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ABSTRACT

This work is an experimental investigation of the mixing of the

nozzle fluid of a round, turbulent jet with the entrained reservoir

fluid, using laser-Rayleigh scattering methods. The measurements, at

Reynolds numbers of 5,000 and 16,000, cover the axial range from 20 to 

90 jet exit diameters and resolve the full range of temporal and spatial

concentration scales. The measured mean and rms values of the

concentration, and the mean scalar dissipation rate, when estimated from

the time derivative of concentration, are consistent with jet similarity

laws. Concentration fluctuation power spectra are found to be

self-similar along rays emanating from the virtual origin of the jet,

and are consistent with the universal form of scalar spectra proposed by

Gibson (1968 II) . The probability density functions for the

concentration, the time derivative of concentration, and the square of

the time derivative of concentration, are compiled and are also found to

be self-similar along rays. Features of the measured distributions and

spectra are consistent with the existence of large-scale structures

within the flow that span the local diameter of the jet's turbulent

cone. On the centerline of the jet, the scaled probability density

function of jet gas concentration is found to be almost independent of

the Reynolds number while the local mixing rate in the inner part of jet

is not. The usual assumptions concerning isotropy and correlation of

privatives are found to lead to erroneous results for the probability

density function of the scalar dissipation rate.
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CHAPTER 1

INTRODUCTION

1.1 Background

The momentum-driven, free turbulent jet, a small source of high

speed fluid issuing into a large, quiescent reservoir, is one of the

classical free shear flows. It has been the subject of experimental

work for more than 50 years (Rüden 1933, Kuethe 1935) and has found

broad application in combustion systems as a means of mixing reactants.

The momentum-driven, free turbulent jet is a special turbulent flow

for several reasons. In the far field, the evolution of the maximum

mean velocity and the largest scale of the motion conspire to give the

flow a single Reynolds number independent of the distance from the jet

nozzle (e.g., Landau and Lifshitz 1959). Another special property of

the jet flow is that measured mean profiles of velocity and jet fluid

concentration are self-similar when collapsed on rays that emanate from

the origin of the jet (Wilson and Danckwerts 1964, Becker et al. 1967,

Wygnanski and Fiedler 1969, Townsend 1976, Birch et al. 1978, Lockwood

and Moneib 1980, Chen and Rodi 1980 and references cited therein) . The

measured self-similarity of the mean velocity field, and the decay of

the mean concentration within the jet are consistent with the equations

of motion for an incompressible fluid (Appendix F).
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In the cylindrical coordinates that will be used in the body of

this work, the self-similar profile of the mean concentration of jet

fluid takes the following form:

r( — bC(x,r) cod (i.i)
x"x0 x~xo 

. . *where K is a constant determined by experiment, d is the momentum

diameter of the nozzle exit, Co is the jet exit concentration, g(T∣) is a 

function that has a maximum value of 1 at η = 0 and is determined by

experiment, x is the distance from the jet nozzle along the axis of the 

jet, r is the radial distance from the axis of the jet, and xq is the 

virtual origin of the jet flow similarity. A schematic of this

coordinate system is given as Figure 1-1.

The momentum diameter is defined by:

* 2 md = ----q-√πP∞jo , (1.2)

where poo is the density of the reservoir fluid and mQ and Jq are the 

nozzle mass and momentum fluxes. It was introduced in a limited way by

Thring and Newby (1953), used by Avery and Faeth (1974), and modified to

the form presented here by Dahm and Dimotakis (1987) . The momentum

diameter can be used to collapse the results of many different jet

experiments (see Dahm and Dimotakis 1987) and is assumed to be the

proper length scale for normalizing the downstream distance in the jet.

The constants in Equation (1.2), 2 and π, were chosen so that d reduces

to the geometrical nozzle diameter, d, for density matched jet and

reservoir fluids and a perfect "top-hat" exit velocity profile.
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Experimental Jet Flow 
Coordinates

Figure 1-1.
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The virtual origin is determined by the far-field behavior of the

jet and is a correction for the influence of the near field of the jet.

Some parameters that affect the virtual origin are the external shape of

the jet nozzle, the exit turbulence level, and the exit velocity

profile.

In the body of this work, the following substitutions will often be

made :

χ= η= —∙ (1.3&1.4)
d ×-χ0

These allow Equation (1.1) to be simplified to:

_ CC(χ,η) = κ —a g(η). (1.5)
X

The jet far field is defined here as that portion of the jet flow that

is influenced only by the momentum flux of the jet. Far-field

measurements are usually verified by a satisfactory collapse of the

measured means with the scaling suggested by Equation (1.1) or (1.5).

While the similarity of the mean profiles is on a solid

experimental footing, the picture is not yet complete. For most

experimental data, the root mean square (rms) fluctuation profile cannot

be collapsed with the same scaling used to collapse the means. There

are also conflicts between the reported rms levels from different

experiments. No clear consensus exists as to whether the ratio of the 

rms to mean concentration of the jet fluid (C^ms∕C) is a constant in the 

far field of the jet (see Figure 3-7, Chen and Rodi 1980, Dahm 1985) .
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These problems could arise from many sources, including: Reynolds

number effects, contamination of the flow by buoyancy forces,

insufficient resolution of all of the fluctuating scales, unsteadiness

in the jet source or the quiescent reservoir, the effects of the

molecular Schmidt number (kinematic viscosity divided by species

diffusivity), or the possible failure of similarity.

1.2 Present Experiments

The experiments described here were designed to address these

concerns about the self-similar nature of turbulent mixing in the far

field of the jet. In the design of this experiment, the dual

requirements of resolution down to the smallest theoretical

concentration scales and high signal-to-noise ratio were strictly

followed. This meant that the choices of the exit Reynolds numbers,

nozzle sizes and other experimental parameters were based on the dynamic

range limitations of the chosen diagnostic and the resolution

requirements of the fluid mechanical mixing process. The jet and

reservoir gases and the overall size of the experiment were chosen to

minimize buoyancy forces while allowing for sufficient downstream range

in the jet for the mean concentration profile to properly establish the

similarity of Equation (1.1). Appendix A describes how these

requirements were met and how the rest of the experimental parameters

were chosen. The topics presented in Appendix A include: calculation

of the resolution requirements, scaling the momentum and buoyancy forces 

in the jet, estimation of the effects of placing the jet in a coflowing
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stream, and designing the jet nozzles.

This work is an experimental investigation of mixing and structure

within the turbulent jet concentration field, as it is diluted with

entrained reservoir fluid. In particular, it is a study of the

similarity, of the mean concentration of jet fluid, C(χ,η), the rms 

concentration fluctuation level, ^rms^,1^^, the powθr spectrum of 

concentration fluctuations, Ec(f), the probability density function of 

jet fluid concentration, the probability density function of the time

derivative of concentration, and the statistical properties of the 

estimated scalar dissipation rate, εc, computed from (dC∕dt) . Some 

features of these statistical measures show evidence of a large-scale

motion in the flow that spans the local jet diameter.

This work addresses three types of similarity in the jet and it is

necessary to present the terminology that will be used in each case.

Specific similarity. This term is applied to the specific properties of

the turbulent mixing process in the jet that allow a collapse

of the statistical measures of the fluctuating concentration

field with downstream distance at a fixed Reynolds number.

General Similarity. This term refers to properties of jet mixing that

are independent of the Reynolds number.
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Universal Similarity. This term describes properties of jet mixing that 

are independent of Reynolds number and independent of the jet

flow. geometry.

The actual measurements, single-point concentration time histories,

were made with a nonintrusive laser-Rayleigh scattering diagnostic in a

steady, gas phase, axisymmetric, momentum-driven jet that issued into a 

large enclosure. The diagnostic was sensitive to the mole fraction or 

molecular number-weighted concentration, Cn∙ To correct for the small 

density differences that existed between the jet and reservoir gases,

all of the results are presented in terms of the mass-weighted

concentration, C, since that is the variable that best represents

constant density conditions (see Pitts 1986). The details of the 

conversion from Cn to C are contained in Appendix E. The measurements 

cover the downstream range from 20 to 90 jet exit diameters at Reynolds

numbers of 5,000 and 16,000. The Reynolds numbers were computed from 

the jet exit velocity, Uo, the geometrical nozzle exit diameter, d, and 

the reservoir kinematic viscosity, voor

A complete discussion of the experimental design is given in Appendix A.

The performance details of the diagnostic are contained in Appendix B.

The data processing techniques are described in Appendix C and Appendix

E.
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CHAPTER 2

EXPERIMENTAI. FACILITY

2.1 The Main Apparatus

These experiments were performed in the gas phase, jet-mixing 

apparatus shown schematically in Figure 2-1 and pictured in Figure 2-2.

This facility, specially designed for these experiments, was constructed

in part with the aid of Mr. Earl Dahl.

Figure 2-1. Schematic of the jet flow facility.

The main apparatus consisted of a large, relatively airtight,
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Figure 2-2. Photograph of the jet flow, facility.

varnished plywood enclosure, with an interior volume of about 120 cubic 

feet (7.5, x4, x3'll"), and an adjoining rigidly attached laser 

platform. The test section was about 5 1∕2, long and extended from 6"

below the top, to 18" above the bottom of the enclosure. The jet was

produced by a vertically adjustable nozzle, which was inserted downward

into the test section through, the center of the top of the apparatus. A 

mild coflow was produced over the entire 15.7 ft2 cross section of the
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top of the test section to provide the jet entrainment requirements

(Ricou and Spalding 1961) to a point below the farthest measuring

station. The· internal cross section of the experiment was mildly

contracted (peak area reduction of 13%) over the lower two-thirds of the

test section. The sudden change in area at the end of the contraction

provided a fixed separation point for the coflow as it decelerated in

the pressure field produced by the jet. Fixing the separation point of

the coflow helped prevent unsteady interactions between the entrainment

field of the jet and the walls of the main enclosure. The measuring

station was located about 4" above the end of the contraction, and this

height was fixed with respect to the wooden structure. The largest

ratio of the cross-sectional area of the jet, s turbulent cone to the

cross-sectional area of the test section was about 0.26 .

The laser platform, built as an integral part of the main

enclosure, supported the 65 kg laser head. The laser beam crossed the

test section horizontally and was stopped after a single pass through

the test section. The collection optics and the photosensor were

supported 4 1/2" below the laser beam by a large linear traverse used

for horizontal positioning of the sensing volume.

The inside wooden surfaces were painted flat black, and a rubber

glove-box glove was installed near the bottom on one of the vertical

sides for internal manipulations while the experiment was sealed. This

permitted most adjustments to be made without opening the enclosure,

thereby minimizing the introduction of dust particles. Large 3' x 5'
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plexiglas windows were located on opposite sides of the test section to

allow shadowgraph imaging of the jet flow.

2.2 The Jet Gas Delivery System

The jet gas was ethylene (C2H4) for the Re0=5,000 experiments and 

propylene (C3H6) for the Re 0 = 16, 000 experiments. Both gases were 

packed under vapor pressure in size 1A or IS cylinders (9" diameter and

51" length), whose thermal mass was sufficient to provide the necessary

"boil-off" during a run. A single-stage regulator (Matheson model # 1L)

was used to stabilize the delivery pressure. After passing through 

about 300 diameters of 3/8" copper tubing, the flow of jet gas was

filtered (Matheson model #6190, 100% efficiency at .02 micron),

regulated by a fine metering valve (Nupro # B-4L) with a micrometer

handle (Nupro # NY-2M-S6), passed through an explosion-proof solenoid

valve (ASCO Red Hat # 8211C93) used to initiate the flow, and plumbed to 

the jet nozzle. Measurements of the dynamic head of the jet using a

Barocel sensor and manometer allowed the metering value to be

calibrated. Changes in the jet flow rate during a run, and variations 

between runs at the same Reynolds number, were less than ±2% of the jet

exit velocity.

Two nozzles were used to increase the range of jet Reynolds numbers

that could be reached without rebuilding the large enclosure. A 0.75" 

diameter nozzle was used for the runs at Re0=5,000 and a 0.30" diameter 

nozzle was used for the runs at Re0=16,000. The inner contours of both
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nozzles were designed by a method developed by Professor Paul Dimotakis. 

The larger nozzle was made of plexiglas and machined by the Disney

corporation, while the other was made of aluminum and machined by

Mr. George Lundgren of the GALCIT machine shop. The design of the inner 
contours was based on an optimized 6th order polynomial (7 adjustable 

coefficients). The details of this optimization can be found in

Appendix A, Section 9. The outer contour was a simple circular arc that

started near the lip of the nozzle exit and met smoothly with the

supporting 3" diameter pipe. Inside the nozzle, the flow was

manipulated with a 6" section of cruciform, several inches of open pore

foam (100 pores per inch), a half-inch section of honeycomb, and 3

screens. The exit turbulence level for both nozzles was about .2% in

the Reynolds number range where each was used. The jet exit velocities 

were 4.04 m/sec at Refl=5,000 and 28.6 m/sec at Reo = 16,000.

Because it can be used to collapse the results of many different

jet experiments (see Dahm and Dimotakis 1987), perhaps the most

important parameter determined by the jet nozzle is the momentum
* ∙ * diameter d (see Equation 1.2). The momentum diameter, d , reduces to 

the geometric exit diameter, d, for pjet = Poo and a perfect "top-hat" 

velocity exit profile. The use of pure gases in these experiments

insured that the exit density profiles from both nozzles were ideal. An

axisymmetric Thwaites calculation was used to estimate the boundary 

layer corrections to the velocity profile for both nozzles yielding; 

d*= .960 d for the 0.75" nozzle, flowing ethylene into nitrogen at 

Reθ=5,000, and d = 1.005d for the 0.30" nozzle, flowing propylene into
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argon at Re 0 = 16,000.

Either nozzle could, be suspended in the test section on the end of

a 3" diameter pipe made up of a variable number of 6" long threaded

sections. The operational length of the pipe was determined by the

placement of a ring clamp. The distance between the measuring station 

and the tip of the nozzle was continuously adjustable by moving the ring

clamp, and adding or removing pipe sections as necessary. This whole

assembly (nozzle and pipe sections) was supported by a special collar

mounted on top of the main enclosure. A seal was made against one of

the pipe sections by a greased o-ring at the base of this collar. The

weight of the nozzle assembly was carried by the ring clamp, which

rested on top of the support collar. The angular orientation of the

nozzle could be adjusted by using 3 thumb screws near the top of the

support collar to orient the nozzle assembly as necessary. The pivot

point for this tilting was provided by the o-ring at the base of the

support collar. Figure 2-3 is a drawing of the mechanical setup of the

jet nozzle.
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Figure 2-3. Mechanical setup of the nozzle.
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2.3 The Coflow Delivery System

The reservoir or coflow gas was nitrogen for the experiments at 

Reo = 5,000 and argon for the experiments at Re θ = 16, 000, because these 

were the least expensive pure gasses that were safe to deal with in

large quantities. The coflow gas originated in a high-pressure (2500

psig), 4 bottle manifold (Matheson) mated to a high flow-rate,

single-stage regulator (Matheson # SP-2369-1) . The flow was filtered

(Matheson # 6124-P12FF, 100% efficient at .2 micron) and heated

"on-the-fly" by a special feedback, temperature-control system. A

complete description of the coflow temperature-control system is

contained in Appendix D. An explosion-proof, solenoid valve (ASCO Red

Hat # 8211B26) was used to initiate the coflow at the start of a run.

The coflow was introduced into the top of the flow facility by a

special manifold. The incoming gas was converted from 3/4" diameter

copper tubing to a 6 1/4" internal diameter PVC pipe, which fed 30

smaller PVC pipes with an internal diameter of about 5/8". Each of

these smaller pipes, which were inserted into the coflow settling

chamber at the top of the main enclosure, had 30 1/16" diameter holes

that pointed vertically downward. These 900 holes, arrayed in a square,

produced 900 little jets, which had about 3 1/4" to develop before

impinging on a 1" layer of open-pore foam (100 pores per inch) supported

by a perforated plate (49% solidity). The final coflow manipulator, a

high porosity (about 70% open) screen was placed 1" below the perforated

plate. The whole coflow manipulation system was contained in the top 6"

of the main enclosure (see Figure 2-3).
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The velocity of the coflow was checked by floating balloons on an

intentionally produced density gradient in the test section and by

measuring the distance they traveled when the coflow was cycled on for a

known time. The velocity of the coflow was set to about 2 cm/sec for

the runs at Re = 5, 000 and to between 5 and 6cm/sec for the runs at

Re = 16, 00.0. These rates were achieved by adjusting the output pressure

of the regulator on the high-pressure manifold.

2.4 The Exhaust System

The spent gases exited at the bottom of the main enclosure through

4 symmetricly placed 6.5" diameter holes. These holes fed two ducts

that discharged into a large plastic bag with a capacity of about 300

cubic feet. The contents of the bag were vented on the roof of the

laboratory at the end of each run by a special explosion-proof suction

system with a capacity of about 50 cubic feet per minute. Because the

experiments involved explosive hydrocarbon gases, and because the

suction line traveled through 4 floors of the occupied areas, it was

made from galvanized, 3" IPS, schedule 40, steel pipe, which had the

strength to contain a detonation wave with a safety factor of more than

10. Figure 2-4 is a reduction of the blueprints for this system.
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Figure 2-4. Reduced blueprints of the exhaust system.
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2.5 The Laser-Rayleigh Scattering Diagnostic

In these experiments, laser-Rayleigh scattering was used to

determine the time- and space-resolved, mole fraction of a binary gas

mixture by measuring the amount of light that the mixture scatters. The

intensity of the scattered light is proportional to the scattering cross

section of the gas mixture and the incident light intensity. For these

experiments, the Rayleigh scattered light from a small section of a

constant-power, focused laser beam was imaged onto a small aperture

photosensor, that produced a current that was linearly related to the

mole fraction of jet gas in the focused laser beam. This photocurrent

was amplified and measured. A complete description of the performance

of the photodetection system is contained in Appendix B.

This diagnostic has four main advantages over other types of

concentration probes.

1. It is nonintrusive.

2. It is capable of exceedingly high spatial 'resolution.

3. It exhibits a very large dynamic range for density-matched gas

pairs.

4. It has almost perfectly linear characteristics.

Nonlinearity might arise through multiple scattering of detected photons

or ionization of the gas in the focal volume. Both of these effects

were unimportant at the gas and laser power densities used for these
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measurements.

The major difficulty with the diagnostic comes from the fact that

the Rayleigh cross sections of gases are small from an experimental

standpoint when compared, for example, to the resonant cross sections of

fluorescent dyes used quite successfully in liquid phase experiments

(Robben et al. 1976, Liu et al. 1977, Koochesfahani 1984, Dahm 1985, and

others). For Rayleigh scattering at room temperature and pressure, 
4 5about 1 part in 10 or 10 of the incident beam power is scattered per

meter of gas that is traversed, while about 1 to 10 percent of the beam

power is scattered per meter by typical concentrations of the

fluorescent dyes used in liquids. The Rayleigh cross sections of gases

are also orders of magnitude smaller than the Mie cross sections of dust

particles. This necessitated the use of well-filtered gases to minimize

the number of dust particles that passed through the focal volume during

a run. The technique for removing the effects of the dust from the data

is the subject of Appendix E, Section 3.3 .

2.6 The Laser System

A Coherent Radiation CR-10, water-cooled, argon-ion laser system

was used for all the measurements. It was run with the "all-lines"

mirror in place and delivered about 18 watts of power for the Re =5,000 

runs and about 23 watts for the Re0 = 16, 000 runs. The laser head was

fixed with respect to the wooden structure, and the distance between the

beam and the bottom of the main enclosure was 22". Before the beam
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entered the test section, its polarization was rotated with a half-wave

plate. A small focusing lens was used to bring the beam to a waist in

the vicinity of the measurement volume. An iris placed beyond the lens

cut down on the stray light scattered from the other optics. The

focusing lens and the iris were mounted on a sliding tube that could be

moved horizontally a few inches to adjust the position of the beam

waist. A removable prism on a kinematic mount was used to divert the

beam to a power meter to check the power level before each run. The

beam was dumped on the far side of the test section in a special,

high-quality beam stop, designed by Dr. Richard Miake-Lye, which

minimized reflections.

2.7 The Collection Optics and Photosensor

The collection optics, placed directly below the focal volume, were

a one-to-one imaging system based on two identical,

antireflection-coated, achromatic doublet lenses (Ealing #23-9749) of

focal length 120 mm and diameter 50 mm. These lenses were chosen as a

tradeoff between the minimization of f# and the minimization of flow

blockage. The collection efficiency (collected solid angle∕4π) of these

lenses used in tandem was about 1% (f# = 2.5). The lenses were held by a

special 2.5" diameter pipe that mated to the housing for the photodiode

and the custom, first-stage amplifier designed by Dr. Daniel Lang for
Qthese experiments. The gain of this stage was 10 volts/ampere, and it

was located as physically close to the photodiode as possible. The

performance of this amplifier is discussed in detail in Appendix B. The
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photodiodes used in the studies had 200, 500, and 1000 μm diameter,

sensitive apertures, which respectively defined, along with the

laser-beam waist size, the spatial resolution of the measurements.

Figure 2-5 is a diagram of the collection optics and the photosensor.

The optics pipe was mounted on a 3 axis positioning system. A

large custom translation stage with more than 30" of travel was used for

positioning along the laser beam. Two precision 1" travel translation

stages (Newport Corporation # 420-1) were used for adjustments parallel

to the jet axis and perpendicular to the plane defined by the jet axis

and the laser beam. These two smaller stages were used to align the

collection optics with respect to the laser beam. The large stage was

securely bolted to the wooden structure of the main enclosure. The

whole optical system (laser head, beam optics, wooden platform, 3-axis

traverse and collection optics) was mechanically stable enough to

maintain optical alignment of the beam and the photosensor for periods

of longer than 24 hours, even if the laser was turned off and later

turned back on.
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Diagram of Collection Optics 
and Photosensor

Figure 2-5.
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2.8 Processing Electronics

The analog signal processing followed the simple scheme shown 

Schematically in Figure 2-6. The signal from the first stage was 

brought out of the main enclosure by a 10' cable. The second stage of

electronics provided DC offsets and variable amplification to match the

signal to the voltage range of the analog-to-digital converter. The

signal was also filtered in the second-stage electronics by a 3-pole

Butterworth filter with the knee frequency placed at half the

digitization rate in accordance with the Nyquist criterion. The offset,

amplified and filtered signal was sent to an LSI PDP 11/73 CPU-based

computer system, where the analog-to-digital conversion was done by a

12-bit, 250 KHz A/D board (Data Translation # 3382) . This computer

system was used to control most of the aspects of the data acquisition

and system calibration. A more complete description of the signal

processing is contained in Appendix E.
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and 11/73 Computer

Figure 2-6. Analog signal processing.
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2.9 Procedures and Parameter Selection

The vertical placement of the nozzle was determined by physically

measuring the distance from its tip to the laser beam. The angular

alignment of the nozzle was adjusted with the three thumb screws on the

support collar until the sides of the 3" supporting pipe were parallel

to the string of a plumb bob when viewed in two nearly orthogonal

planes. This insured that the jet was pointed vertically downward.

The required spatial and temporal resolution for each run was

estimated based on calculated values of the Kolmogorov length scale and

the passage frequency for that length scale. For almost all of the

studies at Re 0 = 5, 000, the diameter of the sensitive area of the

photodiode was chosen to be less than or equal to the calculated

Kolmogorov length scale. A few runs were made at x/d = 20 with the

spatial and temporal resolution relaxed by a factor of 2.5 . The

focusing lens for the laser beam was chosen so that the beam waist was

also smaller than the calculated Kolmogorov length scale. The sampling

frequency was chosen to exceed 8 times the local passage frequency of a

Kolmogorov scale, when convected by the local mean centerline velocity 

of the jet. Based on the results of the data from Re0 = 5, 000, the 

resolution requirements were relaxed by a factor of 3 for the runs at 

Re0=16,000. The details of how the Kolmogorov scale and the resolution 

requirements were estimated are contained in Appendix A, Section 1.
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The horizontal position of the focal volume was determined by a

pointer and a scale ruled in inches. Fine positioning was achieved by

counting revolutions of the hand crank on the 1∕2,,-13 lead screw, which

moved the optics car on the large linear traverse. The absolute

alignment of the jet flow and the focal volume was deduced from the mean

concentration values of several runs that spanned the centerline of the

jet. The true centerline ray of the jet was presumed to intersect the

laser beam at the horizontal location that made the measured mean

concentration profile the most symmetric. In practice, the true

centerline ray of the jet was typically only a few tenths of a degree

from its presumed orientation.

The experiment was set up by positioning the nozzle, mounting the

correct photodiode in the sensor housing, putting the correct beam

focusing lens in place, setting the gain, offsets and filtering of the

second stage electronics, purging the experiment with as much as 400

cubic feet of reservoir gas, positioning the collection optics with

respect to the jet and aligning them with respect to he laser beam. The

absolute sensitivity of the whole system was measured by introducing

pure jet and reservoir gases into the focal volume and digitizing the

voltage level from each gas. A run was made by starting the jet and

coflow together, letting the jet establish a steady state, and then

collecting about 200,000 to 500,000 individual measurements. After the

run, the spent gases were exhausted through the suction system and the

main enclosure was purged with reservoir gas. The data were converted

to concentration (mass fraction) on the 11/73 and were checked to insure
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that the mean and rms concentration values were relatively stationary

throughout the data set.

The inspected data sets were then transferred to a PDP 11/44

computer, where the rest of the processing was done. This typically

included removing the effects of Mie scattered light, computing the

concentration fluctuation power spectrum, optimal filtering, taking and

squaring the temporal derivative, and compiling various probability

density functions. The method for power spectral estimation is

described in Appendix C. The rest of the data processing techniques are

covered in Appendix E.
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CHAPTER 3

BASIC PROPERTIES OF THE CONCENTRATION FIELD OF THE JET

3.1 The Mean Jet Fluid Concentration Field

The mean value was computed from each data set by dividing the sum

of the measurements by the number of measurements. The computed mean

values were then plotted with the axis scaling suggested by

Equation (1.5).

