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Abstract

The thesis deals with the theory of non-Abelian vortices in two spatial dimen-
sions and cosmic strings in three spatial dimensions that arise when a non-Abelian
gauge symmetry G is broken to a non-Abelian unbroken symmetry group H by the
condensation of a Higgs field. The first part of the thesis discusses the case in which
H is discrete. In this case all of the gauge bosons acquire a large mass; however,
at low energies discretely charged particles experience non-Abelian Aharonov-Bohm
scattering off vortices, which can be used to measure the flux of the vortices. Vortices
also experience non-Abelian Aharonov-Bohm scattering with each other. When there
are more than three vortices in a system, the Aharonov-Bohm interaction, which is
described by a path integral involving sums over elements of the braid group, becomes
extremely complicated. The vortices are subject to a new kind of exotic statistics.
The second part of the thesis discusses the physics that arises when the requirement
that H be discrete is relaxed to allow H to have one continuous generator. The vor-
tices or strings that result change the sign of the charge for charged particles. Loops
of Alice string or pairs of vortices can carry charge without any apparent source. A
quantization condition for the charge carried by such pairs and loops is derived. It is
also found that loops of Alice string can carry magnetic charge and that topologically

stable monopoles exist in any theory with Alice symmetry breaking.



Chapter 1

Introduction

In the last few decades the idea of broken symmetry has played a key role in the-
oretical physics—both of high energies and of condensed matter. Often it is the case
that at high temperatures the full symmetry of a system is manifest; however, upon
cooling, a system experiences a phase transition in which the symmetry is broken
through the choice of orientation of an order parameter. which no longer vanishes
in the lower temperature phase. Examples of such systems include the Heisenberg
ferromagnet and the Standard Model. which must have been in a symmetric phase
in the early universe when the temperature was much hotter. In general, for a suffi-
ciently large system, during the process of cooling there is little or no communication
between the various parts. and domains of the phase with broken symmetry with un-
correlated orientations of the order parameter start to form in various places. As
these domains grow bigger and start to coalesce, the various vacuum orientations
of the domains try to align themselves. for there is an energetic cost. generically
to lowest order equal to the square of the gradient. associated with a non-uniform

choice of vacuum orientation.

In one scenario the final state of the system. after as much energy as possible has
been dissipated. approaches a uniform vacuum. However, for some systems, because
of the topological properties of the manifold of degenerate vacua, it is impossible for
the system to evolve continuously toward a state with a uniform choice of vacuum.
Instead, the vacuum aligns itself as well as it can, and the discrepancies in the choice
of vacuum become concentrated near submanifolds of lower dimension known as

topological defects.

These topological defects can be classified using the following technique. Let ¥
be a spatially dependent order parameter subject to a potential V(¥) and let G be
the symmetry group of the theory so that V(g¥) = V(¥). Suppose that V takes a



(3]

minimum value at ¥y and that G acts on ¥¢ non-trivially. Then the set of values of
the order parameter M = {g¥p |g € G} also minimizes V. [1.] For ¥ € M, we define
the unbroken symmetry group as H(¥) C G. whose embedding in G depends on the
choice of ¥ € M. Let Hy = H(Jy). Since

(1.1.1) M =G/H.

the coset space has the same topology as the manifold of degenerate vacua. Topo-
logical defects can be classified by the non-trivial homotopy classes of functions from
an n-sphere S" [2] enclosing the defect into (G/H). [3.4.] In three spatial dimensions
defects described by xo(G/H) are domain walls. those described by »1(G/H) are

cosmic strings. and those described by =2(G/H) are monopoles.'

In this thesis we shall only consider defects described by 71(G/ H)—cosmic strings
in three spatial dimensions and pointlike vortices in two dimensions. The discussion
shall be further restricted to theories in which the symmetry is gauged. The fact
that a symmetry is gauged has several important consequences. First, it assures
that the energy of a vortex is finite and concentrated at the core. Suppose that there
were no gauge fleld to compensate for the variation in ¥ as one traverses around the
vortex. Since the magnitude of the derivative is of order (1/r), the energy of the

vortex (taking the energy of the vacuum to be zero) would be proportional to

r>

1\? r
(1.1.2) /rdr <——) =In [-—Z] :
r e
r<
The divergence as r« — 0 is naturally regulated by the vortex core size, but the
divergence as r> — oo cannot be removed. When the symmetry is gauged, however,

a vector field A can be chosen such that at large distances from the core the covariant

derivative, which is the derivative that appears in the Hamiltonian, vanishes.

The organization of the thesis is the following. Chapter 2 discusses Abelian
vortices, which occur both in the Ginzburg-Landau phenomenological model of su-

perconductivity and in the relativistically invariant Abelian Higgs model. The phase



structure and vortex solutions are discussed, and in the last section it is described
how gauged Zy discrete symmetry and anyons can result in a U(1) Higgs model. In
Chapter 3 some of the complications that arise when the unbroken symmetry group
is non-Abelian are described. The non-Abelian magnetic flux of a vortex and the
superselection rule for the total flux of all of the vortices are discussed. Problems
associated with the global realization of the unbroken symmetry group H are also
discussed. In Chapter 4 the physics of non-Abelian vortices for which the unbroken
symmetry group H is discrete is discussed in detail. [5.] It is found that when H
is non-Abelian. the vortices in the theory experience a long-distance interaction due
to the Aharonov-Bohm effect. A path integral formulation for the general N vortex
problem involving the braid group is presented. For two vortices the scattering is
exactly analogous to scattering of an electromagnetically charged particle from an
infinitely thin tube of magnetic flux, first calculated by Aharonov and Bohm. How-
ever, when more than two vortices are present, it is no longer possible to treat one
of the vortices quantum mechanically and the remaining vortices classically. When
a third vortex passes between two vortices, the relation between the two vortices
changes. Consequently, a vortex that moves through a background containing more
than one vortex changes the state of the background in a path dependent manner.
For the IV vortex problem. the path integral is the sum over ' where S is the free
particle action with the summation restricted to the homotopy equivalence classes
of vortex paths that create the same gauge field topology for the final state. Exotic
statistics result for non-Abelian vortices because what types of vortices may be con-
sidered identical depends on what other kinds of vortices are present in the system.
Finally, the path integral formulation for non-Abelian vortices is compared to the
path integral formulation of anyon dynamics. In Chapter 5 the discussion is extended
to the case in which H has exactly one linearly independent infinitesimal generator.
If this generator @ does not commute with the discrete elements of H, interesting
new physics results. The resulting strings, called Alice strings, prevent the global
implementation of the U(1)g symmetry in the presence of vortices, and the vortices

flip the sign of the charge of a charged particle that travels around the Alice vortices



an odd number of times. Pairs of Alice vortices and closed loops of Alice string can
carry electric charge that does not have any apparent source. The charge carried
by a pair (or loop) is defined by surrounding the pair (or loop) with a surface and
integrating the electric field over this surface. This definition of electric charge is ex-
tended to the quantized system. and a quantization condition for the charge carried
by such pairs (or loops) is derived. It is shown that loops of Alice string can carry
magnetic charge and that there must exist topologically stable magnetic monopoles

in any theory that supports Alice strings.



Notes

. We shall assume that all of the minima of V" are related by the action of the
symmetry group G—in other words. that there is no accidental degeneracy

that is not a consequence of the symmetries of the theory.
. S™ is the n-dimensional sphere. The zero-dimensional sphere is defined as the
two points SO = {—1,1}.

. J. Preskill. *Vortices and Monopoles.” in P. Ramond and R. Stora. Eds.. Ar-
chitecture of the Fundamental Interactions at Short Distances. Amsterdam:
North Holland (1987).

4. D. Mermin. “The Topological Theory of Defects in Ordered Media.” Rev. Mod.

Phys. 51, 591 (1979).

. M. Bucher. "The Aharonov-Bohm Effect and Exotic Statistics for Non-Abelian
Vortices.” Caltech Preprint 68-1655 (1990). [To appear in Nucl. Phys. B.]



Chapter 2

Abelian Strings and Vortices

2.1. Introduction

In this chapter the physics of vortices that arise when a U(1) symmetry is broken
by the formation of a Higgs condensate is described. Most of the material in this
section is old and well-known. In fact. most of what is known today about Abelian
vortices was worked out in the fifties in the context of the Ginzburg-Landau model
of superconductivity. [1.] It was only some twenty-three years later, in an attempt
to construct from a gauge field theory strings that obey the Nambu action. that
vortices arising in relativistically invariant gauge field theories were first discussed.
[2.] The discovery by t’Hooft that non-Abelian gauge theories are renormalizable.
even in a phase that spontaneously breaks all or part of the gauge symmetry, and
the experimental success and widespread acceptance of the Weinberg-Salam model
naturally led to a search for similar models with a higher gauge symmetry that would
unify the strong and electroweak interaction in a more complete manner, generally
using a single simple, compact. non-Abelian gauge group G. in order to reduce the
number of adjustable parameters in the theory. This development in turn led to the

study of the string-like defects that arise in many such models.

This chapter summarizes the most important results for Abelian strings. The
next chapter extends the discussion to non-Abelian strings. Abelian strings arising
from the breaking of U(1) gauge symmetry are discussed, both in the context of the
Ginzburg-Landau model and in the context of the relativistically invariant Abelian
Higgs model. The theory of the superconducting state of condensed matter is of in-
terest because the superconducting phase is essentially a Higgs phase characterized
by the property that magnetic flux is confined to vortices. A somewhat extensive
summary of the phase structure of Type I and Type II superconductors at various
values of the surrounding magnetic field Hy is included here because the properties

of these phases offer a simple way to understand qualitatively the structure, inter-



actions, and relative masses of the vortices that arise in the Abelian Higgs model.
The Ginzburg-Landau model and the Abelian Higgs model (considered as a classi-
cal, unquantized field theory) are essentially identical. Except for the absence of a
time-derivative term. the expression for the Ginzburg-Landau free energy is the same
as the expression for the Abelian Higgs action. Solutions of the Ginzburg-Landau
differential equations correspond to time-independent solutions of the Abelian Higgs

model.

2.2. Ginzburg-Landau Model of Superconductivity

In 1950 Ginzburg and Landau published their seminal paper introducing a
phenomenological theory of superconductivity now known as the Ginzburg-Landau
model. [1.] Although the BCS theory of superconductivity [3] is more fundamen-
tal in the sense that it explains superconductivity in terms of microscopic interac-
tions, in practice the Ginzburg-Landau model is often more useful because of the
ease with which it treats spatial inhomogeneities. As Gor’kov showed in 1959, the
Ginzburg-Landau model describes a limiting case of the BCS theory. [4.] In the
Ginzburg-Landau model, the state of the medium capable of being in either a nor-
mal or superconducting phase is represented by a complex scalar order parameter
field ¥(x) whose amplitude squared in some crude sense represents a density of su-
perconducting electrons n,. The overall phase of the complex order parameter field
is physically unobservable and therefore meaningless. The U(1) global symmetry is
generalized to a local symmetry by the introduction of a vector potential A(x) and

replacement of the ordinary derivative with the covariant derivative

(2.2.1) D=(V+ %A).

