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I. ABSTRACT

The one-dimensional propagation of shock waves in a perfect
gas in which the pressure and the density are not necessarily
uniform is investigated by seeking similarity solutions of the
equations describing the non-isentropic motion of the gas. It is
‘shown that such solutions can be found and that they can be related
to specific types of compressive piston motion. 1In particular,_
the propagation of the shock resulting from the uniform compressive
motion of a piston in a non-uniform gas is studied. For this case
a first order, ordinary, non-linear differential equation which
determines thé shock strength as a function of distance is derived.
An analytic solution of this equation is obtained for a gas in
which the pressure is constant but the density varies, and for
which the ratio of the specific heats, ¥ , is 3/2. There is no
restriction placed upon the permissible density variations. In
situations in which the pressure and the density distributions
are variable, and in which general values of ¥ arelallowed,
numerical results are presented. It is not possible in such cases
to derive analytic solutions of the equation, The discussion of
the shock propagated by the non-uniform motion of a piséon is
more difficult, However, some details are given in the case of

strong and weak shocks resulting from a decelerative piston motion.



II. ABSTRACT

The stability of the spherical shape of a gas bubble
in a liquid is investigated for the case in which the difference
between the pressure in the bubble, Pi? and the pressure in the
liquid, Po’ is constant. These conditions apply approximately
"to a vapor bubble growing,(Pi > Po)' or collapsing, (Pi‘< Po),
in a liquid at constant external pressure. The general solution
for the behavior of a small deformation in the spherical shape
of the cavity is readily determined when surface tension is
neglected., For a growing bubble the deformation increases slowly
and monotonically; for a collapsing bubble the deformation
oscillates with small amplitude until the mean radius of the bubble
approaches zero, when the magnitude of the deformation increases
rapidly. The consistency and applicability of the small amplitude
theory is thus demonstrated. A solution is also obtained which
includes the effect of surface tension. In this case the distortion
amplitude decreases with increasing radius for the éxpanding bubble
and the singularity in the distortion amplitude for the collapsing

bubble at zero radius persists.
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PART ONE

THE PROPAGATION OF SHOCK WAVES IN NON-UNIFORM GASES.
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I. INTRODUCTION

The classical theory of one-dimensional gas dynamics
concerns itself almost exclusively with gas flows which take
place under isentropic conditions. Although the types of flow
_which can be discussed within the confines of this theory include
- many interesting cases, the restriction to isentropic flows is
fundamentally one of mathematical expediency. If onelconsiders
the basic equations for the motion of a perfect gas one readily
understands the simplification introduced by the isentropic
quality of the motion. These equations are hyperbolic, partial,
differential equations and, by using the theory of characteristics,
Riemann and others succeeded in developing a complete mathematical
method to determine their solutions. It may be remarked that the
Riemann method is readily applicable only to one-dimensional flows
and cannot be easily applied to two=- or three-dimensionél
configurations, If the condition of isentropy is removed the
number of characteristics increases by one, to three, and the
problem of solving the equations becomes vastly more difficult,
In fact, the use of the eqﬁations of non-isentropic motion
introduces mathematical complications which apparently make it
impossible to develop an explicit theory corresponding to the
classical one,

A fundamental problem of gas dynamics is the analysis
of the méde of propagation of shock waves in gases., In order to
discuss this question by the classical methods the assumption

that the motion is isentropic must be made., This means that
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the analysis is restricted to situations in which the gas on both
sides of the shock is in a constant state. Accordingly, only the
propagation of constant strength, constant velocity shock waves is
included and many problems of interest concerning the motion of
non-uniform shocks are automatically excluded. A uniform, as
distinct from a non-uniform, shock is of constant strength and
possesses a straight line path in the coordinate»time‘plané. For
situations in which a shock is traveling through a gas of variéble
pressure and density the path in this plane is curwed and the
shock strength is generally not coanstant., Such shock waves are
designated "non-uniform'",., Due to the nature of the sitﬁation the
condition of isentropy must be relaxed and the equations of non-
isentropic motion used to analyze the propagation of non-uniform
shocks.,

The interest in this problem, aside from its basic
mathematical value, has increased in recent years fo: several
reasons., Firstly, there exists the obvious need to be able to
predict the method of propagation of shock waves in non-uniform
gases, €.E.4 in the earth's atmosphere. Here; due to the presence
of pressure and density gradients, the non-uniform conditions
referred to previously, exist and the exact discussion demands the
use of the concept of anisentropy. Secondly, the recent develop-
ments in shock tube research stress the value of the theoretical
study of this problem, Finally, the realization that certain
aspects of problems of astrophysical interest might be elucidated
by a study of shock wave phenomena led to many attempts to solve

the pertinent equations.,



-3 =

The majority of the methods of solution adopted are of
an ad hoc nature and hence present a peculiar problem of precis
to one who attempts to survey the published work. It is helpful,
however, in presenting a brief survey of the literature to‘consider
the published discussionsunder the headings general, astrophysical,
‘and pure mathematical., It should be added that all the analyses
are restricted to the one-dimensional case.

Chandrasekhar, [1], in the first attempt to analyze the
propagation of non-uniform shocks assumed that the shock is of
"moderate" strength and that the entropy and the appropriate
Riemann invariant are constant through the shock. This approximate
method is useful and has been generalized by Friedrichs [2]. It
is especially practical if the gas ahead of the shock is at rest.
Of general interest also are the discussions presented by Jones,
[3,4], who used the method of similarity solutions to determine
the laws of propagation of shock waves in regions of constant
pressure but variable density. The investigation of Reference 3
is concerned primarily with constant strength shocks while that
of Reference 4 attempts to extend the analysis to include variable
shock strengths as well as the constant energy shock. Much of
Jones's work appears to be unduly complicated relative to the
results which he obtained. A further reference to his work on this
point is made later., An investigation by an entirely different
means has been made by Chisnell [5]; his method is approximate
as it assumes that the gas through which the shock is traveling is

composed of a sequence of layers of slightly different densities
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but uniform pressures which are separated by contact discontinu-
ities. It is further assumed that second order changes in the
shock strength and the density are negligible. This method is
valuable as it enables one to give an approximate discussion of
the effects of reflected waves.

The first application of shock wave theory to astro-
physical problems was made by Burgers, [6], using a method which
wés later elaborated upon by Robbertse and Burgers, [7], and by
Burgers [8]. The aim was to discuss the motion of é gas cloud
in interstellar space. Analytic results were obtained in the case
of the motion of very strong shocks through a gas in‘which the
pressure is constant and the density decreases inversely as the
-% th power of the distance., To derive results for other, and
perhaps more realistic, density variations would demand a separate
analysis in each case if Burgers' method were to be used. The
method has the further drawback that it is only after the analysis
has been completed that one can know the density distribution for
which it is valid. Another application of an astrqphysical nature
has been carried out by Carrus et al., [9,10], in an attempt to
discuss shock wave propagation in a generalized Roche médel.* In
this case the very questionable assumption of constant shock strength

is made. The solutions are obtained by numerical methods and the

reader is referred to the original papers for details. The

*
A classical generalized Roche model consists of "a massive core

of finite dimensions but arbitrary structure surrounded by an
envelope of infinitesimal weight in which the density falls off
as the inverse square of the distance from the center" [9].
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restriction to constant shock strengths was relaxed by Whithanm,
(111, in his analysis of shock wave propagation in stars. Whitham's
method is entirely analytic and is based upon a method of correcting
solutions of the linearized equations to give an adequate description
of the flow due to the non-linear propagation of shock waves. This
approximate ﬁethod is powerful but is restricted in its applica~
bility to certain pressure and density configurations., It is
restricted further to the analysis of weak shocks only. It did
exhibit, however, the possibility that as the shock propagated,
its strength might increase. This possibility also arises in the
analysis to be presented later, Finally, one may meﬁtibn in this
category the discussion of the motion of non-uniform shocks in
regions of constant density and variable pressure which was given
by Hain and v. Hoerner [12]. Their method of solution was based
upon the use of characteristics in conjunction with an elaborate
numerical analysis.