Co
C(χ,η) = K — g(η) (1.5)

Z

The results are displayed on Figure 3-1 for the data at Re - 5, 000 with 

κ= 5.11 ±0.05 and xθ = -3.7d and on Figure 3-2 for the data at 

Re 0 = 16,000 with κ = 4.73 + 0.1 and x0=.5d. The value of κ at Re0 = 

16,000 is not as certain as at Re0 = 5,000 because it is based on only 

two downstream measurement locations, x/d = 30 and 90. The

transformation used to collapse the data points is based only on the 

fitted values of κ and xq at each Reynolds number. Separate 

normalizations by the local centerline mean, or concentration profile

radius at half-maximum were not necessary. Figures 3-1 and 3-2 show

that the experimental apparatus and technique produced a turbulent jet

with the accepted general similarity form of the mean concentration 

field. The solid curve on Figures 3-1 and 3-2 is a least squares fit to 

the data at Re 0 = 5, 000.
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r∕(x-x0) = η

Figure 3-1. Mean concentration profile at Re = 5,000.

A comparison of the fitted mean profile with the published profiles

of other experiments is given on Figure 3-3. The digitization of the 

results from the experiments before 1985 plotted on Figures 3-3, 3-4, 

3-7, and 3-8 was performed by Dr. W. Dahm. Similar figures appear in 

his Ph.D. thesis (Dahm 1985) . The agreement between profiles is good 

and the small differences can probably be attributed to the differing 

experimental conditions and techniques of each experiment. Table 3-1 

lists some of the important parameters of the experiments used for
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Figure 3-2. Mean concentration profile at Re0 = 16,000.

comparison with the current studies. The published literature on

turbulent jets is very extensive and the studies in Table 3-1 were

selected based on the following criteria.

1. A coflowing stream must not effect the measurements.

2. The jet must be nonbuoyant over a significant downstream range.

3. The reported measurements must extend beyond x∕d=20.
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Figure 3-3. Comparison of the fitted mean profile with the

results of other experiments

4. The jet Reynolds number must be greater than 2,500.

A comparison of the current and published results for the mean

centerline concentration, C(χ,0), is provided as Figure 3-4. The 

vertical axis is scaled so that the measured data will fall on curves 

that become horizontal when the far-field behavior of the jet is
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Table 3-1 : Turbulent Jet Mixing Experiments

Author ^o Sc or Pr Diagnostic

Becker et al. (1967) 54,000 38,000 Smoke Scattering

Birch et al. (1978) 16,000 0.70 Raman Scattering

Corrsin & Uberoi (1950) 33,000 and † 0.7 Thermometry (air)

Dahm (1985) 5,000 600-800 Laser Induced
Fluorescence

Lockwood & Moneib (1980) 50,000 0.7 Thermometry (air)

Wilson & Danckwerts (1964) 20,000-60, 000 0.7 Thermometry (air)

Papanicolaou & List (1987) 10,000-16, 000 7.0 Thermometry (1^0)

Papanicolaou & List (1988) 2,600 - 3, 600 ~103 Laser Induced
Fluorescence

Present study (1988) 5, 000 & 16, 000 1.0 & 1.2 Rayleigh Scattering

attained. The ordinate of the horizontal portion of the curves occurs

at the value of X. The current data fall within the scatter of the

results from the other experiments.

The Reynolds number above which the mean mixing properties of the

jet become independent of Reynolds number is not yet accurately known.

Dahm et al. (1984), using their own data and the data of Weddell (1952) 

find this threshold to be at about Re0 = 3,000 while the entrainment 

studies of Ricou and Spalding (1961) suggest a value that is roughly an

order of magnitude higher. This means that differences in the reported

values of X, and variations in the shape of the mean concentration

profile could be due in part to Reynolds number effects. For the 

current experiments, the value of x at Reθ = 16, 000 is about 8% lower
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Figure 3-4. Comparison of the scaled mean centerline

concentration with the results of other

experiments.

than that obtained at Re = 5, 000. Further discussion of the

disagreement in the measured values of κ is contained in Chapter 8. If

not controlled, the effects of a coflowing stream, buoyancy forces, and

unsteadiness of the source and reservoir conditions could also influence

the mean profile shape and the value of κ. In the present experiments

these parameters were tightly controlled (see Appendix A).
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3.2 The Root Mean Square Concentration Fluctuation Level

The

data set

root mean square

from:

(rms) fluctuation level was computed for each

rms (3.1)

where N is the number of points in the data set. Figures 3-5 and 3-6

are plots of the current data at Re = 5, 000 and 16,000. The axis 

scaling on each plot and the values of κ and xq are identical to those 

used for the mean concentration profiles at each Reynolds number.

Separate normalization by the centerline fluctuation level was not

necessary. The fact that the rms fluctuation data cluster about a

single curve, in the specific similarity coordinates of the mean 

concentration profile, for both Reynolds numbers, implies that C^,ms and 

C conform to the same specific similarity law and that c^rns∕c is a 

general similarity variable for the jet. This issue will be addressed

further in Chapter 5.

Many previous experimental investigations have not found this

behavior (see discussion in Dahm 1985 and Lockwood and Moneib 1980)

Figure 3-7 is a plot of the centerline fluctuation level divided by the

centerline mean for several experiments. The present data at Re =5,000

and 16, 000 fall on horizontal lines, indicating that the rms and mean

centerline concentration values have the same specific similarity

behavior. The value of C' ∕C on the centerline is found to be rms
.230 ±.007 at Reθ = 5, 000 and .237 ±.005 at Reo = 16, 000. Because the
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Figure 3-5. Root mean square concentration fluctuation level

plotted with the same axis scaling that collapses 

C, at Re0 ≈ 5,000.

resolution requirements in the jet become more difficult to meet when

the distance from the nozzle to the measurement point is decreased (see

Appendix A, Section 1) , the failure of previous studies to find a 

constant value of C^mg∕C on the centerline may be a result of inadequate 

resolution in those studies. The present experiments were designed to

resolve all of the diffusive scales within the jet and do not suffer
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Figure 3-6. Root mean square concentration fluctuation level

plotted with the same axis scaling' that collapses 

C, at Re0 = 16,000.

from such resolution difficulties. This claim will be further supported

in the next chapter.

If the fluctuation levels of other experiments are normalized by

their centerline value, the rms profiles of other experiments can be

compared with the present results. Figure 3-8 is a plot of the curves
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Figure 3-7. Comparison of the centerline rms concentration 

fluctuation level, divided by the mean centerline

concentration, with the results of other

experiments.

fitted to the present data along with similar results from other

experiments. The fact that the collapse on Figure 3-8 is less than

perfect is not surprising because the six experiments plotted were

performed at different Reynolds and Schmidt numbers using different

techniques with varying resolution.
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level, divided by its centerline value, with the

results of other experiments.

An interesting comparison can be made between the present data at 

Re 0 = 5,000 and the results of Dahm (1985), who worked at the same 

Reynolds number, but in a liquid phase experiment where the molecular

Schmidt number is about 600 to 800. Assuming that the spatial

resolution of the experiments were comparable with respect to the
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smallest diffusion scale in each flow, the Batchelor scale (see appendix

A, section 1) , one effect of increasing the Schmidt number seems to be

an increase in the concentration fluctuation level near the edge of the

jet.

This can be understood in terms of the different rates of diffusion

in liquids and gases. The matched Reynolds numbers insure that the

fluid mechanics in both flows will be statistically the same.

Therefore, fluid with a relatively high concentration is tossed to the

edge of the jet with the same frequency in both flows. The edge of the

jet is a region of low mean velocity and shear, so diffusion is

relatively more important in the transport of concentration when

compared to the inner regions of the jet. Diffusive transport, which is 

proportional to √Djoo, proceeds about 20 to 30 times faster in the gas 

phase flow, so local maxima and minima of the concentration field are

smoothed out more quickly. This leads to lower rms values near the

edges of the gas phase jet, when compared to the liquid phase jet, at

the same Reynolds number.

Another interesting comparison is between the present data at 

Re0=5,000 and Re 0 = 16, 000. The increase in Reynolds number causes a 

broadening of the rms profile. This might also be explained using

diffusion-time ideas. Increasing the Reynolds number decreases all of

the time scales in the jet; hence, the high concentration chunks of

fluid thrown to the edge of the jet have less time to diffuse before

being reentrained. This creates larger concentration fluctuations,
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relative to the local mean, near the edge of the jet when compared to

lower Reynolds number flow at the same Schmidt number.

These simple diffusion-time ideas suggest that the flow with the

lowest Reynolds and Schmidt numbers should have the narrowest rms

profile. Figure 3-8 supports this contention since the narrowest rms 

profile comes from the current data at Re0=5,000 and Sc=1.0 .

It is also worth comparing the current data at Re = 16, 000 and the

results of Birch et al. (1978), who worked at the same Reynolds number

and nearly the same Schmidt number. The mean values and profiles from

both experiments agree reasonably well but the rms results do not. The

disagreement in the rms profile might be the result of resolution

problems (see discussion below). The mismatch of the centerline rms

levels at the farthest downstream locations (see Figure 3-7) might be

due to the influence of buoyancy forces in the experiments of Birch et

al.

The parameters of the jet flow can be used to form a buoyancy 

length scale, Lj3, and a buoyancy criterion (see Papanicolaou and List 

1987 and 1988, Chen and Rodi 1980, or Appendix A, Section 5) . The

result for the flow of Birch et al., ≈ 55 d, suggests that their jet

may not be momentum-dominated beyond x∕d=55 and is possibly in a

transitional state between momentum-driven and buoyant beyond about 

x/d=30. By comparison, L^/d for the present experiment at Reθ = 16,000

is about 440.
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Returning to Figure 3-8, it can be seen that the peak values of the

rms profiles do not coincide. While this might be the result of Schmidt

and Reynolds number effects, resolution difficulties near the centerline

could also cause the observed differences between experiments. At a

given downstream distance, the passage frequency of diffusive scales is

greatest where the convection velocity is the greatest (the jet

centerline) . As the measurement point is moved toward the edge of the

jet, the convection velocity decreases, so the bandwidth necessary to

capture all of the fluctuations is smaller. If the estimated rms value

on the centerline is low, possibly because of insufficient measurement

time/space resolution, the rest of the rms profile is elevated when

normalized by the artificially lower value.

3.3 Shadowgraph Flow Visualization

For several reasons, the shadowgraph method was the preferred

visualization technique for this flow. It could be successfully applied

to the mixing region of two clear gases, was optically clean (no smoke,

dust or vapor was needed), and was capable of large aperture imaging at

low cost. The shadowgraph system for this experiment exploited the 3'

by 5, windows on opposite sides of the test section, a 200 watt arc

lamp, a first-surface mirror (17" by 30") and a rear-projection screen.

Photographic recording of the images produced on the screen were

realized using a 90 mm lens, a Nikon FE 35 mm camera, and ASA 400 black

and white print film. Figure 3-9 is a schematic of the set up.
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Cameraα

Figure 3-9. Schematic of the shadowgraph setup.
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The shadowgraph image was formed as the spherically diverging white

light from the arc lamp was refracted by index of refraction gradients

at the interfaces between the jet and reservoir gases. The gases 

selected for the jet and reservoir for their Rayleigh scattering

properties were also good choices for the shadowgraph technique. A more

complete description of shadowgraph flow visualization can be found in

I∣iepmann and Roshko (1957).

Figures 3-10 and 3-11 are shadowgraph pictures of the jet at 

Re0=5,000 and 16,000. The visible full angle of the cone of turbulence 

is about 23° to 24° in both cases. The field of view is from 0 to 40 

jet exit diameters for the picture at Re0=5,000 and from 0 to 100 jet 

exit diameters for the picture at Re =16,000. The portion of the flow

that is imaged in Figures 3-10 and 3-11 covers about half of the test

section's length and less than one-third of its width.
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Figure 3-10. Shadowgraph picture of the jet at Reθ = 

0 ≤ x/d ≤ 40 .

5,000 for
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for 0 < x/d ≤ 100 .
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CHAPTER 4

POWER SPECTRA OF CONCENTRATION FLUCTUATIONS

4.1 Normalization and Scaling of Jet Spectra

The power spectrum of concentration fluctuations, E^(f), was 

calculated from each of the sampled data sets using the method described

in Appendix C. The overall normalization chosen was:

E (f) df J /z = C' , 
c j rms (4.1)

which makes the connection between the power spectrum and the rms level

of each data set. The independent variable is the frequency, f (in

Hertz).

If the spectra have the same similarity as the mean concentration,

they should collapse when scaled by the mean concentration and an

appropriate time scale. The unsealed spectra have the units of

concentration squared, multiplied by time (see Equation C.l). The time

scale chosen, τ , is defined by:D

τ°' 5 (4.2)
cl

where D is the local diameter of the jet's turbulent cone (see Figure 

1-1), and U is the estimated mean centerline line velocity calculated

from the formula suggested by Chen and Rodi (1980) . should be the 

largest time scale associated with the jet flow for any particular 

downstream location. The actual numerical expression used to compute τ
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is given in Appendix A, Section 4.

In the far field of the jet, the local diameter grows linearly with

(x-x0) and the centerline velocity decays like 1/(x - x0) , so τβ is 
2proportional to (x-xθ) . Because there is a single Reynolds number 

associated with the far field of the jet, the general mean-flow 

similarity actually dictates that all jet time scales, which are related

by a power of the Reynolds number, will have a quadratic dependence on

the downstream coordinate. For example, the passage time of the

Kolmogorov scale, τ , also increases quadratically with (x - x ) and is κ o
-3∕related to by a factor of Re 0 4.

The plots presented in the next section display E (f) on the c
-2vertical axis divided by the local value of C ∙τ , and f on the 

horizontal axis multiplied by Tq . This scaling makes both axes 

dimensionless. The spectral plots were made in log-log coordinates, so

the numerical factors involved in computing the time scale, τ , only

shift the plots relative to the numerical values on the axes and do not

affect the spectral shapes. Consequently, other time scales with the

same quadratic dependence on the downstream coordinate will produce

same collapse seen in the spectra presented on Figures 4-1 to 4-6.

the
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4.2 Thé Measured Spectra at Reynolds Number 5,000 and 16,000

For the data at Re0=5,000, the power spectra of the concentration 

fluctuations at x/d = 20, 40, 60, and 80, along the three rays at 

r∕(x-x0) = 0 (centerline), .06 (3.40 off the centerline) and .12 (70 off 

the centerline) are plotted on Figures 4-1, 4-2 and 4-3. The visual

(f)
∕(τ

0

102 JO1 10θ ιo1 ιo2 ιo3 ιo4 

f'τD

Figure 4-1. Scaled power spectra of the concentration 

fluctuations on the jet centerline at Re0 = 5,000.

edge of the jet is about 12° from the centerline (e.g., White 1974, or
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(f)

∕(T

Figure 4-2. Scaled power spectra θf the concentration 

fluctuations 3.40 off the jet centerline at Re0 = 

5,000.

Chapter 3, Section 3) . The nearly horizontal region of the spectra at 

the high values of f’T is the nois® floor produced by the first stage 

of amplification in the photo-detection system. The small bumps that 

occur in the "noise-tails" are at the scaled values of 60 Hz, 120 Hz, and

360 Hz .
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Figure 4—3. Scaled power spectra of the concentration 

fluctuations 7 off the jet centerline at Re0 ~ 

5,000.

The spectra collapse well in spite of the modest Reynolds number of 

the flow. Deviations, which are more evident as the edge of the jet is

approached, are believed to be mainly due to decreased statistical

convergence. In particular, for a fixed run time at a given downstream

location, the total mass of fluid that passes through the focal volume
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is roughly proportional to the local mean velocity. Consequently, the

effective sample size of the run is smaller near the edge of the jet,

where the mean velocity is lower. Other reasons for the deviations 

could be small variations in Re0 from run to run, which slightly shift 

the frequency content of the jet's spectra, and minor angular

differences (±.20) of the measurement locations from the exact positions 

along a given ray. The quality of the collapse displayed on Figures

4-1, 4-2, and 4-3 for the spectra of concentration fluctuations and

Figure 3-5 for C' is strong verification that C' and C have the same rms rms

specific similarity throughout the jet. Ε^(ί) and c^ms are rθlatθd

through Equation (4.1), so Figure 3-5 is an integral measure of the

specific similarity of E (f).c

The adequacy of the temporal resolution of the measurements is

evident in the spectra through the "noise-tails." The adequacy of the

spatial resolution can also be inferred from the spectra. The diameter

of the sensitive area of the photodiode utilized in each experiment, ∆y,

can be used along with U to create an equivalent passage frequency, cl
f , for length scales of size ∆y (f = U 1∕∆y) . For the plotted data on e e cl
Figures 4-1 to 4-3,. fe'τ0 is greater than or equal to 650, so if there 

was any effect on the measurements from the finite spatial resolution of 

the detection system, it would be manifest in the spectra for f∙τo> 650. 

Because this region of the spectra falls within the "noise-tail" for all 

of the plotted results, the portion of the spectra at frequencies below 

f-TD = 650 and above the noise level are believed to be free of any 

resolution difficulties.
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The value of the scaled. Kolmogorov length-scale, passage frequency,

f ∙τ , which should be the same as the scaled Batchelor length-scale, K D
passage frequency, f ∙τ , at Sc = 1.0 (Batchelor 1959, Monin and Yaglom B D
1975), was calculated from the reservoir kinematic viscosity, v∞, the

formula for the centerline energy dissipation rate, ε, suggested by

Friehe et al. (1971), and U ,, in particular:cl

f =U1(^ 
K cl' v3 > or f ∙τ = 1.12 Re. = — (4.3)K D K

The numerical value of f ∙τ is about 670 at Re = 5, 000. At high K D
Reynolds number and a Schmidt number of order unity, the spectrum of

turbulent scalar fluctuations should display a - 5/3 power-law region

and the Kolmogorov (Batchelor) length-scale, passage frequency should

roughly correspond to the high frequency end of this region (Batchelor

1959, Gibson 1968, Monin and Yaglom 1975). While the plotted spectra

are clearly not from a high Reynolds number flow, the scaled frequency

range in which they begin to fall more rapidly than a constant power-law

is more than an order of magnitude lower than 670. This discrepancy

between the measured and calculated break points has also been reported

by Clay (1973), who worked with data from a heated jet at a Reynolds

number of almost 10 .

At the low frequency end , f∙τ ≤ 1, the spectra are approximately

flat or show a mild peak in the range .1 < f∙T < 1 ∙ While this

behavior is consistent with the passage of structures whose scale is

approximately the same as the local jet diameter, the most general

conclusion to be drawn is that the fluctuations that occur at
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frequencies below 1∕td do not have a greater amplitude than those that 

occur neâr’l/x^. Consequently, the turbulent cascade at this Re 0 must 

start near f∙≈ 1.

It is also worth noting that although the spectra collapse along

rays when scaled by the mean concentration and τ , the spectra are

different from ray to ray. In particular, the spectra along the ray at 

70 show a longer power-law region with a slope closer to -5/3 than 

those for the inner rays. This latter behavior is also apparent in the

spectra of Lockwood and Moneib (1980) at x/d = 20 in a heated air jet at 

Re0=50,000. A more complete comparison with other experimental results 

will be presented in the next section.

For the data recorded at Re0 = 16, 000, the spatial and temporal 

resolution specifications, employed for the runs at Re0 = 5, 000, were 

relaxed by about a factor of 3. These adjustments were made based on

the results of the Re ≈5,000 studies in order to take greater advantage

of the experiment's diagnostic capabilities. The changes position the

calculated value of f ∙τ, right near the low frequency edge of the e d
spectral "noise-tails" for the results at Re0 = 16, 000 .

The spectra from the data taken at Re0 = 16, 000 are displayed on 

Figures 4-4, 4-5, and 4-6 for x/d = 30 and 90 along the rays r∕(x - x ) ≈ 

0, .06, and .11 (6.3° off the centerline). The slopes of the diagonal

lines on these Figures were chosen by eye and do not have a theoretical

backing. The axis scaling used in these plots is the same as for the
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H)
∕(

τ

Figure 4-4. Scaled power spectra of the concentration 

fluctuations on the centerline of the jet at Re0 = 

16,000.

lower Reynolds number spectra except that the value of xq used to

compute τβ was derived from the mean-concentration profile collapse at

Re 0 = 16, 000. The quality of the collapse means that all of the

conclusions from the lower Reynolds number concerning the specific

similarity of C, and E (f) remain valid at Re „ = 16,000. As before, rms c 0
incomplete statistical convergence, fluctuations in Reθ, and imperfect
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Figure 4-5. Scaled power spectra of the concentration 

fluctuations 3.40 off the jet centerline at Re 0 = 

16,000.

angular alignment are probably responsible for the deviations from a

perfect collapse. The value of f ∙t is about 490 for the data from x/d e D
= 30 and about 580 for the data from x/d = 90. The estimate for f ∙T K D
is 1,590 for Re0 = 16, 000 .
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(f)
∕(τ

Figure 4-6. Scaled power spectra of the concentration 

fluctuations 6.3° off the jet centerline at Re0 = 

16,000.

These spectra show the same general shapes as those at Re0 = 5,000 

except for the appearance of a longer power-law regions, which extend 

the high frequency range of the spectra. The slope of the power-law 

region steepens as the edge of the jet is approached. The spectra from

the centerline appear to have a slope of about -1.4, which decreases to
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-1.5 on the ray at r∕(x-x0) = .06, and the straightest part of the

spectra from the ray at r∕ (x - xq) = .11 has a slope close to -5/3. The 

precise reasons for the emergence of power-law regions with powers other

than - 5/3 are unknown and will be discussed further in Section 4 of

this chapter. The low frequency end of the spectra has the same

behavior as the spectra at the lower Reynolds number.

4.3 Comparison of Scalar Power Spectra with Jet Scaling

Figures 4-7 and 4-8 display the measured spectra from this

experiment and other related jet experiments on the centerline and at 

r∕(x-x0) = . 12 . The scaling of the axes used in Figures 4-1 to 4-6 

was retained because of the quality of the spectral collapse it produced 

at two different Reθ over a range in x/d of 20 to 90. The parameters 

necessary to scale the spectra from other experiments, and make them

satisfy the overall normalization (Equation 4.1), were taken from the

author's papers in all but one case. The vertical location of the

spectrum of Clay (1973) could not be determined because he did not 

include C'^ among his results, nor report spectral values near 

f ∙ xd = 1, where the other spectra seem to coincide (see Figure 4-7) . 

The vertical location of Clay's spectrum on Figure 4-7 was chosen to

match that of the spectrum of Becker et al. (1967), whose Reynolds

number of 54,000 was closest to that of Clay's.
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Figure 4-7. Comparison of the centerline concentration

fluctuation power spectra to the results of other

experiments with jet parameter scaling of the

axes .

For the centerline spectra (Figure 4-7), the current results and

those of Becker et al. agree quite well for f∙τ less than unity. This

implies that the total amount of scalar fluctuation energy at the

largest scales, with these normalizations, is independent of Re, beyond
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(f)
∕(τ

Figure 4-8. Comparison of the concentration fluctuation power 

spectra from -7 0 off the centerline to the results 

of Lockwood and Moneib (1980) with jet parameter

scaling of the axes.

Re 0 = 5, 000 . The centerline spectrum of Lockwood and Moneib (1980) 

probably falls below the others in this frequency range because their

reported centerline rms level at the downstream location, where they

measured their spectra (x∕d = 20), is low (C' =.16C).rms
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The spectra of Becker et al. and Clay follow a -5/3 power law over

a significant range, where as the results of the current studies do not.

This may be due to Reynolds number effects, as will be seen more clearly

in the next section. The spectrum of Lockwood and Moneib does not

entirely coincide with that from Becker et al., even though their

Reynolds nuιpbers were very close. Table 3-1 contains the relevant

parameters for these experiments. The observed mismatch might be the

result of a resolution problem of some kind, since it is doubtful that

the Schmidt number, which differed widely in these two studies, can

affect the scalar fluctuation spectra at frequencies well below the

dissipation range. It is worth noting that if the centerline spectrum

of Lockwood and Moneib is raised so that its level is the same as that

of the other spectra at f∙T « 1, it would be a close match with the

current spectrum for Re =16,000.

Regardless of the exact spectral shapes or levels, two Reynolds

number effects can be seen in Figure 4-7. The spectral level falls with 
2increasing Reynolds number in the range lkf-t^klO until a -5/3 

power-law behavior is reached. This power-law region matches smoothly 

to the ReynoIds-number-independent, spectral level below f’Tp ≈ 1∙ The 

second effect is the movement of the break point, which is interpreted

as the beginning of the dissipation range, where the spectrum starts to

fall faster than a - 5/3 power-law, to higher frequency, as the Reynolds

number is increased. The spectrum from Lockwood and Moneib was computed

from data that were filtered above f■≈ 50, and therefore breaks from

- 5/3 behavior at a lower frequency than expected.
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If the dissipation break point is defined as the location at which

the slope Of the spectrum reaches -2, then, ignoring minor fluctuations, 

the break points of the current spectra are at log^if-T^) = 1.37 and 

1.73 for Re0=5,000 and 16,000, respectively. The difference of these 

two is .36, which compares well to the logarithm of the expected ratio

of Kolmogorov (Batchelor) length scales (see Equation 4.3), 

3∕4log^θ (16, 000/5, 000) = .38 . The dissipation break points of the

spectra of Becker et al., and Lockwood and Moneib were not measured by

these authors. Clay's dissipation break point is near

log^θ(f∙τθ) ≈ 2.9 . The logarithm of the expected ratio of Batchelor

scales for his flow and the current results at Re0 = 16, 000 is

3∕4log1θ (800, 000/16, 000) = 1.27, which compares reasonably well with the 

observed difference in location, 2.9-1.73 ≈ 1.17, of the break points

of the spectra. The mismatch may result from Schmidt (Prandtl) number

effects. A further discussion of this issue is taken up in the next

section.

