THE CRYSTAL STRUCTURES OF MONO- AND THE

TWO DIMETHYLUREAS

II
THE DETERMINATION AND USE

OF CRYSTALLOGRAPHIC PARAMETERS

Thesis by

Albert Hybl

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1961



ACKNOWLEDGEMENT

It is with pleasure that I acknowledge the direction and guidance
of my research advisor Dr. R. E. Marsh. His valuable encourage-
ment and patient criticism have proven invaluable in the development of
my scientific understanding, without which this thesis would not have
been written, I alyso wish to thank Dr. R. B. Corey for the opportunity
to observe at first hand the progress of his work on the determination
of the structure of animportant protein.

I wish to thank the Shell Fellowship Committee and the Alfred
P. Sloan Foundation for financial assistance ‘during rhy graduate work.

I wish to thank the authors and the publishers of Acta Crystal-

lographica for figures 15, 18, 21 and 27. Again, I thank Dr. R. B.
Corey for permission to use figure 25 and for making available several
of his molecular models. I thank Dr. K. Hoogsteen for permission to
use figure 22 in advance of publication, Likewise, I thank Dr. R.
Gerdil for figure 24.

During the various stages in the crystal structure determina-
tions, I had need to use several computer programs made available to
me by several authors., In particular, I wish to acknowledge the follow-
ing sources: Dr. R. Pasternak for his 205 least-squares and structure

factor program, Dr. K. Hoogsteen for his Fourier program, and Mr.



N. Jones for his bond distances and angles program. There are

several other programs which deserve acknowledgement; however, 1

hope the authors will forgive me for having made the omission.
Finally, it is with a deep sense of gratitude that I thank my

mother, who has made possible my educational opportunity.



Abstract

1. The crystal structures of mono-, and the two dimethylureas
were determined by X -ray crystallographic methods. The positional
and anisotropic temperature parameters of all heavy atoms were
refined by the method of least-squares. All of the hydrogen atoms
bonded fo the amide nitrogen atoms were found in difference map sec-
tions computed in the planes of the molecules. Preferred orientations
were found for the two methyl groups on N, N-dimethylurea, but the
methyl groups in N-methylurea and N, N'-dimethylurea appear to be
rotating. The preferred methyl orientations are neither the perfectly
staggered nor eclipsed arrangements and appear to depend, in part,
on the manner of packing of the molecules to form hydrogeﬁ bonded
chains in the crystal.

The average bond distances were found to be: C=0, 1.253 A,
C,-N (carbonyl C), 1.336 A and C,-N (methyl group C), 1.447 A.
The partial double bond character is calculated to be 40% for the C=0
bond and 30% for the Cl—N bonds. The methyl groups appear to make
little change in the contributions of the resonance structures to the

hybrid structure. The average out of plane distance for the heavy

atoms is 0.02 A, the maximum being 0.05 A,



The various types and configurations of cis- and trans-amide
hydrogen bonds are reviewed and classified by the type of hydrogen

bonded chain structure formed.

II, Expressions employable for the calculation of structure factors
and their derivatives for any orthorhombic space group are developed.
Complementing this work is a general description of the least-squares
method as used to determine a parameter set. Several methods for
the conversion of a parameter set info more perceptible quantities,
such as interatomic distances, bond angles, planarity of groups of
atoms, magnitudes and direction cosines of the principal axes of the
vi‘brational_ ellipsoids of each atom and the rigid body representation

of the thermal displacements and vibrations, are reviewed.,
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Introduction

Ten years ago Pauling and Corey (1,2, 3) proposed several
plausible configurations for polypeptide chains in proteins, the most
important being the alpha helix structure. One of the ways in which
Pauling and Corey attacked the problem of the structure of proteins
was to make complete and accurate determinations of the crystal
structures of amino acids, small peptides and‘ other simple substances
related to proteins, in order that information about interatomic dis-
tances, bond angles and other configurational parameters might be
obtained that would permit the reliable prediction of reasonable con-
figurations for the polypeptide chain. Their studies started fifteen
years prior to their formulation of the alpha helix and are still going
on. Recent experimental verification that the alpha helix is an im-
portant part of globular proteins has justified this method of attack.
The first direct proof that the alpha helix is present'in a protein was
recently reported by Kendrew (4), who obtained a three-dimensional
electron density map of myoglobin at a resolution of 2 A,

The crystal structure determinations of N-methylurea and of
the two dimethylureas were undertaken in part as a continuation of
studies on the comparative crystallography of small peptides and
reiated substances initiated by Pauling and Corey.- These compounds

contain the characteristic configuration of two peptide linkages:



R H R C

: N 7 AN 7

(2) _C-N : (b) _C-N , where R in the
7 &

peptide group is a carbon atom. The peptide 1inkage‘(a) is the one
found in most peptides, while the linkage (b) is found in peptides con-
taining the amino acid proline or hydroxyproline. Proline is an
important constituent of many proteins; for example, approximately
12% of the amino-acid residues in gelatin and collagen are proline
and another 10% of the residues are hydroxyproline.

A study of the effect of the methyl groups on the resonance
within the molecules, on the manner of hydrogen bonding and on the
molecular packing will contribute more knowledge of the complex
forces between molecules in crystals. Presumably, the same forces
influence the type of folding realized in polypeptide chains in protein
molecules and the purine-pyrimidine pairs in nucleic acids, and this
information can be used in the deduction of trial model structures of
related compounds.

Table 1 lists a comparison of some physical properties of urea
and its methyl-substituted derivatives. It has long been recognized
that when comparing two compounds within a closely related series,
the one with the higher melting point will, in general, have the higher
molecular symmetry. As can be seen from the table, N, N-dimethyl-
urea (mp 182°) violates this rule when compared to N, N'-dimethylurea

(mp 106°). In addition, the large difference between the densities of



N,N- and ﬁ,N‘—dimethylurea (1.255 and 1.142 g cm_3, respectively)
suggests that in the former the molecules have achieved near optimum
packing. It was felt that the melting point and density anomalies could
be explained on the basis of the crystal structures. A comparative
study of these compounds has, indeed, led to a qualitative description
of the manner in which these compounds melt,

The contents of the first part of this dissertation have been
divided into two major sections. The first section describes the ex-
perimental work plus the determination and refinement of the crystal
structures of N, N-dimethylurea, N,N'-dimethylurea and N-methylurea,
in that order. The second section is devoted to the presentation of the
results. General infra—molecular features are discussed, followed by
a description of the chain character of the hydrogen bonding. Next,
the crystal structures are described in terms of the packing of the
chains. Finally the melting point anomaly is examined on a molecular

basis. -



Table 1. Comparison of some physical properties of urea and

its methyl-substituted derivatives.

Compound mol.wt. Density mp bp
Urea 60.06 | 1.335 g/cm3 132.7°C d.
N-methylurea ' 74.08 1.204 101 d.
N, N-dimethylurea - 88.11 1. 255 ‘ 182
N, N'-dimethylurea 88.11 1.142 106(102) 270
N,N;N'-trimethylurea 102.14 1.19 75.5 | 232.5
N,N,N',N'-tetramethylurea 116. 16 (0,972)15 liq. | 177
cyclo-Ethyleneurea 86.10 1.45 131
Z—Imidazoloner 84.10 d 250



Experimental Work: N, N-dimethylurea

i) Unit cell and space group.

N, N-dimethylurea crystallizes predominaﬁtly in the form of
flat plates. A few crystals, however, are in the form of slightly
flattened needles. One crystal of the latter type was mounted so that
the needle axis [101] was perpéndicular to the x~-ray beam. Prelimin-
ary rotation and equi-inclination Weissenberg photographs showed the
crystal to be monoclinic, and revealed the following conditions for
non-extinction:.

hk{s no conditions
hot: htyg = Zp
0kO: k =2n
On the basis of this system of indexing the space group is le/n’

The dirﬁensions of the unit cell were obtained from a rotation
photograph about the b-axis and a Straumanis rotation photograph of
the [010] zone, They were found to be:

9.294 + 0.003

a =8,736 +0.003 & c

=6.10 +0.01 A B

I

109.58 + 0.04 °

Groth (5) reported the axial ratios 1.2095:1:1. 7063 and  f = 93.867°.
These figures correspond quite well to an alternate setting in which
the a and c directions are taken coincident with the [101] and [101]

directions of the PZ / space group, respectively. The axial ratios
1/n



and the monoclinic angle computed from the X-ray data then become
1,2077:1:1.7059 and 93.757°, respectively.
The density reported by Groth is 1.255 g cm—3; the density cal-
culated on the basis of four molecules of C3H8NZO in the unit cell is
-3
l.254 g cm .

ii) Intensity data.

Complete three~-dimensional intensity data for Cu Ka radiation
were collected on multiple-film equi-inclination Weissenberg photographs
taken about the b and the [101] axes, All layer lines having inclina~
tion angles less than 40° were recorded (k from 0 to 4 and (h-£) from
0 to 8). The Ewald sphere contains 1061 possible independent planes;
981 are contained in the effective sphere of reflection with sin 6 = 0.98.
Of these, 831 reflections were strong enough to be recorded. For the
photographs around the b axis, a lath-shaped crystal was cleaved
perpendicular to its needle axis. Aﬁothér crystal was mounted about
its needle axis for the inténsity photographs around [101].

The intensity data were estimated bgr visual comparison with
standard scales prepared from the same two crystals. The intensities
were corrected for Lorentz and polarization factors using a program
written for the Burroughs 205 computer (an analogous program for the
226 is described in appendix II). No corrections for absorption or
extinction were made. The corrected intensities from all sets of

photographs were correlated to bring them to the same relative scale.



Approximate temperature and scale factors were obtained by
Wilson's method (6), and the corrected intensities were put on an
absolute scale. The temperature factor B was found to be 1,73 A2
for the {h0f) data and 3.28 A2 for the complete three-dimensional data.
It was decided to use the more reasonable value of 3.28 A2 for the
first structure factor calculations. The atomic scattering curves of
McWeeny (7) were gsed for the early structure factor and least-squares
calculations; during the final stages of refinement, the atomic scatter-
ing curves of carbon, nitrogen and oxygen were changed to the average

of the values given by Berghuis et al. (8) and Hoerni and Ibers (9).

Determination of the Structure of N, N-dimethylurea.

i) Derivation of the trial model.

A Patterson vector map projected onto (010) was calculated
from the h0f intensities. This map indicated that the molecules possess
pseudo mm symmetry, the pseudo—mirrokr planes being coincident with
the (101) and (101) planes. The Patterson function further suggested
that the molecules are oriented in chains along the [101] and [101] direc-
tions. Using this information and the Corey and Pauling (10) molecular
models an attack was made at the structure.

A satisfactory trial structure was constructed by assuming that
the heavy atoms form a plahar configuration and that two molecules

are hydrogen bonded across a center of symmetry to form a dimer pair.
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It was also éssumed that these dimer pairs form hydrogen bonded
chains extending along the needle axis. The signs of twenty-five h0£
structure factors were determined by use of structure-factor graphs.
A Fourier projection of the electror; density onto (010) was computed
from these structure factors. The results showed that the assumed
structure was basically correct.

The indicated x and =z .coordinates for the C, N and O atoms
were used to compute with greater reliability the signs of the original
twenty -five structure factors as well as the signs of a few additional
reflections. The scattering curve of nitr'ogen was used for both the
oxygen and NHZ nitrogen atoms since the differentiation between them
could not be made at this tirne.‘ The results of these calculations were
used to compute a new electron density map. Some improvement in
resolution was apparent and an indication as to which atém might be
the NI—I2 nitrogen and which might be the’oxygen wés also observable;
however, it was decided to continue the invest@gation for a short while
without making the distinction.

This second Fourier map gave good values for the x and z
coordinates for all the heavy atoms. In order to obtain approximate
y coordinates, a N-- e hydrogen-bond distance of 3 & was assumed
between molecules forming the centro-symmetric dimer pairs. This

assumption made possible the estimation of the dihedral angle between
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the molecular plane and xz plane. Estimates of the y coordinates
were made graphically by drawing a line in the (101) plane inclined
from the [101] axis by the amount of the dihedral angle and passing
through the origin. The positions of the atoms in the xz plane were
projected onto the [101] axis and the corresponding values of y were
taken from the graph. The combined set of coordinates comprised the
first set of positional parameters used in the three-dimensional least-

squares refinements.,

ii) Refinement of parameters.

The first series of three-dimensional refinements of the param-
eters were made using a Burroughs‘ 205 computer and a structure-factor
least-squares program written by Pasternak {11); konly the positional
parameters were adjusted and a single isotropic temperature factor was
used. FEight iterations, imcluding only reflectionsﬂ weighted equally with
sin 0 less than 0.75 (449 in number), reduced the reliability factor, R,
from 0.55 to 0.20. Interatomic distances and bond angles computed at
this point substantiated the identification of the éarbonyl oxygen and the
amide nitrogen atoms. All subsequent calculations included the éxygen
f-curve assignment. During the next three itaéitat:kbns, all available
data were used, and the weighting fuhctioﬁ Was changed to Nw =
O.é + sin 9. The R factor was re’duced from 0.34 to 0.20. In the
last four of this series of least-squares iterations, the weighting func-

tion was changed to the Hughes scheme (12). The R factor at the end
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of the isotropic refinement was 0.18.

The structure factor and least-squares program as originally
formulated by Pasternak allowed for the inclusion of anisotropic tem-
perature parameters for each atom into the calculation of the structure
factor, but did not provide for the least-squares refinement of these
parameters. At this time it was decided to modify the program to pro-
vide for the calculation of least-squares shifts for the six anisotropic
temperafure parameters.

After many cycles of anisotropic refinement, the R factor was
0.11. The hydrogen atom coordinates were now added.. The coordinates
of the two amide hydrogens were obtained from the first five sections
(0/25 to 4/25 along b) of an incompléte three-dimensional difference
map. Because of machine failure, the remaining sections were not
computed. Unfortunately the omitted sections contained the region in
which the rhethyl hydrogens lay. There was, however, some indication
on the available sections of the orientations of the’ methyl groups. The
coordinates of the hydrogen atoms of C3 were computed assuming that
they are in the staggered position with respect to H2 of the amide group.
The coordinates of the hydrogens of the methyl carbon C2 were com-
puted assuming that they are in the eclipsed position relative to the O
atom, and thus staggered With respect to the hydrogen atom H5 attached

to C_.
© 3
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iii) Refinement of the hydrogen atom positions.

Several least-squares iterations which included the refinement
of the hydrogen parameters were now computed. The final R factor
for structure factor calculations on the Burroughs 205 was 0.10. -

Since this compound is essentially planar, a three-dimensional
Fourier program was written for the Burroughs 220 computer which
made possible the calculation of the electron density at the points of
a square grid ruled on a general plane. This program is described in
appendix III, The electron density section in the least-squares plane
of N, N-dimethylurea is shown in figure 1. Contours are at intervals
of 1 e. A-3, beginning with 1 e, £-3. The origin of the grid system is
at the centroid of the heavy atoms., As in all subsequent general plane
Fourier calculations, the points of the squafe grid are separated by a
0.2 A interval.

Figure 2 shows a difference Fourier computed in the best plane
of the molecule and centered on the mid-point of the two hydrogen
atoms of the amide group. Figures 3a and 3b show difference Fourier
maps computed in the planes of the hydrogen atoms of the methyl groups.
The coefficients of these two planes were determined in the following
way. The line representing the bond between the nitrogen and methyl
carbon atoms was assumed to be the normal to the desired plane. The
C-H distance was assumed to be 1.0 A and the carbon atom was assumed
to be tetrahedrélly bonded; accordingly, the center of the plane was

placed at 0.33 A from the carbon atom.






to O

to Nz

Ha

Figure 2. - The difference Fourier in the best plane of N, N-dimethylurea
showing only the region containing the amide group. Cogl-
tours at intervals of 0.2 e. A3, beginning with 0.2 e. A-3,
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On______.__lllo\

(a) (b)

Figure 3. - The difference Fourier maps in the plane of the hydrogen
atoms of the methyl groups (a) for methyl carbon C
(b) for methyl carbon C_. Contours at intervals of
0.2 e. A-3, beginning with 0.2 . A-3.
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() (1)

Figure 3.- A phatograph of moceis showing the preferred hydrogen atom
~rientations of the methyl groups as indicated from the dif-
ference maps given in figure 3a and 3b, respectively.
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Figuré 3a is a view of the plane of the hydr‘ogen atoms of the
methyl group C_-3 (for the numbering of the atoms, see figure 1). The
plane of the heavy atoms intersects this plane along the vertical axis.
The relative orientation -of this plane can be grasped in the following
way: Imagine that we are looking through the plane and can see the whole
of the molecule. We would see atoms NZ and C3 directly beneath the

origin, while the amide nitrogen N, would be seen near the top of the

v 1
vertical axis and the other methyl group (CZ) toward the bottom. Figure
3¢ is a photograph of a model illustrating this orientation.

This Fourier shows three peaks which coincide nicely with the
final hydrogen coordinates, marked by crosses, obtained from the
least-squares process. The peak heights vary from 0.3 to 0.7 e. 1&'3;
the estimated noise level in the difference Fourier is about + 0.2 e. A-3,
The methyl group is rotated into a position such that H3 is in van der

Waals contact {(2.00 A) with H, of the amide nitrogen.

2
The third difference Fourier, figure 3b, shows the hydrogen
atoms of the other methyl carbon atom CZ. The plane of the heavy atoms
intersects this plane along the vertical axis with the oxygen atom (not
shown) near the top and below the plane. Figure 3d shows a model of
this orientation. The methyl group is very nearly eclipsed relative to

the oxygen atom, and one of the hydrogen atoms (H7) is bracketed
between H'Z and H'3 of an adjacent molecule in the same hydrogen

bonded chain., Figures 14 and 16 show this relationship.
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The initial examination of these difference Fouriers revealed
that one coordinate of H2 was in error; it had been entered into the
structure-factor least-squares calculations with the wrong sign. This
error was corrected and three more least-squares refinements were
made, giving a slight improvement in the R factor. The final R
factor is 0.099. At this point the refinement was dee;xﬁ:ed complete,
as no parameter shift was greater than 1/4 of its standard deviation.
The final positional parameter and their standard errors are given in
table 2. The final structure factor listis given in 'table 3. The
orthogonalized coordinates are given in ‘table 4.

The bond distances and angles in N, N-dimethylurea calculated
from the parameters listed in table 2 are given in ‘table 5. A detailed
discussion of them will be given in a later section. The bestleast-

squares plane for the heavy atom coordinates as given in table 4 is

0.6753 X - 0.5427 Y - 0.4994 Z - 0,1491 = O.

iv) Temperature parameters discussion.

The magnitudes énd direction cosines of the principal axes of
the vibration ellipsoids were obtained using the method pointed out by
Rollett and Davies (RD) (13). The results are listed in table 7. Table
8 gives the angular deviations of the major axes of the thermal ellipsoids
away from the normal of the best molecular plane: It also gives the
deviations of the minor axes of the methyl carbon ellipsoids away from

their respective N-to-methyl bonds.
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Table 2. Final positional parameters and their standard errors

for N, N-dimethylurea.

atom X vy Z ox oy oz
O 0.1690 0.1974 0.0318 0.0004 0.0005 0.0004
N1 -0,0610 0.1792 -0.1711 . 0003 . 0005 . 0003
N2 0.1240 0,4571 -0.1509 . 0004 . 0005 .0004
C1 0.0804 0.2765 -0.0898 . 0004 . 0006 . 0004
C2 0.2725 0.5738 -0.0670 . 0006 . 0008 . 0005
C_3 0.0225 0.5659 -0.2882 . 0005 . 0008 . 0006
Hl -0.084 0. 046 ~0.111 . 007 . 010 .006
HZ -0.142 0.216 -0.279 .008 011 . 007
I—I3 -0. 050 0,453 -0.375 . 008 .011 . 007
H4 -0.019 0.709 -0.250 . 008 011 . 008
H5 0.105 0.657 -0.346 . 008 . .010 . 007
Hé 0.335 | 0. 605 -0.151 . 008 . 010 . 007
H7 0.336 0,480 0.023 . 008 .012 .008
H8 0.238 0.742 -0.042 . 008 .012 . 008
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Table 4. Orthogonalized coordinates.
atom X A Y 7,
1.3772 1.2041 ©0.2789

1 —0.00Q6 1.0934 -1.4981
> 1.5528 2.7884 -1.3212
1 0.9821 1.6867 -0.7863
5 2.5891 3.5000 ’ -0.5865
3 ;.0938 3.4521 -2.5239
1 -0.3880 0.2782 -0.9731
5 -0.3738 : 1.3150 -2.4392
3 0.7265 2.7614 ' -3.2801
4 0.6110 4.3264 -2.1918
5 1.9929 4.0100 -3.0305
6 3.3984 3.6917 -1.3234
7 2.8679 2.9260 0.1975.
g 2.2087 © 4.5250 -0.3674

Orthogonalization equations Inverse equations

X =8.,7358 x - 3.1138 z x =0.1145 X + 0.0407 Z

Y =6.10y y=0.1639 Y

Z = 8.7565 = z =0.1142 Z
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Table 5.
Distances Angles
C,-0 1.234 A 0-C -N,
0-C-N,
Cl—Ni 1.351 INI—CI—Né
- .351 N -
C1 NZ 1.35 C1 NZ C2
- ¢456 - -
C NZ ; C1 Né C3
C3—N2 1.448 CZ—NZ—C3.
Cl_Nl_Hl
Nl—Hl' 1.04 Cl—Nl—H2
Nl—H2 1.04 I—Il—Nl—H2
Né—C3-H3
(33—H3 1.09 NZ—C3—H4
C3—H4 1.05 NZ—C3—H5
C3—H5 1.17 Né—CZ-H6
CZ-H6 1.11 NZ—CZ-H7
CZ—H7 1.01 NZ-CZ—H8
- .12
C2 Hé 1
Hydrogen bonding distances and angles:
O++«+H-N' thru center 2.943
Oc--HN" via glide 3.063
Packing distances:
CZ to C3 via screw axis, down
C2 to C3 via screw axis, up

C ‘coC3

> via n-glide + b translation

121.1°
121.7
117.2
120.0
124.6
114.9
110.4
130.3
119.3
113.2
105.3
109.5
105.5
108.1
107.8

- - 1
C1 N1 O
O'-N, -O"

1
n_ -
O ﬁNl C1

_O) . 1
Cl ON1

fir
Cl—O—N1

1_A_N M
Ni O N1

3.955
4,029
3.538

Interatomic distances and angles in N, N-dimethylurea.

117.7
86.6
132.8
120.9
141.9
93.4



Table 6,

Ti = exp - (Bllh +B

24

Final anisotropic temperature factor parameters.

The temperature factors are in the form of

B11

0.0121
0.0109

0.0106

0.0095
0.0136
0.0174

2
22

B2
0.0278
0.0238
0.0219
0.0212
0.0288
0.0273

kK +B
i 33

ﬁZ+B

B
33

0.0111
0.0116
0.0113
0.0083
0,0160
0.0119

BlZ

-0.0037
-0.0092
-0.0048
0.0016
-0.0182
0.0004

hk+B bt +B, Ki).

B13

-0.0017
-0.0026
0.0023
0.0020
0.0034
-0, 0009

B3
0.0089
0.0058
0.0060
0.0003
0.0005
0.0131
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Table 7. Magnitudes and direction cosines of the prihcipal axes of
the vibration ellipsoids. The direction cosines are given
relative to a Cartesian coordinate system obtained by the
following orthogonalization relations: ‘

X =h a¥* sin §* -
Y = k b*
‘ Z =ha% cos B* + 4 c*.

The X and Y axes are coincident to a and b, respectively, and Z is

coincident with c¥,. k ‘

s (1) (2) (3)
Atom Axisi Bi g, g g,

1 6.079 -0. 661 0.516 0.544
o) 2 3.504 0.545 0.829 -0.124
3 2.244 0.515 -0.215 - 0.830
1 6.136 -0.697 0.455 0.554

N, 2 2.971 0.128 0.839 -0.529
3 2.022 0.705 0.298 0.643

1 4.914 -0.614 0.507 0. 605

N, 2 2.708 -0.028 -0.780 0.625
3 2.530 0.789 0.367 0.493

1 3.458 -0.786 -0.356 0.505

c1 2 3.127 -0.234 0.928 0.290
3 2.130 0.572  -0.110 0.813

1 6.797 -0.690 0.549 0.471

C, 2 4,684 0.134 -0.542 0.829
3 2.121 0.711 0.636 0.301

1 6.962 0.792 -0.362 -0.493

c, 2 4,365 0.560 0,752 0.347

3 2.234 0.245 -0.551 0.798
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The airection cosines are given relative to a Cartesian coordinate
system in which the X and Y axes are coincident to a and b, respec-
tively, and the Z axis is coincident with c%; this axial system coincides
with that used for the orthogonalization of the positional parameters.

It differs from the one used by RD by a rotation of $-90 around the b
axis.

To obtain the constants of the ellipsoids from the parameters
given in ‘table 5, the following transformations are made:

X =h a¥% sin P¥*
Y =k b¥*

Z ="h a% cos P¥ + L c¥ .

2 2 2
iti -1 z B -
Writing -In T (Bllh + B,k +B, ! + B bk + B h +B23k,e)
2 2 2
t 1 1 1 t !
(B X tB 55¥ +B',,Z +B' XY +B 13XZ +B 23YZ) ,
we have
B' . =B a2+B accosfB +B,__c cész
11~ C11 13 P ¥ P33 b
2
! =B__b
BZZ 22
B'33:B33c2 sina,ﬁ
o= b+B__b
B12 Blza + 23ccos[3
2
B‘l3:2B33c cos 3 sin B +B13ac sin B
v .
B 23 —B23bc sin B

The B'ij terms are then used to set up an eigenvalue equation as

explained by R&D (see also section vii in part II of this thesis).



27

The iibration of the molecule would be expected to be predom-
inantly an out-—of—plan‘e; motion with C1 as a pivotal position. This
implies that the angle between the major axis of each thermal ellipsbid
and the normal to the plane should be small except perhaps for atom
Cl. These angles are indeed small (see t'able 8).

The libration of the methyl group would be expected to be a
minimum along the N to methyl bonds, and the angle between the

minor axes of the thermal ellipsoids and the bond direction should

therefore be small; this has been found to be the case.
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Table 8. Orientation of thermal librations.

Acute angle between the
major axes of the thermal

Atom ellipsoids and the plane
normal
O 3.1°
N1 6.0
7.
N2 3
C, 53.8 (36.3 for semi-major axis)
1.
C2 9
C 12.4
3

Direction cosines of the Acute angle between the bond
N2 to C2 methyl bond direction and the minor ellipsoid
: direction axis of the C‘2 methyl group

g(1) -0.7117

g(2) ~-0.4887 14.4°

g(3) -0.5046
Direction cosines of the Acute angle between the bond
NZ to C3 methyl bond direction and the minor ellipsoid

direction axis of the C3 methyl group
g(1) 0.3169
g(2) -0.4583 7.0°

g(3) 0.8304
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Experimental Work: N,N'-dimethylurea.

i) Unit cell and space group.

Crystals of N,N'-dimethylurea are hydroscopic and extremely
soft. Initial attempts to obtain good single crystals by evaporation of
several solvents were unsuccessful partly due to the hydroscopic
nature of the material. Eventually very good crystals were obtained
by Vacugm sublimation at 111°C. Two different types of crystal habits
were observed. First, rectangular prisms condensed on the sides of
the collection tube. Attempts to remove these crystals generally failed
because the slightest pressure would smear the compound over the
glass, like smearing soft butter on toast. Secoﬁd, several crystals
were found hanging from the top of the collection chamber like small
icicles. The smallest of these, having a maximum diameter of 0.5
mm and a length of about 2 cm, was mounted in a Lindemann glass cap-
illary by carefully dropping it vertically into the glass cylinder. The -
end of the capillary was sealed off and the crystal was mounted for
x-ray examination. This crystal was used for all the intensity photo-
graphs taken during the course of this investigation.

Several methods were used to obtain the unit cell dimensions.
The results of each method are given in table 9. The rules for non-
extinction of reflections were observed to be: ghkﬂ), h+ k= 2n,
k+4¢=2n, (h+¢ = 2n); (h0£), h + £ = 4n;{(0kL), k + £ = 4n. These

conditions establish the space group as Fdd2. The calculated density,
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Table 9. Unit cell dimensions of N, N'-dimethylurea.

Method Radiation a b c
Weissenberg O-layer Cu Ka 20,52 45: 11,55j§ -
Rotation ' Cu Ka S --- 4,596 &
Precession (hOﬂ.) Mo 19.99 - 4,521 (4.565)%
Precession (0kf) Mo o --- 11.29 4.518 (4.561)%
Straumanis rétation ~ Cr 20,185 11.401 -——-
Adopted: o 20.185 11.401 4.563
Estimate of error v | +0.005 +0.005 +0.01

*R e=computed using the Straumanis values for a and b to
calibrate the camera constant against systematic errors such as film

shrinkage. -
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assuming 8 molecules per unit cell, is 1.114 g cm—3, Groth {5) reported
. ‘ -3
a density of 1.142 g cm .
These findings are not in agreement with the data reported by

H. Mark (14). He found the space group to be Pmn2., with a = 4,53 A,

1
_12 =10.9 A ands =5,14 A; Z =2, Groth reported the axial ratios
0.4394:1:1. 0600 and a melting point of 102°, These axial ratios agree
with ﬁhe values of H..,Mark when one computes the ratios as

Za/c:c/éz 2b/c = 0.440: 1: 1. 0603. Using the axial lengths found in this
research and computing the ratios in the mantier 2c/a:a/a:2b/a one
ébtains the values 0,452:1:1,130. The melting point determination of
the sublimed crystals of N, N'-dimethylurea used in this research
observéd under a hot stage microscope were found to be 107-108°C,
This figure agrees with one of the two values (106 and 102°C) reported
in the Rubber Handbook of Chemistry and Physics.

