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Abstract

In this dissertation we study the consistency strength of the theory
ZFC & (3« strong limit)(Vu < &)(k St (w)¥7,) (%), and we prove the con-
sistency of this theory relative to the consistency of the existence of a su-
percompact cardinal and an inaccessible above it. If U is a normal measure
on P.(A), then Py denotes the Supercompact Prikry forcing induced by U.
K52, (w)7, is the partition relation x — (w)§7, except that we consider only
OD colorings of []“. Theorems 1,2 are the main results of our thesis.

Theorem 1. If there exists a model of ZFC in which « is a supercompact
cardinal and A is an innaccessible above k, then we can construct a model

V of the same properties with the additional property that if U is a normal

Pw(A)-measure and G is Py — generic over V, then V[G] does not satisfy the

(Vi < k) (n o (w)‘{’,ﬂ) partition property. a

If G is a Py-generic over V filter, then we define H to be the set H:%f
U{P(n) NVIGla] | a< )\}, and we consider the inner model V(H), which is
the smallest inner model of ZF that contains H as an element. We prove that
V(H) satisfies the above partition property (*).

Moreover, V(H) satisfies < A — DC and using this fact we define a forcing
P, which is almost-homogeneous, < A — closed forcing that forces the AC over
V(H) and does not add any new sets of rank < .

Theorem 2. If G is P -generic over V(H) and Vi: % V(H)[G], then

Vi = [ZFC + & strong limit + Vu < k(k oh (w)¥,)]- Therefore



vi

Con(ZFC + (3k, A)[x supercompact & X inaccessible & x < \]) =

Con(ZFC + (3 strong limit)(Vu < li)(ﬁ? oD (w)‘{,ﬂ)) O
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Notation

Our Set Theoretic notation follows that of [Jech 78] and [Kunen 80]. ZFC
denotes the theory of Zermelo Fraenkel Set Theory with the Axiom of Choice.
Ordinals and cardinals are denoted by the small letters of the Greek alphabet.
OD denotes the class of all ordinal definable sets. If X is a set, then P(X)
denotes the power set of X. If k, A are cardinals, then P.()) is the set of all
subsets of A of cardinality < . If « is an ordinal, then V, denotes the set
of all sets of rank < « and for any class M, VM is the relativisation of V, to
M. []* denotes the set of all subsets of k of order-type a which is identified
with the set of all (strictly) increasing o — sequences from . For the forcing
terminology we also follow [Jech 78] and [Kunen 80]. Given a forcing P, T
denotes the canonical P — name for the P — generic filter. The notation % of
the canonical P —name for an element x of the ground model is supressed. We
talk of generic filters as if they exist since all those forcing arguments can be
easily translated to rigorous arguments about countable transitive models of

finite fragments of ZFC.



viii
Introduction and Statement of Results

In this dissertation we prove that an upper bound of the consistency strength

of the theory
(N ZFC & (3k strong limit)(Vu < k) (n b (w)‘{’,ﬂ)

is the existence of a supercompact cardinal and an inaccessible above it. & o
(w)¥, is the partition relation K — (w)Y;, except that we consider only OD
colorings of [K]“.

This answers an open question proposed by Professor W. Mitchell.

The theorem is proven after the series of the following results:

Let U be a 0 —complete ultrafilter on a cardinal § and P}, be the Prikry-tree
forcing induced by U on §. A condition of this forcing consists of a U —splitting
tree on P.(A) and a stem which is a node of this tree. The partial order is as
in the Prikry forcing.

First, we prove that if o and 7 are two P}, — generic over V sequences with
the property V(o] = V|[7], then they are tail — equivalent. (1.B.9)

Using the above fact about the Prikry-tree forcing (i.e., 1.B.9), we prove
the following:

If U is a normal measure on P,()) and if ¢ and 7 are two Py — generic over
V sequences with the property V[o] = V|r], then they are tail — equivalent.
(1.B.10)

1.B.11 Theorem. We assume that V is a transitive model of ZFC in
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which k is a supercompact cardinal and A is an inaccessible above k. Also,
U is a normal P,()\) — measure and Py is the Supercompact Prikry forcing
associated with U. If G is Py — generic over V, then there exists in V[G] a
coloring F of [k]“ into V, colors for some y < k, with the property that F is
ordinal definable over V[G] with parameters from V and has no homogeneous
set, i.e., V[G] E (Vi < k) (KJ VoD (w)‘{’,ﬂ) O

1.B.13 Theorem. If V' is a transitive model of ZFC in which « is a

supercompact cardinal and A is an inaccessible above k, then there exists
a generic extension V of V' in which k remains supercompact, A remains
inaccessible and the following holds:
If U is a normal P,(\) — measure, Py is the Supercompact Prikry forcing
associated with U and G is Py — generic over V, then a sufficient large rank
initial segment of the ground model V is OD over the Prikry generic extension
VI[G] and V[G] | ~(Vu < k) (m oD (w)‘{,“) m

The Theorems 1.B.11 and 1.B.13 suggest that a Supercompact Prikry
generic extension of the Universe is not the right model for the theory ().
Instead, we consider an inner model of such generic extension.

If G is a Py — generic over V filter, then we define H® to be the following
set: HO: % U{P(KJ) NV[Gla] | a < )\}, and we consider the inner model
V(H), for H: %Y HS, which is the smallest inner model of ZF that contains H
as an element. (2.A.1)

Then we prove that H = P(x) N V(H). Moreover V(H) g V|[G] and



V(H) E X =«kT. (2.A.16)

The next two results show that there exists a plethora of Prikry generic se-
quences of height < X in V(H).

We let Py, be the P.(3) — Supercompact Prikry forcing with respect to ¢ and
k < B <1l We take QC.r.0.(Py) and g € V(H) be a Q — generic over V
filter. We prove that there exists in V(H) a K which is Py, — generic over V

such that KN Q =g. (2.B.7)

We suppose that (z;A) € Py and that x € V(H) is a Py, —generic sequence,
with the property that @ < § and zZ[ @ C x C Z[ @ U Al @. Then, there exists
ay € V(H) such that y is Py — genericover V ,ZCy CZUA and y]a = x.
(2.B.8)

We define, in V(H), a forcing Q with the following property:

If G* is a Q -generic filter over V(H) and G* is the Py — generic over V filter
induced by G*, then H = H®". (3.A.1, 3.A.8)

The abundance of generic sequences in V(H) is the key factor in the proof
of the latest property of Q. This result is used, in the proof of the partition
relation () inside the model V(H). (3.C.1)

3.C.1 Theorem. We assume that ¢ is a formula and u < & so that
V(H) Vs € [«]“3!x € V,¢(s,x, ?5" H). Then, there exists an s € []* N V(H)
and an xg € V, such that V(H) | Vt € [s]“¢(t, %o, _g, H). In particular,

V(H) k= (k is a strong limit) & Vu<k(k ob (W), )- O

Assume that b € H. For every formula ¢ and parameters a € V, there
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exists a formula ¢* such that
V(H) k= ¢(a,b) <= V[b] = ¢*(a,U, &, A\, b).

The latest (3.C.3) is used in the proof of < A — DC inside the inner model
V(H). (4.A.6)

The model V(H) satisfies the partition relation () but unfortunately may
not satisfy the Axiom of Choice. Thus we want to force Choice over V(H) and
still preserve the partition relation.

We force AC over V(H) with < A — sequences of H as conditions and we
show that this forcing, say it P, is homogeneous and < A — closed. < A — DC
helps in the proof that P does not add generically any new < k — sequences
of k. (4.A.11)

4.B.2 Theorem. Let V be a transitive model of ZFC, in which « is a
supercompact cardinal and A is an inaccessible cardinal above k. Let G be a

fixed P — generic filter over V(H). If V;: % V(H)[G], then

V. = [ZFC + & is a strong limit + Yu < x(x oh (W)V,)]- O



Chapter 1

OD partitions in a Prikry model

1.A Prikry forcings: Basic facts

We begin with some basic facts about the Supercompact Prikry forcing and

the Prikry-tree forcing.
If U is a normal measure on P.()), then Py denotes the Supercompact Prikry

forcing induced by U. The version of this forcing which we use is as follows:

- 1.A.1 Definition If U is a normal measure over P.()), then the supercom-
pact Prikry forcing induced by U is denoted by Py and
(Pq,...,Pn;A) € Py
0
PiC,..CP,€P:(}) & AeU &
& (VP e A)(P, CP),
where Q C P means that Q g P & |Q| < |PNk|. The sequence (Py,...,P,)

is called the stem of the condition (P, ...,Py;A).
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1.A.1 Definition O

As in the Prikry forcing on a measurable cardinal, it has been proven that
Py satisfies the so called Prikry property, i.e., for any condition and any for-
mula of the forcing language we can shrink the measure one set, leave the stem
unchanged and with the new stronger condition we can decide the formula. In
addition, as in the Prikry forcing, Py has the so called geometric property,
i.e., a sequence of P.(A) — sets is Py — genéric iff eventually belongs to every
U-measure one set. The nontrivial aspect of this result and its corollary-that
every subsequence of a Py — generic sequence is Py — generic-has been proven
in [Mathias 73], for the Prikry forcing. However, the same arguments apply

for the Supercompact Prikry forcing Py.

1.A.2 Definition IfU is a 0 — complete ultrafilter on a cardinal é, then the
conditions of P}, (the Prikry-tree forcing induced by U on é) are of the form
(s;T) for some U-splitting tree on 6§ and s € T, and the order is defined as
follows:

(sT) < (5T &b ¢ Ccs & TCT.

1.A.2 Definition O

The Prikry-tree forcing P}, satisfies the Prikry property and a variation

of the geometric property, which is the following: for every P, — generic



1.A. Prikry forcings: Basic facts 3

sequence g (g € “§), and for every F : <“§ — U, in V, there exists a natural
number k € w such that (VN > k)(VM > N)g(M) € F(g[ N). These results

belong to set-theoretic folklore.
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1.B Prikry generic sequences and their models

In this chapter, we are going to show it is consistent that for any G Py —generic
filter over V, the model V[G] does not satisfy the partition relation.
Towards this result, first we prove that any two Py — generic sequences o and
7 with the property V[g] = V[r] are tail — equivalent. All the arguments that
we are going to use do not depend on the fact that U is a normal measure on
Pu(A).
Hence we are going to show the above result for the Prikry tree-forcing induced
by a ¢ — complete ultrafilter I/ on a cardinal é.

We start with a o — complete ultrafilter I{ on a cardinal §. The Prikry-tree

forcing induced by U on 6 is denoted by P}, and is defined as follows:

1.B.1 Definition A set T is called a U — splitting tree on § if T C 6<% and
VseT)W)(t Cs=>teT) & (Vse T)({a €6|s~ac T} € U). The
conditions of P}, are of the form (s;T) for some U — splitting tree T on § and
s € T. In addition if < denotes the P}, — order, then (s;T) < (s';T"): <& ¢ C
s & T CT. Asusual, fors,s' € 6<%, s' C s means that there exists some

k < lh(s) such that s’ = s[k.

1.B.1 Definition O

1.B.2 Definition Two sequences x,y € [k]* are said to be tail — equivalent

iff for some m’,n' € w and for allk € w, x(n' +k) = y(m’ + k).

1.B.2 Definition O
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The first result of this thesis is the following theorem:

Theorem A: If 0 and 7 are two P}, — generic sequences with the property
that V[o] = V7], then they are tail — equivalent. O

This theorem is proven in 1.B.9. For the following results and throughout
this part we fix two P;; — generic over V sequences ¢ and 7 which satisfy the

property Vo] = V([7].

1.B.3 Lemma (H. Woodin) There exist two reals a and (3 (in the ground
model V) and two sequences (f, | n € w) and (g, | n € w) of functions in
V such that f, : [§]°®™) — [§]* & g, : [6]°™ — [6]* with the property that

fi(ol a(n)) = 7[n and g, (7] B(n)) = o[ n.

Proof: We pick a P}, — name 7 so that for some ky € w and some T* which is
a U-splitting tree on 6§, (o] ko;T*) belongs to the P}, — generic filter G induced

by o and
7= (F)VE & (o] ke T*) ”1:_ [T is a P}, — generic sequence].
b
Let us define in V[G] a real a € [w]* as follows:
a(n)=m  :<L5 mis the least integer > kosuch that
3Tl miT) | (Vk < m)(3E) = (7 )
i
Notice that a is well defined, since

(HVel=7 & (o] ko;T*) |F— [ : @ — 6 is a P}, — generic over V]
Py,
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hold. Moreover, as V and V[G] have the same reals, then a € V. Next for
every n € w we define functions f, : [6]*(™ — [6]" as follows: Let (o] 1*;S*) € G
such that (o] 1*;S*) < (o[ ko;T*) and

(o187 I Va3 T &) |— (¥ < ) (7)) = ()7 )]

i Pl
Then, for every % € [6]*™), we define
!y, if (o] 1%87) IF— [BATI&T) l— Vk < n(7(k) = (F(k)))]]
f.(X) = P}, P;,

L@, if otherwise.

Each f, is well defined and by the definability of the forcing relation P}, in V
we have that each f, is in V. Moreover, (f, | n € w) € V. By the choice of «

we conclude that
(Vn < w)[fa(of a(n)) = 7[n] & (VX)[fas1(x)[n = fu(x] a(n))].

The finding of the real a and of the sequence (f, | n € w) in V with the above
properties consists of the analysis of the term 7 in V|o].

Similarly, if we find a P}, — name ¢ so that o = (6)¥I"l and we interchange
the roles of o and 7 in the previous argument, then we will be able to find
another real 3 (in particular § € [w]*) and another sequence (g, |n € w) € V
of functions such that g, : [§]’™ — [6]" with the property that g,(7] B(n)) =

ofn & (VX)[gn1(x)'n = ga(x[ B(n))].

1.B.3 Lemma O

1.B.4 Proposition Suppose that o and T are not tail — equivalent. There

exist an n* € w, a tree T*, a P;; — name p, two reals &, and two sequences
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(Fn | n € w),(Gy | n € w) with the following properties: For all n € w,

Fo:[6]°® = [6]* & Gy : [6]P™ — [6]" and

(0;T*) “P_, [61, p are not tail — equivalent] &
& (Vo < w)[Fua(Gam)(Al B(@@))) =pln & (1)
& Ga(Fpm) (0l &(B(n))) =63[n &

& Fu(opla(n)) = pln & Ga(4l B(n)) = 6;[ n].

*

In addition, for every P}, — generic K which contains (§;T*) and fors: % o] n

we have that (p)VIoxl = (#)VITox],

Proof: We start with the sequences (f,,g, | n € w) found in 1.B.3. Then we
find a condition (s;T) € G, where as before G is the P}, — generic filter induced

by o, with the property

(s;T) — [0}, 7 are not tail — equivalent] &
Py

& (n<w)f(otla(n)) =7n & gu(7]6(n)) =63 n].

Let n*: & lh(s) and (T)s be the part of the tree T below the node s, i.e.,
(T)s: & {t €6<“|s"te T}. For all n < w we define a(n): & a(n* +n) — n*,
A(n): Y B(n* + n) and for all x € [6]5™ N (T),, y € [6]P™ N (T), Fa(x): %
foein(s~X)[ 0, and Go(¥): ¥ guesn(¥) [n*, 0% + ). Let K be any P}, — generic
filter such that (#;(T)s) € K. Then s o is a P}, — generic sequence, and if K*

denotes the corresponding P}, — generic filter, then we have that (s;T) € K*.
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Next we observe that (@;(T),) H;— [(3x)(x = (#)VE%])], where I is the
canonical name for the P;;, — generic fﬁter and o0}, is the canonical name for the
generic sequence induced by I'. Then the set A = {pePy | (37)p ”PT T =

i

(%)V[SA&f])] )} is P;,—dense below (#;(T);). Let Z be a maximal antichain below
(#;(T)s) included in A. For every p € I choose a 7, such that p ”PT [ =
(7)VE"%tl)]. Let p be the Pj; — name which is the mixture of {7, | l;) € I}.
Since K is a Pj; — generic filter which contains the condition {;(T),), then
we have that (p)VIKl = (7,)VIKl whenever p € T N K. Moreover, s o is a
P7; — generic sequence, and if K* denotes the corresponding P;, — generic filter,
then we have that (s;T) € K*. By the definition of p, we conclude that for the
unique p € ZNK, (p)VK = (%p)V[K] = (%)V[SA"K] = (i‘)v["] =T.

Since (s;T) HPT [(Vn < w)(fa(6pf a(n)) = 7o & gu(7] B(n)) = 6t n)]
holds, then for evgry n<w

Fol(0) 0 a() = fesa(s (60 an + ) =)l
= fyesal(s ") o + ) n
= (F)VEx n* 4ol
= ((HY*™In
= (5)"™n.
Thus (@;T*) “;— (Vn < w)[Fu(6¢] @(n)) = pl'n]. Similarly, for all n < w we
i

have that

Ga(()YINB(M) = gaea((HVH] B(* + 1)) [n7, 0" +n)
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Thus
(0;T) IIP—— [0}, p are not tail — equivalent] &
) [Fa(op@(n)) =pln & Ga(Aln(n)) = o¢ 0.
This implies (). Now the proposition follows if we set T* = (T),.
1.B.4 Proposition O

The notation and the assertions of 1.B.4 are used in the next proposition.

