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Abstract

This thesis describes the semiconductor laser signal and noise propagation effects
in single mode fiber and fiber Bragg gratings. The capability to fabricate custom fiber
Bragg gratings was developed, which enabled the design and fabrication of gratings for a
number of applications. Finally, gratings were developed and specialized for use in a
single mode fiber ring laser.

A quantum mechanical description of laser noise is presented in order to discuss
pump-noise suppressed semiconductor lasers capable of sub-shot noise, also known as
"squeezing." Experimental results for an 850 nm Fabry-Perot semiconductor laser are
presented showing squeezing at room temperature of 29% below the shot noise limit
measured using a balanced homodyne detector, corresponding to 41% below the standard
quantum limit at the oﬁtput facet of the laser. The side mode suppression ratio was varied
with slight temperature tunings and correlated with the laser noise. It was found that the
higher the sidemode suppression ratio, the lower the noise.

Noise analysis was continued with 1540 nm distributed feedback semiconductor
lasers. Laser parameters such as noise, chirp, and resonance frequency were characterized
by propagation in dispersive fiber.and fitting the parameters to a model for the fiber.
Again, a correlation was found between side mode suppression and laser noise, especially
after several kilometers of propagation in fiber. The principles of signal and noise

propagation were applied to fiber Bragg gratings. Theory and experiment indicated direct
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laser modulation enhancement by a uniform fiber Bragg grating by 7 dB at modulation
frequencies of up to 25 GHz, and also noise reduction of 2 dB at frequencies up to 15
GHz.

Facilities were established to write and produce customized fiber Bragg gratings
of various strengths in various fiber types as well as in ion-exchanged waveguides in bulk
glasses. Analyses of writing times and strengths were performed and optimized for
various applications. Uses for these gratings include dispersion compensation, noise
reduction, beam or pulse shaping, and spectral filtering for dense wavelength division
multiplexed (DWDM) optical networks. Amplitude and phase masks were developed and
shown to produce arbitrarily apodized and chirped gratings.

Fiber gratings were next refined for use as key elements in a new type of single
mode fiber ring laser. Some of the beneficial characteristics of this fiber laser include
long cavity size (80 cm), 80 dB signal-to-noise ratio, high side mode suppression ratio,
and white noise linewidth as narrow as 2 kHz. The laser noise was also nearly shot noise
limited. This combination of low amplitude and low phase noise allowed the observation
of extremely low noise enhancement after 50 km of standard, dispersive fiber up to 20
GHz frequency. A comparison was made between our fiber ring laser and a standard high
grade distributed feedback semiconductor laser in transmitting 10 Gbits/sec data. Over a
50 km fiber, the fiber ring laser achieved the same signal to noise ratio with half the

power as the semiconductor laser.
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Chapter 1 - Introduction to the Thesis

1.1. Introduction

This thesis describes research done for the degree of Doctor of Philosophy in
Applied Physics at the California Institute of Technology. Work for this thesis was
performed in the field of optical communications, which is the transmission of data via
light in optical fiber. This work centers on the analysis and characterization of
semiconductor laser sources for fiber optic communication, and culminating in the
invention of a new type of fiber ring laser. It is shown that the properties of this ring laser
have great potential as optical fiber communication sources for Dense Wavelength
Division Multiplexing (DWDM) networks. The fabrication and testing of these lasers
involved writing our own custom Fiber Bragg Gratings (FBG) in various fiber types.
Furthermore, with the capability of fabricating custom gratings, new types of FBG based
devices for certain applications were modeled, and fabricated, and tested.

This thesis was motivated by the technological demands to better understand the
propagation of optical signals in fiber, the lasers which generate the light, and then to

locate and make innovations to improve the speed and efficiency at which data can be



sent over fiber. The uses of fiber systems have now spread into nearly all areas of city-to-

city data transfer, such as telephone, cable television, and internet data.

1.2. Optical Communication Systems

Data rates of 10 Gbits/sec are now common in fiber systems. Direct modulation of
semiconductor lasers has reached a limit due to the limits in response times of the laser to
modulation as well as physical limits of coupling high frequency signals to the laser chip.
The common, although expensive, method for 10 Gbit/sec data networks is external
modulation of the laser light by electro-optic modulators. Figure 1.1 shows a typical fiber

link.

Data
N T

. isolator i ‘

Semiconductor

Laser Diode —e—p———1  EOM Detector
EDFA EDFA

Fiber link

Figure 1.1. Schematic of fiber optic communication system.

Data is added to the optical signal by an electro-optic modulator (EOM), a crystal device
which has an index of refraction modulated by the data signal. This index modulation is

converted from a phase modulation to amplitude modulation in a Mach-Zehnder



interferometer geometry. Erbium doped fiber amplifiers (EDFA) amplify the light before
and after long fiber sections.

Single-mode fiber is the most advanced medium for a linked communication
system. The vast majority of the fiber in use today was originally designed for 1310 nm
window, but the advent of EDFA's shifted the bandwidth of choice to the 1540 nm low-
loss window of silica. At this wavelength there is 17 ps/(nm-km) of dispersion and causes
distortion of both the signal and noise, known as FM-to-AM conversion. Characterizing
and understanding signal and noise propagation in fibers is crucial to designing optimized

network components and laser sources.

1.3. Outline of this Thesis

This thesis consists of the work done in several projects relating to the analysis of
signals and noise and in the field of optical commﬁnications. In Chapter 2, the theory of
quantum noise of a semiconductor laser is reviewed. Experimental measurements with a
Fabry-Perot semiconductor laser from SDL Inc. shows the quantum noise is actually
below the shot noise limit at 28 MHz for certain temperature tunings. Very good
sidemode suppression is shown to contribute to this reduction.

Chapter 3 moves the semiconductor analysis to the distributed feedback (DFB)

laser structures operating at 1540 nm. We develop the theory of the dynamics of



semiconductor lasers. Laser parameters such as relaxation constants and the linewidth
enhancement factor are obtained from fiber propagation experiments.

Chapter 4 begins with the theory of fiber Bragg grating (FBG) technology and
fabrication techniques used for the remainder of the thesis is discussed. Numerical
simulations quite accurately predict the types of structures fabricated in the lab and
account well for prescribed apodization, chirp, and absorption.

Chapter 5 discusses several applications of fiber Bragg gratings which were
analyzed and constructed for this thesis. They include signal modulation enhancement,
noise reduction, mode conversion in 3-mode fiber, and fiber FBG Fabry-Perot cavity,
both with and without gain.

Chapter 6 is the climax of the FBG fabrication project. We have constructed a
single mode fiber ring laser which is based on fiber Bragg gratings. The advantages of a
ring configuration as compared to linear laser geometry are outlined. Characteristics of
output power, sidemode power, noise, and linéwidth are modeled, measured, and
compared to these characteristics of a communications grade DFB semiconductor laser.
Bit error rate measurements were also performed with various lengths of fiber and
compared to the DFB semiconductor laser. Finally, the role of this fiber ring laser in

digital networks is discussed and analyzed by bit error rate measurements.



Chapter 2 - Amplitude Squeezing in Semiconductor Lasers

2.1. Introduction

Squeezed states of the electromagnetic field are beginning to create new possibilities for
precision measurements near the standard quantum limit. Amplitude squeezed states
generated from pump-suppressed semiconductor lasers offer a number of desirable
features such as large squeezing bandwidths, ease of implementation, and the fact that the
squeezing is superimposed on a large coherent optical field. While measurements of
amplitude squeezing performed on lasers cooled to cryogenic temperatures have resulted
in substantial amounts of squeezing, the generatibn of amplitude squeezed light from
room temperature devices has been considerably less successful. Several experiments on
both room temperature and cryogenically cooled devices [2—1],[2-2],[2-3] have observed
excess noise which tends to obscure the squeezing. The difficulty in producing and
maintaining large degrees of (both amplitude and quadrature) squeezing has been a major
stumbling block in the implementation of these sources in precision measurement

systems.



2.2. Theory of Amplitude Squeezing

To properly analyze the low frequency noise spectrum for a semiconductor laser, it is
necessary to invoke a quantum mechanical optical field. Low frequencies in this case
refer to frequencies well below the cavity relaxation resonance, typically around 1 GHz
for a semiconductor laser. In this regime, the gain clamping mechanism is very strong and
the noise is very close to the shot noise level (SNL) or even below.

The quantum theory of laser noise used here is based on the quantum Langevin
analysis of Yamamoto [2-4]. Figure 2.1 shows a schematic for a laser diode system. A
partially reflecting end facet introduces vacuum field fluctuations effects, which much be

considered as part of the system.

Diode Laser
[
C——) A Intem)al Field External Field r(t)
s | C<_
N. () y Carriers Vacuum Field f,(t)
R=1 R<l

Figure 2.1. Model of laser for quantum mechanical noise model.

An adiabatic elimination of the dipole moment is justified by the fast relaxation
time of the dipole, 14, relative :;t_ogft'he photon lifetime, 7,, in the cold cavity. The
elimination is performed by integrating the rate equations over a time

Ty <<t<< T, 2.1



assuming the electric field doesn't change much in time. The resulting equations for the

operators for.inversion, N(t), field annihilation, A(t), and external field, £(t), are [2-4]

—Eo)ziA_FA - _O%XA + lﬁ‘p (t)+ 1ﬁ‘sp (t)+ f(t)
dt Tsp ne ne

2304 Lo Lvaton o) 2,80+ 60+ 80+ (11,0

de 20T T

=)

i(t)=-

(+AW

Tre

(2.2)
where P is the pump rate, B is the fraction of spontaneous emission emitted into the lasing
mode, T, is the spontaneous emission lifetime, [ is the nonresonant refractive index,
)A((N) is the resonant optical susceptibility, 7,0 and Ty are cavity photon lifetimes for
internal and external mirror losses, respectively, ® is the lasing frequency, and @y is the
cold cavity resonance frequency. f(t) and G(t) are the Langevin noise sources due to the
dipole rﬁoment aﬁd the others represent noise due to pumping and spontaneous emission.
The correlation functions for the Langevin noise sources are covered fully in several
places [2—4],[2-5],[2-6]. Solutions to (2.2) are fouﬁd by assuming small signal variations
around a mean:

N(t)=N, +AN(t)
A(t) = [A, + AA()E0 (2.3)
#(t)=r, + (R



The use of phase operators here is not perfectly rigorous but serves as a correspondence in
the situation‘ of a large field and relatively small fluctuations [2-7]. Substituting in these

approximations, taking the Fourier transform and solving for Af"(Q) leads to the power

spectral density. The result is quite simple in the limit of low frequency, useful for most

. 1 . .
applications Q << — = few GHz . At exactly Q =0, the noise power spectral density,

Tp

normalized to the shot noise level, is

1) 1 2
P,;(0)=01-n)+n (1+E)+E+ (2.4)

B
nSpR

where m is the differential quantum efficiency, and R is the pumping level above
threshold. By pumping with a current source, R = i/iy, - 1, where iy, as the threshold
current. The terms on the right are as follows. The first term in parentheses is due to
optical losses inside the laser cavity, the other term in parentheses accounts for pump
noise, 1/R comes from spontaneous emission into nonlasing modes, and the final term is
the contribution from dipole moment fluctuations.

With a constant current source it is possible to have quite near perfect pumping
with no introduced noise (pump suppression). This leaves the largest impediment to
amplitude squeezing the quantum efficiency 1. The next section shows the measurements

obtained with free running semiconductor laser.



2.3. Measurements of Amplitude Squeezing

The experimental setup for measuring quantum laser noise is shown in Figure 2.2
[2-8]. The semiconductor laser we used (SDL-5402-H1) was a quantum-well index-
guided structure with a threshold current of 10.2 mA and a maximum rated operating
current of 63 mA resulting in 51 mW of output power. The external differential quantum
efficiency was 68% at room temperature. The device was mounted by the manufacturer
inside a TO-3 package which contained a thermistor, thermoelectric (TE) cooler and
monitor photodiode. The laser temperature was actively stabilized using a home built
temperature controller, and a precision current source provided the injection current
which passed through an inductor before going to the laser. While careful control of the
laser temperature and injection current was found to be an important factor in producing

the squeezing, no other modifications to the device appeared to be necessary.

Current

Source
L M
{\ % Optical

LD > # Spectrum
U Isolator \ Analyzer
= A2 ——=
Temperature P = Balanced Homodyne
Controller PBS E D Detector

Variable Attenuator
and Delay

Electronic
Spectrum
Analyzer |

Figure 2.2. Free space setup for measuring laser noise.



10

LD: laser diode, L: lens, M: mirror, P: polarizer, PBS: polarizing beam

splitter, D: detector, A: differential amplifier.

The output light from the laser was collimated using an anti-reflection coated
collimating lens before being sent through an optical isolator (providing >60 dB of
isolation) to the detection system. The amplitude noise was measured using the balanced
receiver. The beams incident on the photodiodes were expanded to fill the entire detector
area and the resulting AC photocurrents were amplified and sent to a differential
amplifier which could either add or subtract the two signals. The output from the
differential amplifier was then sent to an electronic spectrum analyzer for measurement of
the noise. One electronic arm of the balanced receiver included an attenuator and a delay
unit. Common mode rejection of over 45 dB was obtained at a frequency of 28 MHz.

The balanced homodyne detector works as follows. Consider the laser field as

Field: E; = A+ Aa
Vacuum: E,,, = Ab (2.5)

The input field incident on the beam splitter was adjusted by the polarizer and 1/4 plate so
that the field incident on each detector is

1

=4
2 NG

E, (A+ Aa—Ab) (2.6)

The currents, i; and 1», have fluctuations, Ai; and Aiy, neglecting second orders in the A's,

équal to:
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Ai,, = RA(Aa T Ab) (2.7)

where 3 is the detector responsivity.

With the balanced detector system, it is possible to toggle between laser noise and
the shot noise value by either adding or subtracting (inverting then adding) the
" photocurrent signals from the detectors. The detectors are balanced at a certain frequency

by adjusting a delay such that the received power is

Py, = 4A<(Aa)2> Laser noise

Py =4A<(Ab)2> Shot noise 2.8)

Figure 2.3 shows the measured photocurrent noise power spectrum (trace A) when the
photocurrents at 28 MHz were balanced. The electronic delay present in one arm of the
receiver causes a frequency-dependent phase shift between the two signals entering the
differential amplifier. This results in the output photocurrent noise power varying, as a
~ function. of frequency, between the actual laser noise level and the Standard Quantum

Limit (SQL) [2-9].
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Figure 2.3. Noise power vs. frequency.

The level of the SQL was checked by shining the light from high-power LED's
onto the detectors to produce the same photocurrent as the laser. The photocurrent noise
power spectrum obtained from the LED's is shown in trace B. It can be seen that at 28
MHz, the laser photocurrent noise power is 1.4 dB below the SQL (determined by the
LED) indicating that the laser amplitude fluctuations were squeezed by this amount. For
this measurement, the laser injection current was 66 mA, resulting in a photocurrent of
13.4 mA/detector (current-to-current differential efficiency of 48%) and the laser was
cooled to about 5°C with the TE cooler. The resolution bandwidth for this measurement
was 100 kHz and the background amplifier noise level was subtracted from all measured

signals.
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As an additional check on the level of squeezing, the amplitude noise was then
measured as a function of the optical attenuation, shown in Figure 2.4. For the shot noise
limited LED's, the noise exactly followed the measured shot noise (subtracted
photocurrents for either the LED or laser), and the laser noise is shown to grow sublinear
with respect to DC photocurrent. Normalized to the SQL, the laser noise was found to

increase in a linear fashion towards unity as the attenuation was made stronger.
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&
x ‘x LED- @6
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0.6+ &6 e} 7
& O
8 O
86
0.4+ 895 © -
8 O
O
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o®
‘&@
&
08 , .
0 5 10 15

Photocurrent (mA)

Figure 2.4. Noise power vs. photocurrent.

The squeezing could only be obtained in a narrow range of laser temperatures and
injection currents. At most combinations of these two parameters, the laser operated
multi-mode and the amplitude noise was far above the SQL. It appeared that particularly

good side mode suppression was required in order generate squeezed light from the laser.
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The longitudinal mode spectrum was therefore measured simultaneously with the
amplitude noise and a typical spectrum, obtained when the amplitude noise was 1.4 dB
below the SQL, is shown in Figure 2.5. The resolution of the trace is limited by the
bandwidth of the optical spectrum analyzer which "smears" the features of the spectrum;

however, the sidemodes are still resolved.

Optical Mode Spectrum [10 dBm/div]

853.155 nm
Wavelength [0.15 nm/div}

Figure 2.5. Optical spectrum.

The power in the largest side mode was about 30 dB smaller than the main mode
power and the power in most of the other side modes was somewhat smaller still. It
seems likely that the excellent side mode suppression observed in this laser was the
reason the large squeezing measured while other, similar, lasers would not produce

significant amplitude squeezing [2-3],[2-10] under comparable operating conditions.
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The photocurrent noise at 28 MHz was then measured as a function
of the laser injection current. The results, normalized to the SQL, are plotted against the

pump rate R=1/ig,-1 in Figure 2.6.

Photocurrent Noise Power

Pumping Factor R

Figure 2.6. NP vs. Pumping.

It can be seen that, starting well above threshold, the noise level increases as the
laser approaches threshold, crossing over the SQL at an injection current of about R=2.5.
Also shown in the figure is the prediction of the single-mode theory of [2—4] in the low
frequency limit with nyp=1.2 and with the pump noise assumed to be completely
suppressed. Although the gener,e}l__r,;rféve’\tures of the data seem to be in approximate

agreement with the theory, there is still a roughly 10-20% discrepancy over the entire
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range of injection currents at which the measurements were made. The minimum noise
obtained with this laser was 1.5 dB or 29% below the SQL.

| If the laser temperature was altered slightly, both the mode spectrum and the
amplitude noise were found to change in a correlated way. By far the largest change in the
side mode power occurred for the two longitudinal side modes closest to the lasing mode
in wavelength. The amplitude noise, normalized to the SQL, is plotted against the fraction

of total optical power in these two modes in Figure 2.7.