The gauge invariant current

[xpf[(-zhvm + [(-mvm’f\p] + an2

e*

J =

(2.2.2) 2m*
= ;n* (=ih) - [ZH(D¥) — (D¥)TT]

A (TTD)




represents the current that is due to the flow of the charged superfluid, which in the
language of the BCS theory is a condensate of Cooper pairs with charge e* = —2/e|.
The free energy in terms of A(x) and ¥(x) is

2

7:; {v _ %A}‘I’(I)

FlI(x).A() = [ ds {fnom +3

*

(2.2.3) o -
al) i wte)? t =2
+ == (1) = H(T)(T1T) + -

where fro(T') is the free energy density of the normal phase at temperature 7. The
coefficients a(T') and b(T") that appear in the potential may either be derived from
a microscopic theory or chosen to agree with the experimentally observed values of

the critical magnetic field H. and the magnetic penetration depth .

Physically, the Ginzburg-Landau variational principle, which requires that the
free energy be at a local minimum, is a method of finding static (meaning time-
reversal invariant as well as time-independent) configurations of the system at ther-
mal equilibrium. By setting 6F = 0 with respect to variations in ¥(x) and A(x),

one obtains the Ginzburg-Landau equations

—h? re* \?
e FOVT _
— (v hCA) T 4 a(T)(T )T — H(T)T = 0
(224) VxB=T(V-A)= VA = i:Js
_ 27Te i . . i 471'6*2 ;
= (mc> [‘I’ [(=aV)¥] - [(—:A V) ¥] \If] + — 5 A (T1D).

Let us first consider solutions for which A = 0 and ¥ is constant. Stability
requires that a(T) > 0. for otherwise the free energy would have no lower bound.
When b(T) < 0, ¥(z) = 0 minimizes F[¥, A], indicating that the material is in
its normal phase at T > T.. When 5(T) > 0, the free energy is minimized for
|¥(z)| = b(T)/a(T), implying that
bH(T)
2a(T)

(2.2.5) fs0 = fao —

where fs0 is the free energy density of the uniform superconducting phase. As a



consequence, the thermodynamic critical field [4] is

(2.2.6) He=/4r

Next consider the situation in which a semi-infinite slab of superconducting ma-
terial at (# > 0) is bounded by an empty region for (2 < 0) in which a constant
magnetic field of intensity Hp is maintained parallel to the superconducting surface.
At the boundary of a superconducting sample it is necessary to impose the boundary
condition that the current normal to the boundary vanish. A surface current on the
face of the superconductor, which is spread over a depth of order \, will cause B
to vanish inside the superconductor. Choosing a gauge in which A = ZA(z), one

obtains the coupled differential equations

h2 d2 6*2
(22.7) —5— { e A2(z)}\ll(z) + a(T)[TH(2)T(2)])T(2) - b(T)¥(2) = 0

and

d? drre*?

For weak fields with Hy << H,, ¥ = (b/a) + O(HE). Therefore, for small Hy the

solution inside the superconductor is

(2.2.9) H(z) = Ho exp[—(z/))]
where

_[m*¢? a(T)
(2.2.10) A= e WT)

As Hj increases, |¥(z)| drops near the boundary, allowing the magnetic field to

penetrate deeper into the superconductor. In the limit of weak magnetic fields, the
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description of F. London’s theory for electrodynamics in a superconductor, which
assumes n, to be constant, becomes a valid approximation. However, as the magni-
tude of the applied external field increases, effects non-linear in Hy cause the density

of superconducting electrons to decrease.

In the Ginzburg-Landau theory there is another length scale £, somewhat mis-
leadingly called the correlation length, which is the length scale of the fluctuations
of |¥|. For A = 0 the Ginzburg-Landau equation is

h2
2m*

(2.2.11) ——— V20 4+ o(T)(TT)T — b(T)¥ = 0.
Perturbations about one of the solutions ¥ = (b/a)e’® with 0 < ¢ < 2r that do not
perturb the phase decay (or blow up) exponentially in the linear approximation with

a characteristic length

(2.2.12) £ = n

VRm

which is distinct from .

Let us again consider the case of the thick superconducting slab in a strong
magnetic field. For Hy = H., ¥ = 0 at z = 0. Physically, the vanishing of ¥
at the boundary implies that the region z < 0 could be replaced with a slab of
superconducting material in the normal phase with H = Hy and ¥ = 0. The value
of Hy at which such a boundary is stable can be determined without solving the
differential equation by considering the variation in F as the boundary is moved.
Such variation must vanish, for otherwise the superconducting and normal phases
could not coexist. One finds that [7]

H?
(2.2.13) fs0 = fuo — 8—;

because the energetic cost of expelling magnetic flux must equal the drop in free

energy associated with enlarging the volume of the superconducting region.
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The ratio between these two length scales k = (\/¢) determines the qualitative
behavior of the vortex solutions and the normal phase/superconducting phase inter-
face because the sign of the surface energy depends only on . The surface tension

18

(2.2.14) %
h2 re* a(T) i 2 t 9
+mm(v+%?ﬂﬂ+u34QW)—WUNW)}

which by subtracting the integrated Ginzburg-Landau equation can be simplified to

[ [(H-H)2 T
(2.2.15) mz/d4< &°)~ ERWQﬂ.
—oo

Qualitative arguments allow one to determine the sign of ¢ in the limit of very
small and very large x without evaluating the integral. When x << 1, £ >> A
Consequently, it is energetically very unfavorable to have a large area because flux
must be expelled without a concomitant increase in |¥|. Likewise, for x >> 1,
A >> ¢, and it is energetically very favorable to have a large surface area because
inside the boundary layer ¥(x) can take a value near the minimum of the potential
without expelling much flux. Numerical integration is necessary to determine the

exact value of k¥ at which o = 0. This value turns out to be x = 1//2.

Physically, ¢ > 0 means that the surface is stable because the free energy is
minimized for a surface of minimal area. On the other hand, o < 0 implies that
the surface is a mathematical artefact and does not correspond to a stable physical
solution. The surface is unstable against any perturbation that increases its area, so
the free energy is lowered by creating a phase that is essentially all surface. Such
a mixed state is exactly what occurs in practice. At first the case with x > 1 /2
received little attention because it was thought that for all real superconductors

k << 1/+/2. However, there remained a class of superconductors, the hard or Type
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IT superconductors, whose properties evaded explanation within the framework of
the then existing theories. In 1959 A. B. Abrikosov published a paper discussing the
case kK > 1//2. [6.]

For Type II superconductors, described by x > 1//2, there are two critical
fields. For weak fields with H < H,j, the superconducting phase is stable. However,
at H = H. the energy required to create an isolated vortex inside the superconductor
becomes precisely equal to the drop in energy due to removing the required flux from
the region outside of the surface. As H increases above H,j, vortices continue to enter
the material until a vortex density is reached at which the repulsion between vortices
has raised the energy required to add another vortex sufficiently to match the decrease
in energy that results from removing flux from the exterior. For H.; < H < H.y the

exclusion of magnetic flux is only partial, implying a partial Meissner effect.

2.3. Nucleation of the Mixed State

It is possible to calculate the critical fleld H.o using the linearized Ginzburg-
Landau equation because as H is varied about H.s, the fields 4 and ¥ vary in a
continuous manner, unlike the transition between a Type I superconductor and the
normal phase. In the Type I superconductor, B inside the superconductor varies
discontinuously from B = 0 for H < H, to B = H when H > H,. This fact
means that the Type I superconducting/normal phase transition is a first order
phase transition. In contrast, for Type II superconductors B varies continuously
as Hy is varied near H.3. As Hy increases from H,j, vortices continue to permeate
the superconducting material until at H.y the magnetization of the superconductor
vanishes as [¥| — 0. The phase transition is second-order. For Hy only slightly
below H.z, B differs only slightly from Hy. Therefore, in this regime it is justified

to introduce the ansatz

A(x) = Ag(x) + §A(x)

(231) ¥(x) = §¥(x)

and to consider the linearized equations for §¥(x) and §A(x).
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The Ginzburg-Landau free energy can be divided into two parts—a part quadratic
and a part quartic in ¥. For F' to have a non-trivial minimum, the quadratic part
must have a negative eigenvalue because the quartic part always contributes posi-
tively to the free energy. Whenever the quadratic part has a negative eigenvalue,
the global minimum of F' is nontrivial. When H > H.s, all eigenvalues are positive.
When H = H.s, zero becomes an eigenvalue. To find H.s one solves the Ginzburg-
Landau equation linearized in ¥ in a background with a constant magnetic field
H, finding the highest value of H for which there exists a solution. The linearized
Ginzburg-Landau equation obtained is identical to the Schroedinger equation for a
particle in a constant magnetic field with 5(T') acting as the energy eigenvalue. For
a particle in a constant magnetic field, the lowest energy state has a ground state
energy Ey = hw./2 where
e*Heo
m*c

(2.3.2) We =

is the cyclotron frequency. Setting b(T') = hw,/2 implies that

2m*

he*

c

(2.3.3) He = - o(T).

The solutions of the linearized Ginzburg-Landau equation are degenerate, forming
a vector space of infinite dimension; therefore, the quartic part of the free energy
functional will determine which subspace of this space of solutions can be realized
as H drops below H.s. It has been calculated numerically that as H approaches H,o
from below, the vortices arrange themselves in a triangular lattice, whose spacing

can be determined from H,.s.

2.4. Abelian Higgs Model

In the Abelian Higgs model a complex scalar field is minimally coupled to a U(1)

gauge field. The theory is described by the Lagrangian

(2.4.1) £ = [Dudl1[De] = M(616) — '] — {Fuu P

where D, = [0y + igA,]. The states that minimize the energy of the classical field
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theory consist of solutions of the form A = 0 and ¢(z) = v e'¢, where 0 < ¢ < 2r.

We consider vortex solutions of the form

o(r)y=wv- e~ imd . F(r)

(242 Al =226

where the winding number m is an integer. These solutions are further subject to
the boundary conditions that F'(0) = G(0) = 0 and that F(r),G(r) — 1 as r — 0.
The differential equations for F(r) and G(r) are

_1d [rﬁf} +¢'G*F=F - F3
rdr | dr
(2.4.3) 4 d
— = - 2
dr [r dr (TG)] 9GE™.

Exact numerical solutions have been obtained; however, it is possible to calculate the
approximate character of the vortex solutions by minimizing the energy of a vortex
solution expressed as a function of the core size ro. The core size will lie somewhere

between the inverse scalar mass and the inverse vector boson mass.

One might wonder whether vortices continue to exist in the quantum theory in
which there is a Higgs condensate or whether, alternatively, quantum fluctuations
and radiative effects might not render the vortex solutions unstable. The answer is,
almost without doubt, that vortices are stable in the Higgs phase of the quantized
theory. The stability of the vortex solutions is quite robust because to destroy a

vortex it is necessary to alter the fields at infinity.

2.5. Type I and Type 1I Abelian Vortices

In a certain crude sense, a vortex can be thought of as an isolated island of mate-
rial in the normal phase carrying a magnetic flux surrounded on all sides by material
in the superconducting phase from which all magnetic flux has been expelled. The

interface between the two regions contributes a surface energy roughly equal to its
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area multiplied by the surface tension o calculated in the previous section. This anal-
ogy suggests that there is a profound, qualitative difference between the properties

of Type I and Type II vortices.

For Type I vortices there is an attractive interaction at close distances when the
cores start to touch, and for vortices that carry a large amount of flux, the energy
per unit flux is smaller. Since £ >> A, the magnetic flux resides in the inner part of
the core or core surface. So when vortices come close to each other so that the cores
begin to overlap, the energy can be lowered if the vortices coalesce, smoothing the
variation in |¥|. By trying to form a single vortex, the pair reduces its surface area

and thus also its total energy.

