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ABSTRACT

This dissertation uses two different game-theoretic models to
explore properties of equilibria in multiple-object auctions and
presents the results of an empirical test of ome of them. The first
chapter surveys the most important contributionms to auction and
bidding theory, discusses some questions which have not yet been
answered satisfactorily and outlines some of the specific problems
which must be addressed when studying multiple—object auctions as

opposed to single—object auctioms.

Chapter two examines the existence and characterization of
pure strategy Nash equilibria in multiple—object auction games in
which buyers face a binding constraint on exposure. There are five
major results. First, symmetric Nash equilibria exist if and only if
there are two or less buyers and two or less objects. Second, a Nash
equilibrium may not exist if the seller sets a positive reservation
bid. Third, asymmetric solutions to symmetrically parametrized games
typically involve "high-low" strategies: buyers submit positive bids
only on some restricted subset of the objects. Fourth, Nash
equilibria typically generate zero "profits" to the buyers. Fifth,
when asymmetric solutions exist and the buyers are identical, these

solutions are never umnique.

Chapter three examines the bundling decisions by a

multiproduct monopolist with incomplete information about demand.
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Previously the bundling problem has been analyzed only in a world of
perfect and complete information in which the monopolist uses a
standard take-it-or-leave-it pricing scheme. The model in chapter
three shows that tied-in sales are sometimes ex ante optimal under a
reasonable set of assumptions about a world in which there are no
production economies or diseconomies and no demand interdependencies.
A number of additional results were obtained deriving genmeral
sufficient conditions for buyers to prefer bundling, as well as
conditions under which bundling is optimal in terms of maximizing

expected consumer plus producer surplus.

Chapter four reports the results of an empirical examination
of the predictions made in chapter three. Testable hypotheses were
developed in that chapter which addressed questions about seller
revenues, market efficiency, buyer behavior and distributional
consequences of a monopolistic seller”s bundling decision in multiple
object auctions. The data provide strong support for these

theoretically-based hypotheses.
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CHAPTER ONE

Single-object and Multiple—object Auctions: An Overview



I. INTRODUCTION

Auctions have played a key role in the history of economics by
virtue of being one of the most commonly used mechanisms for
organizing markets and allocating resources for thousands of years.
Therefore, it is rather surprising that only in recent years have
economists carefully studied this class of allocation mechanisms, If
one searches the literature quite thoroughly one can find only
occasional mention of auctions in the classic treatisesl on economics.
On the other hand, in the last twenty years literally hundreds of
papers on auctions have been written and subsequently published in
most of the professional journals of economics and operations
research.Z This recent interest can be viewed as part of the shift
of direction in economic theory which omne economist3 has referred to
as the "(new)? welfare economics," in which great emphasis is placed

on questions about the role of particular institutions.

There is no question that auctions are important and
universally observed market institutions. Cassady(1967) describes in
great detail the diversity of auctions which have taken place from

ancient times to the present all over the globe. The primary element



shared in common by all these auction mechanisms is that one side of
the market is relatively passive and each of several competing members
of the other side of the market reveals solicited revelations of their
respective willingness—to-pay (or costs, if the passive side of the
market is a purchaser) for whatever set of products or services is

being sold (or purchased).%

Most of the recent work on auctions has been motivated by

three important auction markets:

(1) the sale by the U.S. government of treasury bills;

(2) the sale by the U.S. government of oil and gas development
leases on the outer continental shelf; and

(3) the procurement of contracts by various governmental

agencies (e.g. conmstruction and defense contracts).

This apparent narrowness of motivation is a bit misleading. The
applicability of predictions based on current theoretical models of
acutions is by no means limited to these three markets. Furthermore,
pure theoretical interest should probably be listed as an additional

motivation for much of this research.

The types of questions which have been most frequently
addressed fall into a number of different categories. The most common
approach has been to show how the specific auction rules affect the
strategies of competing bidders and the seller”s revenue. Other
efforts have tried to understand why auction institutions are observed

in some markets and different pricing institutions in other markets.



One of the limitations which is shared by most, if not all, of
the models is that they address auctions in which only one good is
being sold. More typically a number of different goods are sold by an
auctioneer to the same set of bidders. To the extent that
characteristics of the goods or the preferences of the bidders create
an interdependence between the auctions, models which do not
explicitly take this interdependence into account may yield misleading
conclusions. This dissertation presents two different game-theoretic
models of multiple-object auctions and presents the results of an

empirical test of one of them.



II. SINGLE-OBJECT AUCTIONS

Auctions are generally conducted either in an open or closed
format. In "closed" auctions, such as sealed-bid auctions,
prospective buyers submit private bids for the-different "lots" being
offered. The private bids are then simultaneously revealed at a
prespecified time and place and the highest bidder for each lot is
awarded that lot for a price determined by the auction rules. In
"open" auctions, all of the prospective buyers and the seller gather
together at some prespecified time and place. When a lot is auctioned
off, the floor is opened for bidding, bidding occurs for a period of
time and then is terminated according to the rules of the auction.
The last active bidder at the time of termination is awarded the item
at whatever price he bid. The key difference is that in closed

auctions bids are private, while in open auctions bids are public.

Two types of closed auction rules which are commonly used are
the first-price sealed-bid auction and the second-price sealed-bid
auction. In a first-price auction the winning bidder pays his bid and
in a second~ price auction the highest bidder pays the second-highest
bid. Two common open auctions are the English (ascending-bid) type,
in which buyers sequentially announce higher and higher bids until
only one buyer is bidding, and the Dutch (descending-bid) type, in
which the seller announces lower and lower prices until one of the

buyers accepts (bids) the price.

An important observation by Vickrey(1961) and later

generalized by others is that the first-price sealed-bid auction is



strategically isomorphic to the Dutch auction and the second-price
sealed-bid auction is isomorphic to the English auction. In order to
explain exactly what is meant by strategically isomorphic it is

necessary to outline the Vickrey model.

Suppose there are n competing buyers and a single object is
being sold. Each buyer knows with certainty exactly what the object
is worth to him. The information each buyer has about the valuations
of the other buyers is much more limited. Specifically, each buyer
knows only that each of the other buyers” valuations are independent
random draws from some known probability distribution. The seller
also knows the distribution but does not the exact valuation of any
buyer. If each buyer maximizes the difference between his valuation
and bid times the probability of winning,> given the other bidders”
strategies, then the Bayesian equilibrium® in a first-price auction
has each buyer bidding the expected second-highest valuation of the
other (n-1) bidders conditional on his value being the highest. This
is also the price at which the buyer should accept in a Dutch auction.

Thus we obtain the first equivalence.

In a second-price auction each bidder has a dominant strategy”
to bid his own valuation, just as in the English auction in which each
bidder is always best off to keep raising the current bid until either
it reaches his valuation or he is the sole remaining bidder. Thus we

obtain the second equivalence.

Neither of these two isomorphisms depends on the assumption

that buyers maximize expected profits rather than the expected utility



of their profits. However, in this risk neutral case, a third
equivalence is obtained, namely all four of the auction mechanisms
will yield the same revenue to the seller. This last equivalence does

not hold unless the bidders are risk neutral.

A very large fraction of the work which has been done since
this observation was first made has concentrated on extending this
result, For example, Ortega—Reichert(1968) shows that if a seller
sets a reservation price at a level which maximizes expected profit,
then he will set the same reserve level for a first-price auction and
a Dutch auction and set the same level for second-price and English
auctions. Thus the isomorphism still holds even when the seller sets

reservation prices.

A related part of this literature addresses the revenue-
generating properties of auctions. Harris and Raviv(1979a), Riley and
Samuelson(1979), Myerson(1978) and Maskin and Riley(1979a) have all
demonstrated that if all buyers are risk neutral there is mno efficient
auction mechanism which generates strictly more revenue for the seller
than the four mechanisms discussed above. Holt(1979), Harris and
Raviv(1979), Samuelson(1978) and Cox(1979) have verified an earlier
conjecture by Vickrey(1961) that first-price auctions generate more
revenue than second-price auctions when bidders are risk averse.
Matthews(1979b) takes the analysis a step further, demonstrating that
a risk neutral seller”s profit maximizing reservation bid for a
first—price auction is less than the corresponding reservation bid in

a second-price auction. Consequently a first-price auction is more



efficient ex ante than & second—-price auction if the buyers are risk
averse and the seller is risk neutral. This is also true if the

buyers are risk neutral and the seller is risk averse.

The Vickrey model has also been used by Harris and
Raviv(1979b) to explain the behavior of a monopolist facing uncertain
demand. Suppose that the monopolist has q indivisible units of the
same item and there are n>q bidders, each of whom has a demand of
exactly one unit.8 Consider the following two auction mechanisms which
are analogous to the first— and second=-price auctions. According to
the first mechanism, the q highest bidders are each awarded omne unit
of the item and are charged their actual bid; according to the second
mechanism, the q highest bidders each pay the highest unaccepted bid.
The former is often referred to as discriminatory and the latter
competitive for obvious reasons. In either mechanism the same revenue
is generated if the buyers are risk neutral. Moreover, if, in
addition, the monopolist sets an optimal reservation price, then the
expected revenue generated by either type of auction exceeds the
expected revenue which could be generated by any other allocation
mechanism. On the other hand, if n<q the monopolist may earn more
revenue by simply fixing a price and filling any orders which are
requested at that price. Thus it is not surprising that we find in
the real world auction markets existing for land, rare collectables,
0il and gas drilling rights, and other commodities which have a fixed,

low level of supply and are not easily divisible,

Using a similar approach, Maskin and Riley(1979b) show that if



a commodity is perfectly divisible and buyers have linear demand
curves with identical (known) slopes but random intercepts, then the
seller’s expected profit maximizing auction rule is to announce a
specific non-linear price schedule ("quantity discounts") and solicit
reported intercepts from each buyer. Naturally the functional form of
the price schedule depends upon the distribution of buyers”
intercepts. This model is of interest because it provides a
convincing argument that sellers can price discriminate very
effectively even without much information about buyer demand. In
addition they were able to establish theoretically the frequently-
heard claim that quantity discounts are just another tool which a

monopolist uses to price discriminate.

All of the above models posit a specific type of uncertainty
in which every bidder knows his own valuation with certainty.
Wilson(1967) suggests that one of the important features in many
auctions is that bidders do not even know their own true valuations
with certainty.9 However, prior to the auction bidders may have an
opportunity to gather information which can improve their estimate of
the true valuation of the object being sold. This introduces a type
of dependence between buyers” valuations of the object which is not
present under the Vickrey informational assumptions. Unfortunately,
the model is much more complicated and properties of equilibria are
more difficult to analyze. Nonetheless, in Wilson(1977),
Matthews(1979) and Milgrom(1979) some results are obtained about the
asymptotic properties of the auctions and about the effect of the

information-gathering incentives on efficiency. Wilson(1977) and
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Milgrom(1979) show that as the number of bidders becomes arbitrarily
large, the winning bid in a first—price auction converges almost
surely to the value of the object. Matthews(1979) shows that there is
overinvestment in pre-auction information-gathering by the competing

bidders.l0

Wilson has also applied his formulation to analyze the
revenue-generating properties of a number of mechanisms which the
government has either considered using or actually used in its sale of
outer continental shelf oil and gas leases. In particular he has
examined royalty bidding, in which the winning firm will pay the
government a share of its future stream of revenues, and share
auctions (the so-called Phillips Plan) in which each of the bidders
wins a portion of the object, the size of a buyer”s portion being
determined by the relative size of that buyer”s bid. Wilson(1977¢)
offers some arguments suggesting that efficiency losses due to
overinvestment in pre—auction information may be ameliorated under
alternative auction procedures such as these. Whether or not this
compensates for the revenue loss from the alternative procedures (see

Wilson [1977b] and Wilson[1976b]) is an open question.ll

There are a huge number of unanswered questions about even the
simplest auctions involving either single units of a commodity or
multiple units of a commodity with each buyer demanding at most one
unit. For example, no one has come up with a compelling explanation
for the existence of open auctions, which one could argue incur

greater transaction costs to the seller. In fact, some empirical
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investigations (e.g. Coppinger, Smith, and Titus [1980]) suggest that
revenues in first—price sealed-bid auctions generally exceed by a
significant amount the revenues in and English or Dutch open auctions.

No one has a good explanation for this either.

There are also many open questions about asymmetric auction
games. Aside from some examples (Wilson[1967],Vickrey[1961]), few
results have been obtained when buyers are not identical. This is
partly due to the fact that asymmetric equilibria are very difficult
to solve for. When buyers are not identical perverse equilibrium
outcomes can occur where the highest bidder does not have the highest
valuation. Cox(1979) has investigated a model in which buyers are
identical except for different levels of constant relative risk
aversion. Each buyer knows only the distribution of his competitors”
risk parameters.12 Not surprisingly, he finds that if buyers have
different risk parameters the buyer with the highest valuation may not
win, since more risk averse buyers will bid higher than less risk

averse buyers,

Another open question involves markets in which both auctions
and standard fixed-price schemes are used, For example, in markets
for stamps and coins, art, rugs, antiques and other rare collectibles,
one observes both auctions and standard fixed-price mechanisms.
Moreover these markets are not generally considered to be
monopolized-—~they are competitive. Thus one would expect auction
prices and fixed-prices to be codetermined. In one direction of

determination, prices in auctions are used as a signal for dealers to
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decide what fixed~price to charge. On the other hand many dealers
purchase at auction and decide how much to bid on the basis of what
they expect the resale value to be, Nowhere in the auction literature
are questions about the effects of subsequent resale ever addressed
carefully. Auctions have been modelled as if these later resale

markets can be ignored,

Finally, it is only very recently that research effort has
been directed toward the study of interdependencies between auctions.
One of the reasons for this is that it is much more difficult to model
several auctions together than to model each auction as a separate
independent event. The next section discusses the complications which
can arise in a multiple-object auction setting, briefly surveys the
literature in the area and outlines some fruitful directions of new

research on the subject.
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I1I, MULTIPLE-OBJECT AUCTIONS

A seller may have several objects which are being sold by an
auction mechanism. An auction of this sort will be referred to as a
multiple~object auction., Except in very special cases which were
discussed in the previous section,13 the properties of these auctions
are much different from the properties of single-object auctions.
These differences arise from at least two sources. First, the number
of mechanisms a seller may choose to use is considerably greater.
Second, the equilibrium behavior of buyers may be different. As a
result, the analysis of allocations resulting from different
mechanisms is a more complicated task, This is probably the most
obvious explanation for the scarcity of published research on

multiple-object auctions.

If a seller wishes to auction off several objects, he must
make a number of choices which are not made in single—object auctioms.
One of these decisions is whether to sell the objects sequentially or
simultaneously., If they are sold sequentially, the buyers and the
seller may gain information in earlier auctions which can affect
decisions in later auctions. If they are sold simultaneously, neither
the seller nor the buyers gain any information beyond that which each
one was assumed to have started with. Thus one expects that quite
generally the seller”s revenue in a simultaneous multiple-object
auction will differ substantially from the revenue in a sequentially
operated multiple—object auction. A seller may adopt a selling

strategy which is neither purely sequential nor purely simultaneous.
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Some subset of the objects may be sold before other subsets of the
items, each object in a given subset being sold simultaneously with
every other object in that subset. Thus the seller must choose
exactly how to partition the set of all objects into a sequence of

subsets. Such decisions will be called sequencing decisions.

A similar type of choice the seller faces involves another

type of partition, called a bundling decision. Objects may be sold as

a bundle, or a "package deal', in which case bundles of objects are
sold in an auction together rather than being sold separately in

several auctions.

A somewhat different type of decision a seller must make is
a message decision. The seller must specify what messages the buyers
should report. In a single-object auction, the seller always
specifies that the buyers report a scalar, which is just a (perhaps
false) revelation of their willingness—to—pay for the object. In a
multiple-object auction the seller may in principle solicit bids on
every subset of the set of objects he is selling. If buyers” values
for a bundle are not equal to a simple function of their values for
each object in the bundle, then such messages will provide the seller
with more information than could be gained just by soliciting bids for
each single object. In such cases the allocation rule of the auction

may depend upon the bids from this larger message space.

The buyers” decision problem is much more complicated in
multiple~object auctions, and equilibrium strategies are gemerally

quite different. One reason for this is that if a buyer”s valuation
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for a bundle does not equal the sum of valuations for the objects in
the bundle, then his decisions in one auction must be made contingent

on his success in other auctions. This is the non—additivity problem.

Therefore strategies will depend upon the sequencing decision, the
bundling decision and the message decision of the seller. In the case
of sequential multiple-object auctions, buyers must solve a dynamic
program under uncertainty. In the case of simultaneous auctions, the
value of winning one auction is dependent upon whether or not the
buyer wins in other auctions. Because of this dependence, if the
message space does not include reported valuations for all subsets of
items, then dominant strategy auction mechanisms, such as some
analogue of the second-price auction, will not generally exist.l4

This is the dominant strategy problem.

On the other hand, if the message space does include bids on
all subsets of objects, then the number of bids each buyer submits
becomes very large very quickly, since the number of subsets of
15

objects increases exponentially with the total number of objects.

This is an improtant practical consideration and, for lack of a better

term, it is called the implementation problem,

From the above, one can see that a multiple-object auction
is a very much more complicated market to model than a single-object
auction. Yet practically the only auctions ever observed are
multiple-object auctions. Thus there is a good reason to question
whether or not single-object auction models, which ignore sequencing

decisions, bundling decisions, message decisions, and the non-
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additivity problem, can provide accurate predictions about auction

markets.

A few efforts have been made to understand behavior in
multiple-object auctions. Agnew(1972), Kortanek, Soden and
Sodaro(1973), Cook, Kirby and Mehndiratta(1975) and Oren and
Rothkopf(1975) have investigated one consequence of a seller”s
sequencing decision. Oren and Rothkopf(1975) set up a model in which
the seller plays no active role and they use a decision-theoretic
approach to solve for a single strategic buyer”s optimal sequential
bid strategy. The other buyers have fixed strategies which are simply
a set of reaction functions which are responsive in a specific
functional way to the strategic bidder”s choice of bids. They are not
optimizers, so equilibrium strategies cannot be explored using this
model.l6 Agnew(1972) presents a learning model in which a single buyer
uses information from earlier auctions to improve his prediction about
the bidding behavior of his competitors. All of the above authors
limit the strategy space to multiplicative strategies. That is, the
lone strategic bidder always bids so that if he wins his profit'is a
constant multiple of his bid. Cook, Kirby and Mehndiratta(l1975) and
Kortanek, Soden and Sodaro(1973) investigate optimal sequential
bidding behavior when the bidders face constraints limiting the number
of auctions they can win. Kortanek, Soden and Sodaro(1973) use a
decision—theoretic approach in which only one bidder is strategic.
Their major result, as interpreted by Attanasi(1974), is that a bidder
bids so that the margin of profit he makes if he wins is proportional

to the reciprocal of the hazard rate of the distribution of his
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opponents” bids. Unfortunately, there is no reason to expect
equilibrium bids to take this form since strategy spaces of the
bidders are intertwined. This is the key observation made by Cook,
Kirby and Mehndiratta(l1975) and they attempt to characterize
equilibrium strategies when there are exactly two competing bidders.
They use a model in which the constraint may be violated sometimes as

long as it is not violated "on average'.

Sakaguchi(1962), Griesmer and Shubik(1963) and
Rothkopf(1977) have studied simultaneous multiple-object auctions in
which buyers face the constraint that the sum of their bids cannot
exceed a certain number. This introduces an interdependence between
auctions. Rothkopf(1977) uses a decision-theoretic approach and does
not investigate equilibrium strategies. Stark and Mayer(1971) also
provide a discussion of a number of decision-theoretic models along
this same vein. Sakaguchi(1962) and Griesmer and Shubik(1963)
investigate two-bidder Nash equilibria of simultaneous auctions with

bidding comnstraints.

Engelbrecht-Wiggans and Weber(1979) have examined equilibria
in a very special example of a multiple-object auction. In their
model, several different auctions are conducted simultaneously for
"copies" of the same product or service. Buyers enter exactly two of
these auctions. Each buyer has a positive valuation for the first
copy he wins and has a zero valuation for each duplicate copy. Thus,
a specific form of non—additivity is introduced which is substantially

different from the non—additivity induced by bidding comstraints.
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They find that pure strategy Nash equilibria fail to exist in general

and they solve for a symmetric mixed strategy equilibrium,

Of all the above papers, only four have explored equilibria
in multiple-object auctions. Three of these examined Nash equilibria
in two-buyer auctions when buyers face a constraint on exposure (Cook,
Kirby and Mehndiratta[1975], Griesmer and Shubik[1963] and
Sakaguchi[1962]) and the fourth (Engelbrecht-Wiggans and Weber[1979])
investigatea a very special example of an unusual auction market.

None of the literature has addressed questions about strategic
behavior on the part of the seller. Clearly there is a great deal of

research remaining to be done about multiple—object auctioms.

The rest of this dissertation addresses two problems
involving multiple—object auctions. The first problem deals with
existence and symmetry properties of Nash equilibria when an arbitrary
number of identical buyers who face identical bidding constraints
compete in an arbitrary number of simultaneous auctioms. This
approach is a generalization of Sakaguchi(1962) and is similar in
spirit to Griesmer and Shubik (1963) and Cook, Kirby and
Mehndiratta(1975). The remarkable result is that symmetric pure
strategy Nash equilibria generally fail to exist. Thus there is
either non—existence of a pure Nash equilibria or else existence of
non-unique asymmetric Nash equilibria. These are fully characterized

in chapter two.

The second problem investigated in this dissertation is the

bundling decision of the seller. In chapter three the Vickrey
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informational structure is used to analyze the ecomomic consequences
of the seller”’s revenue maximizing bundling decision when buyer
valuations are additive and uncorrelated across items. Additivity and
noncorrelation were imposed so that the bundling question could be
explored independently of the sequencing problem and the non-
additivity problem. A number of interesting theoretical results were
obtained. First, the seller will choose to bundle if the number of
bidders is small and will not bundle if the number of bidders is
large. Second, except for buyers with very high valuations for all
objects, buyers are better off if the seller does not bundle. Third,
if the seller requires no minimum bid then bundling is less efficient
than selling the objects in separate auctions. Fourth, if the seller
sets a revenue maximizing minimum bid requirement, then in some cases
bundling is more efficient than selling the objects in separate

auctions.