Simultaneously with the work mentioned, attempts have
been made to derive uniqueness and existence theorems for the
solutions of the equations of non-isentropic motioﬁ of a perfect
gas. These have been reported in a series of papers, written from
a purely mathematical viewpoint, by Ludford and Martin, [13], and
by Martin [14,15].

A disadvantage of many of the analyses referred to is
that the pressure and density of the non-uniform gas may not be
arbitrarily prescribed. Further, in many cases the analyses are

concerned with the propagation of a rather indefinite shock wave;
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¢e8ey no reference is made to the method of generation of the
shock or to the energy input behind it. Clearly, if the shock
motion were related to a definite rate of energy input the result-
ing_discussion would be of a more practical value, It is one of
the advantages of the method of analysis to be presented here that
“the shock wa#e under consideration is always well defined.

The present analysis consists of finding solutions of the
Lagrangian form of the equations of non-isentropic motion by the
method of separation of the variables. In this way a first order,
ordinary, differential equation, which determines the shock
strength as a function of distance, is derived., It is shown that
the flows to be considered can be related to the compressive motion
of a piston and hence, that the shocks can be made definite in the
sense mentioned above., A further advantage of this method is that
there are no restrictions on the permissible forms of pressure and
density distributions. The method, however, is applicable only to
certain types of piston motion and cannot he applied in general.

The problem to be discussed is formulated exactly as
follows: A semi-infinite tube of ideal gas extendé along the
a-axis and is closed at the end a = a, by a piston. The gas is
assumed to be non-uniform, i.,e., its pressure and density are
considered to be functions of a. At the instgnt t = to the
piston is moved into the gas with a velocity which is a given
function of time. A shock wave is generated by the sudden motion
of the piston. It is required to determine the depeﬁdence of the

strength of this shock on the distance traveled.



-7 -

Two types of piston motion will be treated. Firstly,
a uniform, and secondly, a decelerative, motion. In order to
make the problem more amenable to mathematical analysis, the following,
stapdard approximations are made.

a) The effect of reflected waves, as well as of possible
‘expansion waﬁes due to the retardation of the piston, will be
neglected, It is understcod that a full discussion of the flow
would necessitate an analysis of the interaction of such waves
with the shock. This analysis is not attempted here,

b) The gas flow is assumed to be adiabatic., EKach volume
element of the gas is considered to change its state without heat
loss through conduction or radiation. The effect of viscosity is
neglected., It is accordingly assumed that each gas particle
receives an increase in its entropy when the shock wave passes
through it and that it retains this new entropy for all times
afterwards. Thus the entropy in the flow behind the shock is a

function of position and not of time.
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II. DERIVATION OF THE BASIC EQUATIONS.

In the method of analysis to be presented the shock wave
velocity is of major importance. This velocity can be written in
terms of the strength of the shock and the pressure and density
distributions ahe#d of it, The strength of the shock is defined
"to be the ratio of the ?ressure jump across it to the pressure
immediately in front of it. 1In a situation in which the pressure
and the density ahead of.the shock are variable, the strength will
accordingly vary with the distance over which the shock has
traveled. The aim of the following investigation is to derive an
equation which will determine the dependence of the shock strength
on distance., It will be shown that once this dependence is known
solutions to the equations of non-isentropic motion can be found.
An explicit expression for the shock velocity will now be derived.

The flow parameters immediately behind the shock are
denoted by the subscript 1 while the undisturbed péttern ahead is
indicated by o. The position of the shock at any instant t 4is

represented by

at) BT

a=
or, inversely, by

t =x(a) . _ (2)
The shock velocity is therefore

v = &(t) (3)

where, as in all the following work, a dot denotes differentiation

with respect to the time t. In accordance with the definition
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already stated the shock strength, s(a), is given by the relation

pq = p (=) (1 + s(a)] . (&)

The conservation of the mass and of the momentum across the shock

are expressed respectively by the relations

pqlug = &) = p(u_ - a) (5)
and
u,,(u,' - &) + Pq = P, uo(uo - 8) + P, . (6)

In addition, the standard Rankine-Hugoniot formula is valid, i.e.,

2
P Pg+tpn P
1.1 2 (7)
o Po + P1

. Yy -1 . 2

where for conciseness “QTT‘T is denoted by u .
The required expression for the shock velocity is found
by combining equations 5 and 6 and modifying the result-by the use

of equations 4 and 7. Thus the shock velocity is

1/2 1/2
(a) 2
a(t) = + [ jl l:“s(a)*“] £ (8)
1-np _

The ambiguity of sign in equation 8 is removed when attention is

confined to shock waves moving in the positive a direction. For
simplicity, the gas is assumed to be quiescent initially and hence
ug is zero in equation 8. Accordingly, the final expression for

the velocity is

1/2 /2
(a) 2
1 - p
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The position of the shock, at any time t, is then determined by

-1/2
p(a) -1/2
t =%(a) = \: (a)] [" + s(a) “‘ ] da (10)
P 1 - H

The density of the gas directly behind the shock is obtained from

equations 4 and 7 in the form

1 + s{a) + “2 ) . » (11

1+ u2[1 + s(a)]

pq = P (2)

It may be remarked that certain results pertaining to
the propagation of shocks which are assumed to be of constant
strength are immediate corollaries of equation 9. For example,
if in equation 9 one assumes that the strength and the pressure are
constant then

dvyec [ p (172 . (12)

Consequently, if the density distribution has a power dépendence
on the distance a, say

po(a) < a°8 ) (13)

the position of the shock is given by an expression of the form

toca'm” . _ 1)

The converse of this statement is also true, namely, that equation
14 implies equation 13, Further, it follows from equation 12 that
if

-
pla)oca '

where € >0, then the shock velocity increases without limit as

the shock progresses, Since the strength of the shock is assumed
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to be constant it is clear that an infinite amount of energy
would be reqguired to propagate the shock. These results have
been demonstrated in a slightly restricted form and in a different
manner by Jomes [3,4].

In order to discuss the gas flow in the region traversed
by the shock discontinuity, the Lagrangian form of the equations
of motion will be utilized. Each particle of the gas will be
identified by its abscissa a, i.e., its position before the shock
rassed over it. The parameters of this particle after the shock

has passed will be functions of a and t. Accordingly,

x = x(a,t)
p = p(a,t) (15)
p =pla,t)

denote respectively the position, pressure and density of the gas
particle a, assuming that the shock has passed through it, 1In

this notation the equations of motion are

P
Xy +'§£«= 0, (16)
a
( an)t = 0, (17>
and (p e~ "), = o, )

where subscripts denote partial derivatives. Equation 18 is the
mathematical statement of the adiabatic nature of the gas flow.

It is to be noted that no external forces have been represented

in the equations., While it is appreciated that stability con-
siderations would demand the existence of such forces when density

and pressure gradients are admitted, they are neglected on the
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grounds that in comparison with the forces due to the shock motion
they are negligible, Solutions of the equations of motion 16, 17,
and 18,will be sought by the method of separation of the variables.

For this purpose it is assumed that

x(a,t) = fT(a) g1(t),
pla,t) = £,(a) g,(t) , ' | (19)
and pla,t) = f3(a) g3(t) . »

By direct substitution of these relations into the equations of

motion the following system of ordinary differential equations is

obtained;
€1 84 83
———ie = K (20)
85 1
fl
2
= =K (21)
f% f1 f3 1
g1 83 = Ky 3 £y I, £0 . (22)
and

In equations 20,...,23 the Kr represent the constants_of separation,
Derivatives with respect to the time, t, are denoted by dots aﬁd
with respect to the distance, a, by primes.

