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Abstract
We find the conjugacy classes of maximal subgroups of the almost simple groups of
type Fy(F) , where F isa finite or algebraically closed field of characteristic # 2,3 .
To do this we study F4(F) via its representation as the automorphism group of the 27-
dimensional exceptional central simple Jordan Algebra J defined over F. A Jordan
Algebra over a field of characteristic # 2 is a nonassociative algebra over a field F
satisfying xy = yx and (x2y)x = x2(yx) for all its elements x and y . We can
represené Aut(F4(F)) on J as the group of semilinear invertible maps preserving the
multiplication. Let G = F4(F) and G <T < Aut(G) . We have defined a ;:ertain
subset of proper nontrivial subalgebras as good . The principal results are as follows:
SUBALGEBRA THEOREM: Let F be a finite or algebraically closed i;xeld of
characteristic # 2,3 . Let H be a subgroup of I' and suppose that H stabilizes a
subalgebra. Then H stabilizes a good subalgebra. The conjugacy classes and
normalizers of good subalgebras are also given.
STRUCTURE THEOREM: Let H be a subgroup of T such that H N G is closed
but not almost simple. Then H stabilizes a proper nontrivial subalgebra or H s
contained in a conjugate of NP(33: SL3(3)) . The action of 33 SLg(3) on J is
described and it is shown that 33 SL3(3) is unique up to conjugacy in G .
THEOREM : If L is a closed simple nonabelian subgroup of G, then NF(L) is
maximal in T onlyif L is one of the following :
= {F4(Fo),PSL2(F),G2(F),3D4(2),PSL3(3),PSU3(3),PSL2(q): q€{8,9,13,17,25,27}}
For each member L € ¥ we identify those representations = which could give rise to
a maximal subgroup of G and show the existence of 1rL(L) in G. Up to few
exceptions we also determine the number of G conjugacy classes for each equivalence

class LI
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Introduction

The study of a finite group almost always necessitates some knowledge of its
subgroups. In many instances some knowledge of its maximal subgroups is desirable, if
not crucial. This is, in part, because the maximal subgroups of a group determine its
primitive permutation representations and vice versa. Also, in certain applications of
group theory to other fields of mathematics, one needs information about maximal
subgroups. One such application is the inverse problem of Galois theory, i.e., when can
a finite group be realized as a Galois group of a Galois extension of the rational
numbers. See for example Matzat [M]. It is for these and other reasons that the
maximal subgroup problem has existed for as long as the subject of group theory itself.
However, up to the late 1970’s the maximal subgroup problem was only solved for
special classes of groups. In 1985 Aschbacher and Scott [As10] showed amongst other
things that the maximal subgroup problem can be reduced to two well defined

problems:

Let G be a finite group with L < G < Aut(L) for some simple nonabelian simple
group L, and let V be a faithful irreducible G-modile over some field of prime order
(dividing |G}).

(1) Determine Hl(G,V).
(2) Determine the maximal subgroups of G not containing L.

Any group H satisfying the assumptions of G is called an almost simple group.

Over the course of the past ten years, significant progress has been made on the
second problem. For example, O’Nan-Scott and Aschbacher proved powerful structure

theorems for the Alternating and Symmetric groups, the classical groups, respectively,
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which in some sense make up the bulk of the finite simple groups. The structure

theorems go as follows:

Let G be an almost simple group. Suppose that G is represented as a group of
automorphisms of some mathematical object X(G). Then any proper subgroup H of
G either stabilizes some member of the set C(G,X(G)) of ”natural structures” on

X(G) or H is an almost simple group acting irreducibly on X(G).

The natural structures C(G,X(G)) are usually substructures, coproduct or
product structures on X(G). For example X(G) is the set {1,...,n} when G is the
Alternating group of degree n, and when G is a classical group over a field F, then
X(G) is a pair (V,f) where V is a vectorspace over F and f is trivial or a
nondegenerate symplectic, hermitian or quadratic form on V. Once a structure
theorem is proved for a particular group G, enumeration of its maximal subgroups
involves listing the almost simple groups that act irreducibly on X(G) and then
deciding which of these occur as maximal subgroups of G. At this stage the
classification of the finite simple groups and their representation theories are often used
to decide which groups possesses suitable irreducible representations on X(G).

For most almost simple groups we have either structure theorems or know
explicitly the conjugacy classes of maximal subgroups. Presently, for the families of
exceptional groups of Lie type F,(F), E7(F), Eg(F) as well as the sporadic groups
Baby Monster and the Monster, we have neither. The goal of this thesis is to find the
conjugacy classes of maximal subgroups of the almost simple groups of type F4(F),
where F is a finite or algebraically closed field of characteristic # 2,3 .

I believe it’s best to study F,(F) via its representation as the automorphism group

of the 27- dimensional exceptional central simple Jordan Algebra defined over F. Recall
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that a Jordan Algebra over a field of characteristic # 2 is a nonassociative algebra over
a field F satisfying xy = yx and (x2y)x = x2(yx) for all its elements x and y. A
homomorphism of a Jordan Algebras is a linear map preserving the multiplication. An
algebra is called simple when it has no homomorphic images other than 0 and itself.
The algebra is called central simple when it’s simple modulo the center. Recall here
that an element z is in the center of a Jordan algebra iff zx =Ax for all x in the algebra
and A€ F is some fixed element. The results of Albert [Al], Jacobson and Jacobson
[Jal], Jacobson [Ja6], and Schafer [Schal] classify the central simple Jordan algebras
over F. It turns out that all but one family of examples is constructed from some
associative algebra A over F by redefining the product of A as ab = 1/2 ( axb +
bxa) for all a,b € A where x* denotes the associative product. The examples that
can’t be constructed from an associative algebra in this way are called exc-e;;tional.
When F is finite or algebraically closed there is, up to isomorphism, a unique example
J of exceptional type. Its dimension over F is 27. It’s automorphism group is F4(F).
We can represent Aut(F,(F)) on J as the group of semilinear invertible maps
preserving the multiplication. From now on we willlet G = F4(F) and G <T <
Aut(G). By a subalgebra of J we mean a subspace containing id (the identity of J)
which is closed under multiplication. By a proper nontrivial subalgebra we mean a

subalgebra A such that <id> < A < J.

We now give a rough definition of the class of good subalgebras. By a composition
algebra we mean a pair (V,N) where V an F-algebra with a multiplicative identity and
N is a nondegenerate quadratic form on V such that N(xy) = N(x)N(y) for all x,y €

V.
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Albert and Jacobson [A2] have characterized J as
71 €1 C2
{ €1 79 ¢3 : where 7 € F and cicO }
€2 €3 73

where O denotes the unique eight dimensional composition algebra over F, and —
denotes the unique automorphism of order 2 of O such that ¢c@ = N(¢) 1 for all
c€ O. We define multiplication on J by xy := 1/2(xxy + y*x) , were * denotes
ordinary matrix multiplication. Note that this multiplication is commutative. We
define Q to be the quadratic form Q(x) = 1/2 tr(x2) on J.

An idempotent is an element x € J satisfying x2 = x. An idempotent x is
primitive if Q(x) = 1/2. Let Al = <id,x> where x is a primitive idempotent.
Let A2 = <x,y,z2> where x,y,z are pairwise orthogonal (wrt. Q ) primitive

idempotents. Let A3 be a three dimensional extension field of F contained in J.

71 41 dy
dg d3 73

where D is a proper nondegenerate (wrt. N ) subalgebra of O. We remark that up to
conjugacy in Aut(O) there are four (three) choices for D when F is finite
(algebraically closed) respectively.

Finally let AP be the set of subalgebras B such that xy =0 forall x,y €e B n
gL

i plus some technical conditions described in section 6. We remark that the

stabilizers of members of AP are the maximal parabolic of T.
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Now we define a subalgebra to be good if a is conjugate to a member of
g = { Ai Py JD, AP: 15i$3 }.

We prove the following:

SUBALGEBRA THEOREM: Let F be a finite or algebraically closed field of
characteristic # 2,3, Let H be a subgroup of T and suppose that H stabilizes a

subalgebra. Then H stabilizes a good subalgebra.

The structure of the stabilizers of good subalgebras can be found in propositions 2.7

and 2.10 in lermma 5.2 and 5.13 and proposition 6.4.

STRUCTURE THEOREM: Let H be a subgroup of T such that H N G is closed
but not almost simple. Then H stabilizes a proper nontrivial subalgebra or H is

contained in a conjugate of Nr(33: SL4(3)) -

In lemmas 7.6 , 7.7 and 7.9 we describe the action of 3°: SLg(3) on J and prove

that this 33: SL3(3) is unique up to conjugacy in G.

SIMPLE SUBGROUP THEOREM: If L is a closed simple nonabelian subgroup of

G then Np(L) is maximal in T only if L is on the following list and J affords the

representation g of L:

L P # of G conj. cl. nec. cond. for p
F4(Fg) M(0)oM(2,) 1 [F:Fg] is a prime
PSL4(F) M(O)@M(SAI)QM(IGAI) 1 p217Torp=20

PSLo(F) M(0)®M(8),)/M(),)’®M(31,)/M(8,) 1 p=13 , [F| #13



L P # of G conj. cl. nec.cond. for ex. of p
PSLo(13) M(0)® M(8A )\M(2X ) M(4A1)\M(81() >1 p=13
Go(F) M(0)eM(21,) 1 p=7

PSLo(7) M(0)®M(6);)@M(4);)

®M(42])\M(0)®M(2X,)\M(41,) 1 p=7
3D,(2) 1426 1 p#T
3p,(2) 1426 >1 p=7
PSL4(3) 1426 >1 all p
PSU4(3) 1426 >1 =7
PSLo(27) 1426 >1 all p
PSL.(25) 1426 >1 p#5,-1/2¢ F
PSLy(17) 1+9+16 >1 p#1T
PSLo(13) 1+12+14 >1 =7
PSLo(9) 1484949 >1 p#5
PSLo(8) 1+8+9+9 >1 p#7T

The symbol ? means that it is not known wether an appropriate embedding exists.
However, if it did one would get an example of a maximal subgroixp. The symbol > 1
means that at least one embedding of the specified type into G exists. However, in case
L € {PSLg(3), PSU4(3), PSLy(13)} the only known embedding does not lead to a
maximal subgroup. More precise information about the groups on the list can be found
in Sections 14, 16 and 17 .

Now some words about the strategy and organization. Section 1 is a collection of
facts about composition algebras that are needed in the subsequent discussion of the
exceptional  27-dimensional Jordan algebra of section 2 . Section 3 discusses

Aschbacher’s representation of E6' Also a proof of the fact that Aschbacher’s E6-
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form is isometric to the trilinear form arising from J is given in section 3. In sections
4, 5 and 6 the subalgebra stabilizers of G are analyzed leading to a proof of the
Subalgebra Theorem for G in section 6. In section 7 we analyze the normalizers of
semisimple abelian subgroups of G. In section 8 we analyze nonlocal subgroups
whose generalized Fitting subgroup is not a finite simple group and prove the Structure
Theorem for G. In section 9 we generalize the Subalgebra Theorem and the
Structure Theorems from G to [. Starting from section 10 we deal exclusively with
almost simple subgroups of G. In section 10 we show that when a simple subgroup L
of G stabilizes a proper nontrivial subalgebra then NI‘(L) is not maximal in T'. The
sections 11 - 14 deal with the simple groups of Lie type defined over the same
characteristic as G. The remaining sections deal with the cross- characteristically

embedded simple groups of Lie type, the Alternating, and the Sporadic simple groups.
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CHAPTER I: A STRUCTURE THEOREM FOR T
SECTION 1: FACTS ABOUT COMPOSITION ALGEBRAS

Definition: A composition algebra C over F is an (not necessarily associative) F-algebra
defined by the following properties:

1. C has a multiplicative identity 1

2. C admits a nondegenerate quadratic form N such that N(xy) = N(x)N(y) for all

x,y € C ( N will be called the associated quadratic form of C.)

By a homomorphism of composition algebras we mean a linear map which preserves

maultiplication.
The following is well known and can be found for instance in [Spl] or [Ja2].

COMPOSITION ALGEBRA THEOREM:

1. Every composition algebra over F is 1, 2, 4 or 8 dimensional over F.

2. Two composition algebras are isomorphic iff their associated quadratic forms are
equivalent.

3. If a composition algebra C contains an isotropic vector (i.e., an x ¢ C such that
N(x) = 0 ) then the associated quadratic form has fna.ximal Witt-index. In
particular if F is algebraically closed, then two composition algebras over F are
isomorphic iff their dimensions are equal.

4, If F is finite or algebraically closed, there is one isomorphism class of m dimensional
composition algebras over F, where m = 1,4,8 . There are two isomorphism classes

of two dimensional composition algebras over F as there are two nonequivalent
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choices for N. When F is algebraically closed there is a unique isomorphism class
of two dimensional composition algebras over F .
5. There exists an involutory automorphism of C called conjugation and denoted by

— ,such that xX =X x=N(x) 1

Proof: Part 1 can be found in [Ja2] pg. 425. Part 2 is Ex 2, pg. 428 [Ja2]. Part 3 is
ex. 3, pg. 428 [Ja2]. Part 5 is on pg. 422 [Ja2]. Part 4 is a consequence of part 3 and

the classification of quadratic forms over finite and algebraically closed fields.

By part 5 above we know that 1 is a nondegenerate vector. Thus C = <1> 1
<;>l. We denote by w(x) the projection of x€C onto <1> with respect to that

decomposition.

Definition: Let F be finite or algebraically closed. We will denote by O the eight

dimensional composition algebra over F. O will also be called an octave.

The following is also well known .

Aut(O) Theorem:

1. Aut(O) is the Chevalley group Go(F).

2. If A,B C O are isomorphic N-nondegenerate composition subalgebras, then there
exists a g ¢ Aut(O) such that Ag = B.

Proof: Part 1 is proved in [Spl] Pg 15 - 20. Part 2 is exercise 2, pg. 428 in [Ja2].

For future reference we give a multiplication table (table 1.1) for O, found in [Ja2]ch8 .
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Table 1.1

1 iy iy ig iy ig ig iz
1 1 iy i i3 ig i5 ig i7
i iy c, L ig cqig ig cqiy -ip -¢4ig
iy ig - ig col -Coiy ig i7 c2i4 02i5
i3 i3 -c1i2 czi1 ~c1c2l i7 c1i6 -c2i5 -c1c2i4
i4 i4 -i5 -i6 -i7 c3l -c3i1 -c3i2 -c3i3
i5 i5 -c1i4 -i7 -cli6 c3i1 —c1c3_1_ c3i3 c1c3i2
i6 i6 i7 -c2i4 c2i5 c3i2 -c3i3 -c2c31 -c2c3i1
i7 iz cilg  -Coiz  CyCoiy c3i3 -c1c3i2 cocgiy  €Cycgl

The associated quadratic form N of O is given by:

N(w) = x% - clx% - c2x% + c1c2x§ - c3xZ + c1c3x§ + c2c3xg - c1c2c3x% ,
where we O is w = xo_l_ + X xj ij‘ We will choose cq= 1 and cg = -1 = cg to
assure that N will have maximal Witt- index. Note also that <i2j s i2j +1 >

j€{0,1,2,3} is a hyperbolic pair with respect to N.

Fact 1.2 : With the choice of c; as above the set { 1, ik : 1< k <7} becomes an
orthogonal (i.e., all basis elements are pairwise orthogonal) basis of O with respect to

the quadratic form N. Moreover N is nondegenerate.

Fact 1.3 : There are three (four) Aut(O) conjugacy classes of nondegenerate
composition subalgebras when F is algebraically closed (finite). The following four
subalgebras are representatives: <1>, <_1_,i1>, <1 ’il’i2’i3>’ ( <1,w>, where -N(w)

& F2 and we 1 L ). We will denote these by 1, F2, F4, K, respectively.
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Fact 1.4 : The following are true:
1.x= (x,1)1-(x-(x1)1)
2. (xy,z) = (x,27) = (y.X2)
Proof: This is immediate from the equation N(xy) = N(x)N(y). A proof can be found

in [Spl] pg. 2.
Note that O is not an associative algebra, however, the following is true.

Proposition 1.2 : Any proper composition subalgebra of O generated by two vectors
is associative, and every pair of vectors generates a proper composition subalgebra. In
particular the subalgebra generated by two basis vectors of table 1.1 is associative.

Proof: This is well known and a proof can be found in {Spl] pg. 7.

Corollary 1.3 : Recall the projection map = from above. Then for all triples ciEO
7(cq(cgeg)) = m((cqc9)eg)) -

Proof: The composition algebra multiplication is bilinear and = is a linear map. So
it is enough to show that the claim holds for any triple of basis vectors {1 ,il,...,i-{}.
Now observe, using table 1.1, that =(ip(isgiy))# 0 iff isi;€ <iy> . So the only triples
that contribute something nonzero lie in a subaigebra generated by two vectors, i.e., an

associative subalgebra. The claim follows.

Proposition 1.4 : Let V be a nontrivial eight dimensional Aut(O) module and N an
Aut(O) invariant quadratic form on V. Then (V,N) admits a unique Aut(O)
invariant composition algebra structure with identity element 1 and with respect to the

quadratic form N.

Proof: Recall that Aut(0) >~ G,(F). We observe also that V = M(0) & M(A) as an
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Aut(O)-module. Suppose * is another composition algebra multiplication. Then
(x,y,2) = (xy,z) is a nontrivial alternating Aut(O) invariant trilinear form on M(};)
~ 1t , where L is taken with respect to N. The same is true for (- ,- ,-)x defined
analogous to (- ,- ,-) but using *. So by [As7] 10.9 we have (x,y,2)s = a (x,y,z)
for all x,y,z € 11 and 0 # a € F. Therefore the following holds:
(xxy,z) = a(xy,z) for all x,y,z € 14+
From Fact 1.4.2 we get (xy,1) = (x,¥) = (xxy,1). Sofor x,y € 11 we can write the
following:
(+) xxy - (x*y,1)1 =j:%1(x*y,ij)ij
=3 a(xy,ij)ij
= a (xy - (xy,1)1).
If we apply N to (4) after we get the following;:
(+4) N(xy) = (1-2)%(xy,1)2+ o2 N(x)N(y).
Now we choose x,y € 11 such xl¥ and N(x) # 0 # N(y) and substitute into (++)
we get: N(x)N(y) = N(x»y) = a? N(x)N(y). So a=+1.
Now we choose x,y so that (xy,1) = (x,¥) # 0 and that N(x) # 0 # N(y). Also
set o = -1. Substituting this into (++) gives the following:
N(x)N(y) = N(xxy) = 4(xy,1)2 + N(x)N(y), contradicting (xy,1) # 0. The only way

out is that « = 1. Then the claim follows from (+).
SECTION 2: DEFINITION OF J; FACTS ABOUT J AND Aut(J)
Let F be a finite or algebraically closed field of characteristic # 2,3 and G =

F4(F). Let O be the octave algebra over F. Let J be the exceptional 27 dimensional

central simple Jordan Algebra over F (c.f. introduction for definitions).
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Proposition 2.1: J can be characterized as

71 ¢ ©2
{ Ty 79 c3 : where 7 € F and cicO }
¢ €3 73
We define multiplication on J by xy := 1/2(xxy + y*x), were * denotes ordinary

matrix multiplication.

Proof: See [A2].

Note that J is a commutative nonassociative F-algebra. We denote by Aut(J) the set

of invertible linear maps g:J — J satisfying (xy)g = (xg)(yg) forall x,y ¢ J .

Proposition 2.2: The following are true:
1. G = Aut(J).
2.J = M(0) ® M(),;) asa G module, where M(}) means the irreducible G module

of high weight A wrt. some fixed Cartan subgroup H of G.

Proof : When F is algebraically closed, this is shown in {Spl] pg. 100 Satz 20. For F

finite this is shown in [Ja4].

Definitions: Q(x) := (1/2)tr(x2) ,  (%,¥) := Q(x+y) - Q(x) - Q(y)-

Let x € J and regard J as an algebra of matrices as in proposition 2.1 and recall =
from before the definition of octave in section 1. Also recall N the quadratic form
associated with the octaves. Then define:

Det(x) := Y{7973 - T3N(cq) - 719N(cq) - 73N(cz) + #(cy(cgeq)) + #(T1(T5C3))-

Let (x,y,2) be the symmetric trilinear form such that Det(x) = (1/6) (x,x,x).
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Jacobson in [Ja3] shows that Det(x) is a cubic form over F. As we are working over
fields of characteristic # 2,3 note that (x,y,z) is uniquely given by:

(x,y,z) = Det(x+y+z) - Det(x+y) - Det(x+z) -Det(y+z) + Det(x) + Det(y) + Det(z).

Proposition 2.3:

1. Q is a nondegenerate quadratic form on J

[

. Q(id) = 3/2
. Q(x%) = Q(x)?2 forallx eidt

w

'S

. (xy,z) = (x,yz) for all x,y,z ¢ J
%)

)]

. (xy)x2 = x(yx

. x3= (x,id) x2 + (Q(x) - (1/2) (x,id)?) x + Det(x) id for all xe€J

=]

Proof: [Spl] pages 64, 65 and 68.

Remark: Proposition 2.3.5 and the commutativity of the product of J show that J is
indeed a Jordan Algebra. Furthermore it follows from proposition 2.3.5 that J is
power associative, i.e., xi is a well defined element of J forall x € J and i € Z+;

see for example [Ja2] ch. 7.4 .
From now on we will use the symbol L to mean orthogonal with respect to Q.

Definition: By a subalgebra of J we mean a subspace of J containing id which is closed

under the J multiplication.

Note that the equation in Proposition 2.3.6 is referred to as Hamilton’s equation. One

easy consequence of Hamilton’s equation is:
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Lemma 2.4: Let A be the subspace generated by {id, x :ian integer greater than 0}.
Then A is a subalgebra of dimension at most 3.
Proof: That A is a subalgebra is a consequence of proposition 2.3.5. The statement

about the dimension follows from Hamilton’s equation.

Theorem 2.5:

1. ge GL(J)isin G iff (xg,yg) = (x,y) and (xg,yg,2g) = (x,y,z) for all x,y,z € J.

2. ge GL(J)isin G iff idg =id and (xg,yg,zg) =(x,y,z) for all x,y,z € J.

3. { g ¢ GL(J) : (xg,yg,2g) = (x,y,z) for all x,y,z € J } is the universal Chevalley
group of type Eg(F).

Proof: Parts 1 and 2 are the contents of Lemma 1 and Theorem on pg 186 of [Ja3].

Part 3 can be found in [Ja5].

Definition: By x#y we denote the unique element of J satisfying

(x,y,2) = 2( x#y,z) forall z € J.
Lemma 2.6: x#y = xy - (1/2)(xid) y - (1/2)(y,id) x - (1/2)(x,y) id +
(1/2)(x,id)(y,id) id.
Proof: See [Spl] pg 64.

Definition: An element x ¢ J is a primitive idempotent if x2 = x and Qx)= 1/2.

Proposition 2.7:

1. G is transitive on primitive idempotents of J.

2. Let x = . Then x is a primitive idempotent.

[ = I
(=T ~ B -
o o Q
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3. J=<idx> L By(x) L Eq(x) where Ei(x) ={yed: xy= i(1/2) y}.

0¢C 0 0 0
4. Ef(x)={ |Ty0 0 |: ¢;e 0} and Eg(x) ={ °0-yeg|: vy€eF,cge0}
cy 0 0 0Cg7

5. The stabilizer of x in G is Sping-(F) with Eg(x) a nondegenerate 9-dimensional
space with respect to Q and Gy/ CGx(EO(x)) = Qqg(Eq(x),Q). Gx acts faithfully
on E,(x).

6. If Ais a Q-nondegenerate subalgebra containing x, then

A=<idx> L EO,A(X) 4 EI,A(X) where Ei,l-\(x) = E;(x) N A.
Proof: See [Spl] for parts 1, 3, 5 and 6. Parts 2 and 4 are easy computations.

Lemma 2.8: Let yeJ. Then y#y = 0 iff either
1. y is a scalar multiple of a primitive idempotent.

2. (y,d) =0 and y2 = 0.
Proof: This is the content of Satz 10 pg 77 in {Sp1].
Lemma 2.9: If y€ J and y2 = 0, then ye€ id‘L and y#y = 0.

Proof: We use Hamilton’s equation (prop. 2.3.6) to deduce that

Det(y) id = -(Q(y) - (1/2)(idy)®) .
Now Q(y) = (1/2)(y,y) = (1 /2)(y2,id) = 0. Therefore, since {y,d} is a linearly
independent set, Det(y) = Q(y) = (y,id) = 0. So now, using lemma 2.6

y#y = y2- (1/2)()id) y - (1/2)(ysid) y - (1/2)(v-y) id + (1/2)(v,id)? id = o.
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Proposition 2.10:

1 00 00 0 0 0 0
Let X; = 0 00 Xg =|0 10 and Xxg=| 000 and
000 0 0 0 0 0 1

1. id = xy + x9 + X3, (xi,xj) = 6ij where 6ij is the Kronecker delta.

2. J = <X{,Xg,Xg> 1 Wl 1 W2 1 W3.

3. CG(<x1,x2,x3>) = Sping-(F) and CG(<x1,x2,x3>) induces Q(Wi,Q) on W.,.

4. NG(<x1,x2,x3>) = Symg semidirect product CG(<x1,x2,x3>). Symg permutes
the set {x;: 1= 1,2,3}.

5. <xy,Xg,Xg> is a nondegenerate subalgebra of J.

Proof: Parts 1 and 2 are easy calculations using proposition 2.7. Parts 3 and 4 can be
found in [Jad4] section 6 or alternatively in [Spl]. Part 5 is an easy calculation using

proposition 2.1.

Let eij(c) denote the matrix of J whose ij entry is c, whose ji entry is €, and all of
whose other entries are zero. Then we can identify O with W, via ¢ — egq(c) Ve
€ 0. We will now describe briefly how the (noncommutative) octave multiplication of
W, (see section 1 for definition of octave) can be recovered from the (commutative)
Jordan multiplication of J (see also [Spl] pg. 75). Let v = 2e;5(1l) and w = e 3(1)
and e23(c),e23(d) € W,. Define y+(e23(c)) = 2e,4(€) and y_(eg3(c)) = eq3(c)
and observe that vy_(eg3(c)) = wy +(e23(c)) = c. Similarly define y +(e23(d)) =
2e12(3) and y_(e23(d)) = e13(d). Now the octave multiplication A of W, can be
gotten as follows: e23(c)/\e23(d) 1= y+(e23(c)) y_(eg3(d)) = 2e19(%) e5(d) =

egg(cd).
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Convention: When we speak of a composition subalgebra of W, we mean the image of

a composition subalgebra of O under the above identification of O with Ww,.

Observation 2.11: Under the identification of W, with O above we have Qlwl =
N, where N is the quadratic form associated to O from section 1.