These theoretical predictions are tested empirically in
chapter four using auction data from controlled laboratory

experiments. The predictions were strongly supported by the data.
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NOTES

A rare example is the horse auction which is discussed in Bohm-
Bawerk(1959),

Stark and Rothkopf(1979) have compiled a lengthy bibliography
including most of these papers.

See Reiter(1977).

Henceforth in this dissertation discussion is limited to auctions
with a passive seller and several competing buyers. This is done
for expository convenience only. All important results extend
quite naturally to the case of a passive purchaser and many
competing sellers.

In other words, buyers are risk mneutral.

A Bayesian equilibrium is a Nash equilibrium for a game with
incomplete information played by Bayesian players. See
Harsanyi(1967-1968) for a complete discussion of this equilibrium
concept.

A strategy is said to be dominant if it maximizes a player”’s
objective function regardless of the strategies played by the
other players of the game.

Since each buyer demands only one unit, this problem essentially
reduces to the single-object, single-unit case. For this reason,
such models are not to be considered as multiple-—object auctions.
Much of Wilson”s work is motivated by the auction market for outer
continental shelf oil and gas leases.

Unfortunately, it has never been proved that there exists an

information-gathering equilibrium, so his analysis proceeded by
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assuming existence.

Properties of royalty auctions and share auctions are not
rigorously proved, rather attempts are made to draw inferences on
the basis of a few examples.

Since buyers” risk parameters are independently drawn from the
same distribution, the problem reduces to a symmetric one.

The reference here is to the multiple-unit auctions in which each
buyer demands only one unit of a single good. See note 8.

See Forsythe and Isaac(1980).

This problem has been acknowledged in a different setting, in the
study of mechanisms for choosing public goods. See Ferejohn,
Forsythe, Noll and Palfrey(1979) for a brief discussion of this.
Most of the models of auctions can be classified as either
decision-theoretic or equilibrium models. The weakness of
decision-theoretic models is that they do not describe market
behavior, but instead describe the maximizing behavior of an
isolated individual. As a result, they lack the predictive power
of equilibrium models. Equilibrium models may also be based on
individual maximizing behavior, but require additionally that the
behavior of all players satisfy some sort of mutual consistency
requirement. Naturally, a weakness of equilibrium models is that
they do not perform well in environments where players” behavior
is somehow not mutually consistent, that is, in disequilibrium

environments.
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CHAPTER TWO

Multiple-object, Discriminatory Auctions with Bidding Constraints:
Game—theoretic Analysis



28

I. INTRODUCTION

This paper has two major objectivesf The first is to show that
the incorporation of exposure constraints into the decision problem of
bidding agents may dramatically change the character of '"solutions'" to
an auction game, A second, more fundamental objective is to demonstrate
that a Nash equilibrium is of questionable value as a solution concept
for auction games. It is shown that Nash equilibria exist only
occasionally and, when they do, often exist non-uniquely. The non-
uniqueness or non-existence problem indicates that alternative solution
concepts might be more accurate predictors of behavior in many auction
situations. Because auctions are frequently used allocation mechanisms,
one of the more important characteristics of theoretical models of
auctions is that the results be reasonably consistent with observed
data. Though more empirical work remains to be done, the preliminary
indications are that the model developed in this paper compares favorably

with previous work in this regard.

I1. MULTIPLE-OBJECT AUCTIONS

Multiple-object auctions, such as those conducted by the United
States Geological Survey for outer continental shelf oil and gas leases,
represent an important type of market structure for the allocation of
scarce, lumpy objects. Surprisingly, the economics literature on this
subject is virtually nonexistent. Before discussing briefly the work
that has been done on this subject, a few distinctions should be made

about specific auction institutions.
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First of all, this paper examines sealed-bid auctions rather
than oral auctions. Second, it examines multiple-object rather than
single~object auctions. In a single-object auction, each participant
submits at most one bid for whatever item is being sold. A participant
either submits the highest bid and is a winner, or goes home empty-
handed.

A multiple-object auction consists of at least two single-
object subauctions in which a bidder may submit losing bids in several

subauctions yet still win something. A multiple-object auction can be
conducted either sequentially or simultaneously. 1In case it is
sequential, participants may use information from earlier subauctions in
deciding strategies for later subauctions. This information might be
very useful. For example two items for sale may be highly complementary,
such as a right shoe and a left shoe. The information that the bidder
has at the beginning of the second auction -- specifically, knowledge
of who won the first auction -- is of great value to him. Ruling out
secondary markets,l the second :shoe has no value to a bidder who has lost the
first auction, but it is of considerable value to the winner of the first
auction. In a simultaneous auction, all bids are submitted before the
outcome on any subauction has been revealed. Bids in the auction are
vectors, with each component corresponding to a subauction.

Auctions can also be distinguished by the message space of the
bidders. For example, in many contractual agreements bids are submitted
in which the cost, time of completion, product quality and other variables

may jointly determine the winning competitive bid. This paper ignores
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multi-variate bidding and deals only with auctions in which a bid is
a scalar, price. The message space of an auction must also specify
the subsets of the set of items to be sold on which bids are to be
submitted. For example, bidders may be permitted to submit sealed
tenders for every subset of the set of items being auctioned. The
message space considered here is one in which bids may be submitted
only on singleton subsets. Thus, the auction institution examined in

this paper is a simultaneous, multiple-object discriminatory auction.

The focus of much of the bidding literature in the past has
been on the choice of bids in single-~object auctions. Implicit in such
analysis is the view that little is lost by analyzing a multiple-object
auction as a series of independent single-object auctions. But single-
object auction models fail to explain a number of empirical phenomena.
An example is the bidding behavior in auctions for offshore and outer
continental shelf drilling rights.

One of the most striking observations is that two companies
with identical information often bid much differently. Capen, Clapp
and Campbell (1971) document this phenomenon in the 1969 North Slope
auction. They found that two joint explorers, Humble and ARCO, bid

much differently on individual tracts, although neither consistently

bid much greater than the other on all 55 tracts.2 Some authors
interpret this to mean that these two companies simply imputed much
different value estimates to the same information. While different
companies will interpret the same exploration data as indicating

different amounts of o0il and gas, it is hard to believe that this can
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explain as much variation in bids as was observed. On one tract Humble
bid 17 times as much as ARCO bid and on another the ARCO bid was 33
times as much as Humble's.

One possible alternative explanation of such divergent bids
is that the two companies used randomized, or mixed, strategies. This
could result in significantly different bids, even if the companies
made identical value estimates. A second explanation is that the
companies faced bidding constraints. For example each company might
have a "target" number of tracts it wants to win, or a maximum
total bonus it can afford to pay, or some mix of these two objectives.
This emphasizes an important limitation in previous models of optimal
bidding in auctions. When more than one item is being sold, the
objective function of a firm may not be simply the cross product of the
expected net values of each of the items and the probabilities of
winning each. In many situations the net value of an item is linked
with the total number of items that are won.

Engelbrecht-Wiggans and Weber (1979) have constructed a ''garage
sale" model for the amount one should bid in each of several simultaneous
auctions for identical goods, where the value of the first item won is
X > 0 and the value of each subsequent item an agent wins is 0. Their
analysis assumes an oral English auction, rather than sealed bids. The
questions they ask are how many auctions to enter and how much to bid
in each auction. 1In particular, they search for a symmetric Nash
equilibrium. In one special case in which the number of bidders and
the number of items are equal to n, Engelbrecht-Wiggans and Weber claim

that if the number of auctions an agent can enter is limited to two,
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then as n goes to infinity the optimal Nash strategy is bid high on one
randomly selected item and low on another.
There are a number of modifications of their model which are
worth examining. These include:
(1) looking at the case where n is finite, rather than focusing
on asymptotic results;

(2) examining the case where the number of agents does not equal
the number of items;

(3) -allowing agents to bid on as many items as they wish and
(4) introducing an explicit constraint on the total value of the
bids.

A few attempts have been made by past authors to incorporate
explicit bidding constraints. Sakaguchi (1961) makes some progress
characterizing Nash equilibrium pure strategy solutions when there are
two items and two bidders. He offers an incomplete proof of a
proposition which is presented (and correctly proved) as theorem 1 in
this paper. Rothkopf (1977) formulates a decision-~theoretic model of
a bidder's optimal strategy in simultaneous auctions with a constraint
on exposure, given a known expected payoff function, the only argument
of which is an agent's own bid. The payoff function is also additively
separable in the n objects at auction. Equilibrium strategies are not
discussed.

Griesmer and Shubik (1963) and Cook, Kirby and Mehndiratta
(1975) deal with constrained, simultaneous multi-cbject auctions in a
slightly different context. Both papers assume that the bidders are

bidding to sell (lowest bid wins), and have a resource constraint which
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limits the number of auctions they can win. Cook, Kirby, and Mehndiratta
(1975) use an "expected" exposure constraint rather than a certain
exposure constraint. Griesmer and Shubik (1963) deal primarily with the
case in which agents face the constraint that they must bid identically
in all subauctions. The authors speculate that solutions often do

not exist if different bids are allowed.

III. BIDDING CONSTRAINTS
The above authors have made an important contribution to the
theory of competitive bidding by suggesting that solutions to an auction
game can change if the total net payoff to an agent is not simply the
sum of the net payoffs in each separate auction.
Nonlinear payoff functions apparently are present among agents
bidding for outer continental shelf gas and oil leases. There is
evidence that firms face constraints that limit the number of tracts they
want to win. For example oil companies which win a substantial number
of leases in a sale, sometimes resell some of them to other companies.
One can imagine a number of internal and external forces which might
lead a firm to limit the number of tracts it bids on or the total amount
of its winning bids. Because a firm does not have perfect instantaneous
access to an infinite supply of capital at a constant rate of interest,
the leasing division of a firm is likely to face a budget constraint. For
this reason, one would expect that both the cash outlay for winning bids
and the total development expenditures on all tracts won must be
constrained. One might object by saying that although they face this

constraint, it should not affect their bidding strategy so long as there
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is a secondary market in leases. Unfortunately there is a fault in

that logic. If a firm submits the winning bid, it probably means that
its estimate of the value of the tract was greater than all other
valuations. Thus it is unlikely that the firm will receive as high a
price in the secondary market as what it paid for the tract. Compounding
this problem is that the attempt to resell the tract sends a signal to
other firms that the tract is not worth as much to the firm as was
originally believed.4 For all the other firms know, the winning firm
might have just noticed an error in its value estimate and for this reason
wants to unload the tract. Hence a firm would not expect to obtain a
price for the item as great as the bonus it paid in the auction.

There are several ways one might wish to formalize the budget
constraint. Perhaps the most realistic is to postulate that each firm
has a loss function, L(C), in which C is the total amount of capital used
to extract value from the items it wins, In the case of o0il tracts the

cost of exploration, purchase and development of each tract is

J -
c =j£1 [Ej + ch (bj + Dj)J

where
Ej = pre-auction exploration costs of tract j
bj = bid on tract j
6j =1 if bj was the unique winning bid.

i

0 if bj was a losing bid.
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D, = development costs of the tracts won.
J (Alternatively, -Dj can be thought of as the

capital obtained for j on a secondary market,
if the item is resold instead of developed.)
One would expect that L'(C) > 0 and L"(C) > 0, to reflect
costs of rapid expansion, increasing cost of capital in the lending

market, and other costs which are not directly incorporated in C. If L

is a smooth convex function of C then it can be loosely interpreted ag a
"soft" budget constraint, in the sense that the money cost of exploration
purchase and development of tracts understates the true cost to the firm.

A "hard" budget constraint is an extreme case in which there
exists some M such that L(C) = « for C > M. Thus a second representation
of the budget constraint might require that in equilibrium (or in the
case of a mixed strategy equilibrium, expected in equilibrium)5 a constraint

C £ M, can be satisfied.

Under the above formulation, one could model the firm's
decision problem as being either static or sequential. In the sequential
case, the firm first makes exploration decisions, then bidding decisions,
and finally development decisions.

The model used in this paper postulates a "hard" budget
constraint for reasons of analytical convenience. Exploration and
development costs are ignored and thus the decision problem of a firm in

static rather than sequential. The constraint faced by each agent, i,

. i . . .
is: b, £ M. This has been referred to in the literature as a

e~

i
j=1 7

constraint on exposure. This constraint makes the problem at hand a
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special case of a Colonel Blotto game.6 Blackett (1954) describes this

type of game the following way:

Two players contending N independent battlefields distribute
their forces to the battlefields before knowing the opposing
deployment. The payoff on the ith battlefield is given by a
function Pi(x,y) depending only on the battlefield and the
opposing forces x and y committed to the battlefield by A and
B. The payoff of the game as a whole is the sum of the

payoffs on the individual battlefields.7

In our case, armies are dollars and battlefields are items.
What makes our game a rather perverse Blotto game from the military
standpoint is the particular nature of the payoff function. If you win a
battle, you lose all your forces -- but gain the fort. If you lose a
battle, you lose no forces, but fail to gain the fort. While this may

not seem realistic on a battlefield it describes an auction quite adequately.

IV. THE MODEL

In general, participants will be indexed by the superscript

i, items will be indexed by the subscript j. Let:

v the value of item j to participant i

the budget of participant i

=
1]

the bid of participant i on item j

o
]

=t
it

the number of participants

J = the number of items
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The budget constraint imposed in this model is that
J . .
(1) 7 br < MY Vil

. 5
A pure strategy for agent i, 0, is a J-vector of

positive numbers. Thus the strategy space for any participant is

>b, ¥ j=1, ...,7}

%
where b, is the seller's reservation bid. It will be demonstrated below
that the presence of a strictly positive reservation bid may alter

bidding strategies profoundly.
A pure strategy o' € I is feasible if o - 1 < M

The subset of Rj which includes only and all feasible pure strategies
is ',

A pure strategy is full if ot - 1= M]} The subset of L—

which includes only and all full pure strategies is Z

A feasible mixed strategy of participant i is a distribution

function Fl(') defined over I .

A mixed strategy is full if the domain of F is bl

¢ s ,
The payoff functionm, ﬂl(Vl, Ml, Ol, ...,OI), for individual i,

1 I . .
where 0°, ..., O are strategies of all the players is assumed to be:

i i %41 1. (i i
=M + ) & (b,, ..., b) [v_ -b.J
c i 3 h| h| J
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where

st o1 irbpt o bX vk4d
j i s
. i k .
=0 if bj <bj some k # i

Tie-breaking Rule: If several participants in the auction tie for

the winning bid on an item, they evenly divide the cost and ownership

of the item:
1
i - = —
Vk#i 8 m
where X is the number of agents submitting identical winning bids,
equal to b;.

Throughout the remaining analysis, four assumptions are

maintained. The first assumption is implicit in the definition of &(-).

Assumption 1: Values are linear in the object, in the sense

. e Lo i . .
that if an individual receives a share o~ of item j, the value of that

i i
share to him is « Vj'

Assumption 2: Values are constant and known with certainty.

This assumption limits the comparability of the results of this paper
with the results found in the standard bidding literature (e.g. Wilson
[1977]). However, insight into the case where values are uncertain
may well require a full understanding of the certainty case if budget
constraints exist.

The assumption that values are constant precludes the

possibility that winning item 1 affects the value of item 2.
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This restriction is strong, for it excludes auctions for complementary
items (e.g. bidding on a left shoe and a right shoe) and "duplicates"”
such as the extreme case in which a bidder attaches positive value only

to the first item won, and resale is impossible or costly.

Assumption 3: I =2 2, J = 2, and all items j = 1, ...,J are

auctioned simultaneously.

The first part of this assumption merely rules out trivial
cases. The second part of the assumption rules out sequential auctions.
For interesting examples of sequential auctions and some analysis about

their characteristics see Engelbrecht-Wiggans (1977).9

i 10
e

. J
Assumption 4: M < Z v
o1

This assumption is a necessary condition for the budget constraint to
be binding.
In the analysis that follows, three types of symmetries
appear. They provide a convenient classification of the cases which must
be examined.
The first type of symmetry, {S1), is between values of the items
to each person. Are the items the same? In this situation, for each
individual, i,

i i
= 3 S1
Vj Vi vV i,k (s1)

although it may be the case that

V; # V? for some i,j,k.
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A second symmetry, (S2), exists if the value of each item j,

is the same for all individuals. That is

V., =V, V ik (82)

although it may be the case that

i

i P
Vj # Vk for some i,j,k.

The third type of symmetry, (S3), exists if all individuals

have the same budget constraint. That is
M™ =MV i,k. (83)

A second mode of classification is the scope of the market.
How many items are auctioned off simultaneously? Finally, a third
mode of classification is the depth of the market. How many participants
are involved in the market? As will become apparent, these last two
characteristics of the auction market, scope and depth, interact in
very interesting ways and largely determine whether solutions to the
auction game exist,

In what follows, an attempt is made to specify exactly when
Nash equilibria exist and to characterize these Nash equilibria in terms

of symmetry, profitability, and other criteria.

V. OSYMMETRIC BIDDING STRATEGIES

11
Theorem 1: Assume I = 2, J = 2 and conditions (S2), (S3) are satisfied.

There will always exist a unique Nash equilibrium pure strategy at
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= = (A, A
o o ( 1’ 2)
where
A; = max {0, min M+, - Vj, M|} . (%)

2

The proof of Theorem 1 requires a number of initial

observations to be made.

Lemma 1: If I =2, J = 2 and (S2), (S3) are satisfied, then in

equilibrium, Ol = 02.

Proof: Suppose Ol # 02. We can assume without loss of generality
1 2 .. . .
that bl < bl‘ This implies that bidder 2 could be better off

bidding bi - € on item 1., Hence, if 01 # 02, then (ol, 02) is not a

Nash strategy pair.

Lemma 2: If I =2, J = 2 and (S52), (S3) are satisfied, then in

J . .
equilibrium ) b> = M©
=1
J 1 J 2
Proof: Suppose that 2 bj = 2 bj < M, which we can assume from
i=1 j=1

Lemma 1. The payoff for each individual is

J

V., - b.)
j§l ( j b
mT=M+

2

since they tie on each item. (Note that because bids, values and budgets

are identical the superscripts can be ignored.)
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By Assumption 4 we know that bk <<Vk for some k. Hence,

because budgets are not exhausted, player 1 can bid bk + € on fﬁaé

item, and receive a new profit of

The effect on profits of raising bk by € is:

Vv, - b
Voo _ _ . _ _k k
m m Vk bk £ 5
Sl
5 .
Since Vk - bk > 0, there exists an € small enough so that
ﬂl - T > 0. Hence the original bid configuration was not a Nash

equilibrium, and so Nash strategies must be full.

L1

Lemma 3: Assume I = 2, J = 2 and conditions (82), (S3) are Séfisfied. Let

cl = (bi, b%) and b; = bi. if (Ol,ol) is an equilibrium stfategy pair, then
1 1,.1 1 1,,1

Prgof: Since, by assumption, (Gl,al) is an equilibrium, it must be

the case that no unilateral bid change can make that agent better off.

Since equilibrium strategies are full, and strategies are symmetric, any:
unilateral change of bid necessarily means that each individual wins"exadtlyw

one item. Assume that the conclusion of Lemma 3 is not true, e&.g., that:
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b2 is not equal to zero and that (Vl - bl) # (V2 - bz). Without loss

- bl >V, - b,. The profit resulting from Ol

of generality, let V 2 2

1

is given by

V, +V,_ - M
1 1 2 .
'n(o' ) - .._-—-___2___....._

If a bidder now bids 02 = (bl + €, b, - €), the profit becomes

2

1r(cy"')=Vl-b--e:>l 1,2 2='rr(ol)
1 2 2

1
for small enough €. Hence (O ,02) is not an equilibrium strategy pair.

Thus, for Gl to be an equilibrium, either b2 equals zero or (Vi - bi) =
1 1
(V2 - bZ)’ hence
1 1 1,.1
(V1 - bl)b2 = (V2 - bz)b2 .

L]
The proof of Theorem 1 follows immediately from Lemma 2 and

Lemma 3, which produce two equations in two unknowns, bl and b2’ subject

to the constraint that bl’ b2 are nonnegative:

(Vl - bl)bZ = (V2 - b2)b2 .

This establishes that if a Nash equilibrium pure strategy exists,
it must satisfy (%).

To show that (%) in fact is a Nash equilibrium can be
demonstrated by showing that if one agent uses (*), the other can

make himself no better off by using a strategy other than (*). We
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need consider only the following two cases:
Case 1: Nonnegativity constraints are not binding. Fix bidder 1's
strategy at (*). If bidder 2 bids something different, he wins at

most one item. His profit then is:

' = v, - b, where b, > b*,
J J J J
V, - b*
Hence Tt o= Vj - bj <2 J - g,
2

Case 2: Some nonnegativity constraint is binding. Player A
bids (0,M). Suppose player B bids (a,b) where a > 0, b < M.
Then his profit is [Vl ~ a]. Since the nonnegativity constraint is

binding, it must be the case that

7 -
M+ \l V2 <o
2
which implies that
Vl + V2 - M -
2 1
If a > 0, then
Vl + V2 - M v .
2 1

The LHS of the last inequality is player B's profit if strategy (%)

is adopted, so (*) is an equilibrium.
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Thus we have shown that (*) characterizes the unique Nash equilibrium

strategy configuration to this bidding game.