1.5

SQL

Photocurrent Noise Power

Single Mode Theory

0.5 ' - ' '
0 0002 0004 0006 0.008 0.01

Fraction of Power in Sidemodes

Figure 2.7. NP vs. side mode suppression.

A clear correlation between the side mode power and excess amplitude noise can
be seen and the laser noise was found to increase to ten times the SQL when 5% of the

optical power was present in the two measured side modes. The data also indicate that,
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for this laser, the power in the side modes needed to be less than about 0.5% of the total
output powqr in order for the excess noise to be small enough so that the amplitude
squeezing is seen. A third-order polynomial fit to the measured data is also shown (solid
line). An extrapolation of this curve to zero side mode power gives excellent agreement
with the prediction of the single mode theory (indicated by the dash-dotted line). This
suggests that if the excess noise due to the side modes were eliminated, the laser noise
would approach the fundamental limit determined, primarily, by the device and detection
efficiencies. However, the theory of Yamamoto [2—4] applies only to a laser for which
both facet reflectivities are close to unity. This was not the case for the laser used in this
experiment which had one facet anti-reflection coated. Recent numerical calculations
using traveling-wave models [2-11] have shown that dramatic changes in the
theoretically predicted amplitude noise power can occur when the "good-cavity"
assumption is relaxed.

The mechanism by which the side modes generate the excess noise is still unclear.
However, the second order term in the fit dominates over the range of side mode powers
shown indicating that the excess noise is proportional to the square of the side mode
power in this range. Attempts to fit the multimode theory described in [2-3] to the data
were not particularly successful. At side mode powers above 1% of the total power, the fit
in Figure 2.7 no longer agreed wgll w1th the measured data. Some recent work with two-
mode quantum Langevin equationé 7[2—12] indicate that for the right conditions, the
extremely good correlation of mode noise which produce the effect of squeezing can be

spoiled by nonlinear gain saturation differences between modes and spectral hole burning.
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It is also known that extremely small amounts of optical feedback can
signifiéantly‘ effect the amplitude noise of the laser [2-3]. Several checks were therefore
performed under conditions of maximum squeezing in order to determine if spurious
optical feedback was present and, if so, was influencing the laser noise. First, the laser
temperature and injection current were varied by an amount not large enough to cause a
significant change in the side mode suppression but large enough to vary the laser
frequency by a few GHz. The idea here was that if optical feedback were present with an
intensity large enough to change the amplitude noise, then changing the laser frequency
would change the phase of the feedback thereby generating oscillations in the amplitude
noise. The amplitude noise was found to vary by less than the measurement error of 0.1
dB, however. In addition, the position of the optical isolator was varied over several
wavelengths by placing its translation stage on a piezo-electric transducer (PZT), and
again no significant change in the amplitude noise was observed. Finally, the position of
the collimating lens was also varied over several wavelengths using a PZT and no change
in the measured squeezing was observed. The above checks seem to indicate that optical
feedback from the tested components was not playing a significant role in reducing the
amplitude noise.

In summary, amplitude squeezing 29% below the SQL has been measured from a
commercial room-temperature Fab;yﬂPerot semiconductor laser. This corresponds to a
noise level 41% below the SQL at the output facet of the laser when correction is made
for optical losses present in the detection éystem. Excess noise, which degrades the

squeezing, appears to be associated with the presence of longitudinal side modes. While
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the measured amount of squeezing is still 10-20% smaller than predicted by the standard
single-modq theory, an extrapolation of the data to zero side-mode power gives
agreement with the theory to within ~3%. Careful stabilization of the laser temperature
and injection current are important factors in keeping the side mode power to below
acceptable levels. However, other than the control of optical feedback from the detection
system, no other modifications to the laser appear to be necessary in order to obtain

significant amplitude squeezing.

2.4. Discussion

These results demonstrate that substantial squeezing can indeed be obtained from a
commercial device operating at room temperature with no external components or
modifications other than those used to detect the light. The excess noise which degrades
squeezing is also inveétigated and it appears that the source of most of this noise under a
wide range of operating conditions is associated with the presence of weak longitudinal
side modes. Our measurements indicate that, under optimal conditions, the amount of
squeezing is limited primarily by the device and detection efficiencies, in accordance with
the standard single-mode theory of amplitude noise in semiconductor lasers.
Since there appear to be no fqndamental reasons why room temperature lasers

should exhibit significantly less squeezing than cryogenically cooled devices, there has

been some effort recently to determine why the generation of amplitude squeezing at



20

room temperature has been so difficult. This has been motivated in part by a desire to
understand the excess noise sources which occur in semiconductor lasers. Excess noise
has made comparisons of experimental data with theory somewhat difficult: It is not
altogether clear how the excess noise is generated or what fraction of the total noise it
- represents, More important, however, is the lure of being able to produce large amounts
of squeezing from off-the-shelf commercial devices. Such an accomplishment would be
an important step on the road to facilitating precision measurements with sensitivities
below the SQL. Several experiments have been performed recently, designed to increase
the squeezing from commercial, room temperature lasers using external optical
modifications such as injection locking and optical feedback. While these experiments
have been, on the whole, successful in reducing the amplitude noise to as much as 50%

below the SQL, the added complexity is, in principle, unnecessary.
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Chapter 3 - Characterizing Distributed Feedback

Semi‘conductor Lasers

3.1. Introduction

The physics of optical gain in semiconductor lasers in treated in many texts. It is the
result of pumping charge carriers to higher energy states to obtain separate quasifermi
levels, Eg. and Eg, for electrons and holes, respectively. Stimulated emission, gain,

occurs at frequencies v such that hv <Eg, —Ey, .

This chapter explores the properties of the semiconductor lasers used for optical
commuﬁications for a better understanding and simpler characterization method based on
propagation in dispersive fiber. Fiber parameters such as relaxation resonance frequency,
damping factor, gain compression, and alpha factor can all be obtained by fitting
modulation response and relative intensity noise (RIN) measurements for different
lengths of fiber.

First, an expression for the gain is introduced based on a simple compression
approximation. Next, the laser rate equations are used to derive the expressions for

modulation response and RIN. In the next section, the equations for fiber propagation for
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AM and FM signals are developed and used to analyze modulation response and relative
intensity noise propagation in fiber.

Finally, a multimode description of the laser provides an explanation for the
enhanced low frequency RIN due to fiber propagation. Correlated noise from several
modes becomes decorrelated due to group velocity dispersion in the fiber resulting in a

larger measured RIN for low frequencies after a few kilometers of propagation.

3.2. Semiconductor Laser Dynamics

3.2.1 Gain

Gain in semiconductors originates from delocalized electrons and holes combining to
produce stimulated emission. The expression for gain at optical frequency ® is the result
of integrating over the electron-hole density of states p(®') multiplied by the Fermi
population of those states multiplied by the Lorentian lineshape g(®,m") for each single

transition at ®'. The gain can be written generally in the form
G@)=Y [pl@)f.(@)-f, @)kl o) (3.1

Egap
7

where Y includes a transition matrix element and spatial wavefunction for quantum well
lasers [3—1]. The width of the Lorenzian lineshape for a particular 2-level electron hole

pair is determined by the very fast (~100 femtoseconds) electron dephasing time.
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For a DI'B laser, the field is spatially distributed and stronger in the center of the
cavity, 'leadi‘ng to spatial hole burning, refractive index changes, and increased chirp.
However, to a good approximation, simply the total number of carriers and photons are
used in characterizing the gain above threshold. From a rate equation standpoint, it is also
useful to obtain a linearized version of G for small signal characterization and noise
measurements. Define small signal variations of the carrier density, N, and photon
density, P, about the operating point:

(3.2)
P =P, + AP

The gain, approximated to first order variations around a steady state compressed value is

G JG
G(N.P)= GNP )+ AN+ L AP 3.3
(N.P)=G(Ng TR TP 3-3)

where the derivatives are evaluated at Ny and Py. The differential gain terms are assigned
unique symbols. The differential modal gain is defined as

G (3.4)

A
oN

where vy 1s the group velocity. The differential gain compression parameter 1s defined as

e=__L 9G (3.5)

This leaves the expression for gain written in the form

G =G, + AAN — G, AP (3.6)
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3.2.2 Rate Equations

The dynamics of most semiconductor laser phenomena are contained in the system of
coupled rate equations for carrier density, photon density, and optical frequency. These

equations are treated in a number of sources [3-2], [3-3]

I F
SI\i=——E—ng(N,P)P+—-L
dt eV, = Vv,
(3.7)
n_K
£=—i+rng(N,P prlet | B
dt Tph v \Y%

I is the bias current, V, is the active region volume, V is the mode volume of the cavity,
vy is the group velocity, and T is the spontaneous emission lifetime. F; and F, are
Langevin noise terms describing the behavior of spontaneous decay of carriers. The term

n K
Iv,G S\p/‘ refers to the spontaneous emission rate into the lasing mode [3-4]. At

0K

reasonable operating ‘points above threshold, << Pand will be neglected in the

experimental characterizations. Also in this limit, from the steady state operation
condition, the gain tends to approach

1

3.8
IV, T (3.8)

G, —

Linearizing the rate equations (3.7) about the operating point No and Po using the

gain expression in (3.6) results in the small signal rate equations
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1—¢P,
d AN=£—(1+VgAP0]AN—(———8—O)AP+£—

dtev, |1 It v

d P E " a G:2)
L AP=Tv, AP AN -0 AP 422

dt i Ton \%

The instantaneous lasing frequency for semiconductor lasers is a time dependent function
of the carrier and photon density and a linear approximation for the variations is needed
to complete the rate equation description of the system. The photon rate equation emerges
from the amplitude of the field evolution, and the phase rate equation yields the lasing

frequency time dependence. Linearized, it is

RO om
A® =2 AN + ZZ AP 3.10
e (3.102)

The partial derivatives can be expanded with the chain rule for their dependence on the
real and imaginary susceptibility, ¥ and ¥;

Az 90 O 0% 9G 9 Oy, 9Y; IG

(3.10b)
dy, dy; dG oN ay, dy; oG oP

The firsf partial derivative is found by noting that the fractional change in lasing
frequency is equal to the negative fractional change in the real part of the susceptibility

times the confinement factor

(3.11a)
The relationship between gain and.imaginary part of the susceptibility is given by the
power of e:

G=22% (3.11b)
c<n
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The factor of 2 is because the gain refers to power, which is the square of electric field.

By defihing the o and B parameters

(3) @)
oc—% i and B_BXr /axl

= = 3.11
N/ N op | op (.11c)

_ (3.10b) can be written as

2 2
Aw = -[ri"-ju[i}xm + (rﬁ}[ﬂl—](— £G, )AP (3.12a)
X ) | 20 %e )\ 20

_ cn”
Recognizing that v, =——and G, =

r

, Eqn. (3.12a) simplifies to

IV, T

Ao =-ZTAv,AN B & Apip (3.12b)
2 21, )

where the Langevin term F; accounts for spontaneous emission into the lasing mode,

resulting in frequency fluctuations. Note that since the photon number dependence is only

in ¢, B is usually accepted as 0 in most applications of (3.12b).

3.2.3 Modulation Response

Measuring the modulation response is a simple way of characterizing two of the most
important semiconductor laser properties: the resonance frequency and the damping
frequency. Other laser parameters such as o-parameter and €P/T,, are obtained with

dispersive propagation. The theoretical response is obtained by first setting the Langevin
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forces to 0 and applying an ¢ dependence to Al AN, and AP, and transforming to the

frequericy domain. Fourier transforms are defined here according to
AP(Q)= [AP(tk*"dt (3.13)

Solving the system (3.9) for AP(Q) by eliminating AN(Q) is straightforward and is found

to be
I'v_AP

AP(Q)= 2L e (3.14)

where the relaxation frequency, £2o, is defined as
, VAP, gP,
Ql=—t 0,40 (3.15)
Ton TTon

and the damping factor, Yo, 1s

Yo =1+V0AP0 +iP— (3.16)

T Toh

Both pafameters are given in radians/sec but are converted to Hertz by dividing by 2.
The modulation response, MR(Q), is defined as the electrical signal response of the
system as a function of Q, normalized by the response at £=0. The detected electrical

signal is proportional to the intensity of the field, thus

lAP(Q)* _ 9
APO)* Q2 -Q2) +12 @

MR(Q) = (3.17)

The electrical response in the system due to factors such as detector roll-off and RF

pickup can be eliminated by dividing the modulation responses (subtraction of
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logarithmic data) at two different operating conditions [3-5]. Since MR(L2) 1s measured
and modeled in dB in this thesis, subtraction of dB values is used for MR»(€2)/MR(€2).
Figure 3.1 shows the subtraction modulation response for a quantum well DFB
semiconductor laser from Lucent Technologies (formerly Ortel Corporation) operating at
- 1539 nm in wavelength. The signal current was modulated by using a microwave probe
tip with a transmission strip line where it was combined with the bias current within a

few hundred microns from the laser chip.

-
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Difference in modulation response (dB)
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Figure 3.1. Difference in modulation responses.
Shown are the traces for the modulation response at the labeled bias
current minus the mgdulation response at 40 mA bias current. The gray

curves are the data and the solid black lines are the fitted curves.
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Figure 3.2 shows the extracted parameters fit to a line by their expected linear

dependence on output power.
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Figure 3.2. Damping factor versus squared resonance frequency.

The pure modulation response has been calculated with these extracted parameters and
plotted for an intuitive understanding of the modulation response. At higher power levels,
the relaxation resonance is pushed to higher frequencies, and the larger damping factor

gives a flatter response, both reinforcing the advantage of high bias levels for direct small

signal modulation.
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Figure 3.3. Calculated modulation response with the obtained parameters.

Recall that the lasing frequency is time dependent and a modulation of the
current will cause a modulation of the frequency, known as chirp. Directly solving
the small signal rate equations (3.9) for AN and substituting into (3.12b) results in

the power dependent chirp equation

|4 e+ o ap (0
A(t)= 26, [dt AP(t)+ " APO(t)} (3.18)

The first term produces "transient chirp" and the second term produces "adiabatic chirp.”
Note the direct proportionality to the o-parameter. Typically the adiabatic chirp is most
prominent, but high speed digital signals with fast rise times makes the transient term

more important.
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3.2.4 Relative Intensity Noise (RIN)

For laser systems that are closely, but not exactly, shot noise limited, a semi-classical
description of noise based on the rate equations works well for describing the RIN
spectrum aﬁd the effects of dispersive propagation in fiber. A Langevin force model for
noise driven by spontaneous emission is contained in the works by Henry [3-6], [3-7],
[3-8] and will be followed here.

We make use of the Langevin noise terms, F;, F», and F; from the rate equations
(3.9) and (3.12b). F; is associated with the recombination of carriers, F, is associated with
the spontaneous emission of photons into the lasing mode, and F; is associated with the
phase fluctuations from the spontaneous emission of photons into the lasing mode. In the
spontaneous emission process, the loss of carriers results both in the generation of
photons into the lasing mode and all other recombination processes, now termed F;'. This
correlati.on can be written as

F =-F, +F . (3.19)

with F', F,, and F; as mutually uncorrelated noise sources. It is assumed that the
spontaneous emission process is Markovian, meaning there is "zero memory" of past
events, and the noise sources can be considered time-correlated by a delta function. Over
the electronic frequencies of interest, it is quite acceptable to consider the Langevin forces
as stationary Gaussian white noise processes, i.e., the spectral densities of the

fluctuations, S;(€2), So(£2), S3(€2), are all constants.
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The spectral density of the photon fluctuations, AP, for these noise sources is

given by the Fourier transform of the autocorrelation of AP (Wiener-Khintchine theorem):

Sp(Q)=2 [Cp(t)e™dr (3.20)
- where
Cplt)= lim % JAP()AP(t + T)dt (3.21)

Also in this approximation, the noise sources introduced are not considered to be time
dependent processes, and so the time average of the fluctuations can be equated to the

ensemble average with

C,(t)= AP()AP(t + 1) (3.22)

Using the Fourier transform definition of AP(Q) with (3.20) and (3.21), the total spectral

density for the photon fluctuations, Sp({2) based on the Langevin terms, is found in

AP(Q)AP(Q) =S, (Q)B(Q - Q) (3.23)
The total spectral density of the photon variation is the additive sum from each

independent source,

$p(@)=5(Q)+sP(@)+sV(Q) (3.24)

P P
The relative intensity noise (RIN) of the laser output light is defined as this spectral

density divided by the square of photon density, measured in units of dB/Hz

RIN(Q)=10- 1og10[s'; (“Q)} (3.25)

2
0



35

Because measured electrical power is proportional to the square of received optical
power,i this .quantity does not change with optical attenuation, present in fibers and
inefficient detection systems.

The response of the photon fluctuations due to noise source F, is exactly the same
as the response due to current modulation since they enter the rate equations (3.7) in the

same manner. The only difference is the proportionality constants, and is found to be

(FngPO )2 S, (Q)

si@)=
T (@-0?f w20 B VY

(3.26)

where the spectral density of the fluctuations alone, S1:(€2), is a constant equal to the rate
of carriers which decay other than interacting with the lasing mode [3-9]. This
contribution to the total RIN is experimentally found to be much smaller than the
contribution from the F, noise source, which can be derived easily by setting Al=F;=0

eliminating AN in (3.7), and solving for AP in the frequency domain and using (3.23).

5 Q%+ Y, S,(Q
S%“)(Q)z /r 2 )

(3.27)
(@ -0 +y2Q> (V/T)

where SZ(Q) is the spectral density of F, itself which is white over all frequencies of

interest [3—10], [3-6]

Sz(Q)Z

4n KP,V ’
——= 8(P,V/T) Koy (3.28)

ph
where K is the Petermann correction factor for the non-uniformity of the photon density

in DFB lasers and owgt is the Schawlow-Townes linewidth.
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The F; noise contributes only to a constant phase noise and not intensity noise, so
it has no contribution the RIN directly, i.e. S;(Q)= 0. However, by propagation in fiber,
this FM contribution to the noise is converted to AM and appears in the RIN after
propagation. It will be addressed in Section 3.3.3.

