-based
controller, C,(s), k, = 0.7 (time in minutes).
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makes it impossible to keep dL-dV small and the consequence is large
changes in the external flows. This results in large changes in the
compositions because of the high plant gain in this direction. This may be
avoided by controlling D or B directly as shown below.

A more mathematical way of showing how the uncertainty changes the
plant is as follows: Let the plant transfer model be G(s) and let A, and

A, represent the relative uncertainty for each manipulated input. Then the

A1 0
0 A,

c(s)G(s)~!, the loop transfer

actual ("perturbed") plant is

i

Gp = G(I+4) , &

it

With an inverse-based controller, C(s)

matrix becomes

GpC = c(8)G(I+A)GT} = c(s)(I+GAG™) (8)

The error term

G, ,AG (9)

LV°Y LV 7 | 43.2 A,-43.2 A, -34.1 A,+35.1 A,

- [35.1 A-34.1 4, -27.7 A,+27.7 Az]
is worst when A, and A, have different signs. With A, = 0.2 and A, = -0.2
(as used in the simulations, Eq. (7)) we find
-1 13.8 -11.1
CLveG Ly = [17.2 -13.8]
The elements in this matrix are much larger than one, and the observed

poor response is not surprising.

2. Low condition number controllers are less sensitive to uncertainty,

but the response is strongly dependent on the disturbance direction.

The poor response for the case with uncertainty in the example above

was caused by the high condition-number controller which generates large
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Nominal (No Unc.) With Unc. (Eq. 7)

g l LI ¥ ¥ ' L ] ¥ i ' ) ¥ 1 ' a | 1 T 1] 1 i 1 1 L 1 ‘ L B} LB 1
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TIME (min) TIME Cmin)
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8.2 8.2
g ] ) 1 ] I T 1 71 T I L] i T I s l L] ¥ 1 —[j 1 ¥ | T ' L B ]
g 10 20 30 8 10 28 30
TIME C(min) TIME (min)

Closed loop responses Ayp and Axg with diagonal controller,

Figure 5 and 6. . )
C,(s), kp, = 2.4 (time in mmutes)._
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input signals in the directions corresponding to the small plant gain. The
simplest way to make the closed loop system less sensitive to the input
uncertainty is to use a low condition number controller which does not
have large gains in any particular direction. The problem with such a
controller is that 1little or no correction is made for the strong
directionality of the plant. This results in a closed loop response which
depends strongly on the disturbance direction, as shown below. The
diagonal controller

2 +1
ouls) - K2(75s+1) [1 0

sadiy _1] , ke = 2.4 min~? (10)
consists of two equal single loop PI controllers and has a condition number
of one. As seen from the simulations in Fig. 5 and 6 the quality of the
closed loop response depends strongly on the disturbance direction, but. is
only weakly influenced by uncertainty. The response to Ys, 1s very
sluggish, while the response to Vs, is fast initially, but approaches the

final steady state sluggishly. Note that a disturbance in the "good"

direction

Ys = 0 = [8:%?] with  Ygq(G)=1

generates a first order nominal response with time constant 1/2.4:5(G) =

0.21 min. A disturbance in the "bad" direction

Y = u = [_%768275} with  Yd(G)=141.7

generates a first order nominal response with time constant 1/2.M:gﬂG) = 30
min. All other responses are linear combinations of these two extremes

(Fig.54 and 6A).

3. Changing the plant may make the system insensitive to uncertainty on
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the input variables

We already argued physically that the plant might be made less
sensitive to uncertainty by controlling the external flows directly.
Consider the case of distillate flow D and boilup V as manipulated
variables ("direct material balance control™) (Shinskey, 1984). Assuming

perfect level and pressure control, i.e., dL = dV -~ dD, we have

[gﬂ ) [-01 1] [33] (11)

and the following linear model is derived from (3)

[GYD] - [dD:l
dxg DV] qv

Gpv = GLVH ” - 1755 [Z?:ggg _00.901114”] (12)
In practice the condenser level loop introduces a lag between the change in
distillate flow, dD, and the reflux flow, dL (which is the input which
actually affects the compositions), but this is neglected here. It is
important to note that with (11) and without input uncertainty, identical
responses may be obtained with the LV-plant (3) and the DV-plant (12) by
using multivariable controllers. The plant (12) is also ill-conditioned;

Y(Gpy) = 70.8. 1In this case the SVD yields
o . [1.393 0 . [-1:000 -0.0017 . _[0.630 0.777
- 0 0.0197} "’ - [ -0.001 1.000 |’ © L0.7TTT  -0.630

The high gain corresponds to an input [gg} in the direction of V(Gpy) =

[:;'88?}, which, as expected, corresponds to a change in the external

flows. The low gain again corresponds to a change in the internal flows

(dD=0). Note that in this case there is one manipulated variable (dD) which
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Nominal (No Unc.) With Unc. (Eq. 14)
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8.2
allllllll!TllllT] all:“l‘l]"ll]lllll'
7] 10 28 38 %} 18 20 36
TIME (min) TIME (min)
8.6 ,emTmTTmomooTssssso----- 0 BB eemmmmsmmmmosomoomooes
]/
- "
B.4-’,’
Yy, = 4 -‘.'
" \6 1
8.2
g LR AR I T 7 ¥ ' L] L i T ' s l T F i ' T ¥ ¥ 0 ' T 1 '
%} 10 208 38 2} 10 28 3a
TIME (min) TIME (min)

Figure 7 and 8. I_)V—configuration. Closed loop responses Ayp and Axg with
' inverse-based controller, C.(s), ks = 0.7 (time in minutes).
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acts in the high gain direction, and another (dV) which acts ino the low
gain direction. This "decomposition" is significant, since uncertainty in
dV, does not affect the external flows, dD.

To confirm that the system is much less sensitive to uncertainty in
this case, consider the following inverse-based controller

k3(1+75s) [-0.5102 -0.5102

5 39,43 —32.00} » ks = 0.7 min™ (13)

Ks
Ci(s) = = Gpy(s)™? =

Without uncertainty this controller gives the same response as controller
C.(s) with the LV-configuration. However, in this case the decoupled first
order response with time constant 1.43 min is maintained also when there is
uncertainty on the manipulated variables (Fig. 7 and 8). The following
error with respect to dD and dV was used
dD = 1.2 dDg, dV = 0.8 dvg (1w

From this example we see that ill-conditioned plants by themselves
may not give performance problems if the uncertainty is appropriately
aligned with the process. For the DV-configuration we find the error

matrix GAG™! in Eq. (8)

GpyAG

-1 0.45 A,+0.55 A, 0.45 A,-0.45 A,
DV - | 0.55 4,-0.55 A, 0.55 4,+0.45 A,

and with A, = 0.2 and A, = -0.2 corresponding to (14)
- -0.02 0.18
GpvaG py ‘[ 0.22 0.02}
The elements in this matrix are small compared to one, and good
performance is maintained even in the presence of uncertainty on each
input. The nonzero off-diagonal elements explain why the response in Fig.

7B is not completely decoupled.

ITI. ROBUSTNESS ANALYSIS WITH u
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It 1is quite evident from the linear simulations above that
multivariable systems exhibit a type of "directionality" which may make the
closed loop response strongly dependent on the particular disturbance and
model error assumed. One of the major weaknesses with the simulation
approach is that it may be very difficult and time-consuming to find by
trial-and-error the particular disturbance and model error which causes
control problems. Therefore there is a need for a tool which solves the

following robust performance problem in a more systematic manner:

Given a nominal plant, an uncertainty description, a set of possible
disturbances and setpoint changes, a desired performance objective, and a
controller: Will the "worst case' response satisfy the desired performance
objectives?

If performance (allowed size of input and output signals) is defined
using the He-norm and the uncertainty is described in terms of norm bounds
in the frequency domain, this problem is solved fairly easily by computing
Structured Singular Value u (Doyle, 1982) of a particular matrix N at each
frequency (Doyle et al., 1982). The elements in the matrix N are
determined by the nominal model, the size and nature of the uncertainty,
the performance specifications and the controller. Robust performance is
guaranteed if and only if u(N) < 1 for all frequencies. |

Some Definitions

Let us make a pause to define some of the terms used above more
carefully. Achieving robust performance is clearly the ultimate goal of
the controller design. However, it may be easier to solve this problem by
first considering some subobjectives which have to be satisfied in order to

achieve this:
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Nominal Stability (NS): The model is assumed to be a reasonable

approximation of the true plant. Therefore the closed loop system with
the controller applied to the (nominal) plant model has to be stable.

Nominal Performance (NP): In addition to stability, the quality of the

response should satisfy some mihimum requirements - at least when the
controller is applied to the plant model. For mathematical convenience we
will define performance in terms of the weighted Heo-norm of the closed-
loop transfer function between external inputs (disturbances and setpoints)
and "errors" (may include yp-yps, XB-XBs, manipulated inputs u, etc.). The
simplest example of such a performance specification is a bound on the
weighted sensitivity operator

(W,pSW,p) < 1 ¥uw, S = (I+GC)7! (16a)
The input weight Wzp is often equal to the disturbance model. The output
welght W,p is used to specify the frequency range over which the errors are
to be small and (if W,p is not equal to wp(s)I) which outputs are more

important.

Robust Stability (RS): The closed loop system must remain stable for

all possible plants as defined by the uncertainty description.

Robust Performance (RP): The closed loop system must satisfy the

performance requirements for all pbssible plants as defined by the
uncertainty description. As an example we may require (16a) to be
satisfied when G is replaced by any of the possible perturbed plants Gp as
defined by the uncertainty description.
a(w1p<1+cpc>“1w2p) <1 Yw,  ¥Gp (16b)
Most controller design methods (even "modern" optimal control, LQG),

only address the problems of Nominal Stability and Nominal Performance.
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The stability margins in the classical frequency domain design methods, are
an attempt to address the Robust Stability problem, but these margins may
be misleading and are a very indirect method.

Conditions for Robust Stability and Robust Performance

The definition of Robust Performance given above is of no value
without simple methods to test if conditions like (16b) are satisfied for
all possible perturbed plants Gp. Below we will state computationally
useful conditions for RS and RP using the Structured Singular Value p for
the case when the uncertainty (the possible plants Gp) is modelled in terms
of a set of norm-bounded perturbations on the nominal system. By use of
weights each perturbation is normalized to be of size one:

a(ay) <1 Yo

The perturbations, which may occur at different locations in the system,
are collected in the diagonal matrix A

A = diag{A,, ..., Ap}
and the system is rearranged to match the structure in Fig. 9. We will not
go into detail on how this is done at this point. This will become clearer
by studying the distillation column example in Section IV and V. The
signal d in Fig. 9 represents the external inputs (weighted disturbances
and setpoint changes) affecting the system. The signal e represents the
weighted errors, or more generally the signals which are to be kept
"small". The interconnection matrix N in Fig. 9 is a function of the
nominal plant G, the controller C and the uncertainty weights.
Performance weights are also absorbed into N such that the performance
specifications involving € and 4 are normalized:

Robust Performance Specification: (Fig. 9)
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5(E) <1 Vu, ¥a a7
where e = Ed, E = Ny + NpyA(I-N,, A)™'Ny,
An example of such a performance specification is Eq. (16b). With these
assumptions for the uncertainty and performance we have the following

results (Doyle et al., 1982).

N.S. <=> N stable (internally) (18)
N.P. <=> puyp = sup G(Np) < 1 (19)
W
R.S. <=> pupg = sup UA(Nn) < 1 (20)
W
R.P. <=> ugp = su (N) <1 (21)
HRP wp u(AAp)

The quantities uyp, wRs and pgp represent the "p-norms" and are introduced
as a convenient notation. The conditions for N.P. and R.S. are necessary in
order to satisfy the R.P. condition. Note that up(N;,) is a function of both
the matrix N,, and the structure of the uncertainty A. The Robust
Performance condition (21) is computed with respect to the structure
diag(A,Ap), where Ap is a full matrix of the same size as N,.. The use of u
is less conservative than using any other matrix norm. In particular,

up(N) < 5(N)
and the equality holds only when A is a full matrix. The use and
implications of conditions (19)-(21) will hopefully become clearer by
studying how these results apply to the distillation column example.

IV. p~ANALYSIS OF THE DISTILLATION COLUMN

Problem Definition

To study Robust Stability and Robust Performance of the distillation
column using u, the uncertainty and performance specifications must be
defined, The same uncertainty and performance specifications will be

assumed for the LV-configuration (3) and the DV-configuration (12). (In



- 117 -

A
A = diag{A;,... A,}
N = [Nn le]
—

A N A N21 N22
d —* e
i ] tainty A. <d
' General representation of system with uncer '
Figure 3. represents welghted external inputs, e represents weighted
errors.
Y bs]
w A, M a-[)2
S_ A
oy~ ok
G o, e

C |

Figure 10. Block diagram of system with input uncertainty and with

setpoints as external inputs. Rearranging this system to fit
Fig. 9 gives N as in Eqg. (27).
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general, it is reasonable to use the same performance specifications, but
the uncertainty may be different).

Uncertainty: The uncertainty with respect to the manipulated inputs
which was discussed in Section II may be represented as multiplicative
input uncertainty (Fig. 10)

Gp = G(I+wy(s)ap), 5(a7) < 1 Yu (22)
where wy(s) describes the magnitude of the relative uncertainty on each

manipulated input

wi(s) = 0.2 gEor (23)

This implies an input error of up to 20% in the low frequency range as was
assumed for the simulations. The uncertainty increases at high
frequencies, reaching a value of one at about w = 1 min™'. The increase at
high frequency may take care of the neglected flow dynamics. It allows
for a time delay of about 1 minute in the responses between L and V and
the outputs yp and xg. It may also represent neglected valve dynamics,
dynamics for the heat transfer in the reboiler (for V), etc.

At first the uncertainty will be assumed to be unstructured, i.e., the
perturbation matrix Ar is a full 2x2 matrix. This does not make much sense
from a physical point of view, but is done for mathematical convenience.
It will turn out that this assumption does not make any difference for the
LV-configuration. The set of possible plants is now generated from Eq.
(22) by allowing any 2x2 matrix A7 which satisfies d(A7) < 1, Vw.

Performance: We will consider the simple case with setpoint changes
in (yq) as external inputs and e = y - yg as errors. These signals are

related through the sensitivity function
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e=-Spvyss Sp= (I+GpO)™

Ys and e are related to the weighted external inputs (d) and errors (e) by

~

wZP d’ g = wIP e

Ys
and we have
é = Ea, E = _WIPSPWZP (2)4)

We choose to express the performance specifications through the weights

WZP = Iy W;p = WPI ’ WP(S) = 0-5 1_?_8';_1— (25)

The Robust Performance specification (17) then becomes

3(sp) < 1/|wp| y Y (26)
This bound on the sensitivity function Sp should be satisfied for all
allowable Gp given by (22). The performance weight wp(s) (25) implies that
we require integral action (wp(0) = =) and allowsan amplification of

disturbances at high frequencies of at most a factor of two (2im pr(iw)l"‘

[Nikds

#

2). A particular sensitivity function which exactly matches the
performance bound (26) at low frequencies and satisfies it easily at high

frequencies is S = %15—1— I. This corresponds to a first order response

with time constant 20 min.

Performance and Stability Conditions

With the information given above the matrix N in the AN-structure
(Fig. 9) becomes

-w1CSG w1CS -
= [ WpSG ~wpS| S = (I+GC) (27)
This matrix is found from Fig. 10 by breaking the loops (A1=0) at the input
and output of the block A;j. As an example with Ar=0, the transfer function

from the external inputs (d) to the errors (&) is
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N., = -wp(I+GC)™!
Similarly, the transfer function from 8 to the input of A7 is
N,, = wp C(I+GC)™*
Conditions for Nominal Performance and Robust Stability are derived from
(19) and (20) by using (27)
N.P.  <=>  5(S) < 1/|wp] Yw , S = (I+GC)™! (28)
R.S.  <=> &Hp) < 1/|w] ¥w, Hy = CG(I+CG)™' = CSG (29)
The condition for Robust Stability is expressed in terms of G since Ay is
assumed to be a full matrix. Note that S is the nominal sensitivity
function at the output of the plant, while Hy is the closed loop transfer
function as seen from the input of the plant. In some cases GC = CG (in
particular this is the case for the controllers C,(s), C,(s) and C,(s) in our
examples) and we have Hy = H, where
H=GC(I+GC)™P = I - 8
is the closed loop transfer function as seen from the output of the plant.
However, H; = H does not generally hold for multivariable systems. The
Robust Performance specification (26) should be satisfied for all plants
given by (22). From (21) one finds
R.P. <=> U(AIAP)(N) <1, ¥ (30)

Analysis of the LV-Configuration

The set of possible plants is given by (22) with G = Gy (3). We will
analyze the LV-configuration for the inverse-based and the diagonal

controller.

C,(s) = cl(s)GLv_l(s) (31)

Cals) = cz(s)[g) _01] (32)
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0.7

We will first consider the choices c¢,(s) = e and c,(s) = 2.4(1+75s)

]
used in the simulations in Section II, and then let

k,(1+75s)

- (33)

c,(s) = -lfs-l- y Cx(s) =
and see if Robust Performance can be improved with other choices for k,
and k,. Finally, we will consider the "p~-optimal" controller, Cu(s), i.e.,
the controller which minimizes pygp. We found this controller through a
software package which uses a somewhat simplified version of the
pu-synthesis procedure described by Doyle (1985). The simplification
involves only considering the upper left corner when minimizing the
He-norm of Eq. (7.3) in Doyle's paper (1985). This means that the resulting
controller is not necessarily optimal.

Nominal Performance and Robust Stability. One way of designing contrcllers

which meet the N.P. and R.S. specifications is to use multivariable loop
shaping (Doyle and Stein, 1981). For Nominal Performance, ¢(GC) must be
above le‘ at low frequencies. For Robust Stability with input
uncertainty, 3(CG) must lie below 1/|w1‘ at high frequencies (Fig. 11).

For the inverse-based controller (31) we get §(C,G) = o(GC,) = 'cll and

it is trivial to choose a c,(s) to satisfy these conditions. The choice
c,(s) = 9—5—7— which was used in the simulations gives a controller which has

much better nominal performance than required, and which can allow about
two times more uncertainty than assumed. This is also seen from Fig. 12
and 13 where the Nominal Performance and Robust Stability conditions (28)

and (29) are displayed graphically.
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Figure 11. Multivariable loop shaping. For Nominal Performance, o(GC)

must lie above l}wP at low frequencies, For Robust
Stability with input 'uncertainty, 5(CG) must lie below 1/‘wII
at high frequencies.
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Figure 12. The inverse-based controller, C,(s), k; = 0.7 has much better

Nominal Performance than required by the condition 3(S) <
T/pr » ¥Yw. The diagonal controller, C,(s), k, = 2.4, does
not satisfy the N.P. condition at low fregquency.

Figure 13. The inverse-based controller, C,(s), k; = 0.7 is guaranteed
Robust Stability since §(Hp) < 1/'w1| ¥w. The diagonal
controller, C,(s), k, = 2.4 will give an unstable system for
some of the plants defined by (22), since the R. S condition
is not satisfied at all frequencies.
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For the diagonal controller (32) we find §(C,G) = 1.972 ‘czi and o(GC,)
= 0.0139 'czl, and the difference between these two singular values is so

large that no choice of ¢, is able to satisfy both N.P. and R.S. This is

shown graphically in Fig. 12 and 13 for the choice c.(s) = —2~£—(1~S—+l‘5—s-)-

Robust Performance. In the case with input uncertainty sufficient

("conservative") tes® for Robust Performance in terms of singular values -are

easily derived:

RP. <« ~-6(wpSy)+o(wH)<1 Vw (34a)
or RP. <« ©&(wpS)+~v-6(wH)<1 Vw (34b)
or RP. « (1+./) -(6(wpS)+5(wrH)) <1 Vw (34c)

Here Y denotes the condition number of the plant or the controller (the
smallest one should be used). These conditions indicate that the use of an
ill-conditioned controller (¥(C,)=141.7) may give very poor Robust
Performance even though both the Nominal Performance (5(wpS)<1) and Robust
Stability conditions (8(wrH)<1) are individually satisfied. 1If a controller
witnh a low condition number (Y(C,)=1) is used we see that we get R.P. for
"ree" provided we have satisfied N.P. and R.S. This is always the case for
SISO systems and gives a partial explanation for why Robust Performance
was never an important issue in the classical control literature.
Furthermore, for SISO systems (34a)is necessary and sufficient for R.P.

Conditions (34) are very useful since they directly relate Robust
Performance to N.P., R.S. and the condition number. However, (34) may be
very conservative and in order to get a "tight" condition for R.P. the
p-condition (30) has to be used with N given by (27). u for R.P. is plotted
in Fig. 14 and 15 for the two controllers C,(s) and C,(s) used in the

simulations. As expected, the inverse-based controller C,(s) is far from
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Figure 14. u-plots for inverse-based controller, C,(s), k, = 0.7. The
system has very good performance when the plant is equal to
the plant model, and is guaranteed stability for all plants
given by (22), but robust performance is poor.
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Figure 151 u-plots for diagonal controller, C.(s), k, = 2.4,

Figure 16. u-plots for "y-optimal" controller, C(s).
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meeting the Robust Performance requirements (ugp is about 5.8), even though

the controller was shown to achieve both N.P. and R.S. On the other hand,

the performance of the diagonal controller C,(s) is much less affected by

uncertainty. (ugp = 1.71).

Oﬁtimizing k; and k, wrt. R.P. For the inverse-based controller the

"optimal" value for k, is 0.14 corresponding to a value of uRp equal to 3.3
which still implies poor performance. This value for k, seems reasonable
since it corresponds to a loop shape Kk,/s which is further away from the
R.S. constraint in Fig. 11.

For the PI-controller, the optimal gain is k, = 2.4, which is the value
already used (pgp = 1.70). It is not clear how low pgp can be made if C(s)
is only restricted to be diagonal (decentralized control); we were able to
get pygrp down to 1.42 by a trial-and-error procedure.

py-Optimal Controller. The synthesis method (Doyle, 1985) used to design

the "u;optimal" controller gives controllers of very high order, but by
employing model reducfion, we were able to find a "p-optimal" controller
with 6 states. u for R.P. for this controller is shown as a function of
frequency in Fig. 16. (The p-plot is not quite flat as it should bé for the
optimal case). The peak value for u is 1.06, which means that this
controller "almost" satisfies the Robust Performance condition. This value
for pygpp is significantly lower than for the diagonal PI controller, C.(s),
and the time responses are also better as shown in Fig. 17 and 18. In
particular, the approach to steady state is much faster. The state space
realization of this p-optimal controller is shown in Fig. 19. At low

frequencies the controller is approximately
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With Unc. (Eq. 7)

—sz LR AR l 1 V7T ] 1 T T 71 "l "B'z LR L l L2 I B l 0 Tﬁ
) 10 28 30 ) 10 28 38
9 ‘ T T 7 l LI L) ] T 1T 7T°71 I G ] T T 71 l T T T 1 ' LR ]
8 18 28 38 e 18 26 38
TIME (min) TIME (min)
Figure 17 and 18. Closed-loop responses Ayp and Axg with "p-optimal"
controller, Cu(s) (time in minutes).

r—1.002-10"7 0 0 0 0 0 -65.13 —90.09
0 -3.272 10" 0 0 0 7224 90.31
A= 0 0 -~0.1510 0 0 0 B | 5492 -4.304
- 0 0 0 —-9.032 0 0 —90.86 —113.6
0 0 0 0 -538.2 0 1867  —1494
| 0 0 0 ] 0 —586.8 672.2  840.3

c= [0.6564 0.7171 4.949 5.033 —1691 —311.2 D - | 5866 3816

~ {06555 0.5425 4.941 -5.040 -—1689 311.6 5002 —4878
Figure 19. State space realization of "u-optimal" controller, Cyls) =

C(sI-A)™'B + D.
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o) = L) 1282 020w <o) (35)

The condition number at low frequency is 2.1, and the controller gives some
compensation for the directionality of the plant (Y(G) = 141.7, while Y(GC,)
= Y(C,0) = 66.5).

Structure of A;. Note that Ay was assumed to be a "full" matrix in all the

calculations above. It turns out that for this particular plant (3), the
same values are found for ugg and pgp also wheh Ar is assumed to be
diagonal, which is a more reasonable assumption from physical consideration
(there is no reason to expect that the manipulated variables will influence
each other). For the DV-configuration below. It is of crucial importance
to model Ar as a diagonal matrix and not as a full matrix.

Analysis of the DV-Configuration

The set of possible plants is given by (22) with G = Gpy (12), but with
A7 restricted to be diagonal. We will again consider an inverse-based and

a diagonal PI controller

Ky -1
Cu(s) = = Gy '(s) (13)

1+75s | -0.15 0
ey - 12 [0 0] (36)

In the simulations in Section II we studied the controller C,(s) with k, =
0.7. For this controller the Nominal Performance and Robust Stability
conditions are identical to those of controller C,(s) and the LV-
configuration. However, based on the simulations and other arguments

presented before, u for Robust Performance is expected to be much better.
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Figure 20. DV-configuration. uy-plots for inverse-based controller,
Cg(s), k3 = O-7o
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Figure 21. DV-configuration. Robust Stability for controller C.(s).

Using B(HI) instead of u(Hy) will be very conservative in
this case, and one would mistakenly conclude that the
system does not satisfy the R.S. condition u(Hp) < 1/' wI,.
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This is indeed the case, as seen from the py-plots in Fig. 20. ugp is 0.965,
which means that the performance criterion is satisfied for all possible
model errors. The uncertainty block A7 was assumed to be diagonal. If A7
were full (which is not the case) the value of ugp is about 4.1.  The
reason for the high value in this case is that the off-diagonal elements in
A1 introduce errors in D when V is changed.

Even lower values for u are obtained by reducing the gain k, in C,(s)
from 0.7 to 0.13. k; = 0.13 gives wgp = 0.63. In fact, this controller
seems to be very close to the p-optimal controller for this plant, as we
were not able to reduce ugpp below this value by applying the software.

With C.,(s) which consists of two PI-controllers, pgp = 1.15. This is
almost acceptable, although the value of ugp is significantly higher than
for the inversed-based controller C,(s) with k, = 0.13. Thus a
decentralized controller gives acceptable performance.

The potential conservativeness in using § instead of uy is clearly
illustrated by considering the Robust Stability test for this case (Fig.
21). Using UAI(HI) (A1 diagonal) we see that the system satisfies the R.S.
condition. However, by looking at ©(Hj) (or equivalently by computing wu
with A1 a full matrix), we would erroneously expect the system to become

unstable for very small errors on the inputs.

V. UNCERTAINTY MODELLING

In this section we will first discuss in somewhat general terms how
to quantify uncertainty and then consider as an example, other sources than
input uncertainty for the distillation column. In order to use the
framework for analyzing systems with uncertainty outlined in Section III,

we need to model the uncertainty as norm bounded perturbations. Since the
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uncertainty structure is very problem dependent, it is difficult to give
general methods for how to do this. However, the examples given below for
the distillation column should be sufficient to show that most
uncertainties occurring in process control can be modelled as norm bounded
perturbations.

Choosing the Right Structure

It may be very important that the correct structure is chosen for the
uncertainty description, i.e., that the uncertainty is modelled as it occurs
physically. We will illustrate this by considering the following two
examples:

- multiplicative uncertainty at the input (Fig. 22A) or at the
output of the plant (Fig. 22B)

- output uncertainty as multiplicative (Fig. 22B) or inverse
multiplicative uncertainty (Fig. 22C)

Choices of Multiplicative Uncertainty. The distillation column (and any

other plant) has multiplicative uncertainty at the input of the plant.
Simply shifting this uncertainty to the output of the plant (and using
wp=wy) will, in general, give a completely different system. As an
example, for the LV-configuration using controller C,(s) we found ugp =
5.78 with the uncertainty at the input of the plant, but ugp is only 0.96 if
this uncertainty is shifted to the output. Recall condition (34) which
showed that with input uncertainty and using an ill-conditioned controller,
Robust Performance might be poor even when the R.S. and N.P. conditions
were satisfied individually. We do not have this problem when the
uncertainty is at the output. In this case we get a R.P. condition similar

to (34) but without the condition number
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Figure 22. Three common uncertainty representations. (A) Input

multiplicative uncertainty; (B) Output multiplicative
uncertainty; (C) Output inverse multiplicative uncertainty.
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R.P. <= §(wpS) + 6(on> <1 Ve
This illustrates that output uncertainty usually puts much less constraints
on the design of the controller than input uncertainty, and for ill-
conditioned plants one should be careful to model the uncertainty at the
location where it is actually occurring.

Choices of Output Uncertainty. We will show below that parametric

uncertainty in the time constant may be represented as inverse multiplicative
uncertainty
(I + wiAD)TG (37)
Approximating it as the seemingly similar multiplicative uncertainty
(I + woap)G (38)
has drastically different implications. For Robust Stability (37) imposes a
constraint on the sensitivity
u(s) < 1/[wT! , S = (I+GC)7! (39)
and (38) on the complementary sensitivity
u(H) < 1/(|wol) » H = GC(I+GC)™ (40)
(37) is best suited to describe pole variations while (38) is better for the
modelling of zero variations. (37) cannot be used to describe uncertain
high frequency dynamics. (38) cannot be used to model plants which have
poles that can cross the jw-axis.

Simplify if possible. The two examples above illustrated that it may be

very important to model the uncertainties as they occur physically.
However, this is not always of crucial importance, and whenever possible
the uncertainty description should be simplified by lumping various
uncertainties into a single perturbation. There are two reasons for this:

1) Computations are simpler, 2) Introducing too many sources of uncertainty
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may be very conservative since it becomes very unlikely for the "worst
case" to occur in practice. 1In particular, the individual uncertainties may
be correlated, and it may be impossible for the "worst case" to occur.
This will be illustrated for the distillation column later.

Representing Nonlinearities as Uncertainty for the Distillation Column

In addition to the input uncertainty, the main source of "uncertainty"
for the distillation column are nonlinearities. All the developments below
are for the LV-configuration. However, because of (11) they also apply to
the DV-configuration.

A simulation using the equations given in the Appendix and the input
uncertainty (7) reveals that the system is unstable with the inverse-based
controller C,(s) (6). Our linear analysis predicted Robust Stability, and
the reason for the discrepancy is nonlinearities which were neglected.
One way of handling nonlinearities within a linear framework is to treat
them as uncertainty. This is clearly not a rigorous way of handling
nonlinearities, but this approach is taken in lack of anything better.

Nonlinear open loop responses to large changes (+6.2%) and a small
change (0.003%) in boilup V (keeping L constant) are shown in Fig. 23.
These responses may be approximated by linear first order responses:

-1.380
T3s+1

dyp -0.047
V + 6.2%: [dXB} = m— dv (lHa)
-0.933
267s+1

dyp 1.027
V + 0.003%: [de] = | >705+7 dv (41b)
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0.045
G6s+1

) dyp 1.381
v - 6.2%. [de:l = 73—37571— dv (LHC)

Note that the smallest eigenvalue of the linearized plant corresponds to a
time constant of 220 min. The value 1 = 75 min used in the nominal model
(3) represents an average value of the time constants found in the

nonlinear simulations.

Time constant uncertainty. From the following simple formula for

estimating the linearized time constant (Skogestad and Morari, 1986b).

NTM; /F
zlnS

Tp = (42)

D B
Z=3 (1-yp) yp + F xg(1-xp)

ns = 1 yp(1-xp)
T X

We find that the time constant reaches its largest value when both
products have equal purity (xg=1-yp=0.01), and this explains the observation
that the time constant is large for small changes in V and much smaller
for large changes. In our case NT = 41, Mj/F = 0.5 min, z = 0.01,-1nS =
9.19 and we find 1, = 223 min. The new steady state reached by increasing
V by 6.2% is yp = 0.71403, xg = 0.000602. For this operating point we find
InS = 8.33, z = 0.102 and 1o = 24 min. The observed variations in the time
constant may be captured with the following linear model

1 0

i
G(s) = DS 1 G(0) (43a)
0 1+18S
™ = t(1+rag)), IATDI <1 Yu (43b)
15 = 1(1+r7drg) » 'ATB, <1 Yu (43c)
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(——) Nonlinear open loop responses Ayp and Axg for changes

in boilup V (reflux L constant).
(---) Approximation with linear first order response (Egq.

LH). .
A: 'V + 6.2%, B: V + 0.003%, C =V - 6.2%.

Block diagram representation of gain uncertainty and time
constant uncertainty.
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Here 1 = 75 min and r{ is a constant expressing the relative uncertainty in
the time constants. The scalars A and Arg are independent which allows
for different values for 1p and tg. Note that this model implies that both
inputs always have the same time constant with respect to yp and xg. This
is indeed what is observed when linear analysis is applied at different
operating points, and this also applies to disturbances in F, zp, etc. This
pole uncertainty may be written in terms of an inverse multiplicative
uncertainty at the output of the plant as shown in Fig. 24. It is
fortunate that it occurs at the output since we know that the system is
less sensitive to uncertainty at the output than at the input of the plant.
Also note that this kind of inverse Outpﬁt uncertainty puts a constraint on
the sensitivity function S, similar to a performance requirement. The

Robust Stability test for this uncertainty alone is

M (8) < V/fwe| h we(s) = rp =37

where A; 1s a diagonal 2x2 matrix. Clearly, we need r; < 1 to satisfy this
bound. It may seem strange that we have chosen the nominal value of 1 to
be 75 minutes, since it is clearly not possible to include even the
linearized time constant (230 min) in the model (43). Recall, however, that
we are trying to represent a nonlinear system. The linearized time
constant only applies in a very small operating region, and as the system
moves away from this steady state (maybe because of instability) the time
constant will be small. It is therefore much more important to include
the smallest value observed for the time constants in the approximation

(43).

Gain uncertainty. We observe from (41) that the linearized gains vary
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tremendously with operating conditions. However, the gains are clearly
correlated and it is of crucial importance to take this into account to
avoid a hopelessly conservative uncertainty description. If the elements
in the steady state gain matrix (3) were assumed to be independent, the
gain matrix would become singular for relative errors in each of the

elements exceeding (Skogestad & Morari, 1985)

1 1

= = 0.007 (44)
Yoy 1383
Here Y*(G) is the minimized condition number
Y¥(G) = min ¥(D,GD,) (4s)

1342
(D, and D, are diagonal matrices with real, positive entries). Physically

we know that the distillation column will not become singular and a more
structured uncertainty description is needed. Skogestad and Morari (1986c)
have suggested that for small changes in D/B the variations in the steady

state gains may be captured with additive uncertainty on the elements using

a single perturbation Ag. For the LV-configuration

1 -1
GLy(0) = GLy(0) + rg B [ . DJ
B B

=GLy(0) + [ B} rg bg [1 -11, |Agl <1 (46)

This model does not match our data (41) too well, where large variations in
D/B are observed. However, under closed loop we do not expect large
changes in D/B (though the changes in L and V individually may be large)
and (46) with D/B = 1 will be used to represent the gain variations.

It is important to note that the additive uncertainty in (46) does not

change the singular vectors v and v. A SVD of the perturbation matrix
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[_11 ‘11] in (46) yields

7 - [0.707] q- [0.707]
-0.707] ' ~-0.707

The direction of the "input" singular vector v is the same as that of the
nominal plant (3), while the "output" singular vector U is almost
perpendicular to that of the nominal plant. This means that this source of
nonlinearity is also ™nice" in that it mainly changes the plant at the
output. Physically this means that changes in the external flow (D and B)
are always the changes with the largest effect, and this is exactly what
we would expect from physical considerations, alsc for the nonlinear plant.

Choice of values for r{ and rg. There is clearly a correlation between

the variations in the time constant and gains which is not captured by the
proposed uncertainty description (Fig. 24). However the main effect of
both these uncertainties is to change the direction of the output singular
vectors, u and U. None of them add RHP-zeros. 1In order to make
computations simpler and to avoid conservative results (by neglecting the
correlation between A, and Ag), a reasonable approach may therefore be to
use only one of these uncertainties to describe the effect of nonlinearity.
This is the approach taken here and we choose to use the time constant
uncertainty only. One reason for not choosing the gain uncertainty, is
that this introduces uncertainty at steady state, which will normally not
be the case since the setpoints are not changed significantly.

The trajectory taken by the plant under closed loop may be very
different from the open loop responses, and open loop data such as (41)

may not be appropriate to determine the value of r;. We therefore decided
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to use nonlinear closed loop simulations to find an appropriate value for

rr. In particular, closed loop simulations which are at the limit to

instability are convenient, since these results may easily be compared to

values of urg for the robust stability of the linear approximation. To

determine the value of r; the following procedure was used:

1. Nonlinear closed loop simulations were carried out for a large feed
rate disturbance (+30%) with the inverse-based controller C,(s), k, =

0.7. The feed rate disturbance was chosen as the most difficult

disturbance (Skogestad and Morari, 1986a) which would take the

system furthest away from the nominal steady state. To make the
elements in the matrix (9) large; the relative errors on the
manipulated inputs L and V were chosen with different signs. These
errors were increased until the system was at the 1limit to
instability. The limiting values were
dL = 1.04 dL, dV = 0.96 dV,
2. upg was computed for the LV-configuration with 4% input uncertainty

(w1=0.04) and with various values for the relative uncertainty on the

time constants, r{. r{ = 0.35 was found to give ygg = 1, i.e.,

correspond to a system at the limit to instability.

The value found for r; using this procedure is clearly not the only
possible (note that no error was assume in the gains), but hopefully
represents a reasonable compromise between representing all possible
plants and avoiding a very conservative uncertainty description.

Effect of additional uncertainty on ppg and pgp. With the additional time

constant uncertainty (43) the interconnection matrix N becomes
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-wiCSG  -wiCsS w1CS

w.SG WS w~(I-S)
N=| s - : 7
p wpS wpS

u(N) for R.P. (Table 2) is computed with respect to the structure
diag{A7,A1,Ap} where A7 and Ap are "full" 2x2 matrices and A; is a diagonal
2x2 matrix. For computational convenience the matrix A; is assumed
complex.

The inverse-based controller C,(s), is, of course, not robustly stable.
(It was shown to be unstable with 4% input uncertainty and now there is
20%). wups is increased from 0.53 to 4.77 by adding 35% time constant
uncertainty. The p-values for the diagonal controller, C,(s), and the
"-optimal”, Cu(s), are seen to be only weakly influenced by adding the pole
uncertainty. Robust stability is still predicted for the u-optimal
controller. This is confirmed by nonlinear simulations.

To confirm that the gain uncertainty does not significantly change

these results, similar calculations were also done with the nonlinearities
represented as uncertainty on the gains (Table 3). Interestingly enough, it
turns out that choosing rg = 0.35, rp = 0 gives very similar results as rg
= 0, rp = 0.35 (Fig. 25). Furthermore, combinationsof these uncertainties
were found to add up approximately in a linear fashion with respect to the
value of p. This confirms that in this case, these two sources of
uncertainty (pole and gain uncertainty) have a very similar effect on the
plant, and that for computational simplicity we need to use only one of
them. Similar results are found for the DV-configuration (Table 3),
although the pole uncertainty is found to be worse than the gain

uncertainty.



LV-configuration
Inverse-Controller,C,(s),k,=0.7
Diagonal PI,C.(s),k,=2.4
Optimal Inverse,C,(s),k, = 0.14

"u-optimal",C(s)

DV-configuration
Inverse-controller,C.(s),k,=0.7
Diagonal PI,C.(s)

Optimal Inverse,C,(s),k;=0.13

HNP

0.50
1.50
0.50
0.79

0.50
0.81

0.50
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Input

ry=rg=0

HRS

0.53
1.39
0.20

0.72

0.53
0.37
0.20

Uncertainty, wy = 0.2

HRP

5.78
1.70
3.29
1.06

0.97
1.14

0.63

r.=0.35

HRS

h.77
1.61
2.60
0.99

0.83
0.85
0.47

URP

7.50
1.91
4,18

1.29

1.18
1.61

0.81

5s+1

0.5s5+1

rg-‘-o . 35

URS

4.83
1.47
2.62
0.87

0.53
0.61

0.20

HRP

7.53
1.82
4,19
1.24

1.07
1.45
0.73

Table 2. Values of uyp, MRS and pgpp for distillation column with diagonal

input uncertainty, and effect on pgg and wgp (uyp is unchanged) by adding

time constant uncertainty (ry) and gain uncertainty (rg).
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Figure 25. u-plots for R.P. for diagonal controller, C,(s), k, = 0.7.

The addition of gain or time constant uncertainty is seen to
have a similar and not too significant effect on the value

of u.
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The conclusions with respect to the effect of the nonlinearities for
the distillation column are
1. The main effect of the nonlinearities is to change the "directions" at

the output of the plant.

2. Representing this effect by uncertainty in the time constant seems to
be a good approach.

3. Since output uncertainty may be thought of as a output "disturbance",
controllers which were found to give good Robust Performance in
Section IV, are not affected very much by these nonlinearities.

VI. CONCLUSIONS

High purity distillation columns are inherently ill-conditioned because
the product compositions are very sensitive to changes in the product flow
rates. This may cause performance problems if the uncertainty changes ﬁhé
directionality of the plant. This is the case for the traditional LV-
configuration, where input uncertainty on the manipulated variables changes
the directionality at the input of the plant, and makes it impossible to
use an inverse based controller ("decoupler"). For the DV-configuration
(direct material balance) the input uncertainty poses no problem. The
structured singular value, u, was used as a tool to study the effect of
uncertainty on stability and performance in a systematic manner.

It is clear from this example that even with a powerful tool like u
the control system design process consists of a sequence of iterative steps
involving nonlinear modelling, and simulation as well as linear analysis
and synthesis. In particular, it is nontrivial to arrive at a description
of model "uncertainty" which captures the behavior of the real process and

can be treated mathematically.
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Appendix. Simplified nonlinear dynamical model of distillation column with

total condenser.

Assumptions:

- Constant molar flows

- No vapor holdup (immediate vapor response, dViop = dVptm)

- Liquid holdup M; constant (immediate liquid response, dLtop =
dLotm)

- Vapor Liquid Equilibrium (VLE) and perfect mixing on each stage

- Perfect level control in accumulator and column base, pressure

constant
N -~ no. of equilibrium (theoretical) stages including the reboiler
NT=N+1 -~ total no. of stages including total condenser
Ng. ~ feed stage location

Material balance describing change in holdup of light component on each
tray:
i=2N @ #Np, 1 # Npepd:

Mi%i = Lie1 Xi+1 * Vit ¥i-1 ~ Li x4 - Vi ¥y
Above feed location, 1 = Np + 1

Mi%i = Li+1 Xi+1 * Vie1¥i-1 - LiXi - Vi¥i + Fyyr
Below feed location, i = Np

Mi%j = Li+1 Xi41 * Vit ¥Yi-1 - Lixy - Viyy + FLXp
Reboiler, 1 =1

MpXi = Li+1 Xi+1 - Viyi - Bxjy,  Xp = X
Total condenser, i = Nt

Mp%i = Vi-1 ¥i-1 - LiXj - D Xj,  ¥p = Xygp
VLE on each tray

yi = T+ xR i=1,N

Flow rates
i > Np (above feed): Li =L, Vi =V + Fy
i < Np (below feed): Li = L+F,, Vi=V

Fi, = qfF , Fy = F - F
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lw/
1

= VWNp_q - LNy = V + Fy - L (accumulator holdup constant)
B =1L,-V,=L+Fy -~V (column base holdup constant)

Compositions xg and yg are found by solving the flash equations for the
feed

B

Fzp FiXp + Fyyr

axXp

P = Tia-Nxgp
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Chapter V

IMPLICATIONS OF LARGE RGA-ELEMENTS
ON CONTROL PERFORMANCE
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Abstract:

Large elements in the RGA imply a plant which is fundamentally

difficult to control:

1.

The plant is very sensitive to uncorrelated uncertainty in the

transfer matrix elements.

The closed loop system with an inverse-based controller is very
sensitive to input uncertainty. With a diagonal controller the
system is not sensitive to diagonal input uncertainty, but the
controller does not correct for the strong directionality of the
plant, and may therefore give poor performance even without

uncertainty.
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1. Introduction

Each element in the RGA is defined as the open loop gain divided
by the gain between the same two variables when all other loops are

under "perfect" control (Bristol, 1966)

(ayi/auj)uk¥j Gain all other loops open )

"3 = T5yi/Buyly, ,; - Galn all other Ioops closed

or equivalently (this definition may be used for any frequency)
RGA = A = {A335} = G(s) x Gi(s)T (2a)

where x denotes element-by-element multiplication. For 2x2 plants

_)\11 P [ A1 1=-An g1282
RGA = l ] = [1_A11 A , Ay = 1701~ g ) (2b)

Az Ag 11822

For decentralized control it is preferable to choose pairings of inputs
(j) and outputs (i) which have Aij close to one. Pairing of variables
with negative values of Ajj should be avoided since in this case the
loop gains may change sign as the other loops are opened or closed
(Grosdidier et al., 1985).

A value of }jj close to one also indicates that "interactions" are
small if a SISO controller is used for this loop. This makes it
possible to tune each loop individually and to get an acceptable
(stable) response when all the loops are closed simultaneously: For
2x2 plants we can tune each loop individually with integral control,
such that the stability of the overall system is guaranteed if i, > 0.5
(Grosdidier & Morari, 1986).

However, the RGA is used as a measure of control quality in a much
wider sense than as a tool for choosing pairings for decentralized
control. In particular, large elements in the RGA are suggested to

imply a plant which is fundamentally difficult to control (Bristol,
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1966; McAvoy, 1983, Grosdidier et al., 1985). The following identity
supports this claim. Let G = {gij} and G™! = {é ij}- Then (Grosdidier et
al., 1985)

dgij
2L (3)

dg3i/83 = ~Mj

This identity shows that the elements of the inverse (G™!') are

extremely sensitive to small changes in G if the RGA-elements are

large. This seems to indicate that plants with large RGA-elements are
very sensitive to modelling errors and this is indeed true as we show
in the paper.

In this paper we want to answer the following two questions:

A) Is a plant with large elements in the RGA always difficult to
control?

B) Is a plant with small elements in the RGA always easy to control
(in the absence of other limitations on control performance, such
as constraints and RHP zeros)?

We will look at the questions in the context of model uncertainty.

Because of the extensive use of the RGA as a tool for evaluating

control configurations for distillation columns (Shinskey, 198L4), we

will show through some examples how our results apply in this case.

2. Relationships between the RGA and the condition number

A plant is ill-conditioned if it has a high condition number. The
condition number based on §(+) is
Y(G) = 3(G)T(G™Y) = §(G)/o(G) (%)
where the maximum singular value §(G) = max [1Gu] |o/| |u] |- is the
induced 2-norm. Bristol (1966) himself pointed out the close

resemblance between the condition number and the RGA. Plants with
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large elements in the RGA are always ill-conditioned as seen from (5)
(Nett & Manousiouthakis, 1986)
Y@ 2 YHG > [[MIn =174 > |[A] [ - 1 (5)
Here Y*(G) is the minimized scaled condition number
Y¥G) = min  ¥(D,GD,)
(D, and D, are diagonal "scaling" matl;izoes with real, positive entries)
and

A m = 2 max {][A]]30s [ A} [1e) (6)

where ||A]]j~ denote the induced 1- and «-norms

n
LAl 4 = max > [}ij] ("max column sum")
i=1
n
HA i = max > [}j]  ("max row sum")
J=1

From (5) we see that large elements in the RGA always imply a large
value of Y¥(G) and Y(G). Since ill-conditioned plants are generally
believed to cause control problems, (5) gives some justification to the
claim that plants with large elements in the RGA are fundamentally
difficult to control. Note that Y(G) can be significantly larger than
Y*(G), and the plant may therefore be ill-conditioned (Y(G) large) even
if all the elements in the RGA are small. In particular, 2x2 plants
with an odd number of negative elements in G always have Y*(G) = 1A |m

= 1, but Y(G) may be arbitrary large. For example

[1  -0.01
G = [1 0.01] , Y(G) = 100 , Y¥G) = [|A]]p = 1

There is a close relationship between |[A]| and Y*(G). From (5) we know
that Y*(G) is always large when there are large elements in the RGA.

And, similarly, a large value of Y*(a) always implies large elements in
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the RGA. This is seen from the following bound which applies to 2x2
plants (Grosdidier, 1985)

(2x2)  Y¥G) < | A (7)
and from the following conjecture for nxn plants (Skogestad et al.,
1986, Nett & Manousiouthakis, 1986)

Y¥G) < || ], + k(n) (8)

with k(2) = 0, k(3) = 1 and k(4) = 2. Here

AL = 2 [rag]

]

Note that for 2x2 plants the 1- and the "m"-norm of the RGA are
identical

@x2): AL = 18] m = 2[[A 1= = 2[[A]]5
Combining (5) and (7) one shows that ||A]], and v*(G) are always close in

magnitude (in particular when they are large).

(2x2): | |A]], - Y*lc) <YH@) < LAl )

Consequently, for 2x2 plants Y*(G) » 1Al ]: as ||A] ], » =, and numerical
evidence suggests that this also holds for nxn plants.

This close relationship between ||A]|, and Y*(G) is important
because Y*(G) is a sensitivity measure with respect to
uncorrelated/independent errors in the transfer matrix elements
(Skogestad & Morari, 1986a). This result is presented below.

3. The RGA and Model Uncertainty

3.1 Independent Relative Element Uncertainty

This result will introduce ||RGA||, as a sensitivity measure with

respect to independent uncertainty on the plant elements.
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Result 1. (2x2) (Skogestad & Morari, 1986)

Assume each transfer matrix elements has a relative uncertainty

of magnitude r, that is, the actual ("perturbed") plant is

g (1+ra,) g12(1+ra;,)
% [:821(1+PA21) 822(1+rhz,) | 7 tAl‘], <1 (10)

The uncertainties on each element are assumed to be independent, that
is, there is no correlation between the Ajj's. The plant Gp remains
nonsingular at steady state (w=0) for any real perturbations -1 < Aij £
1 if and only if

1
11
< Y*(q) an

which is satisfied if

1

r < T [ATL = 2[hu| + 2[1-Au] (12)
(Condition (12) also holds for complex perturbations ,Aijl <landw >0
(Skogestad & Morari, 19862), Condition (11) does not hold in these
cases).

Condition (11) is necessary and sufficient. Condition (12) is only
sufficient, but it is also "tight" because of the close relationship
between Y¥(G) and | |[RGA|[|, shown in (9).

Conditions similar to (12) may be derived for nxn plants using
conjecture (8) and Theorem 6 in Skogestad and Morari (1986a): The plant
remains nonsingular at any frequency w for complex relative errors of
magnitude r on each element if

r < /(] |A] |i+k(n)) (13)

The control implications of conditions (11)~(13) follow from that
the fact that if a plant is singular at a certain frequency w, then the
plant has a zero on the jw-axis. The presence of this RHP-zero limits

the achievable control quality (Morari, 1983). In particular, it is
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impossible to have integral control for a plant which may become
singular at steady state (w=0) (Skogestad & Morari, 1986a).
Consequently, if there are large elements in the RGA and ||RGA|[, is
large, we can allow only very small uncertainties in the elements
without having control problems.

The main restriction inherent in these results is the assumption
of independent element uncertainty. Conditions (12) and (13) may be
very conservative if the element uncertainties are correlated. For
example, for distillation columns, even though | |RGA||, is large and the
elements in G may vary widely with operating conditions (r may be close
to 1), it can be shown that the plant never becomes singular (Skogestad
& Morari, 1986b). Therefore, for distillation column control, Result 1
does not "explain" why plants with large values of the RGA are
difficult to control.

3.2 Uncertainty on each manipulated input

The following result will introduce the RGA as a measure of how
performance is affected by uncertainty on each manipulated input. This
result is of more general interest than Result 1, because uncertainty
on the manipulated inputs is always present.

