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Abstract

A new implementation of the conventional Stokesian Dynamics (SD) algorithm, called
Accelerated Stokesian Dynamics (ASD), is presented. The equations governing the motion
of N particles suspended in a viscous fluid at low particle Reynolds number are solved
accurately and efficiently, including all hydrodynamic interactions, but with a significantly
lower computational cost of O(N In N). The main differences from the conventional SD
method lie in the calculation of the many-body long-range interactions, where the Ewald-
summed wave-space contribution is calculated as a Fourier Transform sum, and in the
iterative inversion of the now sparse resistance matrix. The ASD method opens up an
entire new class of suspension problems that can be investigated, including particles of
non-spherical shape and a distribution of sizes, and can be readily extended to other
low-Reynolds-number flow problems. The new method is applied to the study of sheared
non-Brownian suspensions.

The rheological behavior of a monodisperse suspension of non-Brownian particles in
simple shear flow in the presence of a weak interparticle force is studied first. The availabil-
ity of a faster numerical algorithm permits the investigation of larger systems (typically
of N = 512 — 1000 particles) and accurate results for the suspension viscosity, first and
second normal stress differences and the particle pressure are determined as a function of
the volume fraction. The system microstructure, expressed through the pair-distribution

function, is also studied and it is demonstrated how the resulting anisotropy in the mi-
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crostructure is correlated with the suspension non-Newtonian behavior. The ratio of the
normal to excess shear stress is found to be an increasing function of the volume fraction,
suggesting different volume fraction scalings for different elements of the stress tensor.
The relative strength and range of the interparticle force is varied and its effect on the
shear and normal stresses is analyzed. Volume fractions above the equilibrium freezing
volume fraction (¢ =~ 0.494) are also studied, and it is found that the system exhibits
a strong tendency to order under flow for volume fractions below the hard-sphere glass
transition; limited results for ¢ = 0.60, however, show that the system is again disordered
under shear.

Self-diffusion is subsequently studied and accurate results for the complete tensor of
the shear-induced self-diffusivities are determined. The finite, and oftentimes large, auto-
correlation time requires the mean-square displacement curves to be followed for longer
times than was previously thought necessary. Results determined from either the mean-
square displacement or the velocity autocorrelation function are in excellent agreement.
The longitudinal (in the flow direction) self-diffusion coefficient is also determined, and
it is shown that the finite autocorrelation time introduces an additional coupled term to
the longitudinal self-diffusivity, a term which previous theoretical and numerical results
omitted. The longitudinal self-diffusivities for a system of non-Brownian particles are

calculated for the first time as a function of the volume fraction.



vii

Contents

1 Introduction

2 Accelerated Stokesian Dynamics Simulations
2.1 Introduction

2.2 Method

2.2.1 Calculation of the far-field interactions . . . . . .. .. ... .....
2.2.2 Wave-space sum contribution . . . . ... ... ... .. .......
2.2.3 Real-space sum contribution . ... ... ... ... ..., ... .
224 Forcelaws . . . . . . . . ..o
2.2.5 Near-field interactions . . . . ... ... ... ... ... ... ...
226 Timeintegration . . . ... ... ... ... ... .. ... .....
2.2.7 Total operations count for each timestep . ... .. ... .. .. ..
2.3 Results—Simple Cubic Arrays. . . . . . . . . . . .. ...
2.3.1 Sedimentation of cubic arrays: sensitivity to method parameters
2.3.2  Sedimentation of cubic arrays: volume fraction dependence . . . . .
2.3.3 Shear viscosity of cubic arrays . . . ... ... .. ... ... ...
2.3.4 Spin viscosity of cubic arrays . . . ... .. .. ... ... ... ...
2.4 Results—Random Suspensions . . . ... ... ... ... .. .. ... ...
2.4.1 Viscosity of random suspensions: below the freezing point . . . . . .
2.4.2  Viscosity of random suspensions: above the freezing point . . . . . .
2.4.3 Sedimentation velocity: dependence on system size . . . . ... ...

2.4.4 Short-time self-diffusion coefficient . . . . . . . ... .. ... .. ..

2.5 Conclusions



viii

3 Rheology and Microstructure in Concentrated Non-Colloidal Suspen-

sions 64
3.1 Imtroduction. . . . . ... ... . .. .. 64
3.2 Simulation Method . . . . . . . ... . ... ... 66
33 Results. . . . .. . . ... e 70
3.3.1 Dependence on the number of particles N . . . ... ......... 71
3.3.2 Shear and normal stresses . . . . . ... ... ... L., 71
3.3.3 Microstructure . . . ... ... ... L L 75
3.3.4 Rheology and microstructure . . . ... ... ... ... ....... 78
3.3.5 Effect of the interparticleforce . ... ... ... ... ........ 81
3.3.6 Effect of friction . . . . .. ... .. ... ... .. 83
3.3.7 Volume fractions above freezing . . . . ... ... ... ... ..... 85
3.4 Conclusions . . . . . .. . .. e 87
4 Shear-Induced Self-Diffusion in Non-Colloidal Suspensions 112
4.1 Imtroduction. . ... .. . ... .. .. ... e 112
4.2 The Simulation Method . . . . . .. ... ... ... L . 114
4.3 The Self-Diffusivities in the Velocity Gradient (Dy,) and Vorticity (D,,)
Directions . . . . . . . . . . 117
4.3.1 Theoretical analysis . . . ... ... ... ... ... ... ... ... 117
4.3.2 Test case: The long-time self-diffusivity for ¢ = 0.20, N = 1000 . . . 119
4.4 Results: The Calculation of Dyy and D,, .. ... .............. 123
4.4.1 The dependence on the number of particles N . . . . ... ... .. 123
4.4.2 The dependence on the volume fraction . . ... ........... 124
4.5 The Longitudinal (Dz;) and Off-Diagonal (D, ) Self-
Diffusivities . . . . . . .. ... ... 127
4.5.1 Theoretical approach . . . . . . ... ... . L 127
4.5.2 The volume fraction dependence . . ... ... ... ......... 136
46 Conclusions . . . . . . .. . .. e 142

5 Conclusions 163



1x

A The ASD Method: Instructions and General Considerations
A.1 General Description
A2 Flow Chart
A.3 Variables

B The Force Distribution on the Grid

C One Term Real Sums

C.1 Force: F;

C.2 First Force Moment: Doublet D;;

C.3 Second Force Moment: d;
C.4 Third Force Moment: L;;

166
166
167
170
175

179



List of Figures

2.1 The transition from a force acting on a particle’s center to a set of forces
actingonthegridpointsy. . . . ... ... ... .. ... ... . ... ..
2.2 The number of iterations required for convergence with and without pre-
conditioning . . . . . ... ... L L
2.3 The relative error for the calculation of the fluid velocity for a system of
N = 30 particles in a gravitational field . ... ... ... ..........
2.4 The CPU time (in seconds) for one time-step of a shearing simulation as a
function of the number of particless N . . . . ... ... ... .. ......
2.5 The dependence of the sedimentation velocity of a SC array of spheres on
aand dz; N =8,¢=0.064, L =8.0,r.=vV3x4da . . .. .. .. ......
2.6 The dependence of the sedimentation velocity of a SC array of spheres on
aanddr; N=8,¢=05236, L =40, 7. =v3%X2a . . ... ... ...
2.7 'The dependence of the sedimentation velocity of a SC array of spheres on
aand dz; N =8,¢=0.5236, L=4.0, 7, =v3x4a . ... .........
2.8 The dependence of the sedimentation velocity of a SC array of spheres on
particle position and dz; N =8, ¢ = 0.064, L = 8.0, 7. = V3 x 4a, a = 16 .
2.9 The sedimentation velocity of a SC array of spheres as a function of the
volume fraction . . . . . . . ...
2.10 The shear viscosity functions & and 3 of a SC array of spheres as a function
of the volume fraction . . .. ... ... ... ... ... ... .. ......
2.11 The spin viscosity ¢ of a SC array of spheres as a function of the volume
fraction

2.12 The high-frequency dynamic viscosity as a function of the volume fraction .

54



2.13

2.14

2.15

2.16

2.17

2.18

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

3.9

3.10
3.11

xi

The high-frequency dynamic viscosity as a function of the volume fraction
for volume fractions above the melting point . . . . . .. ... ... ..... 59
The high-frequency dynamic viscosity as a function of In(1/¢), where € =
L—¢/brep, for $ >0.60 . . . . . ... ... 60
The sedimentation velocity of a random suspension of spheres at ¢ = 0.05
and for different number of particles N . . . .. ... ... ... ... .... 60
‘The short-time self-diffusion coefficient for a random suspension of spheres
at ¢ = 0.05 and for different number of particles N . . . ... ........ 61
The short-time self-diffusion coefficient for an infinite random suspension
as a function of the volume fraction¢ . . ... ... ... ... ....... 62

The short-time self-diffusion coefficient as a function of the inverse of the

high-frequency dynamic viscosity, for ¢ >060. . . .. ... ... ... ... 63
The suspension viscosity as a function of the number of particles N . . . . . 96
The suspension relative viscosity, 7,, as a function of the volume fraction . 96

The suspension excess viscosity, 7, — 7, as a function of the volume fraction 97
The first normal stress difference, N7, as a function of the volume fraction . 98
The second normal stress difference, No, as a function of the volume fraction 98
The particle pressure, II, as a function of the volume fraction . . . ... .. 99
The suspension normal stress differences, N; and N», and the suspension
pressure, II, non-dimensionalized by the excess shear stress, (n, — 7L )7y . . 100
The ratios of the suspension normal stresses, 311, Y22 and 333, to the excess
shear stress, (M — L )Ny - -« o o o 100
The ratios of the suspension normal stresses, X1, Yoz and T33 (a) and
particle press IT (b) to the shear stress, n,, as a function of the volume
fraction . . ... ... 101
The definition of 8 for two particles in shear-flow . . . ... ... ... ... 102
The dependence of the angularly averaged pair-distribution function, (g(r)),

I

on the volume fraction—small distances . . . . . . ... ... ... ..... 103



3.12

3.13
3.14
3.15

3.16
3.17

3.18

3.19

3.20

3.21

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

xil

The dependence of the angularly averaged pair-distribution function, (g(r)),,
on the volume fraction—large distances . . . . .. ... ........... 103
The angular dependence of the pair-distribution function, g(r,8) . ... .. 104
The projection of the pair-distribution function onto the zy, zz and zy planes105
The excess viscosity, 7 — 7,,, non-dimensionalized with 7. ¢? f;* g(r)dr
(a) and 0l g%()p?(b/a—1)022 (b) . . .. .. ... 106
The three normal stresses non-dimensionalized by nynl,¢? [, ’ g(r)dr . . . . 107
The first, Ny, and second, Ny, normal stress differences and the suspension
pressure, I, non-dimensionalized by nyn. ¢ f; : glryde .. ... ... ... 107
The pair-distribution function as a function of the interparticle force pa-
rameters . . . . ... Ll e e e e e e e e e e 108
The angular dependence of the pair-distribution function as a function of
the friction coefficient . . . . . . ... ... L L 109
The relative viscosity, 7,, as a function of the volume fraction for volume
fractionsup to 0.60 . . . . . .. ... 110
The projection of the pair-distribution function onto the zy plane, g(z,y),
for volume fractions up to 0.60 . . . . .. ... ... ... ... 111
Typical mean-square displacement curves (¢ = 0.20—long run) . . ... .. 148
Typical mean-square displacement curves (¢ = 0.20—short run) . . . . . . . 149
Typical velocity autocorrelation functions (¢ =0.20) . . ... ... .. ... 150
The velocity autocorrelation function as a function of volume fraction . . . 150
The dependence of D, on the number of particles N.. . . . ... ... ... 151
The dependence of Dy, on the volume fraction¢ . . .. ... ... ..... 152
The dependence of D,, on the volume fraction ¢ . . . ... ... ...... 153
The mean-square displacement (yy) as calculated from ASD simulations for
¢ =0.20, N = 1000 compared with experiment . . . ... ... ... . ... 154
The self-diffusion coefficient Dy, as calculated from ASD for long strains,
short strains and compared with experiment . . . . . ... ... ....... 155



4.10

4.11

4.12

4.13

4.14

4.15

4.16
4.17

4.18
4.19

4.20

4.21

Al

B.1

xiii

The mean-square displacement (zz) as calculated from ASD simulations for
¢ = 0.20, N = 1000 compared with experiment . ... ............ 156
The self-diffusion coefficient D,, as calculated from ASD for long strains,
short strains and compared with experiment . . . . . ... ... ....... 156

The self-diffusivity in the longitudinal direction, D, as a function of strain

forasystemof N =1000, =035 . . . . ... ... ... ... . ...... 157
The cross diffusivity, Dgy, as a function of strain for a system of N = 1000,
d=035 . . . . e 157
The corrective terms, D77 and DgY", for a system of N = 1000 and
¢=0.15asafunctionofstrain . ... ..... ... ............. 158
The corrective terms, D™ and Dgf", for a system of N = 1000 as a
function of the volume fraction . . .. ... ... ... ............ 158

Two particles undergoing simple shear flow in a periodic cell of length L . . 159

The net non-affine displacement X” for one of a pair of particles subject to

shear flow as a function of strain for different valuesof L . . . . . . . .. .. 160
The square non-affine displacement X" X% for L=20a . . . ... ... ... 160
The effect of the particle grouping on the calculation of the non-affine dif-

fusivity D, . . . . . o 161
The self-diffusion coefficient D,, as a function of the volume fraction . . . . 162
The self-diffusion coefficient D, as a function of the volume fraction . . . . 162
The ASD method flowchart . . . ... ... ... ... ... .. ....... 178



xiv

List of Tables

21

3.1
3.2
3.3

3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4

Accelerated Stokesian Dynamics, 75, and D§ vs. ¢

Ny, —N1, —~N2 and II vs. N for ¢ = 0.40, 7 = 1000, 4*=1000 . . . . .. ..
Ny, —N1, =Ny and Il vs. ¢ for N =512, 7 = 1000, *=1000 ... ... ..
The —xF), contribution to n,, —N;, —~Ny and II vs. ¢ for N = 512,
7=1000,y*=1000 . . ... .. . ...
Tpeak, T and (g(rpeak)), vs. ¢ for N =512, 7 = 1000, 4* = 1000 . . . . ..
Nry —N1, =Ny and II vs. 7 and 4* for ¢ =0.40, N =512, Fp =1 . ... ..
Ny, —N1, —N3 and II vs. 4* for ¢ = 0.10 and 0.30, N = 512, 7 = 1000

Ny, —N1, =N and II vs. v for ¢ = 0.40, N = 512, 4* = 1000, 7 = 1000 . . .

Dy, and D,, vs. N for ¢ =0.35, 7 = 1000, ¥* =1000 . ... ........
Dy, and D,, vs. ¢ for N = 1000, 7 = 1000, 4*=1000 . . ... .. ... ..
Dy, D}, and D™ vs. ¢ for N = 1000, 7 = 1000, ¥* = 1000 . . . ... ..
Dgy, Dy, and D" vs. ¢ for N = 1000, 7 = 1000, 4* = 1000 . .. ... ..



Chapter 1

Introduction

Suspensions are important in a large number of applications and in a variety of natural
and industrial settings. Examples include handling and transportation of solid particu-
late materials and manufacturing processes of many products (e.g., ceramics, paints and
food). The flow behavior of these suspensions is often complex and a more fundamental
understanding of their properties is of great interest. In such systems the suspending
particles interact through hydrodynamic, interparticle and Brownian (or thermal forces).
The properties of the suspending particles and the nature of the fluid medium determine
the relative importance of the above forces and the balance of these forces determines
the suspension’s macroscopic behavior. This work will concentrate on non-Brownian, or
non-colloidal, suspensions at low particle-Reynolds number. Non-Brownian implies that
thermal forces giving rise to Brownian motion are negligible (generally for particles of
order 10pum or larger), while low partiicle Reynolds number means that the inertial forces
are negligible and that the fluid motion is governed by the Stokes equation.

Since Einstein (1906) developed a theoretical expression for the viscosity of a dilute
suspension of such non-Brownian spheres, a large number of studies have concentrated on
the theoretical prediction of the macroscopic transport properties of suspensions. For the
most part, theoretical studies are limited to dilute concentrations where single- or two-
body interactions dominate and exact solutions are often possible. The determination of
hydrodynamic interactions among many particles, however, can be complicated mainly

due to the long-range nature of the interactions and the presence of strong lubrication



effects when particles are in close proximity to each other. The fluid velocity disturbance
caused by a particle on which a net external force acts decays as 1/r, where r is the distance
from the particle, and therefore the hydrodynamic interactions cannot be truncated and
no simple pairwise-additive approximation can be made. In addition, the presence of
lubrication effects makes conventional numerical techniques (such as the boundary-integral
technique) expensive computationally when two particles approach each other.

Durlofsky, Brady & Bossis (1987) developed a method that successfully accounts for
both the many-body interactions and the near-field lubrication effects by splitting the
hydrodynamic interactions into a far-field mobility calculation and a pair-wise additive
resistance calculation. The main advantage of the method is that a relatively small num-
ber of unknowns per particle is sufficient to adequately solve many dynamic simulation
problems. The main disadvantage of the method, however, is that it requires inverting a
far-field mobility matrix with at least (11N)? elements (N being the number of particles
in the system), with a computational cost that limits the method to N on the order of a
hundred.

The method of Durlofsky, Brady & Bossis (1987) and its extension to infinite sus-
pensions by Phillips et al. (1988) is known as Stokesian Dynamics and has been used
successfully for the study of many problems over the past decade. The limitation on the
system size, however, generates the need for a new algorithm that maintains a high level
of accuracy with a more favorable computational cost. The first part of this thesis will
concentrate on the development of such an algorithm. This new algorithm, referred to as
Accelerated Stokesian Dynamics (ASD), will be presented in detail and validated for some
test problems. The costly construction and inversion of the far-field mobility matrix is
now avoided and replaced by a Particle-Mesh-Ewald approach (Darden et al. 1993) and
as a result the computational cost is reduced to scale as only O(N In N). Access to larger
systems allows the study of a variety of problems where the system size effects can be
significant. The high-frequency dynamic viscosity and short-time self-diffusivity of sus-
pensions for volume fractions above the freezing point (along the metastable fluid-phase
branch) are thus calculated. This is a case where a large number of particles is necessary

to capture the correct behavior, since a macroscopic system at these high volume frac-



tions will undoubtedly have clusters in some regions and freely mobile particles in others,
a structure which is difficult to model unless the unit cell is sufficiently large.

The second part of this thesis utilizes the ASD algorithm to study the rheological be-
havior of non-colloidal suspensions. Over the last years significant research effort has fo-
cused on such systems of non-Brownian particles and in particular on their non-Newtonian
behavior (finite normal stress differences and a particle phase contribution to the isotropic
stress). Gadala-Maria (1979) reported normal stress differences that scale as 7y, where
7 1s the viscosity of the solvent and # the shear rate. Experiments by Singh (2000) and
Zarraga et al. (2000) followed and confirmed the presence of finite normal stress differ-
ences for such systems. Stokesian Dynamics simulation results for Brownian systems at
high values of the Péclet number also demonstrated a similar behavior (Phung 1996, Foss
& Brady 2000).

Singh (2000) and Zarraga et al. (2000) also evaluated the isotropic contribution to the
particle stress, referred to as the particle pressure, from a combination of experimental
measurements of all normal stress components. This particle pressure is a consequence
of the hydrodynamic (and interparticle force) interactions among particles as opposed to
the thermally induced “osmotic” pressure in colloidal systems. Its theoretical calculation
became possible only recently after Jeffrey, Morris & Brady (1993) calculated the necessary
hydrodynamic two-body functions.

'The impact of the suspension microstructure on its non-Newtonian rheological prop-
erties has also been the subject of a number of theoretical studies. Brady & Morris (1997)
analytically calculated the viscosity and normal stress differences for a dilute suspension
of particles taking into account hydrodynamic interactions and the presence of a hard-
sphere-type pairwise interparticle force, which prevented particles from approaching one
another beyond a minimum separation b > a. This force breaks the fore-aft symmetry
and thus leads to a viscosity correction and finite normal stress-differences. By study-
ing the balance between hydrodynamic and interparticle forces in a boundary layer near
particle-particle contact, Brady & Morris (1997) proposed a scaling for the particle stress
that incorporates the effect of the particle volume fraction, the range of the interparticle

force, and the resulting microstructure.



In this work we study the structure, rheology and self-diffusion of sheared monodisperse
non-Brownian suspensions in the presence of a weak repulsive interparticle force. Access to
a faster algorithm allows the simulation of much larger systems, typically of N = 512—1000
particles. Larger systems allow a more accurate calculation of all rheological properties,
and in particular of the normal stresses which are often subject to large fluctuations. The
microstructure is investigated with the help of the pair-distribution function, g(r), and the
examination of its angular and radial dependence. The resulting microstructure is studied
in comparison with the changes in the rheological properties and the scaling theory of
Brady & Morris (1997) is utilized.

The third part of this thesis applies the ASD methodology to the study of the fluc-
tuating motion of non-colloidal suspensions (described as shear-induced diffusion). The
first direct experimental observation of shear-induced diffusion dates back to Eckstein et
al. (1977) who studied the fluctuating motion of individual tracer particles in a Couette
flow. The nature of the phenomenon is quite different from the more familiar concept of
Brownian diffusion which is caused by thermal fluctuations and which is negligible for non-
colloidal particles. Shear-induced diffusion (or hydrodynamic diffusion, as it is sometimes
referred to) is the result of the fluctuating motion of the particles due to the presence of
neighboring particles and the hydrodynamic interactions among them. The work of Eck-
stein et al. (1977) was followed by experiments by Leighton & Acrivos (1987) and Phan
& Leighton (1999), and more recently by Breedveld et al. (1998, 2001). Theoretical work
on self-diffusion has focused on the dilute limit, where only interactions between two or
three particles are taken into account. In the presence of only hydrodynamic interactions
a two-particle collision introduces no net displacement (for the motion in the velocity
gradient and vorticity directions). Da Cuncha & Hinch (1996) introduced asymmetry by
studying the motion of two rough particles, while Wang et al. (1996) introduced a third
particle to break the symmetry. Brady & Morris (1997) calculated the diffusion coefficient
for dilute systems in the presence of weak residual Brownian motion and a hard-sphere
interparticle force, which also breaks the symmetry of the two-particle limit and leads to
diffusive motion.

The self-diffusivities are also calculated and are found to be significantly affected by



the system size (in particular for small number of particles); large systems are therefore
necessary in order to obtain quantitatively accurate results. Emphasis is placed on the
calculation of the longitudinal (in the flow direction) self-diffusivity, for which very limited
results are available. The coupling of the advective flow with the diffusive motion in the
velocity-gradient direction introduces further difficulties which are addressed in detail.
The importance of a finite correlation time for the diffusive motion is also addressed and
it is demonstrated how previous studies (Breedveld et al. 1998, 2000; Foss & Brady 1999)
did not use long enough strains for the diffusive regime to be established.

The thesis is organized as follows: The principles of the new method (ASD) are de-
scribed in chapter 2 along with validation of the method for some test problems (mainly
results for cubic arrays) and demonstration of the total operation cost. The high-frequency
dynamic viscosity and short-time self-diffusivity are also presented and results are ex-
panded to volume fractions very near close packing.

The new method is used in chapter 3 for the calculation of the rheology and mi-
crostructure under simple shear of suspensions of non-Brownian particles. The effect of
the interparticle force is discussed and very concentrated systems are briefly studied.

In chapter 4 the complete self-diffusion tensor is calculated for the same system of
non-Brownian particles and presented as a function of the volume fraction. The effect of
the system size is investigated and some limitations for the calculation of the longitudinal
self-diffusivity are addressed.

All three appendices serve mostly as a companion to chapter 2 and to the new method.
In Appendix A an overview of ASD is presented and some practical considerations are
addressed. Appendix B presents in some detail the distribution of the force from the
particle’s center to a fixed grid (used for the wave-space part of the Ewald sums), while
Appendix C presents the formulae for the real-space parts of the Ewald sums.

Finally, it is noted that chapters 2, 3 and 4 are self-contained and have been (or will

be) published independently in scientific journals.
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Chapter 2

Accelerated Stokesian Dynamics Simulations

2.1 Introduction

Numerical simulations of the behavior of suspensions of particles provide a valuable tool
for understanding many complex rheological phenomena. Through simulations both the
macroscopic suspension properties and the suspension microstructure have been stud-
ied, and insight into structure-property relationships has been obtained (Brady & Bossis
1988, Foss & Brady 2000). Determining the hydrodynamic interactions among particles in
Stokes flow (small Reynolds number), however, can be a complicated and computationally
expensive task, mainly due to the long-range nature of the interactions and the presence
of strong lubrication effects when particles are in close proximity to each other. The fluid
velocity disturbance caused by a particle on which a net external force acts decays as
1/r, where r is the distance from the particle, and therefore the hydrodynamic interac-
tions cannot be truncated and no simple pairwise-additive approximation can be made.
In addition, the presence of lubrication effects makes conventional numerical techniques
(such as the boundary-integral technique) expensive computationally when two particles
approach each other.

Durlofsky, Brady & Bossis (1987) developed a method that successfully accounts for
both the many-body interactions and the near-field lubrication effects by splitting the
hydrodynamic interactions into a far-field mobility calculation and a pair-wise additive

resistance calculation. The main advantage of the method is that a relatively small num-



ber of unknowns per particle is sufficient to adequately solve many dynamic simulation
problems. The main disadvantage of the method, however, is that it requires inverting a
far-field mobility matrix with at least (11/V)? elements (N being the number of particles
in the system), with a computational cost that limits the method to N on the order of a
hundred.

The method of Durlofsky, Brady & Bossis (1987) and its extension to infinite suspen-
sions by Phillips et al. (1988) is known as Stokesian Dynamics (Brady & Bossis 1988;
hereafter referred to as SD) and has been used successfully over the last decade to give
accurate results for many problems where the system size is of relatively little importance.
For a variety of problems, however, it is desirable to simulate systems containing a much
larger number of particles in order to eliminate any system size effects. For example,
in the simulation of very dense suspensions, large-scale simulations are often needed to
capture the microstructure correctly; in additibn, most commonly used Monte Carlo al-
gorithms cannot even generate particle configurations above the freezing point of hard
spheres (¢ > 0.49) for N < 500 — 1000 as the small system size causes very rapid crystal-
lization. Similarly, problems involving fiber suspensions require large-scale simulations to
assure that the simulation box size is significantly larger than the length of each fiber.

In order to address problems where the system size is important and larger systems are
therefore necessary, we present a new method that maintains the same level of accuracy as
conventional Stokesian Dynamics but with a computational cost that scales only as N In N.
Our main objective is to avoid both the costly construction of the far-field mobility matrix
and its inversion. Before going into the details of our new approach, it is worth making
some general observations to see how one might construct a more efficient algorithm.

Iterative schemes can replace O(N?) inversions with potentially less costly O(N2)
multiplications, and when applied to “special” matrices—sparse, positive-definite, well-
conditioned—iterative schemes can result in O(N) operations. As we shall see in the next
section, for most applications of hydrodynamic interactions in Stokes flow, the far-field
resistance matrix usually appears as a product with a velocity and the knowledge of the
far-field hydrodynamic force (and not the elements of the matrix itself) is sufficient for

the iterative calculation of the particle velocities. It is therefore feasible to attempt a
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method that would only calculate 6N far-field hydrodynamic force/torques as opposed
to the full far-field mobility matrix. In addition, with this approach only the near-field
contribution to the hydrodynamic interactions remains in a matrix-like form; a matrix that
is now sparse and can be manipulated easily in O(N) operations. This approach leads
again to a system of linear equations of the form A - £ = b, where now z is the vector
representing the translational and rotational velocities of all particles, A is a sparse matrix
representing the near-field part of the resistance matrix with only O(NN) non-zero elements,
and b represents the shearing and non-hydrodynamic force/torques on the particles and,
in addition, includes all the far-field physics. We use a particle-mesh approach (Hockney &
Eastwood 1988) in combination with the Ewald summation technique to generate the far-
field part of b in O(NN In N), an approach based on newly developed Particle-Mesh-Ewald
algorithms (Darden et al. 1993). Lubrication interactions are treated as in conventional
SD, taking special care to store the now sparse resistance matrix in a computationally
efficient manner. The linear system is solved iteratively and, with proper preconditioning,
very few iterations are necessary to achieve convergence.

We should also mention here the existence of other O(N) algorithms, developed by
Ladd (1994a,b) and by Sangani & Mo (1996), that attempt to address similar problems.
Ladd’s method is based on the lattice-Boltzmann technique—the fluid continuum is re-
placed by a lattice-Boltzmann gas, while the behavior of the rigid particles is simulated
with the use of suitable rules for the momentum and position exchange between the lattice-
gas particles. Ladd (1994a,b) also used continuum Stokes flow lubrication results to reduce
the number of lattice gas points between near touching particles. Sangani & Mo’s algo-
rithm follows a more traditional approach by calculating the full resistance matrix through
a fast multipole summation technique and inverting the resulting matrix iteratively. The
fast multipole method is a widely used approach to performing fast summations in a num-
ber of fields. This method is in principle O(N), although the iterative solution technique
employed by Sangani & Mo appears to perform poorly, at least in their published results.
The calculation of the far-field hydrodynamic interactions presented in the following sec-
tions was inspired by the work of Higdon and coworkers (private communication, Guckel

1999). Higdon applied a Particle-Mesh-Ewald-sum (PME) technique (Darden et al. 1993)
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for the calculation of the far-field hydrodynamic force/torques; the problem of solving the
resulting system of equations efficiently, however, was never fully addressed.

The basic method is presented in §2.2 where we describe in detail both the calcula-
tion of the far-field interactions and the iterative scheme for the solution of the resulting
linear system. In §2.3 we test the accuracy of our method by performing calculations for
simple cubic arrays—cases that have been studied extensively in the past and for which
both analytical and simulation results are available for comparison. In §2.4 we calculate
properties of random suspensions and document results where the system size is indeed
important, e.g., for very concentrated suspensions. We conclude in §2.5 with remarks on
how this method can be extended to other problems in Stokes flow and the analogous

problems in electrostatics and elasticity theory.

2.2 Method

Before proceeding with the presentation of the new method, we give a brief overview of
the conventional Stokesian Dynamics technique. For N rigid particles suspended in an
incompressible Newtonian fluid of viscosity n and density p, the motion of the fluid is
governed by the Navier-Stokes equations, while the motion of the particles is described by

the coupled N-body equation of motion:

U
m-gdt—” = F" 4 FP, (2.1)

which simply states that the mass times the acceleration equals the sum of the forces. In
(2.1) m is the generalized mass/moment-of-inertia matrix of dimensions 6N x 6N, U, is
the particle translational/rotational velocity vector of dimension 6N, and F* and FP are
the hydrodynamic and external force-torque vectors acting on the particles. Although the
Stokesian Dynamics method can also be applied to problems where Brownian motion is
important, here we only consider non-Brownian systems (infinite Péclet number); exten-
sion to include Brownian motion in ASD is possible, however (Banchio & Brady 2001).
When the motion on the particle scale is such that the particle Reynolds number is small,

the fluid equation of motion becomes linear (Stokes equation) and the hydrodynamic forces
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and torques acting on the particles in a suspension undergoing a bulk linear flow are given

by:
Fh = —Rpy - (Up —u®)+ Rpg: E. (2.2)

Here, 4™ is the velocity of the bulk linear flow evaluated at the particle center, E is the
externally imposed rate of strain tensor, and Rpy(z) and Rpg(z) are the configuration-
dependent resistance matrices that give the hydrodynamic force/torques on the particles
due to their motion relative to the fluid and due to the imposed shear flow, respectively;
the vector & denotes the configuration—position and orientation—of the particles.
The combination of the resistance matrices is denoted the grand resistance matrix:
Rry RrE

R = , (2.3)
Rsy Rsg

where Rsy and Rgg are similar to Rpy and Rpg and relate the particle stresslet, $"—
the symmetric first moment of the force density on a particle—to the velocity and the
rate of strain. The inverse of the resistance matrix is known as the mobility matrix M
and gives the particle velocities (U, — u®, —E) in terms of the forces (F" and S").
Conventional SD exploits the fact that hydrodynamic interactions among particles can be
decomposed into long-range mobility interactions and short-range lubrication interactions.
The long-range interactions are computed by expanding the force density on the surface
of each particle in a series of moments. The zeroth moment is simply the net force acting
on a particle (plus, for a spherical particle, a potential dipole), the first moment can be
decomposed into the torque and the stresslet, while higher moments are neglected. There
is no fundamental reason that higher moments cannot and should not be included, and
indeed there are problems where higher moments are significant (Ladd, 1990). But, the
first two moments, when combined with the near-field lubrication interactions, are the
minimum set needed and require the least computational effort. Furthermore, this level of
truncation has been shown to give very accurate results for many hydrodynamic problems.