1.B.5 Proposition IfU* denotes the (finite) k-th iterate of the ultrafilter U,

then
(3n; € w)(Vn >1n1)  (Vk € w)(VA € UX)(B € Y>+h))
(Vt € B)[Fusx(t)] [n,n + k) € A] &
(3ns € w)(Vn >n2)  (Vk € w)(VA € U*)(IB € YPr+h)

(Vt € B)[Gn4x(t)] [n,n + k) € A].

Proof: We assume towards a contradiction that such n; does not exist. Then

we choose an infinite sequence (n;, ki, A;, B; | 1 € w) such that for all i € w

L. n; + k; < njyg,
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2. A € Uki,
3. B; € L{“(“i“‘i),

4. (Vt € B)[Fn4i ()] [ni, i + ki) € Al

Using the (B; | i € w) we construct a U — splitting tree over §, T* such that
T* € T* and (VI € w)(Vt € T*)(1h(t) = &(n;+k;) = t € B)). Next, we consider
the set
§:% {p € Py | B)(p |— el [ + k) € A
i

and we show that S is P;; — dense. Towards this end, we take (u;T) € Pj,
and we assume that lh(u) = mg. Then, we pick i € w such that n; > mg and
we shrink appropriately the tree T to another tree T’ with the properties that
(Vt € T")(Ih(t) > n; +k; = t[ [, n; + ki) € A;) and (w;T') < (w;T). Obviously
(u;T') € S, since for every generic K containing {(u;T’), the induced generic
sequence ok is a branch through T'. Hence, S is indeed P}, — dense. If K is
any Pj; — generic filter that contains (§;T*), then (p)V¥ is a P}, — generic
sequence and so the filter induced by (p)VIKl meets the set S. Thus there
exists an i € w such that (p)VIKI} [n;,n; + k;) € A;. In addition the choice of K
implies that F,(ok[ &(n; + k;))[ [, n; + ki) € A;. Since (§;T') < (@;T*), then
Fo(okla(m +k)) = (p)VEn; + k and consequently ()Y [n;,n; +k) &
A;. But the latest is a contradiction.

Similarly, we argue and prove the existence of n,.

1.B.5 Proposition O
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Let us fix the two natural numbers n;,ns given by 1.B.5 and let us take

my: & 14+max{n;,ns}. Then, we consider 5 o* [mg,w) & 7 7| [mo, w).

Since V[o*] = V[7], then V(5] = V[7].

1.B.6 Lemma Suppose that the two generic sequences o,7 are not tail —
equivalent. Then there exist an’ € w, a U — splitting tree T”, two sequences
of functions (f, | n € w), (g, | n € [n',w)), two reals v,n and a P}, — name py
which have the following properties:
(@; Ty |— [6p, po are not tail — equivalent] &

Py

& (a<o)|B@m@l @) =pln & (@)

& ga(fym)(oplv(n(n))))) =6¢fn &

& Gl vm) = ln & gl nm) = el ).

In addition, for every Py, — generic K which contains (§;T") we have that

i mo (30) V) = (p) VIeTTme e,

f.(6[7()) =7In & gu(7In(n)) =5[n,
and for every k € w the following hold:

(Aetr = yer®n eareu®),

(A eU = {ye s | g(y)e A} e M”“‘))- (t1)
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Proof: We are using the techniques of 1.B.4 for (§;T*), o*,p, &, 3, my and

(Fa,Ga | 2 < w) as follows: let n': & mg and T"; & (T*)o*[ mo be the subtree of

 def

T* below 0* mg; for n € w, 7(n): € &(n+mp)—mg and 7(n): & F(n+mg)—my;

we also define for x € [6]"™ NT", y € [6]"™ N'T” that

f.(x): dof Fmo+n(0*[ mg ~x)] [mg, mg + n)

g(y): Y Ggn(7] mo ") [mo, mo + n).

In addition, we construct a name py as an appropriate mixture in a way anal-
ogous to the construction of p in 1.B.4, so that for every P;, — generic K
which contains (§;T") we have that 7] mq~(po)VIex) = (p)VIe*Tmo ™ol If K is
a Pj; — generic filter which contains (#;T"), then K* denotes the P}, — generic

induced by the generic sequence *[ mgy ~ok. Thus
£.((60)VI99(0)) = Frgn(0™ mo ~(ok! G(mo +n) — mo))[ [mo, mo + n)

= Fmg+n(ok+[ @(mo + n))[ [mo, mo + n)
= (/¥ m + )] [mo, mo + n)
= (p)VI"Tmo" ] fmg, mg + n)
= (o) V¥ .

Similarly, for alln < w

g (po) M n(n)) =
= Grmg+n(7] mo A(,O'O)V[K]f B(mo + 1) — my)[ [my, mg + n)

= Gngn((p) VT ™ K1) B(mg + n))] [mo, mo + n)
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= ((a*fmo AO'K)r mq + n)[ [mg, my + 11)
= (6¢)"™¥ n.
Hence, g.((p0) Y[ n(n)) = (67)V¥) n. Now it is straightforward to show that

(fn, 8a | n € w) satisfy ().
Using the trees T* (as in 1.B.4) and T” we construct another I — splitting

tree over 6, which we denote by T**, such that

1. T** C T* and

2. (Vt € T**)(lh(t) > mo = t] [mo, Ih(t)) € T”).
Then, it is easy to show that

(B;T*) |}1—)— (Vi € W)[Fimp4n(6p] @(mg +1n)) = pfme+1n &
& Gumotn(pl B(mg+n)) =65[me+1n &
& f£.(0p[ [mo,mo +7(n))) = 4 [mo, mo +1n) &

&  ga(A [mo, mo +n(n))) = &4 [mo, mo + n)].
Therefore,

(BT) = (¥ € w)[Frgra(dc] &(n + mo))f [mo, n +mo) =
= £,(6¢] [mo, mo +7(n))) &
&  Gumyta(pl Bmo + 1)) [mo, 0 + mp) =

= gn (4] [mo, mg + 7(n)))].
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Next, we observe that (Vn € w)(Vk <1< n)(VA)(A e U™ = {x[[k,1) € 6k |

x € A} € U'7¥). Using the above fact we conclude that for all k < w,

A eUk=>
= [x € 85t | B (0] [mo, mo + K) € A} € UFmotH)

x € 877 | (x] fmap, mo + 7(K))) € A} € o+

U

{
{

N {xr [mo, mo + 7(K)) € 670 | fi(x] [mo, mo + 7(k))) € A} c L™
{

=y € 50 | fi(y) € A} e U™,

Thus (Vk € w)(A € U+ = {y € & | fi(y) € A} € U'®), Similarly, we
prove that (Vk € w)(A € U* = {y € 6" | g (y) € A} € U")),

Moreover, we observe that on T” the sequence (f, | n < w) is coherent in
the following sence: For all x € T”, f,11(x)[n = £,(x[ v(n)) and in a similar

fashion the sequence (g, | n < w) is coherent.

1.B.6 Lemma O
1.B.7 o

In the following, we repeat some well-known facts about iterated ultrapowers.
We consider the iteration of ultrapowers of V using the measure ¢ and we
denote the n — th iterate of V by M, and the corresponding embeddings by
Jon, 1.e.,
My=V

M, = Mostowski collapse of V* /U* for n < w and
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M, = dirlimit{M, | n < w}.

Jap : My — My is elementary embedding, where a < # < w and jqo = id[ M.
We define a sequence (6, | 1 < n < w) as follows: For every 1 < n < w, 6;: def
Jnew(7n) Where ~,: & [id[j()n_l(&)]m"_:‘(u) and [f];\:.:l(u) denotes the element of
M, represented in the correspgmding ultrapower of M, _; by the function f.

Using the elementarity of j’s we can prove that
(VA) (A U = (61,...5) € jow(A)). (%)
In addition, we can show that
M., = {jou(F)({1,...,60)) |1 <n<w & FeV}

To prove the above characterization of M,,, we show by induction on n < w,

that
Mn+1 = {jOn+1(f)(<j1n+1(’Yl), <o ,jn+1n+1(’)’n+1))) | fe V}-

Since (*) holds, then using the “geometric property” of the Prikry-tree forcing,
we show that (6, | 1 <n <w)isa P}, — generic sequence over M,, below
Jou(8)-

Our next step is to use all the properties of the sequences (f,, g, | n < w)
to define another sequence of ordinals (¢, | 1 < n < w) below jo,(6). For
n < w let us define s,: % Jow(£2)({61,. .. ,0ym))), and by the coherence of the
functions f,’s we conclude that |J s, is a well-defined sequence. Hence, we let

1<w

(en|n<w):® U sy, ie,
1<n<w

(V1<n<w) [<51, e n) = o) (61, )] N
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1.B.7 O

Under the above notation we prove the following lemma.
1.B.8 Lemma For every natural number n, we have that ¢, = §,.

Proof: The basic idea of the proof appears already in the case n = 1. The
same argument works for the general case, except that the notation becomes
quite involved.

Assume, towards a contradiction, that €1 < 6;. Then by () of 1.B.7, we

have that

Jow(£a) ({61, . . . ,651))) < 1. (19)

Before we proceed, we establish the following notation:

For a sequence of functions (g | 1 < i < w) we define ] gi:d:=ef id and for

1<i<1
m>1 JI g & g10...08n,. Also, if g is a function, we define g(O) fid
1<i<m —
m~times

and gW: % g and for m > 0 gm+D, & g(m) o gand if x = (x; | 1 <i<n) then
(x)i = x;. Using (}) of 1.B.6, () of 1.B.7 and ({9) of 1.B.7, we define the

following sequence of sets:
ApE {x e 810 | i(x) < ().

By () of 1.B.7 we conclude that A; € U7, Then, by inductiononl <n € w

and by using (1), we define A, € Y7™®

Al (x 667‘“)(1)|( II fwn)® < II foa)E)l

0<k<n-1 1<k<n-1
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Since the sequence (A, | n < w) belongs to V, then by the 0 — completeness

of the measure U we can find a sequence z € §* such that
(V0 < w)[zq: & 2 4y™(1) € A,).

Let us define 6,: % ( II  f,001))(za). Then, due to the coherence of the
0<k<n-1

functions f,’s, we observe that for alln € w

On = (( H £000) N Zn41))1-

1<k<n

Hence, (n € w)(y > 0,41) which contradicts well — foundedness. Therefore,

61'% éy

On the other hand if §; < &1, then

61 < Jou(£1)({61, - - . ,651)))- (199

Thus by (x) of 1.B.7 we conclude that {x € 6™ | (x); < fi(x)} € U™, Next

by applying (1) of 1.B.6, we get that
E xe M xeT & (g < fi(gyn)(x)} € UTW),
Since for all x € T" we have that fi(g.(1)(x)) = (x);, then
B; = {x e §7(1) l (g—,(l)(X))l < (X)l} e YU").
Then, by induction on n > 1, we define

B ¥  {xesmM0om

(I 8yooap)@h < TI  &weay) )

0<k<n 1 1<k<n-1
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Using () of 1.B.7, we get that B, € Y701, Again, by the o —completeness

of the measure U we can find a w € §“ such that
(Vn < w)[wa: & wly®(5(1)) € Ba].

As before we set (,: % (( II  g0())(Wa))1. But the coherence of the
0<k<n—1
functions g,’s, implies that ¢, = (( II  &,0(ya)))(Was1))1. Hence, (Vn €
1<k<n
w)(¢a > Cat1) which contradicts wellfoundness. Thus &; % 6. Therefore,

&1 =(51.

Using exactly the same arguments, we show that (Vn < w)(e, = §,).

1.B.8 Lemma O

1.B.9 Theorem LetU be a o —complete ultrafilter on a cardinal § and P}, be
the Prikry-tree forcing induced by U on 6. If 0 and 7 are two Pj, — generic over

V sequences with the property V{o] = V|7], then they are tail — equivalent.

Proof: Suppose that the generic sequences o, 7 are not tail — equivalent. Then
the generic sequences &, 7 are not tail — equivalent (in the notation of 1.B.6).
Then, by () of 1.B.7, we conclude that

(V1 <n < w)[(1,...,60) = Jou(£a)({d1, - - - ,65m)))]- Hence for every n such that
1 < 1 < w, there exists a set D, € U™ such that D,: % {(xe ™| fi(x) =
x[n}. From the sequence (D, | 1 < n < w) and using the o — completeness of

the measure U we construct a ¢ — splitting tree 7 over § such that

(Mn<w)xeT & Ih(x)>v(n)= x[v(n) € Dyl
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Therefore, for all n < w and all x, if x € 7 and 1h(x) = 7(n), then f(x) = x[ n.
Let 7*:% T N 7. Then, for all n < w
() |— 6571 ¥(8) = ol 0 & Ban(ol o0’ + 1)) = 61 n].
i
But then the choice of the tree 7* obligates that for alln < w
(B:77) |— 6t/ n = pol n (%)
P
and since (§;7*) < (B;T"), then
(0; 1) ”;— [6p, po are not tail — equivalent]. (3x)
i
Finally, it is obvious that (x) and (%) lead to a contradiction. Therefore,
the sequences &,7 are tail — equivalent and the same is true for the original

sequences ¢ and T.

1.B.9 Theorem O

1.B.10 Corollary Let U be a normal measure on P.()\) and Py be the Su-
percompact Prikry forcing induced by U. If ¢ and 7 are two Py — generic over

V sequences with the property V[o| = V7], then they are tail — equivalent.

Proof: The normality of the measure U implies that the forcing Py is equiva-
lent to the forcing P7;. To show this equivalence we use the following fact: As
it was proven in [Mathias 73], for every sequence (Ax | x € [P.(\)]<*) of sets

in U, there exists a set B € U such that
(Vx € [Pa(N)]<) [{P €B|xC P} c Ax].

Then, we project the measure U on A and we use 1.B.9 to complete the proof.
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1.B.10 Corollary O

1.B.11 Theorem We assume that V is a transitive model of ZFC, in which
K is a supercompact cardinal and A is an inaccessible above k. Also, U is a
normal P.(\) —measure and Py is the Supercompact Prikry forcing associated
with U. If G is Py — generic over V, then there exists in V[G] a coloring F
of [k] into V,, colors for some p < k, with the property that F is ordinal

definable over V[G] with parameters from V and has no homogeneous set,

ie., V[G] E ~(Vu < k)(k VoD (W)¥,)-

Proof: First, we choose in V a sequence (F, | @ < k), with the property
that for every a < k, F, : [a] — 2 and each F, has no homogeneous set in
V. Since for every o < k there are no new w-sequences of « in the Prikry
extension V[G], then we conclude that in V[G] there are no F,-homogeneous

sequences. Let us fix x € [k]* N V[G]. If x is cofinal in &, then we define

F(x): & {a € (w<*)¥) | 3¢ [G’ is Py — generic over V. &
& V[G]=V[G] &

& Vo< w(a(n) = (k€ w)o%(n) < x(k) < 0% (n + 1)))] }

If x is bounded below «, then we define F(x): & Foup(x) (X).
It follows that there exists a p < & such that F : [k} — V, and that F is
VOD over V[G]. In fact, the above coloring F is OD with parameters from

V¢ of the ground model, for some large enough £. This is true because the
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relation V[G'] = V[G] is equivalent to the fact that the P(£) C V[G'] for some
¢ large enough, so that we can code in the usual absolute way the Py — generic
filter G as subset of £. In order to express the fact that P(¢) C V[G'], we need
to say that every subset of € is the realization through the generic G’ of a nice
Py — name of a subset of £, which is obviously an Ordinal Definable property
with parameters from V.
We claim that F has no homogeneous set.

Let us suppose towards a contradiction that F has an homogeneous set namely
h € [k]“ such that |F”[h]“| = 1. By the choice of F4’s we conclude that such
an h must be cofinal in s. First, we observe that if o, 8 belong in F(x) with
witnesses ( two Py — generic filters) G, G then by virtue of 1.B.10 and since

V[Ga] = V[G] = V[Gy],
(g, n; < w)(Vi < w)[og, (no +1) = 0, (m +1)].

Thus a,f are tail — equivalent. Let us define S:% {n € w | |ran(h) N
[0&(n),0&(n+ 1)) = 1}. Then there are two cases:

Case 1. S s infinite. We set b’ € [h]“ such that for all n € w |ran(h’) N
[0&(n),0&(n + 1))| < 1. Then we consider the even subsequence h) of I,
i.e., hl(n) = W(2n), and two reals a, o/ with the property that a € F(h'),
o € F(h) with witness G. The latest implies that for all n < w, we have that
a(n) = (k € w | 0&(n) < W(k) < 0&(n+1)) and a(n) = (k € w | o&(n) <

hi(k) < o&(n +1)). Since F(h') = F(h.) then a, o/ are tail — equivalent and so
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|ran(a)Aran(a’)| < Ro. However, this is a contradiction since o, @’ imply that
|ran(a)Aran(a’)| = R,.

