
Router Congestion Control

Thesis by

Xiaojie Gao

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2004

(Submitted June 3, 2004)

ii

c© 2004

Xiaojie Gao

All Rights Reserved

iii

Acknowledgements

It is my great pleasure to thank my advisor Professor Leonard J. Schulman. This

thesis would never have existed without his help, support, inspiration, and guidance.

To him, I offer my most sincere gratitude.

I wish to thank my fellow members of the theory group for their valuable discus-

sions and helpful suggestions for my work.

I am grateful to Wonjin Jang for the fruitful and enjoyable discussions of some of

these matters with him in the course of my research.

I owe a lot to Chih-Kai Ko, who have helped me in writing on this work and

providing constructive suggestions.

In addition, my thanks go to Kamal Jain for the intuition for this work and for

stimulating discussions that have influenced much of the work in this thesis, to Scott

Shenker for helpful discussions and for access to simulation codes used in this thesis,

to Steven Low and Ao Tang for helpful discussions, and to Jiantao Wang for access

to simulation codes.

Special thanks to my officemates, Helia Naeimi and Mortada Mehyar, for their

encouragement.

I am particularly indebted to my whole family for their love, encouragement, and

support, especially my parents who have always been there to offer guidance for me.

I offer my deep thanks to all of my friends, both in US and in China, who have

helped me in many aspects of daily life and study.

This work was supported by the National Science Foundation under grant no.

0049092 (previously 9876172), and by the Charles Lee Powell Foundation.

iv

Abstract

Congestion is a natural phenomenon in any network queuing system, and is unavoid-

able if the queuing system is operated at capacity. In this thesis, we study how to set

the rules of a queuing system so that all the users have a self-interest in controlling

congestion when it happens.

Queueing system is a crucial component in effective router congestion control

since it determines the way packets from different sources interact with each other. If

packets are dropped by the queueing system indiscriminately, in some cases, the effect

can be to encourage senders to actually increase their transmission rates, worsening

the congestion, and destabilizing the system.

We approach this problem from game theory. We look on each flow as a competing

player in the game; each player is trying to get as much bandwidth as possible. Our

task is to design a game at the router that will protect low-volume flows and punish

high-volume ones. Because of the punishment, being high-volume will be counter

productive, so flows will tend to use a responsive protocol as their transport-layer

protocol. The key aspect of our solution is that by sending no packets from high-

volume flows in case of congestion, it gives these flows an incentive to use a more

responsive protocol.

In the thesis, we will describe several implementations of our solution, and show

that we achieve the desired game-theoretic equilibrium while also maintaining bounded

queue lengths and responding to changes in network flow conditions. Finally, we ac-

company the theoretical analysis with network simulations under a variety of condi-

tions.

v

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 Motivation . 1

1.2 The basic problem . 3

1.3 Allocations vs. penalties . 4

1.4 Prior solutions . 4

1.4.1 Fair Queueing . 5

1.4.2 Stochastic Fair Queuing . 5

1.4.3 Deficit Round Robin . 6

1.4.4 Core-Stateless Fair Queueing 6

1.4.5 Early Random Drop and Random Early Detection 7

1.4.6 Flow Random Early Drop . 8

1.4.7 Stabilized RED . 8

1.4.8 CHOKe . 8

1.5 Our contribution . 10

1.5.1 (A) Computational properties 10

1.5.2 (B) Game-theoretic properties 11

1.5.3 (C) Special properties of protocol FBA 13

2 Protocols 14

2.1 Protocol I . 15

vi

2.1.1 Data structure . 15

2.1.2 Actions when a packet arrives 15

2.1.3 Actions when a packet departs 16

2.1.4 Comments . 16

2.2 Protocol II . 17

2.3 A Feedback-Based Adaptive Approach (FBA) 18

2.3.1 Data structure . 18

2.3.2 Estimation of the “max-min-fairness” threshold 19

2.3.2.1 Comments . 20

2.3.3 Actions at the tail and head of the queue 20

2.3.3.1 Packet arrivals . 21

2.3.3.2 Packet departures 21

2.3.3.3 Comment . 22

3 Protocols I, II, and FBA satisfy the computational properties (A) 23

4 Protocol I satisfies the game-theoretic properties (B) 25

4.1 Equilibrium guarantees: properties B1, B2 25

4.2 Sources cannot increase throughput by variable-rate transmission: prop-

erty B3 . 31

4.3 Performance of TCP: property B4 . 33

5 Protocol I satisfies the network equilibrium property (B5) 37

6 Protocol FBA satisfies properties (C) 40

6.1 Fairness in idealized situation: property C1 40

6.2 Queue length properties: property C2 43

6.3 Efficiency . 46

6.4 Stability: property C3 . 47

7 Simulations and relative advantage of protocols I, II, and FBA 51

7.1 Testing the equilibrium property for protocols I and II 51

vii

7.2 Testing the queue length property of protocol FBA 52

7.3 Performance on a single congested link 55

7.3.1 Comparison with CHOKe . 55

7.3.2 Ten UDPs and ten TCPs flows on a single congested link . . . 55

7.3.3 Impact of four ill-behaved UDP flows on a single congested link 57

7.4 Multiple Congested Links . 60

7.4.1 Three UDP flows . 60

7.4.2 Three TCP flows . 61

7.4.3 One UDP flow and two TCP flows 62

8 Conclusions and future work 63

Bibliography 64

1

Chapter 1

Introduction

1.1 Motivation

In a typical packet-based communication network environment, packets go through

routers on their way from source to destination. A router must examine each packet

header and perform certain operations including, most significantly, deciding along

which of the physical links the packet should be sent. In many (though not all)

cases, this processing of the header is the limiting factor determining the capacity (in

packets per second) of the router. In order to accommodate traffic bursts, the router

maintains a queue. However, when traffic arrives over a sustained period at a rate

above the router capacity, the length of the queue will approach the available buffer

size; eventually, packet loss is unavoidable.

Data flows1 originate from sources using different transport layer protocols. These

protocols can be categorized based on their response to network congestion.

TCP, the prevailing transport layer protocol, is an example of a responsive proto-

col. Most practical implementations of TCP ease network congestion by a “backoff”

mechanism [19]: a source will reduce its rate when it infers, through packet loss, that

the network is unable to sustain the current sending rate. This “backoff” mechanism

has shown itself to be remarkably successful at maintaining a functional internet in

spite of congestion. But the efficacy of this approach depends on an elementary as-

1A data flow is a stream of packets which traverse the same route from the source to the des-
tination and require the same grade of service at each router in the path. Each packet is uniquely
assigned to a flow according to pre-specified fields in the packet header [36].

2

sumption [6]: All (or a great majority of) flows are responsive (running basically the

same “backoff” congestion avoidance mechanisms). Since “the Internet is no longer a

small, closely knit user community” [9] and not all flows are responsive, it is no longer

possible to just rely on this “backoff” mechanism to avoid a congestion collapse.

An unresponsive protocol, like UDP, has no such “backoff” mechanism. The rise in

demand of streaming multimedia content, much of which travels on UDP, has caused

a large increase in unresponsive flows in the Internet [12]. To make matters worse, the

inherent design of the current Internet imposes no penalty or charge on unresponsive

traffic to discourage it from crowding out the responsive traffic. In turn, this may

cause more users to implement unresponsive transmission policies which eventually

lead to a congestion collapse of the network. Therefore, it is necessary to prevent this

with an efficient congestion control mechanism that is fair to both types of network

flows.

It has been observed that router congestion control mechanisms that aim at allo-

cating bandwidth in a fair manner could help preventing congestion collapse greatly

[27]. In the current network architecture, the most common queueing algorithm

is first-come-first-serve (FCFS) [32], there are no concrete incentives for individual

sources to use responsive protocols, and there are, in some cases, “rewards” for un-

responsive sources in that they might receive a larger fraction of the link bandwidth

than they would otherwise. For the health of the network, we need to design a router

congestion control mechanism that can provide reasonably fair and efficient conges-

tion control and may indeed encourage sources to use responsive protocols at the

senders.

Naturally this problem has drawn significant attention in the networking litera-

ture. For a better introduction than we could possibly provide here, see [9] (as well

as [5], [33], and [29]). In the sequel we will not dwell further on the motivation, but

adopt the problem from the existing literature, and focus on the technical aspects of

prior solutions, their advantages and limitations — finally pointing out a significant

limitation to all existing solutions, and our approaches to addressing it.

Comment: Router design is an active field; modern high-speed routers are com-

3

plex and contain several processing units and buffers. We follow prior literature in

using the simplified one-processor one-queue model as a representative for whatever

component of the router happens, in a given circumstance, to be the bottleneck.

1.2 The basic problem

The engineering challenge is to design a congestion control mechanism — to be im-

plemented at routers, since we cannot control the sources and sources don’t have

information about other sources against whom they are competing for bandwidth of

the network — to achieve the following simultaneous objectives:

1. Efficiency — The rate (packets transmitted per second) of a router should at

all times be close to the lesser of the router capacity and the received traffic.

We say that a router is operating efficiently if it is operating approximately at

the lesser of the router capacity and the received traffic.

2. Fairness — The achieved rates of the various sources should be fair: high-

volume sources should not be able to crowd out low-volume sources.

We follow common network literature in equating fairness with “max-min-

fairness” criterion [4, 31, 17, 16]. To put it more precisely:

Definition 1 If the arrival rate of each flow i is si, and the router capacity

is C, the max-min-fairness rate of flow i is Si = min{si, α
∗}, where

α∗ = α∗(C, {si}) is the supremum of the values for which
∑

i Si ≤ C.

(When
∑

i si < C, α∗ = max
i

si.) α∗ is called the max-min-fairness

threshold.

Given the arrival rates of a set of flows, the “max-min-fairness” rate of each flow

is unique [31]. Given a concave “utility function” f(x), the “max-min-fairness”

solution, in the single-router case, maximizes
∑

i f(xi), where i ranges over the

sources.

4

This challenge has been taken up in several papers. In the following, we will first

introduce a classification of usually used methods, and then describe a few main prior

solutions to the problem.

1.3 Allocations vs. penalties

Generally, there are two, but not necessarily mutually exclusive, categories of methods

to solve the above problem: allocation methods and penalty methods.

In allocation methods, the router does its best to allocate to each source its “max-

min-fairness” share of the router capacity; packets sent above that share are simply

dropped.

The allocation methods give no incentive for drop-tolerant flows to use a respon-

sive congestion control protocol. Drop-intolerant flows do have such an incentive, but

any traffic can be encoded so that this is the case: the priority-encoded transmis-

sion methods of [2] show how to encode data so that no matter which packets are

received, the highest-priority bits of the data can be recovered at a rate that is almost

proportional to the number of packets received.

There has also been some work on what we’ll call penalty methods, in which

the router tries to discourage aggressive behaviour of sources, by actively penalizing

sources that transmit more than their fair share.

The advantage of a penalty system is that it motivates socially responsible be-

haviour, and thereby may reduce overhead labor on the part of the router. Some

suggested penalty methods, and the general advantages of employing penalties, were

discussed in [9].

1.4 Prior solutions

In this section, we will describe a few main prior solutions to the problem. Especially,

we will point out their advantages and limitations.

5

1.4.1 Fair Queueing

Demers, Keshav and Shenker proposed an isolation mechanism called Fair Queue-

ing (FQ) in [7]. It uses Nagle’s idea [27] of creating separate queues for the packets

from each individual source, generally forwarding packets from different sources in

Round Robin fashion, and selectively dropping packets from high-volume sources

in order to fairly allocate bandwidth among sources. If a source sends packets too

quickly, it makes the length of its own queue grow and more packets in the queue

will be dropped. This is because in per-flow queueing, packets belonging to different

flows are isolated from each other and one flow cannot have much impact on another.

In theoretical perspective, one bit is sent from the flow at a time in Round Robin

fashion. In practice, since it is impractical to implement “one-bit-sending”, it was

suggested to calculate the time when a packet would have left the router using the FQ

algorithm and then the packet is inserted into a queue of packets sorted by departure

times.

The Fair Queueing (FQ) proposals, however, have been criticized as computation-

ally too intensive. While the per-packet computations involved are straightforward, it

must be kept in mind that processing by the CPU for the purpose of congestion con-

trol, comes at the expense of time spent managing buffers, processing packet headers

or performing packet scheduling on a per-flow basis, and therefore, at the expense of

router rate. (It might be suggested to use an extra CPU for the bookkeeping, but

then the performance of the system should be compared with that of two routers.)

There are several variations of the Fair Queueing scheme [22, 30, 15, 3] but none of

them reduces the computation complexity of Fair Queueing2.

1.4.2 Stochastic Fair Queuing

A proposal called Stochastic Fair Queuing (SFQ) has been made to economize

the computations by hashing which is used to map packets to corresponding queues,

2In some cases the bottleneck on router capacity is not header processing time, but the I/O rate
limit for sending the packet data. In such cases, fair queuing or other computationally intensive
methods may be practical.