Result 2. Diagonal Input Uncertainty

Let A;j represent the relative uncertainty on the i'th manipulated
input, i.e.,the perturbed plant is
Gp = G(I+Ap) , A7 = diag{ay} )
The 1loop transfer matrix GpC may be written in terms of the nominal GC
GpC = GC(I+C™IALC) ’ (15)
GpC is closely related to performance because of the identity (Fig. 1)

y = (I+Gpc)‘1d
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For 2x2 plants the error term in (15) may be expressed in terms of the

RGA of the controller C as follows

Ciz
A (C)A+X2,(C)A, A (C) 'ch (8,-1,)

C™ALC = (16)

~21:(C) %?; (81=02)  A1(C)A,+X2,(C)A,

If the elements in the matrix (16) are large compared to 1 (in
particular, the diagonal ones), the loop transfer matrix GpC will be
very different from the nominal GC, and poor response or even
instability is expected when A7 # O.

nxn Plants. For nxn plants it is easily shown that the diagonal
elements of the error matrix C7'A;C may be written as a

straightforward generalization of the 2x2 case

n
(CT'aCss = 2 Ay(C)A; A7)
=1

That is, the diagonal element of C™'A7C depend on the column elements
of A(C) and the magnitude of the uncertainty.

Control Implications of Result 2. The following is clear from (16) and

(17):

i) Controllers with large elements in the RGA of the controller

should always be avoided.

It should be added that it is the behavior of GpC around
crossover QIGpCII = 1) which is of primary importance for the
stability and performance of the closed-loop system. Therefore,

control problems are expected if the RGA has large element in

this frequency range.
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Inverse-based controller.

To have "tight" control it is desirable to use an inverse-based
controller C(s) = c(s)G"*(s) (where c(s) is a scalar). With this

controller the error term becomes

g
O L
CTIALC = GAIGT = 5 (18)
I I 82
All g—l';' (A}’Ag) >\21A1+)\22A2

Here Xij = A;3(G). Similarly, for nxn plants the diagonal elements in

(GA7G™!) depend on the row elements of A(G):
n
(GAIG™i1 = 2. Ai(@)45 (19)
J=1

Note that A(G™?) = AT(G). This means that the RGA-elements of the
inverse-based controllers are the same as for the plant. The RGA is
independent of scaling, but the off-diagonal elements in (18) will
depend on the scaling of the outputs. For the correct interpretation
of these elements the plant outputs should be scaled such that an
output deviation of magnitude 1 has equal significance for all outputs.
(Comment: Similar results, but with g,,/g,, replaced by g,/g.. and
g2./8, replaced by g,,/g., may be derived for the case of output
uncertainty and performance measured at the input of the plant. This
case is generally of less interest).

Control Implications of (18) and (19)

ii) An inverse-based controller should not be used for a plant with
large elements in the RGA.

iii) Inverse-based controllers may give poor response even if the
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elements in the RGA are small. This may happen if 812/8,, or
821/81, are large. One example is a triangular plant which always
has X;; = 1, but where the response using an inverse-based
controller may display large "interactions" in the presence of

uncertainty.

Diagonal Controller.

A diagonal controller always has 1,,(C) = 1 and the error term in

(15) becomes
CTAIC = AT

Therefore the response is only weakly influenced by the presence of
input uncertainty. However, it may be difficult to achieve a good
nominal response when the controller is restricted to being diagonal
(this may be the case even if A,, is close to one provided the plant is
nearly triangular). The diagonal controller gives limited correction
for the "directionality" of the plant and Y(GC) may be large. In this
case the response depends strongly on the "disturbance direction™: Let
d represent the effect on the disturbance on the output. The response
is poor for a disturbance d with a large disturbance condition number
(Skogestad & Morari, 1986c¢).

[1¢cc)d[ . _

Yq(GC) = —-—ﬂ—d—ﬂ;—— 5(GC) (20)

Y4(GC) ranges in value between 1 and Y(GC). A value close to 1
indicates that the disturbance is in the "good" direction corresponding
to the high loop gain, G(GC). A value close to Y(GC) indicates that the

disturbance is in the "bad" direction corresponding to the low loop
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gain, o(GC). (For an inverse-based controller Y4q(GC) = 1 for all

disturbances).

d may also represent the effect of a setpoint change. If arbitrary

setpoint changes are allowed, then there exists a setpoint change yg
such that YyS(GC) = Y(GC). However, in many cases setpoint changes
occur infrequently and we may accept a poor response for them. In this
case it may not matter if Y(GC) is large as long as Yq(GC) is small for
all major disturbances.

Diagonal controllers do not generally correct for the
directionality of the plant and Yq(GC) is large whenever Yq4(G) is large
(Yq(G) is the disturbance condition number of the plant). In
particular, this is the case for plants with large RGA-elements. This is
seen from the following identities

' C diagonal: Y(CC) > Y¥(G) (21)
This follows since a diagonal controller merely corresponds to a
scaling of the input to the plant. By applying (5) we derive

C diagonal: Y(GC) > ||A]|p -1 (22)
and we see that a plant with large RGA-values always will have Y(GC)
large, and will yield poor performance (at least if arbitrary setpoint
changes are allowed).

One special case when a diagonal controller may yield acceptable

performance for an ill-conditioned plant (Y(G) large) is when the plant
is naturally "decoupled" at the input (V=I). Write the Singular Value

Decomposition (SVD) of G

_11 yyH _ 3@ 0 | 7
G=UzvH, I = l : Q(G)J (23)

For the case V = I (or more generally, V has only one nonzero element
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in each row and column, which givesV = I by rearranging the inputs) a
diagonal controller can be found which removes most of the
directionality in the plant: Choose C(s) =c(s) £™* to get GC = c(s)U
which has Yd(GC) = 1 for all disturbances. Note, however, that the
response is not decoupled (unless U is diagonal). Also note that for
this case (V= I) Y¥(G) =Y*(U I) = 1 and the elements in the RGA are
all positive and less than 1
(choose D, = ™! and use Y(U) = 1 and from (5): ||A]|p < Y¥(G) + 1 = 2,
fee [[A] ]z < D)

Finding worst-case conditions from the RGA

It is of interest to know the worst-case combination of Aj's (input
uncertainty) to use in simulation studies. To obtain the worst case
consider (17). If all Aj have the same magnitude (lAjl < ry) then the
largest possible magnitude (worst case) of any diagonal element is
given by r1 [[|A(C)| i1 ("max column sum"),To obtain this value the signs
of the Aj's should be the same as those in the column of A(C) with the
largest elements (if we are looking at GAIG™! in (19) then the worst
case is found when the Aj's have the same sign as those in the row of
A(G) with the largest elements).

Example

Consider a plant with steady-state gain matrix

I 0.1 -2
G(0) = [_01.1 _21 ’13] (2w)
The RGA is
[ -1.89 -0.13 3.02
o - |3 3% 38
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Assume A,, A, and A, have the same magnitude |A|. The second row has
the largest row sum (| |A(G)]|{, = 12.21) and the worst combination of
input uncertainty for an inverse-based controller is
Ay = Ay = =A; = A
We find
diag (GAIG™!) = (-5.04, 12.24, -6.24A)
Note that in this case we would arrive at the same worst case by
considering row 1 and row 3. Because of this the worst case will
always have A, and A, with the same sign and A; with different sign
even if their magnitude is different.
We may in some cases arrive at a different conclusion by
considering other frequencies. Also note that, unless an inverse-based
conﬁroller is used, it is A(C) rather than A(G) which should be used to

obtain the worst case.

4. Choice of Controller Structure

An important decision facing the engineer is the choice of the
controller structure. Two extremes will be considered here
- diagonal controller
- inverse~based controller
The diagonal controller has advantages: It has fewer tuning
parameters, is easier to understand and retune, and can be made failure
tolerant more easily. These issues are not considered here. We want
to decide which of the two choices above may result in the best

multivariable controller. Based on the discussions above, Table 1 was

prepared to assist the engineer in making this choice. The table should
be used only as a rough guideline, since diagonal input uncertainty is

the only source of uncertainty considered.
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max Yq4(G)
3 d
Large Small
Large —-—— Diagonal
| [A] 1o
Small Inverse-based Inverse-based
(V=I: diagonal) (diagonal)
Table 1. Guidelines for choice of best multivariable controller

structure ("large" implies a comparison with one, typically

>10).
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Decoupling. One issue which has been extensively discussed in the
chemical engineering literature is the use of decouplers for
distillation columns (e.g., Luyben, 1970, Arkun et al., 1984). The idea
of using a decoupler (D) is that the multivariable aspects are taken
care of by the decoupler and tuning of the control system is reduced to
a series of single loop problems. Let K(s) denote these "single-loop"
controllers. The overall controller C is

C(s) = DK(s) . (25)
Since K(s) is diagonal the RGA of C and D are the same

AMC(s)) = A(D) (26)
and if a steady-state decoupler is used (D is a constant matrix), the
RGA of C(s) will be the constant at all frequencies. The sensitivity of

decouplers to decoupler errors has been discussed in the literature

(e.g., Toijala (Waller) and Fagervik, 1972), and the observed sensitivity
is easily explained from Result 1 (12). However, the most important
reason for the robustness problems encountered with decouplers is
probably input uncertainty. Recall from (17) that any controller with
large RGA-elements is sensitive to input uncertainty. Decouplers
generally have the same RGA-elements as the plant and should therefore
not be used for plants with large RGA-elements. Let G4jag denote the
matrix consisting of the diagonal elements in G. Then for the
decouplers most commonly studied in the literature we find
"Ideal Decoupling”: D = G™* Ggiag » AC) = AT(G) 27)

"Simplified Decoupling": D = G7*((G™)qiag)™" » A(C) = AT(G) (28)
In both these cases the decoupler will lead to serious robustness
problems if the plant has large RGA-elements. On the other hand, if

"one-way" decoupling is used, then D is triangular and A(C) = A(DK) = L
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A "one~way" decoupler is therefore much less sensitive to input
uncertainty.

5. Large RGA-elements are bad news

Let us now answer the two questions presented in the introduction.
h) Is a plant with large elements in the RGA always difficult to

control?

Yes. This follows from Result 1 and 2. However, if the following
conditions are satisfied, control may still be acceptable:

1. The transfer matrix elements are correlated and despite the
large values in the RGA the plant is not 1likely to become
singular, and

2. There exists a controller with small RGA-elements (e.g., a
diagonal controller) which gives an acceptable response for all
disturbances. This is the case if all disturbances are in the
"good" direction, (i.e., Y4(G) is small despite the fact that Y(G)
is large).

Note that condition 2 implies that the plant is actually not ill-
conditioned for the expected disturbances. We will give an example of
such a case below (Diagonal controller for LV-distillation column).

B) Is a plant with small elements in the RGA always easy to
control?

No. As seen from (17) an inverse-based controller results in
serious "interactions" if there is input uncertainty and some of the
offdiagonal elements are large. A diagonal controller gives large
interactions even in the absence of uncertainty, if the plant' is nearly

triangular. (Consider, for example, the plant G = [_(1) ](130_! which has A
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Let us also answer the following additional question:

C) Is a plant with a large condition number always difficult to
control?

No. Based on the uncertainty descriptions investigated in this
paper, the RGA rather than Y(G) gives a measure of the plants
sensitivity to uncertainty. We will show in an example below, that an
inverse-based controller gives very good control for a plant with Y(G)
= 71 even in the presence of uncertainty (Fig. 5).

6. Examples

The distillation column described in Table 2 is used as an
example. The product compositions yp and xg are to be controlled by
manipulating the reflux (L) and either the boilup (V) or the distillate
flow (D). The column is assumed to have no dynamics. (This is, of
course, not true. However, we make the crude assumption that the
dynamics are given in terms of a single first order lag, which is
exactly cancelled by a zero in the controller).

We show simulations for two different configurations of

manipulated inputs.

~ LV-configuration, Y(Gry) = 142, A, (GLy) = 35

- DV-configuration, Y(Gpy) = 71, A.(Gpy) = 0.45
and consider two controllers for each of these
- Inverse-based controller (GC = I + 0.7/s)
- Diagonal controller
The gain of the controllers were adjusted to guarantee-r’obust

stability for relative uncertainty on each manipulated input with a

magnitude bound
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Binary separation, constant molar flows, feed liquid

Relative volatility a =1.5

No. of theoretical trays N = 40

Feed tray (1=reboiler) Np = 21

Feed composition zp = 0.5

Product compositions yg = 0.99, xg = 0.01
Product rates D/F = B/F = 0.5
Reflux rate L/F = 2.706

Steady State Gain Matrices

(o] - o] - ] - o ]

LV-configuration

[ur] L] _ T0.878 - 0.864]
w| = lav CLv = | 1.082 ~ 1.096
DV-configuration

[w]  [Tav] _ [-0.878 0.014]
wl| = L Gpv = | -1.082 -0.014

Disturbance matrix

(both configurations) E= Lg:ggé ?:??;]

Table 2. Steady-state data for distillation column.



- 166 -

5s+1

WI(S) = 0.2 m

Robust stability is guaranteed if and only if (Skogestad & Morari,
1986a)

W(CG(I+CE)™) < 1/[wr|, ¥ 29)
where the structured singular value u is computed with respect to a
diagonal matrix. Condition (29) is shown graphically in Fig. 2.

For each of these four systems the responses to two setpoint

[1 0.4
Ys1 = lo| * ¥s2 7 |0.6

The setpoint change yg1 has a large component in the "bad" direction

changes are shown

corresponding to the low plant gain (Y4q(G) = 110.7 for the LV-
configuration and Yq(G) = 54.9 for the DV-configuration). ygp has the
same direction as a feed flow disturbance, and has Yq(G) = 11.8 and 4.3
for the two configurations (Table 3).

The responses are shown both for the nominal case (A1=0) and with

20% relative uncertainty on each manipulated input

0.2 0
A1 = [o —0.2]

which give the following error terms (17) for GC when a inverse-based

controller is used:

Gar 35.1A,-34.14, =27.7(A=4,) [13.8 -11.1]
GAI )LV = )43.2(A1—A2) “3“.1A1+35-1A2 ) [»17 2 ‘l

. 0.454,+0.554,  0.45(A,-4,) [-0.02 0.18
(CAIG™DV = | _0.55(n,-8,)  0.554,+0.458, =[022 0-02J

The simulations illustrate the following points:

- An inverse-based controller gives poor response when A,;, is large
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Figure 1. Classical feedback structure. d represents the effect of the

disturbance on the output.

)| -
1/]wy]
1. _:__k
-1 17¢\\g§:\\\
10 \\\\\\2\
19 2_ \
X

. ’ -2 I -1 | 1 1 2

10 10 1. 10 10

Figure 2. The controllers satisfy the Robust Stability condition (22).
w(CG((I+CG)™1) is shown for 1: Inverse-controller for LV- and DV~

configurations; 2: Diagonal LV-controller; 3: Diagonal DV-

controller
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Lv- DV~
Config. Config.
BGA; )\11 = 35-1 O.L‘S
[Al]: = 138.3 2
Condition no., Y(G) = 4.7 70.8
Disturbance condition no., Y4(G) =
d = F (feed rate) 11.8 4.3
d = zp (feed composition) 1.5 1.4
d = lg)J (setpoint in yp) 110.7 54.9
d = [?J (setpoint in xp) 88.5 hy.6
SV-decomposition, G =11 vyl
- -0.625  0.781 | [-0.630  0.777
- -0.781  -0.625] |-0.777 -0.630
- [1.972 o | 7]1.393 0
y |0 0.0139] | 0  0.0197
. -0.707 0.7087] [1.000 -0.001]
) L 0.708 0.707 | 0.001 1.000

Table 3.

RGA , Condition numbers and SVD for distillation column.
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and there is input uncertainty (Fig. 3).

- A diagonal controller cannot correct for the strong
directionality of a plant with large RGA-elements (22). This
results in responses which are strongly dependent on the
disturbance (or setpoint) direction (Fig. 4). The response to a
disturbance in F which has Y4q(G) = 11.8 is acceptable, but the
response to the setpoint change yg1 is extremely sluggish. This
system may be acceptable despite the large value of A,,, provided
setpoint changes are not important.

- An inverse~based controller may give very good response for an
ill-conditioned plant even with diagonal input uncertainty,
provided A,;, is small (Fig. 5).

~ A diagonal controller may remove most of the directionality in

the plant if V = I. However, "interactions" are still present

because U = [:8% _%‘7683] is not diagonal (Fig. 6).

In practice, the improvement in response by using the DV-
configuration instead of the LV-configuration, is probably less than
indicated by these simulations. One reason is that the level loop for
the condenser is not immediate as assumed in the simulations. This
implies that a change in D (as opposed to L and V) does not affect
compositions directly. The immediate effect of a change in D is a
change in the condenser holdup (which does not effect composition).
This change in holdup will eventually lead to a change in reflux, but
this response may not be fast enough to counteract a large disturbance

which may change the compositions considerably in a matter of minutes.
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Figure 3. LV-configuration. Closed-loop responses y, and y., for inverse-

based controller

0.7 -t 0.7 [39.94 -31.49]
Cle) =~ 5= Cw =5 t39.u3 —32.ooJ

An inverse-based controller gives poor response when A;; is large

and there is input uncertainty .
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Figure 4, LV-configuration. Closed-loop responses y; and y, for diagonal

controller

cw - 11 9]

A diagonal controller which does not correct for the strong
directionality of the plant gives responses which are strongly

dependent on the disturbance (or setpoint) direction. The response

to ygp = lgg‘] (disturbance in F, Y4(G) = 11.'8) is acceptable, but

the response to the setpoint change yg1 (Yq(G) = 110.7) is

extremely sluggish. This system may be acceptable, despite the

large value of A,;,, if setpoint changes are not important.
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Figure 5.
based controller
_ 0.7 Jf 0.7 [-0.5102 -0.5102]]
Cle) = 5~ G py= 5 139.43 —32.00_'

An inverse-based controller may give very good response for an
ill-conditioned plant, even with diagonal input uncertainty,

provided A,, is small .
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Figure 6. DV-configuration. Closed-loop responses y, and y, for diagonal

controller

-0.2 ,-, _ 0.2 [-0.718 o
Cls) = —5= A7 = "5‘[ 0 —50.8_]

A diagonal controller may remove most of the directionality in

the plant if V ® I. However, "interactions" are still present

-0.63  0.78

because U = [—O.?B -0.63| 18 not diagonal.

J A
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Abstract

Doyle et al. (1982) have shown that a necessary and sufficient condition for
robust stability or robust performance in the Ho.- framework may be formulated as
a bound on the Structured Singular Value (u) of a specific matrix M. M includes
information on the system model, the controller, the model uncertainty and the
performance specifications. Often it is desirable to express the robust stability and
performance conditions as norm bounds on transfer matrices (T') which are of direct
interest to the engineer, e.g., sensitivity or complementary sensitivity. This paper

shows how to derive bounds on &(T) from bounds on x(M).
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1. INTRODUCTION

The Structured Singular Value (1) has proven to be a powerful tool for studying
robustness of linear systems (Doyle et al., (1982)). Given a set of disturbances, a
set of possible perturbations on the plant model (unéertainty) and a performance
specification, u is used to identify the “worst case” response for a given controller.
Mathematically, a necessary and sufficient condition for achieving robust stability

or robust performance is
pa(M) <k@) , Yu (1)

In addition, the interconnection matrix M must be (internally) stable. The impli-
cations of (1) may not be easy to understand for the engineer. A simple bound on
o(T) may provide more insight. The goal of this paper is to derive such bounds. To
this end assume that M can be written as a linear fractional transformation (LFT)

of the transfer matrix T
M=N;+ N12T(I — N22T)—1N21 (2)

(A superscript on N (e.g., NT) is sometimes used to denote a particular choice of
T). The matrix N is used to derive the desired bound on &(T'). Since one objective is
to use these bounds to assist the engineer in designing the controller (C), N should
be independent of C. Typical choices of T include the loop transfer function PC

and the closed-loop sensitivity (S) and complementary sensitivity (H) functions.
S=(I+PC)! (3)
H=PC(I+PC)™?! (4)

2. HOW TO FIND N
The first step is to find a LFT of M in terms of T (Eq. 2). In many cases this

is easily done by inspection. In other cases the following procedure may be used:
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1.) Write M as a LFT of C (Fig. 1):

M = Gq; + G12C(I — G22C) " 'Ga (5)

(The matrix G is easy to construct by inspection of the block diagram).

2.) Write the controller C as a LFT of the transfer matrix of interest (T').

C = J11 + J12T(I e J22T)-1J21 (6)

3.) Given G and J, N is easily derived (Fig. 1) because any interconnection of

LFT’s is again an LFT (Doyle, 1984).

Nii Nys
N =
[N21 sz]
_ [Gn + G12J11(I — Ga2J11) " G2 Gi2(I — J11G22) " 12 (}7)
Jo1(I — GoaJ11) " Goy Joz + J21Gao(I — J11Ga2) 1o

For the special case Jy; = 0 this reduces to

G G12J12
N = 8
[J21G21 Joz + J21G22J12 (8)

Comments:

If T is a closed-loop transfer function, (e.g., T is H or S), then Nop = 0 in
(7) and (8). Readers familiar with the Q-parametrization of all stabilizing
controllers (in which case T' = Q) will not be surprised by this result (Doyle,
1984).

Given N¥ it is easy to derive N for other closed-loop transfer functions. For

example, note that H is a LFT of S
H=1-S (9)

and N¥ is derived from N¥ using (7). For N = 0 (which is generally the
case) we find

NS

_ [N+ NGNS —Ng] (10)

NE 0
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Figure 1. Equivalent representations of system M with pertubation A.

—> I+ A P— 1+ A0

Figure 2. Plant with multiplicative input (Ay) and output (Ap) uncertainty .
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Example 1. Input and Output Uncertainty (Fig. 2). For a system with input
and output multiplicative uncertainty of magnitude 6(A;) < w(w) and &(Ap) <
w(w) a necessary and sufficient condition for Robust Stability (R.S.) is (Doyle,
1982):
p(M)<wHw) , Yw (11)

(12)

M= [—(I—i—C’P)‘lCP —-(I+cCP)"1C }
| I+PC)"'P —(I+PC)'PC

p is computed with respect to the structure A = diag{A1,Ap}. Let us construct
M as an LFT of H using the three-step procedure:
1.) Using Fig. 1B with A = diag{Ar,Ap} we find (constructing G directly is
sfmplér than starting from (12):
[o 0 —Ij'
G=|P O -P (13)
P I -P
Note that Gy is the upper left 2 x 2 block of G corresponding to A.
2.)

-1
T=H: J:[O P ]

I I (14)

3.) Substituting (13) and (14) into (7) yields

J O O —p-1
vi= 19 o], =TT mE=p 0 ME-0 09)

To find M as a LFT of S, use N¥ and Eq. (10). We get:

I —P'l}

P—l
vi=d T wa= [T ma-1e 0 Ng=0 oo

3. THE STRUCTURED SINGULAR VALUE
Let M be a square complex matrix. u(M) is defined such that 4~!(M) is equal

to the smallest 6(A) needed to make (I + AM) singular, i.e.,

p HM) = n%in{éldet(1+ AM) = 0 for some A,5(A) < 6} (17)
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(If M is a transfer matrix this definition applies frequency-by- frequency). A is a

block-diagonal perturbation matrix with a given structure

Ay
A= . 5(A) <6, Vi (18)
A,

A is allowed to be any complex matrix satisfying 6(A) < 6. (It turns out that A
may be restricted to being unitary without changing u(M) (Doyle, 1982)). p(M)
depends on both the matrix M and the structure of the perturbations A. To
write this more explicitly we will sometimes use the notation u(M) = ua(M). An

equivalent statement of (17) which is more useful for our purposes is the following:
det(I+ AM) #0 , VA(6(A) < 6)

& p(AM)<1 , VA(5(A) < 6) (19)
& pua(M) <1/6

The reader is referred to Doyle (1982) for further properties and computational

aspects of u.

4. NEW PROPERTIES OF u
The results in this section apply to any complex matrices although in most

cases these will be transfer matrices. Proofs of all results are given in Appendix.

Theorem 1. Let M be written as a LFT of T':
M= N11 + N12T(I - N22T)_1N21 (20)
and let k be a given constant. Assume pa(Nyy) < k and det(I — NyoT) # 0. Then

pa(M) <k o (21)

5(T) < er (22)
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where cr solves
| Nu Niz | _
P& | kepNyy kepNas | = F (23)

and A = diag{A,T}.
¢t is in general found numerically using the implicit expression (23). This
search is straightforward since the value of u increases monotonically with ¢r. An

explicit expression exists for the special case Ni; = Nag = 0:

Lemma 1. For Nyi = Nay = O there exists an explicit formula for cr:
_ . -2 0 Npo
cr =k Kz [Nzl 0 ] (24)

Comments on Theorem 1:

1. If M is a transfer matrix, conditions (21)-(23) apply on a frequency-by-
frequency basis (with k(w) and er(w)).

2. The bound (M) < k may result from a robust stability or robust performance
condition, and T may be a particular transfer function we want to bound (for
example, T is H or S as in Example 1). In such cases M is a (internally) stable
transfer matrix and the condition det(l — NaoT') # 0,Vw is trivially satisfied
since M has no jw-axis poles. The condition that M be stable puts additional
restrictions on the allowable T (although T does not necessarily have to be
stable, for example, if T'= PC). f T = H or T = S we must require T stable.

3. The condition pa(N11) < k is required for the existence of a solution ¢z > 0
to (23). If u(M) < k(w) is a robust stability (performance) condition, then
the condition p(Ny1) < k(w) is equivalent to requiring that the robust stability
(performance) condition be satisfied for T' = 0 at this frequency.

4. Condition (22) is necessary and sufficient for (21) if we want (21) to be satisfied
for all T's satisfying &(T) < c¢r. (This follows directly from the proof of the
theorem). However, in most cases we are interested only in a specific M (and

a specific T'), and condition (22) is only sufficient for (21).
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5. The previous comment implies that ¢r gives the least conservative bound which
may be derived on &(T) given (21). (There will always exist a T with the same

&(T) for which condition (22) is “tight”).

6. p in (23) is computed based on the structure of A and of T. The least restrictive
bound on &(T) (cr large) is found if T' = t[I is assumed, and the most restrictive
bound (¢r small) is found if T is a full matrix. This may seem counter- intuitive;
we expect to “pay” something for restricting T = tI. The reason it does not
work out this way is that we are considering how large “perturbations” from
T = 0 we may allow in T'. By restricting T = tI, the class of perturbations
is restricted, and the magnitude of the perturbations may be larger (we also
arrive at the same conclusion by observing that ¢I will be included as a special

case for any structure assumed for T').

7. Theorem 1 may be used to derive a bound on any transfer matrix T which is re-
lated to M through a linear fractional transformation (LFT). Note that these
bounds (e.g., on &(H) and &(S)) may be combined over different frequency-
ranges since Theorem 1 applies on a frequency-by-frequency basis. This pro-
vides a more powerful method for deriving simple robustness bounds than the
approach suggested by Postlethwaite and Foo (1985). Firstly, it is possible to
take advantage of the structure of T using our approach. Secondly, the initial
formulation of the uncertainty bounds is much more straightforward: Postleth-
waite and Foo’s approach is to force the uncertainty of the plant to fit a specific
single norm-bounded perturbations (e.g., use Ao (Fig. 2) to derive a bound
on &(H)). However, it is not clear how a tight bound on this perturbation
may be derived if there are several sources of uncertainty. Our approach is to
describe the uncertainty as it occurs physically using multiple perturbations
(A’s). This yields a necessary and sufficient u-condition which subsequently is

used to derive the tightest possible bound on &(T).
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The following property of u is derived using Theorem 1 and Lemma 1.

Theorem 2. Let A = diag{A,T}. Then

(25)

ua(ATB) < o(T)u [g ‘g]

((25) also applies on a frequency-by-frequency basis). Note that ATB and T are
square matrices, while A and B may be non-square. (25) is a generalization of
property (¢) in Doyle (1982):

Assume A and T have the same structure. Then
ua(AT) < 5(T)ua(4) (26)

(The property is stated incorrectly in Doyle (1982) since the condition that A and

T have the same structure is left out).

Special Cases of Theorem 2: In some cases Theorem 2 may be simplified by

writing p? [g (j;} in terms of other quantities:

Case “25 [g ‘g} =
1. A and T are both full matrices: d(A)a(B)
2. T=1tIl: ua(AB)
3. A=6I: ur(BA)
4. A=6I,T=1tI: p(AB) = p(BA)
5. B=1: par(A4)

Case 1 can be interpreted as (AT B) < 6(A)5(T)5(B). Case 5 yields
pa(AT) = ua(TA) < 6(T)uar(4) (27)

where ” AT” denotes the structure of the matrix AT. For AT to have a well-defined

structure, the structures of A and T must *match up” in some consistent manner.
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In particular, A and T must have the same size which implies that A must be

square. Some examples are:

(i) A and T have the same structure: "AT” = A = T (property (c) in Doyle
(1982)).

(ii) A diagonal: "AT” =T.

(ii) A = diag{A1,A2}, T =diag{T11,T12,T2} where A and T have the same
size: "AT” = A.

5. EXAMPLES
The following two examples demonstrate the use of Theorems 1 and 2.

Example 2. Input Uncertainty. The robust stability condition for Fig. 2 when

there is only input uncertainty of magnitude 6(Ay) < w(w) is
RS. & u(P'HP)<w {w) (28)
Here u is computed with respect to the structure of Ay which may be a diagonal

matrix. The least conservative bound on &(H) which may be derived from (28) is

found using Theorem 2:

RS. <« 6(H)§1/u2[12 Po_l]w(w) (29)

p in (29) is computed with respect to the structure diag{Ar, H}. Note the following

special cases:

-1
(i) Ar and H are both “full” matrices: u? [g PO } = ~(P) where v(P) =
o(P)/a(P) is the condition number of the plant.

(i) H = hl: ”2[0 P’l] =1

P O
Example 3. Robust Performance for SISO-plant. Robust Performance

(R.P.) is achieved if the performance condition &(S) = |S| < 1/|wp] is satisfied
for all possible plants. The set of possible plants is given in terms of multiplicative

uncertainty of magnitude wo(s). Using the results of Doyle et al. (1982) we derive

RP. & pM)<1 Ww (30a)
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_ on on
M = [pr pr ] (30b)

where

p in (30a) is computed with respect to the diagonal 2 x 2-matrix diag{Ao,Ap}.
Bounds on 6(H) = |H| and &(S) = |S| are easily derived using Theorem 1 with
k=1. Write M as a LFT of H :

0 0 w
N{{:[ ] Nfg=[_0] NE =11 1] NZ =0 (31)

Theorem 1 gives

RP. <« |H|<c¢H Vw (32a)

where ¢y at each frequency solves

0 0 wo
Hilwp wWp —Wp =1 (32b)
CH cy 0

p in (32b) is computed with respect to the structure diag{Ap, Ap, H}, i.e., a diag-
onal 3 X 3 matrix. Note that (32) is independent of the plant model (P). However,
M (and therefore H) must be stable, and this implicity makes the allowable H's

dependent on P. An analytic expression may be derived for cg for this simple case.

We find:
1-— lwpl
RP. <« |H<eg=—"— 33
|H| wol + wr] (33)
Similarly, a condition in terms of S is derived
11—
RP. < |S<ecs= [wol (34)
lwol| + |wp|

The expressions for ¢y and ¢gs in (33) and (34) are most easily derived from the

identity
[ on on

wpS wPSJ = |lwoH| + |wpS| . (35)

combined with the triangle inequality (e.g., use |S| = |1 — H| < 1+ |H]| to de-

rive (33)). Note that (33) is impossible to satisfy at low frequencies where tight
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performance is desired and |wp| is larger than one (corresponds to p(Ny1) > k in
Theorem 1). Similarly, (34) is impossible to satisfy at high frequencies where the
uncertainty exceeds 100% and |wo| is larger than one. However, we can combine
bounds: (30) is satisfied if (34) is satisfied at low frequencies and (33) at high fre-
"quencies. The bounds (33) and (34) (even when combined) tend to be conservative
around cross-over where |H| and |S| have similar magnitude. This means that there
will be systems which satisfy (30), but do not satisfy (33) and (34).

Conditions (33) and (34) are shown graphically in Fig.3A for the choice
wo(s) = 0.2(4 + 1) and wp(s) = 0.5(1 + 1). Assume that the plant is minimum
phase such that H = ;25 is an allowable (stable) closed-loop transfer function. This
corresponds to a nominal first-order response with time constant 1. This choice is

seen to satisfy (33) for w > 1.2 and (34) for w < 2 (Fig. 3B). Consequently, (30) is

satisfied at all frequencies and robust performance is guaranteed.

Figure 3. Graphical representation of conditions (33) and (34). R.P. is guaranteed since

|S| < ¢s for w < 2 and |H| < eg for w > 1.4.
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Appendix. Proof of Theorems

Theorem 1. The theorem follows directly from the definition of u after some
algebra: Assume that T is defined such that &(T) < cT Then at each frequency
the following holds

pa(M) < k(w), VT (a(T) <er)

& det(I+AM)#0, VA (3(A)<1/k), VT (41)
I+ ANy ANis ‘
& det [ TNy I Tsz} #0 VA, VT (A2)

kA 0 LNy ENe
k k
& det(I+[ 0 _CITT] [CTNzl oo Nog )#0 VA, VT
#Nu N
| xVe g2 |
< KA [CTNZI CTsz] =1

. Nll N12
< HA [chNgl kCTNzg} S k(w)

The step from (A1) to (A2) follows M = Ny; + Ni2(I — T N23) T N3y and Schurs

formula

A B

— -1 —
det(A — BD C)_det[c >

] /detD (43)

and the assumption detD = det(I — T Nag) # 0

Lemma 1. An equivalent statement of the lemma is: Let A= diag{A1, Az}
where A; and A, have the same size as Ny; and Na,, respectively. (A; and A,
may have additional structure). Then:

[ 0o Nel_ [ o Np

A[c]\[21 0 } -——\/E/LA [N21 0 } (A4)
Proof of (A4):
~ 0 N2
i |y (02] <170 (45)
o wen ][4 B
I kiA{N;»
< det [kchsz T #0 (A6)
<~ det(I — k%cAlngAgNgl) 7& 0 (A7)
I kchlng
A

A= det [‘\/ZT%—CA2N21 I ?é 0 ( 8)
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. 0 N12 2
& px [Nm 0 }_<_1/ k3c (A9)

The conditions involving det( ) # O must hold for VA; s.t. (A;) < 1 and
VAg s.t. (A < 1). The step from (A6) to (A7) and back to (A8) follows from
(A3). Since (A5) and (A9) must hold for any value of ky, (A4) follows.

Theorem 2. From Theorem 1 and Lemma 1 for the case Ny; = Nggy = 0:

0 Niz

ua(Ni2TNy) <k if a(T)u%{Nm i

] <k (A10)

Since (A10) holds for any choice of k it is equivalent to

~ 0 N
pa (NN <@ | |

Theorem 2 follows by choosing Ni; = A, No; = B.
Special Cases of Theorem 2. Let A; and A, have the same structure as A

and T in Theorem 2. Define A = diag{A1,Az}. Then

wx [g ‘(ﬂ <1/k (A11)
o ué_[g ’“64]51 (412)

B o0
&  det(I — kAyBALA) = det(] — kAL AALB) #0  VA;, A,
< pa,(BALA)<1/k VA (A13)
& pa(AAB)<1/k VA, (A14)
&  p(ALAASB) = p(AsBALA) <1/k YAy, A, (A15)
By VA, is understood all A; s.t. 5(A;) < 1. The step from (A11) to (A12) follows
from (A4).

Case(1): Follows from (A15): Use the SVD of A = UsZ4VH and B = UgZpV{.
Since A; and A, are “full”, A; may be chosen such that AU, = Vp and A,
such that VEAQ = Ug Then p(AlAAzB) = p(V_BE]_EngI - p(ElZz) =
5(A)5(B). (The generalization to the case then A and B are non-square is
straightforward and involves “lining up” the directions corresponding to 5(A)
and o(B)). '

Case(2): Follows from (A14).

Case(3): Follows from (A13).
Case(4),(5): Follow from (A15).
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Abstract

Decentralized control systems have fewer tuning parameters, are easier to un-
derstand and tune, and are more easily made failure tolerant than general multivari-
able control systems. In this paper the decentralized control problem is formulated
as a series of independent designs. Simple bounds on these individual designs are
derived, which when satisfied, guarantee robust performance of the overall system.
The results provide a generalization of the p-Interaction Measure introduced by

Grosdidier and Morari (1986).
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1. INTRODUCTION
Robust Performance

The goal of any controller design is that the overall system is stable and satisfies
some minimum performance requirements. These requirements should be satisfied
at least when the controller is applied to the nominal plant (G), that is, we re-
quire nominal stability (NS) and nominal performance (NP). In addition, when a
decentralized controller is used, it is desirable that the system be failure tolerant.
This means that the system should remain stable as individual loops are opened or
closed.

In practice the real (or “perturbed”) plant G, is not equal to the model G.
The term “robust” is used to indicate that some property holds for a set II of
possible plants Gy, as defined by the uncertainty description. In particular, by robust
performance (RP) we mean that the performance requirements are satisfied for all
G, € II. Mainly for mathematical convenience, we choose to define performance

using the Ho.- norm. Define
NP & 5(2)<1, W (1a)
RP & 8(Z,)<1, Vw, VGp,ell (1)
In most cases ¥ is the weighted sensitivity operator
=W, SW,, S=({I+GC)! (2a)

T, =WiS,Wa, S,=(I+G,C)™! (2b)

The input weight W5 is often equal to the disturbance model. The output weight
W, is used to specify the frequency range over which the sensitivity function should
be small and to weight each output according to its importance.

The definition of Robust Performance is of no value without simple methods

to test if conditions like (1b) are satisfied for all G, in the set II of possible plants.
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Doyle et al.- (1982) have derived a computationally useful condition for (1b) involv-
ing the Structured Singular Value u (u is defined in Appendix). To use u we must
model the uncertainty (the set II of possible plants Gp) as normbounded perturba-
tions (A;) on the nominal system. Through weights each perturbation is normalized

to be of size one:

5(A:) <1 ,Vw (3)

The perturbations, which may occur at different locations in the system, are col-

lected in the diagonal matrix Ay (the subscript u denotes uncertainty)
Ay =diag{Ay,..., A} (4)

and the system is rearranged to match the structure in Fig. 1. The interconnection
matrix M in Fig.1 is determined by the nominal model (G), the size and nature
of the uncertainty, the performance specifications and the controller. For Fig.1 the

robust performance condition (1b) becomes (Doyle et al., 1982)
RP & p(M)<1, Vw (5)

w(M) depends on both the elements in the matrix M and the structure of
the pertubation matrix A = diag{Ay, Ap}. Sometimes this is shown explicitly by
using the notation u(M) = ua(M). Ap is a full square matrix with dimension
equal to the number of outputs (the subscript P denotes performance). In addition
to satisfying (5), the system must be nominally stable (i.e., M is stable). Also note
that within this framework, the issue of robust stability (RS) is simply a special

case of robust performance.

Decentralized Control
Decentralized control involves using a diagonal or block-diagonal controller
(Fig. 2)
C = diag{c;}
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EAU > A"

ML, . M

d

Fig. 1 General structure for studying effect of uncertainty (Ay) on performance. M
is a function of the plant model (G) and the controller. d: external inputs
(disturbances, reference signals), é: external outputs (weighted errors y — r),
é = ZPJ (Eq. (1)). Ap is a full matrix corresponding to the dimensions of d

and é. Robust performance is guaranteed if and only if u (M) < 1.

Fig. 2 Decentralized control structure.
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Some reasons for using a decentralized controller are
e tuning and retuning is simple
e they are easy to understand
o they are easy to make failure tolerant
The design of a decentralized control system involves two steps
A) Choice of pairings (control structure)
B) Design of each SISO-controller ¢; (or block).
The best way to proceed for each of these steps is still an active area of research. The
RGA (Bristol, 1966) has proven to be an efficient tool for eliminating undesirable
pairings in Step A. This paper deals with the Step B. Two design methods which
may be applied for this step are 1) Sequential loop- closing and 2) Independent
design of each loop.

1) Sequential loop-closing. This design approach (e.g., Mayne, 1973) involves

designing each element (or block) in C sequentially. Usually the controller corre-

sponding to a fast loop is designed first. This loop is then closed before the design
proceeds with the next controller. This means that the information about the
“lower-level” controllers is directly used as more loops are closed. The final step in
the design procedure is to test if the overall system satisfies the RP-condition (5).
The main disadvantages of this design method are
e Failure tolerance is not guaranteed when “lower-level” loops fail.
e The method depends strongly on which loop is designed first and how this
controller is designed.
e There are no guidelines on how (and in which order) to design the controllers
for each loop in order to guarantee robust performance of the overall system.
Therefore the design proceeds by “trial-and-error”.

2) Independent design of each loop. This is the design approach used in this

paper. In this case each controller element (or block) is designed independently of
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the others. We present a procedure for these designs which guarantees robust per-
formance of the overall system. The proposed method has the following advantage
e Failure tolerance: Nominal stability (of the remaining system) is guaranteed if
any loop fails.
e Each controller is designed directly with no need for trial-and- error.
The main limitation of the approach is the assumption of independent designs, which
means that we do not exploit information about the controllers used in the other

loops. Therefore the derived bounds are only sufficient for robust performance.

Problem definition.

This paper addresses the following problem: Let G denote the diagonal (or
block-diagonal) version of the plant corresponding to the chosen structure of C (i.e.,
G is found from G by deleting the off-diagonal elements). Assume that uncertainty
and “interactions” are neglected when designing the controller C, that is, design
each element (or block) of C independently based on the information contained in
G only. What constraints have to be placed on the individual designs in order to
guarantee robust performance of the overall system (which can be any plant G,
from the set I1)?

The constraints on the individual designs are chosen to be in terms of bounds

on |k;| and |5;| where h; and §; are the closed-loop transfer functions for loop i:
hi = giiei(1+ gue)™t H = diag{h;} (6a)
8 = (1 + g,-,-c;)'l ,§' = diag{é',-} (6b)

(In general, if C is block-diagonal, iz;,é’; and g;; are matrices corresponding to the
block-structure of C, and |3;| and |h;| are replaced by &(H;) and &(5;)).
We solve the decentralized problem as defined above, by deriving the tightest

possible bounds on

o(H) = max |h;| and &(5) = max|3|
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which guarantee robust performance:
RP <« &(H)<éy or &(8)<és, Yw (7)

In addition to satysfying (7) the system has to be nominally stable. The p-
interaction measure, introduced by Grosdidier and Morari (1986), gives a sufficient

condition for nominal stability:
NS <« o&(H)<pc(Ey), Yw, Eg=(G-G)G™! (8)

(¢ is computed with respect to the structure of C which is equal to the structure
of é,ﬁ and S ). This paper provides a generalization of the u-interaction measure
from the case of nominal stability (NS) to the case of robust performance (RP).
The results derived here also apply to robust stability (RS) or nominal performance

(NP) if the p-condition (5) is a RS- or NP-condition rather than a RP-condition.

Notation

The most important notation is summarized below.
G - model of the plant

-~

G = diag{gi;} (corresponding to structure of C)
G, = [(G,Ay), Ay : uncertainty, G, = G when Ay =0

§=(I+GC)™, H=I-8§
S=(I+GC)™, H=I-S (9)
Sp=(I+G,C)™', H,=I-85,

Stability of individual loops < H (and §) is stable

NS < H (and S) is stable (overall system stable with no uncertainty)
RS & H, (and S,) is stable (for all G, € II).

NP <& S satisfies the performance specification

RP <& S, satisfies the performance specification (for all G, € II).

2. NOMINAL STABILITY (OF H AND 8S)
To apply the general robust performance condition u(M) < 1 (5) we must

require that the system is nominally stable, that is, that the interconnection matrix
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M is stable. Nominal stability is satisfied if H (and S) is stable. However, note that
nominal stability (i.e, stability of H and S) is not necessarily implied by the stability
of the individual loops (i.e., stability of H and S‘) The “interactions” (difference
between G and é) may cause stability problems as discussed by Grosdidier and
Morari (1986). If either one of the following conditions on (H) and 5(S) is satisfied,

then the stability of H (or 5’) implies nominal stability.

Condition 1 for NS (Grosdidier and Morari, 1986). Assume H is stable
(each loop is stable by itself), and that G and G have the same number of RHP

(unstable) poles. Then H is stable (the system is stable when all loops are closed) if

o(H) < uz'(Ey) Yw (10)

where Ep = (G —G)G™! (11)

uc(Eg) is the p-interaction measure and p is computed with respext to the struc-
ture of the decentralized controller C. Note that the condition that G and G have
the same number of RHP poles, is generally satisfied only when G and G are stable.
In order to allow integral action (H(0) = I), we have to require that u(Ex) < 1 at

w = 0, that is, we need diagonal dominance at low frequencies. If this is not the

case the following alternative condition may be used:

Condition 2 for NS (Postlethwaite and Foo, 1985, Grosdidier, 1985). Assume
S is stable, and that G and G have the same number of RHP zeros. Then S (and
H) is stable if

&(5) < pg'(Es) Vw (12)
where Egs = (G- &)G! (13)
Since we have to require S =171 asw-— oo for any real system, we have to require

u(Es) < 1 as w — oo, in order to be able to satisfy (12), that is, we must have

diagonal dominance at high frequencies.
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Conditions 1 and 2 are conditions for nominal stability (i.e., stability of H and

S). These conditions cannot be combined over different frequency ranges. The
reason is that the “uncertainty” G — G is not a norm-bounded set and therefore is

not “connected in the graph topology” (Postlethwaite, et al., 1985).

What to do when both conditions fail
In some cases it may be impossible to satisfy either (10) or (12). For example,
in order to satisfy (10) and to have integral action (H(0) = I) we must require at

least

p(En(0) <1 (14)

(p is the spectral radius of Ey). (14) is derived from (10) by assuming H = hI
(all loops identical) which yields the least restrictive bound 6(H) < p~!(Ey) in
(10). In general (14) is conservative. For example, it is easily shown (Skogestad
and Morari, 1987b), that it is always possible to find a diagonal controller which

yields NS if the less restrictive condition
RC{A;(EH(O)} Z —-1, V1 (15)
is satisfied. One example for which (15) is satisfied, but not (14) is the following

c0=(; 7)> co=(5 1)

Ai(Eg(0) = +42, p(Ex(0)) =2

2 x 2 plant

For 2 x 2 plants, (15) is always satisfied when RGA1y > 0 (RGAy; is the 1,1-element
of the RGA (Bristol,1966)), while (14) is only satisfied when RGAy( > 0.5.
Similarly, condition (12) may be impossible to satisfy because i) G and G do
not have the same number of RHP-zeros, or ii) u(Es(jo0)) > 1.
In cases when neither Conditions (10) or (12) can be satisfied we may try to

redefine the nominal model (@ and G) such that either condition 1 or 2 is satisfied.
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However, since the set Il of possible plants (Gp-) still has to be the same, this
generally means that we have to increase the magnitude of the model uncertainty.
The three following “tricks” may be used (the last two of these are probably easiest
to apply since uncertainty always dominates at high frequency):

e To satisfy (10): The plant is made diagonal dominant at low frequencies
(¢(E#)(0)) < 1), by reducing the magnitude of the nominal off-diagonal el-
ements and replacing it by element uncertainty (at low frequency) (see Sko-
gestad and Morari (1987c) on how to treat element uncertainty within the
p~framework).

e To satisfy (12): The plant is made diagonal dominant at high frequencies
(u(Es(joo)) < 1), by reducing the magnitude of the nominal off-diagonal ele-
ments and replacing it by element uncertainty (at high frequency).

e To have the same number of RHP-zeros in G and G: RHP-zeros (or time
delays) are “removed” by treating them as uncertainty.

One extreme is obviously to treat the off-diagonal elements entirely as additive
element uncertainty. In this case p(Eg) = 0 at all frequencies, and nominal stability
(stability of H) is obviously satisfied if each loop & is stable (since G = G and
H = H in this case). This approach is generally more conservative, however, since
the offdiagonal elements in G (which nominally are equal to g;;) for the case of
element uncertainty are allowed to be any transfer function of magnitude |g;;| (in
particular, both g;; and —g;; are allowed). This additional uncertainty makes it

more difficult to satisfy the robust stability and performance conditions.

3. ROBUST PERFORMANCE

Having derived conditions for nominal stability, we can now proceed to the
case of robust performance. The objective of this section is to derive bounds on the
individual designs (IZT and §), which when satisfied guarantee robust performance

of the overall system (that is, u(M) < 1). This is accomplished in two steps:
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1. Sufficient conditions for RP in terms of bounds on &(H) and &(S) are derived
by writing M as a linear fractional transformation (LFT) of H and S.
2. These bounds are used to derive sufficient conditions for RP in terms of

bounds on &(H) and &(5).

3.1 Robust Performance Condition in Terms of H and S

The robust performance condition
RP & pua(M)<1, Vw (5)

may be used to derive sufficient conditions for RP in terms of bounds on &(H) and

o(S) (Skogestad and Morari, 1987a). To this end write M as a LFT of H (Fig. 3)
M=Ni + NEH(I - NEH)"INE (16)

The matrix N¥, which is independent of C, can be obtained from M by inspection
in many cases. Otherwise, the procedure given by Skogestad and Morari (1987a)
can be used. They also point out that in general M is affine in H, that is, N3 = 0.
Applying Theorem 1 of Skogestad and Morari (1987a) (the theorem is reproduced
in the Appendix) the following sufficient condition for (5) is derived:

RP-condition in terms of H. Assume M is given as a LFT of H (Eq. 16).
Then at any given fregency

pa(M) <1 if o(H) <cy (17a)

where at this frequency cp solves

o Nl ON{L O\ _
uA (CHN;{ cHszé =1 (17b)

and p is computed with respect to the structure A = diag{A, H}.
Note that H is generally a “full” matrix if the controller is diagonal. A similar
bound in terms of S is derived by replacing H by S in Eq. (16) and (17). (17) applies

on a freqency-by-frequency basis. This implies that (M) < 1 at a given frequency
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Fig. 3 M written as a LFT of H. N is independent of the controller.

li
o

< Q>
<
o>

¥
=
|
B
]
)
G)

..........................

Fig. 4 Plant with input uncertainty (A;) of magnitude wy(s). Robust performance is
: satisfied if (wp(I + G,C)~1) < 1, for all A;(G(Ar) < 1).
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is guaranteed if either (H) < cy or &(S) < cg at this frequency. Consequently,
the bounds on &(H) and 6(S) can be combined over different frequency ranges. In

particular, the following holds
RP <« ©&(H)<cy or &(S)<ecs, Ww (18)

Example. Robust performance with input uncertainty (Fig. 4).

Let the set II of possible plants be given by
Gp = G(I+ U)IAI), 5’(AI) <1, Vw (19)

Here wy is the magnitude of the relative (multiplicative) uncertainty at the plant
inputs. For robust performance we require that the magnitude of the sensitivity

operator is bounded by |w,|™!:
RP & o&(wpS,) =06(wp(I+G,C)"1)<1 Vw, VG, ell (20)
This condition is most easily checked using p (Eq. (5)):
RP & pua(M)<1 Vw (21a)

where the interconnection matrix M is (Skogestad and Morari, 1986):

_ (-wiC8G —wCS
M“( wpSG  wpS ) (218)

and (M) is computed with respect to the structure A = diag{A;,Ap}. Ap is
always a “full” matrix of the same dimension as S. A is often a diagonal matrix
(if the inputs do not affect each other). Rewrite M in terms of S and H such that

C does not appear

_ -1 _ -1
M:( wiG-*HG —w;G H> (22)

prG' pr
By inspection M may be written as a LFT (16) of H (recall S = I - H)

0 0 —w;G™!
M=Nﬁ+Nf§HN2f{=(wPG wPI)+( —wnl )H(G (23
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We derive from (23) and (17)
RP if o(H)<cy Vw (24a)

where at each frequency cy solves
0 0 —w;G~!
ul| wpG wpl —wpl =1 (24b)
ey G eyl 0

Similarly, a bound on &(S) is derived by writing M as a LFT of S.