This truncated multipole expansion, in combination with Faxén’s laws, is used to
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form the grand mobility matrix M. Once constructed, the grand mobility matrix is
inverted to yield a far-field approximation to the grand resistance matrix. While M is
pair-wise additive, on inversion infinite reflections among all moments and all particles are
computed, and thus the far-field resistance matrix is a true many-body interaction. Finally,
since the many-body approximation to the resistance matrix still lacks lubrication, which
would only be reproduced upon inversion of the mobility matrix if all multipole moments
were included, the near-field interactions are introduced into the resistance tensor in a pair-
wise additive faghion. The exact two-body resistance interactions (Jeffrey & Onishi 1984),
Ra2B, are added to (M>®)~1, but since the far-field two-particle resistance interactions
have already been included upon the inversion of M™ special care is needed in order not
to count these interactions twice. Thus, the two-body interactions already included in
(M*®)~1 | denoted as RSy, are subtracted (Durlofsky, Brady & Bossis, 1987), and the

approximation to the grand resistance matrix becomes:
R = (M*®)"! + Rop — RS. (2.4)

Once the grand resistance matrix is known, from (2.1) and (2.2) the particle velocities
can be obtained if the forces are known or vice versa. From the particle velocities new
configurations are obtained, the resistance tensors are computed anew and the procedure
repeated. This method captures both the near- and far-field physics and has given ex-
cellent results for many problems. Unfortunately, the direct solution of equation (2.1)
as implemented in conventional Stokesian Dynamics is computationally expensive since
it involves the costly O(N?) calculation of the far-field mobility matrix and its costly
O(N?) inversion. We now present an alternate approach in an attempt to minimize the
computational cost and devise a method with a more favorable scaling.

As in conventional SD, we split the hydrodynamic force into a far-field and a near-field
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part:

h _ ph h
F —Fff-I-an
= —RFU,ff . (Up—uoo) +RFE,ff B

- RFU,nf . (Up - u°°) + RFE,nf : E. (2.5)

The near-field resistance matrix in the above equation corresponds simply to the proper
component of Rop—R3% in (2.4), while the far-field resistance matrix is the corresponding
part of (M>)~L. Instead of calculating (M®)~! directly as was done before, however,
we now calculate the far-field hydrodynamic force instead. Although this approach does
result in some loss of information (compared to the calculation of the full matrix), it allows
us to calculate only 6N hydrodynamic forces/torques, a procedure with a significantly
smaller computational cost. In the following subsections, we discuss in detail how this
calculation is done, along with a discussion of iterative techniques that further reduce the

computational cost of the inversion of the remaining near-field matrix.

2.2.1 Calculation of the far-field interactions

As was already mentioned, in order to avoid the expensive construction of the far-field
resistance matrix we calculate the far-field hydrodynamic force directly—that is, the prod-
uct of the resistance matrix with a known velocity. In order to clarify the most important
features of the new approach, we first use a simple schematic description. In Stokes flow
the velocity at any point in the fluid can be expressed in a number of equivalent ways—
integral representations of Green functions, multipole expansions of force moments, etc.
In the following paragraphs we will present the multipole expansion approach in detail,

but for the moment we use a very general functional form:
ui(e) — u®(@) = Y Gij(a, @) F, (2.6)
n

where u;(x) — uf®(x) is the i-component of the velocity disturbance in the fluid at any

position @, F}' is the j-component of the hydrodynamic force, torque, stresslet (or even
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higher moments) on each particle n, and G;; corresponds to the appropriate solution
function. To determine the motion of a particle immersed in a flow field given by (2.6), we
make use of the Faxén formulae that relate the force (and higher moments) on a particle

n to the particle velocity U,.; and the fluid velocity at the particle center, u;(z,):
B = (Upy — u®(@n)) + H (ui(@n) — ui®(2n)), (2.7)

where H represents a known functional operation. (A scalar operator multiplying the
particle velocity, e.g., 6mna for a sphere of radius @ in a fluid with viscosity 7, can be
included in the non-dimensionalization of the force and therefore has been omitted here.)
It should be clear that by combining equations (2.6) and (2.7) one can eliminate the fluid
velocity u;(x,) and construct a mobility matrix relating the velocity of each particle to
the forces on all of the particles. It should also be obvious that the mobility formulation
is the most straightforward to calculate, since U,.; is only present in equation (2.7); such
a mobility formulation then needs to be inverted to give the resistance formulation.

An alternative approach is to never calculate the mobility matrix and calculate F* di-
rectly in an iterative manner. Assuming that all the particle velocities are known (either
as a nested iterative procedure, or more simply as the velocities of the previous time step),
an initial value is assumed for the hydrodynamic forces, equation (2.6) is solved for the
corresponding fluid velocities, u;, and then with application of Faxén’s laws (2.7) the initial
forces are corrected and the process repeated until convergence. The computational cost of
such a procedure is dominated by the O(N?) calculation of Yon Gij(z, @y ) F'—a sum over
the forces of all the other particles. However, the calculation of these sums can be acceler-
ated significantly with the use of recently developed methods, like the Particle-Mesh-Ewald
(referred to as PME hereafter) technique. The ideas of particle-mesh techniques (Hockney
& Eastwood 1986) are used to assign particles to a mesh according to their positions and
then fast Fourier transform (FFT) techniques are used to evaluate the wave-space part of
the Ewald sum on this mesh. The fast evaluation of the wave-space sum is then used to set
the parameters to allow an O(N) evaluation of the real-space sum. PME algorithms have

been successfully applied to the calculation of Coulombic interactions (Darden et al. 1993,
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1997, Essmann et al. 1995, Petersen 1995) and recently have been formulated for the case
of hydrodynamic interactions by Higdon & coworkers (Guckel 1999); this formulation will
be described here in detail.

Our starting point is Hasimoto’s solution (1959) of the Stokes equations for the flow
past a periodic array of spheres. Hasimoto’s solution is exactly equivalent to that given by
Beenaker (1986); however, because a regular grid of points is used for the calculation of the
Fourier space sum, Hasimoto’s approach is preferred. Note also that all of the following
analysis refers to periodic systems; the subject of convergence of the resulting infinite
sums will not be discussed since it has been resolved in the past (see Brady et al. 1988).
Following Hasimoto, the fluid velocity in the presence of a periodic array of N suspended
particles at positions 7y, represented as point forces F™ (with Fj”, the j-component of
the force that the fluid exerts on particle n), in a periodic unit cell of volume V; can be

expressed as:

1 0%8?
uj(x) = — [ S} — L ) 2.8
i(®) 47rn< I Om0z; (28)
where
1 e—27ri(k-r) .
2 k
_ 2.
St =~ ; pram 18 (2.9)
and
Sj = V253, (2.10)

Here, k is the reciprocal lattice vector (corresponding to the real space vector =), and F}“
is the j-component of the Fourier transform of the real-space lattice point force F™.

The above sum, which simply represents the contribution to the fluid velocity of all
the “particle-point-forces”, can be evaluated efficiently with the introduction of Ewald’s

summation technique. We start with an integral representation for 1/k%™:

1 7

- n * —7k28 pm—1
kZm—F(m)/O e " PATT . (2.11)
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Then
e=2milkr) . gm % k2 p=ami(kr) fik g1
ggn = Z k.Zm _F‘7 = F(m) Z/O e w Iy FJ 6 dﬂ
k-0 k#£0
_ " /°° gm-1 Zﬁy[qe—ﬂkzﬂ—%ri(k-r) — F9| dg. (2.12)
F(m) 0 k ! ’

A splitting parameter « is introduced and the integral in (2.12) is split into two parts, one

from 0 to a, and the other from & to co. Ewald’s theta transformation formula

Z F][ce—wk2,8—27ri(k-r) — l/% Z e—vr(r—rn)/ﬂFJ?l (2.13)
k B2 5
is then applied to the integral from 0 to a.

The general formula for the evaluation of S} or S7 is then:

e—27ri(k-r) ~k
o= )
k#0
_ o™ _3 (r —7r.)%\ .. F]O
= T(m) Voo 2;¢_m+% (—————a F; -
o™ ~2mi(k-r) 2y ik
) D e $m—1(mak®)FF | (2.14)
k#0

where we have replaced 8 = «/¢ in the first integral and 8 = «f in the second. The
first sum and the constant term correspond to the real-space sum contribution from the
presence of all particles (including the self-term), while the second sum is the wave-space

sum excluding the k = 0 term. The function ¢, is the incomplete I'-function:

b, () = /1 e g, (2.15)

and can easily be evaluated since it satisfies simple recurrence formulae (see Hasimoto

(1958) for more detail).

Using (2.14) and substituting the expressions (2.9) and (2.10) for S; and S5 into (2.8)



18

for the fluid velocity, we obtain:

1 1
uj(@) = I (ZFL" [(-é) g1+ o 35+ (é) xz%‘%])

Sk o
1 1 —2mi(k-r) Fj Flkik; —mak? 2

— | — mET) - 2 1 k . 2.16

T \ 7V %e 77 | e (1 + wak?) (2.16)

This is the exact result for Stokes flow in a periodic array of point forces. We shall now
show how this result can be generalized for the case of a random distribution of particles,
to include higher moments (torque, stresslet, etc.) in order to account for the finite size
of the particles in different types of flows, and we shall demonstrate an efficient way to
calculate the above sums numerically.

The incomplete I'-functions ¢,(z) tend rapidly to zero as £ — oo. Therefore, as
a—0,¢_,.. 1 (ﬂ%ﬁz) — 0 and the velocity is represented as a pure wave-space sum.
On the other hand, for large values of o the wave-space sum contribution vanishes and the
velocity is represented as a real-space sum. The choice of o and the optimum efficiency of
balancing the computational work for the evaluation of the two sums is one of the main

issues of the algorithm.

2.2.2 Wave-space sum contribution

The wave-space sum contribution to the fluid velocity given by

1 1 : Fk pkpp. )
WS =— | — —2mi(k-r) Jo_ 1 iy —mak 2 .
4mn | 7V %e <k2 g e (Lt makd) |, (2.17)

can be evaluated efficiently as the inverse Fourier transform of the expression

(_F'ﬁ _ kik

72 x ) e Tok? (14 rak?) . (2.18)

In order to do so, some further analysis of the meaning and calculation of ﬁ’f is necessary.
Let us consider again the flow past a periodic array of spheres. If the spheres are sufficiently

small, then the force acting on the surface of each sphere can be simply assumed to be a
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point force acting on its center. The position of sphere n can then be specified either in
the real-space () or in the reciprocal-space (k). For the case of a real-space simple cubic
lattice, the reciprocal space lattice is also simple cubic. Then if F]” is the j component of
the point-force representing particle n at position r,, ﬁ’f is simply its Fourier transform
(on the same position, since both the real and reciprocal lattices are simple-cubic). For the
case of a cubic array of point forces, the above description is all that is needed to evaluate
the wave sum using conventional FF'T methods. In order to address more realistic cases
though, e.g., finite sized particles in random configurations and in different external fields,
while still maintaining the “lattice-point-force” approach, we need to implement a more
general particle and grid representation.

Let us now consider the case of a random distribution of spheres in a periodic compu-
tational domain where the particles are no longer part of a periodic array. Although the
positions of the spheres no longer define a lattice, we can still define an artificial rectan-
gular grid over the computational domain (see figure 2.1); the positions of the particles,
however, no longer coincide with the grid-points. It is nevertheless possible to transfer
the force acting on the center of each sphere to a collection of forces acting on the grid-
points located in the sphere’s vicinity. This is done by following well-known particle-mesh
algorithms (Eastwood & Hockney 1988). It is desirable that the transition from the par-
ticle center to the grid involve only a relatively small number of grid points, be a smooth
function of the location of the particle and capture the correct long-range physics for dis-
tances far away from the force center. Here, we perform the force assignment by the use

of matched Taylor series expansions. For example, for the point force we require:
—2mi(kr0 —2mi(ker
F]Qe 2mi(k-r") _ Z f]e 2mi(k “r), (219)
nodes -y

or, after Taylor series expansion:

F) (1 + 2mikiz) — 2mkikpalal, +..) =

> ] (1 + 2nikz] - 2nkikma]z] + ), (2.20)

nodes
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where m? is the l-coordinate of the actual position of the particle and z] is the l-coordinate
of the grid-point positions . Equations (2.19) and (2.20) simply state that when a force
is transfered to the grid from a particle center, all its moments are also preserved. It is of
course not possible to retain infinite terms in (2.20) and a truncated version is used.

The above analysis was limited to the case of point-forces; in most practical applica-
tions, however, we need to take into account the particle size and represent the particles
more accurately. Following the conventional Stokesian Dynamics approach, each particle
is represented as an expansion of the force density on its surface in a series of moments at
its center. Using the same level of accuracy as in conventional SD, each spherical particle
is represented as a point force F, a doublet D (corresponding to the torque and stresslet),
a potential dipole d (which is simply equal to —a2F /65, where a is the particle radius),
and a potential quadrupole L (which simply equals —a*$/10n, where S is the particle
stresslet), while higher moments are neglected. The redistribution of the potential doublet,
dipole, etc., follows the exact same procedure as for the force since they are just higher
moments of the force singularity, and formulae equivalent to (2.20) can be derived. These
formulae simply state, as was the case with (2.20), that the net force, torque, stresslet,
etc., is conserved when transferred from the particle to the grid. The number of moments
retained depends on the desired accuracy, and for this work an O(k®) matching is used,
which means that the potential quadrupole is distributed to the grid with a leading error
of O(dz). To obtain that level of accuracy, the force moments need to be distributed as
equivalent forces on a 5 x 5 x 5 set of grid points centered at the node closest to the particle
center. Higher accuracy can be obtained with an increased number of matched terms (cor-
responding to increased number of grid points upon which the force is distributed), but
the computational cost increases accordingly. The formulae for the moment distribution
on the grid can be found in Appendix B.

To summarize, the wave sum is calculated through the following steps: (a) each par-
ticle’s force/torque/stresslet/etc. is distributed on a regular mesh over the computational
domain, (b) the FFT of the distributed forces is calculated and the expression in equation
(2.18) is evaluated, (c) the inverse FFT of step (b) is calculated, which simply gives the

wave-space sum of equation (2.17). Thus, at the end, for a given set of forces and higher



21

moments on the particles, the contribution to the fluid velocity due to the wave-space
sum is calculated. This contribution is a far-field contribution. The distribution of the
forces on the grid and the simultaneous solution for all grid points includes effects from
all particles.

This velocity corresponds to the fluid velocity on the given grid of nodes and not to
the velocity at the particle centers, which is needed for Faxén’s laws. The fluid velocity at
a particle’s center is obtained by interpolating from the grid to the particle position by a
simple Lagrangian interpolation with a 5 x 5 x 5 set of grid points for each particle. The

general form of the Lagrangian interpolation is

5
u(@o) =YD hil@)hi(y)hi(2)ui ik, (2.21)
i=1 j=1 k=1
where u(z) is the interpolated velocity at position ¢ and u; jx are the velocities at a
given grid point (4,7, k) (the indices 4, j, ¥ now correspond to local nodes around each
particle’s center). The interpolating polynomials are of the form:
Hj,j;éi(mo - z;)

hilao) = P, (2.22)

where z; are the positions of the interpolation grid points in one dimension. The derivatives
of the interpolants are then used to calculate the derivatives of the fluid velocity at the

particle’s center.

2.2.3 Real-space sum contribution

In addition to the wave-space sum contribution, the real-space sum expression

1 ——
RS = m ZFIn [(_%) ¢—12-7”26jl + 5(5]'1 + (Lﬁ) ¢%:L'11L‘j] y (2,23)
(8%

n az

needs to be evaluated. This equation gives the velocity at any point in the fluid due to the
presence of an array of point forces at distances r,,; similar expressions can be obtained
in a straightforward manner for the velocity and any number of higher derivatives of the

velocity due to the presence of a torque, stresslet, etc. Equation (2.23) suggests that the
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calculation of the real-space sum requires O(N?) operations, since the calculation of the
velocity at each particle center requires the sum over all particles (including a self-term).
The incomplete I'-function, ¢,, however, decays very fast, so that for small encugh «a the
contribution of particle-pairs that are not near-neighbors will be very small and can be
neglected without significant error. The elementary way to evaluate this sum is to sweep
through all the particles, test whether their separation is less than a “cut-off separation”,
¢, and if so compute the two particle contribution according to (2.23). Such an approach
is clearly impractical, however, since it also gives an operation count that scales as N2.
To reduce the computational cost, we arrange the particles in such a way that the
tests for locating the neighboring particles are only performed over a small subset N, of
the total number of particles N. This is accomplished by introducing a “chaining mesh”
(Hockney & Eastwood, 1986), which is a regular lattice of (M, x M, x M,) cells covering
the computational periodic box; the number of the cells in each direction is such that the
lengths of each side of each cell is always greater or equal to the aforementioned cut-off
radius. Those particles that have non-zero contributions to the real-space sum of the
hydrodynamic force must lie either in the same cell as any given particle, or in one of the
27 neighboring cells, and therefore one only needs to sweep through those neighboring cells
in search for a particle’s nearest neighbors. The calculation of the infinite real-space sum is
thus reduced to the calculation of the sum locally over only a small number of neighboring
particles—those particles that are closer than the chosen value of the cut-off radius, 7.
(The choice of r. and its effect on the accuracy of the calculation will be discussed in detail
in the following section.) The real-space sum calculation can thus be done analytically
in a straightforward manner; the detailed formulae corresponding to the contributions
of higher moments are presented in Appendix C. Note that according to (2.23), when
calculating the real-space correction to the fluid velocity at the center of a particle, the
real-space sum is performed over all neighboring particles, including the reference particle,
and thus a self-term contribution also needs to be calculated. After the completion of the
real-space sum step for every neighboring particle pair, a correction to the fluid velocity
at the particle center is evaluated, which is added to the already evaluated fluid velocity

from the wave-space sum.
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As a final note, in a sheared suspension the unit cell and FFT grid points must deform
along with the shear rate until the lattice repeats itself, typically at the end of one strain

for simple shear flow.

2.2.4 Force laws

With the fluid velocity determined at each particle center, the far-field force, torque and

stresslet exerted on each particle are calculated from Faxén’s laws:

2
Fyy = ~6mma (Up - u™(@)) + 6mna(1 + & V2)(ugy), (224a)
Ty = —87nad (Qp —w™(x)) + 47V x (ugs), (2.24b)
2 20 2
S;r = ?Om;a:’E + e (L4 %) ep), (2.24c)

where u 5 corresponds to the far-field fluid velocity evaluated at the center of the particle,
U,, Q, are the particle translational and angular velocities, u®, w™ and FE, are the bulk
velocity, angular velocity and rate of strain, respectively, and e 7f is the rate of strain of
the far-field velocity.

The scheme described above corresponds to a prediction-correction method where the
hydrodynamic forces on the particles are first used as input to calculate both the wave-
and real-space contributions to the fluid velocity and then the forces are calculated again
from the far-field velocities with the assistance of Faxén’s laws. Determining the forces
is the resistance formulation of the problem—for a given configuration of particles and
particle velocities, the particle forces and force moments are calculated. It has recently
been shown (Ichiki & Brady 2001) that the method of reflections (which corresponds to
the simplest iterative scheme for the inversion of the mobility matrix) can be divergent
when more than two particles are present.

An alternative way to invert the mobility matrix, which is still largely based on the

method of reflections, is to use a simple underrelaxation scheme and replace (2.24) by

2
a
Fip = |—6mna (Up — u™(x)) + 6mna(l + FVQ)(uff) w+ F%‘ci(l - w), (2.25)
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where w is the relaxation parameter, and F?f}i is the previous guess for Fss. In practice,
however, values of w as low as 0.05 may be necessary for very large, or very dense systems,
which leads to a large number of iterations when the initial guess is poor. The relaxation
parameter w appears to have no significant effect on the dynamics of the system after
the system is relaxed to a quasi-steady state (typically after the particles have moved the
length of the unit cell). For a fixed geometry, as in the lattice calculations described in
§2.3, the relaxation parameter has no effect. As suggested by Ichiki & Brady (2001), the
breakdown of the method of reflections can also be overcome by the use of a conjugate-
gradient-type iterative method. The generalized minimum residual method (GMRES)
was used here, and it was found that very accurate results can always be obtained with
very few iterations. (It should be noted that the fact that the mobility matrix is never
constructed does not introduce any further difficulties since in most iterative methods
matrices only appear as products with vectors.)

We also briefly note here that the particle pressure (Jeffrey, Morris & Brady 1993)
can be readily calculated following the same procedure. The wave-space contribution is
obtained as part of the FFT procedure since it simply corresponds to the fluid pressure

at the center of each particle, while the real-space sum part is calculated analytically.

2.2.5 Near-field interactions

Lubrication interactions are included in a manner very similar to conventional SD. The
two-body resistance matrix Rop of equation (2.4) is calculated from the known exact re-
sults, and the part of the two-body interactions already included in the far-field (R5%) is
subtracted as in conventional SD. The chaining mesh is again utilized so that only inter-
actions between neighboring particles will be included, thus reducing the computational
cost from N? to NN, where N, is now the number of particles closer to the cut-off ra-
dius for lubrication, which is 4a. To further reduce both the computational cost and the
memory requirements, the near field resistance matrices are stored in a sparse form, i.e.,
for each particle only the non-zero contributions from neighboring particles are stored,
reducing the dimensions of Rpy from 6N X 6 N to 6N x 6/N,,. This procedure allows every

multiplication with any of the near-field resistance matrices to be an O(N) operation.
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2.2.6 Time integration

After both the far-field force and the near-field resistance matrices are calculated, the

new particle velocities need to be calculated from (2.1), which, in the absence of particle

inertia, gives
0= —RFU,nf . (Up - u°°(:1:)) + RFE,nf : E®  FP 4 Fff, (2.26)

where now Rpy ;¢ is a sparse, symmetric, positive-definite matrix. Note that since the
far-field interactions are not included in the resistance matrix, the unit tensor I is added
to Rpynss and subtracted from equation (2.26) to assure positive definiteness. The most
efficient way to solve a sparse symmetric positive-definite system is by an iterative method,
where the computational times can scale linearly with the matrix size since the sparse
matrix multiplications required for an iterative method scale as N. However, a carefully
designed iterative method needs to be applied since the number of iterations can increase
significantly with increasing N. It is also worth noting that in (2.26) the far-field force
is considered known, implying that the previous step velocities have been used for its
calculation; alternatively an additional iterative scheme can be employed such that the
velocities used in the far-field calculation are also updated. In most problems either the
far-field force is small in magnitude (e.g., sheared systems) or it does not change rapidly
with time (e.g., sedimenting systems), and in both cases the two approaches give results
that are statistically indistinguishable; the simpler approach is therefore used hereafter.
Conjugate gradient methods provide a quite general means of solving the N x N linear

system
A-y=b. (2.27)

The advantage of these methods is that they reference matrix A only through its product
with a vector, an operation that can be very efficient for properly stored matrices. The

basic idea behind them for the simplest case of a symmetric positive-definite matrix is
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minimizing the function

f(y)=%y-A-y~b-y, (2.28)

which is equivalent to its gradient Vf = A -y — b being zero, thus giving the solution
to (2.27). The minimization proceeds by generating a succession of search directions
and improved minimizers until the required accuracy is reached. The ordinary conjugate
gradient method works well—the number of iterations required for convergence is reason-
ably small—for matrices that are well-conditioned, i.e., matrices with eigenvalues that are

tightly clustered. This suggests using these methods on a preconditioned form of equation

(2.27):
(A‘l : A) y=A"""». (2.29)

The matrix A is called a preconditioner and its purpose is that now the matrix ([1*1 . A)
will be well-conditioned, i.e., “close” to the identity matrix.

Torres & Gibson (1996) applied the conjugate gradient method for the sparse positive-
definite near-field hydrodynamic resistance matrix Rpy,s for different preconditioners
and established that good convergence rates are possible when an incomplete Cholesky
preconditioner is used. The incomplete Cholesky factor Ly is constructed following the
same algorithm as for the calculation for the complete Cholesky factor, except that a
specific element Lg;; is only calculated when the corresponding element Rpy;; is non-

zero and is otherwise set equal to zero. Thus, for each 1 =1,2,...,6 N

k=1

i—1 1/2
Loz = <RFU,ii - Z L%,ik> , (2.30)

and then for j =4+ 1,2 +2,...,6N

1 i—1
Tom (RFUJJ‘ -3 Lo,ikLo,jk> for Rpy.; #0
K7

Loji = k=1 (2.31)

0 for Rpug; =0.
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The main advantage of the incomplete Cholesky preconditioner is that it captures
the essential physics of the lubrication forces between two nearly touching particles while
remaining as sparse as the initial Rpy. If only the non-zero elements of Ly are computed
and unnecessary operations with zero-valued elements are avoided, the preconditioning
step remains an O(N) operation.

Following Torres & Gibson (1996) a variation of the incomplete Cholesky factor is used
where “blocks” of the matrix Ly are handled as opposed to individual elements. Since
the resistance matrix consists of 6 x 6 blocks that map the velocity of one particle to
the force/torque on another particle, the entire corresponding block of Ly is computed
if any of the elements in the corresponding Ry block are non-zero. Furthermore, they
suggest a particle re-ordering according to each particle’s proximity to one another so
that a more “ordered” form of the resistance matrix can be used. The reverse Cuthill-
McKee method (Cuthill & McKee 1967, George & Liu 1981) was found to achieve the
best overall results, and we use this approach in our method. The benefit of particle
reordering is both a more rapid convergence and a minimization of the breakdowns of the
Cholesky preconditioner. Since an incomplete version of the Cholesky factor is calculated
there is no guarantee, even for a symmetric positive-definite matrix, that square roots of
negative numbers will not occur. To solve this problem ¢I, where ¢ a positive number
large enough so that positive definiteness is obtained, is added to Rpy. Although this
addition solves the problem it increases the number of iterations required for convergence,
and it was empirically observed by Torres & Gibson that the reordering of the particles
reduces significantly the number of factorization break-downs.

We should emphasize here that the use of the preconditioner has a very important
effect on the number of iterations required for convergence, especially for dense sheared
systems. In the absence of preconditioning the number of iterations can be on the order
of 100 — 200 when particle clusters are forming and the interparticle separations become
very small. Sangani & Mo (1996) also report iterations of the same order for their non-
preconditioned system. The use of the preconditioner, however, decreases the number of
iterations dramatically and most systems, including dense sheared suspensions, can be

solved in less than 10 iterations. Figure 2.2 demonstrates the effect of the preconditioner
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for a sheared system of N = 512 particles at volume fraction ¢ = 0.45; the necessary num-
ber of iterations to achieve an accuracy of 1074 in the residual calculation is significantly
smaller for the preconditioned case. The effect of the preconditioner becomes even more
significant with increasing strain; as the particles move closer together and form clusters,
the non-preconditioned iterative procedure requires consistently more than 100 iterations
for convergence.

The iterative procedure works well when the near-field lubrication matrix is reasonably
well-behaved—in practice, when the interparticle distances are no less than (1075 —107%)a.
In order to assure these minimum separations in a dynamic simulation, a repulsive inter-
particle force is generally needed. When shearing a dense suspension in the absence of
Brownian and/or interparticle forces, particle overlaps can occur even for extremely small
time-steps (Dratler & Schowalter 1996). The presence of an interparticle force can have a
significant effect on the properties of some systems (e.g., sheared dense suspensions) and
its impact is a matter for a separate study. The main point that we wish to make here is
that our new method does not impose any more restrictions on the minimum interparticle
separation compared to conventional SD, because the implicit inversion of the near-field
resistance matrix captures the same physics as the inversion of the full resistance matrix.
Since we shall validate the method only with non-dynamic results where the interparticle

force will always be zero, the issue of the interparticle force will not be mentioned further.

2.2.7 Total operations count for each time step

The most time consuming parts of our algorithm are the calculation of the far-field and
near-field interactions and the inversion of the resistance matrix. The inversion of the
resistance matrix, when done iteratively as described in the previous section, can be an
O(N) operation depending on the preconditioner. The near-field interactions and the real-
space contribution to the far-field, as was already discussed, can be calculated in O(N)
operations with the introduction of a chaining mesh. The wave-space contribution of the
far-field interactions, on the other hand, is calculated in O(N3, In N,,), where N,, is the
total number of mesh points in each-direction. In order for this part of the calculation

to be O(N), N,, must scale as N'/3. The number of mesh points Ny, determines the
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accuracy of the wave-space sum calculation, and therefore our choice of N,, should be a
compromise between desired accuracy and computational cost. This is where the choice
of the splitting parameter o becomes important.

For small values of a, the wave-space sum constitutes the largest part of the con-
tribution, and therefore a large number of FFT points per particle are necessary for an
acceptable degree of accuracy. But if a large value of « is used, then the wave-space sum
contribution is small and even low accuracy in its calculation leads to an acceptable overall
error. The real-space sum on the other hand, requires a small value of & to minimize its
error since only a few neighboring particles are used for the calculation of the real-space
sum. By balancing those two requirements an optimum value of a can be found that will
give both acceptable accuracy and reasonable computational cost.