6

and using fewer queues [26]. Normally, one queue is required for every possible flow

through the router. But based on the assumption that at any particular time the

number of active flows are much less than the total number of possible flows through

the router, SFQ doesn’t have a separate queue for every flow, and flows that hash into

the same bucket are treated equivalently. As a result, those flows are treated unfairly.

Since many queues (perhaps thousands, but less than the number of queues needed

by Fair Queueing) will still be required to achieve high fairness in this method [25],

the essential difficulty persists. (Another merit of SFQ is “buffer stealing scheme” —

when the buffer is full the packet from the longest queue is dropped — which allows

better buffer utilization as buffers are essentially shared by all flows.)

1.4.3 Deficit Round Robin

The Deficit Round Robin (DRR) algorithm [32] represents an efficient implemen-

tation of the well-known Weighted Fair Queueing (WFQ) discipline3. Stochastic

fair queuing is used to assign flows to queues, and a slightly-modified round robin

scheme with a “credit” of service assigned to each queue is used between the queues

— if a particular queue doesn’t send any data during a particular round because its

packet size is too large, then that “credit” will be built for the next round. But DDR

has the same problems as SFQ (a need for many queues).

1.4.4 Core-Stateless Fair Queueing

To address this issue, Core-Stateless Fair Queueing (CSFQ) was proposed in

[33] for achieving reasonably fair bandwidth allocations while reducing the cost. It

works by establishing an island of routers (a contiguous region of the network) that

implement the protocol. The core of the island (“core” routers of the network) adopt

a protocol that does not maintain “state” (such as a record of the volume) for each

flow, thereby allowing itself to employ a fast, simple queueing algorithm. However,

3WFQ is one of Cisco’s premier queuing techniques. It is a flow-based queuing algorithm that
does two things simultaneously: It schedules interactive traffic to the front of the queue to reduce
response time, and it fairly shares the remaining bandwidth between high bandwidth flows.

7

such per-flow states still need to be maintained at the borders of the island (“edge”

routers of the network), which then need to communicate rate estimates for the

various flows to the core routers. In this method the core routers are not slowed

down by flow-specific computations. Edge routers estimate flows’ arrival rates by

exponential averaging based on per flow information and insert them into the packet

labels; the flows’ arrival rates are updated at each router along the path based only

on aggregate information at that router. (Another key aspect of the architecture is

FIFO queueing with probabilistic dropping: the probability of dropping an arriving

packet is a function of the rate estimate carried in the label and of an estimate of the

fair share rate at that router.)

Like the FQ methods, this proposal aims to achieve fair usage of router capacity by

explicitly allocating to each flow its “max-min-fairness” rate. Potential drawbacks of

this method are the assumption that there are edge routers with excess computational

capacity (which begs the question of whether that capacity, or the resources to create

that capacity, would not be better employed elsewhere), as well as the potential

vulnerability or instability of a method that depends on message-passing between

routers, in comparison with methods that are implemented independently at each

router.

1.4.5 Early Random Drop and Random Early Detection

Other proposals have attempted to come at the problem by less complex modifications

of the basic “FIFO with drop tail” queue that is at present most commonly used in

the internet. (A single FIFO queue maintained for all packets, with packets at the end

being dropped when buffer size is exceeded.) In Early Random Drop (ERD) [18]

and Random Early Detection (RED) [11] packets are dropped at random when

the queue lengthens, which provides early congestion indication to flows which can

then gracefully “backoff” before the buffer is overloaded. RED maintains two buffer

thresholds. When the buffer occupancy is smaller than the first threshold, no packet

is dropped; when the buffer occupancy is larger than the second threshold all packets

8

are dropped; when the buffer occupancy is between the two thresholds, the packet

dropping probability increases linearly with buffer occupancy. This algorithm greatly

alleviates the problem of segregation. By keeping the average buffer occupancy small,

it reduces the delays of most packets. However, it is now generally agreed that the

“RED” algorithm does not provide fair bandwidth allocation and is vulnerable to ill-

behaved flows because of its random dropping. It is clear that “ERD” and ‘RED” are

computationally very easy to implement but do not approximate fairness or achieve

objective (2) (Fairness).

1.4.6 Flow Random Early Drop

In [23] a modification of these methods, Flow Random Early Drop (FRED), was

proposed in which packets are dropped with probabilities that depend on the flow

volumes of their sources, in order to enforce roughly fair bandwidths. While the

absence of separate queues for each flow, in this method, represents a computational

improvement over the FQ methods, the need to maintain separate bookkeeping for

each active flow subjected this proposal to similar criticism of excessive computational

overhead.

1.4.7 Stabilized RED

In the Stabilized RED (SRED) proposal [28], a conceptively simple method was

suggested to estimate the number of active connections, identify high-volume flows,

and penalize them by preferentially dropping their packets. However, SRED incurs

significantly greater implementation overhead than RED. Other variants of RED (like

RED with penalty box [8] and RED with Preferential Dropping (RED-PD)

[24]) also need to keep certain type of flow information and are complex.

1.4.8 CHOKe

The idea of SRED was further simplified, both from a conceptual and computational

point of view, in the CHOKe proposal [29]. The basic idea is that when the queue

9

is long, each incoming packet is compared against another randomly selected packet;

if they are from the same source, both are dropped, else the randomly selected packet

is left intact (in the same position as before) and the incoming packet is dropped

or retained based on the same strategy as RED. This has the merit of preferentially

penalizing high-volume flows. Moreover (like the other RED variations, as well as the

FQ methods), it can be implemented at any router, independently of other routers.

CHOKe has been analyzed in [34][35] and it was shown that in the simple case of a

single link with homogeneous TCP flows and a single UDP flow, the UDP bandwidth

share is at most 26.9 percent of the link capacity when its arrival rate at the router is

slightly greater than the link capacity and goes down to zero when the rate increases.

Extensive simulations have provided support for its favorable performance with regard

to both objectives (1) (Efficiency) and (2) (Fairness) above, provided there is just

one UDP (unresponsive) flow and all other flows are TCP compliant [34].

But this result haven’t been generalized to multiple links, or even a single link

with more than one UDP flow. Simulation results [29][14] have shown that CHOKe

performs poorly in the presence of multiple links and/or multiple irresponsive sources.

When several flows are unresponsive, it’s easy to see that CHOKe will fail to prevent

them from crowding out the responsive flows. Roughly speaking, if a flow occupies

fraction pi of the incoming traffic to the router, then fraction pi of its packets will

be dropped by the router; this prevents a single unresponsive flow from trying to

dominate traffic into the router, but if there are even two unresponsive flows, they

have no incentive to leave any capacity to the responsive flows. If some bound can

be assumed on the number of unresponsive flows, then this problem can be compen-

sated for by increasing the complexity of CHOKe: for instance, by sampling a set of

more than just two packets, and deleting any packets that occur multiply in the set.

However, since the size of this set needs to grow at least linearly with the bound on

the number of unresponsive flows, the complexity of this solution grows sharply with

that bound, and the solution loses its principal merit, the computational efficiency

that yields objective (1) (Efficiency).

10

1.5 Our contribution

There is no reason to suppose that, in practice, the number of flows aggressively

(unresponsively) maximizing their throughput will be bounded by one, or by any

other small number. This limitation of CHOKe is the stimulus for our contribution.

Our approach is rooted in game theory and, in particular, in what is known as

mechanism design. The perspective is that as the designer of the router protocol,

we are in charge of a game among the sources, each of which is trying to achieve

throughput as close as possible to its desired transmission rate. It is well known that,

under certain technical conditions, such multi-player games have Nash equilibria in

which the strategies chosen by each of the players, are best possible conditional on

the strategies of the other players. It is our task to set up the game so that its Nash

equilibria satisfy our design objectives (1) (Efficiency) and (2) (Fairness).

In this thesis, we will propose three protocols, all of which are based on game

theory. The key aspect of our protocol is that by sending no packets from high-

volume flows, it gives these flows an incentive to use a more responsive protocol, as

the severity of the punishment increases the likelihood that these flows will adapt a

more responsive protocol.

We begin now by specifying the technical properties of our protocol. There are two

types of properties: (A) Computational properties, (B) Game-theoretic properties. In

addition, our third protocol, that we call protocol FBA, has some special properties.

We will present them in section 1.5.3.

1.5.1 (A) Computational properties

A1. The per-packet time complexity of implementing the router protocol is constant.

(A small constant, comparable with CHOKe.)

A2. The space complexity of implementing the router protocol is within a constant

factor of simply maintaining a single packet queue.

A3. The protocol is deployable at a single router, with no dependence on whether

11

it has been deployed at any other routers.

1.5.2 (B) Game-theoretic properties

Some explanation is needed before presenting the game-theoretic properties. We will

not try to apply the theory of Nash equilibria to the most general situation in which

there are infinitely many sources, each sending messages at times entirely of their

choosing, in full knowledge of the randomized strategies of every other source. In

view of the very little information actually available in practice to each source, and

the overall asynchrony in a large network, this is a needlessly general setting. Instead,

we will start with the case in which every source is Poisson. After establishing the

basic game-theoretic conclusions in this framework, we will go on to consider what

one source can gain by deviating from this strategy, if all the other sources remain

Poisson. (This is not a severe restriction because even if the other sources send packets

at deterministic times, network delays on the way to the router introduce noise into

the arrival times.) While the Poisson model is not good for short bursts of traffic,

it is a reasonable model, much used in the networking literature (in spite of some

limitations) for aggregate and extended-duration traffic.

We stress that when considering a source that is trying to “trick” our system, we

will not constrain that source to generate Poisson traffic; the source will be allowed

to generate traffic in an arbitrary pattern.

Notation: Let ri be the desired transmission rate of source i. Let C be the

capacity of the router. (Specifically, C is the rate the router can achieve while admin-

istering a single queue and spending constant time per packet on congestion control.

Equivalently, the rate achievable by CHOKe.) Let Si be the “max-min-fairness” rate

of the source i (as defined earlier), given {ri} and C. Let si be the actual Poisson

rate chosen by source i. Let ai be the throughput of source i.

Our game-theoretic properties are:

B1. Assume an idealized situation in which the router, and all the sources, know

the flow arrival rates {si}; and in which the queue buffer is unbounded. This

12

idealized game has a unique Nash equilibrium which is the “max-min-fairness”

rates Si, given the inputs C and {ri}.

As a corollary, when all sources are acting in their own best interest, the rate

of the router equals C.

B2. In the actual game (which is administered by a router that can only use its

history to govern its actions), there is a small ε > 0 such that any flow arriving

at rate si ≤ (1− ε)α∗, will achieve throughput ai ≥ si(1− ε).

As a corollary, when all sources are acting in their own best interest, the rate

of the router is at least C(1− 2ε).

By establishing (B2), we will have accomplished the capacity and fairness objec-

tives (1,2) specified earlier. This will be done in section 4.1.

The next step will be, as indicated earlier, to remedy (to a degree) our insistence

on considering only Poisson sources. We will show in section 4.2:

B3. The long-term throughput of a source which is allowed to send packets at ar-

bitrary times (while all other sources are still restricted to being Poisson) is no

more than 1 + ε times that of the best Poisson strategy.

Next, we’ll attend to the performance of a TCP source in our system. The reason

for this is not game-theoretic; naturally, TCP is not likely to perform quite so well as a

strategy optimized to play our game. Rather, the reason to consider TCP is that it is

precisely the sort of responsive protocol which a mechanism such as ours is supposed

to reward, and that it presently serves (according to [34]) at least 90% of internet

traffic. Therefore it is important to show that TCP achieves good throughput in our

system. In section 4.3 we’ll show:

B4. Under certain assumptions on the timing of acknowledgments, the throughput

of a TCP source with unbounded desired rate, playing against Poisson sources

with desired rates r2, r3, ..., is within a constant factor of the “max-min-fairness”

value α∗(C, {∞, r2, r3, ...}).

13

The reason that TCP interacts so well with our protocol is that it backs off

very quickly from congestion, and therefore, will quickly stop being “punished” by

our protocol; and that it subsequently “creeps” up toward the “max-min-fairness”

threshold α∗ (before again having to back off).

Finally, we will show, in section 5, that property B1 can be extended to the general

network case with many routers:

B5. Under the same assumptions for property B1, the game has a unique Nash

equilibrium which is the “max-min-fairness” rates Ri.

1.5.3 (C) Special properties of protocol FBA

Since protocol FBA uses an feedback-based adaptive controller to estimate the “max-

min-fairness” threshold, there are some special properties of it.

C1. Assume an idealized situation in which the router knows the arrival rates {si};
and in which the queue buffer is unbounded. In this idealized game, any flow,

whose arrival rate is at most the “max-min-fairness” threshold α∗, will never be

punished.