—wyl —w;G™1 wyG~t
M=Nf1+NfQSN231=< o 0 >+< :UPI )S(G Iy  (25)

(25) and (17) (with H replaced by S) yield
RP if &(S)<ecs Ww (26a)

where at each frequency cg solves

—wil ——wIG"l wIG‘l
J73 0 o wpl =1 (26b)

csG csl 0

In both (24b) and (26b) p is computed with respect to the structure
diag{Ar,Ap,H}. The bounds (24) and (26) may be combined over different fre-
quency ranges, and RP is guaranteed if either one is satisfied at any frequency (Eq.
(18)). In practice, (24) is most easily satisfied at high frequencies and (26) at low

frequencies.

3.2 Robust Performance Condition in Terms of H and §
Sufficient conditions for Robust Performance in terms of &(H) and &($) may

now be derived using the identities (Grosdidier, 1985)
H=GGH(I+ EgH)™! (27)

S =8(I-Es8)"'GG™! (28)
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Note that (27) and (28) both are LFT’s of H (and S) in terms of H (and §). In
Section 3.1 we pointed out that in general M can be written as a LFT of H with
szg =0:
M =N+ NEHNE (29)

Substituting (27) into (29) yields
M =NE + NEGG~'H(I + Ex H)"'NE (30)

which is a LFT of M in terms of H. Using Theorem 1 (Appendix 1) and (30) we
derive:

RP-condition in terms of H. Let M = NE + NEHNE. Then at any
frequency
pa(M) <1 if &(H)<éy (31q)

where at this frequency ¢p solves

NE  NEGG'\ _
Ha <EHN;{ —enEy )1 (318)

and p is computed with respect to the structure A = diag{A,C}.

Note that the structure of C is block-diagonal and equal to that of H. An

entirely equivalent condition may be derived in terms of 6(5‘ ):

RP-condition in terms of 5. Let M = N5 + N5,SN5,. Then at any

frequency

ua(M) <1 if &(S)<és (32)
where ¢g solves
(N N _
i (ESGG‘lel GsEs ) — 1 (326)

and p is computed with respect to the structure A = diag{A,C}.

Again, the bounds (31) and (32) may be combined over different frequency

ranges:

Combined RP-condition.

RP if &(H)<éy or &(5)<és Vw (33)
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Example. Robust Performance with Input Unéertainty (Continued)

Consider the same example as above (Fig. 4). However, in this case we will
derive bounds in terms of 5(H) and 5($). A RP-condition in terms of &(H) = |hs [

is derived by combining (31) and (23):
RP if 6(H)<éy Vw (34a)

where at each frequency ¢y solves

0 0 —wjé':l
pi |l wpG wpl —wpGG™l | =1 (34b)
cgG cégl —egFEy

-~

Similarly, the RP-condition in terms of 5(S) = |§;| derived from (32) and (25) is
RP if &(S)<és Vw (35a)

where at each frequency ¢g solves

—wr] —w;G™! w;G~!
KA 0~ 0 wpl =1 (35b)
csG 5SGG_1 csEg
In both (34b) and (35b) u is computed with respect to the structure A =

diag{Ar,Ap,C}. Conditions (34) and (35) can be combined as shown in (33).

4. DESIGN PROCEDURE
The following design procedure for decentralized control systems based on
the “independent designs”-assumption‘ is proposed: Find a decentralized controller
which yields individual loops (fI and S') which are stable and in addition satisfy
1) Nominal Stability: Satisfy 5(171 ) < p~YEg) (10) at all frequencies or satisfy
5(S) < u~(Es) (12) at all frequencies. It is not allowed to combine (10) and
(12).
2) Robust performance: At each frequency satisfy either (H) < &y (31) or

o(S) < és (32). Combining (31) and (32) over different frequency ranges is

allowed.
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Consequently, two separate conditions must be satisfied by the individual designs:

One for nominal stability and one for robust performance.

Remarks

1.

The nominal stability condition &(H) < p~!(Eg) (10) is automatically satis-
fied at any frequency where the robust performance condition (31) is satisfied.

This follows from the inequality

Hdiag{A1,A3} (N21 N22) > maz{pa,(N11),ua,(N22)} (36)

applied to (31b). We find ¢y < p~!(Ey) and therefore the RP-condition puts
a tighter bound on &(H) than the NS- condition (10). A similar relationship
exists between the RP-condition (32) on &(S) and the NS-condition (12).

This may seem to imply that NS is automatically guaranteed if RP is satisfied.
This is not the case, however, since the NS-condition (10) (or (12)) must be
satisfied at all frequencies. This is not necessarily implied by the combined
RP-condition (33) since neither 5(H) < ég or 8(S) < cs have to be satisfied
at all frequencies to satisfy (33). In the following two cases RP does imply NS:
If it happens that the RP-bound (31) on E(I;T ) is satisfied at all frequencies, and
if H is stable, then RP and NS are both guaranteed using a single condition.
However, to be able to satisfy (31) at all frequencies we must require that there
exists a ¢y > 0 which solves (31b). This is equivalent to requiring u(Nf) <
1, which from (30) is equivalent to u(M(H = 0) < 1. Consequently, to be
able to satisfy (31) we must require that at each frequency the performance
requirements are such that H =01is a possible solution. This may be the case,

for example, if we are interested in robust stability only.

If it happens that the RP-bound (32) on 6(5’) is satisfied at all frequencies,
and if S is stable, then RP and NS are both guaranteed. However, to be able

to satisfy (32) at all frequencies we must require that at each frequency S =0
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is a possible solution. This may be the case if there is no uncertainty, that is,

if we are interested in nominal performance only.

5. NUMERICAL EXAMPLE
In this section we continue the previous example of RP with diagonal input

uncertainty (Fig.4). Consider the following plant (time is in minutes)

1-0.2
§o L [-osmsizes: o014 ] (37)
1+75s | -1.082,355; —0.0143552

Physically, this may correspond to a high-purity distillation column using distillate
(D) and boilup (V) as manipulated inputs to control top and bottom composition
(Skogestad and Morari, 1986). We want to design a decentralized (diagonal) con-
troller for this plant such that robust performance is guaranteed when there is 10%
uncertainty on each manipulated input. The uncertainty and performance weights
are

wr(s) = 0.1 (38a)

7s +1

wp(s) = 0.25—

(38b)
The robust performance condition is
7(Sp) < 1/|lwp| VG, €Il (39)

(38b) implies that we require integral action (wp(0) = co) and allow an amplifica-
tion of disturbances at high frequencies of at most a factor of four (wp (joo) = 0.25).

A particular sensitivity function which matches the performance bound (39) exactly

at low frequencies and satisfies it easily at high frequency is S = 28288_7_1I . This cor-

responds to a first order response with time constant 28 min.

Nominal Stability (NS)
The nominal model has RGA,; = 0.45 and we find p(Eg(0)) = 1.11. Conse-

quently, it is impossible to satisfy the NS-condition (10).
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The NS-condition (12) for &(S) cannot be satisfied either. Firstly, G has one
RHP-zero, while the diagonal plant has two. Secondly, the plant is clearly not
diagonal dominant at high frequencies, and p(Es(jw)) is larger than one for w >
4 min~!. The simplest way to get around this problem is to treat the RHP-zeros
as uncertainty. (This is actually not very conservative, since RHP-zeros limit the
achievable performance anyway.) To this end define the following “new” nominal

model

(40)

o 1 —0.878 0.014
T 1+75s | —1.082 —0.014

and include the RHP-zeros in the input uncertainty by using the following new

uncertainty weight

5s+1

0.255+1 (41)

wr(s) =

|wr(jw)| reaches a value at one at about w = 2 min~!. This includes the neglected

RHP-zeros since the relative uncertainty introduced by replacing ﬁ% by 1 is

|, which reaches a value of one at about w = 3 min~1.

1 - 1-0.2s
140.2s

With the new model (40) we still cannot satisfy the NS-condition (10) for & (H).
However, the NS-condition (12) on &(S) is easily satisfied since G and G have the
same number of RHP- zeros (none), and u(Eg) = 0.743 at all frequencies. The
only restriction this imposes on S is that the maximum peaks of |§;| and |32 must

be less than 1/0.743 = 1.35. This is easily satisfied since both §;; = Ig_‘fgf and

~  _ —0.014
922 = 7375,

are minimum phase.
In the remainder of this Section the model of the plant (G) is assumed to be

given by (40) and the uncertainty weight (w;) by (41).

- Nominal Performance (NP)

The NP-requirement is

NP & o&(S)<|wp|™' Ww (42)
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How should the individual loops (.§’ = diag{5;,8;2}) be designed in order to satisfy
this requirement? Intuitively, we might expect that we have to require at least
that the individual loops satisfy (42), that is, 6(5’ ) < |lwp|™!. However, this is not
necessarily the case, as illustrated by the example: (42) is equivalent to ua(M) <1
with M = wpS and A = Ap (Ap is a full matrix). (32) then yields the following

sufficient condition for NP in terms of S:
NP <« 5’(5) <enp Ww (430,)

where ¢y p at each frequency solves

0 wpI _
kA (chG'G"'1 chES) =1 (43b)

and A = diag{Ap,C). In our example Ap is a “full” 2 x 2 matrix, and C is a
diagonal 2 X 2 matrix. c¢yp is shown graphically in Fig. 5 and it is seen to be
larger than |lwp|~! at low frequency. Consequently, the performance of the overall
system (S) may be better than that of the individual loops (§; and §;), that is, the

interactions may improve the performance.

Robust Performance (RP)

~

Bound on 6(H)). The bound éy on &(H) is given by Eq. (34) and is shown

graphically in Fig. 6. (x of the matrix in (34b) is computed with respect to the
structure A = diag{Ar,Ap,C}, where A; is a diagonal 2 x 2 matrix, Ap is a
full 2 X 2 matrix and C is a diagonal 2 x 2 matrix). It is clearly not possible to
satisfy the bound 6(1::' ) < €m at all frequencies. In particular, we find ég < 0
for w < 0.03 min~!. The reason is that the performance-weight lwp| > 1 in this
frequency range, which means that feedback is required (i.e., H =0isnot possible,
see Remark 3 in Section 4).

Bound on &($ ). The bound és on 6(5’ ) is given by Eq. (35) and is shown graphically

in Fig. 7 (u is computed with respect to the same structure as above). Again it is
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not possible to satisfy this bound at all frequencies. In particular, we find ¢g < 0 for
w > 2 min~1. The reason is that the uncertainty weight |w;| > 1 in this frequency

range, which means that perfect control (S = 0) is not allowed.

Combining bounds on &(H) and &(S). The bound on &(S) is easily satisfied at low

frequencies, and the bound on &(H ) is easily satisfied at high frequencies. The
difficulty is to find a S = I — H which satisfy either one of the conditions in the
frequency range from 0.1 to 1 min~!. The following design is seen to do the job

(Fig. 8).
1 7.5s

 , §y=8,= 44
T5s + 1 1= 2= res 1 (44)

The bound on |5, ] is satisfied for w < 0.3 min~1, and the bound on |k;]| is satisfied

hy=hs =

for w > 0.23 min~!. (44) corresponds to the following controller

1+ 75s) [ ==L
C = k( + 75s) (0,878 _01 ) , k=0.133 (45)
s 0 0.014

Because the bounds ¢y and ¢ég are almost flat in the cross-over region, the result
is fairly insensitive to the particular choice of controller gain; it turns out that
0.06 < k < 0.25 yields a design which satisfies at each frequency 6(5’) < €ég or
6(H) < ég and thus has RP. The controller (45) obviously yields an overall system
which satisfies the robust performance condition, that is, u{M) is less than one.
This is also seen from Fig. 9 which shows u(M) (M is given by (21b)) as a function
of frequency. We find urp = *,Pu(M) = 0.63 < 1 and RP is guaranteed. The fact

that urp is so much smaller than one, demonstrates some of the conservativeness

of conditions (34) and (35) (which are only sufficient for RP).

6. CONCLUSION

This paper solves the problem of robust performance using independent designs
as introduced in the Introduction. The example illustrates that this design approach
may be useful for designing decentralized controllers.

The main limitation of the approach stems from the initial assumption regard-

ing independent designs: Since each loop is designed separately, we cannot make
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Fig. 8 RP is guaranteed since |§;| < és for w < 0.3 min~! and |h;| < &g for w >
0.23 min~L. h; = 1/1 + 7.5s.
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Fig. 9 u(M) as a function of frequency. RP is guaranteed since u(M) < 1 at all

frequencies.
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use of information about the controllers used in the other loops. The consequence is
that the bounds on &(S) and &(H) are only sufficient for robust performance; there
will exist decentralized controllers which violate the bounds on 6(5' ) and a(ﬁ ), but
which satisfy the robust performance condition. However, the derived bounds on
6(5‘) and E(sz ) are the tightest norm bounds possible, in the sense that in such
cases there will exist another controller with the same values of &(H) and &(3)
which does not yield robust performance.

The bounds on &(H) and &(S) tend to be most conservative in the frequency

~ -~

range around crossover where (H) and &(S) are both close to one. If, for a
particular case, it is not possible to satisfy either 6(1'-1 ) < éy or 6(5’ ) < €s in this
frequency range, then try the following: Design a controller for which the frequency
range where both bounds are violated is as small as possible. Since the bounds
are only sufficient for RP, this may still yield an acceptable design with robust
performance. This may be checked using the tight RP-condition u(M) < 1 (5).
Another potential source of conservativeness is the inherent assumption of sim-
ilar or equal bandwidths in all loops which is made when the same bounds on |&;|
and |3;| are used for all loops. This limitation may be partially eliminated by includ-

ing matrix valued weights on Hand § (see Grosdidier and Morari, 1986). However,

it is not obvious how these weights should be chosen apriori.
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APPENDIX.

Definition of the Structured Singular Value p. Let M be a square
complex matrix. u(M) is defined such that p~!(M) is equal to the smallest 7(A)
needed to make (I + AM) singular, i.e.,

pYM) = Ir%in{6[det(I+ AM) = 0 for some A,5(A) < 6} (A1)

(If M is a transfer matrix this definition applies frequency-by- frequency). A is a

block-diagonal perturbation matrix with a given structure

Ay
A= , 5(A) <6, Vi
A,

A is allowed to be any complex matrix satisfying (A) < 6. (It turns out that A
may be restricted to being unitary without changing u(M) (Doyle, 1982)). u(M)
depends on both the matrix M and the structure of the perturbations A. This is

sometimes shown explicitly by using the notation u(M) = pa(M). An equivalent

statement of (A1) which is more useful for our purposes is the following:
det(I + AM) #0 , VA(5(A) <$é)
& p(AM) <1 , VA(s(A) < $) (A2)
S ua(M)<1/6

The reader is referred to Doyle (1982) for further properties and computational

aspects of u.

Theorem 1. Let M be written as a LFT of T':
M = Ny + NyoT(I — NooT) ™ *Nay (A3)
and let k be a given constant. Assume ua(Ny1) < k and det(I — NooT) # 0. Then
pa(M) <k (A4)

if .
o(T) < er : (45)

where ¢t solves

| Nu Ni2 _
HA [chNzl chsz] =k (A6)
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and A = diag{A,T}.
Proof. The theorem follows directly from the definition of u (A2) after some
algebra: Assume that T is defined such that &(T) < er. Then at each frequency

the following holds
pa(M) <k(w), VT (6(T)<er)

o det(I+AM)#0, VA (5(A) <1/k), VT (47)
o det[Isz']\V]i“ If‘;f;gzz] £0 VA, VT (48)
& det(I+[k(')A _%T] [célx;;l fr]]f;;]);éo VA, VT
< Ha [c-%‘]]\\r;zll Ciz-'];\rflzzz] =1

| Nu Ny2

< Fa [kCTNzl kCTNgg} '<" k(w)

The step from (A7) to (A8) follows M = Ny + Njz(I — TNap) “!T N,y and Schurs
formula

det(A~ BD™!C) = det [é g] /detD (A9)

and the assumption detD = det(I — TNa3) # 0
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Chapter VIII

A SYSTEMATIC APPROACH
TO DISTILLATION COLUMN CONTROL
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Abstract

This paper presents a systematic approach to distillation column control. The
main emphasis is on the steps which precede the actual controller design, namely
the modelling of the column and the selection of the control configuration. By
control configuration in this context we mean the two independent variable used
for composition control (for example, L and V,D and V, or % and %) The steps
preceding the controller design are generally the most important, yet, they are not
usually discussed in any detail in the academic literature. The goal of this paper is

to fill in this a,pparent gap.
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1. INTRODUCTION

Distillation columns constitute a major part of most chemical processing plants.
The objective of a distillation column is to split the feed into two (or more) products
with compositions different from that of the feed. The desired composition of the
products may be fixed by product requirements or may result from some plantwide
optimization. An important objective of the control system should be to keep
these product compositions at their desired level. In practice, very few industrial
columns maintain “dual” composition control, and it is still common to find that
both compositions are controlled manually. Reports from industry indicate energy
savings of 10-30% (Stanley and McAvoy, 1985) if dual composition control is used
instead of applying manual control which usually results in overpurification or loss
of valuable product. Also, a recent survey among plant managers (Dartt, 1985)
cites distillation as the unit operation which could benefit most significantly from

improved control.

A main reason for why dual composition control is not widely applied in in-
dustry is the stability problem often encountered when the controllers are tuned
in order to get a reasonably fast response. In particular, high-purity columns tend
to be difficult to control. Ironically, columns with low-purity products, which are
simple to control, are the ones usually studied experimentally in university labo-
ratories. Another reason for the infrequent use of dual composition control is the
lack of systematic guidelines in the literature on how to design control systems for

distillation columns.

In distillation control the gap between the industrial and the academic camp
is clearly evident from the literature. The industrial camp argues from experience.
On one side hardly anybody is willing to challenge the recommendations and con-
clusions. On the other side, there are few who claim to understand the reasoning

and the explanations. Take for example the loop pairing recommendations based
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Fig. 1. Distillation column with 5 manipulated inputs (L,V, D, B and Vr) and 5 con-

trolled outputs (yp,zp, Mp, Mp and p).
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on the Relative Gain Array (RGA). From the industrial literature (Shinskey, 1984)
one is led to believe that the RGA is just an interaction measure indicating the
difficulties one can expect when tuning single loops for a multivariable system. But
if this is true then the RGA recommendations regarding variable selection for dis-
tillation control would be arcane today, when the implementation of multivariable
control systems is quite straightforward. Practical evidence suggests, however, that
the RGA evaluation is very useful even for the design of multivariable control sys-
tems. Thus, while the RGA has proven to be a very useful tool for categorizing
experience, it has not helped to explain the observed phenomena.

This paper is aimed at filling the apparent gap and to present a systematic
approach to distillation column control. How should we go about designing a control
system for a distillation column? Three separate steps are involved:

1. Modelling the column.

2. Choice of the control configuration.

3. Controller design/implementation.
This paper is aimed at discussing Step 1 and 2 which should precede the controller
design. In fact, the controller design itself is probably the least important step in
spite of the attention it is given in the literature. Let us consider Step 2. Most
two-product distillation columns may be described as a 5 x 5 plant (Fig. 1). The
five controlled variables are

e Vapor Holdup (M) (expressed by the pressure p).

Liquid holdup in accumulator (condenser) (Mp).

Liquid holdup in column base (reboiler) (Mg).

Distillate product composition (yp).

e Bottom product composition (zg).
The five manipulated inputs are (corresponding to the available valves)

e Distillate flow (D)
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Bottom flow (B)
e Reflux (L)

Boilup (V) (manipulated indirectly through the reboiler duty)

Overhead vapor flow (Vr) (manipulated indirectly through the condenser duty)

In theory we could imagine designing the “optimal” 5 x 5 controller for the
column. While this would certainly be of theoretical interest, it is very unlikely
that such a controller would ever be implemented in practice. In order to make the
control system failure tolerant and easier to understand and tune, simpler control
structures are used. More specifically, we will not use all the five flows L,V, D, B and
Vi for composition control, but only two independent combinations. The overall
control system will then consist of a 2 x 2 controller (denoted by K) for composition
control plus a control system for level and pressure control. This simplification does
not necessarily lead to a serious degradation in achievable performance since the
pressure and level loops often are so fast that they effectively give three static
relationships between the five manipulated inputs (L,V,Vr, D and B) which have
to be satisfied at any given time. This implies that there are only two degrees of

freedom left for composition control.

Step 2 therefore involves answering the following question: Which two inde-
pendent variables should be “manipulated” for composition control? We have put
“manipulated” in quotes, because we are going to define new “manipulated” vari-
ables different from the real ones (which are the valve positions). In fact, we have
already implicitly redefined the manipulated variables by assuming that we actually
can manipulate the flows L,V,Vr and B directly instead of their valve positions. In
practice, for L, D and B this may be implemented by measuring the actual flow rate
and using a fast inner loop to adjust this measured rate to match the desired flow.
By this we also remove the nonlinear relationship between the valve position and

the flow rate. It is usually not possible to measure V and Vr and these flows must
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be estimated in some other way, for example, by enthalpy balance calculations.

There is clearly an infinite number of relationships between L,V,Vr,D and B
which can be defined as new “manipulated” variables. Of these we will only consider
the flows themselves and ratios between the flows. A further simplification results
because the condenser duty (i.e., Vr) is almost never used for controlling composi-
tion (Shinskey, 1984). The problem of dual composition control is then reduced to
controlling the compositions yp and zp using two independent combinations of the
inputs L,V,D and B. Each choice of manipulated inputs corresponds to a specific
control configuration. For example, the choice of L and V for composition control
is referred to as the LV-configuration.

This paper summarizes work done by the authors for the last two years, and

more detailed information are found in [1-7].

2. MODELLING THE COLUMN

A distillation column is strongly nonlinear, but for control design we will de-

scribe it by a linear model. This model should reflect the issues most important for

control purposes:
o RHP-zeros (time delays, inverse responses) (Holt and Morari, 1985).
o Ill-conditioning (large RGA-elements) (Skogestad and Morari, 1986b).

The flow dynamics are the main source of RHP-zeros. High-purity columns are
known to be ill-conditioned at steady-state (Skogestad and Morari, 1986a). How-
ever, for control purposes the steady-state is not as important as the behavior
around cross-over (the frequency equal to the inverse of the closed-loop time con-
stant). For most columns the condition number (v(G)) is smaller at higher frequen-
cies. Still, since the steady-state behavior generally reflects what happens at higher
frequency, a good steady-state model is very useful.

It turns out that large RGA-elements, rather than a large value of v(G), implies

control problems (Skogestad and Morari, 1986b). It also turns out that the sum of
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the absolute values in the RGA (||RGA||; = 3_ Aij) (which is independent of scaling)
is very close in magnitude to the value of v(G) obtained when it is minimized over
all input and output scalings . Therefore, ||RGA||1 will be used as a measure of
ill-conditionedness rather than 4(G). Shinskey (1984) uses the steady-state RGA-
elements as the main source of information for choosing the control configuration.

2.1 Steady-State Behavior

The linearized-steady state behavior is compactly written in terms of the

steady-state gain matrix (G)

a a
<dyD) = Guju, (dUI) 1y Guyuy = I: gﬁ%)uz ('g%g')u1] (1)
dzp duz ('5:2:')1&2 (a_fg')tu

Here u; and u, are the manipulated variables chosen for composition control. We
will derive expression for estimating G,,,., and show that the steady-state matrices

for various configurations are closely related. For example, we can always write
Guyu, =Grv M (2)

The matrix M usually does not change much with operating conditions (while Gy
and G,,,, may change a lot). Two quantities which are easy to compute from the

gain matrix are the condition number

1(G) = 5(G)/e(G) (3)

and the RGA (x denotes element-by-element multiplication)

1
Ty (4)
g11922

RGA = {Aij} =G X (G—I)T, (2 X 2) AL =

2.1.1 Obtaining the Gain Matrix

Three alternative ways to find Gy, u, are
1. Experimentally (not recommended) or numerically.

2. Using analytic expressions.
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3. From the gain matrix for another configuration (Eq. (2)).
Plant data may be used to adjust the number of theoretical trays in the simulation
model, but we do not recommend using them for obtaining the gains. Simulation is
generally the preferred approach. However, in this paper the goal is to obtain insight
into how the gains vary by deriving simple analytical expressions. In particular, it
is easy to derive simple consistency-relationships which may be used to correct data

obtained by Method 1.
2.1.2 Internal and External Flows

The key to understanding the steady-state behavior of distillation columns is to
understand the diﬁ'efence between external flows (products B and D) and internal
flows (“reflux”, L and V) and how they affect composition (Rosenbrock, 1962).
Changing the external flows will usually have a large effect on the product compo-
sitions and both compositions will change in the same “direction”. For example,
an increase in B will make both products richer in the light component. This cor-
responds to making one product purer and the other product less pure. On the
other hand, if the external flows are fixed, and only the internal flows L and V are
changed, the effect on the compositions is much smaller and the compositions will

change in opposite directions.

This results in an inherently ill-conditioned plant. By ill- conditioned we mean
that the gain of the plant is strongly dependent on the input direction: A change
in external flows gives a large change in product compositions; a similar change in
internal flows usually has little effect on compositions. In particular, this is the
case for columns with both products of high purity. As an illustration consider the
column in Table 1 with zz = 0.5,yp = 0.99,zp = 0.01 and D = B = 0.5 kmol/min.
Assume the distillate flow D is increased by 5% to 0.525 kmol/min. Since there is
only 0.5 kmol/min of light component in the feed at least 0.025 kmol/min of this

has to be heavy component. The best attainable value for the top composition,
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Binary separation, constant molar flows, feed liquid

Relative volatility a=1.5

No. of theoretical trays N =50

Feed tray location Np =21

Feed rate and composition F =1 kmol/min, zr =0.5
Product compositions yp = 0.99, zp = 0.01

Product rates D = B = 0.5 kmol/min

Reflux rate L = 2.71 kmol/min (1.39L,,;,)

Table 1. Data for distillation column A.
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even with total reflux, is then yp = 0.5/0.525 = 0.952. This is far from the desired
yp = 0.99.

More generally, the effect of the external flows on the product compositions is
found using

D_zF——:l:B (5)

B yp—zr

This exact expression can be derived from an overall material balance for the light
component. For high-purity columns we find by differentiating (5) that the relative

changes in yp and zp are extremely sensitive to changes in D/B.

High-purity distillation columns are always sensitive to changes in the external
flows, and we can only to a limited degree be made less ill-conditioned by changing
the manipulated variables for composition control. However, ill-conditioned plants
are not necessarily difficult to control. For example, it can be shown that diagonal
input uncertainty gives performance problems only when the elements in the RGA
are large (Skogestad and Morari, 1986b). All plants with large RGA-elements are
ill-conditioned, but there exist ill-conditioned plants for which the elements in the
RGA are small (for example, the DV-configuration) and which are not sensitive to

diagonal input uncertainty (see Section 3).

Example. SVD-Analysis of LV-Configuration

The purpose of this example is to show mathematically why high-purity distil-
lation columns are ill-conditioned. Consider the distillation column in Table 1. For
the LV-configuration we derive the steady-state gain matrix (Skogestad and Morari,
1986a)

Gov = [0.878 —0.864]
1.082 —1.096
The condition number is 7(GLyv) = 141.7 and the 1-1-element of the RGA is A;; =

35.1. This shows a high degree of “directionality” in the plant. More specific
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information is obtained from a SVD of G:

a(G)
G=UzVv¥ | T= (6)
(G)
Equivalently
Gr=5(G)1, Gu=o(G)u 1)
9(uv): Most (least) effective input direction.
Z(u): Most (least) easily affected output direction.
We find
Ayp\ _ (0625 0781 \ (1972 0 0707 0.708\ " [ AL
Azg /) \0.781 -0.625 0 0.0139 —0.707 0.707 AV

7] u 4 g

@

v
The large plant gain, 5(G) = 1.972, is obtained when the inputs are in the direction
ALY\ __ [ 0707 Since
AV ) =V T\ -o0708 )
AB =—-AD=AL—- AV (8)

this physically corresponds to the direction with the largest change in the external
flows, D and B. From the direction of the output vector @ we see that the effect of
the input ¥ is to increase both compositions.

The low plant gain, ¢(G) = 0.0139, is obtained for inputs (AL) =y =

AV =
0.708
0.707

only (while keeping B and D nearly constant). The effect (u) is to increase yp and

). From (8) we see that this corresponds to increasing the internal flows

decrease zp (i.e., make both products purer). As we would expect such a change
takes a large control action (large increase in internal flows).

2.1.3. The Separation Factor S

In order to gain insight we need simple analytical expressions for the gain

matrix which capture the essential part of the behavior. Changes in the external
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flows lead to large changes in the compositions, and it would be useful to find a
function of the compositions which does not change very much in such cases. With
such a function in hand we would be able to derive the main effect of the external
flows on the compositions without having to know further details about the column.

The separation factor (S) turns out to be such a function.

_yp(l—=zp)
5= (1-yp)zs (©)

S usually does not change much with operating conditions. For S constant we

derive

d(1 —vp) 4z = constan
yp(l—yp) =zp(l—=zp) 0 (Sconstant) (10)

Since yp and 1 — zp are close to 1, this means that the relative change of impurities
in the top (1 — yp) and bottom (zp) of the column will be nearly equal, but with
different signs. Another advantage of using S is that simple shortcut models may
often be expressed in terms of S. For constant relative volatility and infinite reflux

Fenske’s exact relationship applies
S=aV (11)

For finite reflux the following approximation is useful [4]

_ N(EZ/V)FT
=aV (L/V)%B (12)

where subscripts T and B denote the top and bottom of the column. This model
gives a good description of how S changes with internal flows, but describes poorly
the effect of changes in the external material balance [4]. Fortunately, it turns out
that this is of less importance if the model for S is used to obtain estimates for the
steady-state gains.

2.1.4. Simple Gain Expressions

The total material balance for light component is

Fzp = Dyp + Bzg (13)
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Let ¢ represent any manipulated input or disturbance. Differentiating (13) with

respect to ¢ gives

ayD azB _
DW + B ag = eg . (14)
where
éD z oF
e = _(yD_zB)-5-§-+F5§+(zF—zB)5: (15)

Note that the value of ag_;, depends heavily on the particular choice of manipulated
variables (u; and ug). Sometimes this is shown explicitly by writing, for example,
(22), .. Analytic expressions for the gains are found by combining (14) and (9).

Juy

We find for binary mixtures

1 dyp 1 alnS
= —(e. + Bzg(l—=z 16a
(1-yp)yp d¢ Ia( ¢ 5 2) o¢ ) (16a)
1 8.’1313 1 ainS
(1 . zB)zB as. Ia (e*f yD( yD) as. ) (16b)
where the ”impurity sum” is defined as
Is =Bx3(1—zB)+DyD(1—-yD) (17)

For high-purity separations I, ~ Bzg + D(1 — yp). Except for the assumptions
about binary mixture and two-product column, these expressions are exact and
express in a compact form the major contributions to the steady-state gains. The
important point is that the first term in (16a) and (16b) involving e, is often dom-
inating (unless e, is identically zero). Furthermore, this “material balance” term
can be evaluated exactly from the product compositions if constant molar flows are
assumed. Other interesting insight may also be obtained from these expressions [2].

2.1.5. Consistency Relationships

One important consequence of (14) is that it provides an exact consistency

relationship between the column elements for any steady-state gain matrix.

3yD 6:1:3 _ 3D
D('éu_l)uz (aul )uz - (yD - xB)(aul )uz (18)
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(F and zfp are not influenced by changes in u; or us). The only assumption used
when deriving (18) is that the column has two products such that dD = —dB. For

the case of constant molar flows we derive

. Dg11 + Bgoy = (yp — zB)
LV — configuration :
& { Dgy2 + Bgszs = —(yp — zB)

Dgy1 + Bga1 =0

DV — configuration : { Dgi + Bgas = —(yp — )

Here Gu,u, = {gi;}. These relationships should be used to check the gain matrix.
2.1.6. The Matrix M

At steady state the following relationships must be satisfied
dD =dV —dL (19)
dB = —dD (20)

(19) applies for constant molar flows, but more general expressions are easily derived
[2]. (20) implies that D and —B as a manipulated variable always gives the same
steady-state gains. Given the gain matrix Gry for the LV-configuration, we find
Gu,u, (Eq. (1)) by using the following coordinate transformation
(@)-e(t) - @ e
av duz ) (F)u: (B7)w

For any particular choice of u; and ua, M is easily derived using (19) and (20).
Some examples are given in Table 3.

2.1.7. Estimates of the RGA and Condition Number

Using the gains derived in 2.1.4 the following approximation is derived for the

condition number for the LD- and DV-configuration for high- purity separations:

8 8 ~ 2 1
V(CGov) =(CGlp) ¥ g pa =0y Gins/L)p

(22)

G* is the scaled gain matrix

Q= (1/1; D 1/(:)::"3) G (23)
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Uy uj M
1 0
v s 9]
1 0
L D(-B) [1 1]
-1 0
D(—-B) 4 { 1 1]
-1+% B
RGN et
D L/D
L/D %4 [ 1+8/D 1+1i/D ]

D(1+ %) BL }
DY  B(1+%)

Table 3. Matrix M for some choices of manipulated inputs (u; and uz). Gy u, =

Grv M. Constant molar flows assumed.
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This corresponds to using dyp/1 — y%, and dzp/z% as outputs. This scaling gives

outputs of comparable magnitude. In general, the gain matrix should always be
scaled. Reasonably good estimates of (8InSAL)p may be obtained from the short-

cut model (12). For other configurations we find
7(Giv) = 27(Gip) (24)

1
G* e >l (€5, 25
ol %%) 1+%+%( v) (25)
Note from (22)-(25) that the condition number is always large whenever

both products are pure such that Bxp + D(1 — yp) is small. However, note that

the value can be significantly reduced for the %%-conﬁguration. Similarly, we can

derive expressions for the 1-1-element in the RGA (which is scaling invariant).

1

A11(Grp) # 1= Au(Gpv) = 11 Di=uo) (26)

Bzgp

1 1 ,
A (CGrv) ~ Bzp + D(1—yp) (BInS/dL)p 7(Ciy) (27)
A1(Grv)

A11(G N —— ° 28
11( %Jg) 1+%+% ol 15%) (28)

A11 for the LD- and DV-configuration is always less than one. A;; for the LV-
configuration is large if both products are of high purity. A;; for the %%-
configuration may be significantly smaller if the reflux is large.

2.2. Dynamic Behavior

The external and internal flows often have drastically different effects on the
steady-state behavior, and it is not surprising that they also in such cases give
very different dynamic responses. The time constant for changes in the external
flows (the dominant time constant, 7) is generally significantly larger than the
time constant for changes in the internal flows (r2). In particular, this is the case
for columns with both products of about equal purity. The response to changes

in internal flows is therefore faster than the response to changes in the external
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flows. The consequence is that the condition number of the plant (v(G)) is often
much lower at high frequencies than at steady-state, and the column may not be as
difficult to control as we may expect from studying the steady-state alone. It also
turns out, that while the steady-state gains and steady-state condition number may
change considerably with operating conditions, the behavior at higher frequencies
(“initial response”) does not change very much - at least if scaled gains (Eq. (23))

are used [6]. This means that a linear controller may give satisfactory control.

Below, we will first discuss simple methods for estimating the dominant time
constant (7;) and then present a simple model which explicitly takes the difference

between internal and external flows into account.
2.2.1. The Dominant Time Constant

The dynamics of most distillation columns are dominated by one large time
constant, which is nearly the same, regardless of where a disturbance is introduced
or where composition is measured. This is well known both from plant measure-
ments (McNeill and Sachs, 1969) and from theoretical studies (Moczek et al., 1963).
Because of the nonlinearity the numerical value of this time constant often varies
drastically with operating conditions (Fig. 2). Viewed on the basis of the large
number of nonlinear differential equations, the simple low order responses observed
for most columns is somewhat surprising. Levy et al. (1969) showed that the dom-
inant slowest model primarily involves composition effects and is nearly unaffected
by flow dynamics. This leads to the conclusion that the dominating dynamics can

be captured by considering the composition dynamics only.

The simplest approach is to consider the total holdup of each component in the
column. By assuming that all trays have the same response, this directly leads to a
first order model, and the dominating time constant can be estimated. Moczek et

al. (1963) used this idea to introduce the “inventory time constant” for a column
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1 12 13
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xB » (1 - YD)

Fig. 2. Typical plot of linearized time constant as a function of product composition

(Plot derived by varying feed composition (zr) with all flows fixed). See [5].

going from one steady state (subscript 0) to another (subscript f)

A(d- M;z;) _ AR Miz;)
A(Fzp) — ypoAD —zp0AB ~ D;Ayp + ByAzp

Te = (29)

Here A represents the change, for example, AD = D;—D,. A simple interpretation

of (29) is
“change in holdup of one component (mol)”
~ “imbalance in supply of this component (mol/s)"

In spite of the excellent agreement often found between 7, (29) and 7, from the
actual response (Moczek et al., 1963) this expression does not seem to have found
widespread use.

Very large time constants are found for small perturbations to columns with
both products of high purity. The reason is that the compositions inside the col-
umn may change significantly (large change in component holdup, Y M;z;), while
the product compositions may almost be unchanged (resulting in a small value of

DAyp + BAzg). Note that (29) does not apply to changes in the internal flows



- 239 -
because the denominator is zero in this case.
7. may be evaluated easily (and accurately) using a steady-state simulation
program if the total holdup (M;) on each stage is known. (Two simulations are
needed). However, to gain insight, the following analytical expression, which is

based on (29), S constant, and a linearized plant is useful:

Te = Tel + TeD + TeB (300')
M; Mp(1—yp) Mpzp
Tel & Ting> TP~ — 1 > TR I, (300)

Here M; = )" M; is the total holdup tnside the column and Mp and My are the
condenser and reboiler holdups (in kmol). I, is defined in (17). The time constant
given by (30) is for the linearized plant and may therefore be misleading for large

pertubations. For the special case of equal purities (zg = 1 — yp) we find

Ty & MI/F +MD+MB
szDlnS F F

(31)

(32) clearly shows that the contribution 7.; from the holdup inside the column

dominates for columns with both products of high purity.

The estimate (30) is excellent for columns with high reflux and large values of

A11(Grv). However, the main value of (30) is the insight it gives into the dynamic
behavior: Since InS usually does not change much with operating conditions, the
value of 7.y is mainly determined by I,, which again is determined by the compo-

sition of the least pure product:

I ~ D(1 —yp) if distillate least pure
*™ | Bzg if bottoms least pure

(31)
7.1 reaches its maximum value approximately when both products have equal purity
(Fig. 2). Case studies using linearized models and assuming equal purities are often

presented in the academic literature, and the reported values for the time constants

are therefore often misleading. For example, this assumption is used by Wahl and
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Harriot (1971); the figures they present for estimating time constants are therefore
of very limited value. In practice, for such columns, any disturbance or input to the
column will take the column to a new steady state where one of the products is less
pure, and the actual time constant will be smaller than found by linear analysis.
Example. The column in Table 1 has zg = 1 — yp = 0.01, InS = 9.19 and
I, = zpyp = 0.0099. With M;/F = Mp/F = Mg /F = 0.5 min we get from (30)

39 0.5

=279 0.540.5 = 215mi
Te= 000009010 T 0T min

Assume there is a change in operating conditions (D/F changes from 0.5 to 0.555)
such that zp = 0.1 and 1—yp = 0.002 (column C in Table 2). Then InS = 8.51 is

almost unchanged but I, = 0.0510 increases about five times. We find:

39 0.5

= 20 | 0.08 4+ 0.02 = 46mi
Te= oos18s5r 0BT min

Thus, the nominal value of the time constant (215 min) holds only for very small

perturbations from the nominal steady-state.

Column: D/F yp =zp L/F X1:1(0) 7.(Eq.(30))

A 0.500 0.99 0.01 2.706 35.1 215min
C 0.555 0.90 0.02 2.737 7.53 46min

Table 2. Effect of change in operating conditions. Other column data as in Table 1.
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2.2.2. Simplified Dynamic Model

The reflux (L) and boilup (V) are the only flows which immediate affect the
product compositions. The effect of the product flows (D and B) depends heavily on
how the level loops are tuned. In order to avoid this dependency on the level loops,
we prefer to write the dynamic distillation model in terms of L and V. However, to
model explicitly the difference in dynamic behavior between internal and external
flows, we will first neglect the effect of low dynamics and level loops.

Let {g;;} denote the elements of GLy. Then at steady state we have

dyp g1 912 dL)
- 33
(dIUB) (921 922) (dV (33)

Written in terms of D and V as manipulated variables (assuming constant molar

(dyp) _ <911 912) <dV—dD) _ (911 + 912 —gu) (dV)
dzp g21 922 av g21 +g22 —g21 aD

Next, assume that the effect of changes in external flows (D) is given by a first-order

flows):

response with time constant 7;, and the effect of changes in internal flows (change

V keeping D constant) has time constant 7. Then

(dyD) _ (911 + 912 -'911) (dV/(1+T28)> (34)
dzp 921 + 922 —g21 dD/(1+ 718)
Switching back to L and V as manipulated input (still assuming immediate flow

responses such that dD = dV — dL):

gi1 gi11 + gi2 gi1
dyp = dL - dv- 35
Yo 1+ 718 T+(1+T25 1+T18) T (359)
drp = 92 41+ (921 tg22 g1 )dV (350)

1+ 78 B 1+ 738 1+7s
Here we have also introduced the “local” flows of L and V in order to take into

account the effect of the flow dynamics. dLr = dL is the actual manipulated reflux
and dVp = dV is the actual manipulated boilup. We have (Rademaker et al., 1975)

dLr ~ dL (36a)
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dVr =~ dVp ~ dV (assuming immediate pressure control) (36b)
dLp ~ e %% *dL + (1 — X + Ae™%2%)aV (36¢)
Here
A= (8L;/dV) m, (37a)
0r, = NivaysTr, 7L = (OM;/0L;)v (37b)

A typical value for 6y, is 1. X is difficult to estimate. If A > 0.5, then zp will
show an inverse response for an increase in the boilup (V).
71 is generally close to the time constant corresponding to the smallest eigen-

value, or may be approximated by 7. as outlined in 2.2.1 . 75 may be estimated by

matching the RGA-values at high frequency [6]. We find

7o L g2 g2 gi2
2o (FE 2y (14 22 38
. Flgn 921) ( 9'11) (38)

72 may also be obtained from simulations (without flow dynamics) of changes in
the internal flows. In most cases it will be very difficult to obtain 75 using plant
data, since it is almost impossible, in practice, to avoid changes in the external flows
(because of disturbance in feed rate, boilup, etc.).

Example. Consider again the column in Table 1. Neglecting flow dynamics (i.e.,
assume constant holdup (M;) on all stages) results in a dynamic model with 41
states. The effect of a small change in external and internal flows is shown in Fig. 3
for the case with M;/F = 0.5 min, on all stages (including reboiler and condenser).
The responses are almost identical to those found using the simple linear model
(35) with 71 = 194 min and 7, = 15 min (The estimates found using (30) and (38)

are 71 = 215 min and 7, = 18 min):

1412.1s8
dyp ) _ 1 0.878 —0.864—11:;;5— dL (39)
dzp 1+ 194s \ 1.082 —1.096113-1115 dv

In Fig. 4 ||RGA||1 is plotted as a function of frequency. The condition number
(7(G)) is not shown, but its value is almost identical to ||RGA|1 [7]. The RGA-

elements are large at low frequency (A;; = 35 at steady-state), but much smaller
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Fig. 3. Column A. Responses to small change in external (A) and internal (B) flows.

Dotted lines: Approximation with simplified model (39).
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Fig. 4. ||[RGA||; as a function of frequency. Dotted line: Approximation for column

A with model (39). (M;/F = 0.5 min)



- 244 -

at high frequency (JA11]| ~ 3.5 at w = 0.1). The simple model (39) captures this
behavior very well. The column is therefore not as difficult to control as might be

expected from the steady-state data.

: : 1412.1 1+17.3
Note that without the “correction terms” E:%:2* and —;';1—5: the plant (39)
would have the same condition number (and RGA) at all frequencies. Each transfer
matrix element is often appreciated by a first-order lag with time delay (ke=% /1 +

78). It is clear that unless special care is taken, it is extremely unlikely that this

model will capture the change in condition number with frequency.

We know that the time constant of 194 min used in (39) only holds
for small perturbations from the nominal steady-state. Similarly, the steady-
state gains vary a lot with operating conditions. However, it turns out that
the column behavior at higher fréquencies (“initial response”) changes much
less. This is illustrated by the plots of |RGA|; for columns A and C in
Fig. 4. Since the model (39) correctly predicts the behavior at high fre-
quency it is useful also for large pertubations from the nominal steady state [6,7].

3. CHOICE OF CONTROL CONFIGURATION

The most important step when designing a composition control system is prob-
ably to choose which two independent combinations of L,V,D and B to use for

composition control.

3.1. L,V,D and B as Manipulated Inputs

Let us first consider only the flows L,V, D and B themselves. There are (;) =6
independent pair-combinations. However, only five of these are possible since D
and B cannot be used together for composition control, because of the steady state
material balance constraint D + B = F. Having chosen one of the remaining five
pairs (LV, LD, LB, DV,V B), the control structure for the level loops usually follows
easily.

Example. LV-Configuration. Assume L and V have been chosen for composition
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control.* The condenser level may be controlled by D, pressure by Vr and the

reboiler level by B resulting in the following control structure:

dL 0 0 0 dyD
dv K 0 0 0 dzp
dD 00 Cp (s) 0 0 dMD
dB 00 0 cp(s) 0 dMpg
dVr 00 0 0 cy (S) dMy

3.2. Ratios between L,V,D and B as Manipulated Inputs

Of the possible nonlinear relationships possible between L,V, D and B we will
only consider ratios. These seem to be the only nonlinear combinations used in

practice (Shinskey, 1984). The total number of indpendent ratios is six. They are

VDB D BE™E

Including the four flows themselves this results in (120) = 45 independent pairs of
“manipulated” variables. Again, combinations of D, B, and % cannot be \used for
composition control. This eliminates three of these options, but still leave us with
42 possible combinations.

If we look at the actual implementation there are even more than 42 options.
Since the true manipulated varialbes are always L, V, D and B, we have to determine
how L/V, for example, is implemented as a “manipulated” variable. To increase
L/V we may either increase L, decrease V or change both at the same time. If the
flow dynamics and level controls were immediate, these different implementations
would not affect the composition response, but, because they are not it does make
a difference. We adopt the following convention: Writing the ratio between L and
V as # means that L is manipuated to change -‘1,4, and writing % means that V is
manipulated to change the ratio.

Ratio control systems have been used in the industry for at least forty years

(Rademaker et al. (1975), p. 445). Yet, almost no discussion is found in the liter-

ature on why such schemes may be beneficial. The simplest justification for using

* This is the configuration most commonly used (Rademaker et al., 1975)
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ratios as inputs follows from steady-state considerations: To keep the compositions
constant, the ratio TI,’- inside the column (slope of the operating line on the McCabe-
Thiele diagram) should be constant. Intuitively, it seems that some disturbances
may be counteracted by keeping this ratio constant. However, these arguments do
not explain what happens when ratios are used for closed-loop control of compo-
sitions. Furthermore, the effect of using a given ratio depends entirely on which
second manipulated variable is chosen for composition control.

Nonlinear Implementation. Clearly, using ratios as “manipulated” variables is a

way of introducing a simple nonlinear control scheme. For example, the nonlinear
implementation of L/D as a manipulated variable is (using the convention intro-

duced above)

L= [5} D (40)

The corresponding linear implementation is

L L
=Dd|—= —
dL [D] + DdD (41)
or equivalently
. [L Lo N
L = Lo+ DgA I_D + DOAD (42)

where we have used subscript O to denote the nominal values explicitly. The dif-
ference between (40) and (42) is important only if D and L/D change significantly
with operating conditions. Because this is usually not the case there are only mi-
nor differences between the linear and nonlinear implementation. We would like
to understand what kind of linear control system the ratio schemes correspond to.
(Surprisingly, the results presented here on the linear interpretation of the ratio
schemes seem to be new). To this end consider the following example.

Exampe. %%—-Conﬁguration. The —1% %-conﬁguration is claimed by Shiilskey (1984)

to be applicable over the broadest range of cases and also Rademaker et al. (1985,

p. 463) recommend this scheme. According to the convention introduced above dL
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and dV are manipulated to change the ratios L/D and V/B. Linear analysis gives

L} L
dL = Dd | —= —dD :
[D_ + D (43)
Vvl Vv
dV =Bd|—= —dB
[B_ + B

Consequently, dL and dV depend on d[£] and d[%] (which are “manipulated” based
on the compositions yp and zp) and on the flow rate changes dD and dB. Because
L and V are manipulated for composition control, the condenser and reboiler levels

are controlled using D and B, i.e.,
dD = ¢p(s)dMp (44)

dB = cp(s)dMp

(The SISO controllers ¢p(s) and cp(s) are in many cases simple proportional con-

trollers). Let the composition controller (possibly multivariable) be
d& s ( dyp
D —
(o) -# (& )

K:(‘OD g)ﬁ’ (46)

The overall controller found by combining (43)-(46) is

and define

L
dL D°p 0 dy D
dav K v dzp
dD AR (47)
aB] | O ep 0 || n

0 0 o0 cn B

We see from (47) that the flow rates L and V are manipulated based both on the
product compositions (yp and zg), and on the levels (Mp or Mp). Furthermore,
the two SISO level controllers (¢p(s) and c¢p(s)) each manipulate two flow rates,

and therefore appear at two places in the transfer matrix for the overall controller.
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Thus, the use of ratios as manipulated variables introduce in an ad-hoc manner a
multivariable control system.

In most cases the major effect of using ratios for composition control is cap-
tured by the linear analysis. Ratios do not tend to correct the nonlinear behavior
of distillation columns because the manipulated inputs vary only moderately with
operating conditions (neglecting startup). On the other hand, the product com-
positions do often vary significantly with operating conditions, and a significant
“linearization” effect may be obtained, for example, by using In(1 — yp) and Inzpg
as “redefined” controlled outputs [6,7].

3.3 Differences Between Control Configurations

Assuming immediate flow responses, perfect level control and constant molar

flows we have in the absence of feed disturbances
dD =dV —dL (19)
dB = —dD (20)

These two equations suggest that any pair of input variables has the same effect:
Changing L and V, for example, is equivalent to changing V and D or V and B.
Consequently, we might expect to get good and almost identical control performance
for any choice of control configuration. However, there are at least six reasons for
why the choice of control configuration can make a significant difference:

1. “Uncertainty”

2. Dynamic considerations

3. Rejection of flow disturbances
One-point (“manual”) composition control

Changes between “manual” and “automatic”

o o e

Constraints
In many cases conflicting conclusions arise from these considerations, and the

engineer has to perform a more detailed analysis or use his judgment in making



- 249 -
the final choice. In this paper we will discuss these issues only briefly. Let us first
review the RGA which is used extensively by Shinskey (1984) to compare control

configurations.

The RGA. From Shinskey’s book the reader is led to believe that the RGA is useful
because it provides a measure of interactions when using a decentralized controller.
His rule (though he does not express it explicitly) is to choose a configuration with
A1r in the range of about 0.9 to 4 (Shinskey, 1984, Table 5.2). If A;; were used
only as an interaction measure this recommendation would not make any sense; in
this case A;; should be chosen to be as close to one as possible and A;; = 0.67
would be almost equivalent to A;; = 2 (both have lgﬁﬁﬂ = 0.5). Consequently,
Shinskey’s use of the RGA is a way of categorizing his experience on distillation
columns, rather than expressing the effect of interactions. In fact, his rules also
apply when a multivariable controller is used. His recommendations regarding the
RGA should therefore only be used for distillation columns. One objective of this

section is to provide some justification for Shinskey’s rules.