Measuring the RIN of a laser involves measuring the total noise of the laser with a
high speed detector, amplifier, iand an electronic spectrum analyzer. The electronic noise
power contains several different components that must be treated separately. The RIN is
the coefficient of the component that varies with the square of the photocurrent, the shot
noise component varies linearly with the photocurrent, and all the constant noise terms

are lumped into one "thermal” noise component [3—11]. The total noise power is
NP = GRAV(i% ) = GRAV[RIN -i2 +2¢i, + N, | (3.29)
where <12NP> is the squared current fluctuations, ig is the DC photocurrent, R is the

resistance, G is the amplifier gain, Av is the resolution bandwidth, e is the electron

charge, and Ny, is the total thermal noise.
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Figure 3.4. Noise power <i 12\Ip> versus photocurrent.

Figure 3.4 shows the total measured noise power as a function of optical
attenuation (photocurrent) at 8.7 GHz, which is near the relaxation resonance where the
RIN is high. The points are fitted to a quadratic polynomial and the RIN is the quadratic
coefficient. Shown also is the linear (shot noise) and constant contributions to the noise
power. This attenuation process is used to calibfate the shot noise at each electronic
frequency for the parameter GRB for the linear coefficient in (3.29). Then the quadratic
coefficient can be equated to the RIN directly. Figure 3.5 shows the extracted RIN for a

DFB laser following this shot noise €¢alibration.
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Figure 3.5. RIN vs. frequency for different bias levels.
The points are extracted from experimental noise data and the curves are

fits to equation (3.25) with (3.27).

The power dependent resonance frequency and damping factor can be seen as well and as
fitting parameters for the curves, they compare closely with those in Figure 3.2. Low
frequency data is noisy and hard to fit closely because of the detector turn-on bandwidth
limit and the low levels of RIN. There are reports of some low frequency RIN
enhancements due to the presence of longitudinal side modes [3-12]. Little evidence of
this effect has been observed; however, RIN enhancements after propagation due to mode

decorrelation noise is measured and explored in Section 3.4.
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3.3. Dispersive Propagation

The physics of wave propagation in fiber is covered in texts such as Agrawal [3—13]. This
section considers the effect of dispersive propagation on small signal modulation and
noise. Group velocity dispersion (GVD) refers to dependence of the group velocity on the
optical frequency, and has a prbfound effect on wavelengths of 1.54 um in standard fiber
carrying data, known as FM-to-AM conversion. This effect is used to probe and
characterize the o-parameter and ePy/T,, for a DFB laser. Other propagation effects such
as attenuation, third-order dispersion, stimulated Brillouin scattering, and self-phase
modulation are other important propagation effects, but can be made negligible for small

signal study with fiber lengths less than 50 km and moderate power levels.

3.3.1. Signal Propagation Equations
Consider an electric field propagating in a fiber,

E(z,t)=E,e' @) (3.30)
The propagation constant for the guided mode, Taylor expanded around a carrier, @y, is

B(OJO+A0))=BO+B’A0)+%AQ)2+%A(D3+... (3.31)

For group velocity v, the parameter of interest is

d | 1
A 3.32
o0 am[vg) (3-32)

B,,_SB

e
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Intuitively, B”# 0 states that the index of refraction is wavelength dependent. The

commonly quoted "dispersion parameter” specifies a time delay accrued in picoseconds
for two signals spectrally separated by 1 nm after 1 km of propagation, given by

27c

D=-=2
7\4‘_

B’ (3.33)

Standard Corning fiber, SMF-28, has D~17 ps/(nm-km) at 1540 nm and is roughly O at
1310 nm, the two low-loss regimes of silica fiber used for optical communications. The
dispersion parameter is determined mostly by the intrinsic material dispersion, but is also
shaped by the geometry of the waveguide. Other examples of fibers with engineered
dispersion parameters are double-clad fiber and dispersion-shifted fiber.

In order to derive the expression of the transfer function for dispersive
propagation, consider a carrier wave, @, with small signal modulation at frequency 2.

Let ¢; and ¢, be arbitrary complex modulation coefficients.

Z] | i{(mo-ﬂ)t—[ﬁo—?—i—%ﬂz ]Z]
+c,e &7 (3.34)

i

E(z,t)=E, eileot-foz) 4 c,e

(g +Q)— ‘BO+£+E~QZ
vg 2

. . z : . Y
Without loss of generality, we can set t+— — tin order to examine the moving time

Ve

reference. Define the dispersion angle

2

8(Q,z)= —92—”97 (3.35)

Equation (3.34) becomes
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E(t)= Eoe™" {1+ ¢,e 9 4 e 240 (3.36)
As an aside; the general expression for the propagation of any bandwidth of light centered
at wy can be written as

”

((DOt -Boz) = iB— 2

E(z.t) j AQk e 2 d (3.37)

where A(Q) is the initial envelope function.
Now apply the relation (3.36) on an actual small signal of AM intensity
modulation index m with phase ¢am and FM index b with phase ¢ru:
E(t)=Eq [l + mcos(Qt + ¢ 5y )] 2/ l00rbsin(@+orn )] (3.38)
In the small signal approximation, this can be simplified as a carrier wave and two side

bands by using the exponential forms for sine and cosine and using (1 + x)”2 = 1+%x and

e* =14 x for x << 1. The result is

E(t)= E,e' ™| 1+¢™" M/ BloofM _B (3.39)
4 2 4 2

where M and B are the complex modulation parameters M = ¢*AM and B = ¢'%FM |
After propagation, equations (3.36) and (3.39) can be combined and new AM and FM
modulation indexes can be found by equating
M’ B' M B
+—=|—+—p
2 4 2
B

4
Ml

" M _E i0
4 2 4 2

(3.40)
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Adding and subtracting these equations and solving for the new complex modulation
indexes yields

M’ = Mcos 6+ 2iBsin 6

, i (3.41)
B =Bcose+5Msm9

3.3.2. Modulation Response

The experimental goal here is to use the dispersive property of the fiber to obtain
information about the semiconductor laser. First, the modulation response for a
semiconductor laser is taken alone by applying a current modulation, Al, at frequencies 0-
20 GHz and recovering the signal with a high speed detector and network analyzer. Next,
the same conditions are repeated with the light passing through several kilometers of
fiber. The division of the two responses eliminates the electrical parasitic effects and
" reveals a transfer function depende;nt solely on the dispersion in the fiber, the

o-parameter, and another laser parameter

eP,
k=—4%
T

(3.42)
ph

The AM transfer function equation for the intensity modulation in fiber, Ham(Q2) at

modulation frequency € can be written in the form

MI
H,(Q.z)= i (3.43)

The measured electrical power response is given by \H v (&, zf .
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For a semiconductor laser, an expression is needed for the amount of FM
modulation, B, at the output of the laser, which is correlated with the intensity

modulation, M. Recall equation (3.18) and substituting in

AP = MP,e'" (3.44)
results in
Aw = —9%\4(19 +%) (3.45)

The instantaneous optical frequency is the derivative of the field phase
oft)= %9 = m, + BQcos(Qt) (3.46)

By substituting the magnitude of the frequency deviation, Aw=BL2, the FM index is found

to be
B =_9°M(i+£) (3.47)

The transfer function for the intensity modulation is now found from (3.41), (3.43), and

(3.47) tobe

H,,, (@2)= L = cost(Q.2)+ o 1415 sin6(Q.2) (3.48)
M Q
where G(Q, z) = —%—sz , as before. The electrical response is

IH 4 (©.2) = (cos 6+ 0sin 6) +oc2(—g—j sin” (3.49)
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Figure 3.6 shows the modulation response for a DFB laser after 25 km of fiber at various
bias levels. The modulation response of the laser itself is divided out, which eliminates
the relaxation and damping frequency information. Each curve is fit to equation (3.49)

and the parameters 0., k, and " are extracted.

1 5 T T - )

10

T
B

Modulation Response of 25km for fiber (dB)

20k ]
i — 80 mA ]
-25 — 60 mA
— 40 mA| J
30+ —30m
_35 1 1
0 10 15 20

Frequency (GHz)

Figure 3.6. Modulation response for 25 km of fiber at various bias levels.

Curve fits are overlaid on the data. -

The lowest bias level refers to the lowest curve where ¥ is the smallest. The first

dip here is evidence of the cosine and sin terms competing in the first squared term of

(3.49). For higher power levels, the k in the last term (adiabatic chirp) grows and

increases H” at low frequencies, which reduces that first dip. The increase in the overall
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height above 0 dB is due to}ocl2 (transient chirp), when all the FM modulation power is

coverted to AM in the fiber. Theoretically, all curves should intersect at 0,0, but there was
some change in signal accounted for by the small signal modulation index not exactly
repeated from trace to trace, and this merely shifts the overall curve up or down.

The o-parameter dependence on power is shown in Figure 3.7. Error bars were
obtained with measurements with different fiber lengths and reflect the imperfect
knowledge of the fiber length and various extracted dispersion parameters. K, linearly

proportional to Py, was found to vary linearly from 1.6 GHz to 8 GHz.

o parameter
A
i

1 L

_5 1 L 1 L
0 10 20 30 40 50 60 70
Output power (mW)

Figure 3.7. o-parameter versus laser output power.
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3.3.3.RIN

After propagation in fiber, RIN is altered in the same physical manner. Intensity
fluctuations undergo the effect of a transfer function. Since the noise source F;' has the
same response as intensity modulation, the transfer function is the same as well:
sW(Q2)=[H y Q.2 'sV(Q) (3.50)
However, as before, this term contributes typically negligibly to the RIN. The dominant
contribution is due to the spontaneous emission into the lasing mode and is
s®(Q.z)=H,Q.2)]"sy" (@) (3.51)

This noise driven by F, contains both an AM and FM index. Section 3.2.4 treated only the

AM index and found

/s(z) Q
M, L E ) (3.52)
P, P;

An expression for the frequency variations can be found by setting Al=F;'=F;=0 in the

small signal rate equations (3.9) and (3.12) and eliminating F, and AN variables:

iAm+~l—Ao)=gng dapiap (3.53)
dt T 2 dt Tph

Assuming again a time dependence of ¢, and transform this equation into the frequency

domain, the solution for A®(£2) is

b VgA1+lQTph

AQ) = —i 2 T
2Q T 1-1/Qn

AP(Q) (3.54)
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Now we substitute Qoz=ngPo/’tph from (3.15) and M, in (3.52). Then, using Aw=BQ
from (3.46), we arrive at the FM modulation index for the noise source driven by Fy:

20202 1-i/Qr

B, =—iM (3.55)

Finally, the transfer function can be written directly using the propagation equation (3.41)

211+iQt
H,(Q,z)=cos(Q,z)+ a&[—l—ﬂ}ine (3.56)

Noise driven by F3; has no AM index, as discussed in Section 3.2.4, but the FM

index is

B, = A(Q) _ S;(Q)

= 3.57

0 o (3.57)
and so contributes to the RIN by

o2
s(Q)=4s,(Q) =52 é?’z) (3.58)
~ where [3-9]

r 2

S;(Q)= (21)0\/ ] S, (Q)=2Kog; | (3.59)

The final expression for RIN after propagation is

:
; Q%+ ! 2
RIN(Q, )= 10-log, 0| 8Kagy | [H, (Q.2) e + 20 (f“)

@ - +y20* @

(3.60)



48

Figure 3.8 show the change in RIN after propagation in two separate fibers. ARIN is the

measured after fiber divided by the measured RIN before fiber. The curves are the fits to

equation (3.60).

A RIN (dB/Hz)

10 : * :
0 5 10 15 20 25

Frequency (GHz)

Figure 3.8. Change in RIN for 4.4 km and 25 km for 100 mA laser bias.

The extracted parameters for the laser used at 100 mA bias were 1=.16 ns, Tp=7.4 ps,

0i=-4.8+0.3, and Kast=4.5x10 s™'. Since T>> 1, . it can be noted that for frequencies in

the range of l<<Q<<Land for small fiber lengths (z < 3km), the RIN can be
T T
ph

reduced uniformly. Under these approximations, H, can be written as

H,(Q.z)~1-0Q:p"z (3.61)
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Beyond this short length, the interplay of the terms in the full expression takes over
giving rise to the structure seen in Figure 3.8. For the 25 km section, the { dependence is
similar to the modulation response revealing the same Q? dependence in the cosine and

sine terms

3.4. Multimode Effects

The performance of optical communication systems is strongly affected by laser RIN,
which is a critical factor in determining the signal to noise ratio. Since the spectral gain of
semiconductor lasers is very broad, a relatively large number of side modes carry enough
noise power to affect the performance of the laser diode, especially at low frequencies.
Individual longitudinal modes can exhibit large intensity fluctuations, called mode
partition noise (MPN), even though the total intensity remains low due to anticorrelation
among pairs of longitudinal modes. This phenomenon is harmless in the absence of fiber
dispersion; however, with propagation, different phases acquired by different frequencies
destroys the anticorrelation, and causes an increase in measured RIN [3-14].

The side modes in the stop band of the DFB laser are highly suppressed. Outside
this band, there are many Fabry-Perot cavity modes that have similar power over a large
bandwidth, shown in Figure 3.9. The optical spectrum is used to determine the power in
each of the side modes and their separation from the main mode, and around 30 modes

are necessary to explain the increase in RIN.
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Figure 3.9. Side mode suppression ratio (SMSR).
Pout=3.4 mW (crosses) and Pout=16.4 mW (circles) as a function of the

frequency deviation from the main mode.

Theoretical treatment begins with the linearized gain equation (3.6) with a new

oG I : o
term C,,, = ———, which is the cross term that accounts for the gain in one mode

affected by the optical power in the other modes.

Gk = GOk + VgAkAN _8kG0kAPk - ZCI\mAPm (3.62)

m=zk

The resulting transformed small signal rate equations are

(iQ+Ty)AN =%—Z—GOkAPk (3.63)
a k
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F

(iQ+T AP, = %+ I'v,A P, AN - Y TC, P AP, (3.64)
m=k

iQAG, = —9‘-2%— v, A AN +Fy (3.65)

R
where I'y L >.GoP, Ty = ljpk +Te, G, P, and
T k k

Gy, =G —&,G o P — I R, is the spontaneous emission rate per unit
m#k

volume into the lasing mode k.

The gain margin, AGOk , which is defined as the difference between the inverse of

the photon lifetime and the temporal gain constant of the mode, determines the CW

R
power, Py, according toP, =—=— [3-15]. For side modes below threshold, dynamic

0k

variations in the gain are small compared to the gain margin, which is very large and
dominates the rate at which the photon density fluctuations are damped. Thus, for a side
mode, APy is essentially independent of fluctuations in the carrier density and the photon
density of the other modes, and (3.65) approximates to
F, /V
AP, =———, k=#0 (3.66)
iQ+ 2k

Py

for the side modes. The main mode is denoted by k=0.
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Following Section 3.4.2, the Langevin forces Fy of different modes are
uncorrelated, and the photon density fluctuations of each of the side modes, APy, can be

considered as independent noise sources, justifying F, =F —> F,, . Thus, the photon
k

and carrier density variations in the main mode are given by

AP, = AP} + APJ* + Y APJX (3.67)
k=0

AN = ANN + AN™ + ¥ AN (3.68)
k20

where the superscripts denote which source (carrier or photon density) as well as main

mode (0) or side mode (k). Contributions to AN and AP, originating from carrier noise,
AP&W and ANYN | and from spontaneous emission in the main mode, APS’ 0 and AN , are

approximately the same as those obtained with single mode theory. The additional

fluctuations caused by the side modes is given by

. 1
APX =1 G iQ+Ty +TG,, Ic,P Ol AP AP (3.69)
0o = oo D) 0kt 0 D) k = PokBry .
oo

where D(Q) = QS -Q? +1Y,Q is the resonant denominator. Equation (3.69) shows that

the additional fluctuations in the main mode are anticorrelated with the noise source APy
that produces them. Two effects are present: first, depletion of carriers due to spontaneous

and stimulated emission into the k™ side mode, and second, compression of the gain of
p g
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the main mode by the power in the side modes. From equations (3.65) and (3.68), the

phase fluctuations in mode k due to spontaneous emission in mode m is given by

o, Gn
AYTm = —Zk Tk AN Pm 3.71
O 2 iQ S

Since the different noise sources are uncorrelated, the spectral densities are
additive and their effects can be considered separately. The total RIN at the receiver in the

case of a nearly single mode laser is given by

<’H§kAP§k +H1]:kAP1fk’2>
RIN(Q,z)= RIN,(Q,2)+ Y >
k=0 P

(3.72)

where RINj is the RIN from single mode theory and the summation term is additive for
each side mode noise term correlated with itself and the main mode. The phase noise

terms from the side modes,F,, , can be neglected because of the mode power squared

term in the denominator which is small for side modes. The transfer function Hllzk is

analogous to the H» in the single mode case. In general, the small signal transfer function
for variations in mode k due to power in mode m is given by

. A Pm

H™ =|cos(8)~ 2P, Q)I;

km

sin(0) |exp(iy, ) (3.73)

where 0 :——;—B"sz and y, =—B"Aw, Qz, and Ay is the optical frequency spacing

between mode k and the main mode. The factor exp(iy, ) accounts for the group delay of

side modes relative to the main mode. Substitution of (3.70) into (3.71) into (3.73) yields
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Hik APk + Hix APX =

‘ 1e,G,P, +16,P, G P
=1 cos B8(expliy, )+ po, )+ 0ty sin G(p(,k + Pox £ O‘gg Ok "0 Il+a—kﬂexp(ﬂyk )H
, 1 Oy Lok

= [cos G(exp(i\yk )+ Pox )+ Por &g Sin G]APk
: (3.74)

The approximation in the last line of (3.72) is valid for small angles 6<<1 and neglects
the modal dependence of the linewidth enhancement parameter, o and the differential
gain, G, , and assumes a large SMSR. Also, it shows why even highly suppressed side
modes can contribute significantly to the RIN after propagation in dispersive fiber. As a
consequence of the difference in group velocities of the longitudinal modes traveling in
dispersive fiber, the fluctuations originating in the side modes no longer cancel out, but
cause oscillations in the noise power at the receiver. It can be seen that there is an overall
increase in the RIN that rolls off at high frequencies due to the low-pass characteristic of
the noise source APy.