C2. By properly setting the parameters of protocol FBA, there will be no buffer

overflow and no buffer empty in case of congestion.

As a corollary of (C1) and (C2), when the router knows the arrival rates of flows,

and the parameters of protocol FBA are properly set, any flow whose arrival rate is

at most the “max-min-fairness” threshold α∗ will never be punished.

Finally, we’ll attend to the stability of protocol FBA:

C3. When the arrival rates of flows are changed, protocol FBA will respond rapidly

to current flow condition, i.e., stability could be reestablished quickly in response

to changes in arrival rates.

14

Chapter 2

Protocols

Our protocol is inspired both by network packet queuing theory and by auction

theory. From the network packet queuing theory perspective our protocol is similar

to CHOKe. In case of congestion, CHOKe penalize all the sources in proportion to

their arrival rate. We instead penalize only the highest rate senders. This ensures

that the best thing for a sender in case of congestion is to not be the highest rate flow.

So all the senders compete not to be the highest rate flow; this process eliminates the

congestion. If we consider CHOKe and our protocol in the setting of the auction of a

single item, the winner, in the case of CHOKe, is picked randomly with probabilities

proportional to the bids; whereas in our protocol the winner is the highest bidder.

Since nobody wants to “win” the penalty, the senders in our protocol compete to not

be the winner, until the total bids are low enough that the auction is cancelled.

We will actually describe three different versions of the protocol. We will begin

with protocol I, to which we’ll address the theorems of this thesis. Protocol II is very

similar, but is better at coping with multiple UDP sources, as will be illustrated by

simulation in section 7. The third version, which we call protocol FBA, will be given

at the end of this section. It is proposed since protocol II has the potential problems

of buffer overflow and responding slowly to the fluctuation of flow condition.

15

2.1 Protocol I

2.1.1 Data structure

The protocol I will maintain several items of data:

1. Q, the total number of packets presently in the queue.

2. A hash table containing, for each flow i having packets in the queue, a record

of mi, the total number of packets presently in the queue from source i.

3. MAX, a pointer to the record of the source having the highest number of packets

in the queue.

In addition, there are several adjustable parameters controlling the protocol behavior:

F , the size of the queue buffer; “high” H and “low” L1 markers satisfying 0 < L <

H < F .

The protocol is defined by the actions it takes when packets arrive at the router,

and when they depart the head of the queue. We describe these separately.

2.1.2 Actions when a packet arrives

Each time a packet arrives, the following actions are performed:

1. The packet source i is identified.

2. (a) If Q > H, mark the packet DROP ;

(b) otherwise if H ≥ Q > L and i = MAX, mark the packet DROP ;

(c) otherwise, mark the packet SEND.

3. The packet is appended to the tail of the queue, together with its marking.

(If the marking is DROP, the packet data can be deleted, but the header is

retained so long as the packet is on the queue.)

1When congestion is mild (as represented by the length of queue being less than L), a router
does not need to regulate the bandwidth of flows.

16

4. Q and mi are incremented by 1. (If mi = 1, a new record is created.)

5. If mi > mMAX, then the MAX pointer is reassigned the value i.

2.1.3 Actions when a packet departs

Each time a packet is pulled off the head of the queue, the following actions are

performed:

1. The packet source i is identified.

2. Q and mi are decremented by 1. (If mi = 0 the record is eliminated from the

hash table.)

3. If the packet is marked SEND, it is routed it to its destination; otherwise, it is

dropped.

4. If i = MAX but mi is no longer maximal, MAX is reassigned to the maximal

sender.

2.1.4 Comments

Comment 1. The usual procedure when facing buffer overflow is to “droptail”, i.e.,

to continue to serve packets already on the queue but not to accept new packets into

the queue. Here, instead, we use what we call a tail-marking queue: we make

drop decisions at the tail of the buffer, but we don’t really drop the packets there;

instead, we append the packet to the tail of the buffer together with the marking

of SEND or DROP and send or drop it at the head of the queue according to its

marking. It may appear peculiar, at first sight, that when we decide to drop packets

we put them on the queue anyway, and only really get rid of them when they reach

the head of the queue. The reason is that our queue serves a dual purpose. One is

the ordinary purpose: a buffering facility to time-average load and thereby approach

router capacity. The other purpose is as a measuring device for the recent traffic

volumes from the sources. In our algorithm the contents of the queue represent, in

17

all circumstances, the complete history of packets received at the queue over a recent

interval of time. (It is permissible though to only put the header, and not the content

of a DROP packet on the queue.)

Our handling of drops enables us to use the {mi} instead of having to compute

exponential averages, as was done in some of the recent literature in this area. (The

averaging is not complicated but requires reference to the system clock plus some

arithmetic; in view of the computational demands on the router, the gain may be

meaningful.)

Comment 2. Since we don’t “droptail”, we need to ensure that we don’t create

buffer overflow.

There are three time parameters associated with this queue:

1. packet-send-time T1: the time to route a SEND packet at the head of the queue;

2. packet-append-time T2: the time to append a packet to the tail of the queue;

3. packet-drop-time T3: the time to move the head of the queue past a DROP

packet.

For a queueing system to make sense, these times should satisfy the inequalities

T1 > T2 > T3, and especially, T1 À T3. We can prevent buffer overflow in our

protocol simply by choosing F and H so that F/H ≥ T1/T2. (This is not hard to

show.)

Comment 3: The marking of SEND or DROP can be one extra bit to the packet

header: the bit is set to one if the marking is SEND.

2.2 Protocol II

Protocol II differs from protocol I only in line 2(b) of Actions when a packet

arrives, which we replace by:

2(b)’ If H ≥ Q > L and mi ≥ H−Q
H−L

mMAX, mark the packet DROP ; otherwise,

mark it SEND.

18

Protocol II has no advantage over protocol I with regard to Nash equilibria. How-

ever, its sliding scale for drops has a substantial advantage over both CHOKe and

protocol I in the effectiveness with which multiple unresponsive flows are handled.

This will be demonstrated by simulation in section 7.

2.3 A Feedback-Based Adaptive Approach (FBA)

Our third protocol is based upon using a current estimate α of the “max-min-fairness”

threshold, as a control parameter. We will continually modify α in response to the

state of the queue. In this way (as we will analyze in section 6) the length of the

queue will remain within acceptable bounds, while we also ensure high throughput

and fairness. Although α will fluctuate about its ideal value even under steady flow

conditions, we will show through analysis and simulation that these fluctuations are

tolerable.

Just as in protocols I and II, we adopt a “penalty” approach: we maintain esti-

mates of the flow rates of the active flows, and drop the packets of those sources that

are transmitting above the current threshold determined by the control parameter α.

Details in section 2.3.3.

2.3.1 Data structure

Let the maximal possible arrival rate (the maximal number of packets that can be

accepted in a unit of time) of the router be S, which is greater than C. Our algorithm

will maintain several items of data:

1. α, the estimated “max-min-fairness” threshold.

2. q, the total number of packets, marked SEND, presently in the queue.

3. qlast, the value of q when α was last updated.

4. A hash table containing, for each flow i having packets in the queue:

19

(a) mi, the total number of packets presently in the queue from source i. (Same

as in protocol I and II.)

(b) ti, the time when the last pulled-off packet from source i entered the queue.

In addition, there are several adjustable parameters controlling the algorithm behav-

ior:

1. F , the size of the queue buffer. (Same as protocol I and II.)

2. E, “Equilibrium” marker, satisfying 0 < E < F .

3. ∆t, the time interval between consecutive updates of α.2

We will describe the algorithm by two parts: 1. the estimation of “max-min-

fairness” threshold; 2. the actions it takes when packets arrive at the router and

when they depart the head of the queue.

2.3.2 Estimation of the “max-min-fairness” threshold

A straightforward thought is the following: when the number of packets in the queue

marked SEND increases, decrement α; when the number of packets in the queue

marked SEND decreases, increment α. We need a controller to estimate α adaptively

according to the arrival traffic of the router.

For easy understanding, we introduce another variable

q′ := (q − qlast)/∆t,

which can be interpreted as a discrete time-derivative of q. So q = qlast + q′∆t.

Let the initial value of α be C. Every ∆t time, we will update the value of α once:

1. If q > E and q′ > 0, then

α :=
C

C + q′
α;

2For the question when to update α, here we use a constant interval to update α. In reality, we
may update α when a packet is sent out by the router or when a packet arrives at the queue or both;
in this case, ∆t is interpreted as the time interval between consecutive updates of the estimated
threshold.

20

else if q < E and q′ < 0, then

α := 2α.

2. If α > C, then α := C.

3. qlast := q.

2.3.2.1 Comments

Comment 1. When q′ > 0, q increases; when q′ < 0, q decreases; and when q′ = 0,

q remains unchanged. Since E is the “Equilibrium” marker, if q > E we try to make

q less and if q < E we try to make q greater.

Hence, if q is greater than E and will continue increasing (q′ > 0), the threshold

should be decreased; the update equation will reduce the threshold. We will show

in Lemma 10 that it will never get a threshold less than α∗, the “max-min-fairness”

threshold.

If q is less than E and will continue decreasing (q′ < 0), the threshold should be

increased; the update equation will increase the threshold and ensures quickly getting

q′ ≥ 0.

Comment 2. The initial value of the threshold is set to be C because we should

not punish flows that are sending at rates less than the “max-min-fairness” threshold

and C is the biggest possible value for the threshold, which happens only when there

is a single flow in the link.

Comment 3. Our algorithm doesn’t mention the case when queue is full or

empty. Theorem 14 in Section 6.2 will show that: if E ≥ 2 · log 2C · C · ∆t and

F ≥ (E + log C · (S + C) ·∆t) · (2S −C)/C, the buffer will never overflow or (unless

the router is uncongested) be empty.

2.3.3 Actions at the tail and head of the queue

At the tail of the queue, all arrival packets are accepted into the queue, together with

a marking SEND or DROP. For each arriving packet, if its estimated arrival rate is

21

greater than the estimated threshold α, the packet is marked DROP, otherwise the

packet is marked SEND.

At the head of the queue, the packet is sent or dropped according to its marking.

2.3.3.1 Packet arrivals

Each time a packet arrives at the tail of the queue, the following actions are performed:

1. The packet source i is identified.

2. Let the current time be tcurr.

3. (a) If mi/(tcurr − ti) > α, mark the packet DROP ; 3

(b) otherwise, mark the packet SEND.

4. The packet is appended to the tail of the queue, together with its marking and

arriving time tcurr.

5. mi is incremented by 1. (If mi = 1, a new record is created.)

6. If the marking is SEND, then q is incremented by 1.

2.3.3.2 Packet departures

Each time a packet is pulled off the head of the queue, the following actions are

performed:

1. The packet source i is identified.

2. mi is decremented by 1. (If mi = 0 the record is eliminated from the hash

table.)

3. Set ti to be the arrival time of the packet.

4. If the packet is marked SEND, it is routed it to its destination and q is decre-

mented by 1; otherwise, it is dropped.

3mi/(tcurr − ti) is the estimated arrival rate of flow from source i.

22

2.3.3.3 Comment

Since we don’t “drop-tail”, we need to ensure that there is no buffer overflow, which

will be shown in Theorem 14 of Section 6.2.

23

Chapter 3

Protocols I, II, and FBA satisfy
the computational properties (A)

The most straightforward way to handle the protocol computations is to maintain

the active sources (those with mi > 0, i.e., those having packets in the queue) in

a priority queue, keyed by mi. This does not entirely resolve the computational

properties, though, for two reasons: (a) updates to a priority queue with n items take

time O(log n), rather than a constant. (b) A hashing mechanism is still required in

order to find, given a source label i, the pointer into the priority queue.

Item (a) is easily addressed. Since we change mi by only ±1 in any step, the

following data structure can substitute for a general-purpose priority queue. Maintain,

in a doubly-linked list, a node Nk for each k such that there exists i for which mi = k.

The linked list is maintained in order of increasing k. At Nk maintain also a counter

c(k) of the number of distinct i for which mi = k. Finally, from Nk maintain also

c(k) two-way pointers, each linking to a node at which one of those labels i is stored.

This data structure can easily be updated in constant time in response to increments

or decrements in any of the mi.

Item (b) is slightly more difficult since it asks, essentially, for a dynamic hash table

with O(1) access time and linear storage space. (The elegant method of Fredman,

Komlós and Szemerédi (FKS) [13] is not dynamic.) We know of no perfect way to

handle this, but two are at least satisfactory.

One solution is to modify FKS, allow poly-logarithmic space overhead, and achieve

24

constant amortized access time by occasionally recomputing the FKS hash function.