To demonstrate the effect of the method parameters—splitting parameter «, cut-off
radius for the calculation of the real-space sum r., and number of mesh-points N, for
the FFT calculation—on the Ewald-sum calculation, we study the following problem: A
small number of particles (N = 30) is placed randomly in a unit cell of length L = 16a,
corresponding to a volume fraction of 3%. An external force is imposed on all particles and
the resulting far-field fluid velocities at the center of each particle are calculated according
to (2.16). The same calculation is repeated by using the exact formulation of the Ewald
sum of (2.16); this is done by including the interactions between all the particles not
only in the unit cell, but also in 10 neighboring cells in each direction. The relative error
between the exact Ewald-sum calculation and the PME calculation is then determined as
(U fluid, PME — Ufluid ezact) /U fluid,ezact @0d averaged over all the positions of the particles.
Figure 2.3 shows this relative error for different values of a, wave-space sum discretization
dz (= L/N,,, where L is the length of the unit cell and Ny, is the number of FFT points in
each direction) and cut-off radius 7. It can clearly be seen that for every choice of dz and
real-space sum cut-off radius, an optimum « exists. This is expected since, as was already
mentioned, for increasing « the error in the wave-space sum calculation decreases, while
the error in the real-space sum calculation increases. For a given dz the error decreases
with increasing 7., while the optimum choice of « increases with increasing r.. In other

words, for a fixed accuracy of the wave-space sum calculation, corresponding to fixed
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number of FFT points, the overall accuracy will increase as the accuracy of the real-space
sum calculation increases (cut-off radius for the real-space sum increases). In addition, the
increased accuracy of the real-space sum calculation is more important for larger values
of the splitting parameter ; for small values of « the real-sum contribution is very small
and its accuracy does not affect the overall accuracy significantly. On the other hand,
for a fixed cut-off radius and increasing number of FFT points the optimum value of o
now decreases, since increased accuracy in the wave-space sum calculation now allows
smaller values of the splitting parameter. It is also worth noting that the minimum error
is completely determined by the choice of dz and r., and for some cases no choice of «
gives acceptable behavior; for example, for the case of r, = 2a, dz = 1.0a, the minimum
error is close to 30%. For 2 FFT points per particle radius (dz = 0.5a, Figure 2.3¢) and
r. = 6 — Ta, accuracy within 1% can be obtained with a choice of @ = 12 — 15, and for
most applications this range of parameters will be used since it was found also to give an
acceptable computational cost.

Figure 2.4 shows the computational time (in seconds) for one time step as a function of
the number of particles N. The times correspond to a shearing problem at volume fraction
¢ = 0.45; one iteration is performed for the convergence of the far-field interactions, and
the inversion of the near-field matrix takes 8 — 10 iterations for all numbers of particles
shown. All the runs were performed on a single DEC Alpha AXP 21164 processor and the
times are given in sec. The data are in good agreement with the proposed N In N scaling

set by the scaling of the FFT calculations.

2.3 Results—Simple Cubic Arrays

In this section the accuracy of the method is tested for the case of simple cubic arrays
of spheres, a case for which a number of analytical and simulation results are available.
Different choices for the method parameters are presented, which further demonstrates—
this time for a problem with a known solution—that the PME calculation of the far-field

contribution can give acceptable accuracy with a low computational cost.
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2.3.1 Sedimentation of cubic arrays: sensitivity to method parameters

The first case we consider is a set of 8 particles sedimenting in a simple cubic lattice. Since
the system is periodic, the number of particles is not important and our main goal is to
check the accuracy of the far-field calculations. It is easy to show that for identical spherical
particles on a cubic lattice subject to a constant external force, the pair-wise additive
near-field forces will always sum to zero regardless of the volume fraction; therefore, the
accuracy of the calculation of the far-field is the only issue. The exact infinite sums
presented in § 2.2.1 are expected to give, within the number of moments included, results
in exact agreement with the multipole moments analytical results of Zick & Homsy (1982)
and the conventional SD results since an equivalent approach is used for their derivation.

The introduction of an FFT method, however, truncates the wave-space sum to the
number of mesh points used, while the introduction of a near-field-like approach to the
real-space sum truncates it to only the contributions of a few neighboring particles. Never-
theless, with a careful choice of the splitting parameter o, the infinite sums decay rapidly
and acceptable accuracy can be obtained.

Figure 2.5 presents the sedimentation velocity for a relatively low volume fraction,
¢ = 0.064, as a function of both the splitting parameter o and the wave-space sum
discretization dz; the cut-off radius for the calculation of the real-space sum is defined so
that only one neighbor in each direction is included, r, = V3 x 4a =~ Ta. Good accuracy
for the sedimentation velocity is obtained for a wide range of o and a desired plateau is
observed for o near the optimum. The plateau in figure 2.5 corresponds to the range of
a’s where the inclusion of only one neighbor in the real-space sum and the discretization
of the wave-space sum provide a nearly exact evaluation of the sums in equations (2.16).
Obviously, as the wave-space sum discretization (dz) becomes finer, a wider range of a’s
(starting from smaller values) can be used with no significant loss of accuracy. Near the
optimum value of «, however, values of dx near 0.5, or two points per particle radius, are
sufficient for satisfactory accuracy, which allows us to treat large systems using a relatively
small number of FFT discretization points.

Figures 2.6 and 2.7 present the same analysis for the case of ¢ = 0.5236, a close packed

simple cubic array. Figure 2.6 corresponds to the inclusion of only one neighbor in the
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real-space sumn, a cut-off radius of r. = v/3 x 2a = 3.46a, while figure 2.7 corresponds to
the inclusion of two neighbors, r, = V3 x 4a = Ta. The case of r, ~ 3.46a only gives
satisfactory results when a fine wave-space discretization is used, in agreement with the
observations of figure 2.3. In figure 2.7, on the other hand, the larger value of r. allows
fewer FFT points to be used and permits a greater range of ¢, in this case going to larger
values since more neighboring particles have already been included. It should also be
noted that for dense systems the same value of . corresponds to a larger number of near
neighbors and therefore a larger computational cost in the real-space sum. On the other
hand (for the same number of particles) dense systems correspond to much smaller unit
cells and therefore the extra computational cost for the inclusion of more near neighbors
is counteracted by the need for fewer FFT points for a given discretization (dz) and vice
versa.

Figure 2.8 presents the sedimentation velocity for volume fraction ¢ = 0.064 and
o = 16 as a function of the wave-space sum discretization parameter, dz, and for two
different positions of the particles—on the grid points, and positioned midway between
two grid points. This tests both the significance of the discretization in the wave-space
sum and the accuracy of the force distribution/interpolation scheme. Again, for the given
value of o corresponding to a value near the optimum, no significant loss of accuracy
occurs for a wide range of dz. Also, the positions of the particles on or off the FF'T grid
is of little importance even for the largest values of dz. The same parametric analysis
was also conducted for the case of sheared suspensions; the dependence on the far-field
method parameters was even less apparent in this case since lubrication is now important

and the calculation of the near-field interactions dominates the accuracy of the method.

2.3.2 Sedimentation of cubic arrays: volume fraction dependence

We now discuss the average sedimentation velocity of a simple cubic array of spherical
particles as a function of the volume fraction ¢. As was already mentioned, lubrication
plays no role for this problem and the accuracy of the resulting sedimentation velocity is
solely determined by the accuracy of the far-field calculation. Since the mobility matrix is

never calculated, the sedimentation velocity can be found by simply imposing an external
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force (gravity) on all the particles and calculating the resulting steady-state (converged)
velocities. Also, since all particles are identical in a periodic lattice they all have the same
velocity and therefore the relative distances between particles always remain constant; in
other words there is no difference between a dynamic and a static approach to the problem.
Figure 2.9 shows a comparison of the non-dimensional sedimentation velocity of a simple-
cubic array of spheres obtained by the ASD method with the conventional SD results of
Brady et al. (1988) and the theoretical calculations by Saffman (1973) and Zick & Homsy
(1982). Saffman’s calculations are for point-force particles and result in a sedimentation
velocity U/Uy = 1— 1.738¢>%, where Uy is the settling velocity of an isolated particle under
the same conditions. Zick & Homsy’s results are exact, as they used sufficient moments
to achieve convergence to the exact limit. For the same number of moments the SD and
ASD results are identical for all volume fractions—the new method has the exact same
accuracy as conventional SD.

For low volume fractions all methods give identical results. For high volume fractions
ASD overestimates the sedimentation velocities in the exact same manner that conven-
tional SD does. Only the point force and the second moment of that point force have
a contribution in this formulation. Odd moments, although included, have no effect on
the sedimentation velocity of cubic arrays, and as a result only the second-order method
results of Zick & Homsy can be reproduced. For high volume fractions higher moments
are needed; the SC results of Zick & Homsy and the random array results of Ladd (1990)
indicate that at least four moments are needed for reasonable accuracy near maximum
packing. This can easily be done in principle following the methodology outlined above,
but at an increased computational cost per particle; the overall method will still scale as

N In N, however.

2.3.3 Shear viscosity of cubic arrays

To calculate the shear viscosity of a cubic array of spheres, the relationship between the
bulk stress and the imposed rate of strain is needed. Again, since the far-field mobility
or resistance matrices are never calculated, we simply impose an external rate of strain

on the particles and calculate the resulting induced far-field hydrodynamic stresslets. To
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those values the near-field contribution calculated from the near-field resistance matrix,
Rsg g, is added; for a cubic lattice there is no Ry contribution because all the particles
move with the velocity of the bulk flow (U, = u®). It should also be noted that the
viscosity is calculated for an instantaneous configuration corresponding to a non-distorted
cubic lattice. At a later instant in time the cubic lattice will be distorted as the particles
move with the bulk flow and a different instantaneous viscosity can be evaluated. It is a
straightforward matter to calculate the stresslets at each instant; for both simple shear and
planar pure straining motion, the unit cell returns to its non-distorted shape periodically
and only a finite number of configurations need to be sampled. Since all analytical results
available correspond to the non-distorted cubic cell we present only this case here. The
particle stress for a simple cubic array can be described by two independent parameters o
and 3, which are only functions of the lattice geometry and the particle volume fraction;
these two functions correspond to pure straining and simple shear flow, respectively, and
the viscosity for any other linear flow can be obtained as a linear combination of these
two cases (Zuzovsky et al. 1983, Nunan & Keller 1984). (We retain the notation « and 3
for consistency with previous authors; the viscosity function « is not to be confused with
the splitting parameter of the same symbol.)

Figure 2.10 shows a comparison of @ and § for a simple cubic lattice obtained by
our ASD simulations with the asymptotic and exact results of Hoffman (1999). Hoffman’s
results reproduce the well-established analytical results of Nunan & Keller for low to inter-
mediate volume fractions, while the high volume fraction asymptotes are generated with
higher accuracy. Specifically, Hoffman’s asymptotic expansions for high volume fractions

can be expressed in terms of € = 1 — (¢/bmaz)/?, as follows:

a= -?’—7?6'1 + gZ7rln e 1 —2.85—1.3clne ! + Ofe), (2.32a)
16 80
B = ilne‘l —0.604 — 0.30elne™! + O(e), (2.32b)

where the constant term has been corrected from the Nunan & Keller result (Hoffman
claims there is a sign error in those results.) and the coefficient of the next term (eln e 1)

is also evaluated. The far-field only (absence of lubrication) results are also presented and
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are in exact agreement with the low volume fraction asymptotic behavior. In contrast
to sedimentation, the high-volume-fraction asymptote is also reproduced with very good
accuracy; for shearing motion lubrication is important and it precisely captures the two-
body singular effects described by the high-¢ asymptotes. The inclusion of higher moments
in the far field is not as important as it was in the case of sedimentation, although for
intermediate volume fractions our viscosities are slightly larger than the analytical results

of Hoffman, as was also the case for the conventional SD algorithm.

2.3.4 Spin viscosity of cubic arrays

The spin viscosity of a cubic array gives the relationship between the torque exerted on
each particle T and its angular velocity w. (Since all particles in a cubic array are identical,
no averaging is necessary.) Symmetry of the cubic lattice reduces the calculation of the

spin viscosity to the calculation of one scalar, ¢, such that:
T; = —Cw;. (2.33)

Zuzovsky et al. (1983) determined the high- and low-¢ asymptotes for {, while Hoff-
man (1999) calculated ¢ for all volume fractions and improved upon the asymptotic
expansions by including higher order terms. Hoffman’s asymptotic expansion is: ( =
710((¢/ Pmaz)~1/3 — 1)1 — 3.15; the evaluation of the constant term improves the ex-
pansion significantly since it is now valid for much lower volume fractions. Figure 2.11
compares the results obtained for the spin viscosity ¢ as a function of volume fraction to
the exact results of Hoffman. Excellent agreement is observed for all volume fractions,

and the low- and high-volume-fraction asymptotic results are reproduced very accurately.

2.4 Results—Random Suspensions

In the following sections we present the results of a series of Monte Carlo simulations from
which the hydrodynamic properties of random hard-sphere suspensions can be obtained.
The Monte Carlo approach consists of generating several samples, calculating the transport

properties of interest for each sample, and then averaging in order to obtain values that
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describe the macroscopic behavior of the system. Different sampling techniques were used
for different volume fractions; for ¢ < 0.49 the particles were placed in an arbitrary initial
configuration and then moved using a random-stepping routine in order to ensure that
the sample was disordered—for ¢ > 0.49 the sampling technique is discussed in detail in
the following sections. We first present the high-frequency dynamic viscosity of random
suspensions for volume fractions ranging from infinite dilution up to random close packing
along the metastable fluid branch of the hard-sphere system. For volume fractions below
the freezing point (¢ = 0.494), analytical and other simulation results are available for
comparison. For volume fractions above the freezing point the system is maintained in
the disordered metastable liquid state, and the singular behavior of the viscosity as ¢
approaches random close packing (¢,cp = 0.64) is studied. We next turn briefly to the
sedimentation problem. As has been shown in the past for conventional SD, the order of
approximation is only accurate for low to intermediate volume fractions, and we therefore
simply present the N-dependence of the sedimentation velocity for a given low volume
fraction. Finally, we study the short-time self-diffusion coefficient—the mobility of a
single particle in a suspension of force-free particles. This is an example of a case where
the knowledge of the resistance matrix, and not just the far-field hydrodynamic force, is
of importance, and we demonstrate how our method can still determine the short-time

self-diffusion coeflicient in O(NV In V) operations.

2.4.1 Viscosity of random suspensions: below the freezing point

The effective viscosity of a random dispersion of hard spheres, which is known as the
high-frequency dynamic viscosity, has been studied in the past for volume fractions below
the freezing point, and essentially exact, as well as low ¢ asymptotic, results are available
(Batchelor & Green 1972, Ladd 1990). The effective viscosity is readily calculated by
imposing an external shear flow and converging the far-field contributions and the particle
velocities, while keeping the particles at fixed positions. In contrast to the cubic array,
the externally imposed stresslet produces non-zero particle velocities that also need to be
determined as part of the iterative procedure. The total particle stresslet is then calculated

as a sum of the converged far-field contribution, Sts, and the near-field contribution
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Snf = Rsgnj 2 E— Rgyny - (Up — u™), which now also contains a non-zero velocity
contribution.

Figure 2.12 shows the hydrodynamic viscosity of a random suspension of identical
spheres as a function of the volume fraction for different numbers of particles ranging from
N =125 — 2000, and averaged over a number of independent configurations ranging from
10 — 100. Since a much larger number of particles can now be used, fewer independent
configurations are needed giving statistical errors that are less than 2% for all volume
fractions below the freezing point and all number of particles shown. (The error bars in
figure 2.12 are omitted since they are always smaller than the size of the symbols.) The
results of Ladd (1990) where up to 7 moments have been included in the calculations are
taken to be exact. As was the case for the cubic array, the importance of lubrication
is such that very accurate results are obtained even when using a low-order moment
approximation to the far-field interactions. (Ladd also observed that the effective viscosity
is not sensitive to the inclusion of higher moments.) It is also apparent that the viscosity
is insensitive to the system size, since statistically indistinguishable results are obtained
for N ranging from 125 to 2000. Also shown are the experimental results of Van der Werff
et al. (1989) and Shikata & Pearson (1994) obtained from oscillating Couette viscometry
with a frequency sufficiently high that the distribution of the solid particles is unaffected
by the shear flow and corresponds to the equilibrium hard-sphere structure. Very good
agreement is observed, especially for the lower volume fractions (see below for results

above the freezing point).

2.4.2 Viscosity of random suspensions: above the freezing point

Although a large number of analytical results exist for the effective viscosity of hard-
sphere suspensions for volume fractions in the stable fluid region (below ¢ = 0.494), very
few theoretical or experimental results are available for systems along the metastable
extension of the fluid branch. For volume fraction below ¢ = 0.494 only a single stable
fluid (disordered) phase exists; above this point the phase diagram splits into a metastable
fluid phase (leading to random close packing) and a stable ordered phase (leading to FCC

crystals). This work will only be concerned with the metastable disordered branch of
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the phase diagram. This is an example where a large number of particles is necessary to
capture the correct behavior, as a macroscopic system at these high volume fractions will
undoubtedly have clusters in some regions and freely mobile particles in others, which is
difficult to model unless the unit cell is sufficiently large. In addition, even generating
such a dense configuration can be challenging since metastable systems have a tendency
to crystallize and to introduce order into the structure.

Standard hard-sphere molecular dynamics or Monte Carlo algorithms cannot be used
to generate random distributions above the freezing transition. Using a different approach
with a large number of particles, however, hard-sphere microstructures at volume frac-
tions up to random close packing can be generated. Although the term random close
packing is widely used, it is not always clear whether it is a universal quantity, or whether
it depends on the method used to generate any given configuration; the exact value of
¢rep is also discussed and the value ¢ro, = 0.64 was used here. (See Torquato, Truskett
& Debenedetti (2000) for a discussion on whether random close packing is a well defined
state.) For the purpose of this work the computational technique suggested by Rintoul &
Torquato (1996b) was used to generate the random hard-sphere configurations. Starting
from an initial set of random overlapping spheres, the spheres are expanded and simul-
taneously moved to reduce overlap; if the system becomes jammed (overlapping cannot
be reduced) the spheres are shrunk and moved until the system becomes unjammed (see
Clarke & Wiley 1986). This process of expansion and contraction is repeated until a de-
sirable volume fraction is obtained. After that, the system is equilibrated using standard
hard-sphere molecular dynamics. For volume fractions above the freezing point the equili-
bration process needs to be closely monitored because there are two phenomena occurring
simultaneously—the system moves from a non-equilibrium to an equilibrium state and
at the same time it moves from the metastable branch to the stable ordered branch of
the phase diagram. By monitoring the system pressure and by utilizing the differences
in the time scales between the equilibration and crystallization processes (it usually takes
longer for the system to crystallize), it is possible to generate the desired configurations
of random hard-spheres for volume fractions very close to random close packing (Rintoul

& Torquato 1996a, Speedy 1994). It was observed that small systems had a tendency to
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crystallize sooner, and therefore for some volume fractions up to 2000 particles were used.
It is worth noting that it is the most difficult to generate non-ordered configurations for
volume fractions between 0.52 and 0.58 as the system tends to crystallize very fast. The
higher volume fractions correspond to an amorphous glassy state, and the tendency for
freezing is less severe. (See Speedy (1994), (1997) for more details on sampling and phase
transitions.)

In figure 2.13 and table 2.1 we present the high-frequency dynamic viscosity for volume
fractions up to 0.635, along with the experimental results of Van der Werff et al. (1989)
and Shikata & Pearson (1994). Two extrapolated expressions, one from the experimental
results of Van der Werff et al. and one derived from the results of Ladd, are also presented.
There is significant spread in the experimental data at high volume fraction that might
be an indication of some freezing in some of the experimental data or simply represent
the difficulty of measuring the volume fraction at high volume fractions. Within the error
bars of the experimental data, however, our results are in reasonable agreement with the
experiments. It is interesting to note that our results for ¢ < 0.60 are in good agreement
with the fitted curve given by Ladd (1990), which is a simple extrapolation of a semi-
empirical fit of Ladd’s results from lower volume fractions. This is not surprising; since
the metastable branch is the continuous extension of the fluid branch, it is reasonable that
the viscosity would also be a continuous extension of the viscosity from below the freezing
point and can potentially be described by the same empirical equation. The empirical
relation given by Ladd, however, does not predict any singular behavior as maximum
packing is approached, and therefore fails at very high volume fractions.

A very sharp increase in the viscosity is observed for volume fractions above 60%,
suggesting a singular behavior in the limit of ¢ — ¢¢,. The exact form of this singular
behavior is not known. Results from lubrication theory for cubic lattices would suggest
that the singular form should consist of both 1/e and In e terms (corresponding to o and 3
of figure 2.10), where e = 1—(¢/ qucp)l/ 3 but the relative amount of each term is unknown.
We found the data to be well fit by 7, = 15.781In(1/e) — 42.47 as seen in figure 2.14. A
similar fit with both 1/¢ and Ine gave a very small coefficient (of order 10~2) for the 1/¢

term. As far as we are able to tell at this point the In e behavior accurately describes the
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numerical data.

2.4.3 Sedimentation velocity: dependence on system size

It is straightforward to calculate the average sedimentation velocity of a random suspension
of spheres: after imposing an external force on each particle, the velocity of each particle is
converged while the particles remain fixed at their random locations. As was discussed for
the sedimentation of the cubic arrays, our method can only predict accurate velocities for
low to moderate volume fractions; for higher volume fractions more moments are needed
to represent the particles correctly. Since this behavior has been discussed and analyzed in
the past for the conventional SD method (Phillips et al. 1988), here we restrict ourselves
to low volume fractions and demonstrate the dependence of the sedimentation velocity on
the system size. Phillips et al. (1988) showed that the sedimentation velocity has a strong
N~1/3 dependence due to the long-range effects of the periodic images of particles outside
the unit cell. The motion is in essence a superposition of the sedimentation velocity of
the dilute periodic array of images, (¢/N)'/3, with that for the random suspension (which
is O(¢) at low ¢). Figure 2.15 shows clearly the N~1/3 dependence of the sedimentation
velocity for a volume fraction of ¢ = 0.05.

Mo & Sangani (1994) calculated the difference in the velocity induced at the center of

a test particle in a periodic suspension and a random suspension to be
Us = Us(N) + 1.7601(¢/N)*no /n S(0)Us + O(¢/N), (2.34)

where S(0) is the structure factor, and 7 and 7y are the suspension and pure fluid vis-
cosities, respectively (values for the suspension viscosity 7 are the high-frequency dynamic
viscosity and were calculated in the previous section and given in figure 2.12). The struc-
ture factor can be estimated for the hard-sphere dispersion from the Carnahan-Starling
approximation:

_ (1-¢)*
SO =i —ap T v

(2.35)

and the corrected sedimentation velocities can be calculated directly from (2.34). The
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corrected velocities are also presented in figure 2.15 and they do indeed give the same

value for all N.

2.4.4 Short-time self-diffusion coefficient

The short-time self-diffusion coefficient is defined through the Stokes-Einstein relation:
D = kT (trace(Rpy)), (2.36)

where the trace operator picks out only the diagonal elements of RI_,IU, and the angle
brackets imply a sum over all particles and an average over all configurations. Since the
far-field part of the resistance matrix Rpy is never calculated, we need to find a different
approach to calculate the self-diffusion coefficient. In addition, we now need to isolate the
diagonal elements of the resistance matrix for each particle, and therefore the knowledge
of only (R;}J) is not adequate as it was for the calculation of the sedimentation velocity.

A straightforward way to perform this calculation in order N operations is to impose
an external force, F'Y, with a Gaussian distribution on the particles, i.e., (Fy) = 0 and
(FP™FP™) = 0ij6mn, where F{™ is the i-component of the force acting on particle m
(superscripts m, n denote particles, while subscripts ¢ and j denote Cartesian coordinates).
Following the procedure described above, the resulting particle velocities can be readily
calculated in order N. Although the mobility matrix is never calculated, the resulting

particle velocities, U, still satisfy:

Uzn = R;‘llf,ijanJg’m' (237)
Now form the product
UPFP™ = Ry gy ™ F" (2.38)

which gives after ensemble-averaging

(UPFP™) = (Rpp sinn) (2.39)
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from which the short-time self-diffusion coefficient can be calculated directly. This ap-
proach was successfully employed to calculate the diffusion coefficient and study its de-
pendence on both the number of particles and the volume fraction.

Like the sedimentation velocity, the translational self-diffusivity also shows a strong
N~1/3 dependence (Brady et al. 1988). Ladd (1990) proposed the following expression to

extract the infinite system diffusivity from the N-particle periodic diffusion coefficient:
D = D§(N) + (10/n) (KT/67m00) [1.7601(¢/N)V* — ¢/N] , (2.40)

where 1 and 7y are the suspension and pure fluid viscosities, respectively. The Stokes-
Einstein diffusivity of a single isolated particle is Dy = kT'/6nmya. Figure 2.16 shows
the self-diffusion coefficients for ¢ = 0.05 and N ranging from 16 to 512. The corrected
diffusivities, after applying the correction given by (2.40), are also shown verifying both
the strong N~1/3 dependence of the self-diffusion coefficient on the number of particles
and the validity of equation (2.40), since a constant value can indeed be extracted for all
N.

Figure 2.17 and table 2.1 presents the short-time self-diffusion coefficients for volume
fractions up to 0.635, along with a number of available experimental and simulation data.
The self-diffusion coefficients are calculated from 20 realizations of N = 512 particles
and the values are adjusted to correct for the N'/® dependence (limit for infinite N).
Very good agreement is observed between experimental and simulation results for all
volume fractions below the freezing point (where experimental results are available). A
sharp decrease in the self-diffusion coefficient, in agreement with the sharp increase in the
viscosity, is observed for volume fractions above 60%. The self-diffusivity is expected to
vanish at random close packing in a manner inversely proportional to the high-frequency
dynamic viscosity. In figure 2.18 the self-diffusivity is plotted as a function of the inverse
high-frequency dynamic viscosity, resulting in a clear linear scaling and therefore verifying
that D§ ~ 1/7, in the limit of ¢ — ¢rep.

We note here that the accuracy of our simulation results is limited by the small number

of moments used. It has been suggested in the past (Ladd, 1990) that higher moments



43

can influence the value of the self-diffusivity, especially for high volume fractions. No
attempt has been made to correct for the inclusion of higher moments, although the
very good agreement between our results and experimental results would suggest that the

magnitude of the correction is indeed small.

2.5 Conclusions

We have described in detail a new method for calculating the hydrodynamic interactions
among particles in a suspension at small Reynolds number based on the Stokesian Dy-
namics method but with a significantly more favorable computational cost of N In N. The
new method avoids the expensive calculation of the far-field mobility matrix in favor of
the direct calculation of the far-field hydrodynamic force, and uses a carefully chosen pre-
conditioning scheme to dramatically reduce the computational cost of any iterative matrix
inversions. The results of the method are in excellent agreement with those obtained from
conventional Stokesian Dynamics, and much larger systems can now be simulated with the
same accuracy. The power of the new method is demonstrated in the calculation of the
high-frequency dynamic viscosity and short-time self-diffusivity of suspensions for volume
fractions above the freezing point, a case where a large number of particles is necessary
to capture the correct behavior. This work was limited to the validation and evaluation
of the method and to some characteristic results corresponding to static (not evolving in
time) systems. This is by no means a restriction of the method; in fact, the method is
ideally suited for dynamic simulations where good initial guesses from the previous step
in time exist for all the iterative procedures. Results from dynamical studies will be the
subject of the next two chapters.

It should also be noted that the same methodology as used here can be applied to other
problems in Stokes flow—non-spherical particles, deformable drops, etc.—with the same
performance characteristics. There are also analogous problems governed by Laplace’s
equation (e.g., effective conductivity) or the biharmonic equation (e.g., linear elasticity)

that could also be addressed in O(N In N) operations using the ASD methodology.
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¢ Moo Dg

0.00 1 1

0.05 1.136 0.910
0.10 1.310 0.818
0.15 1.522 0.719
0.20 1.802 0.636
0.25 2.16 0.550
0.30 2.64 0.466
0.35 3.34 0.388
0.40 4.27 0.319
0.45 5.70 0.255
0.52 9.36 0.173
0.56 12.1 0.135
0.60 19.4 0.094
0.61 22.9 0.079
0.62 28.1 0.069
0.63 39.7 0.048
0.635  52.3 0.036

Table 2.1: The high-frequency dynamic viscosity and the short-time self-diffusivity as a
function of the volume fraction for volume fractions up to close packing and N = 512. The
values of the short-time self-diffusivity, D, are adjusted to correct for the N 1/3 dependence

according to (2.40).
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Figure 2.1: The transition from a force acting on a particle’s center to a set of forces acting

on the grid points +.
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Figure 2.2: The number of iterations required for convergence of 10™* with and without
preconditioning (N = 512, ¢ = 0.45, sheared system). The effect of an appropriate
preconditioner becomes increasingly important for large strains as particle clusters form

and the resulting resistance matrix, Rryf, becomes increasingly ill-conditioned.
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dot-dashed curves are the asymptotic results of Hoffman for the ¢ — 0 and ¢ = oz

limits, respectively.
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Figure 2.11: The dependence of the spin viscosity ¢ of a SC array of spheres on the volume
fraction. The open triangles are the Accelerated Stokesian Dynamics (ASD) results, the
solid curve is the exact calculation of Hoffman (1999), the dashed curve is Hoffman’s low

concentration analytical result, and the dot-dashed curve is the singular form as ¢ — ¢naz-
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Figure 2.12: The relative viscosity is plotted as a function of the volume fraction for
different number of particles (N = 125 — 2000) and volume fractions. The solid curve
represents the multipole-moment simulation results of Ladd (1990), and the crosses and
circles are the experimental results of Van der Werff et al. (1989) and Shikata & Pearson
(1994), respectively.
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Figure 2.13: The relative viscosity is plotted as a function of the volume fraction for
volume fractions above the melting point. The dot-dashed curve is the extension of the
empirical fit to Ladd’s simulation results below the freezing point, and the dotted curve
is the same extension for the curve fitted to the Van der Werff et al. (1989) results.
The dashed curve is a simple best fit curve of the form A; In(1/€) 4+ A, which accurately
represents the results for ¢ > 0.60.



60

60 T T T T T
55 X N=512 N
0 ---- fitted expression ~In(1/¢) D 4
45 _

40 /
nMe

T
M
|

30 ‘
25 ’ ’
20-  x- -

15 L I 1 1 1
35 4.0 4.5 5.0 5.5 6.0 6.5

In(1/€)

[
g
1

]
.
1

Figure 2.14: The relative viscosity is plotted as a function of In(1/¢), where € = 1 — ¢/ ¢rcp,
for ¢ > 0.60. A linear best fit is also shown.
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Figure 2.15: The sedimentation velocity of a random suspension of spheres at ¢ = 0.05
and for different number of particles N. ASD results for N ranging from 125—512 (A) are

plotted as a continuation of Ladd’s (1990) results (v7) for smaller systems. The corrected

infinite system sedimentation velocity (equation (2.34)) gives a constant value for all N.
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Figure 2.16: The short-time self-diffusion coefficient for a random suspension of spheres at
¢ = 0.05 and for different number of particles N. ASD results for N ranging from 125512
() are plotted as a continuation of Ladd’s (1990) results (v7) for smaller systems. The
corrected infinite system sedimentation velocity (equation (2.40)) gives a constant value

for all N.
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results for volume fractions below the freezing point.
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Chapter 3

Rheology and Microstructure in Concentrated

Non-Colloidal Suspensions

3.1 Introduction

Suspensions of non-Brownian particles dispersed in a Newtonian fluid have applications
in a variety of natural and industrial settings. The macroscopic behavior of such systems,
expressed mainly through their rheological properties and the suspension microstructure,
is therefore of extreme importance and has been the subject of numerous theoretical and
experimental studies over the last few decades. Our interest is in non-Brownian, or non-
colloidal, suspensions at low particle Reynolds number. Non-Brownian implies that the
thermal forces giving rise to Brownian motion are negligible (generally for particles of order
10pum or larger), while low particle Reynolds number means that the inertial forces are
negligible and that the fluid motion is governed by the Stokes equation. In such systems,
the particles interact through hydrodynamic and interparticle forces, and it is the balance
of these forces that determines the macroscopic behavior under flow.