Proof: Let egg(c) € W, . Then o

Qegs(c)) = (1/2) tr(egz(e)?) = (1/2) tr(] o <t o)

0 0 cC

(1/2) (2N(c)) (as c& = N(c)L by part 5 of the Comp. Alg. Thm. of Section 1)

= N{¢).

Remark: We can identify W3 with O in the same way as we identify Wl with O.

Also we can identify W, with O via e13(é) =~ ¢ YVceO.

SECTION 3: 3-FORMS, THE DICKSON 3-FORM AND SOME OF ITS

PROPERTIES

All the notation and results of this section up to the definition of ® before proposition
3.2 are due to Aschbacher and can be found in [Asl] - [As5).
Throughout this section let V be a vectorspace over F.
Definition: A triple J(T,P.f) is a 3-form iff
(F1) fis a trilinear form on V.
(F2) P: VX V + F is linear in the first variable and satisfies:
P(x,ay) = a2 P(x.y)

P(x,y+2z) = P(x,y) + P(x,z) 4 f(x,y,z) for all x,y,z ¢ V and a ¢ F.
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(F3) T: V — F satisfies:
T(ax) = a3T(x)

T(x+y) = T(x) + T(y) + P(x,y) + P(y,x) forall x,y e Vand aceF.

Remark: As char(F) # 2,3, each of the three forms {f,P,T} in the 3-form determine
the remaining members of the 3-form. For example T(x) = (1/6) f(x,x,x) and

P(x,y) = (1/2){(x,y,y).

Definition: Py is the quadratic form whose associated bilinear form is fy := f(x,-,-),

where Px(y) = P(x,y).
Definition: By xA we denote the radical of fx , and UA := ﬂU xA.
Xe€

Definition: UO := { veV : Py(u) = 0 for all ueU }.

Note that UA and U© are linear subspaces of V. Moreover if an isometry of the 3-

form fixes the subspace U it must also fix UA and U®.

Definitions: If UC UA we call U singular. If UC U® we call U brilliant.
Note that singular implies brilliant as we assume char(F) # 2,3.

Let S = {x;,...,xr} be a set of singular points.

Definition: S is called a special r-tuple if X + xj is brilliant nonsingular and

x; € (xj + xk)e for all pairwise distinct 1i,j,k. A subspace is special if it is generated
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by a special r-tuple.

Now we come to the definition of the Dickson 3-form.

Let V be a 27-dimensional vector space with basis X = { xi,xi, xij 1<, €£6,i<) },

subject to the convention X5 = Xy Let f be the symmetric trilinear form which has
. ' g .

monomials X X35 1< i#j<6 and X1d 2d *3d 4d *5d 64° where d € Coset. Coset is

some set of coset representatives for Altp in Alt, where Alt is the alternating group

on {1,...,6} and P is the partition 12{34|56. The table below lists the monomials with

sign +.

Table 3.1
12 34 56 14 23 56 16 25 34
12 35 64 14 25 63 16 23 45
12 36 45 14 26 35 16 24 53
13 24 65 15 26 43
13 26 54 15 24 36

13 25 46 15 23 64

The Dickson 3-form is the 3-form (T,P,f) where f is the trilinear form above and P and
T- are defined as follows:
P(x,y) := 1/2 f(x,y,y)

T(x) := 1/6 f(x,x,x)

In [Asl] we find two proofs that the isometry group of the 3-form is the universal

Chevalley group of type EG' Moreover the set X is a set of weight vectors for some
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Cartan-subgroup H of Eg.

Definition: We define H as the subgroup of E6 generated by the isometries h(t), l(a),
ae(F"‘)6 such that the product of a’s coordinates is 1, t€F, where h(t) maps xg to t2
Xg> xé to t3x’6, X. to t'lx-, X.g to t'2xj6 and fixing xj’ for ij < 5, and I(a)

J 7

. , -1 .
maps x; to ax;, x; to ax{, and x;; to (a.iaj) X;5 where a, denotes the i-th

coordinate of a.

Note that H is a Cartan subgroup of Eg(F) and that X is a basis of weight vectors

for X.

Definitions: V, := < X; 1j<i> forl<i <6 buti#s
V15:=< xij i) >
U5 =< V4, Xg>
V5 =< V4, Xpe>

:=<U5,x6i:1_<_i_<_5 >
Vigi=<Vg,x: 1i<6 >
Ug 1= < X16:X95:X34>
Ug i= < X16:%95:%34» X12"X56X2FX5%1 %6 >
Vg i= < X16X05X34X12:X56%2%5 %1 %6>
Vigi= <xij: 1<i<j<6 >

Let ‘U.i , Y'i denote the E6-conjugacy class of Ui resp. Vi' Observe that Vi 1<i<6

and U5 are singular, that VIO and V12 are brilliant, and that V159 = V12.

Definition: A brilliant subgroup of E6 is a subgroup which is contained in the stabilizer

of a member of ¥; where i € {1,2,3,5,6,9,10,12 }.
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Definition: A subspace U will be called totally dark if T has no nontrivial zeros in

U.

Definition: A subspace U is a member of ‘U.g if there exists a quadratic field extension

K of F such that UK is a member of ‘V'SI)( and U ¢ ‘V’g.

Definition: A 3-decomposition of V is a decomposition of V into the direct sum of three
subspaces A, ® Ay & Ag such that each summand is a member of ‘Y'g and A, @ Aj =

A, © for all {ijk} = {1,23}.

Suppose that F* contains an element of order 3. Aschbacher shows that there exists
a unique class E of elementary abelian groups of order 81 in A = E6(F): Diagonal
which is not contained in a maximal torus of the algebraic group over EG(F)' Under
the action of a member of E the space V decomposes into a direct sum of 27 one
dimensional Eigenspaces each of which is dark. We will call such a decomposition of V

a 27-decomposition of V.

Let d = X16 + X95 + Xq4- Aschbacher shows that V is the Pd orthogonal direct sum
of d and d©® and that the centralizer of d in E6 is F4.

Let &: J — V be defined as follows:

®(e1(1)) =x15 Bleg(1l)) =xp5 P(eg3(1)) =x 34

B(e;o(1)) = x19- X5 P(e73(1)) = xa+ X ®(eg3(1)) = x3-xg

B(eqq(iy)) = x19+x55 Blegz(T1)) =xp x5 Bleggli) = x1+ Xg

B(eq9(ig)) = X 5+xgg  Blegg(Tg)) =xg-x5  Blegglig)) = x) + xg

B(e9(ig)) = X15 Xgg  Bley3(T3)) =xg+ x5 Blegglig)) = x] -%g

Bejo(iy)) =xg-xy  Bey3(iy)) =x4+xgg  Blega(iy)) = x45 Xo3
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®(eqolis)) = xg3+xy  Ble3(i5)) =x14-xg5  B(eg3(is)) = x45+%03
®eyo(ig)) = xg+x,  Bleg3(ig)) = x13- X456  Peg3(ig)) = xgq+x35

®(ejo(iz)) = x5 x4  Ble3(17)) = x13+x45  Blegg(iz)) = xgq -X35

Proposition 3.2: & is an isometry of the trilinear forms (,, ) and f( , , ).

Proof: First we observe that there exists an isometry of the trilinear forms as both of

them are Eg- forms and the Eg forms of V are unique up to conjugacy in GL(V) .
Recall first the definition of Wi from proposition 2.10. We show first that

Ply: W — ®(W) is an isometry, where W = < e;(1) , Wy, e g(l) >. Then we

observe that (W;, N) (see observation 2.11) is isometric to ( ®(W;) , -Pxij). Finally

we will show that & is uniquely determined by <I>|W, i.e., given <I>|w there is exactly

one map ¥: wt — <I>(W)'L such that ®|yy; + ¥ is an isometry of E6-formé. The

proof of this last claim is constructive, and in fact we constructed & using this

construction. Hence we omit further details.

Since we are working over fields of characteristic # 2,3 it is enough to show that
for every x € W we have Det(x) = T(®(x)) to prove that &l is an isometry of
trilinear forms.

Let x€ J. Now we observe first that x can be written as x = e q(aq) + ego(ag)
+ eg3(ag) + e1o(cy) + e13(C9) + egg(cg) whereo; € F and c;€ O.

So then Det(x) = ajagag- L a; N(cy;) + 7(cycoeg + T ToT3)-
On the other hand

T(®(x)) = ajagag +i§10ip(xij ’ ‘I’(ers(c4_i)) + f(<I>(e12(c1)),tI>(e13(c-2)),<I>(e23(c3)))
where ij € Par(d) and {i,r,s} = {1,2,3}.
A straightforward calculation using the orthogonal basis of table 1.1 and using table
3.1 shows that N(w) = - Pxij(Q(w)) for all w € W, subject to our identification of

W, with O. And so (W;, N) is isometric to (2(W,), -Pxij).
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If x € W then in particular c; = 0, and hence ®(ej5(cq)) = 0.
Thus x( cjcoeg + T ToT3) = 0 = (. B(ey9(cy)), B(e13(3)), Blegg(cg))). So clearly
Det(x) = T(®(w)) and @[y is an isometry.
Now it remains to show that @ is uniquely determined (in the sense above) by its
restriction to W.
To do this we will first prove the following:
e12(ij) is the unique element of V with the property that
, in
1- < e12(lj)> = A ﬂ W3.
2. (elg(ij)’ 313(1) , 623(ij)) =2 N(ij)-
Where A = { we Wy : (e23(ij), eq3(1l), w) =0} and Ly means the perp with
respect to N.
If we show that e12(ij) is unique with respect to (1) and (2) and if % is an isometry
of E6- forms, then ¢(e12(ij)) must be the unique element with respect to 1. and 2.
as 1 preserves properties 1. and 2. The following holds:
(323(ij)’ e13(1), ejo(w)) = r(ijw + ‘TVTj) (%)

Now observe using table 1.1 that (*) =0 iff w € ij'l‘ and that (%) =2 N(ij) when
w = lj.
So (1) and (2) hold for e12(ij). Uniqueness follows from the linearity of the map x
|—>(612(ij) N 313(ij) s X ).

Now let ¥ be an isometry of Eg forms such that ¥l = ®|yy. Assume for now
that ¥ exists. Then ‘I'(e12(ij)) is the unique element of V with the property that
1. <¥(e;o(i))> = A3 (W)

: 1245 - 3/

2. f(¥(eqp(is), ¥(ey3(1)), ¥leg3(is))) = 2 N(iy).
Where A = { we ®(W3) : f( \Il(e23(ij)), ¥(e;3(1)), w) =0} and Llg, means the
perp with respect to Px3 4

Similarly \Il(e13(ij)) is the unique element of V with the property that
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: 125
1. <\I'(e13(1j))> =A n o(W,).
2. f(‘l’(elg(ij))’ ¥(e;o(1)), \Il(e23(ij))) =2 N(ij)-
Where A = { we ®(W,) : f( \Il(e23(ij)), ¥(ej9(1)), w) =0 } and Loy means the
perp with respect to Px25.
So we can compute \Il(e13(ij)) and ‘Il(em(ij)) forall je{O,..,7}.
Now a straightforward but lengthy computation will show that ¥ = @, and the claim
follows once we show the existence of ¥.

Now we turn to the existence of ¥. We note that W is generated by the special
triple {e;(1): 1<i<3}, a vector e;3(1) € Wy such that Pe22(1)(é13(l)) = -1 and a
basis B;= {e23(_1_),e23(i1),e23((1/2)(i2j:ti2j+1)) : 1< j < 3} of W;. Moreover it is
shown in [Ja4] theorem 9 that CE6({eii(1)},e22(l),e23(l))°° =~ Gy(F). Also it can be
shown using the identification of W, with O that {e23(i1),e23((1/2)(i2j;ti2j+1)) 01
<j<3} is a basis of standard vectors (in the sense [As7]) for the 7-dimensional G2(F)
module <{e23(ij) : 1 <j<7}> with respect to the Aut(0) (x~ Go(F)) invariant
trilinear form of proposition 1.4. We indicate here a correspondence. First let us recall
the setup of [As7]. Let Y = {yo,yi,yi : 1 € i< 3} be a basis for a 7-dimensional
vectorspace over F. We define an alternating trilinear form h by
Yo¥1Y1+YoYoyo+tyoy3ys+y1yoygty|yays, and a bilinear form B by -2y% +
yly'1+y2y'2+y3yé. The stabilizer of the pair of forms (h,B) in GL(<Y>) is Gy(F).
The set Y is called a standard set. Now we give a correspondence of Y to a basis of
1t < 0. Let Yo ~ iy ¥ — (1/2)(ig+ig), y1 = (1/2)(ig-ig), yo = (1/2)(ig+ig),
vl = (1/2)igrig)s vg = (1/2)(igip), v = (1/D)igrHip):

Now &(W) is generated by the special triple {x16,x25,x34}, by a basis ®(B,) of
XogA N xg4A , and a vector Xg+Xs € X;6AN x34A such that Px25(x’2+x5) = -1.
Moreover we observe that ® maps {e;;(1): 1<i<3} into {x;g,X95:x34}, B(ey5(1l)) =

xo+xg, and ®(egq(l)) = Xy-xg. Furthermore by [As3] 5.5 we have
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G2(F) ~ CEG(xle,x25,x34,x'2+x5,x1-x6). Finally a long but straightforward
calculation shows that ®(®,(S)\ e93(1)) is a basis of standard vectors for the
CEG(XIG,x25,x34,x’2+x5,x1-xé) - module <®(B;(S)\ egq(1))> .

If we can show that Eg is transitive on triples {S,3,(S),u(S)} , where S is a
special triple {81’52’83}’ “.BI(S) is a basis of soA N s3A, u(S) € slA N s3A, and
B,(S) contains a vector b; such that Psl(bl) = -1, CEG(S’bl’u(S)) =~ Go(F), and
B,(8) \ by is a basis of standard vectors for the CEG(S’bl’u(S))' module <B,;(5)\b;>,
then we will have the existence of a ¥ such that \Illw = Ol

Now we show that Eg is transitive on the set of triples {S,%,(S),u(S)}.
Aschbacher showed in [Asl] 6.9 that Eg is transitive on special planes. The content
of [Asl] 3.15.3 and 4 is that NE6(5)°° ~ Sping-(F), (W;, Psi) is a hyperbolic
orthogonal space, NE6(5)°° acts as Q(W,;) on (W,, Psi)’ and NE6(S) induces a
triality outer automorphism on NE6(S)°°. Now it is well known that NEG(S) is
transitive on the points of W, of Ps2- value -1. Also well known is the fact that
M := NEG(S,u(S))“’ ~ Sping(F) and that M acts irreducibly in a spin
representation on Wl' It is known that M 1is transitive on the set of vectors w €
W, such that Psl(w) = -1 and that Ny(w) = Go(F). To complete the proof we
observe that the standard bases of the 7-dimensional G4(F) modﬁle correspond to the
apartments in the building of Go(F), and that Gq(F) is transitive on the set of

apartments in its building.

We define the multiplication on V in such a way that ® is an isomorphism of algebras.

Define Q (x) := Q(Q’l(x)) for all x€ V and P(ad+w) = a2 for all we d© and acF.

Lemma 3.3:

L §(x) = - Py(x) + (9/2) P(x).
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2. U C d© is a singular subspace with respect to Q iff U is a singular subspace with

respect to Pd'

3. ®({d) = d and ®@id 1) = de.

Proof: We know that G stabilizes a two dimensional space of quadratic forms of J
as J is the direct sum of two absolutely irreducible G modules, both of which are
nontrivial under Q. (see prop. 2.2.2)
The space must therefore be spanned by Pd and P ;i.e.,

(%) Q(x) = a Py(x) + BP(x) for all xeV .
We solve for ¢ and # by substituting d and X16 into the equation (*). Note that
x16 = (1/3) d + w where wedB. Then using proposition 2.3 we get:

(3/2) = Q(d) = @ Py(d) + fP(d) = 3a + 8 and
(1/2) = Q(xls) = aP4(xy6) + BP((1/3)d + w) = (8/ 9).

Solving this yields « = -1 and B = (9/2). This proves part 1.
Now part 2 is an easy consequence of part 1. For part 3 we note first that dim(id'L)
= dim(d®) = 26. Let (, ), f(d,, ) and (,) denote the bilinear forms associated to
Q, Py and P respectively. Now let x € d© . From part 1 we get:
(id,®1(x)) = - f(d,d,x) + (9/2) (d,x) = 0+ 0,as (d,x) = P(d +x) - P(d) - P(x).

This gives part 3.

In view of Proposition 3.2 and Lemma 3.3 we will identify V and J via ®, Det with T,

Q with Q, id with d, and idl with d®.

Conventions: We will call x €J or a subspace U of J singular (brilliant or dark) if x
resp. U is singular (brilliant, dark) with respect to the 3-form T. We call x resp. U

Q-(non)singular resp. P 4 (non)singular if x resp. U is (non)singular with respect to
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the quadratic form Q resp. P .

Lemma 3.4:
1. Let x € J. Then x is singular iff x#x = 0.

2. U c J issingular iff x#y =0 for all x,y € U.

Proof: Let z € J and x,y € U. Then (x,y,2) = 2 (x#y,z) by definition of #. If
x#y = 0 then (x,y,z) = 0 for all z€J and hence by definition U is singular. If U is
singular then (x,y,2) = 0 for all z€J and x,y€U. Therefore (x#y,z) = 0 for all z€J

and hence x#y = 0 as Q is a nondegenerate quadratic form and char(F) # 2.

Corollary 3.5: Primitive idempotents are singular.
Proof: By proposition 2.7 G is transitive on primitive idempotents. So every
primitive idempotent is conjugate to x listed in Proposition 2.7. It is routine to

check that x#x = 0. Now Lemma 3.4 applies.

Lemma 3.6: Let S be a brilliant subspace of J such that SO is a hyperplane, and
s,v € J'\ S6.

1. Then Pg lS is similar to PV|S.

2. A subspace W of S is singular iff W is singular with respect to Psg.

Proof: This is the content of [Asl] sec. 2.13.

Definition and Lemma 3.7: If S is a nonsingular subspace satisfying the conditions of
lemma 3.6, then S is contained in a unique member of ¥, denoted by \FIO(S). Sis
called a hyperbolic subspace.

Proof: This is the content of [Asl] sec. 7.2.
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SECTION 4: GENERALITIES ON SUBALGEBRAS OF J

Lemma 4.1: G has two orbits on singular points of J. These are the scalar multiples of
the primitive idempotents and the vectors satisfying x2= 0 and x # 0. (Call the
latter Class two nilpotents.)

Proof: Note first that by Lemma 3.4, x is singular iff x#x = 0.

If x ¢dO then by lemma 2.8 x is singular iff x is a multiple of a primitive idempotent,
and by 2.7.1 G is transitive on primitive idempotents. If x € d© then by lemma 2.8 x
is singular iff x2= 0. Moreover Aschbacher showed in [As1l] 8.6 that G is transitive

on singular points of d©.

Lemma 4.2: The G orbits on brilliant nonsingular vectors of d© are parameterized by
the Q-values. Representatives for the orbits are X1+ X19,%x) + a xé where a # 0.

Proof: If every brilliant x € d© is of the form s+t where s, t are class two nilpotents,
then the claim follows from [Asl] 9.2. Now we claim that every x is of the right
form. Define A := ¥, (x) N dO, where ¥,,(v) is the unique member of Y10
containing v. Now let s € J \ x© be singular. Then Pg induces a nondegenerate
quadratic form on ¥;4(x). Now by lemma 3.6 a€A is singular iff a is singular with
respect to Pg. The claim follows as each nonsingular point of A is contained in a Pg

- hyperbolic line contained in A.

Lemma 4.3: x12 =0,(x; + x12)2 = xg , (Xt xg) # (xg+a xp) = axqg

Proof: A straightforward computation.

Lemma 4.4: The # square of a brilliant vector is singular.

Proof: By [Spl] pg. 77 (x#x)#(x#x) = Det(x) id. When x is brilliant then Det(x)
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= 0, by definition and lemma 3.3.4. So then either x#x = 0, or x#x is singular by

lemma 3.4. The claim follows.

Definition: Let U be a subspace of J. Then S2(U) =< {xy:xye U} > and

S#Q(U) =< {x#y:xy € U} >.

Lemma 4.5: Let U be a subspace of J, then <U,id> is a subalgebra iff SZ(U) C
<U,id> iff S#Q(U) C <U,id>.

Proof: The first equivalence is obvious. The second one follows from lemma 2.6.

Lemma 4.6: Let U be a subspace of J , then 8#2(U) =vet.

Proof: Letv € UO. By definition of #, 0 = ( s,t,v ) = 2(s#t,v) for all s,te U
So UG c S*2(U)L.

Now let v 68#2(U)‘L. Then 0 = (s#t,v) = (1/2)(s,t,v) foralls,t € U,sov € UO.

Thus S© = 5#2(U)‘L, so the lemma holds.

Lemma 4.7: If U is a Q-singular subspace of d©, then xy = x#y for all x,y€ U. In
particular S2(U) = S¥2(U).

Proof: Let x,y € U. Then by lemma 2.6

xy = x#y + (1/2)(x,id) y + (i/2) (v, id)x + (1/2)(x,y)id - (1/2)(x,id)(y,id) id.

Now (x,y) = 0 by assumption, and (x,id) = (y,id) = 0 in view of lemma 3.3.3. Thus

xy = x#y for all x,y€U. Now the claim follows easily.

Lemma 4.8: Let U be a subspace of J. If for every s€U we have s2=0 (i.e., S2(U) =
0) then U is singular.

Proof: From lemma 2.9 and lemma 3.4 we know that every s€U is singular and that U
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C id'L. Now let s,v€S. To complete the proof we need to show that v € sA.
So let zeJ be any vector. From the singularity of s,v,s+v it follows that
0 = (s+v, s+v,z ) = (8,8,2) + 2(s,v,z) +(v,v,z)
= 0 + 2(s,v,z) + 0.

So it follows that (s,v,z) = 0 for all z €J. Thus v € sA.

Definition: Let A be a subalgebra of J. We will denote the Q-radical of A by R(A).

Note that R(A) C id1 as id € A.

Lemma 4.9: Let A be a subalgebra of J, then

1. R(A) is brilliant.

2. Either R(A) or SQ(R(/-\)) is generated by singular points.

3. Both R(A) and S2(R(A)) are invariant subspaces of N;(A) .

4. If R(A)# 0 then N(A) is contained in a brilliant subgroup of Eg.

5. S2(R(A)) C R(A).

Proof: Let r €R(A). Then by proposition 2.3.4, 0 = (ab,r) = (a,br) for all a,be A.
Thus bre R(A) for all be A. Thus S2(R(A))C R(A), proving 5.

Since R(A) is Q-singular S 2( R(A)) = S2(R(A)) by lemma 4.7.

So R(A) ¢ R(A)L c S2(R(A))Lc R(A)® by lemma 4.6. This shows part 1.

For part 2 note that every vector x€R(A) is brilliant and Q-singular. So by lemmas
4.4 and 4.7, S2(R(I-\)) is either generated by singular points or trivial. In the latter
case R(A) is singular by lemma 4.8 , so 2 holds. Part 3 is self evident and part 4
follows from [As2] Theorem 2 which states that the normalizer in Eg of a brilliant

subspace which is generated by singular points is brilliant.

Because of lemma 4.9.4 we will now call subalgebras with nontrivial Q-radical brilliant.
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Also the following is self evident:
Remark: If H < G and H stabilizes a subalgebra A . Then either:
1. A is nondegenerate with respect to Q, or

2. H is a brilliant subgroup of G.
A subalgebra A will be called nondegenerate if R(A ) = 0.
SECTION 5: NONDEGENERATE SUBALGEBRAS

Springer’s Lemma: Let A be a nondegenerate subalgebra of J then:
1. A contains a primitive idempotent iff there exists 0 # x € A such that Det(x) = 0.
In particular if dim(A) > 3 then A contains a primitive idempotent.
2. If dim (A) > 3 and A contains a primitive idempotent x then EO,A(X) # 0. (See
prop. 2.7.6 for the definition of EO,A(X)‘)
3. If dim(A) > 3 and El,A(x) # 0 then A is isomorphic to
71 4y dg
Jp = { Hl 79 dg : d;€ D, where D is a nondegenerate subalgebra of O }
dy d3 73

4. dim(Jp) = 3 + 3 dim(D)

Proof: See [Sp1) pg. 76.

Lemma 5.1: Let A be a two dimensional nondegenerate subalgebra of J, then A =
<id,x> where x is a primitive idempotent. G is transitive on two dimensional
nondegenerate subalgebras of J.

Proof: Assume that A does not contain a primitive idempotent. Then in view of 1 of
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Springer’s Lemma, A must be totally dark. By [As3] sec 7 there exists a cubic field
extension K of F such that AK contains exactly three brilliant points, none of which
are singular. Moreover it is clear that aK is a nondegenerate subalgebra of JK.
Therefore, by 1 of Springer’s Lemma, AK must contain singular points (recall from

corollary 3.5 that primitive idempotents are singular): a contradiction. Thus A contains

a primitive idempotent and proposition 2.7.1 completes the proof.

Lemma 5.2: If F is finite, G is transitive on nondegenerate three dimensional
subalgebras of J containing no primitive idempotents. If A is such a subalgebra then
Cg(R) = 3D(F) and NG(R)/ Cg(R) = Z/3Z. Moreover C(A) acts irreducibly on
A‘L. When F is algebraically closed, J does not contain three dimensional
nondegenerate subalgebras containing no primitive idempotents.

Proof: Let A satisfy the hypothesis ; then by 1 of Springer’s lemma, A is a totally dark
plane containing id. In [As3] sec 7 it is shown that Eg is transitive on totally dark
planes, and that the normalizer in Eg of a totally dark plane is transitive on the points
contained in that plane. This shows that G is transitive on totally dark planes
containing id. [As3] sec 7 shows that the centralizer of a totally dark plane is 3p 4(F)
and that the normalizer in E6 modulo the centralizer is Zq2+q+1extended by 23. The
stabilizer of a point in a totally dark plane must therefore be 13. This is the first
claim. Now the minimal dimensional faithful FC(A) module is 24 dimensional,
proving the second claim.

Now Det( ) is a cubic polynomial and hence has a nontrivial zero on any subspace of

dimension > 2 if F is algebraically closed. So the third claim follows from part 1 of

Springer’s lemma.

Remark: A is a totally dark subalgebra iff A is a cubic field extension of F. To see
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this; observe that the only nontrivial totally dark subalgebras are the ones in lemma
5.2. So any such algebra must be cyclic, i.e., generated by a single element. Now
every cyclic subalgebra is associative as a consequence of proposition 2.3.5. Let A be
as in lemma 5.2 and Aid # x € A. Then by Hamilton’s equation:
xS = (x,id) x2 + ( Q(x) - (x,id)?) x + Det(x) id. Now as Det(x) # 0 we have:
x( x2 - (x,id) x - (Q(x) - (x,id)2)id) / Det(x) = id. So x is invertible and hence A
is a field.