In view of the differences observed in the density, the melting
point, the space group and the axial ratios, it seems likely that the
crystals used in this research are diffe?ent from those of H, Mark and
Groth. H. Mark does not describe how he prepared his crystals. |
Groth, on the other hand, reports that crystals of this compound can
be obtained by either evaporation of an ether solution 01; from a closed
vessel containing a chloroform solution carefully covered by a layer of

ether., It may be that crystals obtained from these solutions are crys-

tallographically different from crystals obtained by sublimation.
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ii) | Intensity data.

Three-dimensional intensity data for Cu Ka radiation were
collected on multiple‘—filrn equi —ﬁ.nclination Wéissenberg photographs
taken about the c-axis. All layer lines having inclination angles less
than 45° wére recorded (£ from O to 4 inclusive). The intensity data
were estimated by visual comparison with a standard scale prepared
from the same crystal. The intensities were corrected for Lorentz
and polarization facfors using a program written for the Burroughs 220
computer {see appendix II for a description of the program). No cor-
rection‘s for absorption or extinction were made.

The intensity photographs revealed an interesting disorder effect
in the crystal. Figure 4 shows zero-layer c-axis Weissenberg ‘photo—
graphs of the same crystal taken at two different times. The one on
the left was taken shortly after modnting in January 1958; the one on
the right was taken two years 1atér in January 1960, Figure 5 shows
precession photograighs taken in January 1958 of the.(0k£) and the (h0f)
zones of the same crystal. The precession photographs show diffuse
streaking along the 'h and k row 1iné; but not elsewhere; this indicates
that there is no significant disorder along the c-axis and that the cause
of the streaking is restricted to the ab—plane‘.

The beautiful diffuse arcing (asterisfn), as shown by some of
the reflections in figure 4a is caused by external forces acting upon
the peripheral sections of the crystal so as to bend the corresponding

reticular planes. The normals to the respective planes span continuously
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over a range of up to about +10° as shown by the horizontal components
of the asterism. These forces undoubtedly arise from the fact that the
soft crystal was dropped into the glass capillyary; and the effects prob-
ably extend only a short way into the crystal, since the high order re-
flections are present and exhibit only slight diffuseness.

By superpositioning a reciprocal lattice row line chart over the
’Weisse‘nberg photograph in figure 4a, one finds that the asterism of
all effected ‘reflectiovvas lie along constant row lines of a pair of orthogonal
axes, a'and b' (hefeaft er referred to as the deformation axes), related
to a and b of the space group by a rotation of approximately 45° about
the c-axis. (The a' and b' axes dq not lie along principal directions in
the unit cell.) The streaking of reflections occurring close to one of
the deformation axes in reciprocal space runs perpendicular to that
axis in reciprocal space. The (400) reflection which is located equi-
distant from both of the deformation axes shows asterism in both of the
two orthogonal directions. The crystal deformation is such that the
deformation axes appear to remain perpendicular to the curvature of
the bend.

Figure 29 shows a model of the structure of N, N'-dimethylurea
viewed aklongvthe c-axis., As can be seen, the elongated direction of
the two molecules related by the diamond glide plane are nearly coincident
with the deformation axes (deviating by only 8°). If is reasonable to

believe that little or no deformation of the crystal will occur from



36

compression along these directions; instead, one may expect a deforma-
tion in which these directions are made to radially converge or diverge
by small amounts, resulting in the symmetric bending of the crystal
with respect to the deformation axes.

The nature of the change in the asterism of the reflections appear -
ing on the two Weisgenberg photographs in figure 4 show that after two
years the curvature of the reticular planes is replaced by multiple dis-
~ continuous changes of orientation brought about by polygonization of the
deformed crystal. The horizontal asterism of the reflections in figure
4b occurs because the striae of the blocks resulting from the polygon-
ization are so numerous and so close together that they cannot be sep-
arated. The c-axis orientations of the polygonized subcrystals are all
parallel while t’he‘ other two axes in the subcrystal lattices have slightly
disordered orientations relative to each other., The angular disorienta-
tion of the reflections shown in figure 4b can be represented by an
oscillation of up to 10° of the undistorted reciprocal lattice about its
origin.

Careful examination of the precession photographs indicates that
associated with the disorder, the density of the strained regions may
also have varied from a higher density at the point of contact with the
glass capillary to the equilibrium density at the interior of the crystal.
The evidence for this is that the disorder maxima‘on the precession
photographs do not occur exactly at the point of intersection of the

lattice rows, particularly in the higher orders.
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Several attempts were made to determine the relative scale
factors for the different layer lines., The nature of the crystal made
it impossible to cut or cleave it perpendicular to the c-axis, thus pre-
venting any attempts to get Weissenberg photographs around the other
axes. Precession photographs taken of the (h0¢) and (0kf) zones could
not be used té give reliable scale factors because there were too few
spots on the films and the range of intensity was too large to permit
correlation of the recorded spots. Accordingly, inter-layer scaling
was made on the basis of subsequent structure-factor calculation.

The atomic scattering curves used in this investigation for
carbon, nitrogen and oxygen were taken to be the average of the values
given by Berghuis et al. (8) and Hoerni and Ibers (9). The hydrogen

scattering curve was that of McWeeny (7.
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Determination of the Structure of N, N'-dimethylurea.

i) Derivation of the trial model.

The space group .FddZ requires 16 asymmetric units in general
positions and the only special positions are on the twé—fold axes of the
épace group. Since only 8 molecules of N,N'-dimethylurea are present
in each unit cell, each molecule must have a two-fold symmetry axis
that is utilized by the space group. This restriction immediately indicated
tha’c; the C=0 b‘ond is coincident with the two-fold axis parallel to <,
and hence that the two atoms are at the origin of the (001) projection.

In addition, the c-axis repeat distance of 4.563 A by analogy to urea

‘(c = 4,712 A) indiated that the N,N'-dimethylurea molecules also form
hydrogen bonded chains along the c-axis. The methyl groups are, there-
fore, in the cis positions with respect to the oxygen atom. The a and

b cell dimensions indicated that the molecule is probably elongated in
the [120] direction,

The presence of the C, and O atoms at the origin of the {001)
projection is liké having a heavy atom there; that is, they contribute
heavily and with positive sign to the structure factors for which
h + k = 4n and nothing to those for whichh + k = 4n + 2. Thus three of
the strongest hk0 reflections in the forvmer group were given positive
sigﬁs; the reflections are (400), (220) and(6205. These three reflec-
tions and the (420), the strongest hk0 reflection in the second group,

were used to compute a rough electron density Fourier. (The sign of
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the (420) was arbitrarily taken as negative for this calculation since

the alternative choice of sign represents only an interchange of the y

and -y directions.) The result, a large peak elongated in the
[1207]~=  direction, substantiated the proposed trial model. Using

known interatomic disfances and bond angles, the most probable projected
distances for the C1 -N and N—C2 bonds were marked off on the line

drawn in the direction of the Foﬁrier peak elongation, Initial values for
the x and y cordinates for atoms N and C2 were taken from this
drawing.

These,' x and y cordinates were refined by the method of 1east—
squares on the Burroughs‘ 205 computer using all (hk0) data. The R
factor converged from 0. 38 ’to 0.16 in about ten refinement cycles, f
Preliminary 2z coordinates were now computed on the basis of predicted
interatomic distances. (Since the c-axis is a polar axis, the initial =z
coordinate of Cl was arbitrarily chosen as zero.) The three-dimensional
refinement was carried out on the B\irroughs 220 computer using the

orthorhombic program described in appendix I.

ii) Refinement of parameters.

The first three-dimensional structure factor calculation was used
to gdjust the layer scale factors. Initial least-squares refinement failed
to behave, in that the z coordinates failed to converge. It was found
empirically that a factor of 0,4 had to be applied to the indicated shifts

of the z parameters least-squares results before they could be used,
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and even with this shift factor the convergence was sporadic. During
these early refinements, the individual layer scale factors were allowed
to change after each cycle. It soon became apparent that the temperature
factors, the z parameters and the individual layer scale factors were
all overcompensating for each other. It was decided to keep the indi-
vidual 1ayef scale factors constant relative to each vother over sex}eral
refinement cy.cles, and from this point on the refinement was smoother,
The least-squafes refinement was started giving constant weights
to all reflections. kT}‘lis was changed to xfw = \fﬁ'/(0044 + FO) when the
anisotropic temperature factors were introduced into the least-squares.

2,2
The quantity being minimized was Z‘W(i{FoZ_ FC )q and this last

q .
weighting scheme presumably reflects the pattern of reliability of the
observed F's,

When the R factor was reduced to 0.11, the electron density
section in the least-squares plané of N,N'-dimethylurea was computed
and is shown in figure 6. Figure 7 shows thé difference Fourier in the
same plane and figure 8 shows the difference Fourier calculated in the
plane of the hydrogen atoms of the methyl group. The constants defining
the plane for the second difference Fourier were computed in the same
way as for the corresponding hydrogen plane in N, N-dimethylurea. The
vieyv is through the plane with the plane of the heavy-atoms intersecting
vertically ahd the oxygen atom (not shown) at the top of the axis.

It is evident that the methyl group is not preferentially oriented.

Either a free rotation about the N-Me bond or a statistical distribution
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Figure 6. - The electron density section in the least-squares plane
of N,N'-dimethylurea. Contours at intervals of 1 e. A"3,
beginning with 1 e. A-3,
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o A

Figure 7. - The difference Fourier in the best plang of N, N'-dimethyl-
urea. Cooz?:.tours at intervals of 0.2 e. A_3, beginning with
0.2 e. A™7,
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Figure 8. - The difference Fourier map in the plane of the hydrogen |
atoms of the methyl group. Contours at 0.2 and 0.3 e. A3,
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among two or more orientations can give rise to the observed electron
density distribution. On the basis of this observation, it was decided
to approximate the torus of electron densityrby twelve quarter hydrogen
atoms equally spaced on the circumference of a circle of radius 0,94 A.
The plane of the'circle was placed ét 0.335 A from the carbon atom and
its origin at the point of intersection with the extension of the N-Me bond.

Four least-squares refinement cycles were now made with the
hydrogen atom contril?utions included in the structure factors. The
hydrogen positions were not refined. At this time the reflections (220),
(400) and (420) were given zero weight because the previous structure
factor calculations indicated‘t}iat they may be affected by extinction (or
perhaps by the disorder described earlier). Since ‘Fhe quantity being
minimized was = w (F Z—F 2) 2 , it was felt that an appropriate

‘ q 9 © ¢ 9q
weighting scheme must reflect the pattern of reliability of the observed
Fz‘s and notthe:F's 'as'in,th.e{P:r»@ViOIiS scheme. Tbus the weighting func-
tion was changed to Nw = Nw'/(0.5 + 0.4586 FO + 0.04136 FOZ), This
scheme corresponds to taking the percentage probable error in the
limit of large intensities as constant and the absolute probable error
constant in the limit of small intensities with tﬁe region between con-
nected by a continuous function. The coefficients in this expression
are empirical. The fourth refinement cycle showed negligible shifts

and had an R factor of 0.085.,

At this point the refinement was deemed complete, The final
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heavy atom positional parameters and their standard errors are given
in table 10.- The validity of the standard errors with respect to the
polar axis (z parameters) is questionable, as has been pointed out by
Templeton (15). The author believes that the C-N bond distances are
‘probably accurate to within 0,01 A, The accuracy of the C=O bond is
more difficult to establish. The intensity data were collected in layers
perpendicular to the ‘c—axis, and hence perpendicular to the C=0O bond.
The accﬁracy of the C=0 bond depends on the resolution of the data
along the c-axis and with only 5 layers of data (¢ = 0 to 4) one can
expect some series termination errors. The "hat"' thati.the oxygen atom
is wearing in the electron density map shown in figure 6 may be caused
by series termination, since it does not appear in the corresponding
difference Fourier in figure 7. Because of these facts, the author
believes that the C=0 bond distance is probably accurate to within
0.04 A.

Table 12 gives the final structure factor list. The coordinates
in Angstrom units are listed in table 13, and the bond distances and
angles are given in table 14. The least squares plane of the whole
molecule (two asymmetric units) is -0.7990X + 0.6013Y = 0. Further
details of the structure are reserved for a general discussion of all

three compounds in this series.



Table 10, Final position parameters and their standard error.

Atom X

O 0

N 0.0322
0

cl

C 0.0737

4

0.0815
0

0.1708
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0.2782

-0. 1455

0.0016

-0,0134

o(x)
0

0.0002

0.0004

o(y)

0

0.0003

0.0005

o(z)?
0.0016
0.0013
0.0019

0.0023
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Table 11. Coordinates* assigned to the hydrogen atoms.

Atom x y Z

H, 0.033 0.082 -0.356
H, 0.078 0. 237 ~0.161
H, 0. 060 0. 249 -0, 097
H, 0. 048 0.245 -0.004
H, 0.045 0.228 0.092
H, 0.053 0.200 0.169
H, 0.068 0.171 0.202
H, 0.088 0.146 0.184
H, 0.106 0.135 0.120
H,, 0.118 0.138 0.026
H,, o 0.121 0.156 -0.071
H, 0.113 0.184  -0.145
H, 0.097 0.213 ~0.178

*The methyl group has been shown to be disordered and the
torus of electron density is represented by the 12 quarter hydrogen

atoms H2 to H13 inclusive.
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Table 12, - Observed and calculated structure factors for N,N'-
dimethylurea. The five columns in each group contain
the values, reading from left to right, of k, IOIFOI ,
IOIFCI , IOA.C and 1OBCgRefl'e.ctions indicated by an
asterisk (%) were given zero weight in the final least-

squares calculation,
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Table 13. - The normalized coordinates,in Angstrom units, for the

heavy atoms.:

Atom X Y Z

@) 0.0000 0,0000 1.2693

N 0. 6506 0.9297 -0.6639

C1 0.0000 0.0000 0.0073

C2 1.4884 1.9475 -0.0613

Normalization equations Inverse equations
X = 20.185x x = 0.04954X
Y =11.401y y =0,08771Y
Z = 4,563z z = 0.21915Z

Table 14. - Interatomic distances and angles.
C,-0 1.262 A 0-C -N 120, 6°
CI—N 1.318 N—Cl—N' 118.8

- '4 - - a

CZN 1.449 ‘ C1 NCZ 124.7

Hydrogen bond distance N¢<-O' 2.864 A
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iii) Temi)erature parameter discussion.

The final 'anisotropic temperature factor parameters for the
heavy atoms are given in table 15. These parameters were used to
obtain the magnitudes and direction cosines of the principal axes of
the vibration ellipsoids listed in table 16. The direction cosines are
given relative to a Cartesian coordinate system in which X, Y and Z
axes are coincident with a, b and ¢, respectively.

Tables‘ 16 and 17 show that the anisotropic thermal motion can
be described by two librations and one displagement motion., The
more significant libration is about an axis through the two methyl groups
and the second libration is about the two-fold molecular axis. There
also appears to be somé parallel displacement of the molecular plane.
All of these motions are predominantly out-of-plane and are recognized
in part by the small angle that the major thermal axis of each atom
makes with the normal to the plane, The libration of the methyl group
would be expected to be a minimum along the N-to-methyl bond, and
hence the angle between the bond direction and the minor thermal axis
of C2 should be small. This angle is found to be 10°. (Probably none
of these deviations are greater than the experimental error.)

These the'rmal effects are compatible with the nature of the
disorder found in thelcrystal. The external forces acting on a molecular
level would produce displacements of and librations about the three

principal axes of inertia. The axis with the smallest moment of inertia
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Table 15. - Final anisotropic temperature factor parameters. The

T.= exp -(B11h2+BZZkZ+B33£2+Blzhk+B
Atom B11 B22 B33

o} 0.0095 0.0228 0,0327

N 0.0057 0.0162 0.0473

C, 0.0056 0.0163 0.0538

C 0.0069 0.0186 0.0907

temperature factors are in the form of:

13

BlZ

-0,0072

-0,0029

0.0014

-0.0040

23

h¢ +B_ ki) .

B13

0.0000

0.0013

0.0000

0.0015

BZ3
0.0000
0.0001
0.0000

-0,0063
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Table 16.- Magnitudes and direction cosines of the principal axes

of the vibration ellipsoids.

o (1) (2) (3)
A s B n
tom Axis i " gi g; g
1 21.130 0.796 0. 605 0
o) 2 6.984 0. 605 0.796 0
3 2.761 0 0 1
1 11.953 0.762 ~0. 646 0.044
N 2 6.337 0.636 0.759 0.138
3 3.937 0.122 ~0.077 0.989
1 10. 413 0.790 0.612 0
c, 2 7. 648 0.612 -0.790 0
3 4,545 0 0 1
1 14. 885 0.759 0. 627 0.174
C 2 - 7.891 0.464 0.335 ~0.820

3 6.407 0.456 0,703 0.546
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Table 17. - Orientation of the thermal librations.

Atom

Direction cosine of the
N to C2 methyl bond

direction
g(1) = 0.5782
g(2) = 0,7024

g(3) = 0.4159

Acute angle between the
major axes of the thermal
ellipsoids and the plane
normal
1.12°
4,21
74.70 (semi-major 0 = 15.30)

10.21

- Acute angle between the bond
directions and the minor ellipsoid
axis of the CZ methyl group

10.10°
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about it should have the largest libration; the smallest axis of inertia
runs very nearly through the two methyl groups and indeed the largest
libration is about this axis.” The semi-major axis of inertia is coincident
with+the two-fold molecular axis; the second largest libration is found

to be about this axis., The parallel displacement of the whole molecule

may be in part the result of the bending of the crystal.
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Experimental Work: N-methylurea.

i) Introduction,

The earliest crystallographic observations on N-methylurea
were made by Mez (16). He reported the comi:ound to be “krhombic"
with axial ratios a:b:c = 0.9904:1:1.2127, the density to be 1,204 g cm—3
and the melting point to be 102°C. The earliest x-ray investigation
was made i)y H. Mark (14), who reported the crystals to be rhombic

‘ 4
disphenoidal belonging to the space group V (P -Di ) and gave

212123
th¢ unit cell dimensions a = 5.63 &, b =5.64, c = 4.70. His unit cell
dimensions are api)ar ently wrong but the space group is correct. The
next investigators to look at N-methylurea were Corey and Wyckoff (17),
(hereafter CW); they used diffraction data obtained from oscillation

aﬁd rotation photographs to show that the crystals have hemihedral

4
D

orthorhombic symmetry. They confirmed the space group P -
21212y 2

and reported the dimensions a = 6.89 A, b = 6.96, and ¢ = 8.45 with
four molecules per unit cell,

Cw propésed a structure in which the plane of the urea group
was nearly perpendicular to the ab plane, making an angle of about
34° with the b-axis. The methyl group was thought to lay considerably
outside the plane of the urea nucleus. The agreement of observed and
calculated (0k¢) and (hk0) structure factors of higher order was not
satisfactory, however, and they were prompted to suggest that the

proposed structure was not the correct one. (In the notation of CW,
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the Miller indices h and k and the atomic parameters x and vy
refer to the b and a-axes respectively; this notation has been inverted
here in order to conform to the present standard notation.)

Gordon (18,19)‘, Whiie attempting to corl;elate the diamagnetic
anisotropy of crystals of urea and N-methylurea, considered an alter-
native structure. He presumed that the molecules are linked by
N-H--- O hydrogen bonds to form chains with the individual C=O bonds
nearly coincident Wii.:h the two-fold axes pafallel to c¢. To account for
the relatively larg‘ev published Vélue of F(OZO),’ he presumed that the
molecules lay in planes nearly perpendicular to b and separated by b/2.
In an attempt to verify this structure he obtained x-ray diffraction data
for the [010] projection in which the atoms Wére expected to be well
resolved; in addition, he made new observation of the (hk0) and (ok#)
reflections. These observations revealed a serious error in the value
of |E(012)| and a less serious error in |F(024)] as reported by CW.
These changes placed ‘ché results of CW in doubt.

Gordon terminated his work by computing the 'Four’ier syntheses
of the [001] and the [100] projections using in each case only the
dominant structure factors ([|F(020)] , |F(012)] , ]F(ilo)| , |F(011))
and |F(120)] ); for each set of structure factors he selected that com-
bination of signs which led to the most reasonable electron density
projection., In the [100] projection a more or less circular peak was
found at Y = 0, Z = 5/8; in the [001] projection the maximum was at

X =3/4, Y = 0 and was elongated along [120].
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ii) Unit icell and space group.

In the present investigation, crystals of N-methylurea were
obtained by vacuum sublimation at 110°C. The majority of the crystals |
were elongated along the c-axis and showed pseudo-tetragonal sym-
metry. One of these crystals was mounted with its c-axis perpendicular

to the x-ray beam. Equi-inclination Weissenberg photographs confirmed

' 4

lel'zl_Dz '« Preliminary measure-

the orientation and the space group P
ments of the unit—ceil parameters from the O-layer Weissenberg photo-
graph and from a rotation photograph agreed within experimental error
with the dimensions reported by CW; the values of CW were adopted
since they were computed from powder diagrams and the axial ratios,

a/b:b/b:c/b = 0.9914:1:1, 2141, agree very well with the optical measure-

ments of Mez (16).

iii) Intensity data.

Three-dimensional intensity‘data for Cu Ka radiation were
collected on multiple-film equi-inclination Weissenberg photographs
taken about the c-axis. All layer 1ineksb having inclination angles less
than 22° were recorded (£ from 0 to 4 inclusive). The intensity data
were estimated by visual comparison with a standard intensity scale
prepared from the same crystal, The intensities were corrected for
Lofentz and polarization factors using a program written for the
Burroughs 220 computer (see appendix II for a description of the pro-

gram). No corrections for absorption or extinction were made.
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>Approximate layer scale factors were obtained by comparison
with the data of CW and of Gordon. These values were improved by
comparison with the calculated structure factors during the least-squares
refinements of the parameters.

The atomic scattering curves used in this investigation for
carbon, nitrogen and oxygen were taken as the average of the values
given by Berghuis et al, (8) and Hoerni and Ibers (9). The hydrogen

scattering curve was that of McWeeny (7).
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Determination of the Structure of N-methylurea.

i) Derivation of the trial model,

About a dozen cork-ball molecules of N-methylurea were con-
structed using straight pins for the covalent bonds. In this model each
molecule was assumed to be planar with the methyl group cis to the
oxygen atom. This latter assumption was based on the consideration
that the hydrogen atoms on N and N' would form hydrogen-bonded
chains as in urea anci N, N'~-dimethylurea.

The next step in the formation of the trial model was to construct
the molecular chains., The diamagnetic anisotropy measurements of
N-methylurea made by Gordon (18,19) implied that the C=O bonds are
nearly parallel to c. In order to satisfy the symmetry as well as the
uni‘t cell identity distance along ¢ we need two molecules of N-methyl -
urea per repeat unit along this axis. However, unlike N,N'-dimethylurea,
these molecules could not lie in the same plane, since a repeat distance
of about 9.2 A rather than the observed value of 8.45 A would be
needed. Thus, it was necessary to make saw-tooth creases in the
molecular chains, with an angle between the planes of adjacent folds
in the chain of about 60°, each fold being inclined by 30° away from the
c-a?s:is. (The final value for the angle between two adjacent planes was

found to be 56°.)

The crease in the plane of the molecular chain was assumed to
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be such that an oxygen atom of one molecule would be very nearly in
the plane of the adjacent molecule, so as to allow two N-H++-O hydrogen
bonds to be formed. The cork ball molecules were now pierced by long
piano wires, which represented the screw axes, so as to form five
chains of molecules with two or three molecules of N-methylurea per
chain. The last step in construction of the trial model was to find the
method of packing of the chains.

Four of thé chain models were placed so as to outline the ab
face of the unit cell, The fifth chain, with the C=0 bonds pointed in
the opposite direction from the other four, was placed ét the center of
the ab face. The chains were now rotated so that the planes of the
molecules were nearly perpendicular to the b-axis., At this point the
rélative height of the fifth chain was adjusted so that its methyl group
fitted into the hollows formed by the bfoldks of the adjacent chains. This
required twisting the molecular planes somewhat away from perpendicular
to b. The amide groups were now found to be oriented favorably for
formation of cross-chain hydrogen bonds, using the second hydrogen
aytoyrn of the NHZ group.' In this case the additional N-H-++ bondis
pointed toward the apex of a fold of a neighboring chain, where an oxygen
atom is assumed to be located. This completed the construction of the

trial model; it remained only to choose the correct origin and to test

the model,
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ii) Two—dimensional refinement.

The structure was refined in the [010] zone by alternate cal-
culation of structure factors and Fourier syntheses. The observed
(h0£) structure factors of Gordon (18) were used throughout the two-
dimensional investigation. Although the final structure did not differ
qualitatively from the first trial model, it turned out to be very difficult
to verify the model because several structures close to the correct one
converged‘ to false minimarduring the application of least squares pro-
cedures.

The initial set of x and =z coordinates were taken from the cork
ball trial model, the origin of the unit cell being taken at the center of
symmetry of the projection. These coordinates were used to compute
the h0f structure factors, the calcﬁlated signsiwere then assigned to
the observed structure factors and the electron density Foﬁrier synthesis
was computed. Only a small stretch of the imagination was necessary
to find a molecule of N-methylurea in the map. New coordinates were
read off the Fourier map and were used to compute new structure fac-
tors and a few cycles of least-séuares were run. Convergencé stopped
with R at about 0.35, and a new Fourier was calculated. Although the
new map had no spurious peaks, the overall situation was not good since
no further refinement could be obtained. This was the first of many
similar repetitions of an encouraging beginning Withbut a satisfactory

ending.
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The next idea was to put the methyl group on the other nitrogen
atom. After that the molecule was moved a little one way and then a
little the other, a little up and a little down; it was rotated a little clock-
wise and a little counterclockwise. The results were more or less the
same: discouraging. The methyl group was moved to the trans positions
and then to some of the intermediate non-coplanar positions. A fewv
entirely different arrangements were tried, giving, in general, much
worse results. At this low point in the investigation one could hardly
disagree with CW when they said: ''...when evaluating structures of
organic crystals based on limited data it is important to remember that
it has not been hard to find an a’rrahgement for methyl urea which though
incorrect can explain quantitatively its simple reflections. "

Since all of the two-dimensional refinement work was being done
on the Burroughs 205 computer, the first draft of a program for this
computer was written which would select a random orientation for the
planar molecule lying within the limits giving an arrangement compatible
with the qualitative features of the initial trial model. It was intended
to work in the following way: A set of coordinates for the predicted
planar configuration of N-methylurea was computed using a two-
dimensional Cartesian coordinate sy stem in which the C=0O bond was
taken coincident with the Z -axis; the atom C1 was placed at the origin
and the horizontal axis was taken coincident with the Y -axis. It was
felt that the molecule could be translated by -0.347 S W < ’0. 617 A

along the Z axis. It was also felt that the normal to the plane of the
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molecule must be at an angle 20 s 0l < 30° away from the X-axis and at
an angle 110 < 9 <1200 away from the Z-axis, where ¢ and 6 are
the spherical coordinates of the normal to the plane. These conditions
defined the acceptable orientations of the trial model. The program was
designed to calculate random values for W, ¢ and 0 within the rahges
specified above and then translate, rotate ahd de-orthogonalize the planar
coordinates so as to give a set of fractional céordinates which could be
used as a triél‘ model, One additional check of thesé coordinates was
planhed; that is, the cross chain hydrogen bond distance was to be com-
puted and only those configurations with this distance lying between 2.6
and 3.3 A were to be used. However, before this avenue of approach
was tried, a systemafic pseudo-equality between the. intensities of reflec-
tions of thé type hOf and £0h was noted, and it was felt that this feature
ought to be investigated first.

Table 18 lists the (h0f) data of Gérdon (18) with | F(h0£)| and
|[F(20h)|] pairs in parallel columns in order to show the pseudo-equality
between them. In table 19, three special arrangements’of atorﬁs were
considered in order to find their effect on the structure factors, Althoﬁgh
none of the cases I, II or III could be used individually to explain the
.pseudo-~equality, it seemed reasonable that some combination could.
Because the pseudo-equality was as good for the h + £ odd as for the
h+ ¢ even structure factors, case II had to be excl.uded and a combination
of I and III was investigated. A Fourier synthesis based on such an

arrangement had previously been calculated. The trial structure giving



Table 18. -

hk{

102
103
104
105
106
" 107
200
203
204
205
206
207

304

12.6

23.4

by Gordon.

hke

201

301

401

501

601

701

002

302

402

502

602

702

403

64

pseudo-equality between |F

RN

16.1

10.1

11.7

hoy I

hky

305
306
307
400
405
406
407
506
507

600

607

800

and

IF |

8.8

29.3
10.6

11.1

2.3
3.3
11.1

2.3

20nl

hks

503

603

703

004

504

604

704

605

705

006

706

008

The structure factors are listed to show the

IF

IA

Observed structure factors for N-methylurea as reported

pairs.

|

5.9

7.8

10.3

6.4
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Table 19.- Some special relations in plane group Pgg and their effect

on the observed structure factors.

Case 1. An atom at (x,x) and equivalent positions.
Case II. . An atom at (x, > - x) and equivalent positions.
1
Case III, One atom at (x, > - x) and another at ( —;— - x,x) and the

corresponding equivalent positions.

Equivalent positions for plane group Pgg: + ! X, Z3 —;‘-+ X, -;— -z
Case  h+8 =2n hto=2n+1

I A =Tc A =Ts

II A = Tc cosinw A ==Ts cos Im

III A = Tc(cos 4mtcoshn) A =0

where Tc = 4 cos 2nr hx cos 27 fx and Ts = -4 sin 27 hx sin 27 {x

Case hti=2n h+f=2n+1"

I A(hO£) = A(£0h) A(hOL) = A(20h)
I A(hOt) = A(40h) A(h0g) = -A(L0h)
11T A(hOL) = A(L0h) 0.

