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Abstract

Optical techniques fbr performing two computing tasks are investigated. First,
acousto-optical systems that implement adaptive filtering structures are presented
for operation in environments that are not well characterized e prior: or are time-
varying. Theoretical analyses along with experimental confirmations are given to
identify the important system parameters that affect the performance. Extensions
of the systems to the multidimensional domain of phased array signal processing
are discussed as well as novel implementations that use photorefractive crystals as
time-integrating elements.

Also investigated are various associative memory models. An acousto-optic
implementation of the so-called Hopfield model is presented. The system’s storage
capacity and attraction radius are characterized experimentally and are shown to
agree with computer simulations. Secondly, an upper bound is derived for the
storage capacity of holographic associative memories that use planar holograms.
It is shown that if the space bandwidth product of the hologram is N;, then the
holographic memory can store at most N3 /N3 associations, where N3 is the number
of pixels in each output item. Finally, associative memories whose performance
is invariant with respect to shifts in the input pattern position are considered.
It is shown that nonlinear interconnections are required to achieve shift invariant

operation, and optical implementations are discussed.
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Chapter 1. Introduction

In an effort to aid the understanding of how the brain processes information,
various neural network models have been developed. Though very much simplified
from reality, such models possess certain key features found in biclegical nervous
systems such as relatively simple computing units coupled with extensive intercon-
nections among the numerous units that comprise the system. The first such model
was that of McCulloch and Pitts[1] in which each computing unit, the so-called
“formal neuron,” was, in essence, a threshold gate whose output is either “1” or
“0” depending on a comparison made between the sum of its inputs and a threshold
value. As shown schematically in Fig.1.1, the network is built up by interconnecting
the neurons using real valued connection strengths, and communication with the
external world is possible through pre-specified input and output lines.

Clearly, such systems are distinctly different from digital computers in the way
information is stored and processed. Neural nets implement a massively parallel
and distributed form of computation and information storage, whereas conven-
tional computers rely on sequential computation and localized storage of informa-
tion. While not nearly as versatile in terms of programmability as digital computers,
many algorithms for training the networks to perform speciﬁc tasks exist for ap-
plications such as pattern recognition|2,3,4,5,6], associative memory[7-14], and the

approximate solution of certain complex problems|[15-17]. Most of these training
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methods are supervised in that a sample set of inputs with known desired outputs
are used to teach the desired behavior.

One particular network called the Adaline [4] employs a simple algorithm for
learning, based on a gradient descent procedure to minimize a certain cost function.
Originally intended for application in pattern recognition, the learning algorithm
was used with success to solve problems in adaptive signal processing where dy-
namically updatable filters are required, which can be adjusted automatically to
optimize certain criteria based on currently available data and past history. These
filters generally have the same linear structure as the model of Fig. 1.1 without
the output threshold unit, resulting in a linear form. In the case of processing one-
dimensional temporal signals, the inputs z;, z3, ,..., Zy are time samples of the
signal derived by using a tapped delay line. Here, the filter learns certain statisti-
cal properties of the encountered signals, and based on this, discriminates between
useful and unwanted signals. Such filters are useful in situations wherever a priors
information is insufficient to design and construct optimal systems.

Another area where neural modeling proves to be useful is associative memories.
In contrast with conventional computer memories such as RAM or ROM where data
is stored and retrieved from locations labelled with prescribed addresses, associative
memories store pairs of data in relation to one another so that an item is retrieved by
probing the memory with its associated datum. In addition to this lack of structure

in the addressing, associative memories are usually required to exhibit some form
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of error correction to allow the recognition of addressing data that contain small
errors. Specific models have been forwarded to implement such memory systems
with neural networks [7,14,18], each offering varying degrees of storage capacity,
robustness, and programmability. Because neural networks store information solely
in the interconnections between the neurons, storage is not localized as it is in
conventional memories, and as a result, the neural memories possess certain soft-
fail robustness properties.

The fact that neural systems store data in the interconnections is an impetus
for exploring optical implementations where holographic techniques may be used
to provide the necessary connections between the “neurons.” The motivation for
using optics lies in the size of globally connected networks that can be implemented.
Also, the emphasis in neural models is on the analog interconnections and not on
the individual computing elements that are simple, and this fits well with optical
technology, where the required holographic techniques are quite mature.

This tl;esis is an investigation into the implementation of neural modeling ideas
in the domain of optics where, specifically, two problems are addressed. The first
is the problem of adaptive processing, where a system is required to adapt to vary-
ing or unknown environments. Here, the learning aspects that are required will be
discussed. Several optical approaches to the problems of adaptive filtration of tem-

poral signals [19,20,21] as well as the processing of multidimensional spatio-temporal
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signals [22,23] are presented. The generalization of these ideas to the more unstruc-
tured problem of associative memories is then discussed. In particular, capacities
of holographic memories [24] as well as invariance issues [25] are explored. In so

doing, several optical architectures for implementing such memories are presented.
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Chapter 2. Adaptive Filtering Systems

2.1 Adaptive Systems

The design of optimum systems, in the classical sense, requires a priori some
knowledge of the signals to be encountered. As a result, such systems perform
poorly when the appropriate characteristics of the input signals are not known a
priort sufficiently well or are time-varying. An adaptive processor has the ability
to self-optimize by continually monitoring its performance and updating its param-
eters. Adaptive techniques have been applied to both the spatial and temporal
filtering domains. Specifically, adaptive techniques have been applied to antenna
array processing by Appelbaum(1], Widrow et al.[2], and others [3,4]. Applications
to time domain problems include Lucky’s work on data redundancy removal [5],
Sondhi’s adaptive echo canceller[6], Widrow’s work on adaptive noise suppression
(7], Morgan and Craig’s adaptive linear predictor [8], and more [9,10].

In the work on time domain problems cited above, the adaptive filtering scheme
is based on the orthogonality principle [11]. The basic idea behind the algorithm
is to control a variable filter so as to minimize the correlation between the input
signal and the residual signal, which is the difference between the input signal and
the filter output. A particular implementation of this scheme, shown in Fig. 2.1,

uses the transversal filter architecture, which consists of a tapped delay line, variable
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filter weights, and a summer that produces a weighted sum of delayed versions of
the input signal as its output.

The linearity and parallel nature of the transversal filter arrangement, com-
monly called the correlation cancellation loop (CCL) system, make an optical im-
plementation possible. The advantages of optical processors in terms of bandwidth
and the large effective number of taps make such an implementation attractive. For
example, acousto-optic devices (AODs), which can serve as optically tapped delay
lines, .are superior in terms of bandwidth to charge coupled device (CCD) imple-
mented delay lines that are currently used in analog adaptive filters [12,13]. Several
adaptive optical filter implementations have been previously proposed. Psaltis et
al. [14,15] proposed the use of an iterative electro-optic processor for adaptive spa-
tial filtering of phased array antenna signals. Rhodes [16] described a system using
acousto-optic and electro-optic modulators in a time-integrating architecture to im-
plement the CCL algorithm in the time domain, and VanderLugt [17]| described
an optical processor which is a frequency domain implementation of the CCL algo-
rithm. Lee et al. [18] have devised an adaptive filter that suppresses narrowband
interference from wideband signals using an acousto-optic spectrum analyzer with
an array of electro-optic modulators in the spatial frequency plane that can adap-

tively excise strong narrowband components of the signal spectrum.



11

WN)

N DELAY ELEMENTS

z(t)

Fig. 2.1 Linear Transversal Filter

OUTPUT



12

2.2 Learning Machines and Adaptive Filters

Adaptive filtering can be viewed as a pattern recognition problem in which
certain waveforms are automatically classified as useful signals and others as noise
to be rejected. Linear time-invariant filters can be synthesized using a transversal
structure as shown in Fig. 2.1 in which the input waveform feeds a tapped delay line
whose tap weights are given by the desired impulse response function. An adaptive
filter. with this structure constantly updates its tap weights based on how well the
system performed with respect to some criterion function. Recognition machines
that use the linear discriminant function (LDF) to classify patterns use basically
the same structure as the adaptive filter. Shown in Fig. 2.2 is a general linear
machine that uses LDFs to classify patterns into two groups, where each pattern is
represented by an N dimensional vector z,,. The input bits are linearly weighted
with the vector w and compared to the bias value #. Based on this comparison, the
input pattern is assigned to one of two classes represented by the binary outputs +1
and —1. The choice of the weights depends on the patterns that the machine will
encounter and also on the particular label assignments. The appropriate weights can
be generated by using an algorithm that teaches the machine by repeatedly showing
the input pattern and the associated label (+1) as the desired output response.
In particular, the Perceptron [19], which operates on inequality constraints and

requires threshold decisions during the training phase and the Adaline [20], which
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is an algorithm based on related constraints have received much attention several
decades ago.

The Perceptron ﬁpda.tes its weights only when the machine makes a mistake
in classifying a particular pattern. The change made to the weight vector is pro-
portional to the pattern that resulted in the error, and under certain conditions,
the alggrithm can be shown to converge to give the weight vector that correctly
dichotomizes a given set of patterns if such a solution exists [19]. The Adaline, on
the other hand, makes changes which are proportional to the size of the error for
every training pattern it receives. If the training patterns are repeatedly presented
to the machine along with their associated labels, then the magnitude of the changes
decreases with time, and the weight values settle to constant values. If the weight
solution exists, then the converged weight vector is the solution.

To discuss adaptive filtering from the viewpoint of learning in recognition ma-
chines, it is useful to examine the Adaline rule in more detail. Let the N 4+ 1 dimen-
sional vector a(k) represent the weight vector at the k;j, iteration. The weight vector
has been augmented to N + 1 dimensions to include the bias term ay4;(k) = 4,
which is to be learned also. To dichotomize the set of M {N +1) dimensional vectors
{ g:_m}:f:l where the m,; vector has the label ¢,,, the following infinite sequence of
training patterns and labels can be used: (z,,¢1), (24,¢2),.--, (Zagscnr), (Z15€1)5-- -
Let y(k) be an N + 1 dimensional vector whose first N elements are equal to the

corresponding bits of the k;; pattern of the infinite training sequence, and the last
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bit yx+1(k) is equal to 1 to supply a constant input for the bias weight. Also, let
b(k) be the label of the pattern presented at the k.h iteration. With this, the weight

update rule is defined by the recursive equation
ak +1) = a(k) + p[b(k) ~ a* (£)y(k)]y(K), (2.1

which is convergent for sufficiently small p. This algorithm changes the weights by
following an approximately steepest descent path on the mean-squared error surface
(defined on the N + 1 dimensional weight space) given by
M
e=(1/M) Y (em — aly(m))”. (2.2)
m=1

As long as the finite set of training patterns is linearly separable (i.e., they can be
dichotomized by a linear machine), the Adaline will learn to correctly classify the
samples, driving the error term given by b(k) —a’(k)y(k) to zero. As an example, we
consider the following simple example. We wish to dichotomize the set of numbers
{3,17,41,10,18,46} into sets of even and odd numbers by training a machine with
the 6 bit binary representations of the numbers. An obvious way to dichotomize
the numbers is to consider only the least significant bit (LSB), since the LSB of
even numbers will be “0” while for odd numbers, it will be “1,” but we use this
example to train the machine to dichotomize the data by rote memory, where we

have assigned the label “+1” to even numbers and “—1” to odd numbers.
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Fig. 2.3 gives the binary representations of the numbers (the training set)
as well as a plot showing the decrease in the output error with increasing itera-
tions when the training sequence {(3,-1), (17,-1), (41,-1), (10,+1), (18,+1), (46,+1),
(3,-1), (17,-1), ...} is used for three values of the acceleration parameter, p. Values
of p greater than .6 resulted in diverging weights. For this example, the machine
was able to match exactly the desired binary outputs. The algorithm will converge
even for training sets that are not linearly separable, and the resulting weight values
will only approximately dichotomize the set.

A linear predictor [21] is a filter whose output estimates the future value of
the input signal by a linear combination of the past values that it encountered. For
optimal design in the sense of mean-squared error, the second-order statistics of the
signal must be known beforehand. Specifically, if z(k) represents the input time
series at time k, then the output Z(k) is given by

N
(k) = > hez(k — j). (2.3)
=1
An adaptive version of such a filter does not need a priort knowledge of the signal
statistics and can be directly implemented using the learning algorithm illustrated
above by using a tapped delay line to generate the training samples and using the
present input value z(k) as the “labels.”
A system diagram of the pre&ictor is shown in Fig. 2.4 for N taps, where the

unnecessary threshold gate and the bias weight 6 have been excluded. The weight
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update rule, written for the j;; component, is given by

hi(k +1) = hi(k) + p[z(k) — (k)] z(k - 1),

3(8) = 3 Ayl - ). 24
J=1

As the Adaline algorithm minimized the mean-squared error of the classification of

patterns, this adaptive predictor approximately minimizes the mean-squared error

of the prediction. If we assume that the input time series z(k) was obtained from

a random process, then the predictor minimizes the cost
e=E[((k) - 5(k)], (25)

where E|[.] represents the statistical ensemeble averaging operation. If the signals
are deterministic, then the predictor still minimizes the mean squared error where
the average is now over a period of time rather than over ensembles. The predic-
tor discriminates between two types of signals present in the input. The samples
derived from signals with narrowband spectra are highly correlated, while random-
like broadband signals result in samples that are poorly correlated; extremes are
sinusoids and white noise. The adaptive predictor adapts quickly to the regular
structure of the narrowband signals and produces good estimation for these signals,
while the broadband signals, with their lack of regularity, result in poor estimation.
If a signal contains both broadband and narrowband components in which the am-
plitudes of narrowband components are dominant, the output of the predictor will

"consist mainly of enhanced versions of the narrowband components. In contrast,
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the error signal contains broadband components which are enhanced in comparison
with the narrowband portions.

This effect is seen in the plots of Fig. 2.5, in which are shown the estimate
and the error signals produced by an adaptive predictor in response to an input
that consists of the sum of a large amplitude sinusoid and a smaller amplitude
pseudo-random signal. The simulation used the prediction algorithm derived above
for N = 64. While the presence of the sinusoid in the input obscures the broad-
band component, the predictor adapts to the situation to enhance the broadband
component in its error signal. This example, along with the heuristic description
of the adaptive predictor, illustrates the usefulness of learning algorithms for signal

processing.

2.3 Adaptive Estimation and Detection

The extraction of information from a signal corrupted by additive noise requires
a priori knowledge of the properties of the desired signal and the noise. If the
necessary information is known, the optimum linear filters can be designed to satisfy
the specified performance criteria. In the present investigation, we will be interested
mainly in two performance criteria: the mean-squared error and the output signal-
to-noise ratio (SNR). If some received signal z(t) consists of the desired signal s(t)

contaminated by additive noise n(t), then the mean-squared error is given by

e = E [|L{z()} - s()]7], (2.6)
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where L{z(t)} is the output of the filter that operates on the received signal z(¢)
and the signal and noise are assumed to derive from random processes over which
E]|.] is the expectation operation. The output SNR, on the other hand is given by
the ratio
}2
[EAEON]
[L2{z(t)}] — E?[La{z(t)}]’

where L,{z(t)} and L,{z(t)} are the signal and noise components of the filter out-
put. When considering only linear filters, the Wiener filter provides the minimum
mean-squared error estimate of a signal in the presence of additive noise, but it
requires that the autocorrelations as well as the cross-correlation of the signal and
the noise be known in advance. The filter that maximizes the output SNR is the
matched filter which requires prior knowledge of the autocorrelation of the noise
and also the desired signal waveform.

When the necessary correlation functions are not known a priort, they must
be estimated from the past history of the signal and the limited and qualititative
information that is available. We assume that the available information is as fol-
lows. The signal and noise are uncorrelated, and the signal is broadband, as in
spread spectrum systems. We model the wideband signal as bandlimited white
noise, so that S,(f), the spectral density of the wideband signal s(t), is equal to

Sorect [(f — fo)/6f], where fq is the center frequency of the signal and 6f is its
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bandwidth. The function rect|z] is defined by

_J1, if|z] £ .5;
rect{z] = {0, otherwise.

The spectral density of the interference n(t) is unknown, and it is adaptively esti-
mated.

Shown in Fig.2.6a is a system diagram of the passive processor, which will be
shown to adaptively perform an operation that approximates the Wiener filter under
the conditions stated in the above paragraph. The two necessary operations in the
implementation of this filter are convolution and correlation. The convolver serves
as the variable filter that is controlled by the correlator, which estimates the cor-
relation of the interference. The output of the correlator will be dominated by the
autocorrelation of the narrowband interference component, since the broadband sig-
nal components present in the output correlate very poorly with the delayed version
of the signal present in the input. The correlation output in which the broadband
components have been suppressed is convolved with a delayed version of the input,
resulting in a feedback signal that consists of an enhanced narrowband interfer-
ence and a suppressed broadband signal component. The order of the operations
of correlation and convolution can be switched as shown in Fig. 2.6b using the
commutative property of convolutions. This change of order will be useful later,
when the optical implementations are considered.

To show that the system converges approximately to the Wiener result under

closed loop conditions, a mathematical model of the system is now given. The
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z(t) + = 2(t)
L A j
CONVOLVER CORRELATOR |
4
DELAY
a)
2(t) —— + - 2(t)
j
CORRELATOR CONVOLVER
[
DELAY
b)

Fig. 2.8 a,b Two Versions of the Passive Processor
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operation of the convolver and correlator blocks are described by the following

input-output relations:

u(t) = /'—00 11(t — 1)ie(r)dr,

> (2.8)
wt)= [ a+ i)

- 00
where ¢1(t) and i2(t) are the inputs to the blocks. Using Eqgs. 2.8, we find the
relationship between the input and output signals, z(¢) and z(t) respectively, of the

passive processor of Fig. 2.6b to be
2(t) = z(t) — G’/ /—oo 2(r)z*(a —o0)z(t + o — 7 — 0)dadr
= z(t) — G’/ /_OO 2(r)[s*(a — o) + n*(a — 0)] (2.9)
[s(t+a—71—0)+n(t+a—71—o0)|dadr,
where ¢ is a time delay, and G is a feedback gain constant. Low input SNR along

with the assumption of the uncorrelatedness between the signal s(t) and the noise

n(t) results in the reduction of Eq. 2.9 into

2(t) ~ 2(t) — G / /_ : (F)n*(a—o)n(t + a -7 —o)dadr.  (2.10)

Fourier transformation of the above equation yields the approximate frequency do-

main description:

Z(f) = X(f) = GZ(H)IN()?, (2.11)

where Z(f) and X/(f) are the Fourier transforms of z(t) and z(t), respectively, and

|N(f)|? is the power spectrum of a sample realization of n(t). Solving for the output
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x(t)=s(t)+n(t)

» CONVOLVER > o(t)

s*(—t

—

v G

e CORRELATOR

Fig. 2.7 Active Processor

Z(f) gives

X(f)
1+ GIN(f)|?
_ 1/G
/G +IN(f)?

Z(f) ~
(2.12)

X(f).

The input signal to the convolver and the correlator in Fig. 2.6a is delayed by
the same amount, and therefore the interference components present in the output
of the convolver-correlator combination Z(¢) become independent of the delay. This
is an important result, since it assures that the feedback signal Z(t) is in phase
with the input signal, a condition required for proper nulling. With G = 1/S, and
identifying |N(f)|? as the estima;te of S,(f), the spectral density of n(t), Eq. 2.12

describes the output of the well-known Wiener filter [22].
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We now show that the active processor designed for signal detection, shown
in Fig. 2.7, adaptively performs matched filtering. The filter is now varied not for
estimation but to maximize the signal-to-noise ratio appearing at the output. If
the input noise consisted entirely of white noise, then the optimal linear filtering
procedure would be to correlate the total input against the reference signal that is
to be detected in the input. If the signal is present in the input, then the output
would be a sharply peaked pulse whose position in time indicates the arrival time
of the signal relative to the position of the reference in time. If, however, the noise
is not white and its statistics are not known, then we must resort to the adaptive
techniques to be discussed to enhance the processing gain.

The exact input-output relationship that describes the system shown in Fig.
2.7 is given by

oo
e(t) = / z(t — 7)8* (—r)dr
- - (2.13)
- G/ / z(t — 7)z* (a)e(r + a)dadr,
o0
where e(t) is the output signal of the active processor. The assumption of low inpt
SNR along with the conditions stated previously allows the following approximate
form of Eq. 2.13:
oo
e(t) = / z(t — 7)s*(—7)dr

(2.14)

~—G// n(t — r)n*(a)e(r + a)dadr.
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The Fourier transform of the output signal e(t) is readily found to be

_ _X(ns'()
B TE e (P
_ X(DS*)

GNP

(2.15)

where E(f) is the Fourier transform of e(t), and the last result is valid if the feedback
gain G is made sufficiently large. If the input SNR is high, it is evident from the
equations that the system will equalize the spectrum of the total input signal while
simultaneously performing a correlation with the reference signal, s(t).