Case 2. S is finite. We set h*(n): % h(n + 1) and we consider a € F(h)
and o/ € F(h*) with witness G, as in the previous case. Then, as a, o’ € F(h),
we can find ng,n; < w such that (Vi < w)[a(ng +1i) = o/(n; +1i)]. Since S
is finite, then we can find a large enough i < w, such that |a(ng + i) > 2.
Let ko: % mina(ng + i) and k;: % maxa(ng + i). Since a(ng +1) = &/(n; +1)
and ko, ko + 1 € a(ng + i), then o§(no + 1) < h(ke) < 0&(ng +1i+ 1) and
o&(n1 +1) < h(kg + 1) < 0&(n; + 1+ 1). But the latest forces that ny = n;.
Moreover, as k; € a(ng + 1), we have that o&(ng +1) < h(k;) < o&(ng +i+1)
and 0&(no+i) < h(k;+1) < 0&(no+i+1), which implies that k; +1 € a(ng+i),
an obvious contradiction to the maximality of k;.

Thus h is not F — homogeneous.

Therefore, the VOD over V{G] coloring F has no homogeneous set in V[G].

This completes the proof of the theorem.

1.B.11 Theorem O
1.B.12 o«

Before we exhibit an OD over V[G] partition with no homogeneous sequence,
we are going to show that under some special circumstances a rank initial

segment of the ground model is OD over the Prikry generic extension.
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To accomplish the above result, we consider the cardinal £ which is men-
tioned in the proof of 1.B.11 (without loss of generality we can assume that
¢ is strong limit and thus |V¢| = £) and had the property that the coloring F

Before we force over V that V of the ground model V is OD over any
Supercompact Prikry generic extension, we have to make sure that x remains
a supercompact cardinal in the generic extension. In order to accomplish that
goal, we use R. Laver’s forcing Q of cardinality x. Asin [Laver 78], Q is K —cc
and in V@, k remains supercompact upon forcing with any < k — directed
closed forcing. Since Q is kK — cc, then forcing with Q does not change the
behavior of the power-set function above . Hence, starting with G.C.H in our
ground model, we still have G.C.H above « in any of the Laver models which
we get via Q and moreover A remains an inaccessible cardinal above k. We
pick a Q-generic extension of the ground model of the supercompact and the
inaccessible above it and we consider this generic extension as our new ground

model which is denoted by V.

The following arguments are simple variations of those in [Menas 75]. We
code V, by a subset A of { using a bijection f of £ onto V¢ in the following
standard way: For a, 8 € ¢ we set aEf3: <% fla) € f(8). ThusEC £ x £ isa
well — founded binary relation on £. Using the canonical absolute bijection of
§ X £ onto & we code E by E* C £. Then, it is easy to show that (V¢,e) is the

Mostowski transitive collapse of (¢,E) and f is the collapsing map. We call E*
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to be the code of V, and we observe that V, can be decoded from E* in an
absolute and ordinal definable way. At this point we recall that our ground
model V satisfies GCH above k. Let v = 22",

By using Easton forcing, we force the continuum function to behave in the
following fashion:

If & € E*, then 28v+e+1 =R . .5 and

if @ € E*, then 2%v+et1 = R, 14

Let V* denote the generic extension of V via the Easton forcing. Then for
every a € E*

o€ E* <~V |= 2Ny+a+l = Nu+a+2-

Since the Easton forcing we use is < v-directed closed, then U remains a
normal measure over P,(A) in V*. Thus V* thinks that « is a A-supercompact
cardinal and that ) is an inaccessible cardinal above .

Let us take G to be a Py — generic filter over V*. Our goal is to show that
E* remains OD over V*[G].
Since the forcing Py satisfies the v—cc, then V* and V*[G] agree on cofinalities
above v, and so they have the same cardinals above v.

Hence, there exists a  such that

Ve _ gViel
RV = ny e,

In addition, the fact that V* and V*|G] have the same cardinals implies the

following:
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* VG
(Va) [(NY+a+1 = (Nﬂ+L-31)] .
Then
(2Rﬂ+a+1 )V‘IG] = (2 Xﬁll)V‘IG]
= (2es) V7O,
At this point, we use a standard fact about v — cc forcings. Since Py has size

< vin V* then
(2o )V < sV < @)V,

Thus

(2Nﬁ+a+l )V*[G] — (2 v+a+1 )V*
Consequently,

(2o VIO = W, e (@)Y =RV,

This implies that for all @ < &
@ € B* <= V[G] |5 (2'++1) = Rgiaya.

Therefore E* is OD over V*[G]. Since E* is ordinal definable over V*[G], then
the collapsing map of (¢,E) is ordinal definable and consequently every element
of VY is OD over V*[G].

In particular, the set of all Py — dense sets is OD over V[G], since it is an
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element of V?’. The latest is essential for the next theorem.
As a result of the above considerations, we adopt as our ground model the

model V* and we denote it again by V.

1.B.12 O
Hence, all the above arguments prove the following theorem.

1.B.13 Theorem If V' is a transitive model of ZFC in which k is a super-
compact cardinal and X is an inaccessible above k, then there exists a generic
extension V of V' in which k remains supercompact, A\ remains inaccessible
and the following holds:

If U is a normal P,(\) —measure, Py is the Supercompact Prikry forcing asso-
ciated with U and G is Py — generic over V, then a sufficient large rank initial

segment of the ground model V is OD over the Prikry generic extension V[G]
and V[G] | ~(Vu < H)<ﬁ =, (w)‘\",”).

1.B.13 Theorem O
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The following result is not really crucial for our thesis, even though it
uses extensively the methods of [Menas 75] to produce a stronger form of the
previous theorem. However, the technology which is used is appealing to the

author and thus we make a sketch of the proof.

1.B.14 o

As we proved in 1.B.11, there exists in V[G] a VOD partition with no ho-
mogeneous sequence. Qur goal is to show that it is consistent for the ground
model to be OD over the Prikry generic extension, thus making the partition
that appears in 1.B.11 OD over the Prikry extension V[G], which proves that
the partition relation (Vu < k) (KZ b (w)‘{’,ﬂ) fails in V[G].

Towards this goal, we follow almost identically the proof of a theorem of T.
K. Menas [Menas 75] (20. THEOREM p.89) in which he proves that starting
with a model of a supercompact cardinal x and an inaccessible cardinal above
K, there exists a model M and a generic extension N of M with the property
that x is supercompact in both M and N and moreover N | ZFC+V = HOD.

We fix ) to be a regular cardinal above k. The proof, in [Menas 75], involves
a reverse Easton forcing construction in which he codes each e(8) rank initial
segment of the Universe into the power-set function, where e is an enumeration
of all the Beth fixed points. The only modification that we are making in that
proof is that we take the enumeration e to start from the first Beth fixed

point above A, say it v. Hence we construct the model N in which x remains
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supercompact. Moreover, as in [Menas 75], if § is an ordinal, then we code in
the usual absolute way V}:‘('S) by a subset A of ¢(6) and the forcing construction
guarantees that

N (V7 < €(6))ly € A <= 2%+ = Re5)4443]. Since the decoding of VY
from A is OD and absolute, then this shows that every element of V}:(&) is
HOD over N. Thus N = V = HOD. Let us consider V: % N to be our ground
model before we force with the Supercompact Prikry forcing,.

We recall that v denotes the first Beth fixed point above A and e(0) = v.
Let U be a normal measure over P,(A) in V. We take G to be a Py — generic
filter over V. Our goal is to show that V remains OD over V[G]. Let é be
an ordinal. As before, we code in the usual absolute way V:&) by a subset A
of e(6). Since the forcing Py satisfies the v — cc, then V and V|[G] agree on
cofinalities above v, and so they have the same cardinals above v. Hence there
exists a  such that

v _ gVl
RY;) = vy,

In addition, the fact that V and V[G] have the same cardinals implies the

following:
V(G
(¥0) | (ppaar) = (R315)]-
Then
(orarn)VIGL = (PN VGl

= (2Moarn)VICE],
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At this point, we use a standard fact about v-cc forcings. Since Py has size

<vin V then
(2N«}(’6)+a+1)V[G] < IVNe‘(,&)+a+1|V < (2Rev(6)+a+1 )V.
Thus,
(2Rs+att )V[G] = (QNX&HH; )V.
Consequently,
- A%
(2Rs+e+1)VIG] = N;:_L(i, — (2Ne<6)+ﬂ+1)v = era +3- This implies that for all
7 < e(é)

7 €A = VIG] | (2%+4) = Ry ay3.

Therefore, every element of V:(fé) is HOD over V[G]. This shows that V is
HOD over V[G]. Thus the VOD over V|[G] coloring F, which appears in

1.B.11 is OD over V[G] and has no homogeneous set.

1.B.14 O
Therefore, all the above arguments prove the following theorem.

1.B.15 Theorem If there exists a transitive model of ZFC in which k is a
supercompact cardinal and there exists an inaccessible above k, then for A any
regular cardinal above k, there exists another model of ZFC V in which k is
supercompact and the following holds: If U is a normal P.(\) — measure, Py

is the Supercompact Prikry forcing associated with U and G is Py — generic
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over V, then the ground model V is OD over the Prikry generic extension

V[G] and V]G] k= (Vi < &) (/c = (w)“\’,”).

1.B.15 Theorem O

It is an open question whether the above partition relation fails in any

Prikry generic extension of any model of ZFC with a supercompact cardinal.
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Chapter 2

The inner Model V(H)

2.A The power set of k in V(H)

In the first chapter we proved that if the ground model is prepared appro-
priately, then the partition relation fails in its Supercompact Prikry generic
extension. In order to find a model of the partition relation, we consider a
specific inner model of the Prikry extension and we are going to show that it
is a symmetric model with a lot of Prikry generic sequences. First, we define

the inner model.

2.A.1 Definition Let U be a fixed normal measure on P.()\) and Py be the
corresponding Supercompact Prikry forcing. If K is a Py — generic over V

filter, the we define H¥ to be the following set:

FK, f U{P(/{) AVIK a] | @ < /\}.
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Whenever the generic is denoted by G, then HC is denoted by H. For a fixed
Py — generic over V filter G we consider the inner model V(H) which is the

smallest inner model of ZF that contains H as an element.

2.A.1 Definition O

Our aim in this section is to show that the power set of x in the model

V(H) is H. We start with a definition that appears in [Magidor 77].

2.A.2 Definition Let h be a permutation of X that is the identity on some
ordinal a € [x,)). We define an automorphism h of Py as follows:

If (Py,...,Pa;A) € Py let h((Py,...,Py;A)) = (h"Py,... h"P,;h"A) where
h"A ={h"Q| Q€ A}.

2.A.2 Definition 03

2.A.3 Lemma (M. Magidor [Magidor 77]) If h is a permutation of \ such
that for some o € [k,\) hla =id a then h extends to an automorphism of

r.o.(Py) .

2.A.3 Lemma O

2.A.4 Definition If h is a permutation of A such that h| o = id| o for some
o € [k, A) then we call the support of h to be the largest (3 such that hig=idl g

and we denote it by suppt(h).

We set A = {h € Aut(Py) | suppt(h) € [k, \)}.
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2.A.4 Definition O

2.A.5 Definition We define g5 to be the following VFUs — name:

gs  ={F.,p)|3Py,...,Pn€Pe(N)TA € UK
(p=(P1,...,Pn;A) &
& X € {Pl,...,Pn} &

& y=xnp)}.

If x = P; for somei € {1,...,n} such that p = (Py,...,Py;A), then we say
that x appears in p.

2.A.5 Definition O

Obviously gg is the canonical Py — term for the restriction of any Py —
generic sequence on 3, where (3 is an ordinal above k and below A.

Next we show that all these names are invariant under the automorphisms in

A.

2.A.6 Lemma Lethe A &8 € [k,A). Assume that suppt(h) = v > 3.

Then, h(gs) = g5.

Proof: Since h is an automorphism of Py, then h is extented on VPv by
recursion on the rank of the boolean-valued terms as follows: (for simplicity

we use the same symbol for h and its extension on VFPu)

~

(9 {(B(5) S 1 (6 ) € 7,
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for any + € VPu,
In order to show that ﬁ(gﬂ) C gp we take a (¥ ,p) € g3 where y = xN g for

some x that appears in p and we recall that

({7 ,p)) = (A(¥) ,h(p)).

Assume that p = (Py,...,Py;A) and x = Py, where 1 <k < n.

Then, h((7 ,p)) = (¥ ,a(p)) -

Since h(p) = (h"Py,... ,h"P,;h"A) and suppt(h) =~ > 3 then
W'PyNB =PNp

=xNg.
Therefore,
(¥ ,h(p)) = ((0"Pi N B)"h(p))

and we observe that h”P, appears in fl(p) Hence,
h((y p)) = ((W"Px N B)"h(p)) € gs.

SO, }Al(gﬁ) g gﬂ.
Conversely, we consider (¥ ,p) € g3, where y = x N 3 for some x that
appears in p and x = Py for some k, 1 <k < n, and p = (Py,...,P,;A). Then

we let q: & (h7'Py,...,h7P;h~1A). Hence,

xNg =P,ng

=h"'Pyng
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since suppt(h) > 3. Also ﬁ(q) = p and
7.p) = ,ha)
= ((h™'Px N B)"1(q))
= (h((b™'P N B)) ;h(q))
=h({((h7"Pxn B)"q))
and h~!Py appears in q. Hence, ((h~'Py N 3)",q) € g5 and so (7 ,p) € h(gy).
Therefore, g3 C h(gs). This shows that h(gs) = gg.

2.A.6 Lemma O

However, the previous result can be improved in terms of the following

lemma.

2.A.7 Lemma Assume that hy € A and suppt(hg) = 7.
If § = sup{hjB Uhy'B U {B,7}} + 1, then for any h; € A with suppt(h;) = &

the following holds: hy(hogs) = hoggs.

Proof: We take a ((xN)",hyhg(p)) € hyho(gs), where x appears in p. Assume

that p = (Py,...,Ps;A) and x = P, where 1 < k < n. We show that there

exists a q such that

((xN B)"huho(p)) = (v N B)"ho(q))
for some y that appears in q. By the definition of hy, h; we conclude that

ﬁlflop = (hlllhgpl, . athan;hi,th)‘
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(Without loss of generality we assume that for all P € A P=h{P = hjP.)

Let us fixi€ {1,...,n}. Then

WRGP; = W[((BIP) 18) U ((BLP) \ 6)]
= W{((W§P:) N 6) UK((HGP)) \ §)

= ((hgP;) N 6) Uh{((hoPi) \ 6).

Notice that the second equality follows from the first, since suppt(h;) = 6.
Then, we find P{ C P; such that (hfP;) N6 = hyP!. If { € P;N B, then h{ < §
and so ( € P{N 3. Hence, PN B =P;Ng.

Since suppt(h;) = 6 and (hgP;) \ § C A\ 6, then h{(hjp; \ 6) C A\ 6.

Assume that hy(h{P; \ §) = hfW;. If ( € W; N P!, then ho¢ > 6 and ho¢ < 6
which is a contradiction. Thus W; NP = 0.

Moreover, if ¢ < 3, then h{ < § so ( ¢ W;, ie., W;N G = 0. We set
P = P{UW;.

Thus, h{hgP; = hiP}, where PfNB = P;NB. Weset q = (P},...,P;A). Then
floq = ﬁlﬁop and if x appears in p as Py, xN G =Pr N 3.

Consequently,

((x N B)",hyhop) € hogp.

Therefore, ﬁlﬁogﬂ - ﬁogﬂ.
Conversely, if ((x N ﬁ)’,ﬁop) € ﬁogﬂ, where p = (Py,...,Py;A) and x = Py
for some k € {1,...,n}, then we have to find q € Py such that

((xN B)"hop) = {((y N ,B)',ﬁlﬁop), where y appears in q. As before, without
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loss of generality, we assume that for every P in A hjP = h{P = P. We set
P! C P; such that hijP} = (hgP;) N 8. Then, h{hiP] = hjP;. Let W; be such
that (hyP;) \ 6 = h{hfW;. Then, every { € P! N W; satisfies hy¢ < § and so
hiho¢ = ho¢ < 6 and as { € W, then h;ho¢ € (hyP;) \ 6, i.e., hih{ > 6 which
is a contradiction.

Moreover, if ( € 8 N W; has the property h( < § and as § = suppt(h;), then
hiho¢ < é and since hihgW; C A\ 6, then hjho¢ > 8. Thus, W;N 3 = 0.
Next, we set Pf = P; UW;. Then, P N3 = P;N § and hiP; = hihjPr.
Let q = (P3,...,P%;A). So hp = hiheq and if x is P;, then P} NG =xnNg.
Therefore, ((x N 3)",hop) € hihogs and so hogs C hyhegs.

Hence, ﬁlﬁogﬂ = ﬁogﬁ.
2.A.7 Lemma O

2.A.8 Definition Let (x;A) € Py. A subset A’ of P.(6) is called § — good

for (x;A) iff

AleUs; & Vze [A']“"(x[égzﬁ Jw € [A]“(xgw&w[‘&:z)).