The rheological behavior of such a system was initially described by an effective vis-
cosity, and considerable effort was focused on determining this enhanced viscosity as a
function of the volume fraction. In recent years, however, a number of studies have demon-
strated that the rheological behavior of non-Brownian suspensions is more complicated and
non-Newtonian characteristics such as finite normal stress differences and a particle phase

contribution to the isotropic stress can be present. Gadala-Maria (1979) first reported
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the presence of normal stress differences for a system of polystyrene spheres suspended
in water undergoing simple shear flow at small particle Reynolds number. Experiments
by Singh (2000) and Zarraga et al. (2000) followed, verifying that non-Brownian parti-
cles suspended in a Newtonian fluid routinely exhibit non-Newtonian behavior, although
the measurement of the resulting normal-stress differences can be difficult and subject to
error. Simulations of Brownian systems at very high values of the Péclet number where
Brownian motion is almost negligible (Phung 1996, Foss & Brady 2000) also demonstrated
the presence of finite normal-stress differences, while recent theoretical work by Brady &
Morris (1997) has shown that the high- Pe limit is singular and the residual effect of weak
Brownian motion introduces irreversibility, resulting in non-Newtonian behavior (see also
Bergenholtz et al. 2001). In addition, the presence of an interparticle force also breaks
the zero-Reynolds number symmetry and reversibility. By studying the balance between
hydrodynamic and interparticle forces in a boundary layer near particle-particle contact,
Brady & Morris (1997) proposed a scaling for the particle stress that incorporates the
effect of the particle volume fraction, the range of the interparticle force, and the resulting
microstructure.

The calculation of the particle pressure—defined as the isotropic component of the
particle-induced stress—has also received attention recently. This pressure is a conse-
quence of the hydrodynamic (and interparticle force) interactions among particles, as
opposed to the thermally induced “osmotic pressure” in colloidal systems. However, this
particle pressure can be viewed as the extension of the osmotic pressure to systems far
from equilibrium. Early theoretical studies discarded this isotropic part of the stress; its
calculation has only become possible recently after Jeffrey, Morris & Brady (1993) deter-
mined the necessary hydrodynamic two-body functions. Singh & Nott (2000) calculated
the particle pressure from simulations of a bounded suspension from the normal force on
the system’s walls. Zarraga et al. (2000) and Singh (2000) also attempted a direct evalua-
tion of the particle pressure from experimental measurements of different normal stresses
combinations and found the pressure to be a rapidly increasing function of the volume
fraction.

In this work we utilize a recently developed algorithm, Accelerated Stokesian Dynamics
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(ASD), to study the rheology and microstructure of concentrated monodisperse, non-
Brownian, low-Reynolds-number suspensions undergoing simple shear flow in the presence
of a short-ranged pairwise repulsive force. The access to a faster simulation method
allows the study of much larger systems, typically of N = 512 — 1000 particles, and
the calculation of the rheological properties, especially the normal stress differences, with
improved accuracy. The determination of the particle pressure from the calculation of
the full stress tensor is also presented and is found to be in qualitative agreement with
experiment. The suspension microstructure is also studied through the determination of
the pair-distribution function, and an attempt to connect the microstructure with the
measured rheological properties according to the scaling theory of Brady & Morris (1997)
is made.

In the next section we outline the Accelerated Stokesian Dynamics method. In §3.3 we
present and discuss simulation results for rheology and microstructure in a suspension of
non-Brownian particles as a function of the volume fraction. The effect of the interparticle
force is discussed in §3.3.5, and systems for volume fractions above ¢ = 0.50 are briefly

studied in §3.3.7. We conclude with a brief summary in §3.4.

3.2 Simulation Method

A new implementation of the conventional Stokesian Dynamics method (SD), called Ac-
celerated Stokesian Dynamics (ASD), is used in our simulations. Since the methodology
of ASD has been laid out in a previous work (Sierou & Brady 2001, chapter 2), only a brief
account will be presented here. The method combines a Particle-Mesh-Ewald summation
technique (Darden et al. 1993) with an iterative procedure to solve the equations govern-
ing the motion of N particles suspended in a viscous fluid at low particle Reynolds number
in O(N In N) operations. Following the conventional SD method, the hydrodynamic inter-
actions are split into a far-field many-body part and a pair-wise near-field lubrication part.
The near-field interactions can be readily calculated in O(N) operations: The particles
are arranged in a chaining mesh (Hockney & Eastwood, 1986) so that each particle’s near-

est neighbors are easily identified. Since the near-field interactions are short-ranged, the
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number of neighboring particles (IV,,) is small and the resulting computational cost scales
as N,N. To further reduce both the computational cost and the memory requirements,
the resulting near-field resistance matrices are stored in a sparse form.

The far-field interactions are calculated in an iterative manner and therefore the far-
field mobility matrix is never calculated. A resistance formulation is again followed: From
an assumed value for the hydrodynamic forces, the corresponding fluid velocities are cal-
culated and then with application of Faxéns’ laws the initial forces are corrected until
convergence. The fluid velocity in the presence of N suspended particles (each particle
is represented as a series of force multipoles at the particle’s center) is calculated follow-
ing a Particle-Mesh-Ewald approach, i.e., the resulting infinite sums over all the particles
are split into a wave-space and a real-space sum with the introduction of a splitting pa-
rameter. The resulting wave-space sum contribution is evaluated on a grid as an inverse
Fourier transform, while the real-space sum is calculated analytically. The computational
cost of the Fourier sums scales as N3, In N,,, where N, is the number of mesh points in
each direction (for a 3-D problem), and a careful choice of the splitting parameter allows
N,,, = N'/3 with no loss in accuracy. The computational cost for the real-space sum scales
as NN;, where N; is in general the number of all particles influencing the velocity of a
given particle. However, for sufficiently small values of the splitting parameter, it can be
shown that the contribution of particle pairs that are not near-neighbors is very small and
can be ignored without significant error. The same chaining mesh procedure is followed
for the calculation of the real-space sums as was used for the near-field interactions at an
order N cost.

After both the far-field force and the near-field resistance matrices are calculated, the

new particle velocities are calculated from the equation of motion:
0=—RFU’nf-(Up—u°°)+RFE,nf:E°°+Fp+Fff, (3.1)

where U, — u® is a 6N vector representing the particle non-affine translational and
rotational velocities, F'¢¢ represents the far-field force/torque, and now Rpy .y is a sparse

symmetric positive definite matrix. The imposed flow is a simple shear: u*°(x,) = Ir- Tp,
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where z, is the particle’s center, and I' = E® + Q® is the velocity gradient tensor of the
bulk flow; E® and 2 are the symmetric and antisymmetric part of T, respectively. An
iterative conjugate gradient method with an incomplete Cholesky preconditioner is used
for the inversion of the sparse near-field resistance matrix. With iterative algorithms the
computational time requirement can scale linearly with the matrix size since the sparse
matrix multiplications required for an iterative method scale as N; the presence of the
preconditioner, however, is necessary for the number of iterations to be relatively small.
We consider the Stokes flow of a suspension of hard spheres in a suspending fluid of
viscosity 7 undergoing simple shear with a shear rate 4 (¥ is the magnitude of I‘) As has
been demonstrated in the past (Dratler & Schowalter 1996), in the absence of Brownian
motion the presence of a repulsive interparticle force (denoted as FP) is necessary to
prevent the system from forming infinite clusters that jam, leading to serious particle
overlap. Although the choice of this force is somewhat arbitrary, its introduction captures
the behavior of a real physical system, at least qualitatively, since in a real system the
presence of residual Brownian forces, or particle roughness, etc., limits the cluster size and
prevents overlaps. For most of our simulations (friction is also introduced in §3.3.6), an

interparticle force of the form (Bossis & Brady 1984)

Texp ’¢

Fz()aﬂ) = FO]_ — eXp—Te e(aﬂ) (32)

was used, where F? _ is the force exerted on sphere a by sphere 8, Fy represents its
’ (aB)

magnitude, 77! is related to the force range, ¢ = r — 2 is the dimensionless spacing
between the surfaces of the two spheres and e(,g) is the unit vector connecting the centers
of the two spheres.

Non-dimensionalizing all lengths by the particle radius a, all times by the characteristic
time 47!, the interparticle force by its magnitude F and the hydrodynamic resistance

tensors Rpy, Rrg by 67na and 6mwna?, respectively, the equation of motion (3.1) becomes
Rryn;- (Up—u™®) = Rpg : E® + ¥ 'F? + Fyy, (3.3)

where 4* = 6mna?y/Fy is the ratio of the shear and interparticle forces.
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For the calculation of the rheological properties the bulk stress, (), is needed; this is
defined as an average stress over the volume of the unit cell containing N particles and is

given by
(B) = —psI + 2nE™ + (), (3.4)

where p; is the (constant) pressure in the fluid and 27nE® is the deviatoric contribution

from the fluid. The particle contribution to the stress, (3,), is given by

(Bp) = — n(Rsvus - (Up —u™))
+n(Rspnf: E>) +n(S’ff)

—n{zFP), (3.5)

where n is the particle number density. The contributions from the far-field and the near-
field are denoted separately, and the direct interparticle force contribution is — (x F?). We
note here that no attempt has been made to separate the particle stress into a hydrody-
namic contribution and an interparticle force contribution. As is apparent from (3.3) the
particle velocity (Up — u®) is a result of both the hydrodynamic and interparticle forces,
and, in addition, the resistance matrices depend on the particle configuration, which in
turn depends on both the hydrodynamic interactions and the interparticle force, making
a separation between various contributions in (3.5) somewhat arbitrary.

The viscosity in a simple shear flow with the flow, velocity-gradient and vorticity
directions along the z, y and z axes, respectively, is related to the zy component of the

bulk stress and rate of strain in the following manner:

— Ewy

ﬂr:m,

which, from (3.4), can be written as

nr=1+n2, (3.7)
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where 7} refers to the particle phase contribution to the viscosity and includes both contri-
butions from the hydrodynamic interactions among the particles and from the interparticle
force; the 1 corresponds to the solvent contribution.

The first and second normal stress differences can also be calculated according to their

definitions:

Ny = (Saa) — (Sya) (3.8a)
Ny = <2yy> - (Ezz> . (3'8b)

Since the pure fluid phase (for a Newtonian fluid) has zero normal stress differences, ¥,
Yyy and ¥,, in (3.8) are equal to the particle phase contribution to the normal stresses
e, Egy and ¥F,, respectively.
The particle phase suspension pressure is —1/3 of the trace of (X,); i.e., Il = —1/3 tr (3,).

As defined, the resistance tensors and (Sys) in (3.5) are not traceless. The trace com-
ponents are given by the functions Rgrny and Rpyyy first introduced by Jeflrey et
al. (1993). The particle-phase pressure also includes the interparticle force contribution
—1/3 (x - FP). Since the suspension as a whole (fluid plus particles) is incompressible, the

arbitrary level of the pressure is set by the fluid contribution p;.

3.3 Results

A number of simulations were performed for a range of volume fractions between 0.10 <
¢ < 0.50 and number of particles from N = 125 to N = 1000, and for a variety of param-
eters of the interparticle force. In addition, as will be discussed in §3.3.7, volume fractions
in the metastable regime (¢ > 0.50) were sampled and their microstructure studied. Each
long run, typically of 200 — 400 total strain, was divided into statistically independent
subintervals, typically of 10 — 20 strains, in order to determine the statistical variation of
the properties. The resulting statistical errors for all rheological properties were usually
less than 5%. All runs were started using hard-sphere equilibrium configurations obtained

from a Monte Carlo procedure and the first 10 — 20 strains were always ignored so that the

system is allowed to reach its steady state configuration before computing averages. The
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time step used was At = 5 x 1073 —5 x 10~ depending on the volume fraction (time steps
as small as At = 107 were necessary to study volume fractions around 60%). A fourth

order Adams-Basforth integration scheme was used to update the particle positions.

3.3.1 Dependence on the number of particles N

Systems of N = 125 — 1000 were studied for volume fractions between ¢ = 0.10 —0.50 and
for an interparticle force with 7 = 1000 and 4* = 1000. The resulting shear viscosities are
plotted in figure 3.1. It is apparent that the size of the system has no significant effect
on the values of the viscosities for all values of N studied, in agreement with previous
studies. Table 3.1 presents the values of the shear-viscosity, first and second normal stress
differences and particle pressure for a volume fraction ¢ = 0.40 and N = 125, 256, 512
and 1000. Again, the effect of the system size on all rheological properties is insignificant.
Smaller systems were also sampled, and, although the values of the resulting viscosities
were always very close and within the statistical error, the errors in the calculation of
the normal stress differences increased significantly when very small systems were studied
due, no doubt, to the difficulty in accurately determining differences as compared to the
viscosity. Unless otherwise noted, for the remainder of this chapter systems of N = 512

particles were used.

3.3.2 Shear and normal stresses

In figure 3.2 and tables 3.2 and 3.3 the ¢-dependence of the suspension relative viscosity,
7y, i shown for a system of N = 512 and volume fractions ranging from ¢ = 0.10 — 0.50
(for completeness the — (zFP) contribution to the stress is also presented in the tables).
An interparticle force of the form of (3.2) is also present with 7 = 1000 and +* = 1000.
A number of experimental results by Zarraga et al. (2000), Patzold (1980), Gadala-
Maria (1979) and Rutgeré (1962) are also shown. The agreement between simulation and
experiment is good for low to moderate volume fractions, while for large volume fractions
our viscosities are systematically lower than most of the experimental values. For these
high volume fractions, however, the discrepancies between experimental data from different

studies are also very large, and it is now recognized (Brady & Morris 1997, Bergenholtz
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et al. 2001, Maranzano & Wagner 2001) that repulsive interparticle forces can have a
profound impact on the rheology; for example, as we shall see in §3.3.5, reducing the
range (increasing 7) or amplitude (increasing ¥*) can result in a much larger viscosity at
high concentrations. Qualitatively, the viscosity is, as expected, a monotonically increasing
function of the volume fraction; as the suspension becomes denser, particle clusters form
and dominate the macroscopic behavior and the particle stress. It is worth noting here
that the experimental measurements of the shear-stress for relatively large non-Brownian
particles are subject to a number of limitations that are particularly severe for dense
systems. For example, in the experiments of Zarraga et al. (2000) the viscosity was found
to be a strongly decreasing function of the shear-rate for a large range of shear-rates. A
number of factors have been suggested to explain this (and other anomalous) behavior(s)
such as the effect of gravity when the particle and fluid phase densities are not perfectly
matched, the effect of the walls and the size of the apparatus, etc. The notion of a
“universal” viscosity curve is therefore questionable.

In figure 3.3 the high-frequency dynamic viscosity is subtracted from the relative
steady-shear viscosity and the resulting quantity is plotted as a function of the volume frac-
tion. The high-frequency dynamic viscosity, 7., which has been obtained by a number of
authors—both through simulations and experiments (Sierou & Brady 2001, Foss & Brady
2000, Shikata & Pearson 1994, van der Werff & de Kruif 1989), is purely hydrodynamic in
origin and corresponds to the viscous contribution to the stress for a system at equilibrium,
i.e., when the system microstructure has not been affected by the flow and is given by the
equilibrium hard-sphere distribution. The remaining viscosity An/n = n, _ nL arises from
particle interactions in the non-equilibrium structure induced by the flow. Theories have
been advanced (Brady & Morris 1997) that predict this extra particle stress as a function
of the distorted microstructure; a detailed discussion will be given in §3.3.4.

The first and second normal stress differences, N; and Ny, are presented as a function
of the volume fraction in figures 3.4 and 3.5 and tables 3.2 and 3.3 for the same system
of N = 512. The availability of larger systems allows a much more reliable calculation of
the normal stresses than was possible in the past. Limited experimental measurements

for the normal-stress differences of non-Brownian systems are also available, but are often
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subject to large errors. Zarraga et al. (2000) measured the first and second normal
stress-differences by combining results from rotating plate and rotating rod experiments,
while Singh (2000) obtained the same quantities from a combination of cylindrical Couette
and parallel plate experiments. In addition, Zarraga et al. (2000) only report the ratio
of the normal stresses to the shear stresses, making detailed comparisons even harder.
Nevertheless, in figures 3.4 and 3.5 we also report the experimental results of Singh (2000)
and Zarraga et al. (2000); a fitted expression given by Zarraga is also shown. Since
Zarraga et al. (2000) only report the ratio of normal to shear stresses, two sets of values
are given in the figures. One set, referred to as Z2 on the figure legend, corresponds
to using the shear stress calculated from their experiment and the other one, referred
to as Z1 on the figure legend, corresponds to using the shear stress calculated from our
simulations. Qualitatively, the agreement between the experiments and the simulations is
satisfactory—both normal stress differences are negative and are increasing (in absolute
value) functions of the volume fraction. The quantitative agreement is also satisfactory
between our values for N; and those reported by Singh (2000) and our values of N and
those reported by Zarraga et al. (2000). Contrary to the experimental measurements
that have Ny larger than Nj (in magnitude), both normal stress differences from our
simulations are of the same magnitude for the given interparticle force (the effect of the
interparticle force on the normal-stress differences is discussed in more detail in §3.3.5). A
negative N7 implies the rheometer plates would be pulled together. This is a consequence
of hydrodynamic interactions—particles must be pulled apart by the shearing motion
giving rise to a negative Nj.

Finally, the particle pressure is presented in figure 3.6 and tables 3.2 and 3.3 as a
function of the volume fraction. Though very small at small concentrations, it increases
rapidly and approaches the values of the shear stress as the volume fraction is further
increased, indicating that its experimental measurement should be possible. Zarraga et
al. (2000) and Singh (2000) both deduced the values for the particle pressure from a
combination of the measured normal stresses; these values are also presented in figure
3.6 (for the results of Zarraga et al. (2000) only the fitted expression is plotted since

the exact values are hard to determine from their plots). The agreement is quite good
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both qualitatively, where the pressure appears to be a strongly increasing function of the
volume fraction, and quantitatively. Since the pressure corresponds to an average value
of the normal stresses, its value is expected to be less sensitive to errors than the normal
stress differences, which may explain the better quantitative agreement between all of the
results.

Before we proceed to a detailed analysis of the suspension microstructure it is useful
to compare the concentration dependence of the normal stresses to the concentration
dependence of the shear stresses for our system. It has been suggested by Brady & Morris
(1997) that the excess particle contribution to all the elements of the stress tensor should
have the same functional dependence on the suspension microstructure and concentration;
if this is indeed the case, then the ratio of the normal stresses to the excess shear stress,
An, should be constant as a function of the volume fraction. This ratio is plotted in figure
3.7 for both the pressure and the sum of the normal stress differences (since the values
of N7 and Ny were indistinguishable for this set of results, their sum was used for the
relative measure). It is apparent from the figure that, while of the same magnitude, the
dependence of the normal and shear stresses on the volume fraction is not precisely the
same. The magnitude of the pressure increases faster than the excess viscosity, a result
in agreement with simulation and experimental observations of Singh & Nott (2000) and
Singh (2000). The theoretical analysis of Nott & Brady (1994) also demonstrates that
this ratio must be a monotonically increasing function of ¢ for the system to be stable
to perturbations in particle concentration. The normal stress differences exhibit a more
complicated behavior—for small volume fractions they scale as the particle pressure, while
for higher volume fractions they follow the shear stress scaling. In figure 3.8 the ratio of
the three individual normal stresses, Y11, Xg2 and 333, over the excess viscosity, A7,
is plotted. Although within the statistical errors the three normal stresses have a very
similar dependence on both the volume fraction and the shear stress it is nevertheless
possible that the normal stress differences can have a qualitatively different behavior from
the pressure, since the pressure corresponds to a simple average of the normal stresses and
not a difference.

In figures 3.9 (a) and (b) we plot the ratio of the three normal stresses, X1;, Xgo
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and X33, and the particle pressure, II, to the shear-stress. The fitted expressions for
the same ratios given by Zarraga et al. (2000) are also presented—they correlate their
ratio with ¢2exp?34? with different coefficients for each component of the normal stress.
The agreement is again quite good for each component of the normal stress, and even
better for the pressure; it is noted again that relatively small errors in the calculation
of the independent components can give rise to much larger errors in the normal stress
differences where the agreement between simulation and experiment is not as good.

A comparison of figures 3.8 and 3.9 shows that the normal stresses are better correlated
with the excess viscosity Az than with the suspension viscosity 7,; the variation with
volume fraction in figure 3.8 is a factor of 6, while that in figure 3.9 is three orders
of magnitude. This points to the fact that the origin of the normal stresses and the
excess viscosity is the same—the deformed microstructure. The correlation with the excess
viscosity in not perfect, however; a perfect correlation would be a constant independent
of ¢. Although both the excess viscosity and the normal stress arise from microstructural
deformation due to flow, an excess viscosity would still exist if the microstructure had fore-
aft symmetry, while the normal stresses would vanish in this case. A fore-aft symmetric
microstructure (see below) is expected in the absence of interparticle forces (or Brownian
motion), although it is not possible to steadily shear such a “purely hydrodynamic” system

due to the formation of jammed clusters (Melrose & Ball 1995, Dratler & Schowalter 1996).

3.3.3 Microstructure

For a system of non-Brownian particles suspended in a Newtonian fluid, non-Newtonian
rheological behavior (i.e., non-zero normal stress differences and a particle pressure) can
only result from an anisotropic microstructure which can clearly be seen in the pair-
distribution function. Given a particle at the origin, the pair-distribution function, g(r),
describes the probability density of finding a second particle at distance r normalized by
the particle number density in the suspension. The pair-distribution function is deter-
mined in the usual manner by discretizing the area around each particle and counting
the number of neighboring particles within each discretized area. The manner in which

this area is discretized can lead to different representations of the pair-distribution func-



76

tion. The angularly averaged pair-distribution function contains only information on the
relative separation between the particles; the average is over all possible relative particle
orientations. The projection of the pair-distribution function onto the plane of shear, zy,
(as will be shown later the microstructure is axisymmetric outside the plane of shear), can
also be expressed as a function of the relative coordinates, r and 8, as defined in figure
3.10. Here, 6 is measured clockwise from the negative z-axis and r is simply the distance
from a particle’s center. For a given interparticle separation (or range of separations) the
angular dependence of the pair-distribution function can be determined from the number
of neighboring particles at different values of 6. The angular dependence of g(r) can also
be illustrated by the projection of the pair-distribution function on all three planes, (z,y),
(z,2) and (z,y)-

Figure 3.11 shows the angularly averaged radial pair-distribution function for particle
to particle distances between 2 and 2.005, where the near-contact particle build-up is
expected for the interparticle force used; the interparticle force has a range 1/7 = 0.001
and a relative strength 7/4* = 1. In order to correctly capture the particle build-up
near contact, especially for the larger volume fractions, very small refinements in the
radial coordinate were often necessary (as small as 1076 of the particle radius). A peak
in the radial distribution function at position 7peq is evident, corresponding to a ring of
neighboring particles adjacent to any particle. The values of the pair-distribution function
at the peak along with the peak’s location are presented in table 3.4 as a function of the
volume fraction. It is clear that the magnitude of the peak increases significantly as the
particle concentration increases and shifts to closer particle contact. As a result, for high
enough concentrations, the radial pair-distribution function resembles the pair-distribution
function for a hard-sphere system with a given interparticle separation b, such that 2b/a =
Tpeak- Particles accumulate near rpe,r as they would for a hard-sphere system, while their
concentration drops significantly for r < 7peq. For lower concentrations, however, the
peak in the pair-distribution function is not as apparent and the probability of finding
a particle at distances less than rpe.x is by comparison high, a behavior characteristic
of a soft-interparticle potential. It is interesting to note that for the same values of the

interparticle force parameters there is a significant change in the location of the peak as
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a function of the volume fraction, which does not occur for a hard-sphere potential.

Figure 3.12 shows the angularly averaged radial distribution function for particle to
particle distances between 2 and 7 radii for the same parameters of the interparticle force
and for volume fractions ¢ = 0.20, 0.30, 0.40 and 0.50. The presence of a second peak is
apparent and the magnitude of the peak is an increasing function of the volume fraction.
This second peak is less pronounced than the first one and is located at distance close to
r=4.

We now turn to the angular dependence of the pair-distribution function for particles
near contact (2 < r < 2.001). Figure 3.13 shows this dependence for the same parame-
ters for the interparticle force and for volume fractions of ¢ = 0.20, 0.30 and 0.40. The
anisotropy in the microstructure is evident: a large particle density exists along the com-
pressional axis and a low density along the extensional axis. We note that the choice of
the radial distances within which the angular dependence of the distribution function is
calculated can significantly affect representations such as in Figure 3.13. For example,
for very low volume fractions and for separations r < 2.001, the pair-distribution func-
tion would appear to be isotropic and zero everywhere, since the peak of the radial pair
distribution function occurs at larger particle-particle separations. On the other hand,
for volume fractions near close-packing a much smaller » would be appropriate in order
to capture the “maximum” anisotropy. It is also possible that a long-range anisotropy
is present, which is not captured in figure 3.13. However, since most of the stress comes
from near touching particles, the anisotropy in this region is most important. Increasing
the volume fraction increases the anisotropy both in magnitude and also with a shift to
smaller 6.

Finally, we present some typical results for the projection of the pair-distribution
function onto the zy, zz and 2y planes. The case of N = 512 and ¢ = 0.40 is shown in
figure 3.14 (a) and (b). The projection of the pair-distribution function on a given plane,
e.g., zy, includes contributions from particles at all values of the third coordinate (e.g.,
z). As a result, the probability of finding a particle at distance dz = 0, dy = 0 is not
zero and the “excluded” volume of the particle is not sharply defined—this is simply a

matter of presentation and has no further significance. As was already mentioned, the



78

microstructure is indeed symmetric on the planes perpendicular to the shear plane, while
asymmetry exist in the plane of shear with a build up of particles in the compressional zone
and a depletion of particles in the extensional zone (light regions denote high probability
and dark low). It is the presence of the asymmetry in the zy plane that leads to the
negative normal stress differences. No shear-induced order is present for the values of the

interparticle force studied for volume fractions ¢ < 0.50.

3.3.4 Rheology and microstructure

The impact of the suspension microstructure on its non-Newtonian rheological proper-
ties has been studied in the past and a number of theoretical predictions are available.
Brady & Morris (1997) analytically calculated the viscosity and normal stress differences
for a dilute suspension of Brownian particles at high Péclet number, taking into account
hydrodynamic interactions and the presence of a hard-sphere-type pairwise interparticle
force that prevents particles from approaching one another to less than a minimum sep-
aration b > a. (Here a always refers to the actual particle radius at which the no-slip
hydrodynamic conditions are applied.) This force breaks the fore-aft symmetry and thus
leads to a viscosity correction, finite normal stress-differences and a particle pressure. By
studying the balance between hydrodynamic and interparticle forces in a boundary layer
near particle-particle contact, Brady & Morris (1997) calculated the microstructure, as
expressed by the pair-distribution function in the boundary layer, and the resulting con-
tribution to the particle stress. (The boundary layer is a balance of hydrodynamic and
weak Brownian motion at the hard-sphere radius b.) Furthermore, they attempted to
extend their solution to concentrated suspensions and proposed the following scaling for

the leading contribution to the total stress:

nSE, ~ ninee g™ (2b; ¢)(b/a — 1)2, (3.9)

where g®(2b; ¢) is the value of the pair-distribution function (for the given microstructure)
at the minimum separation r = 2b and was not calculated in their analysis. We note here

that Brady & Morris (1997) split the stress contribution into two parts, one referred
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to as the hydrodynamic stress and one referred to as the interparticle force stress; they
find that the contribution of the hydrodynamic stress is dominant (the interparticle force
contribution is smaller by a factor of (b/a — 1)) and is the one presented in (3.9). No
such splitting was attempted in our calculation and only the total stress was determined
in simulation; however, since (3.9) represents the leading contribution to the stress, its
scaling should be also valid for the total particle stress.

Equation (3.9) has a simple physical interpretation. It states that the dominant con-
tribution to the stress is simply the number of particle pairs at contact, ¢?g*(2b; ¢)(b/a—
1)%22 times the hydrodynamic stress for a pair, 7’ ,n7. The factor of 7}, arises because
particles are being pushed together by shearing in the suspension and resisting this mo-
tion by the solvent viscosity that separates near-touching particles. Alternatively, one can
simply view 1., as renormalizing the solvent viscosity with the viscosity of the equilibrium
hard-sphere structure. The factor (b/a —1)%?? comes from the asymptotic behavior of the
hydrodynamic mobility functions as the particles approach contact.

Although the theory of Brady & Morris (1997) is restricted to the case of a hard-
sphere-type interparticle force one can still use the idea that the dominant contribution
comes from near-touching pairs—that is, the pairs under the peak in g(r) in figure 3.11—to

write:

*

" n2/5(r)g(r)dr it /; g(r)dr, (3.10)

where r* corresponds roughly to the width of the peak. The location of r* is not well-
defined since g(r) falls continuously from its peak value as r increases. At the same time
the two particle stresslet S(r) also drops off rapidly with increasing r. What is needed is
an estimate of the number of close pairs, and we have arbitrarily chosen r* as the point
at which g(r) has dropped to 10% of its peak value, which varies from r* = 2.0009 at
¢ = 0.50 to r* = 2.026 at ¢ = 0.10. The values of r* are given in table 3.4. This écaling

relation then suggests that

777(45) — "7*230(¢)
Too(®)9? [, g(r)dr

(3.11)
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should be independent of volume fraction. This quantity is presented in figure 3.15(a) as a
function of the volume fraction; the predicted scaling is indeed quite good, and the excess
non-dimensionalized shear-stress appears to be constant with volume fraction.

For comparison, we also attempt to scale the excess shear stress with the hard-sphere
scaling of (3.9). Since g™ (2b; ¢) is not well defined for our soft interparticle potential the
value at contact for the equilibrium pair-distribution function, g°(2; ¢), is used instead.
This quantity is a known function of the volume fraction, ¢, given, for example, from the
Carnahan-Stirling equation of state:

(2 ¢) = iﬁ, ¢ < 0.50. (3.12)

(1-¢)°

The value of rpeqk is now used as the corresponding minimum separation distance b, since
in the hard-sphere sense it corresponds to where the maximum accumulation of particles is
observed. In figure 3.15(b) the excess stress is scaled with nyn. $?g°(2; #)(b/a—1)°?? and
presented as a function of the volume fraction. The scaling is again satisfactory, leading
to values independent of the volume fraction. The soft interparticle potential with a given
distribution over distance r* was thus successfully replaced by a hard-sphere interparticle
force at distance 2b/a = rpeqr. The excess stress scales satisfactory with either approach.

The same scaling is proposed for all the elements of the stress tensor. However, in
the absence of any anisotropic microstructure the normal stresses are zero, no equilib-
rium value needs to be subtracted, and the scaling of (3.10) should apply directly. As
was already mentioned, however, the ratio of the normal to the shear stresses is not con-
stant as a function of the volume fraction, and therefore we should expect the same to
be the case here. In figure 3.16 the normal stresses, ¥11, Y22 and X33 are scaled with
nyn.. 8 f;* g(r)dr, while in figure 3.17, the particle pressure and the two normal stress-
differences are also plotted with the same scaling. It is again seen that the scaled normal
stresses are an increasing function of the volume fraction ¢. As is apparent from figure
3.17, the normal and excess shear stress are of the same magnitude for all volume fractions

studied here. The notion that the dominant contribution to the stress comes from close

pairs and can be estimated quite simply is borne out well by the simulation results and
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should prove useful in interpreting experimental data.

3.3.5 Effect of the interparticle force

All results presented so far were obtained for the same values of the interparticle force
parameters. We now fix the particle volume fraction at ¢ = 0.40 and number of particles
N =512 and vary the range (7) and the amplitude (¥*) of the interparticle force to assess
their influence on the rheological behavior.

