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ABSTRACT

. This thesis is a joint theoretical, numerical and experimental study concen-
tratéd on investigating fhe phenomenon of weakly nonlinear, weakly dispersive
long water waves being generated and propagating in a channel of arbitrary cross
section. The water depth and channel width are assumed comparable in size and
they may vary both in time and space. Two types of theoretical models, i.e., the
generalized channel Boussinesq (gcB) two-equation model and the forced channel
Korteweg-de Vries (cKdV) model, are derived by using perturbation expansions
for quasi-one-dimensional long waves in shallow water. In the sﬁecial case for chan-
nels of variable shape and dimension but fixed in time, the motion of free traveling
solitons may be calculated by our models to predict their propagation with mod-
ulated amplitude, velocity and phase. In the precence of external forcings, such
as a surface pressure distribution or a submerged obstacle moving with a near
critical speed, solitary waves can be produced periodically to advance upstream.
Analytical solutions for three specific cross-sectional shapes, namely, the rectan-
gular, triangular and semi-circular sections, are obtained in closed form and with
the main features of the solutions examined. The specific geometry of the cross

section is found to affect only the magnitude of the dispersive terms in the equa-
- tions. For a submerged moving object taken as an external forcing, its effective
strength of forcing is directly related to the blockage-ratio of the cross-sectional
area. Our long-wave models have their useful applications to the areas of river

dynamics, near-coastal engineering, and other related fields.
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- L. INTRODUCTION

. In recent years, theory of nonlinear water waves has been a very active field
and the subject of long waves in nonuniform medium, which is of particular interest
here, has also received considerable attention. Peregrine?! studied waves climbing
up a sloping beach; Peters?® and Peregrine?? investigated waves traveling in a
straight uniform channel with arbitrary cross section. David, Levi and Winternitz*
studied the propagation of large solitary waves in a wide marine strait whose width

-is much larger than its depth. The propagation of long waves in a rectangular
channel with spatially varying depth and width was investigated by Shuto?¢ who
obtained a KdV-type equation with variable coefficients for wave motions in the
channel. Chang et al.? carried out numerical and experimental studies on the
evolution of a solitary wave traveling in a rectangular channel with a linearly
varying width but a uniform depth, and with their numerical computations based
on Shuto’s equation. Similarly, a variable coefficient K-P (Kadomtsev-Petviashvili)
equation for the weakly three-dimensional case has been derived by David, Levi
and Wintemitz“. A set of long wave equations in the Lagrangian description was
obtained by Zelt®! to study the long wave response of bays and harbors. An
analytical harbor response model, capable of treating narrow recta,ngulé.r harbors

with variable bathymetry and sidewall geometry, was developed and applied to
several simple geometries. He also applied a three-dimensional finite element model
to investigate the runup of solitary waves on a coastline with variable bottom
topography and a curved shoreline. Zelt’s models included the study of the viscous
dissipation in long wave propagations. In these studies, channel width and depth
are permitted to vary only in space but not with timé; In addition, no external

forcings have been considered.
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Severalvstudiesr have been directed to investigate the phenomenon of long wave
ge_neratioﬁs. Solitary waves can be generated in many ways. They can be generated
by evolution from an initial hump of water (Hammack and Segur®), by boundary
forcihg at one end 6f a semi-infinite physical domain (Chu et al.?; Camassa and
Wul), or by a moving disturbance with a near-critical speed. In the last case, a
moving disturbance can be a pressure distribution moving on the free surface (Wu
and Wu?®; Ertekin®; Ertekin et al.”; Katsis and Akylas!!), a topography moving
along the bottom of a channel (Lee'*; Lee, Yates and Wu'5) or submerged moving

slender bodies, like a ship, in a water channel (Mei!”). The salient features of
soliton generation by steadily moving disturbances are that a series of solitons are
generated periodically in a vicinity of the disturbance, to advance, in succession,
upstream of the disturbance with a greater speed, while a train of weakly nonlinear
and weakly dispersive waves develop downstream of a region of depressed water

surface immediately trailing behind the disturbance.

To describe the phenomena of forced generation of nonlinear water waves,
many different models have been developed and applied. Wu and Wu?® carried
out numer';ca.l computations based on the generalized Boussinesq equations which
allow multi-directional motions and give detailed three-dimensional features of

the wave field. The simplest model is perhaps the forced KdV equa.t‘ion which
can be applied, as in Lee’s case, to the two-dimensional, unidirectional traveling
and near-resonant forced waves. Another model, called the forced Kadomtsev-
Petviashvili (fKP) equation, was studied by Katsis and Akylas!!. The forced
KP equation is fra.lid for quasi-two-dimensional case and allows weak variations in
the transverse direction of the channel. Lepelletier'® carried out both theoretical
and experimental studies to investigate the process:of éxcitation of harbors and

bays by transient nonlinear long”ﬁaves. In addition, nonlinear shallow water waves
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generated m a closed rectangular basin by the motion of the basin and the effects of
viscous dissipation in a harbor with simple geometry were also examined. However,
in these studies of forced waves, most of the papers are confined to investigations
of géneration of waves in a straight uniform rectangular channel, rather than on
the effects of varying depth and width or of different geometries of the channel

cross section.

The main objective of the present study is to investigate the more general case
of generation and propagation of nonlinear long waves in a water channel with ar-
‘bitrary cross section and with moving disturbances as external forcings. The width
and the depth of the channel are assumed to be of the same order in magnitude
and can vary both in space and time. As is proper for a long wave model, the
characteristic lengths of the cross section are supposed to be much smaller than a
typical wavelength, we may assume that the detailed wave features in the cross-
flow plane are less important than those in the longitudinal direction, so that it is
meaningful to integrate all quantities over the cross section of the channel to ob-
tain the section-mean equations. For the general case of varying width and depth,
we develop the two-equation model which we call the “generalized channel Boussi-
nesq model”. This two-equation model can be further reduced to a one-equation
~model, or the forced channel KdV equation (with variable coefficients) for the uni-
directional motion near resonance. In Chapter II, the detailed derivations of our
two theoretical models by using perturbation expansions are presented. Several
topics associated with these models, e.g., the validity criteria, the conservation
of mass and energy, and the existence of steady solutions of waves of permanent
form for both models, are analysed and discussed. We study the effects of various
cross-sectional geometrical shapes by examining three specific configurations, i.e.,

rectangular, triangular and semi-circular cross sections. The theoretical results
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show that the differénce in shape of the cross section only affects the coefficients of
the. dispefsive terms in the gcB model and in the cKdV equation, with no effects
on the othe;‘ termé in the equation, provided the mean hydraulic depth remains
the éé,me. Based on our models, we also find that the effective strength of a three-
dimensional external forcing is directly related to the area blockage ratio of the
moving disturbance to the cross-sectional area.

Our two theoretical models are applied to study the evolution of a free solitary
wave propagating in a channel of variable section. This problem of evolution of free
solitary waves is intereSting and important to study, not only for its significance in
the physical contexts, but also for its providing a fundamental case to investigate
the general validity of the cKdV equation. Since the cKdV equation is derived
only for unidirectional wave motion, it should not be able to account for the
reflected wave traveling in the opposite direction that must arise as the main wave
is continually transmitted while traveling forward in a gradually variable channel.
A natural consequence to this is that the cKdV does not conserve mass. In our
studies, we carried out numerical computations based on both the gcB and the
cKdV models. Since gcB model permits multi-directional motions and conserves
mass exactly, by comparing the results between the two models, we are able to
examine the conservation properties and the vali}dity criteria of the cKdV model.

» Our numerical results éhow that even the cKdV equation does not conserve mass by
a large margin on account of the reflected wave that actually transports some mass
away or into the main transmitted wave, it still provides quite a good prediction for
the magnitude a.hd the phase velocity of the main transmitted wave. The detailed
analysis and numerical results can be found in Chapter IV.

We performed laboratory measurements to investigate the long wave gen-

eration by three-dimensional,suﬁm'é;ged moving objects in a rectangular shallow
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water tzmkf fThe experimental rgsults are seen to confirm the theoretical conclusion
. drawn from the wave models that the effective strength of a moving disturbance is
directly related to the blockage ratio of the cross-sectional area. Various numeri-
cal célculations were also carried out based on both models for the forced cases to
examine the effect of the speed, the longitudinal length and the geometric shape of
the external‘forcings. The discussions and results regarding the forced generation

of nonlinear long waves are presented in Chapter V.
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II. THEORY OF GENERATION AND PROPAGATION
OF NONLINEAR WATER WAVES

“In this chapter, certain theoretical models of the generation and propagation
of weakly nonlinear, weakly dispersive and weakly forced waves in shallow wa-
ter will be presented. The study is concentrated on modeling long waves being
generated and propagating in a channel with variable cross sections. Two types
of theoretical models — the generalized channel Boussinesq two-equation model
(gcB) and the forced channel Korteweg-de Vries (cKdV) one-equation model — are
derived by using perturbation expansions. The models can be applied to channels
of arbitrary shape, which may vary gradually in space and time. Such applica-
tions are illustrated for three specific cross-sectional shapes, namely, rectangular,
triangular and semi-circular cross sections. The effective strength of a submerged
disturbance as an external forcing function and the effect of a specific geometry of
the cross section are examined. Discussions on the general properties of the two
models, including results regarding their validity criteria, the conservation laws

and the existence of permanent wave form solutions, will also be presented.

2.1 The Physical Background and the Basic Assumptions

A sketch of the water channel is shown in Figure 2.1. The fluid in the channel
~ will be assumed inviscid and incompressible, with constant density p, and the
flow, irrotational. The effects of surface tension are neglected. The width and
depth of the channel are taken to be of the same order, and for simplicity, to be
symmetric about the mid-channel z — z plane. The long wave assumption implies
that a typical wavelength of the surface wave ((z,y,t) is much greater than the

characteristic lengths in the cross-flow plane.



Figure 2.1 A channel with variable cross sections



8

Thus we consider the motion of three-dimensional water waves of rather arbi-
trary amplitude and wave number (in two horizontal dimensions x, y), propagating
in a channel with variable cross sectionkof arbitrary shape, provided it is not too
widé‘ compé,red to its depth and there are no excessively sloped banks. Also the
centerplane of the channel is assumed to be straight. The water in the channel is
supported by the bottom z = —h(z,y,t) from underneath, has its free surface dis-
placed at time ¢ to 2 = {(x,y,t), and has this surface extended across the channel
to the waterline at y = xb(z,y), at which the bank may be vertical or inclined

~with a slope.

2.2 The Basic Equations |

The motion of the water, with velocity U = (u,v, w) and the pressure

p(z,y, 2,t), satisfies the Euler equations

vV.U=0, (2.1)
dU 1
— =U:+U-VU= -;Vpe, (Pe = p + py2) (2.2)
and the boudary conditions

d¢ '
w=—=Gtu o, z=((5,y,1), Iyl <), (2.3)
P=pa(z,y,t), z2=((z,9,1), |yl < b(z,?), (2.4)

dh :

w=—— = —(ht + uhg + vhy), z = —h(z,y,t), (2.5)
v = (b + ub,), y = +b(z, 1), (2.6)

where V = (8,,08y,0,) denotes a vector - differential operator, p. is the excess

pressure, p, the specified ambient surface pressure, and g the constant acceleration
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due to gravity. The flow is assumed irrotational, so that the velocity potential

. ¢(z,y,2,t), where U = V¢, satisfies the Laplace equation,
V¢ =0, (2.7)
and we also have the Bernoulli equation

9¢ 2 __1_72
B +2U +2 +gz P (2.8)

where po, is a constant reference pressure.

Equations (2.1)-(2.8) present a complicated three-dimensional nonlinear sys-
tem whose direct solutions are in general difficult to determine, whether by ana-
lytical or numerical methods. The goal of the present study is to derive from this
set of basic equations appropriate theoretical models for specific wave problems of
interest. The theoretical models we obtain will be convenient for numerical com-
putations and can give insights into certain physical features like the conservation
properties and energy exchange between the waves generated and the external

forcing.
2.3 The Section-Mean Approach

The basic long-wave-model assumption implies that the main wave features
manifest primarily in the longitudinal direction whereas the detailed three-dimen-
“sional wave motions in the cross-flow direction are less important. Thus we can
integrate (2.1) and (22) over the wetted cross-sectional area to obtain a set of one-
dimensional section-mean equations which describe the dominant wave motions in
the z-direction. It will be seen that the detailed three-dimensional wave features

can nevertheless be recovered after the section-mean flow is determined.

We define a section-mean qua.ntlty as

Fen=51 / 5, dydz, (29)
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where A is the wetted cross-sectional area, which is yet unknown. By applying
Reynolds’ transport theorem on a material volume V'(t) which at time t coin-
cides with a vertical column of water lying between two sections at two different

locations, we can show, using the kinematic conditions (2.3), (2.5) and (2.6), that,

( ) = —(f) + —(uf) (2.10)
or
Y= 2 an+ 2w, (.11)

‘where (f) is defined as (f) = Af = [ [, f(z,y,2,t)dydz. (A detailed proof of the
section-mean transport theorem (2.10) and (2.11) is presented in Appendix I.)

A set of the section-averaged continuity, momentum and energy equations can
be obtained by applying (2.11) to equations (2.1), (2.2) and (2.8). The quantities

of particular interest are f = 1, u, v, w and

1
f=H=p(u + 0" +w?) + pgz = (poo — p) — ph1. (2.12)
For H, we have
S LR b1
= [ a [ Lovras+ | 300@ ¥ty =Bc+E, 1y
—b —h -b

-so (H) is the sum of the kinetic and potential energy density of a water slab of
unit thickness in z. By taking these quantities in turn for f in (2.11), we obtain

the following section-mean equations

A;+ (Ad), =0, (2.14)

(47), + (470); =~ 577, (215)

(40)i+ (AT, = 25, (2.16)
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(Aw): + (ATw), = _%-Tz-, - (2.17)
AT P A 10,
(AH): + [A(H + ;)u]z =P pat(Ap)- (2.18)

’ These ﬁve equations give the section-mean conservation laws for mass, hori-
zontal and vertical momenta and also energy. They are exact, aside from excluding
dissipation. "However, if we now consider the averaged quantities as our new un-
knowns, this set of equations is not closed, for there are more number of unknowns
than number of equations.

For long wave models, the first two equations (2.14) and (2.15) are of our
main interést, since they are directly associated with the dominant wave features
in the longitudinal direction of the channel.

The total cross-sectional area can be written into three parts:
A(.‘B, t) = Ag (.’B) - Ad(:z:, t) + Ac(.’L‘, t), (2.19)

where Ay is the unperturbed wetted area, A4 the variation in area due to a moving
boundary of the channel or a moving submerged body as forcing function, and A¢
the area variation due to wa.vé motions at the free surface.
Writing Ag(z) — Aa(z,t) = An(z,t) and A; = 2b(, where

- 1 [t

Ot =g [ OEv0d (2:20)
is the sectional free-surface mean of (.), we can rewrite (2.14) and list it with (2.15)
together as:

(26C)¢ + [(An + 268)a]s = —(An)s, (2.21)

(Au) + (AuT), = 4%117, (2.15)

where the unknowns of interest are ¢ and @, while b and Ay, are prescribed functions

of z and ¢. Again this set of equatmns (2.21) and"'(2.15) is not sufficient to describe
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the mean wave motions represented by ¢ and i, because there are four unknowns
¢ , U, U énd Pz but only two equations. Our goal is to relate the two unknown
variables uu and p; to the two unknowﬂs ¢ and @ in order to make the system
closéd. This can be accomplished, to a second-order approximation, by using the
perturbation expansions and applying the Laplace equation (2.7) and the Bernoulli
equation (2.8).

From the section-mean equations, a set of integral conservation laws for the
excess mass, the total energy and other physical quantities can also be derived.
-These properties along with different invariants associated with our wave models

will be discussed in a separate section later in this chapter.

2.4 Nondimensionalization

For the long wave models in question, we introduce the following dimensionless

variables (with *)
Tt = .’L‘//\, (y*a Z*’ C*a h*a b*) = (ya Z’Ca h's b)/hca A* = A/Ac, tt = COt/’\,

(u*,v*,'w*) = (’LL,’U,'U))/C(), ¢* = ¢/COA, (p*’p;) = (p_poo,pa —pOO)/pgh'C? (222)

where A, is the typical constant mean water depth, X a typical wavelength, A, the
unperturbed mean wetted cross-sectional area, and ¢y = 1/gh, is the linear critical
~ wave speed. |

Two important parameters, a and ¢, arise from the nondimensionalization,

namely,

a=afh,, €= he/A, (2.23)

L4

where a is a typical wave amplitude. In particular, we are interested in the Boussi-
nesq class of wave motion characterized by « = Of¢?), which signifies that the

nonlinear effects (scaled by ) ‘and the disperSi\}e effects (scaled by €?) are well



13
balanced with each other and are of equal importance in comparison with the net
inertial eﬂ'ects.
v‘ Omi_tting * we write the section-me#n equations of motion and the Laplace

equation and the Bernoulli equation in the nondimensional form as:

(260)e + [(An + 260)ale = —(An)e, (2:24)
(A): + (ATu), = —Ap;, (2.25)

buxt b+ 3hes =0, (2.26)
Pt 5+ o+ 5o +z=0, (227)

along with the boundary conditions at the free surface and on the channel walls:

2l =t 1+ G (2.28)
] P ,
plz:( = Pa> (229)
.‘?2 — ¢2 2
onl__, "~ €' (he + uhs)/4/1 + h2, (2.30)
o¢ 2
By |y s € (b + ubs) (2.31)

where 7 is the un;t outward normal to the boundary curve in the cross-flow plane
of the channel. ' _

In our case Ag(z) = O(1) and Ay4(z,t), A¢(z,t) = O(c) by assumption. It
is clear that & = O(c) by (2.24), while v and w are of O(ae) by (2.28)-(2.31) if
he, by = O(cr), hg,b, = O(1), which we assume to hold. However, hy, the section
slope of the chaﬁnel boundary, need not be limited to certain bounds, such as for
vertical walls.

Our next step is to seek expressions for wT andp_,,,. in terms of ¢ and @ so as

to make the system (2.24)-(2,}2;53)7‘f’;é1t;§ed. This can be done by using perturbation
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expansions based on the long wave assumptions and by applying the Bernoulli

-~ equation.