Identifying |N(f)|? as the power spectrum of the noise, Eq. 2.15 is the matched
filter result [22]. Thus, from Eqgs. 2.12 and 2.15, both active and passive processors
share the common property of suppressing strong narrowband components that are
present in the input signal. This property, commonly called line cancellation, is
suitable in environments where sinusoidal jammers are present for either estimation

or detection of broadband spread spectrum signals.
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Chapter 3. Optical Adaptive Systems

3.1 Space Integrating Adaptive Filters

3.1.1 Space integrating convolver and correlator

The two adaptive filters described in the previous section are both implemented
with a convolver and a correlator. There are several ways to implement an optical
correlator/convolver. In selecting an implementation that is best suited for this ap-
plication, we must consider the following requirements: a)The optical filters should
be capable of processing broadband signals (1 GHz bandwidth) to be applicable
to spread spectrum systems. This requirement suggests an acousto-optic imple-
mentation. b)The impulse response of the convolver and the correlator must be
dynamically controllable. The impulse response of the correlator, in particular, is
also a broadband signal. ¢)The two filters must be compatible with one another; the
impulse response of the convolver is determined by the output of the correlator, and
the output of the convolver is one of the inputs to the correlator. d)We must select
architectures that have the highest linear dynamic range possible. Adaptive fil-
ters are typically used to process signals with very low SNRs; this implies that they
must have sufficiently high dynamic range to place very deep nulls at the frequencies
where the interference occurs in Vorder to suppress it effectively. Space integrating
convolvers that use AODs are attractive for such applications because coherent ar-

chitectures exist where the input as well as the output can be a broadband signal.
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The acousto-optic space-integrating convolver, consisting of two AODs with counter
propagating signals, an integrating lens, and a single 'high speed detector, is well
suited for this application in that its two inputs and the qutput are broadband elec-
trical signals, and a very high dynamic range is possible. One potential difficulty in
using this implementation is that the output of the convolver is time-compressed by
a factor of two, and thus it cannnot be directly correlated with the input signal as
required for adaptive filtering. A second problem is that correlation cannot be read-
ily performed with this architecture; one of the input signals must be time-reversed
before it is applied to the convolver in order to compute correlations with such a
system. These two problems combine to provide a solution in this case. We will
show that a space-integrating correlator can be implemented with two AODs with
signals propagating in the same direction if one of the inputs to the correlator is
time-compressed by a factor of two. The output of the space-integrating convolver
can thus be used as one of the inputs to such a correlator.

Before exploring the AO implementations further, a basic description of the
AODs to be used is now given [1]. Shown in Fig. 3.1 is a typical AOD that consists
of an acousto-optic crystal, a transducer that couples electrical energy into acoustic
waves in the crystal, and an impedance-matching network to properly tailor the
input electrical impedance to external signal sources. When a radio

frequency signal is applied to the device, the transducer launches an acoustic

wave across the crystal, and the periodic local compression and expansion caused
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ACOUSTOOPTIC CRYSTAL

PIEZOELECTRIC
TRANSDUCER

MATCHING lag———  RF DRIVE VOLTAGE
NETWORK

Fig. 3.1 Typical Acousto-optic Device
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by the propagating wave induce a travelling optical index grating to appear in the
crystal via the photoelastic effect. Usually, an acoustic absorber is placed at the
end of the device so that reflections are suppressed and only the forward travelling
wave is present in the crystal.

A collimated beam of light that illuminates the crystal perpendicular to the
propagation direction of the acoustic beam is diffracted by the moving index grating
into various orders. If the crystal is sufficiently thick, then the AOD can be rotated
slightly to match the input optical beam to the desired dif%racted order. The optical
frequency of the diffracted orders are Doppler-shifted up for the (+1) order and
down for the (—1) order by fo, the radio frequency of the electrical input to the
device. For analytical modeling of the device, let s(t) = a(t)cos(2m fot + 4(t))
represent the electrical signal applied to the AOD. The signal can be represented
by its complex envelope a(t) = a(t)ezp[j#(t)] from which the real signal is recovered
by s(t) = Re[a(t)ezp(s2n fot)]. The applied electrical signal induces a strain field

whose amplitude is proportional to

s(t —z/v—T/2)rect[z/W] = -;—{a(t —zfv — T/2)exp(j2n fo(t — z/v — T /2)]

+a*(t — z/v — T/2)exp(—j2n fo(t — z/v — T/2)]rect(z/W|},
(3.1)

where v is the speed of sound in the crystal, W is the width of the crystal, T = W /v
the time it takes an acoustic disturbance to propagate the entire length of the

crystal, and £ = 0 at the center of the cell. As shown in Fig. 3.2, the crystal is
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Fig. 3.2 Acousto-optic Diffraction Geometries
illuminated by a collimated coherent light beam incident at the Bragg angle 05
given by

sin(fp) = Afo/2v, (3.2)

where )\ is the wavelength of the light in the crystal. This geometry results in a
diffracted beam whose amplitude is proportional to the first term of Eq. 3.1, where
the Doppler frequency shift is positive.

If the AOD is slightly rotated so that the light is incident at an angle —8g, then
the diffracted beam is due to the second term of Eq. 3.1 with a negative Doppler

shift.

We now consider the space-integrating AO convolver shown in Fig. 3.3. The
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first AOD is rotated so that a portion of the incoming light is diffracted into the
(-1) order. For weak modulation, the optical field at the exit plane of AOD1 is
given by [1]
Ay(z,t) « {ezp(—j2nsinfpz/A) + j(m/2)ai(t — z/v — T/2)

exp|—j2r fo(t — z/v — T/2)]ezp(—j2rsinfpz/A) }rect(z/W)
(3.3)
x [ezp(—j2msindpz/)) + j(m/2)a}(t — z/v — T/2)

exp(—j27 fot)ezp(y2msinfp :z://\)] rect(z/W),
where m is a constant, z is along the direction of the acoustic wave propagation,
and W is the aperture size of the AOD. Note that the Bragg condition, Eq. 3.2,
was used to derive the last line of Eq. 3.3.

The first term on the right-hand side of Eq. 3.3 corresponds to the DC or un-
diffracted light, which is unmodulated to first order. The second term corresponds
to the (-1) diffracted order, which is modulated by aj(t — z/v — T/2), Doppler-
shifted by — fo, and deflected by an angle 265. The amplitude distribution A;(z, t)
is then imaged onto the second AOD by lensés L1 and L2; the imaging reverses
the spatial cooordinate z. The second AOD is positioned at the Bragg angle with
respect to the DC component from AOD1, and therefore a portion of it is diffracted
at an angle 20p by AOD2. The major portion of the diﬁ'rac‘;ed beam from AOD1
passes through AOD2 unaffected, since it is not Bragg-matched, and it propagates
in the same direction as the beam diffracted by AOD2. The remaining components

of the light at the exit of AOD2 are angularly separated from these two components
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and, therefore, can be blocked at the focal plane of lens L3. The two components
of interests are given by
Az(z,t) o [az(t — z/v — T/2)ezp(—j2msindpz/))exp(52r fot)

+aj(t +z/v —T/2)ezp(—j2nsinfpz/A)exp(—j2m fot)| rect(z/W).
(3.4)

The first term on the right-hand side is the (+1) diffracted order term from AOD2,
which is modulated by a(t —z/v — T /v), Doppler-shifted by fo, and deflected from
the DC beam by 20p; this beam is collinear with the (-1) diffracted beam from
AOD1 (i.e., the second term in Eq. 3.4). The light amplitude at the back focal
plane of lens L3 is the Fourier transform of A;(z,t). A detector with an active area
sufficiently large to integrate the entire transform is placed at the Fourier plane,

and the resulting photocurrent is

oo T/2
I (t) x / [-T/z[al(t + 1 — T /2)exp(527 fot)

- Q0

+az(t—7— T/2)e:z:p(—j27rfot)]ezp[—-jkr)d'r!2dk

T2 T/2
x / lay(t + 1 — T/2)|%dr + / lag(t — 7 — T/2)|2dr
-T/2 T/2

T/2
+ 2Re{ezp(j4~ fot) /—le ai(t+7—~T/2)as(t — 7 —T/2)dr},
(3.5)

where 7 = z/v, k = %%";vx' , F' is the focal length of the Fourier transform lens, and

£’ is the spatial variable on the detector plane.

The first two terms on the right side are low frequency components which are

removed by electronically high pass filtering the output signal. The third term is
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the desired operation, which is the convolution of a;(t) and ax(t). The convolution
is compressed in time by a factor of two and translated to twice the original carrier
frequency. Notice that in both passive and active processors, the time-compressed
output of the convolver is one of the inputs to the correlator. Thus, the correlator
must be designed to accept a time-compressed signal in one of its input ports.

Shown in Fig. 3.4 is a photograph of the laboratory set up of the space in-
tegrating convolver just described. The two AODs used employ flint glass as the
acousto-optic medium and operate at 70 MHz center frequency with 50 MHz band-
width. Each AOD is 3.9 cm wide, and the total access time is approximately
T = 10 psecs [2].

The light is detected by an avalanche photodiode whose bandwidth exceeds
100 MHz. The input signals modulate the center frequency of the convolver, which
is chosen to be 45 MHz, since its output appears on a carrier of twice the frequency
and must be within the bandwidth of the AOD in the correlator. Fig. 3.5a is an
oscilloscope trace of the input carrier (top) and the output carrier from the detector
(bottom). The convolver was tested by using a square wave modulation (biphase)
at f, = 1 MHz as the input to both AODs; Fig. 3.5b shows the square wave in the
upper trace and the actual rf signal that drives the AODs in the lower trace. The
expected triangle modulated output, having taken the time compression property

into account, is shown in Fig. 3.5c.
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Fig. 3.3 Acousto-optic Space Integrating Convolver

Fig. 3.4 Laboratory Setup of Convolver

¥010313d
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In contrast to convolution, which requires an inversion of a coordinate, corre-
lation requires that one of the input signals be in motion with respect to the other
with no coordinate inversion. Referring to Fig. 3.6, the correlator consists of two
identical AODs with counter-propagating acoustic signals; fo and 2f, are the car-
rier frequencies of the signals driving AOD3 and AOD4, respectively. The imaging
system reverses the spatial coordinate of the signal in AOD3, so that the two sig-
nals are copropagating at AOD4. The imaging system has a 2:1 demagnification
ratio, so that the velocity of the image of the light that is diffracted by AOD3 is
half that of the acoustic signal in AOD4. Thus the signals in the AODs contin-
uously translate with respect to each other. The undiffracted beam from AOD3
is incident at the Bragg angle of AOD4 corresponding to its 2f, center frequency.
The demagnification by a factor of 2 increases the angular separation between the
diffracted and undiffracted beams from AOD3 at the plane of AOD4. Therefore,
the two diffracted beams from AOD3 and AOD4 are parallel to one another when
they enter lens L6. L6 forms the Fourier transform of the light exiting AOD4, and
a photodetector spatially integrates the entire spectrum.

Through a development similar to that illustrated for the convolver, we find

that the photocurrent from the detector in Fig. 3.6 is

T /4
lag(t + 7 — T/4)|%dr
4

—

L(t) « /T/i lay(t +2r — T/2)dr + /

-7/
T/4

+ 2Re{ezp(j2n fot) [ ai(t+2r = T/2)aslt + 7~ T/4)dr).

(3.6)
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The limits of integration of the correlator are half those of the convolver. This
implies that the apertures of the AODs used in the correlator must be twice as long
as those in the convolver to obtain equal integration limits. Unilluminated portions
of the AODs in the correlator and the convolver can be used for introducing delays.
The third term is the desired operation; which resembles a correlation translated to

the carrier frequency fo. If az(t) = ag(2t), the correlation term of Eq. 3.6 becomes
t
corr = 2Re[ezp(527 fot) / aj(a)as(t + ¢+ T/4)de], (3.7)
t-T

which is a finite aperture correlation of the signals a;(¢) and as(t) placed on the
carrier frequency fo.

Shown in Fig. 3.7 is a photograph of the laboratory setup of the space-
integrating correlator just described. The AODs are identical to those used for
the convolver implementation, as is the detector. The three-lens telescope is ad-
justed to yield a demagnifying factor of two in imaging the first AOD onto the
second. To test this system, two carrier frequencies are necessary, since the second
AOD must be driven at twice the frequency of the first. Fig. 3.8 shows the cor-
relation between a periodic frequency chirped signal and an unmodulated carrier.
The frequency of the signal in the first AOD is swept from 43 MHz to 49 MHz in
an interval of 100 msecs, and the interval is repeated every 300 msecs; the second
AOQOD is driven by an unmodulatéd sinusoid at 90 MHz. The output trace shows

the expected correlation result at the difference carrier frequency of 45 MHz.



Fig. 3.5 Space-Integrating Convolution Results a)45 MHz
input carrier (upper trace) and 90 MHz output carrier (lower
trace) (5 nsec/div); b)1 MHz square wave (upper) and actual
rf input to AODs (lower) (200 nsec/div); ¢)convolution output

(100 nsec/div)
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Fig. 3.8 Acousto-optic Space-Integrating Correlator

Fig. 3.7 Laboratory Setup of Correlator

DETECTOR



44

Fig. 3.8 Correlation of Frequency Chirped Signal and a Sinu-
soid: Bandwidth of chirp is 6 MHz centered at 46 MHz and 100
msecs. long. Sinusoid in second AOD has f;=90 MHz.

3.1.2 Description of implementation

The outputs of the space-integrating convolver and correlator without the car-

rier terms are, from Egs. 2.5 and 2.6,

convolution : u(t)

correlation : w(t)

where the signals a; (t)

ey [T/2
=§;— al(t"{‘T*T/Z)ag(t—T—-T/Z)dT
-T/2
/4 (3.8)

2
= —;—% ak(t +2r — T/2)as(t + r — T /4)dr,
~T/4

and ay(t) are the complex envelopes of the actual voltages

that drive the AODs, and u(t) and w(t) are the voltages that appear at the outputs

of the photodetectors. The constants ¢; and c; depend on the laser power, AOD

diffraction efficiencies, and the quantum efficiencies of the detectors. Note that
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from the instant that the two signals are applied to the convolver, a delay of T'/2 is
effected until an output appears. The correlator likewise has a delay of T'/4 before
an output appears after the application of its input signals. These delays must be
carefully controlled to avoid phase dispersion within the system, as the following
arguments demonstrate. If the passive processor of Fig. 2.6 is implemented with

the above equations, the system output can be described by

2G8102 T/4 T/2
= t+2 T/2
2(t) =a(t) - [,z er2=1/2 o9

z(t + 17— 3T/4 + B)2(t — 7 — 3T /4 + B)drdp,

~T/4

where z(t) is the complex envelope of the input to the system. For a monochromatic

input z(t) = Aezp(j27 f't), the output response can be shown to be

_ z(t)
2(t) = 1+ Geyeqexp|—j2n f'T/2)’ (3-10)

The dispersive phase factor in the denominator depends upon the frequency of the
input signal. Because of the delays in the convolver and correlator, this will lead to
instabilities that preclude the possibility for nulling of the input jammer.

The delays cannot be eliminated entirely from the convolver but they are con-
trollable by simply translating the AODs in the directions of the acoustic propaga-
tion in the devices. Indeed, we can minimize the effects of the delays by adopting the
modified convolver and correlator .blocks shown in Fig. 3.9, whose AODs have been

translated effect the delay modifications. The modified convolver and correlator are
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Fig. 3.9 Delay Modified Convolver and Correlator

described respectively by the equations:

261 T/2
convolution : u(t) = T / a(t+7—T/2)az(t — r)dr
% (3.11)
correlation : w(t) = deg a}(t +2r — T/2)as(t + 7)dr,
T Jorys

where thé apertures of the convolver and correlator have been halved to accommo-
date the delay changes.

A schematic diagram of the optical passive processor using these convolution
and correlation blocks is shown in Fig. 3.10. Through the use of a beam splitter,
both the convolver and the correlator have been incorporated into one system re-
quiring only one light source and three AODs. The correlator and the convolver

share the AOD, which is driven by the system input signal z(¢). The input signal,
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translated in frequency by fo, is applied to AOD1 and the summing node before
entering AOD2. The convolution is performed by the lower leg of the processor
and the correlation by the upper leg. As shown in the previous section, the optical
convolver takes its two inputs, each at the carrier frequency fy, and gives their
convolution as its output compressed in time by a factor of two and shifted in fre-
quency by 2fo. This output is amplified and used to drive AOD3 of the correlator.
Recalling that, to achieve a proper correlation, one of the correlator inputs must be
time-compressed by a factor of two and translated to 2f,, we see that its ouptut is
free of time-scaling problems. This signal is then subtracted from the input signal
to form the system output z(t), which is fed back to the convolver via AOD2.

With Eqgs. 2.11, the input-output equation of the passive processor is

z(t) = z(t) — SGCICZ / e / s *(t+28-T/2)z(t+B+7—T/2)z(t+B—r)drds,
(3.12)

which for low input SNR conditions can be approximated by

SGC]_CZ T/2
z(t) = z(t) - n*(t+28-T/2)n(t+B+7—T/2)z(t+B—1)drdg.
~T/4
(3.13)
An approximate solution to the above equation can be derived by the use of Fourier

transforms. Using the Fourier integral representations
o0
z(t) = / X(f)ezp(s2n ft)df,
hadie ]

o) = [ N(ezslianro)a,
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the Fourier transform of Eq. 3.27 can be shown to be

2(0)=X(N)-Gees [ [ NONUDZ(S + 12 = 1)
exp|—jn(f — f1)T/4lezp[—jn(f + f1 —2f2)T/2] (3:14)
sinc[(f — f1)T /4])sine[(f + f1 — 2f2)T/2]df1df>.
The double integral can be approximated by a single integral, since it is appreciably

large only near the region f; = f2, so that

X(f)
1+ Geyeg [0 IN(fL)PK(f = fr)dfy’ (3.15)

K(f) = exp|—j3n fT/4]sinc[fT/4]sinc[fT/2].

2(f) =

Except for the convolution with the sinc(.) functions with the phase factors,
the above result is similar to the optimum Wiener result discussed in 2.3. The
particular form of the smoothing kernel derives from the fact that the system is
causal and can view only present and past data, and information is accumulated
through finite sized windows. The same smoothed spectral estimate can be obtained
by taking the Fourier transform of the product of the autocorrelation function of
z(t) and the causal window shown in Fig. 3.11.

The optically implemented active processor is shown schematically in Fig. 3.12
and differs from the passive system only in its electrical interconnections. Here the
output of the system is a time-compressed signal since it is taken at the output
of the convolver; this presents no problems since the output signal is a correlation
peak, and we are interested in signal detection raﬁher than estimation. As in the

passive case, the convolver output drives AOD3 of the correlator.
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The correlator output is then subtracted from the time-reversed reference signal
(the matched filter impulse response) to form the input to AOD2 of the convolver;
note that even though the output is time-compressed, the time scaling is compatible
for all the signals within the system. To see this more precisely, we examine the

input-output equation for the active system. Using Eqgs. 3.11, we obtain

T2
)~ [ e - T/2)st - )
0
T/2 0
_ SG;;cz/ / n(t+r—T/2)n"(t —7+26 ~T/2)e(t — 7 + B)df.
0 ~T/4

(3.16)
Here we have already used the approximation appropriate for low input SNR, and
S(f) is the Fourier transform of the signal that is to be detected. Fourier transfor-

mation along with the integration approximation used for the passive system leads
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to the following equation for the output:

crezp(—jnfT) [0, X(f1)5*(f — fi)sinc[(f — 2f1)T/2]df,
1+ Gerea [0 IN(FU)IPK (S = f1)dfs ’

E(f)~ (3.17)

where E(f) is the Fourier transform of the output signal and K(f) is the smoothing
function described in Eq. 3.15. Aside from the appearance of the sinc functions that
arise due to the finite apertures of the AODs, time compression of the convolver,
and the causality of the system, the above equation is quite similar to Eq. 2.15, the

matched filter result.

3.1.3 Performance and experimental results

It is important to theoretically characterize the performance limits of the adap-
tive system in terms of parameters such as the AOD aperture size and detector
noise to aid optimization of the system performance. In this section, three issues
are discussed with regard to the passive processor: 1) the resolution with which
the processor discriminates against jammers, 2) transients due to the delays in the
sfstem, 3) null depth (the level of jammer suppression) limitations due to detector
noise.

The resolution of the system is characterized entirely by the size of the AOD
apertures, for they determine the length of the signal sample at any one time. The
effective window through which the processor forms an estimate of the jammer
spectrum is not rectangular but trapezoidal as shown in Fig. 3.11. The Fourier

transform of this window function (also called “apodizing function”), shown in Fig.
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3.13, determines the frequency resolution of the system, and the sidelobe structure
is due entirely to the finite apertures of the system. For AODs whose time delay
is T, the minimum resolvable frequency increment is approximately 2/T. For the
flint glass AODs, the frequency increment is approximately 200 KHz.

A serious performance limitation arises from the time delays that exist in
the AODs. To quantify this limitation, consider a purely monochromatic input
z(t) = Aexp(j27 fot). Using Eq. 3.12, the response of the passive processor can be

calculated exactly. The Fourier transform of the response is given by

2(f) = X(f)
1+ Geiea A%exp[—537(f — fo)T /4]sinc|(f — fo)T/4]|sinc[(f — fo)T/2]"
(3.18)
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The phase factor present in the denominator is due to the delays accumulated
through the convolver and correlator. The consequence of this phase factor is that
the denominator is not guaranteed to be positive for large values of the feedback
gain. If the gain is sufficiently large to allow the denominator to vanish for some f,
then the system will become unstable. As G is increased, the first unstable point
that the system encounters is when 3(f — fo)T /4 = £1. The critical gain at this
point is given by

872

GeercaA? = [sinc(1/3)sinc(2/3)] 7! = T 2.924 (3.19)

where G, is the critical value of the feedback gain. The factor by which the jammer

is suppressed at this critical point is

1

= ————— ~ .255 = —11.875dB. 3.20
1+ 8x2/27 (5.20)

This value of maximum suppression is verified by computer simulations of the
processor response to a step input. For the simulations, the input amplitude was
fixed at A = 1, and the system was discretized, the convolver and correlator are
implemented with tapped delay lines with 40 and 20 taps, respectively. Fig. 3.14
shows the envelope of the processor response to a unit step jammer input, for
Gejeq = 1, Geyega = 2, and Geyeg = 2.9, which is near the unstable point. The
initial constant portion of the response is due to the delays incurred before the
correlator is able to form the feedback signal. Indeed, the third plot shows an

oscillatory behavior, indicating marginal stability.
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The low critical gain stems from the rather large sidelobes of the sinc(.) func-
tions coupled with the delay terms. At the cost of loss in resolution, the sidelobes
can be reduced by apodizing the AOD windows, resulting in systems that can
tolerate higher feedback gains while remaining stable. As a simple example, the
improvements in suppression due to a linear tapering function are considered. Sup-
pose a linearly tapered function is used to weight the aperture of AOD1 in the
passive processor shown in Fig. 3.10 such that the most recent sample in the AOD
is weighted maximally and the last sample in the AOD has zero weight. Then. the

system equation must be changed to

8G’c1c2

T/2

[ / *(t+28-T/2)z(t+B+7—T/2)z(t +B8 —1)
-T/4

4p

z(t) = z(t) -

(1- -——)(1 + )drdﬁ.