3.3.1. Uncertainty

Since we are considering different choices of manipulated inputs, the uncer-
tainty associated with these manipulated inputs may cause different control be-
havior. The presence of input uncertainty favors using configurations with small
elements in the RGA (Skogestad and Morari, 1986b). In general, all configurations
involving D or B have |A;1;| < 1, while all others have |A11| > 1 (Shinskey, 1984,
p. 146). The LV- configuration generally has the largest RGA-elements. Any con-
figuration which uses D or B is therefore insensitive to input uncertainty, but the

ratios 715-, %, % or % (or their inverses) may also be a good choice for columns with

high reflux.

A simple physical reason for why input uncertainty may cause control problems

is the following: As discussed in Section 2 the plant is very sensitive to changes in
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the external flows, but rather insensitive to changes in the internal flows. To have
tight control, the controller should counteract this, by making large changes in
the internal flows (AL and AV'), while keeping the changes in the external flows
(AB = —AD) small. However, if the LV-configuration is used, uncertainty with
respect to the values of AL and AV makes it imposssible to keep AB = AL — AV
small. The result is large ( and undesired) changes in AB and AD, which result
in large ( and undesired) changes in the compositions because of the high plant
gain in this direction. This is consistent with the large RGA-elements found for the
LV-configuration. On the other hand, it is much easier to avoid changes in D or B
if one of these flows is manipulated directly, and this is consistent with the small

RGA-values found in this case.

3.3.2. Dynamic Considerations

These issues are addressed in detail in the literature (Rademaker et al., 1985,
Shinskey, 1984), and only a short summary is given here: L and V should be
manipulated directly for composition control to get a fast initial response. This is
probably one of the main reasons for the popularity of the LV-configuration. The
LYV

© F-configuration also has this feature. Use of D or B for composition control is

generally not recommended if a fast initial response is desired.

3.3.3. Rejection of Flow Disturbances

The major flow disturbances are in the feed rate (F), feed enthalpy (gFr), boilup
(V), condenser vapor rate (Vr) and reflux temperature. There will also be distur-
bances in L, D and B (e.g., due to measurement noise), but those are usually of less

importance. Three ways of handling flow disturbances are
1. feedforward control
2. through their effect on composition -
3. through their effect on levels and pressure

The first option is possible only if the disturbance can be measured. The level and
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pressure loops are usually much faster than the composition loops, and intuitively it
seems preferable to try to reject the flow disturbances with the level loops (Option
3). However, since any flow disturbance which is not rejected by the level loops
will result in a upset in composition, one may argue that the composition control
system may as well take care of all disturbances (Option 2). The problem is that it
may not be possible to tune the composition loops sufficiently fast to get acceptable
response for large disturbances. This is in particular the case if L and V are not
manipulated directly for composition control . Furthermore, by using Option 3 we
retain some disturbance rejection capability in the case the composition loops are
in “manual”. As illustrated by the following example an important feature of some
of the ratio control schemes is that they have a good “built-in” rejection of flow

disturbances.

Example. Assume the feed is liquid and consider a feed flow disturbance. If the
LV- or DV-configuration is used, this disturbance will immediately give an increase
in bottoms flow rate (B), leading to a large upset in zp and yp. However, if
the %%-conﬁgutation is used, all flows are adjusted proportionally, and the effect
on compositions is very small: The increased feed flow rate initially brings light
components down the column which would increase zg5. However, it also leads to
an increase in reboiler level. From (47) we see that this leads to a simultaneous
increase in B and V (while the LV- and DV- configurations keeps V' constant).
The increased boilup (V) returns light components to the column, and counteracts
the initial effect the increased feed flow had on compositions. Furthermore, the
increase in V leads to an increase in distillate flow (D). The feed flow disturbance

is therefore distributed to both products, and % is kept unchanged.

Summary [5]. It is preferable to use the level control system to reject flow dis-
turbances. Vr is usually used for pressure control, and disturbances in condenser

duty are rejected perfectly (at least at steady state). However, no configuration
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can reject all flow disturbances using the level control system: The commonly used
LV-configuration does not reject disturbances in F,V,L and gqr. Configurations
using D or B as one of the manipulated variables for composition control are in-
sensitive to disturbances in V, L and g, but do not reject disturbances in F.
(However, F is often measured and a feedforward control scheme may be used).
The %%-conﬁguration is insensitive to disturbances in F, and also rejects other

flow disturbances also well, provided the reflux is large.

3.3.4. One-Point (“Manual”) Composition Control

Very few distillation columns are actually operated with a “two- point” control
system. In most cases one of the compositions is controlled manually - at least
part of the time. Since the operators do not monitor the compositions continually
and manipulate the inputs accordingly, it is important that the effect of expected
disturbances on the manually controlled (“uncontrolled”) composition is as small

as possible.

Both composition loops open. This issue was just discussed for the case of flow dis-

turbances and the %%—-conﬁguration was found to give good disturbance rejection.
However, a feed composition (zr) disturbance has no direct effect on the flows.
Consequently, if both composition loops are “open”, the effect of a feed composi-
tion disturbance will be the same for all configurations. Furthermore, the effect
will usually be large because a change in feed composition requires a change in %
(Eq. (5)), and if this correction is not made, large changes in yp and zp will result
for high-purity separations. Therefore, at least one of the compositions has to be

controlled carefully, either by a feedback controller or by the operator.

One-point composition control (one composition loop open). Assume we have

closed one loop, and are using u; to control y;. The output y; is not controlled
and the manipulated input u; is constant. What is the effect of a disturbance d on

the uncontrolled output y;? First consider the steady-state where we have perfect
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control of y,;. The disturbance d has the effect [ g 1‘1:' on the outputs when the
2d
inputs u; and u, are constant. Using deviation variables we have
[m] =G[u1]+[g1d]d (48)
Y2 Uz gad
Solving for y2 = 0 and u; = 0 gives
Y1 gi2
5 = —="—92d + 914 49
d g22 (49)

Consequently, the disturbance will not affect the uncontrolled output y, if

g1z = g1d (50)
922  92d

This result should be obvious: If the disturbance has the same relative effect (£14)

on the outputs as the input ug(gﬁ), then we can get perfect disturbance rejection

by using only this input.

Example. Consider again the column in Table 1. For a feed composition (zr)

disturbance all configurations have £14 = 0.787. The ratio £ to £ (denoted
r;) is given in below for various configurations (ujuz). If this ratio is close to one
then perfect disturbance rejection is achieved with u; alone (the other input being
constant).
LV L L
v s £V $D DV LD

ri= 103 124 1.03 -1.27 1.03 -—1.27
ro= 100 0.85 0.85 0.85 -1.27 1.00

D (or B) should obviously never be held constant. Configurations which keep L
or V constant come out favorably. The same conclusion holds also for a feed flow
disturbance. The reason is that in both casesr the major effect of the disturbances
may be counteracted by changing the product flow rates (adjusting % to satisfy
(5)) -

Summary. Operating both composition loops open is not acceptable because no
correction can be made for feed composition disturbances. When one-point com-

position control is used, reasonably good control of the “uncontrolled” composition
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is maintained with most configurations, provided D or B are not kept constant.
The LV-configuration (keeping L or V constant) comes out favorably when only
steady-state considerations are taken into account, but it may be preferable to use
one of the ratio control schemes (e.g., &%) in order to to obtain better dynamic
rejection of flow disturbances. One advantage of controlling only one composition is

that tuning is simple and very tight control can be maintained for this composition.

3.3.5. Changes between “manual” and “automatic” control.

Changing one of the composition loops between “manual” and “automatic”
control is frequently done when controlling distillation columns, for example, due
to stability problems, constraints or failures in measurements or actuators. It is
clearly desirable to be able to do this without upsetting the rest of the system or

having to retune the controllers.

Configurations which use D or B may give very poor response for the uncon-
trolled composition when the loop involving D or B is put in manual. (This is the
opposite of what one might expect from the RGA, since one can always choose pair-
ings such that 0.5 < A;; < 1 in this case). The LV- and %%-conﬁgurations which
are preferable for one-point composition control (Section 4.5), are also most easily
changed between manual and automatic (though the response for the controlled

composition may deteriorate when the other loop is closed).

3.3.6. Constraints

Avoiding constraints. Constraints on flow rates or on holdups (level and pressure)

may also be important when choosing the best configuration. Whenever a manip-
ulated input hits a constraint, it is no longer useful for control purposes. Since
level and pressure control always has to be maintained, this means that one of
the product compositions can no longer be controlled. If a constraint on a flow
used for composition control is reached and two-point composition control is still

maintained, then the constraint is akin to input uncertainty. Therefore, constraints
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are an additional reason for not using controllers with large RGA-elements (for

example, a decoupler for the LV-configuration).

Flows used for level control will usually have the largest variations in magni-

tude, and are most likely to hit constraint. This leads to the following conclusions:

e A very small flow should not be used to control level. One example documented
in the literature (McNeill and Sacks, 1969) is the use of distillate D to control

Mp in a high reflux column with L/D = 70. This is clearly next to impossible.

Operating at Constraints. Many industrial columns are operated at their capacity

limit, usually with respect to the boilup V, the reflux L, or the condensation rate
Vr. This is another reason for why many columns are operated with only one
composition being controlled. Fortunately, as pointed out in above, keeping L,V
or Vr constant will also result in reasonably small variations in the uncontrolled

product - at least at steady state.

3.3.7. Choice of Control Configuration. Conclusion

Two-Point Composition Control. The RGA is a useful tool for addressing the issue

of input uncertainty. Configurations with large values of A;; should be avoided.
For distillation columns all material- balance configurations (using D or B) have
Ai1; < 1. However, these configurations often result in a poor dynamic response and
give very poor disturbance rejection if the loop involving D or B is taken out of
service. This is probably the reason for why Shinskey (1984) recommends avoiding
configurations with A;; < 1 (provided Aq; is not too large). (These considerations
only hold for distillation column control, and for other processes there is no reason

to try to avoid A;; < 1).

One-point composition control (one loop in manual). Most industrial columns have

closed-loop control of only one composition. This may seem suboptimal, but is in
many cases reasonable, since one product is usually much more important than the

other. Furthermore, if the column is operating at its capacity limit (which is often



- 256 -

the case), it is impossible to control more than one composition. Uncertainty does
not pose any particular problem when only one composition is controlled. Reason-
ably good control of the uncontrolled composition is maintained provided D or B
is not kept constant. The LV- and %%-conﬁgurations will generally both perform
satisfactory. The —f‘-,—%- configuration is preferable because it has a better “build-
in” rejection of flow-disturbances which leads to less variations in the uncontrolled
composition. The only case when it may be worthwhile to use D or B as the manip-

ulated input for one-point composition control, is for columns with very large reflux

L > 1or¥ > 1)) where level control using D or B may be almost impossible.
D B

4. CONTROLLER DESIGN / IMPLEMENTATION

Given a good model of the plant, and with an appropriate choice of control con-
figuration, the controller design itself should not be too difficult. Firstly, the level
control system has to be designed (”closing the material balance”). This is usually
reasonbly straightforward once the choice of configuration has been made. Secondly,
the 2 x 2 controller (K) for composition control must be designed. The academic
literature has discussed for years whether to use "decouplers” as part of the con-
troller. Recent work (Skogestad and Morari, 1986b) shows clearly that decouplers
should only be used for plants with small RGA-elements. For distillation column
control, this implies that decouplers should not be used for the LV-configuration,
but may be helpful in improving the response if, for example, the DV-configuration

is used. The presence of input uncertainty is important for these conclusions.

An important issue with regard to implementation is composition measure-
ments. Often such measurements are not available for on-line control, or the mea-
surements are delayed. In such cases temperature and pressure measurements are
used to estimate the product compositions. A fairly sophisticated non-linear model
may be needed to obtain acceptable estimates. This may be a tray-by-tray model

of the column, or correlations between temperature profiles, pressure and compo-
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sition obtained from simulations and plant measurements. The temperatures may
also be used directly by the controller. However, this results in a more complicated

controller, and may not give as good results as using a separate ”estimator”, since

the controller is usually restricted to being linear.
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Abstract

Jafarey et al. (1979) derived a simple analytical expression for the separa-
tion factor S. This paper provides a simpler and more instructive derivation of
this expression, and also evaluates its validity for estimating steady-state gains and
RGA-values. The results show that the expression gives a good estimate of how S
changes with internal flows, but describes poorly its variation with external flows.
Fortunately, when computing the steady-state gains, this error is often not impor-

tant.
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1. INTRODUCTION

Shortcut models. Simple “shortcut” models are useful for analyzing and un-

derstanding the strongly nonlinear behavior of distillation columns. For robust
distillation column control, for example, it is important to know the correlation
between the transfer matrix elements as they vary with operating conditions. The
essential part of this behavior may be predicted from simple analytical models.

This paper presents a derivation and evaluation of analytical expressions for the
separation factor S which is useful for steady-state calculations. In Part IT (Skoges-
tad and Morari, 1987a) we discuss the dynamic behavior and present an analytical
expression for the dominant time constant. Though our main goal is to develop
shortcut models for use in control system design, the results presented in these two
papers are useful for obtaining general insight into distillation column behavior.
For example, simple analytical models are invaluable as a teaching tool; a basic
understanding of distillation columns is much more easily acquired by analyzing
simple analytical models than by running tray-by-tray simulation programs.

We stress that the shortcut models presented are not intended to replace tray-
by-tray simulations; for design purposes we recommend that more accurate models
are obtained using simulation programs.

Steady-state behavior. A simple nonlinear steady-state model is useful for de-

riving analytical expressions for the gains g;; between the process inputs (e.g., reflux
L and boilup V for the LV-configuration) and the controlled outputs (top and bot-

tom compositions, yp and zp).
dyp = g11dL + g12dV

dzg = go1dL + g22dV (1)

To derive these gains analytically, two equations relating yp and zp to L and V

and other operating variables for the column are needed. One is given by the overall
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material balance for the light component
Fzp = Dyp + Bzp (2)

and the other is conveniently written in terms of the separation factor S (Shinskey,

1984)

yp/1—yp 1
S = = 3
xB/l—:rB ZB(I—yD) ( )

(the approximation holds for high-purity separations with yp ~ 1 and (1—zp) =~ 1).
S is in general a complex function of the operating and design variables for the
column (flow rates, feed composition, VLE-data for system, number of trays, feed
location, etc.). There are three reasons for choosing to express the column behavior

in terms of S:

(1) Reasonably simple and reliable expressions may be derived for S. This is
motivated by Fenske’s total reflux equation S = a? which is exact for mixtures
with constant relative volatility .

(2) Usually S does not change much with operating conditions. The essential part
of the variation of the gains g;; with operating conditions may therefore be
captured by assuming S is constant.

(3) S as defined by (3) is a function of yp and zp only. This makes it simple to
derive analytical expressions for the steady-state gains.

There are other ways of expressing shortcut models for distillation columns,

besides using S. For example, Gilliand’s empirical correlation relates R;Rf_-?m to
N=Nuin and analytical equations have been derived to fit the correlation. However,

N+1

this form is not convenient for obtaining analytical expressions for the gains, since
it does not satisfy (2) and (3) above.
The separation factor S has been used extensively by Shinskey (1984) for pre-

dicting the steady-state value of the RGA. The 1-1 element of the RGA is

-1
Ay = (1 _ 912921) (4)

gi11922
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For columns with both products of high purity Skogestad and Morari (1987b) de-

rived the following approximations for the LV - and DV - configurations

1 1
D(1-yp) + Bzp (8inS/3L)p (5)

A1(Grv) =

1
Bag

Consequently, a good model for S is needed to evaluate the RGA for the LV-

AII(GDV) ~ (6)

configuration, but is less important for the DV-configurations. Also note that Aqy
for the LV-configuration may be very large if both products are of high purity, while

the value for the DV- configuration is always beween 0 and 1.

Shinskey uses the simple analytical model for S developed by Jafarey et al.
(1979) to estimate the RGA. In their paper, Jafarey et al. only checked the validity
of the model for predicting the total number of theoretical trays. However, to esti-
mate steady-state gains (g;;) and RGA-values, derivatives of the model are needed.
The objective of our paper is to check the models validity for estimating gains and
the RGA.

We also feel that the derivation by Jafarey et al. does not provide much insight.
They start from Smokers exact analytical solution, derive a simplified model which
is not very good, delete some terms in this model, and finally arrive at a better
model. Another goal of this paper is therefore to rederive Jafarey’s model in a
more direct manner which yields more insight. Our derivation yields a slightly
different form of the model, but it reduces to Jafarey’s expression if the assumption
D/F = zp is made.

Assumptions. All the results in this paper are for a two-product column, bi-

nary mixture with constant relative volatility («) and constant molar flows. The

extension to multicomponent mixtures is discussed at the end of the paper.
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2. CASE STUDY EXAMPLES

In this section we present steady-state data for seven high-purity distillation
columns which may be used as case study examples in this and future work. The
columns were selected to include a wide range of operating conditions. Data for the
columns are given in Table 1, together with computed values for R/R;p, L/F and
D/F.

Steady-state gains. The exact steady-state gain matrices for the seven columns

were obtained by linearizing the material balance for each tray. For tray i with no

feed
_ arx;
T 14 (a— 1):5,'

(7)

L(zit1 — z:) + V(yi-1 — %) =0, Yi
Linearizing (7) for small perturbations
(.’13;_1.1 - :E.;)dL + (yi—-l - yi)dV + Ldz; 41 + (—L - K,-V)dz; + K;.1Vdzr;.1 =0 (8)

where K; is the linearized VLE-constant on each tray

. dy,- _ (84
T dn (1 (a-Dz)? (%)

K;
In matrix form (8) becomes
Az + Bu+ Ed =0, y=Czx (10)

Here z = (dzy ... dzy)T are the tray compositions, u = (dL dV)T are the inputs,
d = (dF dzp)7 are the disturbances, and y = (dyp dzp)7 are the outputs. Solving

these equations give

y=—-CA 'Bu—CA™'Ed
and the steady-state gain matrix and disturbance matrix are
G=-CA™'B and G4=-CA™'E (11)

These matrices are given for the seven columns in Table 2. They are given both for

the LV - and the DV -configurations:
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Column zp o N Nr YD Tp -1F2 -ﬂ-‘.— Nﬁm Rfin
A 05 15 40 21 0.99 001 0.500 2.706 1.76 1.388
B 0.1 » ? ? ? ? 0.092 2.329 i 1.301
C 0.5 ? ? ? 0.90 0.002 0.555 2.737 193 1.645
D 0.65 1.12 110 39 0.995 0.10 0.614 11.862 1.66 1.529
E 0.2 5 15 5 09999 0.05 0.158 0.226 1.99 1.144
F 05 15 10 5 0.9999 0.0001 0.500 0.227 1.47 3.183
G 0.5 1.5 80 40 0.9999 0.0001 0.500 2.635 1.76 1.318

Table 1. Steady-state data for distillation column examples. All columns have liquid

feed (gr = 1).
Column GLV GDV Gd (F, ZF)
4 0.878 —0.864 —0.878 0.014 0.394 0.881
1.082 —1.096 —1.082 -0.014 0.586 1.119
B 1.748 —1.717 —1.748  .03088 0.0858 1.636
9023 —.9054 ~0.9023 —.00312 0.0904 0.936
c 1.604 —1.602 —1.604  .00227 0.8822 1.790
01865 —.02148 —.01865 —.00283 0.0197 0.0170
D (01231 -0.1211) [-0.1231 .00192 \ [0.0516 0.1252
\ 2.126 —2.129 \ —2.126 —.00307 ) 1.344 2.395 }
E 02033 —.01315 —.02033 .00719 .00045 .00949
1.124 —1.126 -1.124 —.00135 0.1780 1.186
7 1.074 —1.073 —1.074  .000998 0.5362 1.073
0.9257 —0.9267 —0.9257 —.000998 0.4636 0.9269
o 0.8649 —0.8646 —0.8649 .000294 0.4315 0.8647
1.135 —1.135 —1.135 —.000294 0.5683 1.135

Table 2. Steady-state gain matrices for examples obtained using (11). Gpy = Gy M
(13). Unscaled product compositions (yp and zp) are used as defined in (12).
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. d dL dF

LV — configuration : ( dg:z ) =Gy ( dV) + G4Lv ( sz) (12a)
. dyp \ _ dD dF

DV — configuration : <d:1:3) = Gpy (dV ) + Gapv (dzp) (120)

Note that Gy and Gpy are not independent. Because of the assumption of con-

stant molar flows we have dL = dV — dD which yields
dL dD -1 1
(dv)—M<dV)whereM=[0 1]

and we derive

Gpy =Gy M (13)

Similar relationships are easily derived for other choices of manipulated inputs (Sko-
gestad and Morari, 1987b). The matrix GLy is very sensitive to small relative er-
rors in the elements (as is seen from the large value of A;; (Skogestad and Morari,
1987c)), while Gpy is insensitive to such errors. The reader should therefore find
Grv from Gry = GpyM ™! rather than using the Gry-matrix given in Table 2.
The disturbance matrices G4y and Ggpy are in general different, but happen to

be equal in this case since the feed is liquid.

3. A SIMPLE EXPRESSION FOR S

Previous Work

For mixtures with constant relative volatility (o) the following exact expres-

sions for Np,in, and Ry,:, hold (e.g., Henley and Seader, 1981).

R — c0: 8 = alVmin (Fenske) (14)

1 YD 1—-yp 1 1
_ - a —_ ~1 15
a—1'zp al—xp) a—l:cp(yD ) ( )

N o000 Rpin =

zp is the composition of the flashed feed. Simple extensions to multicomponent

mixtures exist (e.g., Henley and Seader). Jafarey, Douglas and McAvoy (1979)
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derived a simple expression for S which has also been adopted by Shinskey (1984).
For liquid feed we have zy = zr and Jafarey’s expression becomes

1 N/2
R =) (g

The expression (16) gives the correct limiting value (14) as B — oo, but its value
of Rmin
1

N — oo Rminz'('m (17)

is lower than the correct one (15). Jafarey et al. used (16) for design purposes to
find the number of theoretical stages N needed to accomplish a given separation.
For 24 cases studied the average error in N was 5.3% compared to 2.5% for the
Gilliland correlation.

Derivation of Expression for S

The main reason for including this section is that the derivation given here is
much simpler and more instructive than the one given by Jafarey et al. Furthermore,
extension to multicomponent mixtures is straightforward. We will initially linearize

the vapor-liquid equilibrium (VLE) curve in the top and bottom parts of the column.
1
Above feed : (1—y)= a_(l — ;) (18a)
T

Below feed : Yi = apx; (18b)

Here ar and ap denote the relative volatility in the top and bottom part of the
column. The assumption of linear VLE will clearly make the separation in the
middle of the column simpler as seen from Fig. 1. Note that for high-purity
columns, most of the stages will be at the column ends in the regions of high purity
where the linear approximation is good. The operating lines (material balance of

light component for each tray) are

Above feed : Vry;—1 = Lrz; + Dyp (19q)
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Fig. 1. VLE - curve for relative volatility @« = 2.0 and linear approximation with
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Below feed : Lpz;41 = Bpy; + Bzp (190)

Since the equilibrium and operating lines are assumed linear it is simple to derive
exact relationships between the feed tray composition and yp and zg. Consider the
top part of the column. The vapor composition of the heavy component (1 — yy)
on the jth tray from the top is found by repeated use of (18a) and (19a) (Kremser
equations, see McCabe and Smith, 1976).

(1 ~5,) = (1~ o)t + B2 =10 L/ Vr), (20)

where Az is the absorption factor

Ar = LIT/{X :T (21)

Since Ar > 1 we have Af_,.. >> 1 for j large. Using this assumption for the feed tray

we derive
Ar — L+ /V
(1 - ynr) = (1 - yp)AZ" <—————T 7/ T)

prp— (22)



- 269 -
where Nr is the number of theoretical stages above the feed. Similarly, we derive
for the bottom section of the column an expression for the liquid composition on

the feed tray

(A5"® -1)(1 - Vs/Ls)
Azl -1

INF =ZB (ABN” +

Azl —Vg/L
MBA;NB( b Yol B) (23)
.

Here Np is the number of theoretical trays below the feed and Ap < 1 is the

absorption factor in the bottom part of the column

_ Lp/Vs
ap

Ap (24)

Multiplying equations (22) and (23) gives an approximate expression for the sepa-

ration factor S :
oo 1 ket (i

zp(l—yp) (1—uyn,)zne (L/V)])" -c (25)

_ (ar —1)(ap —1)
(er — Vr/Lr)(ap — Lp/VE)

In most cases c is close to one; in particular, this is the case if the reflux is high.

c

Assuming constant relative volatility a = ap = ar and using a = Z: : i::: : and
N = Np + Nt + 1 we derive from (25)
N L/V)y*
S = o ( / )T . (26)

"~ yne(1—zny) (L/v)§e
We know that S predicted by (26) is too large because of the linearized VLE.
However, (26) may be corrected to satisfy the exact relationship S = o at infinite
reflux simply by dropping 1/yn,(1 — zn,) from (26) . By assuming in addition

c=1 we get
_ w(L/V)2"
= ol (L/V);g" (27)

This expression is somewhat misleading since it suggests that the separation may

always be improved by transferring stages from the bottom to the top section if
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(L/V)r > (V/L)p. This is clearly not generally true, and to avoid this problem we

follow Jafarey et al. (1979) and choose Ny =~ Np =~ N/2 and derive the alternative

expression
L/V)T ) N/2
S=a" (—-——( 28
L)z z8)
If the feed is liquid then Vg = Vr and
LA\N/2 I \N/2
qr = 1: S = aN (—L—:—) = aN (m) (280,)

Since L/F = £LZ, this reduces to Jafarey’s expression (16) if the additional as-

sumption % ~ zr is made. Jafarey et al. derived (16) as a design equation and

the assumption % ~ zp is reasonable in this case. However, the assumption is not

so easy to justify for control purposes where D is a variable which may take on
values different from D = zpF. The assumption seems particularly misleading if

the model is used to compute gains for disturbances in zp.

Column Actual N Estimated N
This work (28) Jafarey (16)

A 40 37.02 37.02

B 40 40.51 38.41

C 40 33.67 35.73

D 110 102.81 99.89

E 15 15.92 14.17

F 10 9.88 9.88

G 80 75.32 75.32
Average Error 6.3% 6.3%.

Table 3. Estimated number of theoretical trays in columns.
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The main shortcoming of (28) is obvious from the derivation: The model is
poor if a pinch zone appears around the feed plate such that the assumption that
most of the trays are in the region of high or low purity which led to (26) is no longer
valid. A pinch zone occurs around the feed plate if the reflux is near minimum; this
explains why (16) gives a value of R,;, (17) which is too low. More importantly,
pinch zones appear above or below the feed plate if the feed location is not optimal.
This is likely to happen during operation of the column. The use of (28) implicitly
assumes that the feed location is optimal. Finally, for columns with large differences
between Nt and Np, (27) should be used instead of (28). We will study the validity

of the models (16) and (28) for estimating steady-state gains in Section 5.

4. WHY ARE DISTILLATION COLUMNS NONLINEAR?
For the simple case of constant molar flows and constant relative volatility
considered in this paper, there are two possible sources of nonlinearity

(A) Nonlinear VLE
ar;

yi=1+(a+1)zi (29)
(B) Bilinear terms (Lz;,Vy;, etc). in the material balance for each tray
Lz;yy +Vy;m1 = Lz; + Vy; (30)

None of these nonlinearities seem very strong, and the strongly nonlinear behavior
observed for (high-purity) distillation columns is therefore somewhat surprising.
The main reason for the nonlinear behavior is, as we will show, the nonlinear VLE.

Consider changes in product compositions (yp and zp) caused by a change
in feed composition (2r), when all flows, including reflux L and boilup V, are
constant. In this case the material balance (30) is linear, and the only possible
source of nonlinearity is the VLE.

Linear VLE. If the VLE were assumed to be linear (e.g., by linearizing (29) on

each tray; y; = a;z; + b;), all equations describing the column behavior are linear,
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and a linear relationship between the product compositions and zr results
yp = kizr, zp =kazF

Here the gains (dyp/dzr)Lv = ki and (Qyp/dzr)rLyv = ko are constant and
independent of the feed composition.

Nonlinear VLE. A completely different result is found, however, when the VLE

is not linearized. The simplified model (27) for S was derived using the nonlinear
VLE model (29). (Actually, the VLE was first linearized, but the final expression
was corrected to match S = a¥ at total reflux.) This model predicts that S is
constant for changes in feed composition provided L and V are unchanged. Consider
a column which nominally has 27 = 0.5 and 1 — y3 = z3 = 0.01. For S constant

the following two equations give yp and zg as a function of zp

vp(1 ~25) _ ¥b(1—25) _ 4q0, (31)
(1-yp)zs  (1-yp)z}
D B
Zp = pr + ‘F—.'EB (32)

(The second equation is the overall material balance for light component.) Note
that all flows are constant, so D/F = B/F = 0.5 is constant. (31) and (32) clearly
result in a nonlinear relationship between yp and zp, and zr. The steady-state
gains found by combining these equations are strongly dependent on the operating

point. For example,

dyD 1
S tant : —_— = 33
constan (62F>L,V D Bapll-sn) (33)

At the nominal operating point (dyp/8zr)ryv = 1. However, for zrp = 0.55, (31)
and (32) give zg = 0.10 and 1 — yp = 0.0092, and the linearized gain at this
operating point is (8yp/dzr)rLy = 0.0202. This is 50 times smaller than the

nominal value.
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The conclusion is that the nonlinear VLE results in a strongly nonlinear behav-
ior for high-purity columns. The bilinear terms in (30) are of much less importance

for the observed nonlinearity of distillation columns.

5. STEADY-STATE GAINS FROM EXPRESSION FOR S
Consider any input or disturbance ¢ (for example ¢ = L,V, B, F, zr, etc.). The
steady-state gains dyp/d¢ and dzp/d¢ may be found by differentiating the material

balance (2) and using the defining expression for the separation factor (3)

Jyp ozp
D B¢ + B 3¢ =e, (34)
olnS 1 3yp B 1 ozp (35)
a¢ yp(l—yp) 8¢ zp(l—=zp) I¢
Here e, is defined as
oD Ozr oF
eg——(yD—-xB)—é-;*}'F—éE--i-(zF—zB)-a—g— (36)
Solving for the gains give
1 dyp 1 < alnS)
=—\|e.+Bzg(l—z 37a
T=wolun oc 1, \¢s HBon(l=on) =5 (870)
1 aZB 1 ainS
= — — Dyp(1 -
(1—=zp)zp 9¢ I, (ec vo (1 ~vp) o¢ ) (870)
where I, is the "sum” of impurities leaving the column
I, =B$B(1—$B)+Dyp(l——yp) (38)

For high-purity separations I, &~ Bzp + D(1 —yp). There are two contributions to
the gains in (37): The e;-term and the contribution from changes in the separation
factor S. The e.-term physically represents the effect on the gains of changing the
external material balance. This is clear since 3D/9¢ = 0 and e, = 0 is obtained
when we change the internal flows in the column only (change L and V keeping D

and B constant).
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For changes in the external flows (which represent most disturbances and in-
puts) the e;-term in (37) is usually dominating - at least when both products are
high-purity.This means that the major contribution to the gains in this case may
be obtained by assuming S constant and the exact value of 3InS/d¢ is of minor
importance in this case.

On the other hand, a good model for S is important for obtaining the gains for
changes in the internal flows : In this case the gains, for example (8yp/8L)p, are
directly proportional to (8inS/8L)p = (8inS/dV)p and a good estimate of this

quantity is required for estimating the correct value of the gain.

Estimating dinS/3¢ from shortcut models

Equations (37) are exact. I, is a given constant and e, is trivial to find for
the case of constant molar flows. The only “unknown” in (37) is 8InS/d¢, which
may be estimated from the shortcut models (28) or (16). Analytic expressions for
dlnS /3¢ obtained with these models for different choices of ¢ are given in Table
4. Estimated numerical values of dInS/d¢, and of the gains and the RGA for the
LV-configuration are compared with exact values for the seven columns in Table
5-7 and Fig.2. The results are discussed below for each shortcut model.

Using the model (28) for InS. From Table 5 we see that, with the exception of

(8inS/3V)p, the estimates of dinS/d¢ are extremely poor. Note that because of

the assumption of constant molar flows we have

S\ _ (dInSY _ (8InS (39)
ov Jp, \ov /, oL /.,

and even though the two terms (8inS/dV) and (3InS/8L)y induvidually are esti-

mated very poorly with (28), the estimate of the sum (8InS/8V)p is in reasonable
agreement (Fig.2). Also note from Fig. 2 that (9inS/dV)L and (3inS/AL)y are
very sensitive to the feed point location, while their sum (9InS/dV)p is nearly

constant. The conclusion is that the model (28) is only useful for estimating the
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This work (28)

Jafarey (16)
(Feed liquid, gr = 1)

_N qr + l—gqp
2 \L+qpF L+D

N 1
2 \ L/F4gqr

o

- 1 _N 1 _ 1
L7F+D/F) 2 (Rz;+1 RZF+ZF>

Table 4. Analytical expressions for 8lnS/d¢ obtained from shortcut models (28) and
(16). (0InS/3V)p for gr # 1 is equal to (8InS/AL)y + (8InS/3V)L (39).

Column A

Exact This work Jafarey

Column B

Exact This work Jafarey

(28) (16) (28) (16)
(8InS/8L)y | —21.1  1.99 128 | 85.3 2.58 64.0
(8InS/8V)L | 23.9 0 —10.8 | —81.9 0 —61.6
(8InS/8V)p | 2.76 1.99 1.99 | 3.44 2.58 2.42
(8InS/dzp)Ly | —24.0 0 10.8 | 70.7 0 56.5
(8InS/8F)Ly | —19.3  —5.4 0 -05  —60 0
(8InS/dqr)Ly | —22.7 0.8 08 | 848 2.3 1.9

Table 5. Estimated values for dInS/d¢ for columns A and B.
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Column Exact Estimates _
This work (28) Jafarey (16)

A 2.76 1.99 1.99

B 3.44 2.58 2.43

C 1.44 1.96 2.11

D 0.42 0.36 0.34

E 71.9 27.1 25.8

F 20.0 18.0 18.0

G 5.87 4.18 4.18
Average error 29.2% 32.2%

Table 6. Estimates of (9inS/0V)p = (8inS/AL)p. This represents the effect of chang-

ing the internal flows on S.

168 olnS 37 Exact
. v /, :/""'_"'—\
s 5] Shortcut (28)
] ams\ {7
o] dlns ( i ) ]
. oL /, P2
-50 ]
-108-llIlllllTlllllllllllllll' B_ﬂmmm'm"
18 18 20 21 22 23 18 19 28 21 22 23

NF NF

Fig. 2. Column A. Effect of feed point location Nz on derivatives of InS with all
- other column data fixed (including 1 — yp = zp = 0.01). Exact values are
compared with shortcut model (28). Note that (8InS/dL)y + (8InS/8V )L =

(0InS/3V)p and that (8inS/8V )L = O for the shortcut model since ¢r = 1

(see Table 4.).
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Column Exact Estimated
This work (28) Jafarey (16)

A 0.878 —0.864 0.990 -—0.980 1.0434 -1.0335
1.082 —1.096 0.970 -0.980 0.9166 —0.9265

B 1.748 —-1.717 1.0032 —0.9800 1.5554 —1.5337
9023 —.9054 0.9777 —0.9800 0.9218 -—-0.9240

C 1.604 —1.602 1.5940 -—1.5909 1.6094 -1.6061
01865 —.02148 03145 -—.03528 01074 —.01488

Table 7. Estimates of Gy for columns A, B and C obtained using (37) with shortcut
models (28) and (16).

Column A11, Exact A11, Estimated
This work (28) Jafarey (16)

A 35.1 50.3 50.0

B 47.5 39.3 ' 61.0

C 7.53 9.06 3.58

D 58.7 66.7 85.9

E 2.82 1.87 3.35

F 4696 558 55

G 1673 2394 2394
Average error 26.2% 36.5%

Table 8. Estimated and exact RGA-values for the LV-configuration. Note that the val-
ues of Jafarey are used in the book of Shinskey (1984).
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effect of changing the internal flows on S

5),-(),

Fortunately, as pointed out above, this corresponds exactly to the case when the

term 8InS/d¢ in (37) is most important. Therefore, in spite of the generally poor
estimates of dInS/d¢, the model (28) can be useful for estimating steady-state gains
and the RGA (recall Eq. (5)). This will in particular be the case for columns with
both products of high purity. In other cases the errors may be significant. This is
evident by comparing the estimated steady-state gain matrices in Table 7 with the
exact values in Table 2. |

Using Jafarey’s model (16) for InS. As seen from Table 5 and 6, the estimated

values for (8InS/0V)p are very similar to those found using (28). The estimated
values for dinS/d¢ with respect to changes in the external material balance are
again poor. Surprisingly, the values are also very different from what is obtained
using (28). The estimated steady-state gain matrices are also very different for the
two models in some cases as seen from Table 7. Shinskey (1984) uses the model
(16) to estimate the RGA. This estimate can be quite poor as seen from Table 8.

The model (28) seems to be somewhat better than (16) for estimating the RGA.

Choice of Model for InS

The two seemingly very similar shortcut models (16) and (28) for InS may
result in quite different estimates for the steady-state gain matrices (Table 7). None
of the models give very accurate results, but they may still be useful for obtaining
a first estimate. Based on the numerical results presented above, there is no reason
to give preference to one of the models (16) on (28). However, the assumption
D =~ zp F which led to (16) does not seem to be justified from a theoretical point of
view, and we therefore recdmmend using (28), which also gives simpler analytical

expressions for 8inS/d¢ (Table 4).

14
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6. A NEW FORMULA FOR THE OPTIMAL FEED LOCATION
Equations (22) and (23) are reasonably accurate if most of the trays are located
in the region of high and low purity. Divide equation (22) by (23) and assume the

feed plate is optimally located such that zy, = zr and yy. = yr

L=yr _1=9p wpony L/V)T a=(L/V)s
ZF zB (v/L)y® a—(V/L)r

(41)

As a crude approximation neglect the last two terms. This approximation is rea-
sonable if N7 and Np are not too different since (L/V)r and (V/L)p are often

reasonably close in magnitude. (41) then gives

Ini=ye 25 _

e - g = T (o

zr and yr are functions of zr,qr and a and are obtained by flashing the feed. The
optimal feed tray location is then given by

N +1—~ (Nt — Npg)

Np=Np+1= 2

(43)

(N is the total number of theoretical stages.) Estimated and exact values of the
optimal feed stage locations are shown for the seven columns in Table 9. The exact
value is found using Stoppel (1946) (for the feed as liquid N = ny + 1, where n,
is found from Stoppel’s paper). The average error |ANF| in percent of N/2 for the
seven columns using (42) is 7.0%. This compares to 12.2% when using the Fenske

ratio (Henley and Seader, 1981)

Nr in (T%%:E)

%o on (1ea n) (44)

and 18.0% when using the empirical Kirkbride formula (Henley and Seader, 1981)

57 0.206
Nr _ 1—2z2fF E ( zp (45)
Ng zr D \1-yp

15
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Column N Ny, Exact Ng, Estimated
Stoppel This work  Fenske ratio Kirkbride
(42) (44) (45)
A 40 21.0 20.8 20.5 20.5
B 40 18.5 17.9 11.2 12.1
C 40 30.1 25.6 20.8 33.8
D 110 39.1 45.3 42.0 30.1
E 15 5.16 5.82 2.79 1.55
F 10 5.84 5.88 5.50 5.50
G 80 40.0 40.8 40.5 40.5
Average error, J-%,%l : 7.0% 12.2% 18.0%

Table 9. Optimal feed point locations.
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(The crude estimate Np = N/2 gives an average error of 20.0%). We also computed
the optimal feed point location for the 24 columns given by Jafarey et al. (1979).
(There is a misprint in this paper, and R/Rpin should be 1.75 for case b). The

following average errors were found

N
This work (42) 4.4%
Fenske ratio (44) 15.7%
Kirkbride (45) 12.8%

7. EXTENSIONS TO MULTICOMPONENT MIXTURES
Define separation in terms of two key components (L and H), and define the
pseudo-binary values of composition and flows (superscript ’) by considering only

these key components. For example

yL
YL + Yu

/

y =yp = V!'=V(yL +yn) (46)

(as usual the subscript L has been dropped for the light component). The nonkey

components are assumed to be non-distributing; the heavy nonkey (HN) is assumed

to have much lower relative volatility than the heavy key (H). Also, the light nonkey
(LN) is assumed to have much higher relative volatility than the light key (L). Under

these assumptions (27) still holds if a pseudo-binary basis is used (Appendix):

S = y;?/l—yb — aN (L’/V,)¥T (47)
zh/1—zh (L'/vHge
where as before
11 ot
a__yL/yH_y/l Yy (48)

- :z:L/zH - :B'/l—z'

The material balance may also be written on a pseudo-binary basis

F'zp = B'zy + D'y, (49)
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Consequently, all the gain equations (34)-(38) derived above still apply when a
pseudo-binary basis is used.
Similarly, Eq. (42) for the optimal feed point location applies if zp,yp,yr and

zp are replaced by the pseudo-binary values =5, yp, y7 and zf.

8. CONCLUSION

It is convenient to express the column behavior in terms of the separation factor
l1-=z
S = yp( B) (3)
(1-yp)zs
S is often nearly constant for varying operating conditions. For columns with
constant relative volatility and constant molar flows, Fenske’s exact equation applies

at total reflux

S =aV (4)
For finite reflux the following generalization is useful

v
=t L )

This model gives a good description of how S changes with the internal flows, but
describes poorly the effect of changes in the external material balance. Fortunately,
it turns out that this is of less importance if the model for S is used to obtain
estimates for the steady state gains.

Finally, a new formula for estimating the optimal feed stage location is proposed

Ini-Yr _2zn8

e g = T ()

From its derivation we know that this formula may give poor results if Ny and Np
are very different, but it gave better results than other proposed methods for the

seven columns in Table 1 and for the 24 columns studied by Jafarey et al. (1979).
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NOMENCLATURE

B - bottom product rate

D - distillate (top product) rate

F - feed rate

Ly = L - liquid flow in top section of column

Lp = L + qrF - liquid flow in bottom section of column
Np - number of theoretical trays below feed (incl. reboiler)
Np = Np + 1 - feed tray location

N7 - number of theoretical trays above feed

N = Np + Nr + 1 - total number of theoretical trays in column
gr - fraction of liquid in feed

R = L/D - reflux ratio

— ¥p(l—z8 .
S = (—1—_(;?3— separation factor

Vg = V - vapor flow in bottom section of column

Vr =V + (1 — gr)F - vapor flow in top part of column

zp - mole fraction of light component in bottom product

z; - liquid mole fraction of light component on stage i

zr,yr - mole fraction in feed at feed stage pressure

INp,YNp - Mole fractions on feed tray

Yyp = zp - mole fraction of light component in distillate (top product)
y; - vapor mole fraction og light component on stage i

Subscripts

B - bottom part of column, bottom product

D - distillate product

T - top part of column

t - tray no. numbered from bottom (i=1 for reboiler, i=2 for first tray,
i=N for top tray, i=N+1 for condenser)

Superscript

! - pseudo-binary basis is used
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APPENDIX

Extensions to multicomponent mixtures

The relative volatility between the key components is defined as (subscript i

for the tray is dropped)
yr/zr _ y'(1—=z') '
o = = 48
ya/za  T'(1-y) (48)

Bottom section. From (48) we get

yr = (ap 2X)oL = dpoy (A1)
TH

In Section 3 we linearized the VLE by assuming ygy =~ 1 and zx =~ 1, but the
last approximation does not hold in presence of heavy nonkey-components (HN).

Assuming ygn ~ 0 (i.e., the heavy nonkey has very low relative volatility) we get

ZHNF
Lp

ZyN ~

andweﬁndyHzlandxgzl—xHNzl—i%%F—',i.e.,
. zgnF
&p = ap(l— fz ) (A2)
B

and we have a linear VLE relationship for the bottom section. This leads to an
expression for zpy, similar to (23) but with ap replaced by é&p.
Top section. From (48) we get

1 Yr. 1

ar I, ar

A derivation similar to the one for the bottom section yields

. aT
ar = A4
T 1—-znF / Vo ( )
This leads to an expression for yuuy, as a function of yyp similar to (22), but with
ar replaced by éar.
Note that Fenske’s expression for S at infinite influx is exact also when there

are nonkey components.

! 1~ !
S = YLp/ZLD _ y_'D( 1’}9) —oN (A5)
yup/zup  Th(1—yb)
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Multiplying (22) with (24) as before, and correcting with the exact expression (A5)

sear (i) () TR e

we derive

Since the nonkey components are non-distributing we have
,T = LT, VT'v = VT - ZLNF

%:LB—zHNF, Vér—Vg

Substituting this into (A6) we finally derive

B (LI/VI)NT
= v )
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Chapter X

SHORTCUT MODELS FOR DISTILLATION COLUMNS -
II. DYNAMIC COMPOSITION RESPONSE
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Abstract

It is shown that the dynamic composition response can be approximated by a
linear first-order response. This applies also for large perturbations to the column.
The numerical value of this dominant time constant (7.) can be derived from steady-
state simulations. A simple analytical expression for small perturbations is derived
which provides insight into the variation of 7, with operating conditions. The time

constant 7, does not apply when there are changes in the internal flows only.
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1. INTRODUCTION

The dynamics of most distillation columns are dominated by one large time
constant, which is nearly the same, regardless of where a disturbance is introduced or
where composition is measured. This is well known both from plants measurements
(McNeill and Sachs, 1969) and from theoretical studies (Moczek et al., 1963, Wahl
and Harriot, 1970, Kim and Friedly, 1974).

A distillation column is described by a large number of differential equations.
On each tray a differential equation may be formulated for , (i) the material balance
of each component (composition dynamics)

d
E;(Mimi) = Lit1Tiyy + Vic1yio1 — Liz; — Viys

where from the VLE : y; = K;(z;,T)

(ii) the overall material balance (flow dynamics)

d
EZMz‘ =Lipa+Vica—L; - V;

where (tray hydraulics) L; = f1(Vi, M;, Ap;)
(pressure drop) V; = fo(M;,p:)

and (iii) the enthalpy balance
4 M;H;) = Ly HE , + Vi \HY | — L;Hf — V;H}
dt + + 1 i i

where Hf’ = fs(:c,-,p), H,Y = fa(yi,p)

We only want to outline the structure of the equations and the reader should not be
concerned about the details. Viewed against the background of the large number of
nonlinear differential equations, the simple low-order responses (often first order)
observed for most distillation columns are somewhat surprising. Levy et al. (1969)

showed through modal analysis that for a specific example the slowest mode involved
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primarily the composition effects (i). This leads to the conjecture that the essential
part of the dynamics can be captured by modelling only the compositiondynamics.
This is the approach taken in this paper.

The simplest approach is to consider the total holdup of each component in the
column. By assuming that all trays have the same response, this directly leads to a
first order model, and the dominant time constant can be estimated. According to
Rademaker et al. (1975, p.280) this idea dates back to the beginning of the century
(Lord Raleigh) and seems to get rediscovered every few years. Moczek et al. (1963)
used it to introduce the ”inventory time constant” for a column going from one
steady state (subscript 0) to another (subscript f):

— A(EM,‘JJ,‘) (1)
A(FZF) — yD()AD - zBoAB

Tinv

Here AD = Dy — Dg and AB = By — By are the changes in distillate and bottoms
flow rate, A(}_ M;z;) is the change in holdup in the column of any component,
A(Fzp) is the change in feed rate of this component and ypo and zpo are the
initial product mole fractions of this component.

Later, Wahl and Harriot (1970) and Waller et al. (Toijala, 1969) introduced
similar concepts (T, and Teq), but they considered only the time constant of the
linearized system (called the ”linearized time constant” in the following). Moczek
et al. introduce (1) through somewhat intuitive arguments, and we will return with
a complete derivation and interpretation below.

In spite of the excellent agreement found in several studies (Moczek et al.,
1963, Weigand et al., 1972) between (1) and the actual time response of the col-
umn, the usefulness of (1) does not seem to be appreciated in the chemical engineer-
ing community. For example, Shinskey( 1984, p.157) claims that the only general
relationship that seems to hold for the dominant time constant is that it is propor-

tional to > M;/F. In fact, this follows directly from (1), but (1) certainly contains
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much more information than this. The limited use of (1) is probably caused by the

following two misconceptions:

(i) (1) gives the value of the linearized time constant, that is, it is only useful for

small perturbations from steady state.

(ii) The linearized time constants are substantially in error (much larger) when

compared to either the actual or simulated response.

Both these claims are incorrect. Misconception (i) is probably based on the
work by Wahl and Harriot (1970) and Toijala (1969) who derived (1) for small pe-
rubations. In fact, (1) can be used to estimate the "average” time constant between
any two steady states. Misconception (ii) is due to the unfortunate assumption of
equal product purities (1 — yp = zp) used in the majority of the academic case
studies. It turns out, as we will show, that the time constant has its peak value
approximately for 1 — yp = zp. However, in general, the linearized time constant
is not necessarily larger than the actual time constant ( e.g., see Fig. 2). In fairness
we should add that the claim (ii) is correct if both products are of high purity. The
reason is that in this case the perturbations to the column will bring the column to
a new stady state where one of the products is less pure. Since the time constant
is determined by the least pure product this implies that the actual time constant

will be smaller than the linearized one (see Section 3.).

A major source of misconception (ii) is probably the work of Wah! and Harriot
(1970). They present a figure (Fig. 7 in their paper) for estimating the linearized
time constant as a function of operating variables for the column. However, although
not stated in the paper, these values apply only to the special case 1 — yp = zp.
The figure is therefore of very limited practical value and will generally yield too
large values for the time constant. Similar figures, which are misleading for the
same reason, are presented by Tyreus et al. (1975). Wahl and Harriot also claim

that the time constant is relatively constant for a large perturbation in the loads;
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this is not correct for high-purity columns as seen from Fig.1 .

Misconception (ii) is present in a recent work by Kapoor et al. (1986). They
claim that ”published tower time constants based on linear analysis have been
substantially in error when compared to actual responses for many cases. The
reason for this error is a ... positive feedbackback loop produced by the recycle
tower structure ... (for which the) gain drops sharply for small perturbations from
steady state”. Firstly, the results based on linear analysis are not ”in error” as
they claim. (On the other hand, the range of validity may be very limited if both
products are of high purity.) Secondly, the simple mixing-tank model (1) explains
in at least as simple a fashion as the ”positive feedback loops” when and why the

linearized time constant is ”in error”. This is discussed in detail below.

2. DERIVATION OF EXPRESSION FOR 7,

Consider a column which initially (¢ = 0) is at steady state (subscript 0). At
t = 0 a step change is introduced to the column which eventually (¢! — oco) moves
the column to a new steady state (subscript f). The nature of this step change
is not important as long as i) the new steady state is known and ii) it leads to a
change in the total holdup in the column of one or more component. This includes
most disturbances and inputs except changes in the internal flows (changes in L

and V keeping product rates constant).

Assumption 1. The flow dynamics are tmmediate, i.e., for t > 0 : M;(t) =
M, D(t) = Dy, B(t) = By.