2.5 Perturbation Expansions

- The above set of basic equations and boundary conditions and the relations be-

tween the velocity and its potential imply the following expansions for ¢, u, v, w

and (:

b

¢ = ol¢1(z,t) + € d2(z, 9, 2,1) + O(*)], (2.32)
¢ = ofC1(z,t) + €¢a(z, 9, t) + O(*)], (2.33)
LU= ¢ = afuy (,t) + Eua(z, ¥, 2,t) + O(e?)], (2.34)
b= 2y = acfus(z,,2,8) + O(e)], (2.35)
w =2, = acfus(z,9,2,) + O(), (2.36)

where the first order terms in expansions (2.32), (2.33) and (2.34), which are
independent of y and 2z on account of v and w being of O(ce), represent the
dominant section-mean wave motion. Thus we see that u — @ = O(ae?), v -7 =

O(c€), w — w = O(ce), and by (2.34) and (2.27),
wu — i = O(a’e?), (2.37)

De — Pe = O(aeza a2)- (2.38)

The last relation, where p, = p+ z; holds true throughout the depth and gives
a measure of |%’iﬂ| = O(ae?) for the assumption of the pressure being hydrostatic
as generally adopted in classical long wave theory. In particular, at the free surface,
(2.38) becomes |(ps + ¢) = (Ba + ()| = O(ae?); hence if |p, — fa| < O(ae?), then
I¢ = ] = O(ae?), indicating that the transverse variations of ¢ from its transverse

surface mean is always of higl_;ef order than ||, ‘which is of O(a).
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With % approximated in (2.37), we now seek an expression for 7z in terms of
. % and ¢. We apply the Bernoulli equation at the free surface and at an arbitrary

elevation z as follows:
1.,
Da + ¢t|z=0 + §¢z|z=0 + C = 0, (239)

1
P+ o+ 54% +2z=0, (2.40)
where the higher order terms (of O(a®¢)) have been neglected. Differentiating the
two equations (2.39) and (2.40) with respect to z, we have:

Daz + ‘Isztlz:o + ¢z¢zz|z=0 + Ca: = 0, (2’41)

Pz + ¢zt + ¢x¢mz = 0. (2.42)

Now we substitute the expansion (2.32) in (2.41) and (2.42), find the sectional
free-surface-mean of (2.41) and the section-mean of (2.42) and take their difference

so that all the depth-independent terms cancel. This gives, to the O(a?),

1)—1::1;;; +E:; —ezfz(z,t)+0(ae3), (243)
where
f(zat) = a(%; - &’z:ﬂ)- (2.44)

Relation (2.43) provides an expression for 77 in terms of ¢ and f,. The term
fz(z,t) depends on the solution of ¢s(z,y,2,t) which is the second order term
in the expansion (2.32) for ¢ and which can be solved explicitly once the specific
geometry of the cross section is given. It will be seen that the term f, contains the
highest order derivatives of @ or { anc\i it represents the bdispersive effects: namely,

the longer the waves, the gregté"‘i;.fﬁ;phase veldéity.
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Before we investigate any specific geometry of the channel cross section, we
- will employ expression (2.43) with the understanding that the term f, can be

determined, for a given channel sectional geometry, in terms of %, as will be shown

below.

2.6 The Boussinesq Two-Equation Model

Substituting the results (2.37) and (2.43) back into (2.24)-(2.25) yields:
(26)e + [(An + 26C)alz = —(An)e, (2.45)

Gy + Bty + Co = —Paz + € fo(,t). (2.46)

Equation (2.45) is exact and equation (2.46) has an error of O(ce) relative to
the leading terms @; and {,. The set of equations (2.45) and (2.46) is our Boussi-
nesq class two-equation model in the general form, with f(z,t) to be determined
from the solution of ¢,.

Thus our remaining task is to solve the ‘cross-flow’ boundary-value problem
for ¢. Substituting expansion (2.32) into the Laplace equation (2.26) along with
boundary conditions (2.28), (2.30), (2.31) and matching at different orders of ae”®,

we see that the boundary-value problem for ¢; can be prescribed as follows:

¢2yy + $222 = —Uia, (ya zZ € Sz(.'B, t)), (2°47)
, |
2t (e=0), (2.48)
1
2 Chetumh) 148, (2 =-hen0),  (49)
S = HChpub),  (v=£b(z) (2.50)
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where S; denotes the cross-sectional flow region. This Neumann problem for the
leading order cross-flow velocity potential ¢, has a unique solution since the bound-

ary conditions are easily seen to satisfy the solvability condition

O0dy , ‘ :
> Bn ds = —A(z,t)uy, (2.51)

which resulf:s from application of Green’s integral formula to (2.47), I being the
bounding éurve of Si(z,t). The solution ¢; will depend on au; =~ @(z,t) (as a
parameter) in addition to the geometric configuration of the boundary. With ¢,
so resolved, (2.45) and (2.46) are two equations of the Boussinesq class, applicable
to weakly nonlinear, weakly dispersive and weakly forced long waves propagating,
possibly in both directions, in a channel of arbitrary, non-uniform and varying cross
section. The forcing functions can be a submerged topography or a free-surface

pressure distribution oscillating and moving along the channel.

2.7 The Korteweg-de Vries One-Equation Model

With additional assumptions that the main waves move in one direction and
the external for.cing is near resonance, the Boussinesq two-equation model (2.45)-
(2.46) can be further reduced to a one-equation model which we will call the
channel Korteweg-de Vries (cKdV) equation.

First we decompose the channel width and the mean water depth as follows:
b(.’l),t) = bo(ﬂ:) - bd(x,t)a ﬁ(m,t) = 7),0((5) - 7&4($,t), (252)

where bg(z) and ho(z) represent the fixed components to which the small time-
dependent perturbations by(z,t) and hy(z,t) are superposed as forcing functions
(taken positive if they reduce the flow cross-section area and negative otherwise).

&

To model the KdV class of cha.nnel wave mdfions, we may adopt the following
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stretched coordinates (see Johnson!?)

£ = /c(x) : (2.53)
X = é’z, (2.54)

where the ¢-coordinate is fixed with the wave frame which moves in the positive
z-direction with a local linearized wave speed c(z), and X-coordinate signifies
the slow variations of long waves in space as viewed in the wave frame. In this
coordinate system, c(z), fig(z) and by(z) become functions of X only.

We further assume for ¢ = u,{, pg, b, ha, Ag and f the expansion
P(z,t;€) = €291(€, X) + e*¢2(€, X) + O(®), (2.55)

where for brevity the bar for @ and the tilde for , f,, hq are omitted.
We first transform (2.45)-(2.46) into the stretched coordinates and then sub-
stitute the expansion (2.55) into the two equations and match the terms at different

orders of €2. For the first order terms we obtain the equations

2bghg

O¢(2b¢y — u; + Aa1) =0, (2.56)

8e(¢1 — cus + pa1) = 0. (2.57)
Upon integration of (2.56) and (2.57) from the rest state at infinity, we obtain

h
(= "c'o"u'l = cuy, (2.58)

Ad1 = pa1 =0,  (2.59)

and from (2.58), the well known result

E=ho(z), or c=xho(2), (2.60)
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where the sign +(-) is for right(left)-going waves. The two equations (2.58)-(2.59)
must holci if the surface pressure and the moving boundary topography are to be
arbitrary disturbances. This result thus éhows that any forcing imposed on the
systém at the critical state must be weaker than those of O(¢?).

Equations (2.58)-(2.60) are compatibility conditions which are necessary for
the solvability of ¢; and u; if by, hg and pe are all arbitrary as assumed. The
second order terms in (2.45)-(2.46) then give, with making use of (2.58)-(2.60),

, b ,

ax(bohoul) + 65(—boCz + -Mm + —C1u1 + Adz) (2.61)
BxC1 + Be(—uz + - + 202 + Spas = Lf1) =0 (2.62)
X561 ¢\ —u2 g1 T 62 cpaz o) =0 .

Multiplying (2.61) by 1/c and (2.62) by b, then adding the two resulting
equations, we have, upon using (2.58), the result for right-going waves

1 hox lhO/ bOX

1/2C1x+——C1C15 2f15+4 1/2C1+ b

( Ad2+pa2) (2.63)

Subtracting (2.61) from (2.62), we obtain, upon integration with respect to ¢,
1 1 1 1 b hy?
he/*ug = ¢ - -—C1 Agr + gPa2 ~ 5f1— (bo )X /Cldf (2.64)

Equation (2.63) is a generalized variable coefficient KdV equation written in
the stretched coordinates. It can be converted back to the original physical (z,t)
- plane by using the inverse transformation of (2.53)-(2.54) and restoring the order
of different quantities from the expansions. We then have, in the (z,t) plane,

1 hoz , | 1hy/%b "
ho!* o+ G - ———cct +3@fit g 1°,2c =

( Ad + Pa)t, (2.65)

and by the first order linear approximation 8/8t ~ —c8/0z, (2.65) can be written

in another form as follows:

Thos,  1bgp,™ 1,1

1 31 1, .
h(l)/2Ct+Cz+‘2'h—occ faf+4 e c+2g = ~3(gpAa+pa)e, (?.66)
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and (2.64) combines with (2.58) to give

1/2y
2, o1l la. 11, 1 l(boh /
ho'“u=¢ i hg( 5€ f ib Ag+ 5Pa = hl/z (dx. (2.67)

The above results are obtained for right-going waves. In general, (2.66) can

be written as

31

31 1hos, , 1bow, 1,1
2 ho

The * T3

1 2
CCe — fe+ < 2 o = 2(2b Ad+pa)xa (2 68)

1
:i:f_L(-l)TiCt +Cz +

where the + sign is taken for main waves going to the right and - sign fdr the
“left-going waves.

| Equation (2.68) is our KdV type one-equation model in the general form.
The term f; can be explicitly solved in terms of u and { once the geometric
configuration of the cross section is given. In the following section we will study
three specific cases where closed form solutions to the Poisson equation (2.47) can

be easily found.

2.8 Three Specific Channel Configurations

As we have seen in the‘ previous section, for a given channel configuration
we have only to determine the solution ¢2 of the Neumann problem with the
Poisson equation (2.47)-(2.50). This problem has solutions in closed form when
" the geometry is of some simple shape. We preéent here a few typical examples
before we consider the general case.

I. Variable Rectangular Channel

The channel has its vertical walls at y = £b(z,t) = £[bo(x) — ba(z,t)] and its
bottom at z = —h(z,t) = —[ho(z) — ha(z,t)] (see Figure 2.2(a)). For simplicity,
we let depth h and width b be functions of = and ¢ gnlyQ . This assumption does not

lose generality of specifying thedlstmbances (heii‘(; krepresenﬁted by bg and hg), if the
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- b(x,t)

A

h(x,t)

Figure 2.2(a) A rectangular cross section

Az
b(x,t)

- _—>|

Y =tan®
hm(x,t)

0(x,t)

Figure 2.2(b) A triangular cross section

R(x,t)

«

Figure 2.2(c)A-semi-circular.cross section
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disfurba.nceé take the form of a moving topography of arbitrary shape superposed
to the ba;sic rectangular frame, but with the actual by(z, z,t) only slightly varying
in z and hd(m, ¥, t) only gradually changing‘ in y, because all perturbation quantities
are assumed to be of O(€?) or weaker and in our modeling each variable is averaged
over the cross section, so detailed variations in perturbation of 2 in y or of b in
z will be of the same order as the error term of the equation. As we have seen
in (2.68), the effect of a moving disturbance as an external forcing appears as a
blockage ratio of the cross-sectional area, while its detailed shape or position in
‘the (y, 2) plane can have only slight effect on the resultant flow field by our model.
In later chapters, the experimental results will be seen to confirm the validity of
our section-mean appoach and the blockage-ratio concept in the region where long
waves (run-away solitons) are generated and propagate forward of the disturbance.
However, in the trailing wave region, the detailed geometry of the disturbance does
show significant three-dimensional effects.

Thus, we have for ¢,

agy + $2:s = —u(@,1)  (~h(z,t) <z <0, |y| < b(s,1)), (2:69)
D¢ (z=0, Iyl <Ba), (2.70)
%‘éﬁ =—-Dh (2= —h(z,t)), (2.71)
9 _ Db (y=+b(z,t) (2.72)
oy v= T '

where D = %(")t + u10;.

By inspection, we assume the solution to be of the following form:
1
$2(2,9, 2,t) = F(g,8) + 2G(z,t) + K (2, t)(y* — 2°) ~ §z2uh, (2.73)

which is easily seen to satisfy equatlon (2.69). -
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Substituting (2.73) into the boundary conditions (2.71) and (2.72), we have

G(z,t) = —Dh — 2Kh — hu;, (2.74)
1
K(z,t) = o Db. (2.75)

The solvability condition (2.51) for the present case
2bD(¢ + 2bDh + 4bh K = —2bhu;
gives
D¢ = —-Dh — 2Kh — huy,,

which is identical to boundary condition (2.70).

In solution (2.73) for ¢, F(z,t) is a constant of integration for the cross-flow
problem and can be incorporated into the first-order term ¢;(z,t) in the expansion
(2.32).

‘Thus solution (2.73)-(2.75) gives

1
b2zt = 2Gz + yszt - ‘Z'zzulzzt - zszt (276)

and

1
D20t = 1 / / Paztdydz

1 0, b 1 |
= 2b_h /;h _b[zG‘”t + yzKZt - izzulzzt - Zszt]dydz + h.o.t.
2 2
= —%Gzt + lszmt — "Lulzzt —_ h_.K:" + h.O.t., (277)

3 6 3

— 1 b ’
¢2zt‘z=0 = -27;/;b ¢23t|z=0dy

1 b,
= — y° Kz dy
,2b =b =
eI} (2.78)

3
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From these results, we readily deduce that

fo(@,t) = (P20t — P22t)

h h? h?
= a["'EGzt - ?ulzzt - ?Kzt]
h h? h h h
= E[ht + (Uh)a:]a:t - 6 — Uzt + ta + thz + hth + thQh

(2.79)

Use of this f, in (2.45)-(2.46) completes the gcB model for the rectangular

channel
(26¢)¢ + [(An + 26C)ulz = —(An)t, (2.80)
) 2
U + uuy + C:t = —Pag + €2[g(ht + ('u'h)z)zt - %‘uzzt
(2.81)

h? h h h
+ -3_ta + '2-th: + §hth + 'é'h:th]

It also gives the corresponding cKdV equation as

3

1 1 1hog . 1bog
Gt Gt ¢<z+ hcm+ : :
ho

1 h C+————C— "_(_Ad+pa) (2.82)

II. Variable Triangular Channel

The triangular channel is bounded by two inclined plane walls subtending an

angle £ with the horizontal, i.e., by

24 (b =) =0 (] S humfy = b), (2.83)

where h,, and v may vary with = and ¢ (see Figure 2.2(b)). The cross-flow potential

$2 must satisfy the Poisson equation (2.47) and the following boundary conditions,

%"12 D¢ (2=0, |y| < b(;-,_;)), (2.84)

8 g e
Vg = g =Dl = D7 (2 =~k 4yl bl <U@0). (289
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We assume the same form of solution as in (2.73) and for the present case, we

have,
. - Dy
G(:L',t) = —2Dh - huy, + h—’;-, (2.86)
1 1 D~
K(w’t) = —Zulz ~ 1 p” s (2'87)

and from these we deduce,

b2 A 4h - - h 1,02 2h? 2h -
fz(m’ t) = ’2_4 - —)'U'a;:ct + ?[ht + ('U'h)a: - Euz]zt + -(—' + T)ta - _3"(hQ)zta

6 46

(2.88)
~ where ¢ = a%l and we have converted the maximum depth h,, into the mean
depth & for this wedge shaped channel by

A

h = b=

[ AR

B (2.89)

[

The f.(z,t) given by (2.88) completes the gcB model; and the dispersive term

in the cKdV model for this case appears as
€? b2
Z(hg - E)szz- (2-90)

III. Variable Semi-Circular Channel

For a channel with semi-circular cross section of variable radius R(z,t) (see
- Figure 2.2(c)), it is convenient to employ the cylindrical coordinate system (z,,6,1),
with 2 = —rcosf, y = rsind so that the boundary-value problem for ¢; can be

prescribed as

8 10 1 8

™
o 18 18, _ - x |
it o5 TagE)tr="u. (0<r<R |§<3), (2.91)
10¢; 7
30 = =+-,0<r< .
s o9 — D¢ (0=%35, 0<r<R), (2.92)
- Oy

Y s (e = Y. y T
3'7__ - DR : (7‘ R((E,t), |0| < 2)7 (293)



26

and with the solvability condition (2.51) given by

992 1y = TRDR + 2RD( = — = R*uy,. (2.94)
1 On 2

‘In the present case, a solution of the simple form as was given in (2.73) cannot
sa.tisfy the Poisson equation (2.91) and all the boundary conditions (2.92)-(2.93)
at the éamestime. Thus we will reach a slightly more complicated form of solution
Whiéh appears as

P2 = ¢p + e, (2.95)

“where

¢p = F(z,t) — 7G(z,t) cos § — K(z,t)r? cos 20 — -‘li'rzulz - iuurz cos 260, (2.96)

oo
¢ = Z Canm?™ cos 2n4. (2.97)

n=]

Here the particular solution ¢, satisfies the Poisson equation (2.91); the com-
plementary solution ¢, satisfies the Laplace equation in (r,8) and has the symme-
try ¢e(r, —0) = ¢(r,0) as assumed for the flow. Further, ¢ = ¢p + ¢ satisfies
the free surface condition (2.92). The solvability coﬁdition (2.94) gives

G(z,t) = —2Dh - huyg, (2.98)
K(z,t) = Lpoh-Ly (2.99)
sb) = 3iL 12 1z, .

and invoking the channel boundary condition (2.93), we obtain, for |0| < 7/2,

(o ]
Gcosf = Z C2n2nR?" 1 cos2n0 — DR — 2K R cos 20 — %Run - -;—Rulz cos 26.
n=]1 . :

(2.100)
The integral of (2.100) with respect to # produces an equation which verifies

the solvability condition (2.94). By using

z

/‘2 cos 8 cos 2nfdf s,—;‘-f’('?(—rl’);H-1 - ('n,— 1,2,...) (2101)
-z eb— 4n2 -1 =1,2,...), .
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the coefficients Cyn are determined as c;=0 and for n=2,3,...