I+11 F(hoL) = F(L0h) F(hot) # F(L0h)

I+ III F(hoL) == F(£0n) F(hof) = F(L£0h)
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this early ,F'ourier had no atoms over 0,6 A away from the correct
structure and yet it was locked in a false minimum by the least-squares
and the Fourier gave no indication as to which direction the atoms should
be moved. Thus one can understand the frustration experienced during
this part of the investigation,

The Fourier indicated that the oxygen atom and the NH_ nitrogen

2
should be moved toward the line z = x, thus satisfying the conditions
of Case I, (The molecule considéred is the one in the lower left corner
of figure 9 with the origin moved to -1/4, 1/4,) The NH nitrogen was
moved toward the line z = 1/2 - x and the carbonyl carbon was placed
slightly above the centroid of the triangle formed by the two nitrogens
and the’oxygen atoms. The N—CH3 bond was drawn parallel to the C—NI—E[Z
bond and extended until it intersected the nearest diagonal. As can be
seen in figure 9, this placed a methyl groﬁp, from the symmetry related
molecule in the lower right, on the line z =1/2 - x at a point corres-
ponding roughly to one of the positions of case III; the other position
being occupied by the NH nitrogen.

The coordinates o‘btained from these considerations proved to
be a good enough starting point for the least-squares process, and five
cycles brought the’ R factor from 0.48 to 0.16., Further refinement
made use of the three dimensional data.

During the latter stages of the two-dimensional investigation,

an infra-red spectral study of the mono- and dimethylureas was
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|/44—-|—— c/e —‘"‘_"" 4

Figure 9. - Electron density projection'of N-methylurea along the
b-axis. Contours start at 2.7 e. A~ 7, increase by
1.4 e. A~2 over the first interval and by 0.7 e. A-2
over the remaining intervals.
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undeftaken. Figure ld shows the infra-red spectra of N-methylurea,

N, N'-dimethylurea and N, N-dimethylurea in pressed discs of potassium-
bromide. The spectra were obtained on a Perkin-Elmer Model 21
double-beam recording sP.ectrophotometer equipped with sodium-chloride
optics. These spectra were intended as a preliminary to polarized IR
studies of single crystals in order to confirm, if possible, the orienta-
tion of ti'le C=0 bond in N-methylurea. This work was terminated when

the structure was solved in projection.

iii) Three—dimensional refinement.

‘A. y parameter of zero for the carbon‘ atom C1 was taken from
the cork ball model; the other y parameters were ’computed from pre-
dicted interatomic distances. Although the derived set of x, y and z
parameters for all the atoms formed a compléte description of the struc-
ture relative to the origin, it was decided to express them relative to the
origin defined by the expressions given in the International Tables (20)

for the space group P The translation components relating

4141%1

the two coordinate systems were deterrﬁined in the fo}lowing way: Four
low-order reflections, one from each of the different parity groups,
were used to test the choice of origin., All eight possible triple trigo-
nometric products were computed for each reflection and were used

to calculate eight '"'structure factors.' Since a sine curve is equal

to a cosine curve which has been shifted forward by a quarter cycle,
the four groups of "'structure factors'' were examined to see what

simplé quarter-cycle shifts had to be applied to the parameter to give
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Figure 10. - Infra-red spectra of Nemethylurea, N, N'=dimethylurea
and N, N-dimethylurea.
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the best fit for all four reflections. The set of parameters expressed
relative to the new origin constituted the initial set of three-dimensional
parameters used in the sﬁbsequent calculations. The hand computed
structure factors and all of the intermediate calculations were also used
‘during the debugging of the structure factor least-squares program for
the Burroughs 220 computer ‘described in PartII of this thesis and

also in appendix I.

The refinement of the parameters progressed in stages, being
dependent on the rerx\loval of program bugs from each of the major least-
squares sections. The refinement; however, still followed the usual
course, in that the positional parameters and the single isotropic tem-
perature factor converged ahead 6f the anisotropic temperature factors.
Because of the program debugging no definite figure can be given for
the number of cycleé that were needed for the complete refinement of
the parameters.

Initially the layer-line scale factors were adjusted after each
refinement cycle, This feature was soon removed, the individual layer-
line scale factors being adjusted only a few fimes- during the subsequent
refinement. The least-squares refinement was started using unit
weights for all reflections. This was later changed to
Nw =«w' (0.2 + sin 6)/(1 + 0. OIFO), which was again changed to
Nw = fw'/{0.48 + FO), where yw' is an external '\‘;veight assigned to

>
each reflection. The quantity being minimized was T w (F -F Z)qz,

q q o] C
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and this last weighting scheme presumably reflects the pattern of

reliability of the observed F's.

iv) Hydrogen atom refinement.

Coordinates were assigned to the amino hydrogen atoms on the
basis of a planar arrangement with distances and angles found in urea
by Worsham, Levy and Peterson (21). The hydrogen atoms of the
methyl group were placed in tetrahedral positions about the carbon atom
with C-H ‘distances of 1.0 A and with two of the hydrogen atoms stag-
gered with respect to the oxygen atom. Although the inclusion of vthe
hydrogen atom contributions improved the agreement between calculated
and observed structure factors, the improvement was less than had
been anticipated, raising doubts as to thg correctness of the assumed
positibns. Accordingly, an electron density map and a difference map
were computed in the plane of the heavy atoms; these maps are shown
in figures 11 and 12.

The difference map’clearly showed the hydrogen atoms attached
to the nitrogens. In the case of the methyl group, only one of the three
hydrogens (H4) should have appeared, because the other two are con-
siderably out of the plane of the heavy atoms. However, as can be seen
in figure 12, a second peak, labeled H5,6’ appeared. In order to find
out what was going on around the methyl group, another difference map
was computed, this time in the plane of the methyl hydrogen atoms. In

this difference map as in the previous one the hydrogen atom contributions
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were included in the phase angles of the structure factors but were
omitted from the amplitudes. The resulting map is shown in figure
13a. The assumed positions of the hydrogen atoms are shown by the
small crosses. As can be seen, the peak heights associated with H5

and H, are considerably less than that for H, 6, and an additional peak

6 4

of the same height as H5 appeared opposite H4.

In order to ascertain the effect of the inclusion of the hydrogen
contributions to the phase angles of Fcal’ another difference map was
calculated with the hydrogen contributions to Fcal omitted altogether,
Tilis synthesis is shown in figure 13b. The height of the peak opposite
]E—I4 increased a little, while the height of the peak at I—I4 decreased
considerably. This map seems to indicate that the methyl group is not
preferentially oriented. On the basis of this indication, it Was decided
to approximate the rotational torus of electron density by twelve quarter
hydrogen atoms; that is, by twelve scattering centers each having 1/4
the scattering power of a hydrogen atom. The assumed coordinates of
these fractional hydrogen atoms were computed in a manner analogous
to the corresponding calculation for N,N'-dimethylurea.

A few more cycles of least-squares were run in which the methyl
hydrogens were not allowed to move, using the weighting function
Nw = w'/(0.4 + 0. 4764E‘O + 0. 1236F02), which appropriately reflects

2 .
the pattern of reliability of the observed F 's. Some improvement was

obtained. The final R factor was 0.101. ‘The R factors for each of
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Figure 11.- The electron density section in the least-squares plane
of N-methylurea. Cpontours at intervals of 1 e. A7,
beginning with 1 e. A3,



74

O-\_Jlf\

Figure 12.- The difference Fourier in the best plane of N-methylurea.
Contours at intervals of 0.2 e. A-3, beginning with
0.2 e. A73,
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the layers are: (O0-layer) 0,071, (1) 0.097, (2) 0.073, (3) 0.140 and
(4) 0.198. It did not seem that much more information could be ob-
tained from the present set of data. The lack of resolution of C1 in
the electron density map shown in figure 11 is due to the fact that the
resolution is poor along the z-axis since only layer lines 0-4 were
available; the layer scaling constants were not determined experimentally
except in a rough form which further complicated the refinement,
Before ahy further work is done with this compound , it is felt that a
complete three-dimensional set of correlated data should be collected.
Table 20 lists the final set of positional parameters and their
standard errors. . Table 21 lists the assumed coordinates for the methyl
hydrogen atoms and table 22 gives the final structure factor list, The
positional parameters in Angstrom units are listed in table 23. These
were used to compute interatomic distances, bond angles and the best
least-squares plane. The interatomic distances and angles are given
in table 24, The equation for the least-squares plane is 0,3556X -
0.8080Y - 0.4698Z + 0.8292 = 0. Further discussion of the structure

" will be given in a later 'section,
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Table 20. - Final positional parameters and their standard errors

for N-methylurea,

Atom X y z

@) 0.6842 0.1273 0.4472
Ni 0.8927 0.0769 0.6452
Né 0.5958 -0, 0565 0.6560
C1 - 0.7198 0.0581 0.5831
C2 0.4051 -0. 0989 0.5967
Hl 0.915 0,035 0,773
I{Z 0.974 0.148 0.624
I{3 0.622 -0.118 0.735

()

0.,0008
0,0010
0.0011
0.0011
0.0013
0,008
0.008
0.008

a(y)

0.0008
0.0011
0.0011
9.0010
0.0014
0,008
0,009
0.008

Table 21. - Coordinates* assigned to methyl hydrogen atoms.

x y zZ
H,  0.396 ©.0.146 . 0.698
H, 0,410 0,076 0.698
H,  0.411 0,014 0. 670
H,  0.399 0.025 0.622
H, o 0.377 0.028 0.567
H,  0.352 -0.002 0,519
H,  0.329 -0, 061 0.492
H  0.315 -0.131 0,492
H, 0.314 -0.193 0,519
H, 0.326 -0, 231 0.567
M, 0.348 -0. 235 0.622
H . 0.373 -0. 203 0. 670

*The methyl group is believed to be disordered and is represented

here by 12 quarter hydrogen atoms.

a{z)

0.0011
0.0015
0.0016
0.0018
0.0020
0.010
0.010
0.009
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Table 22. - Observed and calculated structure factors for N-methylurea.
The five columns in each group contain the values, reading
from left to right, of k, 1O|FO| , lOIFCI ) IOAC and IOBC.

Reflections indicated by an asterisk (%) were given zero
weight in the final least-squares calculation.
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Table 23. - | Final coordinates givenin Angstrom units.

Atom X Y Z

O 4,7140 0.8863 3.7792

N1 6."1504 0.5352 5.4517

N2 4,1052 -0.3932 5.5434

C1 4.9591 0.4047 4.9274

C2 - 2.7910 -0.6884 5.0419

H1 6.3067 0.2460 6.5314

HZ 6.7086 1.0310 5.2747

H3 4,2882 -0.8185 0,2074

The normalization equations are: X =6.89 x
Y =6.96y
Z =8,45 z

The inverse equations are:

x =0,14514 X
y = 0,14368 Y

z =0.11834 Z
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Table 24. - Interatomic distances and angles,

c,-0 1.269 A 0-C,-N, | 120, 0

| 0C, -N, 121, 8

C,-N, 1.308 N,-C, -N, 117.5

C,-N, 1.321 C,-N,-C, 123.5
C,-N, 1.437

C,-N,-H, 123.6

N, -H, | 1.13 ‘ C,-N,-H, 112.6

N, -H, 0.77 C,-N,-H, 118.9

N, -H, 0.81 C,-N,-H, 129.4

H,-N,-H, 106, 6

Hydrogen Bonds:

N, -H 0! 2.980 C. -N_***N!' 125.3 Between
molecules in
adjacent chain

Nl—HZ"‘"O“ 2,969 Cl—O‘“N” 129.0 Between
molecules in
NZ—H3° ce O 2.932 O 'H‘l' -N‘l1 174.1 the:same chain
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v) Temperature parametér discussion.

Table 25 lists the final anisotropic temperature parameters.
The magnitudAe,s and direction cosines of the principal axes of the vibra-
tion ellipsoids are given in table 26. The direction cosines are given
relative to a Cartesian coordinate system coincident with the crystal
axes.

Table 27 not'qnly fails to substantiate the expectation of a pre-
dominantiy o_ut‘—of-plane libration but also indicates that something has
géné badlf astray. Itis clear from table 26 that the m-agnitudes of the
atomic displacements along the major axes of the heavy atom ellipsoids
are too large. The major axis of each atom has oriented itself nearly
pa’ra'llel to the z-axis, as shown by the large values of glt(B).

It T,seémtéd likely that thé individual layer line scale factors had

run amuck, leading to overly large B temperature fluctuations. A

33

constant value of 0.02 was subtracted from the }333 term' of §ach atom
and a new calculation was made of the magnitudes and direction cosines
of the principal axes of the vibration ellipsoids. The major axes ob-
tained from the new calculation were mor e nearly perpendicular to the
least-squares plane as originally expected. However, the values of the
atomic displacements along the s’emi-major and minor axes inl a few
cases became ridiculously small.

The difficulty cannot be blamed wholly on the individual layer

line scale factors, because of the apparent involvement of the other
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Table 25. - Final anisotropic temperature parameters, The

temperature factors are in the form of:

2
Ti = exp —(Bllh + B

Atom B 11
O 0.0325
Nl 0;0218
Né 0.0312
C1 0.0279
C 0,0283

2
ZZk

B2
0.0287
0.0370
0.0281
0.0217

0.0361

+—B33£2+-B12hk4-B13h£4—B23kD
B33‘ BlZ B13
0,0348 -0.0038 0.00453
0.0434 -0.0071 —Q.0053
0.,0492 -0.0036 -0.0035
0.0469 -0,0008 0,0047
0.0610 -0,0216 -0,0201

B
23

0..0094

0.0227

0.0085

~-0.,0121

0.,0377
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Table 26, - Magnitudes and direction cosines of the principal axes

Atom

of the vibration ellipsoids.

Axis 1

Bi
10.944
6.635

4.090

15.993
4,356

3.368

14,603
6.060

4,777

14.336
5.174

3.389

24,462
4,094

1.245

(1)
&
0.136

0.875

0.465

-0, 147
0,717

0.682

"Oo 107
0.899

0.424

0.119
0.989

-0,085

-0.306
0.828

0,469

(2)

&
0.361
-0.481

0,799

0,529
-0.525

0.666

0,220
-0.395

0.892

-0,270
0.115

0,956

0.488
-0,287

0.824

(3)

0.923
0,059

-0.381

0.836
0' 459

-0.302

0,969
0.189

-0,155

OO 955
-0,091

0,281

0.817
0,481

-0.316
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Table 27. -

a. Angles between the thermal ellipsoids axes and the least-squares

plane normal.

Atom major semi-major minor
O 47,38 48.15 72,47
Nl 29.25 62.36 81.13
N, 47.80 56. 66 0. 22
C1 79.16 72,46 20,81
CZ , 27,50 72.53 69.47

b. Angles between the thermal ellipsoid axes of the methyl group

C2 and the NZ—C2 bond direction.

Direction cosines of Ellipsoid Acute
NZ—C2 bond direction Axis Angle
g(1) = 0.9144 major 83.95
g(2) = 0.2054 semi-major 29.97

g(3) = 0.3489 minor 60.77
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Bij terms. Itis very probable that the lack of high order resolution

along the c-axis is primarily responsible for the high uncertainties of

the B._, B

330 P13 2nd By

3 terms. Although the lack of reflections with an
f index greater than 4 did not seem to seriously affect the refinement

of the positional parameters, it certainly appears to have affected the

anisotropic temperature parameter refinement.
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General Discussion of the Structural Results.

i) Intra-molecular features:

(2) Bond distances.

In table 28 are listed the observed bond lengths in urea and in
several other closely related compounds., The table is divided into two
parts; the first part lists the results of research included in this thesis
and the published results of other compounds which are both closely
related and accurately determined., The second group consists of a
supplemental list of results of two types: (1) Those which were not
thought to be of sufficient accuracy to be included in the first group.

(2) Those from compounds which are not so closely related to urea
as desired.

The compounds added to the first group are: Urea {x-ray dif-
fraction, Vaughan and Donohue, 22; neutron diffraction, Worshan,
Levy and Peterson 21) and biuret hydrate (Hughes, Yakel and Free-
man, 23). Included in the second group are the following compounds:

leucylprolylglycine {L.eung and Marsh, 24), bis-biuret cadmium

chloride (Cavalca, Nardelli and Fava, 25), potassium bis-biuret
cuprate (II) tetrahydrate (Freeman', Smith and Taylor, 26), diacetyl-
‘hydrazine ‘(Shintani, 27), N-methyl acetamide (Katz and Post, 28),
Nemethylurea nitrate (Bryden, 29) and Pls_:@N—methylurea) cadmium

chloride (Nardelli, Coghi and Azzoni, 30).
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Table 28. - Bond lengths in urea and related compounds.
I. Compound c=0 C,-N C,-N
Urea (x-ray) 1.262 1.335
Urea (neutron) 1.243 1.351
N-methylurea 1.269 1.308 1.437
1.321
N,N'-dimethylurea 1,262 1.318 1.449
N, N-dimethylurea 1.234 1.351 1.456
1.351 1.448
Biuret hydrate 1,255 1.332
1.246 1.361
Average of bond lengths: 1.253 1.336 1.447
Proposed by Pauling and Corey 1.24 1.32 1.47

II. Supplementary Compounds

Leucylprolylglycine 1.243 1.335 1.467

1,207 1.331 1,457
1.482
CdClZ.(Biuret)Z 1.26 1.35
1.23 1.34
1.35
1.35
K2 Gu(NHCONHCONH)2 °4.-HZO 1.25 1.34
1.27 1.33
Diacetyl hydrazine 1.221 1.341
N-methyl acetamide 1.236 1.290 1.465
N-methylurea, HNO 1.28 1.29 1.44
3
1.30
CdCl,.N-methylurea 1.27 1.39 1,45
2 1,36

Average of bond lengths: 1.247 1.336 1.460
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The bond lengths in N, N-dimethylurea are in excellent agreement
with the neutron study of urea and the bond lengths in N-methylurea and
N,N'-dimethylurea are in good agreement with the x-ray study of urea.
Unfortunately the two sets of results are in only fair agreement with
each other., In the opinion of this author, the discrepancies between
the two sets of results should not be attributed to anything other than
experimental uncertainties. The average values for the C=0, C1 -N
and CZ—vaond lengths are 1,253 A, 1.336 and 1.447 for the first group
and 1,247, 1.336 and 1.460 for the second group. These averages are
in good agreement with each other and with the values for the peptide
linkage proposed by Pauling and Corey (31).

(b) Double bond character.

The values in table 28 show that the presence of the N-methyl
groups does not change the interatomic distances within the urea nucleus
by an amount greater than the apparent experimental error. Thus it
appears that the relative contributions of the three resonance structures
(a), (b) and (c) to the resonance hybrids are approximately the same for

the methyl ureas as for urea itself.

i T 7
H C H H C H H C H
Vs \ P ™~
N N NV \N N/ \FN
H H H H H H
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In order to estimate the relative contributions of these struc-
turés, the familiar equation of Pauling (32a) which relates bond length

with bond number will be used:

o 1.84(n - 1)
Dn‘D '(Dl ”Dz) 0s84n + 0.16

It is first necessary to have reliable values for the lengths of carbon
to oxygenvand carbon to nitrogen single and double bonds. Satisfactory
agreement with observed results is obtained if the values 1. 166 for
C=0 and 1.240 for C=N are used, combined with the values 1.400 for
C-O and 1.447 A for C-N. The C=0O value is the assumed pure C=0
bond distance in C1COCl, phosgene, reported by Robinson (33). This
value is probably appropriate since not only is it accurate (the quoted
standard deviation is 0.002 Pi), buf the electronegativify of chlorine is
the same as that of nitrogen. The value 1.400 fg for C-0O was also
chosen so as to match the electronegativity of the eh\}ironment; itis
the value for the C-O bond in chloromethyl chloroformate reported by
O'Gorman, Shand énd Schomaker (34) The average of the CZ—N bond
lengths, 1,447 A, was taken as the average value of the C-N single
bonds in the methyl and dimethyl ureas. The average observed C=0
and Cl -N distances indicated that there is about a 40% contribution
from structﬁre (a), and that structures<(b) and.{c) contribute about 30%

each to the resonance hybrid .
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Table 29 gives a review of the double bond character of the
C=0 and C1 -N bonds in the peptide linkages and in the ureas, Corey
and Pauling (31) estimated 60% and 40% contributions from the resonance

structures (d) and {(e) to the peptide linkage.

0 o)
. o
\N/ \C \Ny \c
H _ H

{a) (e)

These values are compatible ;Nith the 40% and 30% values found for the
ureas: The lower ‘double bond character of the C=0O bond in the ureas
is explained by the additive contribution of both structures (b) and {c)
to the resonance hybrid and hence to an additional lengthéning of the
urea C=0 bond., The lower double bond character of the Cl ~-N bond
distances in the ureas and their corresponding increased length is due
to the competition between the electron pair do’nor nitrogen atoms for
the acceptor group in structures {b) and (c); thus, the donor nitrogen
atom in {e), having no competitor, makes a rélatively larger icontribution
to the resonance hybrid of the peptide linkage than either {b) or (c) do
in the ureas.

(c) Planarity of the molecules,

The contributions from the resonance structures (b) and (c)
lead to the planarity of urea and its methyl derivatives, All three com-
pounds investigated in this research have planar heavy atom configura-

tions with an average deviation of an atom from the least-squares plane
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Table 29, - Double bond character of the C=0 and Cl-N bonds,

Type of bond C=0 Cl—N
Observed average distance 1.253 1,336
Proposed by Pauling and Corey (31) 1.24(1.23)* 1.32(1.33)%
Double bond character (peptide bond) 60% 40%
Double bond character‘: Urea (22) 40% 30%
Double bond character: This research 40% 30%
Calculated distances for urea ‘ 1.27% 1.36%

*Calculated using the following values for the pure single and double

bond lengths: c=0 1.166 C=N  1.240

C=0 1,400 C-N 1.447
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of 0,02 A and a maximum deviation of 0,05 A; the out-of-plane dis-
tances are listed in table 30.,

(d) Configuration of the amide group.

Both N-methylurea and N,N'-dimethylurea have the trans-amide
configuration discussed by Pauling, Corey and Branson (2); that is,
the unsubstituted amide hydrogen atom is trans to the oxygen afom while
the substituting group.(ix’l this case a methyl group) is cis. The prefer-
ence of thé amide group for the trans configuration, as shown by most
linear peptides, was noted by Corey and Pauling (31). They listed only
one exception to the trans configuration, namely, diketopiperazine
(Corey 35) where the cis-configuration is demanded by the cyclic co-
valent bonding within the compound.

Another‘ recently reported exception to the trans configuration
is biuret; in this case the resultant configuration is not due to the
geometry of the covalent bonding. An essentially planar cis-trans con-
figuration was found for the two peptide linkages in biuret hydrate

(Hughes, Yakel and Freeman 23) and also in bis-biuret cadmium

chloride (Cavalca, Nardelli and Fava 25). (Two other possible planar
configurations are the trans-trans and cis-cis arrangements.) Itis

the intra-molecular hydrogen bonding between one of the two NH2 end
groups and the oxygen atom of the second carbonyl group away from it
which has apparently stabilized the cis-trans. configﬁration. The trans-

trans species, which requires two oxygen atoms to be positioned ad-

jacent to one another, is unfavorable except when the molecule acts as
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Table 30. - Distances of the heavy atoms from the least-squares plane.

N-methyl- N, N'-dimethyl- N,N-dimethyl-

Atom urea urea urea

o 0,014 0.000 -0.012
N, 0.023 ' 0.039 0.005
N, 0,003 -0.039 0.046
c, ' -0. 049 0.000 -0.009
C, 0.009 -0.018 -0.007
C, --- 0.018 -0.024
Average deviation: 0,020 0.019 0.017

Maximum deviation: 0, 049 0,039 0,046
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a bidentate complexing agent as in bis-biuret copper (1) chléride

" (Freeman, Smith and Taylor 26). The cis-cis configuration is unfavor-
able because of the steric hjindrance between the hydrogen atoms of the
adjacent NH2 groups; however, when two of these hydrogens have
been removed by ionization, the molecule can be cis-cis and behave as

a bidentate ligand as in potassium bis-biuret cuprate(II) tetrahydrate

(Freeman, Smith and Taylor 26).

Thé fact that the cis configuration is found experimentally only
if either a strong intra-hydrogen bond or the molecular geometry
requﬁ.r es it suggests that the trans configuration is preferentially
stabilized by both intra- and inter-molecular forces, Table 31 sum-
marizes a qualitative evaluation of some statements about the relative
stability of the cis and trans forms of the peptide linkage. Statements
(3) to (5) are apposite to the argument for the existence of intra-
molecular stabilizing :Eorces.. Statement (3) appears to be equally
significant to both the cis- and trans forms because an examination of
molecular models indicated that there is very little steric hindrance
which would prevent the side group from taking either of the two con-
figurations. Statement (4) is certainly more significant than statement
(5) because the He+*-O distance in the NH**+*O hydrogen bond would
have to be about 2.77 13.;, while the H+‘5 “+0O distance would be about
2.28 A for an eclipsed methyl hydrogen atom.

All of the inter-molecular statements, except statement (8),
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Table 31. - Qualitative evaluation of some statements on the relative
stability of the cis- and trans-amide configuration of the
peptide linkage. (In making this evaluation a model of

N-methyl formamide was considered,)

Evaluation
Statements cis trans
1) Configuration stabilized by resonance + +
2) Experirrientally the predominant form ' +
3) | Methyl group is not sterically hindered + +
4) C-H™“++0 attraction stabilized by hyper - +
conjugation
5)7 Intra-molecular NH***O hydrogen bond +
stabilization
6) | Proton ‘acceptor group is more accessible +
7) Proton donor group is more accessible +
8) More favorable for dimer formation +
9) Favorable for polymer formation - | +

Key to evaluation: + Significant in a relative sense.
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favor the trans-configuration; only in a moderately high pressure gas
phase, where dimerization of the molecules becomes significant, would
(8) become cogent, The dominance of the trans form in the solid,
liquid and high pressure gas phases is largely due to the independent
accessibility of the proton donor and proton acceptor groups in the
trans form and accordingly to the fact that in this configuration it is
possiblle to form long ‘hydr ogenk—bonded chains,

(ej Orientations of the methyl group.

In each of the three compounds studied in this thesis, there
are one or two methyl groups present. One of two situations exists
whenever a methyl group‘is present: Either the hydrogen atoms of the
methyl group occupy preferred orientations - that is, the rotation of
the methyl group has been sufficiently restricted to produce three
measurable electron density peaks in tetrahedral positions about the
carbon atom; or they do not show any preferential orientation - thatis,
there is either a free-rotation about the heavy atom axis or a statistical
distribution among two or more restricted orientations,

Only two restricted orientations seem likely for the N-methyl
gr’oup located cis to the oxygen atom: either the eclipsed or the stag-
gered configuration of the hydrogen atoms with respect to the carbonyl
oxygen atom. The eclipsed configuration would result if an attractive

force is operative, as, for example, a weak CH***O intra-molecular
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hydrogen bond in which perhaps the hydrogen atom has become partially
positive due to hyperckonjugation (Pauling 32b). The staggered con-
figuration would result ‘from the repulsion between the electrons of the
oxygen atom and the electron of the hydrogen atom. Itis not clear which
is more plausible; and if both are equally likely, then the potential func-
tion for the methyl group rotation would have six-fold symmetry and the
methyl group would be expected to be statistically distributed among
the two or‘ientations. |

The cis-methyl groups in N-methylurea and in N, N'-dimethylurea
are not preferentially oriented as shown by the difference syntheses
illustrated in figures 13b and 8, respectively. This implies that either
the intra-molecular forces are not strong enough at room temperature
to restrict the rotation éf the methyl group or that there are two or
more equally likely restricted orientations. A nearly eclipsed orienta-
tion was found for the cis-methyl group in N, N-dimethylurea; however,
it appears that here the molecular packing along the chain axis contri-
butes in part to the restriction of the orientation. The positions of the
hydrogen atoms correspond to a rotationrobf the methyl group by about
10° from the eclipsed configuration (see figure 3b).

A molecular model (Corey and Pauling 10) of N, N-dimethylurea
indicated that the trans-methyl group would most likely have a staggered

orientation with respect to the amide hydrogen, H_, which constitutes

2

a formidable steric barrier to the rotation of the methyl group. The
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perfectly staggered position, however, is not found; the positions of

the hydrogen atoms correspond to a rotation of the methyl group by
about 30° from the staggered configuration (see figure 3a). Hydrogen
atoms I—I3 of the methyl group and I—IZ of the amide group are in close
van der Waals contact (2.00 A). This configuration appears to result

" from the packing formed by the tetrahedral interlbcking of atoms O
and H7 from one molecule with atoms HZ and7H3 of the adjacent
molecule related by the n-glide. This configuration is shown in figures
14 and 16, and a list of the interatomic distances for the a’cpms involved

in the packing i's given in table 32, The interlocking also explains the

10° deviation of the cis-methyl group from the eclipsed configuration.

ii) Inter -molecular eratur es:

(@) The NH---O hydrogen bonds.

All of the NHe¢++-O hydrogen bond lengths observed in urea and
its methyl derivatives are within the limits of the distances derived
by Fuller {36); thatis, d=2.96+ 0.09 A for the distance between
the nitrogen atom of an amino (NHZ.) group and the oxygén atomv of a
carbonyl group within a chain (rath’er thén a ring). Table 33 lists for
comparison the hydrogen bond distances found in‘these compounds.,
Throughout any further discussion involving these hydrogen bonds, it
will be tacitly assumed that the relative strengths of -all the hydrogen
bonds are about equal. As Corey and Pauling (31) have pointed out, the

precise relationship between the dimensions of the NH***O bonds in



99

Table 32. - Hydrogen-atom packing distances along the chain axis

in N, N-dimethylurea.,

. from

to " H, H, Hy

o' 2.28 2.04 2,49 3.74
H', . - ~2.15 2.89 4,68
N, | 2.85 1.04 2.54 3.36
H, * . 2.15 - 2,00 3.18
H, 2.87 - 2,00 - 1.91
H, 4. 68 3.18 1.91 -
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Table 33, - Hydrogen bond distances found in urea and its methyl

derivatives.