In order for the MPN to have a significant value at a given modulation frequency,

Y, has to be close to m(1+2m) for one or several of the dominant side modes, where m is

an integer. The frequency separation between the main mode and the k"™ mode is given

approximately by Aw, ~ |k % where L is the laser length, c is the speed of light, and k
y by A L

is the mode index. Thus, assuming a typical value B" = -20 ps*/km at 1.54 pm, the

(1+2m)%: (1+2m) L(um)
|k 2¢|B"] K z(km)

condition becomes Q= . If L/Ikl is much larger than

the propagation distance, z, i.e., for side modes close to the main mode and short lengths
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of fiber, the frequencies at which the previous condition is satisfied are so high that an
increasé in RIN is no longer seen.

The relative intensity noise of a 250 um length DFB laser at 1.54 pum was
measured before and after propagation in various lengths of standard single mode optical

fiber, shown in Figure 3.10.
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Figure 3.10. RIN measured before and after fiber.
4.4 km and 25.3 km (inset) of fiber at Pout=3.4 mW, Ibias=1.6 I,
SMSR=27 dB. The dotted curve is the experimental data, the solid line is

the multimode theory and the dash-dotted line is single mode theory.

A good fit to the standard single mode theory was obtained before adding fiber,

from 2 to 20 GHz. The noise without fiber was used to determine R, , (o, and Y at
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each operating point. The rest of the parameters were estimated from the noise with fiber,
yielding 0=-4.6, 7=0.27 ns, Tph= 5.5 ps and "= - 20 ps*/km. Equation (3.74) was used in
the simulations, and the nonlinear gain coefficients were assumed to have a wavelength
dependenceras that in [3-12]. The increase in the RIN over the frequency range of 500
MHz to 5 GHz is not well explained by Su et al. [3—12], who introduced an asymmetric
nonlinear gain coefficient to explain the increase in low frequency RIN. It is also not well
explained with any kind of 1/f noise, nor noise originating fromF] . In the inset of Figure
3.10, the notch observed both in the simulations and in the experiment corresponds to the

condition where all modes arrive in phase. This occurs when —B,A® 2z is an integer

multiple of &, with A® the mean mode spacing.

Figure 3.11 shows the RIN for higher operating bias before and after propagation
in 4.4 km of fiber. It is interesting to note in Figure 3.11 that even at very high output
powers and SMSR’s, the effect of the side modes can be noticeable in the range of

frequencies used in optical communication systems.
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Figure 3.11. RIN measured after 4.4 km of fiber and high bias.
Pout=16.4 mW, Thias=4.1 I, SMSR=40 dB. The dotted curve is the

experimental data, the solid line is the multimode theory and the dash-

dotted line is single mode theory.

3.5. Summary

Before propagation in fiber, both the single mode and multimode models yield
similar results that agree very well with experiment. However, after fiber the single mode
theory underestimates the low frequency RIN. For some fiber lengths the single mode
theory predicts a reduction in RIN [3-9], which is not necessarily achieved when the

multimode model is used, also seen experimentally.
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This study shows that the best performing lasers need to have better SMISR than
currentDFBﬁ semiconductor lasers. New technology in mode selection and wavelength
control of fiber Bragg gratings combined with erbium-doped fiber amplifiers make
possible more highly single mode lasers at 1.54 um developed in Chapter 6. Fiber Bragg

- gratings: theory, fabrication, and applications are the focus of the remainder of this thesis.
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Chapter 4 - Fiber Bragg Gratings

4.1. Introduction

The speed at which the fiber optics industry has advanced in recent years has created a
host of new demands and new opportunities. One area now undergoing vast commercial
development is Dense Wavelength Division Multiplexing (DWDM), the process of
sending several, independent data streams, each with its unique wavelength, on a single
fiber. This requires very fine wavelength selective devices. Fiber Bragg gratings (FBG's)
are such devices capable of providing the wavelength sensitivity to meet these 1imposing
demands [4-1]. Millimeters in length, Fiber Bragg gratings can completely reflect a
narrow band of light into the backward propagating direction [4-2]. Figure 4.1 shows a
schematic of a fiber Bragg grating. The optical mode (A) can be reflected back into the
reverse propagation mode (B) when the wavelength of light matches the Bragg

wavelength for the grating.
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Figure 4.1. Schematic of fiber Bragg grating.

Today's commercial optical communications uses for FBG's include bandwidth
filtering, dispersion compensation, add/drop channel control for wavelength division
multiplexing, and laser frequency stabilization. These powerful, all-fiber devices can also
be used for some new applications proposed here [4-3], [4-4], [4-5], [4-6].

The next section will introduce the theory of these devices, based on the coupled
mode approach. The following sections will demonstrate the usefulness of numerical
methods, which can calculate the transmission properties of arbitrarily apodized and
chirped gratings. Experimental data is then presented showing growth, transmission, and

other properties. Fits to the theoretical predictions show that even imperfect gratings can

be well modeled.
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4.2. Theoretical Solution

The most convenient analysis of 1-D periodic grating structures in fibers is the coupled
mode analysis. Gratings are a periodic modulation of the guide index of refraction by a
small amount, typically 10 ~ 107, Gratings are formed by exposure to an interference
pattern from two coherent UV laser beams. The index is typically raised according to the
intensity of radiation. For this analysis of single mode fiber, it suffices quite well to
assume each cross section of the fiber has a uniform index for the core and cladding
based on the exposure. However, some exposure techniques are implemented to create an
index gradient across the core to induce birefringence.

Assume, for a uniform grating, that the index of refraction has the form [4-1]

n(z) = (1+0())+ 22 cos2n k oz + 20(z)] @.1)
¥

where ng is the initial index of the fiber, G is an average background change in index, and

¢ is a random offset phase. The physical grating in the fiber has periodicity

m_ My | 4.2)

A0= =
° 2nk, 2n

where Ap is the Bragg wavelength, the wavelength about which there will be reflection by
. . . . .. do

the grating. This phase can also be used to describe a chirp in the grating (i.e. . #0).
z

We will leave this option in for generality. Deriving the coupled mode equations that

describe the grating behavior begin with the wave equation:
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2
VE ——%g =0, withv =
ve dt kn(z)

4.3)

where n(z) is the index. Choose the following convention for the electric field evolution:
E(z,t) = B(z)ei(@moko?) 4 A(z)e!©0%0?) for travelling waves in the z-direction, where B
is the field amplitude for the right (forward) travelling wave and A is the field amplitude
of the left travelling wave (backward) as in Figure 4.1. The small perturbation in the
index allows for certain approximations which still accurately maintain the principal
properties of observed gratings. With these perturbations substituted, the wave equation is

approximated as

) 2
%(Zz,t) =—(k, + Ak)zng[l + G+£c0s(2k0noz + 2(1))} E(zt) (4.4)
zZ Do

Define Y =n,k,z+ ¢ and use the identity 2cosy=e" +e™". Substituting for E, results in

the equation

—2in gk, d_Be—inokOZ +2in,k, A gimokor _ n2kZBe 0M0% — nlkiAe™O0" =
Ak A 2 (4.5)
a2k 142 1o 2R e e ) (Be-inokoz + Apinokoz )
We need to make another substitution to remove the ¢ in the exponential:
B=uec ™ and A=ve" (4.6)

Also, by Taylor expanding the squared term for small cand An, the approximation

equation becomes (neglecting second order terms for the envelope derivatives):
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_il _iX ‘X
—21n0k0d—ue 2 —2nykyue 2 %(134_ 2in0k03—ve 2 -2n.k, ve 2 iq)
z z z z

Y iy Ak An X i S
..—ngklue 2 —nZkive? =-njk; |:l+ 2[—~+G)+ ( Ve )}[ue 2 +ve 2}
k n,

-2

0

Return to the B, A variables by simply redefining B = u and A = v. Collecting terms of

Y i

—1

e 2 ande 2 results in two equations, known as the coupled mode equations:

d—Bz—inOk SA—k—+G—iq—)— +-——A
dz k, dz n,

%: inyk, Ak+c—@ +—B
dz ko dz n,

(4.8)

These equations can be solved analytically for the case of uniform, unchirped gratings

with a constant background index. Define the following variables that are independent of

z:
0=ty 5-20
k, dz
2 (4.9)
v’ =ngkg (3] -a’
2n,

To solve, take another derivative with respect to z and substitute to eliminate A from the

B equation. The coupled mode equations can now be reduced to

2 2
dB—yBandd?

2
A (4.10)
dz~ dz !

which have the solution

B(Z)=acosh(yz)+bsinh(yz) and A(z)=ccosh(yz)+dsinh(yz). (4.11)
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Using the boundary conditions

B(0)=a

B(L)=a cosh(yL)+ bsinh(yL)
A{0)=c
A(L)=ccosh(yL)+dsinh(yL)=0

(4.12)

the coefficients are found to be

a=1

ip + ytanh(yL)
b=-a——1
y+iptanh(yL)

L (ipa+1b)

C=——
1K

___°
tanh(yL)

where the following substitutions have been made:

d(j)] (4.13)

The coefficients of transmission and reflection are

=
()
A

_.,
i
1l

» e

T o

(4.14)

SIS
St N’

,_,
(i

=acosh(yL)+ ® Ginh (yL)
da

Pangy
o
a—

This analysis was done in the absence of loss, and by the conservation of power, the

transmission and reflectivity add to 1,

R+T=|B" +]A]" =1 (4.15)
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Uniform gratings are characterized in large part by the term KL, a measure of the strength.

However, two gratings with the same KL but different lengths will have the same absolute
reflectivity R, = abs(r(Ak =O))2 = tanh(yL), but the longer grating and consequently

lower An will have a narrower bandwidth. Figure 4.2 shows the grating parameters used
for modeling three gratings with xL=1, 3, 5. The Bragg wavelength is designed at 1540
nm, which corresponds to 0 frequency offset. At this wavelength each .1 nm corresponds

to 12.64 GHz by the relation

2
Y c

Figure 4.3 is a schematic of the typical index of refraction in the core of the fiber. The
grating period has been reduced by a factor of ~630 to exaggerate the effect, and the dark
line across the center indicated the average index. The index is raised where the fiber is
exposed. Figure 4.4 shbws the spectral transmission for the modeled gratings, and Figure
4.5 shows the phase of the transmissions, normalized to the propagation of the field

without a grating present.
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| Length, L 1 cm
Index of refraction, ngy 1.45
Index step of grating, An 40x10° kL =0.8

1.0x 10™ kL =20

25x 10" kL =5.1

Figure 4.2. Table of parameters used for uniform grating simulation.

-4
x 10

Grating length =1 cm

Figure 4.3. Graphical representation of a typical fiber Bragg grating.
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Figure 4.4. Transmission vs. frequency for three uniform gratings.
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Figure 4.5. Transmission Phase vs. frequency offset for the same gratings.
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By expanding the phase of the reflected field around the Bragg wavelength, the

time delay of the reflected field is given by the delay

__do_ Ay do

— 4.17)
do 2mc dA

for our time convention [4—7]. The time delays for the modeled gratings are shown in

Figure 4.6.

200 1 T T T T T T
-- - kL=0.8
— - kL=2.0
1501 — KkL=5.1]]

Delay (ps)

-080 60 -40 20 0O 20 40 60 80
Frequency offset (GHz)

Figure 4.6. Time delay for reflected field from a uniform grating.

Note the background (i.e., far from the Bragg condition) delay is the same for all
the grating strengths. This is because they are each 1 cm. A longer grating will have a
longer delay by the same proportion. Since the interaction is weak for these wavelengths,

it can be assumed that there are equal powers reflected from each fringe which are neither
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constructive nor destructive with each other, resulting in an overall delay of a wave

reflected at the midpoint of the grating.

- 4.3. Numerical Predictions

Solving the coupled mode equations (4.8) numerically allows us the freedom to simulate
arbitrary apodizations and chirps. Apodization refers to a z-dependent An, typically

stronger in the center of the grating and tapering off near the ends. Recall © is the average

background andgg=f (z)is the change in the grating pitch (chirp) along the grating.
7

Effectively, chirp is introduced by giving o in (4.9) z-dependence. Figure 4.7 shows a

Gaussian apodized grating obtained when the writing beam is Gaussian apodized.
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Figure 4.7. (a) Gaussian apodized grating transmission; (b) index profile.

The asymmetry in the side lobes can be eliminated by keeping the average constant and
only apodizing the strength of the grating (An). Figure 4.8 shows the effect of this "pure”

apodized grating.
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Figure 4.8. (a) "Pure” Gaussian apodized grating transmission; (b) index.

By apodizing the grating, the 50% reflection bandwidth will increase slightly

compared to the uniform grating of total integrated coupling strength,

KL= ()2, (4.18)
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but will have lower sidelobes.

Chirp is another useful control over the reflection properties of a gréting. Chirp is
characterized by a change in the local Bragg wavelength along the grating, which has the
effect of increasing the bandwidth of the grating. A constant chirp can be modeled either
as a linear increase in the background index or a squared term in the phase ¢. In the
coupled mode equations (4.8), substitute the following z-dependent phase shift of the

grating:

_do_, z (4.19)
dz L

where b is measured in units of pm™. The reflectivity results for three different values of
linear chirp, b, are shown in Figure 4.9. By giving each grating the same average index of

0, the midpoints of each grating have the same local Bragg wavelength.

Reflectivity
o o
o o)

o
~

o
N

300 150 -100 80 0 50 100
: Frequency offset (GHz)

200

Figure 4.9. Reflectivity for three different values of linear chirp.
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By combining apodization and chirp, it is possible to obtain a grating which has a wide,
smoothétop reflection profile. Figure 4.10 shows the simulation results for a linearly

chirped grating (b = 14 pm™) and a Gaussian apodization, the same as that used in Figure

4.8. The total integrated KL is 5.6.

120
0.8
80
£0.6 A
204 2
0
0.2
-40

0 1 1 L 1 1
-200 -150 -100 -50 O 50 100 150 200
Frequency offset (GHz) '

Figure 4.10. Reflection and Delay for an apodized, chirped grating.

4 4. Fabrication Method

4.4.1. UV Sensitivity

The first fiber Bragg gratings were reported in 1978 by Hill et al. [4-8], [4-9] when it

was discovered that germanium-doped (Ge) fiber was sensitive to UV radiation. Once
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uniform fiber Bragg gratings were demonstrated with consistent reproducibility, the focus
of grafing reseamh branched out into engineering the gratings for certain appiications.
The study of the chemical nature of the photosensitivity remains active. There are
several explanations for the index change of germanium-doped fiber upon exposure to
UV radiation, but no single explanation is universally accepted. Current belief is that
impurities in the silica, such as Ge, have absorption sites that become altered by
absorption‘ of UV photons. Electrons are freed and recaptured in other locations in the
amorphous silica, physically altering the material [4-10], [4-11], [4-12]. These
absorption changes, called photobleaching, are manifestations of a change in the complex
susceptibility, and it can be shown by the Kramers-Kronig relations that this can cause a
change in the background index of refraction at wavelengths far away from the
absorption, such as 1550 nm [4-13]. This case was observed when a KrF excimer laser
operating at 248 nm was used to expose fluorine-doped glass. BGG31 glass, used for
fabricating ion-exchanged waveguides, can also be used for making fiber Bragg gratings
at Bragg wavelengths around 1540 nm [4—14]. Three-dimensionally written gratings are
evidence that neither germanium nor hydrogen need be present to produce a reasonable
index change with 248 nm irradiation. Index changes of ~4x10” were deduced. The effect
of the excimer exposure on the transmission of the glass can be seen in Figure 4.11.
Shown is the transmission as a function of wavelength with and without exposure (no
grating) and compared to a standard Corning glass microscope slide. The microscope

slide transmission curve was unaffected by the excimer laser. Photobleaching the BGG31
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- glass with 248 nm radiation changes the absorption spectrum near 350 nm and appears to

add a new absorption band near 520 nm, with no noticeable differences above 650 nm.

Transmission

Trr I T ;
e ——
0.8 § —
0.6 ]
0.4 -
0.2 — - Microscope slide
— BGG31 Glass Unexposed

—— BGG31 Glass Exposed

1

0
200

T
400 500 600
Wavelength (nm)

Figure 4.11. Absorption changes by UV exposure.

The microscope slide showed no evidence of index change, but BGG31

shows a new absorption site achieved, indicating an index change at 1540

nm.

Characterizations of gratings written into these ion-exchanged samples are

discussed in Chapter 5. The next section describes the grating fabrication process and

index profile characterization.
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4.4.2. Grating Fabrication

For this thesis, a high power UV excimer laser operating ét 248 nm was used to write
gratings. The excimer laser achieves stimulated emission through the molecular transition
of the unstable molecule KrF, excited by a pulsed 20 kV electronic discharge.

There are two main methods used to make gratings: interferometric and phase
mask. In the interferometric approach, the writing beam is split and recombined to form
an interference pattern at the fiber. The phase mask method requires a simpler setup and

is less sensitive to mechanical vibrations. The exposure setup is shown in Figure 4.12.

Excimer =t Mirror
Laser u

Aperture - |

Cylindrical lens O—

\
[nrnrd  fiber
W A

Figure 4.12. Experimental setup for grating exposure.