2_ (="

Con = - Trn(dn? -1 7

- R)~ G, (2.102)
where the radius R has been converted into the mean water depth A by

h= 7’4512. (2.103)

These results give the function f.(z,t) as

32h h 16h2. 1 - 7T
f_.,,-(a:,t) = 32 (Dh zum)zt - W(Z'Dh + ‘S'uz)zt - 104
16h h > 1 ‘
(Dh + S ta)at Z

— n(2n +1)(4n? - 1)’

in which the higher order terms are neglected.

For a semi-circular channel, the dispersive term in the final cKdV equation

will be
o0

¥ 1
€= [— - 22 n(2n + 1)(47’&2 _ 1)]Cz:z:z- (2.105)

In the general case where the channel has an arbitrarily shaped cross section,
for which the solution ¢; cannot be obtained straightforwardly, we may always
apply conformal mapping technique to transform the cross section into one of the
“three specific shapes discussed above, and use the results we have obtained for

these specific cases to derive the gcB and ¢cKdV models for the new geometric

configuration.

2.9 General Discussions on the gcB and the ¢cKdV Models

Up to now, we have derived two types of theoretical models — the generalized
channel Boussinesq model (gcB) and: the channel KdV: ‘model (cKdV) — to describe

the generation and propaga.txon of nonhnear long waves in a channel of variable
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cross section. Before we seek any quantatitive data from numerical computations
and expenmenta.l measurements, we may already see several characteristic aspects
of s;gmﬁcance from our theoretical models, which we will present and discuss in
this section. More detailed discussions on some particular topics can be found in

later chapters with the numerical and experimental results.

2.9.1 Validity of the Two Models

Based on their underlying assumptions, the gcB model has a broader region of
general validity than the cKdV model. The magnitude of the perturbed quantities
is of O(a) for the gcB model while for the cKdV model, it requires that the
magnitude of the external forcing functions be of the next higher order, i.e., of
O(a?) due to the limitation by resonance. Further, the gcB model allows multi-
directional motions and is valid for a considerably larger range of Froude number.
The ¢cKdV model is best suitable for studying unidirectional wave motions with
near resonant external forcing as originally meant. In that premise, the cKdV
model has its own advantage over the gcB model in being much simpler to obtain
solutions and more direct to see some theoretical points such as the net effect of

external forcing functions or the mass and energy conservation laws.

2.9.2 Effects of a Specific Geometry of the Cross Section

The‘formulations'presented in sections (2.5), (2.6) and (2.7) show that the
specific cross-sectional configuration only affects the dispersive terms in the two
models. In this case, the cKdV model gives a clearer picture on this particular
effect. It is ea.syvto see that for the final cKdV equation, a different geometry of
the cross section only changes the coefficient in front of the dispersive term (;.o
while the other terms are 1nd1fferent Quantatltlvely, we may list the dispersive

terms in the cKdV equatxons for umform channéls with rectangular, semi-circular
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and triangular cross sections as

Geometry of the Cross Section Dispersive Term
Rectangular 0.167€% {22z
Semi-Circular 0.189€2 oz
Triangular 0.255€%( 20z

From these results we can see that the slope of the channel side walls play
an explicit role in produéing the dispersive effects: the smaller the slope of the

channel walls versus the horizontal, the greater the dispersive effect.

2.9.3 The Effective Strength of a Submerged Moving Disturbance

Solitary waves can be generated by an external near-resonant forcing, and
the cKdV model shows that a moving pressure distribution at the free surface
and a floating or submerged moving object, like a ship, play an equivalent role
as forcing functions. This is true provided the magnitude of the external forcing
is small, being of O(a®). When external forcings become stronger, the validity
of the cKdV model becomes questionable, but the gcB model is seen capable
of distinguishing between a free-surface pressure distribution and a submerged
moving object as external forcing functions. For a semi-submerged moving object,
the cKdV equation (2.68) shows that the effective strength of the forcing is directly

"related to the blockage-ratio of the disturbance projectional area to the cross-
sectional area, while the specific shape and the position in the (y, z) plane of the
disturbance have little effects on altering long wave generation so resulted, other
qualifying conditions being equal. This important blockage-ratio concept will be

further discussed in Chapter V along with numerical and experimental results.

2.9.4 Recovering the Three — Dimensiona.l »Wave Features

{

As presented in the formg_l,ai:f'ib:ﬁi{s',ections, both the geB and the cKdV models
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a,re\ Written in terms of section-mean quantities. Since a typical wave length is
muchgreé.ter than the characteristic length in the cross-flow plane, these section-
mean equations provide a good representa.tion of the dominant features of the wave
field. In addition, the detailed three-dimensional wave features in the cross-flow
plane can always be recovered at certain order once we have solved the gcB or
the cKdV equations with some given initial and boundary conditions. This can
be accomplished by substituting the section-mean solutions f and @ back into the

truncated perturbation expansions (2.32) to get

and then applying the Bernoulli equation to give the free surface elevation ¢(z,y, t)

by
_ 04| 1 8¢

¢(z,y,t) = ~pa 5, 3 (&)2

2.9.5 Rescaling of the Nonlinear Wave Models

(2.107)

¢

In deriving the gcB and the cKdV models, we normalized the cross-flow quan-
tities with the unperturbed mean water depth k., and the longitudinal spatial co-
ordinate z, velocity potential ¢ and time ¢ with a typical wavelength A, based on
the physical background of the problem. The parameter € that appears accordingly
"in the equationsis |
he

€= —

A 4
which is small according to the long-wave assumption.

However, since a typical wavelength ) is an unknown itself (except that we
know it is much greater than h.), it will be more convenient to renormalize all

quantities based on one single scale; namely, the unperturbed mean water depth
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Introducing '
z' = %z, (2.108)
t' = %t, ' (2.109)

we may rewrite the gcB model (2.80)-(2.81) for the rectangular channel case as

() + [b(h + {)uler = —(bh)s, (2.110)
h2
Uy + Uy + Cor = —Paz + _[ht’ + (uh)z']z't' - ?uﬂ: 't
(2.111)
R . h h
+ Q e + 2ht: .+ 2h 'Qy,

and the corresponding cKdV equation (2.82) as

1 lh()z’ lb():r.
ihﬁcyml o (o G Garwrer + {4 32

(2.112)
= —""( Ad +pa)z'

where Q* = (22 + u%)/b.

We notice that with the new scaling, the small parameter € no longer appears
in the equations. Thus from here on it will be understood that all the quantities
in our equations are normalized with one scale h, and for brevity the notation /
will be ommitted.

Two other important topics on the steady solutions and the conservation
laws bésed on the gcB and the cKdV models will be discussed in the following two

separate sections.

2.10 Steady Solutions of Permanent Wave Form

For waves traveling in a straight uniform channel without forcing, the gcB
and the cKdV equations can be much simplified. Since in this case, the effect of a

specific cross-sectional geomeygfiéffééts only the constant coefficient in front of the
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dispersive term( i.e., Ugze in the Boussinesq model and (.. in the KAV model, as

- illustrated in section 2.8.2), we will study the case for a rectangular channel only.

Results for .other kinds of cross-sectional shapes can be readily obtained once the
recté,ngular case is solved.

| Taking b(z,t)=constant and h(z,t)=constant in the gcB equations (2.110)-
(2.111) and the cKdV equation (2.112), we have

¢+ [(1+¢)ul =0, (2.113)
1
Ut + Ulg + (p = 3 Uast) (2.114)
and
3 1
G+ ¢+ 566+ Ecm =0, (2.115)

where (2.115) is written for right-going waves.
An alternative form of the KdV equation can be obtained by applying the

linear approximation /8t = —9/8z to the highest order term in (2.115). It gives

’ 3 1
G+ ¢z + 566z — gCast =0, (2.116)

which is equivalent to (2.115) to the order of e* and is usually refered to as the
-regularized KdV equation. This regularized KdV equation was first introduced
for consideratibn of numerical instabilities (Whitham?¢). (Comparison between
the KdV equation and the regularized KAV equation for the forced case will be
presented in Chapter V.) |

It has long been known that there exist closed form steady solutions to the

KdV equations (2.115) and (2.116). The steady solution takes the form

(o) < agsech? (ko 6 — ), (2.117)



ko = 1/ 2% (2.118)
1
c=1+ 929 (2.119)

for equation (2.115), and
((z,t) = agsech?(ko(z — ct)),

ko = (2.120)

for equation (2.116).

These solutions indicate that a single-humped positive wave of the form given
by (2.117) will travel in a straight uniform channel without changing its shape
or speed. This wave has been called the solitary wave. The phenomenon of the
solitary wave in reality was first observed by John Scott Russell (1834) in a canal,
when a solitary wave was generated by a moving boat and propagated upstream
with a “permanent” wave form. Figure 2.3 shows the pictures of the solitary wave
solutions to the KdV equations (2.115) and (2.116).

The steady solitary wave solution to the Boussinesq equations (2.113)-(2.114)
_has been studied by many authors with different approximating methods. How-
ever, closed form solutions have not been reported. In this section, we will present
our analytical method to solve the Boussinesq equations for the steady solutions.
It will be seen that the Boussinesq model also possesses a permanent solitary wave
form solution, but the solution will be different from that of the KdV equations.

Seeking the steady solution to (2.113)-(2.114) in the wave frame s = z — ct

that moves with constant velocity c, ”We let
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Steady Solution to the KdV Models(c=1.15)

0.4 I I | L I | 1 ) i I | 1 | I I 1 I ! i

0.3

wave ( g9 |—

0.1 —

space X

Figure 2.3 Comparison of steady solutions between KdV and RKdV
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C = C(s) = C(.’E - Ct)’

u = u(s) = u(z — ct),

thus
| % - _CZ%’ (2.121)
}% = ;—s. ' (2.122)
Substituting (2.121)-(2.122) into equations (2.113)-(2.114), we have
-’ +[(1+¢)u) =0, (2.123)
—a/+ud+(H=—%mﬂﬁ (2.124)
where / denotes the derivative with respect to s.
Equations (2.123)-(2.124) can be integrated once to give
—c¢ + (1+ C)u =0, (2.125)
—cu + 1_"21 +¢= —%—cu". (2.126)

From (2.125) we obtain a relation between the wave amplitude ¢ and the wave

speed u as follows

u
(=—, (2.127)
or
g
U= . 2.128
1+¢ (2.128)
These relations show that if ¢ has the form of a single positive hump, so will
u.

'Eliminating ¢ from (2.125)-(2.126), we get

: 1, 1
L + =i — —cuu” =0, (2.129)

—c? -
(1 c)u+cu2 3 3

2
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which is a nonlinear ordinary differential equation with one free parameter, namely
- ¢,and ma,y p;>ssess more than one solutions. In the present case, we are particularly
interested in a solution of the solitary wave form which is similar to the waves
showh in Figure 2.3, and which may exist for an “eigenvalue ” of c. This implies

the following boundary conditions
u=0, at 8 = +oo. (2.130)

Since equation (2.129) is invariant to transformation s* = —s, it permits the
existence of symmetric solutions which have the property

du

- =0, ats=0. (2.131)

Furthermore, for solutions of regular smooth functions,

Z—: =0, at s = foo. (2.132)
Now we let
du
P==, 2.13
Fh (2.133)
thus
d*v dP dP
—_— = —— = P—, 134
ds?  ds du (2.134)
Substituting (2.134) into (2.129), we obtain
v 3 1 1 dP 1 dP
1 _ 2 L2 _ 2.3 —elptt _ 2 _— .
(1 Ju + CU — U + 3¢ Pd'u, 3cuP 7o 0, (2.135)

where the new unknown variable P is considered as a function of the independent
variable 4 and the parameter c.

From (2.135), we have

E___‘ (1—-c®)u+ 3cu? — 1u?
du 1 U= 2 . (2.136)
' = et — = Z(e—u)?

= Pltdge - =gl
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where 8 = 6/c.

- Integrating (2.136) from 0 to u and applying boundary condition (2.130), we

reach
P?(u; c) = Bg(u; c), (2.137)
where -

g(u;e) = B[(1+ %c-z)u + cln(c - u) + %(c —u)? — clnc - %3] (2.138)

Equation (2.137) further gives

du

v 9(u;c)

where we need only to study the positive branch, because of the symmetry of the

= ds, (2.139)

solution.

The existence of real solutions to (2.137) requires that g(u;c) > 0 for certain
domain of u. A plot of the function g(u;c) for various values of ¢ is shown in
Figure 2.4. It is easily seen that the two zero crossing points of g(u;c) correspond
to fll—'; = 0 where the first point v = 0 corresponds to u — 0 as s — oo while
the second point u = u. represents the maximum amplitude of u at s = 0. Thus
the procedure to solve for the steady solution is that we first find the second zero

“crossing point u, of g(u; c) corresponding to a speCiﬁc value of c and then integrate

(2.139) from u. to u to have

u dv .
= | —. 2.140
=7 a0

These last two steps can be easily accomplished with certain numerical schemes:
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Figure 2.4 A plot of function g(u;c) for different ¢’s
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the zero croésing point can be found by applying Newton’s iteration method and

- the integration (2.140) can be done with a second order trapezoidal scheme. The

next step is»to map the results symmetrically to the other half domain, i.e., s < 0
domain and then by using (2.127) to get the steady solitary wave solution for ¢,
which travels with constant speed ¢ of a permanent wave form.

A comparison of the solitary wave solutions between the Boussinesq model
and the KdV model is shown in Figure 2.5. The results show that the shapes of
the solitary waves for both models are very similar. However, quantitively they
are noticeably different. The conclusion is that for waves traveling at the same
speed, the Boussinesq model requires a higher maximum wave amplitude. Russell
(1845) studied the relationship between the maximum wave amplitude ay and the

wave speed c experimentally and he suggested the following empirical formula
c=+v1+4aq or ag=c? - 1. (2.141)

Results obtained from the three models, i.e., the KAV model, the Boussinesq

model and the Russell formula are given in Table 2.1 and shown in Figure 2.6.
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Table 2.1 The Relationship between the Amplitude
and the Speed of a Solitary Wave

¢ a9 (KAV) ag (gB) ag (Russell)
1.050 0.10 0.1043 0.1025

1.075 0.15 0.1598 0.1556
1.100 0.20 0.2177 0.2100
1.125 0.25 0.2782 0.2656
1.150 0.30 0.3413 0.3225
1.175 0.35 0.4070 0.3806
1.200 0.40 0.4757 0.4400
1.225 0.45 0.5475 0.5006
1.250 b.50 0.6223 0.5625
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Wave Speed ¢ vs. Wave Amplitude a,
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Figure 2.6 Comparison among the three models
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2.11 Conservation Laws and the Related Invariants by the gcB and
the cKdV Models

As we kndw, for fluid mechanics, or for any other subjects in the field of clas-
sical mathematical physics, the basic mass, momentum and energy conservation
laws form the fundations of all our theories. Thus upon deriving new theoretical
models, it is ‘essentia.l for us to study and analyze the conservation principles and
the related inva.riants based on these models.

In this section, we will present the analysis of conservation laws on the gcB
and cKdV models for variable rectangular channels. The physical domain is from
Z = —oo0 to £ = +00 and we assume that the flow field at the two ends, i.e., at
z = £00, remains at rest for all times. The submerged moving objects as external
forcing functions are assumed to move along the bottom or along the sidewalls of
the channel. All external forcing functions are assumed to be of higher order, i.e.,
of O(e*). For channels of other geometric shapes, or for cases with semi-infinite or
finite domains, the analysis can be carried out following similar procedures as will
be presented in the sequel.

To study a wave field, we have at least two quantities which are of particular
interest. One is the total excess mass of fluid, M., which is equal to the mass

.above the undisturbed water surface, and is defined as

+00 pb + o0 .
M, =/ / (dydzx =/ 2b(dzx, (2.142)
-0 J—=b

-0

where the integral is assumed to exist.

This excess mass M_ is related to the total mass M of the fluid by the following

relation

+oo L +o0
M= Alz;t)dz = M+ | An(z,t)dz. (2.143)

-0 —co
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The other quantity of interest is the total energy of the wave field

E= E:+E,
= /+w/ / [ (u? + v® + w?) + 2]dzdydz (2.144)
= / (bha? + b(?)dz — / bhlde. (2.145)

For brevity we now omit the bars and the tildes for the mean quantities and

expand

h(z,t) = ho(z) — d(z, ), (2.146)
b(z,t) = bo(z) — B(z,1), (2.147)

where d(z,t) and B(z,t) represent the external forcing functions which are higher

order perturbations to the wave system.

Substituting (2.146) and (2.147) into (2.145), we have

+o0

+oo +o0
E(t) = / (bohou? + bo¢?)dz — / bohddx + / ho(hoB + 2byd)dz + h.o.t.
—00 -0 -_00
| (2.148)
We may also define
400
Ea(t) = E(t) + / bh2ds |
- too » (2.149)
= / (bohou? + bo¢?)dz + h.o.t.,
-0

such that

+00
(Zf = %%— + / ho(hoBt + 2b0dt)d$ + h.o.t.

The total mass M by (2.143) and the total energy F of the wave field by
(2.144) are defined in the physical sense, thus they by:nature obey the basic mass

and energy conservation laws.
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Accordmg to the mass conservatlon law, the total mass M shoud always be

conserved if there are no mass sources in the system. This gives

dM
o -0

or

dM., d [t d [t
=2 /_ A= g | Ade s, (2.150)

If the submerged three-dimensional moving disturbance A4 is a rigid object
without expanding or decreasing its wetted volume, which is the true for the

present study, then
dM,
dt

=0,

i.e., the total excess mass M.=constant is always conserved.
The rate of change of the total energy E is governed by the energy-work

relation for an incompressible and inviscid fluid

[ [uvea
[ [ [ 7w

_ /_ ‘:" /_ b /_ [(pw + (po)y + (pw).Jdzdyda,

-where :
Cpoo pb pC
- / / / (pu)zdzdydz =
—00 ~bJ-—h
+oo ¢ b ‘ b
[t [ mbedsds+ [ pacasdcay+ [ pahanl-adsias
—o —h —b —b
+o00
/ //(pv)ydzdyda:_ / / 2ppv|pdzdz,

+o0 ‘ - “ptoo pb
—f / / (pw)zdzdyd —-/ f'h}awk — pqw|—p|dydz.
—c0 J=bJ-h —co J-b
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In these expressions, Db, pd and p, are the pressures at the surfaces of B, d

and at the free surface, respectively.