(3.21)
The effective window function by which the systgm accumulates data is trape-
zoidal for nonapodized AODs, as shown in Fig. 3.11. The linear weighting of the
AOD aperture results in a smoother effective windowing function and consequently
smaller sidelobes in its frequency response. The effectiveness of this technique is
borne out by computer simulations of the step response, which are shown in Figs.
3.15a,b,c. Convergence is still rapid. Here, the suppression is improved to better
than 25 dB.
The space-integrating passive processor was implemented using the flint glass

AODs described previously. Shown in Fig. 3.16 is a photograph of the laboratory
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setup. As in the schematic diagram, the first AOD is shared by the convolver and the
correlator. Under open loop conditions, the dispersive phase delays were eliminated
by carefully translating the AODs so that the feedback signal was in phase with the
input signal even when the input was swept in frequency. Because of the peculiar
time-compressing nature of the convolver, the useful bandwidth of the system was
limited to approximately 5 MHz, much less than the AOD bandwidths.

Shown in Fig. 3.17 is a scope trace of the input sinusoid and the feedback
sinusoid produced by the system at a particular frequency. The feedback phase
remained locked to that of the input even when the input frequency was changed.
The time delay of the step response is shown in Fig. 3.18 in which the top trace
is the step sinusoid input (fo=45 MHz) and the bottom is the delayed response of
the system. The time delay is about 7.6 usecs., which can be accounted for by the
following arguments. A portion of the glass of about .7 cm in length adjacent to
the transducer in each AOD was unpolished and inaccessible to the incoming light.
This corresponds to a fixed time delay of about 1.8 psecs. in each AOD. Although
the total access time for each AOD was T=10 usecs., only about 5 usecs. of it
were used. With reference to Fig. 3.9, the acoustic signals must propagate for T'/4
before interacting to yield an output in the convolver, and T'/2 for the correlator,
so that the total time delay between the step input and response should be 37'/4
if the AODs were ideal without inac-cessib]e portions. To this we add the fixed

delays due to the unpolished portions of the glass to predict the total delay to be
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2 x 1.8+ .75 x5 = 7.35 usecs., where we used T =5 usecs. This leaves a positive
delay of 250 nsecs. as a discrepancy between the observed value and the predicted
value, an error attributable to measurement error for the unpolished glass length
and electrical delays in the system.

The maximum closed loop suppression of the single frequency input was ap-
proximately 6dB. Shown in Figs. 3.19a,b,c are scope traces of the input jammer
pulse (top trace) and the response (bottom). The first result was obtained for feed-
back gain below the critical value. The second picture was obtained for the gain
set near the critical value and shows stable suppression of about 5.5dB. The third
picture shows the unstable operation of the system showing an output oscillation
with an approximately 15 usec. period. Without the linear apodizing functions,
the maximum suppression for this system is better than —11dB. The difference
between this value and the observed value is due mainly to the extra time delays
that arise from the inaccessible portions of the AODs. If we include an extra time
delay of A = aT in the system model, then the output response described by Eq.
3.18 must be changed to include an extra phase term ezp[—j27(f — fo)eT] in the
complex exponential term of the denominator. The total exponential phase term
exp(—Jn(f — fo)(.75 + 2a)T] becomes -1 when (.75 + 2a)(f — fo)T = 1. At this

point, the gain that will drive the system to oscillations is given by

1

2T r2a)) (3-22)

Geycp = [sine( Ysine(

1
4(.75 + 2a)
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whose value for T =7.5 usecs., and oT =2.6 usecs. (the experimentally observed
value) is Ge¢yeg ~ 1.01. The maximum possible suppression of the jammer is there-
fore K ~ —6dB, which agrees well with the experimentally achieved value.

If apodizing techniques are used to enhance the jammer suppression capabil-
ity, the noise produced by the detectors and amplifiers will become the dominant
null-depth limiting factor. In order to better understand this limitation, the deteri-
oration in the cancellation of one jammer, z(t) = Aezp(j2r fot), due to the system
noise contributed by the detectors and amplifiers, is now studied. The system model
depicting the noise sources is shown in Fig. 3.20, where n,(t) is the noise from the
feedback amplifier, while n,(t) and ns(t) correspond to those arising from the pho-
todetectors in the convolver and correlator, respectively. The noise processes are
assumed to be independent, stationary, complex Gaussian processes (3], each with
variance 2. Since the input is a single frequency jammer, the convolver and cor-
relator behave as narrow-bandpass filters centered at that frequency. If the space
bandwidth products of the convolver and correlator are larger than the feedback
gain, the contribution of the noise sources n;(t), ns(t), filtered by the convolver
and correlator, is negligible compared to n3(t), which is added directly onto the
feedback signal £(¢). These heuristic arguments are verified in Appendix A where
the role played by n3(t) is shown to be dominant. The portions of noise that are fed
back are suppressed by the correlator and convolver and can be neglected to first

order. Thus, only the noise due to ns(t) appears directly at the output. We expect
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Fig. 3.18 Feedback Signal Response to Input Step (carrier at
fo=45 MHz)
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Fig. 3.19 Response of Space-Integrating Passive Processor
a)overdamped, b)critically damped, c¢)unstable
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that the performance limit set by the system noise would not be reached unless the

jammer amplitude were suppressed to o, the noise level.

3.2 Space-Time-Integrating Adaptive Filter

8.2.1 Time-iniegraiing correlator

Although large bandwidths are possible, AODs have time apertures typically
limited to less than 100 usecs., determined by the size of the cell and the acous-
tic velocity. This creates a basic limitation for space-integrating correlators since
the integration time is equal to the time apertures of the AODs. Time-integration
is an alternative technique whereby this restriction is removed [4]. Whereas the
space-integrating correlator produces an output with time as the shift variable, a
time-integrating correlator produces its output as a function of space. The basic
idea is illustrated by the diagrams on Figs. 3.21a and 3.21b, which show the prin-
ciples of operation for both space-integration and time-integration. The AODs are
represented by the tapped delay lines. As illustrated, the space-integrating con-
volver integrates the products of the samples in the delay line so that the maximum
number of samples in the convolution sum is equal to the number of taps in each
delay line. As pointed out in Section 3.1.1, this convolver is used as a correlator
by feeding one of the tapped delay lines with a time reversed signal. In contrast,
the time-integrating correlator of Fig. 3.21b produces the output correlation as

an N-dimensional vector, where N is the number of taps in each delay line, and
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performs the integration in time. The sample products are the same as those in
the space integrating version, but each prodilct is integrated separately to produce
each of the N output values. The integration time therefore becomes independent
of the AOD parameters. Typically, durations exceeding milliseconds are achievable
(4]

Although many different architectures have been developed to exploit the time-
integrating concept to produce correlations, we review one specific implementation
to discuss some performance issues common to conventional architectures. Shown
in Fig. 3.22 is a coherent time-integrating correlator implemented with two AODs
placed in a Mach Zender interferometer [11]. The collimated input light is split
by BS1 into two paths with an AOD in each, and each AOD is angularly posi-
tioned to diffract the light into the positive Doppler-shift order. With the un-
diffracted beams removed by spatial filtering, the diffracted beams are combined
by the beam splitter BS2 and imaged onto the linear CCD detector array, which
integrates the intensity incident on each pixel and produces a serially scanned out-
put. Mirror M2 can be rotated slightly so that the two combined diffracted beams
do not propagate collinearly, producing on the detector an intensity grating pat-
tern modulated by the product of the two counter-propagating signals from the
AODs. If the AODs are driven by the signals s((t) = Re{a,(t)ezp(s2nfot)} and
s2(t) = Re{az(t)exp(s2r fot)}, thén the intensity distribution at the detector plane

can be shown to be
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I(z,t) = |ay(t — z/v — T/2) + as(t + z/v — T/2)ezp(j2rsinfz/A)|?
= |ai(t — z/v — t/2)|* + |ag(t + z/v - T/2)|?

+ 2Re{aj(t — z/v — T/2)az(t + z/v — T /2)exp(52nsinfz/A)},
(3.23)

where the first two terms are bias values with slow spatial variations and the third
term is the correlation product placed on a spatial carrier. The intensity distribution
is spatially sampled by the detector elements, and the resulting photogenerated

charges are accumulated over a duration 7 to yield the correlation result

e(z,) = /‘;T I(z,t)dt

= 7(a? + a2) + 2Re{exp(j2nsinfz, /) (3.24)
/0 "al(t - z/v - T/2)as(t + z/v — T/2)dt},

where the moduli of the signals have been assumed to be constant values a; and
as, and z, indicates the n®* sampled position. These sampled correlation values
are then loaded onto an analog shift register, which is read out serially, converting
the spatial carrier into a temporal one. The bias is then removed by electronically
high pass filtering the signal.

The concept is demonstrated by the experimental results shown in Figs. 3.23-
3.26. Flint glass AODs with 10 usec. time apertures were used along with a 512-
element Reticon CCD photodiode array operated at an integration time of about 4

msecs. For all three cases, a single signal drove both AODs with equal amplitudes
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so that the maximum modulation depth was achieved (i.e., a;(t) = ax(t) = a(t)).
When the signal is an unmodulated carrier, then the output is an unmodulated
spatial carrier on a bias as illustrated by Fig. 3.23, where the slight modulation is
due to non-uniformities in the AODs. The autocorrelation of a linear FM signal
with a bandwidth of 100 kHz and a duration of 80 msecs. is shown in Fig. 3.24,
where the output displays the main lobe and portions of the first sidelobes of the
expected result. Compression of the autocorrelation peak due to an increase of the
chirp bandwidth to 3 MHz is shown in Fig. 3.25. Fig. 3.26 is the autocorrelation
result for a squarewave modulation at f, = 240 kHz, showing the expected triangle
wave modulation.

A major drawback of time-integrating systems such as the one just described is
the bias that builds up along with the signal. Indeed, the experimental results shown
were under the ideal condition of equal amplitude signals that led to full modulation
depths. In general, however, a mismatch in the signal levels leads to outputs with
less than ideal modulation depths and to a decrease in the overall dynamic range of
the system. If DR is the dynamic range of the output detector, then the effective
dynamic range at the output becomes DR’ = DR[SBR/(1 + SBR)], where SBR
is the signal-to-bias ratio of the intensity distribution at the detector plane [5].
Although a dynamic range of 1000:1 is readily available (e.g., Reticon with 7= 4
msecs. [6]), DR’ is at best half that of the detector and is typically much smaller

because of uneven signal levels in the two AODs. The electronic filtration of the
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Fig. 3.23 Standard Time-Integrating Correlator Output for
DC Inputs Showing the Spatial Carrier

Fig. 3.24 Autocorrelation of 100 KHz Chirp (duration=80msec.)
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Fig. 3.25 Autocorrelation of 3 MHz Chirp (duration=50msec.)

Fig. 3.26 Autocorrelation of 240 KHz Square Wave
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scanned output does not alleviate the dynamic range problem since this procedure
is performed after the detection of the signal. As stated before, the frequency of the
spatial carrier must be Sufﬁciently low as to avoid undersampling by the detector
array. Because of this, a constraint is placed on the space bandwidth product of

the system.

3.2.2 Time-integration using a photorefractive crystal

A new method of time-integration is here examined whereby the dynamic range
along with the bandwidth constraints is eased through a novel use of a photorefrac-
tive crystal (BSO:B1#,35104) as the time-integrating detector. Here, the corre-
lation is formed as a modulated index grating in the crystal and read out with
an auxiliary read beam. Spatially constant bias terms which adversely affect con-
ventional correlators do not form index gratings so that the read out amplitude is
bias-free, although the diffraction efficiency of the crystal is reduced as a result of
the bias. The resolution of the crystals is typically much better than that achiev-
able with CCD arrays, allowing very high bandwidth (up to that acceptable by the
AObs) signals to be processed. Because the correlation output appears as an optical
field amplitude, such a system is easily incorporated into a coherent processor. We
first review the basic concepts iﬂvolved in the photorefractive effect, emphasizing

its time-integrating properties, and then proceed to the discussion of its use in a
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Fig. 3.27 The Photorefractive Effect
time-integrating correlator, which is to be incorporated into an adaptive filtering
system.

The photorefractive effect can be understood in the following way. As shown
in Fig. 3.27, two writing beams of light intersect in the crystal to form an inten-
sity grating that is partially absorbed to excite charge carriers from traps into the
conduction band. Because of the spatially varying intensity pattern, the photogen-
erated charges in the crystal redistribute themselves into a space-charge grating,
driven by drift and diffusion processes. The electric field associated with the space
charge distribution accordingly modulates the refractive index of the crystal through

the electro-optic effect, and as a result, a holographic index grating is produced. The
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grating can then be addressed non-destructively by a third beam, whose wavelength
is chosen for negligible absorption by the crystal.

The photorefractive effect has been studied and modeled rather extensively [10].
Here, we review some dynamical aspects to show its time-integrating property. If
the two writing beams of Fig. 3.27 are modulated both spatially and temporally
and turned on abruptly at ¢ = 0, then the general expression for the intensity

distribution within the crystal is given by

_ [ Io+ Re{Ii(z,t)exp(skz)} ift > O;
I(z,t) {0 otherwise. (3.25)

Assuming that nonlinear effects such as self-diffraction are negligible and that the
spatial variations of Ii(z,t) are slow compared to the grating frequency, the space

charge field that is formed in the crystal can be shown to be [7]

E,e(z,t) = —I;—lexp(jkx) /t exp((t' — t) /7|11 (z,t")dt’,
0 0 (3.26)

where K; and K, are complex constants that depend on material parameters, the
grating frequency, and the externally applied electric field. The response is that of

a leaky integrator and can be approximated as

t+r
E,.(z,t) ~ ——exp(jka:)/ I (z,t")dt'. (3.27)

The space charge field modulates the index of refraction via the electro-optic effect

to create an index perturbation which is nondestructively read out with an auxiliary
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plane wave at a non-absorbing wavelength. The amplitude of the diffracted reading
beam is proportional to E,.(z,t) given by Eq. 3.27 and is therefore the original
write beam modulation, I;, integrated in time without any bias.

A correlator that exploits the effects just described was set up using 2 flint
glass AODs as the input devices and a BSO crystal (< 110 > cut, 15x15x2 mm)
with an external electric field of 7 kv applied in the < 001 > direction as the time-
integrating element. The basic architecture shown in Fig. 3.28 places the AODs in
a collinear geometry. Here the light diffracted (positive Doppler shift) from AOD1
passes through AOD2 to be imaged onto the crystal. The DC beam from AOD1 is
also diffracted into the positivé Doppler shift order by AOD2 and imaged onto the
crystal with a demagnification factor of two, since the BSO crystal is smaller than
the AODs by roughly that factor.

Any undiffracted light is removed by spatial filtering in the Fourier plane of L3
and the two diffracted beams are incident on the crystal at twice the Bragg angle
with respect to each other. With a exp(52x fot) and asezp(527 fot) driving AOD1
and AOD2 respectively, the intensity incident on the crystal can be described by

I{z,t) = |a;(t — z/v — T/2)|® + |ag(t + z/v — T/2)|?

+ 2Re{aj(t — z/v — T/2)aqz(t + z/v — T/2)exp(j2nsinfpz/A)}.
(3.28)

The direction of the read beam is adjusted for maximum diffraction efficiency from
the photorefractive grating. Using Eqs. 3.27 and 3.28, the amplitude of the read-

out wave diffracted by the crystal is determined to be proportional to the following
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integral:
t4r
Eaigs(z,t) / al(t — z/v — T/2)as(t' + z/v — T/2)dt". (3.29)
t

This is the desired correlation.

Both AODs were driven with a symmetric linear chirp with a bandwidth of
5 MHz centered at 70 MHz and accessed with argon laser light (A = 514nm) to
provide the two writing beams. Cylindrical lenses (not shown in the figure) were
used to expand these beams to illuminate the full aperture of the crystal, and the
average intensity of the writing beams was equal to 1 uW/em?. The correlation was
read out using He-Ne (A = 633nm) laser light, which is negligibly absorbed by the
crystal, and the Iight diffracted by the crystal was imaged horizontally and focused
verticaly onto a linear CCD detector array.

Fig. 3.29 shows the correlation obtained when both AODs are equally driven
with the same signal. Since the intensity is detected by the CCD array, the results
shown in Figs. 3.29-3.33 are the modulus squares of the correlation functions. It is
true that an increase in the writing intensity bias due to unequal signal levels in the
AODs or the addition of noise would appear directly on the output of a standard
time-integrating correlator. On the other hand, the overall diffraction efficiency and
therefore the output signal from the photorefractive crystal is reduced according to
Eq. 3.29, while the bias is completely blocked from appearing at the output by

the holographic writing/reading process. As the SNR is continually decreased, the
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diffraction efficiency deteriorates until the output is overcome by scattering noise
and thermal and shot noise within the crystal. Since Eq. 3.27 shows that the
strength of the photorefractive grating is essentially proportional to the modulation
depth of the writing intensity distribution, we can define the dynamic range to be
DRpso = m;"l-n, where My, is the minimum modulation depth of the writing
intensity distribution to which the crystal will respond. The modulation depth can
easily be controlled by varying the signal levels in the AODs. The -dynamic range
was measured to be equal to 23 dB. We expect that through careful désign (crystal
polishing, anti-reflection coating, etc), this figure can be substantially increased.

Additional results were obtained using T'eO;, which has longer time apertures
(> 60 psecs.), allowing a wider correlation viewing window. Shown in Fig. 3.30
is the autocorrelation of a 20 % duty cycle square wave of frequency f, =73.5
kHz. Because of nonuniformities in the BSO and the nonuniform reading beam, the
output was apodized by a bell-shaped distribution. Fig. 3.31 shows the result for
the square wave with a higher frequency (f, =147 kHz) where the result shows the
apodization more clearly. Fig. 3.32 is the autocorrelation of a chirped signal with
a bandwidth of 16.7 kHz and duration of 7.8 msecs. And finally, noise in the form
of a 50 MHz sinusoid was introduced additively in one of the AODs to reduce the
SNR to -17dB for the 147 kHz square wave input. The bias free result is shown in
Fig. 3.33. Here again, thg background DC bias is due entirely to dark currents in

the detector.
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Fig. 3.29 Autocorrelation of 5 MHz Bandwidth Chirp Cen-
tered at 7 MHz Using the Photorefractive Correlator

Fig. 3.30 Autocorrelation of 73.5 KHz Square Wave (20 %

duty cycle) Using the Photorefractive Correlator with T'eO,
AODs
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Fig. 3.31 Autocorrelation of 147 KHz Square Wave (20 %

duty cycle) Using the Photorefractive Correlator with TeO,
AODs

Fig. 3.32 Autocorrelation of 16.7 KHz Bandwidth Chirp (du-

ration= 7.8 msec.) Using the Photorefractive Correlator with
TeO, AODs
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Fig. 3.33 Cross Correlation of 147 KHz (20% duty cycle) Square

Wave with Same Signal Corrupted by 50 MHz Sinusoid at SNR

=-17 dB
3.2.3 Space-time-integrating optical processor

In the space-integrating (SI) adaptive implementations, the desired correlation

is formed by a SI correlator and read out with a SI convolver. Alternative ap-
proaches where integration in both time and space are used have been described by
Rhodes [8] and Penn et al.[9]. In such systems, the correlation integral is computed
on a time-integrating spatial modulator and read out with a SI convolver. We now
consider such an implementation using the photorefractive time-integrating corre-

lator described in the previous section. The advantages of this implementation over

the previous ones [8,9] which used the Hughes liquid crystal light valve and a phos-
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phor screen, respectively, as the time-integrating SLMs are: 1)the system response
speed is easily controllable since the response time of the photorefractive effect
depends on the exposure level; 2)a coherent implementation is possible; 3)higher
resolution is exhibited by the photorefractive devices; 4)since the crystal does not
respond to DC or bias levels, the implementation will not suffer from bias build up
problems common among time-integrating systems; 5)the photorefractive devices
are simpler since they require only the crystal and a voltage source to supply the
external electric field required for some crystals.