On the other hand, in Type II vortices since there is a negative surface energy,
only the vortices carrying a flux of unit magnitude are stable. Vortices repel because
when they are brought close together, the magnetic fields interfere in a way that

increases the total energy.

The qualitative discussion here is confirmed by numerical experiment. [8.] In
fact, at £ = 1/4/2 the vortices are found not to interact at all. It has been shown
rigorously using a special case of the Atiyah-Singer index theorem that in this case

n-vortex solutions of minimal energy have a 2n-dimensional degeneracy. [9.]

2.6. Vortices, Discrete Symmetry, and the Aharonov-Bohm Effect

In the Abelian Higgs model, if the charge of the Higgs field is equal to the
quantum of electric charge e, then there is no long-range interaction between the
vortices and the charged particles of the theory. The quantum of magnetic flux for

a particle of charge ¢ = me is

(2.6.1) P =2 _ L. (@) _1og,
gc m ec m

where ®¢ is the quantum of flux with respect to a particle that carries a charge equal

to the quantum of charge e. Therefore, a vortex with winding number M will carry
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an integral number of flux quanta defined with respect to a particle with charge g,

and there will be no Aharonov-Bohm scattering.

However, if the charge of the field that condenses is a non-unit integral multi-
ple k of the charge quantum e, then vortices will carry flux in multiples of ®¢/k,
and charged particles whose charge is not divisible by & will experience Aharonov-
Bohm scattering. This Aharonov-Bohm scattering can be used to measure the flux
of the vortex mod k, or alternatively the charge of the particle mod k. The unbroken
symmetry group is Z; and its charge is measurable. The existence of such discrete
charge and operators for measuring it have been discussed. [10,11.] Another inter-
esting property of such vortices is the possibility to construct particles that obey
fractional statistics. [12, 13.]
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Chapter 3

Some Remarks on Non-Abelian Vortices

3.1. Introduction

In this section the classification of non-Abelian vortices and some of the differ-
ences between Abelian and non-Abelian vortices are discussed. Like Abelian vortices,
non-Abelian vortices have cores of finite size in which their mass and magnetic flux
are concentrated. Outside the core the difference of Tyg from its vacuum expectation
value and F}; decay exponentially, and a local observer who is far away and unable
to travel around the vortex can see nothing but a uniform vacuum. Whereas the
last section discussed in quite a bit of detail the energetics and core structure of
Abelian vortices, this section and the following sections shall concentrate almost ex-
clusively on the asymptotic structure of the non-Abelian vortices, idealizing vortices
as pointlike objects without any internal structure. Most of the discussion about
vortices can be extended in a straightforward manner to cosmic strings in three di-
mensions. When such an extension is obvious, we shall just discuss the case for
vortices. When vortices are idealized as pointlike objects without internal structure,
one can equivalently remove the pointlike singularity from the spatial manifold, cre-
ating a multiply-connected spatial manifold. The approximation that vortices are
pointlike is valid at energies much lower than the symmetry breaking scale because

the vortex size is approximately equal to the inverse of that scale.

Except for corrections that decay exponentially with distance from the vortex,
far from the vortex, |¥| = ¥q, (DY) = 0, and F,, = 0. Therefore, in any compact
region that does not enclose any vortices, it is possible to choose a so-called “unitary
gauge” in which ¥(z) = ¥y and A, = 0. However, if we consider an annular region
(ra < r < rp) that encloses a vortex at » = 0, no such gauge choice is possible. If
one places a cut across the annulus making it simply connected, then it is possible
to make a gauge transformation to a unitary gauge; however, at the cut the gauge

transformation must be singular and A, would be infinite there.



20

3.2. Magnetic Flux and the Classification of Vortices

In the introduction it was described how topological defects may be classified
by enclosing the defect with a sphere 5™ and determining the homotopy class of
the mapping from that sphere into the manifold of classical vacua M = G/H. For
vortices in two spatial dimensions and the strings in three dimensions, the relevant
homotopy group is 71(M,z¢), also called the fundamental group or the Poincaré
group. [1.] A gauge is chosen so that at some arbitrary point zq far from the core
¥(zo) = ¥o. A path C starting and ending at z¢ and enclosing the vortex exactly
once in the counterclockwise direction induces a mapping f : S! — G/H, whose
homotopy class is invariant under continuous deformations of C that do not make C
cross through the core of the vortex. When the homotopy class of f is non-trivial, the
stability of the vortex is insured by a topological conservation law. It is not possible
for a local process to make the vortex disappear because the vortex has “hair” at
spatial infinity. Viewed from another perspective, a process that lowers the energy
of a state by destroying a vortex would have to tunnel through an infinite potential
barrier of finite thickness and, hence, cannot take place, at least not at any order
of the semi-classical approximation because in the Euclidean field theory there is no

trajectory with finite action that connects the two states.

Consider a field theory consisting of a Higgs field ¥ minimally coupled to a gauge

field whose symmetry group is G and that is described by the Lagrangian
(3.2.1) L= %(Duxp)(pw) — V9] — ;;F;f,,F“’“’.

There may be other additional fields, but because they do not condense, they are
not relevant to the discussion here. Here the potential V is symmetric under G in
the sense that V[g¥] = V[¥]. Since there is spontaneous symmetry breaking, V
takes a minimum at ¥ # 0. We shall assume that there is no accidental degeneracy,
meaning that if V(¥) = V(¥y), then for some g € G, ¥ = g¥. Define the manifold
of classical vacua M as the set of ¥ for which V is minimum. Let Hy = {h €
G|h¥o = ¥o}. Then the subgroups H(¥g) and H(¥) are related by conjugation so
that H(¥) = gH(¥g)g~! because ¥ = ¢,.
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For this model, determining whether there exist stable vortices is equivalent to
determining whether the fundamental group 71(G/H) is non-trivial. At this point
there arises an ambiguity as to what is the correct Lie group G of the theory. A
gauge field theory is usually described in terms of its Lie algebra G, the fields of
the theory transforming according to various representations of G. Corresponding
to a particular Lie algebra G, there are in general several distinct Lie groups that
are locally isomorphic (because they share the same Lie algebra) but not globally
isomorphic. Among these locally isomorphic groups there exists a largest group G
that is simply connected and is the universal covering group of each of the other
locally isomorphic groups. Each of the locally isomorphic G may be formed from G

by dividing out a subgroup of the center of G, which we shall denote Z(G).

We are only interested in compact Lie groups because since tr[F,, F#*] must be
positive definite in Euclidean space to get an energy that is bounded from below), we
need a positive definite, group invariant quadratic form. It suffices to consider the
Lie groups isomorphic to the simple compact Lie algebras. Any compact Lie group

G can be expressed as a direct product of U(1) factors and simple Lie groups so that

(2]
(3.2.2) G2 UMW) xGix...x Gy

The compact simple Lie algebras consist of the special unitary groups SU(n) for
n > 2, the two series of orthogonal groups SO(2n) and SO(2n + 1) for n > 1, and
the five exceptional groups. The special unitary groups SU(n) are simply connected
in their fundamental representations. By Schur’s lemma, if M € Z[SU(n)] then
M = cI, implying that ¢® = 1. Therefore, the elements of the center are the unit
matrix I multiplied by the n roots of unity, so that Z[SU(n)] & Zy. SO(2n + 1)
is doubly connected, its covering group being Spin(2n + 1). By Schur’s lemma, the
center of SO(2n + 1) is trivial; therefore, Z[Spin(2n + 1)] & Zy. For SO(2n) where
n > 2 the group Spin(2n) in the universal covering group, and the projection mapping
™ 1 5pin(2n) — SO(2n) is 2 to 1. However, since 2n is even, —I € Z[SO(2n)].
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Therefore, Z[Spin(2n)] is isomorphic to Zs. The only groups that remain are the

exceptional groups: Go, Fy, Eg, and Eg.

We shall choose G = G so that G is simply connected. Now we are prepared
to determine 71(M,zq). Since M = G/H, we shall consider paths in G that start
and end in Hy. Because G is simply connected, paths that start and end in the
same component of Hy can be deformed into the trivial (constant) path. Therefore,
m1(M, xo) = mo(M, zo), whose elements correspond to the connected components of
Hy.

The classification of vortices according to homotopy classes of
(3.2.3) f:8' - G/H

where f(8) = ¥(Re¥) for (R > Reore) determines which vortices cannot be deformed
into each other or into the vacuum in a continuous manner; however, this classifica-
tion is incomplete because there is also the gauge field A, chosen so that (D, ¥) = 0.
When H has a continuous part, there are several ways to choose this gauge field, and

a finer classification of vortices is needed.

Consider the operator

(3.2.4) h(C,z0) = Plexp(—ig / dz' A,)]
(C,z0)

where P indicates path ordering. The operator measures non-Abelian magnetic flux

and transforms under gauge transformations as
(3.2.5) R(C, z0) — QUze)M(C, z0)zq) ™"

If we select a component of H not connected to the identity, then we can fix ¥(z)
around the vortex. To minimize the energy A,(z) must be chosen so that D, ¥ = 0.
However, because there is residual continuous symmetry, there are a variety of ways
to choose A, that will result in different values of h(C,z¢) within this connected

component.
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These different values of A(C, zp) within the connected component correspond to
different types of vortices. However, there does not necessarily exist a stable vortex
for every value of A within a connected component of H because no topological
conservation law prevents h from moving within a component of H. But if H; acting
on an element A by conjugation creates a non-trivial orbit, then at the classical level
all of these vortices will be either stable or unstable and will have the same masses
and excitation spectra. However, as is discussed in Chapter 5, quantization lifts this

degeneracy.

3.3. Global Non-Realizability of the Unbroken Symmetry Group

A property peculiar to vortices with non-Abelian flux [non-Abelian meaning here
that h(C,zo) does not lie in the center of H(zg)] is that in the presence of such
vortices it is not possible to realize the unbroken symmetry H globally in the spatial
manifold with the cores of the vortices excluded. Instead of speaking of the unbroken
symmetry group H as an abstract group without taking into account its embedding
in G, we have been careful to specify the point at which H is the unbroken symmetry
group. Thus H(z) is the group that stabilizes ¥(z), and is well-defined as long as
is not one of the core singularities. The vector field 4, provides a natural connection
between H(z) and H(y) dependent only on the homotopy class of the path that

connects z to y.

In a background with no vortices it is always possible to define a mapping that
maps M x H into the various H(z), where M is the spatial manifold with the
vortex core singularities excluded. We shall call this mapping a global realization
of the unbroken symmetry H. [3,4.] However, in the presence of vortices carrying
flux that does not lie in the center of H, no such continuous mapping can be defined
because of a topological obstruction. Physically, the difficulty lies in the fact that a

global gauge transformation would change the flux of the vortex.

Consider a background with a single vortex carrying flux h(C,zg). If we take

H(zo) and parallel transport its elements around the vortex along C (or any other
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path homotopic to C), then the induced automorphism
(3.3.1) R(C,z¢) : H(zo) — H(zp)

maps h — h(C,zo) h h=1(C, zp).