By applying the kinematic boundary conditions

wIC = Ct + u(z,
wl—h = —h; — U'hza
v|p = bs + ubs,
we get
: dE +oco .
P -2/  (bopals — hopeB: — bopad:)dz, (2.151)
t -0
or
dE, +oo 1
— = 2 [bopalt — ho(ps — '2'h0)Bt — bo(pa — ho)d:)dz, (2.152)

where pj, and pg can be obtained by applying the Bernoulli equation on the surfaces

of the moving disturbances.
Assuming the moving disturbance d(z, t) is a bottom topography and applying

the Bernoulli equation on the surface of d at z = —hg (z) + d, we have
Pa = ho —d — ¢y + O(e*). (2.153)
Appﬁcation of the Bernoulli equation at the free surface gives
¢t =—( —pa+ h.o..t. (2.154)

Noting that to the leading order ¢, is independent of z, we substitute (2.154)

into (2.153) and neglect the higher order forcing terms to get

PaEE+ ho + O(h). (2.155)
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Similarly for a sidewall topography B(z,t), we apply the Bernoulli equation
~at y=>to get

m=(+ %ho + O(e*). (2.156)

By using the results (2.155) and (2.156), equation (2.152) can be evaluated

to yield

dEz 400
22 / (BupaCs = hoBeC — bode)dz. (2157)

For cases where no external forcing functions are present, the total energy

+o00 +oo
E= / (bohou? + bo()dz — / bohldz
-0

—-0o0
and also

400
E; = / (bohou® + by¢?)dz

-0
are conserved, i.e.,
dE dE

= —_— =

as 2
dt dt
for all times.

The a,bvove analyses are based on the general conservation laws in the physical
sense. Now we will proceed to examine the conservation properties and the related
;invariants possessed by the gcB and cKdV models. These analyses will help to
gain a better understanding on the validity criteria of the wave models we have

derived.

2.11.1 The Generalized Channel Boussinesq Model

For long waves generated and propagating in a rectangular channel, the wave

field can in general be described by the gcB model

(6€)e +[(Bh + bC)ul, = =(bh),, (2.158)
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| h h2
U + UUy + Ca: = —paz+§[h’t + ('U'h):z:]zt - Fuzzt

h? h
+ ‘3—ta + Etht’

where Q@ = (b¢ + ub,)/b. In equation (2.159) the higher order terms hhiQ, and

(2.159)

hhe:Q have been neglected.

, The first equation (2.158) in the gcB model is actually the mass conservation
law ih the exact form. Thus as we already discussed, if the submerged moving dis-
turbance is a rigid body, then the total excess mass is conserved, or M,=constant,
and M, is an invariant of the gcB model.

Integrating the second equation (2.159) in the gcB model and upon using the

undisturbed boundary conditions at £ = +00, we have

d +oo too 4 h2 h2 h
E - udr = [oo [E(ht + (’U,h)m)zt - -6—11,,,,” + ‘E—ta + Etht]dm (2160)

We first study the case without external forcings. In this case h = ho(z),b =

bo(z) and equation (2.160) is reduced to

d +o0 +o00 h h2 h2 h
d—'t- [co udzr = [oo [é’-(u’zo)zzt - Fouz:ct + —3(1ta + ’%hOth]dx (2'161)

Integra.ting by parts gives

- (14 Z(2hg, — hohoge + hohor=—)|udz = 0. (2.162)
dt J_o 6 bo
Define
1 b
c1(e) = £(2hg, — hohoss +'hohosz), (2.163)
+oo :
My, = / 1+ c1(z))udz, (2.164)
-—00
we can write T 5
oM

“‘S»:-_;».‘; dt
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i.e., My is a constant of motion to the gcB model provided there are no external

- forcing functions present.

For a channel of variable width but constant depth, ¢; vanishes, and

+o0
My = M}, = / udz

-0

is conserved.
In the cases where external forcings are involved, we may write
h(il),t) = h’O(:E) - d($, t)a
b(.’D,t) = bO(m) - B(‘Ta t)a
and follow the same procedure as in the previous case to get
dMp; / *+ ho h’ ho

7l - ?dztt + T Bz + —2'h0tht)d$- (2.165)

"To consider the property of conserving energy for the gcB model, we multiply
the continuity equation (2.158) by ¢ and integrate the product over z to have for

the case of time-independent variable channels,
d rte1i +oo +o0
— | =bp(ldz = / bohoul.dz + / (bods + hoBy)Cdz, (2.166)
dt J_o, 2 —oo —00
where the higher order terms (of O(€®) like u((;) are neglected.
The momentum equation (2.159) in the gcB model gives, upon multiplication

with bphou and integration over r,

d [t*1 +oo
= §bohou2dm+ / bohoulzdz
-0 -0
+ 00 1 +oo 1 +c0
= -—/ bohopezudz + 5‘/ boh(z,(uho)utud:z: - -6-/ bohguumtd:z:
1 [Fee 3, boz 1 [t 2
+ 3 boho(—b—u)wtud:r +5 0 ~hghogbog¥térdz + h.o.t.
—0o0 0 J =00 e

¥

(2.167)
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Upon integration by parts, (2.167) can be rewritten as

d [t>=1 +oo
EZ '2-b0ho'u2d$+/ bohouczd.'c
-0 )
. foo g oo (2.168)
= —/ bohopazudr — Et-/ cz(m,t;uz,ui)dx,
-0 -—0
where

1
6

1
6

' b
cy(z, t; uz,ui) = bohguf; - [lbohOmz + boho(—(hiLI= + lh(]zbg,,.]hguz. (2.169)
4 bo 4

Since c; involves only the z-derivatives of various functions, it is actually a
- small quantity of higher order, based on our assumption that the spatial variations
of all variables are small.

Adding (2.168) to (2.166) and multiplying the resulting equation by two, we

have
+oco
-——-—dEbl = —2/ (bohopa,;'u - bodtc - hOBtC)dm, (2170)
dt —c0
where
+o0 too
By = / (bohou? + bo(?)dx + 2/ ea(z, t;u?, uf)de
—oo ' . —oo (2.171)

+oco
=E+ 2/ cz(x,t;uz,ui)dm.

-0

By applying the continuity equation to the leading order, i.e.,

(bohou)z = —bole,

we see that
+oco , + o0 | +oo
/ bohopazudr = —f Pa(bohou)dz = / Pabolider. (2.172)

Substituting (2.172) in (2.170), we rewrite (2.170) as

¥

(bopaCe — bodeC — hoBeC)dx. (2.173)
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Thus we observe that the gcB model conserves mass exactly, and by comparing

+ (2.173) with (2.157), we see that the gcB model also preserves the energy-work

relation, to the order of €*.

2.11.2 The Channel Korteweg — de Vries Model

For waves generated by moving disturbances near resonance and propagating

in unidirection, the wave field can be described by the cKdV model:

1 31 1 1hos, 1b 1,. h
th+<z+§h_OCCz+gh(2)szz+ T R = —5(d+ 7B +pa)s. (2174)

Z?l? 2 bo bO
where ¢ = \/ho(z).

To study the conservation properties of the cKdV model, we first examine the
case for a uniform channel where by=1 and ho=1. In this case, (2.174) is reduced

to

Gt + ¢z + %CC:: + %szz = _’%(d +B +pa)a:- (2175)

It is easily seen that, upon integration of (2.175) over z and applying the
undisturbed boundary conditions at z = +00, (2.175) conserves excess mass, since

+oco
%/ ¢(dz = 0.

~00
For energy-work relation, (2.175) gives

d [tT°1
dt J_. 2

2 )0

1 [tee
Cdg = -+ / ¢(d+ B + pa)odz. (2.176)

Multiplying (2.176) with four and by using the linear approximation /8t ~
—0/0x which is applicable to the cases with near-critical forcing disturbances, we

get .

+°Q R &
=~2:e" (PaCe — (Bi — (dy)du, (2.177)

dEy,
dt
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where

_ oo
E}, = / 2¢%dz. (2.178)

—oo
To undeérstand the meaning of EY,;, we apply the leading order approximation

from (2.67) that

hatu=¢ (2.179)

on equation (2.149) to have

+o00
E, = / (bohou? + by¢?)dz

oo (2.180)
= / 2bo¢dz + O(€);
thus if we define
+o0
Eyo = / 2b¢%dz, (2.181)
)

then

Ey = Eyo + 0(66),

and in the case for a uniform channel,
Eko = E;:o.

Comparing (2.177) with (2.157), we see that the KAV equation (2.175) pre-
serves the physical energy-work relation up to the order of €*.
It has been known that for the unforced constant coefficient KdV equation,
there exist an infinite number of constants of motion (see Miura et al.20).
| However, in the general case of waves being generated and propagating in
a variable channel, the cKdV model (2.174)is muclpe;fhore complicated than the

ving variable coefficients and more terms.

classical KdV equation (2.175) by
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Multiplying (2.174) with cby and integrating over z, we have

d + o0 + o0 3 + oo b
= boldz + / ha/2boCodz + = / 1‘}2 (¢edz
—00 —o0

2 )

. +00 +o0 +00
+ '];/ hglzbOCEzzdz + '1'/ :10/12 boCdz + ; / 1/2b0sz$ (2182)
—o0

6 4 -0 —-—00
1 [t h
= __/‘ ha%bo(d + FOO'B + Do) dz.

2 )0

Integration by parts gives

d [t +oo 1 [t h.
E-/ boCdz = _/ [ea(x)¢? + ca(z)(]dz — _/ ho/*bo(d + -2 B + pa),dz,

tJ —o0 2 —00 bo
(2.183)

where
e3(z) = ( . /2 s (2.184)
5/2 1 hog 1/2 1/2

C4(:E) —(h bO)zm: + - 1 h1/2 —=bo + 2h0 boz — (h bO)a: (2.185)

Since in general the integrals on the right-hand-side of (2.183) do not vanish,
the cKdV equation (2.174) is seen not conserving mass for the cases with variable
channels.

Similarly, if we multiply equation (2.174) with cbo( and integrate over z, we
can show that (2.174) does not preserve the correct energy-work relation (such as
(2.177)) between Eyg and the external forcing functions. |

The reason for (2.174) to fail preserving the original physical conservation
laws, we believe, lies in the violation, in reality, of the basic assumption of unidi-
rectional motion for f.he cKdV model. As waves travel in a variable channel, there
are waves being reflected and since the cKdV model is derived for unidirectional
wave motions, it cannot include the reflected waves traveling in the opposite di-

rection that must carry with them certain mass of thie fluid, and thus the mass

and energy are not conserved du&fo’the loss to the reflected waves.
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The fac_t;that the cKdV equation does not conserve either mass or energy raises
. an immediate question on the validity of the cKdV model. It is thus necessary for
us to analyze and determine in what cases and in which way can this model be
a,ppliéd and how good a prediction it can give for a real wave field.

To answer these questions, we carried out further theoretical and numerical
studies on waves traveling in a divergent and, separately, a convergent channel.
Both models — the cKdV model and the gcB model - are used to study the changes
in wave amplitude and in wave speed when waves are traveling in a variable chan-
nel. The results from the cKdV model are compared with that from the gcB
model, the latter of which possesses quite good conservation properties, as the
above analysis has indicated. The detailed analysis and results on this problem

are presented in Chapter IV.
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III. NUMERICAL SCHEMES FOR SOLVING THE BOUSSINESQ
AND THE KDV EQUATIONS

In our studies we have adopted and applied several different numerical schemes
to compute the Boussinesq two-equation model and the cKdV one-equation model
for various wave phenomena. These schemes are mainly based on the finite dif-
ference appr;ach. The structures of these schemes, along with their properties of

accuracy, instability and efficiency, are presented and discussed in this chapter.

3.1 Finite Difference Schemes for the KdV-Type Equations

The KdV-type equations (2.66) or (2.82) can be written in a general form as

alct + Cz + GZCCE + a3Cz:t:z: + a4C = a3, (31)

or be regularized to

a1 + o + a2((z — a3(zqt + a4C = as, (3'2)

where the a;’s are known functions of (z,t) through ho(z,t) and bo(z,1).

Zabusky and Kruskal?” constructed an energy-conserved finite difference
scheme to carry out numerical experiments on homogeneous KdV equation of
constant coefficients in 1965. In our studies on the forced cKdV equation with
-variable coefficients, we basically adopted their method to compute equation (3.1)
and equation (32) for the problems of the forced generation of run-away soli-
tons and free-traveling solitary waves propagating into a divergent or convergent
channel.

For each term in both (3.1) and (3.2), we use the same differencing — Leapfrog

in time and central difference in space:

¢ gt -¢g!

5t AL + 0((At)?), (3.3)
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M+ +d )—+——9; +0((Az)?), (3.4)
33( -2 zJ+1 +2¢_, - ¢

oz3 Q(Ax)ii =2 4+ 0((Ax)?), (3.5)
&3 j+1 -9 j+1 _71-1 2 ] -1 _ 3__1

- Substituting these finite difference approximations back into the original par-

tial differential equations, for equation (3.1), we reach an explicit scheme as follows
; i 1. At as
Cz‘1+1=d 1—(51— .17.—[1+( ) ( 1.+1+C]+ 1.—1 ]( i+1 )

( ) (Am)3( i+2 — 2 a+ed, - ¢iy) +2At(—')JC3 +2At( )

(3 7
and for equation (3.2), an implicit scheme of tridiagonal system:
as ] J+1 2‘7'3 3 _1+1 J _1+1
(an’c’ +( )’( i -2+ o)
(A )2 i (3.8)

e (i + (G - )
— 2At(as)i¢? + 2At(as5)!.

Both of the schemes (3.7) and (3.8) are second order accurate in time and
space and are conditionally stable. For the simple case of waves traveling in a
rectangular uniform channel where a; = 1, ay = 3/2, a3 = 1/6,v ay = 0 and
a5 = 0, by the von Neumann method of stability analysis, we can obtain the

stability criteria for scheme (3.7) and (3.8) as

At 2 At
ZE[I + 5 ICO” +3 3 (A:L') <1 (3'9)

and

s <yf3a+ 2 (3.10)
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respectively. Here (o is a typical wave amplitude.
From our experience in practical computations, we found condition (3.9) too

strict. Thus instead of (3.9), we may suggest the following criterion for scheme

(3.7):
1 At
6 (Az)?

< 0.39. (3.11)

The first step in the iterations is done by similar schemes but with Euler
forward in time. For scheme (3.7), the typical At and Az being used in our
computations are At =0.002 and Az =0.1. For scheme (3.8), we mostly ﬁsed
At = Az = 0.1. Computations based on these two schemes may cost from 15
seconds to less than 5 minutes of CPU time on a Cray supercomputer depending
on different cases.

Since there exist steady solutions of permenant wave forms to the constant
coefficient KdV equations (2.115) and (2.116), we can always test our numerical
schemes on these solutions and compare the numerical results with the analytical
solutions given by (2.117)-(2.120) to examine the accuracy and the convergence of
our schemes. Figure 3.1 shows the comparison between the numerical result and
the analytical solution based on the KdV equation (2.115) with scheme (3.7), after
a left-going solitary wave ( a9 = 0.3 ) having traveled 92 water depth. Figure 3.2
shows similar results based on the regularized KdV equation (2.116) with scheme
(3.8). In fhese figures the solid lines represent the numerical résult and the dashed
lines the analytical solutions. In these two test cases, the results show that the
relative errors in maximum wave amplitude for both cases are about 0.3%.

Schemes (3.7) and (3.8) are applied in our computations to study the forced
generation of run-away solitons, free-traveling waves propagating in a divergent or

convergent channel and the comparison made between the forced KdV equation
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and the regﬁlarized KdV equation.

- A simple algorithm to solve a tridiagonal matrix like (3.8) is presented in Ap-
pendix II and the detailed von Neumann instabilty analysis of different numerical

schemes can be found in Appendix III.

3.2 Predictor-Corrector Finite Difference Schemes for the gcB Model

In this section we present the numerical schemes to compute the gcB model
(2.110)-(2.111) for a rectangular channel of variable width but constant depth; We
are interested in two cases. In the first case, waves are traveling into a divergent
or convergent channel without external moving disturbances, and the half-width
b = b(z) is a function of z only. In the second case, waves are generated by
a disturbance of finite longitudinal length moving along the two side-walls of a
uniform rectangular channel. So the half-width in this case is b(z,t) = 1 — B(z, t)

where B(x,t) represents the disturbance.