The present results for the location of the break point on the

centerline concentration fluctuation spectra can be used to correct the

dimensionless constant in the Kolmogorov length-scale, passage frequency

formula :

K'measured .0343 ± .006 U
oo

(4.4)

or equivalently,

l ■ τK'measured D (4.5)
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Spectra for the ray at r∕(x-x0) ≈ .12 are depicted in Figure 4-8. 

The differences between the present results and those of Lockwood and

Moneib are most likely due to differences in experimental resolution and

possible misalignment with respect to the chosen ray. As mentioned

before, the length of the portion of the spectra with a nearly constant 

slope is longer at higher values of Re0, and the spectra from the 

present data display a longer - 5/3 range when compared to the spectra

from the centerline at the same Reynolds number.

4.4 Comparison of Scalar Power Spectra with Universal Scaling

Figure 4-9 is a plot of the current centerline spectra at both

Reynolds numbers with the spectrum of Clay (1973) in the universal

Kolmogorov coordinates suggested by Gibson (1968 II) . The following

definitions apply:

Γ(k)
Γκ(k) = ----  = Universal

Σκλκ
scalar spectrum (4.6)

,∞
with Γ(k) dk = C, ,J rms0

k = wave number (4.7)

λ =K
I v 3 ∖ V
y -=? ) 4 = Kolmogorov 

ε length scale, (4.8)

k = λ ■ k = λ ∙ 2πf U † ≈ 2π(f∙τ ) (λ ∕D) = dimensionless wave number, (4.9) 
K K K C± D K

2 _ ( V ∖ 1∕ 2Σ._ = ε τ≈ j 2 = (Kolmogorov scalar scale) ,K ε

- -~2 I ∙ 2 ∖ε = 6D, U 1 IC(t) I = estimated scalar dissipation rate, c . j∞ cl ' ,

(4.10)

(4.11)
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Figure 4-9. Comparison of the centerline concentration

fluctuation power spectra to the results of Clay

(1973) with universal Kolmogorov coordinate

scaling of the axes.

Most of these symbols and definitions are the same as those used by Clay

(1973) . The universal Kolmogorov scaling of the spectrum is related to 

the jet parameter scaling on Figures 4-1 to 4-8 by:

U
Γ(k) cl E (u ∙ — ) . 

c' cl 2π (4.12)
π
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The estimated scalar dissipation rate, ε^r is the subject of Chapter 7.

D, is the diffusion coefficient of jet gas into reservoir gas. ε and J∞
U , are estimated from Friehe et al. (1971) and Chen and Rodi (1980), as cl
was explained earlier.

The universal coordinates should collapse spectra with different

Reynolds numbers, but with the same Schmidt number, in the dissipation

range. The wave number scaling of the horizontal axis puts the value of

k corresponding to the Kolmogorov length scale at k = 2π. Gibson's κ κ
theory predicts that Γ (k) in the dissipation range should shift to κ
higher wave numbers as the Schmidt (Prandtl) number is increased. This

shift is predicted to be proportional to the square root of the Schmidt

(Prandtl) number ratio, when two flows with different Schmidt (Prandtl)

numbers near unity are compared. Clay's spectrum is from a heated jet

with Pr =0.7 . The current results from Re = 5,000 and 16,000 are for

Sc = 1.0 and 1.2, respectively. The shift in log (k ) between the lu K
current spectra at Re0=5,000 and Clay's spectra near k^ ≈ 1 on 

Figure 4-9 is slightly less than a tenth of a decade. This difference

compares well to Gibson's theory, which would predict a shift of 

l08 = 1∕2log1θ (1.0/.7) . The predicted shift in log^θ (kR) between the 

current spectra at Reθ = 5,000 and 16, 000 is .04 = 1∕2log^θ (1.2/1.0) . In 

this case it is difficult to determine the actual shift precisely, but

it appears to be very near the predicted value.
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The universal collapse shows that Re0 = 5, 000 and. 16, 000 for the 

turbulent jet are not high enough to produce an inertial range in the

measured scalar power spectra. Because Clay's spectrum and the spectrum

of Becker et al. (see Figure 4-7), which were measured at much higher 

values of Re0, do display an inertial range, it must be concluded that 

the rounded spectrum at Re θ = 5, 000 and the -1.4 power-law, found at Re 0 

= 16,000 on the centerline of the jet, are artifacts of the particular

values of Re0∙ It is possible that the -1.4 slope at Re 0 = 16,000 

might result from the near coincidence of the end of an "immature"

turbulent cascade with the beginning of a dissipation range bump in the

centerline spectrum.

Even though the current Reynolds numbers were not high enough to

produce a classical inertial range cascade, Figure 4-9 shows that at

scales in the dissipation range, the results from these studies match

the predicted universal similarity behavior when compared to the

dissipation range of Clay's spectrum. This feature of the current

measurements implies that the results presented in Chapter 7 for the 

scalar dissipation rate might apply to flows with Reynolds numbers well

above 5,000 or 16,000.
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CHAPTER 5

PROBABILITY DENSITY FUNCTION OF CONCENTRATION

The power spectrum of concentration fluctuations for each data set

was used to estimate the optimal filter (Wiener 1949) for that data set,

following the procedure formula given by Press et al. (1986). After

each data set was filtered, a histogram of the instantaneous

concentration divided by the the local mean concentration, C/C, was

compiled by sorting the data into bins. This histogram was normalized;

i.e.,

I PDF (C/C) d(C∕C) = 1, (5.1)
0

to form a probability density function, PDF(C/C). The variable, C/C,

was chosen because dividing C by C should remove the effects of the mean

downstream concentration decay At a fixed Reynolds number, the

probability density function of C/C should depend only on r∕(x - x ), if

the statistical properties (higher moments) of the distribution of

concentration fluctuations in the jet follow the same specific

similarity as the first moment, C.
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5.1 Results at Reynolds Number 5,000 and 16,000

Figures 5-1, 5-2, and 5-3 display the measured probability density 

functions of C/C along three rays at r∕(x-x0) ≈ 0, .06, and .12 for 

x/d = 20, 40, 60, and 80 at Re0 = 5,000. The quality of the collapse of
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(C/C)

Figure 5-1. Probability density function of the scaled 

concentration on the jet centerline at Re 0 =

5,000.

the distributions along rays implies that C/C is the proper specific
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Figure 5-2. Probability density function of the scaled 

concentration 3.40 off the jet centerline at Re0 = 

5,000.

similarity variable and that the moments of the PDF(C/C) are independent

of the downstream position in the jet. For example, the square root of 

the second moment of each PDF, taken about C/C = 1, is C^∏ιs∕C, which was 

previously shown to depend only on r∕(x-x0) (see Figure 3-5 and the 

discussion in Chapter 3, Section 2). Slight imperfections in the 

collapse are believed to be due to incomplete statistical convergence
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Figure 5-3. Probability density function of the scaled 

concentration 70 off the jet centerline at Re =

5,000.

and possible imperfect alignment of the measurement point with respect

to the chosen ray.

Figures 5-4, 5-5, and 5-6 display the measured probability density

functions of C/C along three rays at r∕(×-×0) ≈ .00, .06, and .11 to

.12 for x/d = 30 and 90 at Re0=16,000. The quality of the collapse is
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Figure 5-4. Probability density function of the scaled 

concentration on the jet centerline at Re0 =

16,000.

good, implying that the proposed specific similarity variable, C/C, for 

the PDF is a general similarity variable, even though the actual shape

of the PDF might depend on ReQ. The Reynolds number dependence of the 

shape of the PDF of C/C and its consequences are discussed in Sections 2

and 4 of this chapter. Imperfections in the collapse at this Reynolds

number may be attributed to the same problems mentioned above.
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Figure 5-5. Probability density function of the scaled 

concentration 3.40 off the jet centerline at Re =

16,000.
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Figure 5-6. Probability density function of the scaled 

concentration 6.3° to 70 off the jet centerline at 

Re0 = 16,000.
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5.2 Reynolds Number and Schmidt Number Comparisons

Figure 5-7 is a comparison of the centerline PDF at the two

Reynolds numbers. It was created from Figures 5-1 and 5-4 by averaging

and smoothing the histograms. The differences in the two distributions

Pr
ob

ab
ilit

y D
en

sit
y

C/C

Figure 5-7. Averaged and smoothed probability density

functions of the scaled concentration on the

centerline of the jet at Re 0 = 5,000 and 16,000.

on Figure 5-7 are not large and are difficult to identify in the
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statistical scatter of the individual histograms on Figures 5-1 and 5-4. 

This is also the case for the PDFs along the rays at r∕(x-xθ) = .06 and 

.11 to .12 . The principal difference seen on Figure 5-7 is that the 

PDF from the jet at Re 0 = 16, 000 is slightly wider and a little shorter 

than the PDF from the jet at Re0 = 5,000. This is consistent with the 

slightly higher value of C^ms∕C on the centerline at the higher Reynolds 

number.

Even though the estimated PDFs are in close agreement at both 

values of Reθ, the details of the mixing are not necessarily independent 

of Reynolds number. In particular, the value of the mean concentration

decay constant, κ, is about 8% larger at Re =5,000 than at Re = 16,000

(see Chapter 3, Section 1), and because the variable C/C removes this

difference, comparisons between Figures 5-1 to 5-3, and 5-4 to 5-6

conceal this discrepancy. Additionally, the "inertial-range" portion of 

the power spectra of concentration fluctuations depends on Re0, at least 

to values near 50,000 (see Chapter 4), so perhaps PDF(C/C) does also, if

only to a small extent.

At least one Schmidt number effect can be identified in PDF (C/C)

when the current results at Reθ = 5, 000 are compared to those of Dahm 

(1985), who worked at the same Reynolds number but at Sc≈600 to 800. 

He found pure reservoir fluid on the jet centerline a small fraction of 

the time. This is not the case for the current study in gas phase jets.

Pure reservoir fluid, C/C = 0, was never found on the centerline in the 

Re 0 = 5, 000, Sc = 1.0 jet.
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5.3 The Structure of the Probability Density Function

Figures 5-8 to 5-13 display time histories of the optimally

smoothed concentration and the resulting accumulated PDF of

concentration. The time span over which each PDF was accumulated is

written at the top of each PDF plot. The displayed data on each Figure

start from the same place in the chosen data sets so that the traces

cascade from one plot to the next. For example, the top trace on Figure

5-9 corresponds to all of the data plotted on Figure 5-8 and the top

trace on Figure 5-10 corresponds to all of the data plotted on Figure

5-9. The same pattern applies to Figures 5-11 to 5-13. Figures 5-8 to

5-10 are from the centerline of the jet at x/d = 60 and Re = 5, 000.

Figures 5-11 to 5-13 are from the centerline of the jet at x/d = 90 and 

Re 0 = 16, 000. In all of these plots, time is normalized by TD. The 

differences in the actual concentration levels on these plots are not

important since the PDF is self-similar in the mean.

Both sets of plots show that the PDF of concentration is basically

composed of many "spikes" of concentration. The "spikes" arise from

portions of the data in which there is very little variation in

concentration. Comparison of the shapes of the final PDFs on Figures 

5-10 and 5-13 with the shape of the centerline similarity PDF, Figures

5-1 and 5-4 or Figure 5-7, shows that the convergence to a mean PDF is 

incomplete even after 16td∙ It is also worth noting that within a 

particular large scale time, there are perhaps only about half a dozen

individual concentration levels being mixed by the jet turbulence. This

is best seen on the top plots of Figures 5-9 and 5-12, where the PDFs
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Figure 5-8. Time traces of c<t) and accumuιated PDFs at Reθ =

5,000 on the jet centerline with about .25 tD per 

line.

accumulated from a single large scale time are plotted.

Figures 5-8 to 5-13 also point out two differences in mixing at 

these two values of Re0. The PDF of concentration appears to converge 

to a smooth shape more quickly at Re 0 = 16, 000 than at Re 0 = 5, 000, and 

the mixing at Re0=16,000 takes place along a larger number of
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'⅛

Figure 5-9. Time traces of C(t) and accumulated PDFs at Re0 =

5, 000 on the jet centerline with about 1 τβ per 

line.

concentration gradients, per large scale time, than at Re =5,000. The 

latter of these differences is consistent with the increase in Reθ.
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Figure 5-10. Time traces of C(t) and accumulated PDFs at Re = 

5, 000 on the jet centerline with about 4 Xq per

line.
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⅜ '

Figure 5-11. Time traces of C(t) and accumulated PDFs at Reθ = 

16, 000 on the jet centerline with about .25 τβ

per line.
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Figure 5-12. Time traces of C(t) and accumulated PDFs at Re = 

16, 000 on the jet centerline with about 1 τβ per

line.
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Figure 5-13. Time traces of C(t) and accumulated PDFs at Re0 = 

16,000 on the jet centerline with about 4td per

line.
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5.4 Implications for Turbulent Jet Mixing

The structure and shape of the probability density function of jet

gas concentration at these two Reynolds numbers can be used to draw a

few conclusions about turbulent jet mixing. The most important 

conclusion is that for the central part of the jet, 0 ≤ r∕(x-x0) < .12, 

the amount of molecularly mixed fluid, when scaled by the local mean

concentration, is essentially independent of Reynolds number in the

range studied. Even though there are fewer small-scale fluctuations per 

td at Re 0 = 5,000 when compared to Re0 = 16, 000, the diffusion layers

are thicker so that the tabulated amount and composition of the

molecularly mixed gas, normalized by the local mean, is almost the same

at the two Reynolds numbers.

This is not true at the edges of the jet, r∕(x-x0) > .12, where 

the rms levels, which are a measure of the width of the PDF of 

concentration, depend on Re 0 and Sc (see discussion in Chapter 3, 

Section 2). This radial dependence of the amount of mixed fluid at

different Reynolds and Schmidt numbers can be seen in the current data

by comparing the ratio of the local mean mixed fluid concentration and 

the local mean concentration, Cm∕C, along rays near the edge and near 

the centerline, of the jet at the two Reynolds numbers. The local mixed

fluid concentration was computed from the measured PDFs by ignoring the

contribution of concentrations that were less than 5% of the local mean.
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oo
j (C/C) PDF(C/C) d(C∕C)

_ _ -05
Cm∕C = ----- -------------------- (5.2)

OO

j PDF(C/C) d(C∕C)
.05

Table 5-1 displays the values of Cm∕C computed from the measured 

distributions. The values at η ≈ .18 are not as reliable as for the

Table 5-1 :

η = .00

Re 0 = 5, 000 1.00

Re0 = 16,000 1.00

other 3 rays.

Values of t~⅛∕C

.06 .12 ~.18

1.001 1.016 1.11± .05

1.001 1.035 1.16 ± .05

If the 8% difference in the mean concentration decay rate between

Reynolds numbers is ignored, then the observed Reynolds number

near-independence of the mixing would be consistent with the flame

length studies of Weddell (1952) and Dahm et al. (1984) . Their work 

points to Reθ ≈ 3,000 as the threshold where the degree of molecular 

mixing in the jet becomes independent of ReQ. In fact, all of the 8% 

difference in κ should not be ignored. It should be recognized that the 

flame length conclusions of Dahm et al. and Weddell require only that 

the high-concentration end of the PDF of C/C becomes independent of Reθ, 

beyond Re0≈ 3,000. Figure 5-7 shows that there is a slightly greater 

abundance of the high concentrations in the Re0=16,000 jet than in the 

Re0=5,000 jet. This increased abundance at high C/C, however, offsets
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part of the 8% loss in mean concentration when a flame length is

estimated from the measured PDF of C/C. It must be mentioned that only

the maximum flame length can be estimated from the PDF of C/C because

the the process of compiling the PDF removes temporal information, and

only resolves the highest concentration excursions.

Figure 5-14 is a comparison of the flame length measurements of

Dahm et al. (1984), with the maximum flame lengths estimated from the

current mixing experiments. This was done by assuming that, if an

infinitely fast reaction was to take place between the jet and reservoir 

gases, then the farthest downstream occurrence of the stoichiometric

mixture ratio for the reaction, φ , would mark the flame tip. Because

of the statistical error in the PDFs at very high values of C/C, the

calculations for Figure 5-14 were made assuming that a small percentage

of gas was left unreacted at the flame tip. Of course, the actual 

percentage of gas left unreacted at the flame tip is zero.

The stoichiometric mixture ratio of the presumed reaction, φ = the 

number of parts of reservoir fluid needed to complete a reaction with 

one part of jet fluid, was estimated from the PDFs on Figure 5-7, using:

1 - C*Φ c
(5.3)

where (C∕C)* was determined from:

and

100
oo

(C/O*
PDF (C/C) d(C∕C) I = % unreacted @ the flame tip, (5.4)
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300

Figure 5-14. Comparison θf flame lengths reported by Dahm et 

al. (1984) with those estimated from the measured 

PDFs of this study.

C = κ Co d ∕ (x - xq) , (5 .5)

with κ and x0 as specified in Chapter 3, Section 1. Substitution of

Equation (5. 5) into Equation (5.3) yields a formula * tfor φ in terms of
(x - x0) ∕d*, which can be inverted to give the expected value of
(x-xfl)∕d* at the flame tip for a given φ*.
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(⅛)
flame tip

= ( = )*κco <φ* + l) (5.6)

Figure 5-14 shows the results at both of the current Reynolds

numbers for two assumed values of the percentage of fluid left unreacted

at the flame tip (.01% and .1%). The current predictions fall about 15%

percent short of the measurements of the maximum flame length made by

Dahm et al. (1984) . A portion of this discrepancy can probably be

ascribed to the fact that the current predictions were not made for 100%

completion of the presumed reaction (zero percent unreacted). Perhaps

the rest of the discrepancy can be attributed to the large difference in

Schmidt number between the jet flows compared on Figure 5-14. Dahm

worked with liquid phase jets at Sc ≈10 and the current studies are for

Sc ≈ 1. Broadwell (1987) suggests that there should be a Schmidt number

effect in jet mixing if the Reynolds number is low enough, so it is

possible that the jet Reynolds numbers depicted in Figure 5-14 are not

high enough to entirely eliminate a Schmidt number dependence of the

flame length. It is worth noting that if the flame length does depend

on the Schmidt number in the Reynolds number range presented on Figure

5-14, then the longer maximum flame length at the greater Schmidt number

is consistent with the ideas presented by Broadwell. For the current

studies, some of the disagreement between Reynolds numbers shown on 

Figure 5-14 might result from an error in the value of κ at Reθ = 16,000 

(see Chapter 3, Section 1).
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As mentioned, in the context of the mean concentration profile

(Chapter 3, Section 1), the entrainment studies of Ricou and Spalding 

(1961) suggest that the threshold Re0 for Reynolds number independent 

behavior of the jet's entrainment rate of reservoir fluid is about

25,000. Unfortunately, they only made measurements from the jet origin

up to x/d ≈ 14 and 2 6 so their results may not be free of near-field

effects. Their measurements also show that the jet entrains relatively 

less reservoir fluid as Re0 is increased. This is in clear contrast to 

the measured change in κ of the present studies, so a better

understanding of the issues discussed here awaits new results.

A final conclusion, which does not depend on a subtle

interpretation of Figures 5-1 to 5-6, is that the mixing process in the

jet, when elucidated through the probability density function of jet

fluid concentration, has the same specific similarity as the mean

concentration of jet fluid. This can be concluded because the shape of

the PDF of C/C, at a fixed Reynolds number, is found to depend only on 

r∕(x-xθ). Additionally, the quality of the collapse achieved for the 

PDF of C/C, at two different values of Reθ, suggests that C/C is the 

correct general similarity variable for the mixing process in the jet.
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CHAPTER 6

THE TIME DERIVATIVE OF CONCENTRATION

The statistics of the time derivative of the concentration are

important in this study as a check of the local isotropy of jet mixing

because local isotropy is one of three assumptions that allow the scalar

dissipation rate (or local mixing rate) to be estimated from 
2measurements of (dC∕dt) . The probability density function of dC/dt

will be symmetric about dC/dt = 0, if the jet's turbulent concentration

field is isotropic. It must also be mentioned that a description of the

statistics and specific similarity of dC/dt is a necessary step on the

computational path that starts with a time series of C(t) and ends at 

the estimated scalar dissipation rate, Ec(t), the subject of the next 

chapter.

The time derivative of concentration was computed from the

optimally filtered data by convolution with the derivative of a

Gaussian. The temporal width of the Gaussian was chosen to be less than

that of the optimal filter kernel to prevent additional filtering of the

data while the derivative was being computed. This convolution

technique was chosen because it allowed the time derivative to be

computed through an integration. Further discussion of the technique is

contained in Appendix E, Section 4.
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In accordance with the specific similarity found for the other

properties of the jet turbulence (see Chapters 3, 4, and 5), dC/dt was

scaled with jet variables to make it dimensionless. This meant

multiplying by and dividing by C. The statistical properties of 

(dC/dt) (τ^/C) should depend only on r∕(x-xθ), if dC/dt has the same 

specific similarity behavior as the other statistical measures of the

turbulent jet concentration field. To check this contention, the 

probability density function of (dC/dt)(Td∕C) was compiled from each 

data set by sorting the instantaneous values into histograms and

comparing different downstream locations. The histograms were

normalized, i.e.

PDF(γ) dγ = 1 (6.1)

where γ represents the dimensionless time derivative, (dC/dt)(τ^/C).

6.1 Results at Reynolds Number 5,000 and 16,000

Figures 6-1, 6-2 and 6-3 are plots of the probability density 

function of (dC/dt)(Td∕C) at x/d = 20, 40, 60, and 80 along the three 

rays r∕ (x - xq) ≈ .00, .06, and .12 . The quality of the collapse along

rays implies that the chosen scaling removes the dependence on

downstream distance in these distributions. Deviations are probably

attributable to incomplete statistical convergence at the largest

magnitudes of dC/dt and slight misalignment of the measurement point

with respect to the chosen ray.
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Figure 6-1. Probability density function of the scaled time

derivative of concentration on the jet centerline 

at Re 0 = 5,000.

Figures 6-4, 6-5, and 6-6 display the measured probability density

functions of C/C along three rays at r∕(x-x0) ≈ .00, .06, and .11 for

x/d = 30 and 90 at Refl=16,000. Imperfections in the collapse are 

attributed to the same problems mentioned above, and in addition, an

overall bias may have been introduced in the scaling at this Reynolds
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Figure 6-2. Probability density function of the scaled time 

derivative of concentration 3.40 off the jet 

centerline at Re0 ≈ 5,000.

number through any error in the value of x , which is used to compute 

τ . The value of ×0 is much more uncertain at this Reynolds number 

because it is based on measurements at only two downstream locations.

Close examination of Figures 6-4 to 6-6 shows that for large values of

∣dC∕dt∣, the results from x/d = 90 usually fall above those from x/d =

30. While this might be caused by a possible error in τ transmitted
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Figure 6-3. Probability density function of the scaled time 

derivative of concentration 70 off the jet 

centerline at Re0 - 5,000.

via x , it could also be a result of the differing widths of the optimal

filters. In particular, the "noise-tails" of the spectra at x/d = 30

start at a lower value of so the width of the optimal filter

kernels for these data sets were larger, relative to τ , than the kernel

widths for the data sets at x/d = 90. In any case, the observed

imperfections in the collapse are small and will not be mentioned
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Figure 6-4. Probability density function of the scaled time

derivative of concentration on the centerline of

the jet at Re0 = 16,000.

further.
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Figure 6-5. Probability density function of the scaled time

derivative of concentration

centerline at Reθ = 16,000.



95

⅜ ■
lo

g1
0(

Pr
ob

ab
ilit

y D
en

sit
y)

(dC∕dt)(td∕C)

Figure 6-6. Probability density function of the scaled time 

derivative of concentration 6.3° off the jet

centerline at Re = 16,000.
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6.2 Comparisons and Comments

The plotted PDFs at both Reynolds numbers show the same trends as

the chosen ray is rotated toward the edge of the jet : The peak value

increases slightly, and the width of the distribution also decreases

slightly. The main difference between the results from the two Reynolds 

numbers is that the PDFs at Re0 = 16,000 extend to higher values of the

scaled time derivative of concentration.

Perhaps the most interesting characteristic of the distributions is

the degree to which the "wings" are skewed toward large positive values

of the scaled time derivative. The peaks of the distributions occur

slightly below dC/dt = 0 to compensate for the asymmetry. This

observation is supported by examination of the time traces of the

instantaneous concentration on Figures 5-8 to 5-13, 6-7 and 6-8, where

there is a greater prevalence of large positive values of dC/dt than

large negative ones. Figures 6-7 and 6-8 are plots of the optimally 

filtered data from Re0 = 5,000 and 16,000, respectively, along the ray 

at r∕(x-x0) = .06 . The sections of the data on these two plots were 

chosen because they display some evidence of a large-scale motion. The

general characteristics of this structure seem to be a relatively sharp

rise in the concentration followed by a region where the concentration

falls chaoticly, at a lower average rate, until the next sharp rise.

The passage time for this structure is usually about and its strong

asymmetry in time may be responsible for all or part of the measured

asymmetry of the PDF of dC/dt. The small arrows on Figures 6-7 and 6-8

have been placed near the leading edges of the easily identifiable
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Figure 6-7. Time traces of C{t) 3.4° off the jet centerline at 

Re0 = 5,000.

structures.