Compound Chain links Cross links
Urea (neutron diffraction) 2.99 3.03
Urea (x-ray diffraction) | 2.99 3.04
N-methylurea : 2.969 2.980

, 2,932
N, N'~-dimethylurea 2,864
N, N-dimethylurea 3.064 2.943

(N-methyl acetamide 2, 825)



100

Table 33. -~ Hydrogen bond distances found in urea and its methyl

derivatives.

Co}mpound Chain links Cross links
Urea (neutron diffraction) 2.99 3.03
Urea (x-ray diffraction) 2.99 3.04
N-methylurea ' 2,969 2,980

‘ 2,932
N, N'-dimethylurea 2,864
N, N-dimethylurea 3.064 2,943

(N-methyl acetamide 2.825)
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Figure 14. - The tetrahedrally interlocked hydrogen bond link along
the chain axis of N,N-dimethylurea; some pertinent
interatomic distances are shown,
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Figure 15.- A drawing of the trans-amide chain structure found in
N-methyl acetamide (28)., (Illustration from Acta Cryst.)



Figure 16. - A model of the trans-amide chain found in N, N-dimethyl-

ured.,
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different combounds will always be complicated by the shapes of the
molecules involved and the concessions which molecular packing must
make to purely steric effects.

(b) Types of hydrogen bonded chains,

In each of the three substituted ureas investigated, the structure
can be characterized, at least in part, by the type of hydrogen bond
chain networks it contains. The essential characteristics of the hydrogen
bonded mdlecular chains and the manner of their propagation depend on
whether the links have the cis- or trans-amide configuration. Because
of the importance of these chains, a brief review of some of the various
types of chains formed by the cis- and trans-amide linkages will be
given, The terms ''cis' and 'trans' refer to the position of the proton
relative to the C-O bond in the HN-C=0 links. The effect of combining
the cis~- and trans-amide links togethelt into one molecule is included.
The review will be used as an opportunity to introduce a system of
nomenclature for describing multiple hydr\;ogen bonded chains., The
prefixes di-, tri-, etc., will be used to specify the number of each type
of amide linkages connecting two molecules,

When there is only one trans-amide group in a molecule, it can
form a trans-amide chain similar to the one formed in the low tempera-
ture modification (below 10°C) of N-methyl acetamide, illustrated in
figure 15. In this case, the links are all coplanar, With the adjacent
links alternatively having a 0 or 180° rotational alignment about the

chain axis. In the high temperature modification, a disorder is introduced
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along the chain axis, which appears to be explained in terms of a
stétistical distribution of the molecules into the 0 and 180° orientations.
This type of chain does not require the coplanarity of the amide links
for its propagation as is shown by the trans-amide chain found in N, N-
dimethylurea. The NH®**O hydrogen bond is directed approximately
along one of the free electron pair orbitals of the oxygen atom; thatis,
directed along a direction approximately tetrahedral to the '"banana
bond" orbitals of the carbonyl double bond.

Two trans-amide groups in a molecule can result in the forma-
tion of ditrans-amide chains. Some variety exists for these types of
chains dep’ending on the geometric location of the two amide links in
the parent molecule. One example of this chain is illustrated in figure

17 showing the two fused amide links in N, N'-dimethylurea forming a

coplanar ditrans-amide chain. The same variant is easily spotted in

urea (Vaughan and Donohue 22) in figure 18 and less easily in bis-

biuret cadmium chloride (Cavalca, Nardelli and Fava 25) shown in
figure 19, Coplanarity of all of the trans-amide units making up the
chain appears to be the rule in the ditrans-amide chains, due, no doubt,
to the tetrahedral hydrogen bonding to the two free pairs of electrons

on the carbonyl oxygen., Like most rules, this one has its exception;
the ditrans-amide chain in N-methylurea, illustrated with molecular
.models in figure 20, is a non-planar chain system (%:he acute angle

‘between any two adjacent molecules is 56°).
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Figure 18.- A view of the crystal structure of urea (22), showing
the ditrans-amide chains running parallel to the c-
axis with two cis-amide chains, running through each
molecule, cross linking the ditrans-amide chains.
(Illustration from Acta Cryst.)
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Figure 19.- An illustration of the ditrans-, biscisD-amide chains in

bis-biuret cadmium chloride (25).
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£ {b)

Fizore 20, - Two views of the di ‘51t e hain in N-methylurea show-
ing the non-planar propszation of the chain; (a) a broad side
view, (b) an edge view,
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Another variant, in which the amide groups are separated in
the molecule, is the type of ditrans-amide chain formed in anhydrous
diacetyl hydrazine (Shintani 27); it is illustrated in figure 21. The
pleated-sheet configuration of polypeptide chains (Pauling and Corey 37)
is an example of a polytrans-amide chain.

The most common hydrogen-bond configuration for the cis-amide
groups is the formation of a centric dimer. Figure 22 shows the cisD-
amide dimer formed in 1-methyl thymine (Hoogsteen 38). (The term
cisD-amide is coined to denote this type of dimer.) Figure 23 shows
a photograph of the cisD-amide dimer found in N, N-dimethylurea.
Because of the cyclic nature of the hydrogen bonding within the dimer,
no chain structures are possible with only one cis-amide link per
molecule. Chain structures, which contain the cisD-amide linkage
as a unit, exist when there are two or more cis-amide linkages in each
molecule. {The number of times the cisD-amide unit is replicated on
one molecule will be denoted by the prefixes bis-, tris, and tetrakis,
etc.)

Thymine hydrate (Gerdil 39), illustrated in figure 24, is an
example of a compound having a biscisD-amide chain structure. (Note
that in this example it is the two fused cis-amide groups of the urea
nucleus which have been used to propagate the chain.) Another example
of a compound having biscisD-amide chains in it is diketopiperazine

(Corey 35; Degeilh and Marsh 40); it is illustrated in figure 25,
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Figure 21. - An’illustration showing the ditrans-amide chain in
anhydrous diacetyl hydrazine (27). (Illustration from
Acta Cryst.)
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cisD-amide dimer in 1-methyl

Figure 22.- An illustration of the

(38).

thymine



Figure 23.- Models showing the cisD-amide dimers found in N, N-
dimethylurea.
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Figure 24.- An illustration of the biscisD -amide chain in thymine
hydrate (39).
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Figure 25.- An illustration of the biscisD-amide chain in diketo-
piperazine (35). (Illustration from J. Am, Chem. Soc.
with permission of the author.)
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This same type of chain is easily spotted in cyanuric acid (Wiebenga
and Moerman 41), shown in figure 26, Newman and Badger (42) called
the biscisD-amide hydrogen bonds in this compound ''type B."

In addition to the biscisD-amide hydrogen bond in cyanuric acid,
there are the NH* **O hydrogen bonds denoted as "'type A' by Newman
and Badger,i in which the cis-amide groups do not form centric dimers.,
We shall call these hydrogen bond chains the biscis-amide type, since
the chaiﬁ requires two cis-amide links per molecule for propagation.
Figure 27 shows the structure of uracil (Parry 43). Both the cisD-
amide dimers and the biscis-amide chains are easily seen in the illus-
tration.

Digressing a bit, we notice that if the O=C-C=C- portion in
uracil is replaced by O=C-N-C- , then the resultant hydrogen bond

H Hp
system would be a triscisD-amide planar network. The short CH***O
distance (3. 28 A } in the pseudo biscisD—amide chain of uracil suggests
strongly that the carbon atom is hydrogen bonded through the proton to
the oxygen atom. Allowing 1 A for the C-H bond distance, the distance
between the hydrogen atom and the oxygen atom is 2.28 A, 0.3 A
shorter than the 2.6 A distance predicted from the van der Waals
radii given by Pauling (32c). The other CH++*O distance (3.19 A)
is even shorter, being 0.4 A less than the predicted distance. A single-

crystal polarized IR study of the CH frequencies in this compound might

establish the validity of the CH+***O hydrogen bond conjecture.
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THE CRYSTAL STRUCTURE OF URACIL

Figure 27.- A drawing showing the hydrogen bonding network in
uracil (43), The cisD-amide dimers and the biscis-
amide chains are shown. (Illustration from Acta Cryst.)
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Table 34. - Summary of hydrogen bond type chains.

Type of chain

Mono-amide type.
(1) Trans-amide
(2) CisD-amide (dimer)

(3) Cis-amide

Poly-amide type.
(1) Ditrans-amide
(2) BiscisD-amide
(3) Biscis-amide

(4) Polytrans-amide

Mixed-amide types.

(1) Ditrans,biscisD-
amide

Example found in:

N-methyl acetamide
1-methyl thymine

N-methyl urea (cross link)

- N,N'-dimethylurea
diketopiperazine
uracil

pleated-sheet(polypeptide)

bis-biuret cadmium chloride

Figure

15
22

28

17

25

27

19



Figure 28. - A model of the structure of N-methylurea.
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A single cis-amide link per molecule can form a cis-amide
chain. The chain propagation is from one cis-amide link through an
NH®*°O hydrogen bond to another cis-amide link Which is oriented per-
pendicular to the first; hence, the chain propagates along a zig-zag
course. Cis—amiae chains cross link the ditrans-amide chains in N~
methylurea in planes perpendicular to the ditrans-amide chain axes,
see figure 28, Urea, figure 18, has two cis-amide chains propagating
through‘each molecule, In both of these examples the C=0 bonds in two
adjacent amide links of the cis-amide chains have opposite orientations;
that is, the adjacent ditrans-amide chains are inverted. The cis

Cl—N" «+Q' angle in urea is 129.3° and in N-methylurea itis 125.3°.

iii) Description of the molecular packing,

A description of the molecular packing in urea and its methyl
substituted derivatives will now be given. Urea has been included for
purposes of comparison. In this connection, one should note the basic
similarity in packing between N-methylurea and urea, ‘while N,N'-
dimethylurea retains only the ditrans-amide chain character of urea
and N, N-dimethylurea is completely different.

(2) Urea (Vaughan and Donohue 22).

The packing found in urea is illustrated in figure 18, Planar
dit‘rans—amide chains are packed perpendicular to four adjacent inverted
chains with each molecule cross-linked to the four inverted chains via

two cis-amide chain systems.
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(b)‘ N-methylurea.

A view of the molecular packing in crystals of N-methyl urea
is shown in figure 28. The kinked ditrans-amide chains are easily seen
in two edge views and in é broad-side view. A cis-amide chain is seen
propagating from the molecule in the lower for eground to a molecule in
the center ditrans-amide chain which in turn is seen cross-linked to a
molecule in the chain on the left. On the right the methyl group is shown
packed into the fold éf the ditrans-amide chain. Except for the presence
of the methyl group which has introduced the kinks into the ditrans-amide
chains, th‘is structure is basically similar to urea. The angle between
thé b-axis and the line of intersection of the molecular least-squares
plane with the ab-plane is 66, 2°; this indicates that tl;e ditrans-amide
chains are twisted bybon‘ly-23. 8° from the orientation presumed by
Gordon on the basis of his magnetic anisotrqpy measurements.

(c) N,N'-dimethylurea.

The packing of the di"crans-amirde chains in N, N'-dimethylurea
is basically different from urea because all of the chains have the same
orn;_entation; that is, the C=0 bonds all point in the same direction along
the c-axis. Figure 29 shows a packing view of N, N'-dimethylurea along
the c-axis. The angle between two molecules rellated by a diamond glide
plane is 73.9°. As can be seen from the figure the packing is governed
by the manner in which the methyl groups are best accommodated into

interstitial positions along the chain axis,
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Figure 29, - A model of the structure of N,N'-dimethylurea viewed along -
[001] showing the contents of one unit cell.
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(d) N,N—dimethylurea.

The trans~amide chains in N, N-dimethylurea pack into parallel
arrays in which each chain is cross-linked to two other chains by for-
mation of cisD-amide dimers. These cross links thus fuse two arrays
of chains into sheets having a polar center and a non-polar outer covering
of methyl groups. These sheets are in turn stacked back-to-back;

figure 30 shows this packing in projection on the [010]  zomne.

iv) A rationalization of the melting point anomalyv.‘

A clew to the) mechanism of melting of these hydrogen-bonded
chain structures is given by our knowledge of the structural changes
undergone by N-methyl acetamide during its solid phase transformation
(Katz and Post 28, hereafter KP). In the low-temperature form,
adjacent molecules along the chain axes are related by a two fold screw-
axis, while in the high-temperature form the relation is statistically
either a screw axis or a unit-cell tranélation. KP infer that the dis-
order is present in each chain although they have not shown that the
disorder is not a random packing of ordered chains. This poiﬁf could
easily be resolved if it could be shown that the phase transformation is
reversible in a single crystal, in which case the disorder with the
individual molecules rancélomly oriented would be more probable.

If we assume that the latter is true, it would appear that as the
temperature is increased there is an increased molecular libration about

the chain axes which increases the effective chain volume and weakens’
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Figure 30. - A drawing of the structure of N, N-dimethylurea projected
on [010] ; some bond distances and angles are included.
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the intra-molecular interactions, which include van der Waals forces
and any hydrogen bonds present. The crystal melts when the chain is
fragmented and each fragment has achieved a mean-free volume within
which itis as free as a man in a moving crowd. Thus more efficiently
packed crystals require higher temperatures to increase the mean-free
volume to a point at which each fragment acts independently of its
neighbors., The presence of hydrogen bonds in the crystal affects the
melting ?oint by increasing the effective chain length of the fragments;
éLs in the case of the normal hydrecarbons, the longer the chain length
the higher will be the melting point, The average chain length of the
individual fragments is undoubtedly a dynémic property in the liquid
state.

The trans-amide chain formation of N-methyl acetamide is the
dominant feature in its two crystal modifications. The libration of one
molecule about its chain axis must be paralleled by a similar libration
in the adjacent chains; thus the molecules in the high-temperature phase
move about the chain axis like the cogs in a timing gear of a clock moving
by the ratchet gear. The crystal melts when enough additional energy
has been added to cleave the chains into short fragments and to disengage
the ratchet wheel system.

Trimethylurea (melting at 75.5°C) probably has a trans-amide
chain structure. Its.meliing pointis higher than tha;c of N-methyl acet-

amide {28°C) because of the increased molecular weight. On the other
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hand, the still higher melting point of N, N'-dimethylurea (106°C) is

due to the formation of the ditrans-amide chains which means that the
fragments have a longer average chain length and more energy is needed
to produce the fragments, N-methylurea also contains the ditrans-amide
" chains. It has a lower molecular weight than N, N'-dimethylurea and
appears to have available within the crystal most of the mean-free volume
needed for molecular libration aboﬁt the chain axis; these facts would
imply a low melting point relative to N, N'-dimethylurea. However,

th¢ formation of the additional cis-amide chain cross links would tend

to raise the melting point. The resultis a compromise; the crystal
melts at 102°C, only slightly lower than N,N'-dimethylurea. Urea, like
N-methylurea, has fnost of the mean-free volume needed for molecular
libration already built in. However, it has two cis-amide chains form-
ing cross links between the ditrans-amide chains. These predominate
over the loss of the second methyl group, resulting in a melting point

of 132°C.

N, N-dimethylurea contains the trans~amide chain structure with
each molecule cross linked to form cisD-amide dimers. The cross link-
ing of the trans-amide chains has produced an interwoven two-dimensional
network of hydrogen bonds; each molecule is attached to the network by
four - hydrogen bonds. The molecules are efficiently packed into the
crystal, leaving little free space available for largve molecular librations.

The librations of the molecule about its librational axes are damped by
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the cisD-amide dimer formation, by the interlocked hydrogen atom
packing at the site of the trans-amide hydrogen bond link and by the
denseness of the methyl-to-methyl packing. All of these features prob-
ably contribute to the fact that the melting point of N, N-dimethylurea
(melting at 182°C) is higher than any of the other compounds so far

considered,
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PART 1I

THE DETERMINATION AND USE

OF CRYSTALLOGRAPHIC PARAMETERS
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Introduction

The purpose of a crystallographic investigation is to obtain a
complete description of the atomic arrangement of the crystal under
examination. This inquiry ultimately results in a set of experimentally
determined parameters (positional and thermal) which abstractly describe
the scattering power, location, and vibrational motion of each atom within
any U.nit,cvell of a periodic assembly of cells. However complete this
description may be, within the sophistication of the method, the set of
parameters still needs to be translated into more perceptible quantities,
such as interatomic distances, bond angles, planarity of grdups of atoms,
magnitudes and direction qf the principal axes of the vibrational ellip-
soids of each atom and the rigid body representation of the thermal dis-
placements and vibrations.

The first three sections in this part are devoted to a description
of one of the methods used for the determination of the parameter set,
namely, the method of least-squares. The remaining five sections
recount several methods for the conversion of the parameter set into
other more perceptible quantities. Original work by the author is given
in section ii; the other sections have been added to complement this work.
These additions have been purposely selected for presentation as a col-
lected work. Presently many of these results are to be found only in

diverse locations throughout the original literature.
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i) Genefal discussion of the least-squares method.
We start with a set of observables, |Fo| 2, and a function
[F(2) ] 2, presumed to adequately predict the observed quantities to
within the accuracy of the experiment provided, of course, that the
parameters Ai are known. We define the residue between the observed
and calculated values as Vq = |F(>\.)l 2. lFol 2. The method of least-
squares is employed‘to obtain the best set of Ai by requiring that the
;quanvtity:vc“ z w(q)vsL be 2 minimum, where w(q) is a weighting func-
tion. (Hereafter w will be written for w(q).) The transcendental
nature of the function lF()L)l 2, however, prohibits the immediate appli-
cation of the method of least-squares.
A circuitous route (Whittaker and Robinson 1) is used to obtain
"the parameter set {)Li} from an approximate set {Qi} . We assume
that }\i = C,i + Aéi, and the residual equatioﬁ becomes

‘ 2 2
vy s IF + a0 ST 1

. We now expand |F(¢ + Ag)] 2 ina Taylor
series about the parameters C’i’ neglecting all derivatives greater than

the first. This gives a residual equation linearized in terms of the

A?;i thus:
' 2 ‘ 2
alr] a|F|
vq Ac’l tece +AL 55— -2G,
o, n\3T_
2
where AG = IFol —'F(?;)lz
o|F| % aa2\ . [eBZ cte.

and 5L - \er— ot
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This equation is linear in A:‘;i and can be used to set up the

least-squares normal equations:

2
2 2 2 2
0
= w af' ALt tDw 88'5' g'g*" AL -Zw %'—El—
q | 4 1 n b “1
= 0
.2 2 2\ 1] 2
oIF 9 o|F
5w IF| |F| Al + e + Zw | I Al -Zw a'F| AG =0
A CACH 1 q \%, noq \9%,

The parameters generally encountered in crystallographic prob-
lems are of three types: the positional parameters, which locate, in
terms of fractional coordinates, the positions of the atoms in the unit
cell; the isotropic or anisotropic temperature parameters, which modify
the scattering function for an atom at rest to take into account tempera-
ture-induced vibrations; and the popﬁlation parameters, which take into
account point position multiplicities less than the space group general
position multiplicity or denote partial occupancy of an atomic site. The
population parameters can also be used to obtain information concerning
the over-all scale factor needed to place the observed quantities IFOIZ
on an absolute scale.

The large number of parameters in%folved frequently requires
that some simplifying assumptions be made in order to reduce the size

of the normal equation matrix. The usual procedure is to assume that
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large sections of the matrix contain zeros as elements, the explicit

calculation of these terms being omitted. For machine calculations
2 12
o|F | o|F |

the off-diagonal terms 5 éi 5 gj

commonly omitted are
those in which:

1) i and j refer to parameters of different atoms.

2) i refers to a positional parameter of an atom and j refers
to a temperature or population parameter of the same atom
or vice versa.

3) i and j fef.er to positional parameters of the same atom

and i# j. (This is a poor approximation for non-orthogonal

space groups.)

This set of assumptions reduces the complexity of the normal
equations matrix so that positidnal shifts are computed from the diagonal
terms only. (If assumption 3 is not made, then the shifts are computed
from a 3x3 matrix for each atom.) The thermal and population parameter
shifts are obtained by solving a 7x7 matrix for each atom. The overall
scale factor correction may be assumed to be the average of the individual
population parameter shifts, and can then be used to reduce the 7x7
matrices to 6x6 matrices which are solved for the 6 thermal parameter
shifts for each atom.

If we define M to be the matrix of elements

/ (2
- zwalmz o|F|
ij q \9¢&, 8§j

of the least-squares normal equations
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and we further define nij as the elements of M_l, then the standard

— . ( 2 1/2
deviation of(¢ i) of a parameter L. is equal to [nii,;Zw(AG) [{r-sY]" "
where r-s is the excess of data over the number of variables. If the
assumptions (1-3) are made, then the complete matrix M will not be
available. The standard deviation of a positional parameter is

1
S(Xi) = (Umii) qZ W(AG)Z [{x-s)] [2 and for a thermal parameter

Co 2, 1/2
itis givenas s(B..) = [t.. Zw{AG) Nr-s)] / , where t.. are the
' ij ij q ij.
elements in the inverse matrix of the corresponding 7x7 matrix. As

has been suggested by Terﬁpleton (2), S(X) is written in place of o{x)

to indicate that the standard deviations have been obtained by an approxi-

mation of n...
1]

ii) Structure factor and least-squares calculation for orthorhombic
systems.

In the following paper, accepted for publication in Acta Crystal-

iogfaph‘i‘c’a, expressions employable for the calculation of structure fac-
tors and their derivatives for any orthorhombic space group are developed.
The resultant set of expressions ‘was: used as the basis of the program

for the Burroughs 220 computer described in appendix I,
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Structure Factor and Least-Squares Calculation for

Orthorhombic Systems with Anisotrpic Vibrations *

By Albert Hybl and Richard E. Marsh
Gates and Crellin Liaboratories of Chemistry
California Institute of Technology

Pasadena, California, U.S.A.

Abstract
A set of expressions is presented for calculating structure
factors and least-squares coefficients for orthorhombic structures
containing atoms with anisotropic temperature factors. These ex-
pressions are analogous to those previously derived by Rollett and

Davies (1955) for monoclinic space groups.

Introduction

The increased av;ilability of high-speed digital computers
for crystallographic calculations has made practical more accurate
determinations of atomic parameters with the inclusion of anisotropic
thermal vibrations of the atoms in the analysis., This increase in
computer utilization has been paralleled by an increase in the use
of the least-squares method (Hughes, 1941) for the refinement of
the various parameters. Three features make the least-squares

method particularly suitable for machine computation. First,

%Contribution No. 2629 from the Gates and Crellin Labor-
atories of Chemistry. :
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any desired weighting function may be prescribed. Second, totals for
the normal equations can be accumulated in concurrence with the cal-
culation of the structure factors; Third, the procedﬁre is iterative.

The programming of digital computers for structure factors and
least-squares calculations has followed two courses, The first course
makes use of no lattice symmetry; by using redundant parameters and
calculating symmetry equivalent reflections one can obtain results con-
sistent with ansr spaée group (Sparks, Prosen, Kruse, and Trueblood,
1956). Proponents of this method consider the ease of coding to justify
the computing inefficiency eﬁcountered in symmetric structures. Follow-
ing the other course are those who program the computer for specific
crystal classes (see, for example,’ Lavine and Rollett, 1956), feeling
that the sa{fing of computing time warrants the additional efforts invested
in programming.

With this latter course in mind, Rollett and Davies (1955), here-
after RD, have derived a set of expressions that can be used to calculate
s’trructure factors and 1east—s<iuar es coefficients for any monoclinic space
group. Itis the purpose of the pi‘esent paper to present an analogous,
thou‘gh somewhat more complicated, set of expressioﬁs that are applicable
fo all orthorhombic symmetries. In developing these expressions we
i’n;ke use of vthe formulations of Trueblood (1956) and the International .

Tables {1952). |
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General (hk#) structure factor

We shall start with the expression for the scattering factor for

a vibrating atom:

2 2 2
] :fo exp (B11 32 53 t B, bk + B ke +B23k£),

where f is the scattering factor for the atom at rest. As explained
o
by RD, the orthorhombic symmetry gives rise, in general, to three

additional orientations of the vibrational ellipsoid; and we write the

corresponding scattering factors:

2 2 2
= -( + - -
f,=f exp (Bllh B k+B_ 07+ B hk-B hf B23kﬂ)
f =f exp -(B n24 B K%+ B 4% B, bk +B. hi - B ki)
37 o 11 22 33 12 13 23
f =f exp -(B h%+B_ k*+B_ 0% B hk-B__hi +B k{)
g T TP TV 22 33 12 13 23

RD also showed that the structure factor expression for any
orthorhombic space group contains the term (fl + f2 + f3 + f4) and

three terms in which two of fZ’ f3 and f4 are negative. Accordingly

we define, in Table 1, the four functions El’ EZ, E3 and E4 and their

derivatives with respect to the temperature coefficients. (For the iso-

tropic case, where fl =f_ =1 =f.4 :fo exp (—B sinz 9/»\2), El = 4f

2 3 1

and E_. =E_=E

5 3 = 0.) We see that each derivative is, except for a

4

multiplicative constant, equal to one of the E's.
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Table 1

Definitions O OF 9E OF OF OE OE

: 1T1lon ey

8B | 9B,, | 9B,,| 8B , | 9B, | 8B, | @B

£ e, vE 46, =E | B | B E, | E, E, E, | E
£o4E, -6, -f, =B, E, E, E, E, E, E, 0
£ -f,tf, -, =E, E, E, E, E, E, E, 0
£ -0, -6, +i, = E, E, E, E, E, E, E, 0
Multiplicative constants .

obtained from the differ- | -h° k2 | 4? “hk | -he k4 Siffze
entiation 3 X
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We néxt introduce the trigonometric portions of the écattering
factors. There are eight possible combinations of triple products of
sines and cosines, which we call Tl - T8; these, together with their
products, P, with the various E's, are defined in Table 2. The result~
ing P's are now combined in eight different ways (see Table 3) to form

the pertinent coefficients S_ -5

1728 ‘With the exception of certain classes

of reflections in space groups Fdd2 and Fddd, the structure factor and
all the parameter de.rivatives for any reflection in the orthorhorﬁbic
system contain as the principal factor one or another of these S's.

The cascade of definitions culminates in Table 4, which, in con-
junction with Tables 5 and 6, provides the prescription for choosing the
S fuﬁctions appropriate to any class of reflections in any orthorhombic
space group.

We now introduce the relations IFlZ = pi (A.Z + BZ),
a[FIZ/ag = Zpi (AoAa/at + BOB/ 8L) rand A = ZpiAi’ B= = piBi°
Here P reflects the space-group mul‘ciplici’cy“,1 For acentr;c primitive
space groups p_ has the value unity; a center of symmetry introduces
a factor of two; the non-primitive 1atticés A, CandI contribute a factor
of two; while a face-centered lattice F", a factor of four. We also intro-
duce p, asa population parameter, which, if other than unity, indicates

either partial occupancy of an atomic site or an atom in a special position

having multiplicity less than that of the space group. By including P; in
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Table 2
Product with
Definition EZ E3 E4
cos2mhx* cos2rky*cosZnlz .= T1 P9 P” P‘25
cos27hxe cquﬁky" sinZmf z = T2 PlO | P18 P26
cos2mhxe sin27ky* cosZnlz = T3 ]P11 P19 P‘27 |
cos2rmhxe sin27ky-sin2nlz = T4 PlZ PZO PZS
sin27hxe cos2nkyscosinlz = Tv5 P13 P‘21 P29
sin27hx+* cos27kye*sin2nfz = T6 P14 P22 P3O
sin27hx° sin27ky°cos2nlz = T7 P15 P23 ; 1:’31
sin27hxe sin27ky. sin2mlz = T, P, P, P,
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Table 3

wn
I

Pz'P16+P21+PZ7
S =P +P., -P_ +P

s =P+ +P - P

S_ =P +P . +P -P

Se=F¢t P - Pt Pg
S, =P - Py + P, +P,
S =P -P., -P. -P
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Table 4
g s Group¥*
Multiplicative
Constants Functions 112 13 | 4 Type L. - Typell
1 A1 —l-S1 —S4c —57 —86 —————— 9B/ 0z
; s | +s . - -0B/0oB -
2wpih 9A /[ 0x 5 8 S, S, / 23 aB/aB1
. _S _ _ ~ _
2mpik 0A.[ 9y 3 SZ 85 +88 8B/8B13 9B/ 0B
. . _S _ _ _ _
2mpid 9A./ 8z 5 | 83 -l-S8 55 GB/BBL2 Bi
-hkpi 9A./ 0B 12 -5, -S¢ fSl -S, 0B/8z | —-----
_ . ' ""S _ - SR
he pi 8A/8B13 6 . S7 S4 +S1 B/ oy 0B/ 6x
- i 9A./ 8B -S +S - -
k{ pi / >3 4 ! 56 S7 9B/ ox 8B /oy
1 - +S -S -S - - -
‘ 8 5 2 S3 Bi aB/aBIZ
2 .
-h pi dA /9B same as for A, & B.
11 i 1
2 . "
-k pi 8A./8B22
-4 Zpi 0A/ 0B i
' 33
-pi sinZQ/)LZ 0A./ 0B n
1 A /[ dpi : "

*Vi or Wi replace Si whenever specified by Table 5.