For the converse let B be a subalgebra which is a cubic extension field of F. We
need to show that Det(x) # 0 for every 0 # x € B. Suppose x € B and Det(x) =
0. Then using Hamilton’s equation we get x(x2-(x,id)x - (Q(x) - (x,id)2)id) = Det(x)
id = 0. So then x2 - (x,id)x - (Q(x) - (x,id)2) id=0 as B is a field. Hence X
generates a proper subfield of B. But B contains only <id> as a proper subfield, as

[B:F]=3. So x € <id> and hence x = 0. This shows the converse.

Lemma 5.3: Let x be a primitive idempotent and y,zEEo(x). Then yz € <id,x> and

v2 = Q) (id - x).

Proof: See [Spl] pg. 69.

Lemma 5.4: If ¥ is finite (algebraically closed) G has two (one) orbits of
nondegenerate three dimensional subalgebras containing primitive idempotents,
respectively. Let x be a primitive idempotent and y; € Eo(x) be a vector such that
Q(yi) =1i, i € {l,non}, where non is a nonsquare of F. Representatives for the orbits
can be chosen as follows:

1.A =<id,x,y;> Cg(A)) = Sping-(F), Ng(R1)/Co(Ry) = Sym(3) .

2. Apon =<id , X, Ynon> » C(Anon) = Spin's(F), N&(Anon)/C(Anon) = Zy.

Moreover Al is a special plane containing id, and x is the unique primitive idempotent



35

contained in Apop. Hence the normalizer of Apon is not maximal in G. Apgp does
not exist when F is algebraically closed.
Proof: We note first that in view of lemmas 5.1 and 5.3 each Ai is indeed a subalgebra.
Moreover an easy calculation shows that each Ai is nondegenerate. Because of
Springer’s Lemma we know that a three dimensional nondegenerate subalgebra A
containing a primitive idempotent x decomposes as <id> & <x> & EO,I—\(X)‘
Moreover from proposition 2.7.5 we know that NG(x) acts as Q;—(F) on Ey(x). Thus,
depending on F, QS-(F) has two (resp one ) orbits on the points of Eq(F). The ¥;
listed in the statement of the lemma can be chosen as orbit representatives. This
shows that there are at most two (one) conjugacy classes of nondegenerate three
dimensional subalgebras containing primitive idempotents and that {Ai} contains a
set of orbit representatives. @~ We now investigate the centralizers of the F\i’s. Now
clearly C(A;) = CC(x)(yi)’ where C(x) = CG(x), and therefore the centralizer
structure follows from well known results about orthogonal groups. This also shows
that the A;’s are not conjugate in G as their centralizers in G are nonisomorphic.
Next we want to survey the primitive idempotents of Ai' Let us first note that by
lemma 5.3 yi2 = Q(y;) (id - x). So now let v = vid + fx + a y; € A, be an

2

idempotent. We assume a,8,7y # 0 to avoid trivial solutions. Then solving v = v

by comparing coefficients yields the equations 2ya = o, 32 + 248 - a2Q(yi) =8,

72 + a2Q(yi) = 7. Solving them leads to v = 1/2, Q(yi) = (1/4) 0'2, ﬂ2
a2Q(yi). We now observe that the only time we have a nontrivial solution is when
Q(yi) is a nonzero square in F. Thus we conclude that when i=non, x is the unique
primitive idempotent in Ai' Thus the normalizers of Apop lies in the normalizer of x.
The nontrivial idempotents in A; are {(1/2)id + (1/2)x +(1/2)y;}. An idempotent

is primitive if its Q-value is 1/2. Now Q(id i—x-_{_—yl) = Q(id+x) + Q(yl) = 4 resp 2.



36
So the primitive idempotents in A; are {x,(1/2)(id - x +y1)}. A routine calculation
shows that the idempotents are pairwise orthogonal. Now proposition 2.10.4 yields
that the normalizer of Ay is as claimed. The fact that A; is a special plane follows

from [Asl] sec 2. and corollary 3.5.

Lemma 5.5: Let A be a nondegenerate subalgebra of dimension > 4. Suppose that
EI,A(X) = 0, where x € A is a primitive idempotent. Then:
1. EO’A(X) is nondegenerate with respect to Q.
2. <id-x> < S2(ANid®) < <id,x>.
3. <id,x> isan NG(A) - invariant subalgebra.
4, NG(I-\) = NCG(x)(EO,A(x))'
Proof: Part 1 is clear as J = <x,id>1 Ey(x) 1 E,(x) by proposition 2.7.3. Part 2 is a
consequence of lemma 5.3, and the fact that A is nondegenerate. Parts 3 and 4 follow
from part 2 as ANid® and id are N(L) invariant.

\
Recall the setup of proposition 2.10 and that W, = El(xi+1) n El(xi+2)’ ie {1,2,3}.
Also recall the definition of eij(c) and the identification of W3 with O after

proposition 2.10.

Lemma 5.6: Let A be a subalgebra of J which is isomorphic to Jp for some D. Then A
is generated as an algebra by a set {xl,x2,x3} of three pairwise orthogonal idempotents
which generate a three dimensional subalgebra, together with a vector weWg such
that Q(w) = 1, a nonsingular vector v€W, such that Q(v) = 1, and a composition

subalgebra D C W, whose identity element is 2vw.

)

(=~ T -]
o o o

1
Proof: Let r: Jp — A be an algebra isomorphism. Let x; = (| o
0
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000 00 0 0 1
Xg= (| 0 10),x3=1'(000),v=1'(ioo),
000 00 1 00
00 1 00
w=7( 00 o) and ={7( oo *]|):x€ D} Now the claim follows as
100 0 * 0

any isomorphism of Jordan algebras is an isometry and preserves multiplication (see

[Sp1] pg. 76 and Satz 17).

Lemma 5.7: Let v,w and D be as in the last lemma. Then v and w determine a unique
multiplication that makes (Wl,-le) into an octave with identity element 2vw. D is a
composition subalgebra of O.

Proof: It is shown in [Spl] pg. 75 (and briefly outlined after proposition 2.10) that a
CG(xl,x2,x3,v,w ) - invariant multiplication on W3 can be defined to make W into
an octave with identity element 2vw. Aschbz;cher has shown in [As3] sec. 5 that

Gy(F) = Ci(x1:X9,xg,v,w). Uniqueness follows from proposition 1.4.

Lemma 5.8: If A is a nondegenerate subalgebra of J of dimension greater than three,
X€ A is a primitive idempotent and EI,A(X) # 0 then A is conjugate to JD for some
nondegenerate subalgebra D of O.

Proof: Let A be a subalgebra of J satisfying the hypothesis. Then A is isomorphic to
JD by Springer’s lemma. In view of the previous two lemmas the claim will follow
from the following four claims:

1. G is transitive on triples of pairwise orthogonal idempotents, which generate a three

dimensional nondegenerate subalgebra.

2. CG({xl,x2,x3}) is transitive on vectors v of W, whose Q-valueis 1.
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3. CG({xl,x2,x3} ,v) is transitive on vectors w of W3 whose Q-value is 1.

4. CG({xl,x2,x3},v,w) is transitive on isomorphic composition subalgebras of O = w,.
Claim 1 is the content of proposition 2.10.5 together with lemma 5.4. Claim 2 follows
from proposition 2.10, lemma 5.4 and Witts theorem. To prove claim 3 we observe
that CG({XI’XQ’X3}’V) = Spin7(F), CG({xl,x2,x3},v) acts irreducibly on W3, and
that CG({xl,x2,x3},v) acts on Wg as the image of the stabilizer of a nonsingular
point under a triality outer automorphism of CG({XI’XZ’X:S}): Sping-(F) (these facts
are consequences of [Asl] 3.15.4). The claim follows Spin,(F) is transitive on vetors
of W3 of Q-value 1. To prove claim 4 we observe that CG({xl,x2,x3},v,w) ~
Go(F) < Aut(0) by [Asl] section 5 and lemma 5.7 respectively. So
CG({xl,xz,x3},v,w) = Aut(0). Now the Aut(0O) theorem of section 1 proves the

claim.
Now we can list all possible nondegenerate subalgebra types.

Proposition 5.9: Let A be a nondegenerate subalgebra of J. Then A is G-conjugate
to one of the following:

1. < id, x> where x is a primitive idempotent.

2. A totally dark plane containing id.

3. <id ,x,y;> where y; € Eq(x) satisfies Q(y;) =i, i€ { 1,nonsquare € F}.

4. <id,x,E> where E C Eo(x) is a Q-nondegenerate subspace of dimension 2 or more.
5. JD for some nondegenerate composition subaigebra D of O.

Proof: If A is two dimensional then 1 holds by lemma 5.1. If A contains no primitive
idempotents then lemma 5.2 and Springer’s lemma apply and 2 holds. So assume
dim(A) > 3 and that A contains a primitive idempotent x. Then by Springer’s lemma,

part 2, Egja(x) is not 0. Moreover A = <id,x> & Ej a(x) ® E; p(x). If E{ p(x)
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= 0 then lemmas 5.4 and 5.5 apply and hence 3 or 4 must hold. If E{ p(x) # 0 then

by Springer’s lemma part 3 and lemma 5.8 5 must hold.

The following will be useful.

Lemma 5.10: Let U be a subspace of J containing id. Assume that J = U & UO, then
U is a nondegenerate subalgebra of J.
Proof: By assumption id € U. Let veU®, then (id,u,v) = O for all ueU. First we
compute using lemma 2.6 and proposition 2.3 that
1.id#u = u - (1/2)(id,id)u - (1/2)(u,id)id - (1/2)(id,u)id + (1/2)(id,id)(u,id)id

=u-(3/2u - (u,id)id + (3/2)(u,id)id

= (1/2) ( -u + (u,id)id ) for all ueJ.
2. id#id = id
Thus

0=(id,u,v) = 2(id # u , v) = ( -u +(u,id)id , v) = -(u,v) +(u,id)(v,id) (*).

Also 0 = (id,id,v) = 2(id#id,v) = 2(id,v) yielding (v,id) = 0. Substituting this into
(x) gives: (u,v) = 0 for all ueU. This shows that U© C vt By assumption
dim(U®) = dim(U'L) and therefore we actually have U8 = U-L. Thus S#z(U) = U
by lemma 4.6, and hence U is a subalgebra by lemma 4.5. As unut =0 Uis

nondegenerate.

Corollary 5.11: Let U be a subspace of type U3, totally dark plane, Ug» Ug; Vgor Vye
containing id. Then U is a nondegenerate subalgebra of J.

Proof: By lemma 5.10 this is a matter of checking that for every choice of U, J=U &
UO. For the respective cases this is shown in [Asl] sec 3.15.2, [As3] sec. 7, [As3] sec.

4.5.5, [As4] sec. 3.3.2, [As2] the remark at the end of sec. 3, [Asl] sec. 3.8.1.



40
Definition: We call a subalgebra A of type AU, or ‘Yi if either A, or R(A) is of type U

or ‘V'i.

Lemma 5.12: We assume in the following that each Ui resp. V, contains id. The
following subalgebra isomorphisms hold:

1, U3 ~ <id,x, y1> where x and y, are defined as in 5.4.

2. Ug = JD where D = < 1>.

3. U9 ~ JD where D is a quadratic field extension of F.

4. Vg = Jp where D is a two dimensional composition subalgebra of O with Witt
index 1.

5. Vig = JD where D is a four dimensional composition subalgebra of O.

Proof: For part 1 observe that Uj contains the three primitive idempotent idempotents
X1g1X0g5Xg4- So‘part 1 follows from lemmas 5.11 and 5.4.

Parts 2 and 5 follow from proposition 5.9, corollary 5.11 and a comparison of
dimensions (Springer’s lemma part 4) after we observe that El,Uﬁ(XIG) “and
El’vl5(x16) are not trivial.

For part 3 recall from the definition of ‘U.g that Ug is of type V9 for some quadratic
field extension K of F. So part 3 will follow once we establish pa.ft 4.

Recall the isometry @ of trilinear forms from section 3. Observe that <I>'1(V9) is
<eii(1) R eij(l) , eij(il) >. Now observe from section 1 table 1.1 that D := < 1,i;>
is a composition subalgebra of O and that the Witt index of N|D is one. The claim

follows.

Lemma 5.13: The normalizers in G of the JD are as follows:
1.IfD = F, then N(JD) = PSO3(F)XG2(F) , CG(JD) = G2(F).

2.1 D = F2 , then N(Jp) = SLg(F)oSL4(F)Hp,.<7> , Cg(Jp) = SLyg(F) <r>.
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3. If D = K (a quadratic field extension of F), then N(Jp) = SU3(F)oSU4(F).o .

Ce(Jp) = SU4(F).
4.1 D = F%, then N(Jp) = Spg(F)oSLo(F) Hpy, Ci5(Jp)=SLo(F).
Proof: The centralizers are given in [Ja4] theorem 9 and are as claimed.
Let D = F4, then by lemma 5.8 and lemma 5.12.5 JD = V15. Aschbacher has shown
in [Asl] that Vis s the alternating square of Vg  that NE6(V15) =
SL6(F)HSL2(F), where H is the Cartan subgroup of Eg(F) defined in section 3,
CEG(V15) = SL, and that J = Vg ® Vg & Vg as an SLg(F) -module, where
V%= <x’1,...,x’6>. Moreover Aschbacher has shown that d induces a nondegenerate
‘symplectic form on Vg and on V’6 and hence NG(V15) is as claimed as NG(H) =
Hp .

Now let D = F. In view of lemma 5.8 and lemma 5.12.2 Jp = Ug
Aschbacher shows in [As3] section 5 that NEG(UG) = SL3(F) x Go(F), J = UGiél
W, as an SL3(F)-module, where each W, is a three dimensional irreducible SL4(F)
module. Moreover because J is a self dual module thereis an i such that Q| is

i
nondegenerate. Now recall from lemma 3.3.2 that QIWi is nondegenerate iff Pd'Wi
is nondegenerate. This shows that NG(UG)/CG(UG) is contained in SO(Wi’Qlwi)
~ PSOg4(F). The opposite inclusion follows from lemma 3.3.2 and theorem 2.5.1.

Now let D = F2. In view of lemma 5.8 and lemma 5.12.4 we need to compute
Ng(Vg)- Aschbacher shows in [As2] section 3 that NE6(V9) =
SLg(F)oSLg(F)oSLg(F)H<7> where 7 acts as a graph automorphism on Ce(Vyg)
= SL4(F). Moreover Vg is a tensor product of two natural SL4(F)- modules and id
is the sum of three fundamental tensors. Also NEG(V9)°° acts as  SLg(F) x SLg(F)
on Vg.

Now let (m,n) € SL3(F) x SLg(F) and d =i§31vi®wi € VW, where V,W are

natural SLg(F) modules and {v;} {w;} are bases for V resp. W. Let (aid) and
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(bi,j) denote the matrices of m resp. n with respect to the bases {v.} resp. {w;}.
Then d =d (myn) =X v,m®w.n = ??E 3 bi,k vj®wk iff (bi,j) = ((ai’j)-l)t
where t denotes the transpose map. So we conclude that NEG(V9)°° N G acts as
SL3(F) on Vg. Also from the definition of 7 in [As2] section 3 it is evident that r
centralizes id. So NG(VQ) is as claimed.

Now let D = K. Then by lemma 5.8 and lemma 5.12.3 we need to compute
Ng(Ug)- Aschbacher showed in [As3] section 3 that NEG(UQ) =
SL3(K)OSU3(K/F).0' where o induces a graph field automorphism on SL3(K).
Moreover Ug = VoV? as an SL3(K) K - module and that id = ¥ v;® vio' where
{viz1<i < 3} is a K-basis for V and NEG(UQ) acts as SLg(K) on Ug. So now let
m € SL3(K) and let (aij) denote the matrix of m with respect to the basis {vi}.

al) v;®vf iff (aid)z(((ai’j)'l)t)a

Then id=idm=2v-m®vfm”=.2 a. ;

i ij.k iy
where t is the transpose map. So m centralizes id iff m € SU3(K/F) and the

claim follows as o centralizes id.

Remark: With a little more work using [Jal] we could establish the Witt property for
nondegenerate subalgebras of J namely: Let i: A — B be an isomorphism of

nondegenerate subalgebras of J. Then i extends to an automorphism of J.
We conclude this section with the following:

Lemma 5.14: Let A be a nondegenerate subalgebra of J. Assume that NG(A) is
maximal in G with respect to stabilizing a nondegenerate subalgebra. Then A is of type
U3, totally dark plane, Vg, V15, U6’ U9 or <id,x>, where x is a primitive idempotent.
Moreover in each case A = CJ(CG(A)).

Proof: By proposition 5.9, A is in the list of 5.9. The normalizers of algebras of type
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<id,x,yi>, i=non, and type <idx> @ EO,A(X) were shown to stabilize the algebra
<id,x> (see lemmas 5.4 and 5.5) and hence are not maximal in G. In view of lemma
5.12 this leaves only the subalgebras listed in this lemma. To prove the second
assertion we check for each case that the complement AO® of A is a direct sum of
nontrivial irreducible CG(A) modules. For the case Ug this follows from 2.10.3 or
alternatively from [Asl] 3.15. For the case totally dark plane this follows from [As3]
7.3. For the cases Vg, Ug, Ug, V5 it follows from [As2] 3.5, [As3] 3.3.3, [As3] 5.7,

[Asl] 3.2 respectively.

SECTION 6: BRILLIANT SUBGROUPS

Recall from section 4 that a brilliant subalgebra is a subalgebra whose Q-radical is
nontrivial. Recall from section 3 that a subgroup of G is brilliant if it stabilizes a
member of {¥, :i €{1,2,3,5,6,10,9,12}}.

In lemma 4.9.4 we proved that the normalizer of a brilliant subalgebra is a brilliant
subgroup of G. In this section we will show that every brilliant subgroup of G is
contained in the stabilizer of a nondegenerate subalgebra or a maximal parabolic
subgroup of G. The maximal parabolics stabilize certain singular subspaces of id®©.
The next two lemmas show that we may regard the maximal parabolics as subalgebra

stabilizers.

Lemma 6.1: Let U be a singular subspace of id®. Then <id,U> is a subalgebra of J;
its radical is U.

Proof: In view of Lemma 4.1 every element of U is class 2 nilpotent and hence also
Q-singular. Next we observe that (u,v) = Q(u+v) - Q(u) - Q(v) =0-0-0=20 for

all uv € U. So U is the radical of <id,U> as Q(id)#0. Now we observe that by



44

lemma 3.4.2 0 = u#v for all u,v € U. So by lemma 4.5 <id,U> is a subalgebra.

Lemma 6.2: Let L be a subgroup of G and suppose that L stabilizes Ue "('i
i€{1,....6}. Then L stabilizes the singular subspace UNid®, and hence the
subalgebra <id,(UNid®)>. Moreover UNid® #0 unless Ue ¥, and U contains a
primitive idempotent.

Proof: The first part is evident in view of lemma 6.1 since the ‘V'i, ie{1,...,6} are
singular. If UNid® = 0 then dim(U) =1 and U is spanned by a singular point not in

id®, which by lemma 4.1 must lie in the F-span of a primitive idempotent.

Definition: Let x be a class two nilpotent. p(x) = P, - radical of xA. Let U be a

singular subspace of id L. We define u(U) : eﬂ p(u).

U

u

Lemma 6.3: p(x) = Q - radical of xA.

Proof: G is transitive on class two nilpotents so it suffices to check the claim for p(xl).

That’s a simple calculation.

Definitions: Let U be a singular subspace of d©. U is amber if UcC u(U). A singular
line lis scarlet if 1 is not contained in u(l). A singular subspace is scarlet if all of its

lines are scarlet. A singular subspace U is tangerine if for some scarlet line 1 we have

U=1o (pd)nU).

Proposition 6.4: Let A be a subalgebra of J such that A = <id> @ R(A), R(A) is a
singular subspace, and r = dim(R(A)) then:
1. If R(A) is amber then r = 1, 2 0or 3. G has three orbits on amber subspaces and

each orbit is characterized by r with representatives Vr. The stabilizer of an amber
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subspace is a maximal parabolic subgroup of G.
2. If R(A) is tangerine then it is contained in a unique maximal tangerine subspace.
Each maximal tangerine subspace is conjugate to V6‘ The stabilizer of a maximal
tangerine subspace is a maximal parabolic subgroup P of G. Moreover P stabilizes
a symplectic from on Vg which is induced by id.
3. If R(RA) =1 is a scarlet line then 1 is contained in the NG(A) invariant maximal
tangerine subspace 1 @ u(l).
4. If r > 3 and R(A) is scarlet then p(R(A)) #0 is amber.
5. If R(A) is neither amber, scarlet or tangerine then S C R(A) C S + u(S) where
S is scarlet of dimension 3 or 4. In this case 0 # p(R(A)) C u#(S) and p(R(A)) is
amber.

6. r <6.

Proof: Part 1 is the content of [Asl] 9.11 and 9.12. Part 6 follows from the fact that
Vg and Vg are the representatives for the E6(F) orbits of maximal singular
subspaces of J, see [Asl] 6.5. Part 2 is the content of [Asl] 9.6, 9.12 and 8.4. For
part 3 we note that by [Asl] 9.2.2 every scarlet line is G-conjugate to <xq,Xg>.
Moreover in the proof of [Asl] 9.6 it is observed that p(<x;,xg>) = <Xg,Xg,X4,Xg>.
So p(<x1,x6>) O <Xy,Xg> = V6, which is maximal tangerine by part 2, and part 3
follows as p(U) is NG(U) invariant for any singular subspace U of J. Part 4 is
the content of [Asl) 9.8 combined with the content of [As1] 9.10.2 and 3. The first half
of part 5 is the content of [Asl] 9.10.1. Now the representatives for S can be chosen
as <Xg,X4,Xpg> and <Xg,X4,Xgg:X15>- Then u(S)is V 9 respectively <x5>. Now
an easy calculation shows Vy < p( < x3,x4,Xg6> + Vg) < p(S) = Vo and <xo>

< p(<xg.X4Xpe.X 5> + <X9>) < p(5) = <x9>. So part 5 follows.
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Corollary 6.5: If A satisfies the hypothesis of proposition 6.4 then NG(A) is contained
in a maximal parabolic subgroup of G. Moreover the following are true:
1. If R(A) = V| = <x;>, then N5(A) =~ [F]'3: Spiny(F).F*, Cg(A) = F15:
Spin7(F).
2. If R(A) = i/z = <x;,Xp>, then Ng(A) = [F]20: SLy(F)xSL4(F).F*, Cy(A) =
[F120:SL,(F).
3. If R(A) = Vg = <xq,X5,x3>, then N(A) = [F]20: SLy(F)xSLy(F).F*, C5(A)=
[F]2O: SLy(F). Moreover < id, VgA> and < id, VaA'L> are N5(A) invariant
subalgebras of J and S¥( V3A) = V3 and s#(v3,v3l) = V3A.
4. If R(A) = Vg = <x|, ... , Xg>, then N(A) = [F]'5: Spe(F).F*, C5(A) ~ F15.
Moreover VG'L > Ve ® Vg is an N(A) invariant subalgebra and S#(V6,V15)
= V6.
Where [F|® is some group with n composition factors all of which are isomorphic to
the additive group of F.
Proof: First we note that R(A) and p(R(A)) are NG(A) invariant. Unless R(A) is a
scarlet line either R(A) or u(R(A)) is amber or contained in a unique maximal
tangerine subspace, by proposition 6.4. In case R(A) is a scarlet line 6.4.3 applies and
NG(A) stabilizes a member of ¥¢- Now the first claim follows from 1 and 2 of
proposition 6.4.
Part 1. is proved for example in [Co2] or in [Asl] 8.9.2 and 7.8.4. The statements
about N(Vg) and C(Vg) in part 4. can be found for example in [Asl] 8.4 and 8.5.
The rest of part 4. is a straightforward calculation. For parts 2. and 3. observe that
NN(Vs)(vi) i€{2,3} is isomorphic to R:SLi(F).F*, where R denotes the unipotent
radical of NN(VG)(vi)' Also observe that CN(VG)(Vi) = R. Now Aschbacher shows
in [Asl1] 8.8 that Ci(V9)/R(C5(V9))™ = SLg(F), where R(C(Vy)) is the unipotent

radical of C;(Vy), and so part 2. follows as R < Cg(Vy). Also from [As1] 8.7.2 it
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follows that CG(V3)/R(CG(V3))°° =~ SLy(F) so the first part of 3. follows. The

second part of 3. is straightforward calculation.

Orbits on Points Lemma: Let v €J. Then NG(v) is contained in a Parabolic subgroup
or in N(A) where A is a nondegenerate subalgebra of dimension less than or equal to
three.

Proof: Let v€J. Then by lemma 2.4 the subalgebra A generated by v is at most three
dimensional. If this subalgebra is nondegenerate then the claim holds. If the radical of
this algebra is singular, then corollary 6.5 applies. The remaining case is the brilliant
nonsingular radical. In this case R(A) contains a point conjugate to <x)+x19>. So
then by lemma 4.3 and the fact that S2(R(A)) C R(A) (see lemma 4.9.5) R(A)
contains a conjugate of <X1t+X 9Xge>. So as dim(R(A)) < 2, R(A) m-ust be
conjugate to <X1+X19:X56>. Now <xge> = S2(R(A)) is a class two nilpotent, i.e.,
singular, and <id,xgg> is an NG(A) invariant subalgebra with radical <Xgg>. Hence
<Xgg> is amber by proposition 6.4.1 and hence N(v) is contained is a maximal

parabolic.

Lemma 6.6: G has two orbits on subspaces of type YIO' If UE‘V;IO then NG(U) is
contained in the stabilizer of a class 2 nilpotent or a primitive idempotent.

Proof: Let be U N idL be a brilliant nonsingular vector. Then b is conjugate to Xq
+ xp9 oOr x1+ ax'6, by lemma 4.2. Now since U = \Illo(b), U is conjugate to either
\Illo(x1+ x12) =< XX : 1K1 #2 < 6 > or

'Ilm(xl + xé) = <xq, xé ,x'l, Xgs Xij» Xg)* {1,6,i,j,k,1} = {1,2,3,4,5,6}>.

So G has at most two orbits on 1"10. Now a simple computation shows that S#2(U)
= <xg> resp S#Q(U) = < X14>. Moreover xg is a class 2 nilpotent and X16 I8 2

primitive idempotent. Using lemma 4.1 this shows that G has two orbits on 1"10 and
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that NG(U) is contained in the stabilizer of a class 2 nilpotent or a primitive

idempotent.

Lemma 6.7: Let U be a subspace of type ‘7'12. Then NG(U) stabilizes either a V15
type subalgebra or a point of id© .