An alternative solution is simply to store the pointers in a balanced binary search

tree, keyed by the source labels {i}. This method uses linear space but O(log n)

access time. A simple device fixes the access time problem: instead of updating mi

and Q with every packet, perform these updates only every (log F)’th packet. Our

game-theoretic guarantees will still hold with a slight loss in quality due to the slightly

less accurate estimation of flow rates, and with slightly slower reactions to changes in

flow rates. In practice we anticipate that these effects will be negligible, and therefore

that this is preferable to the modified-FKS solution.

In some operating environments there might be a moderate, known bound on

the number of sources whose rates are close to maximal. In such cases it may be

possible to take advantage of an attractive method [21] which keeps track of the k

most-frequent sources in a stream, using only memory O(k). (However the technique

tracks the statistics of the entire, rather than only the recent, history; so some finite-

horizon version would have to be adopted.)

25

Chapter 4

Protocol I satisfies the
game-theoretic properties (B)

We assume there are B Poisson sources and their Poisson arrival rates are si with

s1 ≥ s2 ≥ s3 ≥ · · · ≥ sB. Let B̃ = min
j
{

j∑
i=1

si ≥ 1
2

B∑
i=1

si}. Observe that B̃ is an

undercount of the number of sources: it omits sources generating very sparse traffic,

and counts only the number of sources contributing a substantial fraction of the total

traffic.

In section 4.1, 4.2, and 4.3, we prove the satisfaction of the properties (B) for

protocol I.

4.1 Equilibrium guarantees: properties B1, B2

We first consider a “toy” version of our protocol in which all the sources, and the

router, know the true transmission rates si of all sources. (As indicated earlier, we’ll

assume the sources are constant-rate Poisson.) Moreover, the buffer for the queue is

unbounded. If
∑

si > C, the router simply drops all the packets of the highest-rate

source; if several tie for the highest rate, it rotates randomly between them.

Theorem 2 If the sources have desired rates {ri} for which
∑

ri > C, and can

transmit at any Poisson rates 0 ≤ si ≤ ri, then their only Nash equilibrium is to

transmit at rates si = Si, for Si the “max-min-fairness” rates.

26

Proof: This is immediate (recalling that we treat only the case of finitely many

sources). If
∑

si < C then naturally some source can improve its rate. If
∑

si ≥ C

and any of the source rates exceeds α∗, then suppose k of them tie for the highest

source rate s, i.e., each of those k sources has the largest number of packets in the

queue. The throughputs of those k will be s(1− 1/k), whereas they could have done

better by transmitting at a rate slightly less than s. Therefore no source rate can

exceed α∗. 2

This establishes game-theoretic property B1. The rest of this section is devoted to

property B2: showing that the above argument survives the constraint of having to

make do with a finite queue buffer. We first need a Chernoff bound for the probability

that a Poisson process deviates far from its mean.

Lemma 3 X is a Poisson process with E[X] = λ:

Pr{X ≥ (1 + δ)λ} < e−λδ2/4, for any δ ∈ (0, 2e− 1);

Pr{X ≥ (1 + δ)λ} < 2−λδ, for any δ ∈ [2e− 1, +∞);

Pr{X ≤ (1− δ)λ} < e−λδ2/2, for any δ ∈ (0, 1].

Proof: As in the proof of the Chernoff bound, for δ > 0,

X ≥ (1 + δ)E[X] if and only if etX ≥ et(1+δ)E[X].

So by Markov’s inequality

Pr{X ≥ (1 + δ)E[X]} ≤ E[etX]

et(1+δ)E[X]
.

Since X is a Poisson process with E[X] = λ,

E[etX] =
∑

k∈N

etke−λλk

k!
= e−λ

∑

k∈N

λetk

k!
= e−λeλet

= eλ(et−1).

27

So

Pr{X ≥ (1 + δ)λ} ≤ eλ(et−1)e−t(1+δ)λ = eλ(et−1)−t(1+δ)λ.

To minimize the exponent, substitute the value ln(1 + δ) for t, and we conclude

Pr{X ≥ (1 + δ)λ} ≤ e(1+δ)λ ln(1/(1+δ))+(1+δ)λ−λ

= e−((1+δ) ln(1+δ)−δ)λ =

(
eδ

(1 + δ)(1+δ)

)λ

.

When δ ≥ 2e− 1,

Pr{X ≥ (1 + δ)λ} < 2−λδ,

and when δ < 2e− 1,

Pr{X ≥ (1 + δ)λ} < e−λδ2/4.

Similarly,

X ≤ (1− δ)E[X] if and only if etX ≥ et(1+δ)E[X]

for any δ ∈ (0, 1]. By Markov’s inequality

Pr{X ≤ (1− δ)E[X]} ≤ E[e−tX]

e−t(1−δ)E[X]
.

Since

E[e−tX] =
∑

k∈N

e−tke−λλk

k!
= e−λ

∑

k∈N

λe−tk

k!

= e−λeλe−t

= eλ(e−t−1),

so

Pr{X ≤ (1− δ)λ} ≤ eλ(e−t−1)et(1−δ)λ = eλ(e−t−1)+t(1−δ)λ.

28

Choose t = − ln(1− δ), and we conclude

Pr{X ≤ (1− δ)λ} ≤ e(1−δ)λ ln(1/(1−δ))+(1−δ)λ−λ = e−((1−δ) ln(1−δ)+δ)λ

=

(
e−δ

(1− δ)(1−δ)

)λ

<

(
e−δ

e−δ+δ2/2

)λ

= e−λδ2/2.

2

Lemma 4 X and Y are two Poisson processes with E[X] = α∗, E[Y] = β, and

α∗ < β:

Pr{X ≥ Y } < e
−α∗(β−α∗)2

4(β+α∗)2 + e
−β(β−α∗)2

2(β+α∗)2 .

Proof: Since α∗ < β, for any ε ∈ (0, β−α∗
α∗+β

], we have α∗(1 + ε) ≤ β(1− ε). So

Pr{X ≥ Y } ≤ Pr{X ≥ α∗(1 + ε)}Pr{Y ≥ β(1− ε)}
+Pr{X ≥ Y }Pr{Y ≤ β(1− ε)}

≤ Pr{X ≥ α∗(1 + ε)}+ Pr{Y ≤ β(1− ε)}
≤ e−α∗ε2/4 + e−βε2/2.

2

The basic argument survives with the hypothesis L ∈ Ω(B̃ 1
ε2 ln 1

ε
).

Theorem 5 If the protocol of section 2 is administering traffic from sources with

desired rates {ri} for which
∑

ri > C, and which can transmit at any Poisson rates

0 ≤ si ≤ ri, there is a small ε > 0 such that any source sending at rate si ≤ (1−ε)α∗,

will achieve throughput ai ≥ si(1− ε). (Here α∗ = α∗(C, {rj}) and L ∈ Ω(B̃ 1
ε2 ln 1

ε
).)

Proof: The hypotheses guarantee a ratio of at most 1−ε between si and α∗(C, {sj}).
Packets from source i will be dropped only when the queue grows to size L, and mi

is higher than that of all other sources.

Case 1 :
∑
j

sj ≥
∑
j

min{(1− ε/2)α∗, rj}.
The idea for this case is that with high probability the packet dropping ends

quickly, since the protocol will soon identify a higher-rate source.

29

In this case si is not the largest, and there must be a fluctuation in the arrival

rates that causes mi to be the largest. Assume source k is sending at the largest rate

sk. It’s clear that sk ≥ (1−ε/2)α∗ and si ≤ (1− ε/2
1−ε/2

)sk. Let δ = (sk−si)/(si+sk) ≥
ε/(4−3ε); δ0 = (

√
5−1)/2 when δ ≥ (

√
5−1)/2, otherwise δ0 = δ. Suppose the time

interval between the arrival time of the packet at the head of the queue and that of

the packet at the rear is t, so

Pr{mi = mMAX} ≤ Pr

{
mi

(1− δ0)(1 + δ)

(1 + δ0)(1− δ)
= mMAX

}

≤ Pr

{
mi

(1− δ0)(1 + δ)

(1 + δ0)(1− δ)
≥ mk

}

< e
−si

(1−δ0)(1+δ)
(1+δ0)(1−δ)

tδ2
0/4

+ e−sktδ2
0/2

≤ 2e−skt(1−δ0)δ2
0/(4(1+δ0)).

Let f(δ) = (1−δ)δ2/(1+δ). Since L ≥ Ω(1
ε2 ln 1

ε
) ·B̃, we can assume L

B̃
> 4 ln(2

ε
)(32

ε2 −
32
ε

+ 10 + ε
1−ε

). When ε ≤ 14−2
√

5
11

, f(ε/(4− 3ε)) ≤ f(δ0) and

L/B̃ > 8 ln
2

ε
/f(ε/(4− 3ε)) ⇒ L/B̃ > 8 ln

2

ε
/f(δ0)

⇒ (skL)/(2skB̃) > 4 ln(
2

ε
)/f(δ0).

Because t ≈ L/
B∑

i=1

si ≥ 1
2
L/

B̃∑
i=1

si ≥ L/(2B̃sk), so skt > 4 ln(2
ε
)/f(δ0), and then

Pr{mi = mMAX} ≤ 2e−sktf(δ0)/4 < ε. The probability that a packet from source i is

dropped is less than ε. So source i will achieve throughput ai ≥ si(1− ε).

Case 2 :
∑

j sj <
∑

j min{(1− ε/2)α∗, rj}.
In this case the cause of the losses is a fluctuation causing the queue length to

increase to L. The fraction of packets lost due to this reason is proportional to the

probability of such a fluctuation. The argument proceeds by showing that if L is large

enough, this probability is very small.

Consider a period [0, t]: at time 0 the queue is empty and it is never empty again

from time 0 to t. Since the sources are constant-rate Poisson and independent, the

number of arrival packets, M , follows Poisson distribution with rate
∑

j sj, whose

30

expectation is
∑

j sj · t. And Q = M −C · t is the number of packets in the queue at

time t. By Lemma 3,

Pr{Q > L} < Pr{M > C · t + L} <





e−(
∑

j sj)·t(c−1)2/4 , c ∈ (1, 2e)

2−(
∑

j sj)·t(c−1) , c ∈ [2e, +∞)
,

where c = C/
∑

j sj + L/(
∑

j sj · t).
(a) If C/

∑
j sj > 2 or L/(

∑
j sj · t) > 1, then

Pr{Q > L} < 2−(
∑

j sj)·t(c−1)/4.

When L > 4 log2
1
ε
,

Pr{Q > L} < ε.

(b) If C/
∑

j sj < 2 and L/(
∑

j sj · t) < 1, then

Pr{Q > L} < e−(
∑

j sj)·t(c−1)2/4.

Let B′ be the number of sources whose ri ≥ α∗, so
∑
j

sj ≤ C −B′α∗ε/2.

When L > 4(2C
B′α∗ε − 1)2 ln 1

ε
,

e−(
∑

j sj)·t(c−1)2/4 ≤ e−L(c−1)2/4 ≤ e
−L(c∑

j sj
−1)2/4 ≤ e4 log ε/4

⇒ Pr{Q > L} < ε.

Since L ≥ Ω(1
ε2 ln 1

ε
) · B̃, the probability that the length of the queue is larger than L

is less than ε and source i will achieve throughput ai ≥ si(1− ε). 2

31

4.2 Sources cannot increase throughput by variable-

rate transmission: property B3

Consider the case that the transmission rates of all sources except one (denote it

source A) are fixed. We show that any varying behavior of source A is no better than

a constant transmission rate.

Theorem 6 For a source which is allowed to send packets at arbitrary times (while

all other sources are still restricted to being Poisson), the long-term throughput is no

more than 1 + ε times that of the best Poisson strategy.

Proof: Assume source A is allowed to send packets at arbitrary times while other

sources 1, 2, · · · , B are restricted to being Poisson process with rates si (with s1 ≥
s2 ≥ · · · ≥ sB).

Consider the moment t when a packet from source A comes and we assume that

the arrival time of the packet at the head of the queue is t′. If the marking together

with the packet is SEND, it means that A 6= MAX, so in the time interval [t′, t], the

number of packets from source A is not the maximal; otherwise, the marking will be

DROP.

Consider the packets from source A arriving in [T, T ′]. We ignore the last a few

packets which are dropped as they have no contribution to the throughput. Look on

the last packet p1 from source A which is not dropped, and assume its arrival time is

t1. Suppose at time t1, the arrival time of the packet at the head of the queue is t′1.

Clearly, in [t′1, t1], the number of packets coming from source A is not the maximal,

i.e., mA ≤ mMAX . So in [t′1, T
′], the number of routed packets of source A is no more

than mMAX at time t1. Considering the packets arriving before t′1, we can, similarly,

define t2 as the arrival time of the last packet p2(arriving before t′1), which is not

dropped, and t′2 as the arrival time of the packet at the head of the queue at t2.