Type III: The imaginary part of the expressions are all zero.
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Table 5
Space Group Class Group
No. Symbol Type Pe. Planes Key
16 p222 I 1 All planes 1
17 ]_:"2.221 I 1 { even 1
£ odd 2
18 P2,2,2 I 1 (h+k) even 1
(h+k) odd 3
19 P22z, 1 1 (h+k) even, {(k+f) even 1
(h+k) even, (k+f) odd 2
(h+k) odd, (k+f) odd 3
(h+k) odd, (k+£) even 4
20 C222 I 2 " (h+k) even, £ even 1
(h+k) even, £ odd 2
21 c222 I 2 (htk) even 1
22 F222 . I 4 (h+k) even and (k+£) even 1
23 1222 I 2 (htk+l) even 1
24 12.12121 I 2 h even and k even and £ even 1
h even and k odd and £ odd 4
h odd and k even and £ odd 3
h odd and k odd and £ even 2
25 Pmm?2 11 1 All planes 1
26 Pmc.Zl I 1 L even 1
£ odd 2
27 Pccl I 1 £ even 1
£ odd 3
28 Pmal II 1 h even 1
h odd 3
29 PcaZl I 1 h even and £ even 1
h even and £ odd 4
h odd and £ even 3
h odd and £ odd 2
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Table 5 (continued)

Space Group Class Planes Group

No. Symbol Type P v ’ v Key

30 Pnc2 I 1 (k+2) even ’ 1
(k+£) odd

31 Pmn2, m o1 (h+t) even 1
(ht+2) odd

32 Pbaz Im 1 (h+k) even 1
(htk) odd 3

33 PnaZ1 oI 1 (h+k) even and £ even 1
(h+k) even and £ odd 4
(h+k) odd and {4 even 3
(h+k) odd and £ odd 2

34  Pnn2 I 1 (htk+4) even 1

‘ (htk+g) odd 3

35 Cmm2 o2 (htk) even 1

36 Cchl I 2 (h+k) even and £ even 1
(htk) even and £ odd

37 Ccc2 Ir 2 (htk) even and { even 1
(h+k) even and £ odd

38 Amm?2 I 2 (k+L) even 1

39  Abm?2 I 2 (k+£) even, k even 1
(k+£) even, k odd

40  Ama?2 I 2 (k+¢) even, and h even 1

: (k+£) even, and h odd

41 Aba2 I 2 (k+2) even, (h+k) even 1

: , (k+2) even, (htk) odd

42  Fmm2 II 4 (htk) even, (k+f) even ' 1

43 Fdd2 I 4 htk+f = 4n, (htf) even, (k+f) even

an
3

htk+4 = 4n+1, (htf) even, (k+L) even
htk+f = 4n+2, (h+f) even, (k+f) even
htk+f = 4n+3, (h+f) even, (kL) even

il

RTS8
"

W W = =
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Table 5 {continued)

Space Group Class Group
No. Symbol Type P, Planes Key
44 Imm?2 I 2 (htk+L) even 1
45 Iba2 IIr 2 (h+k+£) even and £ even 1
(h+k+f) even and £ odd 3
46  Iam2 II 2 (htk+l) even and h even 1
(h+k+2) even and h odd 3
47  Pmmm I 2 All planes 1
48  Pnnn Imr 2 (h+k) even and (k+£) even 1
(h+k) even and (k+£) odd 3
(h+k) odd and (k+L) even 2
(h+k) odd and (k+£) odd 4
49 Pccm III 2 £ even 1
£ odd 3
50  Pbam Il 2  hevenandk even 1
h even and k odd 4
h odd and k even 2
h odd and k odd 3
51 Pmma m 2 h even 1
h odd 4
52 Pnna Im 2 h even and (k+f) even 1
h even and (k+f) odd 3
h odd and (k+£) even 2
h odd and (k+£) odd 4
53 Pmna Im 2 (h+2) even 1
(h+£) odd 2
54 Pcca It 2 h even and £ even 1
‘ h even and £ odd 3
h odd and £ even 4
h odd and £ odd 2
55 Pbam Imr 2 (htk) even 1
(h+k) odd 3
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Table 5 (continued)

Planes

Group

56

57

58

59

60

61

62

63

64

65

Pccn

Pbem

Pnnm

Pmma-

Pbcn

Pbca

Pnma

Cmcm
Cmca

Cmmm

111 2

II1 2

I11 2

111 2

III 2

I 2

III 2

111 4
I11 4

III 4

(ht+k) .even and (h+L) even
(h+k) even and (h+{) odd
(h+k) odd and (h+f) even
(h+k) odd and (b+£) odd

k even and £ even
k even and £ odd
k odd and £ even
k odd and £ odd

(ht+k+L) even
(htk+e) odd

h even and k even
h even and k odd
h odd.and k even
h odd and k odd

{h+k) even and £ even
(h+k) even and £ odd
(htk) odd and £ even
(btk) odd and £ odd

(h+k) even and (k+£) even
(h+k) even and (k+{) odd
(h+k) odd and (k+£) even
(h+k) odd and (k+£) odd

(h+2) even and k even
(h+t) even and k odd
(h+£) odd and k even
(h+£) odd and k odd

(htk) even and £ even
(h+k) even and £ odd

(htk) even and (k+2) even -

{h+k) even and (k+f) odd

(h+k) even

W e

= W N

W ko W N W o W

[NV S

(NS ]
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Table 5 (continued)

No,

Symbol

Type p_

Planes

Group
Key

66

67

68

69

70

71

72

73

74

Ccem

Cmma

Ccca

Fmmm

Fddd

Immm

Ibam

Ibca

Imma

III

II1

III

I

II1

III

IIT

111

111

4  (htk) even and £ even

(h+k) even and £ odd

(h+k) even and h even

(h+k) even and h odd

4  (h+k) even and k even and £ even

(h+k) even and k even and £ odd
(htk) even and k odd and £ even
(h+k) even and k odd and £ odd

8 . (h+k) even and (k+f) even

htk = 4n, £+h = 4n, k+f = 4n

htk = 4n, £+h = 4n$2, ktf = 4n+2
htk = 4n+2, £+h =4n+2, k+ £ =4n
htk = 4nt+2, £+4+h = 4n, k+f = 4n+2
htk = 4n, £+h = 4n$+2, k+l = 4n

ht+k = 4n, £+h = 4n, ktf = 4n+2

htk = 4n+2, £+h = 4n, k+f = 4n

htk = 4n+2, £+h = 4n+2, kt+l = 4nt2

4  (h+k+L) even

4 (h+k+L) even,

(htk+L) even,

4  (htk+L) even,

(h+k+2) even,
(h+k+L) even,
(ht+k+L) even,

4  (btktL) even,

(h+k+L) even,

f even

L odd

h even, k even
"h even, k odd
h odd, k even
h odd, k odd

k even
k odd

— N W

[T G SR UV I

ale ate
seeR

Yol
Jkok
o ale

o
KR

43k

VoW o w

v -

*Use Vl
**Use Wl

8
8

in place of S

in place of S1

1-8°
-8°
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Table 6

v, :0.5(31-52-57-38) W, :0,5(sl-s4+sé-s7)
v2:0,5(sl+sz+s7-ss) 'W2=0.5(SZ+S3-SS—SS)
V3 =0.5 (s3-s4+35+86) ”W3 =0.5 (SZ+S3+SS+SS)
V4:O.5(S +s455+s) W, =0. 5(S+s4+s6 57)
v, =o.5'(s3+s +S sé) W, =0. 5(s 5,45 - 8)
v, =0 5(s+s4 +56) W6=05(5+s 6+s7)
Vo, =045 (-sl-sz+s7-58) W, =0.5 (-s1 -S +56+s7)
Vg :0'5(51'Sz+s7+38) W8:0.5(-sz-s3-55-58)
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the 1east-sqﬁares treatment, one can obtain information concerning
either the over-all scale factor or the degree of occupancy of the site.
We suggest that when using these tables one start by finding the
appropriate space group listing in Table 5. From there one obtains the
value of P the type designation and the group key as a function of the
index parity tests. The left-hand column of Table 4 contains the con-
stant that multiplies both parts (A and B) of the relation whose A term |
is listed under "Fun;:tibns. " The value of Ai and the derivatives of
A with respect to the various positional and temperature-factor param-
eters (8A/8¢) can then be selected according to which of the four
groups the particular reflection falls into. The terms involving B,
however, require that we first separate the space groupsk into the three
crystal classes Z.ZZ.—D2 (denoted Type I in Tables 4 and 5), inan"CzV
(Type II), and mmm-D.,. (Type III). The last two columns of Table 4
provide the key for choosing the correct functions of B for space groups
of Type I and II; since those of Type III are centrosymmetric, no B

term is necessary (provided the origin of coordinates is chosen at the

center of symmetry, as is customary).
Application

As an example illustrating the use of Tables 4 and 5, let us

' 15
consider the reflections with k and £ oddin space group Ame-CZV .

From Table 5 we find that this space group is Type II and the reflections
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are in group 3; accordingly, Ai :'(-S:Z)if,, Bi = .~(+58)i, and
olel *rom ), = -220pep {ACs ) +BICs) 1)

Certain classes of reflections in space groups Fdd2 and Fddd
‘require separate treatment. For them it is convenient to use-additional
functions V1-8 or W1-8’ as defined in Table 6, which are substituted
for the corresponding S functions and used as prescribed in Table 4.

A suggested procedure for calculating structure factors and.
derivatives is'illustrated in Figure 1. For each atom i, the trigono-

metric triple products' (T are first calculated. The intermediate

1-8).11
products (Pl—P32)i are then formed, and these are combined to give

the coefficients (Sl—S . (For an isotropic atom, only P —P8 need be

8)i 1

calculated since P.-P_ =S _-S

1"Pg =5 8.) Space group and index parity tests

are then made, and if necessary the additional functions (Vl—VS)i or
(Wl_WS)i are calculated. The correct structure factor and derivative
terms are then selected in accordance with Table 4.

We have used these orthorhombic expressions and also the
~ monoclinic expressions of RD as the bases for two separate structure
factor and least-squares programs for the Burroughs 220 computer‘.
This computer has an access time of approximately 100 microseconds;
a complete structure faétor least-squares calculation, including the
collecting of 7 x 7 matrices involving scale and temperature-factor

derivatives for each atom, takes approximately 0.25 seconds per atom

reflection. Isotropic atoms, for which many of the calculations can be



151

by-passed, require less than half this time,

One of the authors (A.H.) wishes to acknowledge the tenure

of a Shell Fellowship.
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1-8

iso- K—ganiso—

tropic

tropic

'

AdA/ AL

BOB/oL BoB/oL

4f
1 fl_4
P
1-8 El 4
(=s
1-8) P32
518
Fdd2 Fddd
Vs Wi
AZ, B?
" 2
IF

— a|F|2/a§i

'

(b)

Key: Box- Compute and store the
contents of the box.
Triangle - Select the ap-
propriate branch.

Figure 1. Flow diagrams.

(a) A structure factor calculation.
(b) A typical derivative calcu-
lation.
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iii) Comiauter approximations frequently employed.

As in many other computer applications, the crystallographic
least-squares programs require some basic function subroutines. The
approximating expressions employed depend on one or more of the fol-
lowing considerations: The accuracy desired, the storage space avail-
able and the machine time needed to execute the calculations. In
general, some compromise between use of space-filling look-up tables
and of tifne—consuming polynbmial approximations is employed. The
expressions used in the function subroutines for the Burroughs 220
orthorhombic least-squares program (see ai)pendix I) are listed in the
following paragraphs..

The values for sine or cosine 27hy are computed by using a
linear interpolation of a 51-word look-up table. The arguments of the
trigonometric functions are first reduced to the appropriate argument
of the corresponding cosine function in the interval 0 S 0.nmx S o. 5:
the relations employed are:
sin, cos 2rhy = cos 27 0.nmx = A(0.nm) + 0.00x B(0.nm) .

The values of A(0.nm) and B(0.nm) are obtained by requiring

0.nm+0,01
I [A(0.nm) + (¢ -0.nm) B(0.nm) - cos Zﬂé]z de
0.nm

be a minimum. The two normal equations obtained by differentiation

of the above integral with respect to A and B, respectively, are



155

0. nm+0, 01 ,
5 [A(0.nm) + {¢{ - 0.nm) B(0.nm) - cos 27 ] d¢ =0

O.nm

0.nm+0, 01 ‘
S (¢ -0enm) [A{0.nm) + (¢ - 0.nm) B(0.nm) - cos 27 ] df = 0
0.nm ' '
These are solved for A(0.nm) and B(0.nm) in each of the 51 intervals.
The exponential function e ™ is computed using the expression
given by Hastings (4):

e 2 1/(1 + 0.2507213 x + 0.0292732 x° + 0,0038278 )t

The maximum absolute error for e in the inte’rval 0Sx< o is
+ 0.0002.

The scattering factor values are computed using a quadratic
interpolation formula within ten regions of reciprocal space for each
atom type. The quadratic expression is

f(0.nx) 2 a(n) + 0.0x b(n) + (O.,OX)Z c(n) ,
where 0.nx is equal to sin 0 for Mo radiation (A = 0,7107), and a(n),
b(n) and c(n) are the coefficients for the best quadratic approximation
to the form factor in the interval 0.n £ 0,nx < O. (n+l) for the atom kind
in question. These can be determined by a least-squares fit of published
scattering values (Webb 5).

Square roots are extracted by use of Newton's for mula
NA = X 41" 0. 5(A/Xn + Xn) s where x = 1. The iterations are terminated

when the first five significant digits of x and X 4 are identical,
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iv) Orthogonalized coordinates and analytic geometry.

It is convenient and sometimes necessary to drthogonalize the
fractional unit-cell coordinates into a Cartesian system. ‘When this
has been done, the resultant coordinates can be easily used to make a
variety of different geometric calculations, such as interatomic dis- '
tances, bond angles, best planes, and such. Defined below is the
orthogoﬁalization matrix D which transforms the fractional crystal
coordinates x, y and z into a Cartesian set X, Y and Z. The Y and
Z axes in‘this representation are coincident with the b and c* crystal

axes, respectively, while X is in the ab plane perpendicular to bci,

asinyY © | c(cos B-cosacosY )/sinY
D= acosY b c cosa
0 0 V/ab siny
thus /X X x 1 X
Y =D |y and y = D Y , where
Z z z Z
1/(a siny) O -bc(cos B -cos acosy )/V sin y
D—1 = -cosY/b'sinY 1/b -ac{cosY cosP -cosa )/V sin Y
0 0 7 ab sin¥Y [V
and V = abc(l - cosza - coszﬁ - cosZY + 2 cos a cos PcosY )1/2 = IDI .

The interatomic distance between atoms Pl(Xllel) and

, /= 2 2 2 .
PZ(XZYZZZ) is ‘dl —/(Xz—Xl) +(YZ—Y1) +(Zz‘_21) . Further, if
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we define dé as the interatomic distance P1 to P3, and d3 as the
interatomic distance PZ to P3, then the bond angle 6§ between atoms

. s i b
P1 PZ P3 is given by

= cos [(d /dez] , where 0<6<180°,

Several other useful analytic relations can be found in any text on the
Subject; one that has been very useful to the author is ''Solid Analytic

Geometry'' by J. Olmsted (6).

V) Least-squares planes.

It is sometimes desired to fit a least-squares plane to a set of
atoms found to be approximately coplanar. This problem has been
rigorously treated by Schomaker, Waser, Marsh and Bergman (7).

We define the plane as le + mZY + mBZ -d =0, where ml,

m, and m, are the direction cosines of the plane normal and d is the

distance from the plane to the origin. A Cartesian coordinate system

is assumed. The distance dk from the plane to an atom P (Xk ka)

is then given by d = m, X + mZYk + m3Zk d. To find the best plane

2
i d = Z
we require that E Wi k z Wk(lek + m Y + m3Zk d)” bea

minimum subject, as we shall see, to one side condition. The problem
of the plane is essentially equivalent to the problem of finding the prin-
cipal plane of a set of mass points with the least inertia. To find the prin-
cipal planes.of inertia we introduce the side condition that

2 2 2

m, + m, + m =1 by use of the Lagrange multiplier X . Thus we
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2 2 2
z Z - +
F Ewk(lek + mZYk + m,Z - d) A (ml m, + m, )

The normal equations resulting from the differentiation of the

above expression are

1 ,0F
o = Y - - -
(aml) E K k(:m X, tm Y, + 1’3[132k d) Am, 0
¥ ,OF i
— —é-a) = E (lek+m2Yk+m3Zk d) —)\_mz =0
1 oF
- Z - - -
(8m3) E k(lek +m, Y, o+ m3Zk d) A m, 0
and
1 ,0F -
-3 (———ad ) 1? Wk(lek + m Yk + m3Zk d =0
The last equation can be readily solved for d:
1?W(ml k+mYk+m k) ) ) )
d = = m1X+ m2Y+ m3Z , where
z W
k kK
X= "2 wX /[ =w etc.  Thus if we make the transformations

'k kk  k

xk=Xk—}-(, yk=Yk—§—( and zk=Zk—Z, we eliminate d from the

first three normal equations which are reduced to
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(Zwkxk —?L)m+2wkxkykm +wazm =0

kkk 3
E WXy, my o+ ( E'Wk k l)m + Z) W, Yz m, 0
wazm+2wyzm+(2wzz—k)m =0
P R N R T o N e N B NS X 3
We write this in the matrix form
Ap -~ 2 A2 A3 | ™ ™
Az P A A23 || ™2 A myy 20
A A -
13 A23 337 M™3 3

In order to solve this secular equation, we first expand it to

3 2 . _ )
-A + aix +b7t+c—0,wherea-—(A11+A22+A33),

(AL A+ A A _+A_ A )+(A 2va %1a 2)

1122 11 33 22 33 12 13 23

2 2 2

A A A A
CEAA AT ZALAA, L - (A A T T A A LTHAA T

b

The cubic equation can;. of course, be solved directly, but this
method is tedious. Since A is a sum of squares, all solutions of the
cubic must be positive and since A is a symmetric matrix all three
solutions are real, The desired solution is the least of these. Blow (7)

(1)

has shown that an approximate value to the desired solution A is

1 ‘ s
/2 [2a . Itis clear that this represents a
P

xgl) = [-b -(b% - 4ac)
solution provided by a parébola which approximates to the cubic at small
A. The form of )Lgl) gives the smaller of the two éolutions..

This solution may be refined by Newton-Raphson method

(Scarborough 9). The ntl st refined value is obtained from the n th

value by evaluating:
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3
(-2 yan ZHbr +c)
7t(1) -y - n n n
n+l n 2 )
(-3x "+ 2ax_+D)
: n n

(1)

° must be steeper than that of the

Because the slope of the cubic at A
quadratic, refinement by the Newton-Raphson method will always lead

to the smallest solution.

Values of m., m_ and m3 are obtained from substitution of

17 2
v . . . .. 2 2 2
A into matrix A and normalizing so that m, + m, + m, = 1.
vi) Orthogonalization and rotation of temperature parameter axis.

(a) Orthogonalization.
By least-squares analysis it is possible to determine the scatter-
ing factor of an atom in the form:

. 2 2 2
= = .f €X] -+ B .
f fOT S P (Bllh sz + B33£ + Blzhk + BBM + B23k£)

To make use of the constants Bll’ BZZ’ etc., it is convenient to first
transform them to orthogonalized reciprocal axes. Further, itis ap-
propriate to demand that these Cartesian axes be identical to the axes
obtained by orthogonalization of the positional parameters.

We wish the Y and Z axes to be coincident with the b and c¥
crystal axes respectively, while X is in the ab plane perpendicular

to be*., Consequently:
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X a¥ sin P* b*(COS Y% - cosa¥* cos ﬁ*)/sin p* 0 h

Y = [ 0 V#/a%c* sin ¥ 0 k
Z a¥ cos pP* b* cosa¥* : c¥ y

We define the 3x3 orthogonalization matrix as Q. Table 7 gives several
relations between the real and reciprocal cell which are useful for the
explicit e’valuation of the elements of Q. A discussion of the geometry
of oblique cells and their reciprocals is given in Buerger {10). An
example fdr the monoclinic system is given on page 26 of partI of

this thesis.

. -1 ) . .
Since we will need Q later in our discussion, we shall

compute it nows

1/a%sin B%*  -b¥c*(cosY* - cosa¥cos %)/ V* sin p* 0
-1
Q = 0 a¥c¥sin B¥/V¥* 0
tcos P¥/c* sin P*  -a%¥b¥(cos B¥ cosY* - cosa¥)/V¥sinB* 1/c*
Thus h\ 1 X
k] = Q Y
£ 4
The temperature factor T expressed in matrix form becomes:
B B._/2 B, /2
11 12! 1372 b b
T = B 2 k =(hkt) B..{ k-
n'T = (hke) B,/2 B,, 232 | (hke) 25\
B . /2 B_,/2 B 1

13 23 33
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Table 7. - Real and reciprocal cell relations computed from

a, b, ¢, cosa, cosp and cos Y.

sina = (1 - cosza)llz; likewise for sin p and sin ¥

V = abc(l - cosza - cos.Z[S . coézy 4+ 2 cos a cos B cos y)l/z
a* = bc sin a/V

b* = ac sin B/V

c* = ab éinY /v

cos a¥ = (cos P cos Y - cosa)/sin § sin ¥

cos P%* = {(cos a cosy - cosP)/sin a sin y

cos¥* = {(cos a cos B - cosY)/sin a sin B
1/2

. 2 . . .
sin a* = (1 - cos a¥*) ; likewise for sin B*% and sin Y*

V¥ = 1/V
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The orthogonalization transforms the equation as follows:

h 4T A X
o T =(hke) B, .| k] = (XYZ){Q ") B..Q Y| = (XYz)B! (Y
—1] P - ~1] 7 1) 7

T
- -1
where (9- 1) is the transpose of Q . The ?‘1'3 matrix is then the

orthogonalized temperature parameter matrix.

(b) Rotation .of the orthogonalized temperature parameter
ellipsoid axes.
It is sometimes convenient to express the temperature parameters
with respect to orthogonal molecular axes different from the orthogonal
axes described above., If we define the molecular axes as P_, PZ and

1

P3 and let 11, m, and n, be the direction cosines of the P. axis relative

to the X, Y and Z axes respectively, then

P { m n X
1 1 1 1
X X 1 Py
P2 = ,QZ m, n, Y =R |Y hence Y =R P‘Z
Z Z Py
P3 23 m, N, Z
Utilizing these transformations gives:
X 1 (B Py
-In T = (XYZ)B!. | Y] = (PP ) 'R = "
nTEXYZ)BG\Y )= (B PRI R B R (Pa ) = (PR B ( P2
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(c) Rescaling of the ]éij matrix elements.
The elements of the B'j matrices discussed above are in units
—i
. 2 2 . S . . . °2 .
.of sin” 8/A". Itis desirable at times that they be in units of A~ which
is more readily interpreted in terms of mean square displacements.

The rescaling may be written:

1 P
- = | S B" = .
In T v(P1P2P3) Jg P, (P1P2P3) I_{ij P, , where
P Pj
1/ 7Nz o 0
T
s= S5 = 0 1/ 7wN2 0
0 0 1/ 2
vii) Magnitudes and principal axes of temperature ellipsoids.

The anisotropic temperature factor of a given atom represented

in an orthogonalized form is:

X
-In T =(XYZ)B! [ Y . The B!, =B! are the components of a
1\ z ‘ 1) 1

symmetric tensor describing the temperature effect. Waser (11) has

g1ven a rigorous method of obtaining the principal axes from the B!,
: —ij

tensor. We shall follow his method as it applies to the orthogonalized

system defined in section vi. He considered the surface for which the

&1
temperature factor is constant; that is (g1g2g3) B'..[gz| =B = const.,

= 1ij
g3
where we have replaced X, Y and Z by g, g, and g5 Owing to the
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physical nature of the tensor ]31'3 the quadratic form is positive definite
and this equation represents an ellipsoid.

For the principal{ ellipsoid directions only, the surface of the
vibrational ellipsoid is normal to the radius vector q = glb1+g2b2+ g3b3,

where bl’ b, and b3 are the unit vectors in the directions X, Y and Z,

2

respectively. The problem of finding the principal axes of this ellipsoid

is equivalent to finding the extreme values of qz = g12+ g22+ g32 sub-
: g
ject to the side condition (glgzg3) -%1"] g, = B. Using Lagrange's
; ¢5

method, we introduce one multiplier and consider the vector equation:

: g1
grad (glg2g3) I - % ]_ii{J ) g, = 0, where I is the identity
€3

matrix. This may be re-written:

1 - R‘ i 1
(B -2) B2 B3 &)
1 B! - A ! -
B, (B',, - %) B3 €2 0
1 1 1 -
B3 Blas (B33 - ) €3

The secular equation represents a cubic equation in & which
has three real, positive solutions (since the quadratic form is positive
1
definite). We label these as ?L( ), ?\.(2) and l(?)). For each A (k),
the secular equation is used to find the ratios of the g which are then
\ . . . .. i 2 2 2 _
normalized to direction cosines by requiring g + g, + & 1. The

_(k))l/z’

lengths of the semi-axes of the ellipsoid are (ZWZ/X which are

the inverse of the root-mean square displacements of the atom along
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the principal direction. The displacements in B units (2 sin 9/)&)2 ,

(k)

are given by 4a* 7.

(k)

The values of A can be obtained from the cubic either by an
exact solution or by a numerical method similar to the one given for

the least-squares plane_(section v).

viii) Rigid body analysis of atomic thermal motions.

Cruickshank (12) hés developed a method for the determining
the anisbtropic rigid-body translational and rotational vibration tensors
of molecules in érystals from the vibration tensors of individual atoms.
He assumes that symmetric tensors grij have been found for each atom
r(xyz) such that
P

= (P1P2P3) | I—'—T-rij P, is the mean square amplitude of vibra-
' P
3

-2
u

tion of atom r in the’direction specified by the unit vector P = (\P1P2P3).
(See section vi for the derivation of the T_._T_rij tensor.) He also assumes
that the axes are orthogonal, and defined by the molecule rather than by
the crystal.

If there are N atoms in the molecular unit, the problem is to
interpret the N sets of Urij in terms of the rigid-body and internal
vibrations of the molecule. As a rule the contributions from the rigid-
bod3‘r vibrations will be much larger than the contributions from the
internal vibrations. The simplest hypothesis that can be made about

anisotropic rigid-body vibrations is to suppose that the motion of a
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molecule caﬁ be expressed in terms of two symmetric tensors, each
with six independent components, one, Iij’ giving the translational
vibrations of the mass center and the other, Wij’ the angular oscillations
about the center.

Thus for rigid-body vibrations we assume that each of the atomic

r
U .. tensors can be expressed as

Py Uy Bn 7 By Ly By * (Baz)y W (Baz)y. The problem is

now to find the T,j and Wi' tensors, given N Urij tensors.
-1 i ;

We now expand the right side of the above equation and collect

2
termsinPZ, P Z, P ., PP

1 2 3 -2’

vP1P3 and P2P3° By matching coeffici-

ents we obtain six equations relating the Urij to the Tij and Wij’ thus:

T v 2 2
Ui 5 Tyt W2 - aWogya t Wagy

T . 2 2

= T \ -

u 22 ZZ+Wllz ZW13XZ +W33X
Ut =T +W.. oyl - 2W. xy + W x

33 33 117 1257 T W

T _ . 2
Ujp Ty~ W7 P Wyzt Wogxa - W xy
U’ T +W. yz-W. yo+W - W

13 137 127 137 2377 T W ¥R
Ut =T, +W +W W x° W

23 23 1257 T WY T WX - WY

Since the number of observed Urij will be greater than the
number of independent Tij and Wij , the method of least-squares should
be used to best determine the Tij and Wij° Table 8 gives the derivative

relations of the Uij with respect to the Tij and Wij° The twelfth-order
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Table 8. - Derivative relations of U,, with respect to T,  and W_ .
— ij , k4 kd
U
1)
U
agkﬂ Ull UZZ U33* oo 12 U'13 : UZ3
T11 1 0 0 0 0 0
0 1 0 0 0 0
TZZ
T 0 0 1 0 " 0 0
33 , : |
0 0 1 0 0
le 0 ,
0 0 0 0 1 0
rI‘13 :
0 0 0 0 - 0 1
T23
W 0 Z2 yz 0 0 -~y Z
11
2 2
0 -
WZZ Z 0 X xy 0
W33 yZ X2 0 -Xy 0 0
W 0 0 -2x —ZZ z XZ
2
W13 0 -2xz 0 vz -y Xy
: ‘ 2
WZ3 -2yz 0 0 XZ Xy -X
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normal equations are shown in table 9. The elements have yet to be
summed over all atoms. The inverse of the normal equations matrix
gives the desired T, and W_..
ij ij
The accuracy of the determination of the Tij and Wij may be
estimated using the standard least-squares formula, namely
O'Z(T orW_)=C O'Z(U) , where C is the appropriate diagonal
pp ppP PP PP -
2

element of inverse matrix and o‘Z(U) is estimated as ¢ (U) =

E (Ur.. obs. .- Ur1.~j calc.)Z/t, where t is the difference between

1]

the total number of Urij obs. and the number of parameters determined.
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The weighted sum is

accumulated for each of these elements over all atoms in

the rigid body.