Proof: Let U €%;,, then by [As1] 3.8, J=U & T and T€Y 5 and T is Ng(U)
invariant. Since U is brilliant id gU. If id €T then T is a subalgebra by corollary
5.12. Ifid ¢T then the two dimensional subspace S generated by the projections of id
onto U resp T is an NG(U) invariant subspace. Moreover S N <id>1 is an NG(U)

invariant point. This is the claim.

Lemma 6.8: Let U€¥y then NG(U) either stabilizes a subalgebra of type ¥g or a
point of idO.

Proof: In [As2] section 3 Aschbacher shows that NG(U) stabilizes a unique 3-
decomposition of J. Let’'ssay J=U & A @ B is that decomposition. Let S be the
subspace generated by the projections of id onto the subspaces U, A and B. Then S is
an NG(U) invariant subspace containing id. If id projects nontrivially onto U, then
the claim holds as the projection of id onto U is an NG(U) invariant point. If id
projects trivially onto U, then dim(S) < 2. If dim(S) = 1 then id € A or B and A or B
is a subalgebra by corollary 5.12. If dim(S) = 2 then idl NS isan NG(U) invariant

point.
At last we have:

Proposition 6.9: Let L be a brilliant subgroup of G. Then L is either contained in a

maximal parabolic subgroup of G or L is contained in the stabilizer of some
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nondegenerate subalgebra. In particular, if L stabilizes a brilliant subalgebra, the
claim holds.
Proof: If L is brilliant then L stabilizes a member of ‘V'i ,i€{12,3,5,6,9,10,12}. Ifi
< 6 corollary 6.5 applies as these ¥, are singular subspaces. In the other cases lemmas
6.6, 6.7 and 6.8 and the orbit on points lemma apply. Now if L stabilizes a brilliant
subalgebra then by lemma 4.9.4 L is a brilliant subgroup and the claim follows as

above.

Finally we can combine proposition 6.9, 5.14, and 6.4 to obtain the

SUBALGEBRA THEOREM FOR G: If L be a subgroup of G stabilizing a proper
nontrivial subalgebra, then L stabilizes one of the following:
a. A two dimensional subalgebra containing a primitive idempotent.

b. A special plane containing id.

c. A totally dark plane containing id.
d. A member of Ug containing id.

e. A member of ¥g containing id.

f. A member of Ug containing id.

g. A member of 1’15 containing id.

h. An amber or maximal tangerine subspace of id©.

Definition: A subalgebra of J is good if it is G-conjugate to one of the members listed

in the subalgebra theorem.

Note that the subalgebra theorem states that any subgroup stabilizing a proper

nontrivial also stabilizes a good subalgebra.
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SECTION 7: LOCAL SUBGROUPS OF G

Lemma 7.1: Let N be a normal subgroup of M < G . Then C (N) is an M invariant
subalgebra of J .

Proof: Let x,y € Cj(N), and g€EN . Then (xy)g = xg yg = Xy , so xy€C  (N) .

From now on throughout this section we will denote by N an abelian group of
semisimple elements of G. We will also assume that all the Eigenvalues of N liein F.
Recall the definition of the subgroup H of section 3. Recall also that H is a Cartan
subgroup of Eg(F) .

We denote the set of weight spaces of a Cartan subgroup K of Eg(F) by X(K).

Recall from section 3 that X(H) is a set of 27 singular points.

Lemma 7.2: If N < Hg, gE EG(F)‘ Then N centralizes each member of Xg onto
which id projects nontrivially. In particular each such member is a primitive
idempotent.

Proof: We observe first that [N,J] < idl =ide. But N must fix every point x €
X(Hg) \ id© . But then [N,x] € id® N <x>. So [N,x] = 0 and ‘the claim follows as

x is a multiple of some primitive idempotent by lemma 4.1.

Lemma 7.3: Every Cartan subgroup of G is of the form Cy(id) where K isa
Cartan subgroup of E6(F) and id is in the linear span of three members of X(K).
In particular if N < K then C J(N) is a subalgebra containing a subalgebra of type
Ug.

Proof: Aschbacher proved in [Asl] 8.15 that Cy(id) is a Cartan subgroup of G,

{x16, x25,x34} C X(H). Also id € <xygs X95:X34>) which is a three dimensional
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nondegenerate subalgebra of type QJ.3 (see lemma 5.4 and 5.12).

Lemma 7.4 : If N centralizes a primitive idempotent then N2 is contained in a
Cartan subgroup of G.

Proof: As in the previous lemma N < CG(x) so N acts on Ey(x), and it suffices to
show that N2 is contained in a Cartan subgroup of Q(E((x),Q), as every Cartan
subgroup of G stabilizing x is a Cartan subgroup of NG(x) and vice versa. So it
suffices to show that there is a subset of weight vectors of N2 which is a Q-hyperbolic
basis of Eg(x) (by a Q- hyperbolic basis we mean a basis consisting of a maximal
number of pairwise orthogonal hyperbolic pairs). First we observe that Q(vn) =
Q(vA(n))= A(n)2Q(v) = /\(n2)Q(v) for every weight vector v of weight A and every
neN . If A is a nontrivial weight of N2, then Q(v) =0 and v is Q-singular.

Now let v be any weight vector corresponding to a nontrivial weight X of N2
then, as Eo(x) is Q-nondegenerate, there exists another weight vector w € EO(x)\V'L
corresponding to a weight u of N2 with the property 0%# (v,w). Then u = al
and {v,w} is a Q- hyperbolic pair of weight vectors of NZ2. Moreover we can choose all
other weight vectors to lie in <v,w>‘L n EO(x). We write Eyj(x) = H L W where
H is the sum of the Q-hyperbolic pairs H; and W, is the zero weight space of N2. Now
W, is a nondegenerate subspace of Eo(x) and hence we can extend a Q-hyperbolic
basis of H to a Q-hyperbolic basis of Eo(x). As N2 acts trivially on Wy such a Q-

hyperbolic basis is an N 2 _ invariant basis of weight vectors. So we are done.

Lemma 7.5 : If N37’: 1, then N2 is contained in a Cartan subgroup of G.
Proof: In view of lemma 7.4 it is enough to show that N centralizes a primitive
idempotent.

By assumption N3;é 1 so there exists a weight vector v of N such that N3 acts



52
nontrivially on <v>. So there exists an n€N and a veJ such that vnh = o v and
a3#1. So then T(v) = T(vn) = a3T(v). So v must be brilliant. So by [As3] 6.1
there must exist an N-invariant pair {s,U} where U € ¥, and s is a singular point
not in UG.

Now by lemma 6.6 G has two orbits on 1"10. Representatives for the orbits are
given in the proof of lemma 6.6. In case U is G-conjugate to \Illo(x1+x’6) we find
that 8#2(U) is an N-invariant primitive idempotent which must be centralized by N
(see prop.2.7.5). In case U is G-conjugate to \I’m(x1+x12) we conjugate so that
¥,0(xy+x19) is N8 invariant for some g€G. Now
(*) ¥ypx+x19) = <x9p> & <x5> &(E{(x95) N ¥1o(x1+x19))-

To see this observe that xor is a primitive idempotent and that <xg> = Ey(xg95)
N ¥;4(x;+x19) - Also observe that 52(\I'(x1+x12)n id®) = <xg>. Now lét x be
any weight vector of N contained in W¥,,(x;+x;5) \ id®. As [N,J] < id6 we
conclude that x € Cj(N). So x? € C4(N) as well. Now we can normalize x so
that x =x9r + F x5 + u with respect to the decomposition (*), with 8 € F. Now
x2 = (x25)2 + 32(x5)2 + u? + 2B XgpXs + 2Xggu + 28x%gu

= Xo5 + 0 + u2 + 0+ u + 0 (xj is a class 2 nilpotent, xg € Eg(xg5), u € XgA )

= Xgg + Axg + u ( xg generates S2(W10(x1+x12) N ido )) |

2)2 =

= Xgg 4+ u + u2. So either x or x2

is an

2)

Similarly we can show (x
idempotent of J. An easy computation using lemma 3.3.1 shows that Q(x) = Q(x

2

= 1/2. So by definition either x or x“ is a primitive idempotent.
Note that the proof of 7.5 actually shows that any abelian group L such that L3 #
1 centralizes a primitive idempotent. In particular any elementary abelian 2-subgroup

of G is contained in the centralizer of a primitive idempotent.
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Lemma 7.6: Assume that F contains a primitive third root of unity. If N is not
contained in a Cartan subgroup of G and N3 = 1, then |N| € {9,27} and one of the
following holds:
1. CJ(N) is a nontrivial totally dark subalgebra , and F is finite of order congruent
to 4,7 mod(9).
2. NG(N) = 33:L3(3) and NG(N) stabilizes a 27-decomposition containing id.
Proof: If N is not contained in a Cartan subgroup of G, then in view of lemmas 7.2
and 7.4 it is not contained in an Eg(F) conjugate of H. Define M = <N,Z(E4(F)>,
where Z(Eg(F)) is the center of Eg(F), which by our choice of F has order 3. Then
M is certainly not contained in an EG(F) conjugate of H, hence M satisfies the
hypothesis of [As3] 8.3 and hence [M|€{27,81}; the first part of the lemma follows.
Moreover, by [As3] 8.3 the Eigenspaces of every element of N make up a 3-
decomposition of J. Also the weight spaces of N are dark, else by [As3] 6.1 and
6.3.2 N is contained in an E6(F) conjugate of H. So no weight space of N can have
dimension more than 3, by [As3] 7.3. Also observe that the nontrivial weight spaces of
N are Q singular. Lastly, if |M|=27 then F is finite of order congruent to 4 or 7
mod(9) [As3] 8.3.1.
If |M] = 27 then N has, at most 9 weight spaces, so at least one of them, say W,
has dimension > 3. Now if W = CJ(N) then 1 holds. So assume otherwise and let
w € W, then by our earlier observation w is dark. So the map ly: J — J defined by
lw(v) = w#v is injective. ( To see this observe that v € Ker(ly) iff v € wA and
that wA = 0 when w is dark.) Moreover ly permutes the weight spaces of N
nontrivially. Also lyolwoly: W — W is an isomorphism and lyolw(W) C C J(N).
So dim(C y(N)) 23 and CJ(N) is a totally dark subspace, so 1 holds.

If [M| = 81 and every proper subgroup of M containing Z(E6(F)) is contained in

an E6(F)- conjugate of H, then the proof of [As3] 8.3 shows that M is an exotic 81
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subgroup of Eg(F) whose Eigenspaces form a 27- decomposition.

So now assume that some proper subgroup N, of M containing Z(Eg(F)) is not
contained in an Eg(F) conjugate of H. In particular we may assume in this case that
F is finite of order 4 or 7 mod(9) and that N;N G centralizes a totally dark
subalgebra U of J. Now we may assume that N contains NlnG, so let ne N\
(N;NG). If n centralizes U then N centralizes U and case 1 holds. So assume that
n acts nontrivially on U and let {id,y,y2} be the Eigenspaces of n on U with respect
to the Eigenvalues 1,w,w2 where w is a primitive cube root of unity. First we observe
that
(*) (dyy) = (id,y2) =Q(y) = Q(y2) = 0 because n preserves the quadratic form Q.
Also since < id,y,y2> is totally dark we may assume that T(y) is not a cube in F

(else <id,y> contains brilliant points) so we may normalize y such that T(y) = w and

hence
T(YQ) = (1/6) f(yz, y2,y2) by definition of T
= (1/3)y*#y%y?) by definition of #
= (1/3)(y4,y2) from lemma 2.6 and the facts ()
= (1/3)(y8 id) by proposition 2.3.4
= (1/3) ((y3)2,id) by power ass. of J (see remark after 2.3.5)
= (1/3)( (T(y)id)2,id) by proposition 2.3.6 and the facts (*)
= (1/3)(id,id)(T(x)*)
= T(y)? by proposition 2.3.2 and definition of (_,_)
= wl.

Now an easy calculation shows that T(id + y +y2) = T(id)+T(y)+T(y2) = 0; a

2>. Therefore N must centralize a

contradiction to the total darkness of <id,y,y
totally dark subalgebra.

Now it remains to show that if M is an exotic 81-group, then NG(N) = N:L3(3).
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Aschbacher showed that NEG(M) = M:33:SL3(3), CEG(N) = M. and that NE6(M) /
M = CSL(M)(Z(EG)) = 33:SL3(3). Observe also that N is a complement of Z(Eg)
in M. So if g € Eg and NE = N, then as Z(E6)g = Z(Eg), we have NE6(N) <
NEG(M). And thus NEG(N) / N is the stabilizer of the pair of subspaces (Z(Eg),N)
in SL(M) =~ SL,(3). So NEG(N) = M: SL3(3), and N is the natural SL3(3)-
module.

Now we need to observe that every weight space of N is one dimensional. To see
this let 0 #w € W/\, A€ Hom(N,F). Then w must be a dark vector by our initial
observations. So the linear map ly defined as before by ly(x) = w#x is injective and
moreover lgv(W/\) < Wy = Cy(N). So if for any weight A the weight space has
dimension greater than one, then CJ(N) has dimension greater than one and hence M
is not an exotic 81- group, a contradiction. We conclude that the weight spaces of N
are indexed by (correspond bijectively to) Hom(N,F). Now SLg(3) acts transitively
on the nonzero elements of Hom(N,F) and fixes zero. But the zero weight space of N
is the subspace of J spanned by id, so SLg(3) < G. As Z(Eg) is not contained in

G, we conclude that N,(N) = N: SL4(3).

Lemma 7.7: G is transitive on 27-decompositions containing <id>.

Proof: By [As3] 8.3 Eg has one or three orbits on 27-decompositions, parameterized
by the equivalence class mod(F3) of the T -values of the points making up the
decomposition. Thus EG is transitive on the 27-decompositions containing id. Since
the normalizer in E6 of a 27-decomposition is transitive on the weight spaces of the

decomposition (see [As3] 8.3), the claim follows.

Definition: dp(q) is defined to be the smallest d such that qd-l = 0 mod(p).
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Note that dp(q) is the dimension of the smallest GFq - vectorspace V such that p

divides |GL(V)]| .

Definition: Let K be an extension field of F. By JK we denote the exceptional central

simple Jordan algebra over K and by GK its automorphism group. When K =~ F,

the algebraic closure of F, we write G for GF and T for JF.

From now on we will regard G as a subgroup of fixed points of some Frobenius

automorphism of GK resp G.

Definition: Assume that F* contains no element of order 3. A twisted 27-decomposition
is a decomposition 9 of idL into 13 pairwise orthogonal two dimensional subspaces
such that there exists a quadratic field extension K of F so that 9K 5 27-
decomposition of JK containing id. Moreover we require that the normalizer in G

of this configuration is isomorphic to 33 SLg(3).
Definition: A5(U) is defined to be Ng(U)/Cg(U).

Definition: Let r be a prime. The r-rank of the group L is the maximum of the ranks

of the elementary abelian r-subgroups of L and is denoted by mp(L).
Lemma 7.8: Let r be a prime not equal to 2,3,p and R an r-subgroup of G. Then
R is contained in a Cartan subgroup T of G and is hence abelian. Moreover AG(R)

is isomorphic to a section of the Weyl Group of G. Also m;(G) < 4.

Proof: = The first part of this statement is in [Sp3] which shows that R < T < G,
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where T is a Cartan subgroup of G. Hence R is abelian and the r-rank of G is as
claimed. We consider G = FixG(a) where ¢ is some field automorphism with fixed
field F. Now in [Sp3] it is shown that CG(R) is transitive on the Cartan subgroups
of G contained in C(—}(R). So by a Frattini argument NG(R) = C(—;(R) S where §
= NNG(R)(’T‘). But T is self centralizing and NG(’T)/’T is the Weyl group. So as

A-G— ~ 8/ SﬂCC—;(R) and SOCG(R) > T we have A(—;(R) is a section of the Weyl

group. As G < G we have AG(R) < AG(R) and the claim follows.

Lemma 7.9: Assume that F* contains no element of order 3. Twisted 27-
decompositions exist in J, and G 1is transitive on twisted 27-decompositions contained
in J.

Proof: By assumption, F* does not contain elements of order 3, F is finite an;i there
exists a quadratic field extension K of F such that K* contains an element of order
3. Now let N < GK be an elementary abelian 3 group of order 27 whose weight
vectors form a 27- decomposition of JK. Since ]GK] and |G| have the same 3-share
and G < GK we can chose N < G. Let o denote the field automorphism of cK
whose set of fixed points is G. Let M denote the normalizer of N in GK extended by
0. Now as o centralizes N we conclude using Lemma .7.6. that M =~
(N®<o>):SLa(3). Now M centralizes On(M) = <o> . Thus N: SL3(3) < Gis
the normalizer of N in G.

Next we must show that N : SL5(3) stabilizes a twisted 27-decomposition. We
already know that N : SL4(3) stabilizes a 27-decomposition of JK containing id. Now
if yed Kisa weight vector of N, then so is y2, moreover Q(y2) = Q(y) =0 when
y# id and <y, y2> is a QK- hyperbolic pair. To see this observe that (y,y2) =
(y3,id) by 2.3.4 and that y3 = Q(y)y + T(y)id = T(y)id by Hamilton’s equation and

the fact that Q(y) = 0. Combining this gives: (y,y2) = T(y)(id,id) = 3T(y) # 0 by
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2.3.2 and the fact that y is dark .

So JK is the sum of 13 hyperbolic pairs and <id>. Moreover this decomposition is
also SL4(3) invariant. Now we claim that the N:SLg(3)-invariant decomposition of JK
induces a decomposition on J. This is the twisted 27-decomposition. To see this we
need to observe that o acts on < y,y2> and that C 9 (o) isalineof J. In

<Y, y°>
section 9 there is a description of how ¢ acts on JK . Now for all neN we have
yon = yno = yAy(n)o =yaAy(n)2 where My is the weight N corresponding to the
vector y, showing ¢- invariance of <y,y2>. Now let’s consider JK as an N & <o>

25 isan K(N & <o>) submodule. Now apply

module. Then we just saw that <y,y
25.7.2 of [As9], which states that in this situation there exists an FN- submodule U
of J such that UK = <y,y2>. So U=C o_(¢) and dimp(U) = dimK(UK) =
<y.y©>

2. So U isalinein J.

Now we need to show that G is transitive on twisted 27-decompositions. Let D1
and Dy be twisted 27-decompositions whose stabilizers are N, : SLg(3) i=1,2
respectively. Their stabilizers in GK are conjugate, say Nlh = N2. Since ¢

centralizes G we conclude that o centralizes N, and N,. So ohoh'l € CGK(Nl) =

-1
N;. So [rr,h]3 =1= [¢7,h]hah forcing [o,h] = 1, i.e., h € G. This shows conjugacy.

Lemma 7.10: Let R < G be a 3-group . Then

1. Z(R) is contained in a Cartan subgroup T of G unless R = Z(R) is elementary
abelian of order 27 and R stabilizes a 27 or twisted 27- decomposition of J.

2. If Z(R) is contained in a Cartan subgroup of G, then Ag(Z(R)) is a section of
the Weyl group of G.

3. There exists a normal abelian subgroup A < R such that R/A is a section of the

Weyl group of G. Hence R/A is a subgroup of an elementary abelian group of order

9.
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4. dim(CJ(Z(R))) > 3 unless Z(R) = R, |R| = 27 and R stabilizes a 27 or twisted
27-decomposition.
5. Ng(R) stabilizes one of the following:
a. A proper nontrivial subalgebra.
b. A 27 - decomposition.

c. A twisted 27-decomposition.

Proof: The proof of 2. is the same as in lemma 7.8. For part 3. we use [Sp3] to
embed R into NC_}(T) where T is a g-invariant Cartan subgroup of G. Then let A
= T N R. We observe that A is the kernel of WIR where the canonical projection =:
N(—.;(’—I-‘) —  W(G). The claim follows since the Sylow 3-group of W(G) is elementary
abelian of order 9.

Now we will prove part 1. If Z(R) is not elementary abelian Z(R) is contained in a
Cartan subgroup of G by lemma 7.5. If Z(R) is elementary abelian and not
contained in a Cartan subgroup of G, then by lemma 7.6 C y(Z(R)) is a nontrivial
totally dark subalgebra of J or Z(R) stabilizes a 27-decomposition of J. If Cy(Z(R))
is nontrivial then C J(Z(R))®F is a proper nontrivial Z(R) invariant subalgebra of
J containing brilliant points. So by Springer’s lemma part 1 C\,(Z(R))@F contains
a primitive idempotent and hence by lemma 7.4 Z(R) is contained in a Cartan
subgroup of G. So now assume that Z(R) has order 27, is not contained in a Cartan
subgroup of G, does not stabilize a 27-decomposition of J but stabilizes a 27-
decomposition of J, and in particular F* does not contain an element of order 3. Let
o be the Frobenius automorphism of F such that G = Fix(s). Then there exists a
quadratic field extension K of F contained in F such that Fix(a2) = GK, By

lemma 7.6 Z(R) must stabilize a 27-decomposition of JK. Now the first part of the

proof of lemma 7.9 shows that Z(R) stabilizes a twisted 27-decomposition of J.
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It remains to assert that when Z(R) is not contained in a Cartan subgroup of G
then R=Z(R). Now R is contained in Ng(Z(R)) =~ Z(R):SL3(3), by the above
and lemmas 7.6 and 7.9. So if R# Z(R) then every g € R\Z(R) induces a nontrivial
automorphism of Z(R) : a contradiction.
Now part 4 is a consequence of part 1 and lemma 7.2 once we observe that
dim-F-(Cj(Z(R)) = dimF(CJ(Z(R)). Part 5 follows from parts 1 and 4 and lemmas

7.6 and 7.9.

Lemma 7.11: Let R be an elementary abelian 2 group. Then:

1. R centralizes a primitive idempotent.

2. dim(Cy(R)) > 3.

3. If |R| =2 then Cy(R) € ¥ {5 or Cy(R) = <idx,Ex(x)> for some primitive
idempotent x, and R = Z(CG(CJ(R))). G has exactly two conjugacy classes of
involutions.

4. AG(R) is a 2,3,7 group.

5. mg(G) = 5.

Proof: Part 1 follows from the proof of lemma 7.5 (see remark after that lemma). So
part 5 follows from proposition 2.7.5 and the fact that m2(Spin9(F)) = 5. For part 3
we observe first that EG(F) has two conjugacy classes of involutions I19 and Iyq, see
[As3] 6.4.1. Moreover g€ I, iff C;(g) € ¥i5 and ge Liciff Cy(g) = <p>+ U
where U€Y¥,, and p is a singular point in J\UO. Now an involution g € Eg(F) lies
in G iff id € Cy(g). Soif g€ I;5N G then g centralizes a subalgebra of type
¥15- Now C(Cy(g)) = SLy(F), by lemmas 5.12.5 and 5.13.4, and [CG(CJ(g), J]
= [g,J]. Moreover because g is an involution, g acts as - Id on [gJ]. So g €

Z(CG(CJ(g))). Now Z(SLy(F)) has order 2 and it follows that G is transitive on
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1120G as G is transitive on subalgebras of type ‘Y15 .

Now let g € 1160 G. Then by conjugating g appropriately we may assume using
lemma 6.6 that C j(g) = <xyg> + ¥ g(x1+ xp) or <xg+w> + ¥ q(x;+x,5) Where
weU®O. Now since id = xjg+xor+x34 € Cj(g) we see that the second possibility is
out. Now the remaining parts of 3 follow from proposition 2.7,

For parts 2 and 4 we will assume first that R is not contained in a Cartan
subgroup of Eg¢(F). Then part 2 is the content of [As3] 6.3.4. For part 4 we use
[As3] 6.7 to see that R = Ry®J where R(’; = IjgN R, that |R|<4 |J|<8 and J
centralizes a subalgebra of type ‘1].6. So part 4 follows in this case and moreover
Ag(R) is a 2,3 group unless |J]=8.

Now assume that R is contained in a Cartan subgroup of Eg(F). WLOG we may
take R<H and even in 92, the subgroup of elements in H of order 1 or 2, which we
may identify with the six dimensional orthogonal space over GF2 of Witt-index 2.
Then by [As3] 6.4 AE6(F)(R) is a section of 05(2) and is hence a 2,3,5 group, so
the same must be true for AG(R). So now let g € AEG(F)(R) be of order 5, then |R|>
16, and we may also assume WLOG that [g,R] = R and CQ2(g) = R'L, where here
the 1 is taken in 92 with respect to the unique quadratic form stabilized by the Weyl
group of Eg(F). Assuming [g,R] = R forces |R| =16 and R1 is a two dimensional
nonsingular nondegenerate subspace of 92. Thus there are two possible isometry
types for R and hence AOg(?)(R‘) ~ O:f(2). Only the order of O3 (2) is divisible
by 5 and hence R is uniquely determined up to conjugacy in E6(F) Now the Sylow 5
group of 06' (2) has order 5. So up to conjugation in E6(F) we may assume that g
induces the permutation (x2,x3,x4,x5,x6)(x’2,x£3,x:1,x"5,xé)(xidt——» xip,jp)’ where p =
(23456) € Sym6, on the weight vectors of H, see section 3, and that R =

So we can see that CJ(R) = <x1,x'1>, and is hence singular. Thus no E6(F)-
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conjugate of R will centralize id (recall id is nonsingular) and part 4 follows. For part
2 observe that id is the sum of at least three weight vectors of every Cartan subgroup
of E4(F) containing R. If R < G then each summand of id must be centralized by R

and part 2 follows.

Recall that N is a semisimple subgroup of G and all the Eigenvalues of N lie in F.
So either N contains a characteristic elementary abelian r-subgroup or N is infinite
and N2isa characteristic subgroup of N which is contained in a Cartan subgroup of

G. Thus lemmas 7.3 , 7.8, 7.10 and 7.11 amount to the following:

Lemma 7.12: One of the following holds:
1. CJ(NO) is a proper nontrivial subalgebra, and 0 # N is characteristic in N.

2. <N, Z(E4(F))> is an exotic 81-group and N (N) stabilizes a 27-decomposition.

Lemma 7.13: If dy(q) # 1, r# 3 and R an r-subgroup of G , then dim(C(R)) > 2.

Proof: Extend the field F to the smallest field K containing F such that r | 1K]-1.
Then Lemma 7.12 holds for R < GK. Now dimK(CJK(R)) = dimg(Cy(R)). So if
dimK(CJK(R)) 2> 2 our claim holds. If dimK(CJK(R)) =1 tﬁen, by Lemma 7.12,
NGK(R) must stabilize a 27-decomposition. So, by lemma 7.9, NG(R) = NGK(R)

must stabilize a twisted 27-decomposition.
We conclude this section with the following:

Theorem 7.14: Let M be a closed subgroup of G that contains a normal solvable
subgroup. Then one of the following holds:

i. M stabilizes a proper nontrivial subalgebra.
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ii. M stabilizes a 27-decomposition containing id.
iii. M stabilizes a twisted 27-decomposition.
Proof: By hypothesis M contains a normal abelian subgroup N. If N contains
unipotent elements, then M has a unipotent radical. In this case the Borel-Tits theorem
applies and M is contained in a maximal parabolic subgroup of G. By proposition
6.4 the maximal parabolic of G stabilize proper nontrivial subalgebras.
So WLOG we can assume that N is a semisimple normal abelian subgroup. So

lemmas 7.12 and 7.13 apply and the claim follows.