The equations 20, 22 and 23 serve to determine a differen-

tial equation for any one of the g-functionsj e.g., one finds that

é% g{r = constant , (24)
where the constant is a function of the Kr which need not be

written explicitly here. Equation 24 can be solved when Y is a
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ratiénal fraction by the conventional methods., The solution of
equation 24 determines ga(t) and gs(t) through equations 22
and 23, Hence, this method of solution of the equations of motion
imposes, as one would naturally expect, certain restrictions upon
the types of flow which can be discussed. There exists a
compensatory fact however, in that the f-functions are restricted
only in the sense that equation 21 must be satisfied. ‘Accordingly,
solutions of the equations will have been found if three functions
of a are determined such that at any instant tl at which the

shock is at position 25

x(aq,tqy) = a4 ,
Plagsty) = p () [T+ s(ap],

and 1+ s(ag) +n°
plag.ty) = p (ay) {:1 TP (o] j} .

It is necessary in addition that the three functions should satisfy

equation 21, These requirements are fulfilled by the functions

?

a
f() = ET -
po(a) (1 + s(a)]
fole) = g (26)
and
p(2)[1 + s(a) + 1°]
£5(a) = g, @] {1+ 201 + (2] (27)

where
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£5
—— = =K (21)
f% f,E f3 1!

and where 7%(a) is defined by equation 10. It is to be noted that

equation 271 is the equation which essentially determines the shock

strength s(a), Before considering this equation in detail it is

‘convenient to introduce the concept of the piston motion.
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III. THE PISTON MOTION

A more concrete picture of the physical situation can
be given by relating the gas flow to the motion of a piston. In
fact, it will now be shown that the g-functions determine the
types of compressive piston motion which may be used. It is clear
- that due to the method of sélution employed one may not arbitrarily
prescribe the piston motion. For example, it is not éossible to
discuss the flow resulting from the accelerative motion of a piston
within the purview of this analysis.

Since thé position of the gas particle a is denoted

after the shock has passed it by
x(a,t) = f1(a) g4(t)

it follows, that if a = a, is the starting point of the piston,

then for all t

£1a) Eo(8) = v (8) . (28)

In equation 28 vp(t) represents the piston velocity which is in

general a function of time. Hgwever,

a ﬁ
f1(a) = 81 ,r(a) (25)
and hence
8.0
Vp(t) =W g',l(t) . (29)

Equation 29 presents the relationship between the piston velocity
and the g-functions, It will be remembered that g1(t) must
satisfy equation 24, i.e.,

§1 g1T = constant . : (24)
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In order to make the analysis more definite only two solutions of
this equation, and accordingly only two types of piston motion,

will be considered. Firstly, the solution

g1(t) = at + B (30)
which, by equation 29, represents a uniform piston motion. Secondly,

- the solution

2 1
gi(t) = AP (31)
which represents a decelerated motion of the piston.* 1In equations

30 and 31, a, P, and X are constants of integration. Only the

ratio B/a is important; from equation 29 it is found that
a
B
a o by (32)

(1) THE UNIFORM PISTON MOTION,
In discussing the flow due to a uniform compressive
piston motion equation 30 is applicable and hence equations 25,

26, and 27 determine the flow properties in the form

a(t + /o)
x(a,t) = (a) + [3/2! s _ _ (33)

p(a) [1+ s(a)Ilt + p/a]™"
pla,t) = ' (34)
[<(a) +B/Al™T

and

Po(a) [1 + s(a) + 92] [t + ﬁ/a]"‘
[%(a) + B/al"

p(a't) = . (35)

+ .
This is true for ¥y > 1, which is necessarily so on physical

grounds,
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The solution given by equation 30 implies that

fé( a) =0 (36)

which can be stated as
fa(a) = constant = C. (37)

‘The constant, C, can be evaluated and is found to be
) aoY ' ,
C=pa) [T+ s(a)] (;;;) (38)

Equation 36, or 37, serves to determine the shock stfength s(a).
Before discussing it, however, it will be useful to determine the
energy input of the piston.
The work done by the piston, up to time t, which is
equivalent to the energy input, E(t), is given by
\

5(t) = [ pa_,t) 52 at

t
o

which, by equation 34, is expressible in the form

v, p (2 )1 + s(a)]
B(t) = ooy —2—2 — [(tD +p/07 Y (6 g/ T
i [z (a,)+ /0] '

Thus, if one allows the time ¢t to become infinite

a

B(t) - ﬁF:ET po(ao) L1 + S(ao)] 3 t » (39)

where equations 37 and 38 have been utilized. Hence, the energy
input of the uniformly moving piston tends to a finite limit as

the time interval t - tb becomes infinite. It will be shown
later that this result does not imply that the shock strength s(a)

must be a monotonically decreasing function of the abscissa a.
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The shock strength is determined from equation 36, i.e.,

qa P,(a) 1+ s(a)]

i AR C N R (40)
which can be written in the fornm
J .2 a
o p(@) [T+ s@)] = ~(1 - 1D [p()]° T [p ()77
1 -
1+3 2.7 3
(1 + s(a)] L1 + s(a) + u°] &1

where C dis the constant defined by equation 38, If the pressure
and density distributions ahead of the shock are specified, equation
41 determines s(a). The equation is non-linear and is not
generally integrable in an analytic form. However, a numerical
analysis of it is not difficult since it is a first order egquation.
Analytic solutions can be found in some special cases which are of

considerable interest. One of these is now considered.

The Solution for Constant Pressure Distribﬁtions.

In this case equation 41 admits of an analytic solution.,
It is convenient to set

ola) 1 + s(a)

1

and

p, (&) = p, a constant,

in equation 41, One findsthen

1

- 1 +
L po(a)]2 Le(a)]

2
-2

4 I
rof =

1
iq_((.i;:_lz_cpﬁ’ [ o(a) + u°]
(k2)

This equation shows that the shock strength is a decreasing function
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of the abscissa ‘é for any density distribution; C is, by
equation 38 a positive constant. To solve egquation 42 analytically

3

the value h e =5 is taken., While this value does not correspond
to any gas found in nature, it is sufficiently close to actual
values to justify its use here. The solution of the equation,

under this condition, is

7 6 =
-% (1 + s)”a/3 C% + 5)1/2 +-% N2 F(g,k) + C

/3 !
2_2 ! '
=cy % |1 Po(a)J2 da (43)

where C1 is a constant of integration and o has béen’replaced
by 1+ s. 1In equation 43, F(@,k) represents the Legendre
Standard Form of the Elliptic Integral of the First Kind. The

parameters @ and k are defined by the equations

3 = 1/3 -
cos g - \/5 (1 + 5)1/3 + 1 -‘ V3 , (4l)
2/3 (1 + s) + 1+ V3
and
. =1 S
sin” k= 35 . (&45)

For the purposes of illustration a simple power law density
distribution is assumedf l.e.,
5 I
pla) = () o . (46)
o
It is not possible to solve equation 43 explicitly for s(a); the
function is exhibvited graphically in Figure 1 for m = =~ 1, 1 and 2

2/3 - 1/2

where the constant pC p is taken to be unity and the

*
p is a constant with the dimensions of density.
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initial shock strength, i.e., s(ao) is assumed to be 5., It is
seen that the shock strength decays more rapidly for increasing
values of the exponent m, and that it becomes zero at a finite
distance from the point of inception,

The paths of the shock waves are shown in Figure 2.
‘These paths are deteruined as follows; the position of the shock

front at any instant is, from eguation 10,

-1/2 -1/2
Po (a) 1 + s(a) + MZ
=t(a) = ‘:p (a):| I: . _p - da (10)

which is expressible as

-1/2 -1/2
t -t p (x) 2
0 1 + s(x) + B
— ax  (47)
where
% = -3_ , (48)
o .
ca®VE (49)

and the shock is assumed to start into motion at time t = to at

the position a = a,.

In equation 47, po(x) is constant, HZ =5 v po(x) is
assumed to be given and s(x) is determined from equation 43. The
integral is evaluated by using Simpson's Rule. A study of Figure 2
shows the relative effects of density variations on the shock
velocity., The points in Figure 1 at which the shock strength

becomes zero correspond in Figure 2 to the points at which the

shock velocity becomes sonic.
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The flow properties in the region between the piston
and the shock are calculable since the values of s{a) to be

substituted in equations 33, BQ,and 35, are now knoWn.