A SI convolver compatible with the BSO system is required in order to im-
plement the passive processor (adaptive estimator) using the photorefractive cor-
relator. A coherent realization is shown in Fig.3.34 where the He-Ne beam path
that was used to read out the correlation written on the BSO now includes an ad-
ditional AOD with some demagnifying optics. The output and input signals (2(t)
and z(t), respectively) constitute the inputs to the correlator AODs (AOD1 and
AOD2). AOD3 is also driven by the input signal z(¢) and diffracts a portion of the
He-Ne read beam to pass through the BSO unaffected by the grating in the crystal
because of Bragg mismatch. The DC beam from AOD3, however, is Bragg matched
to the index grating in the crystal and reads out the correlation function. If all of
the AODs are driven at the same center frequency, then the beam diffracted by the
BSO crystal and that diffracted by AOD3 are collinear and interefere temporally

at frequency fo, the Doppler frequency introduced by AOD3. The two diffracted
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waves are Fourier transformed by lens L5, and the resulting intensity is detected
by the photodetector. The output current is the convolﬁtion of the input z(t) and
the correlation formed within the crystal, and it becomes the feedback signal Z(t),
which is then subtracted from the input to produce the outéut signal. The resulting
input-output equation is

T/8

'[t :z*(t' — 20 -T/2)

z(t — 4a — T/2)z(t' + 2o — T/2)dt'de,

2(t) ~ =(t) - G /

-T/8 (3.30)

which is similar to that of the SI system (Eq. 3.12) except for the presence of both
space and time integrals.

One underlying assumption behind Eq. 3.29 and hence 3.30 is that the crystal
is thin enough to put the read out process into the Raman-Nath regime [1]. This
is not usually the case, however, and the coupling between the writing beams must
be taken into account. Coupled wave theory predicts that the phase of the index
grating will be a function of the two write beam intensities [10]. To verify this
effect, all of the AODs were driven by a common sinusoid of frequency fo=70 MHz,
and the phase of the output from the photodetector was compared to that of the
input sinusoid for various writing beam intensity ratios which were controlled by
varying the signal levels that drive AOD1 and AOD2. The results are shown in
Fig. 3.35 where the upper trace of each picture shows the reference signal that
drives the AODs and the bottom portion shows the reconstructed sinusoid from

the photodetector. The intensity of one of the two writing beams was fixed at 12
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uW [em?, while the other assumed values of 12, 5.8, 3, and 1 uW/em?. The phase
of the reconstruction changes by as much as 25 degrees as the intensity ratio is
varied. This introduces a complication in the present system because, as soon as
the processor begins to suppress an incoming jammer, the output, z(t), begins to
decrease in amplitude. This causes the ratio of the intensities of the two write beams
that emerge from AOD1 and AOD2 to diminish. This translates to a phase change
in the feedback signal, causing instability. A remedy, however, is effected by placing
an automatic gain control (AGC) amplifier at the input to AOD2. As adaptation
proceeds and z(t) begins to decrease, the AGC tracks the drop in amplitude to keep
the input of AOD2 at a fixed value. The speed of the AGC must be much faster
than that of the BSO response, which was on the order of hundreds of milliseconds.

The system just described has been set up in the laboratory for preliminary
study using an Avantek RF (5-100 MHz) AGC amplifier whose response time is
about 25 usecs. Fig. 3.36 shows the spectrum of the input signal, a jammer at 70
MHz, and that of the processor output. The scales of both pictures are the same.
The observed suppression of the jammer was about 15 dB. Better suppression can

be expected as AGC amplifiers with higher dynamic range are used.



Fig. 3.35 Dependence of the Phase of the Reconstructed Sig-
nal on the Writing Beam Intensity Ratio (the intensity of one

beam was fixed at Iy = 12 pW/ cm® while the intensity of the
other beam was varied): a)l; = 12 uW/cm? b)I; = 5.8
uW/cmz, c)l; =3 ,uW/cmz, d)I; =1 MW/cmz.
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Fig. 3.36 Jammer Nulling Result a)input spectrum b)output
spectrum (the two pictures are at the same dB scale)
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Chapter 4. Extension to 2-Dimensional Signal Processing

4.1 Narrowband Processors in Broadband Environments

The extension of adaptive filtering techniques to the space-time domain is ap-
plicable for sonar and radar signal processing where the outputs from an array of
sensors must be weighted and summed to optimally estimate a signal in the pres-
ence of noise [1-3]. When the array processor encounters only na.rréwba.nd signals
centered at a common carrier frequency, fo, the filter structure shown in Fig. 4.1
is identical to that of the temporal filter except that the input samples are the
outputs of the sensors instead of a tapped delay line. In such applications, only
spatial discrimination of signals is required, and the jammer nulling capabilities of
such systems are quite good as long as the jammers are narrowband. The output

can be described by the following equation

N
2(t) = Y houa(t), (4.1)
n=1

where N is the number of elements in the array and h,, is the adaptively controlled
weight for the n;, sensor output u,(t).

After suppressing the temporal carrier term ezp{j2x fot}, the signal received
by the n.), element due to a narrowband signal arriving at an angle 4 from boresight

can be expressed as

un(t) = a(t)ezp{—j27 fosinbnd/c}, (4.2)
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» z(t)

Fig. 4.1 Narrowband Array Processor
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where c is the speed of light, a(t) is the slowly varying envelope of the signal, and
d is the spacing between the array elements. The go#l of the adaptation is the
minimization of the mean squared error between the actual output of the processor
and a desired signal. The scenario with which we will be co-ncerned is the one where
the desired signal is known to be on boresight, and interference from directions other
than this must be suppressed. This is sometimes known as sidelobe cancellation [4].
An example of narrowband nulling is shown in Fig. 4.2, where the array gain pattern
for a uniformly weighted array and the minimum mean-squared error gain pattern
for receiving a signal on boresight and rejecting a jammer of the same frequency at
a sidelobe angle are plotted.

Although the jammer is received at a sidelobe angle and is attenuated relative
to the signal, the power of the jamming interferences is typically much larger than
that of the signal, and so the summed output of the uniformly weighted processor
will be dominated by the interference. In this case, the optimum pattern to which
the adaptive processor converges places a perfect null precisely at the direction of
the interference.

Given the size of the array (N = the number of receiving elements), an upper
bound on the number of spatial jammers of the same frequency fo that the array
is able to reject can be established. The m,, jammer from a set of M jammers can

be represented by an N-element vector u(™) whose n,; element is given by

ul™ = exp{—j2r fosinfnd/c}. (4.3)
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Simultaneous nulling of all of the M jammers leads to the system of equations

u(ll) ugl) - ug\;) hy 0
: : : ha : 4
L0000 e N N R P (4.4)
1 2 N
$1 S2 ... 8N hy 1

where s represents the signal vector, and the last equation of the system arises from
the constraint that the signal be accepted. If the jammers are distributed spatially
such that the vectors {y_("‘)}:;l and s are linearly independent, then in order for
a solution h to exist, there can be at most N equations in the system, yielding
the upper bound of M < N — 1. The linear independence condition is akin to
that of general position in pattern recognition [9] and assures that the jammers are
irregularly distributed in space.

Since the narrowband arrays assign only one weight per sensor, no consideration
of the temporal content of the received signal is taken. The spatial distinction of
a signal is judged based on the observed differences in the phase of the signal
as received by each element. If a particular jammer contains many frequencies
spread over a significant bandwidth, each component will result in a unique relative
phase difference from element to element and hence will look like a multiplicity of
jammers directed at different angles. Thus, if a narrowband processor encounters a
sufficiently wideband interference in some direction, it will use up all of its degrees
of freedom (the adjustable weights) to null this single directional noise.

Two examples are shown in .Figs. 4.3 and 4.4, where the minimum mean-

squared error array patterns are plotted for a boresight desired signal and a multi-
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frequency jammer incident at § = 60°. The element spacing in each case is -5%)— The
jamming frequencies are fo, .85fy, and .7fo, with the signal power and the power
in each jamming frequency being equal. For each case (Fig. 4.3, Fig. 4.4), a gain
pattern for each jamming frequency is plotted, since the array response is frequency
dependent. Fig. 4.3 depicts. the response of a 2 element array, and it is clear that
only the frequency .85f¢ is nulled perfectly, while Fig. 4.4, which corresponds to a

4 element array, shows perfect nulling for all three frequencies.

4.2 Optimum Broadband Systems

In narrowband applications, bandpass filters are used to assure a narrowband
signal and noise environment as shown in Fig. 4.1, but where signals with large
bandwidths must be processed, such filters cannot be used. Even in broadband
noise environments, we would like the N element array to be capable of cancelling
N — 1 jammers in general, regardless of their respective bandwidths. This requires
that more degrees of freedom be available for the output of each sensor than the
single weight that the narrowband processor provides. Shown in Fig. 4.5 is an N
element array processor that satisfies the requirements for operation in broadband
environments by passing the output of each sensor through a linear time-invariant
filter, or equivalently, a tapped delay line [5-7]. While spatial discrimination is still
made possible by the spatial sampling done by the array of sensors, the additional

capability of making distinctions based on the temporal content of the received
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signals is offered by the array of filters.

An optimum choice of the linear filters based on the mean squared error crite-
rion can be made in the present scenario of a desired signal incident on boresight
and broadband jammers from other directions. Let s(¢) represent the desired sig-
nal which is assumed to derive from a stationary random process with zero mean
and autocorrelation function given by R(r) = E[s(t + 7)s*(t)]. Since the desired
portion of the received signal arrives on boresight, there is no dispersion, and each
element receives an identical desired signal as(t). The interference that arrives from

different directions will induce signals in each element with different delays.

Let v, (t) be the interference component received by the n;, element, assumed
also to derive from a zero mean stationary random process with covariance function
given by Yymn(r) = E [um(t + 7)vi(t)]. The total signal received by the n;y, element
is therefore given by u,(t) = as(t) + va(t). The output of the array processor is

given by
N o
2 =Y / ho(F)un(t — )dr. (4.5)
n=lY T
The problem is to minimize the mean-squared error

elhn(r)] = Ell2(t) - s(2)]?], (4.6)

by varying the filter kernels h,(r). By using simple variational arguments, it is

shown in Appendix B that the minimizing solution for h,(7) must satisfy the system
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of linear integral equations

N oo
3 [ B (r) [2R(t — 7) + Ymn (¢ — 7)] dr = R(t), (4.7)
m=1Y =%
where n = 1,2,..., N. Transformation of the above system to the frequency domain

yields

N
Y Hu(£) [@S(F) + Tmalf)] = S(f). (4.8a)

ma=1

Here S(f) is the spectral density function of the signal and I',,,(f) is the cross-
spectral density matrix of the interference, given by the Fourier transforms of the
corresponding covariance functions, and H,,(f) is the frequency response of the my,
filter of the array. For comparison, the corresponding equation for a narrowband

processor with a single complex weight w,, for the m,, receiving element is

N
Z wm[a + C,,m] =1, forn=1,2,..N,  (4.8b)

m=1

where « is the amplitude of the received signal component on boresight and C,,,, =
E[v,v}], the covariance matrix of the noise components. A comparison of Egs.
4.8a and 4.8b shows that the optimal broadband strategy is to simply provide an
optimum narrowband weight for each frequency f. Thus, the optimum broadband
system reduces to a channelized system of optimum narrowband sub-systems.

If we now assume that the signal spectrum is approximately white (e.g., spread
spectrum codes) with spectral density So and the received signal component is small

compared to the noise so that aSy <« 1, then Eq. 4.8 can be approximated by

N
Y Haf)Tmn(f) = So. (4.9)

m=1
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The frequency-dependent response of the individual filters can now be varied to
compensate for the spectral characteristics of the environment, whereas the nar-
rowband processor offered no such flexibility with its single, frequency-independent

weight for each sensor.

4.3 Directional Cancellation of a Single Broadband Interference[2,4-6]

The example of a cancellation of a multi-frequency interference given in Fig.
4.4 shows that a narrowband array processor suppresses a broadband jammer by
placing the null over a wide region near the interference direction. This is true in
general for any narrowband array processor with a number of elements sufficiently
large to null a broadband interference. A large number is needed because the array
pattern shifts with frequency. By solving Eq. 4.9 explicitly for the case of a single
broadband interference incident at an angle 4; with respect to boresight, we will
show analytically that the broadband system suppresses the interference with a null
that does not shift with frequency, placed precisely at ;.

Let a(t) be the broadband interference waveform incident at an angle §; with
respect to boresight, so that the n., element receives the relatively delayed version
a(t — nA), where A = dsinf;/c. Assume that the interference waveform is derived
from a zero mean stationary random process with the autocorrelation function given

by 4(7) = E [a(t + 7)a*(t)], the covariance between the interference received by the
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ne, and mgp, elements is given by
Ymn(7) = E [a(t + 7 — mA)a*(t — nA))]
(4.10)
=q(r + (n — m)A).

The inclusion of sensor or receiver noise that is uncorrelated for each element and

assumed to be white with spectral density o7 yields
Ymn(T) = (7 + (n — m)A) + 6mnb(7)02 (4.11)

as the covariance of the total noise present in the myg; and n,, elements. The
noise cross spectral density matrix, required for the optimal solution, is the Fourier

transform of the above expression. It is given by
Tomn(f) = exp{s27f(n — m)A}Sa(f) + 6mnod. (4.12)

The particularly simple form assumed by the noise cross spectral density matrix
enables the inversion of Eq. 4.9 to be carried out explicitly. It can be shown that
the solution of Eq. 4.9, which gives the optimum form for each filter, is given by

Ha(f) = (So/02){1 — ezp{—jnfA(N +1 - 2n)}

sin(r (4.13)
-;,-;(;(7}:}']%150 ()/(o5 + NS, ()}

The gain pattern that results from this choice of filters can be determined by com-
puting the array response to a monochromatic plane wave signal at various frequen-
cies and incidence angles. Specifically, if we let 0 represent the incidence angle of

this probe beam, the gain pattern as a function of the probe frequency and angle
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is given by
_ , ; NA'
0(/,0) = (ezp{~im (N + D AYSo o) { e L)
sin(rfNA)
sin(wfA)

sin(rfN(A' = A))  S.(f) }
sin(rf(A" — A)) (03 +NS,(f) )’

— exp{—jrf(A' — A)(N + 1)} (4.14)

where A’ = dsinf/c. At incidence angles other than that of the interference, §;, the

second term is small since A # A’ so that

sin(rfNA")

g(f,0 # 0;) ~ (So/ad)ezp{—gn f(N +1)A"}

which is simply the array pattern with uniform weighting.
When we probe near the interference, however, so that § =~ §;, then the second

term becomes appreciably large and the gain becomes

sin(rfNA)
{1 - N5u(f)/(6d + N5. ()}

g(f,0 = 0;) = (So/od)ezp{—jm f(N +1)A}

With the assumption that the interference power is large compared to that of the
detector noise so that NS,(f) >> o3, the gain becomes zero near the interfer-
ence direction. Note also that this null in the array pattern remains fixed for all
frequencies where there is sufficient interference power to overcome the detector

noise.
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4.4 Adaptive Array Processor

As in the strictly temporal case, the adaptive broadband sidelobe canceller also
utilizes convolvers and correlators to accomplish the desired task. However, because
of the multi-dimensional nature of the signals (spatial and temporal), arrays of
correlators and convolvers must be employed. The basic system is shown in Fig.
4.6.

The output of the processor is simply the sﬁm of all of the signals from the
array elements and a feedback signal, which is derived from a cascade of multi-
channel correlation and convolution operations performed on the output and input
signals. The output is fed back to the first block, which calculates the correlation
between the output signal and the N input signals from the array elements. Each
of the resulting correlation functions, given by (u,(t) * 2(¢)), n = 1,2,...,N, is
then convolved with its corresponding input. The N convolved results are summed
to give

N
G un(t) * (un(t) * 2(2)) (4.17)

n=1

i

i
as the feedback signal, where G is the feedback gain.

To show that the adaptive processor approximates the optimum response, how-
ever, the output must first be expressed in the form of Eq. 4.5, where the impulse
response for each array filter is explicitly shown. We will show that the equation
describing the filter impulse response functions, h,(t), n = 1,2,..., N, of the adap-

tive processor is approximately equivalent to that of the minimum mean-squared
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error processor given by Eq. 4.9.
In order to clarify the analysis to follow, we redraw the schematic of Fig. 4.6a
as shown in Fig. 4.6b so that as in the Frost architecture (Fig. 4.5), the output
from individual filters can be identified and described. Here, the output of the ngp

filter is given by

yn(t) = /m hn(t = T)un(r)dr,

-0

or equivalently, Y, (f) = Hn(f)Un(f) where Y,,(f) is the Fourier transform of y,(¢).
The overall output is then given by z(t) = }_, yn(t). Inspection of Fig. 4.6b yields

T () =tn(t) — Glun(t) * 2(t)] * un(t)

(4.18)
= [6(t) — Glun(t) * z(t)]] * Un (t),
where 6(t) is the Dirac delta function. Since z,(t) = hn(t) * u,(t), the impulse

response of the n,;, filter is described by

ha(t) =6(t) — Gun(t) * 2(t)

N 4.19
=6(t) — Gun(t) * D tm(t) * hm(t). (4.19)
m=1
Taking the Fourier transform of the above equation and rearranging yields
> [6am + GUL(N)Un ()] Ha(f) = 1, (4.20)

m

where U, (f) is the Fourier Transform of u,(t). If the feedback gain G is sufficiently
large so as to leave the first term of Eq. 4.19 negligible compared to the second,

then Eq. 4.20 becomes

G Un(f)Unm(f)Hm(f) = 1. (421)
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This is of the same form as the optimum equation, Eq. 4.9, provided that the
input SNR is sufficiently low so that we can identify u;( fum(f) as the estimate
of the noise cross spectral density matrix 'y, (f). The particularly simple form of
Eq. 4.20 can be inverted, however, to give a closed form. solution for the adapted
filtering functions. The derivation is analogous to that leading up to Eq. 4.13 and

yields

U (f) Zﬁ:l Um(f) n=1.2....N. (4.22)
1+GYN_ UL(N? T

Suppose that the total signal received by the array consists of a weak probe signal
on boresight represented by p(t) whose Fourier transform is P(f) and strong inter-
ference signals incident in other directions, the noise received by the n;:, element
represented by v, (t) whose Fourier transform is V,(f). Thus, the total input is
given by u,(¢) = p(t) + vn.(t). The probe is sufficiently weak as to only negligibly

affect the determination of the filtering functions H, (f) so that approximately,

w1 YA Xpe Vmll) | _
Ha(f) =1 L NTAT =1,2,.,N. (4.23)

The output is described by

N
Z(f) =Y Ha(f)Ua(f)

n=1

n=1

(4.24)

{1 _ V2D et Vi)

Trory, tvm(mz} P +Val1)]-
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Further expansion yields

SN V)P
TrGyr lvm(f)lz]”f )

= et Ve (£)I?
+ 2 V() [1 C1+6YN_ 1V,,,(f)r~’}'

Z(f) =~ [N -
| (4.25)

n=1

As expected, the second term is effectively suppressed if the feedback gain can be

made large.

4.5 Optical Implementation

The optical implementation of the adaptive sidelobe canceller is a fairly straight-
forward éxtension of the optical techniques used for the temporal systems described
in Chapter 3. The extension is made simply by using arrays of convolvers and cor-
relators to handle the N input signals from the antenna array sensors. The input
spatial light modulators to be used are multi-channel and single channel acousto-
optic devices that offer large dynamic range and can operate on broadband signals.
We concentrate first on a space-time integrating system that involves the use of a
photorefractive crystal to perform the time integration. A strictly space integrating
array processor is described in Section 4.6.

The basic task of the processor is to form the feedback signal given by Eq. 4.17.

Note, however, that since correlation can be expressed as u,, () *2(t) = uy(—t)*2(t),
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and convolution is both an associative and commutative operation, the feedback

signal can be expressed equivalently as

N

a(t) = G2(t) + 3 unlt) + ui(~1). (4.26)

n=1

This rearrangement suggests that we can modify the system architecture somewhat
by first computing an autocorrelation function of each input signal, adding the
autocorrelations and convolving the summed result with the output, z(t), to form
the feedback signal as illustrated in Fig. 4.7.

For the purpose of discussion, however, we adhere to the strict interpretation
of Eq. 4.17 as discussed in 4.4. As shown in Fig. 4.6a, the output is first corre-
lated against each of the N input waveforms, and each resulting correlation is then
convolved with its corresponding input. The N convolution-correlation signals thus
produced are summed to form the feedback signal. The multi-channel correlations
are performed using time integration and the convolution with the output signal is
achieved with space integration.

Shown in Fig. 4.8 is the multi-channel correlator, where the output autocor-
relations are written as modulations of an index grating formed on the crystal by
the photorefractive effect. More specifically, AOD1 and AOD2 are arranged to op-
erate in a coherent, additive architecture. The single channel AOD1 diffracts a
portion of its input light. This passes through AOD2 without being affected be-
cause of Bragg mismatch and is imaged onto the crystal to yield the amplitude

z(t+z/v—T/2)exp{s27 fo(t + z/v)} in the crystal plane. The multi-channel AOD2
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diffracts the undiffracted beam from AOD1, which is aligned to be well matched to

its acoustic gratings to yield the optical amplitude

D ualt — z/v — T/2)rn(y)ezp{j2n fo(t — z/v)},
also imaged onto the crystal. Here r,(y) characterizes the vertical confinement of the

acoustic beam in each channel of the multi-channel AOD and can be approximated

by

_(n— Ntl)y,
rn(y) = (N]éy)rECt l:y ( 6y 2 )y ]] , n=1, 2a"aN1 (4'27)

Sy being the acoustic beam width and y, the separation between neighboring chan-
nels, where N is assumed to be odd.