L]

Theorem 2: Assume I > 2, J > 2 and conditions (S2), (S3) are
satisfied. If there are at least 3 items, j = 1,2,3 such that it

is possible to have

where by, b2’ b3 are all non-negative and

bl + b2 + b3 =M

then a symmetric pure strategy Nash equilibrium cannot exist.
12 -
Proof: By Lemma 3, we know that a necessary condition for a Nash

equilibrium when the bid nonnegativity constraints are not binding is:

Assume that Ol = 62 = ... = OI = (bl,..., bJ) is a Nash
I
equilibrium strategy I-tuple. Let I = (01, .., 0 ). Without loss
of generality, assume that bl’ ey bK are all positive, where

J
3<K<J,and I b, =M>0.
j=1

Let m* be the payoff each participant receives under

this strategy I-tuple:
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J 1
™ = ) T (V. -b) +M.
j=1 J
Let
K
* 1
=) = (V, -b.)
K j=1 I 3
and
J
ﬂ§= ) = (V, - b,)
j=K+1
S0
*
* *
= + .
s nK ﬂJ + M

Since I is a Nash equilibrium I-tuple, it must be the case that
no agent can unilaterally receive a larger profiﬁ by departing from .
In particular, an agent cannot reduce the bid on one item, redistribute
it over other items and receive a greater profit. Suppose an agent bids

bk -~ € on item K < J and increases the bids on items 1

The new profit is:

through K - 1 by & £ T

J
K-1

N A )]+ R
521 L i k-1 j=R+1

=>

This fails to improve the payoff associated with Y if and only if

K-1

K
€ 1 -
jzl [vj —(bj + T 1)] < 3 jZl(vj bj)
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This is true for all € > 0 if and only if

However, in order for Z to have been a Nash equilibrium,
this condition must hold not only for item K, but for all items k

€ {1, ...K}. Thus we have

K K
1
Y [V, -b,1 == § (V. -b.) k=1, ...,k
. J J I o1 J
i=1 - 4%
j#k
These can be rewritten as
K
- - < - =
(1 1).§ [V, - b=V -b k1, ....K
‘J=1
j#K

Summing these K inequalities, we obtain

L) )

(1-1 [V, - b,] < [V, = b,]

k=1 j=1 4 J =1 4
j#k
K K

= (K- 1)(I - 1) V, - b,] < - b
jgl [ J J] = jzl [Vj j]

= (K- D(I-1) 21
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Hence, in multiple-object auctions 1if either K > 2 or I > 2, symmetric

Nash equilibrium pure strategies cannot exist.

Example: Bidding With a Reservation Bid Reguirement

In this example the concept of a reservation price is
introduced. The auctioneer requires a minimum bid he will accept. 1In

this situation, Nash equilibrium bidding strategies may not exist.
Let I =2, J=2
B_ = reservation bid

Assume S2 and S3 hold.

Theorem 3: Nash equilibrium pure strategies do not exist if BR,‘< Xg
2

and M + V2 < Vl < M+ V2 + (V2 - ZBR).

Proof: The strategy of the proof is to look at the boundary solutions.

By the earlier theorem we know that the unconstrained problem has a

solution:

ol = 6% = m,0).

Under this strategy pair each individual payoff is equal to

V., +V, - M M+V +V
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under the old rule (i.e. BR = Q).

However, if BR > 0, then

V, < M+ + -
1 V'2 (V2 ZBR)

v, - M
- >
Vo - B 7
M+V
=> M+ V - B_ > .
2 R 2

The left hand side of the inequality can be achieved
unilaterally by either player (say player 1) simply by changing his

bid to

~1
g = (A,BR)
where

A e [O,M - B_].

R

Player two now has an incentive to bid less than M on item

1, in fact he will want to bid as low as A. Now, we need to check if
~1 a2

o o]

=

= (M -
( BR,BR)
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is a Nash equilibrium pure strategy.l3 This is not a Nash strategy pair

because

vV, - b, < V. - b2

so by lemma 3, the bidder has an incentive to cut his bid on item 2 and
increase his bid on item 1. 1In fact, this will be the case whenever
bl > 0. Since the boundary solution (b1 = () does not support a Nash

equilibrium, the claim is demonstrated.

L]

VI. ASYMMETRIC BIDDING STRATEGIES

Two questions immediately arise. When do asymmetric Nash
equilibrium pure strategies exist, and what form do they take when they
do exist. A first observation, that there are conditions where
asymmetric Nash equilibria exist, can be made with reference to an
example. This case is rather trivial, in the sense that no agent earns

a profit.

Example 1: Suppose there are three agents and three items. The agents

all have identical budget constraints and identical values

The following bid configuration is a Nash equilibrium.
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Item
Bidder 1 Z 3
1 4 4 2
2 2 4 4
3 4 2 4

One can immediately see that no agent earns a profit, because all winning
bids are at the value of the item. Furthermore, one can see why it is

a Nash equilibrium. Clearly, for any Nash equilibrium, there have to be
at least two bidders tied for the highest bid on eath item. Otherwise
the winning bidder would have an incentive to cut the winning bid to just
barely above the bid of the nearest competitor. This is stated more

clearly below.

Lemma 4: Assume S2, I = 2,
If L = (ol, ...,OI) is a Nash equilibrium pure strategy I-tuple, then
there must be at least two bidders tied for the highest bid on each item.
Proocf: Let I be a Nash equilibrium pure strategy K-tuple.

k

Further suppose that for some (i,ji), b; > bj YV k # i. Then the payoff

for item j to individual i is

i
Agent i can earn more profit on item j by bidding bj - €,
for some £ small enough so that b; - € is still the winning bid on

item j. Agent i then receives



This contradicts the assumption that I is an equilibrium.

L]

Example 1 demonstrates the "high-low' class of strategies,
in which people bid up to their value on some items and very little on

the other items. In fact, bidder 1 is indifferent between bidding 2 on

the third item and bidding any number between 0 and 2 on that item.
Thus the example has an infinite number of pure strategy equilibria, of
the form bl = bj = 4, bk = a where a € [0,2].

One wonders if such "high-low'" equilibrium strategies ever

exist which support positive profits. This question can be answered in

the affirmative, by giving an example.

Example 2 :

Ml = M2 = M3 = 6.0
Vi = 4.0
J
Consider the strategies:
Ttems
Bidder 1 2 3
1 3 3 0
2 0 3 3
3 3 0 3

One can see that no player can make larger profits by departing from this
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strategy. On the other hand, we can easily construct an example in which
no such equilibrium exists. For instance if the auction includes a fourth
player with the same parameters as the other agents, a Nash equilibrium

no longer exists.

Another feature of asymmetric solutions to symmetrically
parametrized auctions is that no agent can win more than 2 of the items
for which both the winning bid and the net profit are strictly positive.
Lemma 5: Assume S2, S3, I =2, J > 3" Let I = (Ul, ...,OI) be an
equilibrium. If an agent, i, earns profits greater than 0 under Z,

then i can win at most two of the items i submitted positive bids on.

Proof: Suppose that agent i is tied with other bidders on three items,

1, 2, and 3, earning profits at most:

i_ i1
V. - b)) 5.
Vi =P 3

i_ i i1 o oyl i . a i_ . .
Vl bl pS V2 b2 < V3 b3 . If i bids bl € on the first item
and b; +-§, b; +~% on the second and third items, then profits become:
I R 2y L
= - - > - -
m '2 (V{ - b)) - € .Z (vi - b)) 3
j=2 i=1

for some £ > 0.

An additional proposition is demonstrated below:
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Lemma 6: Assume S2, S3, I =2 2, J = 2. Llet I = (Gl, ...,OI) be an

i k
equilibrium. If i earns positive profits under Z, then if b; < bj

for some k # i, then b§ = 0,
i . . i . i

Proof: If b > 0, then agent 1 can bid bj - € on j and bk + € on
J

some item k for which b; is tied for the winning bid. Agent i will then

be the sole highest bidder on item k thereby capturing all of its

value.

In addition, from Lemma 3 an agent i must be earning equal

profits on the items i wins with a positive bid. That is

.o . , .th th | .
whenever i is a winner in the j=— and k— items. These restrictions

are really quite strong, and seem to limit to only a few special cases
the situations in which asymmetric Nash equilibria exist that generate
positive profits when 3 or more people bid for 3 or more items.

As stated above, Nash solutions generally are not unique.
In particular, example 1 has six permutations of the given individual
strategies, all of which are Nash equilibria. Given that this is the
case, how would an individual decide which strategy to use? In this
situation one can hardly expect a Nash equilibrium to be achieved by non-
cooperative behavior, because the agents must, in a sense, agree
beforehand which equilibrium strategy I-tuple to play.

The preceding discussion assumes symmetry in agents and
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values of items. The following example shows that if budget constraints

' it is the symmetry between individuals, rather

are "not too binding,'
than symmetry between items, which leads to the existence of non-unique
Nash equilibria. Suppose that the individuals are identical and Vl’ V2
have the greatest value. Furthermore, suppose that there are fewer items
then there are bidders. Also, assume that M = V1 + V2. Then a Nash
equilibrium exists. But if there are "too many" more items than bidders,
so that the budget constraint makes it impossible for at least 2 agents

to bid their value on each item, then Nash equilibria may not exist. The

following sequence of examples illustrates these points.

Example 3a: I =3 J=3

Vl =5 Vi
v, =3 Vi
V; =2 Vi
Mi = 8 Vi

One permutation of Nash strategy triples is shown below:

Items
2 3
Bidder 1
1 5 1 2
2 3 3 2
3 5 3 0

Example 3b: Same parameters as example 3a, except that
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M=7.

By reducing the budgets no Nash equilibrium exists. The reason is that
it is no longer possible for any participant to bid the full value of

items one and two simultaneously.

On the other hand, if there are four bidders with these
parameters, Nash equilibria do exist. One such bid configuration is

shown in the following table.

Example 3c:

Items
Bidder 1 2 3
1 5 0 2
2 5 0 2
3 2 3 2
4 2 3 2

In both 3a and 3c the Nash equilibria all generated zero
profits. This will always be the case when values are different across
items (but identical across individuals)‘budgets are identical, and
both the number of items and the number of bidders is greater than two.

This is stated more precisely in the next theorem.

Theorem 4: Let I = 3, J = 3, Assume S2, S3

If

(1) 33,5 3, s.t. V, #V, ;
1 2 Jq Js

(2) everyone submits positive bids on at least 2 items;

(3) all items are bid on,

s

then at any Nash equilibrium pure strastegy I-tuple, I = (ol, cee O
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) V%-—b=0—i=l,...,1
jeAw
where
i i k
At = {j by = by kel, ...,IJ

Proof: Suppose that some agent, i, makes a positive profit. First
we show that in equilibrium this agent must make an equal profit on
all items for which he submitted a positive winning bid.

Suppose that agent i has submitted winning bids on K items,
and does not earn an equal profit on all K items. From lemma 4, in
equilibrium at least two agents must have submitted winning bids on
each of these items. From lemma 5 and lemma 6 we know that agent i
submitted strictly positive winning bids on at least two items, say

j and k. Suppose, without loss of generality,

i i i i
P > -
Vj bj Vk bk .

Then i can earn greater profits by bidding slightly more on j and

i

slightly less on k, since V; - bj T Sy

k bk)'

1 .1 i
>5 (V. - b, +V
2(3 3
In fact, in equilibrium, if the budget constraint is binding,

all strictly positive bids must be winning bids, by lemma 6. Since all

agents have the same budget and the same values, it must be the case that
b* v * L
Vj - j = k - bk J’k

* *
where bj and bk are the winning bids of j and k, respectively.
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Therefore, if A and B are the two least valuable items, then

* *
where bA and bB are the winning bids on items A and B. In this case any
* *
agent can obtain greater profits by bidding bA + € on A, bB + £ on B,
and 0 on all other items. This contradicts the Nash assumption, so

the theorem is proven.

L]

Assumption (2) in the statement of the theorem is actually
stated just to rule out two special cases. One such case occurs if
one item is so much less valuable than the other items that nobody

bids on it. Referring back to example 4, if there were a fourth item

valued at é’, then the following bid configuration is a Nash equilibrium.

Example 4:

Items
1 2 3 4
Bidder
1 3 3 0 0
2 0 3 3 0
3 3 0 3 0

Each agent is bidding on at least two items. However, all items receiving
positive bids have the same value, so we are essentially back in the
"o . .

identical value" type of auction. An alternative assumption to avoid

this special case is that
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where VOL os the highest value of all items and V8 is the second

highest value (Va # VB). A third possibility is to require that

i#j=> Vk # Vj ¥i, j.

The second special case to rule out is when some players bid on
only one very valuable item. One way this can occur is if every item
is more valuable than the budget of each agent. In this case a Nash
equilibrium may exist in which each agent's entire budget is bid on one

item, . as in the following example.

Example 5:

A Nash equilibrium strategy 6-tuple is:

Items
Bidder L 2 3
1 6 0 0
2 6 0 0
3 0 6 0
4 0 0 6
5 0 6 0
6 0 0 6

This special case is ruled out by considering only cases in
which everyone bids on at least two items. It is actually only

necessary to require that at least one individual bid on more than one item.
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The point of this discussion has been to demonstrate that
assumption (2) in the theorem is not as strong as it may at first
appear. There exist fairly weak sufficient conditions for (2) to hold.

Furthermore, it rules out cases which are, for the most part uninteresting.

VII. CONCLUSION

This paper has demonstrated several properties of Nash
equilibria in multiple-object simultaneous sealed-bid auctions in which
the participants face a constraint on exposure. First of all it has
been shown that if there are more than two bidders and more than two
objects, symmetric pure strategy Nash equilibria do not exist. Second,
the presence of a reservation bid requirement can also result in the
nonexistence of Nash equilibria, even if there are only two bidders and
two objects., Third, when there are more than two bidders and two objects,
sufficient conditions were derived for Nash equilibria to result in
zero profits to the buyers. The conditions were fairly weak, indicating
that when a Nash equilibrium exists, profits will often be zero.

The lack of symmetric pure strategy Nash equilibria is
particularly interesting. The implication is that Nash equilibria,
when they exist, can be realistically achieved only if the bidders
cooperate with each other. Referring back to example 3, bidder 1
will submit (4,4,2) only if he knows bidders 2 and 3 will submit
(4.2.4) and 2.4.4). Otherwise, the first agent's optimal response will
be something else. Collusion is required for the buyers to coordinate
their bids. Such collusion, unlike prisoner's dilemma situations which
characterize many collusive arrangements such as cartels, is stable, for

the point of collusion is a Nash equilibrium.
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NOTES

*The author gratefully acknowledges helpful comments on earlier

drafts by Kim Border, Ron Braeutigam, Bob Forsythe and Roger Necll.

In the analysis that follows, it is assumed that secondary markets

do not exist.

Capen, Clapp, and Campbell (1971), pp. 642-643.
Engelbrecht-Wiggans and Weber (1979) cite a congressional study
(1976), "An Analysis of the Economic Inpact of the Current OCS
Bidding System,'" prepared for Representative Hughes (D. N.J.).
This is perhaps analogous to the ''market for lemons" problem in

which the bad drives out the good. In this case, one would expect

resale value for even very good tracts to be far below the cash

bonus originally paid for them.

See Engelbrecht-Wiggans (1979), p. 37; and €ook, Kirby, and

Mehndiratta (1975), p. 729 ff.

This connection was first noticed by Sakaguchi (1962).

Blackett (1954), p. 55.
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11.

12.

13.
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Engelbrecht-Wiggans and Weber (1979) deal with auctions in which

the items were duplicates.

Of particular interest is his brief discussion of horse auction.
See also Schotter (1974), Engelbrecht-Wiggans (1977), and Brams

and Straffin (1979).

This merely rules out trivial cases.

This theorem can be found in Sakaguchi (1962), where it was first

stated.

Although lemma 3 was proved for the two-bidder, two-item case, one
can easily see that the "equal profits condition" is necessary for

an equilibrium in the n-bidder, m-item case as long as non-negativity
constraints on bids are not binding. If profits are not equal
between two items which an agent submits positive bids on, then the
agent has an incentive to bid slightly lower on the item with less

profit and slightly higher on the item which has a greater profit.

We need not examine (A,Bk) where

< -
A M BR

because either agent could unilaterally bid A + € and be better off.
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CHAPTER THREE

Bundling Decisions by a Multiproduct Monopolist with Incomplete Information



67

I. INTRODUCTION

An important topic in the theory of monopolistic behavior
involves one aspect of the marketing strategy of a monopolist, the
"bundling" of output for sale’ For example, tying contracts have
been the subject of both academic research and landmark court cases.
The basic problem is the following. The monopolist is the only
provider of n types of products or services. Barring legal restrictions,
the seller may refuse to sell one of the items, unless the buyer
also agrees to purchase another product or service. Such an
arrangement is called a tying contract.

Typical explanations for such marketing behavior include

the following:

1. The items named in a tying contract are complementary

products or services.

2. Monopoly power in one product line can provide leverage
in related markets in which the seller does not have an

exclusive position.
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3. There are economies of scope in producing or distributing

the quantities together.

4. Tied sales may be a convenient way to avoid price controls.
A recent example of this occurred during the May 1979
gasoline shortage, during which some gasoline stations offered

gasoline only to customers who also paid for a carwash.

Recent work by Adams and Yellen (1976) and Phillips (1979)
have sought alternative explanations for commodity bundling which
are not based on demand or production interdependencies or distortions
caused by regulatory controls. Adams and Yellen demonstrate the
plausibility of commodity bundling in a two~good world in which there is
no uncertainty, all agents have complete and perfect information,
demand for the two goods are independent and production of the two
goods exhibits no joint economies. In their model, the allocation
mechanism involves the seller setting a take-it-or-leave-it price at
which he is willing to deliver any quantity a buyer demands. In a
similar context, Phillips obtains conditions on cross-price relationships
between the two commodities under which a monopolist would choose one
bundling strategy as opposed to another. Both find that some form of
bundling may occur under these circumstances.

This paper also focuses on a monopolist selling two
independent goods. However, in the framework used here, the buyers and
seller possess incomplete and asymmetric information about the

preferences of the participants in the market.
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Each individual knows with certainty his/her own preferences but
is uncertain of the other agents' preferences. The market
mechanism for determining a price in both markets is an auction.
The paper is organized in four sections. Section II sets
up the general model for n buyers and one seller. Section III
analyzes the case in which the seller does not set a reservation
bid for any of the auctions. Conditions under which the seller
prefers a single bundled auction to separate auctions are derived.
Efficiency, both ex post and ex ante, of the resulting equilibrium
is discussed. Section IV analyzes the case in which the seller
chooses an optimal pricing scheme, which in this case is a second
price auction with a reserve bid requirement. Again efficiency of
the resulting equilibrium is discussed from both ex post and ex ante
perspectives. In Section V, the results of the paper are discussed
in light of some additional unanswered questions it raises, and

some possible extensions which could be made.

II. THE GENERAL MODEL
A single seller has one unit of each of J items to sell.

There are n buyers. Each buyer has a utility function

v?. The seller has incomplete information about

demand in the sense that the seller knows only that for any i and j,

. . . . i .
the reservation value of item j to buyer i, Vj’ is a random variable
which is distributed on the interval [0,v] according to the cumulative

distribution function (CDF), F;(') with a continuous probability
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density function (PDF), f;('), which is strictly positive on (0,v).
The holding of the numeraire commodity by buyer i is symbolized by
Mi. Assume that all nJ random variables are distributed identically
and independently of each other. The set of reservation values
{Vi,...,vi} is known to buyer i, but i has only the same incomplete
information as the seller about each of the other buyers.

The two auction mechanisms considered here are the
generalized Vickrey (competitive) auction and the generalized
first-price discriminatory auction.4 In both auctions the seller
may set some reserve bid, bs, below which bids will not be accepted.
In the Vickrey auction, the winning bidder wins the item, and
pays the seller either the second highest bid or bs, whichever is
larger. 1In the discriminatory auction, the payment is the winning
bid. This, of course, presupposes that there will be a winning
bidder. This is not necessarily the case; it is possible
in either type of auction to have no winning bid, since there
is a reserve bid requirement. This paper will show that this is
an important source of inefficiency in auctions, although it is not
the only source.

In the Vickrey auction, bidders are commonly assumed to
use dominant strategies, which exist under this particular
arrangement. In the discriminatory auction, buyers are assumed

to follow Bayesian equilibrium strategies [Harsanyi (1967-8)],
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since dominant strategies do not exist. According to this
equilibrium concept, there is a bidding function, b*hﬂ, such that
if a buyer has a reservation value v for an item, or a package of
items, he can do no better in expected value terms than submitting
a bid of b*(v), assuming that every other buyer also bids according
to the same bidding function.

The "auction game" is analyzed in two different settings,
depending upon the role of the seller. In one setting, the seller
is assumed to set no reserve bid. 1In the other setting the seller
strategically sets a reserve bid requirement in such a way as to
maximize expected profits. 1In either setting, however, the seller
is assumed to bundle the items in such a way as to maximize expected

profits. A bundling decision, p, is defined as a partition of the

set of items into subsets J "’JpK , Wwhere Kp is the cardinality

1
P P

of p. We will refer to the subsets as bundles. In other words:

p = {Jpl,Jpz,Jp3,...,JpK }
p
Such that: 1 J nNJy ., =
e L pi PJ ¢
K
(2) Up { }
2 J . =1{1,...,3
k=1 PK

(3) ka #¢ for k = 1,...,Kp

The set of all partitions will be donated P. The seller then
sells at auction each of these bundles separately, using either a

Vickrey or discriminatory sealed-bid auction.
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Accordingly, the buyers have induced reservation values

for each element, ka, of p. This valuation, v;k, is simply equal

i
to Z v.. In other words, reservation values are assumed to be
jeJ
Ik

additive.

. . i .
Accordingly, the valuation, v ., is treated as a random

pk
variable by all other buyers and by the seller. Since the random
variables, {vi}, are all independent and the values of items are
additive for any individual, the random variable for the value of

a package is naturally the sum of the random variables of the items -
in the package. Therefore, the CDF of this new random variable,
Hpk’ is the convolution of the distribution functions.of each of the
items in bundle ka.

This section closes with a summary of notation and

assumptions:

n: Number of buyers

J:  Number of items being sold

v.: Value of item j to individual 1

f: Probability density function for the reservation value of
an item to an arbitrary buyer

F: Cumulative distribution function for the reservation value
of an item to an arbitrary buyer

P: The set of all partitions of the set {1,...,J}

p: The pth element of P. Note that p is a set of subsets,

or bundles.
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J .t The kth element of p. Note that ka is a set of items.