Let us consider the action of the automorphism on the continuous part of the
symmetry H. Suppose that H. has k continuous generators: T1,...,T}. Then we can
normalize the generators so that < Ty, T >= 6, where < , > indicates the Cartan

or Killing form. Define the matrix M,; by the equation
(3.3.2) TaMuy = h(C,z0)T3h(C, zo) ™ .
M € O(k) since the Killing form is invariant; therefore, M can be diagonalized with

a unitary transformation. The generators with unit eigenvalues correspond to the

part of the unbroken symmetry group that can be globally realized.
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Chapter 4—Discrete Non-Abelian Vortices

4.1. Introduction

Recently there has been much interest in “local discrete symmetry,” which arises
when a gauge theory based on the symmetry group G has a vacuum containing a
Higgs condensate < ¢ >3 0 that breaks G to a subgroup H in such a manner that
H is either a discrete group or a continuous group with more than one connected
component. [1,2,3,4.] When H is discrete, all of the gauge bosons acquire a mass
of the same order as the symmetry breaking scale and become irrelevant at low
energies. In the effective field theory that describes physics in the absence of vortices
at energy scales much below the symmetry breaking scale, H becomes a discrete
symmetry of the effective Lagrangian. One of the few remnants of the fact that the
discrete symmetry H resulted from the breaking of a continuous, local symmetry
is the existence of stable vortex excitations, which in 2+1 dimensions are pointlike
objects and cosmic strings in 341 dimensions. In the Higgs phase whenever H
(considered as a subgroup of the simply-connected gauge group G) has a discrete

part, there exist stable vortices.

This paper discusses some of the peculiarities that result if H is non-Abelian.
When H is Abelian, vortices do not interact except at short distances when their
cores overlap. When H is non-Abelian, however, vortices experience a long-range,
Aharonov-Bohm interaction that is a consequence of the topology of the vector po-
tential A, that surrounds the vortices and the manner in which it is continuously
deformed as vortices move. Aharonov-Bohm vortex-vortex scattering has already
been noted by Wilczek and Wu, who calculated a scattering cross section for two
vortices. [5.] In this paper we discuss the N = 2 case where N is the number of
vortices using a different formalism and discuss the complications that result when
N > 3. The presence of a third vortex introduces new features, even when the third
vortex is distant from the two other vortices. When a vortex passes between two

vortices, the relation between the two vortices is altered. Consequently, when a vor-
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tex is moved through a background with many vortices, the state of the background
is changed in a way that depends on the homotopy class of the path, and it is not
possible to consider the background as a fixed, classical object. One must consider

the whole system quantum mechanically.

The organization of the paper is as follows. In Section 4.2 vortices are regarded
as a classical background upon which the light fields propagate. The Aharonov-
Bohm scattering of charged particles by vortices is discussed as a means of perform-
ing measurements on vortices to determine the part of the global structure of the
< A, > background that cannot be gauged away. To make the discussion concrete
a specific model in which SU(2) breaks to the eight element quaternion group Q is
introduced. In Section 4.3 vortex-vortex interactions are studied, first by examining
how a classical vortex background evolves as the singularities are moved, the motion
continuously deforming the surrounding classical gauge field. The fact that final clas-
sical field configuration depends not only on the final positions of the singularities,
but also on the homotopy class of the path used to move the singularities to their
final positions necessitates considering quantum superpositions of gauge inequivalent
A, backgrounds that surround the singularities. A quantum theory is thus derived
in an ad-hoc manner. In Section 4.4 a quantum theory of the dynamics of non-
Abelian vortices is developed in a more formal and systematic way based on a path
integral. The classical vortex backgrounds from Section 4.2 serve as a basis for the
quantum states of a vortex system. In the concluding remarks the exotic statistics
of non-Abelian vortices and the similarities of the many non-Abelian vortex system

to the many-anyon system are discussed.

4.2. Physics in a Classical Vortex Background

In the Higgs phase of a gauge field theory in the absence of vortices or in a simply
connected domain containing no vortices, it is always possible to choose a unitary
gauge in which the expectation value of the Higgs scalar field < ¢ > is constant
everywhere. In this section we shall treat the expectation values of ¢ and A, as

classical fields because the quantum fluctuations of these fields are not essential to
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the physics considered here. We consider the case in which H is finite and non-
Abelian.

As a specific example. consider the SU(2) gauge theory with a real Higgs field
that transforms under the five-dimensional real representation. [2] We may represent

the Higgs field as a real, traceless, symmetric 3 x 3 matrix transforming as
(4.2.1) M — OMO™!

where O is the SO(3) element corresponding to an SU(2) element. If M acquires a

non-zero vacuum expectation value
(4.2.2) < M >=diag[\1, A2, — (M1 + A2)]

where none of the eigenvalues are equal, then the group H considered as a subgroup
of SO(3) has the structure of the Abelian group Z2 x Z3 of 180° rotations about the
three axes, but when lifted to SU(2) becomes the eight element quaternion group Q
generated by the elements 7, 7, and &, which satisfy the relations ;2 = ;2 = k2 = —1,
1) = —j1 = k, and the two additional relations that result from cyclically permuting

E,}', and k in the previous relation.

Because the continuous part of the gauge group is completely broken, all of
the gauge bosons acquire a large mass and become irrelevant at energy scales of
interest here. Whenever a group G breaks to a discrete group or a group with several
connected components (which can be written as a semi-direct product of a finite
group and a connected Lie group), there exist stable vortices. There is an ambiguity
in defining the Lie group G. Usually a field theory is defined in terms of its Lie algebra
G , which acts upon the fields of the theory through various representations of G.
Corresponding to a given Lie algebra G, there exist in general several distinct Lie
groups that are locally isomorphic, but have different global structures and hence are
not globally isomorphic. Among these different locally isomorphic Lie groups there

exists a unique group that is simply connected. It is the largest of these groups,
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and all of the other locally isomorphic Lie groups can be formed from this group by
dividing out a discrete subgroup of the center. In the sequel G shall always denote
the simply connected group. In the previous example SU(2) is simply connected. Its
center is Z3 and SO(3) = SU(2)/Z,. When G is simply connected, the elements of
H C G not equal to the identity identify the distinct vortices of the theory.

Before discussing the general case of N vortices, we consider a single vortex in
two spatial dimensions. In the presence of a vortex it is no longer possible to choose
a unitary gauge because the Higgs field ¢ cannot be continuously deformed to a value
constant everywhere. This topological fact is what provides stability to the vortex.
We shall ignore the core of the vortex and idealize it as a point singularity. The size
of the vortex core is of the order of the inverse symmetry breaking scale, making the
vortex almost pointlike at low energies. Outside of the core A, is pure gauge because
Fuy = 0 to minimize the magnetic energy. Locally, but not globally, A, can be set
to zero by an appropriate choice of gauge. For an oriented, closed curve C starting

and ending at zo and enclosing the vortex, we define the operator

(4.2.3) K(C, z0) = Plezp(i / do' 43)].
C

» L0

This integral is invariant under continuous deformations of C that keep the basepoint
zo fixed and avoid the singularities at the vortex cores. h(C,z¢) € H(zg) because
h(C, z9) acting on the Higgs field parallel transports ¢(zg) around the curve back to

its original value.

Now suppose that there are N vortices fixed at the positions z1, 29, ..., zy in the
spatial plane R? and choose a basepoint zg from which to start and terminate paths.
h(C,zp) is defined as before. If we define M = M(z1,z2,...,zx) as the punctured
plane consisting of R? with the points z1, 29, ..., £y excluded, then the elements of the
fundamental group 71 (M, 2¢) are homotopy equivalence classes of closed curves based

at 2o, and the integral is well-defined on these equivalence classes. The mapping

(4.2.4) h:mi(M,2q) — H(zo)
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is a homomorphism between the groups. As will be shown, the homomorphism A
completely describes the vortex background except for a physically irrelevant choice
of gauge, and for every mapping h between the groups that is a homomorphism there
exists a vortex configuration described by the mapping ~. For IV punctures m1(M, zg)
has the structure of the free group generated by NN elements, which we shall denote
Fy. To choose a set of generators of 71, we select N paths that enclose each of the
N vortices. When N > 1 there is no natural way to choose the path from z( that
encircles a particular vortex because the different ways to thread a path between
the other vortices produce homotopically inequivalent paths. For example, in Figure
4.1 there are two vortices A and B. A basepoint zg is chosen. The paths a and o’
indicated in Figure 4.1(a) and 4.1(b), respectively, are homotopically inequivalent. If
the basis for the fundamental group 71(M, zo) indicated in Figure 4.1(c) consisting
of a and A is chosen, then a = « and @’ = Saf~!. The different threadings a and o'
around the vortex A are related by a conjugacy transformation. More generally, if

! merely represent different threadings. The class of

v € m1(M, zp), then « and yay™
equally valid threadings around a vortex is a conjugacy class in Fly, which contains
an infinite number of elements. If H were Abelian, then this inequivalence would
be irrelevant because the inequivalent paths would map into the same element of
H(zo); however, such is not the case when H is non-Abelian. The structure of Fy
is described in the following manner. Free group elements consist of strings of the
generators raised to integer powers. The only relation available to simplify strings
is the trivial relation: g™g¢" = ¢g™*™. With this relation strings can be simplified to
a minimal form. Two strings with different minimal forms describe distinct group
elements. F is of infinite order and is the largest group generated by N elements.
All other groups generated by N elements are isomorphic to Fy /S where S C Fy is
a normal subgroup. To describe a homomorphism of Fj into some group it suffices

to specify into which elements a set of generators of Fy are mapped.

Although the assignment of a group element to a vortex depends on the threading
of the path surrounding the vortex from the basepoint to the vortex, the conjugacy

class of group elements to which the path is assigned is invariant both with respect to
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the threading and the choice of basepoint. Different threadings of paths surrounding
just one vortex in m1(M, zo) lie in the same conjugacy class; therefore, their images
in H(zo) lie in the same conjugacy class. Next we consider invariance with respect
to basepoint. Suppose that 27 and 22 are two basepoints. The association between
H(z1) and H(z2) is generally path dependent. Let C, and C; be homotopically
inequivalent paths from 2; to z2, and let A* be the magnetic flux contained in the
closed path C = Cy~'C,. The isomorphisms pg : H(21) — H(z2) and py : H(z1) —
H(z2) defined by the integral

(4.2.5) p = P[exp(i/d:ci;‘li)]

are obtained by integrating along C, and Cj, respectively. The vector potential A4;
that appears in the integral is in the adjoint representation because it is the adjoint
representation that acts on the group elements. The isomorphisms are equivalent iff
h* € Z(H(z1)), which is the center of the group H(z1). However, even when the
homomorphisms are inequivalent, the mapping of conjugacy classes into conjugacy
classes is path independent. When there exist vortices containing flux not in the
center of H, the fact that the isomorphisms are path dependent means that the
symmetry H cannot be realized globally. In this case there exists no smooth mapping

from the abstract group H into the various H(zg). [3.]

The Wilson loop operator can be used to identify the conjugacy class of a vortex.
Unlike R(C, zp), the Wilson loop operator is gauge invariant, but representation
dependent. W(C') and h(C, z¢) are related in the following manner. Let the index
« label the inequivalent, irreducible representations of H and I'*(h) be the matrix into

which h is mapped by the representation «. Then the Wilson loop is the character
(4.2.6) W*(C) = Tr[l*(h(C, z0))].

For a closed loop C, measuring W*(C) for all representations uniquely determines

the conjugacy class of the flux enclosed by C but does not determine A(C, zg) more
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exactly. This is because the number of conjugacy classes is equal to the number of
inequivalent, irreducible representations, and the orthogonality theorem for charac-
ters insures that knowledge of all the characters of a group element determines its

conjugacy class uniquely.

To identify the physical states of the pure vortex system, one must consider
the effect of gauge transformations and associate configurations differing by a gauge
transformation with the same physical state. Let © : R? — G be a smooth mapping.