This assumption is also used in all simulations. The assumption is reasonable when
considering the composition dynamics, provided the flow response is much faster
than the composition response. Using Assumption 1 the overall material balance

for any component for ¢ > 0 becomes:

d N+1
= > Miyzi(t)] = Frzpy; — Dyyp(t) — Byzs(t) (2)

i=1
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Subtracting the final steady state (0 = Fyzr; — Dypy — Byzpy) yields

N+1
) MijAii(t) = —~DsAyp(t) ~ By Azp(t) (3)

i=1
Assumption 2. All trays have the same dynamic responses, s.e. :@: Az;(t) =
Az;k(t), Ayp(t) = Aypk(t), Azp(t) = Azpk(t). (Here k(0) = 1 and Az; =
Az;(0),Ayp = Ayp(0) and Azp = Azp(0) denote the difference between the

instial and final steady state.)

Assumption 2 corresponds to treating the column as a large mixing tank. This
assumption is reasonable if the time constant for the internal mixing in the column,
7ar = M /L, is much shorter than the dominant time constant. 7, is approximately
the time it takes for a composition change at the top to travel to the bottom; for
a composition change starting from the top each tray acts as a first order lag with
time constant M;/L. The overall transfer function is the product of these lags
which may be approximated by a time dealy with time constant 7ay = My/L. 7a
was introduced by Harriot and Wahl (1970) who called it the circulation time.
Assumption 2 and Eq.(3) yield

N+1
(Z Mt Az;)k(t) = (—DyAyp — By Azp)k(t) (4)

=1

Solving (4) gives a linear first-order response

k(t) = e~/

where the time constant 7, is defined as (subscript ¢ denotes change in component

holdup):

N+1
. M;:Azx; e
Dizt 'f z , AS; def D;Ayp + ByAzp (5)

Te

(AS; is the supply imbalance). A simple interpretation of (5) is

”change in holdup of one component” (kmol)
”imbalance in supply of this component” (kmol/min)

Te =
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Note that

AS; = DyAyp + By Azp = A(Fzs) — ypoAD — zpoAB (6)

and 7. defined by (5) is therefore equal to T;,, defined by (1) if we assume that the

holdup on each tray s constant,i.e., M;; = M;. This assumption is used in the rest

of the paper; it clearly has almost no significance on the value of 7,.

Comments on (5):

1.

The column model was not linearized, and (5) applies to any finite change
provided Assumptions 1 and 2 hold.

The time constant depends on the magnitude and ”direction” (negative or
positive change) of the step change introduced.

The expression for 7., applies to any component in a multicomponent mixture.
Eq. (5) applies to any change which changes the external material balance,i.e.,
which has AS; # 0. Eq. (5) does not apply for changes in the internal flows
(changing L and V while keeping D and B constant) because the denominator
AS; = 0 in this case (see (6)). Furthermore, in this case there is very little
change in component holdup , and the entire holdup approach is not appropri-
ate. Methods for estimating the time constant for changes in the internal flows
are discussed in another paper (Skogestad and Morari, 1987b).

To compute 7. according to (5) a steady-state model of the column is needed.
For obtaining accurate numerical values a nonlinear simulation program should
be used. Such programs are ususally readily available to the engineer. For
any given step change two simulations is all what is needed to compute 7.
To simplify the computations the program should be modified to print out
Sy Miz:.

Very large time constants are found for small pertubations to columns with

both products of high purity. This agrees with the observations of Wahl and
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Harriot(1970), Tyreus et al. (1975) and Fuentes and Luyben (1983). The
reason is that the compositions inside the column may change significantly
(the entire column profile may shift resulting in a large change in component
holdup), while the change in product compositions may be very small (resulting
in a small imbalance AS; to cause the change in component holdup).

7. The expression for 7, can be split into three contributions

Te = Tel + TeD + TeB (7(1)

MiAZ; MpAyp Mp MpAzpg Mg
_MiAzm <Moo= < 7
Tl =7As; P T T As; D;’ F T TAS; B; (78)

where M; = YN _ M; is the total holdup and Z; = Y., ,z;M;/M; is the

average composition inside the column. The contribution to 7, from the change

in holdup inside the column (7,1) is often dominating. Furthermore, the reboiler
and condenser are to some degree ”decoupled” from the rest of the column, and
their contribution to 7, may be less than what is indicated by (7) (see Example
4 below).

8. One disadvantage of (5) is that the compositions on all trays are needed to
compute 7.. We will therefore proceed to derive an analytical expression for 7,
based on a very simple model, which involves only the product compositions
(yp and zp) . This expression is useful for gaining insight into the nonlinear

behavior of distillation columns.

Comparison with nonlinear simulations

Moczek et al. (1963) reported excellent agreement between (5) and the ob-
served nonlinear response for a high-purity BTX-column. Weigand et al. (1972)
studied six different columns and found very good agreement for the high-purity
column (Column V) and reasonably good agreement for the five low-purity columns.
The agreement was found to be best for small pertubations to high-purity columns,

which is expected, since this gives large time constants and Assumption 1 and 2 are
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likely to hold. For columns with only one product of high purity, 7. was found to
apply to the low-purity end, while the time constant for the high-purity end was

often significantly smaller.

In this paper the seven columns (A-G) introduced in Part I are used as examples
(Table 1.). In all examples we assume constant molar flows, constant liquid and
vapor holdup (i.e., instantaneous flow responses), constant relative volatility, liquid
feed, 100% tray effiency, total condenser and equal holdup on all trays inside the

column.

Example 1. Column A. (M;/F=0.5 min, Mp/F=32.1 min, Mp/F=11.1 min)

Table 2 compares 7, with the actual time constant 7, observed for nonlinear re-
sponses to small and large changes in F, V and L for column A. Each nonlinear
response was fitted by eye to a second order linear response 1/(1 + 718)(1 + 728) as
shown in Fig. 1. (We do not propose this as a good column model, but it gives the
reader an idea of the shape of the nonlinear response.) The agreement between 7,
and 7 is good for small pertubations. For the larger pertubations 7. agrees better
with 7; + 7. The only large deviation is found for the response in zp to a large
increase in AV /Fy = 0.20 (L constant); this change takes the column from the inital
steady state with yp = 0.99 and z5 = 0.01 to a new steady state with yp = 0.714
and zp = 0.0006. For the pure bottom product we find r{ + 75 = 14.5 min which is
much smaller than 7, = 75.3 min. However, as observed by Weigand et al. (1972)

the agreement is very good for the less pure top product (7 + 72 = 75 min).

Example 2. Column D. (M;/F=Mp/F=Mpg/F=1 min) To show that the lin-

earized time constant is not necessarily larger than the actual "nonlinear” time
constant, we considered a feed composition disturbance to column D . The lin-
earized time constant for a small disturbances in zr found using (5) is 7. = 319
min. This compares nicely with the actual response which has a time constant of

about 388 min for yp and 341 min for z5 (Fig. 2A). Next, we studied a 7.7%
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Column V404 o N NF YD g D/F L/F }\11(0)

05 15 40 21 0.99 0.01 0.500 2.706 35.1
0.1 i 7 7 ” ? 0.092 2329 475
0.5 ? ? ” 090 0.002 0.555 2.737 7.53
065 1.12 110 39 0995 0.10 0.614 11.862 58.7
0.2 5 15 5 09999 0.05 0.158 0.226 2.82
05 15 10 5 0.9999 0.0001 0.500 0.227 499
05 15 80 40 0.9999 0.0001 0.500 2.635 1673
WH 05 20 26 13 0995 0.005 0.500 1.477 41.6

QT QD ™

Table 1. Steady-state data for distillation column examples. A;;(0) denotes the 1-1-
element in the RGA for the LV-configuration .

Holdup model (7) Fit of nonlinear response to
1
(rre+1){(r38+1)
Inp ut Tel TeD TeB Te 1 T2 71 T2

=Sum |(yp) (vp) (zB) (zB)

AF[/F,=0.001 | 190 24.6 13.7 228 207 50 207 0
AV/F, =0.001 | 194 30.6 11.6 236 210 50 210 0
AL/F;=0.001 | 190 26.4 13.1 229 228 20 228 0

AL/Fy — 0 191 28.7 12.3 232
AF/F;=0.150 | 411 1.9 16.6 59.6 50 25 50 15
AV/F, =0.200 | 29.6 45.2 0.5 75.3 50 25 145 0
AV/Fo=-0.20| 25.7 1.5 156 42.8 43 0 25 20
AL/F,=0.200 | 265 1.5 156 43.7 40 0 25 20

Table 2. Column A. Time constants for inputs of various magnitude. Note that (7)
often overestimates the magnitude of 7.p and 7.5 (see Example 4). (M;/F =
0.5 min, Mp/F = 32.1 min, Mp/F= 11.1 min)
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HE 0.12— 1 =50,7; = 15
T N Ty = 207, To=0 Azp 0.1 = AmB

4 0.08—

N Ayp 8.06—

N 10Ayp

-~ 8.04 —
2 11 = 207,79 = 50 11 = 50,72 = 25

N 8.02—
a: B :ll'l"ll]‘l‘l'lll']l|]1l

7] 100 2008 300 400 580 @ 160 208 368 40808 Saeg

TIME Cmin) TIME (min)
A AF/FQ::O.OOl B: AF/FO = 0.15

Fig. 1. Column A. Nonlinear open-loop response to small (A) and large (B) change in
feed rate F with L and V constant. Dotted line : Approximation with second-
order response k/(71s + 1)(72s +2). (M;/F = 0.5 min, Mp/F = 32.1 min,
Mg /F = 11.1 min)

-4
¥10
g ] g
1 -8.82 ]
_1.__ -
] -8.04
2] :
] -B.06
. ]
—3 llll!llll’lllllllll] —8'98 TWTIII'IIIIIIU‘I?TT"‘
g 566 1660 1568 20808 7} 508 1600 1500 2008
TIME (min) TIME (min)
A: Azp = -0.0001 B: Azp =-0.05

Fig. 2. Column D. Nonlinear open-loop response to small (A) and large (B) change in
feed composition zr. Dotted line : Approximation with second-order response
k/(r1s + 1)(r2s + 2), 72 = 0 if not specified. (M;/F = Mp/F = Mp/F = 1

min)

25
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decrease in zp (Fig. 2B):
Inital steady state: zp = 0.65, yp = 0.9950, zp = 0.1000, Z; = 0.714
Final steady state: zp = 0.60, yp = 0.9578, zp = 0.0296, T; = 0.495
We find for this change

_ (N -1)M;Az; 109 1 0.219

= 477 mi
el A(Fzr) 0.05 n
MBA.’BB . MDAyD R
= ———— =14 s D = ——/——— = 0.7
TeB A(FZF) min TeD A(FZF) min

Consequently, for this disturbance in 2r, (5) gives 7, = 479 min, which is higher
than the linearized value of 319 min. This is also confirmed by the simulations in
Fig.2B; the response of yp to the large disturbance in 2z is clearly more sluggish

(T1 & 72 = 400 min) than for the small disturbance.

Linearized time constant
The linearized time constant is derived from (7) by replacing the A’s by differ-
entials:

o= de:?]/dzg = Mp S Mp
el = B + Ddyp /dzg’ oD = D + Bdzg /dyp’ B~ B + Ddyp /dzp

(8)

These values are in general different depending on the disturbance or input because
the linearized gains (dyp/dzp) are different. The values of 7.p and 7.p are easily

obtained from the steady-state gain matrix.

Example 3. Column A. (M;/F=0.5 min, Mp/F=32.1 min, Mg /F=11.1min)

The steady-state gain matrix from Part I (Skogestad and Morari, 1987b) is

dyp) _ [0.878 —0.864\ [ dL

dzg ) \1.082 —1.096 dv
For a small change in L with V constant this gives (dyp/dzg)y = 0.878/1.082 =
0.811 which yields 7.p = 28.7 min and 7,p = 12.3 min. The value of (dz;/dzg)v

= 8.85 for a small pertubation in L was obtained numerically. This gives

_390.58.85
~ 0.5+ 0.50.811

Tel =191 min, 7,=1Ter+ Tep + Tep = 232 min
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Very similar values are obtained for a small change in V (L constant) since
(dyp/dzp)r = 0.864/1.096 = 0.799 and (dZ;/dzp)r = 8.74 are almost un-
changed. Note that the 1-1 element in the RGA for the LV-configuration is given
by (Shinskey,1984)

_{, _(dyp/dzp)L\7*
A= (1 (d!/D/dzB)v> ©)

and columns with a large RGA-elements are therefore expected to yield similar

values for 7, for small pertubations in L or V. This will correspond to columns with

both products of high purity.

Comparison with eigenvalues
To find the linearized dynamics more accurately, linearize the material balance

and VLE on each tray
M;z; = Ldz;+1 — (L + K,-V)dz,- + K; 1 Vdz;_1 + (Ig.{.l — :B;)dL — (y; — y,-_l)dV

Here K; is the linearized VLE-constant

ayi _ @
dz;  (1+ (a-1)z)?

K; =
Written in the standard state-variable form in terms of deviation variables
= Az + Bu + Ed, y=Cxz (10)

Here z = (dzy,...,dzy4+1)T are the tray compositions, u = (dL,dV)T, d =

(dF,dzr)T and y = (dyp,dzp)T. Written on transfer matrix form
y = C(sI — A)"!(Bu + Ed) (11)

The poles (eigenvalues of A) are the same for any input or disturbance and inde-
pendent of where composition is measured (yp, zp,z;). However,the zero locations

are different which may yield entirely different responses.
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Wahl and Harriot (1970) found very good agreement between the linearized
value of 7., and the time constant 7y, corresponding to the smallest eigenvalue of A,
and this is confirmed by our results. Wahl and Harriot found that the agreement
was acceptable (errors less than 20% ) even for some cases with 7ar/7, < 1.

Example 4. Column A. The value of the time constants corresponding to the

three smallest eigenvalues of A are (all numbers in minutes, 7, from Example 1)

M,’/F MD/F MB/F Tle T2e T3e Te
0.5 0 0 193 12 3.4 191
0.5 32.1 11.1 220 32 11.6 232

Note that 7, and 7. are almost identical for the case Mp = My = 0. This indicates

that Assumption 2 holds very well for what happens inside the column. However,

with Mp/F=32.1 min and Mp/F= 11.1 min the increase in 7 is only 27 minutes,
while 7, increases by 43 minutes. This indicates that Assumption 2 does not hold
for the reboiler and condenser, and that these are partially decoupled from the
rest of the column. This is not surprising since the larger holdups in the reboiler
and condenser make these less sensitive to ”interactions” with the other trays. In
addition, there is only one stream entering the reboiler and condenser, while the
trays insisde the column have two.

T1e and linearized values of 7, (5) are compared for some other columns with
small reboiler and condenser holdup in Table 3. The agreement is amazing for
columns A,B,F,G and WH all of which have 7)s < 7., and also for the other cases
the agreement is very good. The only exception is column E for which 7. for a
change in V is 42% smaller than 7y.. This is not surprising because 7,/7)ps = 1.34 in
this case and Approximation 2 is not likely to be valid. The large difference in the
linearized time constant 7. for changes in L. and V which is observed in this case is
also expected because of the low values for the RGA for this column (A;; = 2.82)

which implies that (dyp/dzp)r and (dyp/dzp)v are quite different.
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Eigenvalues

Column | 7,(5) Toe(17) | Tie T2 ™
A 387 427 388 24 15
B 504(496) 428 500 23 18

c 58(60) 91 49 16 | 15

D | 300(200) 385 | 308 47 9

E 142(95) 20 | 165 16 | 71

F 5992 4886 5992 9 48

G 40664 42891 | 40667 40 31
WH 459 477 459 15 18

Table 3. Linearized time constants (min). Values for 7, (5) are given for small pertuba-
tions in L with V constant (and, if different, value for small change in V with
L constant is in parantheses). Note that ray = M;/L < 7, for Assumption 2
to hold. All columns: M;/F = Mp/F = Mp/F =1 min.
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The simple holdup model (5) explains exactly why large linearized time con-
stants are observed for high-purity columns: There is a ”large” change in component
holdup inside the column, but only a small imbalance (change in product composi-
tions) to bring about the change. Other explanations for the large time constants
are given in the literature: Kapoor et al. (1986) claim that they are caused by
?positive feedback loops produced by the recycle structure”. Fuentes and Luyben
(1985) claim that the cause is ” small concentration changes from tray to tray
(which) make some of the coefficients in the linearized equation very small, giving
small eigenvalues”. Both of these explanations seem unnecessary complicated.

Note from Table 3 that very large linearized time constant may be encountered
even for easy separations with few trays: Column F has 10 theoretical trays and
L/D=0.45, yet 7, = 71, = 5992 min. The reason for the large value of the linearized
time constant is the high purity of the products (1 — yp = zg = 10™%). However,
the time constant will be drastically smaller for any realistic perturbation to the

column. This is discussed below.

3. A SIMPLE FORMULA FOR 7,
We will now use (5) to derive a simple formula for the linearized time constant

for the case of a binary separation. The following additional assumptions are made:
Assumption 3. All trays (i = 2,N ) have equal and constant holdup (M;).
Assumption 4. The average composition inside the column is (Appendiz 1):

In 1=z 7!
Ir=11+ E—i—-‘ E!B (12)

1-yp

Assumption 5: The separation factor S = %’% is constant for any given

change constdered.

(12) was derived by assuming the composition profile is the same as that of a column

with total reflux, and Assumption 4 is therefore most likely to hold for columns with
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large reflux. Assumption 5 is most likely to hold for high-purity colimns because
then the term e, in (15) will dominate.

In this section let yp, £ and z; denote the mole fraction of the light com-
ponent, and let ¢ represent any input or disturbance to the column which changes
the external material balance such that (5) holds. For a small perturbation, d¢, (5)

yields
_ M]%%L+MD§¥- +MBQ§€A

8up 8zp
Dag +Bag

(13)

TC
Differentiating the component material balance, Fzp = Dyp + Bzpg, yields the
following expression for the denominator of (13)

dyp dzrp

D57+ B5C =e (14a)
where e, is defined as
oD z oF
eg:—(yD~—zB)—é—$-_-+F-5;—'+(zF—xB)—5: (14b)

To evaluate the numerator, we need to find the linearized gains dyp /3¢ and dz g /d¢.

(This will also yield dZ;/9¢ because of Assumption 4.) For binary mixtures exact

expressions for these gains are derived by combining (14a) with the definition of the

separation factor S (see Part I (Skogestad and Morari, 1987a))

1 dyp 1 lnS
A —volop o L. (e + Bzp(1 — zp) 3 ) (15a)
1 orp 1 dIn S
(1 — xB)xB 3¢ = ‘I':(ec - DyD(l - yD) d¢ ) (15b)
Here I, is the ”sum” of impurities leaving the column
1, =Bzp(1—zp)+ Dyn(1 —yp) (16)

For upsets d¢ which change the external material balance (e, # 0), the term involv-

ing the change in separation factor S is usually of minor importance (Part I), and
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a reasonable approximation is found by assuming S constant (Assumption 5). (15)

yields

(Byp) _ (1 —yp)ype. (89:5) _ (1 - zg)zpe;
Bg s Is a§ 5 Ia

9zry _9 ey _ 19 n—92_\_._%
o Jg B¢ InS B InS 8¢ 1-yp I,InS

Substituting this into (13) yelds a short-cut formula for the linearized value of 7,

(note that e, drops out)

M; Mp(1-yp)yp + Mgp(l—zp)zp

Tsc = Tacl + TseD + TacD = I.InS + Vi Vi (17)
s s P

For the special case of equal purities (zp = 1 — yp) we get I, = Fzpyp and (17)

becomes
M;/F

m*{-MD/F-{-MB/F (18)

Tse =

Here the term 1/zpyp In S which multiplies the holdup inside the column is

zrg=1—yp: 03 0.1 001 0.001 10¢ 10-°

1/zpypInS: 2.81 2,53 11.0 725 543 36191

This clearly shows that usually the contribution to 7, from the holdup inside the
column dominates, especially for separations with both products of high purity.
Also recall that the contributions to 7. from the condenser and reboiler holdup are
generally overestimated by (17) and (18) because Assumption 2 does not hold .
Values for 7,, found using (17) are compared with 7, (8) in Table 3. The
agreement is of course best for the cases when Assumptions 4 and 5 are likely to hold,
i.e., for columns with high reflux (Assumption 4 is valid) and for high-purity columns
(Assumption 5 is valid). However, the main value of the analytical formula (17)
is the insight it yields into the nonlinear dynamic behavior of distillation columns.

Consider the contribution from the holdup inside the column

T, = MI
sel — Ia ns

(19)
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In S usually does not change very much with operating conditions. The time con-
stant is therefore determined mainly by I, which again is determined by the com-
position of the least pure product:

I, ~ { D(1-yp) if distillate least pure ( (1 —yp) > zg) (20)

Bzp if bottoms least pure ( zp > (1 — yp))
For columns with both products of high purity any disturbance or input to the
column is likely to take the column to a new steady state where one of the products
is less pure, and the actual time constant for this change will be smaller than found
by linear analysis (which (19) is based on).

It also follows from (19) that 7.r reaches its maximum value approximately
when both products have equal purity; by differentiating (19) we find that for
zr=0.5 the maximum value of 7,.; when D/B is varied is obtained for D/B = 1
corresponding to 1—yp = zp. Also for other values of zp the maximum is obtained
when (1 — yp)/zp is of the order one.

Example 5. Column WH. Consider the high-purity column (1 —yp = zp =

0.005) presented by Wahl and Harriot (1970) . In Fig. 3 the linearized time constant
7.1 is shown as a function of zz with all flows fixed. Each value of zr corresponds to
a specific steady state with a given ratio zp/(1 — yp) and we have also plotted 7.r
against this ratio. We see that 7.y has a very high peak at the nominal operating
point zr = 0.5 which corresponds to zg/(1 — yp) = 1. This illustrates that Fig.
7 in Wahl and Harriot (1970) for estimating the linearized time constant is highly
misleading; it is based on the assumption 1 — yp = zp . Also note from Fig.3 that
very similar values for 7, are obtained from (8) and the short-cut formula (18).

Example 6. Column B. A similar example for column B is shown in Fig. 4. In

this case zp = 0.1 and L/F = 2.329 are fixed, and different steady states are obtained
by varying D/F. The nominal operating points has D/F = 0.0918 corresponding to
(1 — yp)/zp = 1 which yields 7.y = 501 min. The peak value of the linearized

time constant 7.7 is 656 min which is obtained for D/F = 0.0952 corresponding to
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Fig. 3. Column WH. Linearized time constant 7.y as a function of zr with all flows
fixed. Each value of zr corresponds to a new steady state with a particular
yp and zp, and the right figure is included to show clearer the variation in 7,;
with '1%5;. (M,/F =MD/F = MB/F =1 min)

7or (8) 800 7o1 (8)
] - - - Shortcut (17) -3 - - - Shortcut (17)

min 460
2060 .
8 ‘1||l|l1i|l'l"!llil G'—Z I"l ] '1 l2
e 8.085 8.1 8.15 8.2 10 14 1. 10 16
D/ F (1 - YD) 7 xB

Fig. 4. Column B. Linearized time constant 7.r as a function of D/F (with zr = 0.1
- and L/F = 2.329 fixed). Each value of D/F corresponds to a particular %gﬁ

(M;/F=MD/F=MB/F= 1 min) .
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(1—-yp)/zp = 2.8.
4. DISCUSSION AND CONCLUSION

The dynamics of most distillation columns are dominated by one large time
constant (7.), which is nearly the same, regardless of where a disturbance is intro-
duced or where composition is measured. Physically, this dominant time constant
reflects the change in component holdup inside the column. Based on the inventory
time concept introduced by Moczek et al. (1963) we have derived a simple formula

for estimating its linearized value for binary separations

M;
LinS

(19)

Tel = Tagel =

(In addition there are contributions to 7, from the reboiler and condenser holdup;
these are usually of less importance.) The formula (19) gives reasonable agreement
with observed values, but its main value is the simple analytical form which provides
insight into the nonlinear behavior of distillation columns. In particular, the value
of 7.1 is determined mainly by the purity of the least pure product (Eq. (20)) and
it will be large when both products have high purity (I, is small).

From the derivation of 7, it is clear that this dominant time constant only
applies if there is a change in the external material balance. The time constant
7o for changes in the internal flows is often much smaller. As an example consider
Fig.5 which shows the condition number as a function of frequency for column A. If
a single time constant 7, were used for all transfer function elements, corresponding
to the model G(s) = G(0)/1+ 7.s, then the condition number would the same at all
frequencies. This is clearly not the case as seen from Fig.5, and the lower value at
high frequencies is caused by 72 being significantly smaller than 7.. This is dicussed
in detail in another paper (Skogestad and Morari,1987b) where we propose a model
in terms of 7, and 72 which is consistent with the behavior in Fig.5 . .

From the derivation of (5) we know that if Assumptions 1 and 2 hold then the

composition response should be first order, even for large deviations from steady
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Fig. 5. Column A. Condition number 4(G) = E(G)/Q(G) and |[|RGA|l1 = > |\l
(dotted line) as a function of frequency. (M;/F = Mp/F = Mp/F = 1 min)
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Fig. 6. Column D. Nonlinear open-loop responses to small (A} and large (B) change in
zr. logarithmic compositions Yp = In(1—yp) and Xp = Inzp are used. Dot-
ted line: Approximation with first-order response k/(r1s + 1). The responses

should be compared to the ones in terms of yp and zp in Fig.2. -
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state. The simulations indicate that the first order approximation is indeed valid
for small perturbations. However, recall Fig.2 which shows that the response in yp
to a small decrease in zf is first order (Fig.2A), but that it is approximately second
order for a large decrease (Fig.2B). In the last case yp decreases from 0.995 to 0.958,
that is, the amount of heavy impurity increases from 0.005 to 0.042. Although the
initial response in terms of absolute compositions is sluggish (second order), there is
a large relative change in the amount of impurity. This suggests that a lower-order

response may be obtained if logarithmic compositions are used
YD = 111(1 - yD) and XB = lna:B (21)

Fig.6 shows the same responses as in Fig.2, but using logarithmic compositions.
The time constants of the first- and second-order approximations of the observed

responses are summarized below:

Azrp = —0.0001 : Azp = —0.05:
Yp 7'12388 T1=7'2=400
Yo 7, = 388 7y = 563
Ip 71 = 341 7 = 217
Xp 71 = 341 71 = 320
The responses are much less dependent on the magnitude of the disturbance when

logarithmic compositions are used, and the observed second order response for yp
almost ”disappears” (becomes first order) when Yp is used. This confirms the re-
sults by Skogestad and Morari (1987b) who suggest using logarithmic compositions

as a means of reducing the effect of nonlinearity. Note that for small deviations from

steady state the use of logarithmic compositions merely corresponds to a rescaling
of the outputs and the time constants in terms Yp and Xp are the same as for yp
and zp. This of course means that the linearized time constants derived in this
paper (Eq. 8 and 17) also apply to Yp and Xp. -

However, as shown above, for large deviations from steady state the responses

are different, and it seems that the response in terms of logarithmic compositions is
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closer to first order than when using yp and zg. We can not explain this from (5),
which was derived in terms of absolute compositions, and our only justification is
that the linear response at each operating point is approximately first order (from
(5)) and that the use of logarithmic compositions makes the linear response only

weakly dependent on operating conditions (Skogestad and Morari, 1987b).
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NOMENCLATURE

B - bottom product rate (kmol/min)

D - distillate (top product) rate (kmol/min)

F - feed rate (kmol/min)

I, = Dyp(1 — yp) + Bzp(1 — zp) - "impurity sum”

L - reflux flow rate (kmol/min)

Mgpg - holdup in reboiler (kmol)

Mp - holdup in condenser (kmol)

M; - holdup on tray i (kmol)

M; =N | M; - total holdup of liquid inside column (kmol)
N - total number of theoretical trays (incl. reboiler)

Ny - feed tray location from bottom (feed enters above this tray)

S = %% - separation factor

V - boilup from reboiler (kmol/min)

zp - mole fraction of light component in bottom product

z; - liquid mole fraction of light component on stage i

T = Zfiz z;M; /M1 - average liquid mole fractiom inside column

Yyp = zp - mole fraction of light component in distillate (top product)
y: - vapor mole fraction of light comonent on stage i

zr - mole fraction of light component in feed

o= f—l_——y%—%l‘—%_:) - relative volatility

Tc - dominant time constant for change in holdup (min)

Tsc - Shortcut estimate of 7,

Tje = 1/A;(A) - time constant corresponding to the j-th smallest eigenvalue of A
in Eq.(10) (min)

7a = M /L - mixing time for column (min)

Subscripts

B - bottom product

D - distillate product

I - inside column

f - final steady state

0 - initial steady state

¢ - tray no. numbered from bottom ( i=1 for reboiler, i=2 for first tray,
i=N for top tray, i=N+1 for condenser)
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APPENDIX. Formula for z;.

The expression (12) for Z; is derived by assuming
(i) All trays have the same holdup (Assumption 3).

(ii) Constant relative volatility c.

" (iii) The shape of the composition profile is the same as that derived from Fenske’s

exact equation for total reflux
Yi / 1—y; — o
zp/l1—zp
(iv) This composition profile may be approximated by straight lines:

zp<z; <w: Z~0 (: < Ny)
w<p;<l—-w: T=x=05
l-w<z;<yp: ZIwx1 (i>Ni_y)

(Nw and Ni_,, are defined by the above equations, w is a fixed number.)

The average composition in the column from (iii)

1 Nmin
;= ——— z;di
Nm'in -1 /i‘=1

Using (iv)

1
I~ m[05(N1_w - Nw) + 1-0(Nmin - Nl—-w)]

Here Ny,iy, Ny and N;_,, are found using (ii)

InS Ingegisee Inigeloes
Nminz—, Nwz—_3'_+1, Nl—w:_—5+1
Ina Ina Ina
This gives
Inizw
0.5(Niww — Nu) = %
( 1=w ) Ina
In-¥e_ _ pl=w _4
Nmin - N -_w )] = 1-vp =
( 1-u) Ina

Note that w drops out when this is substituted into (A1) and we get

1-yp B

= InS—Ina InS lan‘;—D

Ing¥8— —ina  Ing¥2- ( lnl“_mb.) -1
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Chapter XI

UNDERSTANDING THE DYNAMIC BEHAVIOR
OF DISTILLATION COLUMNS
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Abstract

The dynamic behavior of a distillation column is approximated with a two time
constant model. The response to changes in the external flows is approximately first
order with time constant 7;. This dominant time constant can be estimated using a
simple mixing tank model for the column. The response to changes in the internal
flows is also first order, but its time constant 75 is generally significantly smaller
than 74.

The condition number and the RGA are smaller at high frequency than at
steady state. Most models presented in the literature do not take this into account.
The two time constant model does predict this behavior, and 74 can be estimated
by matching the RGA at high frequency. Finally, it is shown that the effect of
nonlinearity is almost eliminated if logarithmic compositions Inzg and In(1 — yp)
are used. In particular, this applies to the initial response which is of primary

importance for feedback control.
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1. INTRODUCTION

The dynamic response of most distillation columns (Fig. 1) is dominated by
one large time constant, which is nearly the same, regardless of where a disturbance
is introduced or where composition is measured. This is well known both from plant
measurements (McNeill and Sachs, 1969) and from theoretical studies (Moczek et
al., 1963). Furthermore, the value of this time constant is largely unaffected by the
flow dynamics.

The composition dynamics are described by one differential equation for each

tray in the column

d
‘(E(Mixi) = Lit1Tiy1 + Vic1yio1 — Liz; — Viy; (1)

It is somewhat surprising that the response of a distillation column with, for exam-
ple, 100 trays, corresponding to at least a 100th order model, may be adequately
described by a simple first-order model. Skogestad and Morari (1987a) and others
(Moczek et al., 1963, Wahl and Harriot, 1970) have studied this in more detail.
They found that the main reason for the low-order behavior is that all the trays
have essentially the same composition response. This leads to the conclusion that
the distillation column can be approximated by one large mixing tank, for which
the time constant 7y, (subscript ¢ denotes change) is given by

~ A(Ef\;lng,-)
le ™ DfAyD +BfA:l:B

(2)

T

_ “change in holdup of one component inside column(mol)”

“imbalance in supply of this component (mol/s)”
Here A represents the difference between the final (subscript f} and initial (subscript
0) steady state. For example, Ayp = yps — ypo. The agreement between (2) and
observed responses is very good in many cases. This is illustrated by Fig. 2A and
2B which show the response to small increases in reflux L (V constant) and boilup

V (L constant) for column A. This column has 40 theoretical trays plus a condenser
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Figure 1. Two product distillation column with single feed and total condenser. Details

are shown of the flows and holdups on a plate.

and the exact model is 41st order. This response is compared with a first order

response with time constant 194 minutes corresponding to the linear model

(dyp) __ 1 (0.878 —0.864) (dL) 3)
dzp 1+ 194s \ 1.082 —1.096 dv
The agreement is so good that the dotted line corresponding to this approximation
is hardly visible. The value of the time constant (194 min) was found using (2)
and in this case it is almost identical to the inverse of the smallest eigenvalue of the
linearized model (see below).

For high-purity binary separations and small pertubations to the column (linear
model valid) Skogestad and Morari (1987a) have derived an analytical expression

for (2)
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*10-5 wig~5 w10-5
10 0 1.5
8 Azp ~2 1 Ayp
. Ay « 0.5
D -
Ayp °
‘4 -6 -0.5
2 -8 ~1 Azg
0 -10 -1.5
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TIME (min) TIME (MIN) TIME (min)
A: AL/F°=00001, AV =0 B: AV/F°=00001, AL=0 C: AL/F°=AV/F°=0.001

Figure 2. Column A. Responses to small changes in external (A & B) and internal (C)
flows. Dotted lines for A & B: First order model (3) with time constant r; =
194 min. Dotted line for C: First order model (8) with time constant 7o = 15
min. (M1/F = 0.5 min)

M Mpyp(1—yp) A Mpzp(l —z5)
e LS. Lt 1, + 1, (4)

Here My is the total holdup inside the column, and Mp and Mp are the condenser

and reboiler holdups. S is the separation factor

e

and I, is the “impurity sum” defined by

Ia =DyD(l—-yD)+Bz3(1—xB) (6)

The first term in (4}, which represents the contribution from changing the holdup
inside the column, dominates for columns with both products of high purity (1—-yp
and zp both small). Note that I, may be extremely small in such cases resulting in
very large values of 7;.. This agrees with the observations of Fuentes and Luyben
(1983). The reader is encouraged to study the paper by Skogestad and Morari
(1987a) which discusses the use of (2) and (4) in detail.

It is clear from the derivation of (2) and (4) (Skogestad and Morari, 1987a)

that 7,. applies only to cases when there is a change in the total holdup Y M;z; of
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some component in the column. Furthermore, from the total component material

balance (Fzr = Dyp + Bzp) we derive
D,«Ayp + BfA.’BB = A(FZF) - yDoAD - ID()AB (7)

From (7} we see that the denominator of (2) is non-zero only if there is a change
in the A(Fzr), AD or AB, that is, if there is a change in the external material
balance. If we change the internal flows only (for example, increase the reflux L
and the boilup V keeping the product flows B and D constant), then the numerator
of (2) will be small, and the denominator will be identically zero. Consequently, (2)
does not apply in such cases.

This is indeed confirmed by simulations. Fig. 2C shows the response to a
simultaneous increase in L and V (D and B constant). The response is much faster
than expected from the value 71, = 194 min. In fact, an excellent fit is obtained

using a time constant 7, = 15 min, corresponding to the linear model

o dyp) 1 0.014
dL = dV : (dzB)‘"1+1ss <__O.014)dv (8)

(The gains 0.014 and -0.014 are derived from (3) using dL=dV.) Consequently,

similar to what is known for the steady state (Skogestad and Morari, 1987b), there
is a fundamental difference in column behavior for changes in external and internal
flows. The objective of this paper is to study this in more detail, and to develop
simple column models which display this behavior.

All results in this paper (gains, RGA-values, etc.) are for reflux L and boilup V
as manipulated inputs. Distillate (D) and bottom flow (B) are manipulated to keep
constant holdups in the accumulator/condenser (Mp) and the column base/reboiler
(Mp). This does not imply that the LV-configuration is the preferred choice for
control purposes. The choice is made because the column model is most naturally

written in terms of L and V as manipulated inputs (see comments below).
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Column =zp a N Nrp 1-yp zp D/F L/F

05 15 40 21 0.01 0.01 0.500 2.706
01 15 40 21 0.01 001 0.092 2.329
05 15 40 21 0.10 0.002 0.555 2.737
0.65 1.12 110 39 0.005 0.10 0.614 11.862
0.2 5 15 5 0.0001 005 0.158 0.226
05 15 10 5 0.0001 0.0001 0.500 0.227
05 1.5 80 40 0.0001 0.0001 0.500 2.635

QIO QE™

Table 1. Steady-state data for distillation column examples.

Column G5, AGS,) Aus(Grv)
4 ( 18078'.82 :180%2) 141.7 35.1
B (s Zeox) w2 413
¢ ( Y020, :}2;‘;) 31.3 7.53
D <§‘; g?g :g‘;g) 234.9 58.7
E 2;4; :12321.'55> 36.7 2.82
F (159027:;) :1;)223;) ) 2014 499
¢ ( T 06 1816345%> 6030 1673

Table 2. Steady-state values of the scaled gain matrix, the condition number and the

1,1-element of the RGA.
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Assumptions. The seven columns studied previously by Skogestad and Morari

(1987a,f) are used as examples. Steady-state data for these columns are given in
Table 1. For all examples we assume constant molar flows, no flow dynamics {con-
stant holdup), and binary mixtures with constant relative volatility. A nonlinear
model based on these assumptions is given in Appendix. A linear (N-+1)th order
model (N theoretical trays plus the condenser) is obtained by linearizing the non-
linear model at the nominal operating point as shown in Appendix. This results in
the following linear model

(2) =6 (G ). Guvld)=cler-4)B )

Based on this linear model we derive the steady-state gain matrices Gy (0) =
—CA™!B as given in Table 2. The poles of Gy (s) are equal to the eigenvalues
of A. The time constants 7, and 79, corresponding to the two smallest eigenvalues
of A are given in Table 3. The assumed holdup on the trays is M;/F = 0.5 min
in all examples (except for Table 3 and 4 and Fig. 4 which have M;/F = 1 min).
The holdups in the reboiler and condenser are also M;/F = 0.5 min, unless stated

otherwise.

2. A SIMPLIFIED DYNAMIC MODEL BASED ON INTERNAL AND

EXTERNAL FLOWS

In this section we neglect the flow dynamics by assuming constant holdups.
However, in order to allow us to easily extend our models to include flow dynamics
it is preferable to write the dynamic model in terms of reflux (L) and boilup (V)
as inputs. The reason is that L and V are the only flows which affect the product
compositions immediately. The immediate effect of a change in one of the product
flows (D and B) is to change the condenser or reboiler holdup which has no direct
effect on composition. Therefore the response to changing D and B depends strongly

on the tuning of the level loops.
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The steady-state model using L and V as manipulated inputs is

dyD) _ (91 912) (dL>
dzp ga1 922 av

In order to model explicitly the difference in dynamic behavior between internal
and external flow changes we will consider V' and D as manipulated inputs for the

moment. Assuming constant molar flows we find

(dyp) _ (gu 912) (dV —dD) _ (911 + 912 —'911) (dV) (10a)
dzp g21 922 av go1+ g2z —g21 daD

To get a dynamic model we make the following assumption which will be justified
by examples and theoretical arguments later:

Modelling assumption. The reponse to changes in the external flows (D
in (10a)) ts first-order with time constant 7. The response to changes in tnternal
flows (V in (10a)) s first-order with time constant 7.

With this assumption we derive the following dynamic model from (10a):

(dyD ) _ (gu +9g12 —9u ) ( dV /(1 + 728) (108)
dzp g21+ 922 —g21 ) \dD/(1+ 7y5)
Switching back to L and V as manipulated inputs, and assuming constant holdups

(perfect level control) and constant molar flows such that dD(s) = dV (s) — dL(s),

we finally derive

gii gi1+ g1z gi1
dyp = dL —
yp 1418 +< 14 758 1+Tls)
g21 go1 + g22 g21
drpg = dL — av 11
T8 1+7s8 +<1+rzs 1—}—713) ( )

This simple model is obviously not an accurate description of all distillation columns,
but it is adequate for controller design. The model is best when the reboiler and
condenser holdups are small as discussed in Section 9. The model’s main advantage
is its simplicity and that it gives a reasonable description of both the low- and

high-frequency behavior.
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71 is generally close to the time constant corresponding to the smallest eigen-
value of A, and may be estimated as shown above (Eq. (2)). 72/7; can be estimated
by matching the high-frequency behavior as shown in Section 7. 7y is also simple
to obtain from plant data or simulations. 72 may also be obtained from simulations
(without flow dynamics) of changes in the internal flows (Fig. 2C). In most cases it
will be very difficult to obtain 75 from plant data, since it is almost impossible, in
practice, to carry out test runs for changes in the internal flows without changing the
external flows (because of uncertainty and disturbances in feed rate, boilup, etc.).
Also note from Fig. 2A and B that the small time constant (73) is not detectable
from the response to changes in reflux (L) and boilup (V). Both these responses are
almost perfectly fitted by a first order response with time constant ;.

Example. Column A. With the values 7; = 194 min and 75 = 15 min proposed in

Section 1 (11) becomes

(dyD ) ' 0.878 —0.8641E1ZL (dL> )
dep ) 1+194s | 087 _1006ktizae | \ 4V

The agreement between this model and the exact 41st order model is excellent for
small perturbations as seen from Fig. 2. The relative error 5((G — G)G~1) (here &
is the maximum singular value) between the two time constant model (12) (denoted
by @) and the full linear 41st order model (denoted by @) is shown as a function
of frequency in Fig. 3. It is clear that & (12) is an excellent approximation of G up
to about a frequency of 1 min~!. On the other hand, the one time constant model
(3) which has 7y = 7, = 194 min, gives a very poor approximation as seen from the

dotted line in Fig. 3.

1+12.1s

1+15s and

Note that without the seemingly negligible “correction terms”
lli_{_l—f—;:—’ the responses to changes in the internal flows would have a time constant
of 194 min instead of the observed 15 min (Fig. 2C). In the literature each transfer

matrix element in (11) is often approximated by a first-order lag with time delay
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2
10 ~ T
—r G(Eq. 3)
Wy 10t AT T
7~~~ R
] R
| 1. '.0' /'7
& 107 v G(Eq. 12),
5 o
1072
10741073107 %107 1. 10% 10°
w(min™?)

Figure 3. Column A. Relative difference between low order model G and 41st order plant
G (9). The two time constant model (12) provides an excellent approximation,

while the one time constant model (3) is poor at high frequency. (M;/F = 0.5

min)

(ge~%%/(1+7s)) where g is obtained by matching steady-state data. It is clear that,
unless special care is taken, it is very unlikely that such a model will be able to
capture the difference in time constants between external and internal flows.

It is important to note that if we consider each transfer function element in-
dependently, then an excellent fit is obtained with the one time constant model (3)
(Fig. 2A and B). Consequently, each response by itself is essentially first order with
time constant 7y = 194 min. However, in order to capture the multivariable aspects
of the model, for example, a simultaneous increase in L and V (change in internal

flows), the two time constant model (12) is needed.

3. SINGULAR VALUES, THE CONDITION NUMBER AND THE

RGA

In this section we introduce some tools which are commonly used when evalu-

ating multivariable systems.
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Singular Values. The maximum and minimum singular values are the maximum

and minimum gain of the plant

_ |Gull2 _

7(G) = max —— = ||GY||2, Tlla =1 13

(6) = max 2 = |Gola, lo] (130)
. [|Gullz

o(G) = min ——— = ||Gull2, |lvllz=1 13b

(@) = min to = [Gulls, el (135)

(Both of these are functions of frequency, but this is not shown explicitly to sim-
plify notation). || - ||2 denotes the usual Euclidean norm. For distillation columns
Skogestad and Morari (1986b) have shown that at steady state the most sensitive
input direction ¥ (corresponding to the maximum gain) is obtained by changing the
external flows, and the least sensitive input direction v is obtained by changing the
internal flows. Consequently, with L and V as manipulated inputs the most sensi-
tive direction is found for dL = —dV and the least sensitive direction is obtained

for dL = dV. This also holds at higher frequencies as we will show below.

Condition Number. The condition number is defined as

1(G(jw)) = 8(G(w))/e(G(5w)) (14)

It is possible to define 4(G) in terms of other norms, but (14) is most common. A
plant with a large value of 4(G) is called ill-conditioned. Physically this means that
the gain of the plant is strongly dependent on the input direction.

Scaling. The singular values and condition number are scaling dependent. For cor-
rect interpretation of these quantities the plant should be scaled such that outputs
are of comparable magnitude and the inputs are of comparable magnitude. Let y3
and z% denote the nominal product compositions. To get outputs of comparable

magnitude scale each output with respect to the amount of impurity, that is,

Yp IB
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The inputs are scaled with respect to feed flow rate (or equivalently set F° = 1).

In terms of scaled variables the model (9) becomes

dy3\ _ (dup/1-v3\ _ .s dL/F°
(dxg ) - ( dzg/z$ =GLv(s) dV/F° (16a)
where the scaled gain matrix is

£ o0
Giv(s) = ( 1-0,,,, F_) Grv(s) (160)

Tp
Note that the output scaling (15) is automatically obtained if we use logarithmic

(relative) compositions since

dln(l—yD)=*10_i;w;D and dlnsz?—; (17)

There are also other significant advantages of using logarithmic composition as we

will discuss in detail later.

Minimum Condition Number. The minimum condition number is the value of v(G)

obtained when minimizing over all possible input and output scalings

7*(G) = min 7(5.GS2) (18)

14232

Here S, and S, are diagonal matrices with real, positive entries. A large value of
~*(G) has been suggested to imply a plant which is fundamentally difficult to control
(Grosdidier et al., 1985). However, obtaining +*(G) numerically is not simple.
Fortunately, there is a very close relationship between v*(G) and the magnitude of
the elements in the RGA. The RGA is defined below and is easy to compute. Thus,
for practical computations, we recommend using the RGA rather than v*(G).

RGA (Bristol, 1966). For 2 x 2 plants the RGA is defined as

RGA = [/\11 /\12] _ [ Al 1—1\11] (19a)

Aai Az 11— An
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where

1 . giz2g21 ..
Ay = —— k(jw) = Jw 19b
n=me Aliw) = 2R o) (195)

Define the 1-norm of the RGA as the sum of the absolute values of the elements

IRGAlL =) ijl = 2[A01] +2/1 = Ay (20)

i3
|RGA||; and +*(G) are always close to each other in magnitude for 2 x 2 plants as
seen from the following inequalities (Nett et al., 1986, Grosdidier et al., 1985)
IRGAlL ~ 5 <7*(6) < |RGA] (21)
The difference between ||RGAl|; and v*(G) is at most one (since 4*(G) > 1) and
goes to zero as y*(G) — oo.
A plant with large RGA-elements is fundamentally difficult to control (Skoges-
tad and Morari, 1986b): To have tight control of a multivariable plant it is desirable

to use a controller which inverts the plant. However, such a controller is extremely
sensitive to uncertainty with respect to the magnitude of the inputs if the RGA-
elements are large. In particular, control problems are expected if the RGA has
large elements around the crossover frequency (the frequency corresponding to the
closed loop time constant). Consequently, the high-frequency behavior of the RGA
is as important for evaluating potential control problems as the steady state value.
We will show that the simple model (12) predicts correctly the value of the RGA
at both low and high frequencies.

Importance of High-Frequency Behavior. For control purposes the behavior around

- crossover (the frequency corresponding to the inverse of the closed-loop time con-
stant) is more important than the steady-state behavior. Consider the sensitivity
functions S which is the closed-loop transfer function between disturbances (d) and

reference signals (r) and the errors (y —r):

e=(y—r)=S(d-r), S=(I+GC)™! (22)
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If the controller has integral action (C(0) — o0), then perfect disturbance rejection
is obtained at steady-state (S(0) = 0). However, the speed of the response is
determined by the closed-loop bandwidth, which is approximatly the frequency at
which &(S) reaches one. To improve the speed of the response (and obtain better
performance) it is therefore important to have a good model of the plant in this
frequency region. The steady-state behavior is not too important by itself, unless

it reflects the plant behavior around crossover (which it usually does).

4. DISTILLATION COLUMN EXAMPLES

In this section we study the example columns in Table 1 and we will make
some observations which will be explained in subsequent sections. Results obtained
with the “full” linear model (9) will be compared with the simple two time constant

model (11).

4.1 Singular Values and RGA as a Function of Frequency

It is well known that high-purity columns are ill-conditioned, at least at steady
state (Skogestad and Morari, 1987a). The reason for the ill-conditioning is that
the external flows have a much larger effect (“gain”) on the product compositions
than the internal flows. This was illustrated in Section 1 for column A which is a
high-purity column with 1 —yp = zg = 0.01: At steady state the effect of changes
in the external flows on yp is (Qyp/dD)r = —0.864, while the effect of changes in

the internal flows is only (dyp/dL)p = 0.014.

What happens at higher frequencies ? In the example in Section 2 we found that
the time constant for changes in the external flows (7;) was much larger than that
for changes in the internal flows (72). Furthermore, since the external and internal
flows correspond to the most (¥) and least (v) sensitive directions, re§p_ectively, we
expect the condition number to be smaller at higher frequencies. This is indeed

confirmed by the results presented below.



- 330 -

The singular values and ||[RGA||; for the seven columns are shown as a function
of frequency in Fig. 4. The condition number fy(G'S ) is not shown, but its value
is equal to the difference between the curves for 5(G°) and g(G¥) and it is close
to ||[RGA||1 for our examples. The most interesting fact to note from Fig. 4 is
that the value of the condition number and the RGA is generally much lower at
high frequencies. In particular, this is the case for columns A, B, F and G which
have both products of high purity. We also note that the value of ||[RGA||; around
w = 0.1 min~! (which is probably close to the closed-loop bandwidth) does not
depend very much on the purity of the products. Columns A, B, C and G all have
|RGA||; ~ 12 at w = 0.1. (The reason, as shown in Section 7, is that L /F is similar
for these columns.) On the other hand, the value of |[RGA||; at steady-state is
determined mainly by the purity of the least pure product: The steady-state value
of ||[RGA||; for columns A, B, C and G vary in magnitude from 28 (column C) to

6690 (column G) depending on the purity of the least pure product. This agrees
with the results of Skogestad and Morari (1987b) (also see (52) below).

The implication for control purposes is that an analysis based on steady-state
data only can be misleading. For example, for column A ||RGA||; is about 140 at
steady state, which indicates a system which is fundamentally difficult to control.
However, at high frequency it is only about 12, which seems acceptable. Thus,
control of this column using L and V as manipulated inputs is simpler than might

be expected from the steady-state data.

Steady-state analysis can be particularly misleading for columns with both
products of high purity. The reason is that the steady-state value of the condi-
tion number (and |[RGA||;) is very large for such columns (Skogestad and Morari,
1987c). At the same time, the dominant time constant (r1) is also very-large (recall
comments following (6)). Since generally 7, does not depend very much on the

product purities (see (58) below), it will be much smaller than 7. This implies that
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7(G) and ||[RGA||, will be much higher at steady state than at high frequency for
columns with both products of high purity.

This is confirmed by the results in Fig. 4 for columns A, B, F and G. On
the other hand, note that the variation in ||RGA||; with frequency is much less for
columns C, D and E which do not have both products of high purity. From the
RGA-values in Fig. 4, the only column which seems to be fundamentally difficult
to control at all frequencies using the LV-configuration is column D, which has
I|IRGA||1 = 50 at high frequencies. Column D is similar to a Cs-splitter and has
110 trays, L/D = 19.3, 1 —yp = 0.005 and zp = 0.10. The large value of || RGA||;
at steady state may lead to a sluggish return to steady-state also for columns A, B,

F and G (Skogestad and Morari, 19874).