Voo Value of bundle J to individual i
Pk pk
Kp: Cardinality of p
hpk: Probability density function for the value of bundle ka

to an arbitrary buyer. Note that if two bundles contain
the same number of items, then they will have the same
distribution of values, because of the iid assumption
about the reservation values of items

H.: CDF of J for an arbitrary buyer

pk pk
Rpk: The support of hpk
b;k: Buyer i's bid on bundle pk
b:k: Seller's reserve bid requirement for bundle pk

i i s
b : e Y . . .
bpk(vpk, pk) Buyer i's bidding function for bundle pk

*
bpk(.’bgk): Bayesian equilibrium bidding function for bundle pk

To reiterate, the assumptions maintained throughout the

paper are:

(AD)

(A2)

(A3)

All agents are risk neutral.

Values are additive. (The value of a bundle of items equals

the sum of the separate values of each item.)

All bidders' values are independent samples from random

variables which are identically distributed on the closed
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real interval [0,5], according to a distribution function, F(+),
which has the following properties:
(a) F(0)=0, F(v)=1
() xe(0,v) = F(x)e (0,1)
(¢) f(x)=F (x) exists and is a strictly positive, bounded,
continously differentiable function on the open interval

(0,v).

I1TI. BUNDLING DECISIONS AND WELFARE IMPLICATIONS WHEN THE SELLER

DOES NOT SET A RESERVE BID REQUIREMENT.

The following assumption is posited for this entire section.

(AL) b;k=0 for all pk.

Buvers' Decision Problem

The decision problem faced by buyer i is the following.

Suppose buyer i knows that every other buyer 2,8 #i, bids for

. s .0 L
package ka according to the bidding function ppk(vpk)'
8b )
It is assumed that ——%f-> 0, so that b K (*) is
ov P
pk

is an "increasing' bidding function. If buyer i has a value V;k,

the objective of buyer 1 is to maximize:

i /i i g2 i i i _ L,
. = -b rob. (b, =2 b, , VL .
Enpk,<vpk’bpklbpk( )> (Vpk pk) (p ob. { pk 2 Py #1})
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Using a well-known result,6 the bidding function that is a symmetric

Bayesian equilibrium is as follows:

\'s
pk [ H  (x) In-1
b:k (v‘pk) = vpk -f —ﬁ_—P%]——)_ dx . (l)
0 pk " pk

The expected surplus in equilibrium for a buyer with valuation

v is simply:

pk
_ Lk n-1

EHpk (ka) = [ka bpk (ka)][Hpk(ka)] .

This reduces to
Vi
i o P 01"t d (2)
pk [ k X X . )
0

The expected surplus to a buyer for the auction of all J
items under an arbitrary packaging decision p is:
i
i “p 1 %Yk n-1
Ell_ = EEnk= [H ()] dx . (3)
Prx=l P50 k=1 ) P

If p and q are two bundling decisions, the ex ante

i
preference relation for buyer i, >, is defined as:

i i i
> l==> EH > EH .
Pz P q
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One should note that this is ex ante notion is not always used in
the auction literature. matthews (1979), for example, means by
ex ante that the buyers do not even know their own valuations,

so that the ex ante expected surplus function for an agent would be:

K t
i P n-1
i —kzl f J [Hpk(x)] ax| b (D)dt. )
R L

P

Sellers Bundling Decision

The seller's preferences over packaging decisions are
somewhat more complicated. This complication arises from the
problem of specifying precisely the seller's objective function.
Consider the case in which the seller does not set a reserve bid.
This presents no problem because, by the assumption that buyers have
positive valuations with probability 1, the object will always be
sold. Other cases in which the seller sets an optimal reserve bid
will be discussed at length in section IV.

In the zero reserve bid case, the seller's expected profit

for a given package is:
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. j o, (£)]n-1 -
EHpk = J (% -~[ ﬁi;?;7 dt) nLHpk(x)] Pk(x)dx.

Because the term

k(X)

-
alE (01" T

is the density function of the highest valuation out of a sample

of size n, this can be simplified to:

X
S, = f (xmpk(xn“‘l - f [Hpk(t)]“‘ldc>nhpk(x>dx.

Rpk 0

The seller's expected profit from packaging decision p is simply:

Pk 0

s

K ' X
s _ P n-1 n-1_\
ET] —kzl (x[Hpk(x)] - f ESOY dt)nbpk(x)dx.

(5)

(6)

Therefore the seller's ex ante preference relation, Z, is defined by:

2
Z q < EI° 3 EI°,
P P77 q

Welfare Measures

A third and a fourth preference relation, which represent

two alternative welfare measures, or "policy-maker preferences'

can now be defined. The policy-maker knows
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only the probability distribution of the buyers' valuations.

One welfare ranking which is complete and transitive orders the
packaging decisions according to expected consumer plus producer
surplus. Because the policy-maker does not know each buyer's
valuations, only the naive ex ante expected surplus value given in
equation (4) can be used to evaluate a buyer's expected profit. Thus,

the expected total surplus from bundling decision p, combining (4)

and (6), is:

K
ETS =n2f f k(x)]r’—lci)ch (t) dt + Z f(t[H (171

~[.[ (x)] dx)nhpk(t) dt
0

p
= n

I~ R

f t[Hpk(m“‘lhpk(t) dt . (7
R

pk

k=1

The fourth preference relation, although not necessarily a
complete relation is the ex post dominance relation defined over
bundling decisions. According to Vickrey (1961), Matthews (1979),
Cox (1979 and others, ex post Pareto optimality occurs if and only
if there are no individually rational recontracting possibilities
after the auction. In other words, for each item, whoever purchased

that item in the auction is the buyer whose valuation was highest.
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The dominance relation is defined in the following way.
Bundling decision Py weakly dominates bundling decision P, ex post if,
in every state of the world which can possibly obtain, the total
surplus generated by Py is at least as great as the surplus
generated by Py Py dominates P, ex post if 1 weakly dominates
P, ex post and in at least ome state of the world which can possibly
occur the total surplus generated by Py is strictly greater than
the total surplus generated by P,-

In the next part of this section, two additional
assumptions are imposed for analytical convenience. These will be

relaxed later.

(A5) There are 2 bidders.

(A6) There are 2 items.

Three results are obtained under Al-A6. First, buyers
unanimously prefer two separate auctions to a "bundled" auction
ex ante. That is, no matter what pair of values a bidder observes for the
two items, the bidder will receive a higher profit in expected
value in two separate auctions than in one single auction. The
seller, on the other hand,prefers to bundle the two items and sell
them as a lot in a single auction. Third, the seller's profit-
maximizing bundling decision leads to inefficient allocations both
ex ante and ex post.

Given assumptions Al-A6 and the structure of the

general model outlined in section II, there are two possible
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packaging decisions. The seller can sell items one and two either
separately or together. Consistent with earlier notation, we
define the distribution of values of the bundle, H=F* F, which
is simply the convolution of the two value distributions of the
separate items.

The following lemma specifies a necessary and sufficient

condition under which all buyers prefer separate auctions.

Lemma 1.1: Assume Al-A6. Buyers unanimously prefer two separate

auctions to a single bundled auction if and only if:

r
f [F(x) -H(2x) ] dx=0 Vte [0,7],

0

where H= F*F

Proof: Suppose a buyer observes two identical values, vl='v2=‘v.
That buyer will prefer two separate auctions to a single bundled
auction if and only if the expected surplus earned in the two
separate auctions is greater than or equal to the expected surplus

earned in a bundled auction. From equation (1), this condition

is:

2v

H(z)
oo fe [ 383 o] > [orfor | By e,

0 0
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which reduces to:

v 2v

2ﬂf F(x)dx >J- H(z)dz .
o

o}

With a simple change of variable, we obtain:

v
-I-[F(x)-H(Zx)]dx > 0. (8)

(e}
Thus we have shown that a buyer who observes two identical values will
always prefer separate auctions if and only if (8 ) holds. We must
now show that this is also true for a buyer who observes different

values, vy $#v With this in mind, we demonstrate that the expected

¢
profit in separate auctions for a buyer who observes values SEAL

is always greater than or equal to the expected profit of a buyer who

V1+V2 “ vl-i-v2
observes values Gl e R S i In other words,

for every vE[O;%}, and for every a such that O0<a<v;

2v-a

v a
ZV[ F(x)dx <-[ F(y)dy +:[ F(z)dz.

0 0 0

Since, by assumption, a<v (an assumption which costs no

generality), then a trivial observation is that:

Y v

jF(X)dX <J F(v-a+t)dt
a

a
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v 2v-a

= j F(x)dx <J F(z)dz
v

(e}
a

by a simple change of variable. Adding.[-F(t)dt to both sides of the

O

inequality yields:

2v~a

v a
J F(x)dx < f F(y)dy +J F(z)dz
v

[s} [}

v

and, finally, by adding.[ F(t)dt to both sides of the equations, we obtain

[a}

2v-a

v a
2.[ F(x)dx <.[ F(y)dy +¥[ F(z)dz,
(o)

[o] [¢}

which is the desired result. This completes the proof.

Based on this Lemma, the following theorem becomes an application of

Rothschild and Stiglitz(1970).

Theorem 1: Assume Al-A6. Buyers unanimously prefer separate

auctions.
Proof: What we must show is that:
t

f [F(x) ~B(2x)] dx = 0

[¢}
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for all t €[0,v] and for all F satisfying A3. To start, note

that:

H(2z) = prob. {Eigz-f z},

where x and y are in the domain of F.

Thus H(2z) is just the distribution function of the mean of
a sample of size 2 from the distribution of values of separate items.
If X and Y are the random variables of valuations of items 1 and 2,
respectively, and Z is the random variable of the average valuation

of items 1 and 2, we can write:

_X+Y X-Y _ X-Y
2 2 z

Because X and Y are independent, E(géggl Z) = 0.
Therefore, according to Rothschild and Stiglitz (1970), X (or ¥) is

a mean preserving spread of Z. If follows immediately that:
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t
~[ [F(x) - H(2x)] = 0 V te[o,v].

0

Next we demonstrate that the seller always bundles two

commodities, contrary to the preferences of all buyers.

Theorem 2: Assume Al-A6. The seller prefers a bundled auction.

Proof: The seller's expected profit in a second price auction is
the expected second highest valuation of whatever is being sold.
For an arbitrary distribution G(t), the expected second highest
value of n samples, E[Gg], is simply:

v
E[G‘;] =j tn(n-1)G ()2 (1-G(£)) g(t)dt .

e}

Similarly, the expected highest valuation, E[G?], is

v
E[6]] =f tn(F(t)* Tg () at,

o
because the distribution function of the first order statistic is

equal to:

_ n
Gl’n(t) = G(t)
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with pdf:

g, () = a6 g(v).

b

With a little algebraic manipulation, E[Gg] can be

expressed as a function of n, E(G?) and E(GQ—l).

v

E (Grzl) =f tn(n-1) G()™ 2 (1-G(t)) g(t) dt
0
;
=f tn(1-G(t)) 8, n_l(t) dt
0
v v
= nftgl,n—l(t)dt - nf tG(t)gl n_l(t) dt
0 0

v v
nf tgl,n—l(t)dt - (n—l)ftgl,n(t) dt
0 0

nE(cf.L"l) - (n-1)E (c‘l“). (10)

With two buyers, the seller will prefer to bundle the two
items rather than auction them separately if and only if the expected
value of the second order statistic of H, E(Hg), is greater than twice
the expected value of the second order statistic of F, since

these are the seller's expected profits in bundled and separate
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auctions, respectively. According to (10), this means that the

seller prefers to bundle if and only if:
_ 1 2 1 2
b, = [2ea) - e@h] - 2[22a) - @] >0 - av

But AZ reduces to:

_ 2 2
Az—- ZE(Fl) - E(Hl) (12)

because E(Hi) = 2E(Fi) by the linearity of the expectation operator.
By Lemma A and Lemma B in Appendix A, A2 must be positive, so the

seller prefers to bundle.

Next we turn to the question of the relative efficiency
of separate versus bundled auctions. The key to understanding the
relative efficiency of the two bundling decisions is the recognition
that if the seller "produces'" at zero cost and does not set a reserve
bid, an inefficient allocation occurs if and only if an item is
allocated to a bidder who does not have the highest valuation for that
item. A rather obvious theorem can be proved about the ex post
efficiency of bundling decisions when the seller does not set a

reserve bid.

Theorem 3: Assume Al-A6. Two separate auctions dominate a single

bundled auction on the criterion of ex post efficiency.
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*
Proof: Since bpk(') is an increasing bidding function and no
reserve bid is set, whichever bidder values bundle ka the most

also submits the highest reported valuation. Therefore if each

bundle is a singleton, that is p = {{l}, {2}}, and if buyer i

values the item the highest, buyer i will purchase that item.
Therefore no misallocation can occur with separate auctions.
However, if items 1 and 2 are sold as a bundle, the agent

who has the highest sum of valuations for the two items will be
the winning bidder. Of course, a bidder may have the highest sum
of valuations without having the highest valuation of each item

in the bundle. This would result in a misallocation.

The question of ex ante efficiency can be approached

by interpreting the following expression in equation (7):

n-1

f tn[Hpk(t)] by (8) dt

Rpk

-which is the expected maximum value after n samples of the random

variable v

Pk (i.e. it is the expected value of the first order

statistic).

We immediately observe the following result:

Theorem 4: The expected total surplus generated by a set of first

or second price auctions of n objects, with packaging decision p,
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is equal to the sum of the expected values of the first order

statistics of valuations of each of the packages, ka, k==l,...,Kp.

Proof: see above.

From Theorem 3 we can easily verify that the sum of
expected values of the first order statistics of the valuation of
each of the two items exceeds the expected value of the first order
statistic of the sum of valuations of the two items. Consequently,
two separate auctions is ex ante more efficient than a single bundled
auction. This is demonstrated more systematically in Theorem 5, but
the intuition is clear: ex post efficiency implies ex ante

efficiency, according to our definitions of the two concepts.

Theorem 5: Assume Al-A6. The expected total surplus in two separate

auctions is greater than the expected total surplus in one bundled

auction.

Proof: The idea of the proof is given in the preceeding paragraph,

and is shown formally in Appendix A.
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The results in this section, although specifically limited
by assumptions Al-A6, do generalize somewhat. One generalization is

that the results hold in second-price sealed-bid auctions as well

as first-price sealed-bid auctions. Harris and Raviv [1979a] and
Ortega-Reichert [1968] demonstrate that if buyers and sellers are risk
neutral, first and second price auctions yield the same expected profit

to the seller and the same expected profit to buvers.

Furthermore, Vickrey (1961) and others have established
an isomorphism between English oral progressive auctions and
second-price sealed-bid auctions and an isomorphism between
Dutch descending-bid auctions and first-price sealed-bid auctions,
under conditions of bidder symmetry and risk neutrality .

Therefore the results obtained here apply equally to all four types
of auctions.

Other extensions are easily made for the cases in which the
number of bidders or the number of items are greater than two.

For example, (A6) can be dropped without affecting any of the
results. These and other generalizations are set forth more

formally in Section V and proved in Appendix B.
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Summarizing this section, it has been shown that in a
first-price auction with independent goods, using a 2-bidder Bayesian
equilibrium, the seller always prefers to bundle. The results were
shown to generalize to a number of other pricing mechanisms. Under
very general conditions, the two buyers will unanimously prefer
that the monopolist does not impose tying conditions to the sale.

The ex ante measure of optimality, expected total surplus,
indicates that bundling is not optimal. This is also the conclusion
one reaches from an ex post analysis. Under the assumptions made in
this section, a monopolist will always choose a suboptimal packaging
decision. It is important to note that the tied sale is not a
result of price controls, complementarity in consumption, or economies
in production or distribution. The goods are entirely independent,
and the result is driven by the lack of complete information on the

part of the participants in the market.

IV. EXPECTED PROFIT MAXIMIZING CHOICE OF A RESERVE BID BY THE SELLER
Frequently, the seller sets a reserve bid, which is a

requirement that only bids above a specified level will be accepted.

In this section we assume that the seller knows that the buyers have

values which are random variables. Furthermore the seller knows

that these random variables are distributed independently and

identically across bidders and items, according to some CDF, F(°*),

with PDF, f(*). These distributions are the same for the seller as
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they are for each of the buyers. The seller assumes that in a

first price auction buyers will use Bayesian equilibrium bidding
functions which depend on the seller's choice of a reserve bid.

In a second price auction, the seller assumes buyers bid their true
valuations if they exceed the reserve bid. Furthermore, we assume
that the seller faces a set of costs, {cl,...,cJ} for providing

each item. These costs are assumed to be known to all buyers and
the seller before the auction occurs. Consequently, buyers'
strategies are the same regardless of whether the seller

reveals the reserve requirement before buyers submit their bids.
Furthermore, it is assumed that the seller incurs the cost if

and only if the item is sold (i.e. if and only if a bid is submitted
which is greater than or equal to the reserve bid). This is an
assumption which is a bit strong because one can think of many cases
when it is not true. In simple language, the seller 'produces-to-order."
Alternative scenarios include the following: an owner selling an
object which has some value to him if it is not sold; an auctioneer
whose profit is based on a percentage of the winning bid if the item
is sold; a seller who must produce before the auction is conducted.

These other types of sellers will be considered later.

In sections II and III, the analysis concentrated on the
first price auction, although the results apply equally to a second
price auction because of risk neutrality and symmetry assumptions.
Because those assumptions are also made in this section the second
price auction will be analyzed in this section. As it turns out,

this facilitates the analysis considerably.
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The specific second~price mechanism is the following.

S
pk’

buyer either submits a bid greater than or equal to b:k, or else

The seller sets a reserve level, b for the bundle pk. Each

submits no bid at all. 1If at least one buyer submits a bid

s
pk’

the bundle and pays the seller an amount equal to the second

greater than or equal to b the buyer who bids highest receives
highest bid, or in case he was the only buyer to submit a positive

bid, bgk' One can easily verify that each buyer has a dominant
strategy which simply involves bidding one's value if it exceeds b;k.
In the following analysis, in addition to Al-A2, A4-A6,

the following assumption is made.

Assumption 7 (A7): All values are independent draws from a random

variable which is distributed uniformly on the unit interval.

. .

These samples, once again, are denoted vi and v; for each buyer i.

The density and distribution functions of the sum of two
unit uniform distributions is easily derived below. First we have
H(z) = 0 for ze[-=,0]. Less trivially, for ze[0,1],

z 2

H(z) =f f(x) F(z-x)dx = —2-2——
0

since f(x) = 1 and F(z-x) = z-X.
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If z>1, then due to the restricted support of (vl,vz), H(z)

can no longer be calculated using (11). Rather, it is

1
H(z) = F(z-1) +l[ f(x) F(z~-x)dx for ze[1,2].
z~1

Notice that the support of z is [0,2], while the supports of
v, and v, were both [0,1]. Substituting into the above equation,

1 2
F(z-1)=2z-1, f(x)=1, and F(z-x) =z-x, so:

( X2 1 z2 9
H = g X = 2 _ (o=
(z) z-1 + |zx 3 5 (z-1)
z-1
for zel1,2]
Finally, H(z) =1 for ze(2,»)
=0 for ze(-«,0)

From above, h(z) is calculated quite easily

(see Figure 1):

h(z) = H(z) = =z for xe[0,1]

= 2-2 for xe[1,2]
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FIGURE 1

DENSITY OF THE CONVOLUTION OF TWO UNIT RECTANGULAR DISTRIBUTIONS

h(z)

1_._

The seller has some cost cl which will be incurred if the

first item is sold and another cost, c2, which will be incurred if
the second item is sold. Therefore, if the seller conducts separate

second-price auctions the expected profit in auction 1 as a function of

s _ -
bl-—rl, is:

1
EHl(rl) =.[ (x—cl) 2(1-x)dx + (rl—cl) 2r1(l—rl).

T

The first term corresponds to the cases where both buyers submit
acceptable bids. The second term corresponds to the case where only
one buyer submits an acceptable bid. Similarly, the expected profit

in auction 2 is:
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1
EHz(rz) =‘[ (y~c2) 2(1l-y)dy + (rz—cz) 2r2(l—r2). (14)

)

These functions are maximized when the seller sets:

* l+cl
r, = (14a)
% l-*-c2
r2 =3 (14b)

Assuming the seller chooses a profit-maximizing reserve bid, the

expected profits in separate auctions are:

1 3

l—cl 2 1+cl 1 (1+cl)
EHl(cl) = 2 (x—cl)(l—x)dx + 2( 5 ) 7 =3 + 9
l+cl
2
1 l—-c2 2 l+c2 1 (l+c2)3
EHZ(CZ) = 2 (y-cz)(l—y)dy + 2 5 5 ‘Lg + 13 - ¢,
1+c2
2

Therefore, if the seller strategically sets a reserve bid, and
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1
EHz(rz) =~[ (y-—c2 2(1l-y)dy + (rz-cz) 2r2(1-r2). (14)

)

These functions are maximized when the seller sets:

* l+c1
r, = 5 (1l4a)
* l4—c2
r2 = (14b)
2 .