Case I b=b(x)

For this case, the gcB model (2.110)-(2.111) can be written as
b, + [B(1L+ CJula =0, | (312

by

Ug + Uty + ( = [uzzt+ b

- Ugt + ( )a:ut] (3.13)

Applying Euler forward in time and central difference in space, we obtain the
following finite difference scheme for equations (3.12)-(3.13)
At b,+1

Cg“ =(] - oAz —(1+ +1)uz+1 + 5a

At b,_l

2A (1 + 1—1) {-—1’ (3'14)
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1 1

bz 1 41 2 1 ey (o g
= 3(Ax)? + 6A:l:( b JiluiZly +[1+ 3(Az)? 3(( b )z )il
' 1 L bayy g N o _
T 3(Az)? - GAm(f)']uzill = U - g@(u{H +ul +ul_)(ul, —uly)

- 522 (¢ = 6 - Az — 20 +uiy)
- s (Dl = vn) = (o)l
. (3.15)
The first difference equation (3.14) is explicit while (3.15) is an implicit tridi-
agonal system. Together, scheme (3.14)-(3.15) is a straight forward one-step finite
difference scheme. It is first-order accurate in time and second-order accurate in
space. The scheme is conditionally stable. In our computations, the typical At
and Az we used are At = 0.0005 and Az=0.1. The choice of the very small At
is to ensure the high accuracy of the scheme that is required by the particular
physical problem that we are studying in this case. To test the accuracy and the
convergence of the scheme, we first run a case for a right-going solitary wave (based
on the gcB model) propagating in a uniform channel and then compare the result
with the theoretical solution given by (2.140). The results are shown in Figure
3.3. The relative change in the maximum wave amplitude of the ‘permanent’ soli-
tary wave is about 0.5% after thevwa,ve has traveled 92 water depth by scheme
(3.14)-(3.15). For a real case of waves traveling into a variable channel, ‘the com-
>puta,tion with 4000 grid pionts may cost about 20 minutes of CPU time on a Cray
supercomputer for waves traveling out 300 water depth. A more efficient two-step
predictor-corrector scheme can be constructed based on a one-step scheme, which

we will show for Case II.
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Case II b(x,t)=1-B(x,t)
~ Since we assume that the external forcing function B(z,t) is a small per-
turbation to the wave field, the gcB model (2.110)-(2.111) can be simplified by

neglecting the higher order terms

(6¢)¢ + [6(1 + {)uls = By, (3.16)
1 1
Ut + UUg + (g = —Paz + '3"ua:zt - ngtt- (3.17)

To solve equations (3.16)-(3.17) numerically, we construct a scheme that in-
volves two steps to forward in time. The first step is called the predictor-step
where we apply central difference in space and Euler forward in time. This step
gives a ‘predicted value’ of the unknowns at the new time level. Denoting this

predicted value with *  we have the scheme for the predictor-step as
bIFi¢ = () + Atf1(b,C,u, By, (3.18)

~oul_y+(14+20)uf —ouly = uf —o(uly, —2ul+ul_,)+Atfr(( 4, Bow), (3.19)

where
(FY] = =56+ Oy = L+ Ol + (B, (320)
() = — g bl ) (g — )= 5 (G =)~ (Bal, (321)
1

Scheme (3.18) is explicit, while (3.19) is an implicit scheme of tridiagonal
system. The second step is called the corrector-step whose basic structures are the
same as in the first step, except that for the second step we will make use of the
results we just obtained from the predictor-step to reach a better or ‘corrected ’

finite difference approximation of the unknown values at the new time step. This
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is done by tdking the average of the values of the previous time level and the

. predictor-step for functions f; and f; in the corrector-step

WG = (607 + 5 At (b, 6w, B + AT, Gul (BT, (329)
—oull] + (142006l —oull] = o] — o(uly; — 2u] +ulyy)
S A2 (G, Baw) + a(CEuf, (Baue) i)

(3.24)

This predictor-corrector two-step scheme (3.18)-(3.24) is second-order accu-
rate both in time and in space. It is more stable than scheme (3.14)-(3.15) and
thus permits the use of larger At’s. The typical At and Az we used are At=0.01
and Azr=0.1. The reéult of the test on solitary wave propagating in a uniform
channel is shown in Figure 3.4. After the wave has traveled 92 water depth, the
relative change in the maximum wave amplitude is about 0.3%. In a typical run
for waves traveling out 200 water depths, the computation with 6000 grid points

costs about 2 minutes of CPU time on Cray.

3.3 Discretization of the Computational Domain and the Boundary Con-
ditions

In most of the cases in our studies, the physical domain of the problem is
from —oo to +oco except in the case of waves being generated by boundary forcing
where the domain is [0, +oo) In our numerical computations, we choose the
computational domain to be of finite length as [—s/2,s/2] or [0,s/2]. In order to
make the numerical simulations consistent with the original physical problem, we
choose s big enoﬁgh such that the flow field at z = +s/2 is virtually unperturbed
and thus remains at rest for all times.

The computational domain is always discretized into evenly spaced N grids

and the iterations of the schemes are proceeded on the grid points. For scheme
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(3.7), since a third derivative term is involved, we need to provide conditions for

~ two end poiﬁts at each boundary. This is easy to accomplish if the problem we

are studying is for an infinite domain and for which we assume the unperturbed

boundary conditions. In these cases, the numerical boundary conditions for scheme
(3.7) will be

d=3=0=Cu=0 (3.25)

If the problem is for [0,s/2], scheme (3.7) requires special treatment at the

boundary z = 0. All other finite difference schemes require conditions for only one

end point at each boundary.
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IV. EVOLUTION OF A SOLITARY WAVE TRAVELING
IN A DIVERGENT OR CONVERGENT CHANNEL

When a solitary wave travels in a channel of variable cross-sectional shape, its
amplitude and speed will vary due to the change in channel width and depth. It is
of signiﬁca,n(;e to study quantitatively how the wave amplitude and wave speed will
be modulated for a wave traveling into a variable channel. The results of the study,
when further combined with the analysis of wave dissipation due to viscosity and
the roughness of the channel bed in reality, can have useful applications to flood
control problems in rivers or to near-coastal engineering. In recent years, several
studies have been carried out on the evolution of a solitary wave traveling into
a variable channel. Shuto?® (1974) derived a KdV-type equation to describe the
propagation of nonlinear long waves in a rectangular channel of variable section.
Starting from the Euler equation and by using perturbation expansions, he reached
a variable coefficient KdV equation written in the moving frame. Shuto’s model is
similar to the cKdV model we derived in the present study, except that in his case,
the cha.nnel has rectangular sections and the external forcing functions were not
considered. Miles!® (1979) further studied on Shuto’s KdV equation for a gradually
varying channel. He ejxa,mined the conservation properties of Shuto’s model and
pointed out that the variable coefficient KdV equation does not conserve mass
due to the neglect of the reflected waves. The problem of the reflected waves
was analyzed based on linear theory and an approximated correction to the KdV
equation was given. Chang et al.? (1979) performed experimental measurements
on solitary waves propagating in a linearly diverging or linearly converging channel
of rectangular sections. The experimental data were compared with the numerical

results based on Shuto’s model. Their results for a linearly diverging channel
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showed good agreement with the prediction that a oc W~2/3, where a is the
amplitudé ‘ohf the solitary wave ?md W the channel width. For linearly converging
ch;u}nel the wave growth was approxima.téd by a « W=1/2, The analyses of all
the above studies were performed in the moving wave-frame coordinate.

Our present study on the evolution of a solitary wave traveling into a variable
channel is emphasized not only on the physical aspects, but further on a more
careful examination of the conservation laws and the validity of the channel KdV
model. Since we not only obtained a cKdV equation, but also derived a generalized
channel Boussinesq model which conserves mass exactly and permits the traveling
of waves in both directions, we are able to study the problem based on a moré
accurate model (i.e., the gcB model) than the cKdV model, and by comparing
the results between the two models, we will be able to see quantitatively the loss
of mass and energy due to the reflected waves, and further examine the effects of
neglecting the reflected waves on the validity of the cKdV model.

Numerical computations were carried out to study the propagation of a soli-
tary wave in a rectangular channel of linearly varying width but of constant depth.
The computations are based on both the gcB and the cKdV models, and the equa-
tions are wﬁtten in the fixed laboratory coordinates rather than the transformed
wave coordinate system. The changes in wave amplitude and speed were exam-

ined. We also computéd the total excess mass, the total energy and other related
invariants. The results were compared between the two models. Our results show
that even though the cKdV model can dictate solitary waves to lose or gain mass to
more than 50% due to the reflected wave, it still provides quite correct predictions

for the wave amplitude and the wave speed of the main transmitted waves.
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4.1 Governing Equations

- The motion of free waves traveling in a channel of variable width but constant

depth is described by the generaliied channel Boussinesq equations

b¢: + [b(1 + Q)u], =0, (4.1)
1 1b 1%
Ug + Ul + C:c = ‘guz:z:t + gfuzt + E(f)zut, (4.2)

which are deduced from equations (2.109) and (2.110). This theoretical model
will be employed to make comparisons with the results obtained from the channel

KdV model,
1b,

3 1

In the present case, the channel width b = b(z) is linearly varying in space as
follows:

bO) —81 S-’BSO;
b(:n):{b0+aa:, 0 <z < sy
b1, S2 < x < 89 + 83;

where the expansion angle o is a small constant. This is the same configuration
considered by Chang et al.? in their experimental and numerical studies.
Based on the results from section 2.11, the gcB model (4.1)-(4.2) gives the

following conservation laws for the present case:

dM, d [t
aMy, d [t _
 Tat /_oo udz =0, (45)
dBy _d [*°  , -
= =3 . b(u* + (*)dz + h.o.t. =0, (4.6)

while the channel KdV model (4.3) gives

dM, [t 3, 5 1
- = /_ . (b2¢ + 5b2C* + Zbalec)dz, (4.7)
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and
dEyg _ d [T o
It —dt/—oo 2b¢*dx
oo a2 1
= / (2sz3 + ‘szsz - "'b:c(:)dz' (4.8)
-0 3 3 v

Thése results show that the gcB model conserves both the excess mass and
the fotal energy while the cKdV model does not conserve either mass or energy,
even though the rate of change in total energy may be slow, since the terms on
the right hand side of (4.8) are small, being of O(|¢|?) versus the O(|¢|) for the
estimates of dM, /dt.

4.2 Numerical Results

A sketch of the divergent and convergent channel is shown in Figure 4.1. The
initial solitary wave is at £ = —s¢. After it travels to the right in a uniform channel
for a length of sg, it enters a variable section, which is of length s2, and propagates
with modulated amplitude and speed. Finally it enters another uniform section
which is of length sj3.

The essential parameters in our studies are cg, the speed of the initial solitary
wave, «, the expansion angle of the variable section of the channel, and also in
the general case other than linearly varying channels, the curvature of the variable
section.

The numerical computations are based on both the gcB and the cKdV models.
The gcB model (4.1)-(4.2) is computed by applying scheme (3.14)-(3.15) presented
in Chapter IIIL. Fdr the cKdV model (4.3), we use the explicit scheme given by (3.7).
The results of test runs on accuracy showed that after a solitary wave (cp=1.15,
a9=0.3 by KdV and a(=0.3413 by gcB) has traveled 92 water depths in a uniform

channel, the relative change in wave amplitude is less than 0.5% by both schemes.
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The quantities and wave features that we are particularly interested in study-

. ing are the change of wave amplitude and wave speed in the variable section, the

total excess mass and the total energy, the loss of mass and energy dﬁe to the
reﬂeéfed waves, and the change in the wave profile. Four cases with different sets
of values of parameters are investigated and the results are compared between the
two different models.

In our studies, the convergent channel may be regarded as the same channel as
the divergent channel, only with a change of propagation in the opposite direction.
We study the evolution of a solitary wave traveling in a divergent channel and in
a convergent channel as a pair in each case. The speed of the initial solitary wave
for the convergent channel is chosen to be the same as that of the terminal wave
traveling out of the divergent channel. The parameter ¢y in the title of each of the
following cases represents the speed of the initial solitary wave for the divergent
channel. From the results presented in section 9.2, we observe that the steady
solitary wave solutions for the gcB and the cKdV models are noticeablly different:
for the same wave speed, the gcB model requires a higher wave amplitude. In each
of the following cases, both the gcB and the cKdV models will be computed and
the comparison between the two models will be based on the wave speed instead
of the wave amplitude.

The total length of the channel is six hundred (water depths) with s;= 300.0,
$2=100.0 and s3=200.0. This is true for most of the cases. The detailed values of

different parameters in all cases are summed in Table 4.1.
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Table 4.1 Values of Different Parameters
L % 5 & 852 s 9 @
Case I (div.) 2.0 0.019 58 30.0 | 300.0 100.0 200.0 1.050 0.100
Case I (con.) 5.8 -0.019 2.0 30.0 300.0 100.0 200.0 1.027 0.054
Case II (div.) 2.0 0.038 9.6 30.0 300.0 100.0 200.0 1.050 0.100
Case Il (con.) 9.6 -0.038 2.0 30.0 300.0 100.0 200.0 1.020 0.040
Case Il (div.) 0.5 0.019 4.3 10.0 300.0 100.0 200.0 1.093 0.185
Case IV (con.) 3.0 -0.019 0.34 10.0 300.0 70.0 230.0 1.087 0.174
where cp is the speed of the initial solitary wave and aq is the initial amplitude

based on the KAV model.

4.2.1 Case I ¢y =1.05, |a] = 0.019, b(z) linearly varying

A. Results based on the gcB model

(1) Divergent channel

The channel width of the entrance uniform section is 2bp=2.0. The initial
wave takes the form of a gcB-solitary wave of amplitude ag=0.1043 and speed
co=1.05. It starts at £=-30.0 and travels to the right to enter a linearly diverging
channel. Computations are run for time ¢ from 0.0 to 150.0. The numerical
results for the wave amplitude are shown in Figure 4.2(a). It is a plot of the wave
elevation in a time series with the increment of At=20.0. These results show that
as a solité.ry wave travels in a divergent channel, its amplitude decreases. Also,
a negative wave train is clearly reflected downstream. The front of the reflected
wave travels in the negative = direction with a near critical speed (cy =~-1.0). For
the transmitted wave, its profile remains close to a solitary wave form, except that
it becomes steeper and has evolved an undular wave tail of very small amplitude.

The detailed comparison between the transmitted wave and a permanent solitary
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Solitary Wave Traveling into a Diverging Channel(gcB)
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wave is shown in Figure 4.2(b) and Figure 4.2(c) for the wave at z=>53.1 and
. at x=124.6, ;espectively. When the wave enters and travels in the final uniform
sect;iqn, its wave amplitude continues to decrease, though at a lower rate. This
contihuous change in the wave amplitude is due to the negative wave tail in the
trailing region. At the final time ¢=150.0, the wave travels to £=124.6 with the
amplitude decreased to a=0.05548 (speed ¢=1.0271).

The total excess mass M, is exactly conserved as shown by the solid line in
Figure 4.2(d). The total energy Ej is also conserved, with an error of 2.1%. The
result for E} is shown in Figure 4.2(1) by the solid line. The dashed line in Figure
4.2(d) represents the gain of mass at the expense of the reflected waves. We can
see that even though the wave amplitude of the reflected wave is small, the total
mass it carries in is relatively large, because of the great length of the negative
wave region. At the final time t=150.0, the local excess mass possessed by the
reflected wave is about 75.7% of the original total excess mass. Since the total
excess mass is always conserved, we expect that the local excess mass possessed
by the transmitted solitary wave will increase by 75.7%. To compare with cKdV’s
results later, we also plot the time record for the approximate energy [ j:: 2b¢%dz,
which is shoﬁn in Figure 4.2(e) with a solid line. The dashed line in the same
figure stands for the loss of energy due to the reﬂected waves, which we observe
i;.s very small. At the ﬁﬁa.l time of t=150.0, the loss of energy due to the reflected
waves is about 2.6% of the initial total energy.

(2) Convergent channel

- The initial ché,nnel width for the convergent channel is taken to be the same as
that of the exit channel width for the above divergent channel case, i.e., 2by=>5.8.
The initial solitary wave has an amplitude a¢g=0.05545 with speed cy=1.0271. It

also starts at £=-30.0 and travels to the right. A plot of the wave field in a time
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" Comparison between a Transmitted Wave and a Solitary Wave
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Excess Mass [ 2b{dz vs. time(gcB)
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series is shown in Figure 4.2(f). In this case the wave amplitude increases as the
. solitary w?wia travels in the convergent channel. Detailed comparisons between a
solitary wave profile and a transmitted wa%/e profile at two different locations are
shown in Figures 4.2(g) and 4.2(h). We see that in this case the wave profiles
become less steep than the corresponding free solitary waves of equal amplitude
and they also travel with a reflected wave tail of very small positive amplitude. At
the final time t=150.0, the wave travels to £=125.9 with the amplitude increased
to a=0.0966 (speed c=1.0465).

The total excess mass M, is exactly conserved. The relative change in thg
total energy Ej is about 1.1%. The time records for M, and E} are shown in
Figure 4.2(i) and Figure 4.2(1), respectively.

For a solitary wave traveling in a convergent channel, a positive wave train
is reflected in the downstream region. The front of the reflected wave travels
with a near critical speed (cy ~-1.0) downstream. The final loss of mass of the
transmitted wave due to the reflected wave (shown by the dashed line in Figure
4.2(i)) in this case is 42.4% of the initial total excess mass. The loss of the energy
due to the reflected wave is about 1.8%. (See Figure 4.2(j).)

Figure 4.2(k) shows the change in the amplitude of the solitary wave when it
travels in the variable sections. The solid line represents the results for the diver-
éent channel case while the dashed line represents the results for the convergent
channel. The results for the convergent channel are plotted in such a way that
the wave is supposed to travel in the same divergent channel, but in the opposite
direction, i.e., in the negative = direction. We see that at the final time for the
convergent channel case, the wave amplitude does not come back exactly to the
initial wave amplitude which is that before entering the divergent channel. The

relative difference is about 7.2%. This can be attributed primarily to the fact that
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Solitary Wave Traveling into a Converging Channel(gcB)
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Comparison between a Transmitted Wave and a Solitary Wave

S L N L [ N L N O N B B B
- -
0.08 — Case I ‘ —
n
~ 0.04
wave .|
0
[ Transmitted gcB model for converging channel
- Solitary =0.0674, ¢ = 1.032
~0.04 |— ¢ ¢ 8
coao b e by ey by
40 50 60 70
space X

Figure 4.2(g)

Comparison between a Transmitted Wave and a Solitary Wave

lllllllflll ll‘llllllj

0.08

0.04
wave
0
[ Transmitted gcB model for converging channel ]
it Solitary a = 0.0966, c = 1.0465
-0.04 — —
PR N YN S WO NUN N N N SN TN AN Y WA WO S
110 120 130 140
space X

Figure 4.2(h)



83

Excess Mass [ 2b{dz vs. time(gcB)
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Change in Wave Amplitude (gcB)
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the terminal wave out of a divergent channel is no longer an exact solitary wave

- due to the reflected wave tail. Thus even though we choose the amplitude of the

initial solita;y wave for the convergent channel to be of the same amplitude as that
of the terminal wave out of the divergent channel, it is not an exact reversing case
with respect to the divergent channel case. This also explains why in Figure 4.2 (1)
there is a jump between the energy associated with the terminal wave exiting ffom
the divergent channel and that of the initial solitary wave entering the convergent
channel.

The power-laws ab™=constant are also examined. The results are shown in
Figures 4.2(m) and 4.2(n). For a solitary wave traveling in a divergent channel,
we find that the change in wave amplitude is better approximated by the -‘;’--power
law, rather than either %-power law or %-power law. For the convergent channel
case, our numerical results agree with Chang’s conclusion that the modulation of
wave amplitude is predicted by the %-power law.