Note that if case i holds, then M also stabilizes a good subalgebra by the subalgebra

theorem.

SECTION 8: NON LOCAL SUBGROUPS WITH NON SIMPLE SOCLE

The following result of [As4] will be our major tool and starting point for this section.

Theorem 8.1: If M is a nonlocal subgroup of G (hence also of Eg(F) ) with non simple
socle, and M is a closed subgroup of G when F is algebraically closed, then one of
the following holds:

i. Ng(M) is brilliant.

ii . N;(M) stabilizes a member of Ug or Ug.

ii. NG(M) stabilizes a 3-decomposition.

We already saw in the section on subalgebras (proposition 6.8) that brilliant subgroups

are subalgebra stabilizers.

Lemma 8.2: Let M be as in the theorem and assume that N,(M) stabilizes a
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member U of Ug or Ug. Then NG(M) stabilizes a subalgebra.
Proof: By hypothesis J = U & UO. If id projects nontrivially onto U with respect
to this decomposition, then either U is an NG(M) invariant subalgebra or NG(M)
stabilizes a point. So suppose that id €UB. We claim now that CM(U,id) * 1.
Suppose that this is true. Then the subalgebra generated by <U,id> # J and is
NG(M) invariant; hence the claim.

Suppose that Cy4(U,id) = 1, then a faithful homomorphic image of M is contained
in AEG(U). But AE6(U) is an SL; and hence M can not have more than one factor

in F*(M). This contradicts our hypothesis on M. So the claim must hold.

Lemma 8.3: Let S be a two dimensional subspace of id1. Then NG(S) stabilizes a

proper nontrivial subalgebra or NG(S) is a local subgroup of G.

Proof: We consider first the case CG(S) # 1. In this case CJ(CG(S)) is a proper
nontrivial N+(S)- invariant subalgebra.

If CG(S) = 1 then AG(S) = Ng(5) < SL(S) =~ SLy(F). So as char(F)#2,
NG(S) does not contain simple subgroups. So NG(S) contains a normal solvable

subgroup and the claim follows.

Corollary 8.4: Let M be as in theorem 8.1 and assume that NG(M) stabilizes a 3-
decomposition. Then NG(M) stabilizes a proper nontrivial subalgebra or NG(M) is a
local subgroup.

Proof: The space P generated by the projections of id onto the factors of the 3-
decomposition is at most three dimensional and contains id. So PN idL is at most
two dimensional; hence the claim when P N id‘L;l: 0. f Pnidl =0 then id is

contained in a member U of the 3-decomposition. Now U is a (proper nontrivial)
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subalgebra by corollary 5.11.

The collection of these last lemmas amounts to the following:

Proposition 8.5: Let M be as in theorem 8.1, then NG(M) stabilizes a proper

nontrivial subalgebra of J , or NG(M) is a local subgroup.

Our efforts finally pay off:

Structure Theorem: Let M be a closed subgroup of G. If F*(M) is not a simple group,
then one of the following holds:

i. M stabilizes a proper nontrivial subalgebra.

ii. M stabilizes a 27- decomposition (containing id).

iti. M stabilizes a twisted 27-decomposition.

Proof: Recall first that char(F) = p (possibly 0). Recall also that F*(M) =
E(M)F(M) and that F(M) is the Fitting subgroup of M. If F(M) # 1 then
Theorem 7.14 applies and the claim follows. So now assume that F(M) = 1. Then
E(M) is a direct product of more than one simple group. In this case M satisfies the
hypothesis of proposition 8.5 and NG(F*(M)) must therefore stabilize a proper
nontrivial subalgebra or NG(F*(M)) is local and hence satisfies the hypothesis of

theorem 7.14.
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SECTION 9: OUTER AUTOMORPHISMS , FIELD EXTENSIONS AND A

STRUCTURE THEOREM FOR T
In this section we will prove the structure theorem for T.

Proposition 9.1: Out(G) =~ Gal(F:Fj) where Fy ~ Z/pZ or Q and G has no
diagonal or graph automorphisms.
Proof: This is proved in [Cal] when F is finite, where it is also claimed that the

result holds when F is a perfect field.

Definition: Recall the basis X of weight vectors for H from section 3. Let o €
Gal(F/Fj). Let y5 be the semilinear map defined by: (3 A:x)vs = 3 AZx.

: xeX xeX
Notation: If F, is a subfield of F, then we denote by JF* the set XF, ={ X X;a;

a; € F.} and by GF,,: { Mx(g) : g€G and m; . € F, for all i,j }.

Lemma 9.2: Let F, denote the fixed field of o.
1. +v4 preserves the multiplication of J.

2. Cy,(¥)= JFa' Moreover JFU is the exceptional Jordan algebra over Fy,.

it

Aut(G) = <G,74: 0€Gal(F:Fj) >.

»

Cgl1e) = Gp = Aut(Jp ).

Proof: Let x,y € X. Then we observe by using proposition 3.2 that xy is a linear
combination of elements of X with coefficients in the prime field FO‘ So clearly xyvq
= X9g¥7o, showing 1. Part 2 is now immediate from part 1. For part 3 we observe

that  := (70-)'1 € 7o € GLgy(F) and that g preserves the multiplication of J. So
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€ € G and hence <G,y5:0€Gal(F:Fj)> C Aut(G). The reverse inclusion follows

from proposition 9.1 , proving 3. Part 4 is clear given parts 1,2,3.

Lemma 9.3: If N is normal in a subgroup L of T', then Cj(N) is an L invariant
subalgebra.
Proof: As in the proof of lemma 7.1 we see that Cj(N) is a subalgebra. Now let | €

L,n €N and x € Cy(N). Then xln = xml = xl, showing that xl € C4(N).

Proposition 9.4: Aut(G) does not fuse G-orbits of nondegenerate, amber or maximal
tangerine subalgebras.
Proof: The idea of the proof is to observe that the invariants defining the various
subalgebras are in the prime field and hence invariant under any field a.utomorph‘ism.

Let v €Aut(G) \ G and A be a nondegenerate subalgebra. Then A is G-conjugate
to one of the members of the list of proposition 5.9 and ¥y = gy, where g€G and v,
is as in 9.2. Now it is well known and easy to check that Q(xvy)= Q(x)? and
f(xy,y7,27) = f(x,y,z)d, for all x,y,z€J. So if z is a primitive idempotent of J then :
(Z7)2 = z27 (by 9.2.1)

= zv (because z is an idempotent)

Moreover Q(z7) = Q(2)? = 1/2 ¢ = 1/2. So zy satisfies the definition of primitive
idempotent.

Now we observe that E;(z) v = E;(z7) as 0and 1/2 € Fy. If W < E;(2) is
nondegenerate and has Witt index b, then so does W4, as Q(x)? = 0 iff Q(x)=0.
We recall from section 5 that the G orbit of a nondegenerate subalgebra A containing a
primitive idempotent is determined by the isometry type of EO,A(Z) and El,A(z)'
Since isometry type is not altered by 4 the claim holds for all nondegenerate

subalgebras containing a primitive idempotent. There is only one orbit of
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nondegenerate subalgebras containing no primitive idempotents. These are described in
lemma 5.2 and are the totally dark three dimensional subalgebras. Now as f(x,x,x)7
= O iff f(x,x,x) = 0 we see that « maps totally dark subalgebras into totally dark
subalgebras , completing the argument for the nondegenerate orbits.
Recall from section 6 that the amber and tangerine subalgebras are defined in terms
of the invariant p(R(A)). Recall if x is a singular point of id©, then p(x) is the Q-

radical of xA. Clearly we have p(x7) = p(x)y and the claim follows for amber,

tangerine and scarlet subalgebras.

Corollary 9.5: If A is a good subalgebra then NI‘(A)/NG(A) ~ I'/G.
Proof: By proposition 9.4 the T and the G orbit of A coincide. So the claim follows

from a Frattini argument.

Lemma 9.6: If D is a 27- or twisted 27-decomposition, then so is Dy , where vyeT'\G.
Proof: First we assume that 9 is a 27-decomposition. Then Py is a decomposition of
J into 27 distinct dark weight spaces of N7, where N is the 27 group giving rise to 9.
So CJ(NY) = <id> and hence by lemma 7.10.4 the weight spaces of N7 form a 27-
decomposition of J.

Now let 9 be a twisted 27-decomposition. Then we extend the field so that 9K js
a 27-decomposition of JK, Now by the above ":DK‘y is also a 27-decomposition of JK

and the claim follows.

Definition: A subgroup L of T is brilliantif L stabilizes a member of ‘V'i where

i € {1,2,3,5,6,9,10,12}.

Lemma 9.7: Let L be a brilliant subgroup of I'. Then L stabilizes a good
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subalgebra.
Proof: When L stabilizes a singular subspace S, then L stabilizes u(S) and the
claim follows from Proposition 6.4. When L stabilizes a point or L stabilizes a

member of 7'10, ‘1"12 or ‘V'g, then the proofs of section 6 carry over verbatim.

SUBALGEBRA THEOREM FOR I': If L is a subgroup of I' and L stabilizes a
proper nontrivial subalgebra, then L stabilizes a good subalgebra.

Proof: If L stabilizes a nondegenerate subalgebra, the proof is identical to that of
5.14. If L stabilizes a brilliant subalgebra then by 4.9.4 and [As2] Thml L is a
brilliant subgroup of EG(F) extended by diagonal and field automorphisms. So then L

is a brilliant subgroup of I' and the claim follows from lemma 9.7.

STRUCTURE THEOREM FOR I': Let L be a subgroup of I' and assume that
F*(LNG) is not a simple group. Assume also that LNG is a closed subgroup of G.
Then one of the following holds:

1. L stabilizes a proper nontrivial subalgebra.

2. L stabilizes a 27-decomposition.

3. L stabilizes a twisted 27-decomposition.

Proof: F*(L N G) is normal in L. If the unipotent radical of F*(LNG) # 0, then
by Borel Tits L is contained in a maximal parabolic subgroup of T and hence L
stabilizes an amber or maximal tangerine subalgebra. If the unipotent radical of
F*(LNG) = 0 and F*(LNG) contains a characteristic abelian semisimple subgroup N,
then either L stabilizes C J(N2) which is a proper nontrivial L - invariant subalgebra of
J or |N| = 33 and N is an exotic 27-subgroup. In this case L stabilizes a 27- or

twisted 27-decomposition of J by lemma 9.6.
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Now if F*(Lﬂ'G) is a direct product of nonabelian simple groups, theorem 8.1 still
holds when G is replaced by T (see [As4] ), i.e., we know that L is either brilliant,
stabilizes a member of "‘U.6 or ‘U.g, or stabilizes a 3-decomposition. Now lemma 9.7
handles the first case. The proof of proposition 8.2 goes through verbatim forcing an L
invariant subalgebra, handling the second case. If L stabilizes a 3-decomposition then
L stabilizes the space P generated by the projections of id onto the summands of the
3-decomposition. Then by lemma 8.3, either CLﬂG(P) # 0 and hence C y(Cp, ~(P))
is a proper L -invariant subalgebra or LNG contains nontrivial normal solvable
subgroups. In the latter case the claim follows from the arguments given in the first

paragraph of this proof.

SECTION 10: MORE ABOUT SUBALGEBRAS
In this section we assume that L is a simple group. Let F denote the algebraic

closure of F.

Definitions: Let A, B < J.Then S(A\B):= < ab:a € A and b€ B > and

S#(A,B) =< a#b: a€Aand beB>.

Lemma 10.1 : Let A,B,C be L-submodules of J . The following are true.

1. S(A,B) and S#(A,B) are L- submodules of J.

2. f A=B then S(AA) = S2(A) and S#(A,A) = 8#2(A).

3. If A,B are subalgebras then S(A,B) < A+B iff A+B is a subalgebra of
Jiff S¥(A,B) < A+B.

4. S#(A,B) and S(A,B) are homomorphic images of A®B. Moreover S2(A) and

s#2

(A) are homomorphic images of the symmetric square of the module A.
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5. If A®B is a semisimple L-modules then so are Sz(A,B) and S#Q(A,B).

6. If A and B are subalgebras and either S#(A,B) or S(A,B) has a one
dimensional composition factor which is not <id> and A®B is a semisimple
L-module, then dim(C (L)) > 2, and hence Np(L) is contained in a subalgebra
stabilizer.

7. S(A+B,C) = S(A,C) + S(B,C) and S*(A+B,C) = S¥(A,C) + $*(B,C).

8. If 8#2(A), 8#2(8) . S#(A,B) < id+A+4+B , then id4+A+B is an L-invariant
subalgebra.

9. 1f S2(A), S%(B) and S(A,B) < id+A+B , then id+A+Bis an L-invariant

subalgebra.

Proof: Part 1 is clear because both # and . are T invariant multiplications. Part 2
is obvious. Partsv 3, 8 and 9 are also clear given lemma 2.6. For Part 4 notice that the
map &: A x B — S#(A,B) resp. S(A,B) defined by ®(a,b) = a#b resp ab is bilinear
and L-equivariant. Hence, by the universality of the tensor product, & must factor
though A®B as an L-map. Using the commutativity of J we see that &: AxA —
3#2(A) resp. Sz(A) factors through A®A/ I where I is the ideal generated by the
commutators. This shows part 4. Parts 5 and 6 follow form Part 4. Part 7 is clear

because the multiplications ( . and #) on J are bilinear.

Definition: We call an L-module small if its F-dimension is less than or equal to 26.

Lemma 10.2: Let L < G. If {A, :i€{l,..,m}} are the small L-modules and for all
ij€ {1,...,m}, A® Aj is a semisimple L-module then the socle of J is an L-invariant

subalgebra. Moreover the socle of J is a semisimple L - module.
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Proof: By assumption L is a subgroup of G. Let U ;—__1@ rUi be the socle of J;
notice that the set of U,’s is a subset of the A;’s. Now S2(I_I) ’=:le] S(Ui’Uj) by part 7
of lemma 10.1.
By part 5 of lemma 10.1 and our assumptions on the Ui’s we conclude that S(Ui,UJ-)
is a semisimple L-module contained in J. So S(Ui’Uj) is contained in U for all i,j €

{1,...,r}. Hence Sz(U) C U and from Lemma 4.5 we can conclude that U is a

subalgebra of J. Now the claim follows because U is semisimple.

Lemma 10.3: If F is algebraically closed and L < G, then 1id® does not have a
composition factor of dimension 24 or 25.

Proof: Assume otherwise. Then as J is a selfdual L-module, id® must contain a one
or two dimensional L-module U. Because L is assumed to be a simple grc;up, U
must be a trivial L-module and hence L centralizes a point of J. But id® regarded as
a CG(x)-module, X € idO, does not not have composition factors of dimension greater
than 16 (see orbit on points lemma and subalgebra theorem). So as L < CG(x) for
some x € idO, idO regarded as an L-module cannot have a composition factor of

dimension greater than 16.

Lemma 10.4: Let U be an L-submodule of id®. If S#2(U) < <id>, then U is
singular.
Proof: By lemma 3.4 it suffices to show that every u€U is singular. Now recall from
lemma 4.6 that UL = S¥2(U) < <id>. So UG >idl = id®6 > Uand hence,
by definition, U is brilliant.

If u € U is nonsingular then by lemma 4.2 u is G- conjugate to x1+x'2 or
x1+ax6. In the first case lemmas 4.3 and 4.7 show that u#u € id® contradicting

our assumption.
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In the second case u#tu is singular. This can’t happen because <id> does not contain

singular points. So every point in U is singular, hence the claim.

Lemma 10.5: Let U be an L-submodule of id®. Then 5#2(U) <idOiff U is Q-
singular.
Proof: Assume S#z(U) < id®. We must show that U is Q-singular. By Lemma
3.3.1 and 2 it suffices to show that for all u€U we have P, (u) = 0. So it suffices to
show that id € U®. Now by lemma 4.6 we have id® > S#2(U) =Uel. So UG >
idoL = id and the first half of the claim follows.

Now if U is Q-singular, then for all u,v€U we have 0 = Q(u+v) = Q(u)+Q(v) +
2(u,v) = -2f(id,u,v) = - (u#tv,id); the last two equal signs follow from lemma 3.3 and
the definition of # respectively. So the second half of the claim holds as u,v were

arbitrarily chosen.

Lemma 10.6: If U is the unique L-submodule of id® in its quasiequivalence class,
then either U has an L invariant complement in id® or U is Q-singular and
idG/U'L ~ U* (the dual module of U). In particular if dim(U) > 14 or U is the
unique dim(U) dimensional composition factor of the L-module id®, then U has an L
invariant complement. In any event U'L i1s always L invariant.

Proof: These are well known facts about self dual modules. Recall that id© is self

dual as Q is a nondegenerate G-invariant quadratic form on id©.

Lemma 10.7: Let U be a three dimensional irreducible L submodule of J. Suppose
that dim(S#z(U)) > 3, U is brilliant and contains no singular points and that
8#2(U) is not brilliant. Then 5#2(U) is a member of Ug.

Proof: Let {u;: 1 <i<3} be a basis for U. First we observe that S#z(U) is generated
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by B:= { (ui-i-uj)#:2 : 1<i<j<3 } and that by lemma 4.4 and our hypothesis on U we
have that u#2 must be singular for all 0 # u € U. Next we observe that % contains
a special triple, otherwise <B> = S#Q(U) is brilliant.

Next we find a basis ¥ = {si:1§i53} of U such that { si#2} is a special triple.
This can be achieved as follows. Pick three points in B which form a special triple,
say {xi#2 }. Now if {x;} is a basis of U we are done. So suppose otherwise. Pick y
e U\ <x;: 1<i<3> then for all @ € F* { xl,x2,x3+ay} is a basis for U. Now
f(x#2,x§£2,(x3+ay)#2) is a polynomial in a of degree 2 with nonzero constant term.

#2,X#2,(x3+ay)#2) # 0. So we

So as |F| >3 there exists an o« # 0 such that f(x
have the desired basis for a proper choice of a.

Next we want to show that s, #s € s# AN s#2A for all i# j. For this it suffices
to prove that: 7
(*) (si#sj)#si#2 =0 for i#j.

Now because the # - square of a singular point is zero and the #-square of an element
of U is singular the following holds:
0= ((s+ a )P )2 = (o2 + 20 (s#hs;) + o7 77 )#2

= 2o 2(s; #s )#s# ) + afs] #2 #2 + 2 (s; #s )# )+ 2 a2(s #s )#s# ] for all
aeF.
Now (*) follows from the following easy fact: If {vi : 1<i<3} are elements of a
vectorspace over a field of characteristic 2 2 and for all 0#a € F we have 0 = vy
+ a Vo + a2 Vg and F contains more than 4 nonzero elements, then for all i v, =
0. As U is brilliant and contains no singular points 0 ;é(asi+ﬂsj)#2 = a2si#2 +
ﬂzs‘;#z + af si#sj and singular. Now [As3] 4.3.1 states that if {vl,v2,v3} is a special
triple, and x = vit vot+ w is singular, where we lenva. Then Pv3(w) = -1,
and in particular w # 0. So if a,8 # 0, then we can apply [As3] 4.3.1 we to get 0#

si#sj. So (sl+52+s3)#2 is singular and not contained in <s#2,s#2,s§#2>. Then by
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[As3] 4.4.1 and 4.5.2 we have that { 81#2, 3#2, 3#2, (sl+s2+s3)#2} is a special 4
tuple. So 5#2(U) satisfies Aschbacher’s definition of Ug in Section 1 of [As3]. Hence

the claim.

Lemma 10.8: Let U be an irreducible L-submodule of J. If U* is not a nontrivial
homomorphic image of Sym2(U), then U is brilliant. Furthermore, if U is self dual
then U is brilliant if U is not a submodule or homomorphic image of Sme(U).

Proof: First recall from [As5] 2.1.1 that the space of symmetric bilinear forms on U is
isomorphic to the dual of Sym2(U). The map ¥: U — Symmetric Bilinear forms of U
given by uV¥ = f(u,-,-) is an L equivariant map. Now ¥ is either injective or trivial
as ¥ is L equivariant and U is irreducible. So W¥*: Sym2(U) +— U* is either
surjective or trivial. By our assumption we force ¥* to be trivial and hence V¥ is

trivial. Thus f is trivial on U and hence U is brilliant.

In the next series of lemmas we will investigate the normalizers of simple subgroups

that stabilize subalgebras.

Lemma 10.9: Let L be a simple subgroup of NG(I-\) where A is a good subalgebra and
suppose that CJ(L) = <id>. Then A € %6,7'9,“119,"('15,7'3,7'6 and L is isomorphic
to a subgroup of PSLy(F), SL4(F), SU3(F), Spg(F), SLg(F), Spg(F) respectively.

Proof: By assumption on L, Cg(R) N L = {e}. So an isomorphic image of L is
contained in NG(A)/CG(A). The claim follows from’th"e subalgebra theorem in

section 6 by inspection.

Lemma 10.10: If L stabilizes a subalgebra of type ‘U.G, then Np(L) stabilizes a

subalgebra.
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Proof: Recall from lemma 5.13 that NG(A) ~ PSO3(F) x Go(F), and that Go(F)
centralizes A. Let L; be the projection of L into the i’th factor of N (R).
First we investigate how J can break up as an L,;® Ly - module.
Now A< is the tensor product of the seven dimensional irreducible Gy(F)-module with
the three dimensional irreducible PSLy(F) module M(2),) (see [As3] 5.7). Moreover as
a G9(F) module AL can be decomposed into U 1L Ua L Ua2, where a€N~(Gq(F)),
such that 8#2(Uai) is a primitive idempotent contained in A. Now by [As7] Ly can
act either irreducibly on U, in which case L ~ PSL(FO), FosF, and U ~ M(6,\1), or
L, fixes a Q-nondegenerate point x of U and U ~ <x> & W\V as an Lgy-module
where W,V are irreducible three dimensional L2-modules. We denote the two L2
actions by Li2 i€{1,2} respectively .

Now if L < LIGBL% then as an L-module J ~ A & <xL;>& VOM(3)\WeM(3),
where M(3) denotes some three dimensional irreducible L-module. As L s
isomorphic to a simple subgroup of L,, L is isomorphic to Alt5 or PSLQ(FO), where
F( is a subfield of F. Now when L ~ PSLo(F() then V®M(3) is either irreducible
or isomorphic to M(4z\1)@M(2/\2)@M(0). When L = Altg then V®M(3) isomorphic
to M(5)®M(3)®M(1) or M(5)®M(4), where M(i) denotes an irreducible Alty module
of dimension i .

Now either Cj(L) # <id> or <xL;> is the unique three dimensional irreducible
L submodule and is hence an NI‘(L) invariant submodule of J. Now 8#2(<xL1>) =
A as x#x € A is a primitive idempotent and as an L-module A~ M(0) @ W, W a
five dimensional irreducible L-module. So then A is also Np(L) invariant.

Now suppose L < LIQL%. Then L ~ PSL2(F0) and asan L - module J~ A
& M(2A1)®M(6A1)6 or A ® M(4/\1)69M(6A1)®M(8/\1) unless p=7, a case we treat
separately. In case Al is irreducible A is the unique L-invariant module isomorphic

to A. So then Ais Np(L) -invariant. In case AL is not irreducible, M(61,) is Np(L)-
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invariant. Now by lemmas 10.8 and 13.1.3 M(GAI) is a brilliant subspace of J. If
M(6);) contains singular points, then by [As2] Thml Np(M(6A)) is a brilliant
subgroup of T, and hence the result follows from 9.7. In case M(6X;) does not
contain singular points, the high weight vector x wrt some Cartan subgroup of L of
M(6/\1) must be brilliant and nonsingular. Hence, by Lemma 4.3, its # square is
nonzero. So 0 # x#x is a high weight vector in J of high weight 12A,. So then id©®
contains a nontrivial homomorphic image of M(12A,) or M(A1)6® M(A)/M(8X)) (=
W(12X,) the Weyl module) or M(2X,)®M(0)/M(8);) depending on whether p#11,
p=11 and |F|#11, |F|=11 respectively, or M(/\l)é; a contradiction to the
decomposition of J that we assumed at the beginning of this paragraph.

Now assume p=7, L < L;® L% and ALl is not irreducible. Then Adl~
M(2X,)®M(6),) as an L-module and hence J =~ A & M(4A1)/M(,\15)@M(Al)/M(4A1)
® M(6);) (i.e, J contains a nonsplit indecomposable submodule) or
AGM(4)1)/M(2X)®M(0)/M(4){) ©M(6))) when |[F|#T , |F|=T7 respectively. So
in the first case A is Np(L) invariant. In the second case we don’t know whether J
is completely reducible or contains the projective indecomposable
M(4X;)/M(21;)®M(0)/M(4){). In case of complete reducibility, Cy(L) is a proper
nontrivial Np(L) invariant subalgebra see lemma 9.3. In the other case A is Np(L)

invariant.

Lemma 10.11: If L stabilizes a subalgebra of type 1"9,°U.9 or ‘7'15, then NF(L) stabilizes
a proper nontrivial subalgebra.

Proof: Extend the field F to F if necessary to contain a cube root of unity. Then the
subalgebra stabilizer has a nontrivial center. Now let o be an automorphism of T
whose fixed points are I'. Now let I' = <T,0>. Observe that 0# CC—;(L)’ and hence

F¥(N<(L)) is not a simple group. So by the structure theorem N_.(L) fixes a
G r
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subalgebra A of J. Next we observe that UGCF(NI‘(L))' Thus A is o&Np(L)
invariant so by 25.7.2 of [As9] there exists an FNp(L) module A such that
dimp(A) = dimF(ﬁ). Moreover A is the set of fixed pointsin A of o, and hence A

is a subalgebra by lemma 9.2.1. This is the claim.

Lemma 10.12: If L stabilizes a subalgebra of type ¥4 then NI‘(L) stabilizes a proper
nontrivial subalgebra.

Proof: WLOG let U = <xy,Xg,Xg> be an L invariant member of 7'3. Then a
straightforward computation shows: id < <id,U> < < id,UA> < uat <
Ut <9 is an L-invariant flag of subspaces of dimensions 1,4,10,18,24 resp.
Moreover, it’s easy to check that the first four spaces in the flag are indeed
subalgebras. If all the Np(L) conjugates of U are contained in UAJ", then
Np(L) stabilizes the subalgebra of UAL  which is generated by the Np(L)
conjugates of U.