As a next step, we calculate expected profits for the seller in

separate auctions as functions of 4 and c2,

chooses a profit maximizing . reserve bid.

assuming the seller

1 <l—cl 2 l+cl
EHl(cl) = 2-[‘(x—cl)(l-x)dx + 2 5 5 >
1+c1
2
L 1—(:2)2 l+c2>
Ell, (c,) = 2] (y-cz)(l—y)dy + 20\ 3
l+c2
2
These reduce to
) (1+c1)3
Ehlep =3+—53—-¢
and
1 (1+c2)3
Blylep) =3+ —13 TS

Therefore, if the seller strategically sets a reserve bid, and
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sells the two items in separate auctions, the total expected profit

from that packaging decision is:

22,1 3 37 .
Bl + BT, = 242 [(1+cl) * (Lte,) ] (e te,)

1 . (15)

Next, we calculate the expected profit if the seller sells the two
items as a bundle in a single auction. The seller incurs costs

c==cl-+c2 if the bundle is sold, zero otherwise. The expected profit

to the seller, as a function of the reserve bid, Ty = biZ’ for a general
distribution F(*), of values with support {X,G} is given in equation (16).

v

Eﬂlz(rlz) =.[ (x-c)*2+f(x) (1-F(x))dx + (rlz-c)02'F(r12)(l-F(r12)) . (16)

12

The first order condition for a maximum is:

1 frgy)
-c l—F(rlz)

17)
T12

Equation (14) is in fact a sufficient condition for an interior maximum

£(+)
’ l-F(‘) »

- B .
in its argument, and in addition f >0 if f(x)€ (0,v). In our special

if the hazard rate of the distribution is nondecreasing

case, the triangular distribution, these conditions hold. If we

substitute the following equations:

r2

_ 12
) = 5 for rlze[O,l}
(2-r )2
12

=1 - 5 r126[1,2]

F(ry,
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12) = rlz for rlze[O,l]

= 2“'1'12 r12€[1,2]

into equation (14), we are left with two possibilities. Either

*
<l orr > 1., In the first case we obtain:

2

* _c+Ve +6
I, = 3 for r12€[0,1] . (18)
* 1
In other words, Ty = 1l when ¢ = 5. For values of ¢ greater than
1
2
vt =2 (140 for  cel%, 2] (19)
12 3 i *

Now we are ready to calculate Ell. (c). Two cases

12

will be considered:

1
Case 1: C-C1+C2<2

2
Ele(c) = ZJ (x-c) f(x) (1-F(x))dx + Z(rlz(c)—c)F(rlz(c))(l—F(rlz(c)))
1,0

+ Vc2+6

c
where rlz(c) = -

Substituting for f(x), F(x), we obtain (denoting r=r12)
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. x2 2 r2 : (2-x)
EN. ,(c) = 2 ( (x-c)x(1-—=)dx + (r-c)r (1'_7T) + 2 (x~ c)(2—x)~—~§——

12 2
“r 1
= g—x3 - - l-x5 + -xa : + r3 - r2 - EE-+ Eﬁi
3 X T3 4 N ¢ 2 2
1
+ZZCX4‘%X5'
0
3 4
3 c c 1 2 T 3 5 cr
10" st " 5T3-¢ 3T ot
_1l L2 3[L_3 2,¢
Gt3octr [3 5T +4r]. (20)

The difference in expected profits from the packaging decisions

if ¢, + ¢ <3 is simply the difference between (15) and (20):

17 % %72
EN, + EN, - EIL, = = ((1+ )3+ (1+c )3) 13 (}— S22 Crlz) (21)
1 2 12 T 12 €1 2 10 123 T~ 10 12 e
Case 2: c. + ¢ >~l
=== L 17 % =2

. . . 1
Note that in this case, r 2 = 1 since ¢ 2'5.

1
In this case, the expected profit to a seller employing a bundled

auction is:

2

EHlZ(C) =‘[.(x—c)(2-x)3dx + (r—c)( (2 r) )(2— )

r

4 5
-2 D 9 ¢ 4 (o en?. 22)
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From (25), we obtain:

2
2~-r= 3 (2-c)

r-c= %’(2—6) .
So (28) reduces to
374 4 2
B, (0 = 20 [ - g 0] (23)

At this point, we can summarize the above observations about

a seller who is "'strategic," in the sense that the seller sets an

optimal reserve bid.

Theorem 6: Assume Al-A2, A5-A7. If a seller observes

costs Cl’c2’ then the optimal reserve bids in separate auction are:
* 1
T = = +
1 2 (1 Cl)
1
r = = +
5 (1 CZ)

The seller's total expected profit in separate auctions is:

2 1 3 3
= — — <+ - 4 .
BN, +E, = 5+ 35 [(l+c1) + (I+c,) ] (e e,)

The optimal reserve bid in a bundled auction if the same costs

are observed is:
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(cl+c2) + Vch+c2)2 + 6

¥ 3

. 1
if e, + c, 5[0,2

2 +c if 1
3 (1+C1 2) if e + c, 6[2,2]

The seller's total expected profit in separate auctions is

1
23 (Cl+c2)r12] if ¢, +c.e[0,3]
o o) 30772 [3 0 12 1o
12 3 )
(2-¢q-cy [27 405 c,) ’] if ¢y teyelyn2l.

Proof: Proof is summarized in previous pages. For details, simply

perform the algebra and the necessary substitutions.

A number of interesting corollaries follow from Theorem 6.

Corollary 6.1: Assume Al-A2, A5-A7. 1If the seller has zero cost for

both items, the profit maximizing packaging decision is to have

a single bundled auction.

Proof: Let A = EHl + EHZ - Ell.,. From (21),

where r =
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Therefore A= f% -V 8 (l-—-l

27 ‘375
-1 _ 2 ./8
T 15 15 ' 27

since §%~> %-, A <0 which implies that the seller prefers to bundle.

O

Corollary 6.2: Assume Al-A2, A5-A7. If the sum of the seller's costs

exceeds %3 the seller's profit maximizing bundling decision is

to have two separate auctions.
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Proof: This proof consists of demonstrating four things:

(1) 1f cl4-c2==E, then the seller's expected profits are

an increasing function of

s-c
2 1

seller had a choice ex ante of buying (conditionally on

. In other words, if a

. . . c C -
resale in the auction) the two items for i-and E-or c

and 0, the seller would prefer the latter contractual

arrangement.
1 1 .
(2) 1f ¢ =% ST then the seller prefers separate auctions.
(3) 1f cl==l, c2==l, then the seller is indifferent between

the two packaging arrangements.

- ° ° -
(4) Let A(c) = EHl(E) + EHZ(EJ - Ele(c).
Then A is increasing over some range [%,6)

and decreasing over the range (¢&,2]

First we will demonstrate (1).

Fix c. Then the expected profits are

_2_ o, 3 4 (1453
EHl + EHZ =3-c + l2((1+cl) + (l+c—cl) )
so
o(r +F )
sl 270 1 3(1+c )2 - 3(l+c-c )2 .
3 12 1 1
c
1
Therefore e, = %—is a critical point of EHl + EHZ. Looking at

the second order equation:
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of (BN +EL) _
— iz .r [6(1+cl) + 6(l+c—cl£]
Bcl

we observe that it is always positive, so EHl + EH2 reaches a

minimum when C;=Cos keeping ¢ fixed. Therefore (1) is demonstrated.
To show (2), simply perform the calculations. Using

equation (18) or equation (19) we obtain rlz(%O = 1. So, from equation

(21):

1 1 /250 1 1 3
b =5 ) -5 G-t

0|
g

> 0.

From equations (15), (23) we know that profits under any packaging

choice are equal to zero if ¢, =c¢,.=1. This establishes (3).

1 2
Finally, we must show (4). From (15) and (23),
- 2 -1 c.2 4 -3 4 =5
A(e) = 3-¢t g’(l-Fi) -3 (2-c)” + 705 (2-¢)".
Therefore,
G PR WP A N RSP
A (e) = (Z—c)[4 G+ +3 (2-0) - 57 (2-0) :] (24)

Since (2-c) is always positive on the range [%32), then g%—is positive
(negative) if and only if the second factor of (24) is positive (negative).

By making the necessary substitutions, one may observe that

1 - -
A'(§)> 0. Next we observe thatA'(c) is continuous in c¢. Let
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+ D 2D -5 297,

N
o

B =

Note that A'(%O >0 and A'(1) <0. These facts have the following
interpretation: A'(%) > 0 and A'(c) continues to be positive for some
interval. By differentiating A'(+*) we observe that A is concave on
this interval. Since A'(1l) < 0, we know that at some point & e[%5l],

A reaches a local maximum; after that point, since g'(E) <0, A'(c) is
negative, until ¢ = 2, at which point it is zero. Figure 1 illustrates

A as a function of c.

A(c)

N
o>
Pt
N

FIGURE 2

From (1), (2), (3), (4), we can conclude that the corollary is true.

[}
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So far in this section, we have considered only the case
where the seller produces to order. We will briefly consider four
other types of sellers:

(1) The seller has incurred costs prior to the auction;
(2) The seller is the owner of the items being sold -- these
items each have some scrap value, Cl""’CJ'

(3) The seller is an auctioneer, working as an agent for &
principal who pays the agent on a commission basis.

(4) The seller incurs costs after the auction, but incurs costs
for the items as a bundle. For example, the items may be
joint products, in which case production of one item
inevitably means production of the other items.

Alternatively, the seller may be a middleman who purchases

"lots" and resells the items in the lots by auction.

In case (1), with n buyers, if the two items cost = and s the

1 .
seller tries to maximize Li + L2 in the case of separate auction, where:

v

1 _ .
Ll(rl) -.[ (x—cl)gzﬁf)dx + (rl'C1>[G2§f1) - G%grl)] - Clckgfl) (25a)
T
1
v
1 -
LZ(rZ) —p[ (x—cz)g2§§)dx + (rz-cz){ézgfz) - G%g?Z)] - CZGL%FZ), (25b)
T

2
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where g. and g, are the PDF's for the first and second
Ln Z,n
order statistics of F, respectively, and Giﬁ1G21?re the CDF's
£ s

of the first and second order statistics of F.

The resulting first order conditions are

o fe) o D)
r, 1-E(r)) r, 1-f(r)’ (26)

Therefore, we get the expected result that the seller ignores sunk
costs. As a corollary if values are distributed uniformly, the

seller will choose to sell the items as one bundle.

In case (2), the seller is the owner of the items, with

scrap values ¢y and Cye If the seller is risk neutral, the same

reserve bid will be set as in the case in which the seller
produces 'to order.'" This can be demonstrated more formally by
considering the objective function of this type of seller. The

expression analogous to (25a) is:

v
2 : .
= + -G + ¢c.G 27
L () f xgy (X)dx + 1, [6)(r)) = 6,(r))] + ;6 (r)) 27
r, '
where = is the scrap value to the seller. The first order conditions

for (27) reduce to:

1 £(ry)

rl-cl l—F(rl)
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which is identical to (17).

In case (3), the seller earns a commission, which is some
fixed proportion, p of the sale price. Again the expression analogous
to (25a) is:

v
Li(rl) =p .f xgzg§)dx + rl[GLgfl) - G%gfl)] . (28)

b5

This first order necessary condition for a maximum reduces
to 26). 1In otherwords, a principal's agent will set a reserve
price as if the cost or scrap value of the item or bundle were zero.
As a result, we conclude that the percentage commission institution,
which is pervasive in the auction industry, does not result in the

agent acting in the principal's best interest. Not only will the

particular choice of reserve bids be different from the principal's
optimal choice, but in the case of uniformly distributed values, the
agent will sell the two items as a bundle, whereas the principal, if
the sum of the scrap values (or costs) exceeds %3 would have preferred
that the agent sold the two items in separate auctions.

Finally, we consider case (4). The objective function for
the seller is considerably different in this model compared to the
previous ones. The seller has to produce both items, even if only
one item is sold, which suggests that both the bundling decision and
the reserve bid will be affected. As we will see, the latter is not

the case. In a bundled auction, the objective function of the seller



109

is simply (16). In separate auctions, the objective function is:

v v
4
L (rl,rz) =_[ 2x f(x)(l—F(x))(l—F(rdex 4:[.2y f(y)(l—F(y))(l—F(rl))dy

r r

1 2

+ 2(1-F(r2)]rl F(rl)(l*F(rl)) + 2[1—F(rl)]r2 F(rz)(l—F(rz))

- [l—F(rz)][l—F(rl)]c

Vv

+¥f2xf(x)(l—F(x))F(r2)dx + 2F(r2)rlF(rl)(l-F(rl)) - [l-F(rl)]F(rz)c

T

vV
+Izyf<y><1—F<y)>F<rl)dy + 2F(x )T, F(r) (1-F(ry) - [1-F(r,) IF(r e,

T

2
where ¢ = cost of the bundle. This conveniently reduces to:
v v
La(rl,rz) =-[ 2x £f(x)(1-F(x))dx +¥[ 2yf(y) (1-F(y))dy + 2rlF(rl)(l~F(rl))
r; r,
+ 21,F(r,) (1-F(ry)) - [1-F(x)F(r,) e . (30)

. 4
The first order conditions for a maximum of L (rl,rz) are:

4
oL =

3;; = 2F(r)) (1-F(r))) - 2r;F(r)f(r) + £(r)F(ry)e =0 (3D
ﬁéi = 2F 2 £ + f(r.)F(r,) =0 (32
e (rz)(l-F(rz)) - rzF(rz) (rZ) Iy /¢ .
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It is easily verified that if r. and T, satisfy:

1
1 f(rl)
— TR (33)
2 2
i f(r,)
- 2 (36)
S l-F(rz)
1 2
then they also satisfy (31) and (32). This has a very intuitive
interpretation. The seller would choose reserve bids . ip separate

auctions as if each item had a cost of —f*-. The seller is essentially
allocating a fixed cost to the items in a manner that will maximize
profits. It is interesting that it in fact does matter how the seller
internally allocates these cosﬁs.

Another interesting observation about this case is that in

a separate auction, the seller will expect to earn less profit than

if he could '"produce to order' each item individually at a cost of

In fact the difference between the two expected profits

) each.
is equal to 2F(r)c. Not surprisingly, this would reverse the
conclusion of Corollary 6.2, that is, the seller will prefer to
bundle if ¢ >%—and costs must be incurred jointly.

So far in this section, only the seller's preferences over
packaging decisions have been discussed. We now turn our attention
to two other key questions. First, what is the nature of buyers'

preferences over packaging decision when the seller sets an optimal

reserve bid? Second, will the seller's choice result in an
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efficient allocation of the items from either an ex ante or an ex post
perspective?

Because the seller sets a - reserve bid in each auction,
it is quite difficult to specify an arbitrary buyer's preference
between a single bundled auction and two separate auctions. A first
observation is that unanimity among buyers is highly unlikely, and
given the additional structure of uniformly distributed values, is
impossible. This is demonstrated in the following way. Suppose
the seller observes costs Cys Cpe The seller will then choose
reservation prices r: and r; according to (l4a) and (14b) if there
are two separate auctions, or r12 as in (18 and (19 if there is a

* *

*
single bundled auction. Given the values of T, T, and Ty

in the uniform, two-buyer case, it is always possible for a buyer to

Iy

i i i i * i * i *
+ > < < i
have vl, v2 such that vy v2 r12 but vl r1 and \£ rz, since
* * *
+ > +
rl(cl) rz(cz) r12(cl+C2) for c, T e, €[{0,2]. 1In such a case

the buyer will clearly prefer the bundled auction. Similarly, it is

possible for some other buyer to have values vi, v; such that

i i * i *
+ v, < > i i
vy 5 rl2 but vy - In this case, the buyer will prefer

separate auctions.

In view of the above difficulty, we will consider auctions
corresponding to sellers of type (1) or type (3). In other words,
we assume the seller faces zero costs. Those buyers whose values are
greater than %‘for each item are never ''cut out" of the auction by

the sellers reservation bid. This set of buyers unanimously prefers

a bundled auction.
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Proposition: Assume Al-A3, A5-A7. 1If a buyer has values v12>%3 v23>%
and cl= c2=f0, then that buver will prefer the bundled auction to
separate auctions.
Proof: The buyer's expected profit in separate auctions, given vl,
v, is:
V1 v2
EN, + EIL, =F (r))(vy-r)) + (vy-x)dx + F(rz)(vz—rz) 4:[- (v,=y)dy .
rl r2
This expression reduces to:
1 2 1 2 1
EHl + EH2 =5V + 7 v2 -7
One immediately notes that for vy + v, = v, EHl + EHZ is

maximized'when v1 = v2 =-§. Therefore, we will just need to show that

Ele ), expected profit in a bundled auction as a function of

v = + v tisfies:
vl X sa

- - =2
v v vw.ov _1
EHlZ(V) > EHl(z) + EH2(2 =7 7 (35)

The expected profit in a bundled auction is
v
Ele(v) = F(rlz)(v—rlz) +l[ (v -x)f(x)dx.

Ty
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This reduces to:

= _=2_ 13 _ -1 _1./2
= — - S - a5 VT 36
EHIZ(V) v 6 v v + 3 9 3 . (36)
Subtracting (35) from (36) we obtain:
- v v S 3713 -, /2
A(v)=EHl (‘2‘)+EH2(':2’)-EH12(V)=ZV —g V-Vt V3 -
If v = 1, then:
21_1/2
A1) c-gVvVs3 >0
and
L 3= 1-2 - v -
AW =5 Vv-5v -1=(-1)A-3) 20 for v ell,2].
Therefore, if vy > %3 v, > %3 the buyef will prefer a bundled
fun}

auction.

The relative efficiency of separate auctions and a bundled
auction depends upon the following factors. There are three sources

of ex post inefficiency:

(1) All buyers can be shut out of an auction because the value
of the bundle to every buyer is exceeded by the reserve
bid, strategically set by the seller. In this case
inefficiency only results if the maximum valuation of all

buyers is between the seller's cost and the reservation bid.
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(2) The "wrong" buyer can end up winning an item. This sort of
misallocation can only occur in a bundled auction, because in
a separate auction, either no buyer wins the item or else
the buyer with the highest valuation wins the item.

(3) The seller may produce one of the items "at a loss." Again,
this can only occur if the seller uses a bundled auction.
This happens when the valuation of an item to the winning

bidder is less than the seller's cost of producing that item.

One may notice that two of these types of inefficiency occur only
when the seller bundles. However, the first type of misallocation
can occur regardless of the packaging decision of the seller. One

ex post criterion originally employed by Vickrey (1961) and later

modified by Matthews (1979) can be extended in a natural way so that
one packaging decision is said to be more efficient if the set of
states of the world in which one of the above three inefficiencies
occurs strictly includes the set of states in which the other results
in an ex post inefficiency. Under this criterion, neither dominates

the other in an ex post fashion.

It is quite straightforward to calculate which packaging
decision is optimal ex ante, using the ex ante notion developed in
section 1, with expression (4) as the buyer's expected profit, if

the seller incurs zero costs, or alternatively these are sunk costs

(type 1 seller) or the seller is an agent for some principal and is

paid on a percentage commission basis (type 3 seller). In this
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i i
context, buyer i who has values vl and vy has an expected profit in

either of the two separate auctions which is egqual to;

ETS = 0 if vi<iX
3 2
1
V3
i 1 i 1 i . i l
El" = 2 (vj—z) +f (vj-x)dx if vjs[ ,1]
1
2
R |
2 ] 8"

i i
Therefore, if a buyer has not yet observed values (Vl, V2), ex ante

expected profit is equal to:

So, any buyer's expected profit in the two separate auctions is

1 1 1
equal to EZ‘+ 2% - 12

Calculating a buyer's expected profit in the bundled auction
is no less straightforward. Buyer i, who has observed the sum of

values equal to v, has expected profit equal to:
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Enl=0 ifv <\/_2.

3

v
= -;; (v -@)4—[ (v =x)xdx if v 8[\/%_,1] (37)
T

3
2
1 /2
=3 ({v-vV3 + (v -x)xdx +f (v -x) (2-x)dx v €[1,2]- (38)
/2 1
3
So if v E[\/ %— ,l], (37) reduces to
. 3
i 1 1 2 /2
EX v -3V3 for v E[ 3 ,1] (373
and if v €[1,2], (38) reduces to
EHl*—’vz—%—vB—v-!—%—%v% for v €[1,2]. (38a)

If a buyer has not yet observed values, then ex ante profit in a

bundled auction is:

En=[[1 3 1F]vdv+[[v i N N

[}
[F%)
[

—
'...J
Wl
N’

+

=

+

b
Gl

i
8l
(o]

]
&l
(o o]
w]

I
IH
ﬁ
|~
wiro
o[-
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Therefore, ex ante a buyer will prefer that the items are
sold as a bundle rather than separately. Since we already know that
a type 1 or type 3 seller or a seller who has zero cost will prefer
to bundle, we can conclude that the bundled auction is ex ante

more efficient than the two separate auctions in these cases.

V. EXTENSIONS WHEN THERE ARE MORE THAN 2 BIDDERS OR MORE THAN 2

ITEMS.

This paper has discussed bundling decisions by a monopolist
under incomplete information. The price mechanism used by the
monopolist was a first or a second price auction. Because of the
analytical complexity involved in a completely general formulation
of the problem, some additional structure was added to the model
which yielded some interesting results. The natural question to
ask is what happens when we relax some of the assumptions employed
throughout most of Sections III and IV.

One of the first assumptions we would like to relax is
(A6): There are only 2 items. Theorems 1,2,3, and 5 are completely
unaffected by the total number of objects being auctioned. Buyers
still unanimously prefer separate auctions. The seller will prefer
to bundle all the objects together and sell them as a lot in a
single auction. It is ex ante and ex post efficient to have each
item sold in a separate auction. Therefore, we have the following

Lemma and Theorems.
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Lemma 1.1 J: Assume Al-A5. Buyers unanimously prefer J separate
auctions to a single bundled auction of all J items if and only if

t

f [F(x) - H(Jx)] dx = 0Vt [o,v] ,

(o}

where H is the J-fold convolution of F with itself.
Proof: see Appendix B.

Theorem 1 J: Assume Al-A5. Suppose there are J items. No matter
what valuations a buyer observes for the items, the buyer will
prefer J separate auctions to any other bundling decision by the

seller.
Proof: See Appendix B.

Theorem 2 J: Assume Al-A5, If there are J items, the seller will
maximize his expected profits by selling all J items as a lot in

a single bundled auction.

Proof: See Appendix B.

Theorem 3 J: Assume Al-A5. If there are J items, then J separate
auctions dominate any other bundling decision according to the

criterion of ex post efficiency.
Proof: This proof is identical to the proof of Theorem 3.

Theorem 5 J: Assume Al-A5. If there are J items, then J separate
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auctions dominate any other bundling decision according to the

criterion of ex ante efficiency.

Proof: This proof is identical to the proof of Theorem 5.

Another assumption one would like to relax is A5: There
are only two bidders. If there are n bidders, Theorems 1 and 2
do not generalize, although we obtain new theorems characterizing
which buyers prefer separate auctions and conditions under which
sellers will prefer bundled auctions. Theorems 3 and 5 do generalize

to n bidders.

Lemma 1.1 N: Assume Al-A4, A6. There are n bidders. Bidders
unanimously prefer two separate auctions to a single bundled

auction if and only if:

ft [p(xi}n—l- [H(Zx)]n-l}dx >0vt¢ [0,5]_ |

o}
Proof: See Appendix B.

Theorem 1 N: Assume Al-A4, A6. If there are n bidders, n =3, then

buyers never unanimously prefer separate auctions.

Proof: See Appendix B.

Corollary 1.1 N: Assume Al-A4, A6, n= 3. 1If a buyer observes
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sufficiently high values on both items, then that buyer will prefer

a bundled auction.