B. Results based on the cKdV ﬁmdel

(1) Divergent channel

The basic parameters are taken the same as that for the gcB model discussed
above. An initial KdV-solitary wave of amplitude ap=0.1 and speed 1.05 is placed
at £=-30.0. It travels to the right to enter the diverging section of the channel.
Figure 4.3(a) shows the numerical results for the wave elevation at different time
levels. At the final time ¢t=150.0, the wave arrives at £=124.7 with an amplitude
of a=0.05433 and speéd ¢=1.0272. The wave profiles at £=53.1 and £=124.7 are
compared with the corresponding solitary wave profiles with equal amplitude. (See
Figures 4.3(b) and 4.3(c).) These results show that for the main transmitted wave,
the cKdV model predicts the waves to have very similar features as the gcB model

does. Interestingly, they are found in quite good agreement, not withstanding that
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Solitary Wave Traveling into a Diverging Channel(KdV)
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the cKdV model fails in preserving the excess mass by a broad margin (see below).
. Table 4.2 gives a quantitative comparison between the two models for the wave

speed at two different times.

Table 4.2 Comparison between the gcB Model and
- the cKdV Model for the Transmitted Wave Speed (divergent)
time geB cKdV
80.0 1.3045 1.3046
150.0 1.0271 1.0272

The relative difference between the two models for the transmitted wave speed

is within 0.01%.

The most significant differences between the two models are found in respect
to the mass conservation properties and to the reflected waves in the downstream
region. Figure 4.3(a) shows that the wave field in the downstream region is almost
unperturbed according to the cKdV model, while in Figure 4.2(a) the gcB model
predicts clearly a reflected wave that travels with near-critical speed in the negative
z-direction, albeit very small amplitude. The time record of the total excess mass
M. based on the cKdV model is represented by the solid line in Figure 4.3(h). We
see that according to the cKdV model, the total excess mass M, is not conserved.
At the final time t=150.0, the relative increase in the ‘total’ excess mass is about
73.5% with respect to the initial value for the divergent channel. Comparing this
increase with the gain of mass by the transmitted wave due to the reflected waves
which is 75.7% predicted by the gcB model, we can see that the ‘total’ excess
mass given by the cKdV model is actually the local excess mass possessed by the
transmitted wave. The final change in the total energy is about 3.5% by the cKdV
model. (See Figure 4;3(i).) This also agrees with the prediction by the gcB model
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that the loss of energy due to the reflected waves is small (2.1%).
As for'thne power-laws, the cKdV model gives similar results as the gcB model.
(2) Convergent channel |
The numerical results are presented in Figures 4.3(d) to 4.3(k) and in Table
4.3.

G Table 4.3 Comparison between the gcB Model and
the cKdV Model for the Transmitted Wave Speed (convergent)
time geB cKdV
80.0 1.0328 1.0335
150.0 1.0465 1.0482

The relative difference between the two models for the transmitted wave speed
is within 0.2%.

The final decrease in the ‘total’ excess mass by the cKdV model is 42.2% com-
pared to the loss of mass due to the reflected wave, 42.4%, by the gcB model. The
change in energy is 4.0% at the final time, compared to 1.8% reflected according
to the gcB model.

It is clear that the failure of the cKdV model in conserving the total mass
and total energy is caused by the neglecting of the reflected wave. However, this
I}eglect of the reflected wave does not affect the validity of the cKdV model in the
transmitted wave .region. Aside from the computational error, the cKdV model
gives the same prediction for the main transmitted wave as the gcB model. The
‘total’ excess mass and energy given by the cKdV model are actually the excess

mass and energy for the local transmitted wave.

4.2.2 Case II ¢y = 1.05, |a| = 0.038, b(z) linearly varying

In this case, the expansion angle is increased to |a|=0.038, which is twice
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Comparison between a Transmitted Wave and a Solitary Wave
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as that in Case I. All other parameters remain the same as in the previous case,

- except that the final width (2b1) in the terminal uniform section is increased to

9.6 in the present case. The numerical results for Case II are shown in Figures
4.4(a) to 4.5(g).

(1) Divergent channel

As we see from the numerical results, the general wave features in the present
case are quite the same as that in Case I, except that when the expansion angle
is increased, the reflection of waves becomes stronger. At the final time i=150.0,
according to the gcB model, the reflected wave (with a negative amplitude) carries
away a negative excess mass whose absolute value is 127.0% of the original total
excess mass. The loss of energy due to the reflected wave is about 6.0%. Cor-
respondingly, the cKdV model predicts an increase of 124.5% in the local excess
mass possessed by the main transmitted wave. The final increase in energy based
on the cKdV model is 4.3%.

Again, for the main transmitted wave, the two models give consistent predic-
tions for the wave speed. At time t=150.0, the speed of the transmitted wave is
¢=1.0202 predicted by the gcB model while the cKdV model gives ¢=1.0205. The
relative difference is about 0.03%.

(2) Convergent channel

The speed of the initial solitary wave is ¢y=1.0202, which corresponds to a
wave amplitude of ap=0.0411 for the gcB model and ap=0.0404 for the cKdV
model. After the solitary wave with this initial speed travels for about 150 water
depths from z=-30.0 to £=125.4 in a convergent channel, the loss of mass and
energy due to the reflected wave based on the gcB model are 56.7% and 4.3%,
respectively. The cKdV model predicts a decrease in both the excess mass and

energy of the local transmitted wave. The quantitative numbers are 55.2% decrease
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Solitary Wave Traveling into a Diverging Channel(gcB)
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Solitary Wave Traveling into a Converging Channel(gcB)
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in the excess mass ahd 5.0% decrease in the energy, based on the cKdV model.

- 4.2.3 Case III co = 1.0925, a = 0.019, initial width by = 0.25, linearly divergent

The present case and the following case, Case IV, are designed to compare the
numerical results based on our two long wave models with the experimental data
obta.inedi by Chang et al.? in 1979. Even though the expansion angle is the same
as th#t in Case I, the initial width of the uniform entrance section is much smaller
in the present case. This results in a much larger ratio of the terminal channel
width over the initial width, which is 4.3/0.5=8.6 compared with 5.8/2.0=2.9 in
Case 1. The parameters are so chosen to be consistent with the experimental set up
in Chang’s studies. With this larger change in the channel width, we expect that
more waves will be reflected and the change in the amplitude of the transmitted
wave will be greater. In the present case, the initial wave starts at £=-10.0 instead

of £=-30.0.

A plot of the wave elevations predicted by the gcB model at different time
steps are shown in Figure 4.6(a). Compared with the results based on the cKdV
model (see Figure 4.7(a)), the reflected wave field becomes more obvious and a
clear front of the reflected wave is seen to travel in the negative z direction with

near-critical speed.

Figure 4.8(a) and 4.8(b) show the comparison of results between our two
models and Chang’s experiments for the change in wave amplitude. While the re-
sults based on our two long wave models remain consistent, they show noticeable
differences from the experimental results obtained by Chang et al. The numer-
ical results and the experimental data are close near the entering part of the
variable channel, while the difference becomes larger near the end of the chan-

nel. The maximum relative difference between our numerical results and Chang’s
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Solitary Wave Traveling into a Diverging Channel(KdV)
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Comparison between the Numerical and Chang’s Experimental Results
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Comparison between the Numerical and Chang’s Experimental Results

11 p T T I T T T | T T T |
1.08 -—\\ Case III divergent channel
1.06 —
c |
1.04 —
1.02 —
- —— Chang ¢ wave speed
1 I ! 1 | I ] ] | I ] I |
0 40 80 120

Figure 4.8(b)




118

experimenta.l'resultsvis about 36.8%. This difference may be caused by the numer-
. ical and eiﬁe;ﬂmental errors. Another reason may lie in the viscous damping of
the wave amplitude in the real experiments. This point will be discussed in 4.2.5.

Résults associated with other quantities of interest, e.g., the excess mass, the

total energy and the power laws, can be found through Figures 4.6(a) to 4.8.

4.2.4 Case IV ¢y = 1.087, a = —0.019, initial width by = 1.5, linearly convergent

In the present case, the initial solitary wave has a speed of cg=1.087, which cor-
responds to a wave amplitude of ¢p=0.1873 based on the gcB model and a¢=0.174
by the cKdV model. The solitary wave starts at £=-10.0, where the initial channel
width of the uniform section is 2bp=3.0, then it travels into a convergent section of
length $,=70.0 water depths. The terminal channel width is 2b;=0.34. The ratio
of the initial channel width over the terminal channel width is 3.0/0.34=8.82.

The comparison between the numerical results and Chang’s experimental re-
sults is shown in Figure 4.11(a) and 4.11(b). In the present case for a convergent
channel, the results based on our theoretical models show excellent agreements
with Chang’s experimental data throughout the whole variable section, with the
maximum relative difference being about 3%. After the wave exits from the vari-
able section with a relatively large amplitude, the gcB model and the cKdV model
Predict different a.mplii;udes for the transmitted wave. This is understandable,
however, since theoretically the two models possess permanent-wave-form solu-
tions of different amplitudes for the same speed, and the difference in amplitude
becomes more appreciable as the amplitude increases. (See section 2.10.) The
experimental data are not available beyond z = 60.0.

In both Case III and Case IV, the mass conservation laws are examined. The

following table gives the detailed data of the reflected mass by the gcB model
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Solitary Wave Traveling into a Converging Channel(KdV)
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Comparison between the Numerical and Chang's Experimental Results
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Comparison between the Numerical and Chang's Experimental Results

1.3 T T T | T T T [ T T T |

1.25 — Case IV convergent channel —
1.2 — —
€1.15 — —]
11— —
s .
.05 77 ff{}?lv ¢ wave speed —
| — — Chang _
1 C 1 i 1 | I 1 I | I 1 ! | N

0 40 80 120

x

Figure 4.11(b)



127
(My,z:) and the change in the ‘total’ excess mass by the cKdV model (My).

Table 4.4 Mass Conservation Laws
Casel 75.7% 73.5%
Case II 42.4% 42.2%

Case IIT  225.9% 210.6%

Case IV 76.5% 70.5%

4.2.5 Viscous Damping of Solitary Waves

Theoretically a solitary wave can travel in a uniform channel for infinitely
long time without changing itsvsha.pe and speed. In a real experiment, however,
because of the existence of fluid viscosity, the amplitude of a solitary wave traveling
in a straight uniform channel will gradually decrease due to viscous dissipation.
The problem of viscous damping of solitary waves was studied by Keulegan!? in
1948. By applying the boundary layer theory for laminar flows, he derived a
simple formula to predict the gradual decrease in amplitude of a solitary wave due
to viscous damping. His formula is adopted in the present study to estimate the
viscous effect on the change of wave amplitude in Case III and Case IV, where our
numerical results on the evolution of a solitary wave traveling in a divergent or
convergent channel are compared with the experimental results obtained by Chang
et al.

Keulegan’s formula appears as

a1 _'-}.— a_l(l._l= i ;

where the coefficient of damping has the value

1 2H, [ v
K= ﬁ(l + W) W (4.10)
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" In expressions (49) and (4.10), a; is the decreased amplitude after the solitary
wave has traveled a distance of s and apq is the initial amplitude of the solitary
.wa.vé. H stands for the water depth, W the channel width, v the kinematic

viscosity of the water (v = 1.007 x 10~Sm? /8, at T = 20°c) and g the acceleration

of gravity (g = 9.8m?/s).

In Case IfI with a divergent channel, we note that H=0.2 m and a10/H=0.185
in Chang’s ekperiment. We take W/H = 1/2(2.15 + 0.25) = 1.2 as the averaged
channel width and s/H=80.0 as the distance that the solitary wave has traveled.
In Chang’s experiments, the channels were not symmetric and they represented the
configuration of half-channels in either the +y-plane (divergent) or in the -y-plane
(convergent) in our numerical simulations. The width (W = 2b) in the numerical
computations is thus twice as that (W = b) in the experiments. Substituting these
paraﬁnetérs into formula (4.9), we obtain an estimate for the wave amplitude at
s/H=80.0 as a;/H = 0.174, which gives a relative change with respect to the
original amplitude a;9/H=0.185 as about 8.1%. For Case IV, by following the
same procedure of calculation, we predict the decrease in wave amplitude due to
viscous damping after the solitary wave has traveled 60 water depths as about
5.7%. These results show that the viscous damping of the wave amplitude in
these cases are relative large and thus must be considered when we compare the

numerical results with the experimental data.

After the correction due to the viscous damping, the numerical results in Case
III (Figure 4.8(a)) will have closer agreements with the experimental data. For
Case IV this cbrrection will bring the numerical curves (Figure 4.11(a)) below the
experimental curve and the relative error after the correction is still small (within

3%) in this case.
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4.3 Summai'y

In this chapter we have applied both the gcB and the cKdV models to study
the e%)olutioﬁ of a solitary wave traveling in a channel of linearly varying width.
Four cases with different sets of parameters are investigated. As we analyzed in
Cha.pter II, the gcB model conserves mass exactly and conserves energy to cer-
tain order, while the cKdV model, when applied to study a problem with variable
channels, does not conserve mass and energy in general. This is caused by the
violation of the assumption of unidirectional motions for the cKdV model. How-
ever, compaiing the numerical results based on the cKdV model with that based
on the gcB model, we found that even though the cKdV model does not conserve
the total excess mass, it gives the same prediction for the main transmitted wave
as the gcB model. In other words, the neglect of the reflected wave in our the-
oretical derivations does not affect the validity of the cKdV model for the main

transmitted wave.

When a solitary wave travels in a divergent channel, there are waves reflected
in the opposite direction opposing the main transmitted wave. The reflected wave
has a negative amplitude and its front travels with a near critical speed. Even
Phough the amplitude of the reflected wave is small, its length is relatively long
and the reflected wave can carry away quite large amount of mass. This causes a
corresponding change in the local excess mass possessed by the main transmitted
wave. For a divergent channel, the transmitted wave may gain mass by 75% to
225% after traveling 100 water depths in the variable section. For a solitary wave
traveling in a convergent channel, the transmitted wave loses mass by 42% to 72%
due to the reflected wave of positive amplitudes. The loss of energy caused by the

reflected wave is of higher order.
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Our numerical results showed good agreements with Chang’s experimental
- results for a solitary wave traveling in a convergent channel. For a divergent
channel, the agreement is not uniform throughout the channel and the maximum

relative difference at the end of the channel is about 36.8%.
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V. FORCED GENERATION OF RUN-AWAY SOLITONS BY
THREE-DIMENSIONAL MOVING DISTURBANCES

I;; a channel of shallow water, nonlinear long waves can be generated in many
ways. A pressure distribution at the free surface, a moving topography along the
boundary or a submerged object, when moving with a near-critical speed, can all
generate a series of solitons advancing upstream, while a train of weakly nonlinear
and weakly dispersive waves develop in the downstream region. The solitary waves
generated in front of the moving disturbance propagate upstream with a greater
speed than fhe steadily moving disturbance and are called “run-away solitons”.
Long waves can also be generated by adding mass at certain rate to the wave
system. This simulates the situation of heavy rainfall on rivers. Also, since a
solitary wave is a very stable wave form, an initial positive hump of water will
eventually develop into one or more solitary waves. A local movement of the
surrounding boundary walls, like an earthquake on the sea floor, can also emit

long waves on shallow water.

The present study is focused on investigating the generation of run-away soli-
tons by onev particular type of the external forcing agencies mentioned above,
namely, by a three-dimensional moving disturbance, which may either be a bound-
é\.ry topography or a suBmerged moving object. Our main interest is to study the
effective strength of a three-dimensional moving disturbance and the difference
between a surface pressure distribution and a boundary topography as external
forcing functions based on the two theoretical models. The effects of the longitu-
dinal length of a moving disturbance, and, further, the general validity criteria for

the two long-wave models are also examined.

Both numerical computations and laboratory experiments are carried out to
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investigate tl%e specific topics presented in this chapter. The experimental data
- show good agreement with the numerical results based on our long wave models.
These results will be seen to confirm one of the important theoretical conclusions
that the effective strength of a three-dimensional topographical moving distur-
bance in regard to wave generation is directly related to the blockage-ratio of the
cross-sectional area due to the presence of the moving topography.

In the following sections, numerical results based on our wave models for
a uniform rectangular channel with three-dimensional external forcings will be
presented. For channels of other types of cross-sectional shapes, results can be

obtained by following the same procedures.

5.1 Governing Equations

To describe the generation of long waves by extarnal moving disturbances in a
uniform rectangular channel, we may apply the gcB model (2.110)-(2.111), which

for the present case becomes

1
()¢ + [b(h + C)ul, = “E(Ad)t, (5.1)
1 1 1
Us + utty + Cz = guzzt - Paa: - Ed:ztt - §thta (52)

or the corresponding cKdV equation

3 1 1,1
Ct - (1 + EC)C:B - Ec:u:z = 5("2'Ad +pa)z’ (53)
where
h=1-d(z,t),
b=1- B(xz,t),

Aq=2(B +4d).
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Here equa,tioh (5.3) is written for left-going waves. The external forcing functions
. pe and A4 (in terms of B and d) are assumed to be small, and in equation (5.2),

the higher order terms such as uB. have been neglected.

The gcB model (5.1)?(5.2) possesses in general good conservation properties.
Although the cKdV model in general does not conserve either mass or energy, in
the present case for a uniform channel, the cKdV model (5.3) both conserves the

total excess mass M, and preserves the physical energy-work relation.

Two theoretical points regarding the external forcing functions can be drawn
from the wave models given by (5.1)-(5.2) and (5.3). First, the cKdV model (5.3)
shows that a moving pressure distribution at the free surface and a submerged
moving topography play equivalent roles as external forcing functions near reso-
nance. (This is also implied by the gcB model to certain order.) Second, both
models indicate that the effective strength of a three-dimensional submerged mov-
ing object as an external forcing function is directly related to the blockage ratio

Ag of the cross-sectional area.