So in the interval [t′2, t
′
1], the number of routed packets of source A is no more than

mMAX at time t2. By the same argument, we can split the interval [T, T ′] into n + 1

sub-intervals: [T, t′n], [t′n, t
′
n−1], [t′n−1, t

′
n−2], · · · , [t′2, t

′
1], [t′1, T

′]. Suppose that t′0 = T ′

32

and mMAX = MAXi at time t′i (i ∈ {0, 1, · · · , n− 1}). Hence, the number of routed

packets of source A in [t′n, T
′], N , is no more than MAX0(t

′
0− t′1)+MAX1(t

′
1− t′2)+

MAX2(t
′
2 − t′3) + · · · + MAXn−1(t

′
n−1 − t′n). Given that [T, T ′] is long enough, the

throughput of source A in [T, T ′] is approximate to that of source A in [t′n, T
′].

Let f(k) be the probability that mMAX is at least k, i.e., f(k) = Pr{mMAX ≥ k}.
For any two sources i, j of 1, 2, 3, · · · , B, if si + sj ≤ s1, look at the two sources as

one with rate si + sj; repeat the procedure until we cannot find such two sources, at

which time there is at most one source whose rate is no more than s1/2. Suppose the

sources are 1′, 2′, 3′, · · · , B′ with rates s1′ , s2′ , · · · , sB′(s1′ ≥ s2′ ≥ · · · ≥ sB′−1 > s1/2)

now. Since B̃s1 ≥ 1
2

B∑
i=1

si = 1
2

B′∑
i=1

si′ > 1
2

(
sB′ +

B′−1∑
i=1

s1

2

)
> 1

4
(B′ − 1)s1, we have

B′ < 4B̃ + 1. Since Pr{mMAX ≥ k} = Pr{∃i ∈ [1, B],mi ≥ k} ≤ Pr{∃i, j ∈
[1, B],mi+mj ≥ k}, f(k) ≤ min{

B′∑
i=1

Pr{mi′ ≥ k}, 1} < min{(4B̃+1)Pr{m1 ≥ k}, 1}.
So in any interval [t′i+1, t

′
i],

E[MAXi]

=

∫ ∞

0

f(k)dk =

∫ s1(t′i−t′i+1)(1+δ)

0

f(k)dk +

∫ ∞

s1(t′i−t′i+1)(1+δ)

f(k)dk

≤ s1(t
′
i − t′i+1)(1 + δ) +

∫ ∞

s1(t′i−t′i+1)(1+δ)

(4B̃ + 1)Pr{m1 ≥ k}dk

≤ s1(t
′
i − t′i+1)(1 + δ) + (4B̃ + 1)

∫ ∞

s1(t′i−t′i+1)(1+δ)

e
−s1(t′i−t′i+1)(

k
s1(t′

i
−t′

i+1
)
−1)2/4

dk

≤ s1(t
′
i − t′i+1)(1 + δ) + (4B̃ + 1)s1(t

′
i − t′i+1)

∫ ∞

δ

e−s1(t′i−t′i+1)x
2/4dx

≤ s1(t
′
i − t′i+1)(1 + δ) + 2(4B̃ + 1)

√
πs1(t′i − t′i+1)

∫ ∞√
s1(t′

i
−t′

i+1
)δ

√
2

1√
2π

e−x2/2dx

≤ s1(t
′
i − t′i+1)(1 + δ) + 2(4B̃ + 1)

√
πs1(t′i − t′i+1)√
s1(t′i−t′i+1)δ√

2

√
2π

e
−(

√
s1(t′

i
−t′

i+1
)δ

√
2

)2/2

= s1(t
′
i − t′i+1)(1 + δ) +

2(4B̃ + 1)

δ
e−

s1(t′i−t′i+1)δ2

4 .

33

Since t′i − t′i+1 ≥ L/(2B̃s1),

E[MAXi] ≤ s1(t
′
i − t′i+1)(1 + δ) +

2(4B̃ + 1)

δ
e−

Lδ2

8B̃ .

Under the assumption that L ≥ 8B̃
δ2 ln 2(4B̃+1)

δ2 (L = Ω(1
ε2 ln 1

ε
) · B̃), 2(4B̃+1)

δ
e−

Lδ2

8B̃ ≤ δ.

Let δ = ε/2, and then

E[MAXi] ≤ s1(t
′
i − t′i+1)(1 + ε/2) + ε/2 ≤ s1(t

′
i − t′i+1)(1 + ε).

So in the interval [T, T ′], the expected number of routed packets of source A is no

more than 1 + ε times that of arrival packets from source 1, which is s1(T
′−T). The

best throughput for source A, whose desired rate is greater than s1, is no more than

1 + ε times that of the Poisson strategy with rate s1. 2

Hence, it is to the advantage of a source to sending packets at ”max-min-fairness”

rate. While all the sources, except one source A, are sending packets obeying Poisson

process with their ”max-min-fairness” rates, the best strategy for source A is to be

Poisson process with his ”max-min-fairness” rate.

4.3 Performance of TCP: property B4

We give here a brief overview of TCP from the perspective of the theory community.

TCP is a transmission protocol whose main idea is additive increase and multiplicative

decrease in rate in response to absence or presence of congestion. TCP maintains a

rotating window of a fixed size, say N , at the sender side. The rotating window is

basically a set of N buffers named in a circular manner. When a packet arrives (from

some source) at a sender, the packet is parked into one of the available buffers and

also sent over the network. If no buffer is available then the packet generation rate

is higher than the serving rate. In this case the rate is halved. The parked packets

are removed once the acknowledgement of their successful receipt is received. If all

the buffers are emptied then the packet generation rate is smaller than the serving

34

rate. In this case the rate is increased by a constant, say 1. If the generation rate

is exactly the same as the serving rate then the buffer will reach the empty state or

full state occasionally. Since in our protocol the ideal serving rate, which is given by

”max-min-fairness” threshold α∗, is not precisely known, we assume that generation

rate is not equal to the serving rate. (Also, equality is actually a favorable case; we

write the following theorem from the worst case point of view.) Let T I
TCP be the time

to increase the generation rate from 0 to α∗, or from α∗ to 2α∗, if all the packets are

getting through; let TD
TCP be the time to decrease the generation rate to 0, starting

from rate at most 2α∗ at the moment that all packets begin to be dropped; and let

TW
TCP be the waiting time until the generation rate starts increasing, once the router

begins allowing packets through. These parameters are illustrated in Figure 4.1.

Theorem 7 If TD
TCP , TW

TCP , T1F ∈ O(T I
TCP), then the throughput of an adaptive flow

using a TCP-like adjustment method of increase-by-one and decrease-by-half in our

system is at least optimal/D for some constant D.

Proof: We’ll suppose in order to simplify details that TD
TCP , TW

TCP , T1F ≤ T I
TCP .

Examine the router starting at a moment at which the TCP generation rate is

smaller than the serving rate, which is the “max-min-fairness” threshold α∗. So at

this time, the rate is increased by 1. When the number of packets from the flow

becomes maximal among all flows (at which time the rate is between α∗ and 2α∗,

since T1F ≤ T I
TCP), the arriving packets will start to be dropped. Then within time

TD
TCP , the sender will have reduced its transmission rate. After an additional time at

most T1F , the queue will have cleared, its statistics will reflect the low transmission

rate and the router will stop dropping packets from this source. Finally after an

additional time at most TW
TCP , the generation rate will again begin increasing. The

worst-case throughput for the flow is given by a history as in Figure 4.1, in which the

curve is the generation rate as a function of time and the area in shadow illustrates

the throughput of the flow (We have pessimistically supposed even that TCP backs

off all the way to rate 0). Given the simplified timing assumptions, the worst-case

throughput achieves D ≤ 8. 2

35

......

α

2α

Time

R
at

e

T
1

T
2

T
3

T
1
 = T

TCP
I , T

3
 = T

TCP
D , T

4
 = T

TCP
W , T

2
,T

5
≤ T

1
F

T
4

T
5

DROP SEND

Figure 4.1: The generation rate and throughput of the adaptive flow using a TCP-
like adjustment method of increase-by-one and decrease-by-half, as a function of time.

36

As a final remark of this section, the use of a TCP-like adaptive mechanism is well

motivated in our protocol. The protocol punishes a violating flow heavily, so it is a

priority for such a flow to come as quickly as possible to below the “max-min-fairness”

rate α∗. Multiplicative decrease is a good way to do so. Once the rate is below α∗, the

next priority is to optimize the flow by gradually increasing it, without overshooting.

37

Chapter 5

Protocol I satisfies the network
equilibrium property (B5)

There are generally many routers in a network. We wish to understand what the

Nash equilibria are in the case of a general network, with several flows traveling

across specified routes, and with protocol I implemented at each of the routers of the

network.

We will show that — at least under stable traffic conditions and given accurate

estimation of source rates (just as for property B1) — the favorable properties of

protocol I extend to this general network case. Jaffe has shown [20] that there for any

set of routes in a capacity-limited network there is a unique “max-min-fairness” flow,

which shares network capacity as evenly as possible among the flows. We will show

that when the routers use protocol I, the sources have a unique Nash equilibrium,

which is none other than the “max-min-fairness” flow.

We begin by pointing out that in any equilibrium, it is to the advantage of every

source to be transmitting at no more than its throughput. The principal reason is that

if packets are being dropped, the message must be encoded to be reconstructible from

the random set of packets which get through, and that the message rate must therefore

be somewhat lower than the throughput rate. Therefore by reducing transmission rate

until no packets are being dropped, a source can still get just as many packets through,

and increase its message rate. (This argument doesn’t apply to low-volume sources

whose throughputs are not limited by the network; but even for such sources, there

38

are small additional costs, e.g., in CPU time, associated with generating extraneous

packets.)

The final throughput of each flow, in a network, is decided by the router on which

it has the lowest throughput. We can find the “max-min-fairness” rate of each flow

in the network by the following steps:

1. Look on each router in the network as disconnected. On each router, there is

a unique Nash equilibrium, i.e., a unique “max-min-fairness” rate for each flow

on the router.

2. Repeat the following steps until there is no flow left:

(a) Compute the “max-min-fairness” rate for each flow on every router.

(b) Among all the rates we get, pick a lowest one, which belongs to a flow i,

and set it to be the “max-min-fairness” rate, Si, of flow i.

(c) Delete the flow i and decrease the capacity of those routers, which flow i

goes through, by Si.

Finally, we will get a “max-min-fairness” rate for each flow. Since every time we

choose the lowest one (if there are several, choose one of them), which is the best

throughput the flow may get, it is to the advantage of the flow to send packets at

that rate as it is the most efficient way and the lost is the smallest.

This reduces our task to showing:

Lemma 8 If each flow is sending at its throughput, then there is a unique Nash

equilibrium, the “max-min-fairness” allocation.

Proof: It is well known that the “max-min-fairness” allocation is unique, so we have

only to show that any Nash equilibrium is max-min-fair.

For each router, the summation of the “max-min-fairness” rates for all flows going

through the router is at most its capacity. Assume −→x is a Nash equilibrium and −→y
is any other allocation. If there exists an A ∈ {1, . . . ,N}(where N is the number

of the flows) such that yA > xA, then xA < rA (where rA is the desired rate of flow

39

A). Hence, there exists a router A carrying flow A and such that the bandwidth

of any other flow on A is at most xA. (Otherwise, for any router, xA is not the

highest rate it carries, so xA can be increased and −→x is not a Nash equilibrium.) So

there exists a t ∈ {1, . . . ,N}, t 6= A, such that yt < xt ≤ xA. Therefore, −→x is the

“max-min-fairness” allocation. 2

Let us formalize the preceding discussion by saying that the utility function of each

transmitter is its throughput, less some small (even infinitesimal) multiplier times the

number of its packets that are dropped1. Under this assumption we have:

Theorem 9 For any collection of network flows there is a unique Nash equilibrium,

equal to the “max-min-fairness” allocation; in this equilibrium there are no packet

drops.

1If a sender is sending at rate s and its “max-min-fairness” rate is r, since the “max-min-fairness”
rate of a flow is the best throughput it may get, the best gain of the sender is r−ε(s−r) = (1+ε)r−εs.
In order to gain as much as possible, the best bet for the sender is to send packets at its “max-min-
fairness” rate. It is reasonable to assume that there is a cost per packet loss, because sending at a
higher rate means more loss of packets and then the sender needs to use an error-correcting code
and take more processing time to send packets. Therefore, the competing senders will choose the
Nash equilibrium which is the “max-min-fairness” allocation.

40

Chapter 6

Protocol FBA satisfies properties
(C)

In this section, we still use C to represent router capacity and S to be the maximal

possible arrival rate of the router. Moreover, for each flow i, let its arrival rate be

si
1. Assume the “max-min-fairness” threshold to be α∗. Because of the properties of

router and network, α∗ always has a lower bound2; here, we assume that α∗ ≥ 1.