Phase mask

The 2 cm beam is reflected downward by a 45° dielectric mirror. The beam then
passes through an aperture to define the length of the grating, then through a cylindrical
mirror to focus the beam perpendicular to the fiber to concentrate more power at the fiber.

Finally, the beam passes though the phase mask, which is in contact with the fiber.
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The phase mask is designed to suppress the 0™ order. of the beam and
maximize the power in the +1 and -1 orders. This is controlled by the groove depth in the

mask. The field generated by these two beams in the z-direction has the form:

2mn 2mn .
i——zsin6 —1Tz sin 6

E(z)=E,| e +e (4.20)

where A = 248 nm, the diffraction from the grating and by Snell's Law: sin 0 =

)

nA

n is the index of the fiber and A, is the period of the mask. The resulting cosine intensity

and similarly index change by UV exposure is

1(z) o< cos(ﬂ). 4.21)
Am
. . 2n
By comparing with (4.1), and k, = T
B
Ag =DnAj | (4.22)

Using this setup, the growth rate of the grating was monitored. Figure 4.13 shows
the transmission dependence at the Bragg wavelength as a function of grating exposure

time. The points are data and the line is a linear fit to the data.
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Figure 4.13. Grating strength as a function of exposure time.

Using the - uniform grating equations (4.14), the time dependence of An was

extracted and plotted in Figure 4.14. After an initial transient quick growth, An seems to

grow linearly with exposure time.
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Figure 4.14. An dependence on exposure time.

Later work involved modifying the grating setup to write more uniform gratings.
Instead of the entire 2 cm beam used for exposure, only 1 mm was used and scanned
along the length of the grating, shown in Figure 4.15.

Moving mirror
I mm slit

<>
Excimer =’ | — >
Laser | %

Aperture - . |

Cylindrical lens G—

Phase mask Im fiber

i
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Figure 4.15. Improved setup for more uniform gratings.

By using the same beam strength for the entire grating, much more uniform
exposures were realized. Also, monitoring the growth w.as easier because the fiber was
heated less rapidly allowing characterizing and controlling parameters to be reliably
changed between scans. Figure 4.16 shows the transmission results obtained by writing a
very uniform grating. The dotted curve is the fit for this grating. Parameters obtained

were Length = 5.025 mm, An = 4.34x10'4, ng=145,6= 9.97x107 (average index offset).
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Figure 4.16. Experimentally written uniform grating with overlay theory

curve.
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4.5. Realization of Arbitrary Amplitude Profile (Apodization)

Beyond the theory of apodized gratings, there has been considerable work on the
opti'mization of such gratings for optical communication bandwidth enhancement [4-7],
[4-15], [4-16]. Several types of experimental methods are proposed for apodization.
These methods include dithering of the phasemask, taking advantage of the coherence
Iimitations of the writing laser, inserting an optical wedge in one of the two interference
UV beams [4-17], and spatial intensity filters [4—18] which absorb radiation and are
subject to damage over time. In the dither method, the writing beam is scanned along the
fiber while dithering the phase mask relative to the fiber to control the fringe contrast.
This way the total exposure time for each segment is constant while allowing a stronger
index change near the center. Each of these methods introduces complications in the
apparatus and limits repeatability.

Here a simple, inexpensive method 1is discussed for achieving arbitrary
apodization for a fiber Bragg grating, which uses an amplitude mask to apodize the beam
without absorption. This method will work well with most grating fabrication techniques,
whether using interfering beams or a phasemask. Also, it does not matter whether the
beam is scanned across the fiber or exposed all at once with this amplitude mask.

The amplitude mask uses dot density as a substitute for grayscale. Grayscale
introduces a certain amount of absorption, and a high power excimer laser can be quite

destructive on optics. By passing the beam through the binary amplitude mask, certain



84

parts are selectively deleted. Then the beam is focused in the direction perpendicular to
the fibér SO thgt across the fiber there is an averaging of the beam arnplifude from the
mask across the core of the fiber. Figure 4.17 shows the exposure setup. The first
exposure is performed with the desired apodization profile mask with the phase mask in
place. This exposure alone produces an apodized background index of refraction as well
[4-7], thus another exposure is necessary with the reverse image with the amplitude mask

and no phase mask, also shown in Figure 4.17.

Exposure 1 Exposure 2

Excimer —_— Excimer —_—
Laser l Laser l

Amplitude mask [T 28

Amplitude mask

Cylindrical lens G——= Cylindrical lens O——

Phase mask [Fm

fiber fiber

Figure 4.17. Experimental setup for the two-exposure method.

A magnified view of the mask for the first exposure is shown in Figure 4.18. For
this demonstration; a Gaussian apodization profile was selected. The pattern was
generated to have rows of uniform dot density in the y-direction, but each row would
have a random-starting position. This eliminated any preferential location on the mask.
Any curve like the one show in Figure 4.18 could be made with this method by simply

calculating a desired density of dots per row as a function of x and normalizing to the
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maximum density. The masks were made by first evaporating aluminum on a substrate of
fused vsivlica. Aluminum was selected for its high reflectivity of 93% at‘ our excimer
waveleﬁgth of 248 nm. Next, the pattern was laser printed at a resolution of .5 mm/pixel
and - photo-reduced 10:1 for the exposure of a photoresist on the aluminum. The
aluminum under the exposed resist was etched off, leaving a 2 cm pattern with a

resolution of 50 pm/pixel.

0.8

0.6

2.4¢

22

o 1 L L 1 1 1 1 L 1
0 2 4 6 8 10 12 14 16 18 20

b) x-direction (cm)

Figure 4.18. Binary amplitude mask.
(a) Mask. (b) Average transmission along the mask.

The x-direction is horizontal in this figure.
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The cylindrical lens reduced the pixels in the y-direction to 10 um such that
several ‘pixels of information passed through the 125 pum cladding of the fiber, further
focusing in the core, providing sufficient averaging of the y-direction of the beam. Figure
4.19 shows the beam intensity in the fiber grating direction after passing through each

mask separately.

no mask
pos mask
0.8¢ neg mask | -
=
Gosef .
£
[43]
=
T04f .
<]
o
02 .- L -
O ) J I 1 ——

0 1 2 3 4 5
Position (cm)

Figure 4.19. Intensity of original beam (no mask) and after passing through

each of the binary masks.

The results of writing an apodized grating using this method are shown in Figure
4.20. The fiber used was hydrogen-loaded SMF28 Comning fiber. Exposure 1 was

performed for 1 min with .75 J/em? at 50 Hz. The large sidelobes on the short-wavelength
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side of the main dip are characteristic of a Gaussian apodized grating discussed in Section
4.3. Aftm‘ the second exposure (same exposure parameters), the sidelobes were greatly
reduced, and the Bragg wavelength increased, indicating a leveling of the background
index. The departure from ideal for this strong grating (-30 dB transmission dip) is
attributed to mask imperfections and slight alignment mismatch between first and second
exposures, which was hard to correct in our setup because both masks were on the same

substrate.
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Figure 4.20. Grating transmission after each exposure.

“F'his method can be further improved by enhancing the resolution of the mask, easily
accomplished by today's lithography equipment. Also, improvements in uniformity of the

writing beam can be made with the scanning beam writing method. In conclusion, this
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method of writing apodized gratings can be a convenient and powerful way to meet the

demand for apodized gratings, and provide flexibility in grating design.
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Chapter 5 - Applications of Fiber Bragg Gratings

5.1. Introduction

Today's commercial optical communications uses for FBG's include bandwidth filtering,
add/drop channel control for wavelength division multiplexing, and laser frequency
stabilization. These powerful, all-fiber devices can now be the building blocks for the
new devices proposed here to help drive the technology for this fast-paced growing
industry. The rest of this chapter is devoted to projects developed with fiber Bragg

gratings and telecommunications applications are discussed.

5.1.1. Temperature Dependence of Fiber Bragg Gratings

Due to their inherent sensitivity to temperature and stress, FBG's are used as sensors for
these environmental factors. Typically for telecom applications, these sensitivities are
‘minimized as much. as possible. With temperature, the largest effect on the Bragg
wavelength is the thermo-optic coefficient [5-1]

Al %107, (5.1)
AT |
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The thermal expansion coefficient has a much smaller effect:

f%=5><10*7. (5.2)

The combined effect is a Bragg wavelength sensitivity of .01 nm/°C (1.2 GHz/°C) and the

measurement 1s shown in Figure 5.1 with the linear fit.
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Figure 5.1. Temperature dependence of a fiber Bragg grating.

Passive compensation techniques have been able to reduce this shift down to .1 GHz/°C
[5-1]. Also shown in the figure is the Bragg wavelength shift for a grating that was
‘prestretched and gluéd to a sample of NEX-I material from Ohara Inc., a new glass
ceramic, with a thermal expansion of -8x10°®. It can be seen that over a small temperature
range around room temperaturg there is a slight overcompensation in the Bragg

wavelength shift. Outside this range, data was not consistent, possibly due to temperature
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gradients chirping the grating or the nonlinear effect of the thermal expansion expressing
_ itself. ’However‘, for a device stabilized to near room temperature, this mateﬁal is a quite
promisihg method of reducing the temperature dependence of fiber Bragg gratings.

For some non-telecomm applications, this uncompensated linear dependence as
well as stress dependence of the Bragg wavelength are exploited and used as temperature

SENnsors.

5.2. Signal Modulation Enhancement

* Propagation of a directly modulated semiconductor laser signal through dispersive optical
fiber changes the modulation response of the laser-fiber system [5-2]. The change in the
amplitude modulated (AM) signal results from a large residual frequency modulation
(FM), attendant on the AM, being converted into AM and vice versa by dispersive
propagation, as discussed in Chapter 3. Eggleton et al. [5-3] demonstrated dispersion
compensation with an unchirped fiber Bragg grating in transmission. Here it is shown that
a fiber grating can convert laser FM into AM in transmission to increase the magnitude of
the AM signal. When combined with a dispersive fiber, the grating increases the signal,
flattens the frequency response, and increases the system bandwidth, providing a

' frequency—doma’in demonstration of dispersion compensation in transmission through an

unchirped grating. This work presents a frequency-domain analysis of the laser signal, the
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dispersive fiber, and the fiber grating which accurately predicts the observed results [5—
4].

The experiment consisted of using a network analyzer to directly modulate the
current of a 1.54 um commercial (ORTEL Corp.) distributed feedback semiconductor
laser at frequehcies up to 25 GHz, with the output sent through an optical isolator and

coupled into a fiber pigtail, shown in Figure 5.2.

I Network Analyzer

o () g

laser  isolator fiber detector

Figure 5.2. Experimental setup measuring system modulation response.

After ‘propagation through various lengths of single-mode non-dispersion-shifted fiber
and/or an unchirped fiber grating, the signal Was detected with a high-speed photodiode
and returned to the electronic network analyzer. By comparing the system response to that
of the stand-alone laser, it was possible to determine the change in the response due
solely to the fiber and/or the grating. Figure 5.3 shows the laser wavelength temperature-
tuned and stabilized on the short-wavelength side of the grating reflection band, and

“below it is the calculated transmission phase.
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Figure 5.3. Laser tuning for the grating used in the modulation response

experiments.

Since the phase' of the optical field transmitted by the grating is not a quadratic
function of the optical frequency over the bandwidth of thé signal, we cannot model it
with a single effective dispersion value [5-7]. Furthermore, the treatment of the grating as
a frequency discriminator is only valid when the grating bandwidth is much larger than
the optical bandwidth. The bandwidth of the grating, less than 2 A full-width at half-

| maximum (FWHM), is smaller than the signal bandwidth at 25 GHz, thus requiring a
more exact analysis.

We eXpress the optical field envelope exiting the laser as
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E,, () = E 1+ m sin(Qt) exp[~iBcos(Qt + 0] (5.3)
where m = .05 is the AM modulation index, B is the phase modulation index, Q is the
modulation frequency, and Orv is the phase by which the laser FM leads the AM. As

derived in Chapter 3, a directly modulated laser with a linewidth enhancement factor o,

has

B= %m,/n(%)z (54)

and

0,, =tan"' (%) (5.5)

Here x=¢P, /1, is the characteristic frequency separating the adiabatic and transient

chirp regimes, where € is the non-linear gain compression factor, Py is the steady-state
photon density inrthe active region, and T,y is the photon lifetime [5-8]. ¥ and o were
determined by fitting modulation response data for fiber propagation to the AM transfer
function for dispérsive fiber, following [5-9] [5-10]. We obtained lod = 4.1 and «/2n =
8.5 GHz at the laser operating conditions used in the experirﬁent. Knowing these, we used
(5.3) to numerically calculate the Fourier transform Ein (). The output optical field from

the fiber and grating combination is taken as

E, (@=E, (o) t(m)egp[—iﬁ" (©-0,)°L/2] (5.6)

where t(m) is the complex field transmission function of the grating, B''= 0°B/dn’ o is
R 0

the fiber dispersion parameter, o is the center optical frequency, and L is the fiber length.



97

The detected current Iy(t) is obtained from Egy(t), the inverse Fourier transform of (5.6).
The AM system transfer function measured in the figures is the component of the ratio of

the 0utput to input signals at the modulation frequency,

H o (@) =|T, @)/ T, @ (5.7)

A crucial step in the above calculation is the model of the fiber grating used to
generate t(®). One method is to numerically solve the coupled-mode differential
equations [5-11] for a uniform grating pitch with a Gaussian apodized coupling strength
profile chosen to produce the same maximum reflectivity (94.5%) and FWHM (1.9 A) as
the measured grating. The result is shown in the following figures (solid lines of Figure
5.4, Figure 5.5, and Figure 5.6). We see an increase in the AM signal due to the grating
(Figure 5.4), with the same qualitative shape seen experimentally. For 25 or 50 km of
dispersive fiber, we again see a prediction consistent with experiment, with a larger and
flatter system response, and a higher frequency at which the first dip occurs.

Aﬁ alternative model for the grating is to use the measured grating transmission
spectrum, with the phase of the transmittance being inferred from its amplitude. Because
In(t(w))=Inlt(w)l + 1 ¢p(®) is square integrable, a Kramers-Kronig integral of the measured
spectrum of ln(ﬁ ’) will give us ¢; at any optical frequency [5-12]. This numerical
transform is consistent with coupled-mode solutions for uniform, chirped, or apodized
‘gratings. The transmission spectrum of our grating was measured at 0.1 A increments,
showing an aéymmetric spectrum with sidelobes on either side of the central peak. The

corresponding phase spectrum was then generated numerically, and t(®) values were
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interpolated for sub-0.1-Angstrom values. The prediction of the system response resulting
from this gratiqg model (dashed lines in the figures) was more accurate thén that of the
Coupled¥m0de equations.

The use of the complex grating transmission function is crucial in modeling
optical signals with bandwidths comparable to or larger than that of the grating. In our
calculations, modulation frequencies larger than 5 GHz could no longer be treated with
the magnitude of t(®) alone, which is equivalent to a simple frequency discriminator.
Failure to include the phase of t(w) results in over an order of magnitude error at high
modulation frequencies. The dips in the system response caused by the fiber are due
solely to the dispersion parameter B’ and are shifted to higher frequencies solely by the
phase of the grating transmittance.

Transmission through the fiber grating alone increased the laser modulation
response by between 3.5 dB and 7.5 dB at all frequencies from O to 25 GHz, shown in

Figure 5.4.
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Figure 5.4. Change in system AM response due to the fiber grating.

(a) Experimental data. (b) Numerical simulation using coupled-mode
equations to model the grating. (c) Numerical simulation using the
measured grating transmission spectrum, with the phase of the

transmittance being calculated with a Kramers-Kronig integral.

The optical intensity transmission of the grating was 46% at this wavelength, so that the
RF signal increase took place in spite of a drop of 54% in the average received optical
power. When the laser output was sent through 25 km of fiber alone as shown in Figure
5.5a, the AM system response was increased at some frequencies, and decreased at

others, a consequence of fiber dispersion, as anticipated by the exponential in (5.6).
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Figure 5.5. Change in system AM response with 25 km of dispersive fiber.
(a) Experimental data for fiber only. (b) Experimental data for fiber and
grating. (c¢) Numerical simulation with coupled-mode cquations. (d)

Numerical simulation with Kramers-Kronig integral.

The addition of the grating at the end of the fiber produced an increased signal at low
frequencies and a markedly flatter response (Figure 5.5b). The system bandwidth was
effectively increased too, as the first dip in the system response was pushed out from 18
GHz to near 22 GHz by the grating. Similar results also occurred with 50 km of fiber
~(Figure 5.6). The small amplitude oscillations in Figure 5.4a. were attributed to

reflections between the fiber grating and the laser isolator. When the grating in Figure 5.5
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and Figure 5.6b. was placed ahead of the fiber rather than at its end, the oscillations

likewise appeared, but the response was otherwise unchanged.

5 T T T T

50 km fiber
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Figure 5.6. Change in system AM response with 50 km of dispersive fiber.
(a) Experimental data with fiber only. (b) Experimental data with fiber and
grating. (c¢) Numerical simulation with coupled-mode equations. (d)

Numerical simulation with Kramers-Kronig integral.

Intuitively, the observed changes in the system response are the result of a
combination of phenomena. The increase in the AM signal shown in Figure 5.4 can be
“understood by FM-to-AM conversion in the grating. In a directly modulated
semiconductor laser, a frequency modulation (chirp) inevitably accompanies the

amplitude modulation [5-5]. Any frequency discriminator, such as an optical filter or
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resonant cavity, will result in an amplitude modulated signal correlated with the

‘ freq'uevncvy modqlation. Using the slope of the grating transmission versus wa?elength, and
the knoWn magnitude of the frequency chirp, it is possible to predict an increase in the
AM response of about 7 dB at low frequencies. Secondly, the dips in the AM transfer
function of the fiber, measured in Figure 5.5 and Figure 5.6a, are due to fiber dispersion
and occur at modulation frequencies that depend on the fiber dispersion-length product
DL. The fact that the use of a grating pushes these dips to higher frequencies in Figure 5.5
and Figure 5.6b is an indication of partial dispersion compensation by the grating. Finally,
the decrease in the magnitude of the dips is a result of the partial optical filtering by the

- grating of the longer-wavelength sideband [5-6], an effect which will also convert FM to
AM and increase the AM response.