The' Strong Shock Solution.

The law of variation of the shock strength for strong
shocks, (s(a) > 1), when the pressure ahead is constant, is found
from equation 41, TFor, if s(a) >> 1, that equation may be

approximated to in the form

2.2 a 1.1 1
.%E s-cp’ (1.3 2T Po(a)32 . (50)

This equation shows that

d &Y
. -2 -
s(a) o UL p(a)] daj Y-z (51)
Thus the dependence of the shock strength on the distance traveled

is comparatively simple in this case. The path of this shock is

t=T(a)ec JL p ()12 La(2)17 2 aa (52)

which is the appropriate modification of ecquation 10. The flow
properties can be determined in the manner indicated previously.

It is possible to derive analytic results also in the
weak shock approximation (s(a) <<1)., Since, however, this can
be done even in the case of variable pressures it will be discussed

in the following section.
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The Solution for Variable Pressure Distributions.

It has been remarked previously that equation 41 is not
generally integrable in analytic form. If the pressure distribution

po(a) is not constant then the equation can be written in the form

1 1 1 1
ds 1 dpo 2.2 v T2 . -]1 T
—a-;+(’l+5)~i;— 55 = - C(1 -p7) [po(a)] [1 + s(a)]
Q
a 22
[ e (3% 1+ sa) + %] 2, (53)

This equation immediately discloses the possibility that the shock
strength, s(a), could be an increasing function of the abscissa a
--this despite the fact that the energy input of the piston tends
to a finite value. In order to have s(a) dincrease, however, the
pressure distribution po(a) must be a decreasing function of Be
It is also seen from equation 53 that it would be impossible for
the shock strength to increase in a medium in which the pressure is
either a constant or an increasing function of distance.

Equation 53 has been integrated numericaliy by Runge's
method for a series of variable pressures and densities. To carry
out this integration it is assumed that the density'and pressure

distributions are given in the form

a
Po(a)==(;;) P (54)
and
2 B
p(a) = () » , (55)
o

Figure 3 shows the variation of the shock strength as a function
of a/aO for combinations of the values m = 1,2, n = =1, +1.

The initial shock strength is chosen to be 5 and the ratio of the
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specific heats of the gas, ¥, to be-% « This choice of ¥ is, of
course, not necessary but is made in order to facilitate a comparison
of Figures 3 and 4 with Pigures 1 and 2, so that the effects of
variable pressures can be more readily afpreciated. Calculations

7

have been made for ¥ =5 the more conventional value., The
.results of these calculations showed that the effect of such a
variation in the value of ¥ dis negligible.

| The paths of the shock waves shown in Figure 3 are
exhibited in Figure 4, These paths are calculated iﬁ the manner
described previously with, of course, the modifications necessary
to include the pressure variation,

One interesting case exists in which equation 53, or more

properly an approximation to it, yields an analytic solution. This
situation arises when one considers the propagation of shocks whose

strength is such that Ls(a)]2 may be neglected. Then equation 41

reduces to

1 4 1
2 1/2 - — -
4 B 1T -p - 2 ¥ 2
o P lT+s)==-C (-—————-1 5) lp ()] L p (a)]
+ B
1+ 2121 o e
which can be put in the standard form
dp - -1 -.1 -:l-
2 - 2 r -2
%E+S[-P:I; -5-52+-2-CY (vy+ 1 [po(a)]Y_ L P (a)]
1 1 1 1
- - = = dp (a)
2 ¢ Y 2 -2 1 o)
=~=-C¥ Lpo(a)] L Pc(a).' - po(a) aa 3 (57)

and is accordingly immediately soluble. When po(a) and po(a)
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are specified, s(a) is uniquely determined by equation 573 the
method of obtaining the solution is straightforward and since it
is not intended to pursue this topic farther it is not given here.
As in the previous discussions the paths of the shocks can be

determined and the resulting gas flow properties calculated,

Constant Strength Shock Waves.

The anelysis of the shock waves resulting from the
uniform compressive motion of a piston will be conciuded with a
short reference to shocks of constant strength. The possibility
of the propagation of such shocks is of interest since it is
claimed that many astrophysical situations can be adequately
described by even this restrictive case. When the shock strength

is taken to be constant in eguation 41 there results an eguation

of the form
1 1 1
dp =t >
= = Bleg( 1 ¥ [ p ()] | (58)

where B is a constant., This equation implies that

1 _2r
pa) < [J‘i po(a)}2 aa]®" ", _ (59)
Hence, it is only possible to describe the propagation of constant
strength shocks by this method of analysis in the presence of sone
very specialized pressure=density relationships. Equation 41, or
58, also shows that it is not possible to discuss the propagation of
such a shock in regions of constant pressure. This latter result

was to be expected from the energy comsiderations already presented,
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THE DECELERATIVE PISTON MOTICN,

The discussion of the propagation of skhock waves which
are generated by the non-uniform motion of a piston, specifically
the decelerative motion, is mathematically more complicated than that
of the uniform motion. In the case of the decelerated piston
‘equation 31 is applicable and leads through equation 29 to the

piston velocity

v-1
> a, to ‘?:T
Vp(t) =7 Gg;) CE-) . : (60)

The energy input of this piston motion is determined by the method

indicated earlier and is found to be
2(y ~1)

a_ p(a) [1+ s(a)] t T+
B(t) = =220 2 |:1-(—§) ] (61)

v -
The limiting value of this expression as t/’co tends to infinity

is given by

a po(ao) {1 + s(ao)] &
E(t) - o ; ?; - @ (62)

which is identical with equation 39. The flow properties between
the piston and the shock are determined by equations 25, 26 and 27

in the form

a 2/y +1
x(a,t) = [‘r(a)]E/Y — t , (63)
p (2)[1 +s(a)] v

[ (a)]~2V/ Y+
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and

po(a)[’1 + s(a) + “2] 1 t-2/‘Y+1

:'(a,t) =
P 1+ 0201+ s(a)] [/

(65)
where t(a) is as usual, given by eguation 10,
The equation which determines the shock strength is 21,

iceo,

a4

£ 1,(a) = - Ky £4(2) £40a) & ,,(a> (2m)

This equation can be written in the form

= [m,(am ¢ s()10 (227 """’]

2( ¥ 1) a p (a)['l + s(a) + & J % a[’C(a)_‘-z/Y-’-’l (66)
( h{+1) 1 + 3 [1 + s(a)} &

which immediately exhibits the mathematical difficulties referred

to. Unless one chooses a very artificial value of ¥ , equation 66
is difficult to handle either analytically'or nﬁmerically. ‘It will
be discussed therefore in two approximate cases; firstly the strong
shock, and secondly the weak shock, approximation, _The strong
shock discussion will be restricted to the situation in which the

density distribution decreases inversely with the abscissa a.

The Strong Shock Approximation.

In this approximation it is assumed. that s(a) >> 1.

Hence, equation 66 reduces to

-c'l% [Po(a) S(a)[-t(a)]27/1’+’l:|

2a p (&) o/ '
=TI9*T—-%£ |: al t(a)] 2/ +1] (67)
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p (a) -1/2
t(a) = (1 - 92)1/2 [: po(a;:l Ls(a)j-1/2 da . (63)
o]

If one assumes that the density distribution is given by

where

25
Po(a) = =P (69)

equation 67 can ve integrated, the constant of integration being

taken, without lack of generality, to be zero, to give

' 1/2

L2p ao] a1/2
v+ 1

1 (a) =

L p (a) s(a)1"2 . (70)

Heﬁce
s(a) = a_ s(a) p(a) lp () 2l (7
for
s(a) >> 1, :

Equation 71 shows that the shock strength cannot increase if the
ﬁressure distribution is either constant or an increasing function
of the abscissa a. It increases, however, if po(a) decreases
faster than the inverse first power of a.