We assume for the moment that L stabilizes a G-conjugate U of U such that U
is a complement to Ul in J. Then { xj+ay, xg+ag, xgtag: a; € U'L} is a basis
for U, for some proper choice of a.i’s. By corollary 6.5.3 we have S#(U,U'L) = UA.
Let W = <x:t,x'5,xé>, then we compute that S#(U,W) =
<Xg4:X95:X16:X04:X35:X14X36:X]1 5:X26> is a subalgebra of type 1"9. Another
calculation using 6.5.3 shows that S#(U,ﬁ) < UA'L, and that S#(U,I_J) has trivial Q-
radical. Also, we can compute that UA is the Q-radical of uat. so ual = va e
S#(U,ﬁ) as an L-module. Similarly, we obtain that Tal=TA o S#(U,U) as an
L-module. Another calculation shows that UANUA = 0. So S#(U,ﬁ) = vatn
UA"L, and is hence an L-invariant nondegenerate subalgebra. So L stabilizes a member

of 1"9 or ‘Ug. So now lemma 10.11 applies and hence Nr(L) stabilizes some proper

nontrivial subalgebra .
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Now let V denote the subspace of J which is generated by the Np(L) conjugates
of U. By the previous paragraph we may assume that every NF(L) conjugate of U
lies in UL. Thus as V is a direct sum of conjugates of U, we conclude that V is
totally Q-singular as USRad(V). So asV is a proper Np(L)-invariant subspace of J,
we will show that either V is a subalgebra or else that there exists an L-submodule U
as in the previous paragraph.

If V s brilliant, then NF(L) is a brilliant subgroup of E6, by [As2] Thml, as V is
generated by singular points. If V is a direct sum of 2 members of ¥y then V s
brilliant and contains singular points. So V is a direct sum of 3 or 4 Np( L)
conjugates. The latter case is impossible as then id® =~ V\M(0)®M(0)\V* has eight
composition factors Galois conjugate or dual to U and two composition factors of
dimension 1. Then by lemma 12.2 an element of order three in L has tra:ce 2: a
contradiction to lemma 12.1.

So V= U,;®Uj® Uy with U= U, and U; Np(L) conjugate to U. Now
as U; < UJ.'L for all i,j we have, by corollary 6.5.3, that S#(Ui,Uj) < U;ANU;A for
all i,j. Now as S#2(UiA) = U, and Uint = 0 we get that 8#2(5#(Ui’Uj)) =0.
So by lemma 3.4 S#(Ui’Uj) is a singular subspace of UiA n UjA. As V is not
brilliant, we may assume that U; is not contained in UjA and hence S#(Ui’Uj) # 0,
and U; N S#(Ui’Uj) = 0. As S#(Ui’Uj) is L-invariant and we assumed that
Cige(L) = 0 it follows that dim(S¥(U,,U)) > 3. So now U, & S*(U,,U;) is at
least six dimensional and singular, as S#(Ui’Uj) is a singular subspace of U;A, and
hence a member of ¥¢. So S#(Ui’Uj) is the intersection of two members of ¥¢ and
is hence a three dimensional amber subspace by [Asl1] 9.9, i.e., a member of ¥4.

Now V is not brilliant so there exists a vector v€V such v = u0+u1+u2 with
w, €U, and T(v)#0. Thus 0#T(v)= 6f(uguq,ug) = 3 ( vy, uy#uy). So as

S#(UI,U2) is a three dimensional irreducible L-module, it is a complement to UO'L in
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J. Moreover, S#(UI,U2) is G conjugate to U and L-invariant. So the argument in

the second paragraph of this proof applies and we are done.

Lemma 10.13: If L stabilizes a subalgebra of type ¥¢> then NF(L) stabilizes a
subalgebra.
Proof: Let U be a maximal tangerine subspace of id®. Then by corollary 6.5.4 Ulis
a subalgebra of J and S#(U,U'L) = U. Now if every Np(L) conjugate of U is
contained in U'L, then the subalgebra generated by the Np(L) conjugates of U is
proper and N(L) invariant.

So assume that U is an Np(L) conjugate of U not contained in UL. Then by [Asl]
9.9 1-3 one of the following holds:
i. UNU is one dimensional.
ii. ULn T is an amber plane.
ii. Ut nT =o.

If i. holds Cide(L) # 0 and the claim holds. If ii. holds the claim follows from
lemma 10.12. If iii. holds J=U & (Ulnﬁl) ®U and (U-LnUl) is an L invariant
nondegenerate subalgebra of dimension 15. By inspecting the conjugacy classes of

nondegenerate subalgebras, we see that (Ulnﬁ-'-) is a ¥, type subalgebra. Now

lemma 10.11 proves the claim.
We summarize lemmas 10.10 to 10.13 in:

Proposition 10.14: If L stabilizes a subalgebra, then Np(L) stabilizes a subalgebra.
Proof: If Cj(L) # <id> then lemma 9.3 gives the claim. If L stabilizes a subalgebra,
then L also stabilizes a good subalgebra. In case C (L) = <id> Lemma 10.10 gives

the possible choices of good subalgebras that L can stabilize. Lemmas 10.11 to 10.16
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deal with each of the possibilities listed in lemma 10.10.

Corollary 10.15: If L stabilizes a brilliant subspace which is generated by singular
points, then N[ (L) stabilizes a subalgebra.
Proof: By [As2] Thml L is a brilliant subgroup of Eg(F). Now by proposition 6.9 L

stabilizes a subalgebra. So the claim follows from proposition 10.14.

Corollary 10.16 : If K is an extension field of F and L stabilizes a subalgebra of
JK, then Np(L) stabilizes a subalgebra of J.

Proof: Let o be the automorphism of rK whose fixed points are T. Let T =
<I‘K,a>. Then o € Cf‘(NF(L))‘ Now by proposition 10.14 Nf‘(L) stabilizes a
subalgebra aAK. so oxNp(L) stabilizes AK. So there exists an FNp(L) invariant
submodule A of J by [As9] 25.7.2. A = CAK(O') so A is a subalgebra by lemma

9.2.1.

Lemma 10.17: If the minimal faithful representation of L over F has dimension >
14, then L is not a subgroup of G unless L has an irreducible F-representation of
dimension 26.

Proof: Let p be any 26 dimensional F-representation of L into G. Therefore Lp
centralizes a nondegenerate quadratic form, as G does. We observe first that L can
only have one nontrivial composition factor. If this composition factor does not have
dimension 26, L. centralizes a nontrivial subspace of id® by lemma 10.6. In this case
L centralizes a point 3 id. The point centralizers are universal groups of Lie type
that have nontrivial representations of degree less than 9. So because L is simple, L
must also have a nontrivial representation of degree less or equal to 9: a contradiction

to our hypothesis. The claim follows.
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At this point we know that any closed simple subgroup L < G < G such that
Np(L) is maximal in T does not stabilize a proper nontrivial subalgebra of J. We
will use this fact frequently in showing that certain subgroups of G do not give rise to

maximal subgroups.
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CHAPTER II : ALMOST SIMPLE SUBGROUPS OF LIE-TYPE DEFINED OVER

FIELDS WHOSE CHARACTERISTIC EQUALS char(F)

Throughout this chapter L will denote a simple adjoint group of Lie type of char(F) =
p (p=0 allowed). We regard J as an L-module and id® and <id> as L-
submodules of J. We assume throughout this chapter that F is a splitting field for
L and for us an L- module is always an FL-module unless otherwise stated. The

arguments in this chapter will be of a more module and representation theoretic

nature.
SECTION 11: INITIAL REDUCTIONS

Lemma 11.1 : If L is a simple adjoint group of Lie type in characteristic p , then L
embeds into G only if one of the following holds:

1. L is of type 3D4.

2. L is of type G2.

3. Lis of type A, or 2Ai’ ie{1,2}.

4. L is of type F4.

Proof: If L is an orthogonal group P, (for us it is irrelevant what the type of L is),
then L contains a subgroup on-1, Alty, when n is odd, and a subgroup of type
2n'2:Altn_1 when n is even. To see this let {b;:1< i < n} be an orthonormal basis of
an odd dimensional orthogonal F-space, V. The group generated by the reflections
rbia.cross the hyperplanes orthogonal to bi is an elementary abelian 2-group of 2-rank
n. Its normalizer in O(V) contains the permutation matrices. Hence the claim for n
odd. When n is even any orthogonal F-space will contain a nondegenerate hyperplane

and the same construction works. So when n>5 L contains an elementary abelian 2
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group E and 5 divides |A[(E)|. So in this case L is not a subgroup of G by lemma
7.11.4.
Sd now we have eliminated all groups containing P n> 5. This leaves us
with the groups listed in the statement of the lemma and the groups of type C,
ie{3,4,5} and 2E6. The minimal dimensional faithful representations of the groups not
listed in the statement of the lemma have dimension > 14 and no 26 dimensional

irreducible representations (see [As6]), so these are out by lemma 10.17.

Lemma 11.2: If L is of type G2, then L centralizes a proper nontrivial subalgebra

unless char(F) = 7 and L acts irreducibly on id©.

Proof: In characteristic 7 L possesses an irreducible 26 dimensional representation.
For now we will exclude this case from our considerations and treat it separately in
Section 14. The other small L-modules have dimensions 1,7, and 14 and have
corresponding high weights 0,A;,A, respectively, see [As6]. Moreover, dim(M(2};)) =
27 if p#7 and 26 if p = 7. So either id©® contains seven dimensional submodules or
else CidG(L) # 0 and L centralizes a proper nontrivial subalgebra. Now using [G1]
we see that Sym2(M(A1)) = M(0) & M(2);) if p#7 and is M(0)/M(2A;)/M(0)
when p = 7. Soif U is a seven dimensional irreducible L submodule of id® then
dim(S#2(U)) < 1. So either Cide(L) # 0 or lemma 10.4 applies and U is
singular. The latter is impossible as 1d© contains no seven dimensional singular

subspaces. This is the claim.

Lemma 11.3: If L is of type 3D4, then L stabilizes a subalgebra.
Proof: As F is a splitting field for L, we see from [As6] that the only small L

modules have dimension 8. From [Jol] we know that Hl(L,V) = 0 for every 8
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dimensional L module . So dim(Cide(L)) > 2 and the claim follows from lemma 7.1 .
SECTION 12: GROUPS OF LIE TYPE A2 AND 2A2

In this Section we assume that L is of type A2 or 2A2. Here we will start to use our
knowledge about the possible character values of involutions and elements of order

three in G acting on id©. We record this in a lemma.

Lemma 12.1: Let gEG be an involution, then tr|;o(g) € {-6,2}. If h€G is an
element of order 3, then tr| 5(h) € {-1,8}.
Proof: The first part follows from [As3] 6.5 and an easy calculation. The second part

follows from [As3] 8.2 and an easy calculation.

In this section we will prove that L stabilizes a subalgebra. Combined with corollary
10.16 this will show that an almost simple group of type A2 or 2A2 is never
maximal in T. From [As6] we get the set of small irreducible modules. These will be
listed in the table below. Let g be the involution that acts as the diagonal matrix (-
1,-1,1) on the natural L-module. Let h be the element of order three that acts on the

natural L-module as the diagonal matrix (w,w'l,l).

Lemma 12.2: The following table lists all small nontrivial irreducible FL-modules up to
conjugacy and duality:

M(A) M(2)) M(A[+9) MODOM(A ) M(3X) M(23+)g) M(4)))
Dim(M) 3 6 8 9 10 15 15
tr(g) -1 2 0 1 -2

tr(h) 0 0 -1 0 1
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M(5A)  M(2M+2)9) M(3A+)y) MO OM(A+dy) MO )eM(2i;)°
dim(M) 21 27 (19) 24 (18) 24 18
The character values of g and h are the same on the dué.l modules and Galois
conjugates. The numbers in parentheses denote the value in case p=5, and § denotes

a nontrivial field automorphism.

Proof: That the modules listed in the table together with their duals are the complete
set of submodules is a consequence of [As6]. The character values are easily computed

as follows:

The module M(A;) is the natural module so the traces of g,h are easily
computed. Now tr(x)|A®B = tr(x)|5 tr(x)|g, allowing us to compute the traces on
M(A)®M(}))°. It is well known that M(A))®M()y) = M(A;+}y) @ M(0) so the
traces on M(A;+Xg) are easily obtained. Now in [Sel] it is shown that M(c);) is the
space of homogeneous polynomials in 3 variables of degree c¢. From this one can easily

get the traces for ¢ = 2 or 3.

Lemma 12.3: If id® contains a submodule isomorphic to M(2},), then Np(L) is not
maximal in T.
Proof: We first recall from [As6] that Sym2(M(2A1)) ~ M(4);) & M(2);) and that
M(22)®M(21;) ~ M(4),) © M(21{) & M(2A;+A,). Further observe that M(41,)
and M(2A1+A2) are not self dual modules. Thus neither of these modules can be
submodules of id© as id® is self dual and hence can not contain nonself dual modules
of dimension greater than 13.

Now let U =~ M(2);) be a submodule of id® and let W= S#z(U). By the
above W ~ U, If W < U then id4U is a subalgebra by lemma 10.1 and hence

NF(L) is not maximal by corollary 10.16. By lemma 10.1 the only alternative is WNU
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=0and W =~ U. Now either S#(U,W) or S#z(W) is not contained inid @ U @
W else idoU®W is an L invariant subalgebra and Np(L) is not maximal. So
there exists a submodule V of S#(U,W) or S#z(W) and V ~ U which is not
contained in id & U & W. Similarly if ideU&WaV is not a subalgebra, there
exists a submodule T =~ U which is not contained in ideU®WaeV. Now
dim((id@U@WéBVéBT)‘L) = 2 and hence dim(Cide(L)) = 2. Thus in this last case

Np(L) stabilizes a subalgebra , completing the proof.

Lemma 12.4: If id® contains a submodule isomorphic to M(A;), then Np(L) is not
maximal in T.

Proof: Let Ux~ M(A;) be a submodule of id®. As Sym#z(M(/\l)) > M(21) we
have S#2(U) is either trivial or isomorphic to M(21;). In the first case U is
singular and we are done by corollary 10.16. The second case is handled by lemma

12.3.

Lemma 12.5: If id©® contains a submodule isomorphic to M(3X,), then Np(L) is
not maximal in T.

Proof: Let U =~ M(31;) be a submodule of id®. First we observe that U is Q
singular as U is not self dual. So id©®/ vl ~ M(3%y) and UJ'/ U is six
dimensional. Now checking traces of g and h shows that the only composition
series of U'L/ U that does not violate lemma 12.1 is the series consisting of trivial
composition factors. Now in [As6] it is proved that Sym2(U) has neither ten nor one
dimensional composition factors. From this we conclude that 8#2( U) =0 and hence
U is singular. This contradicts that the maximal dimension of a singular subspace is

6. Soin fact U can never be a submodule of id©, establishing the claim.
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Lemma 12.6: The following are true:
1. Sym2(M(A;+19)) = M(2X,+245) @ M(A;+)y) ® M(0) when ps# 5.
2. Sym?(M(A\;+)9)) has composition factors M(2X;+2Xy), M(0), and M(} +2,)
occurring with multiplicity 2 when p=35.

3. Sym(M(A)®M(A)%) = M(2A))oM(23))¢ & M(A)®@M(Ay)°.

Proof: Part 3 follows readily from the well known formula Sym2(A®B) ~
Sym2(A)®Sym2(B) ® A2(A) ®A2(B), see [As5] section 2. Part 1 and 2 can be
deduced from [As6] once we observe that M(0) and M(2(A;+2X5)) are submodules

of Sym2(M(/\1+,\2)) and that Sym2(M(A1+A2)) is a self dual module.

Lemma 12.7: If id® contains a submodule isomorphic to M(A;)®M(};)%, then
Np(L) is not maximal in T.

Proof: Let UzM(/\l)®M(/\1)6 be a submodule of id® and let W= 8#2(U). If
id® U is a subalgebra the claim follows. So assume otherwise. Then dim(W) = 9 and
UN W =0. So dim((UeW)L) = 8. Now only the choice (UaW)™ =~ M(A;+1,)
does not lead to a contradiction of lemma 12.1. Now we see using lemma 12.6.1 and 2
that 5#2((U@W)'L) < id® (UGBW)'L and hence L stabilizes a subalgebra. We are

done by corollary 10.16.

Lemma 12.8: If id© contains a submodule isomorphic to M(A;+A5), then Np(L) is
not maximal.

Proof: Let U =~ M(A;+A5) be a submodule of id® and let W = 3#2(U). If W<
U @ id then U® id is an L invariant subalgebra and we are done by corollary 10.16.
If M(0) < W and M(0) #id, then C,3g(L) # 0 and again we are done.

So we may assume that W~U and WNU = 0. Then (WeU)'L is a ten
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dimensional submodule of id®. Now by the previous lemmas (WﬂU)‘L can only
contain a submodule isomorphic to M(A1+A2). This forces three composition factors
isomorphic to U and two trivial composition factors. Now [Jol] shows that Hl(L,U)

= 0. Thus Cide(L) # 0. This gives the claim.

Proposition 12.9: If L is of type Agy or 2A2, then NF(L) is not maximal in T.

Proof: L has no irreducible 26 dimensional representations so L stabilizes a submodule
U of idO. So either U or UL has dimension less than or equal to 13. So WLOG
U is isomorphic to one of the modules of dimension less than 13 listed in table 13.1.

Now the lemmas 12.3, 4, 5, 7 and 8 handle each of the cases.
SECTION 13: GROUPS OF LIE TYPE A,

Let L = PSLo(F). Let gh € SLQ(F) be the diagonal matrices (i,-i) and (w,w'l)

where i, w are primitive fourth and third roots of unity of F, respectively.

Lemma 13.1 :
1. The small irreducible L-modules are:
M(2a};) ,2a < p and 2a < 26
M(ad)®M(bA,)® , 6#1,2 | (a+b) and (a+1)(b+1) < 26
M(a)))®@M(bA)°©M(cA))%, a # 1,6, 2| (a+b+c) and (a+1)(b+1)(c+1) < 26
M(A)eM(A MO ) eM()’, o # 1,5 and B # b,a,1.
2 Tx(®)y2a) = (D 5 Tr@lygpa;) =
T‘(h)IM(a,\l) = a+1 mod 3 and Tr(h)IM(aAI) € {-1,0,1}
3. Sym%(M(ah,)) =~ OM((2a - 4)A)) i € {0,fa/2]} if 22 <p.

If a< p<2a define Uy ~ M(2k);) for 0< k < p-a-lor k =(p-1)/2 and
k 1
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define U, =~ M( 2 (p-k-1) Ay)/ Ay / M(2(p-k-1) Ay) for (p-1)/2 <k < a.
If [F| # p then define A, = M((2k-p)A;) ® M(};)® and if |F|=p then define
Ay = M( (2k-p+1)};) ® M( (2k-p-1)}). Then Sym23(M(ar;)) =~ ® U, ok
k € {0,...,[a/2]} if a < p < 2a. Moreover Uk is indecomposable if |F| # p.
4. Let U be an L submodule of the L module V. Then:
Sym?(V) = Sym*(V/U) / ((V/U)®U) / Sym*(V).
5. Let A,B be L modules. Then:
Sym2(A®B) ~ Sym2(A)®Sym2(B) @ A2(A) ®A2(B).
Proof: Parts 1 and 3 can be found in [As6]. Part 4 is the content of [As5] 2.2.1. Part
2 is a simple calculation using the fact that M(aA,) can be identified with space of

homogeneous polynomials in two variables of degree a. Moreover we use that

Tr(x)|V®W = Tr(x)ly, Tr(x)lyy-

Lemma 13.2: If NF(L) is maximal then J contains no submodule isomorphic to a
Galois conjugate of M(21,).

Proof: Let U =~ M(2X,) be an L-submodule of J. Then 5#2(U) is a homomorphic
image of M(41;) & M(0). So U is brilliant by lemma 10.8. So U does not contain
singular points else L is brilliant and hence N(L) nonma,xima,l; If dim(S#2(U)) is
0 or 1 then either U is singular and hence Np(L) is nonmaximal or C, o(L) # 0
and again N(L) is nonmaximal. If 8#2(U) is brilliant then L is brilliant as 8#2(U)
contains singular points. So we can assume that dim(S#2(U)) > 5, 8#2(U) is not
brilliant; i.e., the hypotheses of lemma 10.7 are satisfied. So S#2(U) is a member of
Ug and as an L-module is isomorphic to M(0) ® M(4);). Now if id € S#Q(U) then
by lemma 5.10 S#Z(U) is an L invariant subalgebra so we are done by corollary 10.16.

If idg S#Q(U) then C,;o(L) #0 and hence Np(L) is not maximal.
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Lemma 13.3: If NF(L) is maximal then no Galois conjugate of M(z\l)@)M(/\l)‘S is
isomorphic to a submodule of J.
Proof: Let U be an L - submodule of J isomorphic to M(A1)®M(,\1)6. Recall from
13.1 that Sym?(U) = M(2X)@M(23;)’ ® M(0) and that Sym2(M(2A))®M(23,)%)
~ M(4))@M(4A))°0 M(4x;) & M(4r)°6 M(0) ® M(2x)oM(2))}. Let s =
s#*2(U) N id® and T = s#%(s).

Now if dim(S) < 1 then either U is singular or CidG(L) # 0. So then N(L)
is not maximal. So we may assume that S ~ M(2A1)®M(2A1)6. Now observe that
T is not contained in id+S ; else id+S is a ten dimensional subalgebra of J. So T
contains a submodule W such that WNU = WNS = 0 and W is isomorphic to S
or M(44,).

If W~S then dim((U@SGBW)‘L) = 4 and so in view of lemma 13.2 either
CidG(L) #0 or (UGBSGBW)'L is isomorphic to a Galois conjugate of U . The first case
leads to a nonmaximal N(L). The second case leads to a contradiction to lemma 12.1
as the trace of a three element is 2.

If Wx~M(4},) then S#Q(W) is not contained in W+id and dim(S#2(W)) > 5.
If p#£7 8#2(W) contains a submodule V ~ W and VNW = VNnU = vnS = 0.
Thus dim((U@S@W@V)J‘) = 3 and we are done by lemma 13.2. If p=7 and
8#2(W) does not contain a submodule V~ W and WNV = 0, then 5#2(W) contains
a submodule R = M(4X))/M(})°®M(};)/W. Now dim(U®S®R) = 27: a

contradiction as dim(id®) = 26.

Lemma 13.4: If Np(L) is maximal then J does not contain an L submodule that is
Galois conjugate to M(6X), M(101,), M(A1)®M(3,\1)6 or M(A1)6®M(5A1), unless
L =~ PSLy(7).

Proof: Let U < J be a Galois conjugate of one of the irreducible L- modules in the
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statement of the lemma. We observe first that U 1is brilliant as U is not a
homomorphic image of Sme(U). So in view of corollary 10.15 we assume that U
does not contain singular points. So if x € U is a highest weight vector of U wrt
some Cartan subgroup of L of weight A, then 0 # x#x is a highest weight vector of
weight 2\ of < x#xL > < ST2(U). I U s M(63)) then dim(S¥>(U)) > 21
and UN<x#xL> = 0, a contradiction as dim(id®) = 26.

So for the rest of the proof U =~ M(6A;). Thenlet 5 = <x#x L >. Now dim(S)
=13 and S < id® unless char(F) =7 and S > <id>. Now (U®S)T nido isa
six respectively seven dimensional L submodule of idé. So in view of the two
previous lemmas id® contains a five dim. irreducible submodule T or in case char(F)
= 7 one of dimension 7. In the latter case the trace of an involution of L is -2
contradicting lemma 12.1. In case dim(T) = 5 J contains a 25 dimensional
submodule, namely U®S®T. Now the orthogonal complement of this space is a two

dimensional L module. Thus dim(Cj(L)) 2 2 and Np(L) is not maximal.

Lemma 13.5: If U is an L-submodule Galois conjugate to M(4A;) then Np(L) is
not maximal, unless L =~ PSLy(7).

Proof: We consider first the case p#7 and |F| #5. Let T = 8#2(U) nide. T
contains either an S~ M(4A;) # U or an M(8);), else id + U is a subalgebra or
Cige(l) # 0 and Np(L) is not maximal. So then at least one of S#Q(S) or
S#(S,U) contains a submodule W # S,U and W =~ M(al) a€{4,8,}. Now 0#
dim( (U®S®W)1nid®)) < 6, unless U ~ S =~ W. In the first case id© has either a
three dimensional L-submodule contradicting lemma 13.2 or the involution g€L has
tr(g) = 1 on every composition factor of id©® and id© has at least five compfactors so
that tride(g) > 5 contradicting lemma 12.1. In the second case S#(W,X ), X €

{U,S,W} must contain another submodule R distinct from U,S,W and isomorphic to
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M(al;) a€{4,8}, else id+U+S+W is a subalgebra. Now in both cases
(UoSe@WaR)L is of dimension < 6. So as before either id® contains a three
dimensional irreducible or the trace of an involution of L is > 5 contradicting lemma
12.1.

Now assume |F| = 5. Then L = Altg. It is well known that the irreducible FL
modules fall into 2 blocks, B;= {M(O),M(?Al)} and By = {M(4/\1)}. So if id® has
composition factors isomorphic to M(0) or M(2);), then id® contains a submodule
isomorphic to M(0) or M(2};). Observe that dim(M(41;)) does not divide
dim(id®) and hence id©® contains a submodule isomorphic to M(0) or M(21)).
Now either lemma 13.2 or corollary 10.16 applies.

Now let char(F) = 7 and |F|#7. As beforelet T = S#z(U) N id®. Suppose
for the moment that T = M(42,)/ M(A1)®M(/\1)6/ U. We compute that Symz(T)
= (TOM(0))/M(4A)®A/(TO@M(0)) where A = (M(A)®M(},)®)/M(41,), by using
lemma 13.1.4. Also by definition of T we have T< S#Q(T). Now let Y :=
M(4X,)®A then:

Y > (MGBADeM( e MBADeM( )/ (T © M(0) ® M(6A))eM(21)))
So as S#Q(T) is a homomorphic image of T, we violate either lemma 13.2 or 13.4,
or id®T is a subalgebra in which case we violate proposition 10.14.

So from now on we may assume that whenever W,V ~ M(4/\1) are submodules of
id©, then S#(W » V) does not contain a module isomorphic to T. So then we can
proceed as in the case char(F) # 5,7.

So now we assume that id©® contains no submodules isomorphic to T. Thus we

can now proceed as in the case p # 5,7. The proof is now complete.

At this point we observe that Np(L) maximal in T' forces that every L submodule of

id© is at least nine dimensional, unless L ~ PSLy(7).
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Lemma 13.6: If S# T are irreducible L submodules of id© of dimension > 9, then
(SEBT)'L N id® is a submodule of dimension at most 8. If Np(L) is maximal then
id® = S&T.

Proof: Clear in view of lemmas 13.2 , 3, 4 and 5.