Gibson et al. (1977) report the presence of the same type of "ramp" 

structures in temperature measurements from many different shear flows,

with Reynolds numbers ranging from 15,000 to 5,000,000, including 
axisymmetric turbulent jets at Re0 - 1O^ and 10^. They also discuss the 

asymmetry of the PDF of the time derivative of temperature and its
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t∕τ0

Figure 6-8. Time traces of C(t) 3.40 off the jet centerline at 

Re0 = 16,000.

relation to the observed "ramps". Antonia, Anselmet et al. (1986), who 

worked in a heated plane jet at Re0 = 7,550, find the same type of 

asymmetry in their PDFs of the spatial derivatives of temperature. 

Antonia, Chambers et al. (1986), also report the presence of "ramp"

structures in their time traces of temperature from a heated plane jet.
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CHAPTER 7

THE ESTIMATED SCALAR DISSIPATION RATE

The instantaneous estimated scalar dissipation rate, ε (t) , was

computed from the optimally smoothed data by squaring and scaling the

time derivative of concentration, i.e.

dC(t) ∖2
-----Γ <7-Ddt

given by Chen and Rodi (1980),

convolution of the data with

6 or Appendix E, Section 4).

ε (t) = 6 D ■ ( =½-
c ' ' j∞ V ψψucl

where Ucj is computed from the formula 

and the time derivative is calculated by

the derivative of a Gaussian (see Chapter

The real scalar dissipation rate, ζ(t), is the rate at which

fluctuations in the turbulent concentration field relax toward zero

under the action of molecular diffusion. For this reason, ζ(t) is

identified as the instantaneous mixing rate. The basic point of view

taken in most of this chapter is that ζ(t) can be modeled by εc(t), or 
„ 2equivalently, that ζ(t) is proportional to (dC∕dt) . The validity and

consequences of taking this point of view are also discussed.

One approach to defining ζ(t), reproduced here from Dimotakis 

(1984) , uses an integral formulation for the conservation equation for

the scalar energy, where :

Scalar Energy = SE = j pooc2dV, (7.2)
V

with V a fixed control volume in the jet flow. A factor of ½ is
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sometimes inserted inside the integral to make a 
with the kinetic energy of the fluid, poθ I £ 12 

velocity, u = U + u') .

Taking the time derivative of Equation (7.2)

f 3cSE = poo J 2C- dV.
V "t

The conservation Equation for C in incompressible

∂C- + (u∙V,C - DjmV⅛.

can be used to eliminate the time derivative of C

more complete analogy

(u is the vector fluid

yields :

(7.3)

flow,

(7.4)

inside the integral in

Equation (7.3),

SE = poo j [-C2u + DjcVC2]∙dS - 2 pooDjoo ( ∣VC∣2dV, (7.5)
S V

where S is the surface of V and Gauss's divergence theorem has been used

change the volume integral to a surface integral for the first two terms

on the right hand side of Equation (7.5).

The surface integral terms in Equation (7.5) are identified as the

flux of scalar energy across S resulting from convection and diffusion.

The final term is identified as the diffusive dissipation of the scalar

energy within V. Because V was not specified explicitly, Equation (7.5)

must hold for all control volumes, so the dissipative effects of

molecular diffusion on the scalar energy can be defined at every point 

in space. Dividing this dissipation function by the fluid density and V 

gives the mass specific rate of the dissipation of scalar energy,
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SE
P V

the Scalar dissipation rate. 

1972, Townsend 1976), ζ is

concentration, C'(t) = C(t) - C,

ζ(t) =2 Djoo ∣VC∣2, (7.6)

In some references (Tennekes and Lumley

defined in terms of the fluctuation

i.e.,

ζ(t) = 2Djoo I VC' I 2 (7.7)

The difference between Equations (7.6) and (7.7), the contribution from 

the mean concentration gradients, ∣VC∣ , is very small compared to 
I VC'∣ 2 for Re0 » 1 .

It was not possible to measure ζ directly, but some of its 

properties can be inferred from εc, even though ζ and εc differ in three 

important respects. One of these differences arises through the process

of converting a temporal to a spatial derivative, which was accomplished 

the calculated value of Uc∙^. 

hypothesis (Taylor 1938),

(7.8)

for the present data by dividing dC/dt by

This amounts to applying a form of Taylor's

dC _ - 3C

without directly measuring the mean axial velocity Uχ. This 

approximation is not only subject to the limitations of Taylor's

hypothesis applied in a turbulent flow (see Hinze 1975, and Lang 1985), 

but it might introduce a consistent bias in the results for εc, since 

the constant in the actual mean, centerline velocity decay law of the

present jet flows may have been slightly different from the value of 6.2

suggested by Chen and Rodi (1980) .
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The second major difference between εc and ζ comes from the 

assumption that the statistical properties of each of the three spatial

derivative terms in Equation (7.6) are same. If the turbulent field is

isotropic, then this assumption is justified, but the results of the

previous chapter suggest that the turbulent concentration field of the

jet is not completely isotropic, especially for large values of ∣dC∕dt∣.

The third difference between ζ(t) and εc(t), is the assumption that 

the square of the three spatial derivatives of the concentration field

are completely correlated and can be represented by the scaled value of 
(dC∕dt)2, i.e.,

where x1, x£, ancl x3 are cartesian coordinates. This assumption is

adapted here only as a result of the need to present a connection 

between εc, computed from the one-dimensional measured time series, and 

ζ in the real three-dimensional turbulent flow. It is reasonable to

expect that the three spatial derivatives of the concentration field

will be correlated to some degree because they are linked through the

conservation equation for the jet gas concentration, Equation (7.4). 

The statistics of εc between the two limits, completely correlated and 

uncorrelated derivatives, will be discussed in section 4 of this

chapter.
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Using these three approximations, Equation (7.1) can be obtained 
from Equation (7.6) by replacing ∣VC∣^ with 3■(c(t)∕Ucl). When it is 

possible, the results in this chapter are displayed in terms of the 

unapproximated dimensionless quantity, (dC∕dt) (τ0∕C) , which differs 

from εc only by multiplicative constants. The errors introduced by the 

approximations leading to εc will be discussed in each section as 

appropriate.

7.1 The Mean Estimated Scalar Dissipation Rate

2The mean value of εc was computed from the mean value of (dC∕dt) 

using Equation (7.1). The results are displayed on Figure 7-1 for data 

near the rays at r∕(x-xfl) = 0, .06, .12 and for r∕(x-x0) > .14 at Re 

= 5, 000 and 16, 000. The axis scaling is consistent with that used by

Friehe et al. (1971) for the mean energy dissipation rate. The axis 

scaling that would be obtained from nondimensionalizing εc with C and td 

has the same functional dependence on (x-xq).

The collapse is not perfect for several possible reasons.

1. The instantaneous value of εc varies over many orders of 

magnitude and the rms fluctuation level of εc is typically 4 or 

5 times larger than εc. This means that the statistical 

convergence, especially for the outer ray where the effective

sample size is smaller, may not be complete for all of plotted

points.
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Figure 7-1. The scaled mean value of εζ, verses r∕(x-x0) .

42. Normalization of the plotted data by (x-xq) amplifies any 

small error in the value of xq. In particular, the data at x/d 

= 30 and 90, for Re0 = 16,000, would collapse much better if 

x0, for that Reynolds number, was decreased by 1.5 d.

3. As will be seen again in the next section, the results at x/d = 

20 and Reo = 5,000, may not be entirely free of near-field 

influences, and if these points are ignored, the collapse of
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the results at Re = 5,000 is improved.

4. The data at x/d = 90, Re0 = 16, 000, were taken with superior

spatial resolution when compared to x/d = 30 at the same

Reynolds number, and this might account for some of the

consistent discrepancy between the results at x/d = 30 and 90.

Except for the

underestimated

at Re 0 = 5,000

first factor listed, all of these problems causé εc to be 

Taking this into account, the best value of of κg is 54

and 32 at Re0 = 16,000, where κg is defined by:

C? U
εc _ λ = κε

LΞo (x~x≈) -4 (7.10)

These values of Kg and Equation (7.10) were used in the computation of 

the Kolmogorov scaling for the universal collapse of the scalar

fluctuation spectrum (see Chapter 4, Section 4) . It is worth noting 

that these values of κg (54 & 32) are close to the one suggested by 

Friehe et al. (1971), κg = 48, for the mean kinetic energy dissipation 

rate in a round turbulent air jet at Re q = 120,000.

The difference in κg between the results at the two Reynolds 

numbers is probably a Reynolds number effect. As can be seen in

Figure 4-9, the power spectra of concentration fluctuations on the jet

centerline do not display a Reynolds-number-independent, inertial 

cascade (power-law) region at either Reθ = 5,000 or 16,000. This

implies that it might be inappropriate to predict the small-scale 

properties of the flow, like εc or ζ, based on large-scale parameters 

and assume that the results will be independent of Re0, when the
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interaction of the large and small scales is clearly dependent on the 

Reynolds number. Figure 7-1 also shows that for r∕(x-xθ) < .12, the 

ratio of εc at the two Reynolds numbers is nearly constant, within 

statistical fluctuations, but that for r∕(x-xθ) ≥ .12, εc at Re 0 = 

5, 000 falls below that of Re0 = 16,000. A discussion of how this 

Reynolds number dependence of the mean mixing rate might be related to

the PDF of C/C is contained in the next chapter.

The drop in εc with increasing r∕(x-x0) is primarily a result of 

using only Ù to scale the time derivative. If a local, off-centerline 

mean velocity is used, the mean value of εc is almost independent of 

r∕(x-xθ) for each Reynolds number.

The dominant error introduced by the scaling of the time derivative

is probably a constant scale factor that would slightly modify the 

values of κg. The error introduced by the assumption of isotropy is 

also likely to be only a small percentage of the reported mean. No 

error is produced in εc by the assumed correlation of squared derivative 

terms in this case, because the temporal average of a sum is the sum of

the temporal averages. Hence, correlations between the terms of ζ are 

not reflected in ζ, and εc is presumed to be a fairly accurate measure

of ζ.
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7∙2 The Instantaneous Value of (dC∕dt)2

oFigures 7-2 and 7-3 are time traces of C(t) and (dC∕dt) from the 
3⅛t centerline at Re0 = 5,000 and 16,000. The trace of (dC∕dt)2 appears

t∕τ0

Figure 7-2. Time traces of C(t) and εc(t) on the jet 

centerline at Re0 = 5,000.

directly underneath the corresponding trace for C{t) on both Figures.

The plotted data are continuous from the first line to the third line

for C(t) and from the second line to the fourth line for (dC∕dt) on
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Figure 7-3. Time traces of C(t) and εc(t) on the jet 

centerline at Reθ = 16,000.

each of these plots. It should be noted that the maximum values of C(t)

are about 1.7 times the mean concentration and the tallest peaks of
2 2 (dC∕dt) are one to two hundred times the mean value of (dC∕dt) .

The plotted time histories show the intermittent behavior of the 
2local mixing rate as measured by (dC∕dt) . The statistics of the 

2extreme values of (dC∕dt) were investigated by making a histogram of
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the time intervals between tall peaks and comparing it to the

distribution· that would result from a Poisson process with the same mean

occurrence rate. Figure 7-4 is a comparison of this type. It was made 

from the data taken on the centerline of the jet at Re0 = 16,000 and x/d

Figure 7-4. Distribution of time intervals between peaks of 
(dC∕dt)2

= 30, but is quite representative of results obtained throughout the jet 
at Re q = 5, 000 and 16, 000. A peak in (dC∕dt)2 was considered tall if it
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was higher than a chosen threshold value. For the histogram on

Figure 7-4, ‘ this threshold was set at twenty times the mean value of 
2(dC∕dt) . The smooth curve on Figure 7-4 is a decaying exponential, the

expected shape of the PDF of peak separation times, if the peaks had

Poisson statistics (Papoulis 1984).

As Figure 7-4 clearly shows, the time intervals between peaks of
2(dC∕dt) do seem to be described by Poisson statistics, especially for

small times. This behavior was present in the measured histogram for a

very wide range of threshold values, and implies that the peaks do not

occur in an uncorrelated fashion but instead predominantly show up in

small groups. This clustering of peaks of (dC∕dt) is seen in the time 
2histories of (dC∕dt) on Figures 7-2 and 7-3. Further deviations from

Poisson statistics are also apparent in the measured histogram. There 

is an underabundance of peak-separation intervals between about . 1xd to 

.8xd and a mild excess of peak-separation intervals greater than xd. 

These deviations might be due to the large-scale "structures" of the

flow (see Chapter 6, Section 2), which typically have high concentration

gradients near their leading edges. The large scale "structures" could 

explain the observed deviations from Poisson statistics because they 

would cause clusters of peaks of (dC∕dt) to be separated by time 

intervals of approximately Xp.
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7.3 Power Spectra of εc

Figures 7-5 to 7-10 display the calculated power spectra of

fluctuations in the estimated scalar dissipation rate, E_(f), along the εc
three rays r∕(x-x0) ≈ .00, .06 and .11 to .12 for x/d = 20, 40, 60 and 

80 at Re0 = 5,000, and for x/d = 30 and 90 at Re0 = 16, 000. Each

(f
 )
∕(

τ0

Figure 7-5. Power spectra of εc on the jet centerline at Re0 = 

5,000.

spectrum was computed with the same technique used to calculate the
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Figure 7-6. Power spectra of εc 3.40 off the centerline at Reθ 

= 5,000.

concentration fluctuation power spectrum, Ec(f) (see Appendix C). The 

axis scaling on Figures 7-5 to 7-10 is the same as that for plots of 

Ec(f) (Figures 4-1 to 4-6) with the local mean concentration, C, 

replaced by the local mean estimated scalar dissipation rate, εc∙ The 

slopes of the diagonal lines on Figures 7-5 to 7-10 were chosen by eye.



113
(f)

∕(τ
n∙

εx
)

Figure 7-7. Power spectra of εc 70 off the centerline at Re = 

5,000.

Imperfections in the collapse are likely be the result of 

incomplete statistical convergence, misalignment of the measurement 

point with respect to the chosen ray, and the differing amounts of

filtering done by the individual optimal kernels. In particular, the 

optimal filter entirely determines the shape and slope of each spectrum

beyond the point at which the spectrum turns sharply downward. The
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Figure 7-8. Power spectra of 

at Re0 = 16,000.

εc on the centerline of the jet

frequency location of the "knee", however, was found to be independent 

of the amount of filtering for kernels with a smaller effective width

than the optimal kernel.

The quality and Reynolds number independence of the collapse aside,

there are several noteworthy features of these spectra. The spectra of 

εc at Re0 = 5,000 display a long power-law region, while the spectra of
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Figure 7-9. Power spectra of εc 3.40 off the centerline at Reθ 

= 16,000.

fluctuations in C(t), at the same Reynolds number do not (see Figures

4-1 to 4-3) . At both Reynolds numbers, the location of the knee

frequency of E_ (f ) is about a factor of three higher than the 
tc

break-point frequency of Ec(f). And finally, except for a small

decrease in the slope as r∕ (x - x ) is increased, the shape of Ep(f) is 
tc

almost independent of location within the jet.
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Figure 7-10. Power spectra of εc 6.30 to 70 off the centerline 

at Re0 = 16,000

Comparing the results of the different Reynolds numbers shows that

the knee frequency is increased, and the slope of the spectra, up to the

knee frequency, is decreased, as the Reynolds number is increased.
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Classical theories of turbulence, as presented by Monin and Yaglom

(1975) and the references cited therein, predict that the spectrum of 

the scalar dissipation rate, Eζ, has the following form:

Eζ(k) ~ kμ∙-1, (7.11)

at high Reynolds numbers in the scale-similarity range of wave numbers

between the large scales and the dissipation scales. The exponent

parameter, μ, should be a universal constant under these conditions.

Even though the current Reynolds numbers are probably not high for

the classical theories to be applicable, they can be used to explore the

lower Reynolds number limit for their validity. Equation (7.11), the

current results for E (f), and the usual conversion between wave number fcc
and frequency ( k = 2πf∕U0∙^ ) , imply that μ ranges from about .7 to .5, 

depending on the Reynolds number and the location within the jet.

Masiello (1974) finds a value of μ = .42 from the spectrum of the square

of the temperature derivative measured near the centerline of a heated

jet at Re0 = 810,000. The differences in the experimental values of μ 

are probably the result of the large Reynolds number range spanned by

the present data and those of Masiello. It is worth noting that the 

present results at least show a decrease in μ with increasing Reθ, which 

is consistent with the notion of the convergence of μ to a Reynolds

number independent value that is perhaps close to the one reported by

Masiello.
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There is another way of computing μ from the statistical properties 

of εc (see Mθnin and Yaglom 1975, and references cited therein), which 

requires knowledge of εc(t) and the probability density function of 

log(εc). This computation was not done because of problems surrounding 

the assumptions that produce Equation (7.1), and the poor agreement

obtained by Masiello in calculating μ, using the two methods

(.42 and. 58), in spite of the large Reynolds number of his jet flow.

2The errors produced in E_(f) owing, to the scaling of (dC∕dt) are fcc
probably small because the averaging involved in the computation of

E_(f) must correct for the portion of the velocity fluctuations that are tc
2uncorrelated with (dC∕dt) . The scaling of E_ (f) in Figures 7-5 to 7-10 tc

removes any biasing effect of the chosen formula for Uq^. The error in

E_ (f ) that is due to the assumptions of isotropy and completetc
correlation of spatial derivatives is difficult to quantify. It

probably leads to an increased fluctuation level in εc as a result of

the substantial overestimation of the number of zero-gradient points

that result from using Equation (7.1) (see next section) . This type of

error would artificially raise the level of some portion of E_ (f) when εc
compared to the spectrum of the true scalar dissipation rate, Eζ(f)-
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27.4 The Probability Density Function of log[(dC∕dt) ]

Classical theories of turbulence at high Reynolds number

(Kolmogorov 1962, Obokhov 1962, and summarized in Monin and Yaglom 1975) 

have proposed that the probability density function of ζ, and by 

extension the probability density function of (dC∕dt) should be

log-normal. The current data are at modest Reynolds numbers so they

can, at most, provide a test to determine the lower Reynolds number

limit of some of the classical ideas.

A log-normal distribution is Gaussian when plotted versus a

logarithmic abscissa and a linear ordinate. Figures 7-11 to 7-16 show 

the probability density function of the logarithm of (dC∕dt) (τo∕C) , 

along the three rays r∕(x-x0) ≈ .00, .06 and .11 to .12 for x/d = 20, 

40, 60 and 80 at Re0 = 5,000, and x/d = 30 and 90 at Reθ = 16,000. If

the results from x/d = 20, Re0 = 5, 000 and r∕(x-x0) = .12, are ignored 

because of possible near-field effects, the collapse of the plotted PDFs

on Figure 7-13 is much improved. Because the factor (τ0∕C) goes like
6 2 (x-xθ) , the chosen scaling is seen to collapse the PDF of log(dC∕dt)

over a large dynamic range in (dC∕dt) . Note that eq required a scale 
4 2 — 2factor of only (x-xfl) , since dividing (dC∕dt) by Ucl to produce εc 

2introduces an additional factor of (x-x0) .

As before, imperfections in the collapse are likely the result of

misalignment of the measurement point with respect to the chosen ray,

the differing widths of the optimal filters and any systematic bias

introduced through the axis scaling by an error in the value of x , for
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log10[(dC/dt)2(td∕C )2 ]

Figure 7-11. Probability density function of the logarithm of 
othe scaled value of (dC∕dt) on the jet 

centerline at Re0 = 5,000.

either Reynolds number.

These results show three consistent properties. First, the shape

and width of the distributions appear to be nearly independent of Re

and r∕(x-×0) even though the distributions are not centered on the same 
2 — 2value of log1θ[(dC∕dt) (Tp/C) ]. For this distribution shape, the
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log10[(dC∕dt)2(td∕C)2]

Figure 7-12. Probability density function of the logarithm of 
the scaled value of (dC∕dt)^ 3.40 off the jet 

centerline at Reθ = 5,000.

2fraction of the total time that (dC∕dt) spends above its mean value is

.16 ± .02 . Perhaps the most striking feature of these PDFs is their

widths. The full width at half-maximum for each distribution is about 3

orders of magnitude. This means that if (dC∕dt) is proportional to 

ζ(t), then ζ(t) must also vary over many orders of magnitude, and this 

observation has important implications for the description and modeling
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Figure 7-13. Probability density function of the logarithm of 

the scaled value of (dC∕dt)^ 70 off the jet 

centerline at Re0 = 5,000.

of turbulent jet mixing with and without combustion.

A second observation concerning these distributions is that 
2preponderant values are seen to shift toward higher values of (dC∕dt)

2for the larger Re0, and toward lower values of (dC∕dt) as r∕(×-×0) is 
. 2increased. The shift to higher values of (dC∕dt) at the higher
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log10[(dC∕dt)2(Tβ∕C)2]

Figure 7-14. Probability density function of the logarithm of 
2the scaled value of (dC∕dt) on the centerline of 

the jet at Re0 = 16,000.

Reynolds number is more than offset by the scaling of εc with Uo shown

on Figure 7-1 so, that εc is actually lower at Re0 = 16,000. The shift 
2of the distributions to lower values of (dC∕dt) , as r∕ (x - x o> is 

increased, results from the monotonic decrease in the mean convection

velocity as the edge of the jet is approached.
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1θ910 C(dC/dt)2(τo∕c)2]

Figure 7-15. Probability density function of the logarithm of 
the scaled value of (dC∕dt)^ 3.40 off the 

centerline at Re0 = 16,000.

And finally, the distributions on Figures 7-11 to 7-16 appear to be 

almost normal with a slight excess of low values and a slight deficit of 

high values. This last property was also noted by Masiello (1974) for 

the cumulative distribution function, CDF, of the square of the time 

derivative in a heated jet at Re 810, 000. The CDF and PDF of a
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Figure 7-16. Probability density function of the logarithm of 
the scaled value of (dC∕dt)2 6.3° to 70 off the 

centerline at Re = 16,000.

random variable ξ, 0≤ξ<∞, satisfy:

CDF(ξ) = J PDF(ξ')dξ' (7.12)
0

where the normalization of the PDF(ξ) is set by CDF (∞) =1.
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The measured excess of low values and deficit of high values of
9(dC∕dt) and εc, must be independent of Re0 because they are a direct 

result of the assumption that the three spatial derivative terms in ζ 

are completely correlated. This assumption allowed εc from 

Equation (7.1) to be postulated as a statistical basis for ζ and will be 

shown to be a major cause of the deviation from log-normality in the PDF 
of (dC∕dt)2 near (dC∕dt)2 = 0.

To display the statistical error that comes from using

Equation (7.1) in the production of a probability density function for

ζ, it is first necessary to derive a simple relationship between the

probability density function of a random variable ξ, 0 < ξ < ∞, and the

probability density function of logξ, -∞<logξ<<*>. This derived

relationship, which does not depend on the identification of ξ as 
2 — 2(dC∕dt) (τo∕C) , will be used to determine the behavior of the PDF of 

log[(dC∕dt)2(τ0∕C)2] for small values of (dC∕dt)2(τo∕C)2.

By definition, it can be chosen that:

fξ fι°gξ
) Φχ(ξ,)dξ' = J Φ2<logξ') d(logξ') , (7.13)
0 ~∞

where log( ) denotes the natural logarithm of ( ), Φχ(ξ) is the 

probability density function of ξ, and Φ2(logξ) is the probability 

density function of logξ. Differentiate Equation (7.12) with respect to 

ξ to get :

Φ, (ξ) = Φ2 (logξ) ■ d.(log^ = φ (iogξ) . 1 .
1 z dξ 2 ξ (7.14)
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Now assume a power-law behavior for near ξ = 0, i.e. Φ∙^(ζ) - Φoξs, 

where Φq and^s are constant real numbers. Equation (7.14) then becomes:

Φoξs+1 =Φ2(logξ), as ξ→0. (7.15)

Taking the logarithm of both sides yields :

logΦo + (s + l)logξ = log( Φ2 (logξ)), as logξ → -°°. (7.16)

This means that a power-law behavior of Φ∙^(ξ) for ξ —» 0 can be 

discovered from a plot of log(Φ2) versus logξ.

Figures 7-17 and 7-18 are plots of the logarithm of the PDF of 
log1Q[(dC∕dt)2(xd∕C)2] along the centerline of the jet at Re0 = 5,000 

and 16,000. For small values of log1θ[(dC∕dt)2(τ0∕C)2], both plots show 

a power-law behavior with a slope of +½ for many decades. 

Equation (7.16), with the formal identification of ξ as (dC∕dt) (Td∕C) ,

then implies that s = -1∕2, so the probability density function of
2 2 (dC∕dt) must have an integrable singularity as (dC∕dt) —> 0 of the form

1∕√ (dC/dt)2. The PDFs of log[(dC∕dt) (τ0∕C)z] on the rays at r∕(x - xo>

= . 06, and .12 show exactly the same behavior as those from the

σenterline.

The square root singularity of the PDF of (dC/dt)2 can be
2understood as a direct result of the parabolic geometry of (dC∕dt) near 

2zero. Small values of (dC∕dt) come from the zero crossings of dC/dt. 

In fact, if dC/dt crosses zero with a finite slope So at t , then near
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loglθ[(dC∕dt)2(τ0∕C)2]

Figure 7-17. Logarithm of the probability density function of 

the logarithm of the scaled value of (dC∕dt)2 on 

the centerline at Re0 ≈ 5,000.