Then the mapping A transforms as
(4.2.7) h(C,zg) — Qz)R(C, 20)Qzo) L.

To fix the gauge we fix ¢(zo) at the basepoint. (We can choose the corresponding
unitary gauge in a open, simply-connected region containing zp and imagine an
observer living in that region who ventures out to discover the global structure of
the space.) This fixes H(zg), which is the embedding of the abstract group H in G.
It might appear that there still remains a residual freedom to perform discrete gauge
transformations lying in H(zg), but this is the case because in reality there are other
fields that transform non-trivially under H(zg¢) and we want to be able to distinguish

between different relations between these fields and the vortex background.

Among the paths in 71(M, z9), the path surrounding all of the vortices plays a
special role. This path measures the combined flux of all of the vortices at spatial
infinity. Since no local operator can change the field at infinity without violating

causality, the conservation of total flux is a superselection rule.

We now discuss Aharonov-Bohm scattering of charged particles by fixed vor-
tices. [6.] The light fields of the theory are grouped into multiplets that transform
irreducibly under the large group G. Under the remaining unbroken symmetry H
these multiplets are, in general, reducible, and the fields can be further reduced
into multiplets that transform irreducibly under H. Since H is finite, there exist a
finite number of inequivalent, irreducible representations of H equal to the number

of conjugacy classes of H. These representations can be divided into two classes:
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the one-dimensional representations and the multidimensional representations. An
Abelian group has only one-dimensional representations. A non-Abelian group has

at least one representation of dimension greater than one.

The representations of the quaternion group are the following. There exist four
one dimensional representations—a trivial representation I'(1) mapping all group
elments into 1, a representation, which we shall call '), such that ; 1, ] —
~1,k + —1, and TU) and T®), which are defined analogously. There also exists a
two-dimensional representation, which we shall call I'?)| that maps the generators

of Q as follows
(4.2.8) 71—~ —ioq, j —~ —igg, k— —ios

where ¢; are the Pauli matrices.

To describe the propagation of particles, one must sum over paths. Each path
is given a kinetic factor, the complex phase obtained by integrating the Lagrangian
in the absence of the gauge field A, along the path. Suppose that the particle
propagates from P to P’'. The respective multiplets ¥ at P and ¥’ at P’ re-
side in different vectors spaces, which we shall call V(P) and V(P'), respectively.
The background gauge vector potential A, defines a connection between the vector
spaces. For each homotopy class of curves from P to P’ there exists a connec-
tion from V(P) to V(P') obtained by integrating A,. To calculate the propagator
K(P,t; P',t') : V(P) — V(P'), one must form a sum over homotopy classes of curves
from P to P'. The terms in this sum consist of the transformation from V(P) to
V(P') corresponding to parallel transport along a path in the homotopy class multi-

plied by the ordinary path integral restricted to paths lying in the homotopy class.

For one-dimensional representations, the particle-vortex scattering obtained is
completely analogous to the scattering of electromagnetically charged particles by
infinitely thin tubes of magnetic flux. For a single flux tube the only parameter of

importance is the relative phase e’ between the two paths. The scattering cross
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section is the same as that calculated by Aharonov and Bohm [7]

do 1 sin?¢ 1
4.2.9 — = D
(4.2.9) dd k27 sin?(4/2)

where k is the momentum of the incident beam in units for which & = 1.

For particles in representations of dimension greater than one the situation be-
comes more complicated. [8,9,10.] For a given vortex described by the group element
h it is possible to choose a basis for the ¥ multiplet in which I'*(h) is diagonal. In this
basis T*(h) has the form I'*(h) = diag[e'®, ..., e*?] because the matrix is unitary.
Traversing around the vortex (or, alternatively, moving between two points along
paths in different homotopy classes) merely produces a complex phase. However,
one cannot diagonalize all of the matrices of the representation simultaneously, for

otherwise the representation would be reducible.

Physically, it is possible to decompose a beam of particles traveling at the same
momentum in a fixed direction into its diagonal charges with respect to a given group
element h. A diffraction grating can be constructed out of vortices by dividing the
spatial plane in half by a line on which vortices of type h are placed at equally spaced
intervals. A unitary gauge is chosen on each half plane. On the incident side the

wave function is the plane wave
(4.2.10) U(z) = ge'**

where a basis is chosen such that I'*(%) is diagonal. After the beam emerges on the
other side of the grating, for the wave function of each component there is a different
relative phase between adjacent gaps in the grating. This phase is equal to the
corresponding diagonal entry in I'*(h). Consequently, each component is scattered
in a distinct direction. Thus it is possible to separate the beam into its various

charges with respect to the group element A.

For the quaternion group we consider a multiplet that transforms according to

I'?). With a  grating the beam can be split into its & charges. Suppose that only
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one component is kept and then passed through a j grating. Beams of ; and —)
charge emerge with equal intensity. Out of each of these beams both types of k
charge can be regenerated by passing the beam of definite j charge through another

k grating. This situation is very analogous to the Ky — K system.

The Aharonov-Bohm effect provides a means by which an observer situated at a

basepoint z( can measure the mapping
(4.2.11) h:mi(M,z) — H(zp)

by Aharonov-Bohm scattering discretely charged particles off of the vortices in the
background. We considered two mappings A’ and h” related for some h* € H(z)
by A" = h*h'h*~! to be distinct notwithstanding that they are connected by a
gauge transformation because when charged light fields are added to the pure vortex
system, we want to be able to distinguish different relations between the vortices and

the charges.

In this paper we have used the fundamental group 71(M, z9) to describe the gauge
field background of a vortex configuration. Another method is to make the punctured
plane simply-connected by introducing cuts. [2,5. ] In this simply connected region
a unitary gauge can be chosen, setting ¢ = constant and A, = 0. Across the cuts
Ay becomes singular. Consequently, for covariant derivative D, = (Ou + tgAL)
of the matter fields to be continuous across the cut, the matter fields must obey
a discontinuous matching condition across the cut. The positions of the cuts are
arbitrary because the cuts can be moved by singular gauge transformations. Whereas
the method with cuts involves making a choice of gauge at every point, the method
presnted here based on the fundamental group involves only making a choice of gauge

at a single point zy.

4.3. Vortex-Vortex interactions

In the previous section we described the physics of a vortex background in which

vortices were placed at fixed locations in the spatial manifold. We saw that a classical
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vortex background with N vortices is described by specifying both the positions
x = (21,22, .., £y) of the vortices and the mapping of the fundamental group of the

resulting punctured space M(x) to the unbroken symmetry group

(4.3.1) ha : T (M(x), z0) — H(zo)

with respect to some basepoint zo. These classical vortex backgrounds will serve
as a basis of quantum states for the Hilbert space describing the vortex system in
the same way as the states |z > serve as a basis for the Hilbert space of states of a
non-relativistic particle moving in a single dimension. In this section it will be shown
that when the singularities x = (z1,z32,....,zn) are moved along some continuous
path to new positions y = (y1,¥2, ..., yn), the induced mapping describing the new

configuration

(4.3.2) hy : mi(M(y),y0) — H(yo)

that results from continuously deforming the potential A4; while keeping Fj; = 0
depends on the homotopy class of the path used to move from x to y. The easiest
way to determine hy : 71(M(y),y0) — H(yo) is to drag a set of paths generating
m1(M(y)) back to w1(M(x)) and to map corresponding generators into the same
elements of H(zo). The dependence of the final configuration on the homotopy class
of the path from x to y is what causes the Aharonov-Bohm effect for non-Abelian

vortices.

Consider first the simplest case with only two vortices. In Figure 4.2(a) there
are two vortices A and B and an observer at basepoint zg. As indicated in Figure
4.2(b), the position of vortex B is fixed, and we move vortex A to a new position A’
along two inequivalent paths labeled 1 and 2. Let a and b in Figure 4.2(c) be a set of
generators of w1(M, zg) for the initial configuration and o’ and ¥ in Figure 4.2(d) be
a set of generators of m1(M’, zg) for the final configuration. Suppose that the gauge

field of the initial configuration maps @ into A, and b into hp and that in the final
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configuration a’ is mapped into ke and o' into hy. If 4 is moved to A’ along path 1,
then

ha’ = haa

4.3.3
(.3.3) hy = hy.

However, if A is moved to A’ along path 2, then

har = (hyha)ha(hoha) ™Y,

4.3.4
( ) hy = (hbha)hb(hbha)"l.

Unless h, and hy commute, different final configurations result. When the system
propagates quantum mechanically from the initial state shown in Figure 4.2(a), after
some finite time if vortex A has moved to A’, the flux at A’ measured relative to the

path &' will have non-zero probabilities of being either hq or hyhahp™!.

Next we allow A to wind around B an arbitrary number of times. With B fixed
we allow A to move its new position A’ via all possible homotopy classes of paths.
The homotopy classes can be classified by a winding number around B. It suffices to
consider what happens when A’ moves around B back to its original position winding
around n times in the clockwise direction. The group element a becomes conjugated

by k.. We may write
(4.3.5) Ra(n) = hpa"ha(0)hp, ",

Since H is finite, there must be a smallest n such that he(n) = h,(0). For the
Aharonov-Bohm effect with two vortices it is convenient to choose a new basis for
the hqe(7). If one defines

n-—-1 .
(4.3.6) 00) = <= X expliznin) ha(k),
k=0

then after winding M times, the state q(j) acquires a phase (e27%)M. The fact

that this is a simple phase makes the situation completely analogous to that of an
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electromagnetically charged particle winding around a tube of magnetic flux. It
is worth noting that one cannot state in a manner independent of the choice of
position of the observer that A winding around B changes the state of the flux tube
B. Suppose that we had chosen z¢ situated between B and A'. Then B would not
become conjugated. From the point of view of an observer near a vortex, the motion

of distant vortices has no local effect.

Before discussing more complicated situations, we first consider how the relation
between two vortices is altered when a third vortex passes between them. To each
homotopy class of paths connecting two vortices there is assigned a combined flux
of the two vortices. Let A and B be two vortices and C be a representative path
from a homotopy class of paths from A to B. Suppose that as indicated in Figure
4.3(a) C(C) is a closed, counter-clockwise oriented path containing the point zg that
encloses only C. The combined flux of the vortices takes a value in the group H(zg).
This flux could be identified independently of a basepoint up to a conjugacy class,
which is always globally well-defined. Vortices A and B are compared along a path
C before and after a vortex C' passes between them cutting through C as indicated
in Figure 4.3(b). Figure 4.3(c) shows a set of generators of the fundamental group
of the punctured space. Initially the combined flux is h(aB). However, after C
passes through C, the combined flux becomes A(yay~!3). In the case where H is the
quaternion group, suppose that A(a) = k(8) =7 and h(y) = j. If A were moved to
B along C, the two vortices could, in principle, fuse to form a single vortex of flux
—1. However, if C first passes through C before the vortices are brought together,
then the two vortices could annihilate and radiate their mass away, or create any

combination of vortices with total flux 1.

This phenomenon makes the situation in which N > 3 more complicated. When
there are many vortices, it is not possible to quantize a single vortex and allow it
to propagate through a classical vortex background experiencing Aharonov-Bohm
scattering because the path taken by the vortex changes the background. For two
vortices it is possible to regard one of the vortices as a classical object by fixing the

basepoint an infinitesimal distance from the classical vortex, but when the number
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of vortices is increased, no such simplification is possible.