Proposition 13.7: If Np(L) is maximal , then either char(F) > 17 and id® =
M(8X,)®M(161,), or char(F) = 13 |F| # 13 and id® = M(81},) / M(/\1)6®M(3)\1) /
M(84,), or char(F) = |F| = 13 and id® = M(8X;)\M(2X{)®M(41{)\M(8};),or L =
PSLy(7) and id® = M(6A;)®M(4)])@(M(421)\M(0)dM(21,)\M(41,)).

Proof : We treat the case PSLy(7) last. So for now we assume L # PSLo(7).

1R

We observe first that L. can not act irreducibly on id® as then by 13.1 id®
M(25),) and so the trace of an involution is +1 hence contradicting 12.1.
So assume for the moment that id® ~ S & T with dim(S),dim(T) > 9.

If S~ M(12A1) ~ T then an element of order 3 in L has trace +2 by 13.1
which contradicts 12.1.

If S~ M(2A1)®M(2/\1)'S then by 14.1 Sym2(S) has no 17 dimensional
homomorphic image. So this case is out by the above lemma or because S 4 id is a
subalgebra.

Also S does not have dimension 12 because by 13.1 L has no irreducible 14
dimensional representations.

If idG:M(B/\l) ® M(16A;) and p>17, then no contradiction to earlier lemmas
arises. Moreover, in this case one may assume that 3#2(8) > T and 8#2(T) > S.

Now we assume that S = Soc(id®) is irreducible of dimension > 9. In case
dim(S) = 13 S*~ id® / S =~ M(12X,) and the element of order 3 in L trace
argument eliminates this case.

If dim(S) = 12 then id© / s ~ S* and dim (S‘L/S) = 2. Now the trace of an
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element of order 3 in L is, by 13.1.2, zero on any 12 dimensional irreducible L
module. So on id® the element has trace +2, contradicting 12.1.

The case S ~ M(2/\1)®M(2/\1)6 is out because Sym2(S) is semisimple so either S
is a subalgebra or id© contains another irreducible L submodule distinct from S. The
first possibility is out by corollary 10.16 and the second contradicts our assumption S
= Soc(id®).

So now assume that S =~ M(8);) then id® = M(8);)/ U / M(8))
indecomposable and 5#2( M(81,)) contains T/ M(8);) indecomposable with 0 #
T < U . Then by 13.1 char(F) = 13 and id© is as claimed.

Now we consider the case L = PSLy(7). In this case lemma 12.1 and the usual
considerations eliminate all possibilities other than the the one listed in the statement
of the lemma.

We have now exhausted all possibilities, and the claim follows.

SECTION 14: THE EXISTENCE AND UNIQUENESS OF CERTAIN A;’s AND Gy's

Theorem 14.1: If char(F) = 7 then G contains a unique conjugacy class of
subgroups isomorphic to G2(F) and acting irreducibly on id®. Moreover id® =~

M(2};) as a Go(F) module.
Proof: This is the content of theorems 1.c and 2.c of Testerman [T2].
Theorem 14.2: If char(F) > 17 then G contains a conjugacy class of PSL2(F) ’s

such that id® ~ M(81,) & M(16);) as a PSLy(F) module. If char(F) =13 and

|F| # 13, then G contains a class of PSLyo(F) ’s such that id©® ~ M(8X,)/ M(A1)6
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® M(3X;) / M(8);) as a PSLy(F) module.
Proof: Testerman constructed this PSLy(F) in [T3].

Now we want to establish the uniqueness up to conjugacy in G of the PSL2(F)’s
when p > 17. Notice that we built into our assumption that Np(PSLy(F)) is
maximal. Otherwise PSLo(F) stabilizes a subalgebra and hence can not act as we

assumed.

Lemma 14.3: Let f € SYS(V) (the set of set of symmetric trilinear forms on V), L <
O(V,f) with L perfect, C the conjugacy class of L under GL(V), and B the set of
<b> € SY3(V) with b similar to f. The number of orbits of A(V,f) on O(V,f) N
C is equal to the number of orbits of NGL(V)(L) on B. Here A(V,f) denotes the

subgroup of GL(V) preserving f up to a scalar.
Proof: This is 2.9 of [As5].

Lemma 14.4: We keep the notation of 14.3. If f is the trilinear form of section 3,
NGL(V)(L) has one orbit on B, and Cy,(L) = id, then G has one orbit on GNC.

Proof: Let L ¥ M,N € G N C. Then by lemma 14.3 there exists h € A(V,f) such
that MPB = N. Now as Cy(M) = Cy(N) = id, it follows that h € Ri=
NA(V,f)(<id>)' Now R =~ CA(V,f)(G) ® G as AGL(V)(G) = G. So as CA(V,f)
does not fuse G conjugacy classes, we can adjust h so that it lies in G. The claim

follows.

For the remainder of this section let L =~ PSLo(F).  Until further notice we assume
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that id© ~ M(8),) & M(16);) as an L- module.

Lemma 14.5: dim( Hompy ( M(a);) , Sym®(M(b);)) )) = 1 if a € {0,8,16} and
be {8,16} orif a=b =0.

Proof: A simple computation using 13.1.

Definitions: Let fi,j denote the nontrivial L-invariant trilinear map ¥ : M(i’\l) X
M(jA;) x M(jA{) — F defined by ¥(x,y, v' ) = (v¥') (x(ar)) where a isa
generator of HomFL(M(iAl),Sym2(M(jA1))) and T Sym2(M(jA1)) — {symmetric
bilinear forms of M(jA;)} is an FL - isomorphism. When i=j Ilet f. denote the

nontrivial L- invariant trilinear form defined on M(iAl), defined as above.

Definition: Let U, W be L-submodules of id® isomorphic to M(81,) respectively

M(16, ).

Lemma 14.6: Let f be the trilinear form of section 3. Then

f=a,f) + agls +a16f16 +25,16%s,16 + 216,8716,8121,871,8 +31,161,16°
where the a’s liein F. Moreover a6 ag 161,16 # 0.

Proof: We observe that f(id,x,y) = 0 forall x € U and y€ W using the fact that U
= W1 nidO and that - f(id"")lide is the associated bilinear form of Q'ide (see
lemma 3.4). Now the first part is self evident from lemma 14.5.

We see that aj16 #0 as WL N W = 0. As noted in the proof of proposition
137 W < S*2U) = UeL. So id ® U=WL > U6, and similarsly We < UL =
W & id. Now let x € U be a high weight vector of U of weight 8X,. Then x#x
is a high weight vector of W of weight 162;. Now x is brilliant as 82,(h) € F*

has order # 1 or 3 for some h in the Cartan subgroup of L. with respect to which the
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weights are defined. So by lemma 4.4 x#x is either singular or zero. In the latter
case we contradict W < 5#2(U) so W contains singular points. So W is not
brilliant otherwise L is brilliant by [As2] Thml and hence L stabilizes a subalgebra.
This shows aje #0. If ag 16 = 0 then 0 = f(y,y,x) = (y#y,x) forall x € U.
Thus y#y € UL = id ® W for all y¢ W. But then W is an L-invariant

subalgebra a contradiction.

Let F denote the algebraic closure of F, J = JF, L = LF, and T = fF. Then if T is

unique so is f. So replacing F by F, we may assume F is algebraically closed. Also

f=a)f +agfg + 216716 + 23,1675,16 + 216,87 16,8* 21,871,8 T 21,1671,16 2nd
Ti’ ?i,j are preserved by L, so L preserves f. Thus replacing L by L we may
. assume that F = F is algebraically closed. Also we observe that CGL(J)(L) o

(F"‘)3 is generated by the scalar actions on id, U and W respectively.

Notation: We fix a Cartan subgroup T of L < G and we denote the weight vectors
of U and W with respect to T by {x2i : -4 <1< 4} respectively {y2i :-8 <i
<8}. Let 2z be the generator of <id>. Let Si denote the weight space

corresponding to the weight id.

Note that we may assume that T < H < H where is the Cartan subgroup of E6(F)

defined in section 3.

Lemma 14.7: Let A be an F- algebra, D < Aut(A). Assume that D contains
only semisimple elements and let Si denote the weight space of D of weight )«i. Let
Sisj denote the space generated by the products. Then Sisj < Si+j’ where /\H_j(g)

is defined as /\i(g)/\j(g) for all ge L.
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Proof: Let siESi, sjeSj and ge€L. Then sis‘i g = ,\i(g)Aj(g) sisj = '\i+j(g) sisj and

the claim follows.

One consequence of lemma 14.7 is that SO is a subalgebra. Moreover, as Q s
nondegenerate on S; and F is algebraically closed, SO is a member of Ug by
lemma 5.12.1. Observe also that J is the orthogonal direct sum of the spaces si@s_i.

So as Q is nondegenerate on J the space Si @ S-i is Q-nondegenerate.

Lemma 14.8: The following are true:
1. & Si i =0 mod 8 is a subalgebra of type 7'9.
i

2. & Si i = 0 mod 6 is a subalgebra of type ‘V'g.
i

3. & Si i = 0 mod 4 is a subalgebra of type 1"15.
1

Proof: We note first that in all three cases @ Si is a Q-nondegenerate subspace
containing id and SO' The fact that @Si is a subalgebra is a consequence of lemma
14.7. Let x € SO be a primitive idempotent. Then as SO is a member of CU.3 we

have E1 @S (x) # 0. So, by lemma 5.8, the subalgebras have the claimed types.
st

Lemma 14.9: Let {vl,v2,v3} be the three pairwise orthogonal primitive idempotents
spanning S,. Then we can find 8; »§; € 5; such that

Wl = v3A N V2A = < ¥16:Y.1694:5.4:36+5.6:99:5.9>

Wa = viA NvzA = <y19:Y.12:98:5.8Y10¥.1052%.2>

Wg:i= VAN VA = <548 4535 gF65 6Y14Y.14> -

Note that each 8; »8; is Q-singular and hence singular by lemma 3.6.2.
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Proof: We first observe that by lemma 14.7 yi#yi = 0 when [i| > 8 and hence these
y; are singular by lemma 3.4.1. Now we also observe that (yi,y_i) =-(1/2)f(id,y;,y ;)
# 0 by lemmas 14.6 and 14.5. So if i > 8 then y; + Y4 brilliant and Q-nonsingular
hence squares to 2yi#y_i which by lemmas 4.2 and 4.3 is a multiple of a primitive
idempotent. Moreover, observe that yi-#:y_i € SO by lemma 14.7, so we may assume
that yi#y_i is a multiple of one of the Vj' So without loss of generality we may assume
that Y16Y-16 € W1 .

So now as R:= & Sg; is a member of ¥4y we have dim(R N W) =2 ( see
lemma 5.6). As R N W, = < y,6,y 14> it follows that (W,& W3) N R = Sg& Sg.
So let <S—_+-8>=W2 N R and <§‘i‘8>= WgNR.

As T < H every weight vector of H is a weight vector of T. As vi and y, i > 8
are singular; they are also weight vectors of H. Solet Y = {yi,vj,sk,’s'k: |if > 8} be a
basis of weight vectors of H. Define a /ine to be a special triple contained in Y. Let
Y be the set of points and define incidence by inclusion. Then it was observed in [Asl]
that the geometry defined in this way can be identified with the building of 9‘6(2) and
is hence a generalized quadrangle. Each point is contained in exactly 5 lines and 2
points can lie on, at most, one line.

Now we observe that for w;€ §; f(wi, Wi wk) # 0 onlyif i+j+k = 0. So
the lines containing y;g must be of the form {y16, Y.16 + 2i° To:1<ig 3} or
{¥16 » ¥.16> V1} ©or {16558 ,5.g}- Now weclaim that y,, ,y ;5 and Y10
are not contained in Wl. Suppose otherwise; then [Vl’ylﬁ’y-i] is a triangle in the
building of 96(2), a contradiction as, by definition, generalized quadrangles do not
contain contain triangles. Similarly we argue that Y14 Y 192 and Y10 are not
contained in W;. So WLOG let Y414 € Wg. Then again we can argue as above

that y +12> Y410 2re not contained in W3. Leaving as the only alternative y +122
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Now as R:= @ SGi is a member of ¥9 we argue as in the second paragraph of
this proof that <s-j—6> = W, N R and that <§-1-6> = W3 N R.

Now if R:= & S4i then R is a member of 7'15 by lemma 14.8. Also we have
shown that R N Wy =< y~_|-12’ 8_1_8 > and that dim(RﬂWi) = 4 (see lemma 5.6).
So S, S4 < (Wi®W3) N R and it follows that <si_4> < RN W; and
<§'i'4> < Rn W3.

Finally observe that we have now shown that W3 is as claimed. Thus So@S 4 is

contained in Wle W2 and so Wl’ W2 are also as claimed. The lemma follows.

Lemma 14.10: f14(y_16.¥10:Y): f3,16(.16:Y10%6)> f16,8(xg:%g:¥.19); fg(x_4,x_4.xg),
f1,8(2:%4%4)s T16(¥16Y_12Y.4): T 16(Y16:Y.19:%_4)s f1,16(¥py ;) with i # 0 are all

not equal to zero.

Proof: Let h(\) = [;\;1] and g(t) =l:; f] then r;h(}) = Al r, for all i and

riE Si.

Let Zm = y16 - 2m a..nd Wm = x8 - 2m.

Then zp, g(t) = %l b_.t™J

z; where b_ . denotes the binomial coefficient m over
j=o J m,)

m,j
j, see[As 6] . Moreover the same formula holds for wy, in place of Zm-
Let r = [f _01] then by [As6] 2z 7 = (-1)™ zm and the same formula holds for
wm. Using the invariance of the forms involved we see that f(si’sj’sk) =
i+j+k

f(sih(A),sjh(A),skh(A) )= A f(si,sj,sk) for all A € F and S;€ S, stSj S € Sp-
So f(si,sj,sk) # 0 only if i+j+k = 0.

Now suppose that for a fixed i f16(yi’yj’yk) =0 for all j,k such that i+j+k = 0.
Then y; € yjA for all j. Thus f16 a nontrivial radical. Since L acts irreducibly

on U, this implies that f16 = 0; a contradiction to lemma 14.5.

Now assume that f16(y16’ y_16,y0) = 0 then:
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0 = f16(zg:216:29) = f16(208(t),216&(t):2g8(t))
25 -j-i

= 16t f16(ZO,215,29) + 9t f16(zO,zl6,28).
So f16(y16,)’_14,)’_2) = (-9/16) f16(y16’ y-16’y0) = 0.
So we conclude that f;6(y16,Y_14:Y.9) =0 as fi4(y14, ¥.16Yg) = O
Now using that f16(y16,y_14,y_4) = 0 we get that

f16(y16,Y_12,)’_4) = (- 10/15)(-9/16) f16(y16’ Y-16,YO) =0.
Continuing this way we get that f16(y16’y-16+i’y-i) =a f16(y16’ y_16,y0) = 0 for all
i >0.
Thus Y16 is contained in the radical of f16 a contradiction. The only way out is that
f16(y16’ y_16,y0) # 0 and hence f16(y16’y-16+2i’y-2i) #0 forall 0<i< 8 Now
we apply 7 toget 0 # f16(y167 ¥.197¥.67) = f16(¥.16"Y10'Y6)-

All the other claims are proved in the same fashion.

Proposition 14.11: There is a unique class of subgroups of G which are isomorphic to

PSLo(F) such that J ~ M(0) & M(8X;) & M(16);) as a PSLy(F) module.

Proof: In view of lemma 14.6 and the fact that CGL(J)(L) = (F"‘)3 we may choose
a16= 3 16 = 21,16 = 1. If we can now show that the remaining four a’s of lemma
14.6 are uniquely determined, we will have shown that L stabilizes a unique E6 -
form and hence by lemma 14.4 we will have proved the claim.
We observe from lemma 14.9 that for -8 <i <0 <s;> = Ker( f(y16’y-16-i’ - )|Si)
and similarly for 0>i1>8 <8> = Ker( f(y_16, Y16-i" )ISi).

As f6(y 16 Y10Yg) * 0 # f8,16(y-16’y10’x6) we compute that sg =
z\(x6+ay6) where a = f(Y_lﬁ,ylo,xﬁ) / f()’_16,y10,Y6) # 0.

Now recall from lemma 14.9 that 8¢ i8 singular. So we have:
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0 = f(sg36:Y.12)

= ajp g A2 o (XaoX ) + 2 A2a f(x )- a2 a2 )

= 216,8 * 16,8 (X6%6'Y-12 6Y6"Y-12 YeYeY-12)-
So a16.8 is determined as A # 0 and by lemma 14.10 f16 8(x6,x6,y_12) # 0.

Similarly we have: sS4 = /\(x_4 + a y_4) where 0 # a =
fg,16(Y16:Y.12%.4)/T16(¥16:Y.12¥.4) and
0= f(S_4,S_4,x8)

= agA%f, 2a2 § 2242

= agA®fg(x_g,x_4:Xg) + 2aA% f(x 4,y _4:xg) + Aa® f{y_4.y_4.%g)-
So ag is determined as fg(x_4,x_4,xg) # 0 # A.

Now we also have:

0 = f(s4,5_4,vo) = f(A(xg4+ B yy) , u(x gtay_4), 112 + 19 Xg + 713¥0)

= a1’871/\p fl,s(x4,x_4, z) + determined quantities.
Now Ap #0 as s; # 0 # 5_4. Moreover 0#7v, as 0 = f(y16,y_16,v2) =
13f16(v16Y-16¥0) + 71f1,16(V167.162) and  f) 16(y1g¥.162) #F O #
f16(y16,y_16,y0). So aj 8 is determined as f1,8(x4,x_4, z) # 0.
Finally we use that 0 = f(v2,v2,z) = afy% fl(z,z,z) + determined quantities to
determine ay.

So a, is determined as f;(z,2,z) # 0 and the proof is complete.

Proposition 14.12: Let FO be a subfield of F. Then G contains a unique conjugacy

class of subgroups isomorphic to F4(Fy).
Proof: Let L ~ F,(Fg;). Then it is shown in [As5] that L stabilizes a unique Eg -

form so the claim follows from lemma 14.4.

We now want to establish the uniqueness of the PSLo(F), char(F) = 13, described
in theorem 14.2. Our methods will be similar to those used in the proof of proposition

14.11 which were previously used in [As5] in a similar situation. For the remainder of
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this section we will assume that char(F) = 13, |F| # 13, L ~ PSL2(F), and J o~
M(0) & M(8A)\ M(3A)®M(} )%\ M(8%) =~ M(0) o W(16A,)\M(8};) where
W(16A1) denotes the Weyl module of highest weight 16A,. This last isomorphism is
in [As6].

Now we establish some notation. Let Y = Soc(id®), W = W(16/\1)/ Y and Z =
id©6/W(161;). We fix a Cartan subgroup H; of L. Then let { ¥; } be a basis of
weight vectors of Y, {wi: i= 16,14,12,10,-10,-12,-14,-16} be a basis of weight vectors
spanning W and {zi} be a basis of weight vectors spanning Z. By Si we will denote the
weight space of weight i. For a€ F and be F*, let ayb € Endpy (Y\W\Z) be the
element defined by Yi% b = byi y Wia, b = bwi » L@, p = bzi + ay;. Let fl €
Sym3(Y\W\Z) be such that f; # 0 on Y. We define recursively fi+1 = fial,l - .
Similarly, let g € L(M(0),Y\W\Z,Y\W\Z) such that g;(m,w,v) # 0 f(;r some
meM(0), w, v € W, and let iyl = §21,1 - &-
Lemma 14.13:

Sym3(Y\W\Z) is spanned by {f;,fp.f3.f,}-

[u—

[

. {aa,b } is transitive on <f},f5> \ <fy> modulo <f3,fy>.

@

Lpr(M(0), Y\W\Z,Y\W\Z) is spanned by {1:89}
4, f = f1+ 33f3 + a.4f4 + g + b2g2 + ¢ h, where h spans Sym3(M(0)), where

a.i,bi,c e€F.

Proof: We prove part 3 first. Observe that g and gy are linearly independent.
Next we observe that Lg; (M(0), Y\W\Z,Y\W\Z) =~ Homp[(Y\W\Z,Y\W\Z)
which is clearly two dimensional, and part 3 follows. Part 2 is easy to see. Given
parts 1,2,3 we can see part 4 as follows. First, Sym3(M(0)®Y\W\Z) is spanned by

{f;;g;;h}. If fis an Eg form, then fly,# 0 otherwise ﬂY\W =0 and (Y\W)O >
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Y\W and so by lemma 4.5 S#Q(Y\W) <Y and Y\W & M(0) is a subalgebra. But
then by the subalgebra theorem Y\W\Z is not indecomposable contradicting our choice
of L. So we may assume f = f1 + other terms. By part 2 we may also set ag = 0.
In view of the fact that f; (-,-) is nondegenerate and that rad(gz,id) # 0, we may
further assume that f = f1+ g + other terms. So part 4 follows.

Now we prove part 1. First we want to see that {fl,f2,f3,f4} are linearly
independent. To see this we make the following easy to check observations:

a. fo(w,v,u) =0 forall w,vyu € W(16},), but fy(z,w,w)7#0 for some z€Z and
we W(161,).

b. fa(x,w,w) =0 for all weW(161;) and x € Y\W\Z, but Rad(fg) # 0.

c. Rad(fy) = W(164,).

To complete the proof of part 1 we need to check that dim(Sym3(Y\W\Z)) < 4.
First we want to observe that dim(Sym3(Y\W)) = dim(HomFL(Y\W,Sym2(Y\W)))
= 1. We can see this using 13.1.4 to compute Sym2(Y\W) ~
Symz(Y)\Y®W\Sym2(W). We can then compute Sym2(W) using formula 13.1.5
and then observe that Hom(Y\W,Sym2(W)) = 0. Furthermore we can compute that
Hom(Y\W,Y®W) = 0 and that dim(Hom(Y\W,Symz(Y))) = 1 establish our
observation.

So now it suffices to show that the space of trilinear forms 9 which vanish on
Y\W is three dimensional. We consider the FL-map D: ¥ — Homp(Z,
(Y\W)®(Y\W)) defined by D(g)(z) = g(z,--). Let % = Ker(D), then Dim(7/%)
< 1 = dim(Homg; (Z, (Y\W)®(Y\W))). Now define E: % — Hompg( (Z, (Y\W)®Z)
by E(g)(z) = g(z,_,_). As dim(Hompg(Z, (Y\W)®Z)) =1 dim(¥%/Ker(E)) < 1.
Finally we observe that Ker(E) ~ Hompg (2,Z2®Z), which is one dimensional, as can

be computed using lemma 13.1. The claim follows.
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As in the case char(F) > 17, we can work over an algebraically closed field. For let

F denote the algebraic closure of F. Then the f,,g; and h are PSLQ(F) invariant

maps.

Lemma 14.14: The following are true:
1. ©5; i=0mod8 isa subalgebra of type ¥g-
i

2. 5, i=0mod6 isa subalgebra of type ¥y
i

3. & Si i = 0 mod 4 is a subalgebra of type 7'15.
1
Proof: The proof of lemma 14.8 carries over verbatim.

Lemma 14.15: Let {vl,v2,v3} be three pairwise orthogonal primitive idempotents
spanning S . Then we can find 8 +8; € Si such that

Wl = v3A n v2A = < W16sW_1618415.49615.6:50:8.9>

Woi= VA NVgA = < Wy9,W 19,888 gsW oW 198 25 9>

W3 = le N v3A = < ?;'4,?1'_4,§8,'s'_8,§'6,§_6,w14,w_14>.

Moreover the s;,8; are singular.
Proof: The proof of lemma 14.9 carries over verbatim.

Lemma 14.16: The following quantities are not equal to zero: fl(w16,w_12,y_4),
fi(w16%.107-6) T1(W1eW.122.4)s 1) (W16:W.10:2.6)s 13(24:24¥.8)s T4(24:242.5),
g2(id,zo,z0), h(id,id,id).

Proof: The proof is similar to that of lemma 14.10. The idea is to show that if one of
the quantities is zero, then the form f. resp. (gi,h) is trivial, contradicting the definition

of f; resp. (g;;h).
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Proposition 14.17: Let char(F) = 13, |F| # 13. Then G contains a unique conjugacy
class of subgroups isomorphic to PSL2(F) and ido ~
M(8A)\M(33,)®M(2;)°\M(8},) as an FPSLy(F)- module.
Proof: The proof is analogous to that of proposition 14.11. First we observe that
<s.g> = Ker(fy(wygw.100 g ). Soas fi(wiew.10v.6) # 0 # f1(Wi6".102.6)
we can write s g =y ¢ + @ zg, where a = - f1(Wig,W_ 10:¥ ) / T1(W16,W_10:2¢)-
For the same reasons we can write sS4 =¥+ ﬂz4.

As s ¢ is singular by lemma 14.15 we have:
0= f(s4,s4,y_8) = ﬂ2a3f3(z4,z4,y_8) + determined quantities.
So as f3(z4,z4,y_8) #0 we have determined ag.

Also we have:
0= f(s4,s4,z_8) = ﬂza4f4(z4,z4,z_8) + determined quantities.
So as f4(z4,z4,z_8) # 0 we have determined a,.

Now v, = aid + ﬂyo + 729 where o,3,y are expressible in determined quantities.
We choose i such that y# 0 # a. Then as v is singular we have:
0 = f(v;,v;,25) = 2 avbogy(id,z,zg) + determined quantities. Also as go(id,z(,z()
# 0 we have determined b2.
Finally, we use 0 = f(vy,vq,id) = cazh(id,id,id) + deterﬁxined quantities to

determine c. This completes our proof.
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CHAPTER III: CROSS CHARACTERISTICALLY EMBEDDED SIMPLE

SUBGROUPS, ALTERNATING AND SPORADIC SIMPLE SUBGROUPS

In this chapter let L denote a finite simple group. We will assume that the defining
characteristic of the group L is not equal to char(F) = p. For the rest of this chapter

F will denote the algebraic closure of F.

SECTION 15: INITIAL REDUCTIONS

Proposition 15.1: The structure of the Weyl group of F,(F) is 2' ( Alt,®Alt,) .2: 2.
Proof: This is well known. One way of seeing this is as follows. The Weyl group of
Eg(F) is Og(2). The Weyl group of F4(F) is the stabilizer of a singular line in the

building of the Weyl group of E6(F), the structure of which is well known.

Lemma 15.2: The orders of elements of the Weyl group of F4(F) are : 1,2,3,4,6,8,12.

Proof: Well known.

Lemma 15.3: If L< G and L is of Lie type of characteristic r # 2,3,p, then L ~

PSL2(q) and q€{5,7,13,17,25}.

Proof: From lemma 7.8 we know that the Sylow - r- subgroup of G is abelian. So L
~ PSL2(q) as all other simple groups of Lie type of char = r have nonabelian Sylow-
r-subgroups.

Now the Borel group of PSLy(q) is a Frobenius group of order q(g-1)/2. Again
by lemma 7.8 the Frobenius complement has to be a section of the Weyl group of G.