Proof: See Appendices B and C.

Theorem 2N is easier to state and interpret if we give

Theorem 3N and 5N first.

Theorem 3 N: Assume Al-A4, n =3 . Separate auctions always dominate

any other bundling decision, ex post.

Proof: This proof is, again, identical to the proof of Theorem 3.

Theorem 5 N: Assume Al-A4, n = 3. Separate auctions always

dominate any other bundling decision ex ante.

Proof: This proof is, again, identical to the proof of Theorem 5.

It is useful now to introduce a concept of surplus loss.

The surplus loss of a bundled auction is equal to the absolute value

of the difference between the expected surplus generated by bundled and

separate auctions.

Theorem 2 N: If I=n, J=2, then the seller will prefer 2 separate
auctions to a single bundled auction  whenever the surplus loss

with n buyers is less than the surplus loss with (n-1) buyers.
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This Theorem provides a sufficient, but not necessary,
condition for compatibility of the seller's bundling decision and
ex ante efficiency This condition must hold for some n, and in

fact it will hold for infinitely many n for the following reason

Remark: The expected loss from a bundled auction vanishes to zero

as n becomes large.

Proof: 1im E(ﬂ?) = 2v = lim 2E(F?). That is, as the sample

1 > o n-> o

size becomes greater and greater, the expected highest value

approaches the maximum value in the support.

Note also, however, that the surplus loss for n buyers
produces an infinite sequence of positive numbers which converge

to zero, but only in the limit. That is we have a sequence

{a,y..., a ,...} such that
2 n
a >0 Vn= 2,3,...
n
and
lim a =20.
n->®

This implies that there is an infinite subsequence which
monotonically converges to O from above. Thus there is an infinity
of values, n, such that the seller prefers separate auctions.

*

[Note: One suspects that for any F, there exists some number ng >2

* »
such that n > ng implies that the seller prefers separate auctions.
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In other words, sellers prefer to bundle with a small number of
buyers, but not with a large number of buyers.]

There are a couple of other desirable directions for
generalization. We have assumed throughout the analysis that the
seller and all buyers are risk neutral. Studies by Cox (1979),
Matthews (1979), Harris and Raviv (1979a), and others suggest
that risk aversion influences equilibrium behavior in auctions and
affects the relative desirability of different auction mechanisms.
One suspects that risk attitudes may also affect the seller's
bundling choice and the optimality of packaging decisions.

Another assumption maintained in this paper is that the
goods are independent, in the sense that v? and v; are independently
distributed. One of the results obtained in this paper under the
assumption that the values were additive is that a seller has
a strong preference to bundle if there is no reservation bid or if
the seller has zero cost. This suggests that in some cases in which
1 and 2 items are "duplicates" (or subadditive) in the sense that
vi%—vi > viz for all bidders, the seller will still prefer to sell
the items together. Moreover, it is ex ante efficient for "slight"
duplicates to be sold as a bundle if the seller faces zero cost and
sets an optimal reserve bid. On the other hand, if the seller does
not set a reserve bid, it may be ex ante efficient for items with a
small degree of superadditivity (vl+v2 < v12) to be sold separately.
Both of these possibilities seem nonintuitive and deserve further examination.

Along the above lines, the independence assumption implies

that the two goods are completely different goods. Typically a given
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seller offers items for which an individual may have correlated
values. This is the case which Adams and Yellen (1976) discussed
in a different context. Additionally, it is not uncommon for some
correlation to exist across individuals.

Another set of problems one might wish to pursue involves
the symmetry assumptions about the buyers. Although they do have
different values and have asymmetric information in the sense that
each buyer knows his own value but only the distribution from which
competitors' values are drawn, they all draw values from the same
distribution; they all have the same perfect information about
each of the other buyer's sample distributions as well as the

seller's costs.

VI. CONCLUSION

This paper has discussed a set of decisions faced by a
monopolist with incomplete information. How will a monopolist
choose to package the items being sold and what are the efficiency
implications of these decisions? An attempt is made to bridge the
gap between recent theoretical work on specific types of demand
revealing mechanisms commonly employed by monopolists (auctions) and
a topic which heretofore has typically been analyzed in a world of
perfect and complete information in which the monopolist used a
standard take-it-or-leave-it pricing scheme. It was found that
tied-in sales are sometimes ex ante optimal under a reasonable set of
assumptions about a world in which there are no production economies

or diseconomies and no demand interdependence. A number of additional
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results were obtained giving general sufficient conditions for
buyvers to prefer bundling, as well as conditions under which
bundling is optimal in terms of maximizing expected consumer

plus producer surplus.
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APPENDIX A

Lemma A: Assume Al-A4. There are n = 2 bidders and J= 2 items.
Theyexpected total surplus in J separate auctions is greater than

the expected total surplus in one bundled auction if and only if

-

v

f [H (Jxﬂ“ - [F(x)]n dx >0 .

0

Proof: The expected total surplus (ETS) in an auction is simply

the expected highest value. Therefore, for the bundled auction:

Jv

]n—l
= H dx
ETS, .10 = j;nxh(x)[ (%)

;5 Jv a0
D ] e
0

0

= X [H(xﬂn

- I3 _fVJ [H(Jx)]n dx .

0

Similarly, for each separate auction, j, j=1,...,J we obtain:

v
ETSj = v -f [F(x)]ndx )
0
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Therefore:

J

v ' n
[ ) ETSj]-— ETS; 4le = f J [H (Jx)] - [F (xi}n dx .
0

j=1

Lemma B: Assume Al-A3, n>2, J = 2. It is always the case that:

v
/R IICH I T P

Proof: This follows immediately from Lemma A, Theorem 5, Theorem 5J,

Theorem 5N.

Proof of Theorem 5: Ex ante efficiency of separate auctions follows

from the ex post efficiency shown in Theorem 3. In every possible
state of the world, the total surplus generated by separate auctions
equals the sum of the highest valuations on two items. This is always
at least as great as the surplus generated by the bundled auction,

which is simply the maximum sum of valuations.
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1 1 2 2

1’ Vo vl, v2) be the total surplus, given values vi, v1

Let TSl(v 0
2 2
Vis Vo in the separate auction for item 1,
1 2

20 V1» vg) be the total surplus in the separate auction

1
TSZ(Vl’ v

. 1 1 2 2 ,
for item 2 and TSlZ(Vl’ Vo Vs v2) be the total surplus in the

bundled auction. Then:

11 2 2, _ 1 2.,
TSl(vl, Vos Vis v2) = max (vl, vl),
1 2 2 2
TSl(Vl, v;, vy v2) = max (V%, Vz); and
1 1 2 2 1 1 2 2
= + +
TS12 (Vl’ Vo Vs v2) max (v1 Vo, vy v2),

1 .1

Now Ts, + TS, = TS if w==(v1, Vo> vi, vg) is any realization

1 2 12
of the random variables. Therefore, expecting over all possible

states, w, we obtain

ETSl + ETS2 = ETSlz»

To show that this inequality is strict requires demonstrating
-
that there is some set of states, {, which can occur with

positive probability in which:

> £ Q.
TS, (w) + TSZ(m) TSlz(w) VwéEl
-4
Since values are distributed independently on the cube [o, V]

and the joint density is positive everywhere in the interior of

the cube, if we can find some such set Q” in the interior
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of this cube, the proof will be completed. This is easily done.

2-1- 1=~ 1~
Let w = (5 Vs T Vs 5 Vs S v) and observe that TSl(w) + TSZ(w) > TSlZ(w).

This is also true in a neighborhood of radius i%-or less around w.

Hence

ETSl(w) + ETSz(w) > ETSlZ'
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APPENDIX B

Proof of Lemma 1.1 J: The proof is very similar to Lemma 1.1.

If a buyer observes ViEVy= e = vySY then that buyer will prefer

separate auctions if and only if:

v Jv

JB-—%«j-[igg]ad}F(v)>[w-{3vi[ [ggiﬂdqu vy,

0 0

which reduces to

fv[F (x) - H (Jx)]dx >0,

0

It is also simple to show by an argument virtually identical to

the one used in Lemma 1.1, that if ajs...ay 4 are all positive

J-1
and Z a; < Jv, and Jv is in the support of F, then
j=1 J-1
L3
v -1 (3 A}
Jf F(x) dx < z F(Yj)d}’j + f F(z)dz -
0 3=1%¢ 0
This proves the lemma. o

Proof of Theorem 1 J: This proof involves showing that the

distributions of J independent and identical random variables,

X .,X_,are each mean-perserving-spreads of the distribution

1" J
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of the average, Z, of these random variables.

We can represent the mean, Z, of Xl""’XJ as
X X Xx
+ +... .
7 = 1 2 J
= 3 .

Now for any j = 1,..., J, we can write:

J g LXI
J-X, - J-DX, -
X;+ kzlxk (G-Dx; - L X 37 L X
X = k#] + k#j -7 + k#j
k| J J J

The second term of the right hand side of this expression has a mean of
zero, conditional on Z, so that Xj is in fact a mean perserving spread

of Z, for all j=1,...,J. Hence the Theorem 1J is proved.

Proof of Theorem 2 J:

Let p and g be two alternative bundling decisions:
p = {plpz, .o ,pk, “oe ,pxp}

q= {qlaqzs"'qks---aqKq} .

From equation (10) we obtain an expression for A2 analogous to

expression (11):



131

A [2 ‘pr al Iz(p 2 Iz(q 1, &
= E(H - E(H ):} - [2 E(H ) - E(H '
L R = o k=1 9k kzl ( qk)] ah

[ ?P 1 gq 1 [ Kq 2 K 2
= E(H".) - E(H )J + E(H - JP
k=1  PK' 2 gk kgl ) kZI E(Hpk)]

Now the first term in brackets equals zero since each of the sums inside the

v
brackets equals J~/.xf(x) dx, or J times the expected value of a
4]

single item. We are left with an expression analogous to (12);:

K K
A2=: Xq E(H2 ) - Zp E(sz). (12")

k=1 9% k=1 P
The first sum is simply the total expected surplus under packaging
decision ¢ and the second term is the total expected surplus from
packaging decision p . Therefore, the seller prefers p to gq
(i.e., A2 > 0) if and only if p generates less surplus than ¢
ex ante. Using an argument virtually identical to the one used in
Theorem 3, selling all items in a single bundled auction generates
the least expected total surplus. Therefore the seller prefers that
bundling decision above all others, regardless of how many items there

are.

In other words, the seller makes the least efficient bundling decision,

Proof of Lemma 1.1N: The proof here is virtually identical to Lemma
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1.1. 1If a buyer observes VTV, =, then that buyer will prefer

separate auctions if and only if:

H(x) ]n-ldz}]H(Zv)n—l,

1" e} 1Fm ™ > (2w - {2v - Zv{
= lev v H(2Zv)
0

Vv
2[v - {v—f [%-(({%
0

which reduces to;
(BL)

(Pt - w2 ax = o.

S

It is also simple to show by an argument virtually identical to the

one used to prove Lemma 1.1, that:

n-1 a n-1 2v-a n~-1
[F(x)] "ax < [F(y)] “dy + [F(x)] "dz (B2)

v
2]
0 0 0
This proves the theorem.

}, and for any ac{0,2v].

o<

for all ve{ o,

# v;, then (Bl) is not a sufficient
However,

i i

v, +v .
=v and v1
1

Note that if 5
condition for i to prefer separate auctions, in light of (B2).

1 Z . v, to prefer

if the inequality of (Bl) is reversed, then this new inequality is a
i i
v, +v
2

sufficient condition for any buyer i, such that

a bundled auction.
From lemma B, we have a strict inequality which

Proof of Theorem 1N:
Therefore, a buyer who observes

is exactly the opposite of (Bl).
v will prefer a bundled auction.

Vl"-‘Vz=
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Proof of Corollary 1.1 N: Let:

n-1

8(v) fv ()n—1 [H(Z )] d
v) = F(x - X ®x
]

From assumption A3, 6(+) is continous in v. By lemma B, 8(v) > o.

Therefore, there exists some t <v such that G(tF)>'o and 8(v) > o

F
for all v such that tF‘S v S v. From B2 we can conclude that any
buyer who observes values vi==v;==v such that tF <v=vwill prefer

a bundled auction.

[Note that if the distribution of each of the two values is a simple
mean preserving spread (see Diamond and Stiglitz pp. 338-339) of the
distribution of the mean of the two values then there exists a unique

*
tF such that all buyers

i i vty
having valuations Vs v2 such that 5 = tF will prefer

separate auctions, but for every v>t, there will always be at
least one potential buyer who will prefer bundled auctions. An

example of this is given in Appendix C.]

Proof of Theorem 2 N:

Proof: From (11), generalizing for the case of n>2, the seller prefers

separate auctions if and only if:

nE(Hrll—l) - (-DEED) <2 [n E(Fln_l) - (-DEFEM],
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which can be rewritten as:
n-1 n-1 n n
n[E(N1 ) - 2 E(F1 )] < (n—l)[E(Nl) -2 E(Fl)]

If the surplus loss with n buyers is less than the surplus

loss with (n-1) buyers, then:

n-1 n-1 n n
E(Hl )y -2 E(Fl ) < E(Hl) -2 E(Fl),

1e]

alEE™ - 2 BETH] < @D EE) - 2 BED].
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APPENDIX C

This is an example, showing that distributions which
satisfy a symmetry property will lead buyers with "sufficiently

high" valuations for both objects to prefer a bundled auction.

Proposition: Suppose there are 2 items, n buyers, and assumptions

Al-A4 hold. Furthermore, assume that F(v - x) = 1= F(x) for all
x € [0,v]. Then there is a unique value, Gn, for each n, such that

if a buyer has valuations v,, v, such that v +~v2< an’ then the

17 2 1

~
. vn
buyer always prefers separate auctions and for every v< X

a buyer who has values V=V, TV will prefer a bundled auction.

In addition:

(2) ¥ ¢ (%55) for n = 3,4,...

Proof: Since F(;—-x)= 1-F(x), we also know that H(Z(;-vx))= 1-H(2x).
We first use the fact that H(Z(;—x)) = 1-H(2x) and F(G—x)= 1-F(x) for
x€[0,v]. This gives us:

v

f [F(x)“‘1 - H<2x)“'l]dx =
0

ol

J Feo™ - rEo™t - (@)™ - (1-FG))  ax,

(C1)



136

The following lemma is useful.

Lemma 4N.1: Let t >0, A< t, n > 2. Then F(t) = tn—l - (t—A)n”l
is an increasing function of t,
Proof: F'(t) = (n-1) [tn--2 - (t—A)n—z]

> 0. o

Notice that by letting A = F(x) - H(2x), tl = F(x),

t, = 1-H(2x) we can write (Cl) in the following way:
v
2 n-1 n-1 n-1 1
— - — n-—
f {tl - (t;-8) - [ty 7 - (t,-8) ]}ax

0

Since t2 > tl for all x, the integrand is always negative,so:

v
f [F(x)n'1 - H(2x)“’l]dx <0,

0

Therefore, by Lemma 1.1IN, if there are n buyers, n > 2, a buyer .with

value vy =V, < v will prefer a bundled auction. In additionm, it is

easily verified that:

F(x) > H(2x) for xe(O,%&

and

H(2x) > F(x) for xé(gi,G).
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t
Because~['[F(x)n_l - H(2x)n_l]dx = G(t) is continuous in t,
0

G'(t) > 0 for te(o,lz’o, G'(t) <0 for te(¥,v), and G(0) = 0, G(F) <O,

we can conclude that G(t) > 0 for tE(O,X) and there exists a unique

t = Gn €(0,%) such that G(t) = 0. If n =2, (Cl) reduces to 0. Thus

we have established the desired result. n)
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FOOTNOTES

* The author thanks G. Chamberlain, R. Noll, M. Rothschild, C. Wilson
and participants of the University of Chicago Public Policy
Workshop for helpful comments and suggestions. All errors in the

chapter are mine.

1. See, for example, Scherer(1970) pp. 505-512, Bailey(1954),Phillips(1979),
Adams and Yellen(1976), Burstein(1960), Telser(1979) and Stigler(1968).
2. They may also be referred to as tied-in sales, bundling decisions or
packaging decisions. An important point here is that tying contracts
occur frequently in highly competitive markets as well, and may often
be an efficient method of allocating resources. In other words, "tying
contract' should carry no particular positive or negative connotation.
3. In a recent paper by Harris and Raviv(1979), they demonstrate
that under conditions of demand uncertainty, the seller will often
use an auction mechanism rather than a take-it-or-leave-it pricing
scheme, such as the one analyzed by Phillips(1979) and Adams and
Yellen(1976). This is always true if the goods are 'rare" in the
sense that potential demand exceeds the capacity to supply and
supply is fixed. 1In Phillips and Adams and Yellen, the producer
has a constant marginal cost, so that an infinite amount could be
produced. In this paper, we follow the assumption used in Harris
and Raviv(197% ) that capacity is fixed. Therefore, this analysis

is applicable to the wide variety of situations in which potential
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(or zero-price) demand exceeds capacity to prbduce. An additional
application involves the letting of incentive contracts in which

a purchaser pays the lowest bidding contractor to fulfill some con-
tractual obligation. Because of the specific nature of these
contracts, this type of monopsonist situation typically involves

some type of auction mechanism. See Stark and Rothkopf(1979),

Holt(1979), and Baron(1972) for examples along these lines.

Because all agents are risk neutral, all results apply equally

to first- and second-price auctions. Because it facilitates analysis,
sections 1 and 2 are written as if only first-price auctions were
being considered and section 3 seems to be addressing primarily
second price auctions. This note is to alert the reader that

these results generalize to both types of auctions.

This efficiency problem is discussed elsewhere, as well. See, for
example, Vickrey(1961), Matthews(1979).

For more thorough treatments of the derivation of equilibrium bidding
functions, the reader is referred to Wilson(1977), Ortega-Reichard(1968),

Vickrey(1961), Harris and Raviv(1979a), Riley and Samuelson(1979).

This was pointed out to me by Gary Chamberlain.

See Matthews (1979).
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CHAPTER FOUR

An Empirical Examination of the Economic Consequences of Bundling Decisions
by a Monopolist Facing Uncertain Demand
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I INTRODUCTION

This chapter reports the results of an empirical examination
of the predictions made in chapter three. Testable hypotheses were
developed in that chapter which addressed questions about seller
revenues, market efficiency, buyer behavior, and distributional
consequences of a monopolistic seller”s bundling decision in multiple
object auctions. The data presented in this chapter provide strong

support for these theoretically-based hypotheses,

Recall the scenario discussed in chapter three. There are
several buyers and one seller, The seller has a set of indivisible
items to sell., The seller makes a bundling decision, which is a
partition of the set of items into mutually exclusive and collectively
exhaustive subsets, called bundles. The seller places the bundles for
sale using a first—-price sealed-bid auction. In each such auction,
the seller solicits private, written bids for a bundle from each buyer
and sells that bundle to the highest bidder at a price equal to the

highest bid.

The theoretical model presented earlier postulates a
specific type of information structure in these markets in order to

incorporate uncertainty in a precise way. The information structure
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is the following. Each buyer is supposed to have a fixed "valuation"
for each item, which is known to no other buyer. Each buyer knows the
probability distribution from which the valuations of each of the
items for each of the other bidders were independently drawn. Buyers
all know their own valuations with certainty. A buyer”s valuation for
a bundle simply equals the sum of his valuations of the items

contained in the bundle. Buyers also know how many other buyers there

are.

Each auction is modelled as a game with incomplete
information, in which each buyer is a player. A strategy of a player
is simply a function which maps valuations into bids. These
strategies in general may depend on the distribution of values for the
bundle being auctioned and the number of competing buyers in that
auction, Testable hypotheses are then derived based on noncooperative

behavior om the part of the buyers.

In order to provide a clear test of this theory, a number of
variables must be measurable and controllable. In particular,
reasonable comparisons with the theoretical predictions require a
knowledge of the relevant probability distributions, buyer valuations
and the number of bidders competing. In addition, four key
assumptions are made in the theoretical model which are particularly
difficult to control for. One of these assumptions is that a buyer”s
valuation for a lot equals the sum of his valuations for the bundle.

A second assumption is that there is no after market in which the
items may be resold by the winning bidder to the other buyers who

participated in the auction. A third assumption is that all of the
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buyers are risk neutral. A fourth assumption is that the postulated

information structure accurately describes buyer information.

The type of data available from real estate auctions, art
auctions and other frequently held auctions can be obtained easily
enough, but do not provide enough information to measure and control
for all of the parameters and assumptions of the model. In other
words, such data would provide at best a very rough test of the
theory. For this reason, a series of experimental auctions were
designed and carried out in a carefully controlled laboratory
environment. The buyers in these laboratories were given complete and
accurate information about the distribution from which values were
drawn and the number of bidders in each auction. All four key
assumptions were met. One of these assumptions, that all buyers are
risk neutral, normally would be impossible to control for. However
even though buyers faced risk in each particular auction, each buyer
participated in a sufficiently large number of auctions that any risk
which existed was reduced to a nominal level through diversification,
One of the more useful aspects of using experimental auctions is that
it is possible to sell an item twice, once as a single~item bundle and
once as part of a two—item bundle. This allows one to directly
compare seller revenues, distributional consequences, buyer strategies
and market efficiency in separate as opposed to bundled auctions.

This intriguing possibility is taken full advantage of in this series
of experiments and is one of the major reasons that such powerful

tests of the theoretical hypotheses could be made.