Let us consider again the two vortex scattering, but now in the presence of a
third vortex. As indicated in Figure 4.4, A is allowed to move past B to A’ along
the same two paths as before, but now in the presence of vortex C. We draw a path
C from B to C that is cut by path 2. Now let A propagate to its new position at A’.
In general there will be non-zero amplitudes for propagation along both paths, and
the flux of the vortex at A’, which depends on the path taken, will be indeterminate.
However, if we measure the relation between B and C along C, which is the combined
flux of the two vortices when the two vortices are brought together along path C,
then the flux of the vortex at A4’ is no longer indeterminate. Measuring the relation
between B and C determines whether the path taken by A to A’ cut the path C
and, hence, whether path 1 or path 2 was taken. As a consequence of measuring this
relation, the wave function of the vortex background is collapsed, giving the vortex
A’ a definite flux. For a system in which B is fixed, C is fixed far away, and A may
wind around B an arbitrary number of times, the quantum states of the system are
specified by the coordinates of the A vortex plus the flux of the 4 vortex and flux of
the C vortex. For a given flux of one vortex, the flux of the other vortex is completely
determined. If we want to consider just various windings of 4 to A’ around B as
before, we would have to sum over products of states of the A and the C vortices.

We can measure the final state by measuring either A or C.

The quaternion group has two special properties that allow us to choose a basis
for which homotopically inequivalent paths merely produce relative complex phases,
even when many vortices are present. For the quaternion group, when the group
acts on itself by conjugation, the resulting adjoint representation can be reduced to
a sum of one-dimensional representations. Furthermore, since elements of the same
conjugacy class are related by elements of the center of the group, elements of the

new basis conjugate other elements in exactly the same manner. Set
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It >=—=[|+:>+|—1>],

<

(4.3.7)

[AW)

I~ >=—=[+:>—|—i>]

V2

and define |J* >, |J~ >, |[KT >, and |A~ > in an analogous manner. These

superpositions correspond to various one-dimensional representations of H. All of

the + representations are trivial. |I~ > transforms according to T()(h), |J= >

according to T'U)(h), and |K~ > according to T*)(h).

4.4. Path Integral Formulation and the Braid Group

In this section we formulate a quantum theory for a pure vortex system using
the Feynman path integral formalism. The path integral presented here provides
a natural framework for discussing vortex-vortex scattering due to the Aharonov-
Bohm interaction and describes the long-range physics of vortices exactly. However,
because vortices are considered pointlike objects without internal structure or short-
range interactions, short-range effects are ignored in this formulation. It is also
assumed that the total number of vortices is conserved and all topologically allowed
types of vortices are stable. In the conclusion we shall sketch how these defects can

be remedied by introducing vertex interactions.

For a single vortex the path integral is trivial. The only parameter needed to
describe the vortex dynamics is the vortex mass, and the path integral is exactly
the same as the path integral for a free, non-relativistic particle of the same mass.
There is no need to include a description of the surrounding gauge field in the wave
function because the flux carried by the vortex, which is the flux measured at spatial

infinity, is a constant of motion.

The Hilbert space of physical states for a system of N vortices H is constructed
from classical vortex configurations described by specifying the position of the N
vortices X = (z1,...,zy) and the mapping & : miM(x,z9) — H(zg). (For reasons
that shall soon become apparent, zg is chosen to be at spatial infinity in a certain

direction.) Paths between configurations are specified by a classical trajectory x(t).
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We first consider the propagation of two vortices. Suppose that in the initial
configuration at ¢ = ¢, two vortices are at z; and z9 and that we want to calculate
the amplitude for the vortices to propagate to positions 31 and y at ¢ = ty. Suppose
that the group elements corresponding to z; and z3 belong to different conjugacy
classes. Hence we only need to consider paths that connect z; to y; and z4 to Ya.
Such paths can be classified into homotopy equivalence classes known as braidings,
which can be labeled by an integer winding number. The winding number zero is
assigned to an arbitrary braiding. By winding ys around y; /V times in the counter-
clockwise direction. the braiding .V is created. In the descriptions of the initial and
final states we specify h, : m1(M(x),20) — H(zo) and hy : m1(M(y),y0) — H(yo),
respectively. Let v1,72 € m1(3(y),y0) be paths enclosing only z; and z3, respec-
tively, in the counter-clockwise direction. If we define n as the order of the element
hz(17271 7 11271), then every nth winding will result in the same homomorphism
hy; therefore, only every nth braiding should be included in the path integral sum
for the propagator.

As the number of vortices increases, the complexity of the problem rapidly grows
because the paths become hopelessly entangled. Braids can be classified by the
transformations required to unwind them. For three paths with their endpoints
fixed, one can first unwind one pair of paths. obtaining as before a winding number.
The transformation required to unwind the third path is an element of the free group
with two generators Fp. The braid group is a semi-direct product Z x Fy because

conjugation of Fy by elements of Z produces non-trivial automorphisms of Fj.

In summing the path integral, one must also consider statistics. In general, the
path integral sum between given initial and final states contains not only different
braiding of paths, but also braidings plus permutations that connect the points
T1ys TN 8O Yr(1)s s Yx(v) Where T € Sy. Which vortices can be identical depends
on what types of vortices are present in the system. For example, when H is the
quaternion group, in a system with just ; and —; vortices, these two kinds of vortices
are distinguishable. However, after even just one 7, — 7 k, or —k vortex is added, the

¢ and —1 vortices become identical upon winding around one of the other vortices
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an odd number of times. More generally, the vortices act on each other through
conjugation. If vortices corresponding to all elements of H are present, then all
vortices in a conjugacy class would be considered identical. If only a subset of the
vortices in H are present, the orbits obtained by allowing this subset to act on H

through conjugation are the classes of identical vortices of the system.

We now discuss the choice of basepoint. To describe the vortex configurations at
t; and ty, it is necessary to choose basepoints z; and z¢, respectively. The particular
choices of these points are arbitrary and have no physical significance as far as the
description of the pure vortex background is concerned. It was previously noted.
however, that when the basepoint of the fundamental group is moved around a
closed path, the induced automorphism of H(zg) is generally non-trivial. For similar
reasons there is no natural correspondence between H(z;) and H(z 7). To establish
a correspondence between the two groups, one must specify a path from z; to zf.
Physically, the path from z; to 2 represents the trajectory of an observer carrying a
set of test charges used to measure the vortex background. Since the charges carried
by the observer are affected by the choice of braiding from z; to Zf, one expects

different paths to result in different correspondences between the groups.

If trajectories x(t) of interest are allowed to wind around the path between the
basepoints in different ways, then additional complications are introduced. The
complexity of the braid structures increase as if another vortex had been added.
Fortunately, if one is interested only in the pure vortex background, the additional
complication can be avoided by placing the basepoint near spatial infinity so that

the vortices never braid around the path connecting the basepoints.

4.5. Concluding Remarks

In this paper we have calculated two-vortex scattering, discussed the compli-
cations that arise in the presence of more vortices, and developed a path integral
formalism that expresses exactly the long-range dynamics of non-Abelian vortices.

Although solving the two vortex problem is quite easy, the problem with three vor-
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tices is virtually intractable. Furthermore. there does not seem to exist for the case
of many vortices any obvious approximation that can be used to extract even the

qualitative behavior of the system.

In the previous section it was mentioned that the path integral formulation dis-
cussed here ignores short-range vortex-vortex interactions. The physics considered
in this paper is independent of the details of the internal structure of the vortices,
allowing one to idealize the vortices as pointlike in structure and without short-range
interactions. In real models vortices have finite size and interact when brought close
together. The neglect of the short-distance interactions. which depend on the details
of the internal structure. can be remedied adding vertex interactions consistent with
flux conservation. The detailed internal structure of the vortex core, which is specific

to the particular model. determines the coupling constants.

The difficulties encountered in the many-vortex system are quite similar to those
encountered in systems with many anyons. As for the N non-Abelian vortex sys-
tem, the path integral for the IV non-interacting anyon system distinguishes between
different braidings, assigning a distinct complex phase to each braiding. There are,
however, significant differences that make the anyon problem more tractable. The
assignment to a braiding of a mapping from the punctured plane to the unbroken
symmetry group is more complicated than just a complex phase. For non-Abelian
vortices, 1t is winding a vortex around another vortex of a different kind that makes
it necessary to distinguish between different braidings. If all the vortices were of
the same type, then the many-vortex system would behave like a non-interacting
Bose gas. Complications arise only when vortices of a different type are introduced
because what vortices may be considered identical depends on what other kinds of

vortices are present in the system.

For anyons the exotic fractional statics can be removed by introducing an ad-
ditional gauge field with a Chern-Simons kinetic term in the action. The anyons
are minimally coupled to the gauge field. At the cost of introducing an extra gauge

field, the exotic statistics have been removed. Now it is possible to calculate the
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average Chern-Simmons magnetic field due to the anyon gas and use mean field the-
ory to obtain an approximate solution. Using such an approximation, Laughlin and
Chen, Wilczek, Witten, and Halperin have predicted a superconducting phase for

the non-interacting anyon gas. [11,12.13.]

It is not possible to apply this mean field approach to an ideal gas of non-Abelian
vortices because it is the braiding of vortices around vortices of a different type that
forces one to distinguish between different classes of braidings. Perhaps it is possible
to find some mean field approach for certain specific problems. The behavior of the

many non-Abelian vortex system is a problem that remains to be solved.
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Chapter 5

Alice Strings and Vortices

5.1. Introduction

In the previous chapter the physics of discrete non-Abelian strings and vortices
whose flux must take values in a discrete, non-Abelian unbroken symmetry group H
was discussed. This chapter generalizes the discussion to cases in which H consists of
several connected components and has exactly one infinitesimal generator, which we
shall call Q. Of particular interest is when @ does not commute with at least some of
the elements of H that lie in the connected components that are not connected to the
identity. For such a situation, the U(1) symmetry generated by Q cannot be globally
defined in a background with vortices. Pairs of vortices in two spatial dimensions
(or closed loops of string in three spatial dimensions) can carry an unlocalizable
@-charge that in the quantized theory must take values that are integral multiples
of 2¢, where e is the quantum of charge of the theory. In three dimensions loops
of string can also carry magnetic charge in integral multiples of 2g, where g is the

magnetic charge quantum as determined from e by the Dirac quantization condition.

The simplest model in which such symmetry breaking occurs was first discussed
by A.S. Schwarz and Y. S. Tyupkin in 1982. [1,2. ] This modelis a gauge field theory
with a G = SO(3) symmetry and has a scalar field that transforms according to the
5-representation. The Higgs field may be represented by a 3 x 3 traceless, symmetric,
real matrix M that under O € SO(3) transforms as M — OMO~!. Suppose that a
potential is chosen in such a way that the Higgs field condenses acquiring a vacuum

expectation value of the form

1 0 0
(5.1.1) <M>=v {0 1 0
0 0 -2

In the presence of such a condensate the unbroken symmetry group H consists of two
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disconnected components: a component connected to the identity H., and another
component Hy that is not connected to the identity. H, is generated by the Lie

algebra element

0 10
(5.1.2) Q=1|-1 0
0 0 0

If SO(3) is thought of as acting on ordinary 3-space, then Q generates the rotations
about the z-axis. The elements of H; consist of the 180° rotations about axes that
lie in the zy-plane. If one arbitrarily chooses an X € Hy, for definiteness the rotation

about the z-axis so that

1 0 o0
(5.1.3) X=|o0o -1 o [,
0 0 -1

then every Y € Hy can be expressed as Y = Xe*Q. If one allows 4@ to act on X

by conjugation, then
(5.1.4) X — e¥Q xe—i0Q _ Xe—2i6Q _ e+2i¢QX,

which is a rotation about an axis rotated from the z-axis by an angle ¢. Consequently,

Hy is a single conjugacy class.