These two amplitudes are incident at an angle with respect to each other.
Since both have the same Doppler-shift in frequency, an intensity grating is seen
by the crystal. In fact, an array of one-dimensional modulated index gratings, each
confined vertically by r,(y), is formed within the crystal. It can be shown that
the modulation functions are proportional to the desired correlation functions, and
specifically, the diffracted light due to the n¢; grating when the crystal is illuminated
by a plane wave is given by [8] E,(z,y)ezp{—j27fo(2z/v)}. Here

t

En(z,y) « ra(y) /0 ezpl(t' — £)/]un(t! — z/v — T/2)2* (' + o/v — T /2)dt’

t—zf/v-T /2

x 7, (y) / u, (t)2*(t' + 2z/v)dt'.
t~zfv=T/2~7

(4.28)

In this equation, the exponentially decaying window function has been approxi-

mated by a rectangular window of temporal duration 7. The resulting integral is
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proportional to the correlation function of u,(t) and z(¢) with 2z/v as the shift

variable.

To complete the task of forming the feedback signal, we combine the previously
described correlators with a space integrating convolver, resulting in the system
shown in Fig. 4.9. The added portions are the multi-channel ACD (AOD3) which
is driven by the system output z(t), some imaging optics, and a single photode-
tector. Since the autocorrelations are available at a compressed horizontal spatial
scale, 2z/v, a com'bina.tion of cylindrical and spherical lenses C1,L5,L.6 is used to
anamorphically image AOD3 onto the crystal. This anamorphic imaging provides

a 2:1 demagnification ratio in the horizontal direction and 1:1 in the vertical.

A portion of the He-Ne read beam is diffracted by AOD3 and passes through
the crystal unaffected since its propagation direction is not properly Bragg-matched
to the correlation gratings in the crystal. The DC beam from AODS3, however,
is arranged to be Bragg matched to the gratings and reads out the correlation
functions. If the acoustic velocity in AOD3 is v, the same as that of AOD1 and
AOD2, and all of the AODs are driven at the same frequency, fo, then the read beam
diffracted by the crystal and that diffracted by AOD3 are collinear and interfere
temporally at fo because of the Doppler shift induced by AOD3. The diffracted
light amplitude just behind the crystal due to the crystal gratings is proportional
to Y., En(z,y)ezp{yj2r fo(—2z/v)}, and the diffracted light from AOD3 evaluated

at the same plane is ) ezp(s27 fo(t — 2z/v)|ua(t — 2z/v — T/2)r,.(y).
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The sum of the above two amplitudes are Fourier transformed by lens L7,
and the resulting intensity distribution is integrated aéross the Fourier plane by a
sufficiently large photodetector. If w is the width of each AOD, the result is the

output photocurrent

w/4 poo
¢(t) o Re {ezp{j27rfot} Z /:-w/4 [_co E;(z,y)un(t — 2z/v — T/Z)dydz}

+ DCterms

w4 poo pt-zfo—T/[2
o Re{ezp{j2~ fot} Z/ / / ra(y)un(t')2(t' + 2z/v)

wi4J - t—zfv-T[2~7

un(t — 2z/v — T/2)dt'dydz} + DCterms

o Re{ezp{ﬂwfot} Z/

un(t — 2z/v — T/2)dt'dz} + DCterms.

T/4 pt—zfov-T/2
/ uh ()2t + 22/v)

~T/4Jt—z/v-T/2—7

(4.29)
The high frequency term centered at fy is approximately equal to the desired feed-
back signal given by Eq. 4.17. The output of the system z(t) is then formed by

subtracting the feedback signal from the sum of the input signals 3 u,(t) to yield

' T/4
z(t):—-Z{un(t—( )/ /_ S +t—B—T/22(t +t+8—T)2)

Un(t — 28 — T/2)dt’dﬂ},
(4.30)

where 8 = z/v, T = w/v, and G is the feedback gain. Here we have assumed that
the signals received by the array are all centered at fp and that they drive the AODs
directly after being amplified.

By defining an equivalent impulse response, h,{a), for the system such that
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z(t) =3, [ ha(@)un(t — a)da, Eq. 4.30 can be expanded further to give

0=l G [ [ [ it 4= 20hm(e

Um(t' +t+ B —T/2 = a)un(t — 28 — T/Z)dadt’dﬂ}.

(4.31)

An equation that describes the impulse response can then be derived by noting
that the output appearing on the left side of the above equation can be expressed,
using the impulse response. With the assumption that the integration time, r, is
long enough to warrant the approximation sinc¢[fr] ~ 6(f), the resulting impulse

response equation is given by

ha(B) = 6(8) — (g—)rect[é-%?-] Z//__: ezp{j2nf'(f — a« — T/2)}

ho(@)Us (f)Unm () df'da,

(4.32)

where U,(f) is the Fourier transform of the n., input signal u,(t). Taking the

Fourier transform of the above equation gives

H()=1=GY [~ caplyn(y = )Tsinel(s" = YTV (VUL IOm(7) "

" (4.33)
This is very similar to the optimal equation discussed in 4.2 if we identify the
product U, (f)Um(f) as an approximation of the required cross spectral density
matrix. In particular, the effect of the finite convolution time is to distort the
spectral properties of the input noise field. Thus, the optical implementation is
expected to place a spectrally broader null in comparison with the interference

bandwidth, but the spatial characteristics remain similar to the optimal case.
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4.6 Adaptive Array Processor with Variable Look Direction

The array processor described thus far is a sidelobe-cancelling system where
the maximum sensitivity (the “look direction”) is always constrained to be in the
direction of boresight.* In this section, an acousto-optic processor is presented
which is an extension of the temporal active processor described in Chapter 3 to
the space-time domain. The optical architecture considered uses space integration
as opposed to the photorefractive implementation considered in the previous sec-
tion. The optimizing criterion used is that of maximizing the output SNR (signal
detection) and the signal need not arrive on boresight.

The scenario considered is that where a signal waveform s(t) is incident on the
array at a known angle # with respect to boresight, and noise (possibly broadband)
from directional sources corrupt the received signal waveform. Let s,(t) = s(t —
n(d/c)cosd) be the signal waveform received by the n:; element. The total signal
received by the n;, element is then given by u,(t) = s,(t) + v, (), where v,(¢t) is
the sum of all noise terms. Here d is the array element spacing, and ¢ is the speed
of light.

The output of a general space-time filter can be expressed as

N oo
vt) =S L  n()hn(t = ), (4.34)

* The look direction can be changed by introducing appropriate delays in the

signals received by each element before they are processed.
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where uy,(t) is the complex envelope of the total rf signal (centered at fo) received
by the ny, array element, and h,(t) is the filtering function for each channel. A
similar expression is obtained for the optically implemented space-time filter using
two multi-channel AODs shown in Fig. 4.10. This is completely analogous to the
single channel AO convolver of Section 3.1.1. This system is coherent, and the

output can be shown to be given by
2¢y N T/2

v =2 ; /0 wn(t =7 = T/2)hn(t + 7)dr, (4.35)
where the filtering function h,(t) is used to drive the second AOD, and ¢; is a -
constant that depends on laser power, AOD diffraction efficiencies, and the quantum
efficiencies of the detectors. The only differences from the general filter (Eq. 4.34)
are limited accumulation time and the time compression of the output. This is of
little consequence since signal detection rather than estimation is considered here.

The noise v,(t) present in the received signal is modeled by a zero-mean random

process with a covariance matrix given by
Ymn(t) = Elvm(t)v,(t — 7)) (4.36)

It can be shown through variational arguments that the choice of h,(t), for which
the SNR of the AO space-time filter is maximum at a specified time ¢, must satisfy

the following system of integral equations:

N oo
Z / Ymn(T — B)hm(B)dB = As),(to — 1), n=1,2,.,N. (4.37)
m=1Y ~®
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The details of this derivation are given in Appendix B.

For adaptivity, we need to calculate and continuously update the filter function
to drive the output to the optimum result. As with the temporal active processor,
the output must be correlated with the input to produce the appropriate filter
function. Since the array processor has N inputs and one output, this requires
that we correlate N signals with a common one. This can be achieved with the
arrangement shown in Fig. 4.11. That figure shows the use of a multi-channel AOD
driven by the N antenna element outputs in conjunction with a single channel AOD
driven by the processor output signal.

This architecture is identical to that of the one-dimensional correlator of Fig.
3.6, except that the first AOD has been replaced by a multi-channel AOD, and
the output is detected not by a single detector but by an array of N detectors.
Specifically, the complex envelope of the output of the n;; detector element is given
by

402 0

ra(t) = y(t + r)uy(t + 2r — T/2)dr, (4.38)

-T/4
where ¢; is a constant that depends on the laser power, AOD diffraction efficiencies,
and the quantum efficiency of the detector. For proper correlation to appear at each
output, the signal driving the single channel AOD must be time-compressed by a
factor of two. This is indeed the case for the system described. Thus, the AOD
implemented space-time filter and the N channel correlator with a single reference

are compatible.
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Shown in Fig. 4.12 is the array processor block diagram that shows the inter-
connections required; it is a direct extension of the temporal active processor to two
dimensions. The output from each antenna element is correlated with the processor
output to produce the filter function for that element. The “steering vector” s} (—t)
determines the look direction of the array and also is the temporal reference signal
used for the detection of the desired signal s(t).

Fig. 4.13 shows the optically implemented adaptive array processor with the
AOD implemented space-time filter in the upper branch and the N channel correla-
tor in the lower one. By combining Eqs. 4.35 and 4.38, the equation that determines

the filter function h,(t) is seen to be

ha(t) = sp(—t +to) — 80162 Z/T/Z/T/.; *(t + 2/beta — T/2)

m(t+ B =1 —T/2)hm(t + B + r)dBdr,

(4.39)

where G is the feedback gain. Under conditions of low input SNR and large feedback

gain, Eq. 4.39 can be transformed to the frequency domain to yield

exp(—Jj27 foto)Sp(f) = Geyea Z Hm(f)/ Un(f)Um(f")

msz=z1

exp(jn(f — f')T /4|sinc[(f — f')T/4]sinc|(f — f)T/2]df",

(4.40)

where S, (f) is the Fourier transform of s,(t).
For comparison, consider the Fourier transform of Eq. 4.36; the optimum filter

equation is given by

S Tonnlf) Han(£) = Aezp(—=i27 f20)S2(1), (4.41)

m
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where T'y,n(f) is the spectral density matrix. Identifying the integral in Eq. 4.40
as the smoothed estimate of the cross spectral density matrix of the input noise
vector, Eq. 4.40 is approximately equivalent to Eq. 4.41. However, the effect of the

finite time integration window is seen in the smoothing of the noise spectrum.



124

Fig. 4.13 Acousto-Optic Adaptive Array Processor to Maxi-
mize the Output SNR
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Chapter 5. Associative Memory Models

5.1 Introduction

Without regard to implementation details, an associative memory is character-
ized operationally by two key features. First, it is programmed to store input-output
pairs of data so that when a certain input is recognized as one of the stored items,
the output associated with it is retrieved. Secondly, it is capable of error correc-
tic;n, allowing input items that are distorted versions of any of the stored data to
be recognized and mapped to the correct association. These characteristics are il-
lustrated in Fig. 5.1, where the memory is used to associatively store pictures with
their respective names so that the presentation of one of the stored pictures causes
its name to appear as the output in response. Also illustrated is the notion of
error correction. Although the input picture differs slightly from one of the stored
pictures, the correct response is invoked. An associative memory can therefore be
described as a system that can be programmed to perform many-to—one mappings
of input im + 6f to outputs g. for m = 1,2,...,M, where the input error 6f is
small in some sense.

Shown in Fig. 5.2 is a schematic diagram of a neural network where the circles
represent the computing elements or “neurons” (which can be threshold gates), and
the interconnecting lines represent the weights that couple the “neurons” to each

other. See Refs. [1,4,5,8] for further detail on this type of neural network model.
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et

Fig. 5.2 A 4 Element Network

Each “neuron” has one output which, in this example, is connected to the input
of every other neuron. The associative memory paradigm can be implemented in
such a system by specifying the interconnection weight values such that a recognized
input pattern elicits the desired output pattern through the cooperative action of
the interconnected network. Data storage is therefore accomplished in a distributed
way. It haé been shown that associative recall is achieved even when some of the
interconnections are corrupted by noise or damage [1].

In this chapter, we review some methods of specifying the interconnection
weights for associative storage and recall of data and the issue of storage capacity.

An optical system that implements the memory paradigms is then described.
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5.2 Linearly Interconnected Memories

5.2.1 The Hopfield model (1]

The associative memory described in the previous section can also be thought
of as an array of discriminant functions as shown in Fig. 5.3, if the output vector is
binary valued [2]. In this case, each bit of the output vector is the result of a binary
decision based on the input vector. A discriminant function can be any arbitrary
function that maps the N dimensional input vector f to either “1” or “0.” A linear
dis.crimina.nt function (LDF) is a specific case in which the decision rule is given by

N

Y w@)f@E) -6 2 o, (5.1)

i=1
where w(?) are the weight values and § is the threshold level. An associative memory
that can store inputs f - paired with outputs g, can be constructed by configuring
an array of NV such LDF decision machines and appropriately selecting the required
weight values. The number of dichotomies that can be performed by one LDF is
limited to N where N is the number of elements of the weight vector. From this, it
follows that an associative memory implemented by an array of N LDF's can store
at most N associations. This provides an upper bound on the capacity of linearly
interconnected memories [2].

There exist several methods for specifying the linear transformation (array of
LDFs) for associative memory applications. To simplify the discussions to follow,

we shall henceforth focus attention on the problem of auto-association in which the
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Fig. 5.3 Associative Memory as an Array of Discriminant
Functions

linear transformation is chosen to store M’ N-bit binary, bipolar (i.e., each bit is +1)
vectors f - such that for each m, f ~ is the memory output for an input f T 6f.
Related to a neural network-learning algorithm known as Hebb’s Hypothesis, the
outer product method offers a particularly simple prescription of the weight matrix
[1,3]. Specifically, the weight matrix is given by the sum of outer products of the

memory vectors:

When interrogated by one of the memory vectors, say I . this yields the following

product to be thresholded:

M
F@O => wi,N0) =D D fml) 1(5)] fm ()
J#i : m=1 51

y (5.3)

=(N=0£16) + D_ [ D fml0) f1(1)] fm(5)

m=2 j#l1
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The response to an input f L is a weighted sum of the stored vectors, the
weights being the inner products between the stored vectors and the input. The
sum is dominated by the desired response fi(¢), which we call the signal. The
output thresholded vector is given by

1 if f(5) 20

A 4)
-1 if f(¢) <o. (5.4)

£6) = sonlf3)] = {

If we assume that the memory vectors fm,(?) are chosen randomly so that each bit is
statistically independent with equal probabilities of being 1 or -1, the signal-to-noise

ratio of the retrieved product can be computed to yield

SNR=+/(N-1)/(M-1)~ % (5.5)

The Hopfield model incorporates feedback in which the thresholded output is used
as the next input and the system is allowed to iterate until a fixed point is reached.
If the SNR given by Eq. 5.4 is sufficiently high, then the prescribed memory vectors
will indeed be stable fixed points of the system. Based on the SNR given by Eq.
5.4, a statistical bound on the total number of vectors that can be stored as stable
fixed points has been found [4,5] to be M < N/(2InN).

Hopfield [1] has analyzed the dynamics of the associative memory network by

defining an energy function for the network given by

H=-3 % J6uiiI0), (5.6)

where f(7) represents the output state of the memory at a particular time. If we

allow only one randomly chosen bit to be changed at each iteration, the resulting
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energy change is given by

AH = -[)_w( ) fG)]Af6), (5.7)

J#

where only the i;; bit has been allowed to change according to the rule given by
Eq. 5.4. This relation is true in general for any interconnection matrix w(, 5) that
is symmetric and has diagonal terms equal to zero. Clearly, for non-zero change,
the output product }_.; w(f,5)f(s) and the change Af(7) have the same sign so
that the energy is a non-increasing function of time. Thus, the Hopfield memory is
guranteed to decrease the energy in closed loop operation until a local minimum in
energy is reached. Since the stored vectors on the average preside at positions of
locally minimum energy, the system will usually iterate until one of the M stored
vectors is accessed.

The iterative operation of the system is illustrated by the computer simulation
described by Fig. 5.4 where the matrix shown is the outer product weight matrix
computed for the 4 20-bit binary, bipolar vectors shown next to it. The 4 vectors
were first verified to be fixed points of the system. When probed by an input vector
which is different from the first vector by 6 bits as shown, the system first corrected
5 bits as indicated and converged to the correct result by the third iteration.

The overall performance of the memory does not degrade noticeably when the

interconnection matrix is “clipped” [1] in the following way.

1  ifw(,7) >0and 1t # g
w'(i,7) = { -1 ifw(i,j) <0and s # j; (5.8)
0 ifi=7,
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memory vectors are (unipolar versions)

#1 c v+ 0o 0 0o 0ot 't 1 1+ 0 1 0 Y O O O 1 0 1
#2 it v+ ¢ v+ 1900 %+ 0 1t O v O O ¥y ¥ O O v ¥ 1
#3 0 1 1 0 1 o 0 O 1 1 4] 1 o] 1 1 0 1 0 1 1
#4 o 0o 1 o0 0 1 1t 0 0 1 0 1 0 1 0 1 0 0 0
The outer product interconnection matrix:
0 o -2 4 2 0 0 0 0 -4 4 -4 2 -2 2 0 -2 2
Q g -2 Q 2 -4 Q 0 4 o} aQ g -2 2 2 -4 -2 2
-2 =2 0o =2 0 2 -2 =2 -2 2 =2 2 ¢} 0 0 2 4 -4
4 o -2 0 2 o] 0 0 0o -4 4 -4 2 -2 2 0 -2 2
2 2 0 2 o -2 -2 =2 2 =2 2 -2 0 0 4 -2 0 0
0 -4 2 o -2 0 0 0o -4 0 0 o} 2 -2 =2 4 2 -2
0 o =2 o -2 0 0 ¢} s} 0 0 o -2 2 -2 o0 -2 2
o] 0 -2 0 -2 0 0 0 0 s} 0 0 2 -2 =2 g -2 2
0 4 -2 0 2 -4 0 0 0 0 8] 0o -2 2 2 -4 =2 2
-4 0 2 -4 =2 0 0 0 0 0o -4 4 ~2 2 -2 0 2 =2
4 0 -2 4 2 0 0 0 o -4 0 -4 2 -2 2 0 -2 2
-4 0 2 -4 =2 0 0 0 0 4 -4 o -2 2 -2 0 2 =2
2 =2 o] 2 Q 2 -2 2 -2 =2 2 -2 a -4 o} 2 0 Q
-2 2 0o =2 o =2 2 =2 2 2 -2 2 -4 0 o -2 0 0
2 2 0 2 4 -2 -2 =2 2 -2 2 ~2 0 0 0 -2 0 0
0 -4 2 o =2 4 0 o -4 0 0 0 2 -2 =2 0 2 -2
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Fig. 5.4 Computer Simulation Example of the Hopfield Mem-
ory Model (N=20, M=4): a)the interconnection matrix ele-
ments for the memory vectors shown in (b)(note the zero diag-
onal); b)the stored memory vectors; c)operation of the mem-
ory(the first line is the initial input vector, which is the fourth
memory vector with 6 bits of error in the positions indicated).
The second line gives the analog output vector, whose threshold
binary version is given by the third line. The subsequent lines
show how the memory behaves as the output from one iteration
is used as the input for the next.
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where w(7, ) is the outer product matrix given by Eq. 5.2. This somewhat surpris-
ing result can be shown by computing the SNR of the recall process. The output

product before being thresholded is given by

M
F@&) =D sgn[ D fmli) fm(D)] f105), (5.9)

I m=1
where f)(7) was used as the input. Unlike the original outer product case, a signal

term cannot be identified from an additive noise term in this case. In the limit of

large N, however, the mean of f (¢) can be shown to be given by

E[f(5)] =\ =2 N u(i), (5.10)

which is the desired output diminished by a constant factor. The noise of the recall

is then given by the variance of f (), which can be verified to be
2. 2oy 2
E|(f(:) - BIf()])? ~ N. (5.11)

Thus, as a result of clipping the weight matrix, the overall SNR is diminished by
the factor 1/2/m ~ .798 and equivalently, the storage capacity is reduced to

~ N
~ 7inN’

(5.12)

Clip_ping is of considerable interest when actual implementations of the memory
is pondered, since interconnective weights that do not require grey levels can be
achieved much more easily.

Computer simulations were i)erformed to illustrate the functional dependence

of the storage capacity on N, the size of the network. Both the outer product
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and the clipped matrices were simulated for N = 32,64, 100, 128, 150, 180, 200. The
binary, bipolar vectors were chosen randomly for each matrix, and the maximum
number of memory vectors such that they were all fixed points of the memory was
determined for each memory size N. This procedure was done 7 times for each
matrix, using independent vectors for each case. Shown in Fig. 5.5 are the results
of the simulations along with the plots of the asymptotic capacity bounds given by
M = N/(4inN) for the outer product matrix and M = N/(27xinN) for the clipped
matrix. As the bounds indicate, the increase in capacity per increase in meinory

size diminishes as N increases.