In table 3.5 we present the values of the relative viscosity and particle pressure for a
system at volume fraction ¢ = 0.40 for different values of the force parameters (the particle
pressure is chosen as a characteristic measure of the behavior of the normal stresses in
general). While a trend is apparent for the viscosity, the normal stress shows very little
variation. The viscosity increases monotonically as the relative strength of the interparticle
force decreases; this is apparent both when the range of the interparticle force decreases
(increasing 7) and when 4* increases. This behavior is expected because, as the relative
importance of the interparticle force decreases, the particles come closer together, larger
clusters form and the suspension becomes harder to shear, i.e., it shear thickens. This is
completely in keeping with the behavior of Brownian suspensions as Pe — oo; they too
shear thicken. On the other hand, the behavior of the normal stresses is more complicated.
In the limit of pure hydrodynamics, the normal stresses should vanish because it is the
presence of the interparticle force that breaks the fore-aft symmetry giving rise to normal
stresses. At the same time, in the absence of an interparticle force the particles are allowed
to come very close together, which generates a large cluster and gives rise to very large
lubrication stresses. This competition makes the behavior of the normal stresses difficult
to predict, even qualitatively. As is shown in table 3.5, the values of the normal stresses
show no systematic variation with 7 or 4* and are indistinguishable within the statistical
accuracy.

In table 3.6 4* is varied for a system of ¢ = 0.10 and 0.30. For these lower volume
fractions, the quantitative effect of the interparticle force on the shear stress is not as
pronounced as was the case for ¢ = 0.40. The viscosity, however, again increases as

the relative strength of the interparticle force decreases. The magnitude of the particle
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pressure is now much smaller, but nevertheless a trend is now evident. The particle
pressure decreases as the relative strength of the interparticle force increases. Although the
absolute values are very small for ¢ = 0.10, the change is significant. This is in agreement
with the dilute limit results of Zarraga et al. (2001) that predict the same behavior
with increasing minimum particle to particle separations. For these dilute systems, the
formation of dense clusters is of little importance and the behavior is dominated by the
decrease in the asymmetry with decreasing importance of the interparticle force.
Quantitative predictions following the scaling of equation (3.10) or (3.9) are difficult to
make, primarily because the differences in the rheological properties are not as pronounced
(compared to the difference when the volume fraction was varied), and the determination
of the appropriate parameters, e.g., r*, for very different soft potentials is subject to uncer-
tainty. In figure 3.18 we show the change of the angularly averaged radial pair-distribution
function for different values of the interparticle force, varying the force magnitude (a) and
the force range (b), for a system of N = 512 particles at ¢ = 0.40. It is apparent that by
increasing the range (1/7), or equivalently increasing the magnitude of the force (1/4*),
the peak in the pair-distribution function decreases in magnitude and shifts to larger
particle-particle separations. Although no attempt is made to quantify this behavior, it
is worth mentioning that according to the scaling of (3.9), two factors are expected to
influence the change in the particle stress: the location of the peak through (b/a — 1)%22
and the magnitude of the peak through ¢°°(2b). As is apparent from figure 3.18, these
two factors have qualitatively opposite effects on the value of the stress: as the maximum
value of the pair-distribution function is increased (increasing ¢°°(2b)), simultaneously its
position is shifted to smaller separations (decreasing the value of b/a). For the case of the
shear-stress (table 3.5), the overall effect leads to an increase to the value of the viscosity.
This is in qualitative agreement with the observation that the dependence on b/a is weak,
leading to a behavior dominated by the sharp increase of the value of g at contact. The
scaling theory of Brady & Morris (1997) also only takes into account contributions from
the boundary layer between the particles—the effect of particles further apart, and the
anisotropy possibly associated with their separations is not included; this higher-order

effect can be important when the variation in properties is small as is in tables 3.5 and
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3.6.

Finally, we remark here that although the shear viscosity at ¢ = 0.40 in table 3.5 only
increased by a factor of 1.2 as 4* varied from 1 to 10%, at ¢ ~ 0.50 this same variation in
4* can lead to a doubling of the viscosity (Yurkovetsky 1998), which should be considered
in light of the agreement between simulation and experiment in figure 3.2. The rheology
is extremely sensitive to the details of near particle-particle interactions at high volume

fractions.

3.3.6 Effect of friction

Finally, we have investigated the effect of sliding friction on the rheological behavior. Davis
(1992) and Wilson & Davis (2000) first studied the effect of friction for a two-particle
system. They considered particles with microscopic surface asperities such that they are
able to make contact. When the interparticle surface-surface separation reaches a certain
value comparable to the size of the surface asperities, they assumed that the particles
were at “contact”. The two particles then remain at contact (and at the same minimum
separation) for as long as the net hydrodynamic forces acting on them are compressive.
While the particles are at contact, the normal (parallel to the line of centers) contact force
on each particle is equal and opposite to the normal hydrodynamic force on the particle.
In addition, a tangential (tangent to the contact surfaces) force, as a result of solid-solid
friction is assumed to exist and its value is a combination of the hydrodynamic force and
a friction coefficient, v. This model is known as the roll-slip model, because for certain
magnitudes of the normal force the particles are allowed either to roll around one another,
or to slip (see Davis 1992 for a detailed description).

The application of this model to a large number of particles, however, is computation-
ally expensive, since the contact force on each particle depends not only on the particle’s
position but also on the velocities and hydrodynamic forces exerted on all other particles.
To resolve this properly requires solving the complete system of equations for the contact
forces. A simpler approach was therefore followed here in order to explore the effect of
sliding friction. The interparticle force given by (3.2) was maintained, but it was assumed

that the presence of such a normal force between the two particle surfaces would give rise
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to a tangential frictional force with its magnitude limited by v, the friction coefficient.
The direction of this frictional force depends on the exact particle velocities, hydrody-
namic forces and positions, but for simplicity it was assumed that the frictional force was
simply opposing the bulk shearing motion, corresponding to the slipping contact model of
Wilson & Davis (2000). Thus the frictional force is given by

I-nn)-E* -n
_nn) - F? = p|p7|

(3.13)

where n is center to center unit vector, Fz}r is the additional frictional force, E* is
the bulk rate of strain and F? is the interparticle force of (3.2). We note here that the
introduction of a tangential force also generates a torque on the particles that needs to be
taken into account in the calculation.

Table 3.7 presents the values of the relative viscosity and normal stresses for different
values of the friction coeflicient for a system of N = 512, 7 = 1000, 4* = 1000 at ¢ = 0.40.
It is apparent that an increase in the friction coefficient gives rise to an increased viscosity.
However, the friction results in decreasing values of the first and increasing values of the
second normal stress differences (in magnitude). This is an interesting result since the
limited experimental studies show the second normal stress difference to be significantly
larger than the first normal stress difference, which is the case for increasing friction. This
suggests that normal stress differences may be a sensitive meas

It is also interesting that a small change in the suspension microstructure can have
a very significant quantitative effect on the rheological behavior. In figure 3.19 the pair-
distribution function for r < 2.0005 is plotted as a function of the angle 6 for v = 0.0
and v = 0.30. The effect of the friction is a slight shift of the distribution, and, although
small, the effect on the normal stress differences is significant. To further demonstrate this
point, we also plot in figure 3.19 the normal stress differences for a system of 2-particles as
a function of their relative positions (Nir and Acrivos 1973, Zarraga et al. 2001—Zarraga
et al. (2001) expanded the touching spheres results of Nir & Acrivos (1973) to include
particle roughness; for the minimum separations used here, the difference between the

two cases is very small, and since only qualitative predictions are made, we only present
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the results for touching spheres). The shift in the microstructure corresponds to a larger
density of particles that would give rise to a positive Ny and a smaller density of particle
that would give rise to a negative Np; as a result the values of the first normal stress
difference becomes less negative with increasing friction. The opposite effect occurs for
Ns; the peak of the pair-distribution function for both curves corresponds to a negative
N3 but the corresponding magnitude of N for the peak for v = 0.30 is larger. Although
it is difficult to make quantitative predictions based only on the microstructure and the
2-body case, it is nevertheless clear how important the details of the interparticle force
are on predicting both the microstructure and the resulting rheological properties. The
detailed form of the interparticle force is, of course, increasingly important at larger volume
fractions, which possibly explains the discrepancies in the rheological properties observed

by different researchers at high volume fractions.

3.3.7 Volume fractions above freezing

All the results presented so far correspond to volume fractions below 50% where the
suspension remains disordered. Volume fractions above the freezing point were also studied
and a number of additional issues were encountered. First of all, the time step necessary
to avoid particle overlap becomes increasingly small as the volume fraction increases, even
with a repulsive force, making these runs computationally more expensive. In addition,
the iterative scheme used for the inversion of the near-field resistance matrix requires a
larger number of iterations as the particles get closer together, and the preconditioning is
not enough to resolve the ill-conditioning of the near-field lubrication matrix. Nevertheless
simulations for volume fractions of 0.52, 0.55 and 0.60 were undertaken for the number of
particles ranging from N = 125 — 512. The initial random configurations were generated
following the technique suggested by Rintoul & Torquato (1996). Figure 3.20 shows the
viscosity for all volume fractions up to ¢ = 0.60, while figure 3.21 shows the corresponding
microstructure from the projection of the pair-distribution function onto the yz plane.
All runs are for N = 512 and 7 = 1000, 4¥* = 1000. For volume fractions above 0.50
the system orders into strings. Surprisingly, at even higher volume fractions the system

is again disordered. We must mention here that some of the runs were performed for
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relatively small strains—on the order of 100—so it is also possible that the system has
not yet reached a steady state. For the same strain, however, it was apparent that the
denser system of ¢ = 0.60 showed no signs of order compared to the fully ordered system
at ¢ = 0.55. Order is apparent both in the dramatic change of g(z,y), where the light
circles now correspond to particles, and in the drop in the viscosity.

This behavior is reminiscent of molecular dynamics simulations of hard spheres above
the freezing point (¢ = 0.494) and below the glass transition (¢ = 0.58), where it is
observed that in this metastable regime it is impossible to equilibrate the system for long
times without some order. Above the glass transition, however, the glassy phase seems to
have a much smaller tendency to order for much longer times. Unfortunately, a number of
other parameters can also significantly affect the behavior of the system. Different system
sizes were tried and, although both the strain necessary and the structure of the ordered
phase were affected, all systems for ¢ = 0.52 and ¢ = 0.55 eventually ordered. It is also
worth mentioning here that for some systems strains of up to 300 were necessary to see
the beginning of order, while also for some systems the ordered phase switched after long
strains to a different ordered structure, possibly an artifact of the system size and the
length of the unit cell. Different values of the interparticle force were also tried but the
presence of the ordered phase (at least for ¢ = 0.55) was persistent. Increasing the value
of the friction coefficient also delayed the on-set of order, but did not eliminate it.

The presence of a strong repulsive interparticle force is expected to induce order and
it is therefore expected that in the absence of a force (or in the presence of an extremely
small force) flow-induced order might not be seen. Unfortunately, it is extremely expensive
computationally to decrease the value of the interparticle force since large clusters form
and either the system can no longer be sheared, or particle overlaps are unavoidable. The
minimum separations obtained for the force used, however, (as is apparent for the values of
Tpeak Teported in the previous section) are expected to be sufficiently small since for most
experimental situations particle roughness is on the order of 1072 — 10~2 of the particle
radius. Flow-induced order is commonly seen experimentally in electrostatically-stabilized
dispersions (Ackerson 1990; Chen, Ackerson & Zukoski 1994) where the presence of a

DLVO-type repulsive force between the particles is present. No experimental evidence of
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ordering exists for systems of larger non-Brownian particles. However, most studies usually
do not examine the particle microstructure when measuring the suspension rheology and
therefore the presence of some order cannot be ruled out. In addition, all experimental
studies have some polydispersity, and molecular dynamics studies show that relatively
small amounts of polydispersity (less than 10% deviation in the particle sizes) can suppress
and shift the equilibrium phase transition to higher volume fractions. The effects of

polydispersity need to be addressed.

3.4 Conclusions

We have studied the behavior of a suspension of non-Brownian particles undergoing simple
shear flow using Accelerated Stokesian Dynamics. Larger systems (typically of N = 512
particles) were used and the suspension rheological properties were determined with im-
proved accuracy. The suspension relative viscosity, first and second normal stress differ-
ences and particle pressure were studied as a function of the volume fraction and were
found to be in satisfactory agreement with experiment, in particular when taking into
account the discrepancies between experimental data from different studies. The ratio of
the normal to shear stress and the ratio of normal to excess shear stress (defined as the
suspension viscosity minus the high-frequency dynamic viscosity) were also determined
and it was found that the normal stresses are better correlated with the excess shear
stress, pointing to the fact that the origin of both is the deformed microstructure.

The pair-distribution function determined from simulation clearly showed anisotropy
in the microstructure, leading to non-Newtonian rheological behavior. The presence of
a large particle density along the compressional axis and a low particle density along
the extensional axis resulted in negative normal stress differences and a finite particle
pressure; the degree of the anisotropy was further increased with increasing volume frac-
tion. Brady & Morris (1997) theoretically calculated the pair-distribution function for
a dilute system of Brownian-spheres at high Péclet number by studying the balance be-
tween hydrodynamic interactions and a hard-sphere-type pair-wise interparticle force in a

boundary layer near particle-particle contact. Furthermore, they suggested that the main
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contribution to the particle stress comes from near-touching spheres and as a result the
stress should scale with the number of particles near-contact (proportional to the value
of the pair-distribution function at contact) and the hydrodynamic stress of each pair
(proportional to the high-frequency dynamic viscosity). Although the theory of Brady
& Morris (1997) was restricted to the case of a hard-sphere-type interparticle force, the
concept that the dominant contribution to the stress comes from near-touching particles
can still be used to scale the particle stress for the case of a soft interparticle potential.
The resulting scaled shear-stress was successfully reduced to a constant for all volume
fractions; the success of this simple scaling in modeling our simulation results should also
prove useful in interpreting experimental data.

Different values for the parameters of the repulsive interparticle force were used and the
effect of particle-particle friction on the rheological properties was studied. The viscosity
increased monotonically as the relative strength of the interparticle force decreased and
particles were driven into closer contact where lubrication forces are strong. The behavior
of the normal stresses, however, was more complicated: on the one hand, in the pure
hydrodynamic limit normal stresses are expected to vanish because of the flow reversal
symmetry of the microstructure, and at the same time in the absence of any interparticle
force large clusters and consequently large lubrication stresses are generated. Although no
quantitative scaling predictions were attempted for the normal stresses, it is nevertheless
clear that the presence of a repulsive interparticle force can have a profound impact on
the suspension microstructure and the resulting rheology. A broader experimental and
theoretical study that investigates the exact nature and detailed functional form of the
interparticle force for systems of non-Brownian particles would therefore be of extreme
interest and would allow a much better quantitative prediction of the rheological properties
of such systems.

No flow-induced ordering was observed for volume fractions below 0.50 and for the
range of interparticle force used here. For volume fractions above 0.50 the system ordered
into strings, while surprisingly at even higher volume fractions (¢ = 0.60) the system
was again disordered. This behavior is reminiscent of molecular dynamics simulations of

hard-spheres in the metastable regime (above the freezing point ¢ ~ 0.494 and below the
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glass transition ¢ ~ 0.58) where it is impossible to equilibrate the system for long times
without some order. Studying the effect of different interparticle forces and different
particle sizes for such dense systems should provide valuable insight into the mechanism

of sheared-induced ordering and is left for a future study.
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N T -N —N, i

125  6.2180 0.058 0.7830 4 0.038 0.8656 £ 0.037 1.8903 = 0.053
256  6.2286 +0.072 0.8582 £ 0.074 0.8536 &+ 0.150 1.9060 % 0.050
512 6.2413+£0.036 0.8301 +0.047 0.8486 +0.025 1.9032 + 0.036
1000 6.2152 +0.035 0.8396 £ 0.025 0.8342 +0.032 1.8966 = 0.030

Table 3.1: The dependence of the rheological properties on the number of particles. Sim-

ulations are for ¢ = 0.40, 7 = 1000, 4* = 1000 and N = 125 — 1000. Data are shown for

the relative viscosity, 7, the first, N;, and second, Ny, normal stress differences and the

suspension pressure, II.

T r -Ny —N; I

0.10  1.326 +0.0015 0.0017 -t 0.0007 0.0019 £ 0.0005  0.0029 + 0.0004
0.15 1.576 £0.0029 0.0083 +£0.0015 0.0082 £0.0012  0.0127 £+ 0.0011
0.20  1.917 £0.0055 0.025+0.0031  0.0259 £0.0029  0.0412 £ 0.0022
0.25  2.408 +0.0085 0.063 £ 0.0052  0.068 £ 0.0045 0.117 £ 0.0052
0.30 3.144 £0.0120 0.160 +£0.0072  0.178 £ 0.0057 0.313 + 0.0454
0.35 4.311 £0.0159 0.406 £ 0.0154  0.404 £ 0.0133 0.793 £ 0.0184
0.40 6.24 £0.036 0.83 +£0.047 0.85 +0.025 1.90 £ 0.036
0.45  9.40 £ 0.093 1.62 £ 0.109 1.62 +0.043 4.32 +0.119
0.50 15.07 £0.183 2.76 £ 0.152 2.75 £ 0.146 10.15 £ 0.183

Table 3.2: The dependence of the rheological properties on the volume fraction. Simula-

tions are for N = 512, 7 = 1000 and 4* = 1000. The total relative viscosity, n,, first, Ny,

and second, Ny, normal stress differences, and particle pressure, I1, are presented.
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r il —NgF —NgF I=F
0.10 0.0018 £0.0003 —0.0045 £+ 0.0003 0.0041 + 0.0004  0.0031 % 0.0003
0.15 0.0087 £0.0007 —0.0157 £ 0.0008 0.0154 +0.0009  0.0131 & 0.0006
0.20 0.0287 £0.0020 -0.0402 £0.0021 0.0409 £+ 0.0031  0.0422 + 0.0023
0.25 0.0834 +0.0037 —0.0865 +0.0051 0.0915 £ 0.0048  0.119 + 0.004
0.30 0.226 +0.005 —0.150 £ 0.007 0.209 £ 0.006 0.317 £ 0.007
0.35 0.582 +0.027 —0.188 £ 0.023 0.430 £ 0.024 0.803 £ 0.037
0.40 1.328 £0.037 —0.117 £ 0.046 0.800 £ 0.056 1.910 £ 0.051
0.45 2.826 £0.078 0.208 £ 0.099 1.442 +0.155 4.336 = 0.102
0.50 5.993 +0.187 0.872 £ 0.119 2.5124+0.113 10.114 £ 0.266

Table 3.3: The “force-contribution”, —xFp, to the rheological properties as a function
of volume fraction. Simulations are for N = 512, 7 = 1000 and 4* = 1000. The —xF),

contribution to the viscosity, n%F, first, NfF , and second, N§¥'| normal stress differences,

r

and particle pressure, II?F, are presented.

¢ Tpeak — 2 g(rpeak) r*
0.10 1.25x 1073 22 2.026
015 7.5x%x1074 38 2.018
020 7.0x107¢ 55 2.011
025 6.0x10°¢ 108 2.007
0.30 5.0x107¢ 190 2.004
0.35 3.5x107* 310 2.0026
040 2.8x10°* 490 2.0019
045 1.7x10°* 803 2.0012
050 1.1x107¢ 1220  2.0009

Table 3.4: The dependence of the location, Tpeqr, and value, g(rpeqr), of the peak of
the pair-distribution function on the volume fraction. The values of r* (where the pair-
distribution function drops to 10% of its peak value) are also given. Simulations are for

7 = 1000, ¥* = 1000 and N = 512.
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T ¥*  For[4* Ny I1

1000 104 0.1 6.75+0.060 1.860.041
1000 1000 1 6.2440.036 1.90+0.036
1000 100 10 5.89+0.044 1.93+0.038
1000 10 100 5.66 +0.038 1.89 & 0.044
1000 1 1000 5.55+0.022 1.88 % 0.047
10000  10* 1 6.88+0.046 1.87+0.050
1000 1000 1 6.2440.036 1.90+0.036
100 100 1 5490037 1.96+0.042

Table 3.5: The dependence of the rheological properties on the parameters of the inter-
particle force. Simulations are for ¢ = 0.40, N = 512, 4* = 1 —10* and 7 = 1 — 10%. Data

are for the relative viscosity, 7,, and the particle pressure, II.
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T 7 ¢ Nr I

1000 1000 0.10 1.3265+0.0015 2.99 + 0.551073
1000 100 0.10 1.3241 +£0.0011 3.70 +0.361073
1000 10 0.10 1.3236 £0.0008 4.50 %+ 0.4710~3
1000 1 010 1.3232:+0.0004 5.13+0.491073
1000 10* 030 3.25+0.015  0.256 +0.010
1000 1000 0.30  3.14+0.012  0.313 +0.007
1000 100 0.30  3.07+0.008  0.342 £ 0.009
1000 10 0.30 3.04+0.010  0.380 £ 0.010
1000 1 030 3.0240.007  0.394 +0.008

100 1 030 286+0.012  0.576 +0.012

Table 3.6: The dependence of the rheological properties on the parameters of the inter-

particle force.

Simulations are for ¢ = 0.10 and ¢ = 0.30, N = 512, 7 =

1000 and

4* =1 —10*. Data are for the relative viscosity, 7, and the particle pressure, II.

N v Ny —-N —N>s I

512 v =0.0 6.24+0.036 0.83+0.047 0.85+0.025 1.90+ 0.036
512 v=0.1 6.37+£0.038 0.76 £0.040 0.97 +£0.035 1.94 4 0.039
512 v =02 649+0.041 0.70+0.022 1.07+0.030 2.01 +0.042
512 v =03 6.66+0.043 0.64+0.042 1.194+0.040 2.10+0.037
512 v =05 6.89+£0.042 0.50+0.038 1.49+0.046 2.24 +0.045

Table 3.7: The dependence of the rheological properties on the friction coefficient. Sim-

ulations are for ¢ = 0.40, N = 512, 4* = 1000, 7 = 1000, and v = 0.0 — 0.50. Data for

the relative viscosity, 7,, the first, N7, and second, N, normal stress differences and the

particle pressure, II, are shown.
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Figure 3.1: The dependence of the suspension viscosity on the number of particles N;

7 = 1000, 4* = 1000 and ¢ = 0.10 — 0.50.
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Figure 3.2: The dependence of the suspension relative viscosity, 7,, on the volume fraction.
Accelerated Stokesian Dynamics (ASD) results are for N = 512, 7 = 1000, 4* = 1000. A

number of experimental results are also shown.
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Figure 3.3: The dependence of the suspension excess viscosity, 7, — 74y, on the volume
fraction. Accelerated Stokesian Dynamics (ASD) results are for N = 512, 7 = 1000,
4* = 1000. The high-frequency dynamic viscosities, 7., are for the equilibrium hard-

sphere microstructures and were determined by Sierou & Brady (2001).
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Figure 3.4: The dependence of the first normal stress difference, Ny, on the volume
fraction. Accelerated Stokesian Dynamics (ASD) results are for N = 512, 7 = 1000,
4* = 1000. Also shown are the experimental results of Singh (2000) and Zarraga et al.
(2000).
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Figure 3.5: The dependence of the second normal stress difference, N3, on the volume

fraction. Accelerated Stokesian Dynamics (ASD) results are for N = 512, 7 = 1000,
4* = 1000. Also shown are the experimental results of Singh (2000) and Zarraga et al.

(2000).
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Figure 3.6: The dependence of the particle pressure, II, on the volume fraction. Accel-
erated Stokesian Dynamics (ASD) results are for N = 512, 7 = 1000, 4* = 1000. Also
shown are the experimental results of Singh (2000) and Zarraga et al. (2000).
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Figure 3.7: The suspension normal stress differences, N; and N3, and the suspension
pressure, II, non-dimensionalized by the excess shear stress, (1, — 1., )7}, are shown as a
function of the volume fraction. Accelerated Stokesian Dynamics (ASD) results are for

N =512, 7 = 1000, 4* = 1000.
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Figure 3.8: The ratios of the suspension normal stresses, 311, 229 and 333, to the excess

2, /shear stress
T T 1 T

shear stress, (, — nL,)77Y, are shown as a function of the volume fraction. Accelerated

Stokesian Dynamics (ASD) results are for N = 512, 7 = 1000, 4* = 1000.
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Figure 3.9: The ratios of the suspension normal stresses, 311, 22 and X33 (a) and particle
pressure II (b) to the shear stress, 7., are shown as a function of the volume fraction.
Accelerated Stokesian Dynamics (ASD) results are for N = 512, 7 = 1000, ¥* = 1000.

The fitted expressions of Zarraga et al. (2000) for the same quantities are also shown.
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Figure 3.11: The dependence of the angularly averaged pair-distribution function, (g(r)),,
on the volume fraction. The pair-distribution function is averaged over all orientations
and results for 2 < r < 2.005 are shown. Simulation results are for N = 512, 7 = 1000,

4% = 1000.
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Figure 3.12: The dependence of the angularly averaged pair-distribution function, (g(r)),,
on the volume fraction. The pair-distribution function is averaged over all orientations
and results for 2 < r < 7 are shown. Simulation results are for N = 512, 7 = 1000,

A% = 1000.
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Figure 3.13: The angular dependence of the pair-distribution function, g(r,8), for volume
fractions of ¢ = 0.20, 0.30 and 0.40. The angle 6 is defined according to figure 3.10 and the
pair-distribution function is calculated for r < 2.001. Simulation results are for N = 512,

7 = 1000, 4* = 1000.
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Figure 3.14: The projection of the pair-distribution function onto the zy, zz and zy planes
for a system of N = 512, ¢ = 0.40, 7 = 1000, ¥* = 1000. The projections are given for an
area of 10a x 10a (a) and 15a x 15a (b).
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Figure 3.15: The excess viscosity, 7, — 7., non-dimensionalized with ngoqﬁzgl =
o d? f;* g(r)dr (a) and 7., g°(#)¢%(b/a — 1)°%2 (b), as a function of the volume frac-
tion. Simulation results are for N = 512, 7 = 1000, 4* = 1000.
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Figure 3.17: The first, N7, and second, Ny, normal stress differences and the suspension
pressure, I1, non-dimensionalized by 7/ ¢? f;* g(r)dr, as a function of the volume fraction.
The excess viscosity is also shown for comparison. Simulation results are for N = 512,

T = 1000, ¥* = 1000.
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Figure 3.19: The angular dependence of the pair-distribution function for a system with
N = 512, 7 = 1000, 4* = 1000 and v = 0.0 and 0.30. The angular dependence of the

normal stress differences for two particles in contact (Acrivos & Nir 1973) is also shown.
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Figure 3.21: The projection of the pair-distribution function onto the zy plane, g(z,y),
for volume fractions up to 0.60 and for N = 512 and a total strain of 100. The velocity
is in the z-direction and the velocity gradient in the y-direction. Shear-induced string
ordering occurs for volume fractions above the equilibrium hard-sphere phase boundary

at ¢ = 0.50 and below the metastable glassy state at ¢ = 0.58.
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Chapter 4

Shear-Induced Self-Diffusion in Non-Colloidal

Suspensions

4.1 Introduction

Shear-induced particle diffusion plays an important role in the behavior of concentrated
non-Brownian suspensions and is responsible for a variety of interesting rheological phe-
nomena in such systems. The first direct experimental study of shear-induced diffusion
was reported by Eckstein, Bailey & Shapiro (1977); a variation of their experimental tech-
nique was later used by Leighton & Acrivos (1987) and Phan & Leighton (1999), followed
more recently by the introduction of an alternative experimental method by Breedveld et
al. (1998, 2001). Most of the aforementioned experiments are limited to the determination
of the self-diffusion coefficients only in the velocity gradient and vorticity directions.
Theoretical work on self-diffusion is complicated by the fact that the two-body system
in the presence of only hydrodynamic interactions either does not exhibit diffusive behav-
ior (for the motion parallel to the velocity gradient and vorticity directions) or exhibits
singular behavior (for the motion parallel to the fluid velocity). Acrivos et al. (1992)
studied the diffusion coefficient parallel to the fluid velocity by introducing a mechanism
(an additional pair of particles) that breaks the resulting singularity, while Wang, Mauri
& Acrivos (1996) studied the diffusion perpendicular to the fluid velocity by examining
three particle interactions. Da Cuncha & Hinch (1996) studied the two-particle problem

in the presence of surface roughness—necessary to create diffusive motion—while Brady &
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Morris (1997) introduced residual Brownian motion and a hard-sphere interparticle force
to break the symmetry of the two-particle limit. Recently, Marchioro & Acrivos (2001)
used Stokesian Dynamics simulations to study shear-induced diffusion in concentrated
suspensions and addressed the still unanswered question of whether self-diffusion can be
present in a purely deterministic system (e.g., in the absence of any roughness, residual
Brownian motion, etc.).

The purpose of this work is to utilize a recently developed algorithm (Sierou & Brady
2001) for the calculation of hydrodynamic interactions among particles that allows the
simulation of much larger systems than were previously possible. Although calculation
of other rheological properties (e.g., viscosity) has proven to be accurate even with very
small systems, the calculation of the self-diffusion coefficient requires significantly larger
systems. Access to systems with numbers of particles on the order of 1000 allows accurate
calculation of the diffusion coefficient and a study of its dependence on the number of
particles and the volume fraction.

The complete diffusion tensor can now be determined and simulation results for both
the off-diagonal components and the self-diffusion coefficient parallel to the fluid velocity
are presented for the first time for a non-Brownian system. Because the presence of the
external velocity field makes the determination of any diffusive displacements in the flow,
or longitudinal, direction difficult, only very limited experimental results are available
for these components (Breedveld 2000). Foss & Brady (1999) calculated the longitudinal
self-diffusion coefficient for a system of Brownian particles at very high Péclet numbers by
following the theoretical analysis of Morris & Brady (1996) which suggested that the affine
shearing motion could be subtracted directly at each instant in time and the diffusivity
could be calculated by taking into account only the non-affine displacements. Unfortu-
nately, as we shall show, this is not correct and the affine displacement couples with the
non-affine displacement to give an additional contribution to the longitudinal long-time
self-diffusivity. Acrivos et al. (1992) theoretically studied the diffusion coefficient in the
fluid velocity direction for very dilute suspensions and discovered that the two-particle
limit is singular; a singularity that can be resolved with the presence of an additional pair

of particles. Although for the volume fractions studied here (above 10% ) this singularity
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is no longer present, the calculation of the diffusion coefficient in the flow direction still
proves to be a formidable task for dilute suspensions, a result of the strong influence of
the periodicity on the particle displacements.

In the next section we outline the simulation method and briefly discuss the main
details of the new O(N In N) algorithm. In §4.3 we discuss how the diffusion coefficients
are determined from both the mean-square displacements and the velocity autocorrelation
function. In §4.4 results for the diffusivities in the velocity gradient and vorticity direction
are presented and compared with experiment. Discrepancies between the simulation and
some experimental results can be attributed to the fact that most of the experimental
techniques attempt to determine the self-diffusivities for very small strains where the
behavior is not yet diffusive; such a case is presented in detail in §4.4.2. In §4.5 the
diffusivity in the fluid velocity direction is discussed along with the only non-zero off-
diagonal component of the diffusivity tensor. Finally, we conclude in §4.6 with a brief

summary and suggestions for future work.