4.2 Comparison with Simplified Model
The dotted lines in Fig. 4 are the values obtained with the simple two time

constant model (11). The steady-state gain matrices needed for (11) are given in

Column 11 =14, Tle Ty  Toe

A* 388 387 30 24
B 500 504 30 23
C 49 58 20 16
D 308 300 60 47
E 165 142 60 16
F 5992 5992 8 9
G 40667 40664 60 40

Table 3. Time constants 7; and 72 (in min) used in model (11) when computing dotted
lines in Fig.4. For comparison are shown 7y, estimated from (2) for a small
pertubation in L (Skogestad and Morari, 1987a) and 75, (the inverse of the
second smallest eigenvalue of A). All time constants are for M; /f‘ = 1 min.
*) Note that r; = 194 min and 7, = 15 min are used for ezamples with M;/F

= 0.5 min.
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Table 2 and the time constants 7; and 75 are given in Table 3. 7; was chosen to be
equal to 73, (the inverse of the smallest eigenvalue). The value of 2 was adjusted
by trial and error to get a good fit to the singular value and ||[RGA||; plots in Fig.
4. In many cases 75 is close to inverse of the second smallest eigenvalue (72.).
We see from Fig.4 that the agreement between the full-order model and the

simple two time constant model (11) is very good.

4.3 The Effect of Nonlinearity

For column A we know that the linear model (12) provides a very good repre-

sentation of the full-order linear model (9). However, distillation columns are known

to be strongly nonlinear (e.g., Moczek et al., 1963, Fuentes and Luyben, 1983). Is
(12) still useful? We will return with a more complete discussion of these issues in
Section 6. Here we show some examples which indicate that distillation columns
are not as nonlinear as one would tend to believe — at least if we consider the initial
response — and a linear model may be adequate. This is illustrated by Fig. 5 and
6 which show the response to small and large changes in the external (Fig. 5) and
internal flows (Fig. 6): The initial responses é&"f and AT?— are almost independent
of the magnitude of AL, although the steady-state behavior is entirely different.
AYD and A2B are the responses to a unit change in AL, and we will call them the

AL AL

unit responses. Fig. 6 indicates that the initial unit response is independent of the

magnitude of AL and AV.

However, are these initial unit responses also independent of operating con-
ditions? Within a linear framework, one way of studying the effect of changing
operating conditions, is to study how the linearized model changes with operating
conditions. To this end consider column A and C. These actually represent the
same column, but at two entirely different operating conditions. Thg product com-
position for column A are 1 — yp = zp = 0.01. Column C is obtained by changing

D/F from 0.500 to 0.555, which yields 1 — yp = 0.10 and zp = 0.002. The steady-
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state values of the scaled gains are drastically different for columns A and C. (The
unscaled gains are even more different). The steady-state values of the condition
number and the RGA (Table 2) and the time constants . and 72, (Table 3) are
also very different. However, note from Fig. 4 that values of 5(G°),g(G%) and
||RGA|, are quite similar at high frequencies. This is also clear from Fig. 7 which

shows the relative difference between the linearized scaled models for column A and

C; the models are almost identical at higher frequencies. This implies that, even
though the steady-state behavior is quite different, the initial response in terms of

scaled (logarithmic) compositions is similar. In a separate study (Skogestad and

Morari, 1987d) we show that a single linear controller, which is designed based on

the linear model for column A, also yields good performance at the operating con-

dition corresponding to column C. In these simulations In(1 — yp) and Inzp were

used as controlled outputs instead of yp and zp.

The objective of the reminder of the paper is to explain the observations made

in this section.

5. HIGH-FREQUENCY BEHAVIOR (INITIAL RESPONSE)

The main approach to modelling the dynamic behavior of distillation columns
in the literature (including our own work) has been to use a model which matches
the steady-state behavior. In this case the model often represents the condition
number and RGA well at low frequency, but poorly at high frequencies. The rea-
sons for choosing this approach are i) that steady-state data are easily available
from shortcut models or simulations and ii) that the steady-state behavior reflects
the behavior at higher frequencies and is therefore useful for screening design alter-
natives for control purposes. However, for a more careful analysis the high-frequency
behavior should also be considered. In fact, Rademaker et al.(1975, p. 137) suggest
using a model which matches the high-frequency behavior (including the RGA),

but which may be poor at steady-state. The preferred approach is clearly to use a
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model which matches both the high- and low-frequency behavior. Deriving such a
model was one of the objectives of this work and, as we will show, the simple two

time constant model (11) does indeed satisfy this objective.

5.1 Slope of Initial Response
Assume constant molar flows and constant holdup. The component material

balance for tray i at steady-state is
M;i; = 0= Li(ziy1 — z:) + Vi(vi-1 — ¥:) (23)

Assume a step change is made in L; and V; such that the flows for ¢t > O are
L;+AL; and V; + AV;. Immediately following this change the values of the product

compositions are unchanged. Thus we ha;re for t = 07%:
M;i; = (L + AL)(ziv1 — zi) + (Vi + AVi) (yi-1 — wi) (24)
Subtracting the steady-state (23) yields (Rademaker et al., 1975, p.129)
(t~0): M;z; = (Tiy1 — ;) AL; + (yi-1 — yi) AV; (25)

z; given by this equation is equal to the initial slope of the response for Az;. Note
that (25) is linear in AL; and AV;. This explains why the initial unit responses are
independent of the magnitude of AL and AV as was observed in Fig. 5 and 6. (25)
shows that the pole to zero excess is one at high frequency (neglecting dynamics
involved in changing L and V). We know that for a column with N trays there
are N poles if only the composition dynamics are considered. (25) shows that each
transfer function has exactly N — 1 zeros (Kim and Friedly, 1974). In Section 6 we
will justify that this Nth order transfer function may be well approximated by a

first order model.

5.2 The Effect of Operating Point on Initial Response

We used (25) to explain why
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1) The initial unit response of Az; is independent of the magnitude of AL and
AV. We now want to prove the claim made in Section 4.3:
2) The initial unit response of Az; (Az; may be Ayp or Azp) is independent of
the operating point if relative (logarithmic) compositions are used.
The steady-state relationship (23) may be used to rewrite the expression (25) for

the initial slope of the response.

. Tyl — X L;
i = ———— | AL; — - AV;
7 7, < V. ) (26)
Rewriting (26) gives
z; dlnz; 1 zi41 L;
— = = — —1){AL; — —AV; 27
T3 dt Mi( x; ) ( V; ) ( a)
Alternatively
5&; dln(l - :C.;) 1 1-— Tit+1 L;
—_— == —(1—-———) | AL; — —=AV;
1-— T; dt M1( 1-—- T; ) V, AV (27b)

Consider a binary mixture and let z; denote the mole fraction of light component. It
is easily shown that the near the bottom of the column the ratio %*l—‘ is 1) almost
the same for any tray i and 2) only weakly dependent on operating conditions.
Similarly, the ratio 1—;—_—?—';“{'—‘- is nearly constant near the top of the column. Conse-
quently, if the logarithm of the composition is used then the initial unit responses
are nearly independent of operating conditions and the entire top or bottom of the
column has almost the same response. On the other hand, the slope of the initial
unit response is not independent of the operating point if composition are measured
in terms of mole fractions.

To show that the ratio -"-’—;—BJ:—‘ is nearly constant near the bottom of the column,

assume that the equilibrium line operating lines are linear.

vi = Kpz; - (28)

Vv B
Ziy1=|=) vi+-—zB (29)
M L)z " Lg
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These assumptions are reasonable for high-purity columns. Vg and Lp denote the

vapor and liquid flows in the bottom of the column. Combining (28) and (29) yields

Tit1 = Y_ KB+_B_£§_
z; L B :

The second term is negligible as we go up the column and it is also small near the

bottom for columns with V/B > 1. We get

ZTit+1 14
— ~|—=] K 30
I (L>B 7 (30)

Thus x—;‘fi is 1) independent of the tray location and 2) only weakly dependent
on the operating point (since Kp and (Yf) p are only weakly dependent on the

operating point). Substituting (30) into (27a) yields

Bottom part I; 1 Vv L
. i AP r - = V-
o meag((2), %) (a0 (7),8%) o0

A similar expression is derived for the top part where (1 —y;) = (1 — z;)/Kr

s () (o (7),0) e

Multicomponent Mixtures. (31) was derived under the assumption of binary mix-

tures. It also holds for multicomponent mixtures if i) z; in (31a) denotes the mole
fraction of any light component (such that zp/z; << 1) and ii) £; and 1 —z; in
(31b) are replaced by z, and z, where z; denotes the mole fraction of any heavy
component.

Range of Validity. From the derivation of (31) we see that the approximation is

most likely to hold for high-purity column with large reflux. Note that for the case
of constant relative volatility a we have Kp = Kr = a. This will be used in the
following.

Reboiler and Condenser. (31) does not apply to the reboiler and condenser. Assume

perfect level control, total condenser and let yr denote the vapor composition on
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the top tray. (Note that yr = yp at steady state. Then a derivation similar to that

which led to (25) and (27) yields (t = 0%)

. .’I':B a—1 14
l M —_— = — —
Reboiler = e ((L ) . ALg AVB) (32a)
Condenser : Yp = MAVT =0 (32b)
Mp

For the case Mp = M; we find that & E from (32a) is larger than for the other trays
in the bottom (31a). On the other hand, from (32b) we find that yp is initially
zero because a change in L and V has no direct effect on the composition in the
condenser. However, note from Fig. 5B that the observed initial slope for yp is
not zero (at least not for ¢ > 0.1 min). The reason for the discrepancy are the
“second order effects” (changes in yr) which were neglected when deriving (32b).

For columns with small reboiler and condenser holdup, the following example shows

that (31) may in fact also give a good approximation of the initial response in the
reboiler and condenser. (However, if the holdup is large, then the response for YD
is second order and the initial slope is indeed zero as discussed in Section 9 (Fig.
8)).

Example. Column A. The slopes of the initial unit response obtained using (31a)

and (31b) with M;/F = 0.5 min are

Ip Tp |4 0.01 ,3.21
o T e, s - 5—‘ = . 60
AL = M, (<L>Ba ) (3 711 1) = 0.00 (33a)

) = 0.0042 (33b)

yp _1l-yp . (V/L)z\ _0.01 (- 3.21/2.711
AL M; « 0.5 1.5

These are very close to the observed values in Fig. 5B.

Implications for control purposes. Equations (31) show that the initial response
in terms of logarithmic (relative) compositions is indvependent of opérating point.
Skogestad and Morari (1987c) have shown that the the steady-state gains also are
much less affected by changes in operating points if logarithmic (rather than ab-

solute) compositions are used. Therefore, the effect of nonlinearity is effectively
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counteracted by using logarithmic compositions. The implication of these findings

for control purposes is obviously that
Yp=In(l—yp) and Xp=Inzp (34)

should be used as controlled outputs if significant variations in product compositions
are expected. This has also been suggested previously by Ryskamp (1981). Fur-
thermore, this implies that the simple model (11) will also give a good description
of the nonlinear column behavior if logarithmic (relative) compositions are used.
To this end use (17) and rewrite (11) as follows: |

—d¥p = gi1 dL + 9f1+9192_ g1 dv

1478 14 728 1+Tls)
S S S S
931 951 + 935 951
dXpg = —=>_dL - av 35
P s T e T Tens) (85)

Here ¢7) = g11/1 — ¥%,95% = 911/1 — y%, 05, = g21/1 — 23,95, = g22/1 — =% are

the scaled gains and g;;,7; and 7, are evaluated at the nominal operating point
(vp,2%)-

6. VALIDITY OF FIRST-ORDER MODEL AT HIGH FREQUENCY
In the previous section we derived expressions (31) for the initial response. Is
the simple two time constant model (11) consistent with these predictions? It is not
obvious that this is the case since (11) was derived based on matching steady-state
gains and low-frequency behavior (7, and 72). Let us first consider the individual
elements of the plant. Recall that each element in (11) is approximately first-
order with time constant r; (the effect of 72 on each individual element is usually
negligible). If the initial response for each transfer matrix element predicted by (11)
is indeed consistent with (31), then we may conclude that the time constant r; also
applies to the initial response. The initial slope derived from (11) is (let s — oo

and use L{sdyp} = yp):
21 gautgiz g

gD Ty T3 T dL
D ) _ (36)
B ga1 gaitgzz g2 av

T2

1
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As we will discuss in Secton 9, the simple model (11) (and (36)) applies to the
case with small reboiler and condenser holdups. In this case the predicted initial
response obtained from (31) (recall comments following (32)) is

(1 -yp)( - ) —(1—yp)(1 - 2z (L),

(%)% v, | (@)
tp) M; av
zp ((f)pa—1) —2z5 ((£)pa—1) (#)s (37)
Example. Column A. Using (36) and (12) we derive
gp\ _ (0.0045 —0.0036 (38)
zp /= \ 0.0056 —0.0065
From (37) with M;/F =0.5 min
gp\ _ /00042 -0.0036 (39)
g / \0.0060 -0.0069

The consistency between (36) and (37) is excellent for this particular example. The
objective of the following derivation is to show that is the case also in general — at
least for high-purity columns with L/V close to one.

General derivation of consistency between (36) and (37)

Consider the 1,1-element £ in (36). The objective is to show that it is close
in magnitude to -I:MH‘-‘Z(I - IK%)l) in (37). (Similar derivations hold for other
elements). Assume (i) constant molar flows, (ii) constant relative volatility, (iii)
negligible condenser and reboiler holdup, (iv) equal holdups M; on all trays, (v)
large reflux (L/V close to one) and (vi) that the effect of changes in the separation
factor S = ?—%’éﬁ can be neglected when evaluating the steady-state gains. Note
that assumption (iii) is needed anyway in order for (36) and (37) to be valid. In
practice, assumption (v) is the same as assuming a close to one (see (55) below).
Assumption (vi) is most likely to hold for high-purity columns. Using assumptions

(i) and (vi) we derive (Skogestad and Morari, 1987b)

- (@) _(-yp)ypyp—2z8) _1l-ya
v

I, a3 (40)
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where I, is defined by (6). Similarly, assumptions (i)-(iv) yield (see (4) above)
(Skogestad and Morari, 1987a)

NM;
I,InS

71 = (41)
Combining (40) and (41)

g1 _ (1-yp)InS

T1 NM,' (42)

A good approximation for In S when assumptions (i) and (ii) hold is (Skogestad

and Morari, 1987f)
(L/V)r
(L/V)B

Assume that (L/V)r ~ (V/L)p are close to one (Assumption v). Then

InS=Nha+—In

N
> (43)

1_1;75: Ina—In(V/L)r ~1+a-1—-(V/L)r = a— (V/L)r

Substituting this into (40) yields

Bt (- ()) S ()

Except for the factor a, which is close to one, this is identical to the 1,1-element of
(37).
We should also note from this derivation the strong correlation between the

scaled steady-state gain and the dominant time constant (see (42) above)

(45)

It is this correlation which makes the initial response in terms of scaled (relative)

compositions nearly independent of operating conditions.

An alternative way of estimating 7;. Finally, note that if we assume that the entire

response is approximated well by a first order model, then the expression (37) for

the initial slope can be used to estimate 7; (rather than using (2)). This approach
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is suggested by Rademaker et al. (1975, p. 137). For example, matching yp/dL in
(36) and (37) we derive

gu _1l-vo <1 (V/L)T)

T1 M,: [s4

In terms of scaled gains (g7, = ¢11/1 — yp)

g1, M; (46)
(The subscript i on 7; denotes that it is derived by matching the initial responses).
Other relationships result if we try to match other elements, but the resulting 7y;
is about the same. Because condenser holdup was neglected when deriving (37),
M; in (46) represents the holdup on a plate in the column. 7y; computed from
(46) is compared to 71, (the dominant time constant corresponding to the largest
eigenvalue) in Table 4. As expected 7y; and 7y, are very similar for columns with
high-purity and/or large reflux. For these columns (A, B, D and G) we conclude
that the composition response is indeed well approximated by a first order model.
For cases with 7, > 7. the initial response is somewhat slower than predicted
by 71, indicating a higher-order initial response. However, the difference between
T1i > Tie is at the most a factor of two for the seven columns, and the assumption
regarding first-order model is justified.

In this section we have shown that the magnitude of each individual element
in (36) is similar to that derived from the initial response (37). We used this to
conclude that each transfer function element in the plant is approximately first order
with time constant 7. However, for multivariable control the relative magnitude
of the elements, for example, as expressed by the RGA, is important. In Section
7 we use (37) to estimate the high-frequency RGA-values. These Va,l:u(‘as should be
consistent with those obtained from the two time constant model (36), and this may

be achieved by adjusting the value of 7, in (11). This is discussed in Section 8.
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Column 7, Tii
Eq.(46)

A 388 412
B 500 569
c 49 81

D 308 405
E 165 308
F 5992 13655
G 40667 41715

Table 4. Time constants (min) 7;, corresponding to largest eigenvalue and 7;; obtained
by matching initial response (46). r1; > 71, indicates that the initial response

is higher than first order (M;/F = 1 min).
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7. ILL-CONDITIONING AT HIGH FREQUENCY
7.1 Most Sensitive Direction

The high-frequency behavior estimated from the initial responses (37) is

dyp
i-yo 1 | kT ~kr (%) 7 <dL )
s L (
v

kg ’“kB( )B i

TB

with kr = 1 — Dﬂfk and kg = (%)B a — 1. Recall that at steady state the
maximum gain is found when dL = —dV corresponding to changing the external
flows, and the minimum gain is found when dL = dV corresponding to changing
the internal flows. The same also holds at high frequency for most columns as is
shown next.

We will use (47) to show that at high frequency dL ~ dV defines a direction
corresponding closely to the minimum gain. (This will prove that dL = —dV
corresponds to the maximum gain since (i) and (_11) are orthogonal). From (47)
we see that the minimum effect on yp (zero) is obtained when dL/dV = (&)r.
Similarly, the minimum effect on zp (zero) is found when dL/dV = (-{;—) p- Note
that (é)T <1and (-‘I;’-) p > 1. Consequently, the minimum gain (effect on yp and
zp) is obtained for (i,‘r—’-)T < %VL < (é’-) p- For columns with large reflux this clearly
gives dL/dV = 1. Also, note that if the feed is liquid, then (%) 5= (TI;’)T + §
Thus, with the possible exception for columns with small values of V/F, we will
always find the minimum gain for dL ~ dV. Since the simple model (11) yields the

maximum gain for dL = dV at all frequencies, this provides a further justification

for using (11).

7.2 Estimate of the RGA at High Frequency

We want to estimate A1y = (1 — «)~! at high frequency. Note that

. 921/922 .
Kijw) = ———{jw
( ) 911/912(J )
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Column [|RGA(co)||l; 4% +2
observed  Eq.(51)

A 12.83 12.82
B 11.32 11.32
B C 12.95 12.94
D 49.10 49.44
E 2.90 2.90
F 2.91 2.91
G 12.54 12.54

Table 5. Observed (using “full” linear model (9)) and estimated values of IRGA||; at
high freqency (w = oo). The agreement is amazing.

where
_g_g_l_ — (a:l:B/aL)v and & — (ayD/aL)V
g2z (9zp/3V)L gi2 (Oyp/oV)L

At high frequency these ratios are given by the ratio between the slopes of the initial

(48)

response of zp (and yp) to changes in L and V. From (31a) and (31b) we get (these

apply to the entire bottom and top part of the column)
|4
921 (o) — — (Y-) and 9 (00) = — (—>
g22 L/g gi2 L/r

(1,79~
\"’/‘ )4

(L/V)B

This derivation does not depend on the amount of holdup, and therefore we expect

and we derive

k(o0) = (49)

A11(o0) to be almost independent of condenser and reboiler holdup. For the case
of constant molar flows and feed as liquid (Lgp = Ly + F, Vpr = Vp) we find

k(oo) = Ly /Lp and the RGA becomes

.. _ 1 _ L
Feed liquid : Ar1(o0) = T R(oo) 1+ 7 (50)
~ which gives
L e
|RGA(c0)||1 = 4= +2 (51)

F
For the seven examples the agreement between the RGA-values estimated from (51)

and those obtained from the full linearized model is amazing (Table 5).
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7.3 Variation of RGA with Frequency

From (50) we conclude that large reflux (L/F >> 1) is necessary for the column
to have large RGA-values at high frequency. The RGA-values at low frequency
are mainly determined by the purity of the last pure product. This follows from
the following approximation for A;;(0) for the LV- configuration which applies to

columns with both products of high purity (Skogestad and Morari, 1987b)

1

1
~ 1, (0l S/3L)p (52)

)\11(0)

Here I, = Bzg(1 — z5) + Dyp(1 — yp) depends strongly on operating conditions
and its value is determined by the purity of the least pure product. I, — 0 and
A11(0) — oo when both products are of high purity. (81nS/dL)p shows less varia-
tion with operating conditions as seen from the following approximation (Skogestad

and Morari, 1987f)

Feed liquid : (31n5'> A N
D 2

(53)

Is it possible to have larger RGA-values at low than at high frequencies? This
would require 75 > 7 in the model (11), and thus does not seem likely. A simplified

analysis yields the same conclusion. Substituting (53) into (52) we derive

2L
NI,

Ae(0) ~ 2L+ -1';) (54)

Recall that Ajj(o0) = 1+ TI,.’.- when the feed is liquid. The question is therefore

whether it is possible to have the factor multiplying (1 + £) in (54) smaller than

one. This does not seem likely. At least we must require -ﬁ‘: > (%)m;n. For

columns with constant relatively volatility and feed liquid the minimum reflux ratio

is approximately (e.g., Skogestad and Morari, 1987f) (%)mgn ~ ﬁﬁ For most

columns D =~ Fzr and we derive
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Ly __t
F min ~ a—1 (55)
Furthermore, for a column which is well designed N /Npin =~ 2 (Henley and Seider,

p. 453) where Npin = InS/Ina. The factor multiplying (1 + £) in (54) is then

bounded below as follows:

2L S Ina N 1
NI, nS(e-1)I/F InS-I,/F

The product In S - I,/ F is less than one for most columns, except for cases where

the purities of the products are completely different. However, for such columns

the approximation (52) is poor (gives too small values of A11(0)) and our analysis

is not valid. In fact, we have not been able to find any examples of columns which

exhibit A11(0) < Aq11(o0). 1

7.4 Implications for Control Purposes

For control purposes, it is clearly bad if the RGA-values are large either at
low or high frequencies. We conclude from (50) and (54) that the worst columns
to control using the LV-configuration are those with large reflux and with both
products of high purity. Most well-designed columns have a reflux L /F which is
about 5 to 50% higher than (L/F) i, = 1/a—1 (55). This means that in industrial
columns (which hopefully are reasonably optimal), large reflux flows (and large
RGA-values at high frequency) are observed only for columns with relative volatility

a close to one. Furthermore most well-designed columns have N ~ 2N,,;, and

t+ The column we have found which have A11(0) and A;1(o0) closest is the fol-
lowing: 2z = 0.65,yp = 0.9,z = 0.002,a = 1.12, N = 110, Nr = 39. This yields

L/F = 49.6,X;;(0) = 57.7 and A;4(00) =1+ & = 50.6.
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because Nmin = In S/ In a such separations usually require a large number of trays
(e.g., column D).

To observe large RGA-values throughout the frequency range in a university

column, which usually has few trays, one should use systems with high relative

volatility (to get high-purity products) and operate at high reflux.

8. ESTIMATION OF 7
The ability to estimate the RGA at high frequency (Eq. (49)) suggests that 75
may be estimated by matching the RGA-value at high frequency. x(oco) predicted

by the two-time constant model (11) is

21 (@ataz _ mi) (1+22)-2

K,(OO)Z T1 T3 — g1 71 (56)
mr(Biimm ) (14 8) -2

The ratio 7, /7; may be estimated by equating (56) and (49). For the case of constant

molar flows and feed liquid (49) gives k(o0) = L/(L + F) and we derive

T. L

Feed liquid : \:) 7 (gi? zz) \1 + iﬁ-) (37)
(subscript ¢ denotes initial). This ratio is shown in Table 6 for our seven examples
and is compared with the actual value used in Fig. 4. The agreement is obviously
good since 75 for Fig. 4 was derived partially based on matching the RGA-values.
An analytical formula for 75 is obtained by using the following approximations
which apply to columns with both products of high purity: (i) Gains (Skogestad

and Morari, 1987f)

olnS fdln S ‘
912 21 — Bzg(1—zp) ( ) ’ 922 -1 + Dyp(1 “yD)-(—‘>
D D

gi1 oL g21 oL
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Column 71/T2 (r1/72)
(Table 3) (Eq.(57))

- A 0.077 0.092
B 0.060 0.069
C 0.408 0.420
D 0.195 0.218
E 0.364 0.434
F .00133 .00139
G .00147 .00192

Table 6. Ratio 71/7, used in examples (Fig.4, Table 3) and estimate (57) derived by

matching the high-frequency RGA.

(i) (%3%2) from (52) and (iii) 7. ~ 244 from (4). We derive

. N M;/F F/L
Feed liquid : 7z & 5o i1 L+ = T (58)
zp(l—zp

Note that 5= ~ 1/Inc because most columns have N/N,.;, ~ 2. (58) demon-

strates that 7, is only weakly dependent on operating conditions. The agreement
between (58) and the values for 72 in Table 3 is good. However, for practical calcu-
lations we recommend using (57) to estimate 5, rather than (58), in order to get

the correct high-frequency behavior.

9. THE EFFECT OF REBOILER AND CONDENSER HOLDUP
All examples considered so far have had negligible reboiler and condenser
holdup. However, the responses may depend strongly on the amount of holdup

as seen from Fig. 8: Curve 1 shows the initial response in yp to a small change in

reflux L for a column with M;/F = 0.5 min on all trays. This response is closely

0.878

Tose410L- Curve 2 shows the response with the same

approximated by (3): dyp =
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holdup inside the column, but with Mp/F increased from 0.5 to 32.1 min. The
initial response is significantly more sluggish than estimated from (3). To derive a
better approximation we argue as follows: The composition in the condenser (yp)
is not directly affected by the reflux (L), but only by the composition yr in the
overhead vapor (Vr). (Note that yr = yp at steady-state because of the assump-
tion of total condenser). The effect of yr on yp is given by a first order response
with time constant 7p = Mp /Vr = 10 min. The following approximation to curve

2 is then derived (shown as curve 3)

0.878
- dL
9D = g5 7 1) (1945 + 1) (59)

Fig. 8 shows that this is a much better approximation than (3).

The value of the RGA is hardly affected at all by adding the reboiler and
condenser holdups (Fig. 9). This confirms the comments made following Eq. (49).
On the other hand, the singular values do change significantly. Again, from the
dotted line in Fig. 9 we see that (59) provides a reasonable way of taking into
account the effect of condenser holdup.

Approximate model with reboiler and condenser holdup. To include the real case

with reboiler and condenser holdup we propose to simply “add on” two lags for the

condenser and reboiler to the model (11) (or (35) if logarithmic compositions are

dyp —1 0 dL
(de> = ( 0+1 ;) G(Eq.(ll)) (dV) (60)

rpe+1

used).

where 7p = Mp/Vr and 75 = Mp/Lp. In most cases 7p is significantly larger
than 75.

Measuring overhead composition. In practice, composition is often not measured

in the condenser (yp), but rather in the overhead vapor (yr). -Furthermore,
temperatures are often used to infer compositions, and these temperatures will

have a dynamic response similar to yr, rather than yp. Curve 4 on Fig. 8 shows
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Figure 8. Column A. Effect of condenser holdup Mp on initial response of yp to a small
increase in reflux (AL/F° = 0.0001).
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Figure 9. Column A. Effect of reboiler and condenser holdup on singular values and RGA.
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that the initial response of yr is much faster than that of yp for the case with
large condenser holdup. The same arguments also apply to the bottom section:
Temperature measurements which are used to infer compositions have a dynamic
response which in many cases may be approximated well using (11). Consequently,
often in practice, the simplified model (11), which neglects the condenser holdup,
may be satisfactory for controller design. This is indeed confirmed by a simulation

study by Skogestad and Morari (1987d)

10. SIMPLIFIED MODEL INCLUDING FLOW DYNAMICS

So far we have neglected the flow dynamics. However, the flow responses are
very important for the initial dynamic response. These issues are discussed by
Rademaker et al. (1975). If we make the simplifying assumption that the flow
dynamics are essentially decoupled from the composition dynamics, we derive from

(35) the following simplified column model when flow dynamics are included

s s s s
911 911 + 912 911
—dYp = dL — av. 61
i v A vl S LG (61a)
s s s s
951 931 T 920 921
dXg = dL — 'A% 61b
B 1478 B+(1+‘rzs 1+’rls) B ( )

Comments on (61):

¢ Logarithmic compositions Yp = In(1—yp) and Xp = Inzp are used to reduce
the effect of nonlinearity. Of course, if only small variations in the product
compositions are expected we may as well use the unscaled composition yp
and zp. For multicomponent mixtures Yp = Inypy and Xp = Inzpg should
be used. Here H and L denote the heavy and light key components.

° g;s;- in (61) represents the scaled steady-state gains for the LV- configuration.
For example, g‘fl = g11/1 — y$, where y% is the composition for the nominal
operating point used to evaluate g;;.

e 7; and 7, should be evaluated at the same nominal operating points as the
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steady-state gains. 7; may be estimated using (2) or (46); 72/7; may be esti-
mated using (57).

e Extra lags 1/1+ 7ps and 1/1 4+ 7ps should be added to the response in yp
and zp if composition is measured in the condenser and reboiler (see Eq. (60).
Here 71p = Mp/Vr and 75 = Mp/Lp.

e Measurement dynamics are not included in (61).

e Lp,Vr,Lp and Vg are the “local” liquid and vapor flows at the top and bottom
of the column. Let L and V denote the manipulated values of the reflux and
the boilup. Then the following approximations, which apply to case of constant

molar flows, are useful (Rademaker et al. (1975)).

dLr = dL, dVg =dV (62a)
dVr = dV  (assuming perfect pressure control) (62b)
dLp ~ e 2SdL + A(1 — e79:5)dV (62¢)
Here
A= (0L;/8V)m, (63a)
6 = Ny 11, 7L = (0M;/3L;)y (63b)

and Ny, is the number of physical trays in the column.

e Additional dynamics (valve dynamics, etc.) may be needed in order to physi-
cally change L and V.
Eq. (62c) is derived by repeated combination of the following two equations

for each tray (Rademaker et al., 1975)

oL; oL; _ 1
dL; = <3V)M‘,dv+ <3M;>V dM,—-/\dV-f-T—L—dM,__ (640)

dM;
dt

=dL;y1 — dL; (64b)
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and using the approximation

—0rs 1

¢ T (L4 T s)Ner

(64c)

The values for §; and A should preferably be determined experimentally: 6; is the
time it takes for an increase in reflux to affect the reboiler level; A is obtained by
observing the response in reboiler level to a change in boilup.

For columns with trays 8; can be estimated as follows: Let M,; represent the
amount of liquid on each tray over the weir. According to Francis weir formula

L; = kMi./ 2 and we derive

(M (oMu)\ _ 2My (65)
't=\orL; ), \oL; ), 3L

Assuming M,;/M; =~ 0.5 we obtain the estimate

_ 1M

=37 (66)

where M7 is the total holdup inside the column.

Physically A represents the initial change (M; constant) in liquid flow on each
tray caused by a change in boilup. This effect may be caused by vapor pushing
liquid off the trays. A is difficult to estimate, and is even found to be negative
in some cases. For A > 0.5 both zg and the reboiler level will show an inverse
response for an increase in boilup (Rademaker et al., 1975). Such behavior can be
detrimental for control purposes.

Packed Columns. Eq. (61)-(62) apply also to packed columns. However, the values
for 87 and A may be quite different in this case, and should be obtained experimen-
tally. The holdup M; inside the column is generally smaller for packed columns,
which causes reboiler and condenser holdups to be of greater importance than for

columns with trays. -

Pressure Response. The pressure control was assumed perfect to derive dVp = dV

(62b). This is not quite true in practice, but a first order response is probably
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adequate in most cases
1
dVr = dv
T T8+ 1 (67)

The value of 7, depends on the pressure control system. The open- loop pressure
response is given by (Note that the pressure is approximately proportional to the

vapor holdup, i.e., p = kMy)

1
+ kp

dMy (s) = ——(dV — dvr) (68)

The constant k, takes care of the pressure’s self-regulating effect (for example, an
increase in V increases pressure which leads to condensation of vapor). Its value is
usually small and may be neglected for control purposes, i.e., k, = 0. The control

system manipulates dVr (in some cases dV') for pressure control
dVr = ¢(s)dMy (s) : (69)

If ¢(s) = c is purely proportional then a first-order response (67) with 7, = 1/¢
is derived. In practice ¢(s) will also include integral action and there will also
be dynamics included in order to actually change Vr (which is done indirectly by
manipulating the cooling duty).

Decoupling at High-Frequency. The flow dynamics have the effect of decoupling the

response of high frequency. The reflux (L) has a direct influence the compositions in
the top of the column, but only a delayed influence zp. Similarly, the boilup directly
influences zp (at least for A ~ 0), but has a smaller initial effect on compositions
in the top (because of (67)). This decoupling at high frequency yields A11(o0) =1

which may be beneficial for control purposes.

11. DISCUSSION/CONCLUSION
The main advantage of the simple models (11) and (61) is that they give a good
description of both the low- and high-frequency behavior of distillation columns.

Such models were not available in the literature. The traditional approach has been
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to use a model which matches the steady-state gains, but which is not necessarily
accurate for high-frequencies. The other extreme is to match the high-frequency
gains (Rademaker et al., 1975, p. 137). (11) provides a link between the low- and
high-frequency regions.

It is well known that the dynamic response for distillation columns is essentially
first order, and we have presented results which justify this claim. (11) was derived
by considering the fundamental difference between external and internal flows, both
at steady state and dynamically. The parameters in (11) are the steady-state gains,
the dominant first-order time constant 7, associated with the external flows, and the
first-order time constant 7o associated with the internal flows. 7; can be estimated
from the steady-state data using (2) or (4) or from the estimated initial slope
using (46). 75/7 is found using (57) which is based on matching the RGA at high

frequency.

From the derivation and analysis of the model it is clear that (11) is most likely
to hold for high-purity columns with large reflux. This is exactly the case for which

control is expected to be most difficult.

Disturbances in feed rate (F) and feed composition (zr) have not been discussed
in this paper. Their low-frequency response is approximately first order with time
constant 7; (Skogestad and Morari, 1987a), but the initial response of is higher
order, especially for a disturbance in zr. For feedback control the exact dynamics
of the disturbances are not important. However. a good model is desirable if

feedforward control is used.

An important conclusion of this paper is that the high-frequency behavior is
generally much less affected by changing operating conditions than the steady-state.
This partially explains why highly nonlinear distillation columns may. be controlled
satisfactory using linear controllers. In particular, we showed that the initial re-

sponse is independent of operating conditions if relative (logarithmic) compositions
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are used. This suggests that In(1 — yp) and Inzp should be used as controlled
outputs for columns where yp or zp may vary significantly.

It may be misleading to use steady-state data as an indicator of the expected
control quality. In particular, this is the case for columns with both products of
high purity. For such columns the RGA-values at high frequency are generally much
smaller than at steady-state. From (50) and (54) we conclude that the columns
which are going to be most difficult to control are high-purity columns with large
reflux.

The traditional approach to modelling distillation columns is to approximate
each transfer function by a first-order lag and a time delay (ge=%*/(1 + rs)) where
g is obtained by matching the steady-state gains. It is very difficult to obtain a
good model for high-purity columns which captures the difference between external
and internal flows using this approach. Furthermore, it is unlikely that the cor-
rect behavior at high-frequency (for example, the RGA) is obtained. Kapoor et al.
(1986) have suggested to base the controller design on a model for the “perturbed”
steady-state. This model is more likely to yield a reasonable high-frequency behav-
ior. However, such “tricks” are unnecessary if one uses a model, for example (61),

which accurately describes both the low and high frequency behavior.
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Appendix. Dynamic model of distillation column.

Assumptions:
e Constant molar flows
e No vapor holdup (immediate vapor response, dVr = dvg)
e Liquid holdup M; on all trays constant (immediate liquid response, dLy =
dLg)
o Vapor-Liquid Equilibrium (VLE) and perfect mixing on all stages

N - no. of equilibrium (theoretical) stages including the reboiler
N +1 - total number of stages including total condenser
Npr - feed stage location
F - feed rate (kmol/min)
zr - mole fraction of light component in feed
gr - fraction liquid in feed

Nonlinear model

Material balances for change in holdup of light component on each tray:
t=2,N ({# Np,i # Np +1):
M;i; = Liy1Zi41 + Vic1yi—1 — Lizi — Viys
Above feed location, 1+ = Ng + 1:
M;i; = Lig1Ziq1 + Vic1yi—1 — Lizi — Viys + Fryr
Below feed location, t = Np:
Mi; = Liy1Zi41 + VicaYi-1 — Lizi — Viyi + Frzr
Reboiler, 1 = 1:

Mpi; = Liy17:41 — Viyi — Bz, Tp = I
Total condenser, t = N + 1:

Mpi; =V,_1yi-1 — Liz; — Dz;, YD = IN+1
VLE on each tray (i = 1, N), constant relative volatility:

Y% = T(a-Das

Flow rates assuming constant molar flows (L - reflux, V' - boilup):
t > Nf (above feed): L;=1L, V;=V + Fy,
t < Np (below feed): L;,=L+F,, V;=V
Fp =gqrF, Fy =FrL
D=Vy-L=V+F —-L (condenser holdup constant)
B=L,—-Vi=L+F, -V (reboiler holdup constant)

Compositions zr and yr in the liquid and vapor phase of the feed are obtained by
solving the flash equations:
Fzp = Frzr + Fyyr

— azx
Yyr = 1+(a—1)zp

Linear model

Linearized material balance on each tray (dL; = dL, dV;=dV):

M;i; = Liy1dz;4y— (L,‘ +K,'V,')d.’13,' +K; Viqdz; 1+ ($;+1 —:c,-)dL—— (yi —y,-_l)dV
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where K; is the linearized VLE-constant:

dy,- _ o
K= e T Tr -1z

and y;, r;, L; and V; are the steady-state values at the nominal operating point.
Written in the standard state variable form in terms of deviation variables:

z = Az + Bu, y=Cz
Here ¢ = (dzi,...,dzn4+1)7 are the tray compositions, v = (dL,dV)T are the
manipulated inputs and y = (dyp,dzp)7T are the controlled outputs. The state
matrix A = {a; ;} is tri-diagonal:

) # N+1: Q41 = Li.’.]_/Mi
a;; = —(L; + K;V;) [M;
t#£L: a1 =K1 Vio /M

Input matrix B = {b; ;}:

176 N+1: b;,l = (:t:;+1 — z;)/M,-, bN+1,1 =0
i#Li#N+1: bio=—(yvi—¥i-1)/Miy, bns12=0, bio={(y;—z)/M;

Output matrix C:
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Abstract
Most two-product distillation columns can be described as a 5 x 5 plant, but
the control system design is usually simplified by means of the following procedure:
1. Choose two manipulated inputs for composition control (corresponding to a
specific control “configuration”).
2. Design the level and pressure control system (usually three SISO controllers).
3. Design a 2 x 2 controller for composition control.

The goal of this paper is to provide guidelines for Step 1 which is considered the
most important. Ratios (e.g. %or%) are frequently chosen as “manipulated” inputs
in Step 1. We show that the ratio configurations are effectively complex multivari-
able controllers which provide - among other features - improved flow disturbance

rejection.
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1. Introduction

Distillation columns constitute a major part of most chemical processing plants.
The objective of a distillation column is to split the feed into two (or more) products
with compositions different from that of the feed. The desired composition of the
products may be fixed by product requirements or may result from some plantwide
optimization. An important objective of the control system should be to keep these
product compositions at their desired level. In practice, very few industrial columns
maintain “dual” composition control, and it is still common to find found that both
compositions are controlled manually. Reports from industry indicate energy saving
of 10-30% (Stanley and McAvoy, 1985) if dual composition control is used instead of
applying manual control which usually results in overpurification or loss of valuable
product. Also, a recent survey among plant managers (Dartt, 1985) cites distillation
as the unit operation which could benefit most significantly from improved control.

A main reason why dual composition control is not widely applied in industry
is the stability problem often encountered when such a system is tuned in order to
get a reasonably fast response. Some reasons usually cited in the literature for the

problems with dual compositions control are
e strongly nonlinear behavior
e very sluggish response
¢ measurement problems, dead times for composition measurements
o difficult to choose appropriate manipulated variables for composition control
e strongly interactive system

These problems do not apply to all columns. Columns with low purity products
tend to be simpler to control. Ironically, simple columns are the ones usually studied
experimentally in university laboratories. Another reason for the infrequent use of
dual composition control is the lack of systematic guidelines in the literature on

how to design such control systems.
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In distillation control the gap between the industrial and the academic camp is
clearly evident from the literature. The industrial camp argues from experience. On
one side hardly anybody is willing to challenge the recommendations and conclu-
sions. On the other side, there are few who claim to understand the reasoning and
the explanations. Take for example the loop pairing recommendations based on the
Relative Gain Array (RGA). From the industrial literature one is led to believe that
the RGA is just an interaction measure indicating the difficulties one can expect
when tuning single loops for a multivariable system. But if this were true then the
RGA recommendations regarding variable selection for distillation control would be
archaic today, when the implementation of multivariable control systems is quite
straightforward. Practical evidence suggests however, that the RGA evaluation is
very useful even for the design of multivariable control systems. Thus, while the
RGA has proven to be a very useful tool for categorizing experience, it has not

helped to explain the observed phenomena.

The academic camp tends to tackle quite specific control problems with a heavy
machinery (whatever multivariable control theory happens to be trendy), but efforts
using an organized approach toward understanding distillation as a system have
been rare. This paper is aimed at filling the apparent gap. Distillation is analyzed
from a system point of view and practical experience and recommendations are

interpreted in this context.

2. The Distillation Column from a System Point of View

A schematic picture of a two product distillation column is shown in Fig. 1.
Conventional notation is used. A total condenser has been assumed, but this has

little significance on the results which follow.

2.1 Input and Output Signals

Viewed from a systems point of view the distillation column is a “box” which

takes some input functions and maps them into a set of output functions. The
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Fig. 1. Distillation column with 5 manipulated inputs (L,V, D, B and Vr) and 5 con-

trolled outputs (yp,zp, Mp, Mg and p).

inputs are divided into those which can be adjusted (manipulated variables (u),
usually corresponding to valves) and those which cannot be affected within the
system (disturbances (d) and setpoints (y,)). Similarly the outputs are divided
into those of interest (controlled variables (y)) and the known or measured signals
(ym). Obviously, in many cases an output will be both a controlled variable and a
measurement, but this is not necessarily the case. The distillation column in Fig.

1 has five manipulated inputs v and five controlled outputs y.

Controlled Outputs (y). The five controlled outputs in Fig. 1 are:

e Vapor Holdup (My) (expressed by the pressure p).
¢ Liquid holdup in accumulator (condenser) (Mp).

e Liquid holdup in column base (reboiler) (Mg).
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e Distillate product composition (yp).
e Bottom product composition (zg).

The reason for choosing these five variables as controlled outputs is briefly
discussed: Since vapor and liquid holdups must always be controlled to ensure sta-
ble operation, the pressure and the condenser and reboiler holdups (My , Mg, Mp)
clearly have to be controlled. The liquid holdup inside the column is “self regulat-

ing” and does not have to be controlled unless the column is overloaded.

We have chosen to use the mole fractions, yp and z g, of the light component in
the top and bottom product as our product specification. In general, other choices
are possible, e.g., ratios between compositions, densities, boiling points, etc., but
yp and zp are most common. Also note that for a multicomponent system, only
one composition variable may be controlled independently for each product. In
addition to the five controlled outputs mentioned above there will also be other
signals which we may be concerned about. In particular we want to avoid excessive
movements of the manipulated variables, mainly because of constraints. Therefore

these signals should also be included as controlled outputs.

Manipulated inputs (u). The five manipulated variables in Fig. 1 are:

e Distillate flow (D)
¢ Bottom flow (B)
o Reflux (L)

Boilup (V') (manipulated indirectly through the reboiler duty)

Overhead vapor flow (Vr) (manipulated indirectly through the condenser duty)

Essentially, these correspond to the available valves. The flow rates V and
Vr are controlled indirectly, usually with the flow rates of the heating and cooling
medium. In some cases additional manipulated variables are available, for example,

the feed rate (F) or the feed enthalpy (gr), but this will not be considered here.
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Disturbances (d) and Setpoints (y,). The disturbances to the column are often re-

lated to the feed: the feed flow rate (F'), the feed enthalpy expressed in terms of its
fraction of liquid (gr), and the feed composition (zr). In addition, there are distur-
- bances on the five manipulated inputs. Of these, the disturbances on V and Vr are
most important. Typical sources of the disturbances in V and Vr are temperature
or pressure changes of the heating or cooling medium.

Other “disturbances” are setpoint changes for yp and zp. Setpoint changes
are not common, but will be encountered if there is a higher level optimization
scheme which changes setpoints based on some overall economic objective. This
kind of optimization is believed to become used increasingly in the future, and will
probably constitute a major driving force towards implementing dual composition

control schemes.

Measurements (y,,). The measurements typically include the pressure p (usually

at several locations), the liquid holdup (“level”) in the reboiler and condenser, the
top and bottom compositions (often delayed and/or sampled) and temperatures
at several locations. Often some of the disturbances are measured; typically these

include the flowrate and temperature of the feed and the flow rate, pressure and

temperature of the heating and cooling medium.

2.2 Performance Specifications

An important factor to consider when designing a control system are the perfor-
mance specifications. More precisely, these are specifications on how the controlled

outputs are to behave in response to certain inputs.

Consider first liquid and vapor holdups (Mp, Mg, My ) which have to be con-
trolled to ensure stability. From a steady state point of view only My (i.e., the
pressure p) has any bearing on the performance of the column. The setpoint for

the pressure may be based on an optimization of the column performance. Since
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separation is usually favored by low pressure, the optimal pressure is often the min-
imum attainable, that is, the pressure determined by the constraint of maximum
cooling in the condenser {“Floating- Pressure Control” (Shinskey, 1984)). However,
the pressure should always be kept slightly above the minimum attainable in order
to maintain short term pressure control. Short terms pressure control is needed
to avoid fluctuations in the pressure, for example due to changes in the cooling

medium (Shinskey, 1984).

The control of the condenser and reboiler holdups is important not because the
holdups themselves have any significance, but because changes in the holdups affect
the flows controlled by them. Perfect level control is not desirable since this removes
the “smoothening” effect of the holdups. This is the main reason why the holdups
are there in the first place. We will not go into any detail about the performance
specifications here, but only state that if reflux (L) or boilup (V') are used for level
control, then these level loops should be considerably faster than the composition

response.

The most important controlled outputs are the top and bottom compositions,
yp and zg. Their setpoints may be given by strict product specifications or as
a result of a column optimization. The optimization may involve, for example, a
trade-off between the cost of heating medium and the money earned by recovering

more of the valuable product. Obviously the error
€E=Y—Ys

which expresses the deviation between actual and desired product purity, should
be “small”. We have to define more precisely what we mean by “small”, i.e., what
kind of norm should be used for e. The choice of norm depends on the reasons for
keeping e small. Assume there is a fixed product specification, (e.g., zp < 0.01)
which should never be violated. (The bottom stream may be a feed stream to

another unit where zg > 0.01 is not allowed). In this case we might choose the
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setpoint to be zp, = 0.008 and use the performance specification:
A
ax le(t)] = [le(t)||eo < 0.002

In other cases the bottom stream might go to a large storage tank, which will
average out the composition such that only the average composition matters. In

this case it would be desirable to have

/0 ” e(t)dt

as small as possible. This may be achieved even if e(t) is fluctuating wildly. This is
not desirable, however, because the cost of separation increases (Shinskey, 1984); the
energy saved when zp > 0.01 is less than the extra energy needed when zg < 0.01.
Consequently, in this case a more appropriate performance specification may be to

keep
ISE = (/ (¢)|%dt) 22 |le(t)||s or IAE:/Ooo le(£)|dt2][e(2)]]

as small as possible (but there may not be a specified upper bound on these norms).

The ISE (2-norm) or IAE (1-norm) may be even more appropriate if the setpoint

2.3 Linear Model

A distillation column is strongly nonlinear, but for control design we will de-

scribe it by a linear model. We will only outline the structure of this model.

One complication in obtaining a linear model is that without the pressure
and level loops closed, the distillation column is unstable. It is then difficult to
obtain open loop transfer functions for the composition responses using simulation
" because the reboiler and condenser overflow or run dry long before the-composition
response has settled. However, since the composition response is only. \;ery weakly

dependent on the actual level in the condenser and reboiler (Mp and Mp), and

since these levels are usually tightly controlled, a good approximation of the open



Table 1.

- 371 -

Controlled Manipulated Input
Output L | %4 D B Vr

Yo g11(s) gi2(s) 0 0 4]

g g21(s) g22(s) 0 0 0

Mp -% 0 --:- 0 %
Mg Lg=0s JAzA(=eT) 1 0

1 1

My (p) 0 Tk 0 0 “3iE,

Approximate open-loop transfer matrix for distillation column (Skogestad and
Morari, 1986¢).

1. Constant molar flows assumed.

. The transfer function for My is not a pure integrator because of condensation

effects which are included in k.

. €79 with § = 7, N is an approximation for 1/(1 + rs)¥. 7o, = (8M;/dL;)V;

is the hydraulic time constant. N is the total number of trays.

. A= (0L;/8V;)M; is the initial change in liquid flow due to a change in vapor

flow (V may “push” liquid off the tray and give A > 0). An inverse response
occurs if A > 0.5.

. In addition there will be dynamics involved in order to change L,V,D,B and

Vr (valve dynamics, etc.)

J &

. Consistent units have been assumed for holdups and flows (e.g., Mp in kmol

and D in kmol/min).

loop composition response is found by assuming these levels to be constant. The

pressure (i.e., vapor holdup (My )) does have a significant effect on the composition,

but since pressure is usually tightly controlled, this effect may be neglected as a

first

approximation. Approximate “open loop” responses are therefore obtained by

varying L and V, and assuming Vr,D and B to be fixed by the requirement of

perfect control of My, Mp and Mp. For consistency, we then also have to neglect

the effect changes in Vo, DandB have indirectly on the compositions because of

their effect on My, Mp and Mg. With these assumptions the structure of the

open loop transfer matrix is as shown in Table 1. Similar transfer matrices may be
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derived for the disturbances.

2.4 General Interconnection Structure

Schematically the distillation column may be written as a box as shown in
Fig. 2. In general, P is a nonlinear operator giving the “nominal” relationship
(model) between inputs and outputs. We will be using linear models in which
case P is a transfer matrix. For linear systems P is conveniently divided into four
subsystems. P;; and Py, represent the disturbance model between the disturbances

d and the controlled variables y and measured outputs y,,. P;; will be denoted by

U

Fig. 2. Schematic representation of distillation column.
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G4 later. Py5 and Pas represent the model between the manipulated inputs u and
the controlled outputs y and the measured outputs y,,. Pi2 is what usually is called
the “process” and will be denoted G. Note that with the usual assumption y,, = y,

~ Fig. 2 may be represented as in Fig. 3.

In Fig. 4 we have added two additional blocks to Fig. 2. One is the controller
(C) which computes the appropriate inputs u based on the information about the

process (Y,,). The other block (A) represents the model uncertainty (Doyle et al.,

1982). Here we will not dwell on this particular way of representing uncertainty, but
just note that it clearly shows that P and P are models only, and that the actual
plant is differént depending on A. Based on the measurements (y,,), the objective
of the controller C is to generate inputs (u) which keep the outputs (y) as close as
possible to their setpoints (y,) in spite of disturbances (d) and model uncertainty
(A). The controller C is often nonsquare as there are usually more measurements
than manipulated variables. For the design of the controller C information about the
expected model uncertainty should be taken into account. The case when y,, # y
is often called “inferential control”. It is seen to be handled “automatically” in this

framework.