5.2.2 The spectral scheme [4]

We now consider the so-called spectral scheme [4] for specifying the weight
matrix. When probed by one of the stored vectors, the outer product memory
yielded an output (before thresholding), which is approzimately equal to the desired
vector. In contrast, the spectral scheme prescribes the vectors to be stored as
eigenvectors of the interconnection matrix, so that when probed by one of the M
stored vectors, the spectral system yields the exact, desired vector to within a

constant positive factor. The matrix is given by

Il
c
S
k

(5.13)

|
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Fig. 5.5 Hopfield Memory Storage Capacity: the solid curve is
the theoretical capacity of the Hopfield Memory and the dashed
curve is the capacity of the clipped matrix memory. The ca-

pacities determined from computer simulations are indicated by
the diamond (for the normal Hopfield model) and the circle (for

the clipped matrix memory).
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where

E= [.[.1’_f.2" s L EM a1 ZMp2s e »Zn )5

(1\1 0 0

0 A

(5.14)
D= AMm
0
., O
\ 0 0o o)

The f - form=1,2,...,M < N comprise the memory and are eigenvectors of w,
each with eigenvalue A,, = A. The vectors z,,, form = M+1,M +2,...,N form the
basis of the subspace orthogonal to that spanned by the memory vectors. Since the
corresponding elements of the diagonal matrix are zero, the set {2,,}2_s., spans
the null space of w . An arbitrary vector f can be written as a linear combination

of the memory vectors and the null space vectors

M N
=Y amf + >  almz,. (5.15)
m=1 . m=M+1

The product of this arbitrary input vector with w, yields

f=

Jig

M
f=2)_ a(m)f_, (5.16)
m=1

which is a linear combination of the stored memory vectors. In particular, if the
input f is one of the memory vectors, then the output consists solely of the same
vector scaled by a constant. In general, if the input and one of the stored memories
are close in Hamming distance, the corresponding expansion coefficient a(m) is

large, so that the stored vector that most closely matches the input dominates the
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output. Venkatesh and Psaltis [4] have shown that the capacity of such a memory
grows linearly with N, making the spectral scheme more efficient than the outer
product. Since the spectral matrix is symmetric, the energy theorem of Hopfield
applies. In addition, the energy of each stored memory vector can be shown to be
globally minimum as opposed to the locally minimum property of the outer product
vectors. In the event that the matrix F is ill-conditioned or singular, techniques
involving the pseudo inverse may be used in place of Eq. 5.14. However, the spectral
matrix is not as simple as the outer product matrix and requires, in general, more

grey levels for implementation [4].

5.3 An Acousto-Optic Implementation of the Hopfield Model

5.8.1 Optical linear transformations

The associative memory models considered thus far are characterized by the
requirement of global interconnectivity among the individual thresholding elements.
Because of the robustness property of such networks, the interconnections need not
be accurate. Optical techniques offer the capability of large-scale global connectiv-
ity, but the connections cannot be specified with great accuracy. Thus, optics seems
to be well matched to the associative memory paradigm when actual implementa-
tions are considered.

Here, we consider an optical réalization of the Hopfield-style networks described

in the previous sections. At the heart of the system is an optical vector-matrix
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multiplier [6] shown in Fig. 5.6. A one-dimensional array of light sources whose
individual intensities represent the values of the input vector elements illuminates
a computer-generated, two-dimensional transparency, which contains the intercon-
nection matrix in such a way that each light source illuminates the corresponding
column of the matrix. The light is then collected on a vertically oriented detector ar-
ray so that the light from each row of the matrix is collected onto the corresponding

detector. In this way, the desired matrix vector product is produced:

N

flk) =) wik,f (1), (5.17)

=1

where f(l) is the intensity of the Iy, source and f (k) is the intensity sensed by the
k:n detector. Using an array of LEDs as light sources and a photodiode array for
detection, Farhat, Psaltis, Paek, and Prata [7]have realized a Hopfield memory of
size N = 32. The basic system, which includes an array of 32 thresholding amplifiers
for parallel feedback, is illustrated in Fig. 5.7. An input vector drives the LEDs,
and the detected matrix-vector product is appropriately thresholded and fed back
in parallel to drive the LEDs for the second iteration. The iterations proceed until
an output vector that is a fixed point of the system is detected when the system
stabilizes. One of the motivations for considering optical associative memories is
the size of the networks that can be realized. If the number of elements becomes
large, however, then the electronic portion of the LED system becomes burdensome,
requiring a large number of thresholding amplifiers.

The system that we now describe [8] circumvents this problem by using a
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Fig. 5.7 LED Implementation of the Hopfield Model [7]
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CCD detector array to obtain a scanned serial output, which is thresholded by one
amplifier and fed back through one wire. Moreover, the array of LEDs is replaced
by an acousto-optic device (AOD) used in conjunction with a pulsed laser diode.
The effective number of pixels in the AOD is given by its space-bandwidth product,
which typically range from hundreds to thousands. Moreover, CCD detector arrays
with large numbers of detecting elements are currently available. Thus, the acousto-
optic implementation can be easily expanded to accommodate large scale network

models.

Before the system can be described, the question of how bipolar numbers can
be represented in the optical realization must be answered. The Hopfield networks
described in Section 5.2 require bipolar interconnection weights, and the state of
each neuron itself is also bipolar (£1). Since the acousto-optic implementation is
essentially incoherent, the data must be represented in terms of intensities which
cannot be negative. However, a bias can be added onto the weights so that each

element becomes nonnegative.

In addition, the bipolar state of each neuron (+1) are then replaced by (1,0).
With f(7) as the bipolar state of the 7,5, neuron at a particular time and w(%, 5) the
bipolar interconnection matrix, the next state of the neuron is determined by the
rule

f'(3) = sgnlf(3)] = sgnlY_ w(i, 5)F ()] (5-18)

7
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The unipolar representations of the state and matrix of weights are given by
v(i) = (1) +1) /2,
u(t,5) = w(i,5) + wo (1 - 6(3, 7)), (5.19)
wo = maz; ;[—w(s, )],
where 6(%, 7) is the Kronecker delta. The diagonal terms of w(i, 7) are zero and need

not be raised by a bias value. If we multiply the unipolar state vector and weight

matrix, we get

o(3) = Z u(3, 5)v(4)

3

r

1 e . ..

= 5{D_w(0)f () +wo ) _v(i) + D w(id)}.
J J#d )
The third term, which is a row sum of the interconnection matrix, can be assumed
to be zero if the memory data are chosen randomly.
The second term is approximately equal to the number of ones in the input

state vector v(z) and can be easily calculated for each iteration to be used as the

threshold bias value against which (1) is compared. The threshold rule

1 fo(s) >w s v(1);
B(s) = {o if a(,% < w, %j: vgig (5.21)

is then equivalent to that dictated by Eq. 5.18. Therefore, an adaptive bias value,
which is essentially proportional to the number of ones present in the input, can be

used to completely overcome the difficulty of implementing memories that require

bipolar representations, using an incoherent system.



143

5.8.2 Acousto-optic system description

The system, a 32 bit network, is shown schematically in Fig. 5.8, and its labo-
ratory realization is shown in Fig. 5.9. An input vector set by an array of switches
is first loaded into the input shift register whose serial output, properly mixed up
to the rf center frequency (TeO2 AOD: time aperture = 64 usecs., bandwidth=40
MHz, center frequency fo=50 MHz), drives the AOD. The register is read out at
a rate of f= 1MHz so that the entire 32 bit sequénce is 32 usecs. long, occupying
one-half the AOD aperture. At the moment when the sequence is centered within
the AOD, the laser diode illuminates the AOD with a 50 usec. pulse of light, effec-
tively freezing the motion of the data stream in the AOD. The light diffracted by
the AOD is collimated vertically and imaged horizontally onto the interconnection

matrix transparency.

A practical difficulty causgd by the rather low sensitivity of the detector is
overcome by increasing the integration time of the detector and repeatedly driving
the AOD with the same input vector, thereby accumulating many identical products
on the CCD array. The integration time of the detector was set to approximately
10 msecs., and since a product is formed once every 64 usecs., about 156 samples
are accumulated on the detector. The system therefore completes one iteration in
10 msecs. A timing diagram that illustrates the sequence of events is shown in Fig.
5.10. The accumulated matrix vector product is thresholded electronically by a

comparator whose comparison value is proportional to the number of ones present
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in the input shift register.

The digital result feeds a shift register clocked in synchronism with the CCD to
sample appropriately the 32 output bits. The output data in the register are latched
and displayed on an array of 32 LEDs. The latched data are also loaded onto another
shift register whose serial output drives the AOD through the multiplexer, which
has been now set to select the feedback data as its input for iterative operation.

For the experiments, two types of matrix transparencies were prepared: 1) the
clipped outer product and 2) the spectral scheme (with grey levels). For each mém—-
ory data set, the bipolar weight values were computed and biased for nonnegativity.
Each resulting transparency contains a 32X32 array of square cells, and the total
transparent area of each cell is the intensity transmittance of the cell representing
the corresponding interconnection strength. The clipped matrix is particularly easy
to prepare since each cell is either completely opaque or clear. An example of each

transparency is shown in Fig. 5.11 and Fig. 5.15.

5.3.8 Ezperimental results

The system operation was demonstrated and evaluated, using first the clipped
matrix scheme and then the spectral scheme. The results of the experiments are
summarized in the data shown in Figs. 5.11-5.15, where computer simulations are
included for comparison.

Fig. 5.11 summarizes the evaluation of the clipped matrix memory. A matrix
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Fig. 5.9 Laboratory Realization of the System of Fig. 5.8
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Fig. 5.10 Timing Diagram for Acousto-Optic Associative Mem-
ory
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for a 32 bit network storing the three binary vectors shown was computed and a
transparency prepared. By setting the array of input switches of the system, the
stored vectors were first verified to be fixed points of the memory. If an error-laden
version of a memory is used as the input, the system was able to converge to the
correct memory as long as the error (in Hamming distance) was not too large. As
shown, the error correction capability matches the simulated results well. Several

examples of the system operation showing error correction are given in Fig. 5.12.

Because the present system operates synchronously where every bit is allowed
to change all at once, the energy theorem of Hopfield [1] does not apply. As shown
in Fig. 5.13, the system can be induced to break off into chaotic oscillations by
using inputs sufficiently different from the memories. A solution to this problem is
discussed in the next section. There, a technique involving a two-dimensional CCD
detector in conjunction with analog shift registers and a thresholding amplifier with
a wider linear region is used to implement a relaxational model for which an energy

theorem guaranteeing stability exists [9].

The comparator used in the present system has a finite linear region over which
its output does not assume TTL (Transistor to Transistor Logic: i.e., 0 and 5 volts)
values. The effect of this on the system operation is shown in Fig. 5.14, where
the outputs due to an error laden memory input are sketched for open-loop and
closed-loop conditions. Shown also are the corresponding analog vectors, which are

compared to the displayed DC level to be thresholded by the comparator.
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Stored Binary Vectors

1) 1110 0001 0101 1101 1011 1101 1000 0010
2) 0110 0000 0010 0101 0100 1111 0101 1010
3) 1011 0011 1111 1110 0010 1100 0011 0000

Hamming Distances Between Vectors

1 2 3

0 15 14
2 15 0 19

14 19 0

The Clipped Interconnection Matrix
(black=1, white=0)

Max. No. of Correctable Input Errors

input 1 2 3
digital 11 8 12
optical 11 6 15

Fig. 5.11 Summary of Results for the Clipped Outer Product
Matrix Memory
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Fig. 5.12 Examples from the Operation of the AO Memory
(analog/binary outputs: open-loop and closed-loop responses):
a)outputs for input with no error, b)outputs for input with 4
bits in error, c)outputs for input with 8 bits in error.
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Fig. 5.13 Example of Chaotic Oscillation (see text): a)open-

loop, b)closed-loop

CORRECT VECTOR

4/

v/

J

J

LTI o, s oo
=\

UNSTABLE REGION OF COMPARATOR

= J
LY LTIRZITITIT; v

Fig. 5.14 Output Stability Under Open-Loop and Closed-Loop
Operations (see text)
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Stored Binary Vectors

1) 1100 1000 0110 0100 o111 1011 1111 0000
2) 1110 1101 1011 0011 0011 0000 0110 1000
3) 1100 0100 0001 1101 1010 1010 1011 1001
4) 0011 0010 1010 0011 0001 1101 1010 1011
5) 1010 0111 1010 0010 1011 0101 1101 0000
Hamming Distances Between Vectors
1 2 3 4 5
1 0 16 14 20 16
2 16 0 16 16 12
3 14 16 0 20 20
4 20 16 20 0 14
5 16 12 20 14 0
The Spectral Interconnection Matrix
(black=1, white=0)
Il ] l l
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B ] l
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il i
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Max. No. of Correctable Input Errors
input ] 1 2 3 4 5
digital 11 7 10 6 13
optical 3 8 3 3 12

Fig. 5.15 Summary of Results for the Spectral Scheme Mem-
ory
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The open-loop vector has values very close to the threshold bias. Hence, many
of its elements are within the unstable region of the comparator, resulting in some
metastable bits in the thresholded result. The closed-loop operation, however, iter-
atively corrects the errors until a fixed point is reached. The analog product shown
in Fig. 5.14 corresponds to one of the prescribed memories. Note here that the
values are well separated from the threshold bias. Hence, the corresponding binary
output is stable as shown.

The storage capacity of the spectral scheme is somewhat larger. Results demon-
strating the spectral scheme memory for 5 memory vectors are summarized in Fig.
5.15. The increased capacity is gained at the expense of requiring grey levels on the
transparency. Because of the fine spatial structure within each cell used to provide
grey levels, certain diffraction losses were incurred in the optical system. This, in
addition to the fact that the matrix values themselves had to be quantized to a
reasonable number of levels, accounts for the poor error-correcting capability of the
optically implemented memory. All of the five memories were at any rate verified

to be fixed points of the system.

5.8.4 Modifications for stability: relazational operation
Linearly interconnected neural networks whose states are updated synchron-
ously are susceptible to oscillatory behavior as seen in both the acousto-optic im-

plementation and the computer simulations shown in Fig. 5.16. When the states
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are updated asynchronously, restricting the state of only one neuron to change at
any one timé, the energy function defined by Eq. 5.6 was shown by Hopfield [1] to
decrease or remain constant with each update. As evidenced by the examples in
Fig. 5.16, the energy can actually increase in synchronously updated systems.

Hopfield [9] has considered the hard threshold decision given by the sgn(.) func-
tion being replaced by an analog sigmoidal function incorporating time integrative
delays into the system so as to more realistically model neurons. The resulting mem-
ory is guaranteed to be stable in the sense that its dynamics will always decfease
an energy function analogous to Eq. 5.6. The fixed points of the analog system
approach those of the binary system as the transition region of the sigmoidal func-
tion becomes narrower. The somewhat artificial asynchronism is not required by
an analog, integrative system, in which the analog states of the neurons are allowed
to change all at once. The dynamics of this analog network are governed by the

equation

)+ 5@ =g | w0 | i=12,...,N, (5.22)

7

where f;(t) represents the analog state of the ¢,, neuron at time ¢, and g(.) is
a monotonically increasing sigmoidal function such as that shown in Fig. 5.17.
The LED Hopfield implementation [7] actually operated in this way. The time
constant of the individual thresholding amplifiers was about 60 msecs., and the
transfer characteristics of each amplifier was sigmoidal. In consequence, the system

displayed stable dynamics.
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This relaxational mode of operation can be incorporated into the acousto-
optic system by replacing the one-dimensional CCD with a two-dimensional one
used in the time-delay-integrate (TDI[10]) mode, widening the linear region of the
comparator, and replacing the digital shift registers with analog ones as shown
schematically in Fig. 5.18. As before, with the proper mask in place and the input
vector loaded in the AOD, the laser diode is pulsed. The lenses between the mask
and the detector plane are perturbed so as to focus to a vertical line at the slit
plane and vertically image the pixels of the mask onto the CCD detector. The
matrix-vector product is therefore spread horizontally across the CCD (width of
the spread is K pixels). Representing the p;, input vector by v;(p), the charge that

is generated by the p:s exposure in the iky, CCD pixel is given by

Quslp) = { Titaulbaole) 1<k <K (5.23)
0 otherwise.

With reference to Fig. 5.19, the TDI mode operation shifts the previous charge
distribution due to previous exposures horizontally by one pixel and the currently
generated charge Q;x(p) is added to this. Shifting and adding charges for each

exposure results in the following total charge to form on the tk;, CCD pixel:

Bulp) = { Tiulid) Tig vilp—1) 1< k< K; (5.24)
0 otherwise.

The output taken from the k£ = 1 column of the CCD is

K-1
fip) =Y _u(i,5) Y vilp - ). (5.25)

7 {=0
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This is processed by the soft-threshold comparator whose output is latched by the
analog shift registers and fed back to the AOD for further iterations.

The output given by Eq. 5.25 -along with the soft threshold function shown in
Fig. 5.18 is an approximation of the integrative update ruie given by Eq. 5.22. The
important elements are: 1)the update decision is based not just on the immediate
past state but on a sum of past states, and 2) the hard threshold is replaced by a
sigmoidal transfer characteristic. Computer simulations illustrate the effectiveness
of this approach. Shown in Fig. 5.20 is a comparison made between the operation
of a synchronous memory (N=20) with hard threshold rule and that of the TDI
system, which incorporates a sigmoidal threshold rule with an integrative decision
based on the past K (K=5) states. Note that the energy of the binary system
increased with iterations for certain cases, while the analog system reached the

correct fixed points in the simulations by decreasing the energy.
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Fig. 5.16 Computer Simulations Showing Oscillations Due to
Synchronous Updating (N=20, M=3, clipped matrix)
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Fig. 5.17 Sigmoidal (soft) Threshold Function
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CHARGE SHIFT DIRECTION

e s

QUTPUT SHIFT REGISTER

SCAN DIRECTION

DETECTION AREA

OUTPUT

Fig. 5.19 TDI CCD Operation: the photogenerated charges
are shifted to the right by one cell after each laser diode pulse
with the newly generated charges being added onto the previ-
ously generated charges.
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Chapter 6. Storage Capacity of Holographic Memories

8.1 Introduction

The analogy between associative memories and holography was first pointed out
by Van Heerden [1,2] and also by Gabor [3]. Consider the holographic recording
and reconstruction processes illustrated in Fig. 6.1. The hologram records the
interference pattern between two waves, one of which is normally referred to as the
reference wave and the other as the signal. When the hologram is illuminated with
the reference wave, the diffraction due to the stored interference pattern results in
the reconstruction of the signal. The labels “reference” and “signal”are arbitrary,
and it is possible to obtain the reconstruction of the reference wave by illuminating
the holgram with the signal beam as well. Gabor [3] analyzed in some detail the
performance of Fresnel holograms used as associative memories.

Whereas Gabor presented the holographic technique for only one association,
recent publications have discussed the possibility of storing many associations on a
single hologram [4-12]. It is therefore important to quantify the storage capacity of
holographic associative memories, defined to be the maximum number of associa-
tions that can be stored and recalled with high fidelity. In this chapter, we present
a discussion based on the degrees-of-freedom argument forwarded by Abu-Mostafa
and Psaltis [13] to demonstrate the fundamental importance of the space-bandwidth

product (SBP) of the hologram in determining the storage capacity. Specifically,
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we show that the total number of samples or bits that can be stored is equal to the
SBP. This implies that the storage capacity of holographic associative memories is
limited to one association if we wish to store images, each with a high SBP equal to
that of the hologram. This result is then confirmed by deriving an expression of the

signal-to-noise ratio (SNR) that is obtained when the hologram is reconstructed.
6.2 Degrees-of-Freedom Considerations

In a conventional hologram, two patterns are associated with one another by
recording their mutual interference. More generally, a hologram can be thought of as
an optical transparency whose complex transmittance can be controlled arbitrarily.
Information is stored in the hologram such that when it is placed in the appropriate
optical system and the system is illuminated by one of the specified inputs, the
correct, associated output is produced.

A model that is sufficiently general to encompass all of the specific holographic
memories is shown in Fig. 6.2. We will use this model to derive bounds on the
capacity, which are generally applicable without requiring further knowledge of the
implementation details. The information content of a hologram is characterized
primarily by its SBP. Therefore, the system spatial coordinate is quantized by as-
signing N, = SBP discrete pixels to the hologram. Similarly, the input and output
planes are composed of N; and N3 pixels, respectively. The input, output, and

hologram planes have been identified in Fig. 6.2. To be general, arbitrary but
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fized, linear transformations Q(j,7) and R(k,j), 7 = 1,2,..,Ng; ¢ = 1,2,., Ny;
k=1,2,.., N3, relate the input and output planes to the hologram plane.

This system associates or stores N;-element vectors from a set of M “inputs”
fm(%), where m is the memory index, pairwise with N3-element vectors from the set
of M “outputs” g,,(k), such that the reconstruction of the vector g,,, (k) is obtained
when its associated vector fy,,(7) is present at the input plane. The reconstruction
process will be studied in detail to determine the maximum number of associations,
M, given the freedom to write the hologram in any way we choose.

In reference to Fig. 6.2, the input-ouput relation that must be satisfied for
selective recall can be described by the following set of equations:

Ns N,
Im(k) =Y R(k,)ta())QU,i) fm(i) for k=1,2,.,N; and m=1,2,.,M,

j=1li=1 o)
where ty(5), 7 = 1,2,.., N2, are the pixel values that describe the hologram’s
transmittance. Since Egs. 6.1 is a system of M N3 equations in the N, unknowns
tx(J), a solution tg(y) is guaranteed only if M N3 < N,. This provides an upper
bound for the capacity of the holographic memory: M < N,/Nj, where M is the
number of associations and N3 is the size of each output. Thus, there is a tradeoff
in the memory capacity, and the fundamental limit is indeed set by the SBP of the
hologram.