4.2 The Simulation Method

A new implementation of the conventional Stokesian Dynamics (SD) method, called Ac-
celerated Stokesian Dynamics (ASD), is used in our simulations. Since the methodology of
ASD has been laid out in a previous work (Sierou & Brady 2001), only a brief account will
be presented here. The method utilizes a Particle-Mesh-Ewald summation technique (Dar-
den et al. 1993) with an iterative procedure to solve the equations governing the motion
of N particles suspended in a viscous fluid at low particle Reynolds number in O(N In N)
operations. Following the conventional SD method, the hydrodynamic interactions are
split into two parts: a far-field many-body part and a pair-wise near-field lubrication part.
The near-field interactions can be readily calculated in order N operations—the particles
are arranged in a chaining mesh (Hockney & Eastwood, 1986) so that each particle’s near-
est neighbors are easily identified. Since the near-field interactions are short-ranged, the
number of neighboring particles (V) is small and the resulting computational cost scales

likes N, N. To further reduce both the computational cost and the memory requirements,
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the resulting near-field resistance matrices are stored in a sparse form.

The far-field interactions are calculated in an iterative manner and therefore the far-
field mobility matrix is never constructed. A resistance formulation is again followed:
From assumed values for the hydrodynamic forces, the corresponding fluid velocities are
calculated and then with application of Faxéns’ laws the initial forces are corrected until
convergence. The fluid velocity in the presence of N suspended particles (each particle is
represented as a series of force multipoles at the particle’s center) is calculated following
a Particle-Mesh-Ewald approach, i.e., the resulting infinite sums over all the particles
are split into a wave-space and a real-space sum with the introduction of a splitting
parameter. The resulting wave-space sum contribution is evaluated on a grid as an inverse
Fourier transform, while the real-space sum is calculated analytically. The computational
cost of the Fourier sums scales as N3, In N,,,, where N,, is the number of mesh points in
each direction (for a 3-D problem), and a careful choice of the splitting parameter allows
N,, =~ N'/3 with no loss in accuracy. The computational cost for the real-space sum scales
as NN;, where N; is in general the number of all the particles influencing the velocity of
a given particle. However, for sufficiently small values of the splitting parameter, it can
be shown that the contribution of particles that are not near-neighbors is very small and
can be ignored without significant error. The same chaining mesh procedure is followed
for the calculation of the real-space sums as was used for the near-field interactions with
an order N cost.

After both the far-field force and the near-field resistance matrices are calculated, the

new particle velocities are calculated from the equation of motion:
0=—Rpuns  (Up—u™)+ Rrgns: E¥ + Fp+ Fyy, (4.1)

where Up,—u® is the velocity disturbance at the center of the particle, E* is the externally
imposed rate of strain, Fy; the far-field contribution to the hydrodynamic force on a
particle, F'p, is the non-hydrodynamic interparticle force on a particle and Rrg ns, Rrunys
are the near-field resistance matrices; note that since only near-field two-body interactions

are included, Rpy .y is sparse, symmetric and positive definite. An iterative conjugate
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gradient method with an incomplete Cholesky preconditioner is used for the inversion of
the sparse near-field resistance matrix. With iterative algorithms the computational time
requirement can scale linearly with the matrix size since the sparse matrix multiplications
required for an iterative method scale as N. The preconditioner is necessary, however,
to keep the number of iterations small. Note that in (4.1) U, includes the rotational
velocities of the particle and F' the torques, as there is hydrodynamic coupling between
translation and rotation.

We consider the Stokes flow of a suspension of hard spheres in a suspending fluid
of viscosity n undergoing simple shear with shear rate 4. As has been demonstrated in
the past (Melrose & Ball 1995, Dratler & Schowalter 1996), in the absence of Brownian
motion the presence of a repulsive interparticle force is necessary to prevent the formation
of infinite clusters that “jam” and result in excessive particle overlaps. Although the choice
of this force is somewhat arbitrary, its introduction captures the behavior of a real physical
system, since the presence of residual Brownian forces, or particle roughness, would also
keep the particles from overlapping. This force was chosen to be of the form (Bossis &

Brady 1984)

Te 7€

Fpap) = Fo T orclah); (4.2)
where 67r77a2f'pr(aﬂ) is the force exerted on sphere o by sphere 3, Fp is a dimensionless
constant representing the magnitude of the interparticle force, 7 is related to its range,
e = r—2 is the spacing between the surfaces of the two spheres and e(,g) is the unit vector
connecting the centers of the two spheres. In the results reported here the value of 7 was set
at 1000, while 7Fj was chosen to be unity. Although the exact magnitude and form of this
interparticle force can play an important role on the values of some rheological properties
(viscosity, normal stress differences), especially for high volume fractions, simulations using
other parameters gave very similar results for the case of the self-diffusion tensor. (At very
low volume fractions, however, where two particle interactions dominate, ¢ < 0.01, the
range and amplitude of the repulsive force can strongly influence the self-diffusivities.) All

lengths are non-dimensionalized by the particle radius a, all times by the characteristic
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time 471, and the hydrodynamic resistance tensors Rry and Rpp by 67na and 67na?,
respectively. The time step used ranged from At = 5 x 1073 — 5 x 10~ depending on
the volume fraction (higher volume fractions required smaller time steps). A fourth order

Adams-Basforth integration scheme was used to update the particle positions.

4.3 The Self-Diffusivities in the Velocity Gradient (D,,)

and Vorticity (D,,) Directions

4.3.1 Theoretical analysis

We now describe in some detail the calculation of the self-diffusion coefficients in the
velocity gradient and vorticity directions. (The process of calculating the diffusivity in
the fluid velocity direction is subject to further limitations and will be described in the
following section.) Dimensional arguments show that the self-diffusivities scale as a2, as
these are the only length and time scales in the system (in the absence of interparticle
forces). All diffusivities reported are therefore normalized by ya2.

Let z, y and 2z denote the directions of the flow, the velocity gradient and the vorticity,
respectively. Then for a suspension undergoing simple shear flow in the z-direction, the

mean-square displacements will grow with time according to

(y(t)y(8)) ~ 2Dyyt,

(2(t)z(¢t)) ~ 2D, t,

at long times after diffusive motion has been established. Here, and hereafter, the angle
brackets denote an average over all particles in the system, while Dy, and D,, denote
the self-diffusivities in the velocity gradient and vorticity directions, respectively. The

self-diffusivities are defined as the time rate of change of one half the mean-square dis-
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placement:

Dyy = Jim £ < (u(tu(e) (432)
. 1d
D..= m 12 ()20, (4.3b)

We note here that the main difference between the calculation of the sheared-induced
diffusivity and the diffusivity of a Brownian particle is that (4.3) is only valid for long
enough times, i.e., times after the diffusive behavior has been established. Since the
motion of a non-Brownian particle is purely deterministic, the displacement of a given
particle only depends on the external velocity field and its interactions with all other
particles in the system. In order for the displacements to change significantly in time and
become random, the particle configuration also needs to change. As a result, the initial
motion of a non-Brownian particle is not diffusive and relatively long times need to be
sampled to determine the diffusion coefficients.

From (4.3) the calculation of the self-diffusivities is straightforward and a number of
alternative but equivalent approaches can be used. First, the mean-square displacement
curve can be constructed according to (4.3) for a long simulation run. Now that a large
number of particles is used, this approach results in a mean-square displacement curve
that is linear in time at long times. In addition, as will be demonstrated in the following
section, the evaluation of the slope of the mean-square displacement curve can now be
done with sufficient accuracy since the system is large.

Second, this same long simulation run can be split into shorter independent runs,
and the resulting mean-square displacement curves from each shorter run averaged. This
approach has been followed successfully in the past, both in numerical (Foss & Brady
1999; Marchioro & Acrivos 2001) and experimental studies (Breedveld et al. 1998, 2001),
and has been shown (Foss & Brady 1999; Marchioro & Acrivos 2001) to give results
with reduced noise that still capture the diffusive behavior correctly, provided that the
shorter runs are long enough for the mean-square displacement to enter the linear regime.
Although an infinite time limit is indicated in (4.3), the particle does not necessarily

need to travel a very long distance to reach this long-time asymptote; it simply needs to
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encounter enough particle-particle interactions to sample the dynamic microstructure and
“forget” its initial configuration and velocity. The determination of the minimum time
needed for the diffusive behavior to be established is non trivial, however, and, as we shall
demonstrate, can be the cause of significant errors.

Finally, the diffusivities can be evaluated from the integral of the velocity autocorre-

lation function using the well known expression:

Dyy = [ Jim (w7 + Oy (0 dr (@4)

where u, is replaced by u, for D,,. The time it takes for the velocity autocorrelation
to decay to zero corresponds to the time it takes the mean-square displacement curve to
reach the linear regime; for the diffusivities to be evaluated correctly, the integral in (4.4)
has to be computed for at least that minimum time.

All three approaches should give identical results since they correspond to the same
quantity. In the following section we show the results for all three approaches for a+typical
case for the calculation of Dy, and D,,. (One could also, of course, improve the statistics
by averaging over a number of realizations or initial conditions; however, with the large
number of particles used and the long simulation times, our results appear to be sufficiently

accurate. )

4.3.2 Test case: The long-time self-diffusivity for ¢ = 0.20, N = 1000

We present here in detail the calculation of the long-time self-diffusivity in the velocity
gradient, Dy, , and vorticity, D,,, directions for the case of a system of N = 1000 particles
at a volume fraction of ¢ = 0.20. The interparticle force described by (4.2) is also present.

Figures 4.1(a) and (b) show the mean-square displacement curves, (yy) and (2z), for
strains up to 800 in a linear and a log-log plot, respectively. It is clear from the logarithmic
plot that at very short times the mean-square displacement shows a quadratic temporal
behavior, while after a strain of about 20 the linear regime sets in and continues until
the end of the run. The quadratic behavior corresponds to the regime where the particle

velocities are deterministic and still strongly correlated—the diffusive behavior has not
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yet been established. It should be noted that, although after a strain of about one the
quadratic scaling no longer holds, a transitional region exists up to strains of at least 10
before a clear linear behavior is evident. The slope of the resulting curve for ¢ > 20 can
be readily evaluated and the resulting diffusivity is given in figure 4.1.

The same trend is evident in figures 4.2(a) and (b) but over a shorter time interval.
The long run of the previous case was split into smaller runs of 30 — 100 strains, the results
averaged and presented again in linear and logarithmic plots. Because of the increased
statistical data, the slope of the mean-square displacement curve can be evaluated with
greater accuracy than before. The final result for the diffusivity is very close to the value
reported in figure 4.1 and within the statistical accuracy of the data. Although the linear
behavior of the curves in the short and long runs is identical, the initial transient behavior,
as is apparent from the logarithmic plots, can be quantitatively different (qualitatively, a
t? behavior is apparent for both cases). This is due to the fact that for the shorter runs
the sequence of independent configurations are all sampled after the system has reached
its steady state configuration, while the beginning of the overall mean-square displace-
ment curve in figure 4.1 corresponds to an initially random configuration. As a result, a
different quadratic behavior is seen—the system that starts from a random Monte Carlo
configuration has a slower initial quadratic increase of the mean-square displacements.
This effect is of no significance for the long-time behavior and the self-diffusivities.

Finally, the non-dimensional velocity autocorrelation function for strains up to 20 is
shown in figure 4.3. To further reduce the noise of the calculation, the values of u(t+7)u(t)
are averaged over all possible time intervals with 7 = At¢. Again it is clear that although
the value of the autocorrelation function drops significantly over the first couple of strains,
a relatively long tail persists for strains up to 10 (in agreement with figure 4.2). The
diffusivity can be evaluated as the area under the curve of figure 4.3, and it is clear
that in order to obtain the correct diffusion coefficients the long-tail must be taken into
account, requiring strains of at least 10. It is also worth noting here that, contrary to
what has been reported elsewhere, no apparent periodic fluctuations are present in the
velocity autocorrelation function (Marchioro & Acrivos 2001). Even if the periodicity of

the problem does introduce fluctuations, the velocity autocorrelation function is already
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averaged over all possible shapes of the unit cell and therefore the final curve has no
periodic dependence. The values for the diffusivities are also given in figure 4.3 and are in
excellent agreement with the values calculated from the mean-square displacement curves.

The three approaches to determine the self-diffusivity gave consistent results for all
volume fractions studied. The time necessary for the diffusive behavior to be reached is a
strong function of the volume fraction, and, as has been reported in the past, increases with
decreasing volume fraction. For very dilute suspensions the particle interactions are limited
and a larger strain is necessary until the particles have sampled a sufficiently large number
of independent collisions and the linear regime is reached. To qualitatively demonstrate
this phenomenon, we show in figure 4.4 the velocity autocorrelation function in the y-
direction for volume fractions ¢ = 0.10, 0.30 and 0.50. The increase in the correlation
time is apparent and larger times need to be sampled for the more dilute systems. It can
also be seen that for the smaller volume fractions the velocity autocorrelation function
becomes negative and maintains negative values for longer times.

Before we proceed to the presentation of the majority of our simulation results it is
worth mentioning briefly how we define their statistical properties. The values of the
diffusivities obtained from the three aforementioned approaches are in all cases in excel-
lent agreement, so their simple average is used as the reported value of the diffusivity.
The calculation of the standard deviation, however, needs to be discussed in more de-
tail. The error associated with the calculation of any element of the self-diffusion tensor
can result from one (or more) of the following sources: First, errors derived from the
solution of the equations of motion—the assumptions used in the development of ASD
combined with the ‘standard’ numerical errors present in any numerical calculation (finite
time steps, machine accuracy, etc.)—always lead to a numerical error in the calculation
of any property. The statistical nature of the particle displacements and the fact that the
magnitude of the numerical error is usually small makes the numerical inaccuracies of very
little importance and therefore we shall not consider them further. Second, there is the
uncertainty associated with the number of independent mean-square displacement curves
available. The mean-square displacement curves shown in figures 4.1 and 4.2 are already

averaged over all particles, and for the case of figure 4.2 all the shorter, independent runs
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are also averaged. In order to obtain the correct values for the self-diffusion tensor, it
must be assured that a sufficient number of mean-square displacement curves have been
sampled, or in other words, that all possible particle interactions have been sampled. This
can be assured by examining systems with large N, or a large number of configurations
of systems with smaller NV, as has been suggested in the past. The calculation of the
error then corresponds to grouping particles/configurations together and calculating the
standard deviation of the resulting measurements. This is the error routinely reported
in our results and is calculated either as a temporal average over smaller segments of
the mean-square displacement curve for the long runs of figure 4.1, or as an average over
different groups of configurations for the case of figure 4.2. (Note that figure 4.2 presents
the average mean-square displacement curve over all possible configurations and particles
for a given run; only the mean can be calculated from this curve.) Finally, the calculation
of the slope of the mean-square displacement curve, or the numerical integration of the
velocity autocorrelation function, introduces a numerical error. In addition to any uncer-
tainty associated with the numerical calculation, the most important issue is what is the
correct time regime (or strain) over which to determine the diffusivities. Very long tails in
the velocity autocorrelation function can be erroneously discarded and visual observation
of when the process becomes linear can be misleading and result in large errors. Although
we believe that this source of error can be potentially extremely important, we tried to
make a conservative estimate in our calculation of the minimum strain needed for diffusive
behavior to set in, so we are confident that the error from this source is also insignificant.
Therefore, for the remainder of this chapter the error bars denoted correspond to uncer-
tainties associated with simply the volume of the statistical data, uncertainties that for
most cases are less that 10%. Finally, the last source of uncertainty, system size and the

effect of the periodic unit cell, will be discussed in more detail below.
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4.4 Results: The Calculation of Dy, and D,,

4.4.1 The dependence on the number of particles N

The introduction of a new, faster methodology allows the calculation of the self-diffusion
coefficients for numbers of particles on the order of 103, and we can therefore present a
more reliable analysis of the dependence of the diffusivities on the number of particles,
N. Figure 4.5 and table 4.1 show the dependence of Dy, on N, for the case of ¢ = 0.35
(the interparticle force, defined in (4.2) with the parameters mentioned, is also always
present unless otherwise noted). There is a rather sharp increase in the diffusivity for
small values of N (N < 100), followed by a leveling off. The same trend is apparent for
all elements of the self-diffusion tensor. No theoretical expression is available for the IV
dependence of the long-time self-diffusivity, and so in figure 4.5 we simply present a N !
best fit that seems to describe the data satisfactorily. Plotting the individual mean-square
displacements (not shown) for different numbers of particles also verifies that for N > 100
all curves are statistically indistinguishable. A possible explanation of this behavior may
lie in the fact that after the size of the cell is sufficiently large (or N is sufficiently large),
all of the important particle interactions are included and therefore the number of particles
plays no role (other than increasing the statistical accuracy, i.e., giving curves that appear
smoother). When the number of particles is very small, the corresponding size of the square
unit cell is also small (for N = 27, L = 6.86a for ¢ = 0.35). This means that particle
interactions for separations greater than L occur through periodic images, which may
explain the smaller diffusivities observed for very small number of particles. (As discussed
in §4.5.2, a similar, but much more apparent, effect of the size of the unit cell is present
in the calculation of D, for low volume fractions.) For the remainder of this chapter all
results will correspond to systems of NV = 1000 particles and no further corrections to the
infinite system limit will be attempted since, as is apparent in figure 4.5, such corrections

would be very small and within the statistical accuracy of the calculations.
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4.4.2 The dependence on the volume fraction

Figures 4.6 and 4.7 and table 4.2 show the dependence of Dy, and D,, on the volume
fraction ¢. Previous experimental and simulation results are also presented. Although
qualitatively most sets of experimental or simulation results are in agreement, quantita-
tively discrepancies are present that need to be explained and examined in more detail.
As was mentioned in section 4.3, the notion that the long-time self-diffusivities can be
calculated for strains that are not particularly long has been used, and most of the recent
experimental and simulation results presented in figures 4.6 and 4.7 are calculated over
a large number of configurations but for relatively small strains (Breedveld et al. 1998,
2001; Foss & Brady 1999). Unfortunately, as we discuss in detail, the strains used for
these studies are too small and therefore do not correspond to the linear regime, as a
result they overestimate the diffusivity.

Figure 4.8(a) is adapted from Breedveld et al. (2001) and shows the mean-square
displacement curve, (yy), for ¢ = 0.20 for strains up to 5. (We choose to examine the
case of a relatively small volume fraction in detail because, as is apparent in figure (8)
of Breedveld et al. (2001), the accuracy in their determination of the mean-square dis-
placement curve seems to be greatly reduced when the volume fraction is increased due
to limitations of the experimental technique; this is not observed in the numerical simula-
tions.) The dashed curve represents the ‘linear-fit’ performed by Breedveld et al. (2001);
the value of the diffusivity that they obtain is also given. The solid line corresponds to
our mean-square displacement for the same volume fraction and for a system of N = 1000
particles. The agreement between the two curves is remarkable. Although this is the
case for the mean-square displacement curves, the resulting diffusivities are not in good
agreement and the value reported by Breedveld et al. (2001) is over twice as large as
the value we calculate. The reason for this is apparent in figure 4.8(b), where the same
mean-square displacement curve is presented but now for strains up to 20. It is now clear
that the linear regime has not yet been reached at a strain of 5, and strains of at least 10
need to be sampled for the long-time diffusive behavior to be reached. In figure 4.8(b) we
also show the change in slope in the (yy) curve and how, if the strain is not sufficiently

long, the slope simply corresponds to a transitional regime between the t? and ¢ behaviors
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and overestimates the diffusivity. The same conclusion is reached by studying the velocity
autocorrelation function: the long tail present in the velocity autocorrelation function is
not taken into account when short strains are used and, since the velocity autocorrelation
function is negative at those strains, the value of the diffusivity is overestimated.

Figure 4.9 presents our simulation results, but now instead of calculating the slope
of the displacement curves in the linear regime, we calculate them for the same strains
reported by Breedveld (private communication). We now observe a much better agreement
between the numerical and experimental data for all volume fractions (although for larger
volume fractions, some discrepancies are still present).

Although the limitation on strain in the experiments of Breedveld et al. (2001) explains
the difference between simulation and experiment, this is not necessarily the case for the
other experimental results. Data by Leighton & Acrivos (1987) and Phan & Leighton
(1999) are calculated for larger strains, but with a different method of much lower accuracy,
and the origin of the differences between these experiments and the simulations is not
known.

We also wish to briefly comment here on the data by Foss & Brady (1999). In their
approach very small strains were also used, strains that according to figure 4.8(b) should
overestimate the resulting mean-square displacement coefficient significantly. As is appar-
ent from figure 4.6, however, this is not the case and our results are in general agreement
with the results reported by Foss & Brady (1999). We believe that this is the result of
the very small systems used by Foss & Brady (1999); N = 27 for all their simulations. As
was mentioned in the previous section, a very strong N dependence is present for such a
small number of particles and the diffusivities are underestimated significantly. It is the
combination of these two sources of error—the very small number of particles and the
very small strains used—that cancel each other and lead to a diffusivity of the correct
magnitude.

Figure 4.10 presents the zz mean-square displacement curve for ¢ = 0.20 as given
by Breedveld et al. (2001) compared with our simulation results; again the agreement is
satisfactory. As shown in figure 4.11 the agreement between the short strain simulations

and the experimental data is not as good for higher volume fractions as was the case for
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Dyy. This seems to be a consequence of the different functional dependence on the volume
fraction (see below for more detail); in our data D,, is an increasing function of the volume
fraction (and as a result so are the values calculated for smaller strains), while Breedveld’s
data show a very sharp increase followed by a plateau. We have no explanation for this
qualitative difference. It seems that although the method developed by Breedveld et al.
(1998, 2001) has some very attractive characteristics that can reproduce accurate results
for small strains, larger strains are needed to capture the long-time diffusive behavior and
some adjustments are necessary in the method to allow for larger observation windows.

We now offer a brief discussion of the qualitative behavior of Dy, and D,, as a function
of volume fraction. For small volume fractions, ¢ < 0.30, a ¢? behavior is evident for
both diffusivities. This is expected since, in the absence of any interparticle force, the
interactions between only two particles lead to zero net displacements (the particles always
return to their original streamlines), and the presence of a third particle is necessary to
generate non-zero displacements leading to a diffusivity of O(¢?). As shown by da Cunha
& Hinch (1996), in the presence of an interparticle force, however, a net displacement in
the velocity-gradient and vorticity directions can be achieved even with only two particles,
leading to an O(¢) correction to the diffusivity. For the range of the interparticle force
used here and the minimum separations that result, the size of this O(¢) correction is
extremely small and is overwhelmed by the displacements caused by the presence of a
third particle. Evidently, the three-particle effects are significant even at the lowest volume
fraction studied (¢ = 0.10). Much lower volume fractions would be necessary to capture
and verify the order ¢ correction to the diffusivity. We briefly note here that it is not clear
whether the presence of an interparticle force is necessary for diffusive motion to appear.
It has been suggested in the past (Marchioro & Acrivos 2001) that even in the absence
of an interparticle force, diffusive-like characteristics could be present due to the chaotic
nature of the many-body hydrodynamic interactions. If that is indeed the case, the order
¢ correction to the diffusivity might not be dominant even for extremely small volume
fractions.

As is apparent from figure 4.6, and in qualitative agreement with most experimen-

tal results, the diffusivity in the velocity-gradient direction appears to plateau at volume
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fractions about ¢ = 0.35 — 0.40. This is not the case for the diffusivity in the vorticity
direction, however, which is seen to increase roughly as ¢? for all volume fractions studied.
The possible exception being ¢ = 0.50, where the increase is less apparent; the experimen-
tal results for this case suggest the presence of an earlier plateau in the value of D,,. The
presence of such a plateau in either Dy, or D,, is interesting and has not been explained
theoretically. Brady & Morris (1997) suggested that the diffusivities should be an in-
creasing function of ¢ for all volume fractions, following the increase in the particle-phase

stress.

4.5 The Longitudinal (D,,) and Off-Diagonal (D,,) Self-
Diffusivities
4.5.1 Theoretical approach

The calculation of the complete diffusivity tensor (including Dy, and Dgy[= Dy;]) for a
Brownian particle suspended in a fluid undergoing simple shear-flow has been the subject of
numerous studies. Elrick (1962) calculated the (zz) and (zy) mean-square displacements

for such a Brownian particle and found them to grow in time according to:

2
(zz) = 2Dyt + 2Dy t* + §Dyyt?’, (4.52)

(zy) = 2Dyt + Dy, t2. (4.5b)

Diffusive motion in the y-direction, Dy, couples to the advective flow in the z-direction
to give a mean-square displacement in the flow direction that grows cubically in time. In
deriving (4.5) it is assumed that all diffusivities are constant in time and that the “random”
Brownian step the particle takes is diffusive at all times. Using (4.5) for a system of non-
Brownian particles poses further limitations, e.g., the motion in the y-direction is not
diffusive at short times and therefore (4.5) can only be valid at very long times where
the 3 (or t2) behavior will dominate and the linear term (Dt or Dzyt) will be difficult
to extract. It is therefore desirable to derive an alternative formulation that not only

allows the accurate calculation of the diffusivities, but also serves as a proof of the validity
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of (4.5) for a system of non-Brownian particles. Following the equations of motion for
our system of non-Brownian particles, we show how to calculate the corresponding mean-
square displacements and correctly deduce the diffusion coefficients.

In dynamic simulation of particle motion, the position of a given particle (initially at

the origin) in the z-direction is given by

0 :/Ot Uy i(1)dr = /Ot (U;L,i(T) + Uﬁ(T)) dr

= Xh -I-/O Yy; (7)dT, (4.6)

where Uz’;,i and Up; correspond to the instantaneous velocities of particle ¢ due to the
presence of all the other particles and due to the external velocity field, respectively. For
the case of simple shear flow, the external velocity field at the center of the particle is
simply U;5 = Jyi- In a simulation where the position of each particle is known exactly and
the particle velocities are already decomposed into an affine (U*) and a non-affine (U?)
part, each term of equation (4.6) is known exactly and can be manipulated separately.
Foss & Brady (1999) used this decomposition to claim that the long-time self-diffusion
coefficient in the z-direction can be calculated from only the non-affine part of the motion
(denoted X" in (4.6)), specifically from:

Dy = lim == <Xh(t)Xh(t)> . (4.7)

The theoretical analysis of Morris & Brady (1996) also indicated that such an operation
was possible and would result in the correct value of the self-diffusivity for any value of the
Péclet number. The approach embodied in (4.7) has been used successfully and correctly
in the past for the case of quiescent Brownian suspensions, where now the non-affine part
is simply the (many-body) random Brownian displacement.

A fundamental difference between the shear-induced diffusivity of a non-Brownian
suspension and the motion of a Brownian particle is the finite (and large) correlation time
for the non-affine displacements, as is evident in figure 4.3 for the motion of a particle in

the y- and z-directions. In the case of a Brownian particle there exists a time interval small
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enough so that the particle position has not changed significantly, but also large enough so
that the random component of the particle’s velocity is completely uncorrelated with the
random component of the velocity at the previous time interval; this time interval is given
by the particle momentum relaxation, 7 = m/6mna, which is much smaller than the time
scale of configurational changes, a?/D. Such a time scale does not exist for the case of
sheared non-Brownian particles. The hydrodynamic component of the particle velocity,
which is what gives rise to diffusive-like motion for sheared suspensions, is only a function
of the particle configuration; as a result, in order for this velocity to change significantly
(or the velocity autocorrelation function to approach zero), the particle configuration also
has to change significantly, and for some cases (e.g., small volume fractions) strains up to
10-20 may be necessary. As was demonstrated in the previous section, this can be a serious
limitation for the calculation of Dy, and D,, if long enough intervals are not sampled; the
consequences are far more apparent, however, for the calculation of D, since now one
also needs to consider the coupling between the affine and non-affine motions due to the
long correlation times.

Starting from the displacement (4.6), the mean-square displacements (zz) and (zy)

can be readily calculated:

t

o) = (x*x"0) + ([ ) +2(x00) [, @)

and

(z(t)y(6) = (X (By(t)) + <y<t) /0 t 7yi(7>d7> : (4.9)

Differentiating with respect to time and using (4.9), we have

h pt
& sy = 5 (RO W) +206000) + 2 G [winar), 410

and
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The above equations were derived simply by using the appropriate equations of motion
governing the displacement of the particles. Although derived for the case of a sheared
non-Brownian suspension, they are also valid for the motion of a Brownian particle, where
the hydrodynamic displacements X" and y are now replaced by the equivalent random
Brownian displacements. The fundamental difference between these two cases lies in the
calculation of the last terms in equations (4.10) and (4.11). For the case of a Brownian
particle, the “diffusive distance” a particle has traveled in the y-direction, represented by
the integral fot Yyi(7)dr, is uncorrelated with the particle’s instantaneous random velocity
(dy/dt or dX" /dt), since the particle velocities are uncorrelated between time steps on the
Brownian relaxation time 7p <« At (at least within an accuracy O(At)). Unfortunately,
this is not the case for the hydrodynamically interacting non-Brownian particles; now the
particle positions, or equivalently the distance a particle has traveled in the y-direction,
is strongly correlated with the instantaneous velocity of the particle since this velocity
is purely a result of a particle’s position and only changes significantly when the particle
configuration chdnges significantly. It can be argued that this last term will only introduce
a contribution of the order of the correlation time, but now the correlation time is large
and scales as 1. In addition, the fact that the particle velocities do become uncorrelated
after some strain would suggest that the last term in equations (4.10) and (4.11) reaches a
constant value for long enough times, contributing a linear term to the total mean-square
displacement.

The calculation of (xz) as is given in (4.8) or (4.10) accurately describes the particle
displacements and is all the information needed if one is interested in the motion of the
particles in the flow direction. The calculation of a self-diffusion coefficient—corresponding
to a “diffusive”-like term in a master or Fokker-Planck equation—f{rom this mean-square
displacement still needs to be addressed, however. It has been suggested (Morris & Brady
1996, Foss & Brady 1999) that the self-diffusion coefficient in the longitudinal direction can
simply be calculated by only taking into account the non-affine displacement according
to (4.7), or simply the first term in (4.10). The presence of the last term in equation
(4.10) or (4.11) makes such a suggestion suspect, and, as will be demonstrated below,

the contribution of this term is constant at long times. Note that the second term on
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the right-hand-side (rhs) of (4.11) is proportional to Dy,t at long times and therefore
gives a Dy, (= %% (zy)) growing as ¢t and an (zy) growing as t? as in (4.5b). Similarly,
the (zy) term on the rhs of (4.10) gives a ¢3 growth for (zz). These are the well-known
(Elrick, 1962) convectively-enhanced mean-square displacements of a (Brownian) particle
and cause no conceptual difficulties. Note also that the only non-zero cross term is zy.
To address the issue of the proper definition of the “diffusivity” in the direction of the

shearing motion, we write a master equation for our system as described by (4.6) (van

Kampen, 1992):

at  \2dt az2 " \2at Y ) gz T \2dt ¥ ) 52 T\2 @t Y ) bzay’

(4.12)

where it has been taken into account that for “macroscopic variables” z, y and z, (z) =
(y) = (z) = 0, and it has been assumed that the derivatives of the second moments are
only functions of time (i.e., they have no spatial dependence). Equation (4.12) simply
follows from a second order expansion of the probability distribution of finding a marked
particle and is in a very general form valid for a large number of systems. Note that
there is no explicit shearing motion, i.e., no convection term in (4.12), because at the
macroscopic scale the marked particle has averaged over the microscale shearing flow and
wanders “diffusively”.
The solution of (4.12) can be written as

1 z? y? 22 2zy
P= — — — - 4.13
Al/2 exp ( 2052 20, 20, 20,;1,) ’ (4.13)
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where

2
A =0,2(052040 — 0gy),
2
Ogz2 = B11 — B12/Bz2,
2
Uyz = Bgz - Blz/Blla

g,2 = 333,

Ozy = B12 — (B11B22)/ B2,

and B is the matrix of mean-square displacements

By = (zz),

Bz = (yy),

Bss = (2z)
= (zy).