( —)2 = C2 = S2(t-tθ)2. (7.17)
dt

2 .The density of points, p1(t), along the curve of (dC∕dt) is constant 

with respect to time because the data sets were produced with a constant

sampling rate. Hence :
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Figure 7-18. Logarithm of the probability density function of

the logarithm of the scaled value of (dC∕dt) on 

the centerline at Reθ = 16,000.

p1(t) dt = p0dt, (7.18)

where po is a constant. To determine how the density of sample points 
9depends on (dC∕dt) , differentiate and invert Equation (7.17):

d(C2) = 2 S20(t - t0) dt , (t - t0) = (c2) /z. (7.19 & 20)



130

Elimination of t -10 and dt on the right hand side of Equation (7.18)

using Equatidn (7.19 & 20) gives:

p (t) dt = p,(C2) d(C2) = -^-q- 
2Sq

(c2) /z d(C2)
I , (7.21)

where p 2 is the density of points with respect to (dC/dt)2, given

Equations (7.17) and (7.18). Because the slope of the concentration

time history crosses zero many times, the compilation of the PDF of 
2(dC∕dt) must involve the accumulation of data points in many regions

that are well described by Equation (7.17) with differing values of S 

and t0. While the details of each region where Equation (7.17) applies 

are lost in the accumulation, the singular behavior of the local PDF of 
(dC/dt)2, near (dC∕dt)2 = 0 (p2(C2) from Equation 7.21), is not. Note

that the singular behavior of the local PDF occurs independently of the
2values of po, S 0, and t so the excess of low values of the (dC∕dt)

must be found if there are enough data points for proper statistical
οresolution of the full range of (dC∕dt) .

2The preceding discussion concerning the PDF of (dC∕dt) near 
2(dC∕dt) =0, was motivated by conversations with Dr. Roddam Narasimha.

The only way that the PDF of (dC/dt)2 near (dC/dt)2 = 0 could have 

a behavior different from that given by Equation (7.21) is if Sθ was 

zero at a significant number of the zeros of dC/dt. This actually does

occur near the edges of the jet where the measured concentration spends

a relatively large fraction of the time at C = 0 with dC/dt = 0. This is 
9reflected in the PDF of (dC/dt) by a further increase in the relative
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2abundance of the very lowest values of (dC∕dt) , when compared to the 

PDF of (dC/dt)2 from the centerline. The extent to which 

Equation (7.21) is followed by the plotted results on Figures 7-14 and 

7-15 essentially proves that dC/dt almost always crosses zero with a 

nonzero slope for r∕ (x - x0) ≤ . 12 . The other extreme case, i.e. S 0 —» ∞, 

is be prevented by molecular diffusion.

If the PDF of (dC∕dt)2 (or εc) was actually log-normal it would 

appear as an inverted parabola in Figures 7-14 and 7-15,

log(pDF(C2)) = -a2(logC2)2 + aχlogC + aθ, (7.22)

where a2, aχ, and aθ are all real constants with a2>0. This form for 
the PDF of (dC∕dt)2 goes to zero as (dC∕dt)2 → 0 which is in clear

contradiction with the measured distributions and the parabolic geometry
9 9of (dC/dt) near (dC/dt) = 0. However, the classical theories are

supported by the measured PDFs shown on Figures 7-11 to 7-18 for values 
2 —of (dC/dt) (Td∕C) above 1, where the expected log-normal shapes are more 

2 —closely realized than for values of (dC/dt) (τ0∕C) below 1. Recall that 
2at large values of (dC/dt) error from the the assumption of isotropy

may also effect the results.

2The physical reason for the failure of (dC/dt) , and therefore εc,

to display something even close to log-normal statistics at the small 
2values of (dC/dt) , comes from the serious overestimation of the number

of points in the turbulent concentration field where the concentration 

gradient is zero, Vc=0. By assuming that the three terms of ∣Vc∣ are
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completely correlated and that they can be represented by a scaled time 

derivative, εc is forced to have one-dimensional statistics which do not 

accurately model the three-dimensional character of the scalar 
dissipation, ζ = 2Djoo∣Vc∣2. In particular, the form of Equation (7.1) 

requires that εc is zero every time dC/dt is zero, while it is clear 

that the zerρs of each of the three terms of ζ need not be coincident in 

time. ζ will be zero only at a. zero gradient point. The importance of 

the number and distribution of zero gradient points in a turbulent flow

that mixes a passive scalar is discussed in detail by Gibson (1968 I) . 

It is quite possible that zero gradient points are extremely rare within 

the turbulent concentration field of the jet, and that the true PDF of ζ

is very nearly log-normal.

It is probably a reasonable assumption that the scaled value of

(dC/dt) is an adequate estimate for one of the spatial derivative terms

of ζ from Equation (7.6), since this requires only the validity of 

Taylor's hypothesis. Hence, the true statistics of ζ of might be 

realized by a sum of three squared time derivative terms with the

correct amount of correlation between terms. To investigate this

possibility, and to determine the effect on the statistics of εc from

correlating the squared derivative terms, a grouping of three values of 
2(dC/dt) , with a varying statistical weight for each term, was used in

2place of (dC/dt) to compute probability densities.
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2In particular, this meant exchanging (dC∕dt) for the heuristic

quantity, Σ3:

3
i=l

∑3 = Σ ω (7.23)

where ω1 + ω2 + ω3 = 1, and ω1,ω2,ω3≥O. The three derivative terms,

(dC∕dt)^, were chosen by sectioning a data set into three equal parts

and sequentially drawing (dC∕dt)from the first section, (dC∕dt)2 from

the second section, and (dC∕dt)3 from the third section. A

one-parameter family for the weighting of the derivatives, ω^, was

constructed by allowing ω1 to be the independent parameter and choosing 
2ω2=ω3= (1~ω1)∕2∙ lf ω1 = 1, then Σ3 = (dC∕dt) 1, and the case of 

complete correlation of derivative terms is recovered. For ω∙ι = 1∕3, the 

three terms in Σ3 are given equal weight. For = 0, the first term in 

∑3 is ignored and the second two are given equal weight. Note that if 

the mean value of (dC∕dt) is stationary within a data set, then Σ3 does 

not depend on the value of the free parameter, ω^, because

ωl + ω2 + ω3 = 1.

The results of the parameter study for 0 < ≤ 1 are shown on

Figures 7-19 to 7-22. As before, the multiplicative constants that 

change the sum of the time derivatives, Σ3, to εc have been left out of 

the calculations and therefore do not appear in the axis scaling. Even

though Figures 7-19 to 7-22 were made from a centerline data set at 

x/d = 30 and Re0 = 16, 000, the trends shown by changing ω1 on these 

Figures are representative of those seen throughout the jet. The four 

plots (Figures 7-19 to 7-22) are for two ranges of ω1r 1∕3 ≤ α>1 ≤ 1, where
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Figure 7-19. Probability density functions of the logarithm of 

∑3 for 1∕3 ≤ < 1 .

the contribution from a single term dominates Σ3, and 0 < ≤ 1∕3, where

two terms in Σ3 contribute equally and dominate the third term. At 

ωχ = 1∕3, the three terms have equal weight. Figures 7-19 and 7-20 show 

these two ranges with a linear ordinate, and Figures 7-21 and 7-22 show

them with a logarithmic ordinate.
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Figure 7-20. Probability density functions of the logarithm of 

∑3 for 0 < ω1 ≤ 1∕3 .

Several important characteristics of the PDF of the logarithm of Σ3 

become apparent on these Figures. The calculated distributions at small 

values of Σ3 are very sensitive to the chosen value of for ω1 near 

one. Even introducing only .5% of the second and third terms in ∑3 

radically changes the PDF of log1θ[Σ3(Td∕C) ] to a curve that is much 

more symmetric about its peak. In fact, for any value of ω1 ≠ 1, the
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Figure 7-21. Logarithm of the probability density functions of 

the logarithm of Σ3 for 1∕3 ≤ ≤ 1 .

— οPDFs of log1θ [∑3 (Td∕C) ] are more symmetric about their peak than for 

ω1=l. The widths of the distributions on Figures 7-19 to 7-22 decrease 

and the peak values increase as is decreased from unity until

ω1 = 1∕3, where the trends are seen to reverse as is decreased

further.
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Figure 7-22. Logarithm of the probability density functions of 

the logarithm of ∑3 for 0 ≤ < 1∕3 .

The shapes of the PDFs of Figures 7-19 to 7-22 for high values of

∑3 are not as strongly affected by variations of ω1 as the shapes of the

PDF for low values of ∑3. In fact, for values of ω∣ between .10 and 
— 7.75, the whole PDF of log1θ[Σ3(τ0∕C) ] is almost unchanged. This 

independence is partially a result of the exponentially increasing bin

sizes along the abscissa on Figures 7-19 to 7-22.
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The major result of the parameter study presented here is that the 

shape of the PDF of εc as calculated from Equation (7.1) is strongly 

dependent on the assumption of complete correlation of derivatives 

(0>1 = 1 for Σ3) that produce Equation (7.1) from Equation (7.6). When Σ^ 

with ω1 = 1∕3 is used in place of (dC∕dt) in Equation (7.1), the 

sensitivity .of the PDF of the logarithm of Σ3 to the chosen value of ω1 

is greatly reduced. This could be significant if real jet turbulence

was known to produces a "true value" of in the range where the shape 

of the PDF of the logarithm of ∑g is relatively independent of . 

However, Σ3 with tt>1 near 1∕3 does not necessarily model the actual 

correlations between the squared spatial derivative terms in ζ produced 

by the flow field of the turbulent jet, even though basing εc on Σ^ 

corrects some of the problems that result from the assumption of

complete correlation of the three terms of ∣VC∣ . In any case, the true 

shape of the PDF of ζ should fall in between the current results for the 

PDF of the logarithm of Σ3 at <B1 = 1 and = 1∕3. Determination of the 

PDF of ζ in any greater detail than this must await a proper 

experimental or computational characterization of the three-dimensional

nature of the jet's turbulent mixing field. A step was made in this 

direction recently by Namazian et al. (1987), who used two-dimensional 

imaging techniques to measure two components of ζ in the near field of a 

turbulent jet. Their reported PDFs of ζ agree with the expected 

log-normal shape much better than those presented here for (dC∕dt)^.
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The Reynolds number dependence of the shapes of the PDF of 

loglθ} are shown on Figures 7-23 to 7-25 for the centerline of 

the jet at Re0 = 5,000 and 16,000 and = 1, 1∕3, and 0. In all three

log10[(dC/dt)2(TD/C)2]

Figure 7-23. Reynolds number comparison of the probability

density

ω1 = 1 .

function of the logarithm of Σβ at

cases, the increase in Reθ shifts the whole PDF about one-third of a

decade higher along the horizontal axis . Aside from the small



140

'⅛ ■

Figure 7-24. Reynolds number comparison of the probability 

density function of the logarithm of ∑g at 

ω1 = 1∕3 -

statistical differences between the compiled PDFs, this shift is the 

only effect of changing Reθ from 5,000 to 16,000.

Because all of the results of this section were presented without 

scaling the time derivatives with Ucl, the chosen form of Taylor's 

hypothesis does not impact on these conclusions.
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of ∑β at

Figure 7-25. Reynolds number comparison of the probability 

density function of the logarithm 

ω1 = 0 .
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7.5 The Correlation of C(t) and (dC∕dt)^

Figure 7-26 is a contour plot of the joint probability density 
2 — 2function of C(t) and log1θ [ (dC∕dt) (Td∕C) ]. Each contour level is

.0 .5 1.0 1.5 2.0

C/C

Figure 7-26. Contour plot of the joint PDF of C/C and the 
2logarithm of the scaled value of (dC∕dt) on the

jet centerline at Re = 16,000.

separated from the one above it and below it by a factor of 2. The 

highest contour, the small rough oval near the middle of the Figure 7-26
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is at 80% of the maximum value of the joint PDF. The data used to 

construct Figure 7-26 came from the centerline of the jet at Re0 = 

16, 000 and x/d = 30. The symmetry of this figure suggests that on the

centerline, C(t) and log(dC∕dt) are not strongly correlated.

Figure .7-27 is a similar contour plot except that the data used to 

produce it were recorded on the ray r∕(x-x0) = .12, at Reθ = 16,000 and

x/d = 30. The diagonal nature of the contours suggests that high values
2of (dC∕dt) are more likely to occur at high values of C. The contours

run into the vertical axis at C/C = 0 because the bin structure of the

underling PDF is not fine enough to show properly how they close on

themselves.

The results for Refl = 5,000 are very similar to those presented

here .

The assumptions leading to Equation (7.1) were not used in this

section.
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Figure 7-27. Contour plot of the joint PDF of C/C and the 

logarithm of the scaled value of (dC∕dt)z 70 off 

the centerline of the jet at Reθ = 16,000.
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CHAPTER 8

CONCLUSIONS AND DISCUSSION

The conclusions that concern the specific similarity, the general 

similarity, and the mixing properties of the turbulent jet concentration

field are summarized in the following list.

1. The mixing process in the far field of the momentum-dominated,

free turbulent jet is specifically self-similar at all scales

along rays that emanate from the virtual origin of the jet.

Some of the shapes, profiles, and values of the statistical

measures of the jet's turbulent concentration field are not 

independent of the Reynolds number for 5,000 ≤ Reθ ≤ 16,000.

2. The mean concentration, and a time scale that depends

quadratically on the downstream coordinate are, in all

likelihood, the general similarity scaling parameters for jet

mixing. This conclusion is based on the strict collapse in

downstream distance achieved with these scaling parameters for

many different statistical measures of the fluctuating

concentration field of the jet at two Reynolds numbers that

differed by more than a factor of three.

3. The chosen Reynolds numbers of 5, 000 and 16, 000 are not high

enough for the concentration field of the turbulent jet to

display a - 5/3 power law inertial range cascade in the power

spectra of concentration fluctuations.
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4. Many features found in the statistical measures of the

fluctuating concentration field are explained by the existence

of a large-scale structure in the jet that is roughly the same

size as the local diameter of the jet. The support for this

conclusion is provided by: (1) the "ramps" seen in the

measured concentration time histories, (2) the asymmetry of the 
PDF of dC∕dt, (3) the fact that the peaks of (dC∕dt)^ are not 

Poisson distributed, and (4) the fact that the power spectrum

of the concentration fluctuations is essentially constant for

frequencies below the reciprocal of the estimated passage time

for length scales that are the size of the local jet diameter.

5. The scalar dissipation rate is not accurately modeled by

assuming that the three, squared, spatial-derivative terms of 
2

∣Vcr are completely correlated. The classical theories of

turbulence are not in accord with experimental results

processed with this very restrictive assumption. However, any

small deviation from complete correlation of the squared 

derivative terms brings the present results at Re0 = 5,000 and 

16,000 in line with the high Reynolds number predictions for

the probability density function of the scalar dissipation

rate.

6. The far field of the momentum-driven, free turbulent jet

appears to begin about twenty nozzle diameters downstream when

a smoothly contoured jet nozzle with a low exit turbulence

level is used.
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7. The distribution of compositions of molecularly mixed fluid in 

the gas phase turbulent jet, when scaled by the local mean

concentration, is almost independent of the Reynolds number for 

5, 000 < Re θ < 16,000, Sc = 1, and r∕(x-x0) < .12 .

8. The scaled value of the mean concentration, C∕Cfl, on the 

centerline of the jet is found to depend on Reynolds number. 

Variation of the centerline value of χ∙C∕Cfl ( = κ) is also 

reported in the published literature (see Figure 3-4). This

issue will be discussed in greater detail below.

The seventh conclusion, which is based on the measured probability

density functions of concentration, seems to raise a paradox, since the

same measurements show that the local mean mixing rate in the central

portion of the jet decreases with increasing Reynolds number (see Figure

7-1) . The resolution of the conflict lies in the contribution of the

mixing realized at the edges of the jet.

It is quite clear that the amount of mixed fluid at a particular

downstream location on the centerline of the jet depends on more than

just the integrated centerline mixing rate, because mixed fluid is

transported to and from the centerline, and exchanged with all parts of

the jet by the large-scale motions of the jet flow. Even though the 

rate of mixing might be less near the edges of the jet, the time scales 

there are much longer, and the integrated product of the two determines 

the total production of mixed fluid. This integration would involve 

contributions from the entire upstream volume of the jet's turbulent
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cone, and the volume inside r∕{x-xfl) = .12 (the "core" of the jet 

flow), is' only about a third of the total volume of the jet's turbulent 

cone, (r∕(×-x0) ≤ .21 to .22). Hence, the amount of mixed fluid 

produced in the outer regions of the jet can be expected to represent a

sizeable fraction of all of the mixed fluid produced within the jet.

One view of jet mixing that evolves from these ideas and resolves

the paradox is that the central region of the jet does some mixing and

nearly all of the convective transport of the mixed fluid. The edges of

the jet provide a low-velocity environment that allows molecular

diffusion to thoroughly mix the chunks of high concentration fluid,

which are thrown out of the core of the jet by the turbulent velocity

fluctuations. The large-scale motions in the jet flow provide these

velocity fluctuations and the entrainment field that returns the

thoroughly mixed fluid from the edges to the central region of the jet.

In this picture, increasing the Reynolds number will increase the amount

of mixed fluid produced at the edges of the jet when compared to the 

amount of mixed fluid produced in the core of the jet, so that the total 

amount of mixed fluid in the core of the jet remains nearly independent

of the Reynolds number. Increasing the Schmidt number will likely

produce the same type of shift in the localization of the dominant

portion of the mixing process, but conflicting experimental results (see 

Figures 8-1 and 8-2) prevent any conclusions from being drawn about the

Schmidt number dependence of the amount and composition of mixed fluid

in the core of the jet.
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The conceptual basis for understanding jet mixing would be much

clearer, arid perhaps better formulated, if the mean centerline

concentration were known to be independent of the Reynolds number. Niwa 

et al. (1984) report that the scaled mean concentration, C∕Cq, at a 

fixed downstream location on the jet centerline, x∕d = 20, does depend 

strongly on the product of the Reynolds number and the Schmidt number in 

the range 100<Re0∙Sc< 3, 000 . Some of the measured variation might 

result from a Reynolds number dependence of xq and d* that may not have 

been accounted for by Niwa et al., but most of it probably comes from

changes in the jet turbulence that affect the value of κ. While the 

present experiments were not intentionally set up to address this issue

at higher Reynolds numbers than those explored by Niwa et al., the 

measured difference in κ at Re0 = 5,000 and 16,000 exceeds the variation 

that could be accounted for by experimental error. As Figure 3-4 shows,

the "κ problem" is not unique to this experimental study. For the

current experiments, the change in κ suggests that the jet entrains 

relatively more reservoir fluid as Re0 is increased.

It is unlikely that the variation in the reported values of κ (4.5

to 5.5) could come from differences between experiments in the density

ratio of jet and reservoir fluids that are not accounted for by scaling 
⅛ . «the downstream coordinate with d . The reason for this is that any

initial density difference quickly approaches zero, as the downstream

distance is increased, because of the continuous dilution process in the

jet. It is even less likely that differences in the Schmidt number

between experiments are the cause of the reported variation in κ because
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there does not appear to be a physical mechanism for the interaction of

the species diffusivity and the large scale velocity fluctuations, which

could account for a change in the jet's entrainment rate of reservoir

fluid.

There is a clear need for further experimentation to determine the

parameters that control κ. The value of κ is, perhaps, the most

important measure of the mixed state of the jet. It is determined by 

the measured, mean, scaled concentration, C∕C0, and can therefore be 

used, along with a PDF of C/C at a particular Re0, to estimate the 

scaled concentration levels found throughout the turbulent jet far field 

at that Re0. In fact, when the variation of κ between experiments is 

removed, the entire PDF of concentration nearly collapses. This

collapse holds the promise that the shape of the centerline PDF of C/C

might be a general similarity property of the jet, for a given Schmidt

number. Figures 8-1 and 8-2 illustrate these contentions.

Figure 8-1 is a plot of the centerline PDF of the scaled

concentration reported by several investigators, without any other

scaling. Although the PDFs on Figure 8-1 were not measured at 

(x-x0)∕d* = 100, the results have been referenced to (x-xθ)∕d* = 100, 

for the purposes of comparison, using the mean centerline concentration

scaling law from each experiment and the assumption that the PDF of C/C

is specifically self-similar in each experiment.
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------- Present study, Reθ= 5,000, Sc = 1.0
------ Present study, Reθ= 16,000, Sc = 1.2

Dahm (1985). Re0= 5,000, Sc ≈ 600 to 800
------- Radial measurements
------- Axial measurements

□ Lockwood S Moneib (1980), Reθ= 52,000, Pr = 0.7 
O Papantoniou (1985), Reθ= 5,600, Sc ≈ 600 to 800 
o Papanicolaou S List (1987), Re0≈ 104, Pr = 7.
* Papanicolaou S List (1988), Re0≈ 3,000, Sc≈ 103 

Centerline, referenced to (x - x0)∕d*= 100
o

.00 .02 .04 .06 .08 .10 .12

c∕cθ

Figure 8-1. Comparison of reported probability density

functions of scaled concentration for the

centerline of the jet.

Figure 8-2 is a plot of the data from Figure 8-1 when the

differences in κ have been normalized out by changing the horizontal

coordinate from c∕c0 to C/C and renormalizing each PDF. In the special

case of Figures 8-1 and 8-2, this was done by multiplying values on the 

concentration axis of Figure 8-1 by 100, dividing them by the
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------- Present study, Reθ= 5,000, Sc = 1.0
------ Present study, Re0= 16,000, Sc = 1.2

Dahm (1985), Reθ= 5,000, Sc ≈ 600 to 800
------- Radial measurements
------- Axial measurements

□ Lockwood S Moneib (1980), Reθ= 52,000, Pr = 0.7 
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Figure 8-2. Comparison of reported probability density

functions of concentration for the centerline of

the jet with the concentration axis scaled by C.

appropriate value of κ, and renormalizing each PDF so that its area was

again equal to unity. Scaling with C (or κ) clearly brings the reported

PDFs closer to a single curve. It is interesting to note that all of

the PDFs on Figure 8-2 compiled from gas phase flows agree much better

than the those compiled from liquid phase flows. The disagreement 

between liquid phase PDFs might result from the great difficulty of
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producing an experimental diagnostic that is capable of Batchelor scale

resolution (see Appendix A, Section 1) in a laboratory, liquid phase,

mixing flow. It is entirely possible that all of the variation between

the measured PDFs on Figure 8-2 results from differences in the

time/space resolution of each experiment and differences in the Schmidt

number of each jet flow. However, the evidence is not yet conclusive,

so even though the unifying concept of a general similarity PDF of

concentration on the jet centerline appears promising, it remains

elusive.

As a final comment, the measured mean profile of concentration,

Figure 3-3, seems to be nearly independent of the Reynolds number over

the range where κ varies between 4.5 to 5.5. This implies that the jet

velocity field and/or its correlation to the concentration field must

change in a coordinated manner to permit the jet flow to conserve the

passive scalar. In particular, for an incompressible flow, the total

"volume flux" of conserved scalar from the jet nozzle that passes

through any plane perpendicular to the jet axis, must be a constant

equal to the nozzle exit "volume flux" of the scalar, V . The total

scalar "volume flux" will be made up of the contribution from the mean

flow and the fluctuating components of the flow,

V. -i (UχC + u^C,) dA, (8.1)

where Aj is the area of the turbulent cone of the jet when the cone is 

sliced perpendicular to its axis. How the jet "rearranges" the relative 

importance of the two terms in Equation (8.1) for different Reynolds
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numbers and values of κ is certainly a point for further investigation.

When the present results are viewed as a whole, one of the

conclusions that can be drawn is that experiments in fluid mechanics, in

some instances, can be completely integrated in order to maximize the

quality of the results. For the present study this dictated that the

jet Reynolds number, the nozzle exit diameter, the enclosure size, the

choice of the jet and reservoir gases, and the minimum acceptable run 

time were based on calculated spatial and temporal resolution 

requirements for scalar mixing in the jet, the noise characteristics of 

the diagnostic, and the need to produce a purely momentum-dominated, 

free turbulent jet. The great wealth of existing experimental data for 

the free turbulent jet made the design of these experiments possible.
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APPENDIX A

EXPERIMENTAL DESIGN AND PARAMETER SELECTION

The goal for these experiments was to measure the concentration

field along the centerline of a round, momentum-driven, gas phase,

turbulent jet with enough spatial and temporal resolution to capture the

smallest diffusion scales. The design, which was not constrained by an

existing apparatus, was subject to many specifications dictated by the

need to achieve the measurement objective with the available funding.

The diagnostic chosen for these experiments was deemed to be the

best for the stated research goal. Three alternatives were seriously

considered; measuring temperature in a heated jet with cold wires,

measuring thermal conductivity and local speed of sound with a

Brown-Rebollo aspirating probe (Brown and Rebollo 1972), or measuring

molecular number densities with laser-Rayleigh scattering. The

cold-wire system was eliminated because the spatial resolution and

signal-to-noise requirements could not both be met simultaneously in a

momentum-driven jet. The aspirating probe was eliminated because its

dynamic range was about 2 orders of magnitude too small for

density-matched gas pairs. Laser Rayleigh scattering had been used in 

many previous jet studies (Dyer 1979, Escoda 1983, Pitts and Kashiwagi

1984, Pitts 1986) and was chosen as the main diagnostic for these 

experiments because it did not suffer from any of the previously 

mentioned problems, and it provided the greatest flexibility for the

rest of the experimental design. What follows in this appendix is an
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explanation of each requirement and how it was met, plus a final summary

of the relévant numbers, sizes, rates, etc. for the completed

measurements.

A.l Resolution

The smallest velocity scale in a turbulent flow is the Kolmogorov 

scale λκ,

, I v 3 PA - <∆U) 3λ„ = I -=- I , with ε = const----- , (A.1)λ ε L

where ε is the mean energy dissipation rate of the turbulence, L is the

largest scale of the flow, ∆U is the velocity difference across L, and V

is the kinematic viscosity of the fluid. The smallest concentration 

scale in the flow is the Batchelor scale λβ,

λβ = λκ∕√Sc , (A.2)

where Sc is the molecular Schmidt number (kinematic viscosity divided by

species diffusivity). Unfortunately, the gas flows considered have

Sc ≈ 1, and Equation (A.2) was derived (see Batchelor 1959) for Sc » 1.