We will first prove the satisfaction of property C1 in section 6.1. Then we show

the bounded queue length property C2 of the protocol in section 6.2. Together with

property C1, this shows the fairness of the protocol. Finally, we will analyze protocol

FBA for its efficiency and stability (property C3) properties.

6.1 Fairness in idealized situation: property C1

As indicated in section 1.5.3, an idealized situation is where the router knows the

source rates {si} and the queue buffer is unbounded. Moreover, the source rates are

fixed. In this section, we will assume that our game is under an idealized situation.

First, we rewrite the update formula of α as follows:

1We are using the exact value here. But in the actual algorithm, we don’t know the exact arrival
rate and we use an estimate mi/(tcurr − ti) instead.

2For performance of the network, the delay over the router should not be too big; the time that
a packet stays in the queue of router has an upper bound. If we have a record for the flow, it has at
least 1 packet in the queue. Thus, the flow’s arrival rate is lower bounded.

41

1. If qk > E and q′k > 0, then

αk+1 =
C

C + q′k
αk;

else if qk < E and q′k < 0, then

αk+1 = 2αk.

2. If αk+1 > C, then αk+1 = C.

3. qk+1 = qk + q′k ·∆t.

The fluctuation of the value of q comes from two reasons: packets arrive at the

tail of the queue, marked SEND, and packets are sent out at the head of the queue.

At each time, approximately C packets3 are sent out at the head of the queue, so

q′k ≈
∑

i:si≤αk

si − C.

It’s clear that

−C ≤ q′k ≤ S. (6.1)

Lemma 10 In an idealized situation, for any value αk of the estimated threshold,

the αk+1 we get from the adaptive approach will never be less than α∗, the “max-min-

fairness” threshold.

Proof: Since when q ≤ E we won’t decrease αk, we only need to consider the case

when q > E.

Suppose the arrival rates of flows are s1, s2, · · · , sn, and s1 ≤ s2 ≤ · · · ≤ sn. Since

3Since there are some packets dropped at the head of the queue, the actual number may be C
minus a small ε. But as the packet-send-time is much greater than the packet-drop-time (T1 À T3),
the ε is pretty small compared with C. We will omit this ε in the sequel.

42

the “max-min-fairness” threshold is α∗, we have that

n∑
i=1

min{si, α
∗} = C.

There exists a number j with the following properties:

j−1∑
i=1

si ≤ C and

j∑
i=1

si > C.

Obviously, α∗ < sj.

For any value αk of the threshold, if αk < sj, then q′k ≤ 0 and α will not be

decremented any more. If αk ≥ sj, then q′k > 0 and we need to decrement α using

the formula αk+1 = C
C+q′k

· αk. Let l be the biggest number with sl ≤ αk. So

q′k ≈
(∑

i:si≤αk

si

)
− C =

(
l∑

i=1

si

)
− C,

and l ≥ j. Introduce a new variable α̃ with
l∑

i=1

min{si, α̃} = C, so α̃ ≥ α∗ and

q′k ≈
l∑

i=1

(si −min{si, α̃}).

Hence,

q′k
C
≈

l∑
i=1

(si −min{si, α̃})
l∑

i=1

min{si, α̃}
≤ sl − α̃

α̃
≤ αk − α∗

α∗
,

and then

αk+1

αk

=
C

C + q′k
=

1

1 +
q′k
C

≥ 1

1 + αk−α∗
α∗

=
α∗

αk

⇒ αk+1 ≥ α∗

43

2

As a corollary, we have the following theorem:

Theorem 11 If the source rates {si} are unchanging and known to the router, and

the queue buffer is unbounded, we will never drop any packet from a flow whose arrival

rate is at most the “max-min-fairness” threshold α∗.

6.2 Queue length properties: property C2

We will give upper and lower bounds on q in this section. Here, we still assume that

the source rates {si} are unchanging and known to the router.

Lemma 12 Under the situation that the source rates {si} are unchanging and known

to the router, q is at most E + log C · (S + C) ·∆t, and if F ≥ (E + log C · (S + C) ·
∆t) · (2S − C)/C, there will be no buffer overflow.

Proof: Let’s first count the maximal number qmax of packets that could have SEND

marking in the queue, which is achieved when q stops increasing (q > E), i.e., when

q′ ≤ 0. When q > E but q′ > 0,

αk+1 =
C

C + q′k
αk ⇒ αk+1

αk

=
C

C + q′k
(αk+1 < αk).

So

log
αk+1

αk

= log
C

C + q′k
⇒ log αk+1 − log αk = log(1− q′k

C + q′k
)

⇒ log αk+1 − log αk ≤ − q′k
C + q′k

⇒ log αk − log αk+1 ≥ q′k
C + q′k

(a)⇒ log αk − log αk+1 ≥ q′k
S + C

⇒ (log αk − log αk+1) · (S + C) ≥ q′k

⇒ (log αk − log αk+1) · (S + C) ·∆t ≥ q′k ·∆t,

44

where (a) follows from inequality (6.1).

The increment of q while the threshold is increasing from αk to αk+1 is q′k∆t. Let

α0 be the threshold value when q first becomes greater than E and αl+1 be the first

α with q′ ≤ 0. So qmax is

qmax = E +
l∑

k=0

q′k ·∆t ≤ E +
l∑

k=0

(log αk − log αk+1) · (S + C) ·∆t

= E + (log α0 − log αl+1) · (S + C) ·∆t
(a)

≤ E + (log C − log α∗) · (S + C) ·∆t
(b)

≤ E + log C · (S + C) ·∆t,

where

(a) follows from the algorithm (α0 ≤ C) and Lemma 10 (αl+1 ≥ α∗).

(b) follows from the assumption α∗ ≥ 1.

Let the number of packets in the queue be Q. When q reaches qmax, the number of

packets in the queue, Q0, satisfies the inequality qmax

C
≥ Q0

S
. Q will stop increasing

before or when these qmax packets marked SEND have been sent. For every C packets

sent out, Q will increase by at most S − C, so

Qmax −Q0

S − C
≤ qmax

C
.

Thus,

Qmax ≤ qmax

C
(2S − C).

Therefore, if

F ≥ (E + log C · (S + C) ·∆t) · (2S − C)/C,

there will be no buffer overflow. 2

Lemma 13 Assuming that source rates {si} are unchanging and known to the router,

under steady-state congested conditions, after the first time q exceeds E, q is at least

E − 2 log 2C · C ·∆t.

45

Proof: We will use a method similar to that used in Lemma 12. When q becomes

less than E, q will keep decreasing until q′ ≥ 0. When q < E but q′ < 0,

αk+1 = 2αk ⇒ αk+1

αk

= 2 (αk+1 > αk).

So

αk+1

αk

= 2
(a)

≥ 2C

2C + q′k

⇒ log
αk+1

αk

≥ log
2C

2C + q′k
= log

1

1 +
q′k
2C

= − log(1 +
q′k
2C

) ≥ − q′k
2C

⇒ (log αk+1 − log αk) · 2C ·∆t ≥ −q′k ·∆t.

where (a) follows from inequality (6.1).

The decrement of q between consecutive updates of α (from αk to αk+1) is −q′k∆t.

Let α0 be the threshold value when q becomes less than E and αl+1 be the first α

with q′ ≥ 0. So the total decrement of q is

l∑
i=0

−q′k ·∆t ≤
l∑

i=0

(log αk+1 − log αk) · 2C ·∆t = (log αl+1 − log α0) · 2C ·∆t

(a)

≤ (log 2C − log α∗) · 2C ·∆t
(b)

≤ 2 log 2C · C ·∆t,

where

(a) follows from Lemma 10(α0 ≥ α∗) ; αl+1 ≤ 2C because αl ≤ C.

(b) follows from the assumption α∗ ≥ 1.

So under steady-state congested conditions, after the first time q exceed E, q is

at least E − 2 log 2C · C · ∆t. Therefore, if E ≥ 2 log 2C · C · ∆t, there are packets

marked SEND in the queue at all time in case of congestion. 2

Combining Lemma 12 and Lemma 13, we have the following theorem:

Theorem 14 If the source rates {si} are unchanging and known to the router, E ≥
2 log 2C · C · ∆t, and F ≥ (E + log C · (S + C) · ∆t) · (2S − C)/C, there will be no

46

buffer overflow and no buffer empty in case of congestion.

From Lemma 10, we know that protocol FBA will never get an α less than

the “max-min-fairness” threshold α∗ under idealized situation. Together with Theo-

rem 14, we have the following theorem for the fairness of protocol FBA:

Theorem 15 If the source rates {si} are unchanging and known to the router, E ≥
2 log 2C ·C ·∆t, and F ≥ (E+log C ·(S+C)·∆t)·(2S−C)/C, protocol FBA will never

drop any packet from a flow whose arrival rate is less than the “max-min-fairness”

threshold α∗.

6.3 Efficiency

Besides fairness, we also need that the router will always send packets near its capacity

C. Efficiency can be achieved as long as the following three requirements are satisfied:

1. There are packets marked SEND in the queue.

2. The packet-drop-time is short compared with the packet-send-time.

3. The per-packet time complexity of implementing the router congestion control

is constant.

From Lemma 13, with E ≥ 2 log 2C · C ·∆t, there are packets marked SEND in the

queue at all time in case of congestion. So requirement 1 is satisfied.

In our queue, the packet-send-time T1 is much greater than the packet-drop-time

T3: T1 À T3. So requirement 2 is also satisfied.

In section 3, we have discussed the per-packet time complexity for implementing

the router congestion control. In order to get constant-time complexity per packet,

we suggest that instead of updating mi and ti with every packet, we perform these

updates only every (log F)’th packet. By doing this, our average per-packet operating

time is constant. The favorable properties of the protocol will hold with a slight loss

in quality due to the slightly less accurate estimation of flow rates, and the slightly

slower reactions to changes in flow rates. More details are given in section 3.

47

Therefore, with our approach, the router will always send packets near its capacity

C.

6.4 Stability: property C3

The stability concept in our approach has a slightly different meaning from the general

“stability” concept in control theory. In our approach, we don’t require the system to

stabilize at an equilibrium point or in a small area around the equilibrium point. Our

stability means that the estimated value of α is always not less than the “max-min-

fairness” threshold; there is no buffer overflow; and as long as the router is congested,

the queue will not become empty. If all those requirements are satisfied, the system

is in the good region. By Theorem 14 and Theorem 15, our algorithm is shown to

be “stable” when the arrival rates of flows are fixed and known to the router.

Strictly, when the arrival rates of flows are fixed and known to the router, the

ideal value of our estimate α is greater than the “max-min-fairness” threshold in case

of congestion. The estimate α fluctuates about its ideal value, and will never below

the “max-min-fairness” threshold α∗. Suppose there are n flows, and the arrival rates

of flows are s1, s2, · · · , sn, with s1 ≤ s2 ≤ · · · ≤ sn,
∑

i si > C. We have that

n∑
i=1

min{si, α
∗} = C.

Also, there exists a number j with the following properties:

j−1∑
i=1

si ≤ C and

j∑
i=1

si > C.

Obviously, α∗ < sj. From our update formula of α, we know that sj is the ideal value

of our estimate α. Figure 6.1 shows the relationship between the “max-min-fairness”

threshold α∗ and the ideal value sj of our estimate α.

When the arrival rates of flows change, the “max-min-fairness” threshold α∗ of

the system changes accordingly, and then the system will need some time to stabilize

48

α*

j Flow

arrival
rate

s
j

Figure 6.1: The relationship between the “max-min-fairness” threshold α∗ and the
ideal value sj of our estimate α. Each bar represents the arrival rate of a flow. The
total area in black is at most C; and if we change other bar, not in black, into black,
then the total area in black is greater than C. Our estimate α will fluctuate about
sj, that is greater than α∗.

49

in the new good region — we call this time the settling time. We will show that this

settling time is acceptably short. In other words, the system will stabilize quickly.

There are two cases here:

1. If the current estimated value of α is greater than or equal to the new “max-

min-fairness” threshold α∗new, then the system is still in the good region. Thus,

the settling time is 0.

2. If the current estimated value of α is less than the new “max-min-fairness”

threshold α∗new, (obviously, α∗new is greater than the original one α∗old,) there are

two subcases: (when α∗ is changed)

(a) If there is no flow whose arrival rate is greater than α but at most α∗new,

then there is no flow punished wrongly, and the system is still in the good

region.

(b) If there is at least one flow whose arrival rate is in (α, α∗new], the worst

case is that when α∗ is changed, q = qmax = E + log C · (S + C) ·∆t. So

the settling time includes two parts: the time for q becoming less than E,

and the time for α incrementing to be greater than α∗new.

The time for q becoming less than E is at most log C·(S+C)·∆t
α

≤ log C·(S+C)·∆t
α∗old

.

The system will start incrementing α when q becomes less than E. The

incrementing time until α is greater than α∗new is dlog2
α∗new

α0
e, which is at

most dlog2
α∗new

α∗old
e. (Let α0 be the threshold value when q becomes less than

E.)