1 2 3 4 5 6 (.
|
1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 z2
3 0 0 1 0 0 0 YZ
4 0 0 0 1 0 0 0
5 0 0 0 0 1 0 0
6 0 0 0 0 0 1 -yz
7 0 z2 yz 0 0 4 z4+y4+y2z
8 2’ 0 x 0 -x2 0 xy?
9 yZ <2 0 xy 0 0 R
2 3
10 0 - 2xXy -7 vz XZ -2xy -XYZ
11 0 -2X7 0 \ —yZ xy —2xy3 -Xy Z
12 - | -2y=z 0 0 XZ Xy —XZ +x2yz
8 9 10 11
J
2 2
1 z y 0 0
2
2 0 X 0 -2X7Z
2
3 x - 2xy 0
4 2
-Xy -Z vz
5 -XZ 0 yz —yz
6 0 0 XZ Xy
2.2 2 2
7 Xy X Z —ny3 —xyzZ —2xz3 -XYZZ
4 4
8 z tx +x z yZZ —2X3y-—xyzz XYZZ
2 2 4
9 y Z y +x +X2y Xy Z —2X3z-—xyzz
10 —2x3y-xyz xyz‘2 4x Zy2+z4+yzzz+xzy2 —yz3—y3z+x2yz
H Xy -2xX7Z-Xy 2 g2 eylzixlay  4xlyiylaly iyt
12 —ZYZ3 —Xzyz Zy3z xzyz —Xy3+xyzz—x3z XYZZ’XY3"X3Y
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i 12 Parameter Right hand
j ' column column
1 —-ZYZ T11 Ul.l
0
2 TZZ UZZ
3 0 T33 U33
4 Xz TIZ UlZ
> xy Tis Yis
5 \
6 -X T23 = U23
2 2 2
7 X Yz Wll Z U22+y U33—yZUZ3
3 2 2 2
8 -2yZ -X Y% WZZ z U11+x U33~XZU13’
3. 2 2 2
9 -2y Z-X Vyz W33 y U11+x UZZ—XYUIZ'
10 "z3+>§ Zz—x32 W -2xyU -ZZU +yzU . _+xzU
xE TRy 12 Y33 1277%% 13 23
11 ' % x> W 2xyU__+yzU, -y°U. +xyU
L XyE Y Xy 13 FYE22TVEY 127V M13TFY o3
2 2,22, 22 4 ‘ 2
12 4y "z tx z tx y tx W23 _—2yzU11+XzU12+XyU13—X U23




10,

11,

12.

13.

14,

15.

14

References

Partl

L. Pauling and R. B. Corey, J. Am. Chem. Soc., 71, 5349
(1950). '

L. Pauling, R. B. Corey and H. R. Branson, Proc., Nat. Acad.
Sci., 37, 205-211 (1951).

L. Pauling and R. B. Corey, Proc. Nat., Acad. Sci., 37,
235-285 (1951). :

3. C. Kendrew, R. E. Dickerson, B. E. Strandberg, R. G.
Hart, D. R. Davies, D. C. Phillips and V. C. Shore, Nature
{London), 185, 422-427 (1960). ‘

Groth, Chemische Krystallographie, Vol. 3, pp. 548-551 (1910).
Leipzig: Verlag von Wilhelm Engelmann.

A. J. Wilson, Nature (London), 150, 151-152 (1942).

R. McWeeny, Acta. Cryst., 4, 513-519 (1951).

J. Berghuis, I. J. Haanappel, M. Potters, B. O. Loopstra,
C. H. MacGillavry and A. L. Viéenendall, Acta Cryst., 8,
478-483 (1955).

J. A, Hoerni and J. A. Ibers, Acta Cryst., 7, 744-746 (1954).

R. B. Corey and L. Pauling, Rev. Sci. Instrum., 24, 621-627
(1953). T

R. A, Pasternak, Acta Cryst., 9, 341-349 (1956).

E. W. Hughes, J. Am. Chem. Soc., é%, 1737-1752 (1941).

J. S. Rollett and D. R. Davies, Acta Cryst., 8, 125-128 (1955).
H. Mark, Ber., 57B, 1820-1827 (1924).

D. H. Templeton, Acta Cryst., 12, 771-773 (1959).



16.

17.

18,

19.

20,

21.

22,
23.
24,
25,

26.

27,
28.
29.

30,

31,

32..

173

G. Mez, Z. Krystallogr., 35, 242-271 (1902).

R. B. Corey and R. W. G. Wyckoff, Z:i. :Knystallogrs, v, 85,
132-142 {1933). ‘

D. A, Gordon, Ph. D. Thesis, California Institute of Technology,
Part I, pp. 102-119 (1958).,

D. A. Gordon, J. Phys. Chem.,, 64, 273-275 (1960

International Tables for X—Ray Crystallography, Vol. I. (1952).
Birmingham: Kynoch Press, p. 105,

J. E. Worsham, Jr., H. A, Lievy and S. W. Peterson, Acta
Cryst., 10, 319-323 (1957),

P. Vaughan and J. Donohue, Acta Cryst., é, 530—535‘(1952).

E. W. Hughes, H. L. Yakel and ‘H. C. Freeman, Acta Cryst.,
(in press); private communication from Hughes,

Y. C. Leung and R. E. Marsh, Acta Cryst., 11, 17-31 (1958).

L. Cavalca, M. Nardelli and G. Fava, Acta Cryst., 13, 594-
600 (1960).

H, C., Freeman, J. E. W. L, Smith and J. C Taylor, Nature
(London), 184, 707-710 {1959).

R. Shintani, Acta Cryst., 13, 609-618 (1960).
J. L. Katz and B. Post, Acta Cryst., 13, 624-628 (1960).
J. H. Bryden, Acta Cryst., 10, 714 {1957).

M. Nardelli, L. Coghi" andG Azzoni, Gazz, Chim. Ital., 88,
235-247 (1958).

L. Pauling and R. B. Corey, Proc. Roy. Soc., B 141, 10 (1953).

L. Pauling, The Nature of the Chemical Bdﬁd, (1960), 3rd ed,
Ithaca: Cornell University Press.

(a) pp. 232-239;

(b) pp. 308-309;

(c) p. 260.




330

- 34.

35,
36.

.37,

38.

39.

40.

41.

42,

43.

174

G. W. Robinson, J. Chem. Phys., 21, 1741-1745 (1953).

J. M, Q'Gorman, W. Shand and V. Schomaker, J. Am, Chem.
Soc., 72, 4222-4228 (1950).

R. B. Corey, J. Am. Chem. Soc., 60, 1598-1604 (1938).

W. Fuller, J. Phys. Chem., 63, 1705-1717 (1959).

L. Pauling and R. Corey, Proc. Nat. Acad. Sci., 37, 251-256
(1951).

K. Hoogsteen (1960), private communication,

R. Gerdil, Acta Cryst., (in press); private communication from
R. Marsh.,

R. Degeilh and R. E. Marsh, Acta Cryst., 12, 1007-1014 (1959).

E/ H. Wiebenga and N. F. Moerman, J. Am. Chem, Soc., 74,
6156-6157 {1952).

R. Newman and R. M. Badger, J. Am., Chem. Soc., Zﬁ, 3545~
3548 (1952). :

G. S. Parry, Acta Cryst., 7, 313-320 (1954).



10.

11.

12.

175

References

Part II

E. Whittaker and G. Robinson, The Calculus of Observation,
4th ed., (1954), pp. 209-259. Blackie & Son Limited; Glasgow.

D. H. Templeton, Acta Cryst., 12, 771-773 (1959).

E. W. Hughes, J. Am. Chem. Soc., 63, 1737-1752 (1941).

C. Hastings, Jr., Approxirnatiohs for Digital Computers, (1955),
pp. 125-200. Princeton University Press: Princeton,

Ned C, Webb, '"Calculation of Quadratic £-Curve Coefficients,"
pp. 1-4 (1961); private communication (1960).

J M. H. Olmsted, SohdAnalytlc Geometry, (1947) New York:
-7 : D. Appleton-Century Company, Inc.

V. Schomaker, J. Waser, R. E. Marsh and G. Bergman,
Acta Cryst., 12, 600-604-{1959).

D. M., Blow, Acta Cryst., 13, 168 (1960).

J. B.Scarborough, Numerical Mathematical Analysis, £1950),
pp. 192-198. Baltimore: The JohnsHopkins Press.

M. J. Buerger, X-Ray Crystallography, (1953), pp. 347-363.
New York: John Wiley & Sons, Inc.

J. Waser, Acta Cryst., 8, 731(1955).

D. W. J. Cruickshank, Acta Cryst., 9, 754-756 (1956).



176

. APPENDICES




177
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Introduction.

This appendix is added as a guide for those persons who wish
to use the orthorhombic least-squares and structure factor program
written by the author for the Burroughs 220 system. The method used
to compute the structure factor and its derivatives is de’scribed in part
II of this thesis. The input and output used in this program has been
written specifically for the peripheral equipment available at the
California Insﬁtute of Technology; they are a photo-electric reader, a
supervisory printer, a high speed paper tape punch, and a high speed
electro-static printer.

The organization of the appendix is such as to be most useful to
the reader while operating the éomputer. For this reason the operating
instructions are given first followed by supplements A—C inclusive.
Supplements D-H inclusive describe the preparation of the data tape,
Since the data tape need be prepared before a problem can be run on
the computer, these supplements will be of little use during the com-
putation and have been placed last. A section describing the output has

been added to aid in interpreting the results.
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Operating Instructions:

1.0)

3.0)

4.0)

If ON-line print outis desired, set up the SPO unit.

(See suppl. B. )

Select and set up desired out put route (see suppl. C).
2.1) Use either route 4, 5 ori 6-for LS&SF problem.

2.2) Use route 1 if a new program tape is to be prepared.

Set '"Hold PZT to Zero' switch in the up position; all other

switches should be in the normal (down) position.

Read the program tape into the computer:
4,1) Enter 04 into (rC:62).
4.2) Place computer into execute phase.

4.3) Press start.

If a new program tape is to be prepared change (rP) to

0200 and then press start.

If the program is to be used on a problem, set the "Hold

PZT to Zero'" switch in the normal {down) position.

Set the program control switches to desired position. (See

suppl. A.).

Place the data reel on the optical reader (read in on low

speed).

7.1) If itis desired that the computer stop before the
parameter shifts are printed (to change output route),

then turn on the S to P switch and enter 1531 into (rS).
Press start. The computer now has control of the problem.

If the compﬁter has stopped because of (rS) = 1531, i.e. an
S to P halt; then
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9.1): Change the output route.

9.2) Press start.

10,0) The computer has finished a cycle of refinement when

(rC:06) = 002244.

10.1) To iferate with the new parameters, reset the output
route,

10, 2) Change any of the key words or parameters desired.

10. 3) Position data tape to the start of data. (Bypass the
old parameters, etc.) |

10.4) Press start to iterate.

11.0) To punch out a new parameter tape for future use.

11.1) Make any changes in the parameters or the constants
table desired via the key board.

11.2) Set up output route 1 on the tape punch unit 0.,

Feed enough blank tape to act as the leader. (See
also suppl.’ C.)

11.3) Load 1441 in (rP) and set the computer into the
fetch cycle; press start.

11.4) After the computer has come to a halt, (rC) = 9999
00 1334, feed more blank tape and splice the new
parameter tape onto the data tape in place of the old
set.

11.5) To recycle from this point, clear the registers and
set (rP) = 2000, Follow the instructions starting
with (10.1).

12.0) To enter the bond distance section at any time.
12.1) The value of dz, the upper limit on the printout of
the distances, is in cell {(2458). 'The pr‘ogram con-
tains d . =5 A. To change this, enter in (L:2458)
(dddd)? 30 0591 via (rS) and (rD). (Note: do not

change the 06 portion, since this is a command!)
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12.2) Set (rP) = 2398, set the fetch light on and press
start. -

12.3) The computer will stop ready to recycle when it
has finished printing the bond distances. Proceed

from instruction (10.0).
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Supplement A: Program Control Switch Selections.

PCS State | _ Remarks
1 OFF Omit printout of k, Fo, FC, AF,
ON Print k, FO, FC, AF, q.
2 OFF Omit printout of A and B,
ON Acentric Structures: Print A and B, ;

Centric Structures: A and B are not printed,
(Note: If PCS 1 is OFF then PCS 2 must also be OFF.)
3 OFF The same scale factor is used on all data.
ON Layer scale factors are to be use/d and layer statistics
are to be collected. (Note the program is written for

a max., of 9 layers in {.)

4 OFF Sub-totals after each hf group are not printed.
ON Sub -totalsafter each hf group are printed.
5 OFF The structure is acentric.
ON The structure is centric,
6 OFF Enter least squares.
ON Omit least squares,
7 OFF The structure is of type I or III (see suppl. F).
ON The structure is of type II (see suppl. F).
8 OFF Only reflections with q = to 0 or 1 are used in LS.
ON In addition to reflections with q = 0, 1 add those with

q = 2 whenever F >F . (F ) to the LS.
¢’ min. ¥ o

9 Irrelevant.
0 OFF Omit interatomic distance calculation.
ON Compute interatomic distances.,

#5tore K, in cells (2490 + 2) in floating point notation.
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Supplement B: Set up of SPO Unit.

1)

The paper should be brought into the machine so that
the perforated edge is on the right and the printed face

showing.

Press line feed until the type bar is set to print on the

first line of a new page.
Set the form-out gear.

Place the zero suppress switch in the up position and the

map memory switches in the down positi’on°

Set format éwitch to space.

For OFF -line printing of punched tape use:Local operation,
For ON-line printing use Remote,

Press line feed until the type bar is in the numbered area
at the lower left half of a page. (The computer gives an

initial form-out instruction.)



184

Supplement C: A Review of Output Routes:

Commands: PWR + Onni 06 aaaa. This program uses punch unitzero.

SPO Ei OnnO 09 aaaa.

Definition of output routes:
Route
(1) A PWR command to give a punched tape on unit zero.
{2) A PWR command to print on the Telewriter.
(3) A PWR command to print on the high speed printer.
(4) ,A' SPO command to give a punched paper tape on unit zero.
(5) A SPO command to print on the Telewriter,

(6) A SPO command to print on the high speed printer.

Definition of important unit switches:
Switch ;
(a) SPO-PTW switch on paper punch zero.
(b) SPO switch on Telewritero
(c) O unit designation toggle on Telewriter.

(d)  Unit designation switch on high speed printer.

Positioning of switches:

Route Switch Positioning Remarks
(1) (a) ap
(b) i i denotes irrelevancy.
(c) down

(a) i
(2) (2) i
(b) i

(C) up

(d) i
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Route . Switch Positioning Remarks

(3) (a) i

(b) i The paper punch unit must not
() down have the same designation!

(d) to O

(4) \a) down
(b) down
(c) i
{a) i

5 () i
(b) ap
(c) i
{(a) i

(6) (2) up
(b) down
(c) E

(d) to SPO
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Supplement D: Lay out of Data Reel.

[ ] XXXHX A XXXXKKX

\

e e—— 3

Parameter and
3! temporary mod-

conductor
strip

ification area

l-(—- 1! ———)L—
splicing

region

xxxxx B xxxxx

"Start of Data"

XXX--

i Space group
— 1 routine and per-

manent modifi-
cations

-

Data

2-3!

-

XXX ° 0 ¢ XNXNXKXKXK [ ]
Data
PP
conductor
strip
1.0) The initial and final conductor strips are used to control the

stop of rewind and the automatic initiation of rewind operations,

respectively,

The details of the parameter part A are given in suppl. E.

Temporary modifications are defined as those changes to the

main program that are to be used only for one or a few cycles

of refinement.

The splicing area is suggested as the easiest way of changing

parameters.
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6.0)
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 Section B is for the space group changes (1_. €., changes from

P212121 to any of the other orthorhombic space groups). See
suppl. F and permanent modifications: defined as those changes
to the main program that are to be made every time the following
set of data is to be used; as an example, the use of different f-

curves (see suppl. H) ‘

"Start of Data'' is the point to which Operating Instructions 10.3
is making reference - the position of the data for start of the

next iteration..

The details of the data part are given in suppl. G.
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Supplement E: Parameter Part of Data Reel.

The following is an example of how to enter the table of necessary

constants. Part of this table, i.e., the constant in location (0118), must

precede the atomic parameters. . sff xxxxxxxx denotes a floating point

‘number with sign.

Location

Constant

(0100)

7)
8)
9)
(0110)

6 0000 04 0100

B¢ XXXX XX XXXX
B¢ XXXX XX XXXX
So XXXX XX XXXX
0 0000 00 0000
0 0000 00 0000
0 0000 00 0000

0 33X XX XXXX

0 ffxx xx XxXxXX
0 0000 00,9999
0 0000 00,0000

0 aaaa aa aaa#

0 ffxx xx XXX

Remarks
This changes the read command to the
base location of the constants table,
o .22 2 2 2
A x 10° where sin 8/x = Ah +Bk +C{ .
B x 10°

C x10°

Lambda x 10_2 for the radiation used to
obtain the data. ‘

Pe fro‘m table at end of this section.
Sin 6 {max.) x 10_6.
Sin 6 (min.) x 10_6.

Atom type code numbers needed for this
problem, listed starting from the left.
Any extra digits between the last a and
# are filled with zeros. The f-curves
already incorporated are : 1=Carbon,
2=Nitrogen, 3=Oxygen, 4:Hydrogen and
5=Chloride. # is the number of a's £ 0,

The scale factor,



Location

Constant

(0112)

3)
4)
5)
6)
7)
8)

9)

(0120)

s ffxxoxx xxxx

s fixx xx xXXXX
s ffxx xx xxxx
s ffxx xx xxx%x
s fixx xx xxxxX

s ffxx xx xxxX%

0 0000 00 aaaa

0 0000 00 aaaa

0 dd00 00 0000
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Remarks

N .
Pﬂ,_'\fw - '\[—W (P Q Sln 9) 5 ,
(R + SF_+ TF )

Ql where Jwe is an éxternal weight

R{ and FO is the scaled value, i‘. €e it

S| has been put on the absolute scale,

7

A shift factor to be applied to all shifts,

The base location into which the first
atomic parameter is to be stored; denoted
as Bi5° aaaa must be greater than 2549.
The parameters will occupy 30 N con-
secutive storage location , where N = the
number of atoms.
The base location for the storage of the
scale and temperature LS coefficients;
denoted as Bt° Bt must be greater than
or equal to Bp + 30 ’N.
This constant designates the location of
the decimal point in the list of Fo's. The
following table gives values of dd:
Fx107 x= 8 7 6 5 et
dd = 58 57 56 55 etc.

An example: the make up of an FO word is
+ ywww q FFFF kk, x refers to the

location of the decimal point in FO, thus

FF.FF is FO x 10'6 and dd = 56,

(Note: The location between the end of the program in cell (2549) and B
p

are not cleared after end of a cycle of refinement and the start of the

next. Therefore, this is a good place to store any program modification.,)
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5 60000 04 2473 Changes the read in command.

(2473) 0 xxxx xxX XXXX ax 10> The unit cell length of the a-axis.
4) 0 xxXXX XX XXXX " bx 10> The unit cell length of the b-axis.
5) 0 XXXX XX XXXX cx 10—3 The unit cell length of the c-axis.

Any temporary modification of the main program should be spliced

onto the data tape following the above set of constants,

Table of pC Values:

Type Value of P in Crystal Class: -
of -
Lattice Z.ZZ—D2 mmZ—CZV mmm—DZh
1 1

I @ T v
SN NN
[E N AT NS AV
oo»b»::#m
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The following is an example of how to enter atomic parameters:

6 0000 30 1281 This command precedes the 15t atom; it places

the parameter read-in under computer control.

For each isotropic ’ For each anisotropic
Atom ' » Atom
70070 03 0000 Change read command

(for iso-atoms only)

3 iiii ia bcde Key word for atom 3 iiii ia bede

0 0000, xx xxxx p - 0 00xx.xx XXXX

_-_l-_ OOOO.XX XXX ;I-_ 0000, xx xxxx

+ 0000.yy yyyy

X
-+ 0000.yy yyyy Y
Z + 0000, zz zzzz

_-I_-_ 0000,zz zzzz

0 0000, xx xxxx P; , 0 0000, xx xxxx
0 0O0BB.BB BBBB Bi or - Blli 0 00BB.BB BBBB
B_ .. 0 00BB.BB BBBB
221 ,
B . 0 00BB.BB BBBB
33i
B. .. 0 00BB.BB BBBB
121 ;
B__. 0 OOBB.BB BBBB
131
B__. 0 00BB.BB BBBB
231
etc. etc,
6 0000 30 2000 This command follows the last atom and trans-

fers control back to the computer,

In the write up: Denotes the atom number.
On punched tape example: Irrelevant digit.’

The multiplicative factor relating the atom's point position
p_ . multiplicity to the space group multiplicity; that is, itis equal
to unity or 1/2, 1/4, 1/8, etc. '

The atom population parameter used in least-squares; it is less

than one only if there is a statistical absence.
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Meaning of key-word symbols:

a= 0: Delta P. is to be used to adjust the overall scale factor.
1: Delta P, is to be used to adjust P the population parameter.
The correction is on fi;

2: Ignore delta p,. (Itis not used in any average or to adjust .o
g i y g J P,

b = 0: Calculate an isotropic temperature factor for this atom in
the SF.

1: Calculate the anisotropic temperature factor for this atom

_in the SF.

c = 0 : Include the atom in the SF.

1 : Exclude this atom from the SF.

d="0 0: Exclude this atom from all least-squares.

Exclude this atom from scale and temperature factor LS.,

—
oe

2: Calculate isotropic temperature and scale factor LS shifts.,

3: Calculate anisotropic temperature and scale factor shifts.

e = Atom type code number. Digits 1-9 incl. can be used. e can

never be zero!

Abbreviations:

SF Structure factor

LS

Least-squares
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Supplement F: Space Group Modifications.

This program can be used for the space group P212121 without
modification; all other space groups require that a space group modifica-
tion routine be part of the data tape. See supplement D for placement of
this modification on the data tape with respect to the parameters of other
data.

Memory locations (0654-0689) inclusive are reserved for the
space group modifications. The program will enter the subroutine via a
BUN 0654 command in location (2353). This program uses the equations
developed in part II of this thesis; therefore the space group subroutine
should be written so that the parity tests indicated in table 5 are made.

It is suggested that the first thing the routine tests is the position-

ing of program control switches 5 and 7. The settings for these switches

are listed in the following table:

Space group Setting of PCS
type ’ 5 7
I OFF OFF
II OFF ON
11T ON OFF

One should code these tests in such a way that if the switches are not

in the correct position the computer will stop with a "flag' Halt in the
(rC) register. By following this halt with a BUN 0654, the problem can
be continued by pressing "START' after the program control switches
have been set to the correct positions, Since it isyrnot necessary to
make this test more than once,successfully,per problém , the BUN com-
mand in location {2353) vshould be changed to bypass further testing of

these control switches. (See the examples at the end of this supplement.)
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Table 5 in part II of this thesis gives the parity tests that need to
be made for each space group and the corresponding group key. There
are up to four possible exits from the space group subroutine; these
correspond to the four possible group keys. The contents of location
(0127) is + hh0O kk 00££. One uses this location to obtain the indices
for the parity test. The contents of this location should not be destroyed
or changed in any way since it will be used again by the program. The
locations (015040160) are free for any intermediate calculations necessary
for the parity tests,

The following is a list of the group key exits:

Group Key Exit to Liocation
(1) 1082
(2) 1080
(3) 1078
(4) 1076

Two examples have been added to this supplement as a guide
for the preparation of other space group modification. The first example
is the space group parity test which is permanently included in this

The other is for space group Fi.l.

program, thatis, for P, d45

12121
"For the two special classes of reflections within space groups
FddZ and Fddd’ itis necessary to allow for the additional calculation
of Vi or 'Wi respectively. To do this, one should add to the beginning
of the parity test routine the following two commands: + 6212 40 STB 1231
and + 6201 26 IFL 1231, Then whenever a reflection is encountered
which has an * or %% following its group key in table 5, add the command
+ 6229 26 1231 before the appropriate exit is made. (See example 2 for

the space group Fddz')
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The following is a list of useful constants, which are available
for use in making the parity test. Do not destroy these numbers since

the program will be using them later.

Location Contents
(0040) + 5000 00 0000
(1070) + 0050 00 5000

(1071) + 0100 01 0001
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) 2,2,2, |
- HVYGMOM  THom %ﬂdzrlth :ﬁéﬁlffihgw L Camments
- , 4 - . S R
IR 04 0654 .
| 0
| 1
‘},_,_, —— N
; 2
065:. | 5000 |38 | BCS | 0668 )
.5 7000 .38 | BCS | 0668
_ 6, Q103 |26, IFL. | 2353
| 7 10 CAD | 0127 {rA) = + hh00 kk 0040
i 8 > 48 | CcIR | 0000
.9 1 |49 | SLT_ | 0004
‘ 0660 12 | ADD | Q127 = (htk) 0 (k+4) 004 _
{ 1 40 | STA | 0150
| 2 10 CAD | 1071 = 4+ 010001 0001
3 17 EXT | 0150
,[ 4 6600 |36 BFA | 1082 Group (1): htk=2n and k+f=2n
% 5 2200 136 | BFA | 1080 Group {2): h+k=2n but k+f=2n=1
| 6 6200 136 | BFA | 1076 Group (4): htk=2utl while kt£=2n
| 7 30 | BUN| 1078 . Group{3): htk=2n+] and ktf=2n+l. ..
I 5555 00 | HLT | 0668 Error! Reset PCS's & and 7
‘ 9 30 | BUN | 0654 )
0
1
‘}— — P —_
5 2
+
u 3
4
L 5
. 6 ~
o 7
L 8 »_
- 9
-




Example 2 for Space Group F

197

ddz’
: tocanen 1S 1 Vaneat R Imi'upm_ Address Comments
por e ! [ R WOURY DR )
B ﬂ! T
065 . 5000 |38 | BCS | 0656 )
- | 7000 38 | BCS | 0657
- 6 5555100 | HLT | 0656 | Exror! ResetPCS's5and7. (Note 1)
; 7 0104 |26 | IFL. | 2353
: 8 6212140 | STHB . 1231
9 6201 |26 | IFL. | 1231
066 0 10 | CAD | 0127 (rA) = + hh00 kk 0044
1 2 145 | CILR | 0000
2 1 |49 | SLT | 0004
3 12| _ADD | 0127 = (htk) (k+g) £
4 40 | STA | 0150
5 1 149 | SLT | 0004
| 6 12 | ADD| 0127 = (hik+g) (k) 2
n ! 40 | STA | 0151
8 14 | MUL| 0040 = (htk+4)/2 etc.
| 9 40 | STA | 0152 ]
067 O 12 ADD | 1070 = ((h+k+2)/2 + 1/2) )
i ! 40 | STA | 0153
R 2 10 CAD | 1071 = + 0100 0] 0001
i 3 17 EXT | 0150 .
4 6600 |36 | BFA| 0676 ]
N 5 5555 100 | HL.T| 0675 Frror! htk#Z2n or ktf#2n .
i 6 10 | cAaD! 1071 (rA) = +0100 01 0001
L 7 17 | EXT | 0127
- 8 0000 |36 | BFA| 0680 Branch if h k.4 are all even
- 9 6229 |26 | IFL 1231 Include calc, of ¥1-8
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- 068 0 _j10 | ¢ap | 1071 | (rA) =+ 0100 01 000!
L L 17 LEXT 015
2 1 | 2201 136 ! BEA | 0687 | Branchif htk+f=2n+ ;{4041 or 4nt3)
- ‘ 110 ¢cAD| 1071 . (rA) =+ 010001 0001
L 17| EXT | el52
N 5. 2201 36 | BFA _ 1078 Group (3): hiktf=dutl .
- 6 30, BUN/| 1082 Group (1): htk+f=4n
1 71 17 | EXT | 0153 i
8 2201 |36 | RFA . 1082 Group (1)%: htictd=4atl
9 130 | BUN, 1078 _Group (3)%: htk+f=4143 e
0
1 N
z
2
| 3 Nates: ‘ _
; 4 1 ﬁpcau_sﬁ: af the limited space the HL.T in location (0656) is. .
| 5 not followed hy a, BUN 0654; therefore the program control.
| 6 switchgs must bé.,_gg_rrectlv set and (rP) can be set to 0654
% 7 before continuinga Do not clear! (1he machine should be
; .8 in the remember, mode!) .
! 9 |
O, —
_l,
] 2
3 [
4
- 5 -
= 6 -
B 7
L 8
9




199

Supplement G: Index and Fo Input Format.

All index and flag words are negative. An index word is defined as those
words that contain the indices h and f. The data are entered in groups

of constant h and (.

All words which contain Fo are positive. These words also contain the
k index as well as three digits of an external weight and one digit for a

key to the observational quality of the reflection.

The following is an example of the data format:

1 0000 00 hheg An index word

0 W\;q FEF FFkk A reflection“word, whose indices are the h and £ of
0 ywwwq FF FFkk the preceding index word and the kk contained in

. the same word as the reflection FO value,
1 9999 99 9999 A flag word denoting the end of data.
6 0000 30 0838 A command transferring control back to the com-

puter. Note: If there are less than 99 punched
words preceding the command, then change 0838
to 2007.

A conductor strip should be placed one foot beyond
the transfer control command and four feet from

the end of tape.

Table of q Code

q Implies Remarks
F =F Jwerw is irrelevant (it may b hed as 000); the
0 F o fvww is irrelevant (it may be punc )
external weight is taken as = 1.000.
1 F =F External weight taken as  fowww ( 000 means zero).
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Implies Remarks
FC< FO External weight taken as  /iwww  (see also program

control switch number 8).
F >F External weight taken as zero.
c o
F =7 External weight taken as zero,

o
(no meaning) External weight taken as zero,
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Supplement H: Entry of f{-Curves..

This program allows for up to nine atom types. Each atom type
occupies 30 consecutive storage locations. The following table lists
the atom type code number and the corresponding base storage location;

that is, the location where the first of the thirty words are stored.

Code number 1 2 3 4 5 6 7 8 9

Base location 0300 0331 0362 0393 0424 0455 0486 0517 0548

f-Curve C N O H Cl° - - - -

The formulae used in the computer program are:

Sin OM = (sin 6/1) AM = 0.nxxxx , where AM = 0. 71069
and A is the wave length of the radiation used to collect the data. Let
A be defined as 10(sin oM _ - 0.1n0000) = 10(0, Oxxxx) , then
f(hke) = A(n) + B(n) A + C(n) Az. |
Thus, each atom type has ten A's, ten B's and ten C's. These
are the thirty numbers referred to above and the order in which they
are stored is: A(0), A(1),... B(0),... C(0),... C(9). Once the values

of the A's etc. are determined, they must be converted to floating point

notation. They are punched in the following form:

6 0000 04 aaaa aaaa is one of the base locations referred to above
and reference to this atom is denoted in the com-

puter by its code number.

s ffxx xx xxXXX A(0)
s ffxx xx xxXxXX A1)
s ff xx xxxx C(9) Other f-curves are entered in an analogous

manner.
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After the last set of f-curves, this command must

be used.