It may be remarked that the method of solutioﬁ presented
is restricted to the demsity distribution given by the expression 69.
Particular solutions of the shock strength equation for other distri-
butions can be found as follows. One assumes that s(a), po(a)gand
po(aL foliow simple power law variations in the abscissa a. When this
assumption is applied to the approximate equation 67 a relationship
between the three exponents and ¥ is determined. Hence two of the
power law distributions may be arbitrarily prescribed. It should be

noted, however, that a solution found by this method is a particular

solution of an equation which is basically non-linear.
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The Weak Sphock Approximation.

It is not necessary in this case to impose any restrictions
upon either the pressure or the density distributions. Equation 656
reduces to

ds  2(Y =1) ap(a) a . -2/% +1
as _ — | alt(a)]
B (v 1? p @l )

- = [1:1 p (2) E«:(ana“f“”] (72)

where

-

1/2
P, (a)
(a) = (1 = s 1V2 [ :l ‘ (73)

and

s(a) << 1,

This equation for the shock strength is of the first order and is
linear., The solution is readily obtainable when po(a) and Po(a)
are specified., It is to be observed that, in situations for.which
either the strpng or the weak shock analysis is valid, the parameters
of the gas flow are immediately calculable from equations 63, 6k,

and 65, The paths of the shock waves can alsc be determined by

the methods outlined in the discussion of the uniform piston motion.
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v, CONCLUSION,

The laws of the one-dimensional propagation of shock waves
in non-uniform gases are determinable if the gas flow can be related
to certain types of compressive piston motion. These types include
.a uniform motion and a decelerative, but not an accelerative,
motion. The solutions of the equations of non-isentropic gas flow
show that the resultant shock may be referred to as a constant
energy shock since the energy input of the piston in both cases
tends to a finite limit as the duration of the piston motion
tends to infinity,.

In the case of the uniform motion the gas flow generated.
is one in which the pressure in the gas between the piston and the
shock is a function of time only. The shock strength, s(a), is
determined as a function of distance by a non-linear, first order,
differential equation. This equation is valid for any initial
pressure and density distributions, When the pressure distribution
is taken to be constant the shock strength is analytically determin-
able and it is found to be a decreasing function of the distance,
This result holds independently of the density distribution.

The rate of decrease however is faster for increasing than for
decreasing densities., The equation shows further that if the
pressure distribution is an increasing functioﬁ of the distance then
the shock strength must be a2 decreasing function. The effect of

an increasing pressure is to accelerate the decrease. The shock
strength, however, may increase if the pressure decreases., On

this point it should be remarked that each decreasing pressure
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distribution must be examined on its own merits since no exact
statement as regards the necessary rate of decrease has been derived.

The propagation of strong,s(a) > 1, and weak, s(a) <<1,
shocks is readily determined by using the appropriate approximate
forus of the bvasic differential equation. The paths of all the
shock waves mentioned can also be calculated once the shock
strengthk has been determined,

The analysis of the non-uniform motion of the piston
leads to a differential egquation for the shock strength which is
mathematically difficult to work with., However, the propagation
of strong shocks in & region in which the density falls off
inversely as the first power of the abscissa a can be discussed
analytically. In this case there is no restriction on the permiss-
ible pressure variations. As in the uniform piston motion the shock
strength can only increase if the pressure distribution is a
decreasing function of the distance. The laws goyerning the
propagation of weak shock waves are determinable for any pressure
and density distributions. The remark made above concerning the
calculation of the péths of the shock waves is valid here also.

A disadvantage of the method of analysis is that it
introduces a fundamental dichotomy of isentropic and non=-isentropic
flows. It is not possible to determine, by, say, a limiting pro-
cedure, the types of isentropic flow which could be described by
the methods adopted in this presentation. This restriction arises
from the method of analysis which has been employed. To express,

mathematically, the condition that the gas flow is isentropic,



would demand the inclusion of an extra equation in the group
which constitutes the basis of the analysis. Thus it is clear
that a limiting procedure is not applicable, This additional
equation is essentially a further restriction on the space
dependence of the parametersof the flow. Hence, it would reduce

the number of types of flow which can be described by the methods

developed in the text.



S(a/a.)

-32-.

' !

THE SHOCK STRENGTH
n=0

m = +|
///i;—m=+2

.

AN T~

0
1.0 .5 2.0 25 30 35
a/a,e

Fig. 1 - The shock strength, s, is shown as a function of
aL/a0 for three power-law density distributions. The pres-

sure distribution is constant.
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Fig. 3 - The shock strength, s,

a/a, for three combinations of power-law pressure and

density distributions.,
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THE SHOCK PATH

1.0 1.2 .4 .6 1.8 20
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Fig. 4 - The paths of the shock waves for two combinations
of power-law pressure and density distributions are shown.
The initial shock strength, s(aj), is 5.
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PART TWO

THE STABILITY OF THE SPHERICAL SHAPE OF A VAPOR CAVITY
IN A LIQUID.
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I, INTRODUCTION.

The analysis of the effect of tangential forces on the
stability of the interface of two fluids constitutes a classical
problem in the hydrodynamics of incompressible fluids, namely, the
problem of Helmholtz Instability [1], The effect of normal forces,
-or accelerations, on the stability of such an interface, however,
has been studied only quite recently and is referred to aé the
problem of Taylor Instability. Whereas the phenomenon of Helmholtaz
Instability is frequently noticed in nature, that of Taylor
Instability is not so readily observed--a fact which may explain
the lapse in tim> between the detection of these two basic types
of interface perturbations,.

It has been shown by G.I. Taylor, [2], that a plane
interface of two fluids of different densities in accelerated motion
is stable or unstable according as the acceleration is directed
from the heavier to the lighter fluid or conversely., This stability
analysis is limited to small amplitude perturbations of the interface
and it is found that a small disturbance of the interface begins
to grow exponentially with time in the unstable, and to decrease
exponentially with time in the stable, situation, While experimental
observations agree well with the theory in the small amplitude limit
for which the theory is valid, it is known that there are signifie
cant deviations in the rate of growth of distortions in the unstable
case when their amplitude is large [3].

The influence of viscosity and surface tension on Taylor's

results has been analyzed by Bellman and Pennington [4]. Viscosity,
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as one would expect, retards_the growth of the perturbation
amplitude but does not remove the instability. The retardation
is most marked when the wavelength of the disturbance is small,
Surface tension is shown to annihilate the instability for
sufficiently small wavelengths.

The analysis of the analogous stability problem in the
case of a spherical, rather than a plane, free surface is of
considerable interest since one would hope to obtain, through its
results, some understanding of the behavior of cavitation bubbles,
underwater explosiounssand other occurrences of this type. The
first attempt to consider the stability of a sphericél interface
was made by Binnie, [5], in a somewhat superficial study of the
problem. Plesset, [6], investigated in a more rigorous manner the
stability of the spherical interface of two incomvpressible,
immisicible, non-viscous fluids possessing different densities aﬁd
he stated the modifications required in extending’Taylor's results
to this new configuration, Later, Pennington, [7], published a
comprehensive analysis of the instability of the surface of a
pulsating gas bubble in a liquid, including in his.discussion the
effects of viscosity and rotational flow, These quantities were
not considered by Plesset, The presence of the visccus terms con-
siderably complicates the basic equations and renders it difficult
to obtain a clear understanding of the effect of viscosity on the
perturbation behavior., Since it is not possiblé then to present
here a reasonably succinct statement of the viscous effects the

reader is referred to Pennington's report for the details.



&
]

There remain two aspects of the stability question which
have not yet been studied., Tirstly, since it is known, (3], that
the bubble wall, during collapse, may attain velocities comparable
to the local velocity of sound it is not inconceivable that the
compressibility of the surrounding fluld should be of importance
in determining stability criteria. This facet of the problem has
never been considered. Secondly, althoupgh the general stability
criteria have been derived and the gross features of the pertur~
bation behavior recognized it would be of interest tb know for how
large a range of bubble motion the small amplitude perturbation
theory is valid and consistent.