The AM system response was found to depend strongly on the detuning of the
optical frequency from the grating center frequency. When the laser was temperature-
tuned by only 10% of the grating FWHM, the change in the system response could be
made to increase or decrease monotonically with modulation frequency or be negative.
Likewise, the dips in the system response could be increased or decreased in magnitude
and in the frequencies at which they occurred. In general, the system response changes
were found experimentally and numerically to be larger for gratings with smaller
‘bandwidths and larger reflectivities.

To be useful in optical communication systems, the laser wavelength must be
carefully controlled, énd optimized with the grating for a given length of fiber. The

advantage of this system is that unchirped gratings are less expensive than chirped
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gratings, and the transmission geometry avoids the need for optical circulators. Also, the
signal ‘in'crease in Figure 5.4 was accompanied by a decrease in the average dptical power.
Since shot noise is proportional to the average detector photocurrent, which was reduced
by a factor of 0.46 due to the grating, the shot noise power decreased while the signal
power increased. However, this does not mean that the system signal-to-noise ratio (SNR)
will increase, though, because the same mechanism that converts FM into AM will also
convert laser frequency noise into excess amplitude noise [5-13]. The next section

analyzes the effects of transmission gratings on laser RIN.

5.3. Noise Reduction

Frequency dependence of both the transmitted amplitude (frequency discrimination) and
the phase (dispersion) for fiber Bragg gratings leads to FM-to-AM conversion [5—4]. The
phenomenon is similar in dispersive fiber, in §vhich FM-to-AM conversion which mixes
frequency and intensity noise, and can increase or decrease the relative intensity noise
(RIN) of the laser depending on the fiber length and the laser dynamic parameters [5—13].
The effect relies on intrinsic correlations between intensity noise and frequency noise,
which have been exploited to reduce laser RIN using a Michelson interferometer [5-14],
[5-15].

Here we investigate the effeét of transmission through a fiber grating on the

relative intensity noise of semiconductor laser light. A model of the grating explains
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observed increases in intensity noise of up to 30 dB at low frequencies. There also exist
; conditiQns under which a grating can reduce intensity noise, and we demonétrate 2dB of
RIN reduction at frequencies up to 15 GHz. A numerical calculation incorporating the
phase of the grating transmittance correctly predicts these results.

The experimental measurements were performed by biasing a 1.54 um
commercial (ORTEL Corp.) distributed feedback (DFB) laser with a low-noise constant-
current controller. The laser output was sent into a fiber pigtail and through an optical
isolator (> 60 dB), through a variable optical attenuator and into a high-speed photodiode.
The detected photocurrent was electronically amplified and fed to an elecironic spectrum
* analyzer. From the experimental plots of noise power versus photocurrent we extracted
the thermal noise (constant part), shot noise (linear part), and laser noise (quadratic part)
at each electronic frequency. We then replaced the attenuator with a fiber grating (Figure
5.7) and compared the RIN with and without the fiber grating to determine its effect. The
laser wavelength was temperature-tuned andr stabilized at different parts of the grating

transmission spectrum (Figure 5.8).

V“Cf> HH V—[ amp]iﬁerHESA]

cwW isolator grating

laser

detector

Figure 5.7. Experimental setup to measure laser RIN.

ESA: Electronic Spectrum Analyzer.
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Figure 5.8. Transmission spectrum of grating used for RIN measurements

with the two different laser tunings.

| Figure 5.9 shows the change in RIN caused by a grating with the laser wavelength
tuned to the steep linear part of the transmission spectrum on the low-wavelength edge of
the reflection band (Figure 5.8). The dramatic increase in noise, over 20 dB at low
frequencies, is due to the frequency discrimination of the grating, which converts laser
frequency fluctuations into transmitted intensity fluctuations. If a constant optical power
Pinc 1s incident on the grating with an instantaneous frequency deviation Am(t) = w(t) - @,
- the frequency-dependent transmission produces a transmitted optical power deviation of

APians(t) = Pine T AG(Y) (5.8)
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where T'=dT/ d(n]mo is the slope of the grating transmission versus. frequency at the

center wavelength . This model of the grating as a (phaseless) linear frequency
discriminator is sufficient for explaining Figure 5.9 and much of the observed results, by

using (5.8) and specifying the nature of the frequency fluctuations.

Change in RIN {(dB/Hz)

0 5 10 15
Frequency (GHz)

Figure 5.9. Change in RIN due to fiber grating.
with the laser tuned to the steep linear region on the low-wavelength side
of the grating transmission spectrum. The points are experimental data and

the line is equation (5.12).

The dominant source of laser noise is spontaneous emission into the laser mode
and its spectral density can be derived from the rate equations. We represent the

component of the spontaneous emission field that is in phase with the laser field by a
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Langevin force F(t), which perturbs the laser intensity; and the other quadrature of the

spontaneous emission field by a Langevin force F (t), which perturbs the laser phase.
The in-phase or parallel component Fy(t) produces an output power fluctuation APy(t) with
spectral density S',(Q), and a frequency fluctuation Awy(t) with spectral density [5-13],

as derived in Chapter 3,

0Q,? )7[ (T, Q)" +1

Sll Q —
0 () {21309 (1/1Q)* +1

]sgp (Q) (5.9

Here « is the linewidth enhancement factor, £2q is the laser resonant frequency, Ty, 1S the
photon lifetime, T is the carrier lifetime, and Py is the optical output power. The intensity

| and frequency fluctuations produced by Fy(t) are correlated, and Aey(t) lags APy(t) by a

phase -

(5.10)

n 1[(1/TQ)+TthJ
2

0'=—+tan
(T, /1)
For the laser conditions used, the laser parameters were determined by a fit to the RIN
spectrum (without a grating) and to the change in RIN after a fiber of known dispersion,
as in [5-13], giving 1/2nt = .39 GHz and 1/2nt,, = 31 GHz. For frequencies in the range
1/t << Q << 1/Tpn, as in this experiment, the quantity in brackets in (5.9) is nearly 1 and 0'
is nearly 7/2. Thus the intensity and frequeﬁcy fluctuations produced by Fy(t) are 90° out
| of phase, and Wé can simply add the intensity noise power created by the grating from

S!,(€) to the initial intensity noise power S}, (Q) caused by Fy(t) directly.
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The spontaneous emission term F, (t) produces no initial intensity fluctuations,
but does create frequency fluctuations that are uncorrelated with F(t) and héve a spectral
denSity Sy, () =2Kwg, , where st is the Schawlow-Townes linewidth and K is the
Petermann enhancement factor for DFB lasers [5—-17]. This also gets converted by the
grating into an intensity noise power that adds with S}, (€2).

Putting Sjm‘(Q) and S () into (5.8) we get the intensity noise spectral density

after the grating,
y - T aQ, Y )
Sil];mng (Q) — SX}]J)[I&] (Q)l:Tz + ((Zx—ﬂgzoj :l + (POT’ )_ 2KO‘)ST (5 1 1)

The last term above is independent of frequency and represents a new noise floor created

by the grating from Sy (Q). It is usually smaller than either the initial intensity noise
(attenuated by T?) or that created by the grating from S, (Q). Approximating it out, we

arrive at a simple expression for the change in RIN due to the grating:

ToQ,” Y |
ARIN(Q)zlologlo{H(—_;rTﬁj } (5.12)

Figure 5.9 shows a plot of this expression (solid line), using the independently

measured values of the grating transmission T and slope T’ and the laser parameters o
-and o, showing very good agreement with the experimental data.

Equation (5.12) predicts that RIN will always increase with a grating, due to the

phase 08" = /2 between the correlated frequency and intensity noise. This is not always
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the case. For frequencies that are low (Q<<1/t) or high (Q2>>1/ty,) the frequency

fluctuations S, (Q) are independent of frequency and T out of phase with the intensity

fluctuations. Thus a grating for which T increases linearly with ® (e.g., on the
shoft—wavelength side of the reflection band) will compensate an increased intensity with
a decreased transmission. The intensity noise from Fy(t) is eliminated completely when
the grating slope is T*/T = 2/(10d€2’1) at low frequencies or T°/T = 2/(lolQo’Tyh) at high
frequencies.

In addition there are other sources of noise that can be eliminated with a linear
frequency discriminator. Carrier fluctuations not involving spontaneous emission into the
lasing mode, including those from pump current noise, produce frequency fluctuations
that are in phase with the intensity fluctuations when Q<<ePy/T,, (in the adiabatic chirp
regime, typically up to several GHz), where € is the nonlinear gain compression factor.
The intensity noise from this source will be removed completely when the grating slope is
T/T = -2‘cph NlodePy. For Q>>ePy/Ty, , the transient chirp regime, the intensity and
frequency fluctuations are m/2 out of phase and a frequéncy discriminator can only
increase the intensity noise from this source. We have also neglected mode partition
noise, which is important at low frequencies and is affected differently by dispersive
optical elements [5-18].

The discussion thus far has _neglected the phase ¢(w) of the complex grating
transmittance t(®), which is a good approximation when the transmittance is linear over

the bandwidth of interest. In all other cases we must include the effect of grating
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dispersion on the RIN. The phenomenon is the same in principle as in dispersive fiber, in
which AM and FM noise are inter-converted by a mixing angle 8(Q) = B 'LQ?%2, where

B'=0B/ 0w’ ‘w is the fiber dispersion parameter and L the fiber length. For the case of

a grating, the mixing angle is
8() =[0, (@, +Q) +9,(0, — Q)= 20,(,)]/2 (5.13)

An expression similar to (5.11) can be derived to include 6(€2), but an analytic treatment
is intractable for gratings with narrow spectral features, and a numerical Fourier-domain

calculation is preferable. The intensity noise after the grating is calculated from
‘ Eout (0) = Ein (o)t(w), with E ., (®) obtained from the Fourier-transformed rate equations
containing Fy(t) and F (t) as sources. Measuring the magnitude of the transmittance
spectrum [t(m)| = JT(®) allows us to infer the phase ¢«(w) numerically via a Kramers-
Kronig integral [5—4]. This numerical calculation allows us to treat more narrow spectral
features of a grating.

The grating phase plays a major role in changing the RIN and can reduce the RIN
when T is small. Figure 5.10 shows a RIN reduction of 2 dB obtained with the same
grating as in Figure 5.7. The laser was tuned to the low-wavelength side of the spectrum
near the weak sidelobe. The solid line of Figure 5.10 is the full numerical calculation, and

“if we exclude the grating phase the predicted RIN is several dB above the experimental

value. The low- prediction is somewhat artificial, given the limited resolution of t(®),
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~ and the variations in the data below 3 GHz might result from a fine structure in the

grating spectrum that we cannot resolve.
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Figure 5.10. Change in RIN due to fiber grating
showing a decrease in the noise. The points are experimental data and the

solid line is the numerical calculation using the measured grating

spectrum.

As an example of RIN dependence on laser tuning, Figure 5.11 shows RIN
changes from a grating at three different wavelengths, each among the weak reflection
'sidelobes on the long-wavelength side of the grating spectrum. The RIN increases at low
frequencies but deviated from the 1/Q? dependence of (5.12) and decreases at some

frequencies (Figure 5.11, circles). The numerical calculation (solid line) reflects these
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effects qualitatively but is limited by the resolution of the optical spectrum analyzer (10
_ GHZ), which essentially smoothes the transmission function used in the calculation and

fails to predict the more frequency-sensitive features of ARIN(€2).
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Figure 5.11. Change in RIN due to fiber grating.

The laser tuned to three differént wavelengths among the weak sidelobes
of the reflection spectrum. The symbols are experimental data and the
solid line is a typical numerical calculation using the measured grating

spectrum.

To be useful for RIN reduction at low frequencies, a grating should be apodized
carefully to produce a smooth grating spectrum. The numerical calculation indicates that

this laser is capable of more than 5 dB of RIN reduction with an appropriate grating.
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Reductions of 7 dB have been achieved with a Michelson interferometer at low
frequéncies [5f14]’ and there is no physical reason why this result could notv be duplicated
with a fiber grating. Practically, a 5 dB higher signal-to-noise ratio is maintained in the
fiber where both signal and noise suffer a loss of .2 dB/km. A 5 dB lower noise will reach
the shot noise floor first at which point SNR degrades; however, there is still 10 km

further until the SNR is matched.

5.4. Two Phase Mask Method for Fabrication of Chirped Gratings

~ The development of fiber Bragg gratings has enabled fabrication of a variety of different
Bragg grating devices that were not possible previously, such as dispersion compensators
and band-rejection filters. In some of these applications, a specific variation of the index
of refraction along the structure is required, which has prompted investigation into new
techniques for flexibility in the fabrication of the gratings. The most preferred method of
fabrication uses a phase mask due to the easier alignment, reduced excimer stability and
coherence requirements, and better reproducibility. The main disadvantage is the need to
have a separate phase mask for each Bragg wavelength, chirp or apodization.

A long-period (LP) phase mask was developed to control the local angle of
" incidence of the UV beam incident on the short-period (SP) phase mask [5-19]. The rapid
variation of the index of refraction iﬁ the fiber core is determined by the SP phase mask,

whereas the apodization and chirp can be modified by changing the groove width and/or
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depth and by Varying the-period along the long-period mask. This is an inexpensive way
to add ﬂexibili.ty to the fabrication of fiber gratings, since the mask can be-fabricated by
uv lithbgraphy instead of e-beam lithography that is needed to obtain wm features. With
only one SP phase mask, which are expensive and involve complicated fabrication
procedures, various index of refraction profiles can be obtained by using different LP
phase masks, which are easier to fabricate. In addition, it offers the advantages of phase
mask fabrication techniques such as good reproducibility and parallel manufacturing of

devices. The concept is illustrated in Figure 5.12.

fncident UV beam

U e
Top view of both phase masks l——i 2 phase-mask

o : % Many diffracted orders
w, B dyp :
_ M

Zero-order nulled
short-period
phase-mask

-1 diffracted orders +1 diffracted order  Optical Fiber

Figure 5.12. Two phase mask method for producing chirped gratings.

The incident UV beam is diffracted into several low spatial-frequency orders by
the long period, Ay, phase mask. Each of these is diffracted into +1 and —1 high spatial-
frequency orders by the short-period, As, phase mask. The distance between the phase

masks is d;, and the distance between the SP phase mask and the fiber core is d,. The LP
| phase mask, rofated by ovin the y-z plane, diffracts the UV beam according to

2n

A, sin®, =nky, =n (5.14)

uv
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where 0y, is the angle of n™ order beam measured against the vertical (x-axis). The field
“leaving the first (LP) phase mask is

ELP (x,y,2)=Y expl-ik yy (5in 0, , (zcoso+ ysin o)+ d; cosf;, )] (5.15)

and after the second (SP) mask, a new angle eSni emerges for the two diffracted orders

following
kyy sin g, =n-——t—— (5.16)

The field now arriving at the fiber core is

E(x,y,z)z Eip (x,y,z)x...

[exp[— ik gy (i—nz +cosBg,"d, D+ exp[— ik yy [— %z +cosbyg, d, ]ﬂ
s s

(5.17)

Under these conditions, the change in refractive index induced in the fiber core is given

by
An(y,z)e< |E(y,z)2 ‘ (5.18)
An(y,z) =
' —im?—n(zcos o+ysino) m
ARY e Ap elm(m+2n)<|>LEnmEf1 (cos(m(pS )+ COS(ZA—Z —(m+ 2n)@g ﬂ
n,m S

(5.19)
where A7 is the amplitude of the change that would be induced by the UV beam in the

absence of the LP phase mask, and the angles
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1/2

x 2
and Qg = 2 1-[Lj - (5.20)
S

n uv A

with Auv the exposing wavelength and nyv the refractive index of fused silica at Ayy,
arise from phase differences of the different diffraction orders as they propagate along the
x-directioﬂ. The approximation for @r and @y is valid for A;>>As.

In‘the two phase mask fabrication technique, a grating tilt is induced when the
phase mask and fiber are not aligned, which results in coupling of modes of different
symmetry. This can be disadvantageous in some applications, and in general cannot be
used to tune the Bragg wavelength. Equation (5.19) shows that if the fiber radius is much
smaller than A, as will be usually the case, the variation of An across the fiber (y-axis)
when 00 is negligible. Thus, freely rotating the LP mask to obtain a change in the
effective long-period Ay, gives additional flexibility to the fabrication.

Many grating apodization techniques also induce a variation in the background
refractive.index,'which produces undesirable self-chirping. From (5.19) it can be seen that
the amount of self-chirping can be controlled by the angle (ps, i.e., the distance between
SP phase mask and fiber.

Substituting a quasi-periodic binary amplitude mask for the LP phase mask would
induce a change in refractive index similar to that in (5.19), but with ¢ and @s zero, i.e.,
independent of ‘propagation distance_ along the x-axis. Thus, the background refractive

index has the same variation as the grating apodization. Moreover, the values that the

coefficients E, can take are restricted to E_, =E and E, >0, the mask induces loss in
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thé beain, and the only design parameter is the duty cycle, posing possible limitations in
the gréting design. ,

CQnsidered next is the case when Ay varies along the mask in the z-axis and the
average long-period, A, is short enough that multiple resonance peaks occur spaced in
Wavelength by much more than the spectral width of the peaks. In this case, each
resonance at wavelength A, with

LN (5.21)
A, Ay 2A,

and n the modal index, can be treated as an individual grating with coupling coefficient,

. Km, given by

. 2
—1quAL(z)z

Ky = R el mmon+eng  pre ML (5.22)

n+m-—n
n

where Kis the coupling coefficient that would be obtained in the absence of the LP mask,
A (2) :KL + AA; (z) and we assumed KL >>AA; (z). When AA| (z) varies linearly
along the LP mask, a linear chirp is obtained. Figure 5.13 shows the simulation for a

uniform SP and a chirped LP phase mask with a period varying linearly from 380-420 pum

over 2 cm.