2.A.8 Definition D

2.A.9 Lemma Let (x;A) € Py. Then, for every § € [k,)) there exists A’

which is § — good for (x;A).
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Proof: We assume that x = {Py,...,P,}. Let us take a B € U such that

B C A and VP € B(P, C P). We define the following partition of B[ §(€ Us)
f:[B[§]¥ — 2

such that
1, if 3w € [B]|¥(w[é =2)
f(z) = {

0, if otherwise.
Since Uy satisfies the usual partition property, then there exists an

A" C B[ 6 such that A’ € Us; which is homogeneous with respect to f, i.e.,
(Vo < w)([f"[A]"] = 1).

We show that (Vn < w)([f”[A]"] = {1}).
We fix n € w and without loss of generality we assume that 1 < n < w. Since
gs and g are the Py, and Py — generic sequences respectively induced by the

Py — generic filter G, then 3m;, my < w such that
gs] [my,w) C A’ and g[ [m;,w) C B.

Notice that gs = (g(i) N §]i < w). Let my = max{m;, my}. Then,
gsf [m,w) CA" & gl[m,w)CB.

Consider x = (gs(m), ... ,gs(m + n)).

Then, x € [A']* and for w = (gs(m), ... ,gs(m +n)), w € [B]* and w|§ = x.
Hence, f(x) = 1 and by the homogeneity of A’ we conclude that

f'[A' = {1}.

Therefore, f”[A’]* = {1} and this shows that A’ is § — good for (x;A).
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2.A.9 Lemma O

2.A.10 Definition A condition (x;A) € Py is called § — nice iff § € [k, \)

and A[ 6 is § — good for (x;A).

2.A.10 Definition O

2.A.11 Corollary For every (x;A) € Py there exists a condition (x;A*) <
(x;A) so that (x;A*) is § — nice. This shows that D, = {p € Py | p § — nice}

is dense. Hence (Vp € G)(3q < p)(q is 6§ — nice & q € G).

Proof: We are using 2.A.9 to find a set A’ which is § — good for (x;A). Then,
we define A* = {P €EA|PNé e A’}. By definition of A* we have that
A*[6 C A'. In addition, if P € A’, then 3Q € B such that QNé = P, i.e.,
Q € A* and so P € A*[ 6. Hence, A*[§ = A’ and A* C B C A. Obviously,
A*[ 6 is 6 — good for (x;A*) .

Therefore, for every 6 € [k,A) and (x;A) € Py there exists A* C A such that

(x;A*) is 6 — nice.
2.A.11 Corollary O
By taking A to be the least innaccessible above k, it is easy to show that
the measure U concentrates on a set X with the following property:

For every P,Q € X

PNnk=Qnk=[P[=]Q|

Then a priori we take the forcing Py to have all the conditions below ((;X).
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2.A.12 Lemma Assume that h € A with suppt(h) = v, F is a Py — name
which is invariant under A, § = sup(h"Uh™'8U{B,v})+1 and p is a § —nice
condition. If p ”P_ gb(c'v,ﬁ,ﬁgﬂ,F) and q € Py such that qf § = p[é, then
u
q |— ¢(&, 1, hgs, F).
Py
Proof: Assume that p = (Py,...,Py;A) and q = (Qq,...,Qqu;B). Since p
is assumed to be § — nice then AJé is § — good for p. Assume towards a

contradiction that
q | #(a, 1, hggs, F).
Py
Then, there exists
q’ = (Qla e 7QH7R1’ ce. aRs;BI> S q
such that ¢’ |— w(a,a,ﬁgﬂ, F) Since q' < q, then
Py
<R1, e ,RS> € [B]@

and so

(Riné,....R,Né) € [Bl 6]<.

Since B[ 6 = A[ 6, then (R1N4,...,R;N8) € [A] §]%. By the assumption that
Al é is 6 —good for A, then there exists (Ty,...,Ts) € [A]¥ such that P, C Ty
and

(R1N&,....R.NE) =(Y1NS,....YsN6).

We set A=A\ {Ty,...,T.} and C = AN B. Then, set

P = (Pla v 7PnaT17 s aTsaC>
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and

q1 = (Q1,...,QnR1, ... ,RsC).

Since p; < p and q; < q, then

P1 ”;—— d)(&)ﬁ’ﬁgﬂ)F) and q1 ”-P_ _'¢(dv ﬁ7ﬁg,3)F) and plr(S = (11[5
U U

At this point we define a permutation h; of A such that suppt(h;) = ¢ and
hYS; = S} where p; = (S1,...,5045;C) and q; = (5'1,...,9n+s;C). The con-
struction of such an automorphism has been influenced by similar arguments
that appear in [Magidor 77] and [Apter 85].

The definition of such an h; is as follows:

We recall that the measure U has the property which implies that for every P,
Q appearing in some condition for which PNk = QN k, then |[P| = |Q|. Since
SiNé==5/Nédand § > k, then |S;| = |S}|. Therefore, |S; \ 6] = |S!\ 6| and we

set hy;: def (id[ 6) U k; where
klzsl\éﬁS’l\é.
If
kiy1: Sip1 \ S; i—i’ Si+1\ Si,

then we define as

def
hyjt1: = hy Ukipy

and we observe that

h1’1 Q “e Q hl,i+1
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and hy ;41 : Sip1 — Si,, is a bijection with hy ;[ 6 = id[ 8. Finally, we set
’ + + l+1 ’ +

hl,n+s+1 : (/\ \ Sn+s) \ 6 '(1;'1;_(1: (/\ \ S:x+s) \ 6

and

h:® U hg

1<i<n+s+1

By the construction of the hy;’s, h; is a permutation of A with h;[é = id[ §
and h{S; = S{.
Hence, we consider the automorphism h; of Py induced by h; and we observe

that
hy(p1) = (S'1,-..,S n4s;h"C)

is compatible with q;. Let r < ﬁl(pl),ql.

As
P1 ”_— ¢(d7 ﬁ7 ﬁgﬂa F),
Py
then
hy(p1) — #(a, 1, by (hgp), F).
U

By 2.A.9 hy (hgg) = hgg and by the definition of F we conclude that hy(F)=F
due to the fact that suppt(h; o h) = min{suppt(h;),suppt(h)} > & for any h
with suppt(h) > & (i.e., hoh € A).

Therefore,

ﬁl(pl) “P_ ¢(dvﬁv ﬁgﬁ7F)
U
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and asr < ﬁl(pl),ql, then
r “_ ¢(d’ﬁ’ ﬁgﬂ’F)
Py
and at the same time
r |— —¢(&, 1, hgg, F)
Py
which is a contradiction.
Therefore, q |F— &(&, 1, hgg, F).
Py

2.A.12 Lemma O

The next result is in the spirit of [Apter 85].

2.A.13 Lemma Let Ij:d——e—f U{P(k) N V[(hgs)VI9] | a € [£,A)}. Ifz € V and

x € P(z) N V(H), then there exists a § € [x, \) such that x € P(z) N V[G] 4].

Proof: Let x € P(2)N'V(H). We fix F to be a Py —name for H in V[G] which
is invariant under \A. Then, there exists a formula ¢ ,v, § € [s, ), and heA

with suppt(h) = v and v € P(k) N V[(his)VI®)] such that for all & € z,
a €x o V(H) E ¢(a,u,v, (F)VI9).
Using the formula ¢ we can find another formula ¥ such that for all o € z
a € x & V[G] | ¥(a,u, (hge) V1, (F)VIF).
Let x € VP such that xV{6 = x and we fix a condition po € G such that

po |l— Vo € #(a € X & ¥(a, 1, h(gp), F).
Py
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We let 6 = sup(h"SUL™18U {B,7}) + 1.

Next, we define the following subset of z:
y={e €zl3p < po(pisbé —nice&pl § € Gl §&p |— ¥(&, &, hgp, F))}.
Py

We observe that y € V[G[ §] and we claim that y = x.
Proof of 4 Cx” :

Let a € y. We fix a § — nice p such that p]é € G| 6 and
p ”—_ \Il(d, u, ﬁgﬂ’ F)
Py
Since p[ é € G[ 8, then there exists a q € G such that p[§ = q[ 6.
By 2.A.7 we get that q |— \P(d,ﬁ,ﬁgﬂ, F). Since q € G, then
Py

VIG] k= (e, u, (hgp) V1, (F)VIO),

ie,a €x. Soy Cx.
Proof of X Cy”:

Let a € x. Then we can find p = (6] n;A) € G such that

p<p: and p ”—P— \Il(d,ﬁ,ﬁgﬂ,F).
U

By the 2.A.11 we can find a q € G, q < p such that q is § — nice. Hence,
q “;— \Il(o‘z,ﬁ,ﬁgﬁ, F) and as q € G this implies that ql 6 € G[' 6. Thus, a € y.
Hen(l:je, xCy.

This concludes the proof that x = y.

Consequently, x € V[G[ §].
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2.A.13 Lemma O

2.A.14 Corollary Let H:¥ U{P(x) N V[(hgs)VI¥] | a € [r,\)}. Iz €
VIGl a] for a € [x,)) and x € P(z)N'V(H), then there exists a § € [x, \) such

that x € P(z) N V]G] §].

Proof: We repeat the proof of 2.A.9 with the following changes. We find the
Py — names 7,% such that (z)VI® = 7 and (%)V!6] = x and a condition py € G
such that

Po |F— Va € 2(a € X & ¥(&, 1, h(gg), F).
Py

We define § = sup(h"8Uh™18U {a,3,7}) + 1 and the set y is defined exactly

in the same way.
y={a €2]3p < po(pis § —nice & p] 6 € G16 & p |— U(a, 1, his, F))}.
Py

Then, the proof of y = x goes through and as z € V|G| §], then x = y €

V[G] 6], i.e., x € V[G] 6.

2.A.14 Corollary O

2.A.15 Lemma If H= U{P(x) N V[(hgs)VI%] | h € A& B € [x,)\)}, then

H=H and H = P(x) N V(H).
Proof: Since

H=J{P(x) N V[(hgs) VI | h € A & B € [5,))} C P(r) N V(H),
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then H CH is obvious.
Conversely, if x €H then x € V(H) N P(«x) and by 2.A.13 there exists some

6 € [k, A) such that
x € P(k) N V[G] §] = V[(hgs)VIC].

Therefore, x € H. So H=H and H = P(x) N V(H) = P(x) N V(H).

2.A.15 Lemma O
2.A.16 Corollary If G is the fixed Py — generic over V and
H = H® = ({P(x) N VGl a] | a € [5, )},
then V(H) g V|[G] and moreover,

V(H) E ) =«".

Proof: We have already seen that for every § € [k, \)
VGl 8 E 18] = .
So in each V[G[ 3] there exists the collapsing map f5 of A onto &, i.e.,
fg:n— A

By the usual arguments there exists Ez C k x s, Eg € V[G[ j] such that {3 is

the Mostowski collapsing map of (x, Eg).
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Using the bijection of x onto £ X k in V Eg is coded by a subset of x E} which
is of course in V[G[ f§]. Similarly, the sequence gz itself is coded in a subset of

k in V[G] §]. Therefore,

VIGI 5] € V(H)

and
V(H) k= V8 < A(8] = 5).

Since A is inaccessible and |Py,| < A, then
V|G f] = A is inaccessible.

If

V() E A = &,

then we could code the collapsing map of A on k by a subset E} of k as above.

But by 2.A.13 for some § € [k, A) we would have that

E: € V[G] 8.

Since the coding is absolute, then that would imply

VIGI 8] = [A] = &.

But this is contrary to the fact that V[G[ 3] | Aisinaccessible.

Therefore,

V(H) | A is a cardinal & (V8 < A)(|8] = k).
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Moreover, as

VIG[ 8] € V(H) € VI[g],

then

Vi< k(V, C (V)Y cvYIel = v,
Since V[G] |= [« is strong limit], then
V(H) k= & is a strong limit & x* = A.

But
VGl k= A = &

and consequently, V(H) g VI[G].
2.A.16 Corollary O
To summarize, in this section we establish that V(H) is a proper inner

submodel of V[G] which believes in the regularity of A\. Moreover, the power

set of k is H itself.
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2.B The Prikry-generic sequences in V(H)

In this section we will show that there exist many canonical forcings in V[G[ ]
so that V[G] is a generic extension via these forcings of V[G| 8]. We recall
that A’ is called 8 — good for (x;A) € Py iff
Vze[AT¥(x[BCcz—-3ye[A][¥(xCy &z=y[p5)).
Also we recall that a condition (x;A) € Py is called # — nice iff
Al B is B — good for (x;A).

2.B.1 Definition Ifa € [k, ) and 7 is a Py,_ —generic sequence over V, then
we define Q,(7) to be the following forcing:
For any (x;A) € Py

(x;A) € Qu(7): €% (3B C A)|(x;B) is 6 — nice & (x] a;Bl @) € F°
where

Fo ¥ {(7:0) € Py, lzCcTCzUC}

is the Py, — generic filter over V that induces the Py_ — generic sequence
7 (T € [Pe(6)]“). The order on Qu(7) is < NQ,(7) X Q,(7) where < is the
Py — order.

2.B.1 Definition O

2.B.2 Proposition Let 0 be the Py, — generic sequence induced by G| a,
ie, Fe& = Gla. If Hy, = Qa(0,) N G, then H, is Q,(c%) — generic over

V|Gl o] and V|G| o][H,] = V|G].
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Proof: We denote by o the Py — generic sequence by G, i.e., F} = G.
First, we show that H, is a Q,(c*) — filter.
Assume that qi,qs, € H,. Since q;,q2 € G, then 3q € G(q < q1,q2).
By 2.A.11

(3¢’ € G)(q' is @ — nice & q' < q < q1,q2)
and so q' € H,. If

1€ Ha & q<p & pe€ Qo)

then p € G as q € G and so p € H,,.
Therefore, H, is a Q,(0*) — filter.
It remains to be seen that H, is Q,(c®) — generic over V[G] a.
Let D be Q,(0*) — dense in V[G[ @]. Then there exists VPUe — name 7 such
that

D = (7)VI6lel,

We define D C Py such that

D={pePy|(E@r>p)p I—re (7)VIED)}

We observe that if

q€eDNGQG,
then
(Br>p)(p l— i € (7) Vil
Py
and so

V[G] Ere DNG, ie., DNH, # 0.
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Hence, it suffices to show that DN G # 0. In order to show that, we prove
that for every p € G there exists q < p such that q € D.

So let p = (o] k;A) € G.

We find p* = (o] m;A*) which is & —nice and belongs in H, such that p* < p.

Since D is Q,(0®) — dense, then we can find

r=(o]m~(Py,...,P,);B) €D
such that r < p* and r is @ — nice. Let
s=(olm~(oc(m+1),...,0(m+n))(c(m+n+1),....0(m+n+1));B) e G

such that s < p* and
s|—rte€ (%)v[g“].
Py
Without loss of generality, we assume that s is & — good and s € G. Since
o€ 7l =Gla,
then
PiNa=ocm+1)Na

for all i such that 1 <i < n and since rf o € gl e, s[ a € gl @ and lh(s| @) >
lh(r] &), then

clm+n+1)Na€Bla for 1<i<n.

But then, as r is a — nice, there exists

(P1,...,Pa) € [B]¥
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so that P, C P,4; and
PuyiNa=ocm+n+i)Na for 1<i<l.

We let

E={PeBNB'|P,y CP &o(m+n+1)CP}.
Next we find E' a — good for E and
E*={Pe€eE|PNnaek}.
Then, E* C E and s* = (¢ (m +n + 1+ 1);E*) < s and s* is a — nice. So
s* |l— € (7)Yl
Py
and
q={(ofm~Py,...,Pn,.. ., PruEY<r and qla=sa.
Since S* is @ — nice and qf @ = s*[ , then by 2.A.12
afl—te(®VEl & q<r
Py
Therefore, q € D. Since r < p* < p, then q < p. Hence, we have shown that
(¥p € G)(3q € D)(q < p).

Therefore, D N G # @ and as we have shown this implies that D N H, # 0.
Thus, H, is a Q,(0®) — generic filter.

Obviously, H, € V[G] and so V|G a][H,] C V[G]. Since

(Vp € G)(3q € Ha)(q < p),
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then

o =|J{x|JA(x;A) e H,} =0

and so G € V[G[ a|[H,].

Therefore, V|G| a][H,] = V[G].

2.B.2 Proposition O
2.B.3 Lemma Let U be a P.(f) — normal measure for § € [k,\) and for
a € [k,p) welet U, = {Ala | A € U} and Py, Py, be the corresponding

Supercompact Prikry forcings. Then there exists a complete embedding

i: PUO, - r.O.(Pu).

Proof: We define i : Py, — r.o.(Py) as follows:

For p € Py, we set,

i(p): ¥ Y {qgePy|qla<p)

Recall that if q = (x;A), then qf @ = (X[ a;A] ). We set

X(p) ={qePy|qfa<p}

Hence,
Vp € Py, [i(p) = )_ X(¢)].

Next, we show that i is a complete embedding.
(1) We assume that q; <, qa where <, is the Py, — order and < is the

Py —order. If r € X(qy), then rfa <, q1 <, q2. Hence, rfa < qo, ie.,
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r € X(q).

As X(q1) € X(q2), then

Do X(q) £ &(q)

and so i(q;) < i(qa).