Therefore, the total settling time is at most

log C · (S + C) ·∆t

α∗old

+ dlog2

α∗new

α∗old

e.

Therefore, we have the following theorem:

Theorem 16 When the arrival rates of flows are changed, the settling time of pro-

50

tocol FBA is at most

log C · (S + C) ·∆t

α∗old

+ dlog2

α∗new

α∗old

e.

51

Chapter 7

Simulations and relative advantage
of protocols I, II, and FBA

We evaluate the performance of our protocol by simulations under various network

configurations and parameters. Overall, protocols I , II, and FBA achieve reasonably

fair bandwidth allocations. Protocols II and FBA do particularly well at handling

several unresponsive sources (this case is not covered by studying Nash equilibria,

since each source would do better by backing off a little, but it still must be addressed

since we cannot prevent sources from not optimizing their utilities).

7.1 Testing the equilibrium property for protocols

I and II

To verify the Nash equilibrium achieved by the protocol, we consider a single r Mbps

congested link shared by 5 Poisson flows, indexed from 0 to 4. The sending rates of

flow 0, 1, 2, and 3 are fixed: r Mbps, 2r/3 Mbps, r/2 Mbps, and 2r/5 Mbps, while

flow 4 is allowed to send packet at arbitrary rates. We vary the sending rate of flow

4 to study the performance of our protocol over a 5000r sec interval.

When the buffer size is set to be infinite, H = F/6, and L is 0, the simulation

results for protocols I and II are summarized in Figure 7.1. As the sending rate of flow

4 increases, the dropping percentage goes up as well. When the sending rate reaches

the maximal value, r, a large percentage of the packets are dropped; but below

52

that rate, a large percentage of the packets go through. The greatest bandwidth,

approximately 0.3r Mbps, is obtained at a sending rate less than r Mbps.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sending rate (*r Mpbs)

T
hr

ou
gh

pu
t P

er
ce

nt
ag

e

Protocol I
Protocol II

(a)

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sending rate of (*r Mpbs)

T
hr

ou
gh

pu
t (

*r
 M

pb
s)

Protocol I
Protocol II

(b)

Figure 7.1: Simulation results for a finite buffer under protocols I and II. (a) Through-
put percentage of packets from flow 4, as a function of the sending rate. (b) Average
throughput of flow 4, as a function of the sending rate.

In the following simulations we use the NS simulator, available at [1], to test more

complicated behaviors. For TCP flows, we will use NewReno TCP protocol [10].

7.2 Testing the queue length property of protocol

FBA

Before giving the simulation result, let us first analyze this special case.

Suppose there are n flows. All flows are arriving at the same rate s. When the

total arrival traffic is less than the capacity C, there is no congestion and we don’t

need to use the threshold α controller to control the congestion.

When the total arrival traffic is greater than the capacity C, congestion happens

and since all flows are arriving at the same rate, we may write the operations of control

system as the following steps: (it starts with threshold α = C and the number of

SEND packets in the queue q = 0)

1. α remains unchanged till q = E;

53

2. Update α using formula α := C
C+q′ α till q′ ≤ 0; (In other words, updating α

using formula α := C
n·s α till α ≤ s)

3. α keeps unchanged till q = E;

4. update α using formula α := 2α till q′ ≥ 0 (or α > s);

5. goto 1.

We assume that each packet has 8000 bits. Let the router capacity C be 150

packets/sec (1.2 Mbps), the arrival rate s of each flow be 10 packets/sec (0.08 Mbps),

and the number of flows be n = 20. We update α every ∆t = 1/C sec. From the

configuration,

1. S ≥ n · s =200 packets/sec; let S = 250 packets/sec = 2 Mbps.

2. E ≥ 2 log 2C · C ·∆t = 11.4076 packets; let E = 15 packets.

3. F ≥ (E + log C · (S + C) ·∆t) · (2S − C)/C = 79.9793 packets.

Using theoretical computation, we can plot the predicted behavior of the system.

The theoretical result is shown in Figure 7.2(a) with the plots of points (α,q).

By simulation, over a 10 second interval, the set of points (α,q) is plotted in the

upper figure of Figure 7.2(b). The lower two figures of Figure 7.2(b) show the values

of α and q as a function of time. The average throughput of each flow is approximately

7.5 packets/sec1.

It turns out that when we update according to the formula α := 2α, α increases

too fast and the queue length reaches capacity frequently. The situation is improved

with slower growth rate: we include simulation results using parameters 1.5 and 1.2

in Figure 7.3.

Although the results of theoretical computation and simulation are not the same,

they are close. The reason for the difference between theory and simulation is that,

in theory we are assuming that we know the exact value of each source rate, but in

simulation the value we get for a variable is just an approximation.

1The exact values of the throughputs are 7.4, 8.3, 7.6, 7.1, 7.1, 7.4, 7.7, 7.9, 7.7, 7.5, 7.7, 7.6, 7.8,
7.3, 7.4, 7.8, 6.9, 6.9, 7.4, and 7.6 packets/sec.

54

0 50 100 150
0

5

10

15

20

α (packets/sec)

q
(p

ac
ke

ts
)

6 8 10 12 14 16 18 20
13

14

15

16

17

α (packets/sec)

q
(p

ac
ke

ts
)

(a)

0 50 100 150
0

5

10

15

20

25

α (packets/sec)

q
(p

ac
ke

ts
)

0 2 4 6 8 10
0

50

100

150

Time (second)

α
(p

ac
ke

ts
/s

ec
)

0 2 4 6 8 10
0

5

10

15

20

25

Time (second)

q
(p

ac
ke

ts
)

(b)

Figure 7.2: All flows are arriving at the same rate: (a) Theoretical computation
result of points (α,q). The lower graph is the magnification of the upper graph when
6 ≤ α ≤ 21 and 13 ≤ q ≤ 17. (b) Simulation result of points (α,q) is plotted in the
upper figure; the lower two figures show the values of α and q as a function of time.

0 50 100 150
0

5

10

15

20

25

α (packets/sec)

q
(p

ac
ke

ts
)

0 2 4 6 8 10
0

50

100

150

Time (second)

α
(p

ac
ke

ts
/s

ec
)

0 2 4 6 8 10
0

5

10

15

20

25

Time (second)

q
(p

ac
ke

ts
)

(a)

0 50 100 150
0

5

10

15

20

α (packets/sec)

q
(p

ac
ke

ts
)

0 2 4 6 8 10
0

50

100

150

Time (second)

α
(p

ac
ke

ts
/s

ec
)

0 2 4 6 8 10
0

5

10

15

20

Time (second)

q
(p

ac
ke

ts
)

(b)

Figure 7.3: All flows are arriving at the same rate: (a) Simulation result when we use
α := 1.5α to increase α. (b) Simulation result when we use α := 1.2α to increase α.

55

7.3 Performance on a single congested link

7.3.1 Comparison with CHOKe

To compare the performances of our protocols and CHOKe on a single congested link,

we consider a 150 packets/sec (1.2 Mbps2) link shared by one UDP flow (indexed 1)

which is arriving at 150 packets/sec (1.2 Mbps), and 32 TCP flows (indexed from

2 to 33) whose propagation delays are 3 ms. For protocol FBA, we set E to be 15

packets and update α every ∆t = 1/C sec.

The average throughput of each flow over a 100 sec interval is given in Figure 7.4.

We notice that the ill-behaved UDP flow is penalized heavily (its throughput is much

less than its arrival rate) and most of the TCP flows get approximately their fair rates

under protocols I, II and FBA; but CHOKe doesn’t provide as much bandwidth to

each TCP source as to the UDP source.

7.3.2 Ten UDPs and ten TCPs flows on a single congested

link

To examine the impact of a set of ill-behaved UDP flows on a set of TCP flows, we

consider a 150 packets/sec (1.2 Mbps) link shared by ten UDP sources3 and ten TCP

sources whose propagation delays are set to be 3 ms. For protocol FBA, we still set

E =15 packets and update α every ∆t = 1/C second.

We compare the performances of CHOKe, protocols I, II, FBA, and FBA with

parameters 1.5 (using α := 1.5α to increase α) and 1.2 (using α := 1.2α to increase

α). The average throughput of each flow over 100 seconds is shown in Figure 7.5. And

the maximal and minimal throughputs of two kinds of flows over a 100 sec interval

is given in Table 7.14. (Simulations of traditional TCP, Reno, and Sack gave similar

2A packet has 8000 bits.
3Their arrival rates are 150, 125, 100, 87.5, 75, 62.5, 50, 37.5, 25, and 12.5 packets/sec respectively.
4We may notice that the minimal throughput of TCP flows under FBA is much less than its

maximal throughput. But for other versions of TCP, such as Reno and Sack, there is no such
big difference. For example, with TCP Sack, the minimal throughput is 2.76 packets/sec and the
maximal throughput is 6.05 packets/sec.

56

0 5 10 15 20 25 30
0

20

40

60

80

100

120

Flow

T
hr

ou
gh

pu
t (

pa
ck

et
/s

ec
)

(a) CHOKe

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

Flow
T

hr
ou

gh
pu

t (
pa

ck
et

/s
ec

)

(b) Protocol I

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

Flow

T
hr

ou
gh

pu
t (

pa
ck

et
/s

ec
)

(c) Protocol II

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Flow

T
hr

ou
gh

pu
t (

pa
ck

et
/s

ec
)

(d) Protocol FBA

Figure 7.4: Simulation result of one UDP (flow 1) and 32 TCP flows on a single
congested link. The average throughput of each flow over a 100 sec interval is plotted
under (a) CHOKe, (b) protocol I, (c) protocol II, and (d) protocol FBA. The first
bar represents the throughput of the UDP flow, the other bars represent throughputs
of TCP flows, and the dash-dot line shows their fair-share rate.

57

Protocol CHOKe I II FBA FBA(1.5) FBA(1.2)

UDP MAX (packets/sec) 34.36 31.75 21.04 13.00 15.30 16.79
UDP MIN (packets/sec) 2.3 1.39 2.63 1.78 0.17 0.12
TCP MAX (packets/sec) 0.03 0.16 0.64 6.07 6.90 8.52
TCP MIN (packets/sec) 0.01 0.08 0.08 0.41 3.10 7.07

Table 7.1: Simulation result of ten UDP and ten TCP flows on a single congested
link. The maximal and minimal throughputs of two kinds of flows over a 100 sec
interval under CHOKe, protocols I, II, FBA, and FBA with parameters 1.5 and 1.2.

results.) All of the protocols prevent the TCP sources from being entirely shut out

of the channel (as would happen without any penalties to unresponsive flows); but

CHOKe, protocols I and II don’t penalize the ill-behaved UDP flows enough as they

still get more than their fair rates, and protocol FBA stands out by providing more

bandwidth to the TCP sources than other protocols. The result under FBA is further

improved with slower growth rate (1.2).

7.3.3 Impact of four ill-behaved UDP flows on a single con-

gested link

In this section, we examine the impact of four ill-behaved UDP flows on a single TCP

flows on a 150 packets/sec (1.2 Mbps) link. Each UDP flow has an arrival rate of 100

packets/sec (1.2 Mbps). The propagation delay of TCP flow is 3 ms. For protocol

FBA, we still set E =15 packets and update α every ∆t = 1/C second.

We compare the performances of CHOKe, protocols I, II, and FBA. The average

throughput of each flow over 100 seconds is shown in Figure 7.6, which is also listed in

Table 7.2. All of the protocols prevent the TCP sources from being entirely shut out

of the channel (as would happen without any penalties to unresponsive flows); but

CHOKe and protocol I don’t penalize the ill-behaved UDP flows enough as they still

get more than their fair rates. Although under protocols II and FBA, TCP flow still

gets less than its “max-min-fairness” rate, it achieves a reasonable degree of fairness.

58

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

100

150

Flow

T
hr

ou
gh

pu
t (

pa
ck

et
/s

ec
)

(a) CHOKe

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

100

150

Flow

T
hr

ou
gh

pu
t (

pa
ck

et
/s

ec
)

(b) Protocol I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

100

150

Flow

T
hr

ou
gh

pu
t (

pa
ck

et
/s

ec
)

(c) Protocol II

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

100

150

Flow

T
hr

ou
gh

pu
t (

pa
ck

et
/s

ec
)

(d) Protocol FBA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

100

150

Flow

T
hr

ou
gh

pu
t (

pa
ck

et
/s

ec
)

(e) Protocol FBA with parameter 1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

100

150

Flow

T
hr

ou
gh

pu
t (

pa
ck

et
/s

ec
)

(f) Protocol FBA with parameter 1.2

Figure 7.5: Simulation result of ten UDP and ten TCP flows on a single congested
link. The average throughput of each flow over a 100 sec interval is plotted under (a)
CHOKe, (b) protocol I, (c) protocol II, (d) protocol FBA, (e) protocol FBA using
α := 1.5α to increase α, and (f) protocol FBA using α := 1.2α to increase α. Each
black bar represents the throughput of a flow: the first ten bars (from 1 to 10) are for
UDP flows and the other ten (from 11 to 20) are for TCP flows. The bars without
color represent the arrival rates of UDP flows. The dash-dot line shows the fair-share
rate.