The aim of the present analysis is to attempt to discuss
in detail this latter question. For this purpose o particular type
of bubble motion is considered., The stability of the spherical
shape of a gas bubble in an infinite liguid is investigated for the
case in which the difference between the pressure in the bubble,
Pi, and the pressure in the liquid, Po, is constant., These
conditions apply approximately tc a vapor bubble growing, (Pi=> Po)’

or collapsing, (Pi < PO), in a liquid at constant external pressure.
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II. THE DERIVATION OF THE BASIC EQUATIONS

Although the egquations which form the basis of this
study are available in the literature, it will prove to be-
instructive to rederive them by a direct method which has not been
used in any of thé published discussions. To do so the préblem is
'formulated as follows.

An incompressible, nonw-viscous fluid of density>p is
bounded on the outside by a spherical surface whose radius, Rq(t),
is a function of time, and on the inside by an empty* concentric
spherical bubble of radius Rz(t)<< Rq(t). This spherical shell
of fluid collapses, or expands, under a constant pressure difference,
It is required to discuss the stability of the bubble wall for small
perturbations from its spherical shape. In the sequel Rﬁ(t) is
to become infinite,

If the interface Ra(t) is distorted from thé surface
of & sphere to a surface with a radius vector rs"one may write

&0

r_ o= Ry() + Z; (0 (0.8 (D

where YH(G,ﬁ) ‘is a surface harmonic of degree n and the an's,
which represent the perturbation amplitudes, are functions of time
which are to be determined. The stability of the shape of the cavity
can be éstablished by considering whether the interface distortions
of small amplitude grow or diminish., More precisely, it is

assumed that

E3
The density of the gas in the bubble is assumed to be negligible

in comparison with the density of the surrounding fluid.
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la,(6)] << R,(1)

and that terms of higher order than the first in a, and én* are
ultimately negligible. Since the fluid surrounding the bubble is
incompressible, it follows that the volume contained within the
_two surfaces, R1 and Ty must be constant. It is assumed that

the shape of the outer surface is unaffected by the perturbation

on the bubble wall, Hence

u[rz sin © de 4f dr =~% H(R% - Rg) = constant, (2)

the integral being evaluated over the volume of the fluid. Sguation

2 can be written in the form

1 3 3 I L .,
_5. J(R1 - rs) dw = z (R,{ - R?_) (3)
where
d = sin @ do 4# (&)

is the element of surface area of the unit sphere and the integration
takes place over this sphere. On substituting for 4rs from equation

1 one finds that equation 3 determines ag in the form

[=2)

By = - —— ) (D) a2 (5)
432\/n 1 :

where the following properties of the surface harmonics Yn have

been utilized:

an Ym dew = O n#n
J\ Yi die = n + 1 (6)
J’Yo de = L\/w R

A dot denotes differentiation with respect to the time.,
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These relationships dewvend, of course, upon the normzlization of
the functions Yn. This topic is treated in the appendix which
will be referred to henceforth as [A].

The velocity potential which describes the unperturbed

motion of the two surfaces is

Rﬁ é1
¢t = ’
r .
or (D
2
RS R
e = Zr 2 ,
since
2 * 2
Ry Rq = RS R, . o (8)

The latter eguality is a direct consequence of the incompressible
nature of the fluid., The perturbation of the inner surface modifies
the expression for the velocity potential and the resulting flow

may be described by the potential function

ide

2 _
R =3
& = + % An(t) r, T (9

r

in which the 'An‘s are functions of time, It is assumed that the
‘perturbation ferm in the potential is a monotonically decreasing
function of the radius vector r and that it affects neither the
shape nor the velocity of the outer surface Rq(t). This approxi-

mation is tantamount to assuming that
. < n~2
s -Ti= ,
2,1 > §O (n+1) |4 Y | B . (10)

The functions An(t) which appear in the potential function, are

determined by the kinematical condition that the cavity surface,
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as given by the expression 1, should move with the fluid. This

condition is

DF g

T)—E:—a—g—(v‘p’V)Fz (11)
where

P = r, - R2 - ii: a, Yn (12)

and y® is to be evaluated from eguation 9. On writing out eguation

11 explicitly, one finds that

A 2 -1 -2 (n+1)An
Zan Yn+2R2 5 Za 1’ +5R2 R2 LZ(anfn)J ‘“ZWYn

R
uwﬂ(me)A . Ej E:An aYn mﬁ
bt ¥ a Y «+ — e N g e

Hn+3 n ' n m m Rn+3 8o m 00
2 2
A 3 8g
+Z = 2 a (13)
»Rn+3 sin © df “m  sin © d@ *
5 .

A more useful relationship can be cbtained by integrating this
equation over the surface of the unit sphere., The result can be

stated, L[A], in the form

(n+1) .
/1 A = 22{: Rn+2 - 2R <<ﬁ(n+1) n3n - QREEZ:(n+1) ai .
2

(14)
The equations of motion of the unperturbed surfaces as well aé the
equation which determines the perturbation amplitude, as a function
of tiime, will be derived by evaluating the energy of the system.
In particular, the Lagrangian of the system will now be calculated.
It consists of two terms; firstly, the Surface Energy, ES, and

secondly, the Kinetic Energy, EK.
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The Surface Energy is equal to the product of the surface
tension constant o and the sum of the areas of the two surfaces of
the fluid,., Since its radius vector, L is a function of & and
&, the inner surface contributes to the surface energy an amount

given by the expression

2 1 5
. re 1 + (____) + ) do (15)
J = l: ri o ri "1n2 &

which may be approximated to by the form

dr or 2
1+ -——- 1 S dea
. 2 a @ B il L ]
sin ©

(16)

The details of the evaluation of this integral, in comuon with
those of other integrals of the same type which will arise in the
course of the analysis, are relegated to the appendix [A]., It

follows that

[+9) o
B, - b o Rg . - 12 (n=D(n+D(ne2) 2~ . (17)

The surface energy of the outer surface is clearly 4ﬂ6_9i and
hence the total surface energy is

[o2]

B = qw(a‘?} + Ri) + 12 (n=1)(n+1) (ns2) ai T

2
The Kinetic Energy of the fluid is obtained by evaluating
EK =~% P (V¢*)2 r2 sin 6 de d¢ ar (19)

over the volume of the fluvid, This integral is expressible in
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the form

2

2 ! i "R g 2
2 Qa {(n+1) AnYn An 6Ln
P >t n+2 * n+2 08
. r r T
‘ A ay_ 12
+ = o 5@2 } rzdm - (20)
rn sin ©

in which V% Thas been deteruined from equation 9. On using equations

I
ol

14 and 13 correct to the first order in a s it follows, LAJ, that

2
2

) - 2122 R, ai (n+1)

2 . o * 2 |
- 2R2 RZ j{}n an(n+1) + Ez%a(an R2 + 2R an) :J . (21

In evaluating this expression for the kinetic energy the approximation

B, = %— ll-TT(R

*2
K 1

Ro
ﬂ R

given by the inequality 110 has been adopted. The Lagrangian, L, of
the system is the difference of the kinetic energy and the surface

energy. Hence,

P 22 32 2 2
L = 3 I:LW(RE 5 R,' 1)i| + Um‘o*(R,1 + RE)
2 g o T
+ }:Ip a_ (n=1) LRZ -y (n+1)(n+2) ]
22
s PRSRS Ya & (n=1) -=Ep )2, (22)

Accordingly, the energy integral of the unperturbed motion is given

in the form

p 5 2 3 R 3 2 3 2
5 [4“(1‘ Ry = Ry, 2o> - Wm(R7 Ry - Ry, Ry )

2 4n ' 3 3
10 (P =P (R - R2)

) ='3_ o] i 20 2

2 2 2 .
+ mo (R2 - RZO) + LH’HT(R,I - R

(23)
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where the additional subscript zero to a function represents the
value of that function at a particular instant ¢t = to. This may
be conveniently taken to be the time at which the motion commences.
Bquation 23 will be recognized as the generalization of the
Rayleigh Bubble Collapse Formula, (9], to include the effects of
surface tension and also the effect of considering the surrounding
fluid to be of finite, rather than of infinite, extent., In order
to.recover Rayleigh's expression one modifies equation 23 by
assuming that

R1 il N R,» 0
in such a way that

2 C .
R1 R1 = finite,

This approximation results in the eqguation

3 22 3 e2 . 4n 3 3y . e 22
2up (R Ry= Ryg Byg) =5 (P = PpI(Ry= RY) - 490 (R - R),
(24)

which is Rayleigh's expression for the velocity of the bubble wall,
with the surface tension term included. The equation of motion of
the undisturbed surface is easily found from equation 24 to be
- -20
Pi Po 2 /R2

ve 5 22 .
R, R, + S R = 5 . (25)

]
n
n

The Lagrangian of the perturbed motion is obtained from equation 22

in the form
2 2 a - 2 .
an(n-1)LR2 R, + = (n+N)(n+2)] + RS R, a, an(n-1)

- 5= ai=o . (26)
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It is seen then that to the present approximation the perturbation
modes are independent and the Lagrangian is that of a damped harmonic
oscillator. On writing Lagrange's Equations the following second

order differential equation for the an’s is determined.