The use of experiments to test theories about sealed bid
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auctions is not new. Frahm and Schrader (1970), Smith (1974), Miller

and Plott (1979), Belovicz (1977), and Coppinger, Smith and Titus
(1980) have presented results relating to the comparative revenue-
generating power of various auction mechanisms. These mechanisms
include first—-price sealed- bid auctions, second-price sealed-bid
auction, English (oral progression) auctions and Dutch (descending bid
auctions). The approach used by Coppinger et al. most closely
resembled the design of the experiments presented here. Not
surprisingly, some of their observations about buyer behavior in
first-price sealed bid auctions were also observed in the experiments
discussed below, The other four previous studies examined markets in
which multiple units of a homogeneous commodity were allocated to
several buyers in each auction. Therefore their results are not

directly comparable to the results of the experiments reported here.
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ITI. EXPERIMENTAL DESIGN

Three series of experiments, using a total of 24 different
subjects, were designed and carried out.# Each experiment consisted
of 240 different auctions in which experimental subjects were buying
items from the experimenter. In 120 of these auctions there were two
competing buyers and in 120 of the auctions there were four competing
buyers. This divided the auctions into two sets of market sizes
according to the number of competing bidders. For such market size
there were forty auctions selling a single item, forty auctions
selling two items bundled together and forty auctions selling four
items bundled together. Thus the auctions are divided into three sets
along the dimension of bundle size. This 2 X 3, or 6-cell, design is
summarized in Table 1. The entry in each cell of the table indicates
the number of auctions of that type in an experiment. Henceforth a
cell will be referred to by the Roman numeral in the upper right hand
corner of that cell in Table 1., The buyers in an experiment will be

referred to by Arabic numerals 1 through 8.

As one can easily deduce, no buyer competed in all auctions.
In particular, each buyer competed in 10 of the 40 auctions in each of
cells I, II, and III and 20 of the 40 auctions in each of cells IV, V,
and VI. Specification of exactly which auctions a buyer participated
in is given in detail later on in this section. However, at this
point it will be helpful to describe how buyers” valuations for items

were induced.

For each auction in cells I and IV, each participating buyer
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MARKET SIZE
2 Bidders 4 Bidders 4

1 IV

1 Item 40 40

BUNDLE

SIZE 11 v

2 Items 40 40
I1I Vi

4 Items 40 40

Table 1. The Basic 2 x 3 Experimental Design-.
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was given a valuation which was independently drawn at random from the
interval $0.00 to $1.99. All valuations were in penny increments.

The values of the bundles for which buyers competed in cells II and V
were determined by adding together values which had been randomly
drawn for items in cells I and IV. Whichever subset of the buyers
competed in two single—item auctions also competed in the
corresponding two-item bundled auction. Similarly, the values of the
bundles for which buyers competed in cells III and VI were obtained by
adding together values of certain pairs of two-item bundles from cells
II and V. Again, whichever subset of the buyers competed in a pair of
two-item bundled auctions also competed in the corresponding four-item

bundled auction,

In order to facilitate smooth operation of the experiment each
series of 240 auction experiments was conducted over a sequence of 5
"market years". This meant that in each year buyers had to make
simultaneous bidding decisions in only 18 auctions. Conducting the
experiment in this fashion also allowed buyers to make adjustments in
their strategies after each year if they wished. Of the 18
experiments in which each buyer participated during a market year
there were two each in cells I, II and III and four each in cells 1V,
V and VI. Which auctions were conducted in which year was randomized

for each cell,

A potential problem with this particular design is that if a
buyer can figure out which bundled auctions correspond to which

unbundled auctions that buyer will be able to use information from
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previous auctions to update his priors about the distribution of
competitors” valuations in corresponding auctions which may occur in
later years. This problem was avoided in the following way. For each
bundle in cells II and V for which a buyer would be competing that
buyer was given two new values which were randomly chosen subject to
the constraint that the sum of the two values equaled the sum of the
two values of the items in the corresponding single—item auctions of
cells I and IV. The buyers were not informed that these draws were
dependent in this way on earlier draws. This prevented buyers from
figuring out that there was a connection between the auctions in
different cells., Buyers viewed each auction as a completely

independent event.

The next problem to overcome involved setting up the auctions
so that bidders who competed with each other in a bundled auction also
competed with each other in the corresponding separate auctions. This
was done in the following way. In cells I, II and III buyers only
competed in the following pairs: [1,2]; [1,3); [2,3]; [4,5]; [4,6];
[5,6]; [7,8]. The first six of these groups competed in five auctions
in each of cells I, II and III while the last group, [7,8], competed
in ten auctions in each of these cells. In cells IV, V and VI the
buyers were divided into two groups, [1,3,5,7] and [2,4,6,8]. These
two groups each participated in twenty auctions in each of cells IV, V

and VI.

Each experiment was conducted in the following way. The eight
experimental subjects were each given a folder containing a list of

valuations, 5 information and record sheets (one for each market
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year), 5 bidding forms (one for each market year) and a three page
instruction booklet. At the beginning of the experiment, the
experimenter read the instructions while the subjects followed along.
In these instructions, the subjects were told that the values of the
210 items on their list of valuations had been randomly chosen in the
range from $0.00 - $1.99. 1In addition they were told how to figure
out the value of a bundle, how to keep records, how to bid and how to
calculate their profits. The instructions are given in the appendix.
After these instructions were read and questions were answered, a
"practice" year took place which allowed the subjects to become
accustomed to the rules and the recording format. No payoffs were
made on the basis of outcomes of this practice year. During each real
market year each buyer privately submitted to the experimenter written
bids for each of the 18 auctions in which the buyer was competing
during that year. When all eight buyers had submitted their bidding
forms, the experimenter anmounced the highest and the second highest
bids in each of the 48 auctions that year. This information was
posted so that all subjects could study the information if they
wished. Subjects recorded their profit for each auction in which they

had participated and then proceeded to the next market year.

Summarizing the design, there were three experiments in which
a total of 720 auctions were conducted. Perhaps the most important
aspect of the design is that each bundled auction corresponds in a
very carefully planned way with some set of separate auctions.
Because of this, items are essentially sold three times: once in a

single—item auction; once in a two-item bundled auction; and once in a
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four—-item bundled auction. This facilitates the analysis of the
experimental data tremendously by making it possible to use relatively
simple statistical techniques to test the predictions. These
techniques, along with the results of the statistical tests, are

described in the next two sections.
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I1I. THEORETICAL PREDICTIONS AND TESTABLE HYPOTHESES

This section discusses the predictions which are derived from
the theoretical model detailed in chapter three. Following each
prediction, a number of specific testable hypotheses are stated in a
form which allows the data from the experimental auctions to be

brought to bear directly on the validity of the predictions.
There are four different types of predictions which are made:

(1) predictions about seller revenues;
(2) predictions about buyer surplus;
(3) predictions about buyers” strategies; and

(4) predictions about total surplus (efficiency).

In all, eleven predictions are made. The first four predictions, (P1)
~ (P-4), deal with the effect of bundling and number of bidders on the
seller”s revenue. The next five predictiomns, (P5) - (P9), address the
question of buyers” surplus and the distributional comnsequences of
bundling. The next prediction, (Pl0), asserts that bidding strategies
are superadditive, The final prediction, (Pl1l), states that bundling
creates inefficiencies., Each prediction is discussed in detail below.
To facilitate this discussion, direct reference is made to theorems,

corollaries and lemmata from chapter three,

For each hypothesis, two types of tests are made. First,
three comparisons are made, one for each of the three series of

experiments, between the results of bundled and separate auctions.



154

Second, a ggregate comparisons are also made by pooling the data

points from all three series of experiments.

Theorems 2,2J and 2N lead to specific predictions about seller
revenues. Theorem 2 states that if there are two bidders and two
items, the seller can earn more money selling the two items in a
bundled auction tham in two separate auctions. Theorem 2J extends

this to more than two items. Thus our first prediction:

(P1) 1If there are two buyers competing in an auction, then
the expected revenue per item generated in a bundled auction
is an increasing function of the number of items in the

bundle.

This prediction is robust with respect to the distribution from which
buyers” values are drawn. In particular, Pl is true for uniformly

distributed values. Recall that the uniform distribution was used in
all laboratory auctions because it was the simplest to explain to the

participants of the auctions.

In order to test this prediction using the experimental data,
comparisons are made between average revenues from auctions in each of
the six cells of Table 1. Specifically, the statistical hypotheses
for prediction (Pl), which are tested using both aggregated and

disaggregated data are the following.

(Hl1.1): The sample mean of differences between revenues
generated by two item auctions in cell II and sums of revenues

generated in the corresponding single-item auctions of cell I
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is significantly greater than zero.

(H1.2): The sample mean of differences between revenues
generated by four-item auctions in cell III and the sums of
revenues generated in the corresponding single—item auctions

of cell I is significantly greater than zero.

(H1.3): The sample mean of differences between revenues
generated by four-item auctions in cell III and sums of
revenues generated in the corresponding single item auctions
of cell I is significantly greater than the sample mean of
differences between revenues generated by two-item auctions in
cell II and sums of revenues generated in the corresponding

single—item auctions of cell I.

The second prediction about seller revenues is derived from a

corollary of theorem 2N,

(P2) 1If there are more than three buyers, then the expected
revenue_per item generated in a bundled auction is a

decreasing function of the number of items in the bundle.

The following specific hypotheses are used to test prediction (P2).

(H2.1): The sample mean of differences between revenues
generated by two-item auctions in cell V and sums of revenues
generated in the corresponding single-item auction of cell IV

is significantly less than zero.

(H2.2): The sample mean of differences between revenues
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generated by four-item auctions in cell VI and sums of
revenues generated in the corresponding single—item auctions

of cell IV is significantly less than zero.

(H2.3): The sample mean of differences between revenues
generated by four-item auctions in cell VI and sums of
revenues generated in the corresponding two-item auctions of

cell V is significantly less than zero.

The intuition behind (P1) and (P2) is that the expected second
highest sample out of N draws from the distribution is the seller”s
expected revenue, where N is the number of bidders. Since the
distribution of the value of a given item is a simple mean preserving
spread of the distribution of the average value of a bundle of at
least two items, then if the expected second highest sample of N draws
from the distribution is greater than the mean of the distribution, it
will also be greater than the expected second highest sample of N
draws from a distribution of the average value of a bundle containing
at least two items. Similarly, if the expected second highest value

is less than the mean, the opposite will be true.

In (P1l), there are only two bidders, so the expected second
highest value is the expected lowest value which is always less than
the mean. In (P2), the expected second highest value with more than
three bidders is always greater than the mean for any symmetric
distribution such as the uniform distribution. Hence bundling will

hurt the seller in this case.

Combining (Pl) and (P2) and using theorem 2J, ome obtains the
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following result.

(P3) The absolute difference between the expected revenue per
item in a bundled auction and the expected revenue per item in
separate auctions is an increasing function of the number of

items being bundled.

Prediction (P3) is just a weaker form of predictions (P1l) and (P2) and

is tested using the same statistical hypotheses.

Another prediction about the seller”s revenue is that more

buyers increase the seller’s revenue.Z

(P4) The revenue from an auction is an increasing function of

the number of buyers.

This is a very well known and intuitively evident theoretical result.

Prediction (P4) is tested by the following three hypotheses.

(H4.1) The sample mean of revenues generated by auctions in
cell I is significantly less than the sample mean of revenues

generated by auctions in cell IV.

(H4.2) The sample mean of revenues generated by auctions in

cell II is significantly less than the sample mean of revenues

generated by auctions in cell V.

(H4.3) The sample mean of revenues generated by auctions in
cell III is significantly less than the sample mean of

revenues generated by auctions in cell VI,
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Theorems 1, 1N, 1J, corollary 1,1, the proposition in the
appendix and the proofs of lemma 1.1, lemma 1.1J and lemma 1.IN lead
to specific hypotheses about buyer surplus and the distributional
consequences of the seller”s bundling decision. Theorem 1J states
that when there are two buyers then all buyers will prefer separate
auctions ex ante. Note that it does pot imply that a buyer will

prefer separate auctions in every state of the world.

(P5) If there are two buyers, then no matter what values a
buyer has for the items, the expected surplus to that buyer is

greater in separate auctions than in a bundled auction.

The testing of this and the next four predictions about the
distributional consequences of bundling require a somewhat more
involved statistical analysis. 1In each auction in each of cells II,
III, V and VI, each buyer is categorized according to the magnitude of
his valuation of items in the bundle and the variation of his
valuations of items in the bundle. Specifically, there are three
categories of magnitude (high, medium and low) and three categories of
variation (high, medium and low). This divides the buyers in each
auction in cells II, III, V and VI into nine categories. This is
illustrated in Table 2. Each category is labelled in Table 2 for
future reference. Entries for each category are the average
difference between the average surplus for buyers in that category in
a bundled auction and the average sum of surpluses for buyers in that

category in the corresponding separate auctions.

The cutoff points to determine in which category a buyer belong
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VARIATION OF VALUATIONS
HIGH MEDIUM LOW
HIGH A D G
MAGNITUDE
OF
VALUATIONS MEDIUM B E H
LOow C F J

Table 2. Categorization of buyers according to
magnitude and variation of valuations for
items in a bundle.
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are chosen so that the expected number of cases in each category were
approximately equal5. Unfortunately, due to correlation between
magnitude and variation, it is not possible to cross—categorize sets
of values in such a way that the expected number of cases is exactly
the same across all the nine categories. In statistical terms, this
results in a small sacrifice of the efficiency of our statistical
tests. This means that in the tests which we will be using, it may be

particularly difficult to establish statistical significance.

The following statistical hypothesis is tested to determine the
validity of the prediction (P5). Again, as in earlier hypotheses,

each buyer in each auction is treated as a separate case.

(H5.1) 1In auctions from cells II and III, entries for all
categories, A, B,C,D,E,F,G,H and J are significantly greater

than zero.

The intuition behind prediction (P5) is that with a small
number of buyers, all buyers are better off as the distribution
becomes more spread out. The distribution of values for a bundle is
less spread out than the distribution of the component items of the
bundle. However, if there are more than two buyers, then a buyer who
has extremely high values for a bundle prefers a less dispersed
distribution. The logic behind this is that in a less dispersed
distribution, the probability that such a buyer would have the highest
value is greater. Hence, for large numbers of bidders one loses the
"unanimity" result of theorem 1J. An even stronger statement of (P5)

is the following prediction which is also an immediate consequence of
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theorem 1J.

(P6) 1If there are two buyers, then the expected surplus to a

buyer is a decreasing function of the number of items bundled.

The following statistical hypothesis is tested to determine the

validity of prediction (P6).

(H6.1) Entries for all categories in cell II are each
significantly less than the corresponding entries for all

categories in cell III.

Corollary 1.1N and the proposition in appendix A of chapter
three yield specific predictions about which buyers will prefer a

bundled auction, if there are more than two buyers.

(P7) 1If there are more than three buyers, then buyers with
relatively high valuations on all items and relatively small
variation in valuation will prefer a bundled auction to

several separate auctions.

The following statistical hypotheses are tested to determine the

validity of prediction (P7).

(H7.1) Entries for categories A,B,C,D,E,F,H and J in cells V

and VI are are each significantly greater than zero.

(H7.2) The entry for category G in cells V and VI is

significantly less than zero.

(H7.3) Entries for categories A,B,C,D,E,F,H and J in cell V
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are each significantly less than the corresponding entires in

cell VI.

(H7.4) Entries for category G in cell V are significantly
greater (less negative) than the corresponding entry in cell

VI.

This prediction, (P7), expresses the rather obvious notion that in
general different buyers are differently affected by the seller’s
bundling decision. In particular, theorem 1.1N, in conjunction with
the proposition proved in appendix 3 and the proof of lemma 1.1 lead

to the following two predictions.

(P8) Buyers with relatively high variation in valuations are
relatively worse off when the seller bundles compared to
buyers who have the same average valuation but less variation

in their values.

(P9) Buyers with relatively low average valuations are
relatively better off when the seller bundles compared to
buyers who have the same variation in valuation, but have

medium valuations.

An example which illustrates the intuition behind (P8) is the
following. Suppose a buyer has a valuation of 0 on one item and A
(the maximum possible value) on the second item. If these two items
are sold separately, the bidder will (in equilibrium) win the second

item with probability 1. However if the two items are bundled and

sold together in a single auction, this bidder will probably win
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neither item. This is particularly obvious if there are many bidders.
In addition, in equilibrium the profit he makes in the bundled auction
if he wins is less than the equilibrium profit if he wins the second
of two separate auctions. Suppose instead that this buyer’s
valuations were A/2 and A/2 instead. In such a case the bidder is

affected not nearly as much by a seller who chooses to bundle.

The logic behind (P9) is the following. A buyer with
valuations for the two items equal to 0 and 0 will earn 0 regardless
of the seller”s bundling decision. Buyers with very high valuations
are either unaffected by the seller”s bundling decisions or else are
better off in a bundled auction than in separate auctions. However,
from corollary 1.1N, we know that buyers with medium valuations are
worse off in bundled auctions. In particular, for the uniform
distribution, and for bidders with no variation in values, the
difference between the expected profit in a bundled auction and
expected profit in separate auctions starts at 0 for Vi =vy =0
monotonically decreases up to the point where vy = vy = A/2 and then
monotonically increases up to some non-negative number as Vi =vy =v

increases from A/2 to A.

The hypotheses designed to test prediction (P8) are the following:

(H8.1) 1Inm cells II, III, V and VI, the entries in categories
D,E,F are significantly less than the entries in categories

A,B,C, respectively.

(H8.2) 1In cells II,III,V and VI, the entries in categories
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G,H and J.are significantly less than the entries in

categories A,B and C, respectively.

(H8.3) 1In cells II,III,V and VI, the entries in categories
G,H and J are significantly less than the entries in
categories D,E and F, respectively.

The hypotheses designed to test prediction (P9) are the following.

(H9.1) 1In cells II,III,V and VI, the entries in categories
B,E and H are significantly greater than the entries in

categories A,D and G, respectively.

(89.2) In cells II,III,V and VI, the entries in categories
B,E and H are significantly greater than the entries in

categories C,F and J, respectively.

The next prediction is easily derived theoretically by using
equation (2) in chapter three to calculate the bidding functions in
single-item and bundled auctions when values of items are distributed
uniformly. This prediction is not as important for the sake of its
economic implication, rather it is important because it is perhaps the

most crucial prediction about bidding behavior upon which many of the

other predictions may live or die.

(P10) A bidder with a given set of values for a given set of
items will bid an amount in a bundled auction which is greater

than the sum of his bids if the items were sold in separate

auctions.3

As in some of the earlier predictions, this is due to the fact that
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the distribution of values for a single item is a mean-preserving

spread of the distribution of sums of values for a bundle of items.

To facilitate analysis of prediction (P10), "bid differences"
are calculated. A bid difference equals a buyer”s bid for a bundle
minus the sum of that buyer”s bids in the separate single-item
auctions for the items contained in the bundle. The hypotheses

designed to test prediction (P10) are the following.

(H10.1) The sample mean of the bid differences between cells

I and II is significantly greater than zero.

(H10.2) The sample mean of the bid differences between cells

I and III is significantly greater than zero.

(H10.3) The sample mean of the bid differences between cells
I and II is significantly less than the sample mean of the bid

differences between cells I and III.

(H10.4) The sample mean of the bid differences between cells

IV and V is significantly greater than zero,

(H 10.5) The sample mean of the bid differences between cells

IV and VI is significantly greater than zero.

(H10.6) The sample mean of the bid differences between cells
IV and V is significantly less than the sample mean of the bid

differences between cells IV and VI.

Hypotheses H10.1 through H10.6 are tested at three different levels of
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aggregation: the individual level; the experiment level (aggregating
the behavior of 8 buyers); and the fully aggregated level (aggregating

the behavior of 24 buyers).
The final prediction is given by theorems 3, 3J and 3N.

(P11) The total surplus per item generated by an auction is a
decreasing function of the number of items sold as a bundle in

that auction.

In other words, bundling creates inefficiences. The intuition behind
this is simple. If items are sold separately, in equilibrium the
highest bidder in a given auction will have the highest valuation for
the corresponding item. This is the perfectly efficient case. If
several items are sold as a bundle, then in equilibrium the highest
bidder for that auction will have the highest valuation for the
bundles. However, that buyer will not in general have the highest
valuation for each separate item in the bundle. This creates

inefficiencies.

For each auction, efficiency is measured by the valuation of
the winning bidder divided by the sum of the highest valuation of each
of the separate items being sold in the auction. In other words, we
measure efficiency as the percent of maximum possible total surplus.
For each auction in cells II, IXII, V, VI, an efficiency difference is
calculated, which equals the percent of maximum total surplus in
separate auctions minus the percentage of maximum total surplus in the
corresponding bundled auction The following hypotheses were designed

to test prediction (Pl1).
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(H11.1) The sample mean efficiency differences in cells II,

III, V and VI are each significantly greater than zero.

(H11.2) The sample mean efficiency difference in cell III is
significantly greater than the sample mean efficiency

difference in cell II.

(B11.3) The sample mean efficiency difference in cell VI is

significantly greater than the sample mean efficiency

difference in cell V.

In this section, 29 testable hypotheses were outlined. The
next section of this paper presents the results of the experimental
auctions which were designed as an empirical test of these hypotheses.

Some final concluding remarks are made in section V.
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IV. DATA

The data provide support for the hypotheses concerning the
effect of bundling on seller revenue. The mean revenue differences
for each experiment as well as the pooled mean revenue differences for
all three experiments combined are given in Table 3. There is weak
support for hypotheses (H1.1), (H1.2), and (H1.3) but the statistical
tests for the pooled mean revenue differences between cells I,II and
III are not significant at the ten percent level.® However, these
pooled means have the right sign in each case. So in the three
experiments conducted, on average the seller was better off bundling

when there were 2 buyers, but not significantly better off.

The data offer very strong evidence that supports hypotheses
(H2.1) (H2.2) and (H2.3). Using a one-tailed test all three of the
pooled mean differences have the right signs’/ and all are significant
at the one percent level. In fact all of these mean differences in
each of the three experiments are also significantly less than zero at
either the five percent or the one percent level. Thus we can state
with a great deal of confidence that with four bidders the seller is

worse off bundling.

The prediction that seller revenue increases as a function of
the number of bidders is also borme out by the data. Table 4 contains
the revenue differences.® 1In each experiment, the revenues in cells
IV, V, and VI were significantly greater than the revenues in cells
I,II and III respectively. The significance level was one percent.