It is straightforward to verify that (4.13) is a solution of (4.12).

This is still a very

general result since the functional form for the second moments of (4.15) has not yet been

specified. Using the functional forms for d(zz) /dt and d(zy) /dt given by (4.10) and

(4.11), equation (4.12) can be rewritten as

or 0P 0P 0P %P
8t ya +Dzm(t)W+Dyy(t)a_y2+Dzz(t)_8_z-2—

where

yy (1) %%(yy),
zz( ) = %% (zz),

(4.16)

(4.17a)

(4.17b)

(4.17¢)

(4.17d)
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Note that the (z(t)y(t)) and (y(t)y(¢)) terms of equations (4.10) and (4.11) (multiplying
the second order partial derivatives of P) have been rewritten as the convective flux term
(—yOP/0z) with P given by (4.13). This is a straightforward calculation:

10%P o%p
5@2 (zy) + By (yy)

2 2
2 1
=P( Ly ——)(wy)

042052  OgyOgy  0z20zy  Og2

2 2
+P( Y + z + 7 + 7Y )(yy)

03202 0g20gy  Oy20zy  OzyOzy

— P( :EQBnglz yzB%2312 _ 2$yB22.B%2
(Ba2Bi1 — B%)?  (BgeBi1 — B%,)?  (BgeBi1 — B%)?
B ByyB12 zyB2,B11 B z2B2, B2
(Ba2Bi1 — BY,) - (Ba2Bui — Bf,)?  (BaeBu — B}y)?
__4*BuBiaBy zyB7, Bay BasBia )
(Ba2B11 — B%)?2 (BB — B%)?  (Ba2Biu1 — B)
_p —y?B1s + zyBa

(B2B11 — B%)’

and

oP zy |y ) —y?Biy + zyBay
rr ( (BaaB11 — B},)

Ogz2 Ogy

We have denoted the diffusivities as functions of time so that (4.16) and (4.17) are valid
at each instant in time, and not only for very long-times when the motion becomes truly
diffusive. As has been mentioned, at long times both contributions to D, and Dy become
constant with time—it is those values of the diffusivity that we wish to calculate.

From the master equation (4.12) describing the macroscopic behavior of our system, we
have derived the conventional convection-diffusion equation (4.16) where, by construction,
the diffusion coeflicients are given by equations (4.17). It is these diffusion coefficients that
we wish to calculate, and it is now apparent that in order to calculate the diffusivity in
the z-direction one needs more information than simply the non-affine displacements.
The theoretical analysis of Morris & Brady (1996) also agrees with the above conclusion;

unfortunately, an error in their earlier calculation, which has been corrected (Brady 2001),
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led to the omission of the last terms of equation (4.17) for the calculation of D, and Dy,.

For simplicity of notation we rewrite (4.17) as:

Dio(t) = Dl (t) + D™ (8), (4.182)
Dy (t) = Dl (1) + D (1), (4.18b)
where
* 1d /onyn
D:I:z(t) - 2dt <X X >7 (4.193.)
iy 194 /yn
Dgy(t) =54 <X y>, (4.19b)
and
h gt
Dacc(:;:rr(t) = <£i_)£__/ "yyi(T)(sT> R (4,203,)
dat Jo
corr _ 1 dy ¢ oo
Dz " (t) = §< o /0 791(7')5T>- (4.20D)

We refer to the term omitted by the previous authors as a “correction” simply for clarity—
both terms can be equally important for the shear-induced diffusivity. It can also be seen
as a correction compared to the Brownian case where such a term is absent.

Calculating the self-diffusivities from (4.17) is now straightforward for any simulation.
We chose to express these diffusivities as functions of the non-affine displacement because
we wanted to stress the importance of the missing term in the calculations of Morris
& Brady (1996) and Foss & Brady (1999). It is also straightforward to calculate the
diffusivities directly from equations (4.10) and (4.11):

d dxh rt.
7 <XhXh> + <_dt /0 ’)’yi(T)dT>

= @(®)s(t) - (=By(), (4.21)
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and

d h 1 dy t .

T <X y> + 5 <%/0 Vyz'(T)dT>
d

dt

(w90 ~ 5 WEy(H) (422

In other words, all the information needed for the calculation of the diffusivities is simply
the overall mean-square displacements (zz), (zy) and (yy). This approach is equivalent
to using (4.5), which is, however, only valid at long times. Also using a constant value
for the diffusivity (Dyy) can result in large errors when trying to determine Dy, and Dy,
at intermediate times. On the other hand, using (4.5) at truly long times to extract Dy
and Dy, can result in very low accuracy since the t3 (or t?) behavior will dominate the
total displacement and the linear term would be all but impossible to determine. In an
experimental set-up equations (4.17) or (4.21) and (4.22) can be used without further
modifications. The only requirement is that the particle trajectories need to be followed
closely enough so that the derivatives and integrals of the mean-square displacements are
calculated with sufficient accuracy.

Figure 4.12 shows the resulting D, self-diffusivity (as calculated by either (4.17) or
(4.21)—in a simulation where the exact positions are known at each instant in time the
two approaches are identical) as a function of time for a system of N = 1000 particles
and a volume fraction of 0.35. The curve has been averaged over all particles and over 30
independent configurations. The two separate contributions to the diffusivity, (4.18a), are
also shown. Both contributions become constant after the correlation time, verifying that
they both should be included in the calculation of the self-diffusivity. The same behavior
is seen in figure 4.13, this time for Dg,. Both corrections to Dy, and Dyy are negative,
resulting in a smaller absolute value of the D, diffusivity and a larger absolute value of
the Dy, diffusivity since, as is discussed in Foss & Brady (1999), the non-affine term, Dy,
is also negative. For this relatively high volume fraction the effect of the correction to the
value of Dy, is small. The effect on the value of Dgy is rather significant, however, since
the non-affine contribution, D, is relatively small. The correction to the diffusivities for

a much lower volume fraction of ¢ = 0.15 is shown in figure 4.14. The absolute values of
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both the correction to the zz and zy diffusivities are now significantly larger, in agreement
with the fact that it now takes a much longer time for the particle velocities to become
uncorrelated, increasing the time limit for the integrals in D™ and Dgl"; it is also
apparent that it takes a longer time for the corrective term to reach a constant value.

It is also worth noting that it is the presence of DZJ" that results in the singular
behavior for the two-particle limit studied by Acrivos et al. (1992). It can be shown
that for the two-particle case the non-affine term of the mean-square displacement is well
behaved and gives a finite contribution to the diffusivity. Hence, the contribution of D",
especially for small volume fractions, can be very important and can dominate the overall
behavior of the mean-square displacement. Figure 4.15 shows the “correction” to the
self-diffusivity as a function of the volume fraction. (Note again that the term correction
is used for simplicity—this part of the diffusivity is as important as the non-affine part,
and it is only calculated separately to emphasize its omission from previous studies). Both
corrections are increasing (in magnitude) functions of the volume fraction for small volume
fractions, and decreasing (in magnitude) functions of ¢ as the volume fraction is further
increased. This behavior can be explained from the functional form (4.20) of the correction:
The correlation time is a monotonically decreasing function of the volume fraction since
it depends directly on the number of collisions between particles. Therefore, the time
over which the integrals of (4.20) are calculated decreases as ¢ increases. On the other
hand, for low volume fractions, the particle’s non-affine y displacement, upon which the
corrections to the diffusivity directly depend, are smaller—Dy, is small for small volume
fractions. The combination of those two factors results in the observed non-monotonic

behavior for the corrective contribution to the self-diffusivity.

4.5.2 The volume fraction dependence

Before presenting the results for D,, we shall briefly discuss some limitations concerning
the calculation of the diffusivity in the z-direction for small volume fractions. It has been
shown that in the two-particle limit the behavior of the mean-square displacement in the
z-direction is singular and the presence of more particles need to be invoked to remove

this singularity. Even when the singularity is not present, however, as is the case in our
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simulations (the singularity is a result of particles coming from infinity interacting with
a test particle—in a periodic system the finite size of the simulation cell introduces a
cut-off), the resulting z-displacement for a given two-body interaction can be large. For
the diffusive regime to be established each particle must sample a randomly distributed
number of different displacements with a zero average. In a dilute periodic system this
implies that each particle, after it interacts with a given second particle and before it
again interacts with this particle’s image, must sample a sufficient number of interactions
with other, third particles. This can give a strict condition on the minimum size of the
unit cell, and thus on the size of the system simulated. Although the same condition must
be satisfied for concentrated systems, the magnitude of each individual displacement is
significantly smaller and their frequency significantly larger at high ¢.

To demonstrate the severity of this limitation, consider two particles suspended in a
periodic unit cell of finite length L, initially at positions with relative displacements A Xy,
AY), and for simplicity AZy = 0 (as shown in figure 4.16). If initially in positions with
different y-coordinates the two particles will interact and at the end of the interaction will
return at the same y-positions, but there will be a net displacement in the z-direction
(Acrivos et al. 1992). After the end of the interaction the particles will continue moving
undisturbed until the “faster” particle reaches the end of the periodic domain, at which
time it will reenter the cell on the opposite face. For a periodic domain the maximum
distance between two particles has to be less than L, so eventually (the time will depend
both on L and the difference in the affine undisturbed velocities between the two particles,
which is proportional to AYp) the two particles will interact again. This second interaction
will be identical to the first, since the particles’ vertical positions did not change as a result
of the first interaction. This behavior will continue indefinitely and at each “collision”
the displacement of each particle is always exactly the same. It is clear that such a
scenario would never evolve into diffusive-like motion, even at infinite time, since only one
displacement is sampled for each particle, and of course (AX) # 0.

In a dilute system the same problem is present: a given particle, after interacting with
an initial second particle, has a very high probability not to collide with any third particles

until it exits the periodic cell and interacts with the same particle for the second time.
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Such a behavior leads to particle velocities that are strongly correlated for aphysically long
times and mean-square displacements that exhibit quadratic behavior for very long times.
Figure 4.17 shows the non-affine term (X" of equation (4.6)) of the z-displacement for
one of the particles of such a pair initially displaced AXy = —10a and AY; = 0.5a relative
to the reference particle in a unit cell of three different lengths (L = 20a, 40a and 60a).
Each “step” corresponds to a repeated interaction between the pair of particles resulting
in a displacement that appears linear. Increasing the size of the cell simply changes the
frequency of each step, resulting in a linear behavior with a different coefficient. The
mean-square displacement corresponding to the displacement for L = 20a of figure 4.17 is
plotted in figure 4.18 (we choose to only present the non-affine piece of the displacement,
since, as will be shown later, the coupled term has a much more favorable behavior for non-
zero volume fractions). The quadratic behavior is clear, verifying that such a system of two
particles would never reach the diffusive regime. The case studied in figures 4.17 and 4.18
corresponds to a given initial lateral displacement between the two particles. Increasing
the initial AYy does not improve the situation because, although each individual step is
smaller in magnitude, the frequency is increased significantly; particles that have large AY,
have very different affine velocities and, as a result, approach and interact with each other
more frequently. It should be noted that the (yy) and (zz) mean-square displacements do
not suffer from this problem because the net y or z displacements from an encounter are
zero, and thus only the “diffusive” displacements remain. Figure 4.18 also shows the non-
affine term (<X hx h)) of the mean-square displacement curve for the case of a suspension
of N = 1000 at ¢ = 0.10. The quadratic behavior is again evident, making it impossible
to calculate a diffusion coefficient.

The obvious way to overcome the effect of periodicity is to use a large periodic unit
cell. However, this can place a severe requirement on the number of particles needed,
especially at low ¢. What is necessary is that by the time a particle has crossed the unit
cell, its position and velocity should be uncorrelated with its initial position and velocity.
Since the particle motion is deterministic, it is the stochastic or shear-induced “diffusive”
motion that results in the loss of correlation. Thus, to loose correlation a particle must

diffuse a distance say [ in the y-direction before it is convected through the unit cell,
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ie., 1?/Dy, < Lja¥, or L/a >> 4I?/Dy,, where L is the length of the unit cell in the
z-direction. The correlation distance [ must be at least of the order of the particle size
a, and Dy, = Ya’dy,(4), so that the simulation cell must satisfy L/a >> 1/dy,(¢). For
small ¢, dy, ~ 1073, giving L/a ~ 103 or N ~ 10° for a square unit cell. (Attempts to
use an elongated, non-square, unit cell experienced numerical difficulties associated with
shearing a very anisotropic cell.) Even with a fast algorithm, such large-scale simulations
are not currently feasible.

In order to get meaningful results without using an extremely large system, we fol-
lowed an alternative approach. We generated a large number of independent configurations
of particles and calculated the individual displacements for each individual particle. As
has been mentioned, because of the periodicity the mean displacement for each particle,
even after long strains, will not average to zero since particles keep interacting with the
same images. In order to get the correct behavior, we combine the particles into groups
(chosen randomly from different initial configurations) and calculate the mean-square dis-
placements of the resulting groups. If enough particles are in each group, the average
displacement for a group fluctuates around zero. (We combine particles from different
initial configurations for our averages. Particles from the same configuration could also be
used but there is an upper limit above which the statistics are no longer sampled correctly;
e.g., since the suspension is force free, if all the particles are grouped together one gets
not only (z) = 0 but also (zz) = 0). For the new groups, we calculate the mean-square
displacements in all directions and identify a linear regime for the z-direction. The times
for these simulations are kept relatively short, but long enough to reach, we believe, the
diffusive regime. This is done both to reduce the computational cost since now hundreds
of configurations of thousands of particles are used, and to ensure that a linear regime is
identified. In order for the diffusive behavior to be seen, the groups must include enough
configurations so that their average displacement is zero. If that is not the case, then
as time elapses the systematic error will increase since the individual particle square dis-
placements continue to grow in time. Ideally, one should try to identify a time scale where
the diffusion process has started and the particles have not yet left the periodic cell. In

order for the diffusion process to be evident, however, many collisions need to occur and
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therefore the “grouped” particles need to travel a significant distance, which for the system
sizes we are now studying means going through the periodic cell a number of times.

While such a procedure works, it can be subject to large errors, since on the one
hand grouping of the particles reduces their statistical accuracy (i.e., 10 groups of 1000
particles have the same statistical accuracy of just 10 particles), and on the other hand
it is not always clear when the motion becomes diffusive, or even whether the grouping,
although it improves the behavior, completely eliminates the problem. Figure 4.19(a)
shows the derivative of the affine term of the mean-square displacements as a function
of time for ¢ = 0.15. A number of independent initial configurations (100) of N = 1000
particles is used and the results averaged. It is apparent that for a time of order 5-10
strains the behavior of the mean-square displacement changes dramatically, even without
the particle grouping. While the diffusive regime is almost reached, the effect of the
periodicity becomes apparent and the diffusivity without grouping becomes linear in time
(corresponding to a quadratic behavior for the mean-square displacement).

Groups of 500 particles are consequently formed (5 particles from each of the inde-
pendent configurations), and the mean-square displacement of the resulting groups of
particles is calculated. Since now the statistics only correspond to the statistics of 200
independent particles, a number (50) of random groupings of the particles are generated
and averaged. The effect of the grouping is to transform the linear diffusivity regime into
a constant one—as is suggested over the last 10 strains of figure 4.19(a). Again, there is
significant uncertainty as a result of the loss of statistics and the uncertainty associated
with the beginning of the linear regime, making it hard to make solid quantitative esti-
mates. Figure 4.19(b) shows the non-affine mean-square displacement, (X" X"), for the
two cases described above for strains between 20 and 30. A linear curve is also shown.
It is apparent that the non-grouped curve deviates from the linear behavior, while the
grouped curve seems to follow it for all strains shown. It can also be seen, however, that
the difference between the two curves is not dramatic. Despite these limitations, we nev-
ertheless proceed with the calculation of the diffusivities, noting that our results for the
smaller volume fractions may be subject to large errors. We note here that it is D}, that

has this very strong dependence on periodicity. The other term, D", plotted in figure



141

4.14 for ¢ = 0.15 becomes linear in time. This is due to the coupling with the motion
in the y-direction, a motion that does not suffer from the same limitations because, even
for low volume fractions, the diffusive motion in the y-direction is a result of interaction
between at least 3 particles. The calculation of (zy) is also not nearly as problematic as
(zz), again due to the coupling with the motion in the y-direction, and the grouping is
not necessary.

Figure 4.20 and table 4.3 present D, as a function of the volume fraction, along with
the values of D}, although as has already been mentioned D}, does not correspond to
the self-diffusivity. The diffusivity is expected to be an increasing function of the volume
fraction for very dilute systems according to the dilute limit theoretical predictions of
Acrivos et al. (1992); this is in agreement with our calculated values between ¢ = 0.10
and ¢ = 0.15. As the volume fraction is increased further, the interactions between particle
pairs become more frequent, while at the same time the displacement resulting from a given
interaction is expected to decrease in magnitude. The values seem to plateau at higher
volume fractions, at least within the accuracy of our calculations. The volume fraction
behavior of Dy, shown in figure 4.21 and table 4.4, is dominated by the behavior of the
corrective term, leading to an initially increasing volume fraction dependence followed
by a decreasing one—the value of the non-affine term on the other hand seems to be an
increasing function of the volume fraction, reaching a plateau at about the same values
where the Dy, component also reaches a plateau. It is interesting to note that other
than D,, the remaining components of the diffusivity tensor have a similar behavior at
high volume fractions—reaching apparent plateaus. This can be expected since there is
strong coupling between these three self-diffusivities. It is also interesting to note that
the anisotropy between the values of Dy, Dy, and D,, decreases with increasing volume
fraction—the values of Dy, and D,, are very close for ¢ = 0.50, while the value of D, is
less than twice as large. The only other available numerical results for the calculation of
these two properties are the results by Foss & Brady (1999), which are also presented in
figures 4.20 and 4.21. Unfortunately, as was already mentioned, the strains used for their
study are not sufficiently long and only the D* term of the diffusivities is calculated in

their simulations, making comparisons difficult. To our knowledge the only experimental
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results available for Dy, and Dy, are the results of Breedveld (2000). The limitation to
very small strains before the diffusive behavior has been established is still present in his
results as was the case for the calculation of Dy, and D,,. In addition, it is not clear from
his analysis whether the correct self-diffusivity, as opposed to D* or a different combination
of the non-affine and affine displacements, is determined. The use of formulae (4.21) and

(4.22) should help in the experimental measurement of the diffusivities.

4.6 Conclusions

The calculation of the complete tensor of the shear-induced diffusivities through numer-
ical simulation has been presented. The availability of a faster algorithm allows routine
simulations of much larger systems, significantly improving the accuracy of the results
and diminishing system size effects. The self-diffusivities in the velocity gradient and vor-
ticity directions, Dy, and D,,, were calculated as a function of the volume fraction for
¢ = 0.10 — 0.50 and compared with existing experimental results. While both appear to
be increasing functions of the volume fraction for small to intermediate ¢, Dy, plateaus
at high ¢, in agreement with a number of previous experiments. The quantitative agree-
ment between our simulation results and experiment was not always satisfactory and we
suggest that one of the reasons for this difference is the difficulty associated with correctly
identifying the diffusive-regime. The presence of a long correlation time during which the
mean-square displacements show first a quadratic and then a transitional behavior is a
main difference between the behavior of a non-Brownian particle diffusing under the influ-
ence of shear and a Brownian particle. This difference is further manifest in the calculation
of the self-diffusivity in the flow direction, D, and the off-diagonal self-diffusivity, Dy,,.
Previous work had suggested that the diffusion in the z-direction can be simply calculated
by taking into account only the non-affine contributions to the particle velocity (or particle
displacement), as would be appropriate for a single Brownian particle. Careful construc-
tion of the convection diffusion equation for the system of sheared non-Brownian particles
demonstrated that a coupled term (in addition to the term arising from the non-affine

displacements) is present, a term that was erroneously omitted in previous studies. The



143

correct longitudinal self-diffusivities were determined and their dependence on the volume
fraction studied. An additional limitation is present when calculating the longitudinal dif-
fusion coefficient for low volume fractions; the effect of the periodicity is extremely severe
leading to an artificial quadratic behavior of the mean-square displacements. Although
an attempt was made to decrease the effect of the periodicity without further increasing
the size of the system, the accuracy of the results was not always satisfactory pointing to
the need for either studying larger systems or devising an alternative approach. A very
small number of experimental data is available for the longitudinal self-diffusivity, and we
hope that we have provided a better understanding of how this property can be calculated

which would allow meaningful comparisons with experiment in the future.
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N Dy, D..
SD
16 0.01940.003 0.009 + 0.002
27 0.02740.003  0.012 + 0.003
54 0.037+0.007  0.014 + 0.005
64  0.038+0.007 0.015 + 0.005
ASD
64  0.0360 £0.006 0.0140 % 0.004
125  0.0408 £ 0.006 0.0157 + 0.004
256 0.0432 £ 0.005 0.0170 + 0.003
512 0.0450 +0.004 0.0177 + 0.003
1000 0.0462 +0.004 0.0185 = 0.003

Table 4.1: The dependence of D, and D,, on the number of particles N, with N ranging

from 16 — 1000 for ¢ = 0.35.

¢

Dyy

DZZ

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0.0017 £ 0.0003
0.0045 £ 0.0006
0.0084 £+ 0.0010
0.0171 £+ 0.0020
0.0310 £ 0.0040
0.0460 £ 0.0050
0.0620 £+ 0.0060
0.0583 £ 0.0070
0.0580 £ 0.0070

0.0011 +£ 0.0002
0.0024 = 0.0004
0.0040 = 0.0006
0.0070 £+ 0.0007
0.0117 + 0.0010
0.0185 £ 0.0020
0.0290 £ 0.0030
0.0450 =+ 0.0040
0.0520 £ 0.0050

Table 4.2: The dependence of Dy, and D,, on the volume fraction ¢ for N = 1000.
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¢ Dig D3, D’
0.10 0.1086 +0.020 0.190 -0.0814
0.15 0.1566 £0.030 0.254 —0.0974
0.20 0.0980 £0.020 0.190 —0.0920
0.25 0.0660£0.015 0.159 —0.0880
0.30 0.0610+0.012 0.141 —0.0800
0.35 0.0737 £0.013 0.127 —0.0533
0.40 0.0829 +£0.010 0.113 -0.0300
0.45 0.0998 £0.010 0.107 —0.0073
0.50 0.0837+0.010 0.087 —0.0035

Table 4.3: The dependence of Dy, D}, and DEY" on the volume fraction ¢ for N = 1000.

¢ Day Dy, Dy

0.10 —0.0390+0.004 —0.0013 —0.0376
0.15 —0.0534 £0.005 —0.0052 —0.0487
0.20 —0.0640 £0.007 —0.0077 —0.0564
0.25 —-0.0717£0.009 -0.0124 —-0.0593
0.30 —-0.0746 £0.010 —0.0180 -0.0566
0.35 —0.0758 £0.009 —0.0214 —0.0544
0.40 —0.07254+0.007 -—-0.0293 —0.0432
0.45 —0.0594 +£0.007 —0.0336 —0.0258
0.50 —0.0430 £0.006 —0.0297 —0.0133

Table 4.4: The dependence of Dy, Dy, and DZY" on the volume fraction ¢ for N = 1000.
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Figure 4.1: The mean-square displacement curves (yy) and (zz) as a function of time (or
strain) ¢ for a system of N = 1000, ¢ = 0.20 for strains up to 800, plotted in a linear (a)
and log-log (b) plot. The values of the resulting diffusivities are also given. In this and
subsequent figures, all mean-square displacements are in units of a2, and all diffusivities

in units of ya2.



149

0.8

— <yy> (D,, =826 x 107
- — <zz> (D, =3.97x107)

0.6}

0.7

T

0.5
<yy>,
<zz> 4

0-3— ’—’

0.2 -

0.1 PR
’ (a)

0.0 ! I ! ! !
0 5 10 15 20 25 30

TTTTIm

— <yy> (D,, =8.26x 10°)
- - <zz> (D, =3.97x 107)

10°

10!

<yy>, 107
<zz>

107

| BBRRRLLLL AL

104 L

107 k
: ®)

1 1ol L1l 1 roe ol

10°¢ e
0.01 0.1 1 10 100

Tt
Figure 4.2: The mean-square displacement curves (yy) and (zz) as a function of time (or

strain) 4t for a system of N = 1000, ¢ = 0.20 averaged over total strain of 30 in (a) and

of 100 in (b). The values of the resulting diffusivities are also given.
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Figure 4.3: The velocity autocorrelation functions (u,u,) and (u,u,) for a system of
N = 1000, ¢ = 0.20 plotted over a total strain of 20. The values are non-dimensionalized
with the value of the autocorrelation function at time zero. The values of the diffusivities
are given by the areas under the curves. In this and the following figure the velocities

have been normalized by “a.
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Figure 4.4: The velocity autocorrelation function (uyu,) for a system of N = 1000 and
¢ = 0.10, ¢ = 0.30 and ¢ = 0.50 plotted over total strain of 10. The values are non-

dimensionalized with the value of the autocorrelation function at time zero.
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16 — 1000, for ¢ = 0.35. A very sharp increase is observed for small volume fractions,
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Figure 4.6: The dependence of Dy, on the volume fraction ¢. Accelerated Stokesian
Dynamics results (ASD) are calculated for a system of N = 1000 and compared with a

number of experimental and simulation results.
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short strains) given by Breedveld et al. (2001).
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Figure 4.12: The self-diffusivity in the longitudinal direction, D, is plotted as a function
of strain for a system of N = 1000, ¢ = 0.35. The values of the two terms contributing to

Dy, according to (4.18a) are also given.
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Figure 4.13: The cross diffusivity, Dy, is plotted as a function of strain for a system of
N = 1000, ¢ = 0.35. The values of the two terms contributing to Dy, according to (4.18b)

are also given.
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Figure 4.16: Two particles undergoing simple shear flow in a periodic cell of length L—the
other two dimensions of the periodic cell are assumed infinite, so that the two particles
do not interact with their mirror images in the y and z directions. The two particles are
initially placed at distance AXy = —10a, AYy = 0.5a and AZy = 0, independently of the

value of L.
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Figure 4.18: The square non-affine displacement X" X" corresponding to the L = 20a
case of the previous figure. The mean-square displacement for a system of 1000 particles

at ¢ = 0.10 is also shown.
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Figure 4.20: The self-diffusion coefficient D, plotted as a function of the volume fraction.

The values of D7, are also presented and compared with the simulation results of Foss &

Brady (1999).
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Figure 4.21: The self-diffusion coefficient D, plotted as a function of the volume fraction.

The values of Dy, are also presented and compared with the simulation results of Foss &

Brady (1999).
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Chapter 5

Conclusions

We have developed a new method for calculating the hydrodynamic interactions among
particles in a suspension at small Reynolds number, based on the Stokesian Dynamics
method but with a significantly more favorable computational cost of N1n N. This new
method, referred to as Accelerated Stokesian Dynamics (ASD), avoids the expensive cal-
culation of the far-field mobility matrix in favor of the direct calculation of the far-field
hydrodynamic force, and uses a carefully chosen preconditioning scheme to dramatically
reduce the computational cost of any iterative matrix inversions. ASD was first validated
through test problems in the rheology of both structured and random suspensions, and
accurate results were obtained with much larger numbers of particles (typically on the
order of 1000). With access to larger systems, the high-frequency dynamic viscosities and
short-time self-diffusivities of random suspensions for volume fractions above the freezing
point were studied.

The method was then applied to the study of sheared non-Brownian suspensions.
The relative viscosity, first and second normal stress differences and particle pressure
were determined as a function of the volume fraction and were found to be in satisfactory
agreement with experiment. The ratio of the normal to shear stress and the ratio of normal
to “excess” shear stress (defined as the suspension viscosity minus the high-frequency
dynamic viscosity) were also determined and it was found that the normal stresses were
better, but not perfectly, correlated with the excess shear stress, pointing to the fact

that the origin of both is the deformed microstructure. The pair-distribution function
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determined from our simulations clearly showed anisotropy in the microstructure, leading
to non-Newtonian rheological behavior. Using the theoretical arguments of Brady &
Morris (1997), the dominant contribution to the stress was attributed to pairs of particles
near contact, and an appropriate rescaled shear-stress was thus constructed. This simple
scaling successfully captured the microstructural and volume fraction dependence and
reduced the scaled shear stress to a constant. Access to larger systems also allowed the
study of denser suspensions—with volume fractions up to 0.60. For volume fractions above
0.50 the system ordered into strings, while surprisingly at even higher volume fractions
(¢ = 0.60) the system was again disordered. This behavior is reminiscent of molecular
dynamics simulations of hard-spheres in the metastable regime (above the freezing point
¢ ~ 0.494 and below the glass transition ¢ =~ 0.58) where it is impossible to equilibrate
the system for long times without partial order.

Shear-induced diffusion was subsequently studied and the complete diffusivity tensor
was calculated. The diffusivities in the velocity gradient and vorticity directions, Dy, and
D,,, were determined as a function of the volume fraction and compared with available ex-
perimental results. While both appear to be increasing functions of the volume fraction for
small to intermediate ¢, Dy, plateaus at high ¢, in agreement with previous experiments.
The quantitative agreement between experiment and simulation, however, was not always
satisfactory and it is suggested that the difference is associated with correctly identifying
the diffusive regime. The presence of a long correlation time during which the mean-square
displacements show first a quadratic and then a transitional behavior was identified as a
main difference between sheared-induced diffusion of non-Brownian particles and diffu-
sion of Brownian particles. The longitudinal and cross diffusivities were also presented as
a function of volume fraction. Careful construction of the convection-diffusion equation
demonstrated that a coupled term, coupling the non-affine and affine displacements, is
present; a term that was erroneously omitted in previous studies. The corrected longitu-
dinal and cross diffusivities were thus calculated and an additional limitation, caused by
the finite size of the simulation cell, was discussed.

The ASD methodology opens up an entire new class of suspension problems that can

be routinely investigated and its power was demonstrated with the study of diffusion
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and rheology in non-Brownian suspensions. Its extension to particles of different sizes or
particles of non-spherical shape should be relatively straightforward. The effect of polydis-
persity can thus be studied and its impact on the rheology and structure of concentrated
suspensions can be addressed. The main principles of the method can also be applied
to a broader field of particle flow problems, e.g., it can be modified to include particle
and fluid inertia. The inclusion of fluid inertia (finite Reynolds number) adds further
complications since the governing equations are no longer linear, but existing fast spectral
methods can potentially replace the fast PME algorithm used here and allow the extension
of the method to at least moderate Reynolds numbers. It is our hope that a wide range

of problems can and will be addressed with ASD in the future.
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Appendix A

The ASD Method: Instructions and General

Considerations

A.1 General Description

The general idea is to construct an order N algorithm that maintains most characteristics
of the conventional Stokesian Dynamics (SD) algorithm. There are two main differences
between this version and conventional SD. First, is the calculation of the far-field hydro-
dynamic force. The calculation of this force is generally an order (N?) operation since the
contributions of all particle pairs can be of importance (disturbances decay very slowly).
In order to accelerate this procedure, the Ewald sums are rewritten in a slightly different
form and it is observed that by changing the value of the splitting parameter a (corre-
sponding to ¢ in SD), the real-sum contribution can be evaluated accurately by using
only the nearest neighbors contributions (order N xsmall number of nearest neighbors).
The wave-space sum on the other hand, can also be evaluated accurately by rewriting it
as a Fast Fourier sum and calculating it with a conventional FFT method. The number
of operations for this procedure depends on the number of FFT points, and by careful
balancing, it can be reduced to order N. This new calculation of the far-field contribu-
tion is combined with an iteration procedure and application of Faxén’s laws to give the
far-field force (and not the resistance matrix). The second difference lies in the inversion
of the resistance matrix, which is now done iteratively. By using the incomplete Cholesky

factor as a preconditioner, the number of iterations required is small and therefore the
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matrix inversion is also reduced to an order N procedure. The motivation and theoretical
background for this new algorithm is presented in chapter 2. Here we present an overview
and flow chart and, in addition, give some details and practical considerations about the

code itself.