. 3R, (-1 R,
0t _ﬁg d - a = - 3 (n~D)(n+1D)(n+2) = 0. (27)
2 PR2

This equation has been obtained previously in the literature by
many different methods. Penney and Price, [10], have carried out a
numerical solution of equation 27 for n = 2 for the case of a
pulsating gas bubble in water with an internal pressure in the
bubble given by

Pi RBY = constant
and with a constant pressure Po in the water at a distance from
the bubble, In their computations surface tension is neglected.
The numerical solution showed that the aistortion amplitude a,
is much larger when the bubble is near its minimum radius then else~

where, The following discussion is, however, of a completely analytic

nature and is based upon equations 25 and 27.
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III. THE SOLUTIOM OF THE STABILITY PROBLEX.

As a preliminary to the detailed discussion of the
stability problem the general features of the asymptotic behavior
of the perturbation amplitude a are determined.

For the case of an expanding bubble, equation 24 gives*

e
with P = Pi - Po > 0. It then follows from equations 25 and 27

R -+ o S (28)

that

a = constant, R »w, (29)
For the case of a collapsing bubble, it is convenient to transform

equation 27 by the substitution

a = LRO/R]3/2 b {30)
into
b - G(t) b =0 _ . (31)
with
.2 [ 2] v
a(t) =2 5, C_n_:_ﬁiﬁl R - (=) (me]) (me2) —— . (32)
R PR

From equation 24 one has

, R 3
‘2 0.7 (22 2p 20 g | .
R™ = (ﬁr) [Ro tgs ot PRo] + Obﬁj (33)

f X
where F = Po - Pi > 0 for this case. The radial acceleration, R,

is deteruined by equation 25, and the function G(t) is found to be

Rr3
' 3n T 0 ¢ 2P - 20 - - ,
G(t) --—--;5 [Ro t 35+ pROJ R=»0 (34)

* .
The subscript 2 on the bubble radius will be omitted in the

following.
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except for smaller terms. It is evident that

2
ne

R

G(t) ~ = (35)

\n

where ¢ is a real constant., One may now write a W.K.3. approxi-

mation to the solution of eguation 31, for small R, in the form

* ftLG(t')]Va att xien/? ¥ R2 gp
e e

b 1/4 = R~5/4 ” (36)

n

La(t)]

The distortion amplitude an is then given by

st ien /2 ft R™/2 qer
~ R e

. . R® O (37

Iz

so that a, increases like in amplitude and oscillates

with increasing frequency as R - 0. This behavior has been found

by Birkhoff, L11],'by a different procedure. It is of interest that
the instability found by Birkhoff near R = 0 is gualitatively
unaffected by surface tension. The question remains over what

range of R is the linearized perturbation theory fér the distortion
amplitude, a*, valid or consistent. .The following problem will
therefore be solved. A spherical cavity with radius Ro at time

t = O expands or collapses from rest, éo = 0, under a:constant
pressure difference: at t = 0 the cavity is supposed to have a
distortion of small amplitude a . The subsequent behavior of a

for any R 4is to be determined. Complete solﬁtions for this

problem are readily found when surface tension is neglected and these

solutions are giver first. The effects of surface tension will then

be illustrated by some special solutions.

&
The subscript n will be omitted in the following.
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Solution for the Expanding Cavity: No Surface Tension.

In the absence of surface tension, the stability equation
to be solved simplifies to
8 ===l Ra=0 . (38)
One finds from equation 24 that

R -

ol

[1 --—%3 ‘ ' (39)

2
3 R

where P = Pi - Po > 03 and from equation 25 that
! P 0
R = ; ‘I;E 3 ('LI"O)

If the independent variable in equation 38 is changed from t to

the volunme ratio

RB
X = ~§ . 0<x<1; (&1
R
there results
daa 1 5 da {n-1) o
x(’l-x)——§+[g-gx}a-§--—-%——a=0. (42)

dx
Equation 62 will be recognized as the differential equation for the
hypergeometric function F(a, B, ¥, x) where the parameters have

the values

. 1/2
_ =1 + i(2h4n - 25) _ =1 .
a = 15 =73z + 10

-1 - i(2kn - 25) V2

b= 15

= g (43)

-2
I
\NL.;

-
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It is convenient to take the general solution of egquation 42 in the

form, [12],

a = AaF(a, B, = ; 1-x) + B(1-x) /% P(-a + 1

2y - Br g 25 1)

(h4h)
where A and B are constants which are to be determined by the

initial conditions., If a = a, at t =0, or R = RO, then one has

A=a (45)
from the expression 44, Similarly if the initial velocity amplitude

for the perturbation is A then

da .. da dx-
Vo = Lgplemo = Mimit I Tl
x ¥
- 28 L%%]V 2 (46)
[o]

_2.?_)1/2
p _
characteristic velocity and Ro a cnaracteristic length for the

which determines the constant B. The guantity ( 5 a

system, It 1s convenient to describe the initial velocity amplitude

in terms of the length

v R
L =————7—° 2 - (47)
° " (2p/30) /2

in which case equation 46 takes the form

B = e . (48)

The limiting value of a as R tends to infinity, or equivalently

as x tends to zero, is determined from equation 44. One has

alw) = a_= /T () "o . %o
” TLIrG - o1 e+ o) @




- 53 -

so that for large n

2
e 52 o7

wo 1
~ 2 1(2/3) [ao 6—1/6 + , (49)

2Va
where, from equation 43

- (24n = 25)1/2

8
~) 12 .

.Figure 1 shows the variation of a/a.O with RO/R for various
values of n for the case in which the initial velocity amplitude
is gzero, 30 = 0, Figure 2 exhibits the variation of a/aO for a
non-zero value of the initial velocity. Of greater significance is
the ratio of the distortion amplitude a to the mean radius :H
the behayior of (a/ao)(Ro/R) is shown as a function of RO/R in
Figure 3 for the case in which the initial velocity amplitude is
zero, and in Figure 4, for the case in which the initial velocity

amplitude is different from zero.

Solution for the Collapsing Cavity: No Surface Tension.