(2) Assume that q; L g2 in Py,. Wetakes € X(q;) and t € X(qo). If s’ < s,t,

then sl a <, tfa <4 9, i.e., q1 £ Q2. So
(Vs € X(q1))(Vt € X(q2))(s L t).

Hence, i(q;) 1 i(qz). This shows that if i(q;) L i(qq) in Py,, then i(q;) L i(qq)
in r.0.(Py).

(3) Next we consider p = (z;A) € Py and we have to find a reduction q of p
in Py. For that we find A’ & — good for (z;A) and we set (z[ a;A’). We claim

that q € Py, is a reduction of p in Py,_. Let
r=(zla"w;A") < q.
Since w' € [A]“, then we find w € [A]¥ such that w' = w[ a. We set
A*={peA| PCw & PnacA’}

and p’ = (z"w;A*).

Then p’ < p and p'[ @ < r. Hence,

Ix € X(r)(x [| p)
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which implies that p || i(x).
This shows that q is indeed a reduction of p in Py,.
The parts (1),(2),(3) complete the proof that i : Py, — r.0.(Py) is a complete

embedding.

2.B.3 Lemma O
2.B.4 Lemma Let U be a P.(f) — normal measure for } € [x,)\) and for
a € [k,B) we let Uy, = {Ala | A € U} and Py,Py, be the corresponding

Supercompact Prikry forcings. Assume that h is a Py — generic sequence and

.7-"}? is the corresponding Py — generic filter. If
K={pePy,|ilp) € 7},

then K is Py, — generic and its corresponding Py, — generic sequence ok

satisfies the property ox = hf a.

Proof: By 2.B.3 K is a Py, — generic filter, as i is a complete embedding.
Next we fix p € K. Since i(p) = ¥ X(p) € K and K is Py — generic, then
there exists an r

re X(p)NK.

Let r = x[ A. Since h = T5b) then x Ch CxUA and asr € X(p), then
rf o = (x[ Al @) < p = (z;B).

Therefore,

xflaChlaCxlaUAla
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and so (z;B) € Fita- Hence, K C F .

Since K and Fht o are Py, — generic filters over V and K C ]:,f‘ra, then
}?ra =K.
Therefore, ok = h[ a.

2.B.4 Lemma O

The following theorem was proved by K. Prikry [Prikry 70] for the Prikry
forcing on a measurable cardinal k. Exactly the same arguments work for any

P,.(6) Supercompact Prikry forcing. So, we mention the result without a proof.

2.B.5 Theorem We let B > k where k is a Supercompact cardinal, 8 is a
regular cardinal, U is a normal measure on P.(3) and Py is the corresponding

Supercompact Prikry forcing and G is a Py — generic over V.

1. If 7 is a Py — name such that

HP— [t:—v & range(7)=E]

where p < k and (E)VIS = E is a set of ordinals, then there exist

sets {E, | n € w} C V such that (|E,| < x)V and E = E,.

n<w

2.If X € Vand E € V|G|, E C X such that (|[E| < k)VI€, then
there exists a set {E, | n € w} C V such that (|[E,| < k)Y and

E=U E,.

n<w
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3. IfX €V ,ECX,E € V[G] and (|E| = &)VICl then there exist

sets E, € V. (|E.| < k)Y such that E = |J E,.

n<w

2.B.5 Theorem O

2.B.6 Theorem We let A\ > k where k is a Supercompact cardinal, 3 is a
strong limit cardinal, U is a normal measure on P,(A) , Py is the corresponding
Supercompact Prikry forcing and G is a Py — generic over V. Let U be
any normal measure on Pc(f) for § € [k,\). Then, in V(H), we can find a

P;; — generic.

Proof: Since 8 € [k,)\) and ) is strong limit, then we can find a cardinal

v € [k, ) such that (|| = v)V. Since
VG E Wl =~
then we conclude that
VG E@NE: s U & Uc(P(B)Y

and

(Pa(8))Y € V.

According to 2.B.5 we can find sets
E,.eV

for n € w such that

|E.| <& with U =|]J E,.

n<w
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By taking

then, we have that

{EhImewteVI[Gly] & E eV & [Ejl<k & U= E;.

m<w

We let

AL =nNE, =n{Ae€lU|A€E,}
By the k-completeness of the measure I/ and as
ELeV & (E,| <x)Y,

then each Ay € U. We set Py € AX. Then we find P, C Puny1 such that
Pui1 € A}, and

Vmew {P.|xk>m}CA.

Therefore,

(Py|n € w) € V[G]1]

and (P, | n € w) is a Py — generic sequence over V. Since
(Pa|n € w) e V[G[7] C V(H),
then we found a Py, — generic filter in V(H).

2.B.6 Theorem O
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2.B.7 Lemma We let Py be the P.(3) — Supercompact Prikry forcing with
respect to U. We take QC.r.0.(Py) and g € V(H) be a Q — generic over V
filter. Then there exists in V(H) a K which is Py — generic over V such that

Kno=g.

Proof: We use the notation of 2.B.6 and for some 3,7 € [k, A) we find
(AL [n€w) e V[GI]
such that for every A e Y
(3n < w)(A D AY).

We set Vi = V[G[~]. Then, by recursion on w, we define (7* | n € w) € V;

as follows:

(Po,...Pn) €Ty &L (Py,... Po) € [PO)]* &
& (Vk<m)(P ¢ Al & PneAl &

& (Vx e g)((Po,...,Pm_p;A%) || %).
If we assume that T} has been constructed, then we define

(Poy...,Pm) €T, &S (Py,...P) €T or
& Py...Pni €A, & PneAr,, &

& (Vx € g)((Po,....,Pm_1;A% 1) || ).
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Then (7} | n € w) € V;.
We set

*, def *
T 1,
n<w

and we define a tree 7 C [P,(6)] such that

Vx € [’P,c(é)]@(x eT:E&L Iy e T*(x C y)).

Obviously, 7 € V.

In Vy, we construct the quotient forcing Py /g and we take K to be Py/g —
generic over Vi. Then K is Py, — generic over V and KN Q = g. Let o be the
Py — generic sequence induced by K. Then, by induction on n, we can show
that

(Vn)(Fkn)(oT kn € ).

Hence, o is a branch through the tree 7, i.e.,
V1[K] k= [T is not well — founded].
But by absoluteness of the “well — foundedness”
Vi = [T is not well — founded]
and as Vi C V(H), then
V(H) [T is not well — founded].

Hence, 7 has a branch in V(H).

Obviously, any branch b through 7 is a Py — generic sequence and if .7-'{,3 is
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the generic filter induced by the sequence b, then
FP e V(H)
and 7 NQ=g.
2.B.7 Lemma O

2.B.8 Lemma We assume that (7;A) € Py and that x € V(H) is a Py, —

generic sequence, where U is a P.() — normal measure measure in V, a < 3,
Uy =Ula={Ala | AelU}

and Zl o C x C Z[ @ U Al a. Then, there exists ay € V(H) such that y is

Py — generic over V,Z Cy CZUA and y[a = x.
Proof: We use 2.B.3 to find the canonical embedding
i: Py, Ccr.o.(Py).

If 72 is the Py, —generic filter induced by x, then we let Q be the forcing i”Py,,

and obviously i"Py, C.r.o.(Py). Also, we consider g to be the Q — generic
filter over V induced by i"F2 in Q. We have proved in 2.B.4 that if K is

Py — generic over V such that QN K = g, then
okl a =x.

Next, we do the construction of (T}, | n € w) in some V|[G[ 4] for v > 3 where

Aj is replaced by AjN A and 7" is defined as follows:

(Po,...P) €T <L (Py,....P)) € [P(B)]¥ &
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zC <P0,...,P]> &
(Vi)(h(z) <i<l PieA) &

Vi<l Pi¢A; & PieA] &

(S R Sl

Vx € g((OO, e ,01_1;A3) ” X).

If we assume that T} has been constructed, then we define

(Po,....Pm) € T i &L (Py,...P) €T or

[Pk,...,Pm_leA: &
& PmeAL, & (Vxeg)

((Po, ... ,Pm-1;A041) | ¥)].

As before, we find a Py — generic K in V(H) and if oy is the induced Py, —
generic sequence which is a branch through 7, then ox[a =x and Z C o C

zU A. This concludes the proof of the lemma.

2.B.8 Lemma O

2.B.9 Lemma Let U be our fixed P,(\) — normal measure in V,Py is the
corresponding Supercompact Prikry forcing and Py_ where U, = Ul a. As-
sume that y is a Py, — generic sequence and (z;A) € Py for some 8 € [x, \).
Then there exists a forcing in Vly] of size < A% that forces a Py — generic

filter K such that ox[f =y andZ C ox CZU A.

Proof: We have shown that since A is an inaccessible above the Super-

compact x, then |U] < A*. Let C = Coll(w, %) and L be C — generic over
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Vly]. Then
VL E U =w

and let (A, | n € w) be the enumeration of U in V[y][L]. We set

Aj=AgNA & AL=[) A,

n<k

ie, Aj2...2 Ay D ... and each A¥ € U.
Then we construct the tree 7, as in 2.B.8, where § = A and g = ff. Then,
by DC, we can find in V[y][L] a branch b through 7.

Let K be the Py — generic 7. Then
ZCbCZUA and b[f=y.

We consider the forcing Qg(y) as we defined it in the 2.B.1. Since b[ 3 =y,

then we let
Hp = Qs(y) NK.
Hence, by 2.B.2 Hp is Q4(y) — generic over V and
Vl]yl[Hg] = V[b] and b[B=y.
Moreover,
Qs(y) CPy and |[Qgs(y)| < A™.

A different way to obtain this result is as follows:
We let Q@ = i"Py,Ccr.0.(Py) where i is the canonical complete embedding

defined in the proof of 2.B.3

i: PUB Ccr.O.(Pu).
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We let g be the Q — generic over V filter induced by i”]:f . Then, we consider
the forcing

r.0.(Py)/g € V[G] = V[y].
We let K be ar.o.(Py)/g — generic filter over V. Then K is r.0.(Py) — generic
over V such that

KNPy =g

Therefore, ox[ 3 = y. Now again, Hg is Qg(y) — generic over V and so

VIyl[Hg] = V[y] [K] = VIK].

r.o.(Py)/e

2.B.9 Lemma 0O

2.B.10 Lemma Let 7 be a Py, — name such that

I— [(7 is Py, — generic over V) & (x*n C 7 C x*[n U AJ a))

Py,
and k < @ < f < A If G* is a Py — generic filter such that V[G*] = V[G]
and (x[ n;A) € G*, then in V(H) there exists a Py, — generic sequence h such

that 7Vl = G*| a.

Proof: Without loss of generality we identify the forcing Py, with
(Pug)eernar gy = {1 € Py, | 1 < (I n;Al 8))

and Py, with (Py, )xetn;aa)- Then we still have that

|— [(7 is Py, — generic over V].

Py,
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We use the standard argument (see [Jech 78]) to show that there exists a

Po € Py, such that

VPSPol[f)E%]]rO(PU)#O
o.(Py,

Following that argument we define

Y={sero(Py,)| [s€7] =0}.

r.o.(PUB)

We let sp = sup) € r.o.(Py,_). But then,

[s € T]Ir.o.(PUﬂ) =[xe Ve T)]Ir,o.(PUﬂ)
=2ARE, p, , 1x€Y)
=0.

We let pg € Py, such that py < —sg. Then
Vp < poflp € 7] # 0.

r.o.(PUﬂ)

The above argument shows that the map

e: (r.0.(Py,)) — r.o.(Py,) defined by e(p) = [p € 1
o.(Py,

is a complete embedding.

Without loss of generality we assume that py = lro.(Py,)-

Then, we get that G*[ o is Py, — generic over V. We set Q: % ¢’r.0.(Py,)
and k™ to be the Q — generic filter over V generated in Q by ¢"(G*[ «).

By 2.B.7 we find a Py, — generic sequence in V(H) such that .7-"}'? N Q = k*,



66 Chapter 2. The inner Model V(H)

i.e.,

peEGla <+=elp)ecF’

N 8
= [pe T]]r.o.(PUﬂ) € F;

< pe (r)Vh,
Therefore, 7V = G*[ @ and h € V(H).

2.B.10 Lemma O
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Chapter 3

The partition relation in V(H)

3.A The way from V(H) to V[G]

In the following section we are going to prove that for every Py, — generic
sequence 7 V with 7 € V(H) we can find a Py, — generic filter G* over V
such that og-[ 8 =7 and H=U{P(k) N V[G*[a] | @ € [5,)) }.

In this first section we are defining the following forcing Q.

3.A.1 Definition We define, in V(H), the following forcing Q:

(xn,0A) € Q: &L (x] nA) € Py & (x*n) x| [n,w)
is a Py, —genericover V & xeV(H) &
Vix]
& |F— [By(y is Py — genericover V. &
(2)8

& x[nCycCx[nUA & yla=x]a)

where Qy: % Coll(w, (22)*) and x*[ n(x(k) N a | k < n). The partial order on
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the set Q is defined as follows:
For (x,n,a,A),(y,m,3,B) € Q

(x,n,0,A) <g (y,m,3,B): gty (x[m;A) < (ym;B) & x[8=y[g.

3.A.1 Definition O

3.A.2 Proposition Let (x,n,a,A) € Q and 3 € (a,A). Then, there exists

(y,m,3,B) € Q such that (y,m,3,A*) <o (x,n,a,A).
Proof: Since (x,n,a,A) € Q, then

Vx]
I— [3y(y is Py — generic over V & xfnCycCxfnUA &
1931

& yla=xla)]

As in the proof of 2.B.7 we find some v € [, ) and we construct a tree
75 on P.(B) in V[G[ 7] such that every infinite branch of 7 is a Py, — generic
sequence z and this branch z has the following properties:
1) x*In Cc x’[nUA[ S and
2) zl o = x[ a(= x*n U x[ [n,w)).
Since x, T3 € V[G[ 7] and V[G[ 4] is a generic extension of V[x] via a forcing
R of size < (22")*, then R x Q, collapses (22*)* when we force with it over
V[x] and R x Q) has size < (22')*.

Hence, by Solovay’s result R x Q, is equivalent with Q, in V[x], i.e.,

r.o. (R x Q,) =r.0.(Q,).
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We let K* be a Q) — generic over V[G[ 7].
Then G[ v x K* is R x Q) — generic over V[x| and so there exists a K which

is Q) — generic over V[x] and satisfies the following:

VIGM][K"] = VIX][K].

Since
Vix]
I— [By(y is Py — generic over V & x[nCycCxfnUA
1931
& yla=xa)
holds, then

Vx][K] E Jy <y is Py, — generic over V & yla=xla

& x°In CycxﬁrnuArﬂ).

Thus V[x|[K] | [75 is not well — founded].

By the absoluteness of the well — foundedness property, we conclude that
V[G[ ] = [75 is not well — founded)],

ie.,

V(G| 7] = [73 has an infinite branch].

Let y be such a branch. As we have seen in 2.B.8 the construction of the tree

7 forces that y is a Py, — generic sequence such that

vle=xla & x’lncycx’lnUA.
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In addition, y is in V(H) as V[G[ ] Cc V(H).

Next we have to show that (x[ n~y[[n,w),n,3,A) is a condition of the forcing
Q. In 2.B.9 we defined a forcing Qs(y) C Py and Qs(y) € V|[y] so that if we
force with Qg(y) over V[y], then we add generically to V]y] a Py — generic

sequence w with the property that
x[nCx[nUA &yl 8 =w|3.

Then, in V[y] the forcing Qp(y) x Q) has size < (22*)* and collapses (22*)*
so it is equivalent to Q).
If K* is a Q) — generic filter over V[y][w], then we can find a K which is

Q) — generic over Vy] such that

VIylwl[K"] = V¥][K].

Therefore,
Viy]
|F— 3Iw(w is Py — generic over V & xfnCcwcCxfnUA
1951
& wlp=ylp).
Set § = x[n"y[ [n,w). Then,
(¥,n,8,A) € Q

and
(y’n,ﬂ,A> SQ (X,n,a,A>.

Hence, the proposition has been proven.
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3.A.2 Proposition O

The next result shows that any Prikry generic sequence in V(H) can be
lifted high enough in V(H) so that it captures any fixed restriction of the

generic sequence induced by G.

3.A.3 Lemma Let &/ € [k,)) and (x,n,a,A) € Q. Then, there exists a

6 € [k,\) and ay* € V(H) so that

n=yIn & yla=xla & Xlncy cx’InUAé &

& Gld € V]y].

Proof: We assume towards a contradiction that the conclusion of the assertion

of the Lemma fails, i.e., we assume that for some fixed (x,n,a,A) € Q and
d €[k, N)
V(H) E-Fy*Incy cx’[nUAlé & yla=xla
& Gld e V[y).
Then, we make the following claim:
3.A.3.1 Claim

V[x, G| '] = (VR non — atomic forcings) —(3p € R)

[p ll:— 363g¢(8,8, G @, %, 11) ]
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where ¢ is the formula

(6,8, Gl o, x,n): by g is Py, — generic over V. & G[d €eV[g &
& gla=xla &

& x’Incgcx’lnuUAls.