By using empirical correlations taken from Reid et al. (1977) for the

the diffusivities of gas pairs, the molecular Schmidt numbers of the gas 

pairs actually used were estimated to be .99 for ethylene and N2 and 

1.20 for propylene and argon.
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By intuition one might expect that for Sc ≈ 1 the smallest

species-diffusion scale should be approximately the same size as the

smallest momentum-diffusion scale. This agrees with the discussion

presented by Batchelor in the paper in which he derives Equation (A.2),

and with the discussion in Monin and Yaglom (1975, p. 383), so for the

purposes of ι design it was assumed that λβ = λκ. This meant the

experimental measurement volume had to be the same size or smaller than 
3the local value of λκ∙ To estimate λκ, the result of Friehe et 

al. (1971) was used for the dissipation rate on the centerline of a

turbulent jet :

dd
(A.3)

where Uo is the jet exit velocity, d is the jet exit diameter, x is the 

coordinate that starts at the nozzle exit and increases downstream along 

the centerline of the jet, and x0 is the virtual origin of the jet. The 

far-field similarity of a turbulent jet can include a virtual origin

(see Appendix F) to correct for the peculiarities of the near field of a

particular nozzle. The virtual origin is usually only a few jet exit

diameters (see Table 8 of Pitts 1986) and was assumed to be zero during

the design phase of these experiments.

Equation (A.3) leads to an estimate for λ∑, in terms of jet 

parameters,

λκ = 0.38 (x - x0) /Re”3/4, where Re0 = U0d∕voo , (A.4)

and V, the kinematic viscosity of the reservoir gas.
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By properly focusing the laser beam and by limiting the length of

the laser beam from which scattered light was collected with a small

aperture photodiode, the spatial resolution requirement was met at each

measuring station for the first value of the Reynolds number studied

(5,000). A different laser-beam focusing lens and/or photodiode was

necessary for each measuring station. The focal length of each lens was

chosen so that the geometry of the apparatus did not require the lens to

be placed closer than about one local jet diameter from the measurement

point. The width of the laser beam was checked by slicing the beam with

a knife edge and recording the transmitted power as a function of

knife-edge displacement. The results showed that the 2% to 98% beam

width was usually about a factor of 2 smaller than the diameter of the

sensitive area of the appropriate photodiode. The effective size of

each photodiode was determined by simple shadowing. A knife edge on a

micrometer traverse was used to slice a beam of parallel light rays that

impinged on the sensitive aperture of the photodiode. The output signal

from the photodiode and the knife-edge displacement were used to

determine the diameter of the photoreceptive area. These measurements

agreed with the photodiode manufacturer's (United Detector Technology)

specifications and tolerances. The first section of Appendix E provides

some more information about the photodiodes.

The quality of the lenses that were used to collect the Rayleigh

scattered laser light and image it on the photodiodes was checked, even

though the manufacturer claimed that it approached the diffraction 

limit. The technique for checking the lenses involved using the optical
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setup shown schematically on Figure 2-5 in reverse. The lenses were

placed in the optics pipe used for the jet experiments. Spherically

diverging light was produced from a Helium-Neon laser beam, by passing

it through some thin teflon that was taped to a precision pinhole. The

pinhole was placed where the photodiode's active surface would have been

normally loc.ated during concentration measurements. The image size of

the pinhole produced on the other side of the lenses was carefully

measured with a knife edge and power meter and was found to be the same

as that of the precision pinhole within the tolerances quoted by the

pinhole manufacturer. A schematic of this setup is shown in Figure A-l.

The temporal resolution requirement for the measurements was 

determined by the passage time (Tr) of scales of the size of ÀR. The 

decay law for the mean centerline velocity, Uc^, of momentum-driven, 

density-matched jets is reported by Chen and Rodi (1980) as:

ucl
I x - x „ ∖ -1= 6∙2U0(-jl) ∙ (A.5)

In this formula, d should really be replaced by d , the momentum 

diameter of the jet (see Chapter 2, Section 2) , but for properly 

designed nozzles, and density-matched jet and reservoir gases: d*≈d. 

Since the mean fluctuation level of the centerline velocity is roughly 

thirty percent of the local mean (Wygnanski and Fiedler 1969), a 

conservative estimate for τκ was obtained by multiplying Equation (A.5) 

by 1.3 and dividing it into Equation (A.4), i.e.,

x^x"'2Reι7z4.d I X - x0 ∖ τκ = .047 — I ---- 2. Iκ V» d (A.6)
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Figure A-l Schematic of collection lens testing setup.

To insure that information from frequencies near l∕τκ were included in 

the sampled data, the output signal from the sensory electronics was 

filtered above 4∕Tr and sampled at twice the filtering frequency, 

usually a bit more that S∕τκ, in accordance with the Nyquist criterion.
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A.2 Spatial Range and Similarity

The work of Weddell (1952), Becker et al. (1967) and Dahm (1985)

suggests that the far-field scaling laws are applicable for x/d >20, so

this was chosen as the location of the first measuring station. It was

decided that increasing x/d from 20 by two factors of two, to a final

measuring station at x/d = 80, would provide adequate spatial range

along the jet axis to properly investigate similarity. This requirement

was addressed by correctly sizing the apparatus.

Another way of checking the similarity behavior of the jet was flow

visualization. For these experiments, the shadowgraph method was chosen

because it was the simplest, the cleanest (no dust or smoke is needed),

and it works well with the gas pairs chosen for their Rayleigh

scattering properties. The need for this type of flow-visualization was

reflected in the design by the placement of two large windows on

opposite sides of the test section. A sketch of the shadowgraph setup

is given as Figure 3-9.

A.3 Reynolds Number

Many competing factors entered into the choice of ReQ. From 

Equations (A.4) and (A.6) it is easy to see that the resolution 

requirements become easier to attain by lowering Re0, but the 

significance of the experimental results would be greater for higher 

values of Re0. Since one aspect of this investigation was the 

identification of the effect of the Schmidt number in jet mixing, being
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able to match Re0 with one of the two chosen by Dahm for his liquid 

phase experiments (1985) was important.

The entrainment studies of Ricou and Spalding (1961) suggest that

the jet reaches a Reynolds number independent state above Re, = 25,000.

The flame le,ngth work of Weddell (1952) and Dahm (1985) suggests, at

least for high Schmidt number fluids, that this limit is about an order

of magnitude lower. A design Reynolds number of 5,000 was chosen

because it was not possible to satisfy the calculated resolution 

requirements at Re0 = 25,000. This choice satisfied Dahm,s criterion 

for Reynolds number independent behavior of the jet mixing and also

matched one of the Reynolds numbers he extensively investigated in

liquid phase jets.

After the results from Re0=5,000 were available and the degree to 

which the experiment had been "overdesigned" became obvious, the spatial 

resolution requirement, i.e. Equation (A.4), was relaxed by about a 

factor of 3. This allowed Re0 to be increased to 16,000 with only minor 

modifications to the rest of the experiment.
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A. 4 Run Time

Since most of the results from this experiment would be

statistical, it was essential that data could be collected continuously

for many local large-scale passage times. The local large-scale passage 

time (tp) was calculated by dividing the local jet diameter by the mean 

centerline velocity:

d2 I X - X ∖ 2 -1τo = -----  ---- a I tanθ.Reθ , (A.7)

where the half-angle of the jet's turbulent cone, θj, is about 12° 

(White 1974, and Chapter 3, Section 3). Identifying as the largest

fluctuation time scale in the jet is consistent with the flame length

fluctuation measurements of Dahm and Dimotakis (1987).

The Rayleigh scattering diagnostic required that the experiment be

as free from dust as possible, so the gases used in the test section had

to be filtered and enclosed. Estimates were made for the time that it

would take recirculation of the jet mixing products to "pollute" the

on-going measurements for several different enclosure sizes. The

discouraging results of these estimates and the finite amount of

available laboratory space necessitated the addition of extra ambient

(reservoir) gas to the test section during a run to prevent

recirculation of mixed gases through the measuring station. This extra

reservoir gas was added by means of a mild uniform coflow applied to the

entire cross section of the test section. The uniformity of the coflow

was produced by a special shower head with 900 small orifices and the

pressure drop across a one-inch thick slab of open-pore foam. The total
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volume flux of the coflow was chosen to meet the total entrainment

requirement of the jet, Qv, down to x/d = 90 for the Re 0 = 5, 000 studies. 

The entrainment requirement of the jet was estimated from Ricou and

Spalding's result (1961),

Qv = .332 Qo( ———a J, where Qθ = — Uo. (A.8)

Since the farthest downstream measurements anticipated were to be made

at x/d = 80, there would be no recirculation of mixed gases back to the

measuring station, because the entrainment needs of the jet would be met

by the fresh supply of reservoir gas from the weak coflow.

The apparatus was a "blow-down" facility, and some time had to be

allowed for filling the jet plenum and for the establishment of a

steady-state jet in the test section. The plenum-filling time was

calculated by dividing the volume of the plenum by the volume flux of

the jet. The startup time for the jet was estimated to be twice the

time that it takes jet fluid to first reach the measuring station.

Unfortunately, the stability of the coflow became suspect after

about 45 seconds, and this placed an upper limit on the run time. For 

the runs at Re0 = 5, 000, this meant that about 40 were captured at 

x/d = 20 and 40, about 30 τ0 were captured at x/d =60 and about 16 XD 

were captured at x/d =80.



165

Section 6 of this Appendix is a discussion of how the effects of 

the coflow on’the turbulent jet were estimated for this study.

A. 5 Momentum and Buoyancy

To be sure that momentum forces dominated in the jet, it was 

necessary to determine when buoyancy would become important. Although 

the gas pairs considered for these experiments were closely matched in

density, small differences did exist. To properly scale the effects of 

such density differences in the earth's gravitational field, a buoyancy

length scale was found. The following derivation follows the one found

in Fischer et al. (1979).

The exit momentum flux from the jet (Jq) is given by: 

Jo = ( PjUjdA , (A.9)

where Pj is the density of the jet gas, Uj is the exit velocity profile 

and Ao is the source area. The exit, excess-density flux when 

multiplied with gravity (g ≈ 9.8 m/sec ) gives the exit buoyancy flux,

B,-

B - g∣ (pj -poo)UjdA , <A.10)

where poo is the density of the reservoir fluid. A buoyancy length 

scale, Lfa, can be formed from Jq, b, and poo, using dimensional 

analysis, i.e.,

<jo∕p∞>
3/4

<B∕Pβo> 1/2
(A.11)⅛ =
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If the exit profiles of Pj and Uj are uniform, and if the source is 

round, ^

jo = PjUoAo ' (A.12)

(A.13)

(A.14)

b = 3<p½ - P∞)Uoao '1

πd2
Ao =

then Lj3 can be rewritten as :

⅛∕d = (^)1/4 <P√P∞>174 (PjU2Mpgd)1/2, (A.15)

where ∆p = pj - poe. Papanicolaou and List (1987 and 1988) showed in 

their research that jets are essentially momentum dominated for values 

of x∕Lj3 below one. Chen and Rodi derive the same length scale (without 

the factor of (π∕4) ) by a different argument but make the sightly

more restrictive statement x∕Lb ≤ .53 for completely momentum-dominated 

jet flow. For the work presented here, care was taken in the choice of

gas pairs, jet velocities and nozzle sizes so that all the measurements 

were performed with x∕Lb ≤ .4 . Efforts were also made to insure that 

the jet, which always contained the slightly denser of the two gases,

pointed in the same direction as gravity. This prevented any buoyancy 

effects from deflecting the axis of the jet.
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A. 6 Momentum and Coflow

Coflowing jets are known to have different growth rates and decay

laws than free jets. The effect of the introduction of coflow on these

measurements was estimated from the results of Reichardt (1964).

The conserved momentum flux from a coflowing jet (J ) is given by:

Jc = j Pj(Uj- Uc)U.dA, (A.16)

where U is the coflow velocity (see Hinze 1975) . For round jets, a

momentum thickness, θf, , can be formed from Jn by division with pooU^ and

π∕4 .

= 4 J ∕πp uj; ∏ c r∞ c (A.17)

If the exit velocity and density profiles are uniform, Θq simplifies to:

θc7d = Vru(ru - 1>PjzP∞ ' (A.18)

with ru = U0∕Uc- The plots in Reichardt,s paper show that the velocity 

half-width of the jet is unchanged from free jet, growth rates for 

values of χ∕θc less than about one.

To be completely sure that the coflow was not affecting the jet, it 

was required that the value of x∕θc always be less than .50, or 

equivalently, that θc always be greater than twice the distance from the 

nozzle exit to the measurement location. This was easily satisfied by

making the inlet supply area for the coflow gas large enough so that the

necessary volume input could be achieved with a velocity that was much
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smaller than the jet exit velocity. In fact, for the runs at 

Reθ = 16,000," U0∕Uc was about 500, which produced x∕Θc ≈ .2 at x/d = 90.

A. 7 Signal-to-Noise Ratio

A high s.ignal-to-noise ratio is important for any measurement, so a

requirement for the minimum allowable "SNR" was needed. It was planned

that one of the main results of this work would be the compilation of

the probability density function (PDF) of jet gas concentration from the

measured data. This PDF would be the convolution of the true PDF of jet

gas concentration with the PDF of the experimental measurement noise.

Maximizing the quality of the experimentally measured PDF meant

minimizing the width of the noise PDF. A practical requirement derived

from this thinking is that the rms noise level should be smaller than

the size of a bin to compile a reliable estimate of the true PDF from

the measured data. A minimum signal-to-noise ratio of 30 was chosen so

that it would be realistic to use 30 bins for the measured PDF. The

details of how the signal-to-noise ratio was defined predicted and

maximized for these experiments are the subject of the Appendix B.
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A. 8 Laboratory

The laboratory had to have certain electrical and ventilation

capabilities. For the Rayleigh scattering diagnostic to be effective, a

lot of laser power was needed. This usually comes at the expense of

large amounts of electrical power because of the low efficiencies of 

most lasers.' Some of the gases chosen for the jet were explosive 

hydrocarbons, so it was essential that they were properly contained at

all times, and a safe method of venting the experimental exhaust was

available.

The laboratory space that was eventually chosen had both positive

and negative aspects. It was electrically equipped to run a CR-10 laser

system which could be coaxed to deliver about 20 watts of laser power,

at the expense of 20,000 watts of electrical power. Unfortunately, the

laboratory was in the subbasement, making it necessary to install a

special system for venting the products of the experiment. An

explosion-proof suction line had to be run all the way to the roof of

the building (5 floors up), to satisfy safety codes. Figure 2-4 is a

reduction of the blue prints of this system. For safely handling

explosive gases, high-sensitivity, combustible gas detectors were

installed near the main experimental apparatus, and quick-disconnect

fittings were used on the jet gas delivery lines to allow the 

hydrocarbon cylinder to be easily removed from the lab if necessary.



170

The nine and a half foot floor to ceiling distance in the

laboratory limited the length of the test section. This constraint and

the spatial range requirement forced the choice of the jet diameter to

be smaller than one inch. The spatial resolution and signal-to-noise 

requirements at Reθ=5,000 could be reached for nozzle diameters larger 

than 1/2". Fortunately, a precision-machined, plexiglass nozzle was

available, which had an exit diameter of 3/4". With this nozzle size 

and the chosen value of Re0, all of the other parameters, sizes, rates 

and time intervals could be calculated for any gas pair.

This arithmetic quickly led to the realization that the internal

volume of the experiment would exceed 100 cubic feet. Nitrogen and

argon were the only two pure gases that could be obtained easily and

cheaply enough for regular use as the reservoir gas. Matching the

density of these two gases with the appropriate gases for Rayleigh

scattering measurements finalized the choice of gas pairs for the

momentum-dominated jet studies. These pairs were: argon/propylene, and

nitrogen/ethylene. Although the hydrocarbon compound propadiene 

(CH2=C=CH2, Mw=40.) is a closer density match with argon than propylene 

CC3H6, Mw = 42. ) , it was not available with high enough purity at an 

acceptable price.
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A. 9 The Jet Nozzles

Two nozzles were used in these studies and the inner contours of

both were designed using a method developed by Professor Paul Dimotakis. 

The 3/4" nozzle, used for the Reθ = 5,000 experiments, was produced 

entirely under his direction for a water fountain project, while the 

0.30" nozzle* was produced specially for the experiments at Reo = 16, 000. 

The results of the design calculations for the 0.30" nozzle are plotted

in Figure A-2.

The inner contour of both nozzles was a fitted 6t*1 order 

polynomial:

ri(z) = cq + c1z + c 2z2 + c3z3 + c4z4 + c 5z 5 + c gz 6, (A.19)

where r^(z) is the internal radius of the nozzle and z is a coordinate 

that is zero at the beginning of the nozzle contraction and increases to 

zθ at the nozzle exit. Six boundary conditions were imposed on r^(z):

r^(0) = entrance radius (r0), r∙Jzθ) = exit radius (rθ)

r<J0) = 0, ri<ze> = ~tan<4°>

rV(0) = 0, . ri<ze> = 0'

leaving one degree of freedom. The entrance boundary conditions insure

a smooth transition to the nozzle contour, from the assumed upstream

parallel flow and the exit boundary conditions produce a smooth,

beneficial, exit pressure gradient.



- 172

Results ofFigure A-2 the design analysis for the 0.30"

nozzle.
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The final degree of freedom was spent locating the inflection point 

of r^(z) by graphically comparing the results of an axisymmetric, 

laminar, boundary layer calculation (Schlichting 1979, p. 240). Two

"outer flow" velocities were used in the calculations. The first, which

is represented by the solid lines in the plots of Figure A-2, is the 

mean axial velocity, Um, in the nozzle computed from the continuity 

equation, assuming incompressible flow.

U(z)m
= ∏0(^)2

The second, which is represented by the dashed lines in the plots on

Figure A-2, is a corrected mean velocity that takes into account the

slope of the nozzle wall. The 2 velocities are related by:

ucorrected um 1 + ri2<z) <

It was hoped that these 2 velocities would bound the true velocity,

obtainable only from a 3-D potential flow solution for the nozzle and

its settling chamber. The boundary layer calculations were used to

predict the momentum thickness of the boundary layer on the inside 

contour of the nozzle (θ), the shear stress (tw), and the Gδrtler 

parameter, G, used by Lieρmann (1943) in his study of the transition of

a laminar boundary layer on a curved surface :

G = Reθ θ rv(z), (A.21)

where Reθ is the Reynolds number based θ. The location of the 

inflection point was "optimized" against the need to make θ evolve 

smoothly, force τw to be monotonically increasing, and keep G below 50.
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For the .30" nozzle, the internal entrance diameter (2.5") was

chosen to bë the same as the existing hardware built for the .75"

nozzle, and the length (4.00") was the longest possible that could be

machined with the local expertize and equipment.

A.10 Experimental Parameters

Tables A-l and A-2 summarize the values, sizes and parameters used

at the two Reynolds numbers: 5,000, and 16,000. The values in

parentheses are the calculated values from the appropriate design 

equations, with the measured values of χθ: -3.7 d at Re0 = 5, 000 and

.5d at Re0 - 16, 000. The actual design work was done with xq=0.
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Table A-l

Parameter Summary for Re = 5,000

Jet exit diameter (d) = 0.75 inches

Jet nozzle contraction ratio = 100/9

Jet exit turbulence level (N2 at Re0 = 5,000) ≤ .002 

Jet gas : Ethylene, C2H2, Mw = 28.054, purity = 99.5% 

Reservoir gas : Nitrogen, N2, Mw = 28.013, purity = 99.995% 

∆p∕poo = .0015

Lfa∕d = 227

Coflow velocity = 2.4 cm/sec

Jet exit velocity = 4.04 m/sec

Θc∕d = 170

x∕d=2 0 x∕d=40 x∕d=60 x∕d=80

λκ (μm) (288) (532) (775) (1020)

diode size (μm) 200 & 500 500 500 1000

Td (sec) (.182) (.618) (1.31) (2.27)

τκ (msec) (.209) (.711) (1.51) (2.61)

A/D rate (KHz) 96 ! & 40, (38.3) 20,(11.25) 10, (5.30) 5, (3.07)

focal length (mm) 
of laser beam lens

200 400 400 500

Beam waist (μm) 120±10 210±10 210±10 260±10
(2% to 98% thickness)

# of τn captured 40 & 100 40 30 16
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Table A-2

Parameter Summary for Reθ = 16,000

Jet exit diameter (d) = 0.30 inches

Jet nozzle contraction ratio = 69.4

Jet exit turbulence level (N2 at Reθ = 16,000) ≤ .002 

Jet gas : Propylene, C3H6, Mw= 42.08, purity = 99.5% 

Reservoir gas : Argon, Mw=39.948, purity = 99.999% 

∆p∕poo = .053

Lfe∕d = 443

Coflow velocity = 5 to 6 cm/sec

Jet velocity =28.6 m/sec

Θc∕d ≈ 500

x∕d=30 x∕d=90

λκ (μm) (60) (182)

diode size <μm) 200 500

tD (sec) (.0160) (.146)

τκ (μsec) (7.67) (70.6)

A/D rate (KHz) 180 30

focal length of 
laser beam lens (mm)

200 400

Beam waist (μm)
(2% to 98% thickness)

120±10 210±10

# of Td captured 180 120
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APPENDIX B

PERFORMANCE PREDICTION AND MEASUREMENT

The experimental measurement system was designed to produce high

quality data from which the probability density function of jet gas

concentration, PDF(C), could be compiled without resolution error. The

number of bins between C = 0 (pure reservoir fluid) and C = Cmax
(C = the local maximum concentration), which are justified in such a max
compilation, can be estimated from:

Number of bins ≈ C ∕δC ≡ RSNR ,max (B.l)

where δC is the maximum rms uncertainty of the concentration

measurements . This estimate for the number of bins was renamed the

relative signal-to-noise ratio (RSNR) and served as the primary measure

of photodetection system performance.

The RSNR, as defined above, depends on both the capabilities of the

chosen measurement system and the fluid mechanics of the jet turbulence.

What follows in this appendix is an explanation of how the RSNR was

calculated and how the results of these performance calculations

influenced the choice of the photosensor that was eventually used in the 

jet. In order to choose the best system, all of the work presented in

this appendix leading up to Figure B-4 had to be completed before any

archival quality runs were made in the turbulent jet.
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B.l Relating Current, Concentration, and the RSNR

The parameters of the conventional signal-to-noise ratio, SNR,

provide a starting point for a discussion of the RSNR. The SNR was

defined as:

SNR = I ∕√i 2∆v , (B.2)S n

where I is the signal photocurrent, i is the total noise current in

Amρs∕√Hz, and ∆v is the bandwidth of the signal in Hertz. To maximize

the RSNR, it was important to be able to predict I and i^ from the

experimental design parameters, as well as to relate them to C and max
δc.

The Rayleigh scattered light intensity is a linear function of the

mole fraction of jet molecules in the focal volume. The photodetectors

utilized in these studies produced electrical currents that were

linearly related to the amount of light power incident on them.

Combining these facts yields:

I -I = mC , (B.3)Sr n

where C is the mole fraction of jet gas molecules, I is the residual h r
θ Icurrent that the system produces when Cn = 0 and the slope, m = —, is 

taken to be constant for each particular configuration of the data

acquisition system. Because the gases chosen for this experiment were

nearly density-matched, it was assumed that ≈ C for the performance

calculations. Conversion between C , the molecular number-weighted n
concentration, and C, the mass-weighted concentration, is explained in
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Appendix E, Section 3.2 . The residual current is the sum of the 

leakage currents of the photosensor and the first-stage amplifier, plus

the photocurrent resulting from the detected Rayleigh scattered light

from the pure reservoir gas.

For a small change in C, δC, Equation (B.3) produces the relation

for the accompanying small change in I , δΐ:o

δl = mδC. (B.4)

With this, the RSNR can be expressed as:

RSNR = (I - I ) ∕δl. (B.5)max r

As will be seen a little farther on (Equations B.13 and B.18), the

rms noise current in a fixed bandwidth increases with signal current,

but at a less than linear rate, so the peak signal-to-noise ratio and

the maximum rms noise current both occur at the highest signal level.

Therefore, δl in Equation (B.5) can be identified with

I "Vi 2∆v I „ „ ( = δl )t allowing the RSNR to be written in terms of the' n , I =1 max 'S max
maximum SNR and the ratio of the residual current and the maximum rms

value of the noise current.

RSNR = SNR - (l ∕δl I 
max v r mav∣

(B.6)r max'

To properly predict this difference, the peak, local, jet gas

concentration had to be estimated, the properties of the jet and

reservoir gas pairs had to be known, and the capabilities of the
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detection system had to be understood.