Several f-curves are permanently included in this program. They

are:

Code Number

[© 2 BN S B AV

Type‘

C

o

Cl

Source

An average of Berghuis Et_il.. (1955) and
Hoerni and Ibers (1954).

Same as above.

Same as above.

McWeeny (1951).

Berghuis et al. (1955).
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Output

The output of this program is in three parts., The first partis
the print out of the structure factor lists, the second is an outplit of
the least-squares results, and the third is a print out of interatomic
distances,

The following is an example of the output from the first part:

hh, | 24 IFOI | ‘|FC| AF A B g  Remarks
0,0 :
£ o0 0 0.00 384.49 -384.49 384.49 0.00 4 *

4 9,43 10,41 - 1.48 10.91 0.00 1

8 3. 86 3.27 0.59 - 3,27 0.00 1

12 8. 37 8.21 0.16 8.21 0.00 1
2 .0

2 92.11  97.69 - 5.57  97.69 0.00 1

etd,

The above is the maximum print out for a non-centrosymmetric
space group. The A and B terms are omitted for centric space groups
and FO and Fc.replace lFOl ‘and 'Fcl . respectively., The A and

B terms may be omitted by placing program control switch 2 OFF. When

program control switches 1 and 2 are both OFF, all of the structure fac-

tor print out is omitted.

The first four rows in the LS print out are:

Z|kF | Z|F | Z|AF| (floating point)
°2 ° 2 2
2w |G | Zw|G | 2w |AG | "
Z|kF |Z IF |© Z|kF_- F |2 "
(o] C (o] C
n n

w



204

In these equétions G = |kF ‘2, G =|F ,2 and AG = |kF 'qz - |F lz;
o o c cl o c

n is the number of reflections for which q¢ = 0 or 1, and n_ = the number
of reflections included in the least squares with Nw £ 0, '

The next information printed is the parameter groups. Within
each group are all the parameters pertinent to one atom. The atom
groups are printed in the same sequence in which the atoms were entered.
The first line of each group consists of: #-00000xxxxx ffxxxxxxxX ,
where # is the number of the atom; thatis, if it were the first atom in
the list, then ‘# =1, -00000xxxxx is the key word for the atom except
that the 3 in the sign position has been translated as a minus, fixxxxxxxx
is the value of P, for that atominfloating point notation.

The remaining‘ 5 or 10 lines, each contain four columns. Thek
first column is a list of the old parameters, the second is the shift times
the shift factor, the third is the new parameter and the last is the standard
deviation of that parameter. Going down one column, the sequence of
parameters is %, y, z, in, B if the atom is isotropic or B if it is

11
anisotropic; if the atom is isotropic no further parameters are printed

out while if it is anisotropic the next parameter is BZZ’” then B33, BlZ’
B13 and finally 23.‘ If the third-and fourth columns of rho of i are

blank, then the value of delta rho of i is either beingused to adjust the
overall scale factor or is to be ignored.  In the latter case, the value
- of delta rho i will be zero identically,

Following the atomic parameter print out, will be the print out
of the scale factor adjustment. When only one scale factor is used,
there will be one line of print out; it will consist of the old scale factor,
the correction factor and the new scale factor, all printed in floating
point notation, The correction factor is computed in the following way:
Vcor‘rection factor = 1/(1 + % 12 Ap, }s where the Ap, ave the values
obtained from the least-squares times the shift factor and N is the

number of atoms for which Ap, was to be included in the average as

indicated by the individual key words.
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For those cases where individual layer scale factors are used,
the output following the parameter will consist of four groups of infor-
mation, Each group will have one to four columns in it and each row,
when there is more than one, will correspond to the layer lines
£ =0, 1,... max. (in this program the maximum number of layers is 9).
All numbers will be in floating point notation. The information in the

first group is:
2[E | Z|F | Z|AF| Ratio ZfF | /Z[F |

The next grdup has two columns. The first column lists the old 1ayér
line scale factors and the second column lists the new layer line scale
factors. The new layer line values are oBtained by multiplying each

old scale factor by the least-squares correction factoy. The third group
contains one number; it is the least-squares correction factor., This
factor is the same as described in the preceding paragraph. The last

group tabulates the following columns of data:
2 2 2 2.,1/2
Zw|F | Zw|F | Ratio: (EWIF | /3% F |7) /
o c c o

The third output part is a list.of all interatomic distances less
than 5 A. The new parameters are used in these calculations. These
calculations will be made only if PCS number 0 is on. The format of
the output is in fixed point. One line corresponds to one interatomic
distance calculation and the printout will contain the parameter group
number of both atoms and the distance, The smallest atom group number

is always listed first.
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Appendix II. Lorentz-Polarization factor program for Burroughs

220 Computer.

Program Synopsis: This will make Lorentz-Polarization cor-

rections for equi-inclination, antiequi-inclination (zero layer) or
general inclination Weissenberg intensity data or for oscillation-rotation
intensity data. Simultaneous correction of two observations of the same
reflection is possible and the ratio of the corrected values of the first

to the second is computed. Thus estimates of a reflection from films
taken around two different axes are each corrected for the Lorentz-
Polarization factor respective to its axis of rotation and a scaling factor
between them is computed.

Range of Variable: The maximum value that any index may take

is + 99.

Computation Method:

References:

1) Sparks and Trueblood et al., Acta Cryst., 9, 350-358
(1956) e
1956).

(2) Sparks and Trueblood et al., Acta Cryst., 10, 88 (1957).

(3) Cullity, Elements of X-Ray Diffraction, addison-Wesley,
Inc., (1956), pp. 124-129.

Equations Employed:

SinZQ = Ah‘2 + BkZ + Cﬂz + Dht + Ehk + Fk{

. 2 . . . S
sin“6! is obtained by setting the layer-line index for the
axis of rotation equal to zero and then evaluating

. . 2
the above sum, i.e., sin G,
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2
(1) Equi-inclination Weissenberg (sin " = sin v, ¢

2h. 2142 %) ;
1 1

E - Aéinze - sin49
Lp 1—2(sin29—sin49)

(2) Antiequi-inclination Weissenberg of the zero layer

(sin”p = same as (1)):

T 2o st A%n, 2
i _ Vsin O-sin 0 A 1 ‘
T - ——

P 1-2( sinzel—sin49/) : 4aizsin29

Note: hi # 0 butis equal to the corresponding equi-

. . . . . . . 2!
inclination layer line; only in the evaluation of sin 0

iS h‘ = Oo'_
1

2
(3) General inclination {sin"p is a free parameter):

I _ ‘éinze - sin49

P 1-2( sin29-51n49)

(4) Rotation-oscillation (sinzp = sin

E i, VsinZG - sin49
Lp 1—2(sin26—sin46)

where in each case hi is the layer-line index of rotation i whose
repeat distance is ai and A is the wav e length of the radiation used;
i is the Weissenberg inclination angle.

Unit Requirement:

(1) Burroughs Datatron 220 system with 5000 words of

storage.



(2)
(3)

(4)
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One paper tape reader.
One paper tape punch unit and one on-line supervisory
printer.

A supervisory printer for off-line printing of results.

Operating Instructions:

(2)

Set PSLZ and PZT switches in down (normal) position.

(b) Read in program tape.

(c)

(d)

Set output:

(1) Type one only: Set both the SPO switch on the
printer and the PTW -SPO switch on the punch
No. 0 to down position. (Output on punch.)

(2) Type both one and two: Set both the SPO switch
on the printer and the PTW -SPO switch on the
punch in the up position. Set both MM and ZS
to down.,

Set Program Control Switches

PCS No. 1 - OFF: Input has form + IIII.I IIII.I

ON: Input has form + IIII. W IIII. W
PCS No, 2 - OFF: Print F
| ON Print FZ ,

PCS No. 3 - OFF: Output type one
ON: Output both type one and two

PCS No. 4 - OFF: Both values of I are independent

estimations from the same rotation

axis for the same reflection.
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ON: Data either consists of one estima-
tion, (IIII.W)Z, per reflection or

two estimations about two axes, a,

and a,e
PCS No. 5 - OFF: Print Ti/Lp
ON: Omit printing Ti/L
: b
PCS No., 6 - OFF: Print sin0 (sin 6)

2
ON: - Omit sin 6 print out

PCS No. 7 - OFF: Only one observation per reflection.
It is entered in (IIII.W)2 position on
the data tapes (Set PCS #4 ON).

ON: Two observations per reflection
2,2
PCS No. 8 - OFF: PrintF "/F, (Fl/FZ)
. 2 2 .

ON: Omit Fl /F.2 print out

PCS No, 9 - OFF: When sinZG > 1 print h3 and sinZG
2

ON: When sin 0 > 1 skip to next reflection
PCS No. 0 - OFF: Print sin0

ON: Print sin 6

Read in data tape(s):

(1) The parameter part reads in and all pre-program
modifications are made. This makes the (4000-
4500) area available for data.

(2) The first data part reads in after all pre-program
modifications have been made. If more than 4500
words of data are to be processed, the input must

be in sections.



210

(3) Once the data are started reading into the com-
puter all further input is computer controlled
(except for changing spools of input data).
Data Input:
(2) Parameter part of input tape.
6 0000 04 PRB 4500

where sin®@ = Ah°+ Bk’

4500 s ffxx xx xxxx A
1 B +C1 2+Dhi +Ekh
2 C +Fkt
3 D
4 E
5 E
6 (h/al) ,
7 (A/az)
8 0 iiiz hh h

17172 V2" 723
6 0000 30 BUN 4000  transfer control to pre-

program routine,
Cells (4500-4507) inclusive are entered in floating

point notation,

In cells (4506 and 4507), A is the wave length of the radiation employed;

ay and a_ are the unit-cell repeat distances whose layers are indexed by

h and h, respectively (see data of input tape)., If Control Switch No. 7 is

off only (4507), ()Lz/ag ) need be entered. If Control Switch No. 4 is off,
« 2, 2

only (4506), (x /a1 ) need be entered.

This program is written so that any permutation of the crystal-

lographic indices h k £ can be entered as h1 h2 h3. The crystallographic -
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indices are coded in the following manner: h =1, k=2 and £ = 3. These
designations are entered into the 03 partial field of the word in location
(4508). If, for example, a set of data were punched with h =k, h,=h

and h3 =4, the h1h2h3' in (1.:4508:03) would be 213,

The contents of (4508:74) = 21yy ,¥, are defined thus:
i (00 denotes axis i = 1 is a rotation axis,
2.9, (01 denotes axis i = 1 is an equi-inclination axis .
(02 denotes axis i = 1 is a general inclination axis and (4506)
contains sin“p. (See the description under General
Inclination).
B (OO denotes axis i = 2 is a rotation axis.
(01 denotes axis i = 2 is an equi-inclination axis.
(02 denotes axis i = 2 is a general inclination axis and {4507)
2,55 - contains sin? e (See description under General
Inclination). ‘
(11 implies that the (IIII. W), data are the corresponding zero
layer reflections taken Erom antiequi-inclination films
B around axis i = 1,

General Inclination:

If more than one layer is to be treated by the general inclination
I. factors, then the data must be entered in sections, where each section
L2 . . . 2
has sin p = const. Preceding each data section the new value of sin
must be entered. The following is a method for making the change where

both axes are general inclination axes.
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6 0000 04 4506

4506 s ffxx xx xxxX - new sinzp fromaxis i =1
4507 s ffxx xx x¥XX new Sinzp. from axis i = 2
‘ (in floating point ’notation)

Next data section

see data part of input.

Computer Stops Due to Errors:

(1) 1If (4508 + 1) = - then control is transferred to HLT in
cell (4127).

(2) If (4508:07) = 0 then control is transferred to HLT in
| | cell (4130).

(3) If (4508:52) # 00, 01 or 02 then control is transferred
to HL.T in cell (4150). |

(4) 1f (4508:72) £ 00, 01, 02 or 11 then control is trans-

| ferred to HLT in cell (4159).

(5) 1f words (4500-4505) = 0 then control is transferred to
HLT in cell (4109).

(6) If words (4501-4505) = 0 then control is transferred to
HLT in cell (4111).

(1) 1 = hi’ (i =1, 2, 3) # 6 then control is transferred to
HLT in cell (4181).

(b) Data part of input tape.

Data are read into cells (0000-4499) inclusive. Each
data word will be one of two types. An index word (always negative)
designates two constant indices and the starting value of the‘third running
index, The other type of input word is the intensity word (always positive).

An example of a portion of the data input tape is given below,
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6 0000 04 0000

0000 —I—Pihlhl +h h +hh an index word

1

< 4499

22— 3 3
O(IIII.W’)1 (IIII.W)Z an intensity word with h3 as

running index. The next intensity
word has + ( |h3| +P) as its index.
o(mI.W)1 (IIII.W)2

1 8000 00 0000 an index word with P = 8
. 6 0000 30 4550 branch to start of calculation

.

intermediate loads, all are the same as above

6 0000 04 0000

b :
1P+ h1 1 + hZhZ + h3h3 final loadl
0 (IIII..W)1 (1111, W) 5

1 9000 00 0000 an index word with P = 9
6 0000 30 4550 ‘

The index word is detected by the computer as a negative number

@

whereas the intensity word is always a positive number. The digit position

denoted by P has the following significance.,
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h_:
rhh,

+h h :
— 33

9;
8:
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End of totality of data: Computer HL T in cell (4645)
End of partial data: Read more data from tape reader
Constant by which h3 is increased = 1

Constant by which h3 is increased = P (Note P = 1 has
same effect as P = 0)

This is the layer-line index of intensity data denoted
by (IIII.W)I.

The actual crystallographic axis is recorded in the
computer via the key word in cell (4508:81) by h,.
This is the layer-line index of intehsity data denoted
by (IIII.W)Z. The actual crystailographic axis is

recorded in the computer by (4508:91) = h (1f Control

Switch No. 4 is OFF, then an exception tozthe above
eiists. In this case, (IIII.W')2 is an independent estima -
tion from axis h1 and (4508:91) = hZ denotes the common
index for the set of I's that follow on the data tape.)

If Control Switch No., 7 is OFF then (4508:81) = hl
denotes the commeon index that intensity data that follow
have. |

This denotes the common row line smallest index, for
example if for some hth group the smallest positive
index was +2 then ih?)h3 = 002. The computer will
increase this running index by P after each intensity
word is processed; ;l-_h3 is increased to i&(h3+P), for
example if _-l:h3 = fl’ P =0or 1, then i(h3+1) = -2 and
;l-_h3 = +2, then i(h3+1) = +3. Therefore, an intensity
word must be entered for each h3 bef:ween the smallest
and largest values to be computed. Note that if such an

intensity is absent due to space group extinctions or un-

observed, a word of zeros should be entered for the
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intensity word. If a large gap exists within an hth
group, an alternative is to punch a new index word

for the upper group of intensities,

Whenever the sign of hl’ h_ or ah3 changes, a new index word must be

2

punched,

The Intensity Word (always positive):

(IIII.,W)1 is the observed raw intensity taken around axis a, and

with layer-line index h, whose true crystallographic

1
index is recorded in the computer by ;(4508: 81) = hl. |
The digit“W may have the following significance., If
Program Control Switch No. 1 is ON, it denotes an
estimate of the observational quality of the measured
reflection. Any scheme or code for the ten bits is left
the crystallographer. W is handled for output purposes
pnly(see output), If Program Control Switch No. 1 is
OFF, then W = .I (that is W denotes the least significant
di‘git of the preceding intensity. If Program Control
Switch No. 7 is OFF then (IIIL. W), = 0.

(IIII..VV)2 is the observed raw intensity data obtained from around
axis a, with layer-line index h2 @Xcept if Program Con-
trol Switch No. 4 is OFF). Its true crystallographic
axis is recorded in the compﬁter by- (4508:91) = h,.

W has the same signific‘ancelas discussed under (IIILW)l.

If Program Control Switch No. 4 is OFF then (IIII.W)2
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is an independent observation of the intensity taken

around axis a; with layer-line index hl. In this case

+h2h2 denotes the common row line whose running

index\ is i—_h?)h3 .

The scaling of the index word within the computer is taken as
IIIT, W, If there is only one observation per reflection, then enter
(IIII.W)1 =0 and (IIII,,VV)2 will denote the observed reflection and is

treated as above., In this case ihlhl denotes the common row line index

with i—_h3h =.00.

171

3 @8 the running index. Also set (7\/&1)‘Z =0 and z

At the end of each memory load, which cannot exceed 4500 words,
the command 6 0000 30 4550 is placed to start the data processing.

Type One Qutput: SPO or high speed printer (SPO)

The following is an example of the output (maximum print out):

t+h_h., +h_h

— 11 =22
. 2 2 2 2 2

ih3h3 Sin~ 6 le/Lp TZ/Lp F, F, wW, F, /}?‘2
i(h3+1) Oexxxx O.xxxx 0.xXXXX  XXXX.X XXXX.X WW XK ¢ XXX
i(h 3+k) s ffxx xx xxxx

thiby thob,
h h N
+ 373 etc

If sin2 ¢ > 1, then only +h, and sinZO in floating point notation are

3

printed. In this case sinZG is printed without regard to the

position of Program Control Switch No. 6; however, PCS No. 9

ON will suppress this print out.
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If FIZ/F‘ZZ is too large, _1:_ €., the ratio is outside the range shown above,

the ratio is not printed.
Print out modifications: see operating instructions.

Type Two Output: On Punch (Output suitable for further data

processing. )

Whenever Program Control Switch No. 3 is ON, the following
output is obtained on punch unit No. 0.

1 Pihﬂiihh+hh

22— 33

2_2_2_2

Z.Mnl (FFFF QMUZ

0 (FZFZFZF

o

1  P000 00 0000 P = 8or 9 (see input
. description)
6 0000 00 0000

etc.
If Program Control Switch No. 1 is OFF, W = the least significant digit
of the preceding FZ. This oufput will have fhe same form as the
data part of the input tapes except that F2 (or F) replaces I. F's
are pﬁnched as FF.FFW whenever Control Switch No. 2 is OFF,
The data tape will have the same length as the input tape and the
data may be entered into consecutive storage locations as specified

by the next data handling program.
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Appendix III. Molecular Plane Ffoui'ier Program.

Synopsis: This program calculates the 3-dimensional Fourier sum-
mation for a plane in any orientation relative to the crystallo-
graphic axes, A square mesh of arbitrary size is ruled on the

plane about a point X, 37‘, Z,

Operating Instructions:

(1) Read program in with hold PZT to zero switch up. After
the program has been read in and (rC) = 9995000705 switch
the"Hold PZT to zero" to its normal (down) position.

(2) Put the data reel on theoptical tape reader. Set up the
desired format. (This program uses SPO output.) Set the
necés‘sary PCS's ON; then press START.

To Punch Out = a New Program Tape:

(1) Read program in with '""Hold PZT to zero' up. ILeave this
switch up during program punchout.
+2) Set tape punch unit designation to 0 and for PTW output.

(3) Setto "FETCH" with {rP) = 0200 and then press START.
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Program Control Switch Options:

PCS
#

1

State

OFF

ON

OFF

ON

OEF

ON

OFF

ON

OFF
ON

Remarks

For monoclinic, orthorhombic, tetragonal
and cubic structures

For triclinic, trigonal, hexagonal (not yet
programmed)

FPrint out X,p (XYZ)
o X,Y,Z and p(XY2Z)

Punch out XYZ 0 of mesh points in 2000 word
blocks. Computer halt at end of each
2000 word to give operator time to
feed blank tape. Press start to continue.
Omit print out of point mesh.

Fourier point mesh will fit in memory, so
store it in sequence.

(PCS #3 OFF). Point mesh not stored in
sequence, but punch out sequence of
2000 word block. This allows the cal-
culation to be done in parts,

For acentric structures
For centric structures



Preparation of Data Tape:

(1) Space group tape if other than P

(2)
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> 2 2° (see "Other space
17171

groups'' under "Equations used,' See also examples at

end of this write-up.)

Constants:

The constants needed by the program are defined

and their manner of entry illustrated.

6 0000 04

6

00xx. xx
00xx. xx
00xx. xx

000x.xx

00xxuxx

0000 00

00xx xx
f£00 .00
0000 00

30

0380

KXXX
XXXX
XXXX

XXX

KEXXX

0000

KXXXX

0000

aaaa
0620

Change (rC) to read into{0380) etc.
-4 .

x 10

x 10 —Coordinates of Centroid
4

2

x 10~ (Cartesian)

I L.

-4
x 10

w o= N

-4
x .10~
C x 10_4 ~Eq. const. for L.,S. Plane

4

Dx 10 AX +BY +CZ =D

L

axl10

-4
b x 10'4
-4

cx 10 —~Real cell constants
4

cosax 10

-4
cosfPx 10

cos¥ x 10_4J

-4
R x10 value of mesh interval

R x 10_4 max. length of mesh
max

empty cells

Z/Vc x 10—1 give final result value of e/A.3

(see table) Data scaling const,
B(XYZ) address of first X
(Note B(XYZ) > 0780 required)
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Table of Values of ff:

Value ff Scale of Data
55 A, AAA
56 AA. AA
57 AAA. A
58 AAAA
etc.

Reflections:

A, Multiplicities

{1) F(000): Enter A{000) with 1/2 its true value,
(2) All others: Enter at full value,

B, Format: Punch data tape in the following manner:

+hh0+kk0+44
++AAAA+BBBB
etc.
3 0000 00 0000 final data word
6 0000 30 0479 """ command word
12”
= Place conductor strip here
4!

(Note the constants part must precede the data part.)
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QOutput:
On the first page the following numbers are printed in floating

point notation:

R(pEcA?
2) 1/2

RAB/(B2+C
rc /(B2
RA,C/(BZ-i-CZ)l/Z
—RB/(\BZ+CZ)1/;
1/a

1/b

-c cos B

1/cq{l - coszﬁ)l/2

Starting with the second page, the results of the Fourier calculation

are printed out in the following manners

PCS#2 OFF: X p(XYZ) C

R
10 xxxxxx Txx.oxx V
etc.
PCS#2 ON: X Y Z p(XYZ) Co
iO.XXXXXX iO.XXXXXX iO.XXXXXX TUXX XX
etc.

This format has 10 lines per group and 5 groups per page. CR denotes
carriage return action by the typewriter. For each point with coordinates
(XY Z), there correspond a pair of integers NX, Nyz’ which are defined

later. These pairs of numbers are essentially the grid coordinates of
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the L. S, plarie. The output sequence starts with +N , +N ., The second
. X yz

value of p(XYZ) corresponds toN , N -1. N is decreased by one
, x' Tyz vz

until it is equal to -N at which time N_ is decreased by one for the

max X

first time and N is reset to +N . The print out terminates when
vz max

the value of p(XYZ) is printed for N = -N and N = -N .

- X . max

vz max

Equations Used:

The electron density equations for Pl and PT are employed. For

P1 the equation is:

p(XYZ)= Z{A(hkﬂ)cosZW(hthYH Z) + B(hke) sin27 (hX+KY +4 Z)
q
+ A{hktl)cos2m(-bX+kY+L Z) + B(hkt) sin27(-hX+kY +4 Z)
+ A(hke)cos2m(hX -kY+£ Z) + B(hkt)sin2z{hX -kY +£ Z)

+ A(hki)cos2m(hX+kY -2 Z) + B(hki)sinén(hx+kY -0 z)}

For P1 the equation used does not have any sine terms and F{hk{)

replaces A(hk{) in the above expression .
The program will generate A.(}—lki), A(hl_dl)" . B(ﬂkﬂ) °* etc. for

space group P using the formulation of the International Table

Z1'2121

for Crystallography {1952).

Other Space Group:

Memory location (0300)-(0379) incl, are reserved for space group
modifications. The program will STP 0300 then BUN 0301, The modi-

fication must be written in the form of a subroutine. On the basis of an
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index parity test the various values of A(q) and B{q) must be generated

for use in the above formula. Storage location assignments are:

A(hke) (0406) B(hkt) (0410)
A(hke) (0407) B(hke) (0411)
A(hkg) (0408) B(hke) (0412)
A(hki) (0409) B(hk{) (0413)

At the end of this write-up are two examples of space group subroutines.,
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Calculation of X,Y, Z.

‘he following method is used to calculate the coordinates of a
square point grid on the molecular plane. Let X, v, z be the centroid
§£ the group of atoms lying in the desired plane, obtained say from a
least squares process. Further, let X, y, z be in the Cartesian orthogonal
system. The equation of the plane is Ax + By + Cz =D, where A, B and C
are the direction cos:ines of the plane and D is the'distance to the origin,
We take as one of the two axes in the plane the line _/\,1 formed by the
intersection of the I..S. plane with the plane x = Xo (Note that the LS
plane cannot be parallel to the x = x plane. The program will have to be

mbdified if the plane is parallel or nearly parallel to it.) -

The direction numbers of the line j\.l are: ,@1 =0, m, = C and
n, = -B. The direction cosines obtained by normalization are:
2,1/2 2,1/2
)Ll‘=0’ p.l‘C(B +C)/ and v1=—B/(B +C)/.Weneeda

second line A > perpendicula‘r to _/\_l., The direction numbers of

,j\z‘mustbe L, =Bv. -Cu

> 1 m_ = -Av_, and n :Apl which we

17 2 1 2
21/2
! =AB/(B2+CZ)1/Z and

can also express thus: = —(B +C")

1
n, = AC/(BZ + CZ) /2. The direction numbersin this case are also the

2
direction cosines since 12 +m+nl = (BZ + CZ) + AZ(BZ/(B2 + CZ))

L, )

2 2
+AZ(C2/(B2 +C7) = A" + B% +c? =
If we take R to be the desired interval of the square grid, then

the following set of equations produces the point mesh:
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x:—NXR(BZ+C2)1/Z + x

1/2 2 -
y:NXRAB/(BZ+C2) ! +NYZRC/(B +CZ)1/Z +y
z:NXRAC/(BZ+C2')1/Z -NYZRB/(B2+C2)1/2 v

where Nx and Nyz define the grid points relative to X, Yy, z as origin,
The square grid generated by this program is:
N >N > -N
max — X - max

>N > -N
max — yz— max

The maximum value of N = the maximum value of N & N , Where
x yZz max

N is defined as the integral part of Rmax
max R + 113,

The Cartesian x,y,z of the point mesh are transformed into
the fractional coordinate system of the monoclinic system by:

X =(1/a){(x - Zc cosB) (Note Z not z is used here.)

Y =(1/b)y

Z =z/c(l - coszﬁ)l/'2 .



226

Example 1.

‘ 4
Space Group P -D No. 19
212121 2

Origin midway between 3 pairs of non-intersecting screw axes

as defined in the Interriational Tables,

|F(hke)l = |F(hke)] = IF(hke)] = |F(bkl)| = |F(hki)]
h+k=2n A(BKke) = A(hkg) and  B(Bkf) = -B(hke)
k+4 =2n A(hlzjz) = A(hke) B(hkt) = -B(hke)
A(hke) = A(hke) B(hk{) = -B(hke)
h+k=2n A(fke) = A(hkg) and  B(hke) = -B(hke)
k+f=2n+1 >A(hl—<2) = -A(hke) | B(hke) = B(hkt)

A(hki) = -A(hke) B(hkf) = B(hke)

h+k+2n+1 A(hkt) = -A(hkt) and  B(hke) = B(hke)
k+4 =2n A(hke) = A(hke) B(hkt) = -B(hke)

A(hkf) = -A(hke) B(hk{) = B(hkt)

h+k=2n+1 A(hkt) = -A(hkt) and  B(hkt) = B(hkt)

k+4¢

2n + 1  A(hke) = -A(hke) B(hke) = B(hkt)

A(hki) = A(hke) B(hkf) = -B(hke)
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11_, L 4{5 Voront  [Fom f,d:lm Address Comments
b0 0300 | e ]
o 030°, | 130 | mun, e | o
| 3 4400 | 28 ! DLE | 0484 | (rB) = Bp
e i T S = -
| i1l 1 1o L CAA | 0200 .. (rA)=hhookk ool
_ l.._._.__,48 | SRA | 0004 . ___ =ooocohhookk _ B
%l 1 12 | ADA | 0200 | = hh o(h+k) ofk+2) |
S 40 | STA | 0420 % ) |
- 6| 10 | CAD | 0429 (rA) = 01 0001 000}
g 7 17 | EXT | 0420 )
L 8 0600 |36 BFA , 0344 | Branch if htk, ktf are e, e e
9, | 0200 |36 | BFA 0333 | " v v e
0310 6200 136 | BFA . 0322 | " g4 |
1 11 | CSU_| 0406 (xA) = -A(hke) o
| 2 40 | STA | 0407
| 3 40 | STA | Q408 |
- * 10| CAD | 0406 = A(hke)
5 40 | STA | 0409
| 6 10 | CAD | 0410 = B(hke)
7 40 | STA | 0411 | -
B 40 STA | 0412
9 111 . Ccsu | 0410 | = -B(hke)
0320 40 | STA | 0413
! 30 | BUN | 0300 _
| 2 11 | CSU | 0406 = -A(hki) ]
3 40 | STA | 0408 -
4 40 | STA | 0409
5 10 CAD | 0406 = A(hk{) A
6 40 | STA | 0407
/ 10 | CAD | 0410 _ = B(hke) ,
8 40 | STA | 0412 .
9 40 | STA | 0413




jaS]
I
jos]

( conen Sl Voront  Nun TTO'G‘:!pm. fodress Comment: :M i ~§
o 033%] | 11 lcsulo410 | (rA)=-B(hke) .
- L 40 | STA | 0411 | ) B
2! | |30 | BUN | 0300 |
S0 |11 _CSU | 0406 = -A(hkt) 9
L 140 | STA | 0407
- 40 | STA | 0409 )
6 10 | CAD | 0406 = A(hke)
7 40 | STA | 0408 B
| 8 10 | CAD | 0410 - B(hkd)
ST N B 40 | STA | 041l
0340 40 | STA | 0413
L 11 | Csu | 0410 = -DB(hkd)
2 40 | STA | 0412
3 30| BUN | 0300
4 10 CAD | 0406 = A(hk#)
5 40 | STA | 0407
6 40 | STA | 0408
!r 7 40 | STA | 0409
... 11 | CsU | 0410 = -B(hke)
9 40 | STA | 0411
0350 40 | STA | 0412
,L 1 40 | STA | 0413
2 30 | BUN | 0300 i}
3
4
5
6
7
8
9
{
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Example 2.
, 5 . .
Space Group PZ - CZh No. 14 b as unique axis
1/n Origin at 1.
h+k+4 =2n F(hke) = F{hke)
F(hki) = F(hkt)
h+k+f=2n+1 F(hkt) = -F(hke)

F(hki) = -F(hki)
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| econon | S | Venee _EJZ - Addr Comment: |
| Locons R e s ments N
| o | | |
I i ; o S H—
] el 04 0300 - -
030 | |30 | BUN| "P" o
, 4] 44400 28 | DLB | 0484 | (rB) =Bp .
- 2l |1 |10 |l caa | o200 (rA) = bh oo kk 0o £4

‘.. |48 | srA | o004 | -
4L 1. l12 | ADA | 0200 (rA:03) =k + 2 (rA:63) =h+k.
- > 48 | SRA | 0004 f
| 6 1_[12 | ADA | 0200 (rA:03) =h+k+1
| 7 40 | STA | 0420
| 8. . 4412 |40 | STB | 0560 |
9+ 10 | CAD | 0403 B
- 0 1 133 | BSA | 0321 Branchif sign of h is negative .