The higher order derivative terms of the forcing functions d;y; and By in
equation (5.2) of the gcB model are assumed small in our theoretical modeling
and are neglected in deriving the cKdV model. Examining the magnitude of
these two terms, we find that they are highly sensitive to the detailed geometric
configuration of the disturbance in the longitudinal direction and may not be truely
small when the gcB model is applied for a forcing case that fails to satisfy this
assumption, especially if the disturbance is not sufficiently long or smooth enough
in the longitudinal direction. The effect of the length of a disturbance, the validity
and the practical application of the two long-wave models for the forced case will

be further discussed in later sections.
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5.2 Wave R?sistance and the Drag Coefficient
“When a disturbance moves in an inviscid fluid having a free surface, it gener-
ally experiences a resistance due to radiation of surface waves. From the energy-
work relation (see (2.157), (2.173) and (2.177)), the nondimensional wave resis-
tance or the drag coefficient D,,, is given by

400
FD, = —2/ (PaCt — (B — (dy)dx, (5.4)

-0

where Froude number F is the dimensionless speed of the moving disturbance.
By applying the first-order linear approximation 8/0t ~ 8/8z and F ~ 1 for

left-going near-resonant external forcings, we have, upon integration by parts,

+o0
D, = / (pa + B + d)z(dz. (5.5)

-_—00

The drag coefficient given by (5.5) is computed with our numerical simula-
tions. It will be seen that D, is usually a pseudo-periodic function of time for

cases where a moving disturbance radiates run-away solitons periodically.

5.3 Numerical Results

We perform numerical computations based on both the gcB model (5.1)-(5.2)
and the cKdV model (5.3). The forcing functions p,, B and d in our equations
simulate a free surface pressure distribution, a side-wall topography and a bottom
topography, respectively. Figures 5.17(a) and 5.17(b) in section 5.4 give a clear
view of the physical configurations of the numerical simulations. In most of the
cases presented in this section, the forcing functions pa(:c,tr), B(z,t) and d(z,t)
are taken to be of the same form as follows:

p(z,t) = { 2a(1 — cos(3(z + Ft)], for0<z+Ft<L;

0, otherwise. (56)
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In expression (5.6), p represents the forcing functions in the generic form. The
- important | parameters associated with the forcing functions in the present study
are the magnitude Pm, the longitudinal length L and the near-resonant speed F
of the disturbance. A plot of the forcing function p(z,t) given by (5.6) for p,;=0.1
and L=10.0 is shown in Figure 5.1.

~ Our objective of the numerical computations is to investigate the discrepancies
between the two wave models, the differences among the three forcing functions p,,
B and d, and the effect of the longitudinal length of the disturbance. Numerical

results are obtained for different sets of values of the parameters mentioned above.

5.3.1 Results Based on the cKdV Model

Since the cKdV model cannot differentiate a boundary topography from a free-
surface pressure distribution when both are serving as external forcing functions,
the inhomogeneous terms at the right-hand side of equation (5.3) may be grouped

into one general forcing term as follows:

1

=Pz, (5'7)

3 1
Gt — (1 + 5()(: - Eszz = D)

where p can be either a boundary topography or a free-surface pressure distribu-
tion. |

The cKdV equatlon (5.7) is computed by usmg the finite difference scheme
(3 7) described in Chapter III. At the initial time t=0, the free-surface elevation is
taken to be zero throughout the whole domain. After ¢ >O, the disturbance p(z, t)
starts to move to the left with speed F and thereafter maintains this constant
velocity. The longitudinal geometric configuration of the disturbance is given by
(5.6).

Case 1. The effect of the speed of the disturbance.

Pm=0.1, L=10.0 and F varying from 0.8 to 1.05.
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A Plot of the Forcing Function
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The plots of wave elevations at three different time steps (see Figures 5.3(a)
- to 5.3(c)) vg‘i\;e a typical picture‘ of the forced generation of run-away solitons by
a steadily moving disturbance. After thé disturbance has traveled to the left
five hundred water depths with a critical speed, it generates at least ten run-
away solitons with an averaged amplitude of ag = 0.5. Immediately trailing the
disturbance there develops a long depressed region, which is then followed by a
train of weakly nonlinear and weakly dispersive waves. The time record of the drag
coefficient D,, is plotted in Figure 5.3(d). Comparing the number of solitons being
generated (Figure 5.3(b)) with the number of periods shown in Figure 5.3(d), we
see that the two numbers precisely coincide with each other. This implies that for
a steady, positive, forcing disturbance moving with a critical speed, the work done
by the disturbance on the wave system mainly contributes to the total energy
possessed by the run-away solitons being generated, while the rest of the wave
field participates less in the work-energy exchange. This may not be always true,
however, such as in the case for a negative forcing.

Figures 5.4(a) and 5.4(b) show the results for wave generations by a subcritical
(F=0.8) forcing disturbance. Several solitons are generated but with increasingly
smaller amplitude to the asymptote of evanescing soliton production except for a
forward-facing shelf of water surface. The depressed region has become very short
;\,nd the trailing waves ilave actually become dominant. These salient features are
well reflected in the variations of the drag cofficient D,, (Figure 5.4(b)) which at
first has a series of attenuated oscillations in magnitude and eventually goes to a
constant, indicating the steady radiation of the trailing wave train.

For the super-critical case, as shown in Fiures 5.5(a) and 5.5(b), the period
of soliton generation becomes longer as the Froude number increases, while the

amplitude of the run-away solitons gets larger.
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Forced Runaway Solitons (KdV)
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Forced Runaway Solitons (KdV)
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Forced Runaway Solitons (KdV)
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Forced Runaway Solitons (KdV)
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‘_Q@__IL The effect of the hgight of the disturbance.

| pm=d.2, F=1.0 and L=10.0.

When the maximum height of the disturbance is doubled, there are more
solitohs (17 compared to 10 in the previous case with F=1.0 and p,,=0.1) being
generated during the same time as for the case shown in Figure 5.3. The amplitude
of the solitons also becomes larger (0.71 compared to 0.5). The numerical results
for this case are shown in Figures 5.6(a) and 5.6(b).

Case III. The effect of the longitudinal length of the disturbance.

Ppm=0.1, F=1.0 and L varying from 2.0 to 20.0.

Figures 5.7(a) to 5.8(c) show the comparison among the results obtained for
waves generated by disturbances of different longitudinal lengths, while the speed
(F=1.0, critical) and the maximum height (p,,=0.1) of the disturbance are kept
the same. The following table gives the quantitative data regarding the wave
amplitude and the period of generation in the three cases.

Table 5.1 The Effect of the Longitudinal Length of the Moving
Disturbance on Wave Amplitude and Period of ngeration

L wave amplitude period of generation

2.0 0.35 56.0
4.0 0.47 400
10.0 0.50 46.0
20.0 0.50 77.0

From these results we observe that for sufficiently long disturbances, the wave
amplitude does not differ very much for different longitudinal lengths of the dis-
turbance, while we see significant difference in the time period of wave generation,
which is related to the length of the solitary waves generated. Within the validity

region of our wave models (i.e., for L long enough), the results show that the
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Forced Runaway Solitons (KdV)
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| Effect of the Longitudinal Length (L) of a Disturbance
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Effect of the Longitudinal Length (L) of a Disturbance
on Drag Coefficient (D,,)
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longer the disturbance, the longer the wave it generates. When the length of the
'disturbancé isn reduced to L=2.b, the wave amplitude of the run-away solitons
becomes much smaller and the period of geheration gets longer. Later we will see
that v}hen the external disturbance becomes too short, the two theoretical wave
models will not give consistent predictions for the wave amplitude and the period
of generation.”

Case IV. The effect of the longitudinal geometric shape of the disturbance.

pm=0.1, F=1.0, L=10.0 and a triangle-shaped disturbance.

In this case, we use a different forcing function which is described by

(3 + Ft), 0<z+Ft<
pz,t) =9 —Za(z+ Ft—L), £<z+Ft<L; (5.8)
0, elsewhere.

A plot of the triangle-shaped forcing function given by (5.8) is shown in Figure 5.2.
The disturbance has the same length and maximum height as the cosine-forcing
in Case I. Table 5.2 gives the comparison of the numerical results between Case I
and the present case.

Table 5.2 Comparison between a Cosine and a Trianglar Forcing

wave amplitude period of generation

cosine 0.5 46.0
triangular 0.48 52.5
We see that even though in this case the tria.ﬁgula.r disturbance appears as a
slightly weaker forcing (see Figures 5.9(a) and 5.9(b)), the general wave features
are quite the same in Case I and Case IV.

5.3.2 Results Based on the gcB Model

As we have observed, the gcB model (5.1)-(5.2) does not indicate that the
three forcing functions p,, B and d are exactly equivalent to each other, as what

the cKdV model (5.3) predicts. Thus we are interested in examining the differences
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among these three forcing functions and the results will be compared with that
- obtained based on the cKdV model. We will also study the effect of the longitudinal
length of thg disturbance on the wave generation based on the gcB model, and
furthér discuss the validity criteria of the gcB model.
Case 1. Waves Generated by a Free-surface Pressure Distribution.
" pm=0.1,"F varying from 0.8 to 1.05 and L varying from 4.0 to 20.0

In this case, we write the gcB model as
G+ [(1+ Oyl =0, (5.9)

1
U + Uy + (g = Eumzt — Daz, (510)

where p, is taken as a cosine-forcing given by (5.6).

The gcB model is computed by applying the predictor-corrector scheme (3.18)-
(3.24) discussed in Chapter III. The numerical results for the present case are
presented in Figures 5.10(a) to 5.11(b). The comparison of the results between
the KdV and the gcB model (Figures 5.11(a) and 5.11(b)) shows that for a free-
surface pressure distribution as external forcing functions, the two models give
very close predictions for the wave a.mi)litude and the time period of generation.
The quantifative data for waves generated by a pressure disturbance moving at
the critical speed (F'=1.0) and of length L=20.0 can be found in Table 5.3.

- “Table 5.3 Coﬁpaﬁson between the KdV and the gcB Models
models amplitude period
KdVv 050 - 77.0
gcB 0.53 80.0

Compared to the KdV model, the gcB model is found to predict a longer
period of wave generation, while the amplitude of the solitons based on the gcB

model is observed slightly greater.
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Long Waves Generated by Surface Pressure Distribution (gcB)
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Forced Runaway Solitons (gcB)
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Compa.rison between the gcB Model and the KdV Model
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Qbmparison between the gcB Model and the KAV Model
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The Equivalence of Three Different Types of Forcing Agencies
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The Equivalence of Three Different Types of Forcing Agencies

9-1 RAE AR RN NRREERRREE 0.1 T T [T T 7771
0.08 |- — 0.08
0.06 |- = 0.06 |- =
0.04 L=200F=10 0.04 L=200,F =10 B
0.02 Kdv 'E 0.02 gcB surface pressure _:
oo lo b b i 0 NI ITET INTT I P
0 100 200 300 400 500 0 100 200 300 400 500
Time 3£ ‘Time £
0-1__IIIIIlllllllll'llllllITl_ 0'1IllllIllllllllllllllllll_
0.08 0.08 - 7
0.06 |- — 0.06 | .
Dw - Dw -
0.04 L=200,F=10 E 0.04 L=200F=10 3
gcB side-wall bumps - geB bottom bump -
0.02 . - 0.02 -
P sNERN ERNTN FRRNE ARETE AR NN ol b b b
0 100 200 300 400 500 0 100 200 300 400 500
Time 42 ’ Time 72

Figure 5.12(b) Drag Coefficient



2

155

Figures 5‘.13(a) and 5.13(b) show the effect of the longitudinal length of the
‘ ‘distgrbancé 0;1 the generation of solitary waves. Comparing the results with that
based on the ‘KdV model, we can see that for a free-surface pressure disturbance,
both lhodels predict the similar change in wave amplitude and period of generation
as the length of the disturbance varies.

Case II. Waves Generated by Side-wall Bumps.

B;,=0.1, F=1.0 and L varying from 4.0 to 20.0
With B(z,t) representing a side-wall bump (boundary topography moving

along the side-wall), the gcB model for the present case becomes

(5¢)¢ + [o(1 + ()ul, = By, (5.11)
=1 1B 5.12
U+ Uty + (= guzzt = 3 Patts (5.12)

where the half-width of the channel is b(z,t) = 1 — B(z,t).

The numerical results can be found in Figures 5.14(a)-5.14(b). Table 5.4
shows the comparison between the KdV and the gcB models. The data presented
in Table 5.4 are for the case with the parameters F=1.0, B,,=p,,=0.1 and L=20.0.

Table 5.4 Comparison between the KdV and the gcB Models
models amplitude period
KdVv. 050 770
gcB 0.53 82.0

The results show that when the disturbance is long enough (e.g., L=20.0),
the two wave models provide quite consistent results. However, as L decreases,
the difference in the results between the two models becomes more appreciable.
When L is reduced to L=4.0, the forcing function seems to have been very much

weakened based on the gcB model. Similar phenomenon was not found in the
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- Comparison between the gcB Model and the KdV Model

~04 |- L =20.0,F =10 —
" [ Kav 2
-0.8 Coooa v b v b3
—800 -600 -~400 -200
space T

04— =100,F =10 -
[ KdVv N
—o8 L1 1 1 T N
—800 —-600 —400
space T
0'8 1) i { I | 1

ITIII

—600

space

—400

0.8

l1l||ll

L=200,F=10
gcB surface pressure

.8
—800

0.8

-600

space T

—400 ~-200

Illllll

1

L=100,F=1.0
gcB surface pressure

ll‘lllllll

—600

space

-400 -200

L=40,F=10
gcB surface pressure

lIIlll'lIl

.8
—800

—600 ~400 -200

space &

Figure 5.13(a) Wave generation by surface pressure (wave ampl.)



157

~ Comparison between the gcB Model and the KdV Model
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(?ompa.rison between the gcB Model and the KdV Model
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‘C;ompa,rison between the gcB Model and the KdV Model
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previous cas‘e; with a free-surface pressure disturbance. The reason for this sig-
~nificant diﬁ'erence will be analyzed along Wit.h the results from Case IIl in the
following part.

Case III. Waves Generated by a Bottom Bump.

dym=0.1, F=1.0 and L varying from 4.0 to 20.0

The gcB model for this case appears as

G+ [(Q = d+ Qulz = dy, (5.13)
1 1
U + Uty 4 Cz = '3’ua:zt - Edztt, (514)

where d(z,t) represents a topography moving along the bottom of the channel.
The numerical results are shown in Figures 5.15(a) and 5.15(b). Again we
observe that when L is reduced to L=4.0, the forcing is much weakened and the
gcB model gives totally different characteristics in the time record for the drag
coefficient D,,. Ekamining the gcB equations, we find that the reason for the
discrepancies between the two models lies in the higher order derivative terms
Bgit and dgs. These terms are highly sensitive to the longitudinal geometric
configuration of the disturbance. For the forcing functions given by (5.6), the
third derivative terms are of the same form as the first derivative terms B; and d;
which appear in the continuity equation and are considered as the dominant forcing
terms. The terms B, and dg have a negative sign with respect to the terms B,
and d; for cosine functions. So these third derivaJ;ive terms introduce the effects
of a negative forcing. As the disturbance becomes shorter, the magnitude of B,
and dg4 becomes larger. In the present case for a bottom bump of length L=4.0,
the absolute ratio of 0.5d:/d; is 1.23, thus the negative forcing is dominant. This

violates the basic assumption in our theoretical modeling that the B, and dgi
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~ Comparison between the gcB Model and the KdV Model
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‘C-ompa,rison between the gcB Model and the KdV Model

0'1 _llll]rlIIlTTIIlIIIIllI!I__
0.08 —
0.06 |- Z
Dw :
-
0.04 L=200F=10 2
. KdV ]
0.02 —]
_I_LLlllllllllll'llllllllj
0 100 200 300 400 500
. t
Tlme;,—z-
0.1

IIVI‘IIIIII’TII|IIII‘IIII

0.08
0.06 —
D, .
0.04 L=100F=10 -
KdV -
0.02 i~ —
0 :LJIIIILIIIIIHIIIHIIII ]
0 100 200 300 400 500
Time,‘,—ﬁ
0.1 RN NRERRREERRARRREEARE
0.08 |~ —
0.06 |
D,
0.04 L=40,F=10 7
KdV ~
0.02_ —]
O-IIIIIIIIIIII_LLIIIIIIIIII-
0 100 200 300 400 500
Timeﬁ’-
0

0.1 AR IR AR RERARAN BRI
SARRS LARRN AR LAARY
0.08
b
0.06
D,
0.04 L=20,F=10 1
0.02 gcB bottom bump =
0 llllllllll_l_lllllillllJ_L:
0 100 200 300 400 500
Time,‘.—’;
0'1_Tlll||||l"1l|l||l|||l[ll__
0.08 —
0.06 |-
D, 3
0.04 L=100,F=10
0.02 gcB bottom bump _i
0—IIIIIIIIlIlllIIlllllllll:
0 100 200 300 400 500
: t
Tlmveﬁ
LB LI TTHPPTrTTreypvT il
AL LARRN AR RALLE LAERS
0 ..............................
D =
—.04
B L=40,F=1.0 ]
—-0.08 — gcB bottom bump __]
FIIIIJ_LIIII_IIIIIIIIIIIII-
0 100 200 300 400 500
Time £
(]

Figure 5.15(b) Wave generation by a bottom bump (drag coeff.)



163

terms are sm?.ll. In fact, when we derived the cKdV model in Chapter II, these
. terms were neglected resulting from our assumption that they are of higher order
for long wave models. Thus we may conclude that in order to make the two
modeis to give consistent predictions for the generation of long waves, the models
should be applied to disturbances whose length is comparable to the wavelength
of the long waves being generated. As for the applications of the two wave models,
their practical validity criteria can be determined from the results of laboratory
experiments.
5.3.3 fKdV vs. RfKdV
As discussed in section 2.10, the regularized KdV equation (RKdV) was
first introduced for consideration of numerical instabilities. If we substitute { =

F(k)e¥«@t=*2) jnto the linearized KAV equations

(t - C:t - %szz =0 (5.15)
and
G — Cz - ';'Cza:t =0, (5.16)

we obtain the following dispersion relations
1.5
w=—k-— Ek (5.17)

given by the KdV equation (5.15) and

-k
= — 5.18
YEIv e (5.18)
by the regularized KdV equation (5.16).
For long waves, k < 1, so theoretically (5.17) and (5.18) are equivalent. In

computational studies, the numerical calculations usually introduce errors of short
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wave componfents, i.é., errors with k£ > 1. In that case, relation (5.18) will damp
- the errors out while relation (5.17) cannot. Relation (5.17) shows that numeri-
cal errors for equation (5.16) will travel very fast in the domain of calculation.
Howe#er, this does not imply that the amplitude of the numerical errors will nec-
essarily grow. Thus, by choosing the proper schemes, both the KdV equation and
the regularizea KdV equation can be well solved numerically.