B.2 The Dynamic Range of the Jet

The mean dilution properties of the jet were estimated from

experimental .results. For uniform-density, momentum-driven, jet mixing, 

Chen and Rodi (1980) suggest:

— I X - X. ∖-lcd = 5∙cθ(-Γ^ ' <b∙7>

where x is the coordinate that is zero at the jet nozzle exit and 

increases downstream, Cθ is the exit concentration of the jet gas, and 

C is the mean centerline concentration in the jet. Actually, d in
I *Equation (B.7) should be replaced by d , the momentum diameter of the

jet (see Chapter 1, Section 1), but for properly designed nozzles, and 
*density-matched jet and reservoir gases: d≈d . The unpublished result 

of Dowling and Frieler (1983),

provided the estimate for the maximum local jet gas concentration Cmax
The lower limit of the dynamic range of C was assumed to be zero.
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B.3 The Intensity of Rayleigh Scattered Light

The amount of Rayleigh scattered radiation from a gas was expressed

in terms of the extinction coefficient, α. It can be calculated from 

the index of refraction of the gas, n, the wave number of the incident 

light, k, and the number density of the gas molecules, N, as:

2k 2α = --- (n-l) . (B.9)
3πN

A derivation of this formula can be found in Jackson (1975) . For a

monochromatic beam of light traveling in the y direction through a gas

with extinction coefficient α, the power in the beam, P(y), varies as an

exponential,

P(y) = P(0)e tty (B.10)

The light that is lost by the beam is the Rayleigh scattered light. A

short segment of the beam (α∆y≪l) at y = 0 radiates power ∆P :

ZkP = P (θ)α∆y . (B.ll)

-4For most gases α is smaller than 10 /meter, so that a beam of light is

not appreciably attenuated for many meters. Because all of the relevant

path lengths in the experiment were less than a meter, the linear form

(Equation B.ll) was used to estimate system performance with P(0) taken

as the output power of the laser.

For the optical setup used, ∆y in Equation (B.ll) corresponded to

the length of the laser beam from which Rayleigh scattered light was

collected. The spatial resolution requirement (Equation A.4) set the
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size of ∆y, so the amount of scattered light was determined by P(0) and

the α's for the chosen jet and reservoir gas pair.

The laser system for the experiment was a Coherent Radiation CR-10

argon-ion system with an Innova-10 plasma tube. When properly tuned up, 

it delivered, more than 20 watts from all of the laser lines. For the 

purposes of performance estimation, a slightly more conservative Figure

of 16 watts was assumed for P(0). The laser system produced most of its

power at two wavelengths near 500 nanometers (488 and 514.5 nm) . For

calculation of α from Equation (B.9), the mean wavelength and the mean

photon energy of the two lines were used to represent the laser light's

characteristics.

The selected jet and reservoir gas pairs were: propylene and

argon, and ethylene and nitrogen. These choices were made on the basis

of optical properties, density differences, available purity, and costs

(see Sections A.5 and A.8). The amount of Rayleigh scattering done by a

mixture of two gases is the proportional sum of their molecular

number-weighted, extinction coefficients (= A, the available Rayleigh

scattering cross section),

a = α.c + α (1 - c ), (B.12)j n ∞ n

where jet and reservoir extinction coefficients are denoted by α, and 3
α . As mentioned earlier, the difference between C and C was not taken ∞ n
into account in the performance calculations because the jet and

reservoir gases were nearly density-matched.
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One option for increasing the intensity of the Rayleigh scattered

light that was not exploited would have involved performing the

experiments at greater than atmospheric pressure. For most gases, N and

(n-l) are proportional to the pressure. This makes α proportional to

the pressure (see Equation B.9), so that raising the pressure has the

effect of increasing the absolute magnitude of the extinction

coefficients of both the jet and reservoir gases. While this is

definitely a beneficial effect, it was offset by the cost and difficulty

of producing a large pressure vessel for use as the main experimental

platform.

The intensity of the Rayleigh scattered light, δP, for the 
■”8experiments was predicted to be 2.4x10 watts radiated per watt of

incident argon-ion laser power, for every millimeter the beam traversed

through a mixture of 10% ethylene and 90% nitrogen. This Figure is 
“8about 3.4x10 ∕mm for 10% propylene and 90% argon.

B. 4 The Two Light Sensing Systems

Performance calculations were made for 2 different light sensing

systems and compared to the requirement of a minimum RSNR of 30 (see

Appendix A, Section 7). The first system, which was used for all of the

measurements, was based on a photodiode. The second one, based on a

photomultiplier tube, was used in most of the preliminary work. The

performance of each system was also measured to check the accuracy of

the calculations.
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B.4.1 The Photodiode System

The photodiode's main advantage over the photomultiplier tube was 

its high quantum efficiency of nearly 70% at the laser light wavelengths 

used. Its main deficiency was that it provided no signal amplification 

and therefore required a special, low-noise amplifier to raise its 

signal to working levels. The special transimpedance amplifiers used

were designed by Dr. Dan Lang.

Following the noise analysis of Lang (1985), who made laser Doppler

vorticity measurements with photodiodes and transimpedance amplifiers,

the rms noise current of the photodiode system was calculated from:

+ (ωcfc) + 4kT∕Rτ , (B.13)
£5 Li

where

I = the total leakage current from the photodiode and the input of L
the first-stage op-amp. (.10 to .15 nano-amps)

ea == amplifier equivalent noise voltage (noise voltage at the

amplifier output with the input shorted to ground divided by 

the amplifier gain) in volts∕√Hz (12 nano-volts/VËïï)

R = load resistance in ohms (100 megaohms) L
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ω = frequency in radians per second (2π∆v)

Ç = total input capacitance of the photodiode, op-amp and load

resistor (about 10 picofarads)

-23kθ ≈= Boltzmann's constant (1.38x10 joules/K)

T = absolute temperature in Kelvin (295 K)

2The values in parentheses were the ones used to estimate ι^. The first

group of terms in Equation (B.13) is the shot noise contribution to the 
2 .total noise current. The term headed by e^ is the amplification noise 

term, and the final term is the Johnson noise contribution of the load

resistor. The low frequency (l∕f) noise term was believed to be too

small to include.

All of the parameters in Equation (B.13) except I could be easily o
estimated, found on the manufacturer's data sheets, looked up, or

measured. An estimate for I was obtained from:s

6 Ω
1q = <Vb ζAβt1- φγψΔyP ∕E = q η N , (B.14)b e α 4π l pn e α

where

= quantum efficiency of the photosensitive surface (.68)

ζ = transmissivity of detector window (.95)

A = available cross section for the mixture of gases in the focal

volume
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β = the geometrical factor for the focal volume (.66 to .74)

,t = transmissivity of a coated glass surface (.99)

-2Ω = collection solid angle of the sensor optics (Ω∕4π = 10 )

φ = pressure ratio (ξ = 1 implies atmospheric conditions)

γ = polarization recovery factor (1.5)

ψ = number of beam passes through the focal volume ( 1 )

P = laser power (16 watts)∑j

-19E = photon energy (3.97x10 joules) ph

∆y = the length of laser beam from which scattered light is

collected (the diameter of the pinhole or photodiode used, 200

to 1000 μm)

N = the number of photons incident on the photosensory surface

(between 1.5 and 7 billion per second)

As before, the values in parentheses were the ones used in the

computations.

Several parameters in (B.13) need further explanation. The α

values of the gases that enter the Equation for I through the available o
cross section 
N = 2.48 X 1025

were calculated using Equation (B.9) with:

molecules∕m3, 7 -1k = 1.255 X 10 m , n = 1.000261, Ar
ι = 1.000277, n = 1.000673, and n = 1.00100. The geometrical 
n2 - c2h4 c3h6
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factor for the focal volume, β, was used to predict the effective length

of the laser beam from which scattered light was detected. It was

calculated, based on the intersection of a Gaussian intensity

distribution in the laser beam and a Gaussian sensitivity profile from

the sensory optics. After performing the volume integrals, the result

appears as :

β. ≤(1 + 4(Λ)2)-l∕2 (b15)
2 ∆y

where w is half the distance between 1/e points on the laser beam 

intensity profile. The polarization factor enters the formula for I^, 

because the form of α was derived for randomly polarized light and the

laser light employed for these experiments was strongly polarized.

When C from Equation (B.8) is used for C in Equation (B.12), max n
Equations (B.13) and (B.14) allow the calculation of the maximum SNR and

δl for the diode system with an arbitrary bandwidth for anymax
downstream location in the jet. I is obtained by using α for A in χ ∞
Equation (B.14). Putting this all together yields:

RSNR = (ηζβt^-φγψΔyPτ∕E . ) (CC. -α )C ∕(√i2∆v) I τ τ . (B.16)
' d 1 4π l Ph' 3 oo max ' n ' 1o5°1O ITlâ X

It is worth noting that the α,s enter the numerator as a difference and

the denominator as a sum in the estimate of i through In max

The bandwidth of

resolution requirement

the signal, ∆v, was chosen to meet the temporal

(see Appendix A, Section 1) and was set in the

output electronics by a 3-ρole Butterworth low-pass filter. The knee
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frequency, fQ, was set above ^^τκ∙ For 3-pole Butterworth low-pass 

filters:

∆V = 1.05 f0. (B.17)

With all of these definitions and estimates in place, Equations

(B.l), (B.6), (B.12), and (B.13) to (B.17) comprise the performance

calculation for the diode system with Equation (B.16) as the main

result.

B. 4.2 The Photomultiplier Tube System

The photomultiplier tube (PMT) system was used for most of the

preliminary measurements that lead up to the actual jet experiments. It

has a lower quantum efficiency than the photodiode, but its dark current

is insignificant and it provides considerable amplification of the 
2signal current ^gpmt ≈ 1θ 4) ∙ For the PMT system, i is well 

approximated by:

2θ.
θ. q 1ς , ]_ e a (B.18)

of the tube (typically about 2.5) . The

first load resistor was too small to

.2ι = n

where θ is the stage gain

Johnson noise term from the
2include. If θ, was infinite, then (B.18) would be the form of i for a t n

shot-noise-limited process. The signal current for the PMT system, I S
was estimated from Equation (B.14), with the photodiode quantum 

efficiency replaced by the PMT photocathode quantum efficiency
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(η^ = .09). The spatial resolution of the PMT system was determined by a 

precision pinhole, since the diameter of the PMT's sensitive area was

3/4" .

The rest of the arithmetic that leads to the RSNR of the PMT system

is the same as for the photodiode system, so Equations (B.l), (B.6),

(B.14), (B.17) and (B.18) provide the predicted performance for the PMT

system.

B.4.3 Measurements and Comparisons

For selected conditions, the performance of each system was

measured and compared to the calculated performance. Figure B-l is a

plot of the signal current versus laser power for both systems. It was

not possible to measure I for the PMT, because the exact gain of the o
tube (G~.) was unknown and the measured current is the product I G„, PMT S PMT
The best estimate of G„„„ would put the measured I versus laser power PMT S
line about 20% below the predicted line on Figure B-l. The small

deviations from linearity in the measured results for the photodiode are

probably produced by the imprecision of the laser power meter. The

discrepancy between the predicted and the actual photodiode system

sensitivity is probably due to imperfect characterization of the

delivery of scattered light to the photodiode's sensitive surface in the

performance calculation. Earlier studies in a special pressure vessel,

not described here, showed that the∙linearity of the output current

versus mole fraction characteristic for the PMT system was very good.
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Figure B-l. Linearity of the photodetectors.

These studies were done to check that m, from Equation (B.3) was indeed

a constant.

The noise characteristics were also measured for each system and

compared with the predictions. The results for the rms noise current

from the photodiode system are displayed in Figure B-2. The rms noise

current could not be directly measured for the PMT system because of the

large uncertainty in s° the SNR of the PMT system is plotted in

Figure B-3. The SNR is a ratio of amplified quantities, making it

independent of the PMT,s gain. It is worth noting that although none of
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Figure B-2. Comparison of the measured and predicted rms noise

current from the photodiode system.

the predictions for either the signal current or the total noise current

exactly coincide with the measured results, they do have the correct

shape and/or slope. This means that much better agreement could be

obtained by inserting the correct multiplicative constants.

When this was done, the "fitted" theoretical formulas were used to

to predict the RSNR of each system for the two gas pairs considered. It

was not possible to measure the RSNR directly, because that would have
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log10(Δv∕Hz)

Figure B-3. Comparison of the measured and predicted signal to 

noise ratio for the photomultiplier tube system.

required the production of many precise mixtures of the various jet and 

reservoir gases. Figure B-4 shows the results of these predictions. 

Since this plot was used to determine which sensory system would be used

for the concentration measurements in the turbulent jet, it was

necessary to use the spatial and temporal resolution requirements 

dictated by the fluid mechanics of the jet (see Appendix A, Section 1) 

in determining ∆y and ∆v. For a fixed jet Reynolds number (5,000), and 

∆y and ∆V fixed by the fluid mechanics of the jet, the downstream
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χ∕d

Figure B-4. Comparison of the expected RSNR from the two

photodetection systems for both of the chosen gas

pairs.

measurement location becomes the independent variable. Figure B-4 was

constructed with x = 0, ∆y = .6667 λ, and ∆v = 2∕τ and is the basis 0 κ κ
for the decision to use the photodiode system exclusively as the main

experimental diagnostic.
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After the development of the power spectrum software described in

Appendix C,. an additional comparison was made between the two systems

described above and a new, second generation, photodiode system, which 

was used for the measurements in the jet at Re 0 = 16, 000 . The major 

change in the second generation photodiode system was the use of a

better input stage for the transimpedance amplifier, which decreased the 

value of e^ by almost an order of magnitude. The new amplifier was also 

designed by Dr. Dan Lang.

Figure B-5 is a plot of the noise power spectra of each system.

The upper two spectra in Figure B-5 were obtained under identical

conditions for the PMT and first photodiode systems. The Rayleigh

scattered light came from 200 μm of a 17.5 watt laser beam passing

through still argon at room temperature and pressure. The most

important observation from Figure B-5 concerning the upper two spectra

is that the noise spectrum from the first photodiode system is roughly a

factor of two less than the PMT system's from about 20 Hz to about 10

KHz. In fact, the noise spectrum from the first photodiode system is

right on the Johnson noise limit from about 300 to 3000 Hertz. Beyond

3000 Hertz, the "roll-up" in the noise spectrum from the first

photodiode system is due to amplification noise.

A second observation concerning the two upper spectra is that both

are strange below 20 Hz. The funny business was caused by slight beam

steering and power fluctuations in the laser. These problems arose from

an optically large speck (probably a small fragment of the tube's
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Figure B-5. Comparison of the noise power spectra from the 
photomultiplier tube system and the lSt and 2nd 

photodiode systems.

cathode), on the inside of the laser's front Brewster angle window,

whose dynamic thermal/optical properties destabilized the laser's light

output. The details of the spectrum of these disturbances were not

reproducible. Although this unsteadiness could have been a factor for

extremely critical measurements, the power spectrum of the concentration

fluctuations was typically about 4 or 5 orders of magnitude higher than
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the laser fluctuations in the frequency range where the laser problems

were the worst. This put the laser problems in perspective and they

were ignored as much as possible. Their most important impact on the 

experiment was to set the absolute concentration calibration uncertainty

at about .3%.

The lowest spectrum on Figure B-5 was taken with the 200 μm

photodiode hooked to the second-generation transimpedance amplifier.

The wild fluctuations at low frequency are no longer detectable, because

the laser tube with the window problems had been replaced since the

first two noise spectra were measured. The laser power for this final

spectrum was about 23 watts, so it falls below the others because the DC

signal level was higher. The peak at 30 Hertz is due to one of the

building's vibrational modes or some type of outside electrical

discharge, because the 3ame frequency appears in spectra from another

experiment in the same laboratory, using a completely different

diagnostic. The peak sightly above 30 Hertz occurs at 60 Hertz. The

amplification noise from the second generation photodiode system does

not affect the noise spectrum until about 20,000 Hertz. In fact, the

the second generation photodiode system noise spectrum falls on the 
4Johnson noise limit from about 10 Hertz to 10 Hertz.
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APPENDIX C

COMPUTATION OF POWER SPECTRA

The computation of the power spectrum of concentration fluctuations 

for each data set was based on Equation (C.l) . The accuracy of this 

formula, especially for low frequencies, is determined by the length of

the available data record, since the limit of Y—>∞ is unobtainable by

experiment.

E (ω) = vlim — it e'iωt C<t) dt∣2 (C.l)
c Y →∞ 2 Y Ij _y I

E (ω) = true power spectrum of the process C(t) c

2 Y = time interval over which C(t) is known

ω = temporal radian frequency = 2πf

t = time

C(t) = concentration of jet gas as a function of time

In Equation (C.l) the finite Fourier transform was approximated by a

conventional, fast Fourier transform, computer algorithm designed for

use with sampled data sets.

To insure that all of the relevant fluid mechanical time scales of

the jet were well represented by the estimate of the 

concentration-fluctuation power spectrum, the complete data acquisition 

interval for the experiment was many local large scale times of the jet,
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typically 30 or' 40 Tβ at Re 0 = 5,000 and more that 100 Td at Re 0 = 

16, 000. With the data acquisition rate set by the requirement for

adequate resolution of the smallest predicted diffusion scales, the

number of individual concentration measurements made in a typical run 
was 524,288 (=219).

Because this amount of data far exceeded the largest available

array size on the PDP 11/44 used for processing, it was necessary to

break the long data record into smaller pieces and to develop a

technique for independent estimation of the high and low frequency

portions of the spectrum. The necessary sectioning and sampling of the

long data set into smaller records of 4096 (4K) data points was found to

be optimum for data management and computational efficiency. The use of

this record length also allowed nearly one and a half decades of overlap

between the the high and low frequency estimates of the spectrum.

C.1 High Frequency Spectral Estimation

The method used for estimation of the high frequency part of the

spectrum is based on the one proposed by P. D. Welch (1972), with a few

refinements. A small portion of the entire record is selected, in this

case 4096 (4K) measurements. A parabolic least-squares fit of the data

is calculated and then subtracted out. This prevents contamination from

frequencies that are too low to have their spectral contribution

properly estimated by a fast Fourier transform (FFT). Because the 
-5/3spectra computed for this study normally roll off quite strongly (ω
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or faster) , it was necessary to prewhiten the data in order to prevent

the finite accuracy of the computer arithmetic from affecting the

results. This was accomplished by taking a first difference of the

data. Centered differencing was found to depress the calculated

spectrum at high frequencies, so it was not used. To prevent the entry

of spurious frequency components from mismatch of the data at the ends

of the 4K record, the data were multiplied by a window function, W(i),

which in this case was a half sine wave.

W(i) = N sin (i-.5)π∕4096I (C.2)
w l j

W(i) = window function

1 = index that runs from 1 to 4096

N = √2 w
4096 2

The value of N results from the need to have Σ W (i) =1. After these 
w 1

preparations, the fast Fourier transform of the 4K record was computed.

The real and imaginary components of each point were normalized, squared

and added to produce a power spectrum. The effect of the prewhitening

introduced by the first difference operation was removed by a division
2with 4 sin (ω∕2) (the correct inversion of a first difference) . Since

the important results to be obtained from the computed spectra were the

values of slopes and the location of break points (and not the shape nor 

the height of peaks), the final step was a convolution with a triangular

filter function defined by Equations (C.3).
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Trg(j-2) = 0.00 (C.3a)

Trg(j-l) = 0.25 (C.3b)

Trg(j) = 0.50 (C.3c)

Trg(j+l) = 0.25 (C.3d)

Trg(j+2) = 0.00 (C.3e)

Trg(j) = Triangular filter function centered on point number j

This smoothing also repairs some of the imperfections produced by the

windowing and the other operations (Blackman and Tukey 1958). The rest

of the long data set was processed in exactly the same manner in a

sequential fashion. The first point of each 4K record was the midpoint

of the previous 4K record, except for the first 4K record, which started

on the first point of the long data set. This method of overlapping

successive small records, in conjunction with the windowing operation, 

insured that every part of the entire long data set would receive equal 

statistical weight, except for the very beginning and very end, where no 

overlap is available. Figure C-l is a flow chart of this method of

spectral estimation.
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Figure C-l. Flow chart for the high frequency portion of the

spectral estimation software.

C.2 Low Frequency Spectral Estimation

The method used to estimate the low frequency portion of the power 

spectra is basically the same as the high frequency method. The major

differences are the manner in which the 4K records are removed from the

long data set and the extent of the filtering performed.
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To prevent aliasing of high frequency information down to the lower

frequencies, 'where this method computes the spectrum, the long data set

was convolved with a broad Gaussian. The pass band of this filtering

process was chosen to end at the highest frequency for which the low

frequency method could provide spectral information. From the long,

filtered data set, equally spaced data points were selected to fill a 4K

record. The spacing between samples was typically 128 points; for

example, the first 4K record was composed of the first point, the one

hundred twenty-ninth point, the two hundred fifty-seventh point, 
stcontinuing up to the 524,161 point of the long, filtered data set.

This 4K record was then subjected to a process similar to the high

frequency method of estimation. After having its least-squares parabola

removed, the 4K record was first differenced, windowed, and fast Fourier

transformed. The square of the magnitude of the transform was computed, 
2divided by 4 sin (ω∕2) and smoothed with the triangular function. The

rest of the long filtered data set was processed in exactly the same

fashion except for a shift, typically 16 points, in the sampling used to

produce subsequent 4K records. The second 4K record, for example, would

typically start with the seventeenth point of the long, filtered data 
set and end on the 524,177t∖ the third 4K record would start with the 

thirty-third point of the long, filtered data set, and this process was

continued until the selection of data points for the last 4K record.

The results from each of these 4K records, typically 8 in number, were

normalized and averaged to form the low frequency estimate of the power

spectrum. It is probably worth noting that the window (see

Equations C.4) used in this method was chosen to give equal statistical
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emphasis to as large a portion of the data set as the high frequency-

routine did. ∙

W(i) = —N Il-cos( (i-.5)π∕16)]
2 w

W(i) = 1.00 Nw

W(i) = —N fl-cos((4096.5 - i)π∕16∣ 
2 wl ' '

Here the value of N is about 1.00245. w
its normalization are important for a good

high frequency routine. A flow chart

estimation is given as Figure C-2.

for 1 < i ≤ 16 (C.4a)

for 17 ≤ i ≤ 4080 (C.4b)

for 4081 <i≤ 4096 (C.4c)

This choice of the window and

match with results from the

of this method of spectral
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Figure C-2. Flow chart for the low frequency portion of the

spectral estimation software.

C.3 Comments

The results of the two methods formed the estimate of the power

spectrum. For log-log plotting purposes, the spectra were smoothed with

a one-tenth decade filter, and linear interpolation was used to

"fair-in" a curve in the matching region.



205

As a global check of the complete method of power-spectral

estimation, ‘the rms concentration fluctuation level was computed

directly from the long data set and from the estimate of its spectrum

using Equation (4.1) . The value computed from the spectrum was usually

less than the value computed directly, but the two answers typically

differed by less than one percent. This small discrepancy was traced to

the details of the lowest frequency portion of the computed power

spectrum, which is sensitive to the finite record length, the windowing,

and the removal of the parabolic trend. It is worth noting that for any

individual 4κ record, the mean-fluctuation level computed from its

estimated spectrum without the windowing or parabolic trend removal 

agreed with that computed directly from the 4K record to 3 or more

significant figures.
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APPENDIX D

THE COFLOW TEMPERATURE CONTROL SYSTEM

Before the control system was built, the temperature of the coflow

gas, which was supplied by high-pressure cylinders, would drop during a 

run at the rate of 1.5 0C per minute. This cooling trend was the result 

of the isentropic expansion and Joule-Thompson throttling processes

taking place in the cylinders and the delivery plumbing. Because the

coflow gas entered the test section at the top, the cooling trend would

cause a layer of colder (denser) gas to form over warmer (lighter) gas.

In the earth's gravitational field, this is an unstable arrangement of

densities, and the resulting buoyancy currents were unacceptable. To

prevent these currents, which were observed in the laboratory, it was

necessary to develop a means of controlling the temperature of the

coflow gas during a run, to insure that the background fluid mechanical

aspects of the experiment were stable.

In addition to reversing the cooling trend, the temperature control

system was required to be compatible with the other sensitive ςlectric

components of the experiment. This eliminated any "off-the-shelf"

commercial systems that rely on high-speed switching of large electrical

currents. The system also had to be easy to use so that its addition to

the experimental apparatus did not necessitate an increase in manpower

to run the entire experiment. These requirements were met with a design

based on a single thermocouple sensor and a resistive heater.
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This custom system was a basic P-I (proportional and integral)

feedback control system except that the actuator, the resistive heater,

was a nonlinear element. The sensory thermocouple produced a voltage

V that was linearly related to the difference between its own tc
temperature T and the temperature of a reference junction T^θ^,

vtc<t> = <τtc<t> - τ ) ref (D.l)

The reference junction for this system was provided by bulky electrical

connectors in the upper part of the coflow settling chamber. The

sensory thermocouple was Alumel-Chromel, so σ in Equation (D.l) was 

equal to 40μV∕oC in the range of temperatures encountered. The 

thermocouple voltage was subtracted from a set-point voltage to form an

error signal ε(t) .

ε(t) = V - V (t) (D.2)sp tc

The error signal was separately amplified and integrated. These two

signals were then recombined and sent to a custom DC power amplifier,

which produced the voltage applied to the heater V . Equation (D.3)

summarizes these manipulations.

V = Gu[ε(t) + -Î ε(t)dt] (D.3)
h h τj0

The power amplifier regulated with several large transistors, so the 

current passed to the resistive heater was smooth, and no electrical

interference was created. To obtain the best possible frequency 

response from the heater, it was made from a coil of bare nichrome wire 

supported inside the coflow delivery plumbing by a ceramic rod. The
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"cold" resistance of the heater was about 5 Ω. The sensory thermocouple

was placed downstream of the heater, and the increase in temperature,

∆T, of the flowing gas closed the feedback loop when it passed by the

thermocouple,

1 2Q = me ∆T = — Vu, (D.4)
P R hh

where :

Q = rate of heat input by the resistive heater

m = mass flow rate of the coflow gas

Cp = specific heat of the coflow gas

R = electrical resistance of the heater h

V = Voltage applied to the heater by the DC power amp.

The heat was well mixed throughout the flowing gas before it reached the

sensory thermocouple by the turbulence created in the tortuous interior

path of the solenoid valve used to initiate the coflow. A schematic of

this system is shown in Figure D-l.