59

1 2 3 4 5
0

5

10

15

20

25

30

35

40

Flow

T
hr

ou
gh

pu
t (

pa
ck

et
/s

ec
)

CHOKe
Protocol I
Protocol II
FBA

Figure 7.6: Simulation result of four UDP flows and one TCP flow on a single con-
gested link of 150 packets/sec (1.2 Mbps). The average throughput of each flow over
a 100 sec interval is plotted. Each bar represents the throughput of a flow: the first
four bars (from 1 to 4) are for UDP flows and the last one (from 11 to 20) is for
the TCP flow. (For each flow, there are four bars there. From left to right, they are
under CHOKe, protocols I, II, and FBA.)

Protocol CHOKe I II FBA

UDP0 (packets/sec) 37.91 37.01 32.22 32.01
UDP1 (packets/sec) 37.26 36.67 32.02 31.83
UDP2 (packets/sec) 37.28 38.93 33.50 33.05
UDP3 (packets/sec) 37.53 36.66 33.11 31.74
TCP4 (packets/sec) 0.03 0.650 18.38 20.56

Table 7.2: The average throughputs of four UDP flows and one TCP flow, on a 150
packets/sec (1.2 Mbps) link, over a 100 sec interval under CHOKe, protocols I, II,
and FBA.

60

7.4 Multiple Congested Links

So far we have verified the Nash equilibrium and seen the performance of flows on

a single congested link. We now analyze how the throughputs of flows are affected

when they traverse more than one congested link. A simple network configuration

with three routers is constructed as shown in Figure 7.7. Each of the congested links

has capacity 10 Mbps: the link between routers 1 and 2 (L12), and the following link

between routers 2 and 3 (L23). There are three flows in the network. In addition, for

protocol FBA, we set E =25 packets and update α every ∆t = 1/C second. Based

on the network configuration, we perform the following experiments.

Router 1 Router 2 Router 3
10 Mbps 10 Mbps

flow 1 & 2
g g

¡
¡¡

@
@@

flow 3
g

w w w

@
@@

¡
¡¡

flow 1 to 3

gSource

wSink

Figure 7.7: Topology for analyzing how the throughput of a flow is affected by more
than one congested link.

7.4.1 Three UDP flows

When three flows are all using UDP protocol and send at 10 Mbps, links L12 and

L23 will both become congested. Over a 20 sec interval, the average throughputs of

flow 1 and 2 on link L12 are listed in Table 7.3; the average throughputs of flow 1, 2,

and 3 on link L23 are listed in Table 7.4. On link L12, the “max-min-fairness” rates

of flow 1 and 2 are both 5 Mbps; since they both send at 10 Mbps, the throughputs

they get are close to 5 Mbps. On link L23, flow 3 sends at 10 Mbps, which is much

higher than the rate of other two flows, so flow 3 is penalized and gets less throughput

under protocols I and II.

61

CHOKe Protocol I Protocol II FBA

UDP 1 (Mbps) 5.089 4.799 4.819 4.938
UDP 2 (Mbps) 4.910 5.201 5.181 4.963

Table 7.3: Three UDP flows. The average throughputs of flow 1 and 2 on link L12 is
given under CHOKe, protocols I, II, and FBA.

CHOKe Protocol I Protocol II FBA

UDP 1 (Mbps) 2.262 4.701 4.721 3.394
UDP 2 (Mbps) 2.196 5.098 5.082 3.334
UDP 3 (Mbps) 5.539 0.199 0.195 3.270

Table 7.4: Three UDP flows. The average throughputs of flow 1, 2, and 3 on link L23
is given under CHOKe, protocols I, II, and FBA.

7.4.2 Three TCP flows

Next, three flows are all using TCP protocol and the propagation delays of all TCPs

are 1 ms. Over a 20 sec interval, the average throughputs of flow 1 and 2 on link L12

are listed in Table 7.5; the average throughputs of flow 1, 2, and 3 on link L23 are

listed in Table 7.6. Since TCP flows are responsive to congestion and adjust their

sending rates accordingly, it is reasonable that each TCP flow losses a quite small

number of packets and gets close to its fair rate.

CHOKe Protocol I Protocol II FBA

TCP 1 (Mbps) 2.492 3.087 3.216 2.444
TCP 2 (Mbps) 3.928 3.969 3.105 2.445

Table 7.5: Three TCP flows. The average throughputs of flow 1 and 2 on link L12 is
given under CHOKe, protocols I, II, and FBA.

CHOKe Protocol I Protocol II FBA

TCP 1 (Mbps) 2.443 2.979 3.031 2.443
TCP 2 (Mbps) 3.871 3.795 2.934 2.445
TCP 3 (Mbps) 2.824 2.366 3.180 2.446

Table 7.6: Three TCP flows. The average throughputs of flow 1, 2, and 3 on link L23
is given under CHOKe, protocols I, II, and FBA.

62

7.4.3 One UDP flow and two TCP flows

Now, flow 1 is a UDP source, which sends at 10 Mbps, and the other two are TCP

flows. The propagation delays of TCPs are 1 ms. Over a 20 sec interval, the average

throughputs of flow 1 and 2 on link L12 are listed in Table 7.7; the average throughputs

of flow 1, 2, and 3 on link L23 are listed in Table 7.8. Since there are two links, the

throughput of TCP 2 is dominated by link L23. The performance of protocol I and

protocol II are comparable and they outperform CHOKe and protocol FBA. Although

protocol FBA is not comparable to protocols I and II, it is still better than CHOKe.

CHOKe Protocol I Protocol II FBA

UDP 1 (Mbps) 9.491 7.112 7.976 8.596
TCP 2 (Mbps) 0.422 2.763 1.927 0.626

Table 7.7: One UDP flow and two TCP flows. The average throughputs of flow 1
and 2 on link L12 is given under CHOKe, protocols I, II, and FBA.

CHOKe Protocol I Protocol II FBA

UDP 1 (Mbps) 9.033 4.540 4.620 7.247
TCP 2 (Mbps) 0.406 2.685 1.856 0.625
TCP 3 (Mbps) 0.481 2.563 3.316 2.021

Table 7.8: One UDP flow and two TCP flows. The average throughputs of flow 1, 2,
and 3 on link L23 is given under CHOKe, protocols I, II, and FBA.

63

Chapter 8

Conclusions and future work

We have argued in this thesis on the importance of mechanisms in the network to

control congestion. We propose router congestion control schemes, which aim to

approximate “max-min-fairness” with low implementation overhead. Some analyt-

ical results were derived for their fairness, efficiency, and stability. Simulation re-

sults suggest that our schemes work well in protecting congestion-sensitive flows from

congestion-insensitive flows and achieve a higher degree of fairness than the previous

best protocol CHOKe.

There is more work to be done, such as studying the performance of the algorithm

under a wider range of network topologies and real traffic traces, evolving the details

of the design, and considering hardware implementation issues. Another matter which

has not been dealt with in our (or any other) work is the possibility of collusion among

sources.

However, the main point of our thesis is the overall idea of using game theory and

auction theory in router congestion control. The detailed algorithm proposed here

represents only initial prototypes. We expect that the thesis will provide an incentive

for future work on this problem. It’s a long way to go.

64

Bibliography

[1] Ns (network simulator), 1995. URL: http://www.isi.edu/nsnam/ns/.

[2] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan. Priority encoded

transmission. IEEE Trans. Information Theory, 42(6):1737–1744, 1996.

[3] J.C.R. Bennett and H. Zhang. WF2Q: Worst-case fair weighted fair queueing.

In Proc. IEEE INFOCOM, pages 120–128, 1996.

[4] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, 1992.

[5] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd,

V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan,

S. Shenker, J. Wroclawski, and L. Zhang. Recommendations on queue man-

agement and congestion avoidance in the internet. IETF RFC (Informational)

2309, April 1998.

[6] B. Braden and Ed. Requirements for internet hosts – communication layers.

STD 3, RFC 1122, October 1989.

[7] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing

algorithm. Journal of Internetworking Research and Experience, pages 3–26,

October 1990. Also in Proceedings of ACM SIGCOMM’89, pp 3-12.

[8] S. Floyd and K. Fall. Router mechanisms to support end-to-end congestion

control. LBL Technical Report, February 1997.

[9] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the

internet. IEEE/ACM Trans. on Networking, 7(4), 1999.

65

[10] S. Floyd, T. Henderson, and A. Gurtov. The newreno modification to tcp’s fast

recovery algorithm. RFC 3782, April 2004.

[11] S. Floyd and V. Jacobson. Random early detection gateways for congestion

avoidance. IEEE/ACM Trans. on Networking, 1(4):397–413, Aug. 1993.

[12] S. Floyd, V. Jacobson, S. McCanne, C. Liu, and L. Zhang. A reliable multicast

framework for light-weight sessions and application level framing. In Proc. ACM

SIGCOMM, pages 342–355, 1996.

[13] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1)

worst case access time. J. Assoc. Comput. Mach., 31(3):538–544, 1984.

[14] X. Gao, K. Jain, and L. J. Schulman. Fair and efficient router congestion control.

In 15’th Ann. ACM-SIAM Symposium on Discrete Algorithms (SODA), 2004.

[15] S. Golestani. A self-clocked fair queueing scheme for broadband applications. In

Proc. IEEE INFOCOM, pages 636–646, 1994.

[16] E. L. Hahne. Round-robin scheduling for max-min fairness in data networks.

IEEE Journal of Selected Areas in Communications, 9(7):1024–1039, 1991.

[17] E. L. Hahne and R. Gallager. Round-robin scheduling for fair flow control in

data communication networks. Report LIDS-P-1537.

[18] E. Hashem. Analysis of random drop for gateway congestion control. MIT LCS

Technical Report 465, 1989.

[19] V. Jacobson. Congestion avoidance and control. In SIGCOMM ’88 Symposium

on Communications Architectures and Protocols, August 1988. In Computer

Communication Review, vol. 18 no. 4, 314-329, August 1988.

[20] J. M. Jaffe. Bottleneck flow control. IEEE Trans. on Comm., COM-29(7):954–

962.

66

[21] R. M. Karp, C. H. Papadimitriou, and S. Shenker. A simple algorithm for finding

frequent elements in streams and bags. Manuscript.

[22] S. Keshav. A control-theoretic approach to flow control. In Proc. ACM SIG-

COMM, pages 3–15, September 1991.

[23] D. Lin and R. Morris. Dynamics of random early detection. In Proc. ACM

SIGCOMM, pages 127–137, september 1997.

[24] R. Mahajan, S. Floyd, and D. Wetherall. Controlling high-bandwidth flows at the

congested router. In 9th International Conference on Network Protocols (ICNP),

November 2001.

[25] A. Manin and K. Ramakrishnan. Gateway congestion control survey. IETF RFC

(Informational) 1254, August 1991.

[26] P. McKenny. Stochastic fairness queueing. In Proc. IEEE INFOCOM, pages

733–740, 1990.

[27] J. Nagle. On packet switches with infinite storage. IEEE Trans. on Comm.,

35(4), Apr 1987.

[28] T. Ott, T. Lakshman, and L. Wong. SRED: Stabilized RED. In Proc. INFOCOM,

pages 1346–1355, 1999.

[29] R. Pan, B. Prabhakar, and K. Psounis. CHOKe: a stateless active queue man-

agement scheme for approximating fair bandwidth allocation. In Proc. IEEE

INFOCOM, 2000.

[30] A. Parekh and R. Gallager. A generalized processor sharing approach to flow

control in integrated services networks: the single-node case. IEEE/ACM Trans.

Netw., 1(3):344–357, 1993.

[31] B. Radunovic and J. Le Boudec. A unified framework for max-min and min-max

fairness with applications, 2002.

67

[32] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit round robin.

In Proc. ACM SIGCOMM, pages 231–242, 1995.

[33] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: achieving

approximately fair bandwidth allocations in high speed networks. In Proc. ACM

SIGCOMM, pages 118–130, 1998.

[34] A. Tang, J. Wang, and S. H. Low. Understanding CHOKe. In Proc. IEEE

INFOCOM, 2003.

[35] J. Wang, A. Tang, and S. H. Low. Maximum and asymptotic udp throughput

under CHOKe. In Proc. ACM Sigmetrics, 2003.

[36] L. Zhang. Virtual clock: a new traffic control algorithm for packet switching net-

works. In Proceedings of the ACM symposium on Communications architectures

& protocols, pages 19–29. ACM Press, 1990.