118

1 1 T T
m= m=0

0.8} m=1 .
20.6f .
=
3
9
T 0.4} -

0.2+ -

1534 1536 1538 1540
Wavelength (nm)

Figure 5.13. Double phase mask simulation for with chirped LP mask.

Several LP phase masks were made using simple contact UV lithography. The
pattern was transferred into a quartz substrate using C,Fg reactive ion etching. Because of
the large feature size, no high resolution lithdgraphy techniques were necessary, making
these masks relatively cheap and simple to fabricate.

Figure 5.14 shows the reflection spectrum for two fiber gratings made in
hydrogen-loaded SME-28 fiber with a zero-nulled uniform SP mask A=1049.05 nm and
uniform LP masks with period A;=200 um (solid) and A;=400 pum (dashed), respectively.
The gratings were 2 cm long. The depth of the grooves was not carefully controlled and
was measured to be 600 nm and 450 nm, respectively. This gave rise to multiple peaks

separated by 4 nm and 2 nm, respectively, as predicted by the model above.



119

1 T U T
—  A/=400 pm
— - AL=200 um
0.8r .
206} .
=
.o
S
o 0.4t | || .

0
1520 1525 1530 1535 1540
Wavelength (nm)

Figure 5.14. Reflection spectrum for fiber gratings fabricated with double-
phase mask technique with uniform SP mask A¢=1049.05nm and uniform

LP mask A; =200 pm (solid) and A;=400 pm (dashed).

Figure 5.15 shows the reflection spectrum for gratings made with a chirped LP
phase mask with period linearly varying from 380 um to 420 pm and groove depth 450
nm. Two gratings were written with tilt angles o=0° (solid) and o=22° (dashed),
corresponding to resonance peak spacing 2 nm and 1.8 nm, respectively, as predicted by
our model. The long-period variation corresponds to a strong chirp with Bragg
- wavelength deviation of m times 0.2 nm around the m™ resonance peak. The increasing
width of the resonance peaks can indeed be observed as they separate from the main

Bragg peak at ~1521.2 nm.
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Figure 5.15. Reflection spectrum for fiber gratings fabricated with double-
phase mask technique with uniform SP mask A;=1049.05 nm and linearly
varying LP mask A from 380 um to 420 um for tilt angles o=0° (solid)

and =22° (dashed).

Figure 5.16 shows the measured reflectivity of the m=1 chirped grating and its measured

group delay. The chirp was found to be -350 ps/nm.
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Figure 5.16. Reflectivity and group delay for one of the chirped gratings.

5.5. Gratings Fabricated in Ion-exchanged Waveguides

The UV photosensitivity in Ge-doped silica is understood today with‘ the absorption-band
bleaching model, combined with use of Kramers-Kronig relations to obtain the refractive
index change [‘5—20]. Such photobleaching has also been performed in a K'-exchanged
waveguide with the 351 nm line from an Ar" laser [5-21]. In this section, we report
writing a diffraction grating in a 2 mm thick glass sample used for making ion-exchanged
~waveguides by cpréure to light from a 248 nm KrF excimer laser, without germanium
doping or hydrogen loading. The composition of BGG31 glass by atomic percent is
58.3% Oxygen, 17.6% Silicon, ’ 7.1% Aluminum, 6.8% Sodium, 6% Boron, 4.2%

Fluorine, 0.06% Arsenic, and <0.01% Potassium. The three-dimensionally written
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gratings are evidence that neither germanium nor hydrogen need be present to produce a
_ reasoﬁable index change with 248 nm irradiation. The effect of the excimef exposure on
the 'tranémission of the glass was shown in Figure 4.11.

For the grating inscription, the BGG31 glass sample was placed directly under a
phase mask with a pitch of 1049.28 nm. The phase mask was designed to suppress the Oth
order diffracted beam‘ at 248 nm. For the best results, the glass was placed in direct
contact with the phase mask and exposed for 10 minutes with 168 ml/pulse at 50 Hz.
Other trials were performed with gaps of 125 um and 250 pm between the phase mask
and the sample, but in each case the diffraction spots from the Ar" laser were reduced in
* intensity. This is consisteﬁt with the reports [5-22] [5-23] that it is not the temporal
coherence that limits fringe visibility with mask/glass (or fiber) separation, but the spatial
coherence. The reason being that with increased propagation past the phase mask, light
overlaps from more points that passed through the mask.

The various diffraction orders from tﬁe phase mask interfere and produce index

variation gratings in the material each written at a different angle ¢ . Figure 5.17 shows

the experimental setup for the exposure and the diffracted orders of the phase mask.
Excimer
Laser 248nm —-»

T
7R
sample / \l/\\
-2

2 mm thick -1 0 1 2
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Figure 5.17. The experimental setup for writing gratings. .
0,+1, £2 orders were found and produced all combinations of

holographic gratings.

The resultant field intensity at the surface of the sample for five diffracted beams is
I(X) — EO + Elelkxsmel + E_le—lkxsme_l + Ezelkxsm 62 + E_ze—lkxsme_z (523)

mA

where sin@_, =

(5.24)

mask

where k is the propagation constant, A = 248 nm, A, is the mask period = 1049.28 nm,

and m is the diffracted order. Figure 5.18 shows an example of a grating produced with

the -2, +1 orders and subsequent characterization.

Y. 1

P
Figure 5.18. Bragg diffraction from one of the induced volume gratings.

our

The probing was performed with the 476 nm line from an Ar" laser. The

“parallel lines show the induced index-variation volume hologram.
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The angle¢ forA a given grating is determined as the bisector of the anglev between the
propagétion directions of any two orders, denoted m; and my. The * 1 orders will produce
gratings with¢ =0 as will the 2 orders. o is the Bragg angle, measured as the angle of
the incident or reflected ray with the tangent to the grating lines.

This section diécusses the characterization of the written gratings. Probing these
gratings wﬁs accomplished using the 476 nm line from an Ar" laser operating at about 50
mW. Evidence for a volume grating was that a very precise incident angle (8, ) was
needed to observe Bragg diffraction (Figure 5.18). If only a surface grating had been
produced by the excimer laser, then Bragg diffraction would occur at a continuum of

angles. The Bragg condition for these photowritten gratings is

2{#\% cosd)}sin o= m\ (5.25)

m;, —~m,
where the term in brackets is the actual periéd of the desired grating, derived from the
intensity distribution of (5.23) and tilt angle¢. m; and ms refer to the orders diffracted
from the phase mask which produce the grating, m is the diffraction order, and A is 476
nm.Gm and©,, can be obtained from o in (5.25) and accounting for the background
material index.

Figure 5.19 shows the predicted and observed Bragg diffraction spots. All are first

order diffraction spots, except for the two depicted as stars.
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Figure 5.19. Predicted and observed diffracted spots.
This is the minimum number of non-redundant spots. By convention, a
diffracted ray on the opposite side of the surface normal is defined as a

positive incident angle.

The stars are second order diffraction spots from a particular grating much weaker in
intensity, of which only one was observed. The dashed line on the right represents equal
incident and diffracted angles. The two points which lie on this line are from the m;, m, =
+1 and m;, m; = =2 gratings. The intensities of these spots were recorded and used to
“determine the relative power in the diffracted orders of the phase mask. Using the ratios

of spot intensities, it was determined that the phase mask diffracted 94% of the 248 nm
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excimer laser into the 1 orders, 5% into the +2 orders and <0.5% into the Oth order, as
'desigﬁed. Evid¢nce of the * 3rd order was detected but not directly quantifiéd.

Using the intensity data, it was possible to estimate An for the strongest grating
written in the glass (m; =1 and m, = -1). It was necessary to know the penetration depth of
the grating, fof that determines the interaction length, and hence the peak reflectivity, for
the grating. According to both A. Othonos and P. E. Dyer [5-22] [5-23], KrF excimer
lasers have the spatial coherence to provide high fringe contrast out to only a few hundred
microns past the phase mask. We performed exposures with mask/glass separation of 125
and 250 wm, each with increasingly faint gratings produced, so at best, it was interpolated
that the penetration depth is between 500 pm and 1 mm which produces a coherent
interference between two diffracted orders. However, by separating the mask and glass,
the rigidity of the setup was compromised and mechanical vibrations could have been the
largest factor in reducing the grating strength. Nonetheless, the deeper the grating written
into the glass, the longer the grating interaction with the argon beam. Shown in Figure
5.20 is the peak reflectivity for a grating with two different depths. The left curve
assumes a penetration depth of 1 mm, and the right curve assumes a penetration depth of

.5 mm. Peak reflectivity for a uniform grating is given by [5-24]

R(An)= tanhz( mAnL ] (5.26)

Bragg

Note that even if the penetration depth is .5 mm, the effective grating length (L) that the

argon beam interacts with when incident at 27° 1s .17 mm. For 1 mm penetration, L. = .34
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mm. The horizontal line is the measured reflectivity for the Ist order of the strongest
writlen grating. Anis expected to lie on this line. In all cases the background refractive
index of the glass was taken as 1.4.
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Figure 5.20. Computed index change ( An ) for the grating written
from the * 1 phase mask orders. The curves are expected peak reflectivity
for the labeled grating length. The horizontal line is the measured

reflectivity.

In conclusion, we have demonstrated volume gratings written in BGG31 glass
with an excimer laser at 248 nm. The glass has neither germanium nor hydrogen to
enhance the photosensitivity of the glass. The index change inferred was (3.9 1.3) x107,

a reasonable value for this composition of glass. Tests of the transmission properties of
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these gratings with light coupled into the channel waveguides have been performed [5-
251, [5-26] and better than 90% transmission dips at the Bragg wavelength of 1.53 um

have been obtained.
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Chapter 6 - Single Mode Fiber Ring Lasers

6.1. Introduction

The explosive growth of the telecommunications industry has fueled an ever-increasing
demand for bandwidth. Dense Wavelength Division Multiplexing (DWDM) has emerged
as a crucial enabling technology. With stricter demands on source lasers, the
shortcomings of traditional DFB semiconductor lasers (SCL) are beginning to surface.
First, DFB lasers age in time and the wavelength drifts over the course of a few years of
use. Frequency lockers are required to stabilize these lasers within the specifications of
each particular communications channel. Also, DFB lasers are typically less than a
millimeter in length, which gives rise to a linewidth of about 1 MHz, due mostly to phase
noise. This large phase noise is converted into amplitude noise by the dispersion in the
fiber (Chapter 3) limiting the performance of the system. Sidemode partition noise has a
similar effect as the total noise is incrgased by fiber propagation. Finally, the fabrication
- and the assembly of the semiconductor lasers are both labor and capital intensive. The
techﬁology for our single mode fiber ring laser (FRL) has an advantage in each one of

these areas.
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In the past 10 years Erbium Doped Fiber Amplifiers (EDFA) have also facilitated
“long fiber links by amplitying lightwave signals directly without the need for optical-to-
electrical ’conversion midstream. This technology, combined with fiber Bragg gratings,
has opened a new field of fiber lasers at 1550 nm. There is now vigorous research
conducted 'on quarter-wave shifted DFB fiber lasers. While they are quite promising as
communications sources, our ring laser has a larger gain section and is thus capable of
more output power, better sidemode suppression and even smaller linewidth. The
challenges have been to filter out only a single mode for lasing in the ring. This is
accomplished with a now proprietary configuration of fiber Bragg gratings.

This chapter first discusses the spectrum of gain for erbium, the advantages of the
larger c’avity and ring geometry, and output optimization. Then the properties of the laser
are presented: optical spectrum, LI curve, linewidth, power and wavelength stability,
temperature sensitivity, and Relative Intensity Noise (RIN). Finally, the fiber laser's role

in optical communications is discussed.

6.2. Erbium Gain

The rare earth element erbium has the benefit of an atomic transition (4115/2 and 4113,2
levels) at 1540 nm (wavelength of lowest loss in silica) and is doped into the fiber with
some 30 to 50 nm gain bandwidth depending the additions of other dopants. There is

another transition at 980 nm which has a fast decay to the excited 1540 nm levels. Many
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degenerate sublevels for each state are lifted by the erbium presence in amorphous silica.
This causes homogenous broadening effects to be measured due to thermaliiation. Figure
6.1 shows a gain measurement with and without a probe laser present. The presence of
the probe reducing the gain over 40 nm indicated significant homogenous broadening.
Low temperature measurements reveeﬂ the true inhomogeneous nature of the transition

and make it possible to study the fine structure of the transition [6-1].
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Figure 6.1. Erbium gain bandwidth.

To analyze the gain properties of an erbium-doped optical fiber, we solve the rate
equations for the photon density and excited state population. We treat a population
density (p) of erbium as a three level;system, with fractional population densities N;(z,t),

Na(z,t), and N3(z,t). A 980 nm pump excites atoms from N; to Ns. In this model, we



neglect amplified spontaneous emission (reasonable for amplifiers of under 20 dB) and
assume the decgy from Nj to the 1540 nm excited level is fast enough to tréat Nz =0 [6-
2]. Thus,
Ni+Nx = 1. (6.1)

Both the pump beam and the signal beam are treated as equals in the rate equations, with
their respective cross-sections (6;), absorption and emission coefficients (o;° and ¢;*), and
mode confinement factors (I5) over cross-sectional area "A." The subscript, "i," |
references "p" for pump and "s" for signal. For the case of copropagating pump and signal

beams, the rate equations are

N, N, 1 ooP

ot T pAT oz
%E')‘i‘ =pl; (Gsz —oi N, )Pi (6.2)
z

where i =p,s

where 7T is the spontaneous emission lifetime. P; refers to photon number per second

(Power/photon energy). Note that, in the second equation, there is no pump emission

. . oN, .
from N, thus, Gpe =0. To obtain steady state power equations, set {:)—th =0 and use (6.1)

to eliminate N from the equations above with
1( 1 op
N, =—| ——Zi ¢
= o, | pILP, 0z . (6.3)
where ©; =0} + 0o}

Substituting into the rate equation for the population, we obtain the photons/sec evolution

along the fiber. For the signal photons,
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where (6.4)
o, = plio;
Psat = A
I ot ic;‘ +0, )
Upon integration over length L, the power out of the amplifier is
POU = Pi" expl — o, L~ — (PO 4 Pi" ) (6.5)
s s p E psat ’

where P and P are the sums of the pump and signal photons.
Figure 6.2 shows the data and curve fits for a two-section of sample of erbium.
The first section is 12 cm of ~5000 ppm Er’* dopant, followed by a 5 cm codoped section
of similar Er** concentration with Yb*" in order to increase the pump absorption [6-3].
The figure shows Vsignal gain (P.™/P™) vs. P,", Each curve is for a different pump power
ranging from 0 mW to 90 mW. The fitted parameters are small signal gain constant (L)
and saturation power (Pssa‘) for each section and were found to be: ol(1)= 1.01,
P (1)=2.4x10* mW, and oL(2)= .094, P *(2)=0.65 mW The biggest difference
between the two fiber types is the codoped fiber has a 3 order of magnitude larger
saturation power. This configuration has the advantage that after a few centimeters of Er
| gain, there is a final few centimeters which absorb more pump and maintain gain without

saturating as drastically for a higher ring laser output power.
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Figure 6.2. Experimental gain data (points) with fitted theoretical curves.

6.3. Ring Laser Geometry

Fiber ring lasers are attraction due to their simple geometry and ease of assembly. No end
mirrors are needed, only some form of coupler to introduce pump light and couple output
power. However, because of other necessary components such as isolators, polarization
controllers, and spectral filters, the cavity ends up being fairly long and multimode lasing
oscillation is hard to avoid. Figure 6.3a. shows a typical linear fiber lasing cavity with
ABragg reflectors as end mirrors and (b) shows the effect that other resonant modes have

on the gain saturation. Because other potential (lasing) standing modes physically have
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different overlap in the gain region, the lasing mode fails to saturate the entire gain

leaving room for sidemodes to experience less saturated gain and are not well suppressed.

Spectral Filter

Pump in |—HHHH T
(a)
1
0
=  Main mode
——  Side mode
(b)

Figure 6.3. Linear long cavity fiber laser.
(a) Geometry of laser, and (b) schematic of resonant standing mode

overlap.

Small cavity linear distributed feedback fiber lasers eliminate this disadvantage because
only one mode satisfies the resonant condition. These lasers are being developed and
commercialized [6-3], bul do not have the output power and efficiency superiority, at

least in principle, as a larger cavity laser.
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The ring geometry of Figure 6.4 is a better use of the gain section allowing the

traveling wave to completely saturate the gain material and overlap all resonant modes.

Pump in

] ] ’
— Output

Isolator

Spectral Filter

Figure 6.4. Ring laser geometry.

- Spectral filtering is much easier because back reflections from the filter are eliminated by
the isolator, unlike in a linear laser where they can creatc another cavity. The overall
effect is superior side mode suppression: > 60 dB, assuming all but the main mode can be
spectrally filtered.

Progress in the research of single mode fiber ring lasers has been achieved by
Vahala et al. [6-4],[6-5],[6-6]. Vahala's ring laser featured two fiber coupled Fabry-Perot
filters, one broadband filter (26.1 GHz) and one narrowband filter (1.39 GHz). These
filters working in concert allowed only one ring mode to lase. However, with the

polarization controllers and isolators needed, the ring cavity was ~15 m long, which set
the ring cavity mode spacing at Av = 0 =14MHz, and a single mode stability was only

achieved for "several minutes" at a time.
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Another recent contribution in the field of single mode fiber ring lasers was
proVided by H. Inaba et al. {6-7]. Mode selection was achieved using a circulator and
reflection grating. They claim that a grating as narrow at 5 GHz was needed to achieve
single mode operation. Their 10 meter ring had a mode spacing of 20 MHz, putting many
modes within the grating bandwidth. However, the homogenous broadening effect in the
erbium saturated the gain within this bandwidth to allow only one mode to oscillate
without mode hopping for 5-20 minutes. Multimode oscillation was observed with a
grating of 30 GHz FWHM.