Thus hypotheses (H4.1), (H4.2) and (H4.3) cannot be rejected.
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Experiment Experiment Experiment Experiment
1 2 3 1-3
(pooled)
cell 11 - cell I 1.9 13.9%%% -8.5 2.5
(5.0) (3.8) (5.6) (2.9)
cell III - cell I 12.9% 11.5%% -13.3 3.7
(9.3) (6.3) (6.2) (4.3)
cell III - cell II 11.0 -2.4 -4.8 1.2
(10.6) (7.4) (8.4) (5.2)
cell V - cell IV -23.2%%% -13.2%% ~19.0%x* ~18.5%*%
(4.4) (6.0) (4.0) (2.8)
cell VI - cell IV ~57.7%*% =51, 2%%% -58. 5k*x* ~55.8%*%*
(5.7 (10.6) (6.7) (4.6)
cell VI - cell V =34, 5%%% ~39.0%*%* -3G.5%%% =37.3%%%
4 (7.2) (12.2) (7.8) (5.4)

* %k
k%

Table 3.

Significant at 10% level.
Significant at 5% level.
Significant at 1% level.

Revenue differences attributable to

Standard errors are in parentheses

bundling-
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With few exceptions, the experiments supported the hypotheses
about the distributional consequences of bundling. On average, most
buyers were made significantly worse off from bundling. Data for the
individual experiments are given in Table 5. These differences? for

all of the experiments pooled are summarized in Table 6.

In cell II, the major exceptions to this are those buyers who
have relatively little variation in valuations for items in a bundle.
In these exceptions, the signs of the observed mean surplus
differences were almost always positive, but not significantly greater
than zero at the ten percent level. In cell III, only categories G
and H (again "low variation" categories) failed to have significantly
positive surplus differences, but again the signs of these means were
positive. Each individual experiment also supports these hypotheses
although due to fewer data points (i.e. fewer auctions), fewer
categories showed significantly positive mean differences, although
most of these sample mean differences had the correct sign. We
conclude that the experiments strongly support hypothesis (H5.1) which
states that if there are two buyers, a buyer is better off on average
when the items are sold in separate auctions regardless of his

valuations.

The next hypothesis, (H6.1), states that when there are two
buyers, on average buyers are worse off the more items that are
bundled together., Table 7 displays the sample mean surplus
differences between cells II and III. In six of the nine categories,
the hypothesis is supported at a one percent significance level. The

three exceptions are cells D, G and H. One should note that these are
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Cell II Cell III Cell V Cell IV

A C11,2%% 48, 3%%% 6.7% 17, 1%%%
(6.3) (10.1) (4.9) (6.7)

B 22 .9%%k% 61.7%%% 18.5%%% 35, 2%k%%
(4.4) (5.3) (2.5) (3.1)

c 10, 3%%% 41, 6%%% 10.3%x% 22, 2%x%
(3.2) (5.6) (2.1) (2.9)
D 9.8% 16.0% -12.3 ~4.4
(7.4) (12.8) (6.2) (8.0)

E 3.6 38.4%%% 4.9%% 19.2%%%
(2.8) (10.9) (2.3) (5.0)

F 3.9%%% 28.9%%% 1.4%% 6. 0x%%
(1.1 (7.9) (.7) (1.7)
G 6.5 2.8 <7 .8kx ~13.4*
(6.6) (11.3) (4.5) (10.3)

H ~%4.9 8.3 -3.1 10, 5%%*
(9.6) (11.0) (2.4) (3.6)

J .6 8. 1kkx 0.0 &. TR
.7 (2.1) (0.0) (1.4)

Table 6. Buyers' mean surplus differences attributable to

bundling (all experiments pooled). Standard
errors are in parentheses.
* Significent at 10% level.
&%  Significant at 5% level.
*%%  Significant at 1% level.
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three categories for which these differences are predicted to be quite
small. Even so, two of these three categories had means of the
predicted sign. Again the results strongly support the theoretical

prediction.

Hypotheses (H7.1), (H7.2) and (H7.3) are very strongly
supported by the data. In Table 6, categories A,B,C,E and F have
significantly positive entries in cell V. In category J there were no
observations other than O since none of these buyers won any separate
or bundled auctions, Category D is a bit of an anomaly since it shows
a significantly negative sign. 1In cell VI, all categories except D
have positive mean surplus differences and they are significant.
Category D is negative but not significant. The data from individual
experiments (Table 5) are also supportive of (H7.1), but fewer
categories are significant due to larger standard errors resulting
from a smaller sample size. Thus we conclude that (H7.l1) is stromngly

supported by the data with the exception of category D.

Hypothesis (H7.2) predicts that in cells V and VI the entry
for category G should be significantly less than zero. In the pooled
data, this is confirmed. This is also confirmed in the individual
experiments (Table 5) in the four cases in which the sign of the

sample mean is significant.

Hypothesis (H7.3) is supported in all categories except A and
D and Hypothesis (H7.4) is not supported (refer to Table 7). Again,
with few exceptions this indicates that predictions for most

categories are qualitatively very precise. This also appears to be
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true when using the data from the three experiments individually
instead of pooled. The signs are generally correct in the individual
experiments, but are not always significant because of a small sample

problem.

Tablesl0 8 and 9 display the summarized data used to test
(H8.1) (H8.2) and (H8.3). Using the pooled data (Table 9), (H8.1) was
strongly supported in all cells and for all categorical comparisons
except for the comparison of categories A and D in cell II. Once
again the sign was correct but not significant at the ten-percent
level. Hypothesis (H8.2) was similarly supported with one exception:
the sign for the comparison between categories A and G was correct but
not significant. Hypothesis (H8.3) was also supported by the pooled
data but the evidence was not as convincing as the evidence supporting
(H8.1) and (H8.2). In all four cells, the mean surplus difference
between categories D and G were not significantly different. This was
also true for the comparison of categories E and H in cell III and the
comparison of F and J in cell VI, All other signs were correct and

significant at the ten-percent level,

Table 8 shows the sample means and standard errors used to
test (H8.1), (H8.2) and (H8.3) in each of the three experiments.
These data also offer similar support for these three hypotheses, but
the support is not as sirong because fewer signs are significant due
to the smaller sample size. From Tables 8 and 9 we conclude that H8.1

H8.2 and H8.3 cannot be rejected.

The next set of hypotheses, (H9.1) and (H9.2), are tested by
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Cell II Cell III Cell V Cell VI
A-D 1.3 32.3%% 19.0%** 21.5%%
9.7 (16.3) (7.9) (10.4)
B-E 19.,4%%% 23.3%% 13.5%%% 16.0%%*
(5.2) (12.1) (3.4) (5.9)
C-F 6.4%% 12.7% 8.9%%% 16.3%*%
(3.4) (%.7) (2.2) (3.2)
A-G 4.7 45,6%%% 14, 6%% 30.5%%%
(5.1) (15.2) (6.7) (12.3)
B-H 27.9%%% 53, 5%%% 21.6%%* 24, 8%%*
(10.6) (12.2) (3.5) (4.8)
C-J 9, 7%%% 33.5%% 10.3%%% 17.6%%%
(3.3) (6.0) (2.1) (3.2)
D-G 3.3 13.3 -4.5 9.1
9.9 (17.1) (7.7) (13.0)
E-H 8.5 30.1%%* 8.1%*% 8.8%
(10.0) (15.5) (3.3) (6.2)
F-J 3. 3%*% 20.8%%% 1.4%% 1.3
(1.3) (8.2) (.7) (2.2)
Table 9. Comparison of buyers' mean surplus differences

**%
kh*k

along the dimension of variation of values (all

experiments pooled). Standard errors are in

parentheses.

Significant at 10% level.

Significant at 5% level.
Significant at 1% level.
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comparing sample means of buyers” surplus differences along the
dimension of the magnitude of the buyers” valuations for items in a
bundle. Table 10 contains this data for each separate experiment and
Table 11 contains the data pooled from all three experiments. For all
experiments combined, the signs of the differences were significantly
positive, as predicted, for all categories in cell VI. In cell V,
four of the six categorical comparisons had signs which were
significant and consistent with hypothesis., The exceptions were the
differences between categories G and H and the differences between
categories H and J. Considering that the entries in Table 2 for each
of the three, G,H and J, are predicted by theory to be quite small,
the fact that the differences between the entries in these three
categories were insignificantly different from zero is not
particularly surprising. In cells II and III combined, only four of
the twelve signs were significant. All of these signs conformed with
the predicted signs. Table 10 also shows that if each experiment is
analyzed separately, an overwhelming proportion of the categorical
comparisons have the predicted sign and a large number have not only

the predicted sign but are also significant.

In all of the hypotheses making comparisons between the nine
categories (H5.1 - H9.2), the tests have shown more significant
comparisons when there are four bidders (cells V and VI) than when
there are two bidders (cells II and III). There is a good reason for
this., The comparisons in cells V and VI have twice as many
observations as the comparisons in cells II and III since there are

four bidders instead of two bidders. This results in larger standard
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Cell I1 Cell III Cell V Cell VI
B-A 11.7% 13.4 11.7%% 18, 1%*%
(7.7 (11.4) (5.5) (7.4)
E-D -6.2 22.4% 17.3%%% 23, 6%*%
(7.9) (16.8) (6.6) 9.4)
H-G -10.4 5.5 4.7 23.,9%%
(11.6) (15.8) (5.1) (10.9)
B-C 12.6%*% 20,1%** 8.2%%% 13.0%%%
(5.4) (7.7 (3.3) (4.2)
E-F -.3 9.5 3.6% 13.3%%%
(3.0) (13.5) (2.4) (5.3)
H-J -5.5 .1 -3.1 5.8%
(9.6) (11.2) (2.4) (3.9)
Table 11. Comparison of buyers' mean surplus

*%
kkk

differences along the dimension of
magnitude of values (all experiments

pooled).

parentheses

Significant atl0% level.
Significant at 57% level.
Significant at 1% level.

Standard errors are in
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errors of the estimated mean differences in cells II and III than in
cells V and VI, so that one would expect fewer of the signs to be

significant.

The next set of hypotheses, H10.l, H10.2, H10.3, H10.4, H10.5
and H10.6, addresses the question of superadditivity of buyers”
bidding strategies. Table 12 displays these data for individual
buyers. Since there were three experiments, there were twenty-four
buyers in all. Each entry is an average measure of superadditivity
from a specific buyer. Each row corresponds to a different buyer and
each column corresponds to an average difference between an
individual’s bids in bundled auctions from one cell and sums of that
individual”s bids in the corresponding unbundled auctions in another
cell. Positive entries indicate superadditivity and negative entries
indicate subadditivity. As one can see, the preponderance of entries
are positive as predicted. In fact 83 of the 144 entries in the table
are significantly positive at the one percent level. Note that column
one corresponds to (H10.l), column two corresponds to (H10.2) and so
forth. Referring to column one, thirteen of the twenty-four buyers
satisfy (H10.1) at the ten percent significance level, and all but one
of the remaining eleven buyers bid superadditively, but not
significantly superadditively. The other hypotheses are even more
strongly supported by this table. There is not one single entry which
is significantly less than zero even at a significance level of
fifteen percent. What is remarkable is that so many entries in this
table are significantly positive even though the sample size for

entries in the first three columns is only ten and the sample size in
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Buyer Cell II~ Cell 111 Cell I1I~ Cell V- Cell VI- Cell VI~

Rumber Cell I Cell I Cell 11 Cell IV Cell ¥V Cell V
5.6 55.3%%% 49 TR 16.5%%% 79.0%%x 62.5%%*

1 (5.6) (8.0) {9.8) 4.7) (4.5) (6.5)
16.5%% 9.3 -7.2 6.1% 31.1%%% 25, 0%*%

2 (7.7) (11.0) (13.4) (4.0) (5.5) (6.8)

2.1% 3.6%k% 1.5 1.8 -4 -2.1

3 (1.3) (1.4) (1.9) (7.0) (.4) (7.0

.8 8.6 7.8 -3.3 9.5 12.8

4 (2.0) (9.2) (9.4) (6.0) (10.0) (11.7)
14 . 4xx% 56, 2kk% 4].8%%% 13.0%%% 37 . 4Rk% 24 . Gxxk

5 (4.0) (7.3) (8.3) (3.1) (6.2) (6.9)
6.8 49, 6%%% 42,8%% 1.7 22, 2%%% 20, 5%%%

6 (11.0) (19.3) (22.2) (4.4) (7.0) (8.3)
4.4 32, 8%4% 28, 4%%% .6 41, 6%%% 41, 0%**

7 (5.3) (7.2) (8.9) (5.6) (7.4 (9.3)

12.8%%% 50.0%%% 37.2%% 2.0 17.0 15.0

8 (4.9) (18.7) (19.3) (8.0) (14.4) (16.5)
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the second three columns is only twenty. In Table 13, bid differences
are averaged across all bidders, by experiment. When this aggregation
is performed, all entries are significantly positive at the one

percent level. The data clearly confirm (H10.1) - (H10.6) beyond much

doubt.

A final observation about bidding behavior can be made.
Buyers did not bid according to the bidding strategies predicted by
theory. In fact, with few exceptions, bids exceeded the equilibrium
predictions., This observation was also made by Coppinger, et al. on
the basis of their experimental data. Apparently this phenomenon is a
persistent one, The fact that, despite this, the predictions from the
theory about the effects of bundling decisions were strongly supported
by the experiments described in this paper indicates that predictions
of this sort are quite robust. Nonetheless, this phenomenon points to
a weakness in the theory of bidding behavior which deserves to be

explored in future research endeavors.

The final set of hypotheses, (H11.1), (H11.2), (H11.3),
addresses the loss of efficiency due to bundling. Table 14 presents
average efficiency differences between cells for each experiment and
for all experiments pooled. The efficiency measure used was the
percent of maximum total surplus that was generated by the auction.
The average efficiency difference between two cells is equal to the
average difference between the surplus generated in separate auctions
and the surplus generated in the corresponding bundled auction. The
evidence presented in Table 14 overwhelmingly supports (H11.1),(H11.2)

and (H11.3). Undeniably bundling creates inefficiences ex post.
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Cell I- Cell I~ Cell II- Cell IV~ Cell IV- Cell V-
Cell 11 Cell III Cell III Cell V Cell VI Cell VI
Experiment 1 4. 6%k 9. 1%%k% 4. 5%% 13, 7%%% 18, 5%%% 4. B%%
(1.7 (2.1) 2.7) (2.1) (1.8) (2.8)
Experiment 2 6, 0%%% 14 . 4%%x% B.4%%k% 13.7%%% 21, 3%%% 7.6%%*%
(2.0) 1.7 (2.6) (2.7) (1.9) (3.3)
Experiment 3 8. 5%xx 11.6%%x% 3.3 6. 4kkx 16, 1%%% 9, 7*%%
(2.2) 1.7) (2.8) (1.7) (1.7) (2.4)
All 6. 4%%% 11, 7%%% 5.3%%% 11, 3%%% 18, Th%k 7. 4%%kx
Experiments 1.1) (1.1) (1.5) (1.3) (1.0) (1.6)
pooled

Table 14. Mean efficiency differences.
in parentheses.

%k
kkk

Significant at 10% level.
Significant at 5% level.
Significant at 17 level.

Standard errors are




187

V CONCLUSIONS

A series of experiments was designed and carried out with the
purpose in mind being to provide data to statistically test a number
of specific predictions generated by a theoretical model of the
behavior of buyers in first-price auctions when uncertainty is
present. The predictions were qualitative in nature and addressed
questions of the effects of bundling and the effect of the number of
competing bidders on seller revenues, the ex ante distribution of
buyer surplus, the strategies of the buyers, and the ex post
distribution of total surplus (i.e. efficiency). The predictions

which held out quite well under statistical scrutiny were:
(1) Seller revenues increase as a function of the number of bidders.
(2) Buyers bid superadditively.

(3) When there are a large number (four or more) of bidders, the

seller is better off not bundling.
(4) Bundling creates significant inefficiences.

(5) On average, buyers with relatively more dispersed valuations are
affected more adversely under bundling than buyers with

relatively less dispersed valuations.
(6) Ex ante, buyers are affected adversely by bundling.

(7) 1f there are a large number (four or more) of bidders, then

buyers with exceptionally high valuation benefit, on average,
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from bundling.

Two of the predictions were supported by the data, but not so

convincingly as the above predictions. These two are:
(1) With two competing bidders, the seller is better off bundling.

(2) On average, buyers with mediocre valuations are affected more
adversely under bundling than buyers with relatively high or

relatively low valuations.

In no way can one claim that these results are absolutely conclusive.
However, the statistical tests indicate that they are almost certainly

replicable., Such attempts to replicate the results would be welcome.

In conclusion, the model developed in chapter 3 as judged by
the success of its testable predictions in these three experiments,
provides a theoretical framework which can be useful in predicting the
effects of a2 seller”s bundling decision on market outcomes. Thus it
is a reasonable approach which should be developed and embellished in
such a way as to extend the set of economic enviromments to which it

can be applied.
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APPENDIX

Instructions

General Instructions:

This is an experiment in the economics of market decision-making.
Various research foundations have provided funds for this research. The
instructions are simple. If you follow them carefully and make good
decisions, you might earn a considerable amount of money. Your earnings
will be paid to you in cash at the end of the experiment. In addition,
you will also be paid $3.00 at the end of the experiment for your
participation.

In this experiment we are going to conduct auctions in which
vou will all be buying items from the experimenter. You will participate
in several such auctions in a sequence of.mé_ market years. In your
folder you will find an information and record sheet for each market
year, as well as a "list of valuations." These will determine the amount
you will be paid if you win an auction. You are not to reveal this

information to anyone. It is your own private information.

Specific Instructions:

During each market year, several auctions are conducted for
several lots. Each lot consists of one or more items. At the beginning
of each year, you will be asked to submit private, written bids for each
of the lots listed in the first column of your information and record

sheet. These bids must be in penny increments. You have been provided
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with bidding forms for this purpose. Each lot consists of the set of
items listed in column two. You will also be told how many of the peop;e
in the room (including yourself) will be bidding on each lot. This
number is listed in the fourth column of your information and record
sheets.

Your redemption value for each item may be found in your ''list

of valuations.'" You will notice that all of your redemption values are .
between $0.00 and $1.99. Each of these values was drawn perfectly
randomly in the range from $0.00 to $1.99 for each bidder. Each value
for each bidder for each item is equally likely to be anywhere from $0.00
to $1.99. Therefore, different bidders will almost certainly have
different values for each item. All values are in penny increments.

The only values you know for sure are your own and you are not to reveal
any information about these to anyone else.

Remember, each lot may consist of several items. The total
value to you of a lot equals the sum of your redemption values for the
items in the lot. For your convenience, your total redemption value for
each lot has been calculated for you and is listed in column three of

your information and record sheet.

Your Profit:

If someone else submits a higher bid than yours for a particular
lot, you neither receive nor pay any money. Your profit for that lot is
zero.

If your bid for a lot is higher than any other bid for that

lot, then the experimenter will pay you your redemption values for all
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items in that lot minus your bid for that lot. Your profit for that lot,
if you win, is equal to the difference between your total redemption
value for the lot and your bid for the lot. For example, suppose that
lot #2 consisted of items 48, 53, and 117, and your values for these
items were $0.91, $1.45, and $0.61, respectively. Then your total
redemption value for lot #2 is:

$0.91 + $1.45 + $0.61 = $2.97.
If you submitted a bid of $1.29 for lot #2 and this was the highest bid
submitted by any bidder for lot #2, then your profit for this lot would
be

$2.97 - $1.29 = $1.68.

If you and at least one other bidder tie for the highest bid
on a lot then your profit equals your total redemption value minus your
bid divided by the number of winning bidders. In the example above, if
one other bidder also submitted a bid of $1.29, and no one submitted a
bid higher than $1.29, then your profit would be

*1:08 _ 45,84,
2
Your total profits for the experiment will be the sum of your

profits in each auction plus a payment of $3.00 for your participation.

Recording Instructions:

Each market year, your bids should be recorded in column five
of your information and record sheet, and on the bidding forms which
have been provided for you by the experimenter. When you have completed

your bidding form raise your hand and the experiment will collect it.
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After everyone has submitted their bidding forms for that year, the
experimenter will announce the highest bid and the second highest bid
for each lot. Please record the highest bid in column six of your
information and record sheet. The experimenter will also announce
whether there were any ties. When the experimenter has finished this,
you should record your profit for each lot in the last column of your
information and record sheet. Your total profit for the market year is
computed by adding rows one through eighteen. Please record this number
in the box at the bottom of the page. When everyone has done this, we
will proceed to the next market year.

Are there any questions?
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NOTES
This model of the bidding process was originally formulated in

Vickrey (1961).

This is a well-known prediction of Vickrey”s bidding model, and in
fact is always true if bidders use an increasing bidding

function.

This will be called superadditive bidding.

All subjects were undergraduate students at the California

Institute of Technology.

For cells II and V the categories were divided in the following
way: m = magnitude of valuation = (sum of valuations of items in
the lot)/ (number of items in the lot); s = variation of
valuations = (sum of absolute differences between the values of

items in the lot and m for that lot)/ (number of items in the

lot).
A 118.3 <m < 199 s > 30
B 8l.7 <m < 188.3 s > 30
c 0 <m < 8l.7 s > 30
D 118.3 <m < 199 15 < s < 30
E 81.7 <m < 118.3 15 < s <30
F 0 <m < 8l1.7 15 < s <30
G 118.3 < m < 199 0 <s <15
H 8l1.7 <m < 118.3 0 <s <15

J 0 <m < 81.7 0 <s <15
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For cells III and VI, the categories were divided in the

following way:

A 115 < m < 199 s > 40
B 85 <m < 115 s > 40
c 0 <m < 85 s > 40
D 115 < m < 199 30 < s < 40
E 85 <m < 115 30 < s < 40
F 0 <m< 85 30 < s < 4
G 115 < m < 199 0 <s <30
H 85 < m < 115 0 <s <30
I 0 <m < 85 0 <s <30

6. These entries are hypothesized to be significantly greater than
zero. (In all tables, standard errors are in parentheses below

the appropriate sample mean.)

7. These entries are hypothesized to be significantly less than zero.

8. These entries are hypothesized to be significantly greater than

Zero.

9. All entries in Table 5, 6, and 7 are hypothesized to be
significantly greater than zero except for entries for category G
in the "Cell V" columns, "Cell VI" columns and "Cell V-Cell VIV
columns, which are hypothesized to be significantly less than

ZE€TO.

10. All entries in Tables 8, 9, 10, 12, 13 and 14 are hypothesized to
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be significantly greater than zero.
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