1 10_| CAD | 0429 = 01 0001 0001

2 17 | EXT | 0420

3 4202 |26 | IFL | 0560
l 4 0201 |36 | BFA | 0318 Branchifh+k+f =2n+1
; 5 10 | CAD | 0406
| 6 40 | STA | 0408
:L 7 30 | BUN | 0300 .
L 8 11 | CSU | 0406 |
| 9 40 | STA | 0408 |

0320 30 BUN | 0300 |

1 043 | LSA | 0000 Change sign h ta + _ "

2 + 40 | STA | 0403 ;

30 10| CAD_| 0406 ;Q

4 40 | STA | 0407 |

5 4203 |26 | IFL__| 0560

6 10 | CAD | 0429

7 17 | EXT | 0420

8 0201 |36 | BFA | 0332 Branchifh+k+£ = 2n+.1

9 10 | CAD | 0407




{ Loconen % %“é' Variant vy ff°2[2ho. Address E Comments B
e by -t f - - =
S U | | B
033" | 140 | STA | 0409 ]
. 1) 130 | BUN | 0300
20 | l11.]_CSU | 0407
_ 140 | STA | 0409 ]
.. 130 | BUN, 0300
5
6
;
1
' 0!
1
2
| 3
: 1
5
| 6
[L 7
| 8
0
1 —
2
3
4
5
6
.
8
9
ol 04 0556 )
4400 |28 0560
6 04 0568 N

0002

21

0557
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PROPOSITIONS
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1. In a good many crystal structure investigations, particularly

of organic crystals, the whole of the molecule can be formulated as a
rigid body; that is, models of one or more plausible configurations

can be constructeds,’, say, using the Corey and Pauling atomic models.
For each such model a set of positional coordinates can be computed
relative to a set of molecular axes, Only six parameters (three trans-
lational components and the three Eulerian angles shown in figure 1)

are required to define the transformation from the molecular axes to
the fractional coordinate system of the unit cell.

I propose that the preliminary manipulations ’of the more plausible
trial models can be greatly expedited by use and refinement of the six
rigid body parameters.

In many instances the failure of the usual least-squares process
during the early stages of the application of the method can be attributed
to the convergence of the positional parameters to false minima in
which the atoms appear to be completely oblivious of reasonable inter-
atomic distances and angles. I argue, therefore, that during these early
stages, the model must be refined in such a way that the interatomic
distances and angles remain invariant from one iteration to the next,
thus avoiding all false minima in which these invariances are not ob-
served. The refinement of the rigid body parameters will preserve
the interatomic relationships of the trial model. In the last part of this

proposition I have developed the least-squares equations which allow for
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the refinement of the rigid body parameters. These equations make use
of the structure factor and derivative expressions already derived for
use in the usual application of the least-squares.

When the correctness of the trial model has been substantiated
and no further improvement is obtainable from the rigid body least-
squares, the present least-square methods can be used to continue
the refinement. Assuming that the perversity encountered during a
refinement is proportional to the number of independent parameters
being refined, one can see that it will be constant from structure to
structure using only the six rigid body parameters while it is propor -
tional to N/2 times the same constant if the present least-squares
process is used (where N is the number of atoms). Thus it appears
possible to greatly simplify a problem by use of a rigid body least-
squares method. This suggests another plausible application of the
method.

I think that it could be used for problems in which the number of
parameters has become too large to handle by usual methods, such as, .
in large polypeptides, crystalline globular proteins or other large
molecular substances. The individual amino-acids or other structural
units can be treated as rigid bodies; thus only 6R parameters need

be refined.
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In addition, 1t seems feasible that the Monte Carlbo method
could be used to produce a structure-probability map of the six dimen-
sional volume defined by the limits of the six rigid body parameters.
The structure-probability map would have local maximums in regions
where the sextet of transformation parameters give an acceptable
packing of the trial model into the unit cell. That is, the six parameters
would be obtained by a random number generator and the trial model
would then be transformed into the unit cell. The resultant molecular
packing would be tested to see that no intermolecular distances are too
short with respect to the requirements of the unit cell dimensions and
the space group symmetry. In practice, a computer program could be
written to seek and print out sextets of paramet‘ers which give accept-
able packing. Each of these could be tested to see that they make
chemical sense. Those passing the last test could then serve as a
starting point for the rigid body least-squares.

In the reméinder of this proposition I develop in a general form
the ﬁgid body least-squares equations.

Let us consider the atom i of a rigid body trial structure; its
coordinates with respect to a set of Cartesian molecular axes are
I_J_i = (UiViWi)v' We shall c.onsijder the transformation of these coordinates
into the fractional coordinate system of the unit cell as a two step pro-
cess. The first step is a general rigid body rotation and translation

to give new Cartesian coordinate positions }_(_i = (XiYiZi) which are
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related to-the unit cell positions x = (Xiyizi) by the usual orthogonalization
relations (see section iv of part II of this thesis). The second step is
the inverse of the orthogonalization of the unit cell coordinates.

We write the first step in matrix form: Xi =TI +R U., where
- -——  — i

I is the identity matrix, T is a 3x3 diagonal matrix whose only non-

11° ’c22 and t33 and

zero components are t

cospcosBcosi-singsiny -cosdcosfsiny-sinpcosy cos¢psing

117 22 33

R = sinpcosOcostcospsing -sinpcosfsinptcosdpcosy  sindsind
-sinfcosys sinBsiny cosf

Step two can be written: X = ];)__ 1)_&, where 2—1 is as defined on page

156 . Thust, ., t  andt are the three translational components

and $, 0 and Y are the three Eulerian anglés. These are the six rigid
body parameters for which we wish to find the best values. We denote this
- best set by use of an asterisk (,,), that is, t*ll 'is the best value of tll’

etc., Hence we write:

Tt T en ¥ = ¢+ e(9)
L = * =

th, =t Te,, 6% = 0 + (0)
P33 =33 7 €33 b =4t o)

Let us now write the residual equations from which the least- |

square normal equations are derivable.
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2 2

v = = |(2E o) + [HELN oy + o1F|” (z) | -AG

q . ? i ) Y F) i)
i=1 X, Yi z1

We rewrite this as

e(xi)

N 2 2 2
oIF| o|F| 2| F|
= X - { - = {
Vq . 3 5 5 e (_}El) AG, where e(z;_i) @(yi)
i=1 X. V. Z,
\ i i i e(zi)

The problem is to replace the e(gi){e(yi) and e(zi) by €11 €550 €33
e(¢), e(6) and e(y).

We assume that the step one transformation equations contain
the best rigid body parameters, and make the substitutions t*ll = t11+ e
etc. Now we expand the transformation equations in a Taylor series
neglecting all terms in which e is of an order gre‘ater than one; The
result is: }_(_*i = 2_1_ TR I_J'_i +EL 4 E—}i e, where E isa diagonal matrix

whose only non-zero elements are e11’ €2 and 633,

(ax./0¢) (08X, /86) (9, /8Y) e(¢)
p = | (0Y,/09) (97 /06) (8Y./0¢) and e = [e(6)
(02,/0¢) (82, /80) (92, /%) el

Table 1 lists the matrix elements of P, explicitly. Since TI+ R U, = Xi’

—p SEPUCILY. el e
we rewrite this equation in the form: e()_(_i) = X* - }_(_i =EI + I—)-i e, But
e(}_{_‘i) is the orthogonalized value of e(_}fi)., These are related by

e(?_;_i) = _D_—le(}_gi) = Dnl(g I+ E_’i e). The residual equations are now

written:
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M2

Vv =

. [(a1F1%/0%,) (a1F 1%/ 9y,) (a1F1%/92)] DT (EL + B, o) -AG .

i=1
This equation can now be used in the usual way (2) to set up the six normal

equations which are used to refine the six rigid body parameters.
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Figure 1. - The Eulerian angles (1).
<
1) Rotation ¢ (0 = ¢ < 27) about W takes U to U' etc.
<
2) Rotation 6 (0 = 6 < 7) about V' takes U' to U'" etc.

<
3) Rotation ¢ {0 = § < 27) about W' takes U'' to X etc.
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Table 1, The matrix elements of Ei'

‘ (BXi/ac{)) = (-—sin({:ocochosLlJ—cosesim{J)Ui +(sincﬁcos@sintp—cosc[)cos‘.P)Vi +

(-sing sin@)VVi
(BXi/BG) = (—cos¢sin6cos¢)Ui—l;(co sc@sin@sintp)'\fi+(cosc@cos@)\]&fi
(BXi/ali) = (—cosq)cos@sin¢5—fsin¢cos¢)Ui+(—cos¢cos@cos¢+sinc{>sin¢)Vi

(8Yi/8¢) = (c:osq)cos()cosq.l—sinc{;sinli)Ui-l-(—cos¢_costinLl.:—simpcosqj)vi +
(co s<[>sin@)'\?§f11
(8Yi/89) = (-sincpsinGCOSLp)Ui+(sinc&sin@simp)viﬂsinc{>cos@)W

i

(aYi/aLp) = (—sincf;cos@sinqﬁcos<§cc>SLlJ)U1,‘-l-(--sincbcosOcosq,t—cosd];simp)Vi

(azi/acp) =0

( 82’1/ 00) (-COS@COSL‘P)U_.L’F(CO’SQSinLlJ)Vi'i'(—SinQ)Wi

1

( 92/ ) (sinesian)Ui+(sin9co qu)Wi
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2. For three years I watched the freshmen in their traditional
struggle through Swift's ""A System of Qualitative Analysis for a
Representative bC}r’ofJ.p‘of‘ the Cheﬁical Elements'' {1957).. The majority
of the students are able to follow the procedures quite well until théy
get into the aluminum-chromium group (T.0. 13, page 261). At this
point several students do not find any Al or Zn when they may have one
‘of these in their sample. It may be that they ha\}e lost the Zn to the
Pb group or perhaps they inadvertently removed some of the precipitates
along with the benzoic acid while dissolving the benzoate precipitates as
directed in procedure 72, page 264. How this situation arises is worth
further study; however, I wish to propose an alternative procedure for
the detection and the estimation of Al and Zn.,

I propose to start with the first precipitate under TO 16 on page

286, The following outline details the proposed system:

Precipitatés: HZSK) , SnO2 XZO' PbCO3, CuCOS, Al(OH)S, ZnCO3
Add HNO3 (6N) until CO2 ceases to be evolved, dilute to 6 ml.
Residue: H_SiQ,, SnO_. . H: O Solution: P‘b++, Cu++-, A1+++, Zn++, NO_
2 3 2°x 2 3

Treat for HZSJLO3 Add: I and cool in ice.

. -12 - - -
Residue: Cul (KSP=4XIO ) Solution: AZ-lH-+, Zn++, I3 , I, NO3
Pbl_ (K = 1x10'8) Remove I with SO, or extract with

2 sp 3 3
Discard or use to estimate CCl4 and tritrate for IZ°
for Cu and Pb. Add: NH4OH
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. 4o
Residue: Al{OH) 3 Solution: Zn(NH3) 4
To aluminon test procedure Titrate with HS (see procedure 76)

75. (Confirmation: procedure 77)




243

3. In the intrO(liuction to part 1 of this thesis, I have stated that
the information obtained from the comparative crystallography of the
methyl-substituted ureas can be used to deduce the trial model struc-
tures of related compounds. I, therefore, feel somewhat obligated to
use the information to predict the structure of some compounds in
which I happen to have become interested, I propose that biscisD -

amide chains are the major structural feature in the following three

compounds;
] I
H /C H H C H H H
N\ \/N N/ \/N N/ \N
C——~cC C =—=—2¢C C — C\‘
H H H H H CH3
2 2
(I) mp. 131°C (II) mp. 250°C dec. (I11) mp. 121°C
2-keto-1,3-diazo- 2-keto-1,3-diazol- 4-methyl-2-keto-
lidine {cyclo-ethyl- 4-ine (2-imidazolone) 1,3-diazol-4-ine
eneurea) '
i) Introduction,

The structures of (I) and (II) are proposed in detail in this
proposition. Note also the anomalous differences in the melting points
of these compounds. The fact that (II) decomposes before melting
indn';cates that some solid state reaction occurs. The packing of the
molecules in the crystals of (I1) suggests that a free-radical polymeriza-

tion may be occurring; thatis,
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H ¢« N H
N -~
HC/N\ HC \C_O
” C=0 -
/ polymers and
C HC
H \NH \NH other products
—
H H H
_—=C oC C—H

N/ \N
H \C / H HN\ /NH
I i

© o)

ii) The structure of cyclo-ethyleneurea (I)is proposed.

-~ Although I was able to predict the nature of the hydrogen bond
chains, I could not predict the packing of the chains without knowledge
of the unit cell dimensions and space group. Since the unit cell informa-
tion was not available in the literature, I synthesized about 5 grams of
the compound using the procedure reported by Fisher and Koch (1). Their
procedure is to place stoichiometric portions of pure ethylenediamine and
diethyl carbonate into a sealed tube, The tube is then heated for six
hours in an o0il bath a’; 180°C.

In my experiments I used a stainless steel reaction bomb of

about 30 ml capacity instead of the sealed tubes. (I wish to thank Dr.
Robert L. Poynter of the JPL laboratories for the l(;an of the reaction

bomb used for my work.) The product was recrystallized from ethanol
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until colorless crystals were obtained. One of the crystals was

mounted parallel to its c-axis. This crystal was used to obtain a rotation
photograph, zero and first layer (hk0O and hkl) Weissenberg photographs
plus (h0£) and (0kf) precession photographs. These showed that cyclo-
ethyleneurea is orthorhombic with a = 11. 86 ;x., b=13.42 Pos., c=9.92 A;
space group Fddd:(Dgi— No. 70); Z = 16; density (x-rays) = 1.45 g cm—3.
The density by floatation was found to be about 1.425-1.430 g cm-3;
however, because of the flaky nature of the crystals used for the float-
ation experiments the accuracy was very poor. In view of this, I think

" the two density observations are in fair agreement.

The structure of one chain was assumed to be planar except for
the ethylene hydrogens. A drawing of a few links of the chain was pre-
pared by using predicted bond distances, and assuming a cross ring N
to N distance of 2,256 A and assuming a hydrogen bonding distance of
2.90 A. This showed that the most probable orientation for the chain
axis must be coincident with the ac face diagonal. (I have taken the
origin of the space group Fddd to be at a center of symmetry.) From
these deductions, proposed structural coordinates were obtained. I
decided to calculate the structure factors for a few reflections because
I was anxious to test the structure.

The first calculation showed poor agreement for the (0k0) reflec-
tions, These reflections are quite sensitive to the a.ssumed length of

the hydrogen bonds. These could be improved by shortening the hydrogen
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bond to about 2.75 4& A second structure factor calculation was made
using the coordinates obtained from the new model; the proposed co-
ordinates are given in table 1. The results of the structure factor cal-
culations are given in table 2. The proposed coordinates are probably
correct to within 0.15 A, Visual comparison with the x-ray photographs
indicates good agreement, There are a few cases where the relative
magnitudes of the observed intensity and the computed structure factor
appear reversed. These are probably due to minor inaccuracies in the
proposed atomic coordinates, and a refinement of the structure would,

I am sure, remove these inconsistencies.

Table 1. - Proposed coordinates* for cyclo-ethyleneurea.

Atom Cx y z
C1 -0.125 0.035 0.125 a special position
N -0.052 0.089 0.052
o) -0.125  -0.058 0.125 a special position
CZ -0.075 0.194 0.075

*Since the molecular two-fold axis is utilized by the space
group, it is only necessary to give the coordinates of one asymmetric

portion.
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Table 2. - Calculated Structure Factors for cyclo-Ethyleneurea Using

the Proposed Coordinates given in Table 1.

F F
0k O ¢ 12k0 ¢
0 640.73 0 - 28,49
4 - 23.45 4 4,12
8 - 131.14
12 - 5.99 1k 1
16 - 3.33 - 1 - 86.53
3 - 43,98
0k2 5 . 18. 68
2 - 134. 61 7 - 39.87
6 - 32,02 9 - 7. 64
10 - ~0.88 11 23.82
13 1.46
0k4 15 1.06
0 - 125.82
4 - 54,15 3kl
8 47.75 1 173.58
3 - 77.04
0kb 5 - 5.19
2 - 89.98 7 - 31.66
6 - 5.52 9 - 40.91
11 12.09
0k8
0 - 22.72 5k1
4 30. 89 1 104.98
3 66.19
2kO0 5 24,72
2 141.82 7 21,79
6 33,08 9 - 37.32
10 0.87
14 9.31 7kl
1 - 28.32
4%k0 3 - 1,45
0 - 145, 80 5 - 4,75
4 - 61.41 7 35.39
8 52,28 9 - 1.49
12 32.01
16 - 5.71 9kl
‘ 1 16,50
6 k0 3 20.22
2 116.01 5 - 13.22
6 7.74 7 - 0.61
10 - 48.61

14 1.69



Table 2. (continued)

F
c .

30.98
41.33
8.82

34,12
23.51
22.85

2438

11 k

c
28,42

8.11
10.80

12.01
12.29

4,66
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iii) The structure of 2-imidazolone (I1) is proposed.

Fenton and Wilks (2) synthesized {II) from urea and dihydroxy-
maleic acid. They reported that the crystals are tetragonal, probably
holohedral with c/a = 0.7063. The forms present were: a 100 quite
small and not found on all crystals, p 111 large. The angle
ap (100:111) is 60° and pp”'(lll:_l-l-l) is 90°. The crystals are uniaxial
and negative.

I have assumed that the molecule lies in a mirror plane with
the C=0 bond coincident with a 42 axis. The packing of two molecules
along this axis would give a c-axis repeat distance of 14.2 A . A value
of 5.00 A was obtained for the a-axis by using the postulated distance
for the c-axis, anci assuming that the repeat unit‘in the biscisD-amide
chain is 7.1 A long and that the goniometric axial ratio corresponds
to the expression: c/4a = 0.71. The density calculated from the de-
rived cell dimensions is 1.51 g crn_3 for four molecules per cell. This
value is higher than th¢ density for cyclo-ethyleneurea and is compat-
ible with the corresponding higher melting point. The trial coordinates
listed in table 3 were obtained from a drawing of the trial model, made
by using predicted bond distances and angles.

The NH***Ohydrogen bond distance between adjacent molecules
in the biscisD-amide chain is taken to be 2.8 A. Viewed down the c-
axis, one would see layers of parallel chains. The (iirection of propa-

gation of the chains in two neighboring layers is perpendicular and
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oriented at 45° with respect to the a and b-axes. The space group

iy . . 16
for this trial structure is P42/n Zl/c 2/m (D4h -No 138).
Table 3. - Proposed coordinates for 2-imidazolone. The origin is

taken to be at a center of symmetry.

Atom x y z

O —0.250 0. 250 -0.027
C1 -0.250 0.250 : O._O61
N -0.093 0.093 0.110
C2 -0.156 0.156 0.206
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4. Synthetic methods fc?r the preparation of several related deriv-
atives of substitute‘d methyleneurea are proposed. A ring closure
method is proposed as an alternative technique for the synthesis of
substituted uretediones. A method for the preparation of 1-methyl-2-
imidazolidone is also appended.

i) The synthevsris of methyleneurea (I) was reported by Hemmel-
mayr (1) and later by‘ Dixon and Taylor (2). Schiff {3) reported the

synthesis of related monoethylideneurea (II).

I i I
H—N/ \N—H H—N/ \N—H $-N \N-¢
NS N\, N
5 57 en ﬁ

(1) \(11) (111)

I repeated the Dixon and Taylor synthesis. A powder x-ray
diagram of the product indicated that it is either micro crystalline or
an amorphous polymer. Taylor (4) énd Kadowaki (5) have already
postulated the polymeric nature of this material using chemical argu-
ments. It appears that there are no confirmed syntheses of substituted
methyleneureas.

An examination of the literature for other compounds with the

same basic ring structure disclosed that the compound diphenylurete-~
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dione (III) had been synthesized by Hoffman (6). He obtained this
product from the dimerizaiion of phenylisocyanate in the presence of
pyridine. The basic ring configuration was confirmed by X—rayA analysis
by Brown (7). Although the interatomic distances in fhis structure
determination require further substantiation (8), the basic configuration
reported by Brown is undoubtedly correct. Thus I feel that N,N'-
substituted derivatiyes of (I) should also exist and be reasonably stable
at room temperature.

In the following discussion two different routes for the synthesis
of substituted methyleneureas are put forward. The firstis a direct
attack via ring closure techniques. The second is by reduction of the

known substituted uretediones.

ii) Synthesis of substituted methyleneureas by ring closure.

The ring closure reaction step is necessarily competitive with
a polymerization reaction. Itis, therefore, important to give some
consideration to the steric configuration of the reacting system so as
to maximize the desired ring closure while at the same time decreas-
ing the opportunity for polymerization.

The intermediate formation of N,N,N"—trisubstituted ureas in
which the cis N, N'-urea éositions contain unreactive substituents
(say, for example, methyl groups), while the trans position contains

the reactive substituent, represents one avenue of approach. A one
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step synthesis of the desired product may possibly be accomplished
by reacting N, N'-dimethylurea and ethylal, EtOCHZOEt, The first
step in the reaction between these two compounds would give the desired
urea intermediate. The trans —CHZOEt substituent has the advantage
that there is reason to hope for the formation of an intermolecular
hydrogen bond similar to the type found in biuret (see figure 19 on page
108). This feature should favor the elimination of EtOH with subsequent
ring closure. Other ‘candidates as a suitable trans substituent are
CHZBr and —CHZSH groups, where in the latter case the elimination
of HZS could be enhanced by use of mercuric compounds.

There is some question as to the stability for the product in
the reaction mixture. A partial answer to this problem can be obtained
by consideration of a ring closure procedure for the preparation of
diphenyluretedione (III). I think diphenylurea and diethylcarbonate may
react by ring closure to give (III). The isolation of (ITI) from the products
of the reaction, indicating that the ring closure does occur, would
strengthen the hope for the success of the method for the preparation
of the substituted methyleneureas. A continued failure to isolate the
corresponding methyleneurea would probably indicate an instability of
the product.

The reactions of RNHCHZNHR with diethyl carbonate or phos-

gene look attractive as another avenue of attack.
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iii) Synthesis of substituted methyleneureas by reduction of

the corresponding uretedione.

It is cogent to consider the reduction of substituted uretediones
to give the corresponding substituted methyleneureas. Some chemical
rbeagents that might work are diborane dihydride and LiA.1H4.' Both

catalytic and electrolytic hydrogenation methods are possible approaches.

iv) Synthesis of 1—methyl—Z—imidazolidone.

1 propose the following synthetic route for the preparation of
l-methyl-2~imidazolidone. Heat stoichiometric quantities of pure
CH3NHCH2CH2NHZ and diethyl carbonate in a sealed reaction bomb

for 6 hours at 180° C.
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5. I propose a method for manipulating a set of normal equations
for which the determinant of the equations is of an order less than

the number of parameters being refined.

i) Introduction,

I wish first to explain how such a situation can arise- (1).
Assume that a set of observed quantities FO is adequately represented
by a non-linear function F (X), where X denotes the set of parameters
{hi} . Supéose further that there are other sets of parameters, say
{Ai + a} (where a is any arbitrary constant but is the same constant
for all )ti), which equally well representsk the observables. This means
that the }Li are not linearly independent. Assume that the linear
relationship is unknown. Further, suppose that for purposes of other
physical considerations any one of the equally satisfactory parameter
sets suffices as a basis for making significant inferences.

Thus we wish to refine by least-squares methods an approximate
set of parameters {gi} 50 as to make it converge to any one of the
{Ai} sets. Let us assume 7Li = E,i + € and by Taylor series expan-
sion a residual equation linear in the éi is obtained which in turn is
used to give the normal equations: M € =0Q . Because‘ of the linear

dependence of the parameters, the determinant of M is equal to zero.

The question now is how do we proceed?
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ii) A method of solution is proposed,

Aésume that there are m normal equations and that the order
of M is n, where m =n + 1. The geometric representation of the
normal equation matrix is a surface in m-dimensional € space, which
‘must look like an elliptic cylinder, since all minors of the diagonal
elements of M are symmetric positive definite, Let N be the minor
consisting of the first n by n elements of M . We first solve for

the line of centers of the cylinder. By matrix methods we obtain:

) 1 e 1 Im 1 ) Im 1
I = N o =1,

° . Gm o Em

En 1 Tam qn _anm

And the equation of the line in parametric form becomes:

€.=qi—a. € fori=1"ton
i im m ;

€ = € , where € is the parameter,
m m m

Any point along this line defines a theoretically acceptable set
of €, shift values. For example, taking €, = 0 is particularly con-
i
venient, since it permits us to ignore the column of terms = to ~a .
m nm
Another choice, where a digital computer is used to accumulate the
-1 . .
elements of M, would be to take € =M Q.- (It is unlikely that the

determinant of M would be identically zero, because of the inherent

digital limitation of computers in general.) The objection to this method
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is that the ‘set of ei could be inconveniently large. However, the fact
that this choice might be reasonably acceptable could mask and pre-
vent the detection of an inherent singularity in the system of equations,
As we shall see, the best method for choosing € is to
‘demand that the m-dimensional distance from the origin to the cylinder

. .. . 2 .
axis be a minimum. Thatis, we want 53 (e.)” to be a minimum. This
1

i=1

requires that
m ‘ n
> €(0e€. /8 )=0=€¢_ - X a € . The optimum value of € is
i;]_ 1 1 m m 1:]_ im 1 m

m

1?1 a‘Ii.]:)."lql
given by € =

m n
1+ 2 a, .
j=z] 1m , since

n
2 n
0¢ -Z a, €. =€_- % a, (’qi—a.e):€(1+,2a, )- 2 a, q.
m i=1 im i m i=1 1m:. 1m m m 1=]1 1m i1=] 1m "1

Once the value of € is available, the other shift values are easily com-

puted using the parametric equation of the line of centers; that is,

%74 Ym e

iii) - Statistical significance.

The values for o-(ei) for i = 1 to n are computed in the usual

-1
way from knowing the value of the elements, denoted nij’ of N and

2 ' 2 A
the sum of the squared differences (FO-F(}\)) , denoted as A . Thus
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> 1/2
we have O"(E_l) = [nij ZA /(r-s)] , where (r-s) is the excess of
data over parameters determined.
The value of O‘(Em) is obtained from the expression

€ = Z a. € by use of the addition rule of variance (2)

0.2@14_42.1. én) = (rz(t_,l) +o‘2(§2) + oo +0'2(§n) and the rule

that o(al + b) is equal to jaj o (¢). With these we find that

1/2
n 2 2
iv) Other suggestions.,

Quite often the normal equations are solved assuming that the
off-diagonal terms are zero. I suggest that the geometric orientation
of the ellipsoid be determined for a series of related problems for both
the complete matrix and the matrix obtained by assuming that some
elements are zero. These then can be examined to determine if there
exists a mean or systematic shift factor relating the exact shift to the
approximate shift. (For example, it might be found that the exact
shift is always less than the approximate shift by about a factor of 3/4.)
The knowledge and use of such a factor could then expedite the refine-

ment of the parameters.
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6. A proof of a linear dependence among the least-squares shifts

and among the parameters themselves in polar space groups is proposed.

i) Proof of linear dependence of parameters in polar space groups.
We have a function G(x) where x denotes the set of parameters

{Xi} . We also know that G(x) = G(x + a), where a is any arbitrary

constant. Let ¢ (a) denote the set {Xi + a} . We can write the

equation of the dependence in parametric form. Since {,i(a) =X, + a,

we have ¢ (a) =x_+a. Letus takea = - x_, where p is another

m m m
arbitrary constant. Thus we have gi(a) = Qi(p) =x -x_+p and

¢t (p) = p. Thus we see that we have a linear dependence of the ¢
m i

for 1 =1 tom-1 on{ in a parametric forms,
m .

ii) Linear dependence of the shift terms.
Let a best parameter set be denoted as A = {Ki} , where
A =x + €. Wealsohave A (a) =x. +¢€ +a. Leta=pn-€ , then
i i i i i i m
= = - - da =x + p If 1
we have hi(a) ki(pu) x, + € - € +p an lm(p) Xt we let
A = € -€ +u, and A =, we see that we have a linear dependence
i i m - m

of the A, for i =1 to m-1 on the Am in a parametric form, This
i
linear dependence implies that the least-squares equations M A = Q

must be singular and the determinant of M, denoted IMI , is equal to

ZEero.