The stable vortices in this theory correspond to the components of H considered
as a subgroup of SU(2), which is the universal covering group of S O(3). After H C
50(3) is lifted to SU(2), H. and Hy have exactly the same structure as before. The
only difference is that the angle through which one must rotate to return to the
identity becomes 47 instead of 2r. Vortices carry flux that lies in the disconnected
component Hy = {Xe*?|0 < v < 4x}. Pairs of vortices can carry a combined flux
h = ¢*%Q where 0 < ¢ < 47. The complete phase, where ¢i4™@ = | byt ei27@ #1, s
at least in principle observable because in the field theory there can exist particles
that transform according to half-integral representations of ST/ (2). The relative phase

of Alice vortices can be measured using ordinary Aharonov-Bohm scattering.
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5.2. Classical Alice Electrodynamics

Since Alice strings carry a flux ¥ = Xe**?. which has the property
(5.2.1) VY~ = -Q,

a charge flips its sign after traversing around an Alice string. The change in sign is
not just a matter of semantics: rather it is a physically observable phenomenon. In
Figure 5.1(a) are two positive charges and an Alice vortex. One of the two charges
is taken around the vortex along the path C indicated in Figure 5.1(b) back to its
original position while the other charge remains in its original position. In the initial
configuration. shown in Figure 5.1(a), the charges have the same sign and repel: in
the final configuration. shown in Figure 5.1(c), after the one charge moves around
the vortex, the charges have opposite signs and attract. At first sight this property
may seem paradoxical because locally, or in any simply connected region of space,
and at energy scales much lower than the symmetry breaking scale, ordinary classical
electrodynamics describes the physics of the unbroken U (1)g symmetry exactly. In
particular, since charge seems to be conserved. at least locally, one is led to ask:
What happens to the missing charge +2¢ that seems to disappear after a charged
particle with charge +¢ travels around the Alice vortex and changes its charge to
—q?

The classical electrodynamics in the presence of Alice strings has been investi-
gated first by Schwarz and Tyupkin [1,2], and more recently by Preskill and Krauss
3] and Alford. Benson. Coleman, March-Russell. and Wilczek [4]. A discussion of

the quantization of the Alice string loop appears in the following section.

Since it is much easier to think about configurations with pairs (or even numbers)
of Alice vortices. we shall first consider a configuration in which there are two Alice
vortices whose positions are fixed. (It is possible to regard an isolated Alice vortex
as a pair of vortices in the limit as one of the vortices is removed to spatial infinity.)
The paradox of the missing charge is resolved by the peculiar fact that a pair of Alice

vortices can carry electric charge without any apparent source. Since (V-E)=0
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everywhere, it is not possible to attribute the source of the charge to any particular
region. Nor, as Preskill points out, is it possible that the missing charge is transferred
to the vortex cores {or the core of the string) because it is possible to carry out
the process adiabatically, moving the charge through the vortices or loop infinitely
slowly. If the core of the vortex or of the loop has charged states, then because of
electrostatic self-energy these states must be separated by a finite energy gap. But
as a consequence of the adiabatic theorem. in the limit as the process is carried out

infinitely slowly, no transition will take place.

Using Gauss’s law. we define the total charge by the surface integral

(5.2.2) Qrotal = / iS-E
oV

where the region " encloses the vortex pair. This integral indicates the charge seen at
large distances by an observer unconcerned with how the long range field is produced.

The field of the vortex pair behaves just as if it were created by an ordinary charge.

This total charge must be conserved, for otherwise causality would be violated.
It is not possible for any local process to change the total charge, for the electric
field extends to spatial infinity, and an operator that changes Q;,:0; would have to

destroy this field at infinity and therefore could not be local.

It is important to realize that the property that a vortex pair can carry charge
is a global phenomenon. Locally, in a simply connected region, it is always possible
to make a unitary choice of gauge. The heavy gauge boson degrees of freedom are
not relevant, and we simply have ordinary electrodynamics with the usual effective
Lagrangian £ = (—1/4)-F,, F#. Suppose that we want to consider not just a simply
connected region but the entire region around the two vortices indicated in Figure
5.2. A pair of Alice vortices is placed at fixed locations A and B. The region can
be made simply connected by introducing a cut that connects the two vortices. The
gauge transformation required to implement a unitary choice of gauge in this region

is singular along the cut if the initial choice of gauge is smooth. The vector potential
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Ay, which vanishes in the interior of this region. will have a ¢-function singularity
on the cut, and this singularity will require that the fields of the theory satisfy
a discontinuous matching condition across the cut so that the covariant derivative
D, = (9, +1gA,) is continuous across the cut. In particular, F,, must flip its sign

upon crossing the cut.

For a pair of Alice vortices it is most convenient to choose as the cut the straight
line segment connecting the two cores. To find the charged vortex pair solutions.
we solve for electric field configurations that satisfy (V - E) = 0 and the matching
condition that E(x) — —E(x) as x crosses the cut. If we imagine the cut to be
a perfect conductor with a charge distributed over its surface. then the solution
obtained satisfies the boundary conditions for the vortex pair problem because at the
surface of a conductor E is normal. and because of the symmetry of the problem. E
points in opposite directions on opposite sides of the cut. The solution is indicated
in Figure 5.3. The similarity between the problems, however, is deceptive. For
the conductor real charge produces the field as is indicated by evaluating (V - E).
The divergence in the Alice pair problem. which must be taken using the covariant
derivative, vanishes because of the singular vector potential on the cut. Seen another
way, the cut may be moved by making a gauge transformation. and the apparent
source of charge will move. Therefore. the appearance of charge on the cut is nothing

but a gauge artefact.

We next consider a system consisting of an Alice vortex pair and a charged
particle. Suppose that initially the pair is uncharged and that the charge is brought
toward the vortex pair from spatial infinity. In Figure 5.4 a charge +¢ is brought
toward the Alice vortex pair from the side. Because the vortex pair was initially
uncharged, the lines of force that end on the cut must be compensated for by an
equal number of lines of force that emanate from the cut. It is apparent that the
energy of the electric field is lowered by the presence of the vortex pair; therefore,
from the side the interaction between the charge and the pair is attractive. When the
charge lies on the line connecting the vortices, the field on the cut again because of

the reflection symmetry of the problem satisfies the conductor boundary conditions.
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It is as if charge from a neutral conductor of the opposite sign is attracted toward
the charged particle and charge of the same sign is repelled toward the part of the

cut farther away from the charge.

In Figure 5.5 the charge approaches the pair from below rather than from the
side. In this case the electric field energy is increased as the charge is brought toward
the cut, so the charge and the vortex pair repel each other. As before, all the flux
lines that emanate from the charge and end on the cut must re-emanate on the
same side of the cut as is indicated in Figure 5.5(a.) To show what happens when
the charge passes through the cut. we first bring the charge close to the cut, as
indicated in Figure 5.5(b). and then instead of moving the charge further, we move
the cut over the charge as indicated in Figure 5.5(c). With the cut moved over the
charge, the cut appears to have acquired a charge +2¢ and the charge of the charged
particle appears to have changed from +¢ to —¢. Since the operation of moving the
cut merely consists of choosing a different gauge, there is no gauge-invariant way
to determine the distribution of charge between the pair and the charged particle.
Only the total charge is well-defined. In Figure 5.5(d) the field that results after the
charged particle has been pulled through the vortices and has been moved farther

upward is shown.

For those who find the idea of introducing cuts distasteful. there is another more
elegant. but perhaps less useful way to formulate electrodynamics in an Alice vortex

background. The gauge field potential can be split into two parts
(5.2.3) A=Al 4 g,

where Aﬂ’“c) is the background vector potential due to the flux of the vortices and
A, is an additional part. Since locally «15,1’ 2°) i3 pure gauge and can be set to zero
by a gauge transformation. we should be able to write an action just in terms of
A, without any interference terms between the two parts of A, because one of the
parts is pure gauge. However, we run into difficulties in trying to choose a basis for

the generators for A, because of the matching condition. If the vortex carries a flux
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h = exp(inTh), then after parallel transport through the region between the vortices
by Aﬂ’“), T, T», T; transform into Ty, —Ty, —T3, respectively. Consequently, it
is not possible to choose single valued generators. and a cut must be introduced.
However, if we expand 4, = ADTO 4+ ADT® + ADTO), we see that A2 and
/15‘3) must be double valued since A, is single valued. The effective Lagrangian then

can be written as

(5.2.4) L= Z}F,ﬁ‘;)ﬁma) + g2 [AD 30k 4 4P F@m),

If there exist monopoles in the theory, then by the same line of argument as with
electric charge it can be shown that Alice string loops can carry magnetic charge. In a
later section we have shown by another method that Alice string loops generically can
carry magnetic charge. This fact has important cosmological consequences because

magnetic monopoles are troublesome in Grand Unified theories. [7,8. ]

5.3. Gauge Symmetry and Electric Charge

In the classical theory of electrodynamics in a background with an even number
of Alice vortices, it is not possible to fix the sign of the charge in a continuous or
gauge-invariant manner: however, the total charge of a collection of vortices and

charges is well-defined and conserved. One defines

(5.3.1) Qtotal = /dS -E

v
where V is a large volume that encloses the vortices and charged particles. In this
section this definition of total charge is extended to situations in which both the
vortices and the charges are quantum fields. We shall find that quantum mechanical
operator that corresponds to

(5.3.2) Q= lim /dS-E,

R—o0

AV(R)

where V(R) is a volume of radius R, is the generator of the global gauge transforma-
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tions. In a gauge theory physical states must be invariant under gauge transforma-
tions that are equal to the identity except in regions of compact support. However,
there is no such requirement for global gauge transformations, and the transforma-
tion properties of a state under global U(1)p transformations determine its total

charge. [3.]

In the classical field theory in the Hamiltonian formulation in Hamiltonian gauge,
in addition to the action principle there is an equation of constraint, which is equiva-
lent to Gauss’s law, that must be imposed in order to obtain the complete equations
of motion for electrodynamics. An equation of constraint is required because the
gauge fixing condition Ay = 0 has forced variations with respect to Ag to escape
consideration. In the Hamiltonian formulation the dynamical variables are the vec-
tor potentials Ai(x),.42(x), 43(x) and their conjugate fields II;(x), Is(x), II3(x),
which are equal to the electric field components Ej(x), E3(x), E3(x). The equation

obtained by varying the Lagrangian action with respect to Ag is
(5.3.3) [0#8,A° — %0+ A,)] — Jo =0,

which with Ay = 0 becomes

(5.3.4) 0i(0gAi) —Jo=V -E-Jy =V -II - Jy =0,
which is Gauss’s law. In the classical field theory the functional

FlALE)] = /dzx w(x)[V - E(x) — Jo(x)]
(5.3.5)
= /dzx [—[Vw(x)] - B(x) — w(x)Jo(x)]

is the generator of infinitesimal gauge transformations. The pair of coupled ordinary

differential equations

(5.3.6)




[&;]
(&1

with the Poisson bracket defined as

o [ 5F‘5G_6F'5G
(5.3.7) {F,G}—/d*” {5/1'-(,;) §Ei(x) OEi(x) 6‘4:'()()}’

when integrated from £ = 0 to £ = 1, generates the finite time-independent gauge

transformation

(5.3.8) A(x) — A(x) — Vw(x).