We were able (o achieve robust single mode operation with mode spacing on the
order of a few hundred MHz with a combination of gratings to define precisely the lasing
mode and polarization. The mode spacing was extended as a result of significantly
reducing the ring cavity length by eliminating polarization controllers, circulators,
multiple isolators, bulky FP-coupled resonators, and by using short, highly Er** doped
gain fiber. Single mode operation of a few days was observed with no mode hopping
demonstrating that the ring laser we developed is a promising 1540 nm fiber laser source
for the telecommunications industry. Improved temperature stabilization would be able to
extend the single mode operation indefinitely. A pending patent contains this newly

developed single mode filtering technology.
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6.4. Output Optimization

Optirrljzing the output coupling of the ring laser involves analyzing the gain and intrinsic
loss parameters. A simple analytical model for output coupling can be derived from ‘the
theory of gain saturation (Section 6.2). Approximating out the propagation effects, for

only a few dB of gain, the equation for gain saturation, clamped at threshold is

Yy = —Pc (6.6)
1+

sat

where P. is the power in the cavity, Py, is the intrinsic saturation power, and ¥y is the

parameter in the small signal gain,

G=e"". | (6.7)
The internal loss is

L, =1-¢™" (6.8)
and the lasing condition 'is

(1-T"e ™ =1 , (6.9)
where v, is the gain clamped at threshold. When combined with (6.6-6.8), the output

power is

P =PT=P ’ ~1T (6.10)
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whére the output coupling fraction, T, is taken as the independent parameter.

Figure 6.5 shows the optimization for three completely different léser types for
different ihternal losses. A helium-neon laser typically has extremely low internal loss
and small gain. Admittedly, there is Doppler-broadened inhomogeneous gain, but like

this model shows, optimum output coupling is only a few percent. In this regime of Li<<1
and T<<1, a reasonable approximation to (6.10) can be made using e ~1- Y.L to

arrive at

P, =P, {%— I}T. 6.11)

A 1540 nm semiconductor laser typically has a huge gain per pass, but the internal losses
are larger as well, pushing optimum output coupling to 30-50%. The fiber ring laser
losses are intermediate between the other two types of lasers, averaging around 1dB

(~20%) or less.
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Figure 6.5. Output optimizations for three different laser types.

Parameters from a characterized section of 26 cm of erbium doped fiber was used to
model the output properties of a ring laser with a projected loss of .6 dB. Shown in Figure
6.6a is the projected output vs. output coupling for various pump powers as high as 119

mW. Figure 6.6b is the modeled LI curve at 20% output coupling.
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Figure 6.6. Modeled output power based on gain parameter measurements.
(a) Power output for different levels of 980 nm pump power, (b) Power

output vs. 980 nm pump power.
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6.5. Ring Laser Characteristics

6.5.1. Optical Spectrum

Figure 6.7 compares the optical spectrum of the fiber ring laser with that of a high quality
semiconductor laser. The side mode suppression ratio (SMSR) of the fiber ring laser of
70 dB is more than three orders of magnitude better than that of the semiconductor laser.

(Good DFB lasers are usually specified at >35 dB SMSR.)
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Figure 6.7. Optical Spectra of FRL and SCL.

" The high SMSR is mainly due to the ring architecture and the outstanding mode selection

of the ring laser. In the figure, each spectrum is normalized to its peak power at 0dB. The
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resolution bandwidth for the optical spectrum analyzer is .08 nm which effectively
~ broadens the lasing peak and sidemodes seen in the plots. The side mode on the low
anelength side of the ring laser spectrum can be completely suppressed in future
generations of the laser.

In ‘an SCL under multi-mode operation, each individual mode can have large
intensity noise (mode partition noise). However, because of anti-correlation between the
modes, the extra noise does not show up in the total intensity noise. Therefore, in an SCL
with weak side modes, even at 35 dB weaker than the main mode, the main mode AM
noise is over an order of magnitude higher than the shot noise. This excess noise
: ménifests during propagation in a dispersive fiber (Chapter 3), due to the loss of the anti-
correlation with the side modes and also after filtering the main mode in a WDM system

with a drop filter.

6.5.2. Power and Wavelength Stability

In order to avoid crosstalk between the channels a DWDM system requires a multiple
number of transmitters that operate at known fixed light frequencies (ITU grid) with a
tolerance of a few gigahertz. The frequency stability of the SCL is adversely affected by
| temperafure (12 GHz/°C) and bias current (1 GHz/mA). The SCL laser operating
conditions have to be set precisely in order to match the ITU grid frequency. Due to the
aging of the thermistor and also a drift in the operating conditions of the SCL laser in

time, a long-term frequency mismatch can develop. This can only be solved with the
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intégration of a frequency locker into the laser package or by using an external frequency
“locker.

The fiber ring laser has a built-in frequency locking mechanism with better than
0.1 GHz/°C frequency stability, which is more than an order of magnitude better than that
of the SCL. The fiber laser frequency is also much less sensitive to pump power than the
semiconductor laser (injection current). The ring laser stays virtually at the ITU frequency
starting from threshold. This also eliminates the need for an ultra-low noise and precision
current source for each channel.

An unpackaged fiber laser was monitored for 10 hours operating very close to the
- ITU frequency 195300 GHz and within the +5GHz allowed by the Bellcore standard
(Figure’ 6.8). When properly packaged and temperature controlled, this laser should not
mode hope at all. In the case of such rare event, however, the laser frequency will deviate

from the ITU frequency by less than 0.4 GHz.
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Figure 6.8. Fiber ring laser power and frequency stability.

6.5.3. Temperature Dependence

By cycling the temperature of the substrate containing the fiber ring laser and monitoring
the lasing frequency, it §vas possible to probe the temperatum dependence of the laser.
Shown in Figure 6.9 are several sets of data as the laser was cycled between 19° and
26°C. This plot clearly shows repeatable single mode operation of this laser between 23°
and 26°C. A temperature dependence of -3 GHz/°C was found, which is larger than the

. intrinsic fiber Bragg grating dependencé of -1 GHz/°C. This was determined to be due to
the thermal expansion of the substrate on which the grating was glued and can be

compensated by a suifable material choice, e.g., the glass ceramic of Section 5.1.1.
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Figure 6.9. Lasing frequency vs. temperature.

6.5.4. RIN and Fiber Propagation

In Chapter 3, an expression for the Relative Intensity Noise (RIN) was derived and the
noise was measﬁred in é DFB semiconductor laser. The fiber ring laser has a shot noise
limited AM noise performance. In principle, the SCL AM noise should also be close to
the shot noise at high pump rates. However, due to the presence of side modes the
Relative Intensity Noise (RIN) exceeds the shot noise limit unless the SMSR is better
“than 40-50 dB. Figuré 6.10 shows the RIN for a DFB semiconductor and fiber ring laser.
Output power for the SCL was about 20 mW and that of the fiber ring laser was about 2.5

mw.



150

Larger photocurrent brings larger noise, making it possible to measure lower
values of RIN. The fiber laser relaxation resonance is well below 1 GHz, explaining the

flat RIN spectrum on the scale shown.

-1 40 T T T T

145} ]
-150
»

~-155

RIN (dB/Hz
> o
ot Q

-170F

-175 a 2 SCL A

«+ + FRL

-180 : ' '
0 5 10 15 20 25
Frequency (GHz)

Figure 6.10. The RIN of a SCL and fiber laser.

Even with a typical 35 dB SMSR ratio and after. propagation the AM noise
performance of a SCL will deteriorate even further due to the loss of the nearly perfect
anti-correlation between the main mode noise and the side mode noise. This can be
especially important for analog low frequency modulation in cable TV systems.

The AM noise of the SCL also suffers from FM to AM noise conversion after
propégation which is virtually absent in the fiber laser. The SCL RIN at low frequency is

increased dramatically after propagating in a long fiber cable (25 km) at high input
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powers due to Stimulated Brillouin Scattering SBS (Figure 6.11), also.evidenced by the
spike a't' 11 GHZ, and also S_idemode decorrelation. SBS will also limit the transmitted
power of the fiber ring laser, but the noise generated will be negligible due to the very
low FM noise of the ring laser (next section). This can allow higher power transmission
over longer distances of optical fiber. The high frequency dip of the SCL is due to the
interplay of the AM-to-FM noise conversion. At those frequencies, the large FM noise is

converted to AM noise and destructively interferes with the original AM noise, hence

lowering the RIN.
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Figure 6.11. RIN of SCL and FRL after 25 km and filtered by a 2 nm FP filter.



152

6.5.5. ’FM Noise

Laser linewidth is an impértant characteristic in high speed communications when
considerihg propagation in dispersive optical fiber. FM-to-AM conversion corrupts
optical signals with a large FM noise component.

The FM noise spectrum for a laser is described by random phase fluctuations that

broaden the spectral line.
E(t) = E e !lo+o0) (6.12)

Well derived are the contributions to laser linewidth [6-8]. The field power spectrum is

. given by [6-9] as
T 15 . ,(Qt dQ | i(e-op )
Splw)= | exp|—— | sin”| — 5. (Q)—|e m”dt 6.13
)= Jesp -2 ] 2 )2 613
where o, 1s the lasing frequency and the two-sided noise frequency is
s.q-)(Q):s0 +-=L (6.14)
which is measured in (rad/s)*/Hz. Spontaneous emission into the lasing mode adds a

white noise contribution, Sy, to the phase noise, and 1/f noise adds the term —é'— . Equation

(6.14) allows the two contributions to factor in the exponential of (6.13), and the field
" spectrum can be treated as a convolution of the two noise contributions, treated in depth
by Mercer [6—-10]. The white noise contribution to the linewidth results in a Lorentzian

power spectrum of frequency fluctuations, and Mercer shows that the 1/f contribution can



153

be approximated near the peak of the spectrum by a gaussian curve. The convolution is
- known as the Voigt profile, équal to the real part of the error function:
22

. | 2
V()= | RN Gdf (6.15)
i 5

Optimized computational approximation methods exist [6-11] and were implemented;
however, numerically evaluating the integral to extract the useful linewidths, Af; and Afg
worked equally well for our application.

The linewidth of the ring laser was measured by the delayed self-heterodyne
scheme shown in Figure 6.12, so called because the laser light modulated, split into two

" paths, one delayed longer than the coherence length, and recombined at a detector.

[
Ll

Detector  ESA

Modulator

75 km delay

Figure 6.12. Experimental set up for the self-heterodyne linewidth measurement.

The spectrum at the modulation frequency is a self-convolution of the lineshape of the
laser. An amplitude modulator was used to provide the modulation signal, 1 GHz, chosen
to move the center frequency out of any radio frequency interference. A 75 km spool of

fiber was needed to get the resolution of the measured lineshape into the sub-kHz regime.
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The measured spectrum is shown in Figure 6.13. The very narrow spike at the
" center of the peak is the cbherént beating of the 1 GHz signal with sidebands of the
carrier along a single path of fiber. The fitted parameters for the laser are

Lorenztian FWHMAv, =2kHz

. (6.16)
Gaussian FWHM Av; =80kHz
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Figure 6.13. Delayed self-heterodyne measurement of laser linewidth.

Gray trace is measured data; black trace is a fitted Voigt curve.

It is possible to measure such a narrow linewidth with 75 km of delay because
. there is very little laser RIN (Relative Intensity Noise) to be converted to FM noise by
dispersion in the fiber. The typical semiconductor linewidth is on the order of a few MHz.

It is much larger than the ring laser due to the small cavity size and amplitude-to-phase
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coupling (the o parameter). Note the three orders of magnitude difference in measured

linewidths for the two types of lasers (Figure 6.14).
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Figure 6.14. A comparison between a SCL and the fiber laser FM noise.

High FM noise can be a significant problem during propagation in a dispersive
fiber due to FM-to-AM noise conversion. It can also contribute to the noise in a DWDM
network due to the dispersion caused by the tail of many drop filters. The amplitude-to-
phase noise coupling of an SCL can be exploited to partially offset this problem.
However, it requires a careful design of the laser as well as the network parameters such

“as filter dispersion and fiber length. The low noise of the fiber ring laser poses none of

these problems.
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6.6. Bit Error Rate (BER) Measurement

Thié demonstration is a measure of the true data-sending performénce of an optical
communication system. A pseudorandom bit stream was transferred onto an optical
network, pfopagated in 50 kilometers of optical fiber, and then detected and checked for
errors. The requirements fér most communications systems is an error rate less than 1071°,
or 1 error in 10" bits. Tn order to accurately measure these rates, it takes hours to perform
this experiment. System performance can still be measured accurately by using a variable
attenuator before the detector and measuring the BER as a function of received optical
* power.

Figure 6.15 shows the experimental setup and equipment used. A source laser is
set to output a constant wavelength and power. A fiber isolator is used to keep any
reflected signals from being fed back into the laser which would cause instabilities. A
pseudorandom digital bit stream is generated and fed to an electro-optic modulator
(EOM) which transfers the electronic digital signal to the optical fiber. The optical signal
is then amplified with an erbium-doped fiber amplifier (EDFA), propagated in a spool of
50 km of single mode fiber, reamplified, filtered, and passed through a variable
attenuator, controlled by the user. A 90/10 splitter is used to tap off some light and the
“average received power is monitored with an optical spectrum analyzer (OSA). The high-
speed detector converts the optical siénal into an electronic signal and sends it back to the

Signal Generator and Error Analyzer where it is compared with the original signal.
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Figure 6.15. The Bit error rate measurement apparatus.

Two types of data are obtained with a BER measurement. One is an eye diagram
~ plot, which shows points taken from a sampled version of the data. This plot graphically
displays the O's and 1's from the data and shows how efficiently the system can convert
betweeﬁ them. Nice, wide open "eyes" where no dots appear in the eye opening show

good signal recovery, but no accurate quantitative data is obtained. Figure 6.16 shows a

very good *“ open eye” diagram of the ring laser.
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Figure 6.16. The “Eye” diagram of the ring laser.

In the second type of data, BER vs. received power, the received optical power is
plotted in dBm, and the BER is plotted showing the exponent of the BER on a
logarithmic scale. On this plot, a straight line is fit to the data and the power necessary to
receive lower error rates can be inferred from the fitted line. Figure 6.17 shows the BER

data for the fiber ring laser under various conditions.
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Figure 6.17. BER data for the fiber ring laser for different fiber lengths.

In comparing the two laser types, the BER plot of the semiconductor laser (SCL)
and the fiber ring laser (FRL) after 50 km of fiber propagation, the SCL needs nearly 3 dB
more power to achieve the same error rate (Figure 6.18). This is referred to as a "power
penalty” of 3 dB, made possible by the fundamental advantages in noise characteristics of
the FRL. This communication performance advantage of the FRL can be translated into
longer distances between amplifiers in a long-haul network. For every 50 km that a SCL.
signal is propagated, a FRL signal can be sent 70 km and still have the same system

performance.
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Figure 6.18. BER after 50 km of fiber for the FRL and SCL.

For fiber lengths a few 10's of kilometers, the measurement below 10™'% was difficult due
to random delay fluctuations in the fiber spool. Without separate clock recovery, it is

impossible to keep the receiver data aligned with the original data for more than a few

seconds.

6.7. Fiber Lasers in Communication Systems

The fiber ring lasers developed here are an extremely practical application of fiber Bragg

gratings and erbium doped fiber. For such a relatively large-cavity single mode laser,
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these fiber ring lasers have several advantages  over semiconductor lasers for long-haul
DWDM systems.

The most important advantage of the SCL 1is its ability for internal modulation.
However, the highest practical modulation frequency is limited by the relaxation
resonance frequency to less than 20 GHz. Moreover, the associated frequency chirp calls
for external modulation in many applications. In 10 Gbits/s systems, if frequency chirp is
an important factor and an external modulator is needed, the ring laser can be a cost-
effective solution. This is also true for analog modulation for cable if better linearity and
lower noise are required. In 40 Gbits/s systems, external modulation is a necessity,
putting the fiber ring laser on equal footing with the SCL. Once the full number of ITU
channels are utilized, 40 GBits/s modulation will become more prevalent in future
networks, since the only venue for increasing the network capacity will be using higher
modulation speed.

Fiber ring lasers are made of passive components. They are therefore more
reliable and not prone to catastrophic failure or change in its operating conditions.
Moreover, only one semiconductor laser is needed to pump possibly eight ring lasers, and
the requirements on pump laser light are much less than on communication wavelengths,
making them much cheaper to fabricate than 1540 nm SCL lasers. Thus, current,
temperature, and external locking electronics associated with each SCL based DWDM
channel are eliminated.

The following ‘tablg summarizes the properties of the fiber ring laser and a typical

1540 nm communication grade semiconductor laser.
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Semiconductor DFB Laser Fiber Ring Laser

e 40 dB side mode suppression. e >70 dB side mode suppression.
e Shot noise limited AM noise e Shotnoise limited AM noise.
(contingent on correlated mode

partition noise).

e 5 MHz linewidth. e 2 kHz linewidth.

e 12 GHz/°C Frequency stability. e 0.02 GHz/ °C Frequency stability.

e 1 GHz/mA frequency stability. e Frequency nearly independent of power.
e Not immune to EM noise. e Immune to EM noise (diode pumped).

e Very sensitive active device. e Highly reliable passive components.

e Power supply for each laser. e 1 Power supply for 8 lasers.

e Can be internally modulated up Needs an external modulator.

to 10 Ghbits/s.

Figure 6.19. Table comparing semiconductor lasers to fiber ring lasers.

In conclusion, the FRL represents some technological advances in terms of stable,
single mode operation for a 1 meter cavity. The FRL's technical performance, in
conjunction with low cost and ease of production, could make it an important contender

in the DWDM transmitter market.
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