Figure 4 was introduced by Doyle et al. (1982) and represents a unifying
framework for studying linear control problems. The interconnection matrix P
includes all information needed in order to design the “optimal” C. In particular
P includes the matrix P in Fig. 2, i.e., the process G and the disturbance model
G4. Furthermore, performance “weights” are included in P in order to be able
to compare mathematically the controlled variables, which have different physical
significance and in order to decide on the type of desired response. Finally P

contains information on how the uncertainty affects the overall system.

Above we have outlined a unifying framework for control problems (Fig. 4) and

we have tried to give some indication on how distillation fits into it. Clearly, our
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Fig. 3. Equivalent representation of Fig. 2 for a linear plant with y = ym.
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Fig. 4. General structure for studying any linear control problem.
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treatment has been very brief, and for more details the reader should consult Doyle
et al. (1982). The main objective is to show that the distillation control problem
may be put into a systematic framework and to point out what information is
" needed about the process. The problem with this approach is that it results in a
controller which is complicated and difficult to design and understand. Engineering
judgment cannot be easily brought into this design process. Below, we will outline
a stepwise procedure which leads to a much simpler design. The basic idea is to use
only two independent manipulated variables for composition control. This is the
approach used in practice (Shinskey, 1984). The first (and most important) step of
this design approach is to choose the best control “configuration”. i.e., to decide

which two manipulated inputs to use for composition control.

3. A simplified approach

Assume as a simplification that all five controlled outputs (including ypandzg)
are measured. Given the open-loop model for the distillation column, and infor-
mation about disturbances, performance, uncertainty, etc., we can then imagine

designing the “optimal” 5 X 5 controller for the column. While it is certainly of

controller would ever be implemented in practice. In order to make the control sys-
tem failure tolerant and easier to understand and tune, simpler control structures
are used. This will be the topic of the remainder of this paper.

More specifically, we will not use all five flows L,V, D, B and Vr for composition
control, but only two independent combinations. The overall control system will
then consist of a 2 x 2 controller (denoted by K) for composition control plus a

control system for level and pressure control.

3.1 Inventory Control Leaves Only Two Degrees of Freedom for Composition

Control

The task of subdividing the problem is simplified by the observation that the
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pressure and level controls are almost always much faster than the composition
control (because the flow dynamics are usually significantly faster than the com-
position dynamics). As a first approximation assume that the pressure and level
" loops are so fast that they effectively give three static relationships between the
five manipulated inputs (L,V,Vr, D and B) which have to be satisfied at any given
time. This implies that there are only two degrees of freedom left for composition

control.

In practice, the pressure and level loops are not immediate and, at least on a
short time scale, more than two independent inputs could be used for composition
control. However, as a first step it is reasonable to design a composition control sys-
tem using only two manipulated inputs. This system may subsequently be modified

to reduce the effect of the lags introduced by the level loops.

3.2 Design of a Simplified Control System

Step 1. Choose two manipulated tnputs for composition control. Each choice of
manipulated inputs corresponds to a specific control configuration. For example,

the choice of L and V for composition control is referred to as the LV-configuration.

Step 2. Design the level and pressure control system. Shinskey (1984) calls this
“closing the material and energy balance”. In most cases a simple control system
using SISO-controllers is chosen, and the choice of “pairings” is usually obvious
once the choice in Step 1 is made. Note, however, that the level control system can
significantly affect the composition control. The main importance of this step in
our context is to derive “new” “open-loop” composition responses (assuming the
pressure and level loops are closed), which may be used to design the controller in
Step 3. In many cases Step 2 is simplified by assuming that the level and pressure

controls are “perfect”.

Step 3. Design the 2 X 2 controller K for composition control. This is not a trivial

step, but it is certainly much simpler than designing a 5 X 5 controller including
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all inputs and outputs. In many cases K is restricted to be diagonal (decentralized

control).

The most important step in the above procedure for designing a simplified dual
composition control system is to decide on the control configuration (Step 1): Which
variables should be “manipulated” in order to maintain composition control? We
have put “manipulate” in quotes, because we are going to define new “manipulated”
variables different from the real ones (which are the valve positions). In fact, we
have already implicitly redefined the manipulated variables by assuming that we
can actually manipulate the flows L,V , Vr, D and B directly instead of their valve
positions. In practice, for L, D and B this may be implemented by mea,suring the
actual flow rate and using a very fast inner loop to adjust this measured rate to
match the desired flow. By this we also remove the nonlinear relationship between
the valve position and the flow rate. It is usually not possible to measure V and
Vr and these flows must be estimated in some other way, for example, by enthalpy

balance calculations.

There is clearly an infinite number of relationships between L,V,Vry, D and
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consider the flows themselves and ratios between the flows. A further simplification
results because the condenser duty (i.e., Vr) is almost never used for controlling
composition (Shinskey, 1984). The reason for this is probably that V and Vr
have almost the same effect on composition, and cannot be used independently

for composition control. Furthermore:

e V has a more direct effect on bottom composition (zg), and is therefore prefer-

able over Vr from a dynamic point of view.

e Vr is generally better for pressure control since the primary and secondary
effects on pressure are always in the same direction. On the other hand, V

may yield an inverse response: Initially, pressure increases in response to an
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increase in V. However, if composition is uncontrolled the temperature in the
column will start rising, thereby decreasing AT in the reboiler and increasing
AT in the condenser, resulting in reduced pressure (Rademaker, et al., 1985).
The problem of dual composition control is then reduced to controlling the
compositions yp and zp using two independent combinations of the inputs L, V,
D and B (Shinskey, 1984).

3.3 L,V,D and B as manipulated inputs

Let us first consider the case when the flows L,V, D and B themselves are used

2

pair combinations. However, only five of these are possible since D and B can-

. . . 4 .
as manipulated variables for composition control. There are [ } = 6 independent
not be used together for composition control, because of the steady state material
balance constraint D + B = F. Having chosen one of the remaining five pairs
(LV,LD,LB,DV,or V B) for composition control, the control structure for the
level loops usually follows easily.

Example. LV-configuration. Assume L and V have been chosen for composition

control. (This is the configuration most commonly used (Rademaker et al., 1975)).
The condenser level may be controlled by D, pressure by Vr and the reboiler level

by B resulting in the following control structure:

dL 0 0 0 dyD
dv K 0 0 0 d.'EB
dD =00 Cp (S) 0 0 dMD (1)
aB 00 0 cR (s 0 dMpg
dVr 00 0 0 cy (S) dMy

3.4. Ratios between L, V, D and B as manipulated inputs

Of the possible nonlinear relationships possible between L,V, D and B we will

only consider ratios. These seem to be the only nonlinear combinations used in

practice (Shinskey, 1984). The total number of independent ratios is six. They are
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Including the four flows themselves this results in {120] = 45 independent pairs of
“manipulated” variables. Again, combinations of D, B, and % cannot be used for
composition control. This eliminates three of these options, but still leave us with

42 possible combinations.

Shinskey (1984) excludes the ratio % because it “is not independent of D”.
However, even though configurations involving D, B, and % have the same value
of the RGA, the resulting control systems are generally different. Shinskey also

groups —{;—, -I-I;— and % into a single manipulated variable, the separation factor S. He

claims that this may be done because VIL and % uniquely determine %, and because

—g— determines S uniquely. However, the relationships between the flows hold only

at steady state and when the feed is liquid, and the relationship between —f‘; and

S is only approximate. In practice, the three choices (é—, %, %) can yield entirely
different control systems.

If we look at the actual implementation there are even more than 42 options.
Since the true manipulated variables are always L,V, D and B, we have to determine
how #, for example, is implemented as a “manipulated” variable. To increase -‘17’—
we may either increase L, decrease V or change both at the same time. If the
flow dynamics and level controls were immediate, these different implementations
would not affect the composition response, but, because they are not it does make
a difference. We adopt the following convention: Writing the ratio between L and
V as {;— means that L is manipulated to change #, and writing -‘I/: means that V is

manipulated to change the ratio.

Ratio control systems have been used in industry for at least forty years (Rade-
maker et al. (1975), p. 445). Yet, almost no discussion is found in the literature
on why such schemes may be beneficial. The simplest justiﬁca.tion- i'ollows from
steady-state considerations: To keep the compositions constant, the ratio L/V in-

side the column (slope of the operating line on the McCabe-Thiele diagram) should
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be constant. Intuitively, it seems that some disturbances may be counteracted by
keeping this ratio constant. However, these arguments do not explain what hap-
pens when ratios are used for closed-loop control of compositions. Furthermore, as
will be shown, the effect of using a given ratio depends entirely on which second
manipulated variable is chosen for composition control.

Clearly, using ratios as “manipulated” variables is a way of introducing a simple
nonlinear control scheme. For example, the nonlinear implementation of % as a

manipulated variable is (using the convention introduced above)

L= [5} D (2)

As usual, when a linear approach is taken, we consider deviations (dL) from the
nominal steady state, (for example, L = Lo+dL where Ly is the steady state value).

The linear implementation corresponding to (2) then becomes

L L
dL = — —dD 3
de +E 3)
or equivalently
o L]l Lo, _
L =1L DoA | — —AD 4
o+ Do [D_I + Do (4)

The difference between (2) and (4) is important only if the flow rates D and &
change significantly with operating conditions. Because this is usually not the case
there are only minor differences between the linear and nonlinear implementation.

Consequently, in most cases it does not make much difference if we use

linear combinations of L,V, D and B as new manipulated variables instead of ratios.

We would like to understand what kind of linear control system this corresponds

to. (Surprisingly, the results presented here on the linear interpretation of the ratio

schemes seem to be new). To this end consider the following examples.

Example. —LD—-};—-Conﬁguration. The %%-conﬁguration is claimed by Shinskey (1984)

to be applicable over the broadest range of cases and also Rademaker et al. (1975,
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p. 463) recommend this scheme. A small change in —1% and % is written

[ L] 1 L

‘5] =p 3 (%)
(V] 1 | 4

‘B8] =Y ;P

Note that the constant coefficients multiplying dD, dL, dV and dB are determined

at a chosen nominal steady state. The idea is to use d [%} and d [%] for composition
control. According to the convention defined above dL and dV are manipulated to

change the ratios % and %. Rearranging (5) yields:

L), L

d pneeg —
L Dd[D_ + DdD (6)
vl Vv
dv = — —
Bd [B_ + BdB

Consequently, dL and dV depend on d [%] and d [%] , (which are “manipulated”
based on the compositions yp and zp) and on the flow rate changes dD and dB.
We could measure dD and dB and use this in (6), but note that the values of dD
and dB are determined by the level control system. Therefore, consider Step 2 in
the design procedure which is the design of the level control system: Because L
and V are manipulated for composition control the most reasonable choices for the

control of the condenser and reboiler levels are D and B, i.e.,
dD = Cp (S)dMD (7)

dB = cp(s)dMp

(The SISO controllers ¢p(s) and cp(s) are in many cases simple proportional con-

trollers). Using (7) to eliminate dD and dB, (6) yields

L L
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|4 | %4
dV = Bd [E:' + EchMB
Let the composition controller (possibly multivariable) be
i
=K [dyD] (9)
dY- dz B
B
and define
D 0] 5
k=[2 o) "
Then the overall controller becomes
L
dL L
dv K v dZBB
dB 0 0 ¢p 0 dM
0 0 0 c¢p B

We see from (11) that the flow rates L and V are manipulated based both on the
product compositions (yp and zg), and on the levels (Mp or Mp). Furthermore,
the two SISO level controllers (¢p(s) and cp(s)) each manipulate two flow rates,
and therefore appear at two places in the transfer matrix for the overall controller.

If the %g - configuration had been used instead, we would get a similar con-
troller structure, but with K in the lower left corner. Also the %_‘1/2 - or %%—
configurations would result in similar controiler structures.

In summary, from a linear point of view, the main feature of this ratio control
system is to let the level be controlled by more than one flow; the controller changes
both L and D in response to a change in Mp and both V and B in response to a
change in Mpg. Thus, the use of ratios as manipulated variables introduces in an
ad-hoc manner a multivariable control system. In other cases it leads to simplified
MIMO controller for the composition control (but which is tuned as two SISO
controllers). This is illustrated by the following example.

Example D%-conﬁguration. When L is manipulated in the D%-conﬁ-gﬁration then

a linear analysis shows

dL = Dd [-{’-J +Lap (12)
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Assume that SISO controllers (decentralized control) are used for composition con-

trol: D is manipulated based on yp and % is manipulated based on zp:
dD = ky(s)dyp (13)

d(=) = k2(s)dzp

O

Combining (12) and (13) yields (in this case the level control system influences B

and V only, but not L and D)

dD ki(s) 0 dyp
)= £ paw] (42 i
Effectively, a MIMO (in this case triangular) composition controller results which
is tuned like two SISO controllers.
Note that in this case the effect of using % as a manipulated variable, is entirely
different from that found for the %%-conﬁguration. In fact, the D%—conﬁguration

is not much different from the DL-configuration as seen from (14). On the other

hand, the %% - configuration may behave significantly different from the LYB: - or

(even more so) the LV -configuration.

Example. % %-Conﬁguration. This example combines the features found in the pre-

vious two examples. Linearizing yields

(D]l D
=Vd|— —dV
dD d_V_+Vd (15)
(V] Vv
dV = — —
Bd B + BdB
Let the levels be controlled as follows
dL = CD(S)dMD (16)

dB = CB(s)dMB
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Combining (15) and (16) yields

D DB |V D
dD =Vd [V] + ——ﬁ-d [E] + 'ECBdMB (17)
|4 |4
dv = — —
Bd [B} + BchMB
corresponding to the control structure
D
dD O BB] gy
av K v dzp
¢gl |0 Qe O tlay
0 0 0 ©¢p B
where
v BE] . () 5 | dyp
_ v B/ | —
ol e ] w

If K is diagonal, this results in a triangular K, but tuned as two SISO controllers.
Also note that an increase in the reboiler level, Mg, will result in a simultaneous
increase in D,V and B.
Summary. Based on the three examples above let us state the following gener-
alization: Assume that one of the “manipulated” variables for composition control
is 2% and assume that £; is the flow which is manipulated to adjust %;-. Then the
linear control system corresponding to -‘é’; has the following features compared to
using the flow £; alone for composition control.
1. If £, is used for level control then this level is controlled both by £; and £, (but
tuned as a single controller).
2. If ¢, is used for composition control then this composition is controlled both by
£; and £,, i.e., we may get an effective MIMO controller using a SISO design.
In case 2 it makes little sense to use a MIMO controller to “manipulate” ¢; /¢,
since the same result may be obtained by using £; alone: Consider E-q- (19) in the

last example. If K is a “full” 2 x 2 matrix, then the tuning is not simpler than

when K is designed directly.
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In most cases the major effect of using ratios for composition control is captured
by the linear analysis summarized in 1) and 2) above. Ratios do not tend to correct
the nonlinear behavior of distillation columns because the manipulated inputs vary
only moderately with operating conditions (neglecting startup). On the other hand,
the product compositions do often vary significantly with operating conditions, and
a significant “linearization” effect may be obtained, for example, by using In(1—yp)
and Inz g as “redefined” controlled outputs. This will be discussed in a future paper
(Skogestad and Morari, 1986c).

4. Differences Between Control Configurations

Assuming immediate flow responses, perfect level control and constant molar

flows we have in the absence of feed disturbances
dV =dL +dD (20)
dL = dV +dB (21)

These two equations suggest that any pair of input variables has the same effect:
Changing L and V, for example, is equivalent to changing V and D or V and B.
Consequently, we might expect to get good and almost identical control per-
formance for any choice of control configuration. However, there are at least seven
reasons for why the choice of control configuration can make a significant difference:
1. “Uncertainty”
2. Disturbances vs. setpoints
3. Dynamic considerations
4. Rejection of flow disturbances
5. One-point (“manual”) composition control
6. Changes between “manual” and “automatic”
7. Constraints
In many cases conflicting conclusions arise from these conéiderations, and the

engineer has to perform a more detailed analysis or use his judgment in making the
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final choice. Before looking into these seven points, we will consider some general
characteristics of distillation columns which are used in the subsequent discussions.
Model Characteristics of Distillation Columns. From a control point of view the
" most important characteristic of distillation columns appears to be that for high-
purity separations (zp and (1 — yp) are small) the 2 X 2 system considered for

composition control is always ill-conditioned regardless of what control configuration

is used (Skogestad and Morari, 1986c). By “ill-conditioned” we mean that the plant
gain in certain directions is much larger than in others. Irrespective of the control
configuration, the two operating variables corresponding to the high and low plant

gain are the external flows (product flow rates, D and B) and the internal flows

(which are changed by changing the reflux L and boilup V while keeping D and
B constant) (Rosenbrock, 1962). As an illustration consider the column in Table
2 with zr = 0.5,yp = 099,z = 0.01 and D = B = 0.5 kmol/min. Assume the
distillate flow D is increased by 5% to 0.525 kmol/min. Since there is only 0.5
kmol/min of light component in the feed at least 0.025 kmol/min of this has to be
heavy component. The best attainable value for the top composition, even with
total reflux, is then yp = 0.5/0.525 = 0.952. This is far from the desired yp = 0.99.

More generally, the effect of the external flows on the product compositions is
found using

D  zp—-zp

=275 22
B  yp-—zFr (22)

This exact expression can be derived from an overall material balance for the light
component. It implies that the ratio D/B should be kept constant for any flow
disturbance. Furthermore, for high-purity the columns, the relative changes in yp

and zg are extremely sensitive to changes in D/B. For example, with yp constant,

differentiation of (22) yields

d:z:B Yp — ZF D
_ - 23
rp Ip d(B) ( )

The factor multiplying d[%] approaches infinity when zg — 0.
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Binary Separation, Constant Molar Flows, Feed Liquid

Relative volatility a=1.5

No. of theoretical trays N =150

Feed tray location Nrp =21

Feed rate and composition F =1 kmol/min, zr = 0.5
Product compositions yp =0.99,z5 = 0.01

Product rates D = B = 0.5 kmol/min

Reflux rate L = 2.71 kmol/min (1.39L,in)

Linearized steady-state gains, LV -configuration:

dyp] _ [0.878 —0.864] [dL]  [0.394 0.881
[dzg] = {1.082 —1.096] [dV] + [0.586] aF+ [1.119] dzr

1-1 element in the RGA for various configurations:

v %£¥ %Lv Lp Dpv DV
Air 351 322 585 060 045 0.56
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For a more quantitative analysis, a Singular Value Decomposition (SVD) can
be performed on the 2 x 2 transfer function model for each configuration (Skogestad
and Morari, 1986a). For high-purity columns, the singular values are always found
to be very different in magnitude (ill-conditioned system). The singular vectors
confirm that the large plant gain is associated with a change in the external flows
while changes in the internal flows have a much smaller effect on the compositions.
As we will show, the observed advantages of certain control configurations can be
explained from these basic characteristics.

The RGA. The RGA is determined by the plant transfer matrix (G)

RGA = [An }\12] _ [ A1t 1-2An _ (24)

Ayq =
A2 A2 1-2A11 DYTI Rt | _ oo

gii1gzz2

The RGA is used extensively by Shinskey (1984) to compare control configurations.
From his book the reader is led to believe that the RGA is useful because it provides
a measure of interactions when using a decentralized controller. His rule (though he
does not express it explicitly) is to choose a configuration with A;; in the range of
about 0.9 to 4 (Shinskey, 1984, Table 5.2). If A;; were used only as an interaction
measure this recommendation would not make any sense; in this case A; should be
chosen to be as close to one as possible and A;; = 0.67 would be almost equivalent
to A11 = 2 (both have |§ﬁ—% = 0.5). Consequently, Shinskey’s use of the RGA is
a way of categorizing his experience on distillation columns, rather than expressing
the effect of interactions. In fact, his rules also apply when a multivariable controller
is used. His recommendations regarding the RGA should therefore only be used for
distillation columns. One objective of this section is to provide some justification

for Shinskey’s rules.

4.1 Uncertainty

Since we are considering different choices of manipulated inputs, the uncer-

tainty associated with these manipulated inputs may cause different control behav-
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jor. These issues have been discussed in detail by Skogestad and Morari (1986 a,b)
and the main result is summarized below.

The RGA and input uncertainty. The RGA is a good indicator of plant-sensitivity

~ to input uncertainty (Skogestad and Morari, 1986b). In general, a plant with large
elements in the RGA is difficult to control in the presence of input uncertainty and,
in particular, inverse-based controllers should be avoided.

Let A; and A, represent the magnitude of the relative uncertainty on each
manipulated input. Then the actual (“perturbed”) plant can be written in terms

of the model G and this uncertainty:

Ay O
G, =G+ Ay), A,:[Ol AJ (25)

For good closed-loop performance, an inverse-based controller is desirable, for ex-
ample, C(s) = ¢(s)G(s) ! where ¢(s) is a scalar. The loop transfer function in this

case becomes

G,C = GC(I + GAIG™) (26)

If the error term GA;G™! is large, the actual loop transfer function G,C will be
significantly different from the desired (nominal) loop transfer function GC, and
the closed-loop response is expected to be poor or even unstable. The diagonal

elements of GA;G~! are a function of the RGA only

GAG-! = A11A1 + A2 —A11g—;:—(A1 — As)
AL (A — Az)  AsiAr 4 AxAs

gi1

(27)

(27) clearly shows that the closed-loop response for plants with large RGA-elements
is extremely sensitive to input uncertainty if a tight (inverse-based) controller is
chosen. Note that it is the value of the RGA around the crossover-frequency which
is of main interest. Using the steady-state value may be misleading (iield too large
values). This is generally the case for columns with both products of equal purity

(for example, the column in Table 2).
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The result (27) explains in a quantitative way why configurations with large
RGA-elements should be avoided. However, through the following discussion we
want to give the reader a more intuitive feeling for why some configurations are
~ sensitive to input uncertainty and others are not.

A Physical Interpretation of the Effect of Flow (Input) Uncertainty. = From Eq.

(20) (which applies to the case with perfect level control) it seems that a change in
distillate flow (dD) may be achieved in two equivalent ways

i) manipulte D directly

ii) manipulate L and V such that dV —dL = dD
Similar arguments apply to other flows. However, such arguments only hold in the
absence of input uncertainty. In practice, the actual flows are not the same as those
demanded by the controller (the controller may try to increase a particular flow by
1 kmol/min, but the actual increase may be only 0.9 kmol/min, corresponding to
10% uncertainty with respect to the change). This input uncertainty may result in
an enormous difference between various configurations since for tight control it is
often desirable to make dL and dV large, while keeping dD small. This is almost
impossible if, for example, the LV-configuration is used since we cannot, in practice,
control differences (dL — dV') between two large flows accurately.
Example. Consider the column in Table 2 with D = B = 0.5kmol/min,L/D =
5.4,V/B = 6.4 and assume that we want to increase the internal flows (desired:
dL = dV = 1 kmol/min) without changing the external flows (desired: dD =
dB = 0). Let us look how three different configurations would perform under these
assumptions in the presence of uncertainty.

LV-configuration. Assume there is 10% uncertainty about the flow rate change, i.e.

dL =13 0.1kmol/min, dV =1 = 0.1kmol/min

(in practice the uncertainty in the boilup (V) is probably larger than that for the
reflux (L)). With the LV-configuration the distillate (D) and bottom (B) flows will
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feel the full effect of this uncertainty

dD = 0 £ 0.2kmol /min, dB = 0 % 0.2kmol/min (28)

This is highly undesirable because of the strong sensitivity of the compositions to
changes in the external flows. The high value of the RGA (A1; = 35.1) for this
configuration predicts the sensitivity.

DV-configuration. For the same flow uncertainty we get

dL = dV =1 £ 0.1kmol/min

However, since D is manipulated directly, these changes do not result in any change
in D.

dB = dD = Okmol/min (29)
Not surprisingly, the RGA-elements are generally less than one for this configuration

(A11 = 0.45 for this example).

% %-conﬁguration. If initially dL # dV (because of uncertainty) then changes in the

top and bottom accumulator levels occur. As is apparent from (8), these changes

lead to adjustments of dL and dV, which will counteract the initial imbalance.

loops take action) results in dL; = 1.1 and dV; = 0.9 kmol/min. Let the subsequent
flow adjustments made by the level control system be denoted as dL5 and dV>. Then

the final steady-state flows are
dL =dL; + dLs,dV = dV; + dV;
Furthermore, we must have perfect level control at steady-state
dV =dL+dD,dL =dV +dB
and according to (11) the levels are adjusted such that
L |4

dLy = _ﬁdD’dVZ = EdB
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Solving these equations gives

1%
dB = (dLy — dVy)/(1 + % + %) = 0.2/12.8 = 0.015kmol /min (30)

The resulting error in B and D due to uncertainty in L and V is therefore reduced by
a factor of (1+ % + %) compared to the LV -configuration. Interestingly, Skogestad
and Morari (1986¢c) have shown that the elements in the RGA are also reduced by
a factor of about (1+ 7‘;‘— + %) compared to the LV-configuration. (The exact value
is A1 = 3.22 for this example). However, we may still have control problems for
very high-purity columns because of the extreme sensitivity to changes in D and B.
In this case the RGA should be computed to get a reliable indication of whether
input uncertainty will cause problems or not.

Summary. The presence of input uncertainty favors using configurations with small
elements in the RGA (Skogestad and Morari, 1986b). In general, all configurations
involving D or B have |A;1| < 1, while all others have |[A;{| > 1 (Shinskey, 1984,
p. 146). The LV-configuration generally has the largest RGA-elements. Any con-

figuration which uses D or B is therefore insensitive to input uncertainty, but the

L Vv L vV . . . .
ratios 5, 5,5 O (or their inverses) may also be a good choice for columns with
high reflux.

4.2 Disturbances vs. Setpoints

Although we just concluded that plants with large RGA-elements should be
avoided, it is really large RGA-elements in the controller which cause control prob-
lems (Skogestad and Morari, 1986b). However, in most cases (in particular, if good
setpoint tracking is desired), it is desirable to use an inverse-based controller to get
good performance, and in this case the controller has large RGA-elements whenever
the plant does.

For distillation columns, if we do not care too much about setp;oint tracking,
it may not be necessary to use an inverse-based controller to achieve good control

performance. A diagonal controller always has A;;(C) = 1 and is therefore not
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sensitive to input uncertainty, but it often does not yield adequate control perfor-
mance. For distillation columns, however, the disturbances are often “aligned” with
the plant and may be counteracted with a diagonal controller. An accurate mea-
sure of how a disturbance d (which has the effect g4 on the outputs (y)) is aligned
with the plant (G) is provided by the disturbance condition number (Skogestad and

Morari, 1986d).

G-1
14(6) = L6225
|lgall2
(6(G) denotes the maximum singular value of G, || - ||z denotes the Eucledian

norm). Depending on the direction of g4, v4(G) ranges in magnitude between
1 and 4(G) (the condition number of G). For distillation columns the values of
~4(G) for the disturbances are usually significantly smaller than «(G). For ex-
ample, consider the distillation column in Table 2 which has «(G) = 141.7 for
the LV-configuration. Disturbances in d = zp, F,qr,L and V yield v4(G) =
1.48,11.75,1.09,1.41 and 1.41 and a diagonal controller may give acceptable re-
sponse (Skogestad and Morari, 1986b).

Summary. Configurations with large RGA-elements (e.g., the LV -configuration)
are not sensitive to input uncertainty if a diagonal controller is used. A diagonal
controller may be acceptable if the disturbance condition number is small for all
expected disturbances (and tight setpoint tracking is not required). This means
that the LV -configuration may be acceptable in some cases even when it yields
large RGA-values.

4.3 Dynamic Considerations

These issues are addressed in detail in the literature (Rademaker et al., 1985,
Shinskey, 1984), and only a short summary is given here.

The flow rates L and V (or Vr) are the only ones which inﬂuence;compositions
directly. The direct effect of changing B or D is to change Mp and Mp, which has

no effect on compositions. The effect on composition is caused by the level loops
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which change L,V or Vr in response to the change in B and D. However, even a 1-
or 2-minute lag caused by the level loops may make it difficult to counteract a large
disturbance, which may change the product composition considerably in a matter of
minutes. (The speed of the level loops is limited by noise on the level measurements,
but is otherwise independent of the amount of holdup). These considerations are
even more important for packed columns where the holdup inside the column is
smaller. A possible solution (Shinskey, 1984, p. 128) is to let the composition
loop also influence the flow used for level control (i.e., L or V) (This effect is only

temporary, but will improve the dynamic response).
Other issues which should be considered are:
e Even L has only a delayed effect on zp.

e An increase in boilup (V), may in some cases initially push liquid off the trays
and result in a temporary increase in liquid flow in the column (A > 0.5 in
Table 1). The effect is a possible inverse response for V's effect on Mp and
zg.

e Large overshoots in the open-loop response are often encountered with the
material-balance configurations (using D or B): For example, for the DV-
configuration, an increase in V will first cause zz to fall. However, since D
is constant, the increase in V will eventually produce an equal increase in L,
which brings more light component back to the bottom, and cause zg to return
almost to its original value. This large overshoot in the response corresponds
to a LHP-zero close to the origin. Shinskey (1984, p.157) claims that this LHP-
zero causes control problems. This may be the case if a PID-controller is used
(which cannot easily counteract the effect of the zero), but should not cause

problems in general.

Summary. L and V should be manipulated directly for composition control to get

a fast initial response. This is probably one of the main reasons for the popularity



- 395 -

of the LV-configuration. The %%-conﬁguration also has this feature. Use of D or
B for composition control is generally not recommended if a fast initial response is
desired.

4.4 Rejection of Flow Disturbances

The major flow disturbances are in the

feed rate (F)

feed enthalpy (gr)

boilup (V)

¢ condenser vapor rate (Vr)

e reflux temperature
The fraction liquid in the feed, ¢F, is used as a measure of feed enthalpy. The result
of a decrease in reflux temperature (possibly caused by sub-cooling the reflux) is
equivalent to a simultaneous increase in L and a decrease in V. There will also be
disturbances in L, D and B (e.g., due to measurement noise), but those are usually
of less importance. Three ways of handling flow disturbances are

1. feedforward control

2. through their effect on composition

3. through their effect on levels and pressure
The first option is possible only if the disturbance can be measured. The level and
pressure loops are usually much faster than the composition loops, and intuitively it
seems preferable to try to reject the flow disturbances with the level loops (Option
3). However, since any flow disturbance which is not rejected by the level loops, will
result in a upset in composition, one may argue that the composition control system
may as well take care of all disturbances (Option 2). The problem is that it may not
be possible to tune the composition loops sufficiently fast to get accep’éable response
for large disturbances. This is in particular the case if L and V are not manipulated

directly for composition control (see 4.3 above). Furthermore, by using Option 3
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we retain some disturbance rejection capability in the case the composition loops
are in “manual”.

Rejecting flow disturbances with the level loops (Option 3). The effect of flow dis-

 turbances on compositions in this case is found by assuming that the inputs used
for composition control (u; and uy) are constant. The effect depends strongly on
the chosen control configuration:
e If there is a disturbance directly on a flow which is manipulated for pressure or
level control alone, it will be corrected almost immediately by the level loop.
e On the other hand, if there is a disturbance on a flow used for composition
control alone then the flow itself is not corrected. However, corrections on
other flows may counteract the effect of the disturbance on the compositions.
As an example, consider the DV -configuration and assume there are distur-
bances on the boilup (V). Then disturbances on V are not corrected and affect
the operation. However, the effect on the compositions is small because the distur-
bance on V causes L to increase and the product flowrates (D and B) do not change.
Therefore the steady-state values of the compositions are almost unaffected.

The Disturbance Gain Matrix (G4). The effect of disturbances on the product com-

positions is expressed mathematically by the disturbance gain matrix. (The steady-
state matrix may be used since the level and pressure loops are much faster than
the composition loops). Assume all the gains (including [%“’dﬂ}L V) are known for
L and V as manipulated inputs. (This is the most “natural” ch,oice as seen from
Table 1). We can then express (dyp/dd) for any other set of manipulated inputs
as follows

8yD . ayD dL 6yD 1'% ayD
I W N 2 e
v1,u3 %1,%3 uy,uz '

The terms (-‘%ﬁ’-)ul’u2 and (%%)ubu, are easy to evaluate if constant molar flows

are assumed. Clearly, it is advantageous to choose configurations which have small
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values of (2Z2),, , for all disturbances. We will return with a more detailed

discussion on how to evaluate the disturbance gains in a future paper.

Effect of Flow Disturbances on -g—. The described procedure (31) is exact, but does

" not give much insight. Since the product compositions are most sensitive to changes
in the external flows (or equivalently % (22)), an alternative approach is to consider
the effect of flow disturbances on %. Configurations for which the effect is large

should be avoided. It can be shown that an important feature of some of the ratio

control schemes is that they have a good “built-in” rejection of flow disturbances.

Example. Assume the feed is liquid and consider a feed flow disturbance. If the
LV- or DV-configuration is used, this disturbance will immediately give an increase
in bottoms flow rate (B), leading to a large upset in zg and yp. However, if
the —%-‘l—g—-conﬁguration is used, all flows are adjusted proportionally, and the effect
on compositions is very small: The increased feed flow rate initially brings light
components down the column which would increase zg. However, it also leads to
an increase in reboiler level. From (11) we see that this leads to a simultaneous

increase in B and V (while the LV- and DV-configurations keeps V constant). The

increased boilup (V) returns light components to the column, and counteracts the

22202 4

initial effect the increased feed flow had on compositions. Furthermore, the increase
in V leads to an increase in distillate flow (D). The feed flow disturbance is therefore

distributed to both products, and % is kept unchanged.

Table 3 summarizes the effect of some flow disturbances on %. Note that

disturbances in V,L and — ¢r all increase the net flow from the reboiler to the

condenser, and have the same effect on %. The results in Table 3 seem to be new

and provide a simple explanation for why, for example, the %%—conﬁguration is

less sensitive to flow disturbances than the LV -configuration. -

Summary. It is preferable to use the level control system to reject flow distur-

bances. Vg is usually used for pressure control, and disturbances in condenser
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Configuration Disturbance d
(u1,usz) dF dV4-dL4-Fdqr dDg dB4
- LV k(1-¢gr-D/F) k 0 0
LY k kL/D ~kV /B
DB 0 1+L/D+V/B 1+L/D+V /B 1+L/D+V/B
V/F kL/D
%V —k 1+L/D 1+Ilf/D 1+L/D 0
LY kLLE k 0 __ _kV/B
B 1+V/B 1+V/B 1+V/B
DX —kD/F 0 k 0
BX kB/F 0 0] —k

gr - fraction of liquid in feed .
X - denotes any other manipulated input (L,V, %, etc.) except D,B and F.
k=(1+D/B)/B= F/B?

subscript d denotes an additive disturbance on this flow.

(BDZB

54 )u1,u; = Linearized effect of flow disturbances on D/B when both com-

Table 3.
position loops are open. Applies to steady state and constant molar flows. For

derivation of Table, see Appendix.

duty are rejected perfectly (at least at steady state). However, no configuration
can reject all flow disturbances using the level control system: The commonly used
LV-configuration does not reject disturbances in F,V,L and gr. Configurations
using D or B as one of the manipulated variables for composition control are in-
sensitive to disturbances in V, L and gr, but do not reject disturbances in F.
(However, F is often measured and a feedforward control scheme may be used).
The %%-conﬁguration is insensitive to disturbances in F, and also rejects other

flow disturbances also well, provided the reflux is large.

4.5 One-Point (“Manual”) Composition Control

Very few distillation columns are actually operated with a “two-point” control
system. In most cases one of the compositions is controlled manually - at least

part of the time. Since the operators do not monitor the compositions continually
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and manipulate the inputs accordingly, it is important that the effect of expected
disturbances on the manually controlled (“uncontrolled”) composition is as small

as possible.

Both composition loops open. This issue was discussed above (Section 4.4) for the

case of flow disturbances and the %%-conﬁguration was found to give good distur-

bance rejection. However, a feed composition (zr) disturbance has no direct effect
on the flows. Consequently, if both composition loops are “open”, the effect of a
feed composition disturbance will be the same for all configurations. Furthermore,
the effect will usually be large because a change in feed composition requires a
change in % (Eq. (22)), and if this correction is not made, large changes in yp
and zp will result for high-purity separations. As an example assume that initially
zrp =05,z =1 —yp = 0.01 and ‘—g— = 0.5. A feed composition disturbance results
in zr = 0.6, but % = 0.5 remains constant. Then, according to Eq. (22), zp
has to increase at least to zg = 0.20 (corresponding to yp = 1.0). This is clearly

not acceptable. Therefore, at least one of the compositions has to be controlled

carefully, either by a feedback controller or by the operator.

One-point composition control (one composition loop open). Assume we have

closed one loop, and are using us to control y». The output y; is not controlled
and the manipulated input u; is constant. What is the effect of a disturbance d on

the uncontrolled output y;? First consider the steady-state where we have perfect

control of y;. The disturbance d has the effect [g 1‘1] on the outputs when the
2d
inputs u; and u, are constant. Using deviation variables we have
y1} e ul] + [.‘hd d (32)
Y2 Uz gad
Solving for y» = 0 and u; = 0 gives
Y1
= = —g-l—%gzd + 14 (33)

d ga2
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Consequently, the disturbance will not affect the uncontrolled output y; if

g12 _ gud ‘ (34)
g22 g2d

This result should be obvious: If the disturbance has the same relative effect ( g—:—g)
" on the outputs as input ug(g-i-:-), then we can get perfect disturbance rejection by

using only this input.

Example. Consider again the column in Table 2. For a feed composition (zr)

disturbance all configurations have £14 = 0.787. The ratio 15 to 214 (denoted r;) is
given in Table 4 for various configurations. If this ratio is close to one then perfect
disturbance rejection is achieved with manipulated input ¢ alone (the other input
being constant). D (or B) should obviously never be held constant. Configurations
which keep L or V constant come out favorably. The same conclusion holds also
for a feed flow disturbance. The reason is that in both cases the major effect of the
disturbances may be counteracted by changing the product flow rates (adjusting %

to satisfy (22)) which is easily accomplished using the LV-configuration.

Configuration | r, = Bafam  r, = gale
(u1,u2) (ug constant)  (uy constant)
LV 1.03 1.00

LD

LD 1.24 0.85

Ly 1.03 0.85

LD —1.27 0.85

DV 1.03 —-1.27

LD -1.27 1.00

Table 4. Effect of feed composition disturbance (d = z;) when one composition loop is in
manual for column in Table 1. If r{(r,) is close to one, then good composition
control is maintained over the “uncontrolled” composition zp(yp) when us(u;)

is constant.
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However, we have not considered the dynamic effects. For the LV-configuration

flow disturbances are very poorly rejected by the level loops, and large changes

in the uncontrolled composition may occur: Assume the top composition yp is
_controlled with L, and zp is left uncontrolled (i.e., V is constant). If the feed is
liquid, a feed flow disturbance will reach the reboiler very fast and lead to a large
change in bottom composition in a matter of minutes. Because it will take time
before the feed flow disturbance is noticed in the top composition, and because of the
“time delay” between a change in liquid flow (L) at the top and its effect on liquid
flow in the bottom, the bottom composition will experience a large deviation before
returning to its desired value. The % %-conﬁgurations may be preferable from a

dynamic viewpoint since the level loops will counteract the feed flow disturbance

directly (without having to wait for the compositions to change).

Summary. Operating both composition loops “open” is not acceptable because no
correction can be made for feed composition disturbances. When one-point com-
position control is used, reasonably good control of the “uncontrolled” composition
is maintained with most configurations, provided D or B are not kept constant.
The LV -configuration (keeping L or V constant) comes out favorably when only
steady-state considerations are taken into account, but it may be preferable to use
one of the ratio control schemes (e.g., VI-‘-%) in order to to obtain better dynamic

rejection of flow disturbances. One advantage of controlling only one composition is

that tuning is simple and very tight control can be maintained for this composition.

4.6 Changes between “manual” and “automatic” control.

Changing one of the composition loops between “manual” and “automatic”
control is frequently done when controlling distillation columns, for .example, due
to stability problems, constraints or failures in measurements or actuators. It is
clearly desirable to be able to do this without upsetting the rest of the system or

having to retune the controllers.
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From its definition, we might expect the RGA to give a reliable measure of
how the system is affected by changing loops from “manual” to “automatic”: Each
element in the RGA is defined as the open-loop gain (all the other loops in manual)
. divided by the gain between the same two variables when all the other loops are

under “perfect” control (in automatic) (Bristol, 1966). For example, for 2 x 2 plants

_ (9y1/8u1)u, _ Gain all other loops open

= = 35
(By1/du1)y,  Gain all other loops closed (35)

A11

However, the RGA is actually of very limited usefulness, because it does not
take into account the effect of disturbances as illustrated for the DV- and LV-
configurations below.

DV-configuration. Assume a decentralized control system is used (D controls yp,

and V controls zg). This control system will provide acceptable control of both
compositions in many cases. However, if the loop involving D is put in manual (i.e.,
D is constant), the response of yp will be very poor when there are disturbances in
the feed conditions. This was discussed in Section 4.5 (Table 4), and is even more

transparent from the following exact expression

[ayDH/yDH] _ zp—zp F
AT/ I - 2 (36)
L OF/F |p.. ypg D

Here ypg = 1 — yp represents the mole fraction of heavy component in D. yppy
is seen to be extremely sensitive to changes in F if the distillate is of high purity

(ypu — 0).

LV-configuration. A decentralized control system may in some cases give reason-

able control of both compositions when there are feed disturbances (Section 4.2).
Furthermore, if the loop involving L or V is put in manual, we still get reasonably
good control of the uncontrolled composition (Section 4.5).

In general, the LV -configuration yields large RGA-elements while the DV-
configuration yields small (for the column in Table 1, Ay; is 35.1 and 0.45 for the

two cases). Yet, when the loop involving yp is put in manual, the response of this
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uncontrolled composition is still acceptable for the LV-configuration, but poor for
the DV-configuration. The RGA is therefore not a reliable indicator of changes in

performance when changes from automatic to manual are made.

- Summary. Configurations which use D or B may give very poor response for the
uncontrolled composition when the loop involving D or B is put in manual. (This is
the opposite of what one might expect from the RGA, since one can always choose
pairings such that 0.5 < Ay; < 1 in this case). The LV- and %%-conﬁgurations
which are preferable for one-point composition control (Section 4.5), are also most
easily changed between manual and automatic (though the response for the con-

trolled compdsition may deteriorate when the other loop is closed).

4.7 Constraints

Avoiding constraints. Constraints on flow rates or on holdups (level and pressure)

may also be important when choosing the best configuration. Whenever a manip-
ulated input hits a constraint, it is no longer useful for control purposes. Since
level and pressure control always has to be maintained, this means that one of the
product compositions can no longer be controlled. If a constraint on a flow used for
composition control is reached and two-point composition control is still maintained,
then the constraints is akin to an input uncertainty. Therefore, constraints is an
additional reason for not using controllers with large RGA-elements (for example,

a decoupler for the LV-configuration).
Flows used for level control will usually have the largest variations in magni-
tude, and are most likely to hit constraint. This leads to the following conclusions:
e A flow which may easily reach its constraint should not be used to control

holdup. In particular this statement will generally imply the following:

e A very small flow should not be used to control level. One example documented
in the literature (McNeill and Sacks, 1969) is the use of distillate D to control

Mp in a high reflux column with L/D = 70. This is clearly next to impossible.



- 404 -

Any imbalance in the large flows L and Vr will result in wild variations in

D, and because of constraints on D the reflux drum is likely to run empty or

overflow.

The possibility of meeting constraints makes it necessary to have some “over-
ride” control system (e.g., the operator) which is able to identify constraints and
change the control configuration if the constrained flow rate is used for inventory

control.

Operating at Constraints. Many industrial columns are operated at their capacity

limit, usually wrt. the boilup V, the reflux L, or the condensation rate Vp. This
is another reason for why many columns are operated with only one composition
being controlled. Fortunately, as pointed out in 4.5, keeping L,V or Vr constant
will also result in reasonably small variations in the uncontrolled product - at least
at steady state. Since the active constraint may vary with operating conditions, an

“override” control system is needed also in this case.

4.8 Choice of Control Configuration. Conclusion

-configuration comes out very favorably when all the points mentioned

tof<s
N <

given by Shinskey (1984), and our analysis provides added justification for his claim.
The main exception is very high-purity columns or columns with low reflux (i.e.,
large relative volatility) which may result in large elements in the RGA and give
a system which is sensitive to input uncertainty and flow disturbances. For these
columns a configuration using D or B for composition control should be considered
(e.g., the D%-conﬁguration). These configurations have all RGA-elements less than

one and are always insensitive to input uncertainty.

5. Conclusions

The main goal of this paper has been to present in a systematic manner the

main issues which have to be addressed when designing a composition control sys-
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tem. In order to avoid excessive length, a number of important issues have been
addressed only qualitatively. More quantitative results on specific issues will follow.
These include relationships for computing steady state gains for various configu-
. rations, and simple dynamic models. Nevertheless, it is clear that a number of
generally conflicting considerations have to be taken into account.

Two-Point Composition Control. The RGA is a useful tool for addressing the issue

of input uncertainty. Configurations with large values of A;; should be avoided.
For distillation columns all material-balance configurations (using D or B) have
A11 < 1. However, these configurations often result in a poor dynamic response
and give very poor disturbance rejection if the loop involving D or B is taken out of
service. This is probably the reason for why Shinskey (1984) recommends avoiding
configurations with Ay; < 1 (provided Ay; is not too large). (These considerations
only hold for distillation column control, and for other processes there is no reason
to try to avoid A1 < 1).

One-point composition control (one loop in manual). Most industrial columns have

closed—looﬁ control of only one composition. This may seem suboptimal, but is in
many cases reasonable, since one product is usually much more important than the
other. Furthermore, if the column is operating at its capacity limit (which is often
the case), it is impossible to control more than one composition. Uncertainty does
not pose any particular problem when only one composition is controlled. Reason-
ably good control of the uncontrolled composition is maintained provided D or B
is not kept constant. The LV- and %%—conﬁgurations will generally both perform
satisfactory. The %YE' configuration is preferable because it has a better “build-
in” rejection of flow-disturbances which leads to less variations in the uncontrolled
composition. The only case when it may be worthwhile to use D or B as the manip-
ulated input for one-point composition control, is for columns with Vel.‘); large reflux

(£ > lor% > 1)) where level control using D or B may be almost impossible.



- 406 -
References

Bristol, E. H., “On A New Measure of Interactions for Multivariable
Process Control”, IEEE Trans. Automatic Control, AC-11,
133-134 (1966).

_ Dartt, S. R., “A Survey on Process Control Applications Needs”,
Chemical Engineering Progress, 11-14, (December 1985).

Doyle, J. C., J. E. Wall and G. Stein, “Performance and Robustness
Analysis for Structured Uncertainty”, IEEE Conf. on Decision and
Control, Orlando, FL (1982).

McNeill, G. A. and J. D. Sacks, “High Performance Column Control”,
Chemical Engineering Progress, 65, 3, 33-39 (1969).

Rademaker, O., J. E. Rijnsdorp and A. Maarleveld, “Dynamics and Control
of Continuous Distillation Units”, Elsevier, Amsterdam (1975).

Rosenbrock, H. H., “The Control of Distillation Columns”, Trans. Inst.
Chem. Engrs., 40, 35-53 (1962).

Shinskey, F. G., Distillation Control, 2nd Edition, McGraw-Hill,
New York (1984).

Skogestad, S. and M. Morari, “Control of Ill-Conditioned Plants: High
Purity Distillation”, paper 74a, AIChE Annual Mtg., Miami Beach
(1986a).

Skogestad, S. and M. Morari. “Implication of Large RGA-Elements on
Control Performance”, paper 6d, AIChE Annual Mtg., Miami Beach
(1986b).

Behavior of Distillation Columns”, in preparation (1986c).

Skogestad, S. and M. Morari, “Effect of Disturbance Directions on
Closed-Loop Performance”, submitted to Ind. Eng. Chem. Res. (1986d).

Stanley, G. T. and T. J. McAvoy, “Dynamic Energy Conservation Aspects
of Distillation Control”, Ind. Eng. Chem. Fundam., 24, 4,
439-443 (1985).



- 407 -

Appendix
Derivation of Table 3
Assuming constant molar flows the following exact steady-state relationships

apply ‘

dD = (1 — gr)dF — Fdgqr + dV —dL (A1)
dD = dF — dB (A2)

Furthermore ) D
d(D/B) = -l—?dD — —B—de (A3)

combining (A2) and (A3)
d(D/B) = kdD — kD/FdF ,k= F/B? (A4)

We consider disturbances in F and ¢r. In addition, each manipulated flow may
have an additive disturbance. For example, the distillate flow D can be expressed

D=Dy+ D, (A5)

Here D,, represents the “manipulated” part of the distillate (which is what D is
“believed” to be), while Dy represents the disturbance. We want to find the effect
of the disturbances on D/B when the composition loops are open, i.e.

dulm - d'u:gm =0 (AG)

To derive Table 3 these equations are combined to express d(D/B) in (A4) as a
function of the disturbances only (i.e., express dD as a function of dDy, dV4,dL4,dF,
etc.).

Example. LV-Configuration
With

dL,, =dV,, =0

(A1) becomes
dD = (1 — qr)dF — Fdqr + dV4 — dLg

which upon inserting in (A4) yields

d(D/B) = k(1 —qrF — D/F)dF + k(dVy — dL4 — Fdgr) (AT)
Example. DX-Configuration
With
dD,, =0
(A4) becomes
d(D/B) = kdD4g—kD/FdF (A8)

Example. L/D V/B-Configuration
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With
dL,, = L/DdD,, ,dV,,=V/BdB,,
(A1) becomes

dD = (1 - qr)dF — Fdqr + dVa— dLy+ V/BdB, — L/ DdD,,  (A9)

Here
dD,, =dD — dDy

dB,, =dB — dBs; =dF —dD — dBg
which upon inserting in (A9) yields

L vV |4 |4 L
dD(1+ 5 + ) = (1 - gr)dF - Fdgr + dVy —dLa+ pdF — pdBa+ +dDq
The term involving dF drops out when this is substituted into (A4) (Use (1—¢r)F+

V = D — L) and we derive the expression given in Table 3:

D L Vv L |4
d(—g)(l + 5 + —E) = k(dVd ~dLg— Fdqr + BdDd - —.—édBd) (AlO)
The fact that a change in F does not affect D/B when L/D and V/B are constant is
expected, since a feed flow change is counteracted by keeping all flow ratios constant.
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Chapter XIII

LV-CONTROL OF A HIGH-PURITY DISTILLATION COLUMN
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Abstract

A realistic study of the LV-control of a high-purity distillation column is pre-
sented. Linear controllers designed based on a linearized model of the plant are
found to yield acceptable performance also when there is model-plant mismatch.
The mismatch can be caused by uncertainty on the manipulated inputs, nonlinearity
and variations in reboiler and condenser holdup. The presence of input uncertainty
makes the use of a steady-state decoupler unacceptable. The effect of nonlinearity
is strongly reduced by using the logarithm of the compositions. A simple diagonal
Pl-controller is not sensitive to model-plant mismatch, but yields a response with

a sluggish return to steady-state.
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1. INTRODUCTION

In this paper we study the high-purity distillation column in Table 1 using reflux
(L) and boilup (V) as manipulated inputs to control the top (yp) and bottom (zp)
- compositions. This column was analyzed previously by the authors (Skogestad and
- Morari, 1986a), but the objective of that paper was to study general properties of
ill-conditioned plants rather than distillation column control. The LV-configuration
is chosen because this is the choice of manipulated inputs most commonly used in
industrial practice. This does not necessarily mean that this is the best configura-
tion, and, for example, the %%-conﬁguration may be preferrable (Shinskey, 1984,

Skogestad and Morari, 1987c).