Proof of the Claim: If the claim fails, then there exists a forcing
R € V[x, G| ¢]
and for some K which is R — generic over V[x, G| o] there exist 6, g so that
Vix, Gl o/][K] = ¢(5,g, G| o/, x,n).
Since G[ o' € V|[g], then we find a Py, — name 7 such that
(%)V[G] =Gl

We let
Xo={[per P
o={[pe T]]r'°~(PU5) |pePy,}
and B; the Boolean subalgebra of r.0.(Py,) generated by Xj.

Then

B; N g is B; — generic over V

and moreover, if h is any Py, — generic over V such that B; Ng = B; Nh, then

(1YW = Gl o = ()V,
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Let

i:Py, — r.o.(Py,)

be the canonical embedding which we defined in 2.B.3.

Since x[ a is Py, — generic over V, we let k* be the i"Py, — generic filter
generated by i"F3 , in i"Py,.

By the definition of i, if h is a Py, — generic w — sequence over V such that

k* =i"Py, N F¢, then h] @ = x| . In addition, we find 7 € (6, \) such that
V(G b= U] =
Hence, as in 2.B.6 we can find in V[G[ 7] a sequence (A, | n € w) such that
(Vn<w)(A, €V & (A <k)Y)

and

Us=J An.

n<w

We assume that A[§ € Ag and we define
A; =n{B| 3k <n(B € Ay)}

and so,

(An|new) e Uyn VGl

and moreover,

VB € Usdn < w(AX C B).
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Then, in V;: % V[G| 5] we define by the recursion on w a sequence (7 | n € w)

as follows:

(Po,....Pu) €Ty &L (Py,... Pu) € [P(6)]¥ &
& (Vk <n')(Px ¢ Ag)
& xXInc(Py,....Pu1) & PLeA; &

&Vz € k*'Vw € BT N g((Po,...,Po-1;A3) || 2, W)
and

(Po,... .Puy € T2y &5 (Py,... Pw) €T or
or [(Fk <m')({(Py,....P) €T} &
&Py, Pw_i €AL & PLeAL, &
&Vz e k’'Vwe B;:Ng
((Po, - )Prmr—13A511) || 2, w)).

We set T* = U 7. and we define a tree 7 on P,(4),

n<w

ie., T C [Py(6)]¥ and
Vz € [Pu(6)]% [z €T & 3y e Tz C y)].

Obviously, 7 € V;.

Moreover, if y is a Py, — generic sequence over V such that G[ o/ € V[y] and

y[ o = x[ @, then

FINB:=gnB; & k*=F ni"Py,
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and y is a branch through 7.
Conversely, if y is a branch through 7, then y is a Py, — generic sequence
and in addition F} N B;, FINi"Py, are B; and i"Py, — generic (respectively)

filters over V with the property:
(Vw € g1 B:)(Vz € K*)(V2' € FF) [z' I w, z].
Therefore,
gNB: = F NB;

and

k* = F) ni"Py,.

This implies that

(MM =Glo € V[y]

and

via=xla & XlncCycx’nUA.

If we have chosen K to be R — generic over V{, then we would have
VI[K] = 7T is not well — founded

and so

V; = T is not well — founded.

Hence,

V[G[ 7] k= [T has an infinite branch]
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and since V[G[ 7] C V(H), then
V(H) E Ely[xéfn Cycx’lnUA & yla=xla & G[d eV[y]|.

But the latest contradicts our assumption that no such y exists in V(H).

Therefore, our claim has been proven.

3.A.3.1 Claim O

Since our latest claim holds, if x, G[ &’ € V[G[ f] for some 8 > a,d’, then
we can find a Py, —name 7 and a Py —generic filter G* such that (x[ n;A) € G*
and V[G] = V[G*]. This is possible by the homogeneity of the Supercompact

Prikry forcing Py. Moreover, the following holds:

I— [(7‘ is Py, — generic over V) & (x*fnCciCx*nUAla) &

PU;,

&(w@ﬂm#wwmww

where
def.

PO &,7): €% (VR non — atomic forcings)~(Ip € R)

P — 363v4(3,y, (T &Y (4 i)

and ¢ is the formula which appears in 3.A.3.1. We apply 2.B.10 to find a

Py, — generic sequence h € V(H) such that

(1)Y= Gl a.
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We let 6 be an ordinal in (3, A) such that h € V[G*[ §]. We consider R to

be the forcing so that V[G*[ 6] is an R — generic extension of V[G*[ a,h ).

Since
VI[GTé] = V[GTa,h[ ][L]
and
VIG*la,h |l (G]8la=GTa &
& hld €V[G4) &
& (x*I'n;Aé) € G* 6,
then
VIh] E [VI(7)VP, bl o] | 2] o/ (7)),

V[G*Ta,h[ ¢/][L] | 363y(y is Py, — generic over V. &
& yla=Gla & Incycx’[nUAlé &
& hld € V[y)).
But then, there exists a p € Py, such that
p HI:— (V[‘r, I'Te/l E (3R anon — atomic forcing)(3q € R)
Us
alk— 383y9(6.y, (11 &7 (77 1)),
which is contrary to

— [(# is Py, — generic over V) & (x*InCc+Cx*InUAla) &
PUﬁ
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& (V[R,IT& (D&, 1)),

The above argument shows that for any (x,n,a,A) € Q and any o € [k, \)
there exists a 6 € [k, ) and a y* € V(H), y* which is a Py, — generic sequence

over V such that
YViae=xla & (x’[n;Alé) e F.

with G[ o/ € V[y*].
Therefore, the proof of our lemma is complete.

3.A.3 Lemma O
However 3.A.3 can be generalized in terms of the following result:

3.A.4 Corollary Let (x,n,a,A) € Q and Y € H. Then, 363y* € V(H)

such that x[ @ = y*[ « and
XInCcy cx’InUAJé
andY € V]y*].
Proof: Since Y € H, then there exists an o/ € [«, A) such that
Y € P(k) N V[G] ].
By 3.A.3 we can find 6, y* such that

§ €[k,A) & y"isa Py, — generic sequence over V
& y*eVH) & Incy cx’nUAlé &

& xfa=yTa & Gld e V[y.
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But then, P(x) N V[G[ /] € V[y] and so Y € V[y*].

3.A.4 Corollary O

3.A.5 Proposition Let (x,n,a,A) € Q and Y € H.

Then, the following holds:

36 € [k,A)Fy e VH)(Y € V[y] & (y,n,6,B) <g (x,n,0,A)).

Proof: We use 3.A.4 to find a y* € V(H) so that y* is a Py, — generic

sequence over V and
yIn=xIn & yTa=xla & y|hw) CAl6 & YeV[y

Then, as in 3.A.2 we consider the forcing Qs(y*) in V[y*] and by forcing with

it we add generically to V[y*] a Py, — generic over V sequence w such that
wlé=y*16 & (xn,aA)e€ F

Then, in V[y*] we consider the forcing Q) and the product forcing Qs(y*) x Qx
in V[y*]. As before, Qs(y*) x Q, is equivalent to Q, and every K* which is
Q) — generic over V[y*][w] induces a K which is Q) — generic over V[y*] so

that

VIy WK = VIy™][K].
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Moreover,
VIiy'lK] | 3w w is Py — generic over V &
& wlé=y"lé &
& (xIn;A) € .7:3‘,]
Hence,

ﬁ?—ﬂ dw [W is Py — generic over V & w[§ = y*'§
A

& (x[n;A) € .7-';\,)]
This shows that (y,n,6,A) € Q where y = x[n"y*[ [n,w) and in addition

(ym,8,A) <o (xm,A) & Y € V[yl(= V[y')).
This completes the proof the above proposition.

3.A.5 Proposition O
3.A.6 Corollary LetY € H and
Dy = {{x;n,0,A) € Q| Y € V[x]}.

Then, Dy is a dense subset of the forcing Q and Dy € V(H).
Proof: It follows easily from 3.A.5.

3.A.6 Corollary O
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3.A.7 Proposition Let G* be Q — generic over V(H). Then G* induces a

Py — generic filter over V.

Proof: Let

G* = {(w;A) € Py | Ix,n,0,A'((x,n,0,A") € G* & x[lh(w)=w &

& A'CA).

This is the subset of Py that G* induces. We claim that G* is Py — generic

over V. We define
o =|J{w | 3(x,n,0,A) € G(w = x[n)}.
Then, we make the following claim:

3.A.7.1 Claim

G'={(w;A)|lwCo"CwUA}
and

o* = J{w | IB({w;B) € G*)},
ie., 0" is the Py — generic sequence induced by G* and G* is the Py — generic
filter induced by o*, provided that G* is Py — generic over V.
Proof of the Claim: We assume that (w;A’) € G*. Then there exists a
condition (x,n,a,A) € G* such that (x[n;A) < (w;A/). We fix B € U and

m € w. Let

Dmp={(xn,0,A) € Q|ACB & n>m}.
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We show that Dy, p is a Q ~ dense set. Let (yk,2,A) € Q and k < m. Since
(v.k,a,A) € Q,
then
Viy]
—[3y* (y*is Py — genericover V &
(9}
& (ykA)ey" & yTa=yla)

We fix a Q) — name y* such that

Viy]
| [y" is Py —genericover V. & (y[k;A) €y* & V'l a=(yl ).
A\

Then dn > m such that
Viy]
I—["is Py —genericover V. & (y]kA) € y*
Qi
& yTa=(yla) & y*l[n,w)CBNA].
Let us find a q € Q) and a w € [P,())]"¥ such that
vl
q [ [T [k,n) = w].
A
Then, we set
¥y=ylk~w y[[n,w).

Obviously,

(7.k,,ANB) € QN Dy 5.

Therefore, Dy p is a Q -dense set. Hence, if (w;A’) € G* and (x,n,0,A) € G*

such that (x] n;A) < (w;A’), then we can find a (z,m,a,C) € G* such that

m>n & CCA & (z2m,eC),(xn,a,A) e G
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Since

<Z7maaac>7 (X,H,Q,A) € g*
and as m > n, then z[n = x[n and z[ a = x| a.
However, as

(Vm')(Dpyr ar is Q — dense),

then

wCo*CcwUA

Conversely, if w C 0 C wU A, then 3(x,n,a,A’) € G* with n > lh(w) such
that w C x[n and A’ C A. Then, (x[m;A") < {(w;A),
ie.,

G'={(w;A) | wCo*CwUA}

So 0* = oG+ according to the notation established in Chapter 2.
Next we will show that G* = F.. Towards this goal, we take w C o*. Hence,

I(x,n,a,A) € G* such that w C x[ n. Then
(xIn;A) € G* = w C [J{w | IB({(w;B) € G*)},

ie.,

o* C U{w | 3B((w;B) € G*)}.

Since

dom(c™) = w = dom(og:),

then ¢* = og+. This completes the proof of the above claim.
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3.A.7.1 Claim O

In order to finish the proof of our proposition, we have to show that o* is

a Py — generic over V sequence in [P,(A)]“. So we let A € U. Since
(Vm)(Dp a is Q — dense),

then

k(o[ [k,w) C A)

and so 0* is a Py — generic sequence and G* is the corresponding Py — generic

filter induced by G*.

3.A.7 Proposition O

3.A.8 Proposition Let G* be a Q — generic filter over V(H) and G* is the

Py — generic over V filter induced by G* as it was defined in 3.A.7. We set
HE = J{P(k) N V[G* ] q] | @ € [, \)}.
Then, H = H®" where H = HE.
Proof: Let Y € H. By 3.A.6, we have that
Dy = {{(x,n,0,A) € Q| Y € V[x]}

is Q — dense and Dy € V(H). So by the genericity of G* over V(H) we have
that

G*ND, # 0.
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It

(x,n,a,A) € G*ND,
then x[ @ = ¢*[ @ and
Y € Vx| = Vlo*} o] = VGl a].

Therefore, Y € H®". Hence, H C HE".

Conversely, as Q € V(H), then
Ya € [k, A)(G*] a € V(H))

and so
P(k)N V|G Ta] C H.

Thus HY C H and so H = HS",

3.A.8 Proposition O
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3.B From V(H) to V[G]: Another Forcing

The purpose of this section is to demonstrate that there exists another, more
combinatorial forcing, which can produce the same effects as the forcing Q of

the previous section. As usual, we begin with a definition.
3.B.1 Definition A’ be a set in Us where U is a P.(f) normal measure and

Us:E Ul s = {Al6| A eU}

and k < § < 3 < \. Then, A’ is § — very good for A : &

VRE[ATVPeAPNSCx—»IWE[A]“(PCw & W[6=x)).

3.B.1 Definition O

3.B.2 Definition Letl be a P.(3) normal measure. A conditionp = (x;A) €

Py is called § — very nice iff Al é is § — very good for A.

3.B.2 Definition O

Remark: We recall that the forcing Py, is defined as follows :

p=(xA) e P&l xc PO &
AelU & (YPeA)(xCP),
where x C P means that if Q = x(lh(x) — 1), then Q C P,

i.e.,

QgP & Q| < PNk
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3.B.3 Lemma Let U be a P,(f) normal measure. For every é € [k, ) and

for every A € U there exists a set A’ which is § — very good for A.

Proof: We recall that the measure Us satisfies the following partition property:

For every coloring

f:Pu(8)<“ — 2

there exists a set A’ € Uy such that Vn € w|f”[A']"| = 1 where
[A/]n = {(Po,...,Pn> I Pi € AI fOI'iS n & PO C Pn}

So we define the following coloring of A[ §(€ U;). For x € [A] §]<¥

) 0, if V(P) e [A]<Y((P N é) Cx— 3w e [A]*(P Cw&W[é§ =x))
= { 1, if otherwise.
Since f is a coloring of [A[6]<“ in V and A]é € Us, then there exists a set
A” € Us such that A’ C A[§ and A’ is homogeneous for f.
We show that (Vn < w)(f"[A']* = {0}).
Let us fix n € w. In addition we fix a Py — generic filter over V. Then, as
A’ € Us and oy, is the Py, — generic over V sequence induced by G| 6, we can
find m € w such that

o4l [m,w) C A/

Let

= o&[ [m, m + n].

=l
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We are going to show that f(%) = 0. Let (P) € [A]<! such that PNé C %,
ie., PN6C (0).
Then,

(PN &) okl [m,w)

is a Py, — generic over V sequence.
We set
A={QeA|PcQ}

and we consider the following condition:
({(P);A) € Py.

By 2.B.10 we can force to find a z which is Py, -generic over V sequence such
that
z] 6 = (PN 6) "okl [m,w)
and PCzUP C A.
Next, we let w = z[ [1,1 + K].
Since W € [P.(8)]<“, then W € V and w € [A]<” C [A]<“ and P cCw&

W[ 6 = x. Thus
V{P) e [A]'((PNé) Cx—IWe[A]“(PCWw & w[6=x%)).

In particular, f(X) = 0. Since X € [A’]" and A’ is f-homogeneous, then f[A']" =
{0}. As n was arbitrary then, f"[A’]<“ = {0}. This shows that A’ is § — very

good for A. Therefore, the lemma has been proven.
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3.B.3 Lemma O

3.B.4 Corollary LetU be a P.(3) normal measure. For every § € [k, ) and
for every p € Py there exists a q € Py such that q < p and q is a 6-very nice

condition.

Proof: Assume that p = (x;A).
By the previous lemma we find a set A’ which is é -very good for A. Then, we

consider the set

A*={PeA|Pnébe A’}

Obviously, for q = (x;A*) we have that q € Py and q < p. Moreover, we
claim that A*[§ = A’ and that A’ is § -very good for A*. First we show that
A6 =A

Obviously, A*[é§ C A’. Conversely, if Q € A’, then § € [A]<! and since
hné C Q, then 3P € A such that PN é = Q and in particular P € A*.

So A*[§ = A'. Similarly, if (P) € [A]<! and % € [A']<“ and (P N §) C X, then

as A’ is § — very good for A, there exists a W € [A]<“ such that
wlé=%x & (P)Cw.

Since W[ 6 = & € [A']<¥, then W € [A*]<“ and therefore, A’ = A*[ § is § — very
good for A*.

This shows that q is a § — very nice condition of Py, below p.

3.B.4 Corollary O
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3.B.5 Definition Let U be our fixed normal measure over P.()\) and Py
be the corresponding supercompact Prikry forcing. We define the following
forcing Q* in V(H)
(x,n,a,A) € Q*: & (x[n;A) is @ — very nice &
& x*I'n~x[[n,w) is Py — generic &

& x[[n,w) C Ala.

3.B.5 Definition O

3.B.6 Proposition The following set Ds is Q* — dense.

Ds = {(x,n,0,A) € Q*|a > B}

Proof: Let (x,n,0,A) € Q and assume that o < 8. We let C; be 8 —very good
for A and C; be a-very good for C; and we find m > n such that x| [m,w) C C,.
Since

x[ [n,m) C Al

and Af a is a -very good for A, then we can lift x| [n,m) to some X’ C A such

that x'Ja =x[[n,m) & xCx/. We set

A"={PeA|x CP}
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and
Ci={PeC |X[BCP}
We set
y =x[n"%' ~x[ [m,w).
Then

(v’ m;Ci) € 7.
and we can find in V[h] a z which is Py, — generic over V such that
fla=y* & (y?Im;C}) €z
We have to show that Cj is § — very good for A*. For that, we let
% € [C]]*¥ and § € [A]]
such that [ 8 C X. Since X € [C]]<¥ & § € [A}]<¥, then
Iwe[A][™(Wlé=x & yCW).