So (q-1)/2 has to be the order of an element of the Weyl group of G. The claim now
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follows from lemma 15.2.

Lemma 15.4: If L < G is of Lie type of characteristic 3, then L =~ PSLy(9),
PSL,(27), PSL3(3), PSU4(3), or 2Gy(3).

Proof: Recall from lemma 7.10.3 that a Sylow-3-group R of G contains an abelian
normal subgroup A, such that R/A is elementary abelian of order 9, and that m3(G)
< 4. This restricts the type of L to one of the following: PSL2(q) and g< 81,
PSU3(q) and q €{3,9}, PSL4(a) q € {3,9}, PR5(3) = PSp,(3), 2Gy(3), Go(3) and
PSU4(3) =~ PQg(3).

Now the argument in lemma 11.1 shows that PQg(3) and PQg(3) contain a
subgroup isomorphic to 24, Alt5 ; so lemma 7.11.4 eliminates these two possibilities.
The Borel subgroup of PSL,(81) is Frobenius of order 81:40. By 7.10.1 the group
3% is contained in a Cartan subgroup of GF. So by 7.10.2 AG(34) is a section of the
Weyl group of G. Now 15.2 eliminates PSL2(81) as a possibility as 40 does not divide
the order of the Weyl group of G. The group PSL2(9) contains a subgroup
34:PSL2(9). But by lemma 7.10 3% is contained in a Cartan subgroup of G and
AG(34) is a section of the Weyl group of G. As PSLy(9) contains elements of order
5 lemma 15.3 eliminates PSL4(9) as a possiblity.

The group U3(9) has no faithful F-representation of degree less than 72 (see
[Lal]) so it can’t embed into G. The only small faithful irreducible F-representations

of G2(3) have degree 14 (see Atlas and Parkers Character Tables), so G4(3) is out

by lemma 10.17.

Lemma 15.5: If L < G is of Lie type of characteristic 2, then L is isomorphic to one
of the following: PSLy(q) q < 8, PSp,(2), PSL3(2), Go(2)', 3D4(2) or PSL,(2).

Proof: Recall from lemma 7.10 that mgy(G) = 5, so in general < 32. Now recall



110

from lemma 7.10 that AG(E) is a 2,3,7 - group when E is an elementary abelian 2
group. So if L has Lie rank 1, then q < 8. So L = PSLy(4), PSL,(8), PSU4(4),
PSU4(8), or Suz(8). Now the small nontrivial irreducible F-representations of Suz(8)
have degree >14 and hence 10.17 disposes of this case. Now by [Lal] we see that the
smallest nontrivial irreducible F-representation of PSU3(8) has degree at least 56; so
this case is out. The case PSUg(4) is out because the trace of an element of order 3
in PSUg(4) on any 26 dimensional F-representation is either 2 or 14; a
contradiction to lemma 12.1 (see Atlas and Parkers character tables ).

Now suppose that the Lie rank of L is 2. Then L contains subgroups of Lie rank
1 so in general q < 8. As m2(G) = 5 this leaves only the possibilities listed in the
statement of the lemma and the groups PSL3(4), PSU,(2), PSUg(2), and 2F4(2)'.
The last four possibilities are out by lemma 7.11.4 as the groups contain subgroups
isomorphic to 24:PSL2(4) , 24:PSL2(4) , 3% PSU4(2) and 2% 5 respectively.

Now if 'L has Lie rank greater than or equal to 3, then as L contains a subgroup
of Lie rank 2, we see g=2. Now as my(G) = 5 the only possibility is L =~ PSL,(2).

Now the claim is established.
The following result can also be found in [KI2].

Proposition 15.6: Let L be a sporadic finite simple group. Then L is a subgroup of

G iff p=11 and L ~ Jl or Mll'

Proof: It is well known that PSL3(4) < M22,M23,M24,McL,HS,Co.3,Co.2,Co.1. So
these groups are out by lemma 15.5. It is also known (see Atlas) that the 3-ranks of
the following groups, Suz, Ly, Th are at least 5. It is also known (see Atlas) that the

2-ranks of the groups J4, He, Fi22, Fi23, Fi24, Ru, HN, B, M are at least 6. So
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these groups are out by lemmas 7.10 and 7.11. The group J3 contains a subgroup
PSLy(16), so it is out by proposition 15.5. The group O’N has subgroups PSLy(11)
and PSL2(31). So O’N is out by corollary 15.3. The small nontrivial irreducible
F'JQ -modules have dimensions 14 and 21 (see Atlas and Parkers tables). So J, is out
by lemma 10.17. The groups Jl, M11 and M12 contain PSL2(11), so by lemma 16.3
these groups can embed into G only if p = 11. Now J; was originally constructed as
a subgroup of Go(11) (see [Jal]). The centralizer in G of a subalgebra of type Ug is
G4(F), by subalgebra theorem, which certainly contains Gg(p). So J, is a subgroup
of G iff p=11.

Now consider M;,;. From the modular character table we see that M;, is a
subgroup of Qg(ll). Moreover because M;; has trivial Schur multiplier, we see that
M11 is also a subgroup of Sping(ll). Thus Mll is a subgroup of G, because it is a
subgroup of the stabilizer of a primitive idempotent. Recall from proposition 2.7.5
that the stabilizer of a primitive idempotent is Sping(F). So M11 is a subgroup of G
iff p=11.

Now it remains to show that M, is not a subgroup of G when p=11. To see this
we observe that the small nontrivial 11-modular irreducibles of Mo have dimensions
11 and 16, and that Mo contains an involution whose trace is 3 resp 0 on these
irreducibles. So we see that this involution has trace 10 on any nontrivial 26-

dimensional FL-representation. So M;, isout by lemma 12.1.

Proposition 15.7: Let L =~ Altp, n> 7. Then L is not a subgroup of G unless n=7
and p=5. Moreover if p=5 dim(C (Alt;)) = 3 and hence Np(Alt;) is never
maximal in T.

Proof: We will show first that when p#35, then Alt7 is not a subgroup of G.

Then we will show that when p = 5 Alt7 is a subgroup of G only if Alt7



112
centralizes a three dimensional subalgebra. Finally, we will show that when p=5
Altg isnot a subgroup of G , completing the proof.

The following part of the Alt7 ordinary character table is an excerpt from the

Atlas:

X1 X X3 X4 X5  Xg X7 Xg
1A 1 6 10 10 14 14 15 21
2A 1 2 -2 -2 2 2 -1 1
3A 1 3 1 1 2 -1 3 -3
3B 1 0 1 1 -1 2 0 0

For now we will assume that p# 5,7. The character x of any 26 dimensional Alt7F -
module is a sum of irreducible characters. Now we will survey the possible x and
observe that either x(2A) ¢ {-6,2} or x(3A), x(3B) ¢ {-1,8}, showing by lemma
12.1 that the module affording x is not a G module.
I x= xg+5x1, x+ x; + x1 1=34, x7 + x9 + 5x7, x;+2x9 i=5,6,

X; + xg + 6xq i=5,6, X; +2x9+4x =34, xj+ X9+10x; j=3.4,

X; + 16x; j=3,4,0r a.x2+bx1| 6a+b =26, then x(2A) ¢ {-6,2}
If x = x; + xj+2x1 i=5,6 j=3.4 , X; + Xk + X9 Jok = 3,4, then x(3A) or x(3B) ¢
{-1,8}.
If xj+xk+6x1 and j,k € {3,4}, then Alt, must stabilize a point. This is impossible
because point centralizers do not allow the proposed Alt7 series as a refinement.

Now assume p=7. The following table is an excerpt from the 7-modular character

table (see Parker):
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X1 X9 X3 X4 X5 Xg

1A 1 5 10 14 14 21
2A 1 1 -2 2 2 1
3A 1 2 1 2 -1 -3
3B 1 -1 1 -1 2 0

The only 26 dimensional characters that are feasible by Lemma 12.1 are: XgtXo and
2xg+ 6xy-

In the first case observe that id® is the direct sum of the irreducibles affording xgand
Xo and that dim(Sym2(x2)) = 15. So 5#2(x2) < <id , x9> and hence <id,xo>
is a proper nontrivial subalgebra of J. Now <id,x9> is nondegenerate and hence it
contains a primitive idempotent x by Springer’s lemma. If El(x) n <id,x2> = 0 then
lemma 5.5 applies forcing an Alt7 invariant subalgebra <id,x> < <id,x2>: a
contradiction. If El(x)ﬂ<id,x2> # 0 then <id,xo> must be a member of Ug by
lemmas 5.9.5 and 5.12.2. In this case we see from lemma 5.13 Alt, <
NG(<id,x2>)/CG(<id,x2>) ~ SOg4(F): a contradiction as Alt; has no nontrivial
three dimensional 7-modular representation.

In the other case regard J as an Alt6 module. As 7 does not divide the order of
Altg, J must be semisimple when regarded as an Altg module and hence dim(CJ(Altﬁ)
> 7. The trivial Altg module induced up to Alt7 is of shape X1/X2/X1' So
when x € Cide(AltG), then <x Alt,> isa homomorphic image of X1/X2/X1' So
<x Alt7> = x; as we assumed that id© = 2x3+6x1 as an Alt7 module. So we see
that C J(Alt7) is a seven dimensional nondegenerate subalgebra of J. So by Springer’s
Lemma Alt; < C(x) for some primitive idempotent x € C j(Alt;). Now Cy(x) has
only one composition factor of dimension greater than 10. We assumed that Alt7 has

two ten dimensional composition factors: a contradiction.
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Now assume that p=5. We will show first that Altg is not a subgroup of G. To
see this we observe that Alt8 contains an involution whose trace on every small
module is at least 1 (see the 5-modular character table). Now in all but one case a 26
dimensional Altg representation has more than 2 composition factors. In this case the
trace of this involution is more than 2, and hence the claim follows from lemma 12.1.
The remaining case is the case 13/13, where the trace on the other involution is 10;
again lemma 12.1 yields the claim.
It remains to show that in case p=>5, Alt; must centralize a subalgebra of dimension
3.

Here is an excerpt from the 5-modular character table of Alt7:

X1 X2 X3 X4 X5 X6 X7
1A 1 6 8 10 10 13 15
2A 1 2 0 -2 -2 1 -1
3A 1 3 -1 1 1 -2 3
3B 1 0 -1 1 1 1 0

As above, the only 26 dimensional representation not contradicting lemma 12.1 has
character 2x; + 3x3. Now we restrict this character to PSLy(7). We observe that
CidG(PSL2(7)) is at least two dimensional as 5 does not divide the order of PSLo(7).
An easy calculation using the Atlas and Parkers character tables shows that the trivial
PSL2(7) module induced up to Alt, affords the character 2x;+ xg- Thus if id©
affords the character 2x;+3x3 as an Alt; module, then dim(Cide(Alt7)) = 2 as for
any x € CidG(PSL2(7)) <xAlt,> is a homomorphic image of 2x;+xg and hence a
trivial Alt, module.

The proposition is finally proved.
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SECTION 16: ESTABLISHING NONMAXIMALITY OF CERTAIN SIMPLE

SUBGROUPS OF G

The results of the previous section leave the following groups for our consideration:

List 16.1
Alty = PSLy(5) = PSLy(4) , Altg = PSp,(2) ~ PSLy(9) , PSLo(7) = PSL4(2) =
PSU4(2)' , PSLo(8) = 2Gy(3)', PSLy(a) q €{13,17,25,27}

PSLy(3), PSU4(3) = Go(2)', 3D4(2), J; when p =11, My when p = 11

Remark: From now on we will denote the ordinary irreducible characters of our simple

groups as in the Atlas [Conl].

Lemma 16.2: Let p=11. Then Np(J;) is never maximal in T.
Proof: From the 11-modular character table and lemma 12.1 we can see that the J;-
module id© has three composition factors of dimension 7 and five composition factors
of dimension 1. By lemma 7.1 it is enough to show that J; centralizes a point of id©.
Assume for now that this is not the case. Then let A be a se‘ven dimensional J;-
submodule of id®. Using the fact that J; contains PSLg(11), we will show in a
moment that the symmetric square of A is <1> & B where B is the unique 27
dimensional 11-modular irreducible of J;. So from lemma 10.1.4 we observe that
dim(s¥2(A)) < 1.

If S#2(A) = 0, then by lemma 3.4.2 A is singular. This is impossible because the
maximal singular subspaces of J are five and six dimensional.

If S#z(A) < <id>, then lemma 10.4 applies and hence A is singular: a

contradiction.
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#2 . . . . . .
So we conclude that S” “(A) is a point of J distinct from <id>. Now the claim
follows as we have shown that CiqeJ)# 0.

Now we will show that the symmetric square of the 11-modular irreducible is as
claimed. We establish first the 11-modular irreducible is M(6);) as a PSLgy(11)
module. To see this we note that the character value an element of order 6 on the 7
dimensional J1 module is -1. The character value of the element of order 6 on the
PSLy(11) modules M(21;) and M(4);) is 2 and 1 respectively, leaving M(6A,) as
the only possible choice.  Now recall from chapter II that Sym2(M(6/\1)) =
M(8X1)/M(2A1)®M(0)/M(8\;) & M(4X;) ® M(0) as a PSL,(11) module. Now
Sme(M(6/\1)) as a J; module can have only 1,7,14 or 27 dimensional composition
factors. The trace of an involution respectively an element of order 3 on
Sym2(M(6/\1)) is 4 respectively 1. Now it is easy to check using the excerpt of the
11 modular character table of Jl given below, that the traces can only add up right
when the composition factors are as claimed. To see that the module splits we recall
that J; is a subgroup of G2(11) and that the symmetric square of the 7 dimensional

Gg(11) module is M(2X;) & M(0).

Here is the excerpt of the 11-modular character table:

1A 2A 3A
1 1 1
7 -1 1

14 -2 -1

27 3 0
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Lemma 16.3: Let p=11 . Then Np(M;;) is contained in the stabilizer in T of a
primitive idempotent.
Proof: By lemma 12.1 the only feasible 26 dimensional characters for M, are the
ones whose composition series have composition factors of degrees 1,16,9 or 16,102,
not necessarily in that order.

The ﬁrs;t; case leads to semisimple ﬁlodule as id© is a self dual module. So in this
case Mll centralizes a nondegenerate two dimensional subalgebra. So in this case, by
lemma 5.1, Mll embeds into the stabilizer of a primitive idempotent.

In the second case we regard id® as an M, module to see that dim(cidG(Mlo)) >
6 as id© is a semisimple M10 module. Now the trivial MlO module induces up to 1\9\1
as an M, module mod 11. So as in the Alt, case we see that dim(C,3o(M1;)) = 6
and CJ(Mll) is a nondegenerate subalgebra containing primitive idempotents. Now
CJ(Mll) is not isomorphic to some Jp for reasons of dimension. So by proposition
5.9 and lemma 5.5 M, must centralize a primitive idgmpotent. But then J can’t
have two ten dimensional composition factors as an M11 module see prop. 2.7.3. This

completes the proof.

Lemma 16.4: Np(Altg) is never maximal in T.

Proof: We observe that the case p=5 was handeled in section 13 as Alty =~ PSLgy(5).
So p # 5 and id® is a semisimple Altg module. So if NF(AltS) is maximal then
id® has no trivial composition factors. Now if id® has an irreducible three
dimensional Alt5 submodule U then, by lemma 10.8, U is brilliant. If U contains
singular points then lemma 10.15 applies. If U does not contain singular points but
S#Q(U) is brilliant, then as S#Q(U) contains singular points, lernma 10.15 applies.
So U satisfies the hypothesis of lemma 10.7 and hence 8#2(U) is a member of CU,G

. . 2 . c .
and Altg centralizes a point of S# (U). If this point is not id, we are done because
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then Alt5 centralizes a point of id©. If the point centralized is id, then by lemma
5.10, 5#2(U) is a subalgebra and proposition 10.16 applies.
So now we assume that id© is the direct sum of four and five dimensional Altg
modules. Thus id® has to be the sum of four four dimensional and two five
dimensional Altg modules. This contradicts lemma 12.1 as the trace of the element of

order 3 is 4x1 + 2x(-1) = 2 ¢ {-1,8}. This completes the proof.

Lemma 16.5: When p#7, then N(PSLg(7)) is never maximal in T.

Proof: As we assume p#7 id© is a semisimple PSLo(7) module, so if N(PSLy(7))
is to be maximal, then CidG(PSL2(7)) = 0. Checking the character table of PSL,(7)
we see that the only 26 dimensional representations which do not violate lemma 12.1
and have no trivial submodules are afforded by characters of the form ax2-+-bx£3 + xg
where a+b = 6, deg(xy)= deg(xg) = 3 and deg(xg) = 8. Now a simple calculation
using the PSL,(7) character table shows that Sym2(x2)=Sym2(x3)= X4 the unique
irreducible character of degree 6. This shows that when idO affords a character of the
form axo+bxg + xg, then 8#2(U) = 0 for every three dimensional submodule U.
So U is singular by lemma 4.8 and hence PSL,y(7) stabilizes a subalgebra. So then

Np(PSLoy(T7)) stabilizes a subalgebra by corollary 10.16.

Lemma 16.6: N(PSU4(3)) is not maximal in T' when p#7. When p=7 L has an
irreducible 26 dimensional representation, and this representation of L is realized in G
via the Go(7) described in section 14.

Proof: Let L ~ PSUg(3). First we treat the case when p # 7. In this case every L
- module is semisimple. If L centralizes a point, the statement clearly holds. So then
the only character which does not violate lemma 12.1 and contains no trivial characters

is x9 + xg9 + xg (in Atlas notation) where deg(x,) = 6 and deg(x6) = 14. We
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compute easily using the character table of PSU3(3) that Sym2(xZ) = x7 (in Atlas
notation) and deg(x;) = 21. So, by lemma 10.1.4, 8#2(A) = 0, where A is a
submodule affording x5. So A is singular by lemma 3.4.2. So <id,A> is a
PSU4(3) invariant subalgebra and we are done by corollary 10.16.

Now we consider the case p=7: The Borel group B of PSU3(3) has order coprime
to 7. The trivial B module induced up to PSU4(3) mod 7 is of the form 1\26\1.
Therefore if id© affords a PSUg(3) character with trivial constituents, then Ciqe(B)
# 0, and hence Cide(PSU3(3)) # 0. So then the arguments above go through in
case PSUg(3) does not act irreducibly on idO, as the character x, stays irreducible
when reduced mod 7.

We recall from [As7] that Aut(PSUg(3)) is an irreducible subgroup of Go(7)
acting on its seven dimensional irreducible module. Now PSU3(3) contains a PSL2(7)
such that the 7 modular seven dimensional irreducible is M(6);) as a PSLy(7)
module (this can be seen from the ordinary and modular character tables of PSL,(7)
and PSU4(3)). Now from lemma 13.1.3 we know that:

Sym2(M(6A1)) = M(61;) & M(0)/M(41,)/M(0) & M(4,)/(M(2)))®&M(0))/M(4A;)
(is the sum of two indecomposables and an irreducible). So now we can see with the
aid of the 7-modular character table that Sym2(M(6A1)) as a PSU4(3) module is of
the form 1/26/1. Now as a Go(7) module Sym2(M(6A1)) is also of the form 1\26\1.
So we conclude that the 26 dimensional 7 modular irreducible of‘ Gy(7) stays
irreducible upon restriction to Aut(PSU3(3)). So Aut(PSUg(3)) embeds irreducibly

into F4(7) via the Go(7) of section 14.

Lemma 16.7: Let L =~ PSL3(3). Then L is an irreducible subgroup of G. All
embeddings of L are equivalent, in GLqyy(F).

Proof: The irreducible embedding of L can be seen in the stabilizer of a 27- or twisted
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27-decomposition of J.

The usual argument using the character tables and lemma 12.1 shows the second

part.

Lemma 16.8: Let L ~ 3D4(2) . If L<G then L actsirreducibly on id®.
Proof: By [Lal] L has no representations of dimension <13. So the claim follows

from 10.17.

Lemma 16.9: Let L =~ PSLy(25). Then Np(L) is maximal only if id©® affords
X117 Moreover G contains such a subgroup when F is a splitting field for x2 +1=
0.
Proof: The usual argument using lemma 12.1 shows that Np(L) is maximai only if
id© affords X11 ©f X13 Now the Borel subgroup of L is of the form 52: 12. By
lemma 7.8 the element of order 12 must be conjugate to an element in the Weyl
group of F, and hence also to an element in the Weyl group of Eg. Now the Weyl
group of Eg acts as 1+ 6T 4+ 20— on J. So from the atlas [Conl] we see that the
element of order 12 of the Borel subgroup of L has to have trace -1 or 2 on idO.
But x13(12a.) = x13(12b) = 1 eliminating x4 and leaving only x;; as a
possibility.

Now 2F4(2)’ is an irreducible subgroup of E6(F) iff F is a splitting field for
x2+ 1. Now it is known that L is a subgroup of 2F4(2)’. Now the claim follows

from character restriction.

Lemma 16.10: Let L = PSLo(27). Then Np(L) is maximal only if id® affords x;
i € {6,7,8}.

Proof: Clear from 12.1 and [Conl].
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Lemma 16.11: Let L = PSLy(8). Then Np(L) is maximal in T only if p # 7 and
id© affords the L-module character xg + Xi+xj where 1,j€{7,8,9}.

Proof: The usual argument when p # 7. Now let p=7 and let B ~ 23:7 be the
Borel subgroup of L. Then recall form the proof of lemma 7.11.4 that the 23 is
unique up to conjugacy in G and that CJ(23) is a member of °U.6. Now as
observed in [As5] 19.6 the trivial 23 module induced up to L is of the form 1\8\1.
So in this case either CidG(L) #0 or id ~ 8 @ 8\1 & 8\1. In the last case let U
= 898®8. Then U< isa three dimensional submodule of J which must be trivial

as an L module as L contains no nontrivial representations over F of dimension

< 7.

Lemma 16.12: Let L ~ PSL2(13). Then Np(L) is maximal only if p # 7 and id©
affords the character xg + X i€e{4,5,6} or p = 7 and idO affords 12 4 14,.
When p =7 and 13 is a square in F, then the embedding of L via the
irreducible Go(F) affords 12 + 14,.

Proof: The usual argument.

Lemma 16.13: Let L =~ PSLy(17). Then Np(L) is maximal only if id® affords the
character x; + x; i€{2,3}.

Proof: The usual argument.

Lemma 16.14 : Let L =~ Altg. Then NI-.(L) is a maximal subgroup of I' only if p >
5 and id© affords the character 2x¢ + X; i€e{4,5}.

Proof: When p > 5 the usual argument using 12.1, CidG(L) = 0 and [Conl] gives
the claim. So let p = 5 then using lemma 12.1 we find that the degrees of the

composition factors of id©® must be 102, 1% or 83, 12. In the first case we let M
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be the normalizer of a Sylow 3 subgroup of L; in this case 5 does not divide |M| and so
dim(C;qg(M)) 2 6. Then the character of the trivial representation of M induced up
to L in characteristic 5 is 1\8\1l. So if L has composition factors 102,16, then
dim(cidO(L)) = 6, and L stabilizes a subalgebra.

Now we assume the other case. First we observe that id©® must be uniserial
8\1\8\1\8 otherwise idO has a submodule of dimension 10. As dim(Hl(L,S)) =1
any such ten dimensional submodule contains a trivial submodule and hence so does
id®. On the other hand as dim(Cide(M)) 2 2 we have that either C,jo(L) # 0
or id©® contains two distinct submodules U, W ~ 8\1. This contradicts uniseriality

and the claim follows.
SECTION 17: PROOF OF THE SIMPLE SUBGROUP THEOREM

In the last section we restricted the isomorphism type of a simple subgroup giving

rise to a maximal subgroup of I' to the following:
PSLy(a) q€{8,9,13,17,25,27}, PSU4(3), PSLy(3), 3D,(2)

Moreover, with the exception 3D4(2), we have identified the cross-characteristic
embeddings of L into G which could make NP(L) into a maximal subgroup of T;
recall also that we dealt with the non cross-characteristic case in chapter II. However,
in the cases 3D4(2), PSLy(q) q € {8.9,13,17,27} we did not decide if such
embeddings of L into G existed. The next few lemmas deal with the existence

question.

Lemma 17.1: If p # 7, 13, then PSL2(13) does not embed into G via a character

specified in lemma 16.12.

Proof: See [Co4].
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Recall that G = F4(?) where F is an algebraically closed field.

Lemma 17.2: If p # 17, then PSLy(17) embeds into G via the character Xo+Xg-

Proof: See [Co4].

Lemma 17.3: If p # 7, then PSL2(8) embeds into G via the character Xgt+Xx7+Xg-

Proof: See [Co4].

Lemma 17.4: Let p # 7, then PSL2(27) embeds into G via the character X7

Proof: See [Co4].

Lemma 17.5: 3D4(2) embeds into G via the character Xg9- The embedding is unique
up to G conjugacy when p # 7.

Proof: See [Co4] and [Col].

Now we sumarize the results.

Let M be a maximal subgroup of I' such that M N G is a closed proper
subgroup of G. If F*(MNG) is not a simple nonabelian group, then the Structure
theorem of Section 9 asserts that M either stabilizes a good subalgebra, a 27-
decomposition, or a twisted 27-decomposition. Moreover, we know the structure of
the stabilizer of each.

Now suppose that F*(MNG) is a simple nonabelian group. Then the results of
section 10 show that F*(MNG) does not stabilize a subalgebra. If F*(MNG) is of
Lie type of characteristic p, then the results of chapter II restrict F*(MNG) to one

of { Go(F) p =17, PSLy(F) p 2 13 or |[F| =7, Fy(Fy) Fg < F} and moreover
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none of these groups stabilizes a good subalgebra. If F*(MNG) is not of Lie type of
characteristic p, then the results of Sections 15 and 16 restrict the type one of
PSLo(q) q€{8.9,13,17,25,27}, PSU4(3), PSLy(3), 3D4(2).

With the exception of PSLy(9) we have exhibited suitable embeddings into G in
section 16 and in this section. However, the only known embeddings for PSLg(3),
PSU3(3) p=7, PSLy(7) p=7, and PSL,(13) p=7 are contained in proper subgroups
of G.

So we have proved the necessary conditions for maximality as stated in the simple

subgroup theorem.

When do we have sufficient conditions for maximality? We mention here, without
proof, the following facts:

The stabilizers of good subalgebras are maximal.

If F is finite the stabilizers of 27- or twisted 27-decompositions are maximal iff F
is a prime field. If F is not a prime field then the stabilizers are contained in a
conjugate of F,(Fg) , where F is the prime field of F.

If F isfinite Fy(Fy) is maximal iff [F:F,] is a prime.

If F is finite and p # 7, then 3D4(2) is maximal iff F is a prime field.

Similar conditions will hold for PSL,(q) q € {8,9,17,25,27}.
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