This case can be discussed in exactly the same manner as
the previous one., In fact, equation 42 is directly applicable
although for convenience it is better to write the solution in the

form, [12],

a=Ax"% Fla, o +'§,-%; 1 --%)
- 1, 1/2 1 1
+Bxa('1 -}'c')/ F(-p S “[3""],'2';1";)

1< ¥ < @ (50)
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Equation 39 is written as

where now P = P0 - Pi > 0. The constants A and B are found
as in the previous case in terms of the initial perturbation

amplitude a_ and the initial velocity amplitude v
[s] O’

A= a

o]
B=-2-V RO -‘-"%«3
>0 (2P/Bp)1:2 3 e

The solution can, of course, be written in a variety of forms. 1In

rlace of equation 50 one can write, for exanmple,

a=A'y® Fa, o.+-%, 2a +%, y)

. Bry=o-1/6 F(_“_;_, ‘a__;,, -2a + _(5;; ) (52)
where

)

’s)

A' and 2' are linear combinations of a, and 30 which need
not be written explicitly here., From equation 52 one finds that,
in the neighborhood of y = 0O,

o A'y-1/12+16+

gry~1/12-18

or

a ® const, R-1/4

(54)

which is the singularity noted by Birkhoff., The variation of the

distortion amplitude with mean bubble radius is shown in Figure 5
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for n =3 and in Figure 6 for n = 6., The quantity of
significance is the ratio of a to R; therefore, the variation
of (a/ao) (RO/R) with R/Ro is shown in Figure 7 for n = 3 and

in Figure 8 for n = 6,

Expanding Cavity With Surface Tension,

’ L)
For a bubble expanding from rest, Ro = 0, one has from

equation 24

3 2=

R R
22 _ 2F __.o | _z2¢ __6o -
R =35 1 -——RBJ __—pRli1 -—-—_Ra (55)

where P = Pi - Po > 0. The radial acceleration is determined by
the relation

,,‘2__P-20'/R

RR + 2 1
P

rof\

If the stability equation 27 is written in terms of the independent

variable
Ro
z =—}§- (56)
it takes the form
2 N
2 2 3 d7a 2 1, 3k 3 da
Z —3--kz+(k-—3-)z d—z-z- —3'—kz--.5—(-§—-1)2 Iz
k 3 2 :
- (=1 | 3 L1 = (n+D)(n+2)] + (1 -5 z a=0 (57)
where
20 .
k =-§;-15- . (58)

Hence k 1is the ratio of the initial value of the surface tension
to the static pressure difference between the inside of the bubble
and the liguid. Equation 57 has a neat solution for the value

k :_E in which case it reduces to the hypergeometric differential

3
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equation. This value of k 1s reasonable for vapor bubbles growing
in superheated water where it is effectively slightly less than unity,

L13], A convenient form for this solution is

a = AF(a, B, —;—; T=2) + B(1~Z)1/2 Ma + —;—, B + %, %; 1-2z)  (59)
where
. /2
a=__é+(9+16h) , » (604)
-\ 1/2
B = m‘% _ €9 +41bh) , ‘ (60B)
and
}J:-(—rl'é'-:'—)-(n2+3n+1) ) (61)

If 2, is the initial distortion aaplitude and Vs the initial

velocity amplitude, one finds

A=a
o
and
B=2 ¢
0
where
R \
£ - b v
o 2P.1/2 o’
(3;)

The variation of a/ao with RO/R when k = 2/3 is shown in
Figure 9 for n = 2 and 3, In Figure 10 the variation of

(a/ao) (RO/R) with RO/R is shown for these same values of n,
When these curves are compared with Figures 1 and 2 or Figures 3

and 4 the stabilizing effect of surface tension is evident., It

is also of interest to observe that when surface tension is included

a/aO changes sign as R increases,.
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Cavity Collapse Under Surface Tension Alone,

An additional case of interest and which is also amenable
to analytic investigation occurs for Pi = Po so that the cavity
collapses under the influence of surface tension alone. In order
to obtain analytic results for this case the stability equation 27

is modified by the éubstitution

Z¥]

(62)

o=

]
= |
[« 2)V]

so that the resulting equation has u as the independent variable

rather than t. The solution of this equation can be written as
1 C

a = WBLAF(a, B, +; 1eu) + B(1-w)° Fa +,%, B +~%,-§; 1-u)  (63)

I\)l..\

where m have the value

Lol i(éun - 25y /2 (6t

and F dis the hypergeometric function with parameters a and P

determined by the relations

a +PB= 2nm +-% .
The constants A and B are determined in terms of the initial
distortion and velocity amplitude ao and vo in the form
A = 3

B = ~L



wnhere

It is evident from equation 63 that

/4

a * const. R as R >0 .
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Iv, THE CONCLUSIOHN.

For an expanding vapor cavity an initially spherical
shape is stable in the sense that the deformation amplitude a
remains small compared to R if its initial value a is small
compared to the initial cavity radius RO. | |

The consistency and applicability of the linearized
perturbation theory for the distortion amplitude is thﬁs demonstrated,
These conclusions drawn from the linearized theory must be qualified
for the case in which the surface tension is negiigible., 4is is
shown graphically in Figures 3 and 4, a/R as a function of RO/R
has a maximum which increases slowly with n, the order of the
surface harmonic., It follows therefore when surface tension is
unimportant that needle-like irregularities in the spherical interface
may grow to significant amplitudes. The present linearized theory
is inadequate to follow the development of these high order distor-
tions of the interface. This instability for large n disappears
when surface tension is of significance so that no such restriction
need be imposed upon the applicability of the_linearized theory in
this case.

For a collapsing vapor cavity, on the othef hand, the
perturbation theory is valid provided that the distortion amplitude
is not followed to small cavity radii. If Ro is the initial
radius of the spherical cavity then the distortion amplitudes
remain small so long as 12 R/Ro > 0.2 where the lower limit is,

~

of course, approximate, The linearized theory is valid then over an
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interesting and important range of cavity radius, As the radius R
tends to zero the distortion aamplitudes oscillate in sign with in-

R‘Vi*.

creasing frequency and increase in magnitude in proportion to

/b

This increase in distortion amplitude as R is found with and
without surface tension. It may be remarked that the linearized
‘theory for the distortion amplitudes breaks down in a range of radii
near that for which the present model of the vapof cavity. becomes
invalid. It is known, [14], that the vapor pressure within a
collapsing vapor cavity, such as is encountered in cavitating flow,
begins to rise very rapidly as R/R0 becomes smaller than
approximately O.1. Further, it is known from the studies made by

Gilmore, [8], that the effects of liquid compressibility become

significant when R/Ro becomes less than 0.1,
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V. THE APPENDIX

This appendix is devoted to the evaluation of an integral
which appears in the derivation of certain results stated in the
text of the foregoing znalysis. The integral involves products of
derivatives of surface harmonics. The surface harwonic Yn of order

n is defined to be

Y o= Z;i(Ar cgs rfd + Br sin r#) P; (cos @) {65)
& ,
= ‘%—" Un (66)

where © and § are the usual angles of colatitude and azimuth in
spherical polar coordinates., The Pi(cos @) 1is the associated

Legendre function. It is clear that

jU; U; dw = O r £ s _ (67)
m #_n

where d®w is the element of surface of the unit sphere. One is
free to choose

fu“ v de = 1 (68)

§ n n -
which determines the normslization of the surface harmonics. From

equations 67 and 68 it follows that

meYndw = 0 m#n (69)

J‘Yi dow =n+ 1 . (70}

The integral to be evaluated is of the form

Y aY 1 6Y ﬂY
5 2 dw . (71)
e 51n e aﬁ 6¢
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If p = cos & then this integral becomes

o B DY o _q BY_ O
(1-H)—5-;-a—;+(1-u) TT g, (72)

This expression can be written in the form

S

n m aL
II

(1 - — 1 - d

RREEP R AR ST ub- ot
(73)

It is known that UZ satisfies the equation
d BU; sa s
T (1 =-p )-5-; + m(m+’|)-—1mHLZ Um=0 . (78)

On integrating the first term in equation 73 by parts and on using

equations 67 and 74, one finds that the integral reduces to

2
ifn(n+’l) U:; dw (75)
[s]

which is

= n{(n + 1)2 ' | (76)

This value has been used in the derivation of equations 14, 17 and
21 which, of course, have been derived correct to second order terms

in a_.
n
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Fig. 9 - The distortion amplitude a relative to its initial value ag
is shown for an expanding cavity as a function of RO/R for the case
in which the effect of surface tension is included. For n=6 the
curve with 50/30 =1 is not shown since it lies quite close to the

£ =
curve % /a, 0.
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Fig. 10 - The ratio of the distortion amplitude a to the mean cavity
radius (in units of ao/Ro) is shown as a function of R_/R for the
case in which the effect of surface tension is included. For n=6
the curves "’o/ao =1 and &o/a°=0 are very near each other.
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