The equality constraints placed by Eq. 6.1 may appear to be severe, and one

might wonder whether the storage capacity will increase substantially if we require
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only approximate reconstruction. For instance, if we require only that the output of
the holographic memory have the correct sign rather than the exact analog value,
we can use Cover’s result [14] for the capacity of linear discriminant functions to
conclude that the capacity does not increase at all. We bt.alieve that this conclusion
is not specific to this particular type of inaccuracy. In what follows, we analyze
another approximate method of constructing optical associative memories, which

also confirms this conclusion.
6.3 Holographic Associative Memories

6.3.1 Capacity derived from SNR considerations

A heuristic method of assigning values to tg(J) so as to satisfy approximately
the constraints of Eq. 6.1 is found in optical holography [1-3]. Conventional holo-
grams are prepared by recording on a photographic plate or any other suitable
recording medium the mutual interference pattern between a pair of impinging
waves that arise from the diffraction of optical field amplitudes at some defined
input planes. This is shown in Fig. 6.3. For generality, we consider fized, linear
transformations to relate both input planes to the hologram plane. One wave is
then reconstructed by illuminating the developed plate with the other. Pairs of
data sets are stored by multiply exposing the hologram, resulting in a holographic
plate transmittance function, which is a superposition of the interference patterns of

the stored waves. If one particular wave is used as the input for the reconstruction,
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the output will consist of the wave associated with that input but distorted by a
cross-correlation noise term composed of the other stored waves. A good perfor-
mance criterion is then the signal-to-noise ratio (SNR), defined as the ratio of the
correct output signal amplitude to the standard deviation of the cross-correlation
noise term.

We consider this holographic paradigm in which tg () is a superposition of
products of linearly transformed vectors. In reference to Fig. 6.3, the transmittance

of the hologram is described by
M N

=> {d_eGnmwy }{ZS (rin)gm(n)}, 7=1,2,..,N2,  (6.2)

m=1 [=1

where we have omitted inconsequential terms such as bias, which also appears in

the holographic recording process. The response due to a particular input f,,,(:) is

Niy Ny
g(k) = ZR(k,j)m(j) _Z Q> 8) fmo ()y k =1,2,.., N3, (6.3)

which when expanded gives

N1 Ny N3 N

=Y 33 3 Rk, DSG, )R (DR i) fay (1) Frmo (1) mo () + (),

i=1 =1 j=1n=1
M Ny N, N3 N

ak)= 3 Y33 Rk 1)SG.m)Q* (G DQU, ) £ () fmg (gm (),

m#mg 1=1 I=1 j=1n=1
(6.4)

Here the expression for g(k) has been resolved into a signal term and a cross-

correlation noise term, a(k).
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If we assume that the elements of the vectors f,n (i) and g, (n) take the values
+1 or -1 with equal probability and each element is statistically independent from

all the others, then the expected value of the output is

N3y N,
Elg(k)] = ZZR(k 7) S(J,n)Z!Q(J,z)lzgmo(n) (6.5)

where we have used the fact that E{fmn (1) fm,(3)] = 6(!,?), the Kronecker delta.
If we choose the set of possible transformations Q(J,7) such that the row sums

SV |Q(,4)|? =1 for all j, then Eq. 6.5 further simplifies to

Ns N3
Elg(k)] =3 D R(k,5)5 (5, n)gms (n)- (6.6)
n=1jy=1
For E[g(k)] to be proportional to the correct recall term, g,,,(k), we see that R(k, 7)

and S(J,n) must satisfy the condition
N3
> R(k,5)5(4,n) = cb(k,n), (6.7)
J=1

where ¢ is a constant.

The requirement Zf;‘l |Q(7,7)|2 = 1 that was invoked to derive the above re-
sult is not overly restrictive, as it is applicable to most transformations of interest.
Specjxﬁca.lly, this condition describes transformations which distribute the input en-
ergy uniformly over the hologram plane, making efficient use of the space on the
hologram. That is, a uniform, incoherent intensity distribution at the input plane 1

of Fig. 6.2 is mapped to a uniform intensity at the hologram plane. Some examples

are Fresnel, Fourier, and diffuse transformations.
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Satisfying Eq. 6.7 guarantees that the expected value of the output will be
proportional to the correct stored pattern. In order to obtain an estimate for
the variance of the reconstruction, we need to specify the transformations R(k, 7)
and S(j,n) more precisely. We make the reasonable requirement that the energy
dissipated by the transformation S(j,n) does not depend on the specific vectors
gm(n) being stored. Again, transformations of interest such as Fourier, Fresnel,
and diffuse transformations satisfy this condition.- Mathematically, this leads to the

requirement that S(7,n) have orthogonal columns:
N,
D 5%, k)S(,n) x (k,n). (6.8)
j=1

To satisfy both Eqs. 6.7 and 6.8, we require that

S(j,n) = R*(n,5) and ZR(k,J)R*(n,J)_ca(k n). (6.9)

=1
Having concluded that E{g(k)] = ¢gm,(k) when Eq. 6.7 holds, we now calculate
the noise variance o2 (k):

o?(k) = El|a(k)?]

Ny Ny N3 Nz N3

=133 > > R(kj)R (ki) B*(n,1)R(n.52)  (6.10)

i=1il=151=153=1n=1

Q* (11, D) Q(41,9)Q (2, 1) Q" (42, 7).

The index k is kept to show the possible dependence of the variance on the output

bit position. To arrive at a more uniform measure of the noise, we calculate the
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-variance averaged over the N3 output bits to be

N3
= (1/Ns) Z o?(k)
= N (6.11)
= (M —1)/Ns Z Z‘ER(’“’JI)R*(’C Jz)] ’ZQ(A, )Q* (Jzﬁ)lz-
Ji=lja=1 k=1 i=1

A lower bound on the noise variance can be derived by first noting that

N3
> (M ~1)/Ng] Z{lZlRUw 2| IZIQ(J,z)Fl }- (6.12)

i=1
But since we have restricted the Q(i,7)’s such that 3% |Q(4,7)|2 = 1 and also

,1:;’1 Zf’;l |R(k,7)|? = cNj3 from Eq. 6.9, we get

N2 N3
M —1)/Ns) S|SBk, 5) 2]
=1 k=t (6.13)
N; N
> (M = 1)/(N2N3)] DS IRk, )2* = (M —1)e*N3 /N2,
Jj=1lk=1

where the inequality N, 23_1 la(5)|%2 > lZJ_l a(j) [ was used. Using the above
lower bound and noting from Eqgs. 6.6 and 6.7 that the output signal amplitude is
¢, the SNR can be bounded from above as

SNR = (signal amplitude) /o
(6.14)

< V/N2/(M — 1) Ns.
The output SNR must be sufficiently large for effective operation of the memory. If

we require that SNR > 1, then we get the capacity bound of

(M —1) < N2/N3, (6.15)
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which is recognized, for M >> 1, to be the bound derived earlier, using the degrees-

of-freedom arguments.

6.3.2 An ezample

A simple example is in order here to show that the upper bound SNR of Eq.
6.14 can be achieved. Suppose that binary, bipolar vectors f,,(z), ¢ = 1,2,..,,N,
(N1 = N3) are to be associated with the vectors g(n), n = 1,2,.., N3, by using
the recording and reconstruction schemes shown in Figs. 6.3a, 6.3b. The vectors
fm(1) are imaged onto the hologram via the identity transformation Q(7,?) = 6(J,1),
t = 1,2,.., Na, while the transformation R(k,j) = 6(k,5 mod N3), k = 1,2,..,N;
generates multiple images (N2/N3 of them) of the g,,(n)’s on the hologram. With

this arrangement,

N3
Y R(k,§)R*(n,5) = (N2/Ns)8(k,n), (6.16)

j=1

and the noise variance given by Eq. 6.11 evaluates to
0% = (M - 1)N;/Ns. (6.17)

The resulting output SNR is thus

SNR = /N2/(M — 1) Ns, (6.18)

which is the maximum achievable SNR. The redundancy that results from the mul-
tiple image storage leads to the enhancement of the SNR by the factor /N3 /N3,

and increasing redundancy leads to an increasing SNR.
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6.4 Conclusion

The storage capacity of holographic associative memories using planar holo-
grams was estimated. An argument based on the avai'lable degrees of freedom
showed that the number of patterns that can be stored is limited by the space-
bandwidth product of the hologram divided by the number of pixels in each pat-
tern. A statistical calculation showed that if we attempt to store associations by
multiply exposing the hologram, the cross-talk among the stored items severely de-
grades the output fidelity, thus confirming the storage capacity predicted by the

degrees-of-freedom argument.
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Chapter 7. Shift-invariant Associative Memories

7.1 Introduction

Because of the important role that it plays in pattern recognition, the simple
decision machine discussed in Chapter 2 in the context of learning (see Fig. 2.2) has
been analyzed in detail with respect to its pattern-dichotomizing capabilities [1,2].
The linear structure of the machine, however, proves to be too simple to extend
its recognition capabilities to be invariant with respect to certain transformations
of the input pattern such as changes in scale, position, and changes in the angular
orientation of the pattern [3] if the input field is extended to two dimensions. In
this chapter, we discuss shift invariance in the context of associative memories and
show that the linearly interconnected memory, which is basically an array of linear
recognition machines, cannot exhibit shift-invariant operation. Following this, two
systems (along with their optical realizations), which do exhibit shift-invariance,

are described in detail, with attention given to the analysis of storage capacities.
Among the various rules for choosing the interconnection strengths in linear

memories, the outer product rule is particularly simple and, as will be shown,

extendable to apply to nonlinearly interconnected machines [6,8]. The weight values

w(z, ) for auto-associatively storing N-bit binary, bipolar vectors _]fm is the sum of
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the outer products of the vectors:
M
w(i,5) = Y fm() fm(d)- (7.1)
m=1

The optical system [4,5] that directly implements this idea was discussed earlier in
Chapter 5 and is shown schematically in Fig. 7.1. The signal produced at each

detector just before the threshold gates in Fig. 7.1 is the product

N M N
o) = 3 wlir) fma(0) = Y0 D ) fma @] @) (72

7

The response to an input I_m . is seen to be a weighted sum of the stored vectors,
the weights being the inner products between the stored vectors and the input. As
inner products can be easily computed optically, Eq. 7.2 suggests implementations
different from that shown in Fig. 7.1. Shown in Fig. 7.2 is one such implementation.

The first part of the system is a one-dimensional multi-channel correlator. The
slit samples the correlation functions at the zero-shift position to obtain the inner
products. A mask containing the same vectors is placed in the second portion of
the system. The vectors are written vertically and stacked horizontally such that a
corresponding inner product produced by the front part of the system illuminates
the appropriate vector. The light from each vertical position is collected horizontally
onto a single detector to obtain the sum over m in Eq. 7.2. While the output
threshold gates are the only nonlinearities found in the outer product scheme, the

expanded system of Fig. 7.2 allows the possibility of placing nonlinearities also in
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the correlation plane [6-8]. It will be shown in later sections that this is indeed

necessary if shift-invariant (SI) operation is required.
7.2 Shift-Invariance and Linear Memories

In relation to associative memories, two types of shift-invariance can be con-
sidered, as illustrated in Fig. 7.3. The goal in both cases is to store a set of signals
and retrieve them in response to any shifted version of those signals. The first type
is the usual notion of invariance, where the response to a shifted input is also to be
shifted by a proportionate amount. The output of the second type always remains
centered regardless of the shift occurring at the input. Note that in both cases,
error correction is illustrated.

We immediately recognize a potential problem with incorporating shift-invari-
ance in the associative memories described in the previous section. If each shifted
version of the M N-bit vectors is treated as a separate entity and shifts of up to
N-bits are allowed at the input,v then such a system must be capable of storing on
the order of M N items, where M is the number of distinct vectors to be stored.
The LDF memory described earlier, which uses linear interconnections to store
information, has a ma.xix:;lum storage capacity of N vectors, and hence, such a
system can store only 1 item with full shift-invariance.

That the storage capacity is 1 for both types of shift-invariance can be shown

with the following simple but fundamental arguments. Let h(z,z’) be the impulse
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response of a linear optical system that is used to store associations (such as the
systems in Figs. 7.1 and 7.2), and let {f(z), gm(z)} be the pairs of data to
be stored with each function having a space-bandwidth product equal to N. For

perfect recall the kernel must then satisfy the following set of M integral equations:
f
gm(z) =/ h(z, ') fm(z)dz', m=1,2,.., M. (7.3)

If shift-invariance of type I is required, then the kernel must be a function only of
the difference between its two arguments. With this, Eq. 7.3 reduces to a set of

convolution integrals, which can be written in the Fourier domain as follows:
Gm(w) = Hw)Fa(w), m=12,.,M, (7.4)

where G, (w), H(w), and F,,(w) are the Fourier transforms of g,,(z), 2(z), and
fm(z), respectively. For arbitrary pairs {gm(z), fm(z)}, H(w) is completely de-
termined by one pair of data, so that storage is limited to one association. Shift-
invariance of type II requires that the output g,»(z) be the same for f,,(z — a), for

all possible shifts a. Using Eq. 7.3, this condition leads to:

/ h(z,z') fm(z' — @)dz’ = / h(z,z") fr(z')dz'. (7.5)

For arbitrary fn(z), h(z,z' + a) = h(z,z’) for all @, which can be true only if
h(z,z') = h(z). The kernel h(z) is completely determined by one pair of data,

again resulting in a storage capacity of one association.
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7.3 Optical Systems with Linear Interconnections

It is interesting to see how the degradation in performance occurs in an optical
implementation if we attempt to incorporate shift-invariance. Specifically, we es-
timate here the fidelity of the reconstruction in a holographic associative memory,
using signal-to-noise ratio (SNR) as the measure. Holography was the first optical
implementation of associative memory based on the fact that a hologram stores an
object wave in relation to a reference by recording their mutual interference. Either
wave can be approximately reconstructed in response to the other [9,10]. If we use
Fourier transform holograms, the overall system can be made SI (Shift-Invariant),

as illustrated in Fig. 7.4.

It is possible to record multiple associations on the same hologram by repeated
exposures. The issue is then, how many such associations can be stored? The com-
plex amplitude transmittance of the hologram is proportional to Zf{zl Fr ()G np(z"),
where Fy,(Z') and G,,(Z') are the Fourier transforms of f(Z) and g(Z), respectively.
We find it convenient to treat the problem with a discrete analysis. Therefore, we
represent the input, output, and hologram planes each by N pixels, where N is the
SBP of the hologram. When one of the stored images fn,,(7) is used as the input,

the resulting output is described by the following sum of convolutions of the stored
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output vectors with the correlations of f,n,(¢) with the references f,(2):

gk) =Y Y Rul(i)gm(k - 1)

m=1j=-N

= R, (0)gmo (k) + a(k) = Ngm, (k) + a(k)a (7'6)

N
a(k) =) Rm,(Ngmolk—3)+ D Y. Bum(5)am(k—3),

I#0 m#Emy j=—N

with Ry (5) = SoN | fm(8) frmo (J + 7). Since the overall operation is a cascade of a
correlation with a convolution, the system is SI. From Eq. 7.6, the output is seen to
contain the correct recall term but with cross correlation noise. This is similar to the
situation in Eq. 7.2, except that the interference term is now a double summation
including all of the shifted versions of each stored memory.

If all of the stored vectors are binary, bipolar with pixel values that are sta-
tistically independent, the signal-to-noise ratio (SNR), defined as the ratio of the

signal term to the standard deviation of a(k), is calculated to be

SNR = \/N/E[a?(k)] ~ V/1/2M. (7.7)

From the above equation, even if M = 1, the SNR=1/2, which implies that the
reconstruction of even a single, stored association is noisy. This has been confirmed
experimentally by Paek and Psaltis [11,12].

A SIsystem can also be implemented with the scheme shown in Fig. 7.2. When
the input shifts vertically in the system of Fig. 7.2, the peak in the correlation plane

also shifts and is blocked by the slit. As a result, a reconstruction is not obtained
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and the system is not SI. This system can be easily made SI by removing the slit in
the correlation plane. If in its place, however, a larger aperture is placed so as to
transmit correlation peaks that are displaced from the center zero-shift position by
L bits in each direction, the convolution sum of Eq. 7.6 becomes limited to include
only the central 2L + 1 bits of the correlation function, improving the SNR of Eq.

7.7 to

SNR = +/N/|(2L + 1)M]. (7.8)

If L = N, this system becomes strictly equivalent to that of Fig. 7.4. At the
other extreme, the SNR for L = 0 corresponds to the situation in which no shifts are
allowed at the input and is equal to that of the outer product memory; this system
has been optically implemented by Paek and Psaltis [11,12]. The low SNR derives
from the fact that the number of degrees of freedom available in the hologram is
insufficient to store the memory vectors along with all of their shifted versions,
which are treated by these systems merely as additional items to be stored. It was
shown in the previous chapter that the SBP of the hologram must be multiplexed

in some way among the associations to be stored for such systems to be effective.

7.4 Optical Memory with Distributed Nonlinearities

7.4.1 Nonlinear correlation plane
The fact that the number of vectors that can be categorized by LDF's is limited

to be less than N contradicts the requirement for SI in a memory comprised of
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an array of LDF’s since all of the shifted versions of a single item exhaust the
capacity of the memory. Thus, we are led to consider memories that use nonlinear
discriminant functions [6,7]. Shown in Fig. 7.5 is an architecture designed to
implement a particular nonlinear discriminant function. This system is arrived at
by replacing the slit in the system of Fig. 7.2 by a nonlinear operation over the
entire correlation plane. Specifically, the input vector is correlated with all of the
stored memories {f,,(?)}, m = 1,2,..,M. The resulting correlation functions are
then mapped, using point nonlinearities. The next stage convolves the processed
correlation functions with the associated memory signals, and the resulting outputs
are summed and thresholded.
Since the overall operation is a composition of correlations and convolutions
with uniform point nonlinearities, the system is SI and can be described by:
M
fout(@) = D NL[fm(2) * fmo(2)] * fim(2), (7.9)
m=1
where N.L.[ ] indicates the nonlinear operation, and * and * denote the correlation
and convolution operations, respéctively. The input f,,,(z) is one of the stored
items. The purpose of the nonlinearities is to enhance the processing gain that is

present at the correlation plane by increasing the strength of the peaks relative to

the sidelobes.
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7.4.2 Shift-invariant optical memory

We consider two such nonlinearities as shown in Fig. 7.6. If a threshold function
is used [13], then for proper operation of the system, the threshold level must be
adjusted to always pick out only the maximum peak among the various correlations.
If such a threshold level can be found, the output threshold gates along with the
feedback become unnecessary, as only one of the stored memories would be read
out. If, however, the threshold level were fixed and several peaks exceeded that
level, the output signal term would be an equally weighted sum of several memory
signals, resulting in a completely ambiguous recall. We therefore consider softer
nonlinearities that retain enough information about the specific input beyond the
correlation plane. Thus, the decision is distributed between the output threshold
operation on the individual bits and on the correlation plane.

The square law is of special interest, since it is easily realized optically. If M
N-bit binary, bipolar signals f,,(k) are stored and the input window allows 2N

shifts (V bits in each direction), then the input-output equation can be written as:

M N
fFy =" 3" B2, (5)fm(k~ ), (7.10)
m=1j=—N

where R (7) = Sie, fm (%) fmo (i+7) is the correlation function of the m.;, stored
memory vector and the input vector f,,,(¢). A more general situation, where the
degree of shift-invariance can be controlled to allow L shifts in each direction with

0 < L <N, is achieved by limiting the convolution summation interval to [~L, L]
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as follows:

0= 3 3 R (i)l =) (7.11)

m=1j=-L

For the optical implementation of Fig. 7.2, this corresponds to the placement of an
aperture followed by a spatial light modulator to perform the squaring operation in

the correlation plane. Eq. 7.11 can be expanded to yield:

f(k) = B2,y (0) fimo (K) + (k)

= N?fm, (k) + a(k), (7.12)
a(k ZRmomo(J fmo(k -7) + Z Z Rmmo J)fm(k_j)'
J#0 m#Eme j=—L

The output SNR can then be computed to yield the result

SNR = N2/\/E[a2(k)] ~

\/3M 2L +1) (7.13)

For comparison, the SNR of the outer product memory, which is not SI, is SNR =
\/]—V/—]\l_; , where the maximum value that M’, the number of stored vectors, can
take is approximately .15N [2].

We obtain an estimate for the maximum number of vectors M that can be
memorized by the nonlinear SI system (allowing L-bit SI in each direction) by

requiring that it produce the same SNR as the outer product memory:
Mpaz = NM,, .. /13(2L + 1)] ~ .15N2/[3(2L + 1)], (7.14)

which demonstrates the tradeoff that exists between the storage capacity and the

degree of shift-invariance. Whereas the linearly connected machine described in
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the previous section does not have sufficient degrees of freedom to store and recall
even one vector with shift-invariance, the present system possesses a useful capacity
described by Eq. 7.14 because of the squaring operation performed in the correlation
plane.
The SI memory that we are describing is related to the quadratic associative

memories discussed by Psaltis and Park [6]:
N N »
F6) =30 3 w5 K) frno (1) frmo (B). (7.15)
=1 k=1

In this quadratic memory, a 3-dimensiona.l tensor, w(s, 7, k), is used to store the
information. The recall is accomplished by first forming the outer product of the
input vector with itself and multiplying the resulting matrix with w(i,;,k). To
realize a SI quadratic memory, the weights must be selected as follows:

M L
w(i,5,k) = 3 Y Fmli =) fm(G + 1) fm(k +1). (7.16)

m=1{=-L

It can easily be shown that if in Eq. 7.15 the tensor w(, 7, k) is formed according
to Eq. 7.16, then a shift in the input vector results in an equal shift in the output.

Substitution of Eq. 7.16 into Eq. 7.15 then yields

L

M
f6) = Z__ ZkZ Fn (6 = 1) fm (5 + 1) Fn (K + 1) fimo (7) fimo (K)

i (7.17)

M
=3 Z (,-z)|)_‘:f,,.(1 +1) fomo ().