In the quantum theory the shape states, which are the functions A(x), where
x are just the spatial coordinates. form a basis of quantum states from which the
Hilbert space of the system is constructed. At fixed time in Hamiltonian gauge the
quantum state of the electromagnetic field is described by a state vector |¥ > in the
Hilbert space H, which is a complex valued linear functional defined on the space of
shape states. This Hilbert space is too large, and the Gauss’s law constraint must be
imposed to obtain the subspace Hp, C H of physical states. In the quantized theory

(with % = 1), the electric field becomes the functional derivative

]

(5.3.9) Ei =1L = (—1)- A

and if w(x) is a function of compact support. then one must require that the operator
/d3 —[Vw(x)]- E(x) - uJ(X)J()(X)]

= [ & |-votl- - ) Fagg — <G

annihilate physical states. This condition can be expressed as

(5.3.10)

(5.3.11) Glw(x)|T >ppy=0

where the ket |¥ > represents a complex linear functional ¥[A(x)]. Physically, this
condition means that if two shape states differ by a time-independent gauge transfor-
mation of compact support, then a functional that represents a physical state must

map them into the same amplitude.
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In the quantum theory Glw(x)] represents an infinitesimal gauge transformation,

and a finite gauge transformation is formed using the exponential so that
(5.3.12) Ulw(x)] = exp [iGlw(x)]]-

Ulw(x)) is unitary since Glw(x)] is Hermitian.

This kind of gauge transformation probes whether Gauss’s law is satisfied in the

quantum theory. If we want to test Gauss’s law in its usual integral form

(5.3.13) / iS E = / &z Ty = Qv,
vV

oV

we would choose

1, forxeV,
(5.3.14) w( ):{

0, forx¢gV.

To avoid a singularity at OV the function w(x) could be smeared, giving the boundary

a finite thickness.

Now suppose that w(x) does not have compact support but rather approaches a
constant value at spatial infinity. Since differences in w(x) in regions of compact sup-
port do not have any effect on physical states, we can assume that w(x) is constant.
Then in the expression Glw(x)], defined as the integral in Equation (5.3.10), the Jy
term makes a contribution proportional to the total electric charge, but there is no
contribution from the (Vw) - E term to cancel it because w is constant. Therefore,
G[w] measures the total charge. For states with definite charge ¢ = me where e is

the quantum of charge
(5.3.15) Ug(w)|® >= e"“’erb >=e™|d >,

meaning that the state transforms under an irreducible representation of the global

gauge transformations.
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For non-Abelian gauge fields the quantization in Hamiltonian gauge is completely
analogous. Restricting the gauge to Ag = 0 necessitates restricting the Hilbert space
H to a subspace of physical states Hppys by imposing the requirement that the wave
functionals are invariant under time-independent gauge transformations of compact
support. Problems arise only when one tries to identify a subset consisting of global
gauge transformations to measure total charge. In non-Abelian gauge theories non-
trivial global charge and global gauge transformations cannot be defined in a gauge
invariant manner and. therefore, are not physically valid concepts. The difficulty
really has nothing to do with quantization. In fact the problem is less tractable in
the classical theory because electric confinement. which is a purely quantum phe-
nomenon, makes it unnecessary to attempt to define the total color charge of a state
in the quantum theory. In the presence of a Higgs condensate where the unbroken
symmetry is U(1), however. these difficulties disappear because the orientation of the
Higgs condensate indicates a natural direction for @, at least asymptotically when
there are no vortices or an even number of Alice vortices. Therefore, the total charge
can be defined using the transformation properties under U(1)¢ in a manner exactly

analogous to the simple QED case just discussed.

Now let us return to the system with a pair of Alice vortices. In Figure 5.6
are two vortices 4 and B. a basepoint zg, and two paths a and J that generate
71(M, zo). Using the methods developed in Chapter 4, we assign the following fluxes

to the vortices

h(a) = Xe'¥a@

5.3.16
(5:316) h(B) = Xel#+@

These two fluxes determine completely all properties of the two-vortex background
that are gauge invariant and, hence, those which have physically observable conse-
quences. Since the total flux is conserved as a consequence of the total flux superse-

lection rule,

(5.3.17) Riotat = M(aB) = XetreQ Yeirs@ — oilvs—¢a)Q
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is constant with time. Therefore. the difference » = (p—,) must be independent of
time; however. (2, and ¢, may rotate in opposite directions. We shall show later that
such rotating solutions correspond to the charged classical solutions in Hamiltonian

gauge.

Suppose that we allow a I'(1)¢ global gauge transformation to act on the vortex

pair described above. Since

(5.3.18) h(C.zo) — Q(z0)h(C. 20)27 (20),

it follows that under Ug(6) = "9 the vortex flux A(a) transforms as
(5.3.19) Xei#aQ _ ¢ifQ YelvaQemi0Q = yeilpa—20)Q

Note that the total flux remains invariant because it lies in the center of H and,
therefore, is unaffected by conjugation. Global gauge transformations rotate ¢, and

p in opposite directions.

The fact that the flux does not transform trivially under global gauge transfor-
mations is intimately related to the global unrealizability of global symmetry in the
presence of the vortex pair. If the pair were enclosed by a simply-connected region
R, the rotations U(1)g could be globally defined outside of R. Trouble arises only
when one tries to extend the global symmetry into the region between the vortices.
It is impossible to do so without choosing a transformation that rotates the nonva-
nishing background gauge field 4,. In a singular gauge with a cut, the global gauge
transformations act on the matching conditions in a non-trivial manner. It turns out
that all of the many ways of extending U(1)g into the region between the vortices
act equivalently on the space of physical states because the different extensions differ

only by a gauge transformation of compact support.

Since states of definite charge transform irreducibly under U(1), one must form

superpositions of classical field configurations with different fluxes in order to produce
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charge eigenstates. Starting with an arbitrary classical field configuration |6 >. one

defines a one-parameter family of rotated states
(5.3.20) 0 >=e¥Qh=0>.

Although § = 4r is the smallest angle such that €@ = 1, |§ = 27 >=|§ = 0 >.

Under U(1)g global gauge transformations these states transform according to
(5.3.21) e“Q)h >= [+ 2w > .

Since eigenstates of the charge operator merely acquire a phase under global gauge
transformations. we must superimpose the #-states to obtain quantum states with

definite charge. Consequently, the state
2

(5.3.22) In >= /d& e™?19 >
0

represents a pair of vortices carrying a charge ng where ¢ = 2e is twice the charge

quantum of the theory.

We see that while in the classical theory the charge carried by the pair (or loop)
can take any value. in the quantized theory the charge is constrained to take values
that are integral multiples of 2e, where e is the magnitude of the charge of a particle

from a field that transforms under the 2-dimensional representation of SU(2).

Let us reconsider the classical solution for a charged circular loop of Alice strings,
discussed in Section 5.2. If the cut is chosen as the circular disk bounded by the loop
of string, the problem can be readily solved because it is identical to the problem of a
conducting or equipotential disk. Suppose that the disk has a radius R. The potential
problem is solved in oblate spheroidal coordinates, in which the disk becomes a
surface of constant £. [6.] It turns out that ®(¢,7n,¢) = ®(£) and that the disk has
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a capacitance C = (2R/=) so that

_
Q

(5.3.23) 20 = %

where ®; is the potential on the surface of the disk. Consequently, there is an energy

-2
(5.3.24) U(Q) = i%

in the electric field that creates a potential that tries to expand the loop. This
increase in potential means that loops can be stable if they carry charge because the
decrease in potential energy due to shortening the string as R is decreased can be

matched by the increase in electric field energy.

For our purposes. it is convenient to transform this solution to Hamiltonian

(Ao = 0) gauge. We divide the vector potential into two parts

(5.3.25) A= Al 4 4B
which are
(5.3.26) Al =5 7 T1 §(2) 8(R - p)

and a part that varies linearly with time

fd ko d E
(5.3.27) AB -1y vie.
An observer at infinity at time ¢ measures a flux.

B(C. z07t) = exp / dri.ii(f)]ek? [z’le]exp[ i/dxiAi(ﬂ?)]
) C C2
(5.3.28) = exp [it® T3] exp [inT1] exp [—it®oTy]

= exp |ir[cos(Pot)T1 + sin((I)gt)Tz]]

where the contours are shown in Figure 5.7. Consequently, the flux A(C, o, t) rotates
in Hy at an angular velocity w = ®¢. Classically any angular velocity is allowed, but

in the quantum theory the angular velocity must take discrete values.
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4. Alice Strings and Magnetic Charge

Before considering magnetic charge carried by loops of Alice string in three spatial
dimensions, we shall consider magnetic flux carried by pairs of Alice vortices in two
spatial dimensions. In Figure 5.8 are shown two Alice vortices labeled A and B, with
a basepoint zg and two paths C, and C} encircling the vortices A and B, respectively.
These two paths generate the group m1(M, z¢). Since Alice vortices have a continuous

degeneracy, two angles §, and #, are required to specify the flux. We set

h(C,) = XeW@

(5.4.1) ,
h(Cy) = e%Q X,

The path C = C,C} is used to measure the total flux, measurable at spatial infinity

carried by the pair of vortices, which is
(5.4.2) h(C, zg) = e'(0at6)Q

This flux, which is ordinary U(1) magnetic flux, can be measured by Aharonov-Bohm

scattering.

Next consider the situation in three spatial dimensions. For parallel Alice strings
of infinite length the case would be the same as that in the two-dimensional problem.
The magnetic flux everywhere along the strings would have to be the same because
otherwise there would be a radial magnetic field that falls off as 1/ R, corresponding
to an energy per unit length that diverges logarithmically with R.

However, suppose we take a loop of string. There no longer is a log divergence,
and we can put an integer number N kinks in the string when we close the two ends
so that as a loop traces out a torus enclosing the loop, § winds NV times around U(1).
The kinks mean that if we take a path starting at zg that winds through the loop
and back to zg and sweep this path around the loop back to its original position so
as to sweep out a torus enclosing the loop, or equivalently a sphere that surrounds
the loop, the winding number of 2(C, z¢) is the magnetic charge carried by the loop

of Alice string.
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Since this construction of magnetic charge used only the relation XQX~! =
—(@, magnetic charge generically exists in any theory that supports Alice strings.
Therefore, such theories are plagued with all of the problems that arise in theories

with monopoles. [7,3]

5. Generalizations of Alice Strings

In this section we consider more general Alice symmetry breaking scenarios.
Consider H C G, where G is the simply connected universal covering group. Suppose
that H is a one-dimensional Lie group with several connected components. Then H

can be expressed as
(5.5.1) H=U(1) x44. D

where D is a discrete group and X, 4 indicates that the product is semi-direct. D
must be finite because G is compact. The choice of D C H is generally not unique
because in the examples of interest to us H. = U(1) will act on D through conjugation
non-trivially.

On the other hand. D acting on H, by conjugation must leave H. invariant. The
action of an element d € D on H. is determined by its action on the generator Q.

There are two possibilities. Either
dQd~ ! = +Q

or

dQd™' = —-Q

because D acting on H, induces an automorphism of H,, and Aut{U(1)] & Z,.

Therefore, the elements of D, or equivalently the connected components of H,
can be divided into two classes: those that commute with @, and those that do not
commute with ¢ and therefore display Alice behavior. Note that for there to be Alice
behavior, H must be non-Abelian. However, D can be Abelian, as in our example
where D = Z3.
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