One advantage of the regularized KdV equation over the KdV equation may
lie in the imposition of boundary conditions in numerical computations. For cases
with a physical domain of finite length, as the KdV equation involves a higher order
derivative term, it usually needs special treatments at the boundary points. In the
present studies, our domains are always from —o0o0 to +o0o with the unperturbed
boundary conditions at the two ends. We do not encounter any difficulties in
imposing the proper boundary conditions.

For waves generated by left-going disturbances, the forced KdV equation is

written as
3 1 1
Gt — (1 + EC)C:: - 'G‘sza: = ‘2'p:c (519)
and the regularized fKdV equation as
3 1 1
G—(1+ EOC’ - Eszt '-‘-‘ Epz- (5.20)

The numerical results based on these two equations are shown in Figures
5.16(a) and 5.16(b). In these simulations the waves are generated by a cosine-
forcing function with L =10.0 and Pm=0.1. The results based on the two equations
are compared for Froude number F ranging from 0.8 to 1.05. We observe that the
two equations give very close results for F near 1. In the present case, the RKdV
model predicts a longer period of soliton generation than the KdV model for F

ranging from 0.8 to 1.05. When L is reduced to 2.0, our numerical results (which
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are not plotted in this thesis) show that the RKdV model predicts a longer period
- for F ranging from 0.95 to 1.05, while for F < 0.95, the RKdV model gives a
shorter period, compared with the KdV model.
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fKdV vs. RIKdV
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deV vs. RfKdV
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5.4 Experimental Results

‘Our experiments were designed to explore the criteria of the proposed theoret-
ical models, especially the forced channel KAV model regarding the blockage-ratio
conceﬁt. One of the important conclusions is that the net effects on long wave
generation of a moving obstacle, fully or partially submerged in water, are rep-
resented by the blockage-ratio function A4(z,t) involving only the fraction of the
cross-sectional area that moves with respect to the water in the channel. The
specific shape of the disturbance and its particular position in the water have
no significant effects in the upstream region where run-away solitons propagate,
provided the disturbance is of higher order and the channel is not too wide.

We performed the experiments in a rectangular water tank whose side-walls
and the bottom bed were constructed of plate glass. The tank is approximately
7.5 m long, 0.75 m wide and 0.6 m deep. Two sets of experiments on long waves
generated by submerged moving disturbances were carried out, one with a moving
bottom bump as the disturbance and the other with two side-wall bumps. The
bumps are made of aluminum and have a circular-arc top surface. The cross
sections of all three bumps have the same size. The bumps were rigidly fastened
to a carriage which ran along two parallel tracks mounted on top of the side-walls.
Figures 5.17(a) and 5.17(b) show a sketch of the experimental set up. In case (I)
(Figure 5.17(a)), the béttom bump spanned the whole tank width while in case
(II) (Figure 5.17(b)), we carried out the experiments with the side-wall bumps in a
narrower subtank (10 cm wide) constructed by setting up a vertical Plexiglas plate
in the original tank. In these experiments, the dimensionless speed of the moving
bumps varied over the Froude number (F = U+/ghy) from F=0.79 to F=1.07 and

the water depth was kept at hg=5.0 cm. The cross section of the bumps is 4.9 cm
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A Sketch of the Experimental Set Up
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Figure 5.17(b) The end view (the left side); the top view (the right side).
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long\a.nd has a maximum height of 0.66 cm. (In this case, the nondimensional
length of t'hen bumps is L=0.98.) We arranged for the geometric parameters to
remain as stated above such that in the tﬁo cases, while the disturbances were
positiéned at different locations, their cross-sectional blockage ratios were never-
theless the same. The maximum blockage ratio A4 in both cases was 0.132.

Qur laboratory obéerva.tions showed that when a submerged disturbance moves
in a shallow water tank within the specified transcritical speed range, a series of
solitons were generated in front of the disturbance periodically and they advanced
with a greater speed to outrun the steadily moving disturbance. Behind the dis-
turbance a train of weakly nonlinear and weakly dispersive waves developed. We
measured the wave elevation and the time period of generation of upstream run-
away solitons in both cases and compared the results.

Wave elevations were measured by a parallel-wire-resistance-type wave gauge.
The wave gauge was mounted on the carriage and thus moved with the disturbance.
The position of the moving gauge was about 12 cm upstream from the leading edge
of the bumps and at the centerline of the tank in each case. The wave gauge was
made of stainless steel wires, 0.16 cm in diameter and separated 1.0 cm apart. The
output signais from the wave gauge were measured by an Analog-Digital (A/D)
data acquisition system. The digitized data were then processed on a PDP 11/23
(;omputef.' The wave gé.uge was calibrated before each run of the measurement.
The measurement errors were 0.1 cm in measuring water depth and width, 3%
in the speed of the carriage, and the relative error for the wave elevation can be
estimated as about 4%.

The experimental results are presented in Figure 5.18. Even though in case

(II) the disturbance is three-dimensional and we observed three-dimensional wave
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The Experimental Results
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patterns in the trailing region, the solitary waves generated in front of the distur-
. bance are sﬁli two-dimensional, just as what we observed in case (I) where the
forcing is two-dimensional. Quantitatively (see Table 5.5), the results show that
when fhe blockage ratio of the cross-sectional area by a moving disturbance is
made equal, it will generate forward advancing long waves with the same wave
amplitude and the same period of generation, regardless of its specific shape and
its particular position in the water. Also, the strong two-dimensional features in
the dominant leading wave region confirm the validity of our section-mean ap-
proach in the theoretical modeling. A comparison between the experimental and
the numerical results for the critical case (F=0.999) is shown in Figure 5.19. The
numerical simulations are based on our forced KdV equation for a uniform rect-
angular channel. In the figure, the solid line represents the experimental data and
the dot-dashed line gives the numerical result by using the actual bump height 0.66
cm. These two curves show appreciable difference. This difference is most possibly
caused by our neglecting of the viscous effect and the bottom unevenness in the
wave tank for the preliminary numerical simulations. The presence of a viscous
boundary layer will increase the effective height of the bump and according to the
boundary layer theory for a flat plate in steady laminar flow, the increment of the
bump height can be estimated to be §;=0.06 cm (for this case R, = 2.0 x 10*).
’i‘he unevenness of the ﬁva.ter tank is about +0.1 ém which is not negligible com-
pared with the bump height, 0.66 cm. Considering these effects, we carried out
a revised numerical simulation with the corrected bump height 0.8 cm instead of
the actual height 0.66 cm (see Lee et al.!®) and the result is shown by the dashed
line in Figure 5.19. This gives a better agreement with the‘ experimental result
and the relative differences are 14% in wave amplitude and 10% in time period of

generation. The experimentally observed wave field in the trailing region is very
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Comparison between the Experimental and Numerical (KdV) Results
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complicated. ;Even with the ‘thdimensional bump, one may observe certain un-
- steady three-dimensional wave patterns due to the channel side-wall effects and
the effects of the bump supporting struts.

Ih. the upstream region where long waves are generated and propagate, aside
from the experimental error, the laboratory results show good agreement with the
theoretical predictions from our wave models obtained and presented in Chapter
II. This also establishes the contention regarding the blockage-ratio concept intro-
duced by Mei!” in the analysis of the problem of soliton radiation due to a ship

model moving at transcritical speeds within a towing tank.

Table 5.5 Comparison of the Wave Amplitude (ag) and the
Period of Generation (Tj) between the Two Experimental Cases
E a T
0.788 0.144 34.5
Case(I) 0.999 0.353 45.5
1.052 0.481 54.1

0.801 0.140 37.1
Case(II) 0.994 0.374 45.5
1.071 0.528 56.0

5.5 Discussions

Our numerical results show that a steadily moving pressure distribution on
the free surface or a submerged moving topography with a near-critical speed
can generate a series of run-away solitons advancing upstream. The longer the
disturbance in the longitudinal direction, the longer the waves it generates. Since

both the gcB and the cKdV models are derived for long waves, these two wave
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modéis will giVe consistent predictions for waves generated by moving disturbances
. that are sufﬁcAiently long. The nﬁmerica.l results indicate that for a cosine-bump
with a maximum magnitude of p,,=0.1, L=10.0 is long enough. As the disturbance
gets shorter, the two models start to show increasingly noticeable differences. In
our experimental measurements, the length of the bumps is of the same order as
the water depth (L=0.98). In this case, the numerical simulations based on the
KdV model show reasonablly good agreements with the experimental results, while
the gcB model fails to give a correct prediction without further modifications.
This implies that practically the cKdV model somehow has a broader validity
region than the gcB model in this specific forced case discussed in the present
chapter. The terms that make the differences between the two models are B;;
and dg4 terms in the momentum equation of the gcB model. These terms are
highly sensitive to the detailed geometric configurations of the forcing functions.
However, the experimental results show that the generation of long waves is really
due to an integrated effect of the moving disturbance and the detailed higher order
surfacial curvature of the disturbance should not dominate in this phenomenon.
Thus the B;y and dgy terms seem to be artificial in this problem. This point

needs to be further studied.
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VI. SUMMARY AND CONCLUSIONS

V'I‘"wo theoretiéal models, i.e., the generaﬁzed channel Boussinesq two-equation
model (gcB) ia.nd the channel Kortweg-de Vries one-equation model (cKdV), are
derived to describe the generation and propagation of nonlinear long water waves
in a variable channel of arbitrary shape. The channel width and depth may vary
both in space and in time. The fluid is assumed to be inviscid and the flow
incompressible. The wave phenomena that we have investigated include both the
evolution of free traveling waves in a variable channel with modulated amplitude
and speed, and also the forced generation of nonlinear long waves by external
moving disturbances. The effect of a specific geometric configuration of the cross

section of the channel is also examined.

To derive the theoretical long-wave models, we start from the Euler equations,
with nonlinear boundary conditions at the free surface. Since for long waves in
channels, the dominant wave features manifest primarily in the longitudinal direc-
tion, we integrate the Euler system over the cross-sectional area of the channel to
get a set of section-mean equations. Based on these section-mean equations, we
proceed to derive the gcB model by using perturbation expansions for quasi-one-
d_imensiona.l long waves in shallow water. This two-equation gcB model is further
reduced to a one-equation model, i.e., the cKdV model, for the unidirectional
motion near resonance. These equations are written in terms of section-mean
quantities and describe the dominant wave motions in the longitudinal direction.
The detailed three-dimensional wave features in the cross-flow plane can be recov-
ered by substituting the section-mean results obtained from these two models in
the perturbation expansions and then applying the Bernoulli equation at the free

surface.
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‘Three s}p.eciﬁc cdnﬁgurations of the channel cross section, namely, rectangular,
- triangular vand semi-circular cross sections, are studied. The theoretical results
show that the difference in shape of the cross section only affects the dispersive
terms‘ in the equations, provided the mean hydraulic depth remains the same.
Quantitatively, we find that the smaller the slope of the channel walls versus the
horizontal, the greater the dispersive effect.

Both the gcB and the cKdV models possess steady solutions of permanent
form. This wave form is a single positive hump of water with the two edging tails
quickly decaying as = goes to o00. We call this wave a solitary wave. The solitary
wave solutions for the two models are different. We find that for solitary waves of
the same speed, the gcB model requires a higher amplitude. The difference between
the steady solutions for the two models are negligible for small amplitudes. As the
amplitude of the wave gets larger, the difference becomes more appreciable.

The conservation properties of the two wave models, which include conserva-
tion of mass and energy, are analyzed. The gcB model is found to conserve mass
exactly and conserve energy fo certain‘ order, while in general the cKdV model
does not conserve either mass or energy, due to the neglect of the reflected waves
in our theoretical modeling.

Both models are applied to study the evolution of a solitary wave traveling in
a channel of variable width. The objective of this study is not only emphasized on
the physical aspects, but also on a more careful examination of the conservation
laws and the validity of the cKAV model. The riumerical results show that even
though the chVv model does not conserve mass by a broad margin, it still gives
the éoﬁ;istent predictions for the ina.in transmitted wave with the results based on
the gcB model. The neglect of the reflected waves in the theoretical derivations

does not affect the validity of the cKdV model for the dominant transmitted waves.
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To investigate the phenomenon of forced generation of nonlinear long waves
- by externai ﬁ;oving disturba.nces; we carried out a joint theoretical, numerical and
experimental study. The theoretical models show that a pressure distribution mov-
ing a.tv.the free surface and a submerged topography moving along the boundaries
play equivalent roles in generating run-away solitons advancing upstream. For a
submerged moving object as an external forcing, its effective strength of forcing is
directly related to the blockage ratio of the cross-sectional area, while the detailed
geometry or the particular position of the disturbance in the cross-flow plane are
less important. We conducted a series of experimental measurements in a shallow
water tank to study the generation of forced run-away solitons by submerged mov-
ing topographies. The experimental results confirmed the theoretical conclusion
on the blockage-ratio concept regarding the effective strength of the external forc-
ing functions. Various numerical computations were also performed to examine
the effects of the speed and the length of the forcing agencies. Based on these
numerical results, we found that our theoretical models give consistent results for
disturbances that are sufficiently long in the longitudinal direction. However, our
experimental results show that practically even when the length of the disturbance
is of the sa.mé order as the water depth, the forced KdV model still gives reasonably

good predictions for long wave generations.

The results of our studies have their useful applications in the areas of river
dynamics, near-coastal engineering and other related fields. Future research in
these areas may include studies on the evolution of long waves propagating in a
curved channel and the simulation of wave generations by heavy rainfalls on rivers
in the flood season. More experimental studies may need to be performed to
investigate the generation and propagation of long waves in a channel of arbitrary

cross-sectional shape, other than rectangular cross sections. It will also be of
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practical sigxhﬁﬁcancé to study the dissipation of waves due to the roughness on
- the channel bottom. Since flood waves in rivers are in general extremely long (can
be a hundred times longer than the river depth), the interactions between the
surfa.éé wave and the bottom sedimentation and the friction must be considered

when the results of our models are applied.



180

Appendix L A Proof of the Section-Mean Transport Theorem

. The theorem (2.10) or (2.11) presented in Chapter II can be proved as follows.
First we take a material volume V'(t) which at time ¢ coincides with a vertical
column of water lying between two sections at two different z-locations ¢ = =,
and z = z3. Then we integrate the term at the left-hand-side of equation (2.10)

from z = m1 to £ = z,:

T2 b(x t) C(zﬂht) d
/ ( / / / —dzdy)da:
—b(z,t) J—h(zy,t) G

9f ouf ouf Owf (AI.1)
u v w
_Ll [/;b[_h(-a—t-+ B + By + o )dzdy|dz,
where we have used V - U = 0.
Equation (AI1) can be further written as
T2
/ ( )d -/ d:z:[at/ / fdzdy — / =z, bzt)dtdz
- /_ | f(e,=b,2,) s - /_ @60 Sy
(AL.2)

b b ¢
dh 0
"[_bf(%y’—h’t)_dt dy+_6z [_b/;hufdzdy

¢ b
+[ (@Nlde+ [ (Il

By applying the boundary conditions (2.3), (2.5) and (2.6) in Chapter II, we
"can see that all boundary terms at the right-hand-side of AI.2 cancel each other

out to give

[ [, [ s [ [

L (AL3)
[5r4) + el

Since (AL3) holds for any arbitrary z; and z,, we must have

)= o+ (), (AL4)
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A% = %(A ) + a%(A’ﬁ). (AL5)
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Appendix II. A Algorithm to Solve a Tridiagonal Matrix

- A tridiagonal system may be written as
aiU;—1 + b;U; + c,'U,'+1 = fi;, 1 = 1,2,.... N -1, (AII.I)

where a;’s, b;’s, ¢;’s and f;’s are given coefficients.

To solve (AIL1), we let
Ui—1 = AU; + B;, (AII.2)

and substitute (AIL2) into (AIL1) to obtain

Ci

A1 = A +b;

(AIL3)

Jfi —a;B;

Bin= Ao

(AIL.4)

For i=1,

Uo = AUy + By,

where Uj is the given boundary condition. We may take B; = Uy, A;=0 and
substitute these into (AIL3) and (AIL4) to get all A;1,’s and Biii’s for i =
L,2,..N — 1. Then we solve (AIL2) backwards for i = N,N — 1,.....2. At the

first step we start the iteration of (AIL2) by using the given value of boundary

condition Uy.
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Appendix ITII. Von Neumann Analysis for Numerical Stabilities
. In this appendix, we apply the von Neuman method to analyze the numerical

stabilities of the finite difference schemes (3.7) and (3.8) for solving the KdV

equations. The equations are written for cases with a uniform rectangular channel.

Case 1. Stability Criterion for Scheme (3.7)

First we localize ( to (o in the nonlinear term and drop the forcing term in

scheme (3.7). This will giw}e

GH =G T+ S0 - CZ'_I)
LA (AIL.1)

+ = 6 (A )3 (Ct+2 2 3-{-1 + 2 i—1" 3—2

Substituting ¢ = pfeV~TiA%* into (AIIL1), we obtain
p? — 2v/=1(sin A:z:k)‘A—t[l + gco + ——1-—(cos Azk - 1)]p-1=0, (AIIl.2)
Az 2 3(Ax)? ’
where the two roots p; and p, satisfy
np2 =-1, (AIIL3)

n+ pzl —2¢/=1(sin A:ck) [1 + Co + T (cosAzk ~1)].  (AIIl4)

3(A )
Stability requires |p| = | | < 1. Thus from (AIIL.4), we can see that we

must have |p1|=1 and |p|=1. Usmg lp1 + p2| € |p1| + |p2| = 2, we obtain the
stability criterion for scheme (3.7) as

2 A
__(1 + ICoI) 3G t)s <1 (AIIL5)
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Case II. Stability Criterion for Scheme (3.8)

. By following exactly the same procedure as in the previous case, we get the

following relation for p based on scheme (3.8)

| — 3AtAz 3
o 14 50)(sinAzk)p—1=0,  (AIIL6
p» 2sin® -Asz + 3(Am)2( + 2(0)(8111 zk)p ( )

where the two roots satisfy

prpz = —1, (AIIL7)
JAtAz 3
= -2v-1 14 = in Azk). AIII8
51 + P2 2Sin2 A;:lc + 3(A$)2 ( + 2(0)(8111 Z ) ( )

By requiring |p1 + p2| < 2, we obtain the stability criterion for scheme (3.8) as

At < \/g(l + gco). (AIIL9)
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