A.2 Flow Chart

The flow-chart of the algorithm is presented in figure A.1 and is described in some detail
below. This procedure corresponds to one time-step of the algorithm, where the initial

positions and velocities of the particles are known.

Step 1:
An initial guess is made for the far-field hydrodynamic force/torque/etc. on each particle.
The values of the far-field hydrodynamic force at the previous time step are used as this
initial guess for every time-step but the very first one. For the very first time-step the
initial guess is arbitrary, and its choice only affects the rate of convergence of the algorithm

for this given time step.

Step 2:
For the given hydrodynamic force/torque/etc. on each particle, the hydrodynamic con-
tributions to the fluid velocity (and its derivatives) are calculated. These contributions
are expressed as a wave- and real-space sum over all N particles. The real-space part is
calculated analytically in a pairwise fashion (formulae are given in appendix C). Although
this is an O(NN?) operation as it includes contributions from all particles, an appropriate
choice of the splitting parameter allows the truncation of the sum to include only neigh-
boring particles and thus become an O(N) operation. The wave-space sum is calculated
as a Fast Fourier sum on a fixed grid. Standard FFT routines are used and the manner
in which the force is distributed from the center of the particle to the grid is presented
in appendix B. A simple Lagrangian interpolation is further used to calculate the fluid

velocity at each particle’s center from the velocity on neighboring grid points.

Step 3:
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From the fluid velocity at the center of the particle, the hydrodynamic force on the particle
is calculated utilizing Faxén’s laws. This completes the first iteration loop, since from an
initial guess for the hydrodynamic force (Step 1), a new value is obtained. Two different
approaches can be used to guarantee convergence: A simple underrelaxation scheme that
repeats the calculation with the new value of the hydrodynamic force, or a standard
iterative inversion package (GMRES is used here). The underrelaxation scheme has a much
slower convergence rate when the initial guess is not very good, which is the case for the
first time step and for very dense suspensions, where strong lubrication interactions change
the forces on the particles significantly from one time-step to the next. On the other hand,
it behaves favorably for low volume fractions when the hydrodynamic force changes very
slowly. GMRES generally converges faster to a solution of a given accuracy, regardless
of the initial guess. Because of the minimum residuals used, however, the solution is
approached from “different directions” and as a result is not as smooth as a function
of iteration (unless a sufficiently small convergence criterion is used). This can have an
effect when calculating properties for very low volume fractions, where some properties
have values that are close to zero, and the use of a strict convergence criterion is then
recommended (or the underrelaxation scheme). At the end of this iterative procedure the
far-field hydrodynamic force/torque/etc. on a particle are known to the desired accuracy
for a given set of particle velocities. (Note that by using Faxén’s laws to calculate the
new hydrodynamic force, the particle velocities are assumed known, since in principle
Rpy,r-Up is calculated.) It is also noted that contrary to conventional SD the calculation
of the far-field interactions is now repeated for every time step. Since the far-field force
is calculated directly (using the current particle velocity), it is not possible to retain the

same mobility (or resistance) tensor until the particle configuration changes significantly.

Step 4:
A sparse version of the near-field resistance matrix is constructed by taking into account
only the nearest neighbors and by storing them appropriately. This is a straightforward
calculation very similar to the SD calculation of the near-field lubrication matrix. The
only difference is that a chaining-mesh is introduced to identify the nearest neighbors and

store the resulting matrices in O(N).
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Step 5:
The system:

O:RFU,nf-(Up—u°°)+Fff+Fext (A1)

is solved (for the case of simple shear flow the term Ry Enf : E™ is also included in the rhs
of the equation of motion). First, an incomplete Cholesky preconditioner is constructed for
Rpy,y and is multiplied with both sides of A.1. The purpose of the preconditioner is to
improve the convergence of the iterative procedure, since the near-field resistance matrix
can be very ill-conditioned and expensive to invert, especially when studying shearing flows
where the particle minimum separations are very small. A standard conjugate gradient
iterative procedure is then followed and the new particle velocities are calculated. We
note again that in this procedure the far-field force is calculated with the velocity of the
previous time step; this can be regarded as simply a semi-explicit approach (since the
resistance matrix is also calculated for the previous positions) and seems to work well for
all problems studied. Alternatively, an additional iteration loop can be introduced which

allows the use of the current velocity for the far-field calculation.

Step 6:
The particles are moved to their new positions and the procedure is repeated from step
one. A fourth order Adams-Basforth scheme is used to obtain the new particle positions,

as in conventional SD.

An additional note:
As was already mentioned, for a given configuration of particles the exact particle velocities
and far-field forces can be calculated. Without changing the particle positions, one can
converge both the far-field force (inner loop, steps 1-3) and the resulting velocities in
an outer loop (by simply repeating the whole process with the particle positions fixed).
Although GMRES is guaranteed to converge for the calculation of the far-field force in the
inner loop, this straightforward iteration scheme for the velocity is not. In other words,

when solving

0=—R,fU(t+ At) + Fs; (U (1)),
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the resulting velocities do not always converge (especially when the initial guess for U is

not very good). This problem is easily addressed by relaxing the equation of motion to
0=~(Ru; +IBU(t + At)+ Fsp(U(2)) + IBU(2),

where (3 is an adjustable parameter. (We note here that even in the absence of convergence
problems, 3 = 1 is necessary for the near-field matrix to be positive definite.) Typically
values of 8 = 2 — 4 may be needed for the velocity scheme to be convergent. When the
underrelaxation scheme is used for the calculation of the far-field force, the introduction
of additional relaxation for the velocity is not necessary and 8 = 1 should be used. (The

slower convergence for F's is sufficient to allow convergence of the velocities as well.)

A.3 Variables

NUMPART: Number of particles. The value of NLIM in the two header files should
agree with the value of NUM PART in the input file.

IN3, IN5, IN6: Three, five and six times the number of particles—used for setting the

dimensions of different property arrays.

MMAX: Maximum number of linked cells in each direction. The linked cells correspond
to the “chaining mesh” (see chapter 2, Hockney & Eastwood, 1986) and their purpose
is to group the particles in smaller sets so that the nearest neighbors can be located

in order N.

MLINK: Actual number of linked cells in each direction (note: M LIN K must be greater

or equal to 3).

NNEIGH: Maximum number of closest (near-field) neighbors for any particle. The value
of this variable defines the size of the near-field resistance matrix arrays and a very
large value (combined with a large NLIM) can cause memory limitations. Its value
is in close connection with RCELLNF (see below). Typical values for a 3-D dense

system are ~ 50, which is usually a conservative estimate—only for volume fractions
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near close packing the number of neighbors approaches this value.

NBCFELL: Maximum number of total neighbors—its value is generally larger than NN EIGH

since it also includes the real sum neighbors.

NN2: Maximum number of all neighboring pairs. Again this value depends on NBCELL
and it is the absolutely maximum number of pairs—before any cut-off procedure is

applied.

NSQ1: Actual number of all neighboring pairs—its value depends on the cut-off radius

RCELLRS.
NN X: Maximum number of near-neighboring pairs. This value now dependson NNEIGH.

NSQINF: Actual number of near-neighboring pairs—its value depends on the cut-off
radius RCELLNF.

RCELLNF: The cut-off radius for the near-field interactions. In agreement with con-
ventional SD the value 4.0 is used (but it can be easily relaxed to =~ 3.5 to reduce

the computational cost).

RCELLRS: The cut-off radius for the real-sum (far-field) interactions. Its value also
depends on MLINK. For a linked cell with length of about 3 — 3.5, the cut-off is
usually 6.0 — 8.0.

ITMAX: Maximum number of iterations for the inversion of Rpy .

TOL: Required tolerance for the inversion of Rpy ;s (corresponds to the accuracy of the

residual calculation).
NCELL: Actual number of linked cells (M LINK?3).

OMEGAL: Relaxation parameter for the Faxén’s iteration. For large dense systems a
small value is necessary (typical values can be as low as 0.01). When GMRES is

used this parameter is always 1.
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TOLFMAX: The tolerance for the calculation of the far-field force. When using the
relaxation parameter the actual tolerance is TOLFMAX/OMEGAL. When using

GMRES this tolerance corresponds to a standard convergence criterion.

ALPHA: The splitting parameter for the calculation of the far-field interactions. Recom-
mended values: Choose MLINK so that (XCELL/MLINK) is between 3.5 — 4.
Then use ALPH A approximately equal to & = 10 — 12, and 1 — 2 FFT points per
particle radius. Since the value of the splitting parameter is only important for
the far-field calculation some of these conditions can be relaxed when using denser
systems (where the relative error in the far-field calculation corresponds to a much

smaller error to the overall calculation).

FP(NLIM): Array of the interparticle force on each particle. To these values the external

and the far-field force are eventually added.

DIS(4,NN2): Array that keeps DX, DY, DZ and DR, for each pair of particles (for
particles with DR < RCELLRS).

ID(2, NN2): Identities of the 2 particles consisting each pair (again following RCELLRS).

DISNF(4,NN2): Same as DIS, but now only particles with DR < RCELLNF are

included (near-field distances).
IDNF(2,NN2): Same as ID, but following RCELLNF.
LIST(IN3): Linked-List Array.
IHEAD(MMAXCU) Head particle in each cell (MMAXCU = MMAX?3).

MAP(MM AX26) Map of neighboring cells for use in the linked list calculation (MM AX26 =
26MMAX).

NLIST(NLIM,NNEIGH): List of structure for the sparse version of the resistance
matrix: NLIST(I,1) = J means that particle J is the first neighbor of particle I,
NLIST(1I,2) = J means that particle J is the 2nd neighbor of particle I, etc.
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NALOC(NLIM): The actual number of neighbors (near-field) of each particle (note:
NALOC(I) must be less than NNEIGH).

IDL(2, NNX): Matrix that maps ID-pairs into the sparse matrix structure. IDL(1, KK) =
I1, means that for the first particle of the pair KK the second particle of the pair
is neighbor numbered IT (equivalently IDL(2, KK) = JJ).

IORDER(NLIM): The ordered array of particles (according to reverse Cuthill-McKee
ordering): TORDER(I) = J means that the order of particle I—after the re-

ordering—is J.
IODINV(NLIM): The inverse of the re-ordering array, such that:

IODINV(IORDER(I)) =1
XCELL, YCELL, ZCELL: The dimensions of the unit cell (in particle radii).
XC12, YC12, ZC12: Half of the dimensions of the unit cell.
GAMMA: The shear-rate 7.

GAMT: The total strain (ydt)—when the cell is returned to its undistorted shape (at

t =1) GAMT is set again to zero (just as in conventional SD).
HGT: YCELL x GAMT

EPS: The cell distortion: HGT/YCELL (values between 0 and 1).

FACVISC: Corresponds to 3 (see description for subroutine calvelo.f) and is part of the
input file. Value of 1.0 is used for the underrelaxation scheme—larger values (up to
~ 4) are needed when GMRES is used. For some sedimentation problems (e.g., dense
cubic arrays) a large value MUST be used or the far-field does not converge (roughly
FACVISC > 1/sedimentation velocity, so values up to 100 may be needed). This
is a special case where R,s = 0 and as a result the “outer-loop” (mentioned in the
additional note of the flow-chart) is not guaranteed to converge. (However, for this

special case the sedimentation velocity can be calculated directly and no iteration
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procedure is actually necessary—it is simply mentioned here to draw attention to

the some limitations of the convergence scheme.)

LDIS(ING6): Array that keeps track of how many times the particles leave and return
into the unit cell (for positions) and of how many times the particles have completed

a full 27 rotation (for angular positions).

VELJ(ING): Initial guess and solution for the particle disturbance velocities: U, — u®

(including angular velocities).
U(ING): Particle total velocities.
UDIFF(ING): Particle disturbance velocities.
UOLD(ING6,4): The last four values of the particle velocities.
X(ING6): Particle positions (and angular positions).
XOLD(IN6,4): The last four values of the particle positions.
F(IN3): The far-field hydrodynamic forces (only forces!).
T(IN3): The far-field hydrodynamic torques.
S(IN5): The far-field hydrodynamic stresslets.

Ursum1(IN3): The real-space contribution to the fluid velocity (note: only 3 components

for fluid velocity).

delUrsum1(IN3 x 3): The real-space contribution to the first derivative of the fluid ve-

locity (9 components for each particle).

del2Ursum1(IN3): The real-space contribution to the V2 of the fluid velocity (3 compo-

nents for each particle).

del3Ursum1(IN3 x 3): The real-space contribution to the V? of the first velocity deriva-

tive (9 components).
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Lz, Lrmaz: Actual and maximum number of FFT points in the z-direction of the unit
cell (note: needs to be a power of 2! Choose so that there are 1-2 FFT points
per particle radius). They must also have the same value in the input file and the

program subroutines.
Ly, Lymaz, Lz, Lzmaz: Same for y- and z- directions.

uz(Lz, Ly, Lz): The z-component of the wave-space part of the fluid velocity on the FFT
grid.

uwy(Lz, Ly, Lz), uz(Lz, Ly, Lz): Same for y and z components.
fz(Lz,Ly, Lz): The z-component of the force distribution on the FFT grid.
fy(Lz, Ly, Lz), fz2(Lz,Ly,Lz): Same for y and z components.

uf f(IN3): The wave-space far-field contribution to the fluid velocity at the center of each

particle.

del3uf f(IN3 x 3): The wave-space far-field contribution to the first derivative of the fluid

velocity at the center of each particle.
del2uf f(IN3), del3uf f(IN3 x 3): Remaining derivatives.

RFU(IN6, N6NBR): The near-field sparse version of the resistance matrix. Its dimen-
sions are not 6N X 6N as in conventional SD-—now only the non-zero values are

taken into account and the matrix is arranged in a 6N X 6NNEIGH array.

RFE(IN6, NSNBR): The similarly arranged near-field sparse version of Rpp s (now,
N5SNBR =5NNEIGH).

RSE(IN5,N5SNBR): Same for Rgp ..

A.4 Subroutines

adlub3d.f: Calculates the near-field (lubrication) contribution. The near-field matrices

RFU, RFE and RSE are calculated by calling subroutine rlub for each pair of
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neighboring particles (very similar to conventional SD). Difference: An “arbitrary”
number is added to the diagonal of RFU (and subtracted from the force balance)

so that the matrix can be inverted (and convergence is guaranteed-—see above).

caldist3d.f: Calculates the distances between pairs of particles and checks for overlaps.
Again very similar to old version. Difference: It rearranges the particle pairs in two
distance arrays (DIS, DISNF), keeping only the ones with distances less than the
respective cut-off radii (RCELLRS, RCELLNF).

calstrs3d.f: Calculates the particle stress: RSU -U + RSE : E. Now this corresponds to
the near-field particle stress (since RSU, RSE are the near-field matrices) and the
far field stresslet (S) is added to that value to give the total stress.

calvelo3d.f: This is the subroutine where the new particle velocities are calculated. This

part of the code has been changed significantly.
0=- (RFU,nf(t) +4I) - (Up —u®) (t+ At) + Fff(t) + Fepe + ,B(Up —u®)(¢)

is now solved. F; is calculated independently and just added as an external force.
The term 3 is added to the diagonal of RFU so that inversion is possible (otherwise
RFU can have very small values on the diagonal and/or not be positive definite).
RFU is then inverted following an iterative procedure (see linbcg for inverting pro-

cedure).

fastlongrandom.f: Controls the calculation of the Fourier space part of the far-field

velocities and their derivatives. It controls the following subroutines:

offlinedistr.f: Distributes the force, torque, stresslet from each particle to a 3-D
grid set on the unit cell. The distribution preserves the force balances and
for each particle a mesh of 5 x 5 x 5 grid points—centered at the nearest grid

point—is used.

fit.f: This subroutine is a typical FFT-solver—it solves for the velocities on a grid

when the forces on the same grid are known (note: you need to change Lmaz
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before each compilation).
interpolate.f: Interpolates from the grid velocities to the velocities at the center

of each particle using simple Lagrangian interpolation.

setrealsum.f Controls the calculation of the real-space part of the particle velocities. For
each pair of particles it calculates analytically (through subroutine realsum.f) the

contribution to each particle’s velocity and velocity’s higher derivatives.

genrcm.f: Finds the reverse Cuthill-Mckee ordering and returns the values of array

IORDER (uses subroutines rcm.f, roots.f and fnroot.f).

linbeg.f: Performs the iterative procedure for the calculation of the new particle velocities

(is called from calvelo). It controls the following subroutine:

inchol.f: Calculates the incomplete Cholesky preconditioner. When the incomplete
Cholesky breaks down, a sufficiently large number is added to the diagonal of

RFU until no breakdowns occur.
prog20.f: Constructs the chain-linked lists.
sdmainlink3d.f: Main program.

traject3d.f: Calculates the new positions of the particles (4th order scheme—exactly as

in conventional SD).
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Appendix B

The Force Distribution on the Grid

We briefly describe the process of distributing a force/torque/etc. from the particle’s
center to a grid located around the particle. As was mentioned in chapter 2, the starting
point is a truncated version of the Taylor series expansion of the force. Thus, the net force
(and higher force moments) are conserved when transferred from the particle’s center
to a fixed grid. To schematically demonstrate this procedure, assume a particle located
at position (z,y,2) with a simple point force F? acting on its center. A grid, with grid
distances, dz, dy and dz, is also surrounding the particle (figure B.1). If the position of the
particle coincides with a grid point, the point force is simply applied to the corresponding
grid point. Since the force remains at the actual center of the particle, all net moments
are distributed correctly by construction. In a more general case, however, the center of
the particle will not coincide with a grid point and the force distribution will not be as
simple. For the particle of figure B.1 it is assumed that its z-coordinate coincides with a
grid point (z°) while its z and y coordinates do not. The nearest grid points can thus be
identified as 20, 4°. Assigning all the force to the nearest grid point (z°,°,2°) satisfies
only the net-force balance (O(1) approach—as demonstrated in figure B.1a). Extending
the assignment to more grid points allows both the net-force balance and the balance of
higher force moments to be satisfied. This procedure is demonstrated in figure B.1(b)-
(d). The distance from the nearest point (0) is denoted as dz° and dy®. Figure B.1(a)
simply presents the transfer of the net force to the nearest grid point. Figures B.1(b) and

(c) present the additional force assignments that maintain the correct first moment (zF°
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and yF? for the two-dimensional case). Such a distribution is not unique (since for this
case only 3 equations are satisfied with up to 25 unknowns). Symmetry considerations
significantly reduce the number of equations, and, in addition, where possible, a one-
dimensional finite difference approximation is used. It is thus assured that the “correction”
of a given moment does not introduce any lower moments. The approximation of figure
B.1 is truncated at the first-moment level. The force distribution presented in B.1(d)
satisfies the net-force and net-first-force-moment balance, but has a non-zero second and
higher moments. The level of approximation used in the algorithm maintains moments
up to the third; for a given component of the grid force then, and the full 3D case, 20
equations can be formulated: one of zeroth order, 3 of first order (z, y and z), 6 of second

2 2 2
2, TYz, y'r, Y-z,

order (z2, ¥?, 22, zy, zz, yz) and 10 of third order (z3, 33, 23, 22y, =
2%y, z%z). We will now present the form of these 20 equations for the distribution of a
point-force and a doublet.

Force: F;

The basic equation for the distribution from the particle to the grid is

FiOe—27ri(k~r°): Z fzj)'e—-27ri(k-r7)’

nodes

where 70 = (z°,9%,2°) is the position of a particle’s center, 7 = (27,47, 27) the grid-

point positions and Fio, f? , the i-component of the particle and grid-distributed force
respectively. Expanding the exponential terms in Taylor series about 7 on the left and

7 on the right, we get:

Fio (1 + 27rik:lw? — 27r2klkm$?370m + )

= > f) (1+ 2mikiz] — 2n%kikm] T, + ) -

nodesy

By matching terms, up to order O(k®) the following equations are obtained:

FiO:Zf?’
Y
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The first Moment: Doublet D;;

The force distribution is based on the following equation:

—27rij?je‘27'i(’”°) = Z £ e 2mithr)
2]
Expanding again in Taylor series, we obtain:

— 21k; DY (1 + 2mikyz] — 2n%kikm )20, + ..)

= Z Il (1 + 2mikyz] — 27r2klkm:cl7x;,’z + ) )
v

By matching terms, up to order O(k?), we obtain:
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This procedure can be applied to the potential dipole and higher moments in a very similar
manner. The net-force is distributed with a leading error of O(dz*), the doublet with a
leading error of O(dz3), while the potential quadrupole (highest moment maintained) with
a leading error of O(dz). If higher accuracy is desired a larger number of constrains (> 20)
is necessary, corresponding to a larger number of grid points per particle. A 5x5 x5 set of

grid points (centered around the grid-point nearest to the particle’s center) is used here.
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As was already mentioned, the distribution scheme is not unique but follows an efficient
and general method based on one-dimension finite difference formulae. As is apparent
from the matched-series expansion equations, force contributions obtained from different
sources (e.g., the fact that the point force is not on the grid and a net doublet) can be
combined. These combined forces are then distributed on the grid following a prespecified
pattern which is maintaining the overall moments to the desired accuracy. Assuming that
node (i, 7, k) is the one closest to the center of the particle, the tables below present this
prespecified pattern. Note that since the cell is sheared (and therefore the grid is sheared)
a distortion parameter e (tan @ = e, with 8 the angle between the y-side of the undistorted
cell and the y-side of the distorted one; 6 takes values between 0 and 7/4 and e between

0 and 1) is also introduced and that all quantities have been normalized.

I
Y

node | i,7,k
1

node | 7—-2| 1—1 1 i+1] ¢4+2
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Y
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Figure B.1: The force distribution from the center of a particle to a fixed grid.



194

Appendix C

One Term Real Sums

The one term, real-space part of the Ewald summation is presented here. Formulae are pre-
sented for corrections to the velocity, velocity gradient, velocity Laplacian, gradient of the
velocity Laplacian and pressure. The fluid velocity at the center of any particle (or at any
other point in the fluid) can be calculated analytically by simply adding the contributions
given below for all neighboring particles. It is again noted that a self term (corresponding
to & = 0) must always be added when the fluid velocity is calculated at the center of a parti-

cle.

C.1 Force: F;

The j-component of the net force F; acting on a particle generates a disturbance velocity
(velocity gradient and higher derivatives of the velocity) and disturbance pressure in the

fluid given by:

Velocity
for z # 0O:
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and for z = 0:
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(Note: F; corresponds to the hydrodynamic force on the particle; the hydrodynamic force
on the fluid has the opposite sign.)

Velocity Gradient

for & # 0:
O0u; 1 ™ Cl
ax; _ —H l:___a_%_ (46ijxk — ija:i - 5ik$j) ¢% a% (’r‘ 5zjil7k miil'jil»'k) ¢‘;‘] Fja
and for = 0:
ou;
oz 0
Velocity Laplacian
for & # 0:
2 . 43 ) , 92 107
V2, = el (ri6;; — r’ziz;) ¢s + — (97" 8i — Tziz;) $ps — —5-0ijb1
Tr,r’ i 5 s 2 o2 2

and for z = 0:

Gradient of Velocity Laplacian

for  # 0:
OV2y, 1 [8xt
o, - = 4y [ (rzidi — r*zizjz) ¢
473 2 2
——e (13r z10;5 — 9T 252 — 7 52‘1231' -7 5jl$i) ¢%

az

2 2
— (28;521 — Toiyz; — 7531%)(15 Fj,

Oz2

and for £ = 0:
8V2ui

B2, = 0.
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Pressure
1 2m? om
=—— |-"5r’ps + —51 | z,;F,
4 a% ¢ a%¢2 I

C.2 First Force Moment: Doublet D;;

The 7j-component of the first force moment tensor, corresponding to the particle stresslet

and torque, produces a disturbance in the fluid velocity and pressure given by:

Velocity
for ¢ # 0O:
1 T 2n?
Ui = = | =5 (4dij2k — Sjpa; — dipzj) $1 + — (r?8ijzx — zizjax) s | D,
™ML a:z a2 2

and for z = 0:

U; = 0
Velocity Gradient
for ¢ # 0:
Ou; 1 Amd
92, = — m ——% (7‘ 5ij$k$l - ZEil'j-TlciL’l) ‘15%
a

272
2
—5 (65ij$l~'15k +7r 5ij5kl — 5jkwi-’13l — 5ik$l$j
oz
—0uz;zy, — Ojumith — Opzim;) b
iy
7

(494501 — 8310u — Sikjt) ¢1 | Dik
a2

and for £ = 0:
Ou; 1 27
= =" _(4Dy — Dy — 6;Dj;) .
Oz, 47r7)3a%( i ! tDj5)
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Velocity Laplacian

for @ # 0:
1 87r
V2u;(xz) = ~ dmr (r Tkbij — T T TTk) ¢z
A7 3
i (137" .’Ek(SlJ 9ximj:vk - T25ik.’L‘j — r25jk:ci) (]5%
az
o 2
+— 5 (285”{Ek 7(5ikil:j - 75jkmi) (f)% Djk,
a?
and for £ = O:
V2ui =0.
Gradient of Velocity Laplacian
for & #£ 0:
OV2u; 1 167°
. LA g - s (r46ija:kml - r2xia:jzk:vl) gb%
8t 2 4 2
+—g (17’!‘ 5ij$l$k — Nzzjzizg + 1 (51‘]'5“ -r 5il$j$k
a2

2 2 2 2
-7 5jl-'1f'i$k -T 6kl$i1'j -T 5jk:ci:vl -T 5ik-73j$l) (ﬁ%

4 3
__71'7_ (54(5ij.’L‘k$l + 137'25ij6kl — 7'26jk5il — r26ik6jl
a2

—90uzjT — 90558 — V02T — 90Ty — 98z ) qﬁg

272
+—5 (285ij6kl — 7(5ik5jl - 75jk5il) ¢%] Djk’
a’
and for & = 0:
6V2ui 1 28 72
= — 4D Dy —60;D;5) ] .
0z 4mn [ 5 az ( T g “)]

Pressure

1 ]2 3 2 5n
P = [ 7r7 r2x]xk¢>s — i (r djk + 7m]xk) ¢3 + ———5Jk¢ }

5
a2
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C.3 Second Force Moment: d;

The i-component of the second force moment generates a velocity and pressure disturbance

given by:
Velocity
for & # O:
1 27T3 4 2 2 9
u; = —m l:g (r dij — xixj) ¢% — a% (97‘ 035 — 7a:za;]) (l)%

and for ¢ = 0:

Velocity gradient
for = # O:

Ou; 1 4t 2
Boy = Ty | of Uk ) o

3

R
K\JI\!

A

(28513113]; — 751k37] — 75]Ic$z) ¢ dj,

ot

(8

and for & = 0:
3u,-

8$k

Velocity Laplacian

mlw| =

(13r Tp0ij — 9T, T;T) — r25ikmj — r25jkaci) ¢%

Oijp1
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for ¢ #£ 0:
1 [8x° 4t
2, _ 6 4
Viu; = — m a—% (7‘ dij —r wia:j) (,b% - ;—%— (20r46,-j - 18r2:1:i:17j) ¢%
9 2
"z (9172635 — 63w52;) b5 — —5 (70%)] d;,
o2 2
and for & = 0:
1 2
Vi = —— (2T,
4 \ a2
Gradient of Velocity Laplacian
for ¢ # 0:
OV3u, 1 16m® 4
do T | oy (lwmrima) gy
87r®
+a x (267‘ 0s5T — 2272z, LTy — T 5;37] —r44; z-’Ez) ¢g
4t 2 2
——— (1717" 8ijxy — 99z — 18r°8x; — 18r 5jl$z') QS%
az
273
— (252(5”.’171 63511.’1:] 63(5]l$z) (]5 dJa
o2
and for & = 0:
2,,.
OV-eu; _o
oz
Pressure
1 [4rt 273 3572
P= riz — —147' T + zips| d
e [ ] i1 o s o5 i3

C.4 Third Force Moment: L;;

The ij-component of the third force moment generates a velocity and pressure disturbance

in the fluid given by:
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Velocity
for  # 0:
1 [8xr*
U; = 47”7 I: (7" a:kcim 7‘2.’Ei.’B]'£Ck) (]5%
3
——7 (137'237k6ij - Qmia:jxk - 7‘2(5ikIL'j - T25jkmi) d)%
ai
2
5 (285,J:L'k 76ik-'1"1 75]km,)¢ LJk,
a2
and for z = 0:
u; = 0.
Velocity gradient
for  # 0:
Ou; 1 167°
a—mz =— 47”7 alzl (r 035 TkT) — r2xixja:k:1;l) ng%
8
+_zr__ (17r dijxrxy + 5176,61 llz;2z;z82; — r25ilmjack
a2

2 2 2 2
T 5jl$ixk —-T 6klxi$j -Tr 6jkwixl —7T 5ika:jxl) (]5%
47r

(546mxkxl + 1372 0350kt — 90jkTiTy — Y07
a

I\JI\I

—gdilemk —_ Qéﬂxia:k — 95k1xixj - T'Z(Sjk(sil et "'26ik5jl) ¢%

272
+—5 (286i50k1 — Toix 051 — Tdjr031) ¢g] L,
o2
and for & = 0:
Ou; 1 [2872
5;:‘ = 47”] 5o (4Lzl - le 6zlej)} .

Velocity Laplacian
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for & # 0:
1 327r
Vu,; = 47777 —_— (r 0sjTr — r4w,xjxk) ¢11

16

— ™ (26r dijxp — 2272 TiT;Tp — T 5]1&1 r46ikmj) qﬁg
az
871' 2 2

+—s (171r 0ijzk — 99z;z 208 — 18r 8325 — 18r 5jkxi) d)%
az
473

——% (2526”a:k — 636, ikTi — 636,-ka:j) ¢% ij,
az

and for = 0:

Vzui =0,

Gradient of Velocity Laplacian

for ¢ # 0:
Ou; 1 64n”
a—a:: = — m ;—'?— ('I" 6z]$kml 7‘41;1'1"7'.'17]9:5[) (ﬁ%
327r
+— (32r 0sj TRy + 7 6135;61 — 2672 TiTjTRT] — T 5,lxjwk
« 2
—~rt 8z — riopziz; — ride; )
r'éuzizy — r* iz — riépmim — i 0nzm) </51?
167r 2 2
(2757’ 51]51;191'! + 26r* (5135kl 143:L'i$ja:kl'g — 22r 6jkxixl — 22r éikxjwl
o 2
—22T25il$j$k - 22r26jl:viack — 22r25k1ximj — 7"45jk5il — 7”45ik5jl) ¢92_
+—8—7-r- (594(5”$k$[ + 17172 (5”5“ 990,z 28 — 995jl$imk
a2

—995kl$i$j - 996ikxll'j - 99(5jk$g$i - 187"25jl6ik b 18T26il6jk‘) ¢%
473

-7 (2525115“ 635jk51l 635@k53l)¢ ] L]ka
a

and for £ = 0:

Vi 1 [727r

= 4L; — Ly — 6L 45)| -
Bxl 47”7 ( il £} il JJ)]
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Pressure
1 [167° , 8t 2 4
=G o ey~ (18wt r50)
47(3 7O7T2
—l——z— (147‘25jk + 635L‘j.’13k) (f)% - 3 5jk¢% ij-
a2 «z