Since 7 € [A*]<“,then ¥ Cy - X Ccw & we€[A]<, ie, W€ [A*]<v,

Hence, C7 is 8 — very good for A*. Set
C={PeA*|PnpeCil
Then, C[ 8 = Cj and (z,m,3,C) is in Q* and

(Zam’ﬂac> < <X,1’l,Oé,A>,
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3.B.6 Proposition O
Next we prove a proposition analogous to 3.A.5 for the forcing Q*.

3.B.7 Proposition Let (x,n,0,A) € Q* and Y € H.

Then, the following holds:

36 € [k,\)Iy e VH)(Y € V[y] & (y,n,6,B) <o~ (x,n,,A)).

Proof: We use 3.A.4 to find a y* € V(H) so that y* is a Py, — generic

sequence over V and
Yn=xIn & yTa=xla & y|[hw) CAl§ & YeV[y].

Then, we observe that (y*,n,6,A) <o« (x,n,a,A). This completes the proof of

this proposition.

3.B.7 Proposition O

After this result we can duplicate the arguments of the previous section,
in order to show the analogues of 3.A.6, 3.A.7, 3.A.8. We mention these

results without proofs.
3.B.8 Corollary LetY € H and
Dy = {{xn,0,A) € Q| Y € V[x]}.

Then, DY, is a dense subset of the forcing Q" and D} € V(H).
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3.B.8 Corollary O

3.B.9 Proposition Let G* be Q* -generic over V(H). Then, G* induces a

Py — generic filter over V.

3.B.9 Proposition O

3.B.10 Proposition Let G* be a Q* — generic filter over V(H) and G* is the

Py — generic over V filter induced by G* as it was defined in 3.A.7. We set
HE = J{P(k) N V]G o] | @ € [, A)}.
Then, H = H%" where H = HE,

3.B.10 Proposition O
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3.C OD partitions in the model V(H)
3.C.1 Theorem We assume that ¢ is a formula and p < K so that
V(H) Vs € [x]“Ix € Vﬂ&(s,x,g, H).
Then, there exists an s € [k]* N V(H) and a xg € V,, such that
V(H) k= Vt € [s]“¢(t, xo, 6, H).
In particular,

V(H) |= (s is a strong limit) & Vu < k(k b (W)¥,)-

Proof: Since

VY Zv¥(= v,
and |V,| < k, then for every x € V,, there exists an A, € U such that
(B:As) e [V(H) £ $(FT %,%, 8, H)

where T" is the canonical Py — name for the Py — generic filter. The above is

possible since Py satisfies the Prikry property. As
{Ac|xeV,} eV

and

I{Ax |x € Vu}l <K,
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then the k — completeness of the measure U implies that
AY¥N{AxeV,}eU.
If for allx € V,
(038 |— ~V (1) = 9(E1 5,5, 3, H),
U

then we get a contradiction as follows:
By
V(H) = Vs € [k]“3!x € V,¢(s, x, E,H)

there exists a p € Py such that p < (#;A) and xo € V,, such that

c>>L«

pl— [V(H") = 6(I'] %, %, 6, HT)].

Also, since
(9% € V)[A) l— ~V(H) |- ¢l 5,5, 8, 1)
holds, then we conclude that
P ll— (V') | (14,5, 8, HO).

But this is a contradiction. Thus for some %, € V, such that

<>>L<

B:) |— [V(HT) | ¢(I'] &, %, 6, HT)].

We use the homogeneity of the forcing Py to find a Py — generic G such that

(3:A) € G
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and
We let

We claim that it is homogeneous for the OD coloring ¢.

In order to verify the above claim, we let s € [7]“.

By the geometric property of the Prikry type forcings, s is a Py, — generic
over V sequence with s C A[ k. Then, we consider G* a Q — generic over V
such that (s,0,k,A) € G*. Notice that (s,0,k,A) belongs to Q since for some
o € [w]“ with s = T o @, then y = 0g 0 a is a Py — generic over V sequence
with (#;A) € y and with y[ x =s.

If G* is the Py — generic filter induced by G*, then
G'lk=s and (§;A) € G*.
Consequently,
VIGT  [VH) b 6(G"T %o, 6, HO),

ie.,
V(HS") k= (s, %, 6, HE").
But then, by 3.A.8 H¢" = H.

Therefore, for all s € [7]*

V(H) [ ¢(s, %0, 5, H)
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and so we have proven that

V(H) E [Vu < k(s - (w)v,) & & is strong limit].

3.C.1 Theorem O
3.C.2 Lemma Assume that ¢ is a formula o € [k,)\) and u € V. Then,

[V(H) = é(u,Gl o,H)] <=  [(3p € Py)(p is an @ — nice condition &
& plaeGla &

& oph— [V(H") k= ¢(i, T &, HD)] .
In particular, there exists a formula ¢ such that
[V(H) = ¢(u, Gl o, H)] <= [V[Gl o] |= §(u, Gl a, )]
for somev € V.

Proof: Assume that
V(H) E ¢(u,G[ o, H).

Then, there exists p € G and p is an a — nice condition such that
U

But then, p[ @ € G[ a and so

dp € Py(pisan a —nice  condition & plaeGla &

& pl— [VH") = o(a, I a, H).
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Conversely, if there exists a p € Py such that p is an a — nice condition and
placCGla & & pl— V() (i, [T a B,
u

then there exists a q € G such that

qla =pla.
Consequently
@ l— [V(H') = o(u, 1 &, H)
and so
VIG] | VIH] = ¢(u,Gl o, HE),

V(H) E ¢(u, Gl o, H).

Obviously, if we set

5(x,Y,2): N (Ip € Py)[p is an @ — nice condition &
& plaeyla &

& pl— V) Fox Tl & H)),
then
V(H)  ¢(u,Gl o, H) <= V|G| o] E ¢(u, G| a, (a,U,Py,\)).

3.C.2 Lemma O
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3.C.3 Lemma Assume that b € H and H = HC where G is our fixed Py —
generic filter over V. For every formula ¢ and parameters a € V there exists
a formula ¢* such that V(H) k= ¢(a,b) <= V|b] |= ¢*(a, U, k, A, b).
Proof: We define the formula ¢* as follows:

#"(a,U, K, A, b): PELN H—Q— Jy(y is a Py — generic over V

A
[V(H") = ¢(a, b)].)
We claim that V(H) = ¢(a,b) < V[b] = ¢*(a, U, k, A, b).
Assume that V[b] = ¢*(a,U,x,\,b). Let K be Q) — generic over V[b] and
we find G Py — generic such that V(HS) j= #(a,b). Since b € HS, then we
find n € (k,A) such that b € V[G[n]. So we find a Py, — name 7 such that
(7)VIG = b and we consider the Boolean algebra B; generated by 7.
Then, for
X ={ll & €7 roy,)| @ <b}

we know that V[b] = V[G[ nNX]. Since G{ nNX = {|| & € 7 lle.0.Pu,)l @ € b},
then G N X € V(H). Since B; C. r.0.(Py,), then by the 2.B.7 we can find

a Py, — generic over V filter Z such that
ZNnB;=GlnnX.

Hence, (7)VI# = (#)VIGl1 = b, Then, as in the proof of 3.C.1 we find a
Q — generic filter G* over V(H) such that for the induced Py — generic filter
G™ we have that

G'[n="2Z.
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Therefore, (+)VI6T7 = (+)VIGT7 = b. Since

V(H®) = #(a,b),

then we might choose the Py, — name 7 such that

= V(H | ¢(a, (1)VIET)

and consequently,
VHS) k ¢(a",b).

Now we apply 3.A.8 to conclude that V(H®") = V(H) and so V(H) k= ¢(a,b).
Conversely, if V(H) }= ¢(a,b), then there exists a generic extension of V[b]
namely V[b] such that V(H®) = ¢(a,b). But then, using the collapsing
algebra Qy(= Coll(w, ((22*)*)) we should have that V[b] = #*(a, U, A,b).

This completes the proof of the lemma.

3.C.3 Lemma O
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Chapter 4

The partition relation in a ZFC model

4.A < A —DC in the inner model V(H)

In this section we are going to prove that the inner model V(H) satisfies
< X-DC.

< A — DC is the following statement:

“For every cardinal p < A and every partial order R
either there exists an R-descending chain of length u

or there exists a mazimal R-descending chain of length < u.”

Obviously, the Axiom of Dependent Choices (DC) is the statement < w; —DC.
If A is a set, then < A — DC differs from < A — DC only in the requirement
that R should be a partial order on A, i.e., R C A x A.

First, we are going to show that for any ordinal  the model V(H) satisfies
< A= DCpyuy.

In the following arguments we fix an ordinal § and a partial order R, where
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R C (§ xH) x (§ x H) and R € V(H). As we have seen, R is definable
over V(H) by some formula ¢ with parameters u and G| og where u € V,
o € [k, A) and G is our fixed Py — generic over V filter with H = HS.

We recall that we have already proven that H = H¢ = P(k) N V(H).

Using 3.C.3, we fix a formula ¢* such that

PRq <= VI[G[ ag,p,q] = ¢*(p,q, G ap).

Having R, G[ ag, ¢* and H fixed, we are preparing for the proof of < A—DCpyy

by giving the following definitions.

4.A.1 Definition Let z € V(H) be a Py, — generic sequence over V such
that z[ ap = Gl o and a € (ag, ).
If§ < A, then we define, in V(H), the set M¢(z) of all R — maximal descending

chains of length < £ which are elements of V[z], i.e.,
XEMe(z) EbxeV[] & xe(@xPr)NVE)E & (Vn<e)
& (VIGlao,x(n+1),x(n)] E ¢"(x(n +1),x(n), G ag))
& -(3p €6 x P(k)NV[z])

(Vq € ran(x))(V[Gr aOapvq] |= ¢*(p7q’ Gf C“0))'

4.A.1 Definition O

4.A.2 Definition Ifz € V(H) is a Py, — generic sequence over V such that

z[ ag = G ag for a € (o, A) and if M¢(z) is the set defined in 4.A.1, then we
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define §(w, z,&) as follows:

If
Dla,z,6) % {7 € (a,)) | Iw(w is Py, — generic over V. &
& weVH) & wa=z &
& Vx € M(z)(3p € 6 x P(k) N V[w])(Vq € ran(x))
[VIGT a0,p.q] k= 4"(p,a, Gl aw)] .
then we let

ND(a,2,€), if D(a,2,€) # 0

0, if otherwise.

0(a,z,8) = {

4.A.2 Definition O

In the following two propositions we will show that under some appropriate
assumptions D(«, z, §) is non-empty and that 6(a, z, £) is independent from the

Py, — generic sequence z.

4.A.3 Proposition Assume that z € V(H) is a Py, — generic sequence over
V such that z[ oy = Gl g for @ € (ap,A) and that in V(H) there exists
neither an R — descending sequence of length £ nor a maximal (in V(H))
R — descending sequence of length < £. Then D(a,z,€) is non-empty and so

8(a,z,8) € (a, A).

Proof: First we observe that M(z) is non-empty.

The reason is the following:
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If in V[z] there exists an x € (8 X P(k) N V[z])* N V[z] such that

(¥ < &) (VIG a0, x(n + 1),x(n)] I ¢"(x(n + 1),x(1), Gl aw) ),

then by definition of ¢* this will imply that

(Vn < §)[x(n + 1)Rx(n)]

and as x € V[z], then x € V(H). But this proves that V(H) contains an
R — descending chain of length £, contrary to our hypothesis.

Therefore, in V|[z], there is no R — descending chain of length .

As V[z] = AC, then V][z] contains an R — descending chain x of length < £,
so that V(H) thinks that x is maximal for R] 8 x P(x) N V[z]. Hence, M¢(z)
is non-empty.

Moreover as Mg(z) C (6 x P(x) N V[z])<¢ and since
V[z] = [ is inaccessible],
then there exists a cardinal 4 < A and a bijection 7 so that

T Me(z) == p.

onto

Since, according to our hypothesis, every x € M¢(z), although a maximal
R — descending sequence of length < ¢ in V[z], cannot be maximal in V(H),
then there exists a Py, — generic sequence y € V(H), for some 7 € (a, ), so

that y[ a = z and

(3p € 6 % P(x) N VIy])(¥a € ran(x)) | VIGl a0,p,d] I= ¢"(p,a, Gl ao)]
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Hence we can define in V(H) a map 7 : p — X as follows:

7(8): & ﬂ{n € [k,A) |3y € V(H))(y is Py, — genericover V. &
& yla=z &
(3p € 6 x P(k) N V[y])(Vq € ran(r~}(5)))
[VIGT a0,p.dl = #°(p,0,Gl o)}
By the above remarks, we conclude that 7 is a well-defined map in V(H) with
ran(7) C A.
Since p < A and V(H) = [X is regular], then sup#”’u < A.
We set v = sup@’p < A
Next, we show that if w is any Py, — generic in V(H) such that w[ a = z,

then

(Vx € M¢(z))(3p € P(s)NV[W])(Vq € ran(X))[V[Gfao,p,q] F ¢"(p,q, G ).

In order to prove the above claim, we fix an x € M,(z). By definition of 7, we

know that there exists a Py, — generic y such that
yla =z,
and moreover,
Vi) b= (3 € 0 x P(r))(Va € ran(x)) VIGT a0,p,a] b= ¢"(p,0, Gl a0)]

Let us fix w an arbitrary Py, — generic in V(H) such that w[ a = z. Also we

fix a Py, —name % so that (x)V¥ = x. Then, we can find an & — nice condition
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(as we defined it in 2.A.10) q € F] such that

q ||;— [3p € 0 x P(k)¥a € () VTV [ ag, p, ] k= ¢7(p, 0, T a)].

Uy

Since

daeeF] & Fla=F,

then there exists a condition s € FJ such that qf @ = s[ @. At this point we
use the fact that q is an a — nice condition and we apply 2.A.12 to conclude

that

8 ”1:_ [3p € 6 x P(r)Vq € () V)V ag, p,q] = & (p,a, 1] ).

Since s € F, then

VIw] = [(3p € 0xP())(Vq € ran((x) V) [V[w[ ao, p,q] = 6"(p,q, W[ ao)].
But then we recall that (%)Yl = x and that F)[ ag = G| ay.

Therefore,
(Ip € 6 x P(r) N V[w])(Vq € ran(X))[V[Gfao,p,QJ = ¢"(p,a, Gfao)J

and this shows that the claim holds, i.e.,

if w is any Py, — generic in V(H) such that w] @ = z, then
(Vx € Me(z)) (3p € 6 x P(k) N V[w])(Vq € ran(x))
[VIGl a0, p,q] F 6°(p,q, Gl o).
In particular, we have shown that

Eﬁyﬂw(w is Py, —generic & weV(H) & wla=32) &
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& ¥x e Me(z)(3p € 6 x P(k) N V[w])(Vq € ran(x))
[ViGTao,p.al k= ¢(p,a, Gl aw)]),
and
IyWw|(wis Py, —generic & weV(H) & wla=z)=
— (Vx € M¢(2))(3p € 6 x P(k) N V[])(¥q € ran(x))
V[Gl ao,p,q] = ¢"(p, a4, Gl @0)].
Therefore, the set D(a, z, ) is non-empty and consequently &(a, z, &) is a well -

defined ordinal in (a, A).

4.A.3 Proposition O

4.A.4 Proposition Assume that z € V(H) is a Py, — generic sequence over
V such that z| oy = G| ag for a € (ag, \) and that in V(H) there exists neither
an R-descending sequence of length & nor a maximal (in V(H)) R — descending
sequence of length < €. Let 0* = o¢[ « is the Py, —generic sequence generated

by Gl a. Then §(a,z,&) = 6(a, 0%, ).

Proof: We fix an ordinal 8 € (e, A) such that 8 € D(a,z,£) with witness w,
ie., wis a Py, — generic in V(H) such that w[ @ = z and

Vx € M¢(z)(3p € OxP(k)NV[w])(Vq € ran(x))| VIG[ ao, p, q] = ¢*(p, q, Gfao)}-
Since w a = z and z[ ap = 0°[ ap, then we can find a Py, —name W such that

[—  [wis a Py, — generic sequence & Vx € M¢(w[a)(Ip € § x P(k) N V)[w]

PUE
(Vq € ran(x))[V[W] a0, p, q] E ¢"(p, q, W[ ao)]-
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Then, we use 2.B.10 to find a Py, — generic filter K in V(H), so that
(WVI) = GI .
Therefore,

(Vx € M((GIB) o))  (3p € 6 x P(x) N V[G] B])(Vq € ran(x))

VGl a0, p,q] = ¢"(p,q, Gl @)
Hence, G| § is a Py, — generic such that (G 8)] @ = G} a and
(Vx € Me(Gla))  (3p € 8 x P(x) N V[G] B])(Vq € ran(x))
VIG[ a0, p,q] = ¢"(p,q, G ao).
This implies that 6(a,z, &) = §(a, 02, €).

4.A.4 Proposition O

4.A.5 Theorem For every ordinal 8, the inner model V(H) satisfies

< A —=DCyyun.