I=-L =1

3

The above equation is identical to Eq. 7.11, which demonstrates the equivalence of

the SI quadratic memory and the square law system of Fig. 7.5. The significance of
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this result is that it is possible to implement an SI quadratic memory without the
need to realize optically a 3-dimensional tensor of weights which would require a
total of N3 connections. By implementing the same memory by using a square law
in the correlation plane, we need to specify only M N weights where the maximum
value of M is given in Eq. 7.14. If L = N, the total number of connections that
need to be specified holographically reduces to .15N2/6, corresponding to a total
of .15N /6 separate images.

The system was simulated for the case L = N and the results are shown in
Figs. 7.7a-7.7f. Two 32 bit, binary, bipolar vectors shown in the marked regions
of Figs. 7.7a and 7.7b were programmed into the memory. The first line in each
figure constitutes the particular input used, and the subsequent lines contain the
thresholded output vectors after each iteration; “+” indicates a +1 and “—” indi-
cates a —1. Because of the inherent three valuedness of the data representation,
namely, +1, —1, and 0, a threshold with a “dead zone” was fixed in the simulations,
as shown in Fig. 7.8.

Figs. 7.7a and 7.7b show that the two programmed vectors are indeed fixed
points of the system, and in particular, Fig. 7.7b demonstrates the memory’s shift-
invariance. Figs. 7.7¢c-7.7f serve to illustrate the error-correcting capability of the
system. In each case, the system converges to the correct result within 3 itera-
tions. With a small decrease in éerformance (capacity and/or error correction),

the system can be implemented with a strictly 2-level threshold with no dead zone
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by configuring the memory with a combination of unipolar and bipolar signals and

using unipolar inputs.

7.5 Two-Dimensional SI for One-Dimensional Data

We now discuss a novel method of storing and recalling 1-dimensional data with
SI in both dimensions. This method utilizes the SI properties resulting from Fourier
transform holograms but does not require nonlinear discriminant functions. Shown
in Fig. 7.9 is the basic system. .For illustra.fion, the storage and recall of only one
item is shown. The mask whose complex amplitude transmittance function is given
by the outer product T(wgz,wy) = F*(wz)F*(w,) is placed in the Fourier transform
plane with respect to both input and output planes of the memory vector, where
F(wg) is the Fourier transform of f(z). There is an analogy between this and Eq.
7.1, the only difference being that the outer product of the Fourier transforms is
recorded rather than the outer products of the vectors themselves.

The memory is reconstructed by placing at the input plane in Fig. 7.9 a
transmittance function given by f(z — A;)6(y — A,), which is Fourier-transformed

by lens L1. This transform is multiplied by T'(wz,w,) to give:
F(wz,wy) = F*(wy)|F(wg) [P Webatusdy), (7.18)

The resultant product F (.) is then Fourier-transformed again by L2 to give at the
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- VECTOR _#1 .

o) :1+¢-+¢--¢o-¢--o~-¢o---¢—oo-.—ijoooooooooooooooooooooooooooooooo
1) =tddcdtecttmdmntantdmmmt=dsnd=+«00000000000000000000000000000000
2 ) wtbtebbendbemdmetent e med et dat=d=00000000000000000000000000000000
3) =ttt b trmt bt mtrnd b nnbedbee=+=00000000000000000000000000000000
4 ) whtimttecb bt n et b nba b= 4= OBOOONNBNOANNANNOBONNONONNONNONN
§ ) wdtdmtimmbtmtmctmat ottt s=4+-00000000000000000000000000000000
a) input: #1 with no errors
[ YECTOR #2 —
0 ) 00000~+=drtttdvdmtbmmmumbadd=tt=t+==+000000000000000000000000000
1 ) CO000—4ntwttdbmtmtbmmnnntat b=t +=44==4+000000000000000000000000000
2 ) 00000=twd—dtttrtrtdrmmnndodiatbets==+000000000000000000000000000
S ) 00000~tmdwdiddndrdtrmcandtdad =t s==+000000000000000000000000000
4 ) 00000ttt ttintrbinmumantudi=bd=tsm=s000000000000000000000000000
5 ) 00000 t-tedtttotettncnnudatsatd=d4~=4000000000000000000000000000
’ b) input: #2 with no errors, 5 bits shift
0) —+¢+¢¢+--¢+-+-*+—+++---+i++-+-¢-oooooooooooooooooooooooooooooooo
1) =444«04=wt4+000-+0~+4===$=++~-+~+-00000000000000000000000000000000
2 ) mtdtotimetbmbundrnbbumnbedi=+~+=00000000000000000000000000000000
3 ) =tdtedbmnitmdmwtonbbrned-dtab=+=00000000000000000000000000000000
4 ) =tttettmcdtotmmbumndbmnendet+ndn+=00000000000000000000000000000000
5 ) =ttdmtbecttmbocbondbmnndedd=4=+~-00000000000000000000000000000000
c) input: £ with 4 errors
0 ) =dttwddmndbomtmmtnnpbunndrt b=t t=0-00000~-0000+0000+00000000000000
1 ) =dttetimnitmtmntnatbrroderdiaded=00000000000000000000000000000000
2 ) mttdctbimadtotecdtnmatiemmtettad=t=000000600000000000000000000000000
3 ) mttimdivadtedondmadimnndotbmd=-+=00000000000000000000000000000000
4 ) =tttetirattmtententimnntmbt=d=4=00000000000000000000000000000000
3 ) mdttmdtecdtmtbomdeaddmendoddad=+=-00000000000000000000000000000000
d) tnput: #1 with 4 errors
0) -§-+-++*+-+-++-----+-++-++-++--+o!ooouo!ooooioooo!oooooooooooooo
1 ) =dmdmtddbmtottomcnadadduddmdb==+00000000000000000000000000000000
2 ) mdudettb bbbttt ot bt 4=+ 4+==+00000000000000000000000000000000
T8 ) mtmdeddtbeobottmemcn bbb b et d==+00000000000000000000000000000000
4 ) mtcdamdbtimbudbomcnnd b bttt 4 ==+00000000000000000000000000000000
§ ) wdmtmbtbdebntbwmcnn et tm b b=t s ==+ 00000000000000000000000000000000
e) input: §2 with 4 errors
0) Aaadndd St 22 ‘!!* ** bt ‘ + 0!00000—0000*0000#00000000000000
1) wtdtodbmmtdmdontontbnentat+=00+-00000000000000000000000000000000
2 ) =ttdmddmedbetumtoedbmn et b=$4=4=00000000000000000000000000000000
3 ) wttdcdbemdbebonteed dmm e et bt 4= 00000000000000000000000000000000
4 ) ctttedtmmbbmbmnbend et d=s=+=00000000000000000000000000000000
) wtttmdbmmdtmbmmbmat bt d=t=+4=00000000000000000000000000000000

f) input: 1 with 8 errors

Fig. 7.7 Computer Simulation Results for Square Law System:
Input errors are marked by arrows. a)input:2 with
no errors; b)input: 2 with no errors, 5 bits of shift; ¢)input: 1
with 4 errors; d)input: 1 with 4 errors; e)input: 2 with 4 er-
rors; f)input: 1 with 8 errors
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output plane
fout(z,y) = R(z + Az) f(y + 4y),

(7.19)
R(z) = / f(e)f(e - z)da.

Here R(z) is the autocorrelation function of f(z). This is thresholded and the
resulting 2-dimensional binary signal is fed back into the system by reflection. Since
the amplitude transmittance function of the mask is symmetric with respect to an
interchange of its two arguments, the feedback operation places the reflected signal
centered at the position where the original vector appeared as illustrated in Fig.
7.9. In the forward operation, the z-shift is encoded into a horizontal shift of
the autocorrelation function, while the y-shift appears as a vertical shift in the

reconstructed signal. Because the shifts have been encoded in this way, many such
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associations can be made by simply adding the corresponding terms to the mask

function T'(wg,wy), which becomes

M
T(werwy) = D Fr(wa) o (wy)- (7.20)

If the system is interrogated with an input f,,,(z — Az)6(y — Ay), then the output
can be written as a sum of the correct recall term with the proper shifts and a

cross-correlation noise term as follows:

IV
fout (2, ¥) = B, (2 + Az) fmo (y + Ay) + Z Bm(z + Az) fm(y + Ay),
m=1 (7.21)

Ron(z) = / Frn (@) Fimg (@ + ) dar.
This equation is similar to Eq. 7.6, except that the interference term does not have
a double summation. In this case, the energy is spread over a 2-dimensional plane
allowing the 1-dimensional vector to be observed with higher fidelity. This allows
us to implement a SI memory that can store multiple 1-dimensional vectors.
Specifically, considering a system that stores M N-bit, binary, bipolar vec-
tors whose individual bits are statistically independent, the output SNR can be

calculated to be:

SNR ~ N/+/NM + (M - 1)2 ~ \/N/M, (7.22)

where the last approximation is valid for large N. Eq. 7.22 shows that the capacity
approaches that of the conventional outer product scheme while maintaining SI.
The increased capacity is gained at the cost of requiring a 2-dimensional array of

threshold gates at the output plane.
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Chapter 8. Conclusions

8.1 Summary of the Thesis

Optical implementations of various computing structures derived from neural
network models have been considered. First, an algorithm by which such networks
can learn to do computation tasks such as pattern recognition was used to perform
adaptive filtration of signals in the presence of additive noise whose properties are
not well known a priori. Optical implementations of the adaptive systems were
demonstrated, which use readily available devices such as the acousto-optic device.
Along with the description and demonstration of the systems, performance issues
such as stability and maximum noise nulling capability were addressed theoreti-
cally and verified experimentally. The adaptive filters were then generalized to the
space—time domain of phased array antenna signal processing where optical imple-
mentations requiring the use of multi-channel acousto-optic devices were presented.

The techniques of recognition that were described during the discussion of adap-
tive systems were then extended to tackle the problem of associative memory with
optical implementations in mind. The parallelism and global interconnective capa-
bilities that are possible with optical techniques make it possible to implement very
large-scale, associative memory systems. First, an acousto-optical system that im-
plemented various linearly interconnected associative memory models (such as the

Hopfield model) was demonstrated and its various parameters such as the memory
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storage capacity and the attraction radius of each memorized item were character-
ized.

Secondly, holographic associative memories in which planar holograms are used
to record interferometrically the associations between various items were considered
and an upper bound was derived under very general conditions. The bound states
that the important parameter is the space bandwidth product (SBP) of the holo-
gram, which is essentially the number of independent pixels on the hologram, the
variable parameters, and in summary, any such holographic memory can at rﬁost
store and retrieve on the order of N2/N; images, each with N3 pixels where N, is
the SBP of the hologram.

Associative memories whose performance is invariant with respect to shifts in
the input pattern position were then considered, and in particular, memory systems
that employ strictly linear interconnections were shown to be ineffective. A network
that used nonlinear interconnections was shown to exhibit useful storage capacity
while maintaining a shift-invariant operation. Finally, a novel encoding scheme
was presented that stores one-dimensional data and retrieves data invariaﬁtly with

respect to position shifts of the input data stream on the input plane.
8.2 Directions for Future Research

With respect to adaptive systems and their optical implementations, actual

laboratory operation of adaptive broadband phased array processors have yet to be
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demonstrated. The high complexity presented by the array-processing task is well
matched to the capabilities of multi-channel acousto-optic devices that are currently
available and may well be out of reach of reasonable electronic implementations.

Learning was discussed solely in the context of adaptive filtering. It is an
issue also for associative memories, and simple methods by which machines can
be programmed to store and retrieve data should be considered. The holographic
paradigm offers one such method. The capacity result derived for planar holograms
should be generalized so as to cover the case of volume holograms.

Invariance with respect to only one transformation of the input pattern, namely,
that of position of the pattern was considered for associative memory. Other forms
of invariance, such as rotation invariance and scale invariance should now be con-

sidered.
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Appendix A

Effects of System Noise on the Passive Processor

In this appendix, the deterioration of the jammer cancelling capability of the pas-
sive processor (Chapter 3) caused by noise in the system is considered. By inspection
of the system diagram (Fig. 2.6a), the system equation can be manipulated to yield

an equation governing the feedback signal £(¢). Using Eqs. 3.8, we get

80102

T/2
2o(t) = / " / 2*(t + 26 — T/2)z(t + B + 1 — T/2)zo(t + B — 7)drdB,

2o(t) = z(t) — Zo(t).
(41)

The above equations neglect the system noise entirely and are used to derive the ideal
response Zo(t). For a jammer input z(t) = Aezp(327 fot), the above equations combine

to yield:

T/2
2o(t) = 8‘;”,42 /_ e /0 ezplj2m fo(r — B)]

{Aezp(j2nfo(t + 8 —1)] — Zo(t + B — 1)} drdp.

(42)

This integral equation is solved, using Fourier techniques, to yield the steady-state

solution:

C?clcgzia

mefﬂp(j% fot), (43)

Zo(t) =

where we assume that the gain has been adjusted for stability as discussed in the

text. In the present analysis, it is possible to involver more rigorously the apodization
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functions that are required to provide deep stable nulls, but to provide a more compact
discussion, we neglect this apodization.

To analyze the effects due to noise, the following statistics are assumed for the
noise contributions from the detectors and amplifiers: on;(t) are independent, sta-
tionary, complex Gaussian processes, each with zero mean and variance o2?. The
autocorrelation and spectral density function for each n;(t) are denoted by R;(t) and
S;(f), respectively. By inspection of the noise model of Fig. 3.20, the feedback signal

contaminated by the noise can be shown to be described by

462 0

7 z*(t+28-T/2)no(t+ 8 — T/2)dB
_T/

z(t) = ons(t) + o—

T/2
o 8c1c2/ / *(t+28—T/2)z(t + B+ 7 —T/2)ny(t + B — r)dBdr
T/4

T/2
epe < / / / 2*(t+ 26— T/2)z(t + f + 1 — T/2)a(t + B — r)dBdr
T/4

T/2
86102/ / *t+28-T/2)z(t+ B+ —T/2)%(t + B — r)dBdr.
~T/4
(49)

If we make the substitution Z(t) = %o(t) + 0£:(t) in Eq. A4, using also the

noiseless response given by Eq. Al, we get

462 0

T z(t+ 26 - T/2)na(t + 8 — T/2)dS
-T/4

Z:(t) = ns(t) + -

80162

T/2
/ / z(t+28-T/2)z(t+B+7—T/2)n1(t + B — r)dBdr
T/4

86162

T/2
/ / 5"t +20 ~ T/2)a(t + B +7 = T/2)24(t + 6 — 7)dBdr.
-T/4
(45)
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The above equation can be specialized for the jammer input z(t) = ezp(j27fot) to

yield

402

il(t) = {ns(t) + T

0
Aezp[—j27 fo(t — T/2)] / e ezp(—jan foB)na(t + B — T/2)ds
0 T/2
+ 8(;262 A? jf_.T/4jf) explg2n fo(r — B)ni(t + B — r)dﬂdr}

0 T/2
- 8_;‘_1_: 24%G /_ - /0 ezply2m fo(r — B)|21(t + B — 7)dBdr.

(46)
The terms in braces in Eq. A6 can then be considered to comprise a stochastic

input 7(t) to the system described by:

0 /2
21(0) = 4(t) - "2 a%G [ 9 | espliznsolr = B)}aue + 6~ r)agar, (a7

where £;(t) is the output and #(t) is the random excitation. If A(t) is wide-sense

stationary, the spectral density of the output, £,(t) can be shown to be

Sn(f)
1+ GAZ%cicqoexp(—537(f — fo)T /4]sine[(f — fo)T /2]sinc|(f — fo)T /4]’

(48)

s(f) =

where S, (f) is the spectral density function for the random noise process #(t). Since

the noise sources n;(t) in the system are independent, zero mean, and stationary, the
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composite process 7 (t) is wide-sense stationary with autocorrelation function given by

16¢2A

T3 e:vp(—-_727rfoa)// ezxp(—jan fo(B — B')]

R,(a) =R3(a) +

Ry(a+ B — B')dBdps’
64c§c2A4 /2 0 0
4 L2 //7/4// exp[—327 fo(B — B')exp|i2n fo(r — 7))

Ri(a+ B — B —r1+1")drdr'dBdp’.
| (49)

Fourier transformation with respect to « yields the spectral density function:

Sa(f) = Sa(f) + 3A%sinc?|(f — fo)T/4]S2(f + fo)
(A10)

+ cie3 A*sinc®((f — fo)T/4]sinc®[(f — fo)T/2]51(f).

The above equation in conjunction with Eq. A8 is the main result of the present
analysis. The noise contribution to the output given by Eq. A8 shows that the
contribution from the source ng(t) will be dominant, since the others are filtered
by the convolver and correlator to contribute a narrowband process centered at the
jammer frequency. These narrowband processes are further suppressed by the system.

The total noise power at the output is therefore approximately o2.
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Appendix B

Optimum Broadband Array Processors

The optimum broadband array-processing systems discussed in -Chapter 4 are
derived in this appendix. The two optimality criteria considered are the mean squared
error and the maximum output SNR conditions. Simple variational arguments are used
to derive the necessity conditions for these criteria. Since the costs to be minimized
are quadratic functionals of the impulse responses that are varied, these necessity
conditions are sufficient as well, and so describe the systems uniquely. Throughout
this éppendix, the noise received by the n:, array element is represented by v,(t)

which is assumed to be a zero mean, stationary, random process with covariance

Vmn (1) = Elom (£)v5(t — 7).

Minimum Mean Squared Error Sidelobe Canceller

We model the desired signal by a zero-mean stationary random process s(t) whose
a.utoc-orrelation function is given by R(r) = E[s(t)s*(t—r)]. Let the total signal (desired
signal plus noise) received by the n,;, element be represented by u,(t) = s(t) + vn(t).
Since the scenario of interest focuses on a signal arriving on boresight, each element

receives the same desired signal without dispersion.
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The form of the processor is shown in Fig. 4.5, where the parameters that must

be optimized are the N impulse response functions. The output signal is given by

N oo
) =3 L  ha()un(t = 7)dr, (B1)

and the cost to be minimized is given by

Clha(t)] = Ell2(t) — s(t)]°]

= ; ; / /_ Z B (D) (T)B(6 = 1) + Ao (B = 7ldrds o)

+R0) - {3 /_ : ho(r)R(=7)dr + ..},

where we have assumed the noise and signal portions to be statistically independent.
Let h,(t) represent the optimum filter for the n,y, element, and let g, (t) represent any
other impulse response function. In order for izn(t) to be the cost-minimizing solution,
the perturbed cost function C[hy,(t) + ag, (t)] must have a minimum value at the point
a = ap + jar = 0, where ap and ar are real. The two conditions that express this

mathematically are

(7]

Faz Clha(t) + agalt)]) _ =0, (B3)
%C[ﬁn(t) +aga(t)]) _ =0

Carrying out the above calculations leads to two equations which combine to yield

Z /_c:o gn(T){Z [:: b (B)R(B = 7) + Ynm (B — T)]dB — R*(T)}d'r =0. (B4)

Since g, (t) is an arbitrary function in Eq. B4, the terms within the braces must

sum identically to zero. This gives the following condition that the optimum filter
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must satisfy:
S [ KlB)IR(B = 7) + tum(8 - 7)]d8 — R*(r) =0, (B5)

which is both necessary and sufficient because the cost functional is quadratic. This

is the generalization of Wiener’s result to the space-time domain of broadband phased

arrays.

Mazimum Output SNR Array Processor

We now consider the task of signal detection, using the array processor of Fig.
4.5. The signal is a known waveform s(t), which arrives at an angle § with respect
to boresight, and the noise field is the same as that discussed for the MMSE (Mini-
mum Mean-Squared-Error) processor. The total signal received by the n,;, element is
therefore given by

U, (t) = su(t) + va(t), (B6)

where s,(t) = s(t — ndcosf/c) is the signal waveform as seen by the ny; element.

The output is given by

o0
) =3 / wn(t — )b (r)dr. (B7)
n - Q0
Since the processor is linear, the signal component can be readily identified from the

noise at the output. The output signal and noise are described, respectively by
<0
€aignal (t) = Z/ sn(t - r)hn(r)dr,
n -0

-~ (B8)
€noise(t) = Z/_oo Un(t — 7)hn(r)dr.
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The goal is to maximize the output SNR given by

_ !eaignal(t0)|2
SNE = E“enoiae(tO)‘z] (Bg)

at a prescribed time ¢,.

An equivalent problem is to minimize the output noise power while constraining
all admissible impulse responses to give the same output signal amplitude at t3. In
particular, the functional expressed by Eq. B9 can be maximized by minimizing the

cost given by

Qlbn(8) = Bllensielto ) = M [ salto = rlha(r)ar —c}
D33l R NCTROPMEEEY” (B10)

- A{E/:: sn(to — T)hn(r)dr — c},

where the constraint e,ignai(to) = ¢ has been included through the use of the La-
grangian multiplier A.
Again, representing the optimum filter by fz,,(t) and an arbitrary function by

gn(t), we apply the conditions given by Eq. B3 to obtain

Z[:: gn(T){Z [_oo 'Ynm(ﬁ - T)h:n(ﬂ)dﬂ — Asn(to — T)}dT = 0. (Bll)

Since g,(t) is an arbitrary function, the terms within the braces must sum identically

to zero, yielding the condition

Z [_oo '7mn.(7' — ﬂ)hm(ﬂ)dﬂ = A*s;(to - T), (312)
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which is the matched filter result generalized for phased-array processing. The La-
grangian multiplier A is immaterial since it merely multiplies all N filters by a con-
stant factor and has no effect on the output SNR. Therefore, Eq. B12 describes the

optimum result to within a constant factor.