The distillation column used in this paper was chosen to be representative of
a large class of moderately high-purity distillation columns. The éoa.l of this paper
is to provide a realistic control design and simulation study for the column. To be
realistic at least the issues of 1) uncertainty and 2) nonlinearity must be addressed.
1.1 Uncertainty

Skogestad and Morari (1986a) showed that the closed-loop system may be
extremely sensitive to input uncertainty when the LV-configuration is used. In par-
ticular, inverse-based controllers were found to display severe robustness problems.
In this paper the uncertainty is explicitly taken into account when designing and
analyzing the controllers by using the Structured Singular Value () introduced by
Doyle (1982). We also find that u provides a much easier way of comparing and ana-
lyzing the effect of various combinations of controllers, uncertainty and disturbances

than the traditional simulation approach.
1.2 Nonlinearity

High-purity distillation columns are known to be strongly nonlinear (e.g.
Moczek et al., 1963, Fuentes and Luyben, 1983), and any realistic study should

take this into account. Our approach is to base the controller design on a linear
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model. The effect of nonlinearity is taken care of by analyzing this controller for

linearized models at different operating points. Furthermore, all simulations are

based on the full nonlinear model.
1.8 Logarithmic Compositions

In another paper (Skogestad and Morari, 1987a) we study the dynamic behavior
of distillation columns in general. One conclusion from that paper is that the high-
frequency behavior is only weakly affected by operating conditions when the scaled

transfer matrix is considered

1
dyS\ s (dL s _[1sz O
(dzg)"G awv) = 0" )¢ 1)
B

All plant models and controllers in this paper are for the scaled plant. G° is

obtained by scaling the outputs with respect to the amount of impurity in each

product

Yp s B
= 22 2

yp =

Here 3 and y7, are the compositions at the nominal operating point. This relative

scaling is automatically obtained by using logarithmic compositions

Yp = In(1 - yp) (3)
Xp=Inzpg
because
da¥p = —-B2_ gx, = %8 (4)
1-yp 5

Furthermore, the use of logarithmic compositions (Yp and Xp) effectively elimi-
nates the effect of nonlinearity at high frequency (Skogestad and Morari, 1987a) and
also reduces its effect at steady-state (Skogestad and Morari, 1987b}.- For control
purposes the high frequency behavior (initial response) is of principal importance.

Consequently, if logarithmic compositions are used we expect a linear controller to
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perform satisfactorily also when we are far removed from the nominal operating
point for which the controller was designed. Another objective of this paper is to

confirm that this is indeed true.

In most cases the column is operated close to its nominal operating point and
there is hardly any advantage in using logarithmic compositions which in this case
merely corresponds to a rescaling of the outputs. However, if, for some reason, the
column is taken far from this nominal operating point, for example, during startup
or due to a temporary loss of control, the use of logarithmic compositions may bring
the column safely back to its nominal operating point, whereas a controller based

on unscaled compositions (yp and zg) may easily yield an unstable response.
1.4 Choice of Nominal Operating Point

The design approach suggested by the above discussion is to design a linear
controller based on a linearized model for some nominal operating point. What
operating point should be used? If an operating point correspondir.lg to both prod-
ucts of high and equal purities is chosen (i.e., 1 — Yp = Zp is small), it is easily

shown (Skogestad and Morari, 1987a,b, Kapoor et al., 1986) that the values of the

steady-state gains and the linearized time constant
perturbations from this operating point. We may therefore question if acceptable
closed-loop control can be obtained by basing the controller design on a linearized
model at such an operating point. Kapoor et al. (1986) indicate that this is not
advisable, and that a model based on a perturbed operating point should be used.
However, as we just discussed, the high-frequency behavior, which is of primary im-
portance for feedback control, shows much less variation with operating conditions.
Therefore, provided the model gives a good description of the high-frequency behav-

ior, we expect to be able to design an acceptable controller also when-the nominal

point has both products of high purity. This is also confirmed by the results in this

paper.
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A main conclusion of this paper is therefore that acceptable closed- loop perfor-
mance may be obtained by designing a linear controller based on a linear model at
any nominal operating point. If large perturbations from steady state are expected

_then logarithmic compositions should be used to reduce the effect of nonlinearity.

2. THE DISTILLATION COLUMN
Steady-state data for the distillation column are given in Table 1.
The following simplifying assump-
tions are made: al) binary separation, a2) constant relative volatility, a3) constant
molar flows and a4) constant holdups on all trays and perfect level control. The last
assumption results in immediate flow response, that is, we are neglecting flow dy-
namics. This is somewhat unrealistic, and in order to avoid unrealistic controllers,
we will add “uncertainty” at high frequency to include the effect of neglected flow
dynamics when designing and analyzing the controllers (see Section 3).
We investigate the column at two different operating points. At the nominal
operating point, A, both products are high-purity and 1 — y3 = z% = 0.01. Oper-
ating point C is obtained by increasing D/F from 0.500 to 0.555 which yields a less
pure top product and a purer bottom product; 1 — y3, = 0.10 and =%, = 0.002
(subscript C denotes operating point C while no subscript denotes operating point
A). We will study the column for the following three assumptions regarding reboiler
and condenser holdup
Case 1: Almost negligible condenser and reboiler holdup (Mp/F = Mp/F = 0.5
min).

Case 2: Large condenser and reboiler holdup (Mp/F = 32.1 min, Mp/F = 11
min).

Case 3: Same holdup as in Case 2, but the composition of the overhe.;a,d vapor (yr)

is used as a controlled output instead of the composition in the condenser

(yp)-
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Binary separation, constant molar flows, feed liquid.

Column Data:

Relative Volatility a=15
No. of theoretical trays N =40
Feed tray (1=reboiler) Np =21
Feed composition zr = 0.5

Operating variables:

A C
Yp = 0.99 0.90
Tp = 0.01 0.002
D/F = 0.500 0.555
L/F = 2.706 2.737

Steady-state gains (unscaled compositions):

(22 =c0 (37)

A |
G(0) = 0.878 —0.864 1.604 —1.602
- 1.082 —1.096 .01865 —.02148

Table 1. Steady-state data for distillation column at operating points A and C.
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These three cases will be denoted by subscripts 1, 2 and 3, respectively. The
holdup on each tray inside the column is M;/F= 0.5 min in all three cases.
2.1 Modelling

Nominal operating point (A). A 41st order linear model for the columns is

easily derived based on the data given in Table 1 (see Skogestad and Morari, 1987a)

(i) =c0 (&) ©

The scaled steady-state gain matrix is

(6)

s | 87.8 —86.4
6*0) = | ons 1006

which yields the following values for the condition number and the 1,1-element in

the RGA
~(G5(0)) = (G5 (0))/a(G®(0)) = 141.7  X11(G5(0)) = 35.1

However, v(G®) and A;;(GY) are much smaller at high frequencies as seen from
Fig. 2. A very crude model of the column was presented by Skogestad and Morari
(1986a) (time in minutes)

Model 0:  G(s) = ——=—G(0) (7)
1-r {08

This model gives the same values of ¥(G) and A{;(G) at all frequencies, and is
therefore a poor description of the actual plant at high frequency. In our previ-
ous study (Skogestad and Morari, 1986a) the controller design was based on this
simplified model, and one objective of this paper is to study how these controllers
perform when a more realistic model is used.

Case 1. For the case of negligible reboiler and condenser holdup the following
simple two time-constant model yields an excellent approximation of the 41st order

linear model (Skogestad and Morari, 1987a).
87.8 87.8 1.4

14718 14718 + 14738 71 = 194min

Model 1: Gf(s) = (8)

108.2 —108.2 _ _1.4 72 = 15mun
14718 14718 14738
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This model has only two states as seen from the minimal realization in the Appendix.
G1(s) uses two time constants: 7y is the time constant for changes in the external
flows. It corresponds to the dominant time constant and may be estimated, for
_example, by using the inventory time constant of Moczek et al. (1963). 75 is the
time constant for changes in internal flows (simultaneous change in L and V with
constant product rates, D and B) and can be estimated by matching the high-
frequency behavior as shown by Skogestad and Morari (1987a). The simple model

(8) matches the observed variation in condition number with frequency (Fig.2).

The effect of the reboiler and condenser holdups (Case 2) can be partially
accounted for with Model 1 by multiplying G1(s) by diag{(1+7ps)~1, (1+75s)71},
where in our case 7p = Mp/Vy = 10 min and 75 = Mp/Lp = 3 min. However, in
practice the top composition is often measured in the overhead vapor line (Case 3),
rather than in the condenser. G;(s) provides a good approximation of the plant in

such cases.

Cases 2 and 3. In order to obtain a low-order model for Case 2 and 3, we

performed a model reduction (Balanced Realization, Moore (1981)) on the full 41st
order model. A good approximation was obtained with a 5th order model as illus-
trated in Fig. 3. The state-space realizations of these models (G35 (s) and G3 (s))

are given in Appendix.

Operating point C. We will return with a discussion of the model for this

case in Section 6 when we also discuss the control of the plant.
2.2 Simulations

The design and analysis of the controller are based on the linear models
G1(s), G2(s) and G3(s). However, except for the four simplifying assumptions al-a4
stated above, all simulations are carried out with the full nonlinear madel. (In some
cases the changes are so small, however, that the results are equivalent to linear

simulations.) To get a realistic evaluation of the controllers input uncertainty must
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be included (Skogestad and Morari, 1986a,b). Simulations are therefore shown both
with and without 20% uncertainty with respect to the change of the two inputs.

The following uncertainties are used
AL = (1+ A,)AL,, A; =02

AV = (14 A3)AV,, Ay=—0.2 (9)

Here AL and AV are the actual changes in manipulated flow rates, while AL, and
AV, are the desired values as computed by the controller. A; = —A5 was chosen
to represent the worst combination of the uncertainties (Skogestad and Morari,
1986b).
3. CONTROL THEORY
3.1 Robust performance and robust stability

The objective of using feedback control is to keep the controlled outputs (in
our case yp and zp) “close” to their desired setpoints. What is meant by “close”
is more precisely defined by the performance specifications. These performance re-

quirements should be satisfied in spite of unmeasured disturbances and model-plant
mismatch (uncertainty). Consequently, the ultimate goal of the controller design
is to achieve Robust Performance (RP): The performance specification should be
satisfied for the worst case combination of disturbances and model-plant mismatch.

To check for RP we will use the Structured Singular Value p (Doyle, 1982).
u of a matrix N (denoted p(N) or pa(N)) is equal to 1/5(A) where &(A) is the
magnitude of the smallest perturbation needed to make the matrix (I + AN) sin-
gular. u(N) depends both on the matrix N and of the structure (e.g., diagonal or
full matrix) of the perturbation A.

As stated, achieving robust performance is the overall goal. The; implications

of this requirement are easier to understand if we consider some subobjectives which

have to be satisfied in order to achieve this goal:
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Nominal Stability (NS): The model is assumed to be a reasonable approxima-

tion of the true plant. Therefore the closed loop system with the controller applied
to the (nominal) plant model has to be stable. -

Nominal Performance (NP): In addition to stability, the quality of the response

should satisfy some minimum requirements — at least when the controller is applied
to the plant model. We will define performance in terms of the weighted H°°-norm
of the closed-loop transfer function S from the disturbances (d) and setpoints (y,)
to the errors (e = y — y., i.e., Yo — Yps, TB — Tps). The performance specification
is

NP & o(wpS)<1 VYw, S=({I+GC)™?! (10)

The weight wp is used to specify the frequency range over which the errors are to be
small. To get consistency with the notation used below define 6(wpS) = u(Nnp)

such that (10) becomes
NP & /.L(NNP) <1 Vw (11)

where Nyp = wpS, and u is computed with respect to the structure of a “full”
matrix Ap.

Robust Stability (RS). The closed loop system must remain stable for all pos-

sible plants as defined by the uncertainty description. For example, assume there is
uncertainty with respect to the actual magnitude of the manipulated inputs (which

is always the case!). The possible plants, Gp, are then given by

A 0
G, =G+ Aj), A,:(Ol A2> (12)

where A;(s) is the uncertainty for input i. We will consider the case when the

magnitude of uncertainty is equal for both inputs

1Ai] < |wr(Gw)l, $=1,2 (13)
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The robust stability requirement can be checked using u. In this particular case

(Skogestad and Morari, 1986a)
RS & u(Ngs)<1l, Yw (14)

where Nps = w;CGS and p is computed with respect to the diagonal 2 x 2 matrix
Ar.

Robust Performance (RP): The closed loop system must satisfy the perfor-

mance requirements for all possible plants as defined by the uncertainty description.
As an example we may require (10) to be satisfied when G is replaced by any of the

possible perturbed plants G, as defined by the uncertainty description (12).
RP & &(wp(I+G,C)"1)<1 Vw, VG, (15)

This definition of Robust Performance is of no value without a simple method to test
if condition (15) is satisfied for all possible perturbed plants G, generated by (12)
and (13). Again it turns out that the structured singular value u gives a condition

which is relatively easy to check:
RP <& u(Ngp)<1l, Vw (16a)

where

w;CSG wfcs> (165)

Nrp = ( wpSG  wpS
and p is computed with respect to the structure diag{A,A,} where Aris 2 x 2

diagonal matrix and Ap is a full 2 X 2 matrix.

3.2 The RGA
Let X denote element-by-element multiplication. The RGA of the matrix G
(Bristol, 1966) is defined as

AG)=Gx (YT (17)
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The RGA is independent of input and output scaling. The RGA of the plant is
commonly used as a tool for selecting control configurations for distillation columns
(Shinskey, 1984). However, in this paper we will make use of the RGA of the
~controller as a measure of a system’s sensitivity to input uncertainty (Skogestad
and Morari, 1986b). Before stating this result, we will point out the close rela-
tionship between large plant RGA-elements and a high condition number. The
condition number of the plant is ¥(G) = &(G)/a(G). This quantity is strongly
dependent on how the inputs and outputs are scaled. The minimized scaled con-
dition number v*(G) is obtained by minimizing v(S1GS2) over all possible input
and output scalings, S; and S,. There is a very close relationship between v* and

All; = ). . |Ai;|. For 2 x 2 plants (Nett et al., 1986, Grosdidier et al., 1985
1,9 174

1AL - ;—%57 <+*(G) < |IA]x (18)

Consequently, for 2 x 2 plants the difference between these quantities is at most one
and ||A]|; approaches v*(G) as ¥*(G) — oo. Since ||A]|; is much easier to compute
than v*(G), it is the preferred quantity to use.

The RGA and input uncertainty (Skogestad and Morari, 1986b). Again,
consider uncertainty on the plant inputs as given by (12). The loop transfer matrix,

G,C, for the perturbed plant may be written in terms of its nominal value, GC:

Gp,C =GC(I+C™1'A;0) (19)

G,C is closely related to performance because of (15). For 2 x 2 plants the error

term C~1A;C in (19) may be expressed in terms of the RGA of the controller

A11{C)A; + A21(C) A, A (C)&2 (A — Ay)
G~ 'A[C = .- (20)
=A11(C) 2L (A1 — Az) A12(C)A; + A22(C)A,

€22

If any element in C~1A;C is large compared to 1, the loop transfer matrix G,C is
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very different from the nominal (GC) and poor performance or even instability is

expected when A1 # 0. We see from (20) that controllers with large RGA-elements

should always be avoided, because otherwise the closed-loop system is very sensitive

~ to input uncertainty.
It should be added that it is the behavior of G,C at frequencies close to the
| closed-loop bandwidth (where 0;(G,C) =~ 1) which is of primary importance for the
stability of the closed-loops system. Therefore, it is particularly bad if the controller
has large RGA-elements in this frequency range.

Inverse-Based Controller. To have “tight” control it is desirable to use an

inverse-based controller C(s) = ¢(s)G~1(s) where c(s) is a scalar. In this case
A(C) = A(G~1) = AT(Q) and the controller will have large RGA-elements whenever
the plant has. Consequently, inverse-based controllers should always be avoided for
plants with large RGA-elements. In particular, this applies to LV-control of high-
purity distillation columns which always yields large RGA-elements.

Control of Plants with Large RGA-Elements. We clearly should not use an

_inverse-based controller for a plant with large RGA-elements. On the other hand,
a diagonal controller is insensitive to uncertainty (C~!A;C = Aj), but is not able
to correct for the strong directionality of the plant, which implies that performance

has to be sacrificed. This is confirmed by the results presented below.

4. FORMULATION OF THE CONTROL PROBLEM
4.1 Performance and Uncertainty Specifications
The uncertainty and performance specifications are the same as those used by
Skogestad and Morari (1986a).
, Uncertainty. The only source of uncertainty considered is uncertainty on the ma-
nipulated inputs (L and V) with a magnitude bound '

5s+1
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The possible perturbed plants G, are obtained by allowing any dL = dL(1 + |wy|)
and dV = dV,(1 & |wr|). (Actually, the perturbations are allowed to be complex,
mainly for mathematical convenience). (21) allows for an input error of up to 20%
_at low frequency as is used in the simulations (9). The uncertainty in (21) increases
with frequency. This allows, for example, for a time delay of about 1 min in the
7 response between the inputs, L and V, and the outputs, yp and zp. In practice,
such delays may be caused by the flow dynamics. Therefore, although flow dynamics
are not included in the models or in the simulations, they are partially accounted
for in the p-analysis and in the controller design.

Performance. Robust performance is satisfied if

3(5p) = 5((I + G,C) ™) < —— (15)

|wp|
is satisfied for all possible plants, G,. We use the performance weight

10s +1
10s

wp(s) =0.5 (22)

A particular S which exactly matches the bound (15) at low frequencies and satisfies

it easily at high frequencies is S = 20s/20s + 1. This corresponds to a first-order

4.2 Analysis of Controllers

Comparison of controllers is based mainly on computing u for robust perfor-
mance (ugp). Simulations are used only to support conclusions found using the
p-analysis. The main advantage of using the p-analysis is that it provides a well-
defined basis for comparison. On the other hand, simulations are strongly dependent
on the choice of setpoints, uncertainty, etc.

The value of upp is indicative of the worst-case response. If upp > 1 then
the “worst case” does not satisfy our performance objective, and if ;_;,Rp < 1 then
the “worst case” is better than required by our performance objective. Similarly, if

unp < 1 then the performance objective is satisfied for the nominal case. However,
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this may not mean very much if the system is sensitive to uncertainty and pgpp is

significantly larger than one. We will show below that this is the case, for example,

if an inverse-based controller is used for our distillation column.

4.3 Controllers

1)

We will study the distillation column using the following six controllers:

Diagonal PI-controller.

Cri(s) = 9‘5’1(1 +755) (264 9 4) (23)

This controlled was studied in Skogestad and Morari (1986a) and it was tuned
in order to achieve as good a performance as possible while maintaining robust
stability (also see Fig. 6).

Steady-state decoupler plus two PI-controllers.

1+ 75s)

.| s/m—1 _ 0.01(1+75s) (27.96 —22.04
Coino(8) = 0.1 ———=G"(0) " = ————— | )y'50 _20.40) (2%

This controller was tuned to achieve good nominal performance. However, the
controller has large RGA-elements (A;;(C) = 35.1) at all frequencies and we
expect the controller to be extremely sensitive to input uncertainty.

Inverse-based controller based on the linear model G¥ (s) for Case 1.

0.7

Cliny(8) = TGf(s)_l (25)

At low frequency this controller is equal to Coiny(s). Note that Ciine(s)
and G{(s)T have the same RGA-elements. Therefore from Fig. 1 we expect
Clinu(S) to be sensitive to input uncertainty at low frequency, but not at high
frequency.

5 and 6). u-optimal controllers based on the models Go(s),G 1(5) and Ga(s).
The controllers are denoted Cq,(s),C1,.(s) and Cq,(s), respectively, and their

state-space descriptions are given in the Appendix.
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These controllers were obtained by minimizing sup,, #(Nrp) for each model
using the input uncertainty and performance weights given above. The numerical
procedure used for the minimization is the same as outlined in Skogestad and Morari
" (1986a). The p-plots for RP for the u-optimal controllers are of particular interest
since they indicate the best achievable performance for the plant. Bode-plots of
the transfer matrix elements for Cy,(s) and C5,(s) are shown in Fig. 4. Note the
similarities between these controllers and the simple diagonal PI- controller (23).

At low frequency (s — 0) the six controllers are approximately

001 (24 O
Crr=—, (0 2.4)
0.01 (27.96 —22.04
Coiny = Criny = — (27.80 —22.40)
c. - 001 (382 —0.92
Op — S 1.73 —-3.52
c. _ 001 (607 —0.90
w=""\280 -—293
c. 001 (406 +0.15
= 75 \2.85 —2.93

The value of ||A{C)||1 as a function of frequency is shown for the six controllers in
Fig. 5. As expected, the u-optimal controllers have small RGA-elements, which
make them insensitive to the input uncertainty. For example, Cs, is nearly trian-

gular at low frequency and consequently has A ~ I.

5. RESULTS FOR OPERATING POINT A

In this section we will study how the six controllers perform at the nominal
operating point A for the three assumptions regarding condenser and reboiler holdup
(corresponding to the models Gi(s),G2(s) and Gs(s)). The p-plots for the 18
possible combinations are given in Fig. 6. The upper solid line is u(.N rp) computed
from (16). The lower solid line is u(Nyp) = &((I + GC)™1). The dotted line is

#(Ngs) (Eq. (14)). A number of interesting observations can be derived from these
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Figure 6. u-plots for Column A. Upper solid line: u(Ngp) for robust performance; Lower
solid line: u(Nyp) for nominal performance; Dotted line: u(Ngg) for robust
stability. The RP-, NP- or RS-requirement is satisfied if the corresponding

p-curve is less than one at all frequencies.
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plots. These are presented below. In some cases the simulations in Fig. 7-9 are

used to support the claims.
Discussion of Controllers

_C’_J_:_IEl . The simple diagonal PI-controller performs reasonably well in all cases.
unp is higher than one at low frequency, which indicates a slow return to steady-
state. This is confirmed by the simulations in Fig. 8 for a feed rate disturbance;
after 200 min the column has still not settled. Operators are usually unhappy
about this kind of response. The controller is insensitive to input uncertainty and

to changes in reboiler and condenser holdup.

Coinv(8). This controller uses a steady-state decoupler. The nominal response
is very good for Case 1 (Fig. 7), but the controller is extremely sensitive to input
uncertainty. In practice, this controller will yield an unstable system (Skogestad

and Morari, 1986a).

Clinv(s). This controller gives an excellent nominal response for Case 1 (Fig.
6). This is also confirmed by the simulations in Fig. 7; the response is almost
perfectly decoupled with a time constant of about 1.4 min. Since the simulations
are performed with the full-order model, while the controller was designed based
on the simple two time-constant model, G1(s) (8), this confirms that G (s) yields
a very good approximation of the linearized plant when the reboiler and condenser
holdups are small. The controller is sensitive to the input uncertainty as expected
from the RGA- analysis. Also note that the controller performs very poorly when

the condenser and reboiler holdups are increased. This shows that the controller is

very sensitive also to other sources of model-plant mismatch.

Cou(s). This is the u-optimal controller from our previous study (Skogestad
and Morari, 1986a) which was designed based on the very simplified model Go(s).
The controller performs surprisingly well on the actual plant (G;(s)) when the

holdups are negligible. However, the controller is seen to perform very poorly
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Figure 7. Column A, Case 1. Closed-loop response to small setpoint change in yp. Solid

lines: no uncertainty; Dotted lines: 20% uncertainty on inputs L and V (Eq.

9).
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when the holdup in the reboiler and condenser is increased, which shows that the
controller is very sensitive to other sources of model inaccuracies (for which it was

not designed).

21_“_(;91 . This is the y-optimal controller when there is negligible holdup (G (s)),
and the RP-condition is satisfied for this case since grp =~ 0.95. The nominal per-
formance is not as good as for the inverse-based controller C';ny(s); we have to
sacrifice nominal performance to make the system robust with respect to uncer-
tainty. The controller shows some performance deterioration when the reboiler and
condenser holdups are increased (Case 2). This is not surprising since the added
holdup makes the response in yp and zp more sluggish; the open- loop response
for yp changes from approximately 1/1 + 194s to 1/(1 + 194s)(1 + 10s) (recall dis-
cussion following (8)). As expected, the controller is much less sensitive to changes

in condenser holdup if overhead composition is measured in the vapor line (Case

3). Overall, this is the best of the six controllers.

_C_gﬁLs_)_ . This is the u-optimal controller for the case with considerable reboiler
and condenser holdup, and with yp measured in the condenser (G2(s)). prp ~ 1.00
for this case. The nominal response is good in all cases (Fig. 6), but the controller
is very sensitive to uncertainty when the plant is G1(s) or Gs(s) rather than Gy(s).
This is clearly not desirable since changes in condenser and reboiler holdup are
likely to occur during normal operation. The observed behavior is not surprising
since the controller includes lead elements at w &~ 0.1 (Fig.4B) to counteract the
lags caused by the reboiler and condenser holdups. If these lags are not present

in the plant (G(s) or G3(s)), the “derivative” action caused by the lead elements

result in a system which is very sensitive to uncertainty.
Conclusions

¢ The p-optimal controller Cy,,(s) for the plant Go(s) has prp ~ 1.06 (Skogestad

and Morari, 1986a), while the p~optimal controller C',(s) for the plant Gy(s)
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has urp ~ 0.95. Thus, somewhat surprisingly, the achievable performance is
not much better for G,(s) than for Go(s), even though Go(s) is ill-conditioned
and has large RGA-elements at all frequencies, while Gy(s) only has large
RGA- elements at low frequencies (Fig. 1). This seems to indicate that large
RGA- elements at low frequency imply limitations on the achievable control
performance and partially justifies the use of steady-state values of the RGA

for selecting the best control configuration (Shinskey, 1984).

However, the use of the more detailed model G,(s), rather than Gy(s), is
still justified since the resulting p-optimal controller is much less sensitive to
changes in reboiler and condenser holdup (which will occur during operation).
G1(s) approximates the full-order model very closely as seen from Fig. 7C; the
response is almost perfectly decoupled when there is no uncertainty.

To avoid sensitivity to the amount of condenser and reboiler holdup, the over-
head composition should be measured in the overhead vapor, rather than in the

condenser. In practice, temperature measurements inside the column are often

used to infer compositions, and the dynamic response of these measurements
is similar to that when the condenser and reboiler holdup is neglected.

The simple model G2(s) is useful for controller design also when the reboiler
and condenser holdup is large.

The main advantage of the u-optimal controllers over the simple diagonal PI-
controller is a faster return to steady-state. This comes out very clearly in Fig.

8 which shows the closed-loop response to a 30% increase in feed rate.

6. EFFECT OF NONLINEARITY ( RESULTS FOR OPERATING

POINT C)

In this paper we do not treat nonlinearity as uncertainty as was attempted in

Skogestad and Morari (1986a). The reason is that this approach is not rigorous

and is also easily very conservative because of the strong correlation between all the
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parameters in the model which is difficult to account for. Furthermore, we know
from the insights presented by Skogestad and Morari (1987a) that the column is
actually not as nonlinear as one might expect. Though the steady-state gains may

- change dramatically, the initial response (the high frequency behavior), which is of

principal importance for feedback control, is much less affected. In particular, this
is the case if relative (logarithmic) compositions are used (Skogestad and Morari,
1987a). To demonstrate this we compute u and show simulations for some of the
controllers when the “plant” is GZ(s) rather than G5(s).
6.1 Modelling

Gc(s) corresponds to the same column as G(s), but the distillate flow rate (£)
has been increased from 0.5 to 0.555 such that yp = 0.9 and zp = 0.002 (see Table
1). For Case 1 (Mp/F = Mp/F = 0.5 min), the following approximate model is

derived when scaled compositions (dyp/0.1,dzg/0.002) are used:

16.0 16.0 | 0.023
G’S ( ) 147118 14718 1471328 Ty = 24.5 min (27)
ci\8) = j
9.3 -9.3 _ _1.41 72 = 10 min
14718 14738 14724

The steady-state gains and time constants are entirely different from those at op-
erating point A (8). Also note that at steady state A;;(G(0)) = 35.1 for Column
A, but only 7.5 for Column C. However, at high-frequency the scaled plants at

operating points A and C are very similar. (8) and (27) yield:

1/045 -0.36
S — = ES
Gy (o0) = . (0.56 —0.65) A11{o0) =3.2 (28a)
1/0.65 -—0.65
Ggl(oo) = 5 (0.38 __0.52) Ar1(o0) = 3.7 (28b)

Therefore, as we will show, controllers which were designed based on the model
G5 (s) (operating point A) do in fact perform satisfactory also when the plant
is G2 (s) rather than G5(s). Recall that the use of a scaled plant is equivalent to

using logarithmic compositions (Yp and Xp). The variation in gains with operating
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conditions is much larger if unscaled compositions are used — both at steady-state

(Table 1) and at high frequencies:

0.01 (0.45 —0.36

Giloo) = = (0.56 ——0.65) (292)
0.01 (65 —6.5

Gorloo) == (o.os -0.10) (206)

6.2 u~-Analysis

The u-plots with the model G3(s) and four of the controllers are shown in
Fig. 10 (all four controllers yield nominally stable closed-loop systems). At high
frequencies the p-values are almost the same as those found at operating point A.
The only exception is the inverse-based controller Cy;,,(s) which was found to be
robustly stable at operating point A, but which is not at operating point C. Again,
this confirms the sensitivity of this controller to model inaccuracies. Performance
is clearly worse at low frequencies at operating point C (Fig. 10) than at operating
point A (Fig. 6). This is expected; the controllers were designed based on model
A, and the plants are quite different at low frequencies.

The p-optimal controller Cy,(s) satisfies the robust performance requirements
also at operating point C when the reboiler and condenser holdups are small. Conse-
quently, with the use of scaled (logarithmic) compositions, a single linear controller
is able to give acceptable performance at these two operating points which have
quite different linear models. The main difference between Cy,(s) and the diagonal
Pl-controller is again that the u-optimal controller gives a much faster return to
steady-state. This is clearly seem from Fig. 11A.

6.3 Logarithmic Versus Unscaled Compositions
Fig. 10 shows how controllers designed based on the scaled plant G(s) at

operating point A, perform for the scaled plant (different scaling factors!) at oper-

ating point C; this is equivalent to using logarithmic compositions (Yp and Xpg).

However, we know from (29) that the plant model shows much larger changes if
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absolute (unscaled) compositions (yp and zp) are used. We therefore expect the
closed-loop performance to be entirely different at operating ponts A and C when
unscaled (absolute) compositions are used. This is indeed confirmed by Fig. 11B
~ which shows the closed-loop response to a small setpoint change in zp at operating
point C. Fig.11B should be compared to Fig.11A which shows the same response,
but using logarithmic compositions as controlled outputs. In Fig.11B (absolute
compositions) the response for zp is significantly more sluggish, and the response
for yp is much faster than in Fig.11A (logarithmic compositions). This is exactly
what we would expect by comparing (29a) and (29b): The high- frequency gain for
changes in yp is increased by an order of magnitude and the gain for changes in
zp is reduced by an order of magnitude. However, recall from (28) that the gain
shows very small changes if logarithmic compositions are used.

The simulations in Fig. 12 are with no flow dynamics and in practice we expect
the system to be unstable at operating point C if unscaled (absolute) compositions
are used; the loop gain for yp is increased by a factor of about 10 compared to
the design conditions at operating point A. Assume we use the diagonal controller
Cpi(s) and are only controlling top composition (yp) using reflux (L). Then the
analysis reduces to a SISO- problem. At operating point A the loop fransfer function

for this loop is (unscaled compositions)

0.878 2.4(1 + 75s)

A guels) = 700 P

This corresponds to a closed-loop bandwidth (|g;;¢(jwe)| = 1) of about w, =~ 0.81
min~!. The phase of g;;c at this frequency is about —90°. The system will therefore
become unstable if 90° = 7 /2 rad additional phase lag is added at this frequency.

Consequently, the maximum allowed deadtime is 0,,,; = %%T’ = 1.93 min. Next,

-

consider operating point C

1.6 2.4(1 + 753)
14 24.5s s

C: g1ic(s) =
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A: Logarithmic compositions B: Absolute compositions
Figure 11. Column C, Case 1. Closed-loop response to small setpoint change in zp (z5
increases from 0.002 to 0.0021) using diagonal PI-controller (dotted line) and
the p-optimal controller for column A (solid line). Left: logarithmic compo-
sitions as controlled outputs (equivalent to using scaled compositions); Right:
Absolute (unscaled) compositions as controlled outputs. No uncertainty.
g
2 AYp
1 — Chu(s)
° ---Cpy(s)
-1 AXp
-2 -]jll1i'1lllll|'r11 r]1|‘|l
0O 20 40 60 80 100
TIME (min)
Figure 12. Transition from operating point A to C (Case 1) using controllers Ciu (solid

<

line) and Cp; (dotted line). Logarithmic compositions are used as controlled
outputs to reduce the effect of nonlinearity. Desired trajectory is a first-order

response with time constant 10 min. No uncertainty.
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Here w, = 11.7 min~! and the phase is again about 90°. This gives a maximum
allowed deadtime of only 8,,,; = %f’% = 0.13 min. There may not actually be dead-
time in the system, but the presence of other sources of phase lag (valve dynamics,
. measurements dynamics, etc.) will most likely result in an unstable system.
4.3 Transition from Operating Point A to C

Figure 12 shows a transition from operating point A (Yp = Xp = 4.605) to
operating point C (Yp = 2.303,Xp = 6.215) using logarithmic compositions as

controlled ouputs. The desired setpoint change is a first order response with time

constant 10 min:
2.303 _ —1.609
1+ 10s’ Be ™ 1+10s

AYp, =

The closed-loop response is seen to be very good. The diagonal controller Cp(s)
and the u-optimal controller C;,(s) give very similar responses in this particular
case. (However, the u-optimal controller generally performs better at operating
point C as is evident from Fig. 10 and 11.) This illustrates that a linear controller,
based on the nominal operating point A, can perform satisfactory for a large devi-

ation from this operating point when logarithmic compositions are used.

7. CONCLUSIONS

A single linear controller is able to give satisfactory control of this high-purity
column at widely different operating conditions. One reason for this is the use of
logarithmic compositions which effectively counteract for the nonlinearity in the
" plant. However, even if a absolute compositions are used, a single linear controller
performs satisfactory if the deviations from steady-state are reasonably small.

A simple diagonal controller was found to be robust with respect to model-
plant mismatch, but gives a sluggish return to steady-state. This particular part of
the response is improved using the u-optimal controller. Inverse-based controllers,
and in particular those based on a steady-state decoupler, are very sensitive to

model-plant mismatch.
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Appendix. State-space realizations -of plants and controllers.

Below are shown state-space realizations of G(s) = C(sI — A)"1B + D using

“packed” form

A B
¢ D

where D in all cases is a 2 X 2 matrix. The plant models and controllers are
for the scaled plant, that is, correspond to using logarithmic compositions. All
controllers were designed based on operating point A and when unscaled (absolute)

compositions are used as controlled outputs the controllers should be multiplied by

1= L. —100.
Zp ~¥p
HOE

-5.155e~-03 0.000e+00 7.131le-02 -7.131e-02
0.000e+00 —6.667e-02 ~1.55%6e-17 3.762e-02
€.347e-02 2.481e~02 0.000e+00 0.000e+00
7.821e-02 —-2.481le~-02 0.000e+00 0.000e+00

s .
G3 (5) :

~4.539e~-03 0.000e+00 0.000e+00 0.000e+00 0.000e+00 7.110e+00 -7.105e+00
0.000e+00 ~3.086e~02 0.000e+00 0.000e+00 0.000e+00 6.297e+00 ~-7.408e+00
0.000e+00 0.000e+00 ~8.580e-02 0.000e+00 0.000e+00 5.845e+00 -2.658e+00
0.000e+00 0.000e+00 0.000e+00 -1.708e-01 0.000e+00 2.852e+00 -5.414e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 -8.876e~01 —-2.699%e+00 2.872e+00
6.361e~02 —~5.394e~-02 -1.641e-02 2.92%9-03 B8.18%-03 0.000e+00 0.000e+00
6.981le~02 1.664e-02 —-4.683e-02 —-5.886e-02 3.864e-02 0.000e+00 0.000e+00

S(. -

G3(s):

-4 .533e-03 0.000e+00 0.000e+D0 0.000e+00 0.000e+00 -6.962e-01 6.958e-01
0.000e+00 ~3.184e-02 0.000e+00 0.000e+00 0.000e+00 -5.982e-01 7.055e-01
0.000e+00 0.000e+00 ~8.220e-02 0.000e+00 0.000e+t00 6.681le-01 -4.407e-01
0.000e+00 0.000e+00 0.000e+00 ~2.302e-01 0.000e+00 3.154e-01 -5.217e-01
0.000e+00 0.000e+00 0.000e+00 0.000e+00 -2.402e+00 5.535e-01 -4.607e-01

~6.185e~01 4.041e-01 ~1.063e-02 6.331e-02 6.190e-01 0.000e+00 0.000e+00

~7.118e-01 ~2.025e-01 ~4.653e-01 -5.940e-01 -1.601e-01 0.000e+00 0.000e+00
s .

GCI(S) :

-4.082e~02 0.000e+00 7.354e-01 -7.354e-01
0.000e+00 —-1.000e-01 ~5.65%e~17 4.052e-01
8.902e~01 5.604e~03 0.000e+00 0.000e+00
5.175e~01 —3.488e~01 0.000e+00 0.000e+00



) .
GZ,(s) :

-1.382e-02 0.000e+00
0.000e+00 -7.80%e-02
0.000e+00 0.000e+00
0.000e+00 0.000e+00
0.000e+00 0.000e+00
0.000e+00 0.000e+00
0.000e+00 0.000e+00
5.338e-01 2.476e-01
3.112e-02 -7.672e-01
S .

Gcs(s) :

~1.38le-02 0.000e+00
0.060e+00 ~7.975e~02
0.000e+00 0.000e+00
0.000e+00 0.000e+00
0.000e+00 0.000e+00
0.000e+G0  0.000e+00
0.000e+00  0.000e+00
1.771e-00 - 9.066e-01
1.250e-01 1.164e+01

Cp[(s) :

-1.000e-06 0.000e+00
0.000e+00 -1.000e-06
2.400e+00 0.000e+00
0.000e+00 -2.400e+00

COinv(s) :

-1.000e-06 0.000e+00
0.000e+00 -1.000e-06
€.999%e-01 0.000e+00
0.000e+00 6.99%-01

Clinu(s) :

-1.000e-06 (0.000e+00
0.000e+00 -1.000e-06
0.000e+~00 0.000e+00 -
0.000e+00 0.000e+00
5.015e-01 5.020e-01
5.015e-01 75.0116—01

Cou(s) :

~9.993e~08 0.000et+00
0.000e+00 -1.000e-07
0.000e+00 0.000e+00 —
0.000e+00 0.000e+00
0.000e+00 0.000e+00
1.592e+00 1.699%e+00

~1.215e+00 2.176e+00
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0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
~1.328e-01 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 -1.876e-01 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 —4.435¢-01 8.790e-02 0.000e+00
0.006e+00 0.000e+00 —8.790e-02 —4.435e-01 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 —-3.428e+00
-3 3126-02 -1.014e-01 2.864e-02 -5.006e-02 -3.055e-02
-4.200e-01 8.015e-01 -2.502e-01 -1.897e-02 -2.215e-01
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
-1.758e-01 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 ~2.017e~01 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 -4.795e~01 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 —3.292e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 -1.118e+01
-3.212e-01 -8.38le~01 ~1.131e+00 1.510e+00 1.594e+00
7.279e+00 -3.346e+00 1.007e-01 -2.493e—01 -1.250e-01
1.000e-02 0.000e+00
0.000e+00 1.000e-02
1.800e+00 0.000e+00
0.000e+00 ~-1.800e+00
3.994e-01 ~3.149e~01
3.943e-01 -3.200e~01
2.097e+01 -1.653e+01
2.070e+01 -1.680e+01
0.000e+00 0.000e+00 —3.647e+00 ~4.618e+00
0.000e+00 0.000e+00 4.201e+00 4.175e+00
1.000e+03 0.000e+00 -4.066e+02 -5.200e+02
0.000e+00 ~1.000e+03 ~4.786e+02 —4.705e+02
6.167e+01 ~6.249e+01 0.000e+00 0.000e+00
6.176e+01 —6.112e+01 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 1.530e-02 1.328e-02
0.000e+00 0.000e+00 0.000e+00 2.140e-02 —1.774e-02
4. 873e-01 0.000e+00 0.000e+00 5.557¢-02 —3.543e-02
0.000e+00 —-2.267e+03 0.000e+00 —7.372e+01 —9.722e+01
0. 000e+00 0.000e+00 —3.840e+03 4.796e+01 7.53%e+01
4. 751e+00 8.698e+03 —-5.536e+03 3.526e+02 4.821e+02
4. 566e+00 ~B.566e+03 5.777e+03 —3.509e+02 —4.815e+02

O Ok b W b b b D

1

9.
-6.
1.
-1.

OO

.116e-01
.327e+00
.89%4e-02
.043e+00
.310e-01
.037e+00
.957e-01
. 000e+00
.000e+00

.334e-01
212e-02
708e~02
492e-01
763e-01
. 22901
.212e-01
.000e+00
.000e+00

-5.215e-01
1.540e+00
2.508e~01
1.436e+00

~1.313e-01

-9.500e~01

-2.356e~01
0.000e+00
G.000e+00

~1.
-1.
7.
-1.
1.
-9.
~-1.
0.
0.

360e-01
076e-01
042e-02
952e~01
859e—~01
52%e-02
045e-01
000e+00
000e+00



Cru(s) :

.002e-07
.000e-00
.000e+00
.000e-00
.000e+00
.000e+00
.564e-01
.555e~-01
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Cau(s)

9.487e-08
3.248e-09
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
1.091e+00
1.304e+00

-1.142e~-02
-4.747e-03
1.350e-02
8.986e-02
5.918e-01
2.734e-01
4.328e-02
3.761e-01
9.74%e-05
5.644e-05

.000e+00
.272e-06
.000e+00
.000e+00
.000e+00
.000e+00
.171e~01
.425e-01

i
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.248e-09
.487e-08
.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.796e-01
.B6le-01

!

NWOOOOOO0OWW

2.193e-02
2.594e-02
1.806e-02
—4.583e-03
—3.288e-01
8.376e-02
-7.05%e-04
=1.111e+00
-1.833e-04
1.060e-04

0.000e+00
0.000e+00
-1.510e-01
0.000e+00
0.000e+00
0.000e+00
4.949e+00
4.941e+00

0.000e+00
0.000e+00
~-1.136e-07
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
1.952e+00
8.008e~01

0.
0.
0.
-9.
c.
0.
5.
=5.

|
OCOOONDOO

-6.
-4.

000e+00
000e+00
000e+00
032e+00
000e+00
000e+00
033e+00
040e+00

. 000e+00
. 000e+00
. 000e+00
.372e-01
. 000e+00
. 000e+00
. 000e+00
. 000e+00
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432e+00
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0.000e+00 0.000e+00
0.000e+00 0.000e+00
0.000e+00 0.000e+00
0.000e+00 0.000e+00
-5.838e+02 0.000e+00
0.000e+00 ~5.868e+02
-1.691e+03 -3.112e+02
-1.689e+03 3.116e+02

0.000e+00 0.000e+00
0.000e+00 0.000e+00
0.000e+00 0.000e+00
0.000e+00 0.000e+00
-2.237e+00 1.977e+00
-1.977e+00 —2.237e+00
0.000e+00 0.000e+00
0.000e+00 0.000e+00
9.384e+00 -1.239%e+01
5.591e+00 -2.126e+01

~6.513e-01
7.224e-01
5.492e-02
-9.086e~01
1.867e+01
6.722e+00
5.866e+01
5.002e+01

0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
-2.757e+00
-2.082e+00
1.924e+01
-1.687e+01

-9.
.031le~-01
-4.
-1.
.494e+01
.403e+00
-3.
-4.

-1

t

!

NN OOOOOO

009e-01

394e-02
136e+00

8l6e+01
878e+01

000e+00

.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.082e+00
.757e+00
.277e+01
/. 900e+00



- 446 -

Chapter XIV

CONCLUSIONS
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This research project has motivated the need for a systematic approach to
distillation column control which yields a control system with robust performance,
that is, a system which performs satisfactory also in the presence of model-plant
~ mismatch. Important steps include modelling, selection of the control configuration
as well as robust controller design. In particular, a good physical insight about the
process is essential to a non-conservative formulation of the control problem. In

summary, the following contributions are made in this thesis:

A. Robust Control of linear systems. Simple measures are suggested
which prove useful for screening design alternatives with respect to their achievable
control performance and it is established that ill-conditioned plants are sensitive
to model-plant mismatch. This does not mean that all ill-conditioned plants are
difficult to control because the uncertainty is often ”structured,” and the plant may
not be sensitive to the particular uncertainty which is present. However, one source
of uncertainty which is always present is uncertainty with respect to the true values
of the manipulated inputs. It is demonstrated that plants with large elements in:
the Relative Gain Array (RGA) are always sensitive to this kind of uncertainty,
and are therefore generally difficult to control. * This fact is illustrated by the
following two extreme choices for the controller: An inverse-based controller yields
good nominal performance but is very sensitive to input uncertainty. On the other
hand, a diagonal controller is insensitive to uncertainty but does not correct for
the strong directionality of the plant (as expressed by the large RGA-elements) and
therefore yields poor performance. Hopefully, these results will settle the persistent
discussions in the literature concerning whether or not decouplers should be used
for distillation columns.

The usefulness of the u-theory for analysis and controller design is illustrated

* Note that plants with large RGA-elements are always ill-conditioned, but the converse is not

necessarily true.
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on a simple distillation column example, and it is demonstrated that ill-conditioned
multivariable plants display a sensitivity to model uncertainty not observed for
SISO plants. Furthermore, this sensitivity only becomes apparent under closed-
) loop control. Traditional design techniques such as LQG and loopshaping, which
do not explicity take uncertainty into account, will most likely fail for ill-conditioned

plants.

Decentralized controllers are very commonly used for distillation columns be-
cause they are simpler to tune and to make failure tolerant. A method for designing
decentralized controllers is proposed; each loop is designed independently in such
a manner that the overall system is guaranteed to satisfy the robust performance
specifications. The method provides a generalization of the u-interaction measure

introduced by Grosdidier and Morari.

B. Dynamic and steady-state behavior of distillation columns. Funda-
mental insight into the dynamic and steady-state behavior of distillation columns is
provided. It is shown that high-purity distillation columns are always ill-conditioned
because the product compositions are very sensitive to changes in the external ma-
terial balance but are quite insensitive to changes in the internal flows. This fun-
damental difference between internal and external flows also manifests itself in the
dynamic behavior; the time constant for changes in the external material balance
(1) is usually much larger than that for changes in the internal flows (72). A simple,
linear two time-constant model which is consistent with this behavior is presented
together with simple formulas for estimating the parameters in the model. These
formulas are analytic and therefore also yield insight into the nonlinear behavior
of the column. It is shown that the response to any single disturbance or input is
approximately first order with time constant 7;. However, to capt}.ue the multi-

variable effects, for example the simultaneous increase in reflux and boilup, the two

time-constant model is required. Distillation columns are strongly nonlinear and
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this may present a problem when employing linear controllers. This work shows
that the initial response (which is of primary importance for feedback control) is
much less markedly affected by nonlinearity and changes in operating conditions
_ than is the steady-state behavior. This holds both when unscaled compositions are
used and even more so when logarithmic compositions are utilized as controlled
outputs. Logarithmic compositions should be used whenever large deviations from
the nominal operating point are expected because they substantially counteract the

effect of nonlinearity caused by changes in operating conditions.

C. Robust control of distillation columns. Most distillation columns can
be described as a 5 x 5 plant but the flow and pressure dynamics are usually so fast
that the composition control problem is essentially 2 X 2. An important issue in
distillation control is the selection of the two independent combinations of the five
manipulated inputs to be used for composition control. Each configuration may
yield entirely different control performance. For example, the LV-configuration
(where L and V are used for composition control) yields large RGA-elements for
high-purity columns and is therefore sensitive to input uncertainty, whereas the
DV-configuration always has small RGA-elements. However, there are also other,
generally conflicting, considerations besides uncertainty which have to addressed.
These include dynamic response, rejection of flow disturbances by the level loops,
one- and two-point composition control, changes between manual and automatic
control as well as constraints. It is shown that ratio configurations yield complex
multivariable controllers which in some cases provide improved flow disturbance
rejection. However, their linearizing effect on the plant does not prove significant.
Overall, weighing all the above- mentioned considerations, the %%-conﬁguration

seemns most versatile.

To verify the general results found on the dynamic behavior of distilla-

tion columns, a realistic control study for a high-purity column using the LV-
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configuration was performed. The column was successfully controlled with a linear
controller designed on the basis of a linear model of the nominal operating point.
The effects of model uncertainty, nonlinearity due to changes in operating condi-
tions as well as variations in reboiler and condenser holdup were studied. The
primary conclusion is that a linear controller is indeed able to provide satisfactory
control for this strongly nonlinear plant despite the above-mentioned sources of
model-plant mismatch. For large deviations from steady state logarithmic com-
positions had to be used in order to reduce the effect of nonlinearity. A simple
diagonal controller was found to be robust with respect to model-plant mismatch
but produced a very sluggish return to steady state. This particular part of the
response (the low-frequency behavior) was improved with the u-optimal controller.
The inverse-based controllers, in particular those based on steady-state decouplers,
were found to be very sensitive to model-plant mismatch and therefore did not offer

robust performance.

Suggestions for future research.

Robust control. There remains a substantial number of outstanding research
issues in the area of linear robust control (obviously, if nonlinear systems are in-
cluded the list is becomes endless). For example, for the application of the u-theory,
the formulation of the control problem in terms of performance and uncertainty
weights is essential, and no general guidelines exist for their selection.

One particular reseach area of interest to process control is the design of decen-
tralized controllers. The u-theory provides a means for evaluating the achievable
performance bound for a given plant using any multivariable controller (by actually
determining the p-optimal controller). A similar target on the achievable perfor-
mance for cases when the controller is restricted to diagonal would bé very helpful;

the engineer could then verify immediately whether acceptable performance were

indeed possible with a diagonal controller.
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Distillation. In the area of distillation control, one of the most important
outstanding research areas is the measurement selection and estimation of product
compositions: in most cases accurate on-line measurements of the product com-

positions are not available and one has to rely on measurements of temperatures
‘ inside the column. It seems likely that the best results will be obtained by using
 a nonlinear model which estimates the product compositions based on the entire
temperature profile. In some cases only two temperature measurements are used
and it is not at all clear how to select the best location of these measurements.

Another important issue which was only briefly discussed in this thesis (Chapter
XII) is constraints on the manipulated inputs. It is clearly of utmost importance
that the control system deal with constraints in an effective manner.

A number of simplifying assumptions were made when deriving specific results
regarding the behavior of distillation columns in this thesis. Though it is believed
that the results presented will carry over to more complicated mixtures and column
configurations, these issues should obviously be investigated. Furthermore, there
is a need for further simulation studies and u-analysis of other configurations in
addition to the LV-configuration. Some topics suggested for future considerations

are summarized below:
- Mixtures with non-ideal VLE and with non-constant molar flows.
- Multicomponent mixtures.
- Columns with more than one feed (trivial extension) and more than two prod-
ucts (not as obvious).
- Effect of flow dynamics.

- Columns with high-purity products and large reflux for which the worst control

problems are expected when using the LV-configuration.

- Simulation studies and p-analysis of other control configurations (for example,

the DL- or %%—conﬁgurations). The tuning of the level loops is important for
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configurations which use D or B for composition control.
Finally, it would be most desirable to perform experiments and implement
controllers on a real industrial column. This might reveal new issues of importance

. which were not covered here.