Proof: Let R be a partial order on 6 X H, i.e., R C (§ x H) x (§ x H). Let us
fix £ a regular cardinal below A. As in the beginning of this section, we fix an
ordinal

® € [k, A) and a formula ¢* such that

PRq <= V[G[ ag,p,q] = ¢"(p,q, Gl ap).

We assume towards a contradiction that in V(H) there exists

neither an R — descending sequence of length ¢ nor a maximal (in V(H))
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R — descending sequence of length < £.

We set 43 to be the least ordinal v above aq so that

(Ip, q € 6 x P(x) N VIG[7])V[G[ a0, p, q] = ¢*(p,q, Gl o).

Then, we define by recursion on ¢ < ¢ inside the model V(H) a £ — sequence

of ordinals
(¢ | ¢ <€)

as follows:
Set 8y = &.
If (6, | ¢ < B) has been already constructed, for some 3 < &, then to define
03 we consider two cases.
CASEI:f=a+1

In this case we set

o =t PN Jdy € V(H) (yisaPy, —genericover V. &

& v =6(6a,7,8)

CASE II: (B is a limit ordinal.
Since the construction of (6; | ¢ < 3) took place in V(H), then by the regularity
of A in V(H) we conclude that (6, | ( < 8) is bounded below . Assume that

5 sup{6; | ¢ < B}. Then we set

8 = &3y e V(H)( yisaPy, —genericover V. &

& v=46(6"y,8).
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This completes the recursive definition of (6; | ¢ < &).
Since the construction of this sequence took place in V(H), then it belongs
to V(H) and by the regularity of A we conclude that (6; | ¢ < &) is bounded
below A.
Let 6*: % sup{6, | ¢ < ¢}.

Next, we consider the Py,, — generic over V filter G 6* and in V[G] §*]
we construct an R — descending chain of length £ to get a contradiction.

Using 4.A.3 and 4.A.4 we conclude that for any 8 < ¢
Sa+1 = 6(8a,0°,8)),
and for any limit ordinal 8 < ¢
85 = §(8%,07,€)),

where 6" = sup{é; | {( < B}. In V, we fix a wellordering < of all Py, — good
names (for a < 6*) of elements of (§ x P(x))<¢. By recursion on { < £, we

construct a £ — sequence
(x¢ [ ¢ <€),

which is an D-descending chain of R — descending chains of length < ¢. Our
goal is to make the above construction in V[G][ §*].

We set

%o ¥ q—least Py,, — good name x for an element of (8 x P(x))<¢* N V[G[ &)

such that (%) VICT%] € M, (G] 6p).
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Then, we define

We assume that (x; | ( < §) - for some B < ¢- has been already constructed
in V[G} 6*], and that it satisfies the following inductive hypothesis:
1) (V¢ < B)(@n)(xc € M¢(GI 6,))
2) (Vv <" < B)(xy Cxy).
In order to define x3, we consider two cases.
CASEI:B=a+1
By the inductive hypothesis, x, belongs to some M¢(Gl é,). Using the defini-

tion of 6,4, we set
. def

Xg = <—least Py — good name x for an element of
bnt1

(8 x P(k))<* N V[G[ 6,41] such that (x)VICIénnl ¢ 4

where

A {x € Me(G] 6,41) | Xa C x}.

Then, we set

Xg: def (x5)VIGT o],

CASE II: (3 is a limit ordinal.

By the choice of <@ and the above construction, we conclude that

(xa | @ < B) € V[G] 67,
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where 6* = sup{é,, | a < (}.
So, we consider x = x¢. According to the inductive hypothesis, z is a

(<8
well — defined R — descending chain in V[GJ §*].

Let 75: & sup{n¢ | ¢ < B}

Using the definition of (6, | ¢ < &), we can define the following:

Xg : 4 4 — least PU% — good name X for an element of

(6 x P(x))<¢ N V[G[ &,,] such that (x)VI%] ¢ B,

where

B:¥ {z € M¢(Gl6,,) | x C 2}

Then, we set

xg: & (k) V10T,

It is easy to verify that in both cases the x4 satisfies the inductive hypothesis.

Therefore, we can construct in V[GJ 6*] the sequence

(xc] ¢ < &)

with the following two properties:
(A) (V¢ < &)(In)(x; € Me(Gl 6y)).
(B) (V1 <7 < £)(x, C x).

Thus, if we set

w: d-—?fU X¢,
(<€
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using the properties (A) and (B) we would have that w is an R — descending
chain of length £ in V[G] 6*] and consequently is in V(H). But the latest is
contrary to our hypothesis that no such chain exists in V(H) and so we get a

contradiction.

Therefore, < A — DCyyy holds in V(H).

4.A.5 Theorem 0O
4.A.6 Theorem The model V(H) satisfies < A — DC.

Proof: Let R be a partial order in V(H). If s: field(R), then by the
definition of V(H) we conclude that for every element x of S there exists an
element z of V, a member w of H and a formula ¢ such that x is definable
in V(H) by ¢ with parameters z and w. Then, using Replacement in V(H),
we can find an ordinal o with the property that each element of S is definable
over V(H) with parameters from V, which appear in VY™, But then all the
V — parameters necessary for the definitions of the elements of S appear in
VY. Using this fact we define in V(H) a surjection 7 : V¥ x H 23 S. Since
V | AC, then we find in V a well — ordering of VY, say (x, | @ < 6) is an
enumeration of VY in V for some ordinal 6.

Next, we define a partial order R* on 6 x H by lifting R via ,

i.e., (v,a)R*(6,b): <& m({xXy, a))Rx({xs,b)). Since 7 is a surjection, then for

every p < A, every maximal R* — descending chain of length < p induces via «

a maximal R — descending chain of length < u. Then, we apply < A — DCyyy
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in V(H) for R* to prove that < A — DC holds for R in V(H). This is possible,
since the 7 —image of an R* —descending chain of length y is an R—descending

chain of length .

Therefore, < A — DC holds in V(H).

4.A.6 Theorem O

Nezt, we are going to generically force choice over the model V(H). Since
this is equivalent to adding generically a well — ordering of the set H, we use

in V(H) the following canonical forcing P.
4.A.7 Definition For all A, we define in V(H)
AeP: &L Aisafunction & dom(A) < A & ran(A) g H.

The order on the set P is the reverse inclusion, i.e.,

A<B:E& BC A, and we denote the poset (P , <) again by P.

4.A.1 Definition D

4.A.8 Lemma Let x € P(x) N V(H)(= H).
We set D, = {A € P | x € ranA} and for § < )

Es ={A € P|p>1n(A)}. Then, Dy and E; are P — dense in V(H).

Proof: Let B € P and assume that x ¢ ran(B). Since a: % dom(B) < A, we
set A= BU {{a,x)}. Obviously, 4 € P, A < B and x € field(A). Therefore,

Dy is P — dense.
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In order to show that Eg is P — dense for a fixed § below A, we consider a
condition B = (x¢ | £ < a). Since a < X then |o| < k. We pick an injection g
from « into k. Using g we code B by the set a =§L<Ja {8(&)} x xe.

Then a C £ X k and a € V(H). This implies that a € V[G[~] for some
v € [k, A). But then we can find a large enough § € [, ) above v such that
VI[G[¢] = (|8] = k). Therefore, in V|G| §] we can find a sequence b of sets
in P(k) \ ran(B) of length 5. Then B~b defines a condition A in P of length

> 3. Moreover, A < B and A € Eg. Hence, Eg is P — dense.

4.A.8 Lemma D

Let G be a P — generic filter over V(H).

Then, (Vx € P(k) N V(H))(Dx N G # 0). We set g:% UG. Since G is a filter,
then g is a well-defined map with ran(g) C P(x) and domain contained in .
By 4.A.8, we have that ran(g) = P(k) N V(H) & dom(g) = X. Thus any
P — generic over V(H) filter G induces a surjection g such that g : A — H.
Therefore, H is well — ordered in V(H)[G].

Next, we will show that P is an almost homogeneous forcing. If A,B € P
with domains p and v respectively, then A "B denotes the concatenation of
the two sequences, i.e.,

Ala), ifa<p
A~B(a) = {
B(3), ifa=pg+p.

4.A.9 Proposition The forcing P is almost homogeneous.
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Proof: The almost homogeneity of the forcing P is equivalent to the following

fact:

For every condition p € P and every P —generic filter G there exists
another P — generic filter G*, with the property that V[G] = V[G*]

and p € G*.

Following the above characterization of the homogeneity, we consider A to be
a condition in P and we fix G to be a P — generic filter over V(H). Let g
denote the generic surjection g : A 23 P(x)NV(H), induced by G. Obviously,
G is the set of all initial segments of g. Let u = dom(A). Using g and A, we
define a surjection g* of length A onto H, as follows:

A(a), fa<pu

g () = ,
g(B), fa=p+p.

Since g is a surjection of A onto H, then so is g* and moreover if G* is the
P — filter induced by g*, then A € G*. It remains to be seen that G* is
P — generic over V(H). We argue towards a contradiction and we assume that
G* is not P — generic.

First, we define 7% {((A ~BY B | B P}. Then, ()19 = g=,

If D is a P — dense set, such that G* N D = @, then we can find a condition
B € G*, such that B II-P— #ND = §. Then, we consider the condition 4~B € P
and by the density of D we can find a sequence C, with the property that
A~B~C € D. Using the definition of 7, we verify that for every P — generic

filter G’ that contains B~C we have that A~B~C € (7)VMI9l 0 D. Hence,
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B~C |— 7ND # 0. However, as B~C < B then B~C |— #ND = §, which
P P

is a contradiction.

Therefore, G* is P — generic and A € G*. In addition, V[G] = V[G*] because G

and G~ easily describe one another. Thus P is an almost homogeneous forcing.

4.A.9 Proposition O

Next we show that forcing with P over V(H) does not add any new <
k — sequences of k. First, using the regularity of A in V(H) and the definition

of the P — forcing conditions, we prove the next proposition.

4.A.10 Proposition The forcing P is < A — closed in V(H).

4.A.10 Proposition O

4.A.11 Proposition Let G be P—generic over V(H) and set V;: % V(H)[g].

Then, for every regular cardinal p < k we have that k* N V(H) = k* N V.

Proof: Let f € k¥ N'V;. We show that such f belongs to the ground model

V(H). Let 7 be a P -name for f and x* be a condition such that
x* |F— [7 is a function from y into «].
P
We define R C (P x u) x (P X ) to be the following relation:

R((x,0),(y,0)): 4%  x<y & =(y<x<x) & a>f8 &

& (Vn<a)(3Fy <r)(x HP— (1) = 7).
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By the definability of the forcing P in V(H), we conclude that R € V(H). We
also claim that there exists no maximal R — descending chain of length < p.
To verify this claim, we argue as follows:

If a = (ag | £ < n) is any R — descending chain for 7 < g and if a; = (x¢, ag),
then by the regularity of u we find § = sup{ae | £ < n} below u. Also, since P
is < —A closed, then there exists a condition x in P below every x, for £ < 7.
Since x* H—;— [7 is a function from p into ], then there existsay € Py < x

and a § < x such that (y |— 7(8) = §). Hence,
P

(V& < m(R((y, 8 + 1), ).

This shows that a = (a; | £ < 1) is not an R-descending chain.

Therefore, R has no maximal descending chain of length < p.

Since < A — DC holds, then in V(H) there exists an R — descending chain of
length p. Let D = ((x¢, ¢) | £ < p) be any such chain. Since ), u are regular
in V(H), then the sequence {ag | £ < p) is cofinal in p.

Then there exists a sequence (3¢ | £ < u) of ordinals below £ in V(H), such

that
(V€ < p)(x¢ H—;- #(€) = Pe).

If x is a condition of P below every x, (it is is possible to find such x since P

is < A-closed), then

(V& <mx — (&) = Be).
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If we repeat this argument below any condition of P, then we show that
Vp<x*qeP(q<p & Jhex*NV(H) q|— 7=h).
P

Therefore,
{alal—7eV}

is pre — dense below x* in P and this implies that
FVIIG] ¢ V(H),

ie., f € V(H). Hence, &* N V(H) = x* N V; for every regular cardinal below

K.
4.A.11 Proposition O

4.A.12 Corollary IfV;: & V(H)[G], then for every u < K VIY(H) = V,Yl.

Proof: This follows by induction on £ < x, by using 4.A.10 and the fact

that (V¢ < k)[VY = V7).

4.A.12 Corollary O
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4.B A ZFC model of the partition relation

In the following section we are going to show that for any G which is P —generic

over V(H), V(H)[G] is a model of ZFC which satisfies the partition relation:
Vi < k(k = (w)¥,) & k& is strong limit.

4.B.1 Proposition Let V be a transitive model of ZFC, in which k is a
supercompact cardinal and X is an inaccessible cardinal above k. Let G be a
fixed P — generic filter over V(H), where P is the forcing defined in 4.A.7T.

Let V1: % V(H)[G]. Then,

Vi = ZFC + & is a strong limit.

Proof: Since V; is a generic extension of a model of ZF, namely V(H), then

V, is itself a model of ZF. Moreover, as we have shown in 4.A.12
(Vu < KZ)(V/YI = VX(H))
and as « is a strong limit cardinal in V(H), then
(Vi < &)(IV)] < ®),

i.e., K is a strong limit cardinal in V.
So it remains to be seen that V; | AC. The proof of V| | AC is based upon

the following three claims.
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4.B.1.1 Claim If 7 € V(H)? and S = dom(#) C V(H)?, then e[S : S —

e(7) is onto and belongs to Vi, where e is the interpretation map

e(x) = xYIG] — V1
for any x € V(H)?.

Proof of the Claim: This is a well-known fact that appears also in [Jech 78].

4.B.1.1 Claim O

4.B.1.2 Claim If M is a transitive model of ZF and f is a surjectionf: S — T

and S, T € M with S being well — ordered, then T is well — orderable.

Proof of the Claim: For any x € T let J, = f~!{x}. Since f,T € M then,

(Vx| x € T) € M. Let < be a well — ordering on S.

Let 7% the < —least element of Y,. So (zx | x € T) € M. Next, we
def,

well — order T by < such that for x,x’ € T x < x': & z, <z/,. Obviously, <

1s a well — order of T.

4.B.1.2 Claim O
4.B.1.3 Claim For every S € V(H), V; = S is well — orderable.

Proof of the Claim: We fix an S € V(H) and by the definition of V(H)
we conclude that for every element x of S there exists an element z of V,

a member w of H and a formula ¢ such that x is definable in V(H) by ¢
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with parameters z and w. Then, using Replacement in V(H), we can find an
ordinal  with the property that each element of S is definable over V(H) with
parameters from V, which appear in VY, But then all the V — parameters
necessary for the definitions of the elements of S appear in VY. Using this fact
we define in V(H) a surjection 7 : V¥ x H 23 S, Since V satisfies the Axiom
of Choice and since H is well — ordered in V;, then we conclude that VY x H
is well — ordered in V;. Then, by 4.B.1.2, we get that S is well — ordered in

V.

4.B.1.3 Claim O

To finish the proof of the proposition, we consider an X € V; and we
show that X' can be well — ordered. We let X be a V(H)P-name for X, i..,
e(X) = XV' = X and we set §: & dom(X).

Then, S € V(H) and by 4.B.1.1 we have that e[/ S € V; and
e]S:S — X is onto.

Since V; = ZF and S € V(H) , then by 4.B.1.2 we get that S is well —ordered
in V; and thus according to 4.B.1.3 X" is well — ordered in V;. So, this

concludes the proof of V; | AC. Therefore,
Vi = ZFC + & is a strong limit cardinal.

4.B.1 Proposition O
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4.B.2 Theorem Let V be a transitive model of ZF'C, in which k is a super-
compact cardinal and X is an inaccessible cardinal above k. Let G be a fixed

P — generic filter over V(H), where P is the forcing defined in 4.A.7. If
Vi « V(H)[g]’

then

V, £ [ZFC + & is a strong limit +Vu < k(& oh (W)v,)]-

Proof: We fix p < k and we consider an OD coloring F € V;
F:[k]Y— V}Yl.
We have already seen that
[£]* NV = [k]* N V(H)

and

Vi __ v/ V(H)
VvV = vV,

So we assume that there exists a formula ¢ and ordinal parameters s such

that for all s € []* and x € VY
F(s) = x <= V()[G] [ ¢(s,%, 6).
Since s,x € V(H) and P is homogeneous, then
F)=x <« V(H)G] k= 4%, )

= 1p | 6(5%, 5).
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Since the forcing P is definable by H in V(H) and by the definability of the

forcing relation |—, then there exists a formula ¢* such that
P

Ple)=x = 1p | d.%, 5)

<= V(H) | ¢(s,x, §, H)

and

V(H) |= (Vs € [5]*)(A)¢"(s, x, 8, H).

By 3.C.1 there exists o € [«]* and xo € VY™ such that
V1 € [o]” F(1) = xo.
This shows that F has an homogeneous set in V;. Hence,
Vi, E& ped (W)y, -
Then by 4.B.1 we get that

V1 | ZFC + & is strong limit + Vu < k(k e (W)V,)-

4.B.2 Theorem O
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