Because the heater was nonlinear and delivered heat proportional to

the square of the voltage applied to it, the values of the loop gain

(G, ), the time constant for the integration (τ) , and the magnitude of h
the initial difference between the thermocouple and set-point voltages

(ε(0)) could be predicted only approximately. Heat transfer into and

along the delivery plumbing that carries the coflow gas created
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Solenoid

Offset Voltage 
Adjust

Figure D-l. Schematic of the coflow temperature control

system.

additional, uncertainty in these estimates. To realize optimum

performance, several trial runs were made, the parameters were adjusted

and a 300 watt heating tape was added to provide some uncontrolled bulk

heating of the delivery plumbing. These are the values that were used:
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G. = 950,000 η
τ = 3.67 seconds

ε(0) ≈ 10 to 16 μν.

The final system delivered about 1300 watts without any effect on

the other electrical components of the experiment. It was operated from

the same remote switch that was used to open the coflow solenoid valve.

The turn-on transient was typically composed of one overshoot bump in

V. , which lasted less than one second. Since the mixing time for the h
coflow plenum was about 6 seconds, this short transient did not cause

any problems. The system forced the temperature of the coflow gas to 

achieve a preset temperature rise to within 1/5 °C. This preset 

temperature rise, ∆T^, was directly proportional to the initial 

difference between the thermocouple voltage and the set-point voltage.

∆τ = ε (0)∕σ 
P

vtc(0))∕σ (D.5)

The set-point voltage was usually chosen to produce ∆T^ in the range 

from .25 to .40 0C.

The temperature regulation lasted typically for about a minute for 

the runs at Re0 = 5,000 and for about 15 to 20 seconds for the runs at 

Re0 = 16, 000 before being saturated. This was allowed more than 30 

large-scale times to be captured in a single run for every measurement 

location at both Reynolds numbers except x∕d=80 and Reθ = 5, 000, where 

about 16 large-scale times were recorded in each run.
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APPENDIX E

DATA ACQUISITION SYSTEM AND PROCESSING TECHNIQUES

E.l The First-Stage Electronics

The first-stage electronics consisted of the photodiode and its 

matched transimpedance amplifier. The photodiodes used in this study

were from the United Detector Technology PIN-HSxxx series. They were

operated in the photoconductive mode with a constant reverse bias 

voltage of about 15 volts. Two different transimpedance amplifiers were

used with the photodiodes in these experiments. The first one was 

employed for the runs at Re0 = 5,000, and the second one, which was an 

upgrade of the first, was employed for the runs at Re0 = 16,000. Both 

transimpedance amplifiers were carefully matched to the diode's

characteristics to provide low-noise performance and enough bandwidth to

meet the temporal resolution requirement (Equation A.4). The gain of
8both amplifiers was 10 volts/ampere, and they worked with a typical

signal current of about one-third of a nano-ampere. The measured

frequency response of both of the photodiode/amplifier systems was flat

(3 percent peak variation) from 10 Hz to 40 Khz. For higher frequencies

stray capacitance "rolled-off" the response (see Figure E-l). The

frequency at which the response had dropped to 70% of its peak value was

about 110 KHz for the first photodiode/amplif ier system and about 130

KHz for the second photodiode/amplif ier system. The measurements shown

on Figure E-l were made by illuminating the photodiode with light from a

red light-emitting diode (LED), which was driven by a sinusoidal voltage
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Figure E-l. Frequency response of the first and second

photodiode systems.

with a DC offset. Figure B-l is a plot of the linearity of the first

photodiode system's DC response. The small deviations from perfect

linearity of the measured response are probably the result of

uncertainty from the laser-power meter. The performance of both

photodiode systems is discussed in Appendix B.
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E.2 Analog Processing

Before digitization, some analog processing was performed by the

second-stage electronics to match the incoming signal to the voltage

range of the A/D converter (see Figure 2-3) . The signal from the

first-stage electronics was DC compensated to remove the signal voltage

produced by the Rayleigh scattered light from the reservoir gas alone,

and was sent to a variable gain amplification stage used to set the

voltage range of the output signal to roughly 10 volts. This 

compensated and amplified signal was offset again to put the system's 

"zero-concentration" voltage level at about -8 or -9 volts. As a final

step, the signal was filtered with a 3-pole Butterworth filter, whose

knee frequency was chosen based on the Nyquist criterion and the

sampling rate. The gain offsetting done by the electronics was

intentionally chosen to insure that the concentration signal

approximately filled the lower half of the ±10 voltage range of the A/D

converter. This made the occasional sharp peaks from the Mie scattering

of dust particles, which rose above the nearby molecularly Rayleigh

scattered data, easy to detect and remove in later processing.

E.3 Digital Processing

The scaled and filtered signal was then fed to a Data Translation

3382 12-bit, 250 KHz analog-to-digital converter board. The digitized

values from the converter were initially stored in memory and then

transferred to a hard disc after the run was complete. The data

acquisition process was controlled by software running on an LSI
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11/73-based computer system, which was also used for initial data

processing.

E.3.1 Analog-to-Digital Converter Corrections

The first step in this processing involved the removal of the A/D

converter's peculiarities from the data. The voltage characteristic of

the A/D converter was measured immediately after each run by digitizing

a large integer number of cycles of a triangular wave form having a low

frequency relative to the digitization rate and an amplitude spanning

the A/D voltage range. This digitized signal was used to construct a

histogram of the number of digitizations at each of the 4096 levels (12

bits) . The histogram was normalized, ignoring the end points, to

produce a look-up table for the size of each of the A/D converter's

bins. The partial sum of the look-up table to each bin then provided a

corrected A/D number for that bin. This procedure allowed digitized

concentration data to be interpreted through an almost perfect linear

characteristic. To remove the sampling bias associated with unequal bin

sizes in the A/D converter, a random number with a uniform density

function spanning the bin of the conversion was added to the partial sum

of the look-up table for the previous bin to produce the final corrected

A/D number for that conversion. Although this added a small amount of

noise to the data, it uncoupled the A/D converter's voltage

characteristic from the statistics of the data.
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È.3.2 Conversion to Mass-Weighted Concentration

The second processing task performed was the conversion of the

corrected A/D numbers to molecular number-weighted concentration (mole 

fraction), Cn∙ The sensitivity of the entire data acquisition system 

was calibrated by alternately introducing pure reservoir and pure jet 

gases into the focal volume by means of a small laminar jet with the 

system gain set to achieve a 15-volt difference in these levels. To 

accurately record the concentration dynamics in the far field of the jet

where concentrations are low, it was necessary to change the system gain

for data acquisition to insure that the signal would span a significant

portion of the A/D range. The calibration was anchored at the higher

gain by recording the reservoir gas signal level again. The conversion

from A/D number to mole fraction proceeded as follows.

Cn(i∆t) = 10' (Mi- RH)
GH
GL

(JL - RL)
(E.l)

Cn(i∆t) = mole fraction of the it*i measurement in parts per 10

∆t = time between measurements, (A/D conversion rate)

= corrected A/D #

RH = corrected A/D #

of the i^h measurement

for the reservoir gas level at the higher gain

GH = higher gain

GL = lower gain

JL = corrected A/D # for the jet gas level at the lower gain
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corrected A/D # for the reservoir gas level at the lower gain

JL, RL and RH were measured before and/or after each run with the 

average value for each being used in the conversion process when both

measurements were made. The ratio of GH to GL was determined by the 2

resistor values that were alternated in the gain-setting position of the

variable gain stage of analog amplification.

The mole fraction data were converted to mass fraction, C, using:

C(t) =
PiCn(t)

(Pj -poo>Cn(t) +po,
(E.2)

where pj and 

density ratio

runs at Re 0 =

poo are the densities of the jet and reservoir gases. The

of the jet and reservoir gases, Pj∕poo, was 1.0015 for the 

5,000, and 1.053 for the runs at Re0 = 16,000.

E. 3.3 The Removal of the Effects of Particles

The scattering cross sections of dust particles are typically a few

orders of magnitude larger than the Rayleigh scattering cross sections

exploited by the diagnostic in the measurements. Unfortunately, there

was always a small number of dust particles (10 to 100) that would

wander through the focal volume during data acquisition and would appear

in the recorded data as sharp peaks. To find these peaks, a filter

shaped like a Mexican hat was convolved with the data and when the

convolution value exceeded a threshold, the location in the data set was

noted. A detected dust spike was removed by placing a straight line
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across its base and adding noise to the line from a nearby portion of

the data set. The top three plots of Figure E-2 illustrate these

manipulations. The first plot is of 512 data points with some typical

dust peaks. The second is the output of the Mexican hat filter for the

same data. The third plot is the data with the dust peaks removed. The

fourth plot on Figure E-2 is explained below. This whole process of

convolution and peak removal was repeated in an iterative fashion, with

a decreasing threshold, until naturally occurring concentration or noise

fluctuations were the only features exceeding the threshold.

After the dust was removed, the local mean was checked throughout

the data set to make sure that no trend had developed during the run. A

slowly increasing or decreasing local mean could be indicative of

recirculation of mixed gases to the measuring station or of unsteadiness

caused by separation of the coflow from the inner walls of the

experiment.
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Figure E-2. The effects of dust removal and optimal filtering

on the instantaneous concentration signal
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É.4 Statistical Processing

The method of power-spectral estimation from the converted and

"cleaned" data is explained in Appendix C. To further improve the

quality of the data, optimal Wiener filtering (Wiener 1949) was

performed. The estimated optimum filter, computed from the power

spectrum of the data following the recipe given by Press et al. (1986),

was used to push the noise floor in the data down to the round-off error

produced by the integer storage format.

The formula used to compute the optimal filter kernel, F(f), in the

frequency domain was:

F(f) M(f) -N(f) 
M(f) (E.3)

where M(f) is the measured power spectrum (signal and noise), and N(f) 

is the power spectrum of the noise alone. In practice, Ec(f) was used 

for M(f), and N(f) was taken to be a constant noise level that matched 

the "noise tail" level of Ec(f). A fast Fourier transform was used to 

switch the filter kernel to the time domain, where the filtering was

performed through a point by point convolution of the kernel and the

sampled data. The time domain version of an optimal kernel is shown on

Figure E-3. This particular one was created from and used on the data 

from the jet at Re0 = 16, 000 and r∕(x-xθ) = .12 .

The effect of the optimal filtering is illustrated by the lower two

plots on Figure E-2. The jagged trace on the bottom plot is the same

data as the trace above it except that the vertical scale has been
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Figure E-3. A typical optimal kernel in 

(∆t∕τβ ≈ 3.47 ×10"4)

the time domain.

changed. The smooth curve on the bottom plot is the optimally filtered 

result of the jagged trace. Small jumps in the smooth curve result from

compressing the dynamic range of the data for plotting purposes.

The probability density function was compiled from the optimally

filtered data by sorting the data into 60 bins. While the

signal-to-noise ratio of the filtered data may have exceeded 60, the
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could be run for only a finite length of time.

■ ' ■ " ⅜ ■

statistical resolution of the data usually did not, because the

experiment

The

convolving

first derivative of the filtered data was computed by

it with the first derivative of a Gaussian.

dC(t)
dt --i

+oo 9<t-t') ∕-(t~t')zC (t, ) ———- exp (k
√2π υ: 2 υ, dt' (E.4)

parameter of the kernel, υ, was chosen in a fashion that was

with the local sampling, in both time and space, with respect

The width

consistent

to the local jet resolution requirements, and was typically between 2 ∆t

and 6 ∆t. Care was taken to be sure that the effective width of the

Gaussian in Equation (E.3) did not exceed the width of the central hump

in the optimal filter kernel. The square of the first derivative was

used to compute the instantaneous estimate of the scalar dissipation

rate from Equation (7.1). The power spectrum of the estimated scalar

dissipation rate was computed with the same software used for the

concentration fluctuation power spectrum. The PDF of the logarithm of

(dC∕dt) was computed by taking the logarithm of each value of (dC∕dt) ,

sorting the ensemble of data points into bins and normalizing the

resulting histogram.

Figure E-4 provides some insight into how these manipulations 

change the character of the data. All four traces on Figure E-4 are

from the same portion of the same data set used to make Figure E-2. The

top trace is a 512 point sample of data after conversion to

concentration, removal of dust "spikes," and optimal smoothing. The



taking the time derivative, squaring the time 

derivative, and taking the logarithm of the square

of the time derivative.
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second trace is the time derivative of the first one. The third trace

is the square of the time derivative of the first trace, and the bottom

trace is the logarithm of the data plotted on the third trace.
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APPENDIX F

A MOMENTUM-INTEGRAL ANALYSIS OF THE FREE-JET MEAN VELOCITY FIELD

This appendix is a presentation of one way that the general

similarity behavior of the mean velocity field of the momentum-driven,

free turbulent jet can be massaged out of the equations of motion for an 

incompressible fluid. A different version of this discussion is given

in a more compact form by Landau and Lifshitz (1959) .

Start with the Reynolds-averaged, integral form of the momentum

equation for a control volume V, contained by a surface S, in a constant

density flow, with mean velocity vector, U, fluctuating velocity vector,

u,, and mean pressure P.

j PooUU∙dS = -j PdS + J (τ - poou'u') ∙dS + I PoofdV + J (F.l)
S S 5 - V

The outward-directed area element is di>, the fluid density is poo, the

viscous stress tensor is 1, and J is sum of any momentum sources within

V. The body force, assumed to be steady, is denoted by £. The overbar

represents a time average.

For an infinite medium in the absence of any momentum sources, the

fluid will be still and Equation (F.l) will reduce to:

-) podl + f P∞idv = θ ' (F.2)

where Pq is the pressure distribution when the velocity is everywhere 

zero. Subtracting Equation (F.2) from Equation (F.l) eliminates the
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body-force term at the expense of introducing Pq in the pressure 

integral. ∙

(Po -P)dS +
s
(τ - poou,u') ∙dS + J (F.3)

Now represent the jet by a single point source of momentum of 

magnitude Jq placed inside V. Choose V to be a spherical volume of 

radius R centered on the point momentum source, and introduce spherical

coordinates with the polar axis aligned with the direction of momentum 

input, radial coordinate r, and polar angle θ. The polar axis will be

called the x-axis, to be consistent with the rest of this manuscript.

Before proceeding further, it is necessary to estimate the

importance of some of the terms on the right side of Equation (F.3) . A 

Reynolds number can be formed for the flow from Jq, p00, and voo, the 

kinematic viscosity of the fluid.

For high Reynolds numbers, the turbulent stress will dominate the 

viscous stress, so τ will be dropped from the last integral in 

Equation (F.3) . As R is increased, the pressure integral and the 

turbulent stress integral are expected to be, at most, constant. The 

absolute magnitude of these constants should depend on the value of Re, 

since the two integrals are zero when Re is zero. If the pressure and 

turbulent stress integrals are divergent for increasing R, then an

infinitesimal force could be seen to cause unbounded pressure forces or
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velocity fluctùations. The component of Equation (F.3) in the

x-direction can now be written:

π
P00(U^cosθ - UrUθsinθ) 2πR^sinθdθ = J00 for R → ∞ , (F.5)

0

where the x-components of the constants from the pressure and turbulent 

stress integrals have been combined with Jq and given a new name J00. 

This new constant represents the total amount of momentum transferred to

the fluid in the far field of the jet by mean momentum transport,

pressure forces and turbulent momentum transport. The exact 

relationship between Jθ and Joo will depend on the Reynolds number. The 

symmetry of the boundary conditions insures that there will be no mean

angular momentum in the flow, so the mean azimuthal velocity must be

zero.

At high Reynolds numbers, the dissipation rate of kinetic energy

into heat provides a clue about the evolution of the velocity profile.

The energy dissipation rate is always positive and all of the energy in

this flow is produced at the origin through the work done by the

momentum source. A consequence of these facts is that the mean kinetic

energy flux crossing the surface S will decrease as R increases. In

particular, this means that the peak values, and widths of the parts of 

the profiles of Ur and Uθ which contribute positively in the integration 

specified by Equation (F.5), will increase and decrease, or decrease and

increase, respectively, with increasing r in a manner that maintains the

validity of Equation (F.5) and allows for the effects of the energy

dissipation rate.
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A form of the mean radial velocity profile that allows for these

variations- with r is :

Ur(r,θ) =
b(r) G[a(r)θ] , (F.6)

where a(r), b(r) and G are unknown functions. Substituting this in the 

Reynolds-averaged integral form of the continuity equation, i.e.

p∞U-dS = 0, (F.7)

yields :

2πpoo R∙ 
b(R)

2 ,π
G[a(R)θ]sinθdθ = 0, (F.8)

To learn something about a(r), assume that the factor outside the 

integral in Equation (F.8) is not equal to zero, divide it out, and 

replace a(R)θ in the integral by v. The result is:

πa (R)
G(v)sin(

a(R) a(R)
)dv = 0, (F.9)∏5⅛ <

In the integrand, the sine function is always positive-definite 

regardless of the value of a(R). This forces G(v) to contribute exactly

the correct amount of positive and negative value over an interval in v

that varies with a(R). This is impossible for G≠0, so a(R) must be a

constant function, independent of R. Replacing a(r) by a constant in 

Equation (F.6) and absorbing the constant into the unknown function G 

simplifies the assumed form for the mean radial velocity profile to:

Ur(r,θ) = G(θ)∕b(r) . (F.10)
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If this decomposition of variables is also valid for the mean

angular veldcity, the radial dependence of the integrand in

Equation (F.5) can be determined from a simple argument: The surface 
2area of the integration in Equation (F.5), like R , increases and the

total value of the integral remains equal to Joo,∙ therefore, the

integrand must decrease like 1/R . In mathematical notation, this

conclusion looks like:

U2cosθ - UrUθsinθ ~ F (θ) ∕R2 for R→∞, (F.ll)

where F(θ) is an unknown function such that:

ιπ
J pooF (θ) 2πsinθdθ = Joα . (F.12)
Û

Equation (F.ll) can be further decomposed to:

U∣ ~ g2(θ)∕R2^ + F1(θ)∕R2 for R→∞ (F.13a)

uruθ ~ g2(θ)cot(θ)∕R2^ + F2(θ)∕R2 for R→∞, (F.13b)

where ξ<1, g(θ) is an unknown function and

F1(θ)cosθ - F2(θ)sinθ = F(θ). (F.14)

Equations (F.13a and b) allow for the possibility that there is a common

component in the two terms in the integrand of Equation (F.5), which 
2decays less quickly than 1/R as R increases,

To leading order, equations (F.13a and b) yield:

Ur ~ g(θ)∕R^, for R → ∞ (F.15a)
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Uθ - g(θ)cotθ∕R^, for R→∞. (F.15b)

If these forms for Uχ,, and Uθ are checked in the differential form of 

the continuity equation,

1 a 2 Id-----(r2U ) +---------(sinθUft) = 0,
r2 3r rsinθ 3θ

(F.16)

g(θ) is produced:an equation for

The solution is

which yields :

Ur — const R ξ(cosθ)1 for R —» «> (F.19a)

t (cosθ)2-ξ
Un ~ const R ’--------- for R —» ∞. (F.19b)0 sinθ

While these expressions are mathematically allowed, they are physically

unrealistic because Uθ is singular at θ = 0. This implies that Equations

(F.15a and b) are an improper form for the velocity field, so the

constant of integration in Equation (F.18) must be chosen to be zero.
2Therefore, each term of the integrand in Equation (F.5) must, like 1/R , 

decay as R increases since it is physically impossible for a larger 

common term, that cancels in the subtraction, to exist. This means that

the first terms on the right side of Equations (F.13a and b) should be

ignored, leaving:

π _ iSZÜlM

(l-ξ)g(θ) + (cotθ)g, (θ) = 0.

g(θ) = const(cosθ),

R
for R —> ∞

(F.17)

(F.18)

(F.20a)
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uθ -
^o≈∕Pooh(θ)

R
for R —> ∞ r (F.20b)

where f(θ) and h(θ) are related to F^(θ) and F2 (θ) by:

(F.21a)

h(θ) =F2(Θ)(-- ½2-- )1∕2.
fi(Θ>Joo

(F.21b)

Equations (20a and b) describe the self-similarity of the free-jet, mean

velocity field for large R. It should be mentioned here that the

profile functions, f(θ) and h(θ), could depend on the Reynolds number.

In experiments, some type of nozzle with a finite exit area is used

to produce the jet flow. Because laboratory jets do not originate from

a point source of momentum, the origin of the proper coordinate system

for a similarity collapse is not known before the measurements are made.

This means that the arguments presented above allow the introduction of 

a virtual origin, xq, with respect to the nozzle location to collapse 

laboratory data properly. In practice, the virtual origin is usually

located only a few nozzle diameters upstream or downstream of the nozzle

exit.

A second difference between the material in this appendix and real

jet flows is that real jets have a nonzero, positive, net mass flux, mθ.
*This parameter can be used to create a length scale, d , that depends

only on the exit parameters of the nozzle:

d r
2mJÛ. (F.22)
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★where the factors of 2 and π have been added to so that d reduces to

the geometrical nozzle exit diameter for density-matched jet and ambient

fluids, and a perfect "top-hat" exit velocity profile. This length

scale, d , is the proper length scale for normalizing the downstream

distance in the jet. It was introduced by Thring and Newby (1953), used

by Avery and Faeth (1974) and modified to the present form by Dahm and

Dimotakis (1987) .

The introduction of mQ should not affect the similarity arguments 

presented above as long as the effects of mQ are small in the far field. 

This idea implies that a definition of the far field for real jet flows 

could be based on mθ, Jθ, poo, and R. First, define the mass flux 

associated with jet flow, ignoring mθ, at a distance R by:

m(R) = f' m 00^00

f (θ) 2π ,Rzsinθdθ (F.23)

where θm is the angle for which m(R) is maximum. and Equation (F.20a) 

has been used for Ur∙ Note that m(R) ~ R as R → ∞, so a practical 

definition of the far field of the jet can now be stated as the region 

of the flow where mθ is negligible compared to m(R):

m(R)-τ--  » 1, (F.24)
mo

or equivalently, after substitution from Equation (F.23) and recalling 

that the ratio J0o∕Jθ, which depends only on the Reynolds number, is a

constant in the far field:

R∕d* » 1. (F.25)
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On the jet centerline this becomes:

χ = (x — xq) ∕d* » 1. (F.26)

The exact point at which Equation (F.24) or Equation (F.25) is 

sufficiently satisfied for Equations (F.20a and b) to be applied must be 

determined by experiment.

Whatever the actual threshold may be, the results of the

point-source, jet analysis should be valid in the far field of the a

laboratory jet. For laboratory jets there are only two small

modifications to the results of the present point-source analysis:

Equations (F.20a and b) should be set in a coordinate system whose 

origin is at xq, and the implied limit for reaching the far field is 

given by Equation (F.24) or (F.25), instead of just R —» ∞.

The results of the point source analysis presented above can also

be extended to the case of a free jet in a coflowing stream, at the

expense of placing a limit on the downstream range for which Equations

(F.20a and b) are valid. Hinze (1975) presents a similar discussion to

the one that follows here.

If Uc is a uniform velocity of the entire reservoir in the the 

direction of the jet's discharge, then Equation (F.5) becomes:

0
I +U cosθ - Unsinθ) (U.cosθ + U_) 2πR^sinθdθ = c r σ c j.

J∞ for R —» ∞ , (F .27)

where as before Ur and Uθ are the mean radial and angular velocities
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produced by the point source of momentum. If the integral form of the

continuity equation in the presence of the uniform coflow,

fπI (Uccosθ+Ur)2πR2sinθ = 0, (F.28)
0

is multiplied by Uc, and subtracted from Equation (F.27), then Equation 

(F.29) is obtained.

fπ j∞I (Urcosθ - Uθsinθ) (Uccosθ+Ur)2πR^sinθdθ = —, for R —» ∞ (F.29)
0 p∞

If the Uccosθ term in the integrand could be dropped, then Equation 

(F.29) would be identical with Equation (F.5). This means that

Equations (F.20a and b) will hold if:

Ur » Uccosθ. (F.30)

Using Equation (F.20a) for Uχ, and taking θ = 0, Equation (F.30) can be 

rewritten in terms of Joθ, Uθ and the downstream distance:

f(0) ^Joo∕P,,
x"xo uc

» 1. (F.31)

If Equation (F.29) is applied to a laboratory jet and extrapolated back

to jet nozzle exit conditions, then the momentum length scale for a

coflowing jet, see Equations (A.16) and (A.17), can be substituted into

Equation (F.31), to get:

Equations

for which

√π∕4 f(0) ( —
x-x0

(F.30) to (F.32) restrict

Equations (F.20a and b) are

) » 1. (F.32)

the downstream distance in the jet

valid in the presence of a uniform

coflow. Appendix A, section 6 contains a discussion of how θc was used
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to scale the effects of the coflow for the present study, but it is

worth mentioning here that the grouping of terms on the left hand side

of (F.32) was greater than 10 for all of the current experiments. As a

final comment, it must be recognized that Equation (F.30) must be

satisfied in 0 < θ ≤ π for the jet to be completely unaffected by the

coflow.

When Equations (F.24) and (F.30) are satisfied, one conclusion

concerning the concentration field of the jet can be drawn from Equation

(F.23). If the fluid that comes from the jet nozzle carries a conserved

passive scalar, then the mean concentration of this scalar within the

jet flow must, like 1∕R, decrease since the mass flux in the jet

increases linearly with R. In terms of the centerline coordinate, 

x-xq, this implies:

<C>jet ~ c<√<x^xo> ~ coX"1' X » 1' <K.33)

where C is the mass fraction concentration, the brackets imply averaging 

across the lateral extent of the jet, and Cθ is a reference 

concentration. In most experiments, Cq is chosen to be the 

concentration of the nozzle fluid at the exit of the jet nozzle.

Experimental verification of the similarity forms presented here

can be found in many references, for example Chen and Rodi (1980) and

the référencés